
Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

CS101 FINAL TERM

HIGHLIGHTED HANDOUTS

INTRODUCION TO COMPUTING

For video lectures visit our YouTube Channel

VU Supreme Taleem

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Machine Language
156C

166D

5056

306E

C000

Assembly Language
LD R5, Price

LD R6, ShippingCharge

ADDI R0, R5 R6

ST R0, TotalCost

HLT

Programs for modern computers consist of sequences of instructions that are encoded as numeric digits.

Such an encoding system is known as a machine language. Unfortunately, writing programs in a machine

language is a tedious task that often leads to errors that must be located and corrected (a process known as

debugging) before the job is finished.

 Using Mnemonics and descriptive names

In the 1940s, researchers simplified the programming process by developing notational systems by which

instructions could be represented in mnemonic rather than numeric form.

For example, the instruction Move the contents of register 5 to register 6
4056 using the machine language introduced,

Whereas in a mnemonic system it might appear as MOV R5, R6

As a more extensive example, the machine language routine

Which adds the contents of memory cells 6C and 6D and stores the result at location 6E

Note: 156C loads register 5 with bit pattern found in memory cell at address 6C

using mnemonics. (Here we have used LD, ADDI, ST, and HLT to represent load, add, store, and halt.

Moreover, we have used the descriptive names Price, ShippingCharge, and TotalCost to refer to the memory
cells at locations 6C, 6D, and 6E, respectively. Such descriptive names are often called program variables or
identifiers.) Note that the mnemonic form, although still lacking, does a better job of representing the
meaning of the routine than does the numeric form.

 Machine Language
 Assembly Language
 High level languages

Machine codes

1 Load
3 Store
4 Move
5 Add

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

 Assemblers

Once such a mnemonic system was established, programs called assemblers were developed to convert
mnemonic expressions into machine language instructions. Thus, rather than being forced to develop a
program directly in machine language, a human could develop a program in mnemonic form and then have
it converted into machine language by means of an assembler.

 Assembly language

MOV R5, R6 to 4056

A mnemonic system for representing programs is collectively called an assembly language. At the time
assembly languages were first developed, they represented a giant step forward in the search for better
programming techniques. In fact, assembly languages were so revolutionary that they became known as
second-generation languages, the first generation being the machine languages themselves.

 Assembly language disadvantages

Although assembly languages have many advantages over their machine language counterparts, they still
fall short of providing the ultimate programming environment. After all, the primitives used in an assembly
language are essentially the same as those found in the corresponding machine language. The difference is
simply in the syntax used to represent them. Thus, a program written in an assembly language is inherently
machine dependent – that is, the instructions within the program are expressed in terms of a particular
machine’s attributes. In turn, a program written in assembly language cannot be easily transported to
another computer design because it must be rewritten to conform to the new computer’s register
configuration and instruction set.

Another disadvantage of an assembly language is that a programmer, although not required to code
instructions in numeric form, is still forced to think in terms of the small, incremental steps of the machine’s
language. (Low level primitives) The situation is analogous to designing a house in terms of boards, nails,
bricks, and so on. It is true that the actual construction of the house ultimately requires a description based
on these elementary pieces, but the design process is easier if we think in terms of larger units such as
rooms, windows, doors, and so on.

In short, the elementary primitives in which a product must ultimately be constructed are not necessarily
the primitives that should be used during the product’s design. The design process is better suited to the
use of high-level primitives, each representing a concept associated with a major feature of the product.
Once the design is complete, these primitives can be translated to lower-level concepts relating to the
details of implementation.

 Machine Independent

Following this philosophy, computer scientists began developing programming languages that were more
conducive to software development than were the low-level assembly languages. The result was the
emergence of a third generation of programming languages that differed from previous generations in that
their primitives were both higher level (in that they expressed instructions in larger increments) and
machine independent (in that they did not rely on the characteristics of a particular machine). The best
known early examples are FORTRAN (FORmula TRANslator), which was developed for scientific and
engineering applications, and COBOL (COmmon Business-Oriented Language), which was developed by the
U.S. Navy for business applications.

In general, the approach to third-generation programming languages was to identify a collection of high
level primitives in which software could be developed. Each of these primitives was designed so that it
could be implemented as a sequence of the low-level primitives available in machine languages. For
example, the statement

TotalCost = Price + ShippingCharge

expresses a high-level activity without reference to how a particular machine should perform the task, yet it
can be implemented by the sequence of machine instructions discussed earlier. Thus, our pseudocode
structure

identifier = expression is a potential high-level primitive.

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

 Translators

Once this collection of high-level primitives had been identified, a program, called a translator, was written
that translated programs expressed in these high-level primitives into machine-language programs. Such a
translator was similar to the second-generation assemblers, except that it often had to compile several
machine instructions into short sequences to simulate the activity requested by a single high-level primitive.

 Compilers

Translators, which compile several machine instructions into short sequences to simulate the activity
requested by a single high-level primitive. Such Translation programs were often called compilers.

 Interpreters

An alternative to translators, called interpreters, emerged as another means of implementing third
generation languages. These programs were similar to translators except that they executed the
instructions as they were translated instead of recording the translated version for future use. That is,
rather than producing a machine-language copy of a program that would be executed later, an interpreter
actually executed a program from its high-level form.

As a side issue, we should note that the task of promoting third-generation programming languages was not
as easy as might be imagined. The thought of writing programs in a form similar to a natural language was
so revolutionary that many in managerial positions fought the notion at first. Grace Hopper, who is
recognized as the developer of the first compiler, often told the story of demonstrating a translator for a
third-generation language in which German terms, rather than English, were used. The point was that the
programming language was constructed around a small set of primitives that could be expressed in a variety
of natural languages with only simple modifications to the translator. But she was surprised to find that
many in the audience were shocked that, in the years surrounding World War II, she would be teaching a
computer to “understand” German.

 Natural languages and formal languages

Today we know that understanding a natural language involves much more than responding to a few
rigorously defined primitives. Indeed, natural languages (such as English, German, and Latin) evolved over
time without formal grammatical analysis.

Formal languages (such as programming languages) are precisely defined by grammars.

 Goal of machine independence

With the development of third-generation languages, the goal of machine independence was largely

achieved. Since the statements in a third-generation language did not refer to the attributes of any

particular machine, they could be compiled as easily for one machine as for another.

 A program written in a third generation language could theoretically be used on any machine

simply by applying the appropriate compiler.

When a compiler is designed, particular characteristics of the underlying machine are sometimes reflected

as conditions on the language being translated.

 The different ways in which machines handle I/O operations have historically caused the

“same” language to have different characteristics, or dialects, on different machines.

 Consequently, it is often necessary to make at least minor modifications to a program to

move it from one machine to another.

Compounding this problem of portability is the lack of agreement in some cases as to what constitutes the

correct definition of a particular language.

 Standardization
 To aid in this regard, the American National Standards Institute and the International

Organization for Standardization have adopted and published standards for many of the

popular languages.

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

 In other cases, informal standards have evolved because of the popularity of a certain dialect

of a language and the desire of other compiler writers to produce compatible products.

 Language Extensions

 Compiler designers often provide features, sometimes called language extensions that are

not part of the standard version of the language.

 If a programmer takes advantage of these features, the program produced will not be

compatible with environments using a compiler from a different vendor, makes the code

machine dependent

In the overall history of programming languages, the fact that third generation languages fell short of true

machine independence is actually of little significance for two reasons. First, they were close enough to

being machine independent that software could be transported from one machine to another with relative

ease. Second, the goal of machine independence turned out to be only a seed for more demanding goals.

Indeed, the realization that machines could respond to such high level statements as

The generation approach to classifying programming languages is based on a linear scale on which a

language’s position is determined by the degree to which the user of the language is freed from the world of

computer gibberish and allowed to think in terms associated with the problem being solved.

 What are programming paradigms?

It is Fundamental style of computer programming. It serves as a pattern or model of a programming

language.

In reality, the development of programming languages has not progressed in this manner but has developed

along different paths as alternative approaches to the programming process (called programming

paradigms) have surfaced and been pursued.

Generations of programming languages

Consequently, the historical development of programming languages is better represented by a multiple-

track diagram, in which different paths resulting from different paradigms are shown to emerge and

progress independently. In particular, the figure presents four paths representing the functional, object-

oriented, imperative, and declarative paradigms, with various languages associated with each paradigm

positioned in a manner that indicates their births relative to other languages. (It does not imply that one

language necessarily evolved from a previous one.)

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

We should note that although the paradigms identified called programming paradigms, these alternatives

have ramifications beyond the programming process. They represent fundamentally different approaches to

building solutions to problems and therefore affect the entire software development process. In this sense,

the term programming paradigm is a misnomer. A more realistic term would be software development

paradigm.

 Imperative paradigm

The imperative paradigm, also known as the procedural paradigm, represents the traditional approach to

the programming process. It is the paradigm on which Python and our pseudocode are based as well as the

machine language. As the name suggests, the imperative paradigm defines the programming process to be

the development of a sequence of commands that, when followed, manipulate data to produce the desired

result. Thus, the imperative paradigm tells us to approach the programming process by finding an algorithm

to solve the problem at hand and then expressing that algorithm as a sequence of commands.

 Develops a sequence of commands that when followed, manipulate data to produce the desired

result

 Approaches a problem by trying to find an algorithm for solving it

 Declarative paradigm

In contrast to the imperative paradigm is the declarative paradigm, which asks a programmer to describe

the problem to be solved (what) rather than an algorithm to be followed (How). More precisely, a

declarative programming system applies a pre-established general-purpose problem-solving algorithm to

solve problems presented to it. In such an environment the task of a programmer becomes that of

developing a precise statement of the problem rather than of describing an algorithm for solving the

problem.

 Emphasizes • “What is the problem?” • Rather than “What algorithm is required to solve the

problem?

 Implemented a general problem-solving algorithm

 Obstacles

A major obstacle in developing programming systems based on the declarative paradigm is the need for an

underlying problem-solving algorithm. Knowing the generic algorithm and then implementing it.

For this reason, early declarative programming languages tended to be special-purpose in nature, designed

for use in particular applications or softwares. For example, the declarative approach has been used for

many years to simulate a system (political, economic, environmental, and so on) in order to test hypotheses

or to obtain predictions. In these settings, the underlying algorithm is essentially the process of simulating

the passage of time by repeatedly re-computing values of parameters (gross domestic product, trade deficit,

and so on) based on the previously computed values.

 Weather forecasteing

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Thus, implementing a declarative language for such simulations requires that one first implement an

algorithm that performs this repetitive function. Then the only task required of a programmer using the

system is to describe the situation to be simulated. In this manner, a weather forecaster does not need to

develop an algorithm for forecasting the weather but merely describes the current weather status, allowing

the underlying simulation algorithm to produce weather predictions for the near future.

 Logic programming

A tremendous boost was given to the declarative paradigm with the discovery that the subject of formal

logic within mathematics provides a simple problem- solving algorithm suitable for use in a general purpose

declarative programming system. The result has been increased attention to the declarative paradigm and

the emergence of logic programming.

Another programming paradigm is the functional paradigm. Under this paradigm a program is viewed as an

entity that accepts inputs and produces outputs. Mathematicians refer to such entities as functions, which

is the reason this approach is called the functional paradigm. Under this paradigm a is program constructed

by connecting smaller predefined program units (predefined functions) so that each unit’s outputs are used

as another unit’s inputs in such a way that the desired overall input-to-output relationship is obtained. In

short, the programming process under the functional paradigm is that of building functions as nested

complexes of simpler functions.

As an example, shows how a function for balancing your checkbook can be constructed from two simpler

functions. One of these, called Find_sum, accepts values as its input and produces the sum of those values

as its output. The other, called Find_diff, accepts two input values and computes their difference. The

structure displayed in Figure 6.3 can be represented in the LISP programming language (a prominent

functional programming language) by the expression

(Find_diff (Find_sum Old_balance Credits) (Find_sum Debits))

The nested structure of this expression (as indicated by parentheses) reflects the fact that the inputs to the

function Find_diff are produced by two applications of Find_sum. The first application of Find_sum

produces the result of adding all the Credits to the Old_balance. The second application of Find_sum

computes the total of all Debits. Then, the function Find_diff uses these results to obtain the new

checkbook balance.

To more fully understand the distinction between the functional and imperative paradigms, let us compare

the functional program for balancing a checkbook to the following pseudocode program obtained by

following the imperative paradigm:

Imperative program Functional program

Total_credits = sum of all Credits

Temp_balance = Old_balance + Total_credits

Total_debits = sum of all Debits

Balance = Temp_balance - Total_debits

A function for checkbook balancing constructed from simpler functions

Note that this imperative program consists of multiple statements, each of which requests that a

computation be performed and that the result be stored for later use.

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

In contrast, the functional program consists of a single statement in which the result of each computation is

immediately channeled into the next. In a sense, the imperative program is analogous to a collection of

factories, each converting its raw materials into products that are stored in warehouses. From these

warehouses, the products are later shipped to other factories as they are needed. But the functional

program is analogous to a collection of factories that are coordinated so that each produces only those

products that are ordered by other factories and then immediately ships those products to their

destinations without intermediate storage. This efficiency is one of the benefits proclaimed by proponents

of the functional paradigm.

Object oriented paradigm

Another programming paradigm (and the most prominent one in today’s software development) is the

object-oriented paradigm, which is associated with the programming process called object-oriented

programming (OOP). Following this paradigm, a software system is viewed as a collection of units, called

objects, each of which is capable of performing the actions that are immediately related to itself as well as

requesting actions of other objects. Together, these objects interact to solve the problem at hand.

 Developing a GUI

As an example of the object-oriented approach at work, consider the task of developing a graphical user

interface. In an object-oriented environment, the icons that appear on the screen would be implemented as

objects. Each of these objects would encompass a collection of functions (called methods in the object-

oriented vernacular) describing how that object is to respond to the occurrence of various events, such as

being selected by a click of the mouse button or being dragged across the screen by the mouse. Thus, the

entire system would be constructed as a collection of objects, each of which knows how to respond to the

events related to it.

 Difference of List in imperative and OO-Paradigm

To contrast the object-oriented paradigm with the imperative paradigm, consider a program involving a list

of names. In the traditional imperative paradigm, this list would merely be a collection of data. Any

program unit accessing the list would have to contain the algorithms for performing the required

manipulations. In the object-oriented approach, however, the list would be constructed as an object that

consisted of the list together with a collection of methods for manipulating the list.

You need your algorithm for searching, sorting etc in imperative, however, in OO-paradigm; all functionality

will be available along with the list in terms of object

Its significance in today’s software development arena dictates that we include the concept of a class in this

introduction. To this end, recall that an object can consist of data (such as a list of names) together with a

collection of methods for per- forming activities (such as inserting new names in the list). These features

must be described by statements in the written program. This description of the object’s properties is called

a class. Once a class has been constructed, it can be applied anytime an object with those characteristics is

needed. Thus, several objects can be based on (that is, built from) the same class. Just like identical twins,

these objects would be distinct entities but would have the same characteristics because they are

constructed from the same template (the same class). (An object that is based on a particular class is said to

be an instance of that class.)

High-level programming languages allow locations in main memory to be referenced by descriptive names

rather than by numeric addresses. Such a name is known as a variable, in recognition of the fact that by

changing the value stored at the location, the value associated with the name changes as the program

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

executes. These declarative statements also require that the programmer describe the type of data that will

be stored at the memory location associated with the variable. Such a type is known as a data type.

 Data Types
1. Integer refers to numeric data consisting of whole numbers, probably stored using two’s

complement notation.

2. Float (sometimes called real) refers to numeric data that might contain values other than whole

numbers, probably stored in floating-point notation. Operations performed on data of type float

are similar to those performed on data of type integer.

int Height, Width;

int WeightLimit = 100;

3. Character refers to data consisting of symbols, probably stored using ASCII or Unicode.

Operations performed on such data include comparisons such as determining whether one

symbol occurs before another in alphabetical order, testing to see whether one string of symbols

appears inside another, and concatenating one string of symbols at the end of another to form

one long string. The statement

char Letter, Digit;

4. Boolean refers to data items that can take on only the values true or false. Operations on data of

type Boolean include inquiries as to whether the current value is true or false. For example, if the

variable LimitExceeded was declared to be of type Boolean, then a statement of the form

if (LimitExceeded) then (...) else (...) would be reasonable.

The data types that are included as primitives in a programming language, such as int for integer and char

for character, are called primitive data types. Data types such as: integer, float, character, and boolean are

common primitives. Other data types that have not yet become widespread primitives include images,

audio, video, and hypertext. However, types such as GIF, JPEG, and HTML might soon become as common as

integer and float.

In addition to data type, variables in a program are often associated with data structure, which is the

conceptual shape or arrangement of data. For example:

✓ Name is a sequence of characters,

✓ Student marks in 5 subjects

One common data structure is the array, which is a block of elements of the same type such as a one

dimensional list, a two-dimensional table with rows and columns, or tables with higher dimensions. To

establish such an array in a program, many programming languages require that the declaration statement

declaring the name of the array also specify the length of each dimension of the array. For example, displays

the conceptual structure declared by the statement

int Scores[2][9];

in the language C, which means “The variable Scores will be used in the following program unit to refer to a

two-dimensional array of integers having two rows and nine columns.” The same statement in FORTRAN

would be written as

INTEGER Scores (2, 9)

Once an array has been declared, it can be referenced elsewhere in the program by its name, or an

individual element can be identified by means of integer values called indices that specify the row, column,

and so on, desired. However, the range of these indices varies from language to language. For example, in C

(and its derivatives C++, Java, and C#) indices start at 0, meaning that the entry in the second row and

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

fourth column of the array called Scores (as declared above) would be referenced by Scores[1][3], and the

entry in the first row and first column would be Scores[0][0]. In contrast, indices start at 1 in a FORTRAN

program so the entry in the second row and fourth column would be referenced by Scores(2,4).

In contrast to an array in which all data items are the same type, an aggregate type (also called a structure,

a record, or sometimes a heterogeneous array) is a block of data in which different elements can have

different types. For instance, a block of data referring to an employee might consist of an entry called Name

of type character, an entry called Age of type integer, and an entry called SkillRating of type float. Such an

aggregate type would be declared in C by the statement

struct
{char Name[25];
int Age;
float SkillRating;
} Employee;

which says that the variable Employee is to refer to a structure (abbreviated struct) consisting of three

components called Name (a string of 25 characters), Age, and SkillRating (Figure 95). Once such an

aggregate has been declared, a programmer can use the structure name (Employee) to refer to the entire

aggregate or can reference individual fields within the aggregate by means of the structure name followed

by a period and the field name (such as Employee.Age).

Once the special terminology to be used in a program (such as the variables and constants) has been

declared, a programmer can begin to describe the algorithms involved. This is done by means of imperative

statements. The most basic imperative statement is the assignment statement, which requests that a value

be assigned to a variable (or more precisely, stored in the memory area identified by the variable). Such a

statement normally takes the syntactic form of a variable, followed by a symbol representing the

assignment operation, and then by an expression indicating the value to be assigned. The semantics of such

a statement is that the expression is to be evaluated and the result stored as the value of the variable. For

example, the statement:

Z = X + Y;

in C, C++, C#, and Java requests that the sum of X and Y be assigned to the variable Z. The semicolon at the

end of the line, which is used to separate statements in many imperative languages, is the only syntactic

difference from an equivalent Python assignment statement. In some other languages (such as Ada) the

equivalent statement would appear as:

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Z := X + Y;

A control statement alters the execution sequence of the program. it determines whether

other statements will be executed or not.

if (condition)

Statement A

else

Statement B

For example, if a student’s gets more than or equal to 50 marks, the student passes the examination. To

denote this using the if-statement, we will proceed as follow:

if (marks>=50)

You have passed the examination

Else

You have failed the examination

The result is the practice known as structured programming, which encompasses an organized design

methodology combined with the appropriate use of the language’s control statements.

In this module, we will learn another example. Suppose a university wants to give a scholarship, if a student

gets more than 3.0 CGPA in a given semester. We can write the program in the following way and you have

also seen its implementation in the videos in the online compiler.

float CGPA=3.5;
If (CGPA>=3.0)

cout<<”Give Scholarship”;
else

cout<<”Sorry you do not qualify for the scholarship”;

There is another type of control structure known as loop. The loop control structure iterates a set of

instructions based on the provided condition.

Syntax: while (condition)

{loop body}

Consider the following example; we are interested to print the counting from 1 to 5. One way of doing this

is as follows:

cout<<”1”;

cout<<”2”;

cout<<”3”;

cout<<”4”;

cout<<”5”;

Doing this using loop is easier, you just need to give one statement that is printing counting and you need to

tell that how many times, you want to do it. One can write the loop as follows:

int i=1;

while (i<=5)

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

{

cout<<i;

i=i+1;

}

This loop will execute 5 times as follows:

First the value of “i” would be 1. The condition would be checked and based on the condition as true (i<=5

i.e 1<=5), the loop will continue and will print the value of “i” which is 1. Then it will increment the value of

“i”. The new value of “i” would be 2. Then again condition would be checked, and the condition would be

true as 2<=5. This will print “2” on the screen and will continue for “i” as 3, 4, and 5, and will print 3, 4, 5 on

the screen as well. When the value of “i” would be 6, the loop will find the condition as false (as 6<=5). This

would be the termination for the loop.

 Concurrent Processing

Simultaneous execution of multiple activations is called parallel processing or concurrent processing.

Tasks are broken down into subtasks that are then assigned to separate processors to perform

simultaneously, instead of sequentially as they would have to be carried out by a single processor.

 Scenario

Suppose you have been asked to produce animation for an action computer game

 True Parallel Processing

 Possible when multiple CPU core process each activation

 When one CPU, illusion can be created using multiprogramming systems.

 Activation

Different methodologies and naming conventions in different programming languages:

o Task in Ada

o Thread in Java

 Procedure

Creating main program which creates activations/threads/tasks

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

A more complex issue associated with parallel processing involves handling communication between

threads. For instance, in our spaceship example, the threads representing the different spaceships might

need to communicate their locations among themselves in order to coordinate their activities. In other

cases, one thread might need to wait until another reaches a certain point in its computation, or one thread

might need to stop another one until the first has accomplished a particular task.

Such communication needs have long been a topic of study among computer scientists, and many newer

programming languages reflect various approaches to thread interaction problems. As an example, let us

consider the communication problems encountered when two threads manipulate the same data. If each of

two threads that are executing concurrently need to add the value three to a common item of data, a

method is needed to ensure that one thread is allowed to complete its transaction before the other is

allowed to perform its task. Otherwise they could both start their individual computations with the same

initial value, which would mean that the final result would be incremented by only three rather than six.

Data that can be accessed by only one thread at a time is said to have mutually exclusive access.

C-language has the following arithmetic operators:

+ Addition

- Subtraction

* Multiplication
/ Division

% Modulus

+, -, and * are the same as used in the mathematics. However, the “/” has a difference. If one of the

operands is decimal number, then it results in the same way as in mathematics, for example:

5.0/2.0 would result into 2.5.

However, when both operands are integers, then it would truncate the decimal point and

5/2 would result into 2.

The remaining “1” can be acquired by using the modulus operator (%).

5%2 would give 1.

C-language has the following relational operators:

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= = Equal to

!= Not Equal to

C++ Relational Operators are used to compare values of two variables. Here in example we used the

operators in if statement.

Now if the result after comparison of two variables is True, then if statement returns value 1. And if the

result after comparison of two variables is False, then if statement returns value 0.

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Output

In C++ Relational operators, two operators that is = = (Is Equal to) and != (is Not Equal To), are used to check

whether the two variables to be compared are equal or not.

Let us take one example which demonstrates these two operators.

Output

1. C-language Logical Operators are used if we want to compare more than one condition.

2. Depending upon the requirement, proper logical operator is used.

3. Following table shows us the different C++ operators available

Operators Operators Operators

&& AND Operator Binary

|| OR Operator Binary

! NOT Operator Unary

According to names of the Logical Operators, the condition satisfied in following situation and expected

outputs are given

Operator Output

AND
 Output is 1 only when conditions on both sides

of Operator become True

a is smaller

a is less than/equal to c

a is greater than/equal to c

#include<iostream>
using namespace std;
void main()
{
int a=10, b=20, c=10;
if(a>b)
cout<<"a is greater"<<endl;
if(a<b)
cout<<"a is smaller"<<endl;
if(a<=c)
cout<<"a is less than/equal to c"<<endl;
if(a>=c)
cout<<"a is greater than/equal to c"<<endl;
}

#include<iostream>
using namespace std;
void main()
{
int num1 = 30;
int num2 = 40;
int num3 = 40;
if(num1!=num2)
cout<<"num1 Is Not Equal To num2"<<endl;
if(num2==num3)
cout<<"num2 Is Equal To num3"<<endl;
}

num1 Is Not Equal To num2
num2 Is Equal To num3

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

OR
Output is 0 only when conditions on both sides
of Operator become False

NOT It gives inverted Output

Let us look at all logical operators with example-

Output:

Explanation of the Program

Or statement gives output = 1 when any of the two condition is satisfied.

if(num1>40 || num2>=40)

Here in above program , num2=40. So, one of the two conditions is satisfied. So, statement is executed.

For AND operator, output is 1 only when both conditions are satisfied.

if(num1>=20 && num2>=20)

Thus, in above program, both the conditions are True so if block gets executed.

Truth Table

Operator 1st
Condition

2nd
Condition

Output

AND

True True True

True False False

False True False

False False False

OR

True True True

True False True

False True True

False False False

NOT
True - False

False - True

OR If Block Gets Executed
AND If Block Gets Executed
NOT If Block Gets Executed

#include<iostream>
using namespace std;
int main()
{
int num1=30;
int num2=40;

if(num1>=40 || num2>=40)
cout<<"OR If Block Gets Executed"<<endl;

if(num1>=20 && num2>=20)
cout<<"AND If Block Gets Executed"<<endl;

if(!(num1>=40))
cout<<"NOT If Block Gets Executed"<<endl;

return 0;
}

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

In this chapter we explore the problems that are encountered during the development of large, complex

software systems. The subject is called software engineering because software development is an

engineering process. The goal of researchers in software engineering is to find principles that guide the

software development process and lead to efficient, reliable software products.

Software engineering is the branch of computer science that seeks principles to guide the development of

large, complex software systems. It is concerned with all the aspects of software production.

 Scenario

To understand the problems involved in software engineering think of constructing a Commercial building

which has 5 Floors and it size is 50 feet by 90 feet.

 Estimation

o How can you estimate the cost in time, money, and other resources to complete the project?

o How can you divide the project into manageable pieces?

o How can you ensure that the pieces produced are compatible?

o How can those working on the various pieces communicate? How can you measure progress?

 Wrong Estimation!

o Could lead to cost overruns

o Late delivery of products.

o Dissatisfied customers

 Differences b/w Software Engineering and Engineering

 Traditional fields of engineering have long benefited from the ability to use “off-the-shelf”

components as building blocks when constructing complex devices. Software engineering lags in this

regard.

 Another distinction between software engineering and other engineering disciplines is the lack of

quantitative techniques, called metrics, for measuring the properties of software. Methods for

measuring the “complexity” of software are evasive.

 Similarly, if we talk about quality measures. Software does not wear out, so this method of

measuring quality is not as applicable in software engineering.

 SE Progress

Software engineering is currently progressing on two levels: Some researchers, sometimes called

practitioners, work toward developing techniques for immediate application, whereas others, called

theoreticians, search for underlying principles and theories on which more stable techniques can someday

be constructed

 Computer-aided SE

Computer-aided software engineering(CASE), is continuing to streamline and otherwise simplify the

software development process.

 CASE tools

CASE has led to the development of a variety of computerized systems, known as CASE tools, which include

project planning systems (to assist in cost estimation, project scheduling, and personnel allocation), project

management systems (to assist in monitoring the progress of the development project), documentation

tools (to assist in writing and organizing documentation), prototyping and simulation systems (to assist in

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

the development of prototypes), interface design systems (to assist in the development of GUIs), and

programming systems(to assist in writing and debugging programs).

 Integrated development environments (IDEs)

Sophisticated packages designed primarily for the software engineering environment are known as IDEs

Integrated development environments (IDEs) combine tools for developing software (editors, compilers,

debugging tools, and so on) into a single, integrated package. Prime examples of such systems are those for

developing applications for smartphones.

The most fundamental concept in software engineering is the software life cycle.

 The Cycle as a Whole

The software life cycle represents the fact that once software is developed, it enters a cycle of being

used and maintained—a cycle that continues for the rest of the software’s life. Software moves into the

maintenance stage because errors are discovered, changes in the software’s application occur, or

changes done in previous modification induce the errors. (MCQ Not repair process)

 Maintenance v/s repair

In the case of other products, the maintenance phase tends to be a repair process, whereas in the case of

software, the maintenance phase tends to consist of correcting or updating.

The Traditional Development Phase

The major steps in the traditional software development life cycle are requirements analysis, design, implementation,

and testing. (Not Maintenance)

Here design phase is followed by implementation. Second phase of Software development life cycle is design.

 Goals of Requirement analysis

The software life cycle begins with requirements analysis—the goal of which is:

Requirement Analysis

 Goals

 Inputs

 COTS

 Analysis

 SRS

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

 To specify what services the proposed system will provide

 To identify any conditions (time constraints, security, and so on) on those services

 To define how the outside world will interact with the system.

 Inputs from Stakeholders

Future users as well as those with other ties, such as legal or financial interests

In fact, in cases where the ultimate user is an entity, such as a company or government agency, that intends to hire a

software developer for the actual execution.

 Commercial off-the-shelf (COTS) software

 Software developed for the mass market, perhaps to be sold in retail stores or downloaded via the Internet.

 In this setting the user is a less precisely defined entity and requirements analysis may begin with a market

study by the software developer. (Example MS Office)

 Requirement Analysis Process

In any case, the requirements analysis process consists of

 Compiling and analyzing the needs of the software user

 Negotiating with project stakeholders on trade-offs between wants, needs, cost, and feasibility

 Finally developing a set of requirements that identify the features and services that the finished software

system must have

 Software Requirement Specification (SRS)

 These requirements are recorded in a document called a software requirements specification.

 This document is a written agreement between all parties concerned

SRS is intended to guide the software’s development and provide a means of resolving disputes that may arise later in

the development process. From the software developer’s perspective, the software requirements specification should

define a firm objective toward which the software’s development can proceed.

 RA vs Design

 Requirements analysis provides a description of the proposed software product; design involves creating

a plan for the construction of the proposed system.

 Requirements analysis is about identifying the problem to be solved, while design is about developing a

solution to the problem.

 Requirements analysis decides what a system will do, and design identifies how the system will do it

 Design Outcome

 Internal structure of the software system is established.

 Detailed description of the software system’s structure that can be converted into programs

 Office building example

 The design stage would consist of developing detailed structural plans for a building

 Making designs that can be converted into programs.

 Blueprints describing the proposed building at various levels of detail

 In Software design: notational system and many modeling and diagramming methodologies

 Goal

 Implementation involves the actual writing of programs, creation of data files, and development of databases

 Building construction analogy

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

implementation

emphasis on the

programmer

entire development process

tep

equirements analysis and design steps

It is at the
) and a

that distinct between the tasks of a

.

(sometimes referred to as a

is a person involved with the

r . The

, perhaps with an

is a person involved primarily with the

s . In its narrowest interpretation, a programmer is charged with writing programs that implement the design

produced by a software analyst.

 Software Analyst vs programmer

System analyst

programmer system analyst

implementation stage software analyst

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

 RUP is widely applied now a days in software industry.

 Its Non-proprietary version is Unified Process that is available on a noncommercial basis.

 Prototype

 Incomplete version of the proposed system, called prototypes, are built and evaluated in Iterative and

Incremental models.

 Paper – Prototype

 Paper Prototyping is a prototyping method in which paper models are used to simulate computer or

web applications.

 Evolutionary Prototyping

 In the case of the incremental model, initial prototypes evolve into the complete, final system. This

process is called evolutionary prototyping.

 Throwaway Prototyping

 In a more iterative situation, the prototypes may be discarded in favor of a fresh implementation of

the final design. This approach is known as throwaway prototyping.

 Rapid Prototyping

 Simple example of the proposed system is quickly constructed in the early stages of development.

 Demonstration version

 Open Source Development

 A less formal incarnation of incremental and iterative ideas that has been used for years by computer

enthusiasts/hobbyists is known as open-source development

 Purpose is to produce the free software.

 A single author writes the initial version

 Source code and documentation is shared via internet where others can contribute.

 Example: Linux Operating system

 Agile methods

 The most pronounced shift from the waterfall model is represented by the collection of

methodologies known as agile methods. Each of which proposes early and quick implementation on

an incremental basis

o Extreme Programming

 One example of an agile method is extreme programming (XP).

 Software is developed by a team of less than a dozen individuals working in a communal work space

where they freely share ideas and assist each other in the development project.by means of repeated

daily cycles and helping each other.

 Can be evaluated by project stakeholders, at different stages

 Modularity

 A way of producing manageable software

 To modify software, one should understand the software, difficult in small programs and nearly

impossible for large software.

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

 Module wise implementation – division of software into manageable units, generically called

modules, each of which deals with only a part of the software’s overall responsibility.

 What are modules?

Modules come in a variety of forms. We have already seen (Chapters 5 and 6), that in the context of the imperative

paradigm, modules appear as procedures. In contrast, the object-oriented paradigm uses objects as the basic modular

constituents

 Imperative programming paradigm – functions

 Object oriented paradigm – Objects

 Example – imperative Paradigm : to simulate a tennis game

✓ Serve () – Speed, Direction, players characteristics

✓ ComputePath () – hit net, where it bounce,

✓ Return () – will it be returned, next speed, direction

✓ UpdateScore ()

In above Figure, in which procedures are represented by rectangles and procedure dependencies (implemented by

procedure calls) are represented by arrows. In particular, the chart indicates that the entire game is overseen by a

procedure named ControlGame, and to perform its task, ControlGame calls on the services of the procedures Serve,

Return, ComputePath, and UpdateScore.

 Modularity advantage

 Any modification will be applied to few of the modules

 Assumption: Changes in one module will not affect other modules.

 Goal: maximize the independence, minimize linkage between modules known as: intermodule coupling

 Intermodule Coupling

Indeed, one metric to measure the complexity if a software is to measure the intermodule coupling

Intermodule coupling occurs in several forms

o Control Coupling

Control coupling occurs when a module passes control of execution to another, as in a function call (e.g., as in a

function call002E)

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

o Data Coupling

Refers to the sharing of data between modules. In data coupling if two modules interact with the same item of data,

then modifications made to one module may affect the other.

Data coupling between procedures can occur in two forms.

 Explicit passing

Explicitly passing data from one procedure to another in the form of parameters. Such coupling is represented in a

structure chart by an arrow between the procedures that is labeled to indicate the data being passed. The direction of

the arrow indicates the direction in which the item is transferred.

Passing by parameters: ControlGame will tell the function Serve () which player’s characteristics are to be simulated

when it calls Serve and that the function Serve () will report the ball trajectory to ControlGame when Serve () has

completed its task.

 Global data

Data items that are automatically available to all modules throughout the system as opposed to local data items that

are accessible only within a particular module.

Just as important as minimizing the coupling between modules is maximizing the internal binding within each

module. The term cohesion refers to this internal binding or, in other words, the degree of relatedness of a module’s

internal parts. The term cohesion refers to this Compound cohesion, simple cohesion.

 Goal

 Low intermodule coupling

 High intra module cohesion

 Logical Cohesion

 A weak form of cohesion is known as logical cohesion

 This is the cohesion within a module induced by the fact that its internal elements perform activities

logically similar in nature. For example Communication module – obtaining data and reporting results or

grouping ll mouse and keyboard handling functions.

 Functional Cohesion

 A stronger form of cohesion is known as functional cohesion

 All the parts of the module are focused on the performance of a single activity results.

 It focuses on exactly one goal or function.

 Can be increased by isolating subtasks in other modules and then using these modules as abstract

tools

 For example, a module that assigns seats to airline passenger

One of the cornerstones of good modular design is captured in the concept of information hiding.

 Information hiding refers to the restriction of information to a specific portion of a software system.

 Information should be interpreted in a broad sense such as: data, the type of data structures used,

encoding systems, the internal compositional structure of a module etc

 Why we need it

 We use information hiding to reduce unnecessary dependencies or effects on other modules.

 For example, a module does not restrict the use of its internal data from other modules, then that data

may become corrupted by other modules

 Realization

Information hiding has two incarnations

 Design Goal

 Implementation Goal

 Design Goal

 A module should be designed so that other modules do not need access to its internal information

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

 Example: maximizing cohesion and minimizing coupling

 Implementation Goal

 A module should be implemented in a manner that reinforces its boundaries.

 Examples: use of local variables, applying encapsulation, and using well defined control structures

Finally we should note that information hiding is central to the theme of abstraction and the use of abstract tools.

Indeed, the concept of an abstract tool is that of a “black box” whose interior features can be ignored by its user,

allowing the user to concentrate on the larger application at hand.

 Why we need it?

 We should build off-the-shelf building blocks from which large software can be constructed.

 In imperative paradigm, Modular approach only promises hope in this regard.

 Object-oriented paradigm is helping as objects form complete, self-contained units that have clearly

defined interfaces with their environments.

 Once an object, or more correctly a class, has been designed to fulfill a certain role, it can be used to fulfill

that role in any program requiring that service.

 Prefabricated templates to realize the concept of components

The object-oriented programming languages C++, Java, and C# are accompanied by collections of prefabricated

“templates” from which programmers can easily implement objects for performing certain roles. Using these

templates you can build the software very quickly.

 In particular C++ has standard template library

 Java has Java Application Programming Interface (API)

 C# programmers have access to .NET Framework Class Library

 Components are not just objects!

An object is actually a special case of the more general concept of a component, which is, by definition, a reusable

unit of software. In practice, most components are based on the object-oriented paradigm and take the form of a

collection of one or more objects that function as a self-contained unit.

 Component Architecture

 Also known as (component-based software engineering) in which the traditional role of a programmer is

replaced by a component assembler who constructs software systems from prefabricated components that,

in many development environments, icons are displayed in a graphical interface

 The methodology of a component assembler is to select pertinent components from collections of predefined

components and then connect them, with minimal customization, to obtain the desired functionality.

 More Examples

 Facebook when executed on a smartphone may use the components of the contact application to add all

Facebook friends as contacts.

 The telephony application, may also access the contact components to lookup the caller of an incoming call

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

 Why we need it?

 A design pattern is a pre-developed model for solving a recurring problem in software design

 You are not the first one working on the problem! The best possible model use by previous programmer

can be consider as a design pattern (guidelines) which is already authenticated and test.

1. Adapter Pattern (Example of design pattern)

 A prefabricated module may have all the functionality needed to solve the problem at hand but may not have

an interface that is compatible with the current application.

 Adapter pattern provides a standard approach to “wrapping” that module inside another module

2. Decorator Pattern

 It provides a means of designing a system that performs different combinations of the same activities

depending on the situation at the time.

 Such systems can lead to an explosion of options that, without careful design, can result in enormously

complex software.

 Decorator pattern provides a standardized way of implementing such systems that leads to a manageable

solution

 Goal of design pattern

 Identification of recurring problem, creation and cataloging of design patterns for solving them is an ongoing

process in software engineering and making them available to other community.

 Goal is not to identify the solution; the goal is to identity the best solution flexible for future changes!

 Factory Design Pattern

The Factory Design Pattern is a commonly used design pattern where we need to create Loosely Coupled System

Factory Pattern is based on real time factory concept. As we know, a factory is used to manufacture something as per

the requirement and if new items are added in the manufacturing process, the factory starts manufacturing those

items as well. The factory has already created cars that have loosely coupled system, the engine, tire, lights. They just

need to connect the things and present it to the user.

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

 Front Controller Pattern

 Centralized request handling mechanism

If these is a user who want user information, front controller will connect it to user handler module

When you design software the front controller pattern says that do not connect user directly to dis-handler. There

should be front controller handler.

 Shopping cart design pattern

Usage when:

 To buy more than one product.

 To buy more than one instance of a product.

 Want to return later to carry shopping.

 Want to return later for payment.

 Do not use when only one product to sale.

 Do not use when only one product can be sold.

 Do not use when your site is arranged in a way, so that it does not make sense for the user to buy more than

one product at a time (for instance for Application Service Providers (ASPs) allowing a user to upgrade his

service).

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

 Early years of Computing

In the early years of computing, the problem of producing quality software focused on identifying and removing

programming errors that occurred during implementation.

 Contemporary scope

Today, the scope of software quality control extends far beyond the debugging process, with branches including

 Improvement of software engineering procedures

 Development of training programs that in many cases lead to certification

 Establishment of standards on which sound software engineering can be based

 Quality Standards

In this regard, we have already noted the role of organizations such a

 ISO, IEEE, and ACM establishing standards for assessing quality control within software development

companies

 A specific example is ISO 9000 series of standards, which address numerous industrial activities such as

design, production, installation, and servicing.

 Software Quality Assurance (SQA)

 Software development companies are establishing software quality assurance (SQA) groups, which are

charged with overseeing and enforcing the quality control systems adopted by the organization

 Software contractors now require that the organizations meet such standards. They have then SQA groups.

 Example, in waterfall model, SQA approves SRS before design can start or approves design before

implementation starts.

 SQA and Testing

SQA is a now recognized as a subject dealing entire development process, testing is concerned about the

developed software/programs

 Can we test all possibilities?

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

 In simple programs, there may be billions of different paths that could potentially be traversed.

 Testing all paths in a complex program is nearly impossible.

What to do then?

 Pareto Principle

Economist and sociologist Vilfredo Pareto (1848−1923) invented that small part of Italy’s population controlled most

of Italy’s wealth

o Pareto Principle in Software Engineering

 Small number of modules within a large software system tends to be more problematic than the rest

 Results can often be increased most rapidly by applying efforts in a concentrated area

 Basis Path Testing

Basis Path Testing is to develop a set of test data that insures that each instruction in the software is executed at least

once.

 Glass-box testing

Glass-box testing, meaning that the software tester is aware of the interior structure of the software and uses this

knowledge

 Black-box Testing

 Black-box testing refers to tests that do not rely on knowledge of the software’s interior composition.

 Black-box testing is a method of software testing that examines the functionality of an application without

peering into its internal structures or workings.

 Black-box testing is performed from the user’s point of view. It is concerned with whether the software

performs correctly in terms of accuracy and timeliness

o Boundary value analysis (Example of black-box testing)

 It consists of Identifying ranges of data, called equivalence classes, over which the software should perform in

a similar manner and then testing the software on data close to the edge of those ranges.

 For example, if the software is supposed to accept input values within a specified range, then the software

would be tested at the lowest and highest values in that range

o Beta Testing (Black-box testing methodology)

 In which a Preliminary version of the software is given to a segment of the intended audience with the goal of

learning how the software performs in real-life situations before the final version of the product is released to

the market

 Alpha Testing

 Similar testing performed at the developer’s site is called alpha testing. (To identify bugs).

 Why we need this?

A software system is of little use unless people can learn to use and maintain it.

Software documentation serves three purposes, leading to three categories of documentation:

 User documentation

 System documentation

 Technical documentation

 User Documentation

 The purpose of user documentation is to explain the features of the software and describe how to use them.

 It is intended to be read by the user of the software and is therefore expressed in the terminology of the

application documentation

 User documentation is recognized as an important marketing tool

 Good user documentation along with good GUI increases sales

 Many software developers hire technical writers to produce this part of their product

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

 System Documentation

 The purpose of the System Documentation is to describe the software’s internal composition so that the

software can be maintained later in its life cycle.

 A major component of system documentation is the source version of all the programs in the system.

o Commenting

o Indentation

o Naming Conventions

 Another component of system documentation is a record of the design documents including the software

requirements specification and records showing how these specifications were obtained during design.

 Technical Documentation

The purpose of technical documentation is to describe how a software system should be installed and serviced

o Adjusting operating parameters

o Installing updates

o Reporting problems back to the software’s developer

One of the tasks during requirements analysis is to define how the proposed software system will interact with its

environment. In this section we consider topics associated with this interaction when it involves communicating with

humans. Humans should be allowed to use a software system as an abstract tool. This tool should be easy to apply

and designed to minimize (ideally eliminate) communication errors between the system and its human users. This

means that the system’s interface should be designed for the convenience of humans rather than merely the

expediency of the software system.

 Why it is important?

 A good system’s interface is likely to make a stronger impression on a user than any other system

characteristic

 User is not interested to learn the inside of the software.

Thus, the design of a system’s interface can ultimately be the determining factor in the success or failure of a

software engineering project.

 Ergonomics and Cognetics

Research in human-machine interface design draws heavily from the areas of engineering called ergonomics

✓ Ergonomics deals with designing systems that harmonize with the physical abilities of humans

✓ Cognetics deals with designing systems that harmonize with the mental abilities of humans

Of the two, ergonomics is the better understood, largely because humans have been interacting physically with

machines for centuries. Examples are found in ancient tools, weaponry, and transportation systems.

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Join VU Group: https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

Another human characteristic that concerns researchers in human-machine interface design is the narrowness of a

human’s attention, which tends to become more focused as the level of concentration increases.

Still another human characteristic that must be anticipated during interface design is the mind’s limited capacity to

deal with multiple facts simultaneously. In an article in Psychological Review in 1956, George A. Miller reported

research indicating that the human mind is capable of dealing with only about seven details at once.

The GOMS (rhymes with “Toms”) model, originally introduced in 1954, is representative of the search for metrics in

the field of human-machine interface design. The model’s underlying methodology is to analyze tasks in terms of user

goals (such as delete a word from a text), operators (such as click the mouse button), methods (such as double-click

the mouse button and press the delete key), and selection rules (such as choose between two methods of

accomplishing the same goal). This, in fact, is the origin of the acronym GOMS—goals, operators, methods, and

selection rules.

In short, GOMS is a methodology that allows the actions of a human using an interface to be analyzed as sequences of

elementary steps (press a key, move the mouse, make a decision). The performance of each elementary step is

assigned a precise time period, and thus, by adding the times assigned to the steps in a task, GOMS provides a means

of comparing different proposed interfaces in terms of the time each would require when performing similar tasks

Once software is made! One needs the ownership and should get profit from the investment.

 Intellectual Property Law

 Legal Efforts to provide you ownership of the developed software.

 based on the well-established principles of:

o Copyright

o patent law

 Purpose of Copyright or patent

 Allow the developer of a product to release that product to intended parties while protecting his or her

ownership rights

 Requirement

 The developer will assert his or her ownership by including a copyright statement in all produced works;

including requirement specifications, design documents, source code, test plans, and in some visible place

within the final product.

 A copyright notice clearly identifies ownership, the personnel authorized to use the work, and other

restrictions.

 Software License

The rights of the developer are formally expressed in legal terms in a software license

A Software License is a legal agreement between the owner and user of a software product that grants the user

certain permissions to use the product without transferring ownership rights to the intellectual property.

 Patent

 Patent laws were established to allow an inventor to benefit commercially from an invention.

 Expensive and time-consuming to acquire

 Given the right to inventor for a limited period of time, which is typically 20 years

 Consequences of breaking law

 In 2004, a little-known company, NPT Inc., successfully won a case against Research In Motion (RIM—the

makers of the BlackBerry smartphones) for breaking the patent law few key technologies embedded in RIM’s

email systems

 The judgment included an injunction to suspend email services to all BlackBerry users in the United States!

 RIM eventually reached an agreement to pay NPT a total of $612.5 million, thereby averting a shutdown.

https://chat.whatsapp.com/K8O1b4yN8XiLTwEPUdXwVq

