

Introduction to Programming CS201

CS201 – Introduction to Programming

Lecture No. 1 ...3

Lecture No. 2 ...9

Lecture No. 3 ...15

Lecture No. 4 ...24

Lecture No. 5 ...33

Lecture No. 6 ...45

Lecture No. 7 ...55

Lecture No. 8 ...66

Lecture No. 9 ...77

Lecture No. 10 ...88

Lecture No. 11 ...99

Lecture No. 12 ...112

Lecture No. 13 ...124

Lecture No. 14 ...143

Lecture No. 15 ...158

Lecture No. 16 ...171

Lecture No. 17 ...186

Lecture No. 18 ...198

Lecture No. 19 ...211

Lecture No. 20 ...228

Lecture No. 21 ...245

Lecture No. 22 ...255

Lecture No. 23 ...269

Lecture No. 24 ...279

Lecture No. 25 ...292

Lecture No. 26 ...305

Lecture No. 27 ...319

Lecture No. 28 ...329

Lecture No. 29 ...345

Lecture No. 30 ...359

Lecture No. 31 ...369

Lecture No. 32 ...382

Lecture No. 33 ...395

Lecture No. 34 ...408

Lecture No. 35 ...422

Lecture No. 36 ...433

Lecture No. 37 ...444

Lecture No. 38 ...454

Lecture No. 39 ...469

Lecture No. 40 ...482

Lecture No. 41 ...497

Lecture No. 42 ...510

Lecture No. 43 ...520

Lecture No. 44 ...529

Lecture No. 45 ...553

© Copyright Virtual University of Pakistan

2

CS201 – Introduction to Programming

Lecture No. 1

Summary

o What is programming

o Why programming is important

o What skills are needed

o Develop a basic recipe for writing programs

o Points to remember

What is programming

As this course is titled “Introduction to programming”, therefore it is most essential

and appropriate to understand what programming really means. Let us first see a

widely known definition of programming.

Definition: "A program is a precise sequence of steps to solve a particular problem.”

It means that when we say that we have a program, it actually means that we know

about a complete set activities to be performed in a particular order. The purpose of

these activities is to solve a given problem.

Alan Perlis, a professor at Yale University, says:

"It goes against the grain of modern education to teach children to program. What fun

is there in making plans, acquiring discipline in organizing thoughts, devoting

attention to detail and learning to be self-critical? "

It is a sarcastic statement about modern education, and it means that the modern

education is not developing critical skills like planning, organizing and paying

attention to detail. Practically, in our day to day lives we are constantly planning,

organizing and paying attention to fine details (if we want our plans to succeed). And

it is also fun to do these activities. For example, for a picnic trip we plan where to go,

what to wear, what to take for lunch, organize travel details and have a good time

while doing so.

When we talk about computer programming then as Mr. Steve Summit puts it

“At its most basic level, programming a computer simply means telling it what to do,

and this vapid-sounding definition is not even a joke. There are no other truly

fundamental aspects of computer programming; everything else we talk about will

simply be the details of a particular, usually artificial, mechanism for telling a

computer what to do. Sometimes these mechanisms are chosen because they have

been found to be convenient for programmers (people) to use; other times they have

been chosen because they're easy for the computer to understand. The first hard thing

about programming is to learn, become comfortable with, and accept these artificial

mechanisms, whether they make ``sense'' to you or not. “

© Copyright Virtual University of Pakistan

3

CS201 – Introduction to Programming

Why Programming is important

The question most of the people ask is why should we learn to program when there

are so many application software and code generators available to do the task for us.

Well the answer is as give by the Matthias Felleisen in the book ‘How to design

programs’

“The answer consists of two parts. First, it is indeed true that traditional forms of

programming are useful for just a few people. But, programming as we the authors

understand it is useful for everyone: the administrative secretary who uses

spreadsheets as well as the high-tech programmer. In other words, we have a broader

notion of programming in mind than the traditional one. We explain our notion in a

moment. Second, we teach our idea of programming with a technology that is based

on the principle of minimal intrusion. Hence, our notion of programming teaches

problem-analysis and problem-solving skills without imposing the overhead of

traditional programming notations and tools.”

 Hence learning to program is important because it develops analytical and problem

solving abilities. It is a creative activity and provides us a mean to express abstract

ideas. Thus programming is fun and is much more than a vocational skill. By

designing programs, we learn many skills that are important for all professions. These

skills can be summarized as:

o Critical reading

o Analytical thinking

o Creative synthesis

What skills are needed

Programming is an important activity as people life and living depends on the

programs one make. Hence while programming one should

o Paying attention to detail

o Think about the reusability.

o Think about user interface

o Understand the fact the computers are stupid

o Comment the code liberally

Paying attention to detail

In programming, the details matter. This is a very important skill. A good programmer

always analyzes the problem statement very carefully and in detail. You should pay

attention to all the aspects of the problem. You can't be vague. You can't describe

your program 3/4th of the way, then say, "You know what I mean?'', and have the

compiler figure out the rest.

Furthermore you should pay attention to the calculations involved in the program, its

flow, and most importantly, the logic of the program. Sometimes, a grammatically

correct sentence does not make any sense. For example, here is a verse from poem

"Through the Looking Glass" written by Lewis Carol:

© Copyright Virtual University of Pakistan

4

CS201 – Introduction to Programming

“Twas brillig, and the slithy toves

Did gyre and gimble in the wabe “

The grammar is correct but there is no meaning. Similarly, the sentence, "Mr. ABC

sleeps thirty hours every day", is grammatically correct but it is illogical.

So it may happen that a program is grammatically correct. It compiles and runs but

produces incorrect or absurd results and does not solve the problem. It is very

important to pay attention to the logic of the program.

Think about the reusability

When ever you are writing a program, always keep in mind that it could be reused at

some other time. Also, try to write in a way that it can be used to solve some other

related problem. A classic example of this is:

Suppose we have to calculate the area of a given circle. We know the area of a circle

is (Pi * r
2
). Now we have written a program which calculates the area of a circle with

given radius. At some later time we are given a problem to find out the area of a ring.

The area of the ring can be calculated by subtracting the area of outer circle from the

area of the inner circle. Hence we can use the program that calculates the area of a

circle to calculate the area of the ring.

Think about Good user interface

As programmers, we assume that computer users know a lot of things, this is a big

mistake. So never assume that the user of your program is computer literate. Always

provide an easy to understand and easy to use interface that is self explanatory.

© Copyright Virtual University of Pakistan

5

CS201 – Introduction to Programming

Understand the fact that computers are stupid

Computers are incredibly stupid. They do exactly what you tell them to do: no more,

no less-- unlike human beings. Computers can't think by themselves. In this sense,

they differ from human beings. For example, if someone asks you, “What is the

time?”, “Time please?” or just, “Time?” you understand anyway that he is asking the

time but computer is different. Instructions to the computer should be explicitly

stated. Computer will tell you the time only if you ask it in the way you have

programmed it.

When you're programming, it helps to be able to "think'' as stupidly as the computer

does, so that you are in the right frame of mind for specifying everything in minute

detail, and not assuming that the right thing will happen by itself.

Comment the code liberally

Always comment the code liberally. The comment statements do not affect the

performance of the program as these are ignored by the compiler and do not take any

memory in the computer. Comments are used to explain the functioning of the

programs. It helps the other programmers as well as the creator of the program to

understand the code.

Program design recipe

In order to design a program effectively and properly we must have a recipe to follow.

In the book name ‘How to design programs’ by Matthias Felleisen.and the co-worker,

the idea of design recipe has been stated very elegenlty as

“Learning to design programs is like learning to play soccer. A player must learn to

trap a ball, to dribble with a ball, to pass, and to shoot a ball. Once the player knows

those basic skills, the next goals are to learn to play a position, to play certain

strategies, to choose among feasible strategies, and, on occasion, to create variations

of a strategy because none fits. “

The author then continue to say that:

“A programmer is also very much like an architect, a composers, or a writer. They are

creative people who start with ideas in their heads and blank pieces of paper. They

conceive of an idea, form a mental outline, and refine it on paper until their writings

reflect their mental image as much as possible. As they bring their ideas to paper, they

employ basic drawing, writing, and playing music to express certain style elements of

a building, to describe a person's character, or to formulate portions of a melody. They

can practice their trade because they have honed their basic skills for a long time and

can use them on an instinctive level.

Programmers also form outlines, translate them into first designs, and iteratively

refine them until they truly match the initial idea. Indeed, the best programmers edit

and rewrite their programs many times until they meet certain aesthetic standards.

And just like soccer players, architects, composers, or writers, programmers must

practice the basic skills of their trade for a long time before they can be truly creative.

Design recipes are the equivalent of soccer ball handling techniques, writing

techniques, arrangements, and drawing skills. “

© Copyright Virtual University of Pakistan

6

CS201 – Introduction to Programming

Hence to design a program properly, we must:

o Analyze a problem statement, typically expressed as a word problem.

o Express its essence, abstractly and with examples.

o Formulate statements and comments in a precise language.

o Evaluate and revise the activities in light of checks and tests and

o Pay attention to detail.

All of these are activities that are useful, not only for a programmer but also for a

businessman, a lawyer, a journalist, a scientist, an engineer, and many others.

Let us take an example to demonstrate the use of design recipe:

Suppose we have to develop a payroll system of a company. The company has

permanent staff, contractual staff, hourly based employees and per unit making

employees. Moreover, there are different deductions and benefits for permanent

employees and there is a bonus for per unit making employees and overtime for

contractual employees.

We need to analyze the above problem statement. The company has four categories of

employees; i.e.; Permanent staff, Contractual staff, hourly based employees and per

unit making employees. Further, permanent staff has benefits and deductions

depending upon their designation. Bonus will be given to per unit making employees

if they make more than 10 pieces a day. Contractual employee will get overtime if

they stay after office hours.

Now divide the problem into small segments and calculations. Also include examples

in all segments. In this problem, we should take an employee with his details from

each category. Let’s say, Mr. Ahmad is a permanent employee working as Finance

Manager. His salary is Rs.20000 and benefits of medical, car allowance and house

rent are Rs.4000 and there is a deduction of Rs.1200. Similarly, we should consider

employees from other categories. This will help us in checking and testing the

program later on.

 The next step is to formulate these statements in a precise language, i.e. we can use

the pseudo code and flowcharting. which will be then used to develop the program

using computer language.

Then the program should be evaluated by testing and checking. If there are some

changes identified, we revise the activities and repeat the process. Thus repeating the

cycle, we achieve a refined solution.

Points to remember

Hence the major points to keep in mind are:

o Don’t assume on the part of the users

© Copyright Virtual University of Pakistan

7

CS201 – Introduction to Programming

o User Interface should be friendly

o Don’t forget to comment the code

o PAY ATTENTION TO DETAIL

o Program, program and program, not just writing code, but the whole process

of design and development

© Copyright Virtual University of Pakistan

8

CS201 – Introduction to Programming

Lecture No. 2

Reading Material

Deitel & Deitel – C++ How to Program chapter 1

 1.2, 1.3, 1.4, 1.6,

1.7

 1.11, 1.12, 1.13

 Summary

o Software Categories

o System Software

o Application Software

o History of C language

o Development Environment of ‘C’

Software Categories

Software is categorized into two main categories

o System Software

o Application Software

© Copyright Virtual University of Pakistan

9

CS201 – Introduction to Programming

System Software

The system software controls the computer. It communicates with computer’s

hardware (key board, mouse, modem, sound card etc) and controls different aspects of

operations. Sub categories of system software are:

o Operating system

o Device drivers

o

 Utilities

times abbreviated as "OS") is the program that manages all

efinition

responsible for controlling the allocation and usage of hardware

sources such as memory, central processing unit (CPU) time, disk space, and peripheral devices. The

Operating system

An operating system (some

the other programs in a computer. It is a integrated collection of routines that service

the sequencing and processing of programs by a computer. Note: An operating system

may provide many services, such as resource allocation, scheduling, input/output

control, and data management.

D

“Operating system is the software

re

operating system is the foundation on which applications, such as word processing and spreadsheet

programs, are built. (Microsoft)”

© Copyright Virtual University of Pakistan

10

CS201 – Introduction to Programming

Device drivers

The device driver software is used to communicate between the devices and the

computer. We have monitor, keyboard and mouse attached to almost all PC’s; if we

look at the properties of these devices we will see that the operating system has

installed special software to control these devices. This piece of software is called

device driver software. When we attach a new device with the computer, we need

software to communicate with this device. These kinds of software are known as

device drivers e.g. CD Rom driver, Sound Card driver and Modem driver. Normally

manufacturer of the device provide the device driver software with the device. For

scanners to work properly with the computers we install the device driver of the

scanner. Nowadays if you have seen a scanner, it comes with TWAIN Drivers.

TWAIN stands for Technology Without An Interesting Name.

Utility Software

 11

te a file then the place where that file was stored on the disk is

e this fragmentation the chunks of data on the disk will

close to each other and thus reading of data will be faster. For the purpose of

 fragmentation on the disk the Defragmentation utility is used.

ided system for planes. GPS

lobal positioning system), another application software, is being used in vehicles,

s the geographical position of the vehicle

Utility software is a program that performs a very specific task, usually related to

managing system resources. You would have noticed a utility of Disk Compression.

Whenever you write a file and save it to the disk, Compression Utility compresses the

file (reduce the file size) and write it to the disk and when you request this file from

the disk, the compression utility uncompressed the file and shows its contents.

Similarly there is another utility, Disk Defragmentation which is used to defragment

the disk. The data is stored on the disks in chunks, so if we are using several files and

are making changes to these files then the different portions of file are saved on

different locations on the disk. These chunks are linked and the operating system

knows how to read the contents of file from the disk combining all the chunks.

Similarly when we dele

emptied and is available now to store other files. As the time goes on, we have a lot of

empty and used pieces on the disk. In such situation we say that the disk is

fragmented now. If we remov

be stored

removing

The compilers and interpreters also belong to the System Software category.

Application software

A program or group of programs designed for end users. For example a program for

ccounting, Payroll, Inventory Control System, and guA

(g

which through satellite determine

History of C language

The C language was developed in late 60’s and early 70’s, in Bell Laboratories. In

those days BCPL and B languages were developed there. The BCPL language was

developed in 1967 by Martin Richards as a language for writing operating systems

software and compilers. In 1970 Ken Thompson used B language to create early

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 12

emory and the

urden of treating a data item as a whole number or real number, for example was the

unlimited powers to do with computers. You can program to

rn on or off any device of computer. You can do a lot to hard disk and other

peripherals. It is very easy to write a program in C that stops the running of computer.

 while programming in C.

 unambiguous and machine-independent

definition of the language. In 1989 the standard was approved. ANSI cooperated with

ational Standard Organization (ISO) to standardize C worldwide.

 we need a tool for writing the code of a program. For this purpose we used

s we write the code in English and we know that computers can understand only 0s

nd 1s. So we need a translator which translates the code of our program into machine

language. There are two kinds of translators which are known as Interpreter and

Compilers. These translators translate our program which is written in C-Language

into Machine language. Interpreters translates the program line by line meaning it

reads one line of program and translates it, then it reads second line, translate it and so

on. The benefit of it is that we get the errors as we go along and it is very easy to

correct the errors. The drawback of the interpreter is that the program executes slowly

versions of the UNIX operating system at Bell Laboratories. Thus both the languages

were being used to develop various system software even compilers. Both BCPL and

B were ‘type less’ languages, every data item occupied one ‘word’ in m

b

responsibility of the programmer.

Dennis Ritchie developed a general purpose language, called C language, by using

different features of BCPL and B languages. C uses many important concepts of

BCPL and B while adding data typing and other features. In the start C became

widely known as the development language of the UNIX operating system, and the

UNIX operating system was written by using this C language. The C language is so

powerful that the compiler of C and other various operating systems are written in C.

C language has almost

tu

So be careful

The C language and UNIX operating system widely spread in educational and

research institutions. There was C and UNIX everywhere. Due to the wide spread of

C, different researchers started to add their features in the language. And thus

different variations in C came into existence. Many universities developed their own

C by adding different features to the C language developed by Ritchie. These

variations led to the need of a standard version of C. In 1983 a technical committee

was created under the American National Standards Committee on Computer and

formation Processing to provide anIn

the Intern

Tools of the trade

As programmer we need different tools to develop a program. These tools are needed

for the life cycle of programs

Editors

First of all

Editors in which we write our code. We can use word processor too for this, but word

processors have many other features like bold the text, italic, coloring the text etc, so

when we save a file written in a word processor, lot of other information including the

text is saved on the disk. For programming purposes we don’t need these things we

only need simple text. Text editors are such editors which save only the text which we

type. So for programming we will be using a text editor

Compiler and Interpreter

A

a

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 13

as the interpreter translates the program line by line. Another drawback is that as

interpreters are reading the program line by line so they cannot get the overall picture

of the program hence cannot optimize the program making it efficient.

Compilers also translate the English like language (Code written in C) into a language

(Machine language) which computers can understand. The Compiler read the whole

program and translates it into machine language completely. The difference between

interpreter and compiler is that compiler will stop translating if it finds an error and

there will be no executable code generated whereas Interpreter will execute all the

lines before error and will stop at the line which contains the error. So Compiler needs

syntactically correct program to produce an executable code. We will be using

compiler in our course

Debugger

Another important tool is Debugger. Every programmer should be familiar with it.

Debugger is used to debug the program i.e. to correct the logical errors. Using

debugger we can control our program while it is running. We can stop the execution

of our program at some point and can check the values in different variables, can

change these values etc. In this way we can trace the logical errors in our program and

can see whether our program is producing the correct results. This tool is very

powerful, so it is complex too

Linker

Most of the time our program is using different routines and functions that are located

in different files, hence it needs the executable code of those routines/functions.

Linker is a tool which performs this job, it checks our program and includes all those

routines or functions which we are using in our program to make a standalone

executable code and this process is called Linking

oader

fter a executable program is linked and saved on the disk and it is ready for

xecution. We need another process which loads the program into memory and then

instruct the processor to start the execution of the program from the first instruction

(the starting point of every C program is from the main function). This processor is

known as loader. Linker and loaders are the part of development environment. These

are part of system software.

The following figure represents a graphical explanation of all the steps involved in

writing and executing a program.

L

A

e

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 14

Preprocessor program
processes the code.

Loader puts program
in memory.

instruction and
executes it, possibly
storing new data
values as the
program executes.

it on disk.

Linker links the object
code with the libraries

CPU takes each

Com iler c eates
code and stores

p r object

Loader

Primary Memory

Compiler

Editor

Preprocessor

Linker

Primary Memory

.

.

.

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

CPU

Disk

Disk

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

Lectu

 15

re No. 3

Reading Material

Deitel & Deitel – C++ How to Program chapter 1

 1.19, 1.20, 1.21,

 << "Welcome to Virtual University of Pakistan";

d

me being take this line on faith. You have to write this line. The sign #

he

ou

1.22

 Summary

First C program

Variables

Data Types

Arithmetic Operators

ence of Operators Preced

Tips

First C program

The best way to learn C is to start coding right away. So here is our very first program

in C.

include <iostream.h>

main()

{

 cout

}

We will look at this code line by line and try to understand them.

include <iostream.h>

#include: This is a pre-processor directive. It is not part of our program; it is an

instruction to the compiler. It tells the C compiler to include the contents of a file, in

this case the system file iostream.h. The compiler knows that it is a system file, and

therefore looks for it in a special place. The features of preprocessor will be discusse

he tilater. For t

is known as HASH and also called SHARP.

<iostream.h>

This is the name of the library definition file for all Input Output Streams. Your

program will almost certainly want to send stuff to the screen and read things from t

keyboard. iostream.h is the name of the file in which has code to do that work for y

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 16

given a name by the programmer and they refer to each other as the program

 as a special case and will run this function first. If

get to have a main function, or mistype the name, the compiler will give you

r.

that there are parentheses (“()”, normal brackets) with main. Here the

d braces("{ }"). For every open brace there

se. Braces allows to group together pieces of a program. The

ou will

f

l

does

 extra semicolons may be put at the end but are useless and aimless. Do

 to

bles

n be

there are

ifferent boxes and each has an address. Similarly in memory, there is a numerical

 name to these locations. These

mes are variables. We call them variables because they can contain different values

main()

The name main is special, in that the main is actually the one which is run when your

program is used. A C program is made up of a large number of functions. Each of

these is

runs. C regards the name "main"

you for

an erro

Notice

parentheses contain nothing. There may be something written inside the parentheses.

It will be discussed in next lectures.

{ }

Next, there is a curly bracket also calle

must be a matching clo

body of main is enclosed in braces. Braces are very important in C; they enclose the

blocks of the program.

cout << “ Welcome to Virtual University of Pakistan”

cout:

This is known as out put stream in C and C++. Stream is a complicated thing, y

learn about it later. Think a stream as a door. The data is transferred through stream,

cout takes data from computer and sends it to the output. For the moment it is a

screen of the monitor. hence we use cout for output.

<<

The sign << indicates the direction of data. Here it is towards cout and the function o

cout is to show data on the screen.

“ Welcome to Virtual University of Pakistan”

The thing between the double quotes (“ ”) is known as character string. In C

programming character strings are written in double quotes. Whatever is written after

<< and within quotation marks will be direct it to cout, cout will display it on the

screen.

;

There is a semicolon (;) at the end of the above statement. This is very important. Al

C statements end with semicolon (;). Missing of a semicolon (;) at the end of

statement is a syntax error and compiler will report an error during compilation. If

there is only a semicolon (;) on a line than it will be called a null statement. i.e. it

nothing. The

not put semicolon (;) at a wrong place, it may cause a problem during the execution of

the program or may cause a logical error.

In this program we give a fixed character string to cout and the program prints it

the screen as:

Variables

During programming we need to store data. This data is stored in variables. Varia

are locations in memory for storing data. The memory is divided into blocks. It ca

viewed as pigeon-holes. You can also think of it as PO Boxes. In post offices

d

address for each location of memory (block). It is difficult for us to handle these

numerical addresses in our programs. So we give a

na

at different times.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 17

ore (_). But

void starting a name with underscore (_). C has many libraries which contain

ables and function names normally starting with underscore (_). So your variable

tarting with underscore (_) may conflict with these variables or function

 a program every variable has

ype

ty boxes. They are useless until we put some value in them. To put some

alue in these boxes is known as assigning values to variables. In C language, we use

 (=) is used as assignment operator. Do not confuse the

0, that means now the

emory location X contains the value 10 and the previous value 2 is no more there.

 binary operator (a binary operator has two operands). It must

d side and expression (that evaluates to a single value) on

that add 1 to the value of X and then

able. If the value of X is 10 then after the execution of this

 becomes 11. This is a common practice for incrementing the

f the variable by ‘one in C language. Similarly you can use the statement X =

 - 1 fo menting the value of the variable by one. The statement X = X + 1 in

alid except when X is infinity. So do not confuse assignment operator

 gn (=) in algebra. Remember that assignment operator must have a

algebra in which you can use expression on

ual sign (=). For example, in algebra, X +5 = Y + 7 is correct but

corre uage. The compiler will not understand it and will give error.

 varia data type associated with it, for example it can have data types

mbers, characters etc. The variable of type Integer stores

aracter type variable stores character value. The primary

ifferen ypes is their size in memory. Different data types

ave di achine and compilers. These also

ect th are displayed. The ‘cout’ knows how to display a digit and a

aracter. There are few data types in C language. These data types are reserved

e name.

k into different data types that the C language provides us to deal with

, real numbers and character data.

The variable names in C may be started with a character or an undersc

a

vari

name s

names.

In

Name

T

Size

Value

The variables having a name, type and size (type and size will be discussed later) are

just emp

v

assignment operator for this purpose.

Assignment Operator

In C language equal-to-sign

algebraic equal-to with the assignment operator. In Algebra X = 2 means the value of

X is 2, whereas in C language X = 2 (where X is a variable name) means take the

value 2 and put it in the memory location labeled as X, afterwards you can assign

some other value to X, for example you can write X = 1

m

Assignment operator is a

ave variable on left hanh

right hand side. This operator takes the value on right hand side and stores it to the

location labeled as the variable on left hand side, e.g. X = 5, X = 10 + 5, and X = X

+1.

 C language the statement X = X + 1 means In

store the result in X vari

t the value of Xstatemen

lue ova

X r decre

algebra is not v

(=) with equal si

variable name on left hand side unlike

both sides of eq

in ct in C lang

Data Types

ve a A ble must ha

like integer, decimal nu

a chinteger values and

d ce between various data t

in memory depending on the mh fferent size

e way theyaff

hc

words of C language. The reserve words can not be used as a variabl

Let’s take a loo

whole numbers

Whole Numbers

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 18

he C language provides three data types to handle whole numbers.

e has a

 this

cout << x;

cout << “ y=“;

;

cout << “ z = x + y = “;

 int z;

T

int

short

long

int Data Type

The data type int is used to store whole numbers (integers). The integer typ

space of 4 bytes (32 bits for windows operating system) in memory. And it is

mentioned as ‘int’ which is a reserved word of C, so we can not use it as a variable

name.

In programming before using any variable name we have to declare that variable with

its data type. If we are using an integer variable named as ‘i’, we have to declare it as

 int i ;

The above line is known as declaration statement. When we declare a variable in

way, it reserves some space in memory depending on the size of data type and labels

it with the variable name. The declaration statement int i ; reserves 4 bytes of memory

and labels it as ‘i’. This happens at the execution time.

Sample Program 1

Let’s consider a simple example to explain int data type. In this example we take two

integers, add them and display the answer on the screen.

The code of the program is written below.

#include <iostream.h>

main()

{

 int x;

 int y;

 int z;

 x = 5;

 y = 10;

 z = x + y;

 cout << “x = “;

 cout << y

 cout << z;

}

The first three lines declare three variables x, y and z as following.

 int x;

 int y;

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 19

 can also be written on one line. C provides us the comma

r (,). The above three lines can be written in a single line as below

 int x, y, z;

s we semicolon (;) indicates the end of the statement. So we can write

 on a single line. In this way we can also write the above declarations

form

 i y; int z;

or goo mming practice, write a single statement on a single line.

ow w lues to variables x and y by using assignment operator. The lines x

 5; an e values 5 and 10 to the variables x and y, respectively. These

tatements put the values 5 and 10 to the memory locations labeled as x and y.

x + y; evaluates the expression on right hand side. It takes

alues iables x and y (which are 5 and 10 respectively), adds them and by

), puts the value of the result, which is 15 in this case,

tion labeled as z.

re a thing to be noted is that the values of x and y remains the same after this

peration. In arithmetic operations the values of variables used in expression on the

ght hand side are not affected. They remain the same. But a statement like x = x + 1;

e. In this case the value of x is changed.

ere comes the affect of data type on cout. The previous statement cout << “x = “ ;

fter << sign and cout simply displays the string. In the

tatement cout << x; there is a variable name x. Now cout will not display ‘x’ but the

t interprets that x is a variable of integer type, it goes to the

emory and takes its value and displays it in integer form, on the

< y;

e variable not name of the variable. The next two lines cout << “z = x + y =

 cout << z; are written to display ‘z = x + y = ’ and the value of z that is 15.

en we execute the program after compiling, we get the following output.

These three declarations

separato

A know that

many statements

in the following

 nt x; int

F d progra

N e assign va

= d y = 10 assign th

s

The next statement z =

v stored in var

using the assignment operator (=

to the memory loca

He

o

ri

is an exceptional cas

The next line cout << “ x = “ ; is simple it just displays ‘ x = ‘ on the screen.

Now we want to display the value of x after ‘x =’. For this we write the statement

cout << x ;

H

has a character string a

s

value of x. The cou

cation x in the mlo

screen. The next line cout << ”y =”; displays ‘ y = ‘ on the screen. And line cout <

displays the value of y on the screen. Thus we see that when we write something in

quotation marks it is displayed as it is but when we use a variable name it displays the

alue of thv

”; and

Now wh

x = 5 y = 10 z = x + y = 15

short Data type

We noted that the integer occupies four bytes in memo

all integer like 5, 10 or 20 four bytes would be used. The C provides another data

ry. So if we have to store a

hole numbers which is called short. The size of short is two

d it can store numbers in range of -32768 to 32767. So if we are going to use

ariable for which we know that it will not increase from 32767, for example the

e of d eople, then we use the data type short for age. We can write the

ogram by using short instead of int.

/*This program uses short data type to store values */

sm

type for storing small w

bytes an

a v

ga ifferent p

above sample pr

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 20

includ .h>

ain()

z = x + y;

cout << “x = “;

cout << “ y=“;

t

y

s two data types to deal with real numbers (numbers with

bers are also known as floating point

at Data Type

float data type is used. The float data type uses four bytes to

ain()

z;

e <iostream

m

{

 short x;

 short y;

 short z;

 x = 5;

 y = 10;

 cout << x;

 cout << y;

 cout << “ z = x + y = “;

 cout << z;

}

long Data Type

On the other side if we have a very large whole number that can not be stored in an in

then we use the data type long provided by C. So when we are going to deal with ver

big whole numbers in our program, we use long data type. We use it in program as:

long x = 300500200;

Real Numbers

The C language provide

decimal points e.g. 1.35, 735.251). The real num

mbers. nu

float

ouble d

flo

To store real numbers,

store a real number. Here is program that uses float data types.

/*This program uses short data type to store values */

#include <iostream.h>

m

{

 float x;

at y; flo

 float

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 21

5;

 25.57;

 x + y;

cout << x;

e use it as:

In programming we do

 char x;

 x = ’a’;

t << “The cha = “;

 cout << x;

}

Arithmetic Operators

In C language we have the usual arithmetic operators for addition, subtraction,

ultiplication and division. C also provides a special arithmetic operator which is

perators are binary operators which means they operate on

s for addition, subtraction, multiplication,

 x = 12.3

 y =

 z =

cout << “ x = “;

 cout << “ y = “;

 cout << y;

 cout << “ z = x + y = “;

 cout << z;

}

double Data Type

If we need to store a large real number which cannot be store in four bytes, then we

use double data type. Normally the size of double is twice the size of float. In

program w

double x = 345624.769123;

char Data Type

So far we have been looking on data types to store numbers,

need to store characters like a,b,c etc. For storing the character data C language

provides char data type. By using char data type we can store characters in variables.

While assigning a character value to a char type variable single quotes are used

around the character as ‘a’.

/* This program uses short data type to store values */

#include <iostream.h>

main()

{

 cou racter value in x

m

called modulus. All these o

two operands. So we need two value

division and modulus.

ARITHMETIC

OPERATION

ARITHMETIC

OPERATOR

ALGEBRAIC

EXPRESSION

C

EXPRESSION

Addition + x + y x + y

Subtraction - x – y x - y

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

Multiplication * Xy x * y

Division / x ÷ y, x / y x / y

Modulus % x mod y x % y

Addition, subtraction and multiplication are same as we use in alg

use integer di

ebra.

vision (i.e. both

ou

2.5.

 the whole number, the fractional part

lt, then we should use float

divided by y. For example, the result of 5 % 2 will be 1, 23 % 5 will be 3 and 107%10

will be 7.

Precedence of Operators

The arithmetic operators in an expression are evaluated according to their precedence.

The precedence means which operator will be evaluated first and which will be

evaluated after that and so on. In an expression, the parentheses () are used to force

the evaluation order. The operators in the parentheses () are evaluated first. If there

are nested parentheses then the inner most is evaluated first.

The expressions are always evaluated from left to right. The operators *, / and % have

the highest precedence after parentheses. These operators are evaluated before + and –

operators. Thus + and – operators has the lowest precedence. It means that if there are

* and + operators in an expression then first the * will be evaluated and then its result

will be added to other operand. If there are * and / operators in an expression (both

have the same precedence) then the operator which occurs first from left will be

evaluated first and then the next, except you force any operator to evaluate by putting

parentheses around it.

The following table explains the precedence of the arithmetic operators:

OPERATORS OPERATIONS PRECEDENCE (ORDER OF

EVALUATION)

There is one thing to note in division that when we

operands are integers) yields an integer result. This means that if, for example, y

ill give integer result as 2 instead of actual result are dividing 5 by 2 (5 / 2) it w

Thus in integer division the result is truncated to

(after decimal) is ignored. If we want to get the correct resu

data type.

The modulus operator returns the remainder after division. This operator can only be

used with integer operands. The expression x % y returns the remainder after x is

() Parentheses Evaluated first

*, /, or % Multiplication,

Division, Modulus

Evaluated second. If there are

several, they are evaluated from

left to right

+ or - Addition, Subtraction Evaluated last. If there are several,

they are evaluated from left to

right

Lets look some examples.

What is the result of 10 + 10 * 5 ?

The answer is 60 not 100. As * has higher precedence than + so 10 * 5 is evaluated

first and then the answer 50 is added to 10 and we get the result 60. The answer will

be 100 if we force the addition operation to be done first by putting 10 + 10 in

parentheses. Thus the same expression rewritten as (10 + 10) * 5 will give the result

100. Note that how the parentheses affect the evaluation of an expression.

© Copyright Virtual University of Pakistan

22

CS201 – Introduction to Programming

 23

imilarly the expression 5 * 3 + 6 / 3 gives the answer 17, and not 7. The evaluation

of this expression can be clarified by writing it with the use of parentheses as (5 * 3) +

 + 2 = 17. Thus you should be careful while writing arithmetic

xpressions.

g to make it easy to read and understand

t be used as variable names

that is the starting point o

icolon at the end of each statement

ase sensitive so variable names x and X are two different variables

S

(6 / 3) which gives 15

e

TIP

Use spaces in the codin

eserved words can noR

There is always a main() in a C program f execution

Write one statement per line

Type parentheses ’()’ and braces ‘{ }’ in pairs

Use parentheses for clarification in arithmetic expressions

Don’t forget sem

C Language is c

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 24

ecture No. 4 L

Reading Material

Deitel & Deitel – C++ How to Program chapter 1

 1.22

 Summary

o Sample Program

o Examples of Expressions

o Use of Operators

Sample Program

umbers.

The average age of the class can be in real numbers with decimal point (for example if

total age is 173 then average age will be 17.3). But the division of integers will

o Tips

Problem statement:

Calculate the average age of a class of ten students. Prompt the user to enter the age of

each student.

Solution:

Lets first sort out the problem. In the problem we will take the ages of ten students

from the user. To store these ages we will use ten variables, one variable for each

student’s age. We will take the ages of students in whole numbers (in years only, like

10, 12, 15 etc), so we will use the variables of data type int. The variables declaration

statement in our program will be as follow:

 int age1, age2, age3, age4, age5, age6, age7, age8, age9, age10;

We have declared all the ten variables in a single line by using comma separator (,).

This is a short method to declare a number of variables of the same data type.

After this we will add all the ages to get the total age and store this total age in a

variable. Then we will get the average age of the ten students by dividing this total

age by 10. For the storage of total and average ages we need variables. For this

purpose we use variable TotalAge for the total of ages and AverageAge for average of

ages respectively.

 int TotalAge, AverageAge;

We have declared AverageAge as int data type so it can store only whole n

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 25

pr tual

result then we should use real numbers (float or double) in our program.

So on the screen the sentence “Please enter the age of first student:” will appear.

 to enter some information we need to be very clear

i.e. write such sentences that are self explanatory and user understands them

be entered for the first student. As we are expecting only whole numbers

i.e. age in years only i.e. 10, 12 etc, our program is not to expect ages as 13.5 or 12.3

e user

understands precisely that the age would be entered in whole number only.

 entered by the user into a

ariable, we use the statement:

 cin >> age1;

rom the user and assigns it to the variable

on its right side. We know that the sign >> indicates the direction of the flow of data.

ns that data comes from user and is assigned to the variable

ere age1 is a variable used for storing the age entered for student1. Similarly

 get the ages of all the ten students and store them into respective variables. That

 and so on up

rogram stops

rom the user. So when cin >> age1; is executed,

e program expects from the user to type the age of the student1. After entering the

g 'enter key' conveys to the program

ns the input value to the variable

n the e which is age1 in this case. As we have seen earlier that in an

iable on left hand side of the

and on right hand side we can have an expression that evaluates

e left hand side of assignment

perato ror i.e. x = 2 + 4; is a correct statement but x + y = 3+ 5; is an

 on the left hand side. Similarly

e can expression after the >> sign with cin. So we can have one and

rect statement and cin >> x + y;

 an in ent.

 the variable TotalAge. We use

for this purpose. On the right hand side of the assignment

d store the result in the variable,

 side. For this purpose we write the statement as follow:

oduce integer result only and the decimal portion is truncated. If we need the ac

Now we have declared variables for storing different values. In the next step we

prompt the user to enter the age of first student. We simply show a text line on the

screen by using the statement:

 cout << “Please enter the age of first student : ” ;

Whenever we are requesting user

thoroughly and correctly. Now with the above sentence everyone can understand that

age would

or 12 years and 3 months etc. We can refine our sentence such, that th

After this we allow the user to enter the age. To, get the age

v

Lets have a look on the statement cin >> age1; cin is the counter part of the cout.

Here cin is the input stream that gets data f

In our statement it mea

age1, wh

we

means the age of first student in age1, the age of second student in age2

to 10 students. When cin statement is reached in a program, the p

execution and expects some input f

th

age, the user has to press the 'enter key'. Pressin

that user has finished entering the input and cin assig

o right hand sid

assignment statement, we can have only one var

assignment operator

to a single value. If we have an expression on th

o r we get an er

incorrect statement as we can not have an expression

w not have an

only one variable after >> sign i.e. cin >> x; is a cor

is correct statem

Next, we add all these values and store the result to

assignment operator

operator, we write the expression to add the ages an

TotalAge on left hand

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 26

 + age6 + age7 + age8 +

age9

he ex right hand side uses many addition operators (+). As these

perators have the same precedence, the expression is evaluated from left to right.

ult of this is added to age3 and then

this res

Now we divide this TotalAge by 10 and get the average age. We store this average

ent:

d at the end we display this average age on the screen by using the following

atement:

 cout << “ The average age of the students is : “ << AverageAge;

ere the string enclosed in the quotation marks, will be printed on the screen as it is

nd the value of AverageAge will be printed on the screen.

he complete coding of the program is given below:

 This program calculates the average age of a class of ten students after prompting

e user to enter the age of each student. */

include <iostream.h>

ain ()

 // declaration of variables, the age will be in whole numbers

 int age1, age2, age3, age4, age5, age6, age7, age8, age9, age10;

int TotalAge, AverageAge;

 // take ages of the students from the user

 cin >> age2;

 cout << “Please enter the age of student 3: ”;

 cin >> age3;

 of student 4: ”;

cin >> age4;

ge6;

 cout << “Please enter the age of student 7: ”;

TotalAge = age1 + age2 + age3 + age4 + age5

 + age10 ;

T pression on the

o

Thus first age1 is added to age2 and then the res

ult is added to age4 and so on.

age in the variable i.e. AverageAge by writing the statem

 AverageAge = TotalAge / 10;

An

st

H

a

T

/*

th

#

m

{

 cout << “Please enter the age of student 1: ”;

 cin >> age1;

 cout << “Please enter the age of student 2: ”;

 cout << “Please enter the age

 cout << “Please enter the age of student 5: ”;

 cin >> age5;

 cout << “Please enter the age of student 6: ”;

 cin >> a

 cin >> age7;

 cout << “Please enter the age of student 8: ”;

 cin >> age8;

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 cout << “Please enter the age of student 9: ”;

 cin >> age9;

 27

cin >> age10;

lculate the total age and average age

TotalAge = age1 + age2 + age3 + age4 + age5 + age6 + age7 + age8 + age9 +

AverageAge = TotalAge / 10;

cout << “Average age of class is: “ << AverageAge;

ample output of the above program is given below.

 the above output the total age of the students is 123 and the actual average should

Examples of Expressions

e have already seen the precedence of arithmetic operators. We have expressions

atements. Let’s discuss some more examples to get a better

ratic equation in algebra, that is y = ax
2

+ bx + c. The

uation in C will be written as y = a * x * x + b * x + c. In C, it is not an

equation but an assignment statement. We can use parentheses in this statement, this

 cout << “Please enter the age of student 10: ”;

 // ca

age10;

 // Display the result (average age)

}

A s

Please enter the age of student 1: 12

Please enter the age of student 2: 13

Please enter the age of student 3: 11

Please enter the age of student 4: 14

Please enter the age of student 5: 13

Please enter the age of student 6: 15

Please enter the age of student 7: 12

Please enter the age of student 8: 13

Please enter the age of student 9: 14

Please enter the age of student 10: 11

Average age of class is: 12

In

be 12.3 but as we are using integer data types so the decimal part is truncated and the

whole number 12 is assigned to the variable AverageAge.

W

for different calculations in algebraic form, and in our programs we write them in the

form of C st

understanding.

We know about the quad

quadratic eq

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 28

ote that we have no power operator in C, just use * to multiply the same value.

er expression in algebra: x = ax + by + cz
2
. In C the above expression

s:

 x = a * x + b * y + c * z * z

or will be evaluated before the + operator. We can rewrite the above

ent with the use of parentheses. The same expressions can be written as:

ult 12 is added to 4 which gives the

gramming.

roblem Statement:

will make the expression statement easy to read and understand. Thus we can rewrite

it as y = a * (x * x) + (b * y) + c.

N

Here is anoth

will be a

The * operat

statem

 x = (a * x) + (b * y) + c * (z * z)

Lets have an other expression in algebra as x = a(x + b(y + cz
2
)). The parentheses in

this equation force the order of evaluation. This expression will be written in C as:

 x = a * (x + b * (y + c * z * z))

While writing expressions in C we should keep in mind the precedence of the

operators and the order of evaluation of the expressions (expressions are evaluated

from left to right). Parentheses are used in complicated expressions. In algebra, there

may be curly brackets { } and square brackets [] in an expression but in C we have

only parentheses

(). Using parentheses, we can make a complex expression easy to read and

understand and can force the order of evaluation. We have to be very careful while

using parentheses, as parentheses at wrong place can cause an incorrect result. For

example, a statement x = 2 + 4 * 3 results x = 14. As * operator is of higher

ecedence, 4 * 3 is evaluated first and then respr

result 14. We can rewrite this statement, with the use of parentheses to show it clearly,

that multiplication is performed first. Thus we can write it as x = 2 + (4 * 3). But the

same statement with different parentheses like x = (2 + 4) * 3 will give the result 18,

so we have to be careful while using parenthesis and the evaluation order of the

expression.

Similarly the equation (b
2
 – 4ac)/2a can be written as (b * b – 4 * a * c) / (2 * a).

The same statement without using parentheses will be as b * b – 4 * a * c / 2 * a. This

is wrong as it evaluates to b
2
 – 4ac/2a (i.e. 4ac is divided by 2a instead of (b

2
-4ac)).

Use of Operators

Here are sample programs which will further explain the use of operators in

pro

P

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

Write a program that takes a four digits integer from user and shows the digits on the

screen separately i.e. if user enters 7531, it displays 1, 3, 5, 7 separately.

 29

olution:

alysis:

 problem and find out how we can find digits of an integer.

mber by 10, we get the last digit of the number as

ainder. Similarly

ill use this logic in our problem to get

. First of all, we declare two variables for storing number and

ainder. So we get the first

g its modulus with 10 (i.e. 1234 % 10). This will

 this digit on the screen by using cout statement.

 next digit. For this we will divide the number by 10 to

n C we know that the integer division

e the result in whole number only. We will use integer

ber as int data

 10 (i.e. 1234 / 10). Thus we will get the

ber digits i.e. 123. Here is a point to be noted that how can

here a int and assign the

. In this way we have to declare more variables that

 way is to reuse the same variable

e have seen earlier that we can reassign

statement x = x + 1, which means, add 1 to the value of

 this way we are reusing the variable x.

perator instead of addition operator

i ill write number = number / 10. After

3 in the variable number.

gain number with the use of modulus operator,

vidin

number with two digits, divide the number by 10. Once again,

ber (i.e. 12) by using the modulus operator with 10,

et the digit 2 and display it on the screen. Again get the new number by dividing it

10

t, or take remainder by using

odulus operator with 10. In this way, we get all the digits of the number.

S

Let’s first analyze the problem and find out the way how to program it.

An

First of all, we will sort the

We know that when we divide a nu

remainder. For example when we divide 2415 by 10 we get 5 as rem

3476 divided by 10 gives the remainder 6. We w

the digits of the number

the digit. Let’s say that we have a number 1234 to show its digits separately. In our

program we will use modulus operator (%) to get the rem

digit of the number 1234 by takin

give us the digit 4. We will show

A his we have to find thefter t

remove its last digit. Here for example the answer of 1234 divided by 10 is 123.4, we

need only three digits and not the decimal part. I

tr es the decimal part to givuncat

division in our program and declare our variable for storing the num

type. We will divide the number 1234 by

num with remaining three

we deal with this new number (123)?

T re two ways, one is that we declare a new variable of type

va f this new number to itlue o

mean more memory will be used. The second

(where number was already stored). As w

values to variables like in the

x and assign this resultant value again to x. In

We will do the same but use the division o

accord ng to our need. For this purpose we w

th tement we have value 12is sta

A we will get the remainder of this

di g the number by 10 (i.e. 123 % 10). Now we will get 3 and display it on the

screen. To get the new

we get the next digit of the num

g

by

(i.e. 1). We can show it directly, as it is the last digi

m

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 30

ow let’s write the program in C by following the analysis we have made. The

omplete C program for the above problem is given below. It is easy to understand as

e are already familiar with the statements used in it.

separately. */

include <iostream.h>

main()

cout << digit << ", ";

igit and display it

< ", ";

ber % 10;

 10;

sample output of the above program is given below.

N

c

w

/* A program that takes a four digits integer from user and shows the digits on the

screen separately i.e. if user enters 7531, it displays 1,3,5,7

#

{

 // declare variables

 int number, digit;

 // prompt the user for input

 cout << "Please enter 4-digit number:";

 cin >> number;

 // get the first digit and display it on screen

 digit = number % 10;

cout << "The digits are: ";

 // get the remaining three digits number

 number = number / 10;

// get the next d

digit = number % 10;

 cout << digit <

// get the remaining two digits number

 number = number / 10;

ext digit and display it // get the n

 digit = num

 cout << digit << ", ";

 one digit number // get the remaining

 number = number / 10;

// get the next digit and display it

 digit = number %

 cout << digit;

}

 A

Please enter 4-digit number: 5678

The digits are: 8, 7, 6, 5

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 31

roblem Statement:

rite a program that takes radius of a circle from the user and calculates the diameter,

ircumference and area of the circle and display the result.

Solution:

problem we take the input (radius of a circle) from the user. For that we can

se cin statement to prompt the user to enter the radius of a circle. We store this radius

to store diameter, circumference and area

riables of type float,

in our problem the area or circumference of the circle can be in decimal

ulae to find the diameter,

cum en display these results on the screen. The

/* Following program takes the radius of a circle from the user and calculates the

diameter, circumference and area of the circle and displays the result. */

#include <iostream.h>

main ()

{

 // declare variables

 float radius, diameter, circumference, area;

 // prompt the user for radius of a circle

 cout << "Please enter the radius of the circle " ;

 cin >> radius ;

 // calculate the diameter, circumference and area of the circle

 // implementing formula i.e. diameter = 2 r circumference = 2 r and area = r
2

 diameter = radius * 2 ;

 circumference = 2 * 3.14 * radius ; // 3.14 is the value of (Pi)

 area = 3.14 * radius * radius ;

 // display the results

 cout << "The diameter of the circle is : " << diameter ;

 cout << "The circumference of the circle is : " << circumference ;

 cout << "The area of the circle is : " << area ;

 }

A sample output of the above program is given below.

P

W

c

In this

u

in a variable. We also need other variables

of the circle. To obtain the correct result, we declare these va

instead of int data type, as we know that the int data type stores the whole numbers

only. Here

values. After getting the radius we use the form

cir ference and area of the circle and th

solution of this program in coding form is given below.

© Copyright Virtual University of Pakistan

Please enter the radius of the circle 5

The diameter of the circle is : 10

The circumference of the circle is : 31.4
The area of the circle is : 78.5

CS201 – Introduction to Programming

 32

criptive names for variables

o lity and understanding

o e pa larity a d to force the order of evaluation in an

expression

o etter usage of memory

o ro

o alyze th r d then start coding (i.e. first think and then

write)

Tips

o Use des

Indent the code for better readabi

nUs renthesis for c

Reuse the variables for b

Take care of division by ze

An e p oblem properly, an

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

Lecture No. 5

 33

eading MaterialR

ents
o

 1

o e
o tors

e Program 2
o

Conditional Statements (Decision Making)

eet can be members of the

, we have written simple elementary programs. For writing

ograms, we have to introduce the decision making power in

ow we will see what kind of decisions are there in programming and how

provides a structure for decision making.

is structure. The statement used for decisions in 'C' language is

t'. The if statement has a simple structure. That is

 Statement (or group of statements)

Deitel & Deitel – C++ How to Program chapter 2

 2.4, 2.5, 2.6, 2.19,

 2.20

 Summary
o Conditional Statem

Flow Charting

 Sample Program

if/else structur
Logical Opera

 Sampl

 Tips

In every day life, we are often making decisions. We perform different tasks while

taking decisions. For example, the statement ‘if the milk shop is open, bring one liter

of milk while returning home from college’, involves this phenomenon.

In this statement, there is an element of decision making. We bring one litre of milk if

the shop is open. And if the shop is closed, we come back to home without milk.

Thus we are making a decision on the condition that the shop is open. The decision-

making process is everywhere in our daily life. We see that the college gives

admission to a student if he has the required percentage in his previous examination

and/or in the entry test. Similarly administration of a basketball team of the college

e than six fdecides that the students having height mor

eam. t

In the previous lectures

ing and useful printerest

em. Nth

these can be used.

g language Every programmin

' also'C provides th

known as the 'if statemen

if (condition)

The above statements mean, If condition is true, then execute the statement or a group

of statements. Here the condition is a statement which explains the condition on

which a decision will be made. We can understand it from the example that Ali can

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 34

ecome the member of the basket ball team if he has a height more than six feet .In

is case, the condition will be

if (Ali’s height is greater than six

 Ali can be a member of team

n he conditio English la Now l

t this in terms of variables, operators and C statements. In the program, we

tion in paren es, followed by a statement

cuted.

he cept of blo f statement se braces up

umb ents. We put ‘{’ before first statem

the if statement. The structure

 of the lines and semi-colon after each statement. Semi-colons are

y C statement. The indentation is only a matter of style. It makes

ain()

{

 int age1, age2;

 age1 = 12;

 age2 = 10;

 if (age1 > age2)

 cout << “Student 1 is older than student 2”;

}

b

th

 feet)

We have writte

implemen

 t n in nguage. et's see how we can

will write the con

to be exe

di thes or group of statements

Now here is t

lock) of a n

con

er of statem

ck o s. We u { } to make a gro

ent and ‘}’ after the (b

last statement. Thus if we have to do many things after

of if statement becomes as under

if (condition)

{

 statement;

 statement;

 .

 .

 statement;

}

Note the indentation

necessary after ever

the code easy to read and understand from where a block starts, ends and what kind of

block it is. It does not affect the logic of the program. But the braces can affect the

logic. We can also write a comment line to state the purpose of code block.

Let's consider a simple example to explain the if statement. Suppose, we have ages of

two students (say for the time being we have got these ages in variables). These

variables are- age1 and age2. Now we say that if the age1 is greater than age2, then

display the statement ‘Student 1 is older than student 2’.

he coding for this program will be as below T

#

m

include <iostream.h>

Here, in our code we see a new operator i.e. ‘ > ‘ (greater than) in the if statement. We

need such operators (like greater than, less than, equal to etc) while making decisions.

These operators are called 'relational operators'. These are almost the same relational

operators we use in algebra. Following table summarizes the relational operators.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 35

 Algebraic In C

language

Example Meaning

Greater than > > x > y x is greater than y

Equal to = == x == y x is equal to y

Less than < < x < y x is less than y

Greater than or

equal to

> >= x >= y x is greater than or

equal to y

Less than or

equal to

< <= x <= y x is less than or equal

to y

Not equal to != x != y x is not equal to y

Note that there is no space between ==, >=, <= and !=.

hese are considered as single operators.

he operator == (equal to) is different from the operator =. We know that operator =

 the assignment operator which is used in assignment statement to assign a value to

ment operator (=) with equal to operator (==). If we write

ement returns a value. In this case, x = 2 will also have some value but it will

g

T

T

is

a variable.

Don't confuse the assign

single = in condition of if statement. For example, if we write if (x = 2), the compiler

will not give error. This means that it is not a syntax error. The conditional expression

in if stat

not in the form of true or false. So it will create a logical error. So be careful while

using equal to condition in if statement.

Flow Chartin

There are different techniques that are used to analyze and design a program. We will

use the flow chart technique. A flow chart is a pictorial representation of a program.

There are labeled geometrical symbols, together with the arrows connecting one

symbol with other.

A flow chart helps in correctly designing the program by visually showing the

sequence of instructions to be executed. A programmer can trace and rectify the

logical errors by first drawing a flow chart and then simulating it.

Below are some of the main symbols used in the flow chart.

.

© Copyright Virtual University of Pakistan

Flow Chart Symbols

Start or Stop

Process

Flow Line

Decision

Continuation Mark

CS201 – Introduction to Programming

ow let’s see the usage of relational operators by an example. There are two students

o is

er?

s there are two students to be compared in terms of age, we need to declare two

ges. We declare two variables AmerAge and AmaraAge of

pe int. The variable names are one continuous word as we can’t use spaces in a

ame.

re is an important point about variables declaration. We should assign an initial

alue (to variables when we declare them. This is called

We can ariable like int x = 0; This statement

e x with data type int and will assign a value 0 to this

ariabl st a matter of style. You can initialize a

 is a good programming practice to

 to enter Amer’s age and store it into variable AmerAge.

rom the user in the variable AmaraAge.

hile compar nt to see whether Amer’s age is

eater than Amara’s. We will use > (greater than) operator to compare the ages. This

an be written as if (AmerAge > AmaraAge) .

ith this if statement, we write the statement cout << "Amer is greater than Amara" ;

Sample Program 1

N

Amer and Amara. We take their ages from the user, compare them and tell wh

old

A

variables to store their a

ty

variable n

He

v preferably 0 for integers)

initialization of variables.

 do this in one line while declaring a v

will declare a variable of nam

v e. Initializing a variable in this way is ju

variable on a separate line after declaring it. It

initialize a variable.

Now we prompt the user

Then similarly we get Amara’s age f

W ing the ages, we will use the if stateme

gr

c

W

It’s a simple one line test i.e. ‘if Amer’s age is greater than Amara's’, then display the

message ‘Amer is older than Amara’.

The flow chart for the above problem is as under.

© Copyright Virtual University of Pakistan

36

The flow chart for the if structure is shown in the figure below.

The flow chart for the if structure is shown in the figure below.

CS201 – Introduction to Programming

The com is given below.

 This p an Amara’s age and displays the result.

*/

ain (

pt the user to enter Amer’s age

 AmerAge;

ara’s age

< “Please enter Amara’s age “ ;

 cin >>

rm the test

if (AmerAge > AmaraAge)

 cout << “ Amer is older than Amara”;

plete code of the program

/* rogram test that if the age of Amer is greater th

include <iostream.h>

m)

{

 int AmerAge, AmaraAge;

 //prom

cout << “Please enter Amer’s age “ ;

 cin >>

 //prompt the user to enter Am

 cout <

AmaraAge;

 //perfo

}

 37

In our program, we write a single statement with the if condition. This statement

ion is true. If we want to execute more than one statements, then

if (AmerAge > AmaraAge)

cout << " Amer is older than Amara";

}

executes if the condit

we have to enclose all these statements in curly brackets { }. This comprises a block

of statements which will execute depending upon the condition. This block may

contain a single statement just like in our problem. So we can write the if statement as

follow.

{

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 38

A sample execution of the program provides the following output.

Please enter Amer’s age 16

Please ara’s age 14

 Amer is older

enter Am

than Amara

.e. Amer’s age

is not eater than Amara’s. In this case, if the user enters Amer’s age less than

Amara’ nothing. So to check this condition, another if

statement after the first if statement is required. Then our program will be as:

/* This program checks the age of Amer and Amara’s and

displays the appropriate the message. The program is using

two if statements.*/

include <iostream.h>

>> AmerAge;

erAge > AmaraAge)

Now think what happens if the condition in the if statement is not true i

gr

s, then our program does

main ()

{

 int AmerAge, AmaraAge;

 //prompt the user to enter Amer’s age

cout << “Please enter Amer’s age “ ;

 cin

 //prompt the user to enter Amara’s age

 cout << “Please enter Amara’s age “ ;

 cin >> AmaraAge;

 //perform the test

 if (Am

 {

 cout << “ Amer is older than Amara”;

 }

 if (AmerAge < AmaraAge)

 {

cout << “ Amer is younger than Amara”;

 }

}

Now our program decides properly about the ages entered by the user.

After getting ages from the user, the if statements are tested and if statement will be

executed if the condition evaluates to true.

If/else Structure

e have seen that the if structure executes its block of statement(s) only when the

condition is true, otherwise the statements are skipped. The if/else structure allows the

programmer to specify that a different block of statement(s) is to be executed when

the condition is false. The structure of if/else selection is as follows.

if (condition)

W

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 39

{

statement(s);

}

else

{

statement(s);

}

Thus using this structure we can write the construct of our program as

if (AmerAge > AmaraAge)

{

cout << " Amer is older than Amara";

}

else

{

cout << " Amer is younger than Amara";

}

In this construct, the program checks the condition in if statement .If the condition is

true, then the line "Amer is greater than Amara" is printed. Otherwise (if condition is

not true), the statement related to else is executed and the message "Amer is younger

than Amara" is printed. Here in if/else structure an important thing is that the else part

is executed for all the cases (conditions) other than the case which is stated in the if

ondition.

nd in the comparison, we know that there are three conditions i.e. first value is

eater than the second value, first value is less than the second value and first value

is equal to the second value. Here in the above program construct the else part

than conditions and covers both less than and equal to

c

A

gr

competes the greater

onditions. c

Thus in the above program construct, the message "Amer is younger than Amara" is

displayed even if Amer’s age is the same as Amara’s age. This is logically incorrect

and so to make this correct, we should display the message "Amer is younger than or

is of the same age as Amara". Now this statement describes both the cases other than

the one ‘Amer is greater than Amara'.

The use of else saves us from writing different if statements to compare different

conditions, in this way it cover the range of checks to complete the comparison.

If we want to state the condition "Amer is greater than or is of the same age as

Amara’s" then we use the greater than or equal to operator (i.e. >=) in the if statement

and less than operator (<) in the else statement to complete the comparison.

It is very important to check all the conditions while making decisions for good,

complete and logical results. Make sure that all cases are covered and there is no such

case in which the program does not respond.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

Logical Operators

 face complex conditions to make a decision. This

eans that a decision depends upon more than one condition in different ways. Here

we combine the conditions with AND or OR. For example, a boy can be selected in

if he is more than 18 years old and has a height of 6 feet. In this

atement a boy who wants to be selected in the basket ball team must have both the

 programming we use logical operators (&& and ||) for AND and OR respectively

with relational operators. These are binary operators and take two operands. These

 logical expressions as operands, which return TRUE or FALSE.

he following table (called truth table) can be used to get the result of the &&

There are many occasions when we

m

basket ball team only

st

conditions fulfilled. This means that AND forces both the conditions to be true.

Similarly we say that a person can be admitted to the university if he has a BCS

degree OR BSC degree. In this statement, it is clear that a person will be admitted to

the university if he has any one of the two degrees.

In

operators use

T

operator and || operator with possible values of their operands. It is used to explain the

result obtained by the && and || operators.

Expression 1 Expression 2 Expression 1 &&

Expression 2

Expression 1 ||

Expression 2

True False false True

© Copyright Virtual University of Pakistan

40

CS201 – Introduction to Programming

True True true True

False False false False

False True false True

The && operator has a higher precedence than the || operator. Both operators

ssociate from left to right. An expressions containing && or || is evaluated only until

truth or falsehood is known. Thus evaluation of the expression (age > 18) && (height

 6) will stop immediately if age > 18 is false (i.e. the entire expression is false) and

continue if age > 18 is true (i.e. the entire expression could still be true if the

condition height > 6 is true).

There is another logical operator that is called logical negation. The sign ! is used for

this operator. This operand enables a programmer to ‘reverse’ the meaning of a

condition. This is a unary operator that has only a single condition as an operand. The

operator ! is placed before a condition. If the original condition (without the !

operator) is false then the ! operator before it converts it to true and the statements

attached to this are executed.

Look at the following expression

 if (! (age > 18))

 cout << “ The age is less than 18”;

Here the cout statement will be executed if the original condition (age > 18) is false

because the ! operator before it reverses this false to true.

The truth table for the logical negation operator (!) is given below.

Expression ! Expression

a

>

True False

False True

Sample Program 2

Problem statement

A shopkeeper announces a package for customers that he will give 10 % discount on

all bills and if a bill amount is greater than 5000 then a discount of 15 %. Write a C

program which takes amount of the bill from user and calculates the payable amount

by applying the above discount criteria and display it on the screen.

Solution

In this problem we are going to make decision on the basis of the bill amount, so we

will be using if statement. We declare three variables amount, discount and

netPayable and initialize them. Next we prompt the user to enter the amount of the

bill. After this we implement the if statement to test the amount entered by the user.

As we see in the problem statement that if the amount is greater than 5000 then the

discount rate is 15 % otherwise (i.e. the amount is less than or equal to 5000) the

© Copyright Virtual University of Pakistan

41

CS201 – Introduction to Programming

 42

ount in if statement. If it is greater than

000 then the condition is true then the if block is executed otherwise if amount is not

discount rate is 10 %. So we check the am

5

greater than 5000 then the else block is executed.

The analysis and the flow of the program is shown by the following flow chart.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 43

amount for a customer. As different discount

ercentage applies on different amount so program is using if statement for deciding

hich discount is applicable and display the result. */

e <iostream.h>

ain ()

{

 dou a

 amo t

 netPaya

 discount = 0 ;

 // pr

cout << "Please enter the amount of the bill " ;

cin >> amount ;

 //test the conditions and calculate net payable

 if (amount > 5000)

 {

 //calculate amount at 15 % discount

 discount = amount * (15.0 / 100);

 netPayable = amount - discount;

 cout << "The discount at the rate 15 % is Rupees " << discount << endl;

 cout << "The payable amount is Rupees " << netPayable ;

 }

 else

 {

 // calculate amount at 10 % discount

 discount = amount * (10.0 / 100);

 netPayable = amount - discount;

 cout << "The discount at the rate 10 % is Rupees " << discount << endl ;

 cout << "The payable amount is Rupees " << netPayable ;

 }

}

The complete program code is given below:

/* This program calculates the discount

p

w

includ

m

ble mount, discount, netPayable ;

un = 0 ;

ble = 0 ;

ompt the user to enter the bill amount

In the program we declared the variables as double. We do this to get the correct

results (results may be in decimal points) of the calculations. Look at the statement

which calculates the discount. The statement is

discount = amount * (15.0 / 100) ;

Here in the above statement we write 15.0 instead of 15. If we write here 15 then the

division 15 / 100 will be evaluated as integer division and the result of division (0.15)

will be truncated and we get 0 and this will result the whole calculation to zero. So it

is necessary to write at least one operand in decimal form to get the correct result by

division and we should also declare the variables as float or double. We do the same

in the line discount = amount * (10.0 / 100);

A sample execution of the program is given below

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 44

Please enter the amount of the bill 6500

te 15 % is Rupees 975 The discount at the ra

he payable amount is Rupees 5525 T

Tips

 Always put the braces in an if/else structure

 Type the beginning and ending braces before typing inside them

dy statements of an if and else structure

eful while combining the conditions with logical operators

if/else structure instead of a number of single selection if

ts

 Indent both bo

 Be car

 Use

statemen

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

Lecture No. 6

Reading Material

Deitel & Deitel – C++ How to Program chapter 2

 2.7, 2.8, 2.9, 2.20

 Summary

Repetition Structure (Loop)

Overflow Condition

Sample Program 1

Sample Program 2

Infinite Loop

Properties of While loop

Flow Chart

am 3 Sample Progr

Tips

Repetition Structure (Loop)

In our day to day life, most of the things are repeated. Days and nights repeat

themselves 30 times a month. Four seasons replace each other every year. We can see

similar phenomenon in the practical life. For example, in the payroll system, some

procedures are same for all the employees. These are repeatedly applied while dealing

with the employees. So repetition is very useful structure in the programming.

Let’s discuss a problem to understand it thoroughly. We have to calculate the sum of

dd the numbers fro

m 1 to 10. Following statement may

o correct. This

 adopted while calculating the sum of numbers from 1 to 100.

d

f

gly and boring statement. Let’s

e

d 1 to the previous integer (i.e. 2) and get the next

ever we have to find out the next integer, we have to add 1

eger i.e. 1. We add this to the sum (sum becomes 0 + 1 = 1).

r which can be obtained by adding 1 to the previous integer

g 1

first 10 whole numbers i.e. a

be one way to do it.

 cout << “Sum of first 10 numbers is = “ << 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 +

10;

ctly fine as the syntax is right. The answer is alsThis method is perfe

procedure can also be

We can write the above statement adding all the digits from 1 to 100. But this metho

will not be suitable for computing the sum of numbers from 1 to 1000.The addition o

gits will result in a very ua very big number of di

analyze it carefully. Our first integer is 1, is there any other way to find out what is th

next integer? Yes, we can add 1 to the integer and get the next integer which is 2. To

ind the next integer (i.e. 3) we adf

integer which is 3. So when

o the previous integer. t

We have to calculate the sum of first 1000 integers by taking a variable sum of type

int. It is a good programming practice to initialize the variable before using it. Here,

we initialize the variable sum with zero.

 int sum = 0;

Now we get the first int

ow get the next integeN

i.e. 2 and add it to the sum (sum becomes 1 + 2 = 3). Get the next integer by addin

to the previous integer and add it to the sum (sum becomes 3 + 3 = 6) and so on.

 This way, we get the next integer by adding 1 to the previous integer and the

© Copyright Virtual University of Pakistan

45

CS201 – Introduction to Programming

 46

structure'. ‘while’ is also a key word of 'C' so it cannot be used as a

ariable name.

. The use of while construct can be

s under some condition. We can also use curly

e just like we used with if. If we omit to use the braces with while

so be indented inside the while block as

dentation makes the code easy to understand.

under:

 while (Logical Expression) {

al expression contains a logical or relational operator. While this logical

xpression is true, the statements will be executed repeatedly. When this logical

s again the same problem i.e. calculation of the sum of first 1000 integers

arting from 1. For this purpose, we need a variable to store the sum of integers and

ays use the self explanatory variable names. The

s performed two tasks i.e. it declared the variable sum of type

. As it is good programming practice to initialize all

e

ll be used to store integers.

of int data type, so the variables of same data

ur problem, we need to sum up all the integers from 1 to 1000. Our

ll

new integer to the sum. It is obvious that we are repeating this procedure again and

again i.e. adding 1 to the previous integer and add this new integer to the sum. So we

need some repetition structure in the programming language. There are many looping

constructs in C Language. The repetition structure we are discussing in this lecture is

'while loop

v

While means, 'do it until the condition is true'

helpful in repeating a set of instruction

braces with whil

construct, then only one statement after while will be repeatedly executed. For good

programming practices, always use braces with while irrespective of the number of

statements in while block. The code will al

In

The syntax of while construct is as

 statement1;

 statement2;

 ………….

 }

The logic

e

expression becomes false, the statements within the while block, will not be executed.

Rather the next statement in the program after while block, will be executed.

Let’s discus

st

declare a variable named sum. Alw

declaration of the variable sum in this case is:

 int sum = 0;

The above statement ha

int and also initialized it with zero

the variables when declared, the above statement can be written as:

 int sum;

 sum = 0;

Here we need a variable to store numbers. So we declare a variable number of typ

int. This variable wi

 int number;

As we have declared another variable

type can be declared in one line.

 int sum, number;

Going back to o

first integer is 1. The variable number is to be used to store integers, so we wi

initialize it by 1 as our first integer is 1:

 number = 1;

Now we have two variables- sum and number. That means we have two memory

locations labeled as sum and number which will be used to store sum of integers and

integers respectively. In the variable sum, we have to add all the integers from 1 to

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 47

 ………Action ………

ntil the number is 1000 or less than

1 alue of number is 1 initially,

i simple statement:

 sum = sum + number;

Let’s analyze the above statement carefully. We did not write sum = number; as this

statem ts of sum and the previous value of sum will be

w statement. What we did? We added the contents of

s s of number first (i.e. 0 + 1) and then stored the result of this (i.e. 1) to

t .

Now we nee dd it to the sum. How can we get the next

i o the integer, we will get the next integer. In ‘C’, we will

w

 number = number + 1;

S ents of number (i.e. 1). Add

1 result (i.e. 2) into the number. Now we need to add this

new number into sum:

We add the contents of sum (i.e. 1) to the contents of number (i.e. 1) and then store

the result (i.e. 2) to the sum. Again we need to get the next integer which can be

ber. In other words, our action consists of only two

statements i.e. add the number to the sum and get the next integer. So our action

s

l

1000. So we will add the value of variable number into variable sum, till the time the

value of number becomes 1000. So when the value of number becomes 1000, we will

stop adding integers into sum. It will become the condition of our while loop. We can

say sum the integers until integer becomes 1000. In C language, this condition can be

written as:

 while (number <= 1000) {

 }

The above condition means, 'perform the action u

000'. What will be the Action? Add the number, the v

nto sum. This is a very

ent will replace the conten

is is an assignment asted as th

um and content

umhe s

d to generate next integer and a

er? Just by adding 1 tnteg

rite it as:

imilarly in the above statement, we get the original cont

 to them and then store the

 sum = sum + number;

obtained by adding 1 to the num

tatements will be:

 sum = sum + number;

 number = number + 1;

Putting the action statements in while construct:

 while (number <= 1000) {

 sum = sum + number;

 number = number + 1;

 }

Let's analyze the above while loop. Initially the contents of number is 1. The

condition in while loop (i.e. number <= 1000) will be evaluated as true, contents of

sum and contents of number will be added and the result will be stored into sum. Now

1 will be added to the contents of number and number becomes 2. Again the condition

in while loop will be evaluated as true and the contents of sum will be added to the

contents of number .The result will be stored into sum. Next 1 will be added to the

contents of number and number becomes 3 and so on. When number becomes 1000,

the condition in while loop evaluates to be true, as we have used <= (less than or equa

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 48

 (i.e.

comes 1001. Now the condition in while loop is evaluated to

o more less than or equal to 1000 (i.e. number has become 1001).

f

 next integer by adding 1 to the integer

to) in the condition. The contents of sum will be added to the contents of number

1000) and the result will be stored into the sum. Next 1 will be added to the contents

of number and number be

false, as number is n

When the condition of while loop becomes false, loop is terminated. The control o

the program will go to the next statement following the ending brace of the while

construct. After the while construct, we can display the result using the cout

statement.

cout << “ The sum of first 1000 integers starting from 1 is “ << sum;

The complete code of the program is as follows:
/* This program calculate the sum of first 1000 integers */
#include <iostream.h>

main()
{
 //declaration of variables
 int sum, number;

 //Initialization of the variables
 sum = 0;
 number = 1;

 // using the while loop to find out the sum of first 1000 integers starting from 1

 while(number <= 1000)
 {
 // Adding the integer to the contents of sum
 sum = sum + number;

 // Generate the
 number = number + 1;
 }

 cout << "The sum of first 1000 integers starting from 1 is " << sum;
}

The output of the program is:

The sum of first 1000 integers starting from 1 is 500500

While construct is a very elegant and powerful construct. We have seen that it is very

We can change this condition to 10000 or bers.

How far can you go with the limit? We know that integers are allocated a fixed space

in memory (i.e. 32 bits in most PCs) and we can not store a number which requires

more bits than integer, into a variable of data type, int. If the sum of integers becomes

large of integers becomes larger than 32 bits can store), two

t ogram will give an error during execution, compiler

can not detect such errors. These errors are known as run time errors. The second

t will be stored and extra bits will be wasted, so our

result will not be correct as we have wasted the information. This is called overflow.

easy to sum first 1000 integers just with three statements. Suppose we have to

calculate the sum of first 20000 integers. How can we do that? We just have to change

000). the condition in the while loop (i.e. number <= 20

Overflow Condition:

even more. Just try some more num

r than this limit (i.e. sum

hings can happen here. The pr

hing is that 32 bits of the result

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 49

When we try to store larger information in, than a data type can store, overflow

condition occurs. W rs either a run-time error is generated

o

S

To calculate the sum of 2000 integers, we will change the program (i.e. the while

c te the sum

of first 5000 integers, we will change the program again in the editor and compile and

run it again. We are doing this work again in a loop. Change the program in the editor,

c ile and execute it and so on. Are

we doing this in a loop? We can make our program more intelligent so that we don’t

need to change the condition every time. We can modify the condition as:

 while (number <= upperLimit)

w e value of upperLimit is 1000,

t he sum of first 1000 integers. When the value of

upperLimit is 5000, the program will calculate the sum of first 5000 integers. Now we

can m or

u

 cout << “Please enter the upper limit for which you want the sum ”;

 cin >> upperLimit;

rogram every time when the limit changes. For the sum

e generic. We can calculate the sum of any

n o make the display statement

m s:

 cout << “ The sum of first “ << upperLimit << “ integers is “ << sum;

problem and know that while statement will be used. We need to sum

er is even or not? We know that

 is divisible by 2 is an even number. How can we do this in C

given upper limit of

hen overflow condition occu

r wrong value is stored.

ample Program 1:

ondition) in the editor and compile it and run it again. If we need to calcula

ompile, execute it, again change the program, comp

 int upperLimit;

here upperLimit is a variable of data type int. When th

he program will calculate t

ake it re-usable and more effective by requesting the user to enter the value f

pper limit:

We don’t have to change our p

of integers, this program has becom

umber of integers without changing the program. T

ore understandable, we can change our cout statement a

Sample Program 2:

Problem statement:

Calculate the sum of even numbers for a given upper limit of integers.

Solution:

We analyze the

even numbers only. How can we decide that a numb

the number that

language? We can say that if a number is divisible by 2, it means its remainder is

zero, when divided by 2. To get a remainder we can use C’s modulus operator i.e. %.

We can say that for a number if the expression (number % 2) results in zero, the

number is even. Putting this in a conditional statement:

 If ((number % 2) == 0)

The above conditional statement becomes true, when the number is even and false

when the number is odd (A number is either even or odd).

The complete code of the program is as follows:

/* This program calculates sum of even numbers for a

integers */
#include <iostream.h>

main()
{
 //declaration of variables
 int sum, number, upperLimit;

 //Initialization of the variables
 sum = 0;

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 50

 user to enter upper limit of integers
se enter the upper limit for which you want the sum ” ;

 // using the while loop to find out the sum of first 1000 integers starting from 1

 while(number <= upperLimit)
 {
 // Adding the even integer to the contents of sum
 if ((number % 2) == 0)
 {
 sum = sum + number;
 }

 // Generate the next integer by adding 1 to the integer
 number = number + 1;
 }

 cout << "The sum of even numbers of first “ << upperLimit << “ integers starting

 number = 1;

 // Prompt the

lea cout << “P
 cin >> upperLimit;

from 1 is " << sum;
}

The output of the program is:

Please enter the upper limit for which you want the sum 10

The sum of even numbers of first 10 integers starting from 1 is 30

Suppose if we don’t have modulus operator in the C language. Is there any other way

n C integer division gives the integer

result and the decimal portion is truncated. So the expression (2 * (number / 2)) gives

n

 (number /2)) == number)

re that is (number <= upperLimit) and in

lock the value of number is changing (number = number + 1) to ensure that

 is true, the while block is executed and so

the variable used in condition must change its

o

re known

0, as the value for upper limit. In the while

condition we test (number <= upperLimit) i.e. number is less than or equal to

upperLimit (0), this test return false. The control of the program will go to the next

statement after the while block. The statements in while structure will not be executed

even for a single time. So the property of while loop is that it may execute zero or

more time.

The while loop is terminated, when the condition is tested as false. Make sure that the

loop test has an adequate exit. Always use braces for the loop structure. If you forget

to find out the even numbers? We know that i

the number as a result, if the number is even only. So we can change our condition i

if statement as:

 if ((2 *

Infinite Loop:

Consider the condition in the while structu

the while b

the condition is tested again next time. If it

on. So in the while block statements,

value so that we have some definite number of repetitions. What will happen if we d

not write the statement number = number + 1; in our program? The value of number

will not change, so the condition in the while loop will be true always and the loop

will be executed forever. Such loops in which the condition is always true a

as infinite loops as there are infinite repetitions in it.

Property of while loop:

In the above example, if the user enters

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 51

to put the braces, only one statement after the while statement is considered in the

while block.

Flow Chart:

The basic structure of while loop in structured flow chart is:

At first, we will draw a rectangle and write while in it. Then draw a line to its right

and use the decision symbol i.e. diamond diagram. Write the loop condition in the

diamond and draw a line down to diamond which represents the flow when the

decision is true. All the repeated processes are drawn here using rectangles. Then a

line is drawn from the last process going back to the while and decision connection

line. We have a line on the right side of diamond which is the exit of while loop. The

while loop terminates, when the loop condition evaluates to false and the control gets

out of while structure.

Here is the flow chart for sample program 2:

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

So far, we have been drawing flow charts after coding the program but actually we

have to draw the flow chart first and then start coding.

Sample Program 3:

Problem statement:

Calculate the factorial of a given number.

Solution:

The factorial of a number N is defined as:

 N(N-1)(N-2)………….3.2.1

By looking at the problem, we can see that there is a repetition of multiplication of

numbers. A loop is needed to write a program to solve a factorial of a number. Let's

think in terms of writing a generic program to calculate the factorial so that we can get

the factorial of any number. We have to multiply the number with the next

decremented number until the number becomes 1. So the value of number will

decrease by 1 in each repetition.

Here is the flow chart for the factorial.

© Copyright Virtual University of Pakistan

52

CS201 – Introduction to Programming

Here is the code of the program.

/*This program calculates the factorial of a given number.*/

#include <iostream.h>

main()
{
 //de

er limit of integers
 cout << “Please enter the number for factorial ” ;
 cin >> numb

 while(numbe
 {

claration of variables
 int factorial, number;

 //Initialization of the variables
 factorial = 1;
 number = 1;

 // Prompt the user to enter upp

er;

 // using the while loop to find out the factorial

r > 1)

 factorial = factorial * number;
 number = number - 1;
 }

 cout << "The factorial is “ << factorial;

© Copyright Virtual University of Pakistan

53

CS201 – Introduction to Programming

}

Exercise:

Calculate the sum of odd integers for a given upper limit. Also draw flow chart of the

ely for a given upper limit using

only one loop structure. Also draw flow chart of the program.

the self explanatory variable names

program.

Calculate the sum of even and odd integers separat

Tips

lways use A

Practice a lot. Practice makes a man perfect

While loop may execute zero or more time

Make sure that loop test (condition) has an acceptable exit.

© Copyright Virtual University of Pakistan

54

CS201 – Introduction to Programming

 55

Lecture No. 7

Reading Material

Deitel & Deitel – C++ How to Program Chapter 2

 2.11, 2.12, 2.14, 2.15, 2.17

 Summary

Do-While Statement

Example

for Statement

ample Program 1

crement/decrement Operators

ile Statement

while loop does

le time. This occurs when the condition in while is false. In

the statements in the body are executed

nly w ue. If the condition is false, then the control goes directly

while loop. So we can say that in while

 can execute zero or more times. There may be situations where we

 this case, the task of guessing the

ents is

 once, C provides a do-while structure. The syntax of do-while

 {

 statement(s);

 while (condition) ;

re w is tested after executing the statements of the loop

dy. Thus, the loop body is executed at least once and then the condition in do while

tatement is tested. If it is true, the execution of the loop body is repeated. In case, it

proves otherwise (i.e. false), then the control goes to the statement next to the do

S

In

Sample Program 2

Tips

o-WhD

t there may be certain situations when the body of We have seen tha

not execute even a sing

hile loop, the condition is tested first and w

o hen this condition is tr

ter the closed brace of the to the statement af

pstructure, the loo

ay nem ed that some task must be performed at least once.

le, a computer program has a character stored from a-z. It gives to For examp

user five chances or tries to guess the character. In

ed at least once. To ensure that a block of statemcharacter must be perform

executed at least

structure is as under:

 do

 }

e see that the conditionHe

ob

s

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 56

s in while statement. This structure describes ‘execute the statements enclosed in brace

do clause' when the condition in while clause is true.

Broadly speaking, in while loop, the condition is tested at the beginning of the loop

before the body of the loop is performed. Whereas in do-while loop, the condition is

tested after the loop body is performed.

Therefore, in do-while loop, the body of the loop is executed at least once.

The flow chart of do-while structure is as follow:

Example

Let’s consider the example of guessing a character. We have a character in the

 guessed by the user. Let’s call it ‘z’. The program allows five tries

user to guess the character. We declare a variable tryNum to store

 character for guessing.

e store this character in a variable c.

eclare the variable c of type char. The data type char is used to store a single

aracter. We assign a character to a variable of char type by putting the character in

ngle q ent statement to assign a value to a char variable will

 as c = ‘a’. Note that there should be a single character in single quotes. The

tement like c = ‘gh’ will be a syntax error.

re we use the do-while construct. In the do clause we prompt the user to enter a

haracter.

er, we compare it with our character i.e

e as ours

e add 1 to tryNum variable.

yNum is less than or equal

true, then the body of the do clause is repeated

gain. We do this only when the condition (tryNum <= 5) remains true. If it is

therwise, the control goes to the first statement after the do-while loop.

hed in first or second try, then we should exit the loop. We know that

e loop is terminated when the condition tryNum <= 5 becomes false, so we assign a

value which is greater than 5 to tryNum after displaying the message. Now the

program to be

(chances) to the

the number of tries. The program prompts the user to enter a

W

We d

ch

si uotes. Thus the assignm

be

sta

He

c

After getting character in variable c from us

‘z’. We use if\else structure for this comparison. If the character is the sam

then we display a message to congratulate the user else w

And then in while clause, we test the condition whether tr

to 5 (tryNum <= 5). If this condition is

a

o

If guess is matc

th

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 57

m.

condition in the while statement is checked. It proves false (as tryNum is greater than

5). So the control goes out of the loop. First look here the flow chart for the progra

The code of the program is given below.

//This program allows the user to guess a character from a to z

//do-while construct is used to allow five tries for guessing

include <iostream.h>

main ()

{

//declar e & initialize variables

while (tryNum <= 5);

int tryNum = 0 ;

 char c ;

 // do-while construct

 do

 {

 cout << “Please enter a character between a-z for guessing : “ ;

cin >> c ;

 //check the entered character for equality

if (c == ‘z’)

 {

 cout << “Congratulations, Your guess is correct” ;

 tryNum = 6;

}

else

{

 tryNum = tryNum + 1;

}

 }

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

}

There is an elegant way to exit the loop when the correct number is guessed. We

change the condition in while statement to a compound condition. This condition will

check whether the number of tries is less than or equal to 5 and the variable c is not

equal to ‘z’. So we will write the while clause as while (tryNum <= 5 && c != ‘z’);

Thus when a single condition in this compound condition becomes false, then the

control will exit the loop. Thus we need not to assign a value greater than 5 to variable

tryNum. Thus the code of the program will be as:

This p z

sed to allow five tries for guessing

tream.h>

ain ()

e variables

ng : “ ;

ut << “Congratulations, Your guess is correct” ;

// rogram allows the user to guess a character from a to

//do-while construct is u

include <ios

m

{

 //declare & initializ

int tryNum = 0 ;

 char c ;

 // do-while construct, prompt the user to guess a number and compares it

 do

{

 cout << “Please enter a character between a-z for guessi

 cin >> c ;

//check the entered character for equality

if (c == ‘z’)

{

 co

}

else

 {

 tryNum = tryNum + 1;

}

 }

while (tryNum <= 5 && c != ‘z’);

}

The output of the program is given below.

Please enter a character between a-z for guessing : g

Please enter a character between a-z for guessing : z

Congratulations, Your guess is correct

© Copyright Virtual University of Pakistan

58

CS201 – Introduction to Programming

 59

he body of the loop. If there is a

x of for loop is given below.

incrementing condition)

tement(s) ;

at a 'for statement' consists of three parts. In initialization condition, we

me variable while in continuation condition, we set a condition for the

n of the loop. In third part, we increment the value of the variable for

ermination condition is set.

se, we have a variable counter of type int. We write for loop in our

r (counter = 0 ; counter < 10 ; counter = counter +1)

 {

out << counter << endl;

e

ow let's see how this loop executes. When the control goes to for statement first

ts the condition (i.e. counter < 10). If

 is true, then executes the body of the loop. In this case, it displays the value of

g statement (i.e.

ow, the control goes

 for statement and tests the condition of continuation. If it is true, then the body of

d which displays 1 on the screen. The increment statement is

gain executed and control goes to for statement. The same tasks are repeated. When

 of counter becomes 10, the condition counter < 10 becomes false. Then the

p is terminated and control goes out of for loop.

for Loop

Let’s see what we do in a loop. In a loop, we initialize variable(s) at first. Then we set

a condition for the continuation/termination of the loop. To meet the condition to

terminate the loop, we affect the condition in t

variable in the condition, the value of that variable is changed within the body of the

loop. If the value of the variable is not changed, then the condition of termination of

the loop will not meet and loop will become an infinite one. So there are three things

in a loop structure i.e. (i) initialization, (ii) a continuation/termination condition and

(iii) changing the value of the condition variable, usually the increment of the variable

value.

To implement these things, C provides a loop structure known as for loop. This is the

most often used structure to perform repetition tasks for a known number of

repetitions. The synta

for (initialization condition ; continuation condition ;

{

 sta

}

We see th

initialize so

continuatio

which the t

Let's suppo

program as

fo

c

}

This 'for loop' will print on the screen 0, 1, 2 …. 9 on separate lines (as we use endl in

our cout statement). In for loop, at first, we initialize the variable counter to 0. And in

the termination condition, we write counter < 10. This means that the loop will

continue till value of counter is less than 10. In other words, the loop will terminat

when the value of counter is equal to or greater than 10. In the third part of for

statement, we write counter = counter + 1 this means that we add 1 to the existing

value of counter. We call it incrementing the variable.

N

time, it sets the value of variable counter to 0, tes

it

counter which is 0 for the first execution. Then it runs the incrementin

counter = counter + 1). Thus the value of counter becomes 1. N

to

the loop is again execute

a

the value

loo

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 60

he point to be noted is that, the increment statement (third part of for statement) is

 the loop. Thus for structure is equivalent to a

hile s

ncrem e value of the condition variable after the last statement of

e for

ructu ion where the body of for loop, like while loop, may

t be executed even a single time. This may happen if the initialization value of the

ariabl ndition false. The statement in the following for loop will not be

lse. So

es without executing the body of the loop.

 for (counter = 5 ; counter < 5 ; counter ++)

 {

 cout << “The value of counter is “ << counter ;

e a program that prints the

gram, we declare a variable counter of type int. We use this variable to

by 2 with values 1 to 10. For writing the table of 2, we multiply 2 by 1, 2,

 respectively and each time display the result on screen. So we use for loop

ted multiplication.

 the code of the program that prints the table of 2.

am display the table of 2 up to multiplier 10

 include <iostream.h>

T

executed after executing the body of

w tructure, in which, we write explicit statement to change

(i ent/decrement) th

the body. The for loop does this itself according to the increment statement in th

st re. There may be a situat

no

v e makes the co

executed even a single time as during first checking, the condition becomes fa

the loop terminat

}

Sample Program 1

Let’s take an example to explain for loop. We want to writ

table of 2 on the screen.

In this pro

multiply it

3 .. upto 10

to perform the repea

Following is

//This progr

#

main ()

{

 int counter;

 //the for loop

 for (counter = 1 ; counter <= 10 ; counter = counter + 1)

 {

 cout << “2 x “ << counter << “ = “ << 2 * counter << “\n” ;

}

}

This is a simple program. In the for statement, we initialize the variable counter t

as we want the multiplicat

o 1

ion of 2 starting from 1. In the condition clause, we set the

ondition counter <= 10 as we want to repeat the loop for 10 times. And in the

le counter by 1.

c

incrementing clause, we increment the variab

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 61

t

 2 x 1 = 2

gain

 2 = 4

he same action will be repeated 10 times with values of counter from 1 to 10. When

 x 7 = 14

In the body of the for loop, we write a single statement with cout. This single

statement involves different tasks. The portion ‘<< “2 x “’ displays the string “2 x “

on the screen. After this, the next part ‘<< counter’ will print the value of counter.

The ‘<< “ = ”’ will display ‘ = ‘ and then the next part ‘<< 2 * counter’ will display

the result of 2 multiply by counter and the last <<”\n” (the new line character) will

start a new line. Thus in the first iteration where the value of counter is 1, the cou

statement will display the following line

After the execution of cout statement, the for statement will increment the counter

variable by 1. Thus value of counter will be 2. Then condition will be checked which

is still true. Thus the body of for loop (here the cout statement) will be executed a

having the value of counter 2. So the following line will be printed.

 2 x

T

the value of counter is 11, the condition (counter <= 10) will become false and the

loop will terminate.

The output of the above program is as the following.

2 x 1 = 2

2 x 2 = 4

2 x 3 = 6

2 x 4 = 8

2 x 5 = 10

2 x 6 = 12

2

2 x 8 = 16

2 x 9 = 18

2 x 10 = 20

Now what will we do, if some one says us to write a table of 3, or 4 or 8 or any other

ere comes the point of re-usability and that a program should be generic.

 a table. We store this number

 For this, we use a

ariable maxMultiplier and execute the loop for maxMultiplier times by putting the

 input from user and displays its table

number. H

We write a program in which a variable is used instead of a hard code number. We

prompt the user to enter the number for which he wants

in the variable and then use it to write a table. So in our previous example, we now

use a variable say number where we were using 2. We also can allow the user to

enter the number of multipliers up to which he wants a table.

v

condition counter <= maxMultiplier. Thus our program becomes generic which can

display a table for any number and up to any multiplier.

Thus, the code of our program will be as below:

//This program takes an integer

//The table is displayed up to the multiplier entered by the user

include <iostream.h>

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 62

ain ()

er for input

want a table : “ ;

you want a table : “ ;

in >> axMultiplier

//the for loop

cout << number << “ x “ << counter << “ = “ << number * counter << “\n” ;

m

{

 int counter, number, maxMultiplier ;

 // Prompt the us

 cout << “Please enter the number for which you

 cin >> number ;

 cout << “Please enter the multiplier up to which

 c m ;

 for (counter = 1 ; counter <= maxMultiplier ; counter = counter + 1)

 {

}

}

The output of the program is shown as follows:

Please enter the number for which you want a table : 7

Please enter the multiplier up to which you want a table : 8

7 x 1 = 7

 x 4 = 28

7 x 2 = 14

7 x 3 = 21

7

7 x 5 = 35

7 x 6 = 42

7 x 7 = 49

7 x 8 = 56

Here is a guideline for programming style. We should avoid using constant values in

ur calculations or in long routines. The disadvantage of this is that if we want to

e later, then we have to change every occurrence of that

the program. Thus we have to do a lot of work and there may be some places

here we do not change that value. To avoid such situations, we can use a

riable at the start and assi use

 the constant value, we can assign the new

ble and the remaining code will remain the same. So in our program

here e table of 2, we can use a variable (say number) and assign it the

alue 2 stead of constant 2. If we want

ust change the value of the

es instead of

xplici alues.

crement Operators

o

change that constant valu

value in

in code w

va gn that constant value to it and then in the program

that variable. Thus, if we need to change

value to that varia

w we wrote th

v . And in cout statement we use this variable in

that the program should display a table of 5, then we j

variable. So for good programming, use variables for constant valu

e t constant v

Increment De

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 63

e have seen that in while, do-while and for loop we write a statement to increase the

ounter + 1;

sed almost in every repetition structure (i.e. in while, do-while and for loop). The C

nguage provides a unary operator that increases the value of its operator by 1. This

j++. If we are using only variable

s case, j++ is equivalent to

e variable is used in an

her variable. If we use pre-

his new value is used in the

e value of j is used in the expression.

fter that it is increased by 1. Same is the case in pre and post decrement.

nd we write the expression

ented

crements

hen after the evaluation of the expression, the value of x will be 5 (as the value of j

 used before increment) and the value of j will be 6.

he same phenomenon is true for the decrement operator with the difference that it

ecreases the value by 1. The increment and decrement operators affect the variable

nd update it to the new incremented or decremented value.

The operators ++ and -- are used to increment or decrement the variable by 1. There

may be cases when we are incrementing or decrementing the value of a variable by a

number other than 1. For example, we write counter = counter + 5; or j = j – 4;. Such

assignments are very common in loops, so C provides operators to perform this task

in short. These operators do two things they perform an action (addition, subtraction

etc) and do some assignment.

These operators are +=, -=, *=, /= and %=. These operators are compound assignment

operators. These operators assign a value to the left hand variable after performing an

W

value of a variable. For example, we used the statements like counter = c

ich adds 1 to the variable counter. This increment statement is so common that it is wh

u

la

operator is called increment operator and sign ++ is used for this. The statement

counter = counter + 1; can be replaced with the statement

counter ++ ;

The statement counter++ adds 1 to the variable counter. Similarly the expressions i =

i + 1 ; and j = j + 1 ; are equivalent to i++ ; and j++; respectively. There is also an

operator -- called decrement operator. This operator decrements, the value of its

operand by 1. So the statements counter = counter - 1; and j = j - 1; are equivalent to

counter--; and j--; respectively.

The increment operator is further categorized as pre-increment and post-increment.

Similarly, the decrement operator, as pre-decrement and post-decrement.

In pre-increment, we write the sign before the operand like ++j while in post-

rement, the sign ++ is used after the operand like inc

increment, pre or post increment does not matter. In thi

+j. The difference of pre and post increment matters when th+

expression where it is evaluated to assign a value to anot

st increased by 1. Tincrement (++j), the value of j is fir

xpression. If we use post increment (j++),the

A

f j = 5, aI

x = ++ j ;

 After the evaluation of this expression, the value of x will be 6 (as j is increm

ill also be 6 as ++ operator infirst and then is assigned to x). The value of j w

it by 1.

If j = 5, and we write the expression

 = j++ ; x

T

is

T

d

a

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 64

action (i.e. +, -, *, / and %). The use of these operators is explained by the following

et’s say we have an expression, counter = counter + 5;. The equivalent of this

expression is counter += 5;. The statement counter += 5; does two tasks. At first, it

ounter and then assigns this result to counter. Similarly the

llowing expressions

x + ;

in equivalent short statements using the operators (+=, -=, *=, /=, %=)

 x += 4 ;

 x -= 3 ;

 x *= 2;

ote th here is no space between these operators. These are treated as single signs.

 operator %=. This operator assigns the remainder to the variable.

alternate in short hand for an assignment statement. The use of

r of

riables

 and construct a for loop

ive number for sum of squares: ” ;

examples.

L

adds 5 to the value of c

fo

 x = 4

 x = x - 3 ;

 x = x * 2 ;

 x = x / 2 ;

 x = x % 3;

can be written

s follows a

 x /= 2;

x %= 3 ;

N at t

Be careful about the

hese operators are T

these operators is not necessary. A programmer may use these or not. It is a matte

style.

Example Program 2

Let’s write a program using for loop to find the sum of the squares of the integers

from 1 to n. Where n is a positive value entered by the user (i.e. Sum = 1
2
 + 2

2
 + 3

2
 +

……+ n
2
)

The code of the program is given below:

//This program displays the sum of squares of integers from 1 to n

include <iostream.h>

main ()

{

 //declare and initialize va

int i, n, sum;

 sum = 0 ;

 //get input from user

cout << “Please enter a posit

 cin >> n;

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 65

 i ++)

sum += i * i ;

 for (i = 1 ; i <= n ;

 {

}

cout << “The sum of the first ” << n << “ squares is “ << sum << endl ;

}

In the program declared three variables i, n and sum. We prompted the user to enter a

oop.

ment

ent sum += i * i ;. This statement takes the square of the counter

ariable (i)and adds it to the variable sum. This statement is equivalent to the

tatement sum hus in each iteration the square of the counter

iteration) is added to the sum. Thus loop

uns n times and the squares of numbers from 1 to n are summed up. After

omple ng the is executed which displays the sum of the

er 5 is entered.

lease ter a of squares: 5

he su of the

positive number. We stored this number in the variable n. Then we wrote a for l

In the initialization part, we initialized variable i with value 1 to start the counting

from 1. In the condition statement we set the condition i less than or equal to n

(number entered by the user) as we want to execute the loop n times. In the incre

statement, we incremented the counter variable by 1. In the body of the for loop we

wrote a single statem

v

s = sum + (i * i) ; T

variable (which is increased by 1 in each

r

c ti for loop the cout statement

squares of number from 1 to n.

Following is the output when the numb

P en positive number for sum

T m first 5 squares is 55

Tips

Comments should be meaningful, explaining the task

is

ons

Don’t forget to affect the value of loop variable in while and do-while loops

Make sure that the loop is not an infinite loop

Don’t affect the value of loop variable in the body of for loop, the for loop does th

by itself in the for statement

Use pre and post increment/decrement operators cautiously in expressi

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 66

ectu e N . 8 L r o

Reading Material

Deitel & Deitel – C++ How to Program Chapter 2

 2.16, 2.18

 Summary

o Switch Statement

o Break Statement

o Continue Statem

uide Lines

 ent

 Charting

witch Statement

metimes, we have multiple conditions and take some action according to each

is

as

t and display the appropriate description. We have five

 write five if statements to check

we write this in our program as

o G

o Rules for structured Programming/Flow

o Sample Program

 ips o T

S

oS

condition. For example, in the payroll of a company, there are many conditions to

deduct tax from the salary of an employee. If the salary is less than Rs. 10000, there

no deduction. But if it falls in the slab Rs. 10000 - 20000, then the income tax is

deducted. If it exceeds the limit of Rs. 20000, some additional tax will be deducted.

So the appropriate deduction is made according to the category or slab of the salary.

We can also understand this from the example of grades secured by the students of a

class. Suppose we want to print description of the grade of a student. If the student h

grade ‘A’ we print ‘Excellent’ and 'Very good', 'good', 'poor' and 'fail' for grades B,

C, D, and F respectively. Now we have to see how this multi-condition situation can

be applied in a program. We have a tool for decision making i.e. 'if statement'. We can

use 'if statement' to decide what description for a grade should be displayed. So we

check the grade in if statemen

categories of grades-- A, B, C, D, and F. We have to

 grade. So all the five possibilities (probabilities) of

under-

 if (grade == ‘A’)

 cout << “Excellent” ;

 if (grade == ‘B’)

 cout << “Very Good” ;

 if (grade == ‘C’)

 cout << “Good” ;

 if (grade == ‘D’)

 cout << “Poor” ;

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 67

hese statements are correct and perform the required task. But the 'if statement' is

ne of the most expensive statements in a program. We call it

xpensive due to the fact that the processor has to go through many cycles to execute

g

 else if (grade == ‘C’)

out << “Fail” ;

n the code, there is single statement with each if statement. If there are more

r

 switch (variable/expression)

case constant1 : statementLlist1 ;

 case constant2 : statementLlist2 ;

case constantN : statementListN ;

 default : statementList ;

 if (grade == ‘F’)

 cout << “Fail” ;

T

computationally o

e

an if statement to evaluate a single decision. So to make a program more efficient, try

to use the minimum number of if statements. This will make the performance of the

program better.

So if we have different conditions in which only one will be true as seen in the

example of student’s grades, the use of if statement is very expensive. To avoid this

expensiveness, an alternate of multiple if statements can be used that is if/else

statements. We can write an if statement in the body of an if statement which is

known as nested if. We can write the previous code of if statements in the followin

nested if/else form.

 If (grade == ‘A’)

 cout << “Excellent” ;

 else if (grade == ‘B’)

 cout << “Very Good” ;

 cout << “Good” ;

 else if (grade == ‘D’)

 cout << “Poor” ;

 else if (grade == ‘F’)

 c

I

statements with an if statement, then don’t forget the use of braces and make sure that

they match (i.e. there is a corresponding closing brace for an opening brace). Prope

indentation of the blocks should also be made.

In the above example, we see that there are two approaches for a multi way decision.

In the first approach, we use as many if statements as needed. This is an expensive

approach. The second is the use of nested if statements. The second is little more

efficient than the first one. In the 'nested if statements' the nested else is not executed

if the first if condition is true and the control goes out of the if block.

The C language provides us a stand-alone construct to handle these instances. This

construct is switch structure. The switch structure is a multiple-selection construct

that is used in such cases (multi way decisions) to make the code more efficient and

easy to read and understand.

The syntax of switch statement is as follows.

 {

 :

 :

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 68

er variable (also include char) or an

expression which must evaluate an integer type (whole numbers only, the decimal

numbers 2.5, 14.3 etc are not allowed). We can’t use compound conditions (i.e. the

conditions that use logical operators && or ||) in switch statement and in case

statements. The constants also must be integer constants (which include char). We

can’t use a variable name with the case key word. The default statement is optional. If

there is no case which matches the value of the switch statement, then the statements

of default are executed.

The switch statement takes the value of the variable, if there is an expression then it

evaluates the expression and after that looks for its value among the case constants. If

the value is found among the constants listed in cases, the statements in that

statementList are executed. Otherwise, it does nothing. However if there is a default

(which is optional), the statements of default are executed.

Thus our previous grade example will be written in switch statement as below.

 switch (grade)

 {

 case ‘A’ : cout << “Excellent” ;

 case ‘B’ : cout << “Very Good” ;

 case ‘C’ : cout << “Good” ;

 case ‘D’ : cout << “Poor” ;

 case ‘F’ : cout << “Fail” ;

}

We know that C language is 'case sensitive'. In this language, ‘A’ is different from

‘a’. Every character has a numeric value which is stored by the computer.. The

numeric value of a character is known as ASCII code of the character. The ASCII

code of small letters (a, b, c etc) are different from ASCII code of capital letters (A,

B, C etc). We can use characters in switch statement as the characters are represented

as whole numbers inside the computers.

Now we will see how the use of ' the letter a' instead of 'A' can affect our program.

We want our program to be user- friendly. We don’t want to restrict the user to enter

the grade in capital letters only. So we have to handle both small and capital letters in

our program. Here comes the limitations of switch statement. We can’t say in our

statement like

case ‘A’ or ‘a’ : statements ;

We have to make two separate cases so we write

 case ‘A” :

 case ‘a’ :

 statements;

In the switch statement, the cases fall through the case which is true. All the

statements after that case will be executed right down to the end of the switch

statement. This is very important to understand it. Let's suppose that the user enters

grade ‘B’. Now the case ‘A’ is skipped. Next case ‘B’ matches and statement cout <<

“Very Good” ; is executed. After that, all the statements will be executed. So cout <<

“Good” ; cout << “Poor” ;and cout << “Fail” ; will be executed after one another.

}

In the switch statement, there should be an integ

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 69

at when a case matches, then after

aving

e other cases. For this purpose we use a key word break.

tement

he br interrupts the flow of control. We have seen in switch statement

hrough every statement down

ly the statements of true case should be executed and the

emaining should be skipped. For this purpose, we use the break statement. We write

ak statement after the statements of a case. Thus, when a true case is found and

s statements a rupts the flow of control and

 s t to do the same task for two

e for ‘A’ and ‘a’, then we don't put break statement

. We cases may be more than two) line

 for these cases. We write the

reak statemen e co uld use the break statement

of each case. The break statement is necessary in

witch cture becomes illogic. As without it all the

tateme t will er fi

e abo ing if the grade is other than these five categories (i.e. A, B,

 of grade input, we write a default

tateme t after e. T case is executed if no case

he g e can write the default statement after the

lease enter grade from A to D or F ” ;

 statement is ctures other than switch structure. We

 while, do-while and for loops, we have to violate some condition

ore its complete repetitions. As in a program of

a character, we make a variable tryNum greater than 5 to violate the while

is guessed before five tries. In these

ps, we can use the break statement to exit a loop. When a break statement is

ountered in a loop, the loop terminates immediately. The control exits the inner

ost loop if there are nested loops. The control passes to the statement after the loop.

 the guessing character example, we want that if the character is guessed in first or

ratulations, You guess is correct’

sing a break statement with an if statement. If

 is guessed, we print the message. Afterwards, the break statement is

ecuted and the loop terminates. So we can write this as follows.

m user

We don’t want this to happen. We want th

executing its statement, the control should jump out of the switch statement le

th

Break Sta

T eak statement

that when a true case is found, the flow of control goes t

ward. We want that on

r

the bre

it re executed then the break statement inter

the control jumps out of the witch statement. If we wan

cases, like in previous exampl

after the first case write both the cases (or the

by line then write the common statements to be executed

b t after thes mmon statements. We sho

necessarily after the statements

s structure, without it the switch stru

s n execute aft rst match case is found.

Th ve code does noth

C, D and F). To handle all the possibilities

s n the last cas he statement in this default

matches t rade. So in our program, w

last case as under.

 default : cout << “P

The break also used in decision stru

have seen that in

explicitly to terminate the loop bef

guessing

condition and exit the loop if the correct character

loo

enc

m

In

second attempt,. then we print the message ‘Cong

and exit the loop. We can do this by u

the character

ex

if (c == ‘z’) // c is input fro

 {

 cout << “Great, Your guess is correct” ;

 break;

}

Thus, break statement can be used to jump out of a loop very quickly.

The flow chart of the switch statement is similar to if statement and is given below.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

The flow chart of switch statement

The number of case statement can vary from

1 to any number. Thus there are same

number of process blocks as cases.switch

(variable)

case const 1

Process

case const2

break

Process

break

Now we can write the complete code for the program that prints the description of the

grade entered by the user.

he flow chart of the program is given below. T

© Copyright Virtual University of Pakistan

70

CS201 – Introduction to Programming

The flow chart of a program that displays the description of a grade

using switch statementStart

switch (grade)

Display "Excellent"

case 'A'

break

Display

 "Very Good"

case 'B'

break

Display "Good"

case 'C'

break

Display "Poor"

case 'D'

break

Display "Fail"

case 'F'

break

Display " Please

enter grade A

F"

-D or

default

break

Stop

 The code of the program is given below.

//This program gets a grade from user and displays a description accordingly

© Copyright Virtual University of Pakistan

71

CS201 – Introduction to Programming

include <iostream.h>

main ()

{

 char grade ;

 cout << “Please enter the student’s grade : ” ;

 cin >> grade ;

 switch (grade)

 {

 case ‘A’ : // grade was upper case A

 case ‘a’ : // grade was lower case a

 cout << “Excellent” ;

 72

case ‘B’ : // grade was upper case B

e ‘C’ : // grade was upper case C

case ‘D’ : // grade was upper case D

ase ‘d’ : // grade was lower case d

oor” ;

break : // necessary to exit switch

 break : // necessary to exit switch

 case ‘b’ : // grade was lower case b

 cout << “Very Good” ;

 break : // necessary to exit switch

 cas

case ‘c’ : // grade was lower case c

 cout << “Good” ;

 break : // necessary to exit switch

c

 cout << “P

 case ‘F’ : // grade was upper case F

case ‘f’ : // grade was lower case f

cout << “Fail” ;

break : // necessary to exit switch

default :

cout << “Please enter grade from A to D or F ” ;

}

}

A sample out put of the program is shown here.

Please enter the student’s grade : b

Very Good

continue Statement

 There is another statement relating to loops. This is the continue statement.

and may not be executed in other

ld be continuous. For this purpose, we use the continue

k statement, the continue statement is written in a single line.

it as

continue ;

Sometimes we have a lot of code in the body of a loop. The early part of this code is

ery iteration of loop) and the common that is to be executed every time (i.e. in ev

emaining portion is to be executed in certain cases r

cases. But the loop shou

. Like the breastatement

e write W

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 73

he co n of the loop. So the statements of the

e are not executed. The loop starts from the next iteration

n the body of a loop. One can witness very

ubtle things while using continue.

ariable of while

 it could make the condition false to exit the loop. Otherwise, the

e an in bout the logic of the

ement, it is necessary

crement) the value of the variable on which the while

e careful to

inue statement.

 is encountered, the

 condition is checked. If condition is true

 for loop, the three things i.e.

gether as we write

when a continue is

rst before the

xecuti loop c nditio op variable

 of the loop is executed by incrementing

he incremented value of the loop

ariabl In wh rement the value of

e automatically forces

s increment of value before going to check the condition.

oto Statement

ic programming constructs. These include

n structures (i.e. loops). In sequences, we use the

ecisions construct we use

e if statement, if/else statement, the multi way decision construct (i.e. the switch

atement). And in repetition structures, we use the while, do-while and for loops.

ometime ago, two computer scientists Gome and Jacopi proved that any program

 written with the help of these three constructs (i.e. sequences, decisions and

ops).

ON and C. This

on. The

 (back and forth) in a program. In

 COBOL and FORTRAN languages

understand and decode such

programs that contain unconditional branches is almost impossible. In such programs,

it is very difficult, for a programmer, to keep the track of execution as the control

jumps from one place to the other and from there to anywhere else. We call this kind

of traditional code as spagatti code. It is very difficult to trace out the way of

execution and figure out what the program is doing. And debugging and modifying

such programs is very difficult.

When structured programming was started, it was urged not to use the goto statement.

Though goto is there in C language but we will not use it in our programs. We will

T ntinue forces the immediate next iteratio

loop body after continu

when a continue statement is encountered i

s

Consider the while loop. In while loop, we change the value of the v

condition so that

loop will becom finite one. We should be very careful a

program while using continue in a loop. Before the continue stat

to change (increment/de

condition depends. Similarly it is same with the do-while loop. B

increment or decrement the conditional variable before the cont

In for loop, there is a difference. In a while loop when continue

control goes to the while statement and the

the loop is executed again else the loop exits. In a

initialization, condition and increment/decrement are enclosed to

for (counter = 0 ; counter <= 5 ; counter ++) . In the for loop

encountered, the counter (i.e. loop variable) is incremented at fi

e on of the o n. Thus, in 'for loop' the increment to the lo

is built in and after continue the next iteration

the loop variable. The condition is checked with t

v e. ile and do-while loop, it is our responsibility to inc

the loop variable to test the condition. In a for loop, the continu

thi

g

Up to now we have covered the bas

sequences, decisions and repetitio

simple statements in a sequence i.e. one after the other. In d

th

st

S

can be

lo

There is a statement in the computer languages COBOL, FORTR

statement is goto statement. The goto is an unconditional branch of executi

goto statement is used to jump the control anywhere

legacy programming, the programs written in

have many unconditional branches of execution. To

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 74

dopt the structured approach. All of our programs will consist of sequences,

decisions and loops.

uide Lines

inimize the use of break statement in loops. The switch

atement is an exception in this regard where it is necessary to use the break

ay be logica error. ng

loops, we should try to execute the loops with the condition test and

avoid the break statement. The same applies to the continue statem e

out

xecuting some statements after it. We can use the if statement for this purpose

instead of continue. So never use the goto statement and minimize the usage of break

tements in loops. This will make the code easy to understand for you

and for others. Moreover the additions and modifications to such code will be easy, as

the path of execution will be easy to trace.

Make a ogra hat divide a large program into small parts. It

will be y to er program. There should be

single entry and single exit in every break statement

in a con uct v loop having a break statement can exit through

break statemen hen the loop condition violates. As there are two

exit points, this should be avoided. The single entry- single exit approach makes the

executi flow

ere is exam rom daily life, which shows that single entry and single exit

easy. You would have often seen at a bus stop, especially in rush hours,

us reaches the stop, everyone tries to jump into the bus without caring

you see

n

line

int.

Our all other processes and loops are along or within these two points. Thus our flow

h rts resemble with the code.

a

G

In general, we should m

st

statement after every case. Otherwise, there m a l While writi

 should try to

ent. The continu

statement executes some statements of the loop and then exits the loop with

e

and continue sta

 pr m modular. This means t

 eas manage these small parts rather than a larg

module or construct. The use of

str iolates this rule as a

t or can terminate w

on simple.

 an ple fH

makes things

hat when a bt

for others. The passengers inside the bus try to get down from the vehicle. So

there a wrestling like situation at the door of the bus. Separate doors for entering or

exiting the bus can be the solution. In this way, the passengers will easily enter or exit

the bus.

We have applied this single entry and single exit rule in drawing our flow charts. I

the flow charts, we draw a vertical line from top to down. The point where the

starts is our entry point and downward at the same line at the end is our exit po

c a

Rules for Structured Programming/Flow Charting

There are few simple rules for drawing structured flow charts of programs. One

should be familiar with these.

Rule No:1-Start with the simple flow chart. This means that draw a start symbol,

draw a rectangle and write in it whatsoever you want to do and then draw a stop

symbol. This is the simplest flow chart.

Rule No:2- Any rectangle (a rectangle represents a process which could be input,

output or any other process) can be replaced by two rectangles.

This concept is the same as taking a complex problem and splitting it up into two

simpler problems. So we have ‘split it up’ method to move towards a modular

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 75

y

 if construct or switch construct in the place of a rectangle.

ere we come to know the advantage of single entry and single exit concept. This

n

 code that

 salary is equal to or more than 20,000 then deduct 7 % of the salary for fund

 input from user and after appropriate deduction show the net payable

mount.

ment. So we divide the salary

y 10000 to convert it into a single case constant. As we know that in integer division

swer is greater than 1, it

eans the salary is equal to or more than 20000.

rogram.

 This program gets salary input from user and calculates and displays the net payable

mou e conditions

 include <iostream.h>

yable ;

cout << “Please enter the salary : “ ;

// here begins the switch statement

approach. So start with a block (rectangle) and then any rectangle can be replaced b

two rectangles (blocks).

Rule No:3- Any rectangle can be replaced with a structured flow charting construct.

These construct include decisions, loops or multi- way decision. This means that we

can put a structure of an

H

single entry and single exit block can be replaced with a rectangle.

Rule No: 4- This rule states that rule number 2 and 3 can be repeated as many times

as you want.

By using these rules we are splitting a problem into simpler units so that each part can

be handled either by sequences (one rectangle, second rectangle and so on) or by a

decision (if, if/else, switch or by a loop). Through this approach, a large problem ca

be solved easily.

The flow charts drawn with these rules and indented to the left side will have one to

one correspondence with our code. Thus it becomes very easy to identify the

is written for a specific part of the flow chart. In this way the code can easily be

debugged.

Sample Program

Let’s consider a problem. In a company, there are deductions from the salary of the

employees for a fund. The deductions rules are as follows:

If salary is less than 10,000 then no deduction

If salary is more than 10,000 and less than 20,000 then deduct Rs. 1,000 as fund

If

Take salary

a

Solution

As we see that there is multi way decision in this problem, so we use switch

statement. The salary is the switch variable upon which the different decisions

depend. We can use only a single constant in case state

b

we get the whole number as the answer. Thus if answer is 0 the salary is less than

10000, if answer is 1 then it is in range 10000 to 19999 (as any amount between

10000 – 19999 divided by 10000 will result 1). If the an

m

Following is the complete code of our p

//

// a nt after deduction according th

#

main ()

{

 int salary ;

float deduction, netPa

 cin >> salary ;

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 76

 a single value

{

n 10,000

 deduction = 0; // as deduction is zero in this case

 cout << “Net Payable (salary – deduction) = “ ;

out << salary << “ - ” << deduction << “ = “ << netPayable;

eduction = 1000 ;

able = salary – deduction ;

 switch (salary / 10000) // this will produce

 case 0 : // this means salary is less tha

netPayable = salary ;

c

 break; //necessary to exit switch

case 1 : // this means salary is in range 10,000 – 19,999

 d

 netPay

 cout << “Net Payable (salary – deduction) = “ ;

cout << salary << “ - ” << deduction << “ = “ << netPayable;

 break; //necessary to exit switch

 default : // this means the salary is 20,000 or more

 deduction = salary * 7 /100 ;

 netPayable = salary – deduction ;

 cout << “Net Payable (salary – deduction) = “ ;

cout << salary << “ - ” << deduction << “ = “ << netPayable;

}

 }

Here is the out put of the program.

Please enter the salary : 15000

et Payable (salary – deduction) = 15000 N – 1000 = 14000

ips T

Try to use the switch statement instead of multiple if statements

Missing a break statement in a switch statement may cause a logical error

Always provide a default case in switch statements

Never use goto statement in your programs

inimize the use of break and M continue statements

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

Lecture No. 9

Reading Material

Deitel & Deitel – C++ How to Program chapter 2

3.1, 3.2, 3.3, 3.4,

3.5, 3.6

ction

efinition of a Function

is almost complete. The basic constructs of programming are

quence, decision making and loops. You have learnt all these techniques. Now we

an write almost all kinds of programs. There are more techniques to further refine the

rograms. One of the major programming constructs is Functions. C is a function-

functions.

sider the making of a

 Summary

o Introdu

o Functions

ction o Structure of a Fun

nd Do Declaration a

 o Sample Program 1

Sample Program 2 o

o Sample Program 3

ry o Summa

 o Tips

ntrodu tion I c

ow our toolkit N

se

c

p

oriented language. Every program is written in different

 In our daily life, we divide our tasks into sub tasks. Con

laboratory stool.

It has a seat and three legs. Now we need to make a seat and three legs out of wood.

The major task is to make a stool. Sub tasks are, make a seat and then fabricate three

legs. The legs should be identical. We can fashion one leg and then re-using this

prototype, we have to build two more identical legs. The last task is to assemble all

these to make a stool. We have a slightly difficult task and have broken down it into

simpler pieces. This is the concept of functional design or top-down designing. In to

design, we look at the problem from top i.e. identification of the problem. What we

p

© Copyright Virtual University of Pakistan

77

CS201 – Introduction to Programming

 78

ng as we get easily manageable

sk. Let's consider an example like home construction. From the top level, we have to

ome. Then we say that we need design of the home according to which

e building will be constructed. We need to construct rooms. How can we construct a

e we come down to the level where a task is easily manageable

nd doable, we stop doing further refinement. When we break up a task into smaller

s top at a reasonable level. Top-down designing mechanism is based on

e principle of 'divide and conquer' i.e. we divide a big task into smaller tasks and

em.

k at a simple example to understand the process of dividing big task

to simple ones. Suppose we want to know how many students are currently logged

in the LMS (Learning Management System) of VU. This task will be handed over to

dministrator to find out the number of students currently logged in LMS

work administrator will check the network activity or get this

e list of students currently logged in. The

mber hat list and the result is given back to us. What

s hap There was a simple request to find the number of

udents currently logged in LMS. This request is delegated to the network

ministrator. The network administrator performs this task and we get the result. In

s we are not interested in the names or list

udents. This technique is known as parallel

rocessing. In terms of programming, network administrator has performed a function

ocess, the network

n from us. So the information

he function. Some information is given to the network

quest to calculate the number of students currently logged in

 is provided back to us (i.e. the number of students).

 subtasks. They receive some information, do some process and

rough a calling program. Calling program

is doing and how it is performing its task.

g methodology. The calling program calls a function

 function. When we write a

unding braces just like with

tegories of functions:

rn a value

the square of an integer such that function

uare of the integer. Similarly we may have a function which displays

have to solve? Then refine it and divide it into smaller pieces. We refine it again and

divide it into smaller pieces. We keep on doing it as lo

ta

construct a h

th

room? We need bricks, cement, doors, windows etc. Procurement of all of these

things is tasks. Onc

a

ub tasks, we s

th

then accomplish th

Let's have a loo

in

the network a

of the university. The net

ormation from the database and get thinf

un of students is counted from t

pened in this whole process?ha

st

da

the mean time, we can do some other task a

f students. We only want the number of sto

p

i.e. calculation of the number of students. During this pr

dministrator also gets the list of students which is hiddea

hiding is also a part of t

.e. the readministrator (i

the LMS) while some information

unctions F

e likeThe functions ar

provide a result. Functions are invoked th

unction does not need to know what the f

callinThere is a specific function-

by giving it some information and receives the result.

e hav a maiW e n () in every C program. ‘main ()’ is also a

, and surrofunction, it must start with a name, parentheses

ain () Functm . ions are very important in code reusing.

here are two caT

alue 1. Functions that return a v

s that do not retu2. Function

e a function that calculates Suppose, we hav

will return the sq

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 79

ome information on the screen so this function is not supposed to return any value to

tructure of a Function

on syntax of a function is as follows:

ion-n me(argument-list)

he body

f the f

e of a

int

 return some value from the

unction. It does two things, returns some value to the calling program and also exits

only return a value (a variable or an expression which

om a function. The data type of the returning variable

id. ‘void’ is a keyword of ‘C’ language. The default

ot mention any return_value_type

tions and statements. The task of

e func

d returns it.

s

the calling program.

S

The declarati

funct areturn-value-type

 {

nd statements declarations a

 }

The first line is the function header and the declaration and statement part is t

unction. o

return-value_type:

Function may or may not return a value. If a function returns a value, that must b

valid data type. This can only be one data type that means if a function returns an

data type than it can only return int and not char or float. Return type may be int,

float, char or any other valid data type. How can we return some value from a

function? The keyword is return which is used to

f

from the function. We can

valuates to some value) fre

should match return_value_type data type.

here may be some functions which do not return any value. For such functions, the T

return_value_type is vo

return_value_type is of int data type i.e. if we do n

ith a function, it will return an int value. w

Function-name:

The same rules of variable naming conventions are applied to functions name.

Function name should be self-explanatory like square, squareRoot, circleArea etc.

argument-list:

Argument list contains the information which we pass to the function. Some function

does not need any information to perform the task. In this case, the argument list for

such functions will be empty. Arguments to a function are of valid data type like int

number, double radius etc.

eclarations and Statements: D

This is the body of the function. It consists of declara

tion is performed in the body of the function. th

Example:

//This function calculates the square of a number an

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 80

er * number;

}

 int square(int number)

 {

 int result = 0;

 result = numb

 return result;

Calling Mechanism:

How a program can use a function? It is very simple. The calling program just needs

its arguments (without data types). It is

 that while calling a function, we don’t write the return value data

pe or the data types of arguments.

xample:

This program calculates the square of a given number

include <iostream.h>

main()

 result = 0;

 number = 0;

// Getting the input from the user

cout << “ Please enter the number to calculate the square ”;

>> number;

nt number)

lt = square(number);

to write the function name and provide

important to note

ty

E

//

#

 {

 int number, result;

 cin

 // Calling the function square(i

 resu

 cout << “ The square of “ << number << “ is “ << result;

 }

Declaration and Definition of a Function

ed

 it explicitly. If we have written all of our functions in a

ifferent file and we call these functions from main() which is written in a different

is case, the main() will not be compiled unless it knows about the functions

Declaration and definition are two different things. Declaration is the prototype of the

function, that includes the return type, name and argument list to the function and

definition is the actual function code. Declaration of a function is also known as

signature of a function.

As we declare a variable like int x; before using it in our program, similarly we ne

to declare function before using it. Declaration and definition of a function can be

combined together if we write the complete function before the calling functions.

Then we don’t need to declare

d

file. In th

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 81

rite the declaration of functions before the main()

tion is a one line statement in which we write the return

tion and the data type of arguments. Name of the arguments is

 of the function contains the complete code of the

nction. It starts with the declaration statement with the addition that in definition,

e the names of the arguments. After this, we write an opening brace and

 the function square is defined in a separate file or after the calling function, then we

eed to declare it:

Declaration:

declaration. Therefore we w

nction. Function declarafu

type, name of the func

not necessary. The definition

fu

we do writ

then all the statements, followed by a closing brace.

Example:

If

n

int square (int);

Definition:

int square (int number)

{

 return (number * number) ;

}

Here is the complete code of the program:

square of a given number

eam.h>

ns.

ber, result;

 cout << “ Please enter the number to calculate the square ”;

 cout << “ The square of “ << number << “ is “ << result;

}

//This program calculates the

#include <iostr

 // Function declaratio

 int square(int);

 main()

 {

 int num

 result = 0;

 number = 0;

 cin >> number;

 // Calling the function square(int number)

 result = square(number);

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 82

// function to calculate the square of a number

 return (number * number) ;

}

 int square (int number)

 {

A function in a calling program can take place as a stand-alone statement, on right-

his can be a part of an assignment expression.

result = square (number + 10);

cout << “ The square of “ << number << “ is “ << square (number);

in the function using the

eturn keyword) is assigned to the variable result. In this case, the square(5) will

signed to variable result. There may be functions which do

ot return any value. These functions can't be used in assignment statements. These

roblem statement:

some number (x
n
).

e want to get the power of some number. There is no operator for power function in

nction to calculate the power of x to n (i.e. x
n
). How can we

alculate the power of some number? To get the power of some number x to n, we

x up to n times. Now what will be the input (arguments) to the

ber and power, as number can be a real number so we have to declare

umber as a double date type and the power is an integer value so we will declare the

eger. The power is an integer value so we will declare power as an

sult will also be a real number so the return value type will be of double

e should be descriptive, we can name this function as

e declaration of the function is:

w (double x, int power) ;

hand side of a statement. T

Considering the above example, here are some more ways of function calling

mechanism.

result = 10 + square (5);

 or

 or

 result = square (number) + square (number + 1) + square (3 * number);

 or

In the above statements, we see that functions are used in assignment statements. In a

statement result = square(5); The square(5) function is called and the value which is

returned from that function (i.e. the value returned with

r

return 25, which will be as

n

functions are written as stand-alone statements.

Sample Program 1

C is called function-oriented language. It is a very small language but there are lots of

functions in it. Function can be on a single line, a page or as complex as we want.

P

Calculate the integer power of

Solution:

W

C. We need to write a fu

c

need to multiply x with

function? A num

n

power as an int

integer. The re

data type. The function nam

raiseToPow. Th

 double raiseToPo

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 83

 power of x up to power times, we need a loop which will be executed

ower t unction is:

 funct n to c

 (double x , int power)

t i ;

 result = 1.0 ;

 i <= power ; i ++)

 {

as result = result * x

}

sult) ;

To calculate the

p imes. The definition of f

// io alculate the power of some number

double raiseToPow

 {

 double result ;

 in

 for (i = 1 ;

 result *= x ; // same

 return (re

 }

Her the is e program which is calling the above function.

 This program is calling a function raiseToPow.

eam.h>

 << “ Please enter the number “ ;

//

#include <iostr

//Function declaration

double raiseToPow (double , int);

main ()

{

 double x ;

 int i ;

cout

 cin >> x ;

 cout << “ Please enter the integer power that you want this number raised to “ ;

 cin >> i ;

 cout << x << “ raise to power “ << i << “ is equal to “ << raiseToPow (x , i) ;

}

Now we have to consider what will happen to the values of arguments that are pa

x i raiseToPow

ssed

 the function? As in the above program, we are passing and to the

ctually nothing is happening to the values of x and i. These values are

. Such function calls are known as 'call by value'.

to

function. A

unchanged. A copy of values x and i are passed to the function and the values in the

calling program are unchanged

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 84

here is another way to call a function in which the function can change the values of

ll is

nown as call by reference.

 of a ring.

We know that a ring consists of a small circle and a big circle. To calculate the area of

a ring, we have to subtract the area of small circle from the area of big circle. Area of

any circle is calculated as Pi * r
2
. We write a function to calculate the area of a circle

and use this function to calculate the area of small circle and big circle.

Following is the code of the function circleArea:

// Definition of the circleArea function.

double circleArea (double radius)

{

 // the value of Pi = 3.1415926

 return (3.1415926 * radius * radius) ;

}

T

variables that are passed as arguments, of calling program. Such function ca

k

Sample Program 2

Problem statement:

Calculate the area

Solution:

Here is the complete code of the calling program.

// This program calculates the area of a ring

#include <iostream.h>

// function declaration.

double circleArea (double);

void main ()

{

 double rad1 ;

 double rad2 ;

 double ringArea ;

 cout << “ Please enter the outer radius value: ” ;

 cin >> rad1 ;

 cout << “ Please enter the radius of the inner circle: “ ;

 cin >> rad2 ;

 ringArea = circleArea (rad1) – circleArea (rad2) ;

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 85

cout<< “ Area of the ring having inner raduis “ << rad2 << “ and the outer radius “ <<

 rad1 << “ is “ << ringArea ;

ouble circleArea (double radius)

i = 3.1415926

26 * radius * radius) ;

}

d

{

 // the value of P

 return (3.14159

}

Sample Program 3
 other kinds of functions which are used to test some condition. Such

n true or false. These functions are very important and used a lot in

og lue zero (0) is considered as false and

an zero is considered as true. So the return type of such functions is

. hen we want the function to return true and return 0 when

 nction to return 0. Here is a sample program to elaborate this.

Prob

rite a function which tests that a given number is even or not? It should return true

 the number is even, otherwise return false.

e already know the method of deciding whether a number is even or not. The name

int isEven (int) ;

e can also use a function in the conditional statements like:

ll

include <iostream.h>

void main ()

There are some

functions retur

pr ramming. In C condition statements, the va

any value other th

int We usually return 1 w

we want the fu

lem statement:

W

if

Solution:

W

of the function is isEven. Its return type will be int. It will take an int as an argument.

So the declaration of the function should be as below;

W

 if (isEven (number))

If the number is even, the function will return none zero value (i.e. usually 1) and the

if statement will be evaluated as true. However, if the number is odd, the function wi

return a zero value and the if statement is evaluated as false.

 Here is a complete program.

// This program is calling a function to test the given number is even or not

#

// function declaration.

int isEven(int);

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

{

 int number;

 86

 {

 {

 }

 cout << " Please enter the number: " ;

 cin >> number ;

 if (isEven (number))

 {

 cout << " The number entered is even " << endl;

 }

 else

 {

 cout << " The number entered is odd " << endl;

 }

}

int isEven (int number)

{

 if (2 * (number / 2) == number)

 return 1;

 }

 else

 return 0;

}

Summary

Functions are very good tools for code reuse. We have seen in the above example th

the area of two circles has been calculated without rewriting the code. This mea

at

ns that

 we are going to use a function in our program and the definition of the function is

fter the calling program. The calling program needs to know how to call the function,

re and what it will return. So its declaration must occur before

eclare a function before using, the compiler will give an error. If

of

claration is used as a

the code has been reused. We can reuse the circleArea function to find the area of any

circle.

A function performs a specific task. Functions also provide encapsulation. The calling

program does not know how the function is performing its task. So we can build up

modular form from small building blocks and build up more and more complex

programs.

If

a

what the arguments a

sage. If we do not du

we define a function before the calling program, then we do not need a separate

declaration. The function declaration is also known as function prototype or function

signature. Whenever, we need to build something, first of all we build a prototype

that thing and then later on we build it. Similarly the function de

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 87

top- down methodology. We break the program into

maller modules and just declare the functions and later on we can define these.

power

prototype. We are following the

s

Exercise:

1. Modify the raise to function so that it can handle negative power of x,

ero an positi w of x.

 ring

z d ve po er

2. Modify the area of function put in error checking mechanism.

o smaller pieces,

which is a top-down structured approach.

 be a small module, self-contained. It should solve a well

 be self- explanatory.

he code.

Tips
We used functions for breaking complex problems int

Each function should

defined problem.

Variable names and function names should

omment tAlways c

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

Lecture No. 10

Reading Material

Deitel & Deit l – C++e How to Program Chapter 3

, 3.17

 Header Files

 Scope of Identifiers

and other is Definition. Declaration can also be called as 'Prototype'.

the

file

t file with '.h' extension ('.h'

 a rule of good programming practice).

3.7, 3.11, 3.12, 3.14

 Contents

 Functions

- Call by Value

- Call by Reference

Header Files

You have already been using a header file from day-zero. You know that we used to

write at the top before the start of the main() function <iostream.h>, with ‘.h’ as an

extension, you might have got the idea that it is a header file.

Now we will see why a Header file is used.

In the previous lecture, we discussed a little bit about Function Prototypes. One thing

is Declaration

Normally, if we have lot of functions and want to use them in some other function or

program, then we are left with only one way i.e. to list the prototypes of all of them

before the body of the function or program and then use them inside the function or

program. But for frequent functions inside a program, this technique increases

complexity (of a program). This problem can be overcome by putting all these

function prototypes in one file and writing a simple line of code for including the

in the program. This code line will indicate that this is the file, suppose 'area.h'

containing all the prototypes of the used functions and see the prototypes from that

file. This is the basic concept of a header file.

So what we can do is:

Make our own header file which is usually a simple tex

extension is not mandatory but it is

© Copyright Virtual University of Pakistan

88

CS201 – Introduction to Programming

 89

ction rototy es inside that file. (Recall that prototype is just a simple line of

ode co ing return value, function name and an argument list of data types with

emi-colon at the end.)

ncluded in your own program by using the ‘#include’ directive and

plicitly writing that list of function prototypes.

unction prototypes are not the only thing that can be put into a header file. If you

 a

 and given a name like 'pi':

double pi = 3.1415926;

his

eaningful name ‘pi’ can be used in all calculations instead of writing the horrendous

here are some preprocessor directives which we are going to cover later. At the

he constants using this

reprocessor directive as:

15926

 a funny thing as it is not creating a variable. Rather it associates a

ame with a value which can be used inside the program exactly like a variable. (Why

e you can’t use it on the left hand side of any assignment.).

short hand, what actually happens. You defined the value of the ‘pi’

en started using ‘pi’ symbol in your program. Now we

 the program after the writing

ess. Wherever it finds the symbol ‘pi’, replaces the symbol with the value

tion process the symbols or constants are replaced with actual values

f them. But for us as human beings, it is quite readable to see the symbol ‘pi’.

 meaningful names for variables and see a line ‘2 * pi * radius’,

us that circumference of a circle is being calculated. Note that in the

bove s teme id not define any

ed ‘pi’ and ‘radius’ but defining 2 would be over killing.

cope of Identifiers

e that the user creates in his/her program. These names

of an identifier means its

 of Variables in our discussion.

Write fun p p

c ntain

s

That file can be i

that would be similar to ex

F

remember that we wrote a program for calculating Area of a Circle in our previous

lectures. We used the value of 'pi' inside that and we have written the value of 'pi' as

3.1415926. This kind of facts are considered as Universal Constants or Constants

within our domain of operations . It would be nice, if we can assign meaningful

names to them. There are two benefits of doing this. See, We could have declared

variable of type double inside the program

Then everywhere in the subsequent calculations we can use 'pi'.

But it is better to pre-define the value of the constant in a header file (one set for all)

and simply including that header file, the constant ‘pi’, is defined. Now, t

m

number 3.1415926 again and again.

T

moment, we will discuss about ‘#define’ only. We define t

p

#define pi 3.14

The above line does

n

it is not a variable?, becaus

Basically, it is a

with ‘#define’ directive and th

will see what a compiler does when it is handed over

proc

3.1415926 and finally compiles the program.

Thus, in compila

o

Additionally, if we use

it becomes obvio

a ta nt, ‘2 * pi * radius’; 2 is used as a number as we d

constant for it. We have defin

S

An 'Identifier' means any nam

can be of variables, functions and labels. Here the scope

visibility. We will focus Scope

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

Suppose we write the function:

 void func1()

 {

 90

e

 int j = i+2; //Perfectly alright

}

. . .

i’

 A

 can have their own blocks of code respectively.

t inner; //Code block level scope

nner = outer; //No problem

inner ++; //Compilation error

 int i;

 . . . //Some other lines of cod

 . . .

Now this variable ‘i’ can be used in any statement inside the function func1(). But

consider this variable being used in a different function like:

 void func2()

 {

 int k = i + 4; //Compilation error

 }

The variable ‘i’ belongs to func1() and is not visible outside that. In other words, ‘

is local to func1().

To understand the concept of scope further, we have to see what are Code Blocks?

code block begins with ‘{‘ and ends with ‘}’.Therefore, the body of a function is

essentially a code block. Nonetheless, inside a function there can be another block of

ode like 'for loop' and 'while loop'c

Therefore, there can be a hierarchy of code blocks.

A variable declared inside a code block becomes the local variable for that for that

block. It is not visible outside that block. See the code below:

void func()

 {

 int outer; //Function level scope

 . . .

 {

 in

 i

. . .

 }

}

Please note that variable ‘outer’ is declared at function level

t block level scope.

scope and variable

e ‘in le outside it . In

her words, it is at inner code block scope level. If we want to access that variable

pilation error may occur.

‘inner’ is declared a

ner’ variable declared inside the inner code block is not visibTh

to

outside its code block, a com

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 91

hat will happen if we use the same names of variables at both function level scope

nd inn level scope? Consider the following code:

ne

. void increment()

. {

. int num; //Function level scope

um; //Bad practice, not recommended

. num ++; //inner num is incremented

1. }

W

a er block

Li

1

2

3

4. . . .

5. {

6. int n

7. . . .

8

9. . . .

10. }

1

Note that there is no compilation error if the variable of the same name ‘num’ is

declared at line 6 inside the inner code block (at block level scope). Although , there

 no error in naming the variables this way, yet this is not recommended as this can

hich variable is being used at line 8? The answer is the ‘num’ variable declared for

k (at block level scope). Why is so? It is just due to the fact that the

uter variable ‘num’ (at function level scope) is hidden in the inner code block as

ere is a local variable of the same name. So the local variable ‘num’ inside the inner

ode block over-rides the variable ‘num’ in the outer code block.

emember, the re-use of a variable is perfectly alright as we saw in the code snippet

’ variable inside the inner code block. But re-declaring a

ariable of the same name like we did for variable ‘num’ in the inner code block, is a

 a variable only once and then use it inside all

ilar task when we wrote a function prototype

 of all the functions. The same thing applies to declaration of

ariabl . You

essible

ns of that file. Notice that we have just used a new word ‘file’.

 file or a source code file with extension ‘.c’ or ‘.cpp’ can have many functions

one main() function maximum and rest of the functions as

. If you want a variable to be accessible from within all functions,

e body of any function like the following code

red such a variable ‘size’ below.

include <iostream.h>

is

create confusion and decrease readability. It is better to use different names for these

variables.

W

inner code bloc

o

th

c

R

above while using ‘outer

v

bad practice.

Now, is there a way that we declare

functions. We have already done a sim

outside the body

v es declare variables outside of a function body (so that variable

declarations are not part of any function) and they become visible and acc

inside all functio

A

inside. A file will contain

many as required

you declare the variable outside th

snippet has decla

#

. . .

// Declare your global variables here

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 92

(…)

 . . .

or

ut it

oes have some pitfalls. You may inadvertently change the value of the variable ‘size’

cause your program to behave

 essence, we should take care of three levels of scopes associated with identifiers:

//Declare your global variables here

out << “\n” << “Back in main(), the value of i is: “ << i;

i;

 i = 20;

int size;

 . . .

 int main

 {

 }

Now, this ‘size’ is visible in all functions including main(). We call this as 'file scope

variable' or a 'global variable'. There are certain benefits of using global variables. F

example, you want to access the variable ‘size’ from anywhere in your program b

d

considering it a local variable of the function and

differently or affect your program logic.

Hence, you should try to minimize the use of global variables and try to use the local

variables as far as possible. This philosophy leads us to the concept of Encapsulation

and Data Hiding that encourages the declaration and use of data locally.

In

global scope, function level scope and block level scope.

Let's take a look of very simple example of global scope:

 #include <iostream.h>

 int i;

 {

 i = 10;

cout << “\n” << “In main(), the value of i is: “ << i;

f();

c

 }

 void f()

 {

 cout << “\n” << ”In f(), the value of i is: “ <<

 }

Note the keyword ‘void’ here, which is used to indicate that this function does not

n main(), the

return anything.

The output of the program is:

I value of i is: 10

In f(), the value of i is: 10

© Copyright Virtual University of Pakistan

main()

CS201 – Introduction to Programming

 93

ack in main(

riable, ‘i’ is accessible to all functions. Function f() has changed its

alue by assigning a new value i.e. 20.

) has hange

ur program’s logic will be affected.

ing

eans that when we call a function and pass some

u have given the copy of the original letter i.e. the call

y value part.

ake corrections in it, then that

in the original letter itself instead of its

unction f() accepts an integer, doubles it and returns it back to the

oid f(int); //Prototype of the function

cout << “\n” << ” Back in main(), the value of i is: “ << i;

}

B), the value of i is: 20

Being a global va

v

If the programmer of function f(c d the value of ‘i’ accidentally taking it a

local variable, yo

Function Call

We have already discussed that the default function calling mechanism of C is a 'Call

by Value'. What does that mean? It m

arguments (variables) to it, we are passing a copy of the arguments (variables) instead

of original variables. The copy reaches to the function that uses it in whatever way it

wants and returns it back to the calling function. The passed copy of the variable is

used and original variable is not touched. This can be understood by the following

example.

Suppose you have a letter that has some mistakes in it. For rectification, you depute

somebody to make a copy of that letter, leave the original with you and make

corrections in that copy. You will get the corrected copy of the letter and have the

unchanged original one too. Yo

b

But if you give the original letter to that person to m

person will come back to you with the changes

copy. This is call by reference.

The default of C is 'Call by Value'. It is better to use it as it saves us from unwanted

side effects. Relatively, 'Call by Reference' is a bit complex but it may be required

sometimes when we want the actual variable to be changed by the function being

called.

Let's consider another example to comprehend 'Call by Value' and how it works.

Suppose we write a main() function and another small function f(int) to call it from

main(). This f

main() function. Our program would look like this:

#include <iostream.h>

v

{

 int i;

 i = 10;

 cout << “\n” << ” In main(), the value of i is: “ << i;

 f(i);

© Copyright Virtual University of Pakistan

main()

CS201 – Introduction to Programming

 94

cout << “\n” << “ In f(), the value of i is: “ << i;

void f (int i)

{

 i *= 2;

}

The output of this program is as under:

In main(), the value of i is: 10

In f(), the value of i is: 20

Back in main(), the value of i is: 10

alue of the variable ‘i’ inside function main() did not

 value.

 some values we want to pass on to the function for further processing, it

ake a copy of those values , put it somewhere else and ask the

 processing. The original one with us will be

ecure.

y value, which is bit more relevant. Suppose we

ant to write a function that does the square of a number. In this case, the number can

cision number as seen below:

ouble);

oid main()

 num = 123.456;

{

C' does not have built-in mathematical operators to perform square, square root, log

and trigonometric functions. The C language compiler comes along a complete library

As the output shows the v

change, it proves the point that the call was made by

If there are

will be better to m

function to take that copy to use for its

s

Let's take another example of call b

w

be a double pre

#include <iostream.h>

double square (d

v

 {

 double num;

 cout << “\n” << “ The square of “ << num << “ is “ << square(num);

 cout << “\n” << “ The current value of num is “ << num;

 }

double square (double x)

 return x*x;

 }

 '

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 95

e <math.h>

mber, these functions are not built-in ones but library is supplied with the C-

ompiler. It may be of interest to you that all the functions inside ‘<math.h>’ are

ions,

on and a result is returned back, based on the calculation on that copy.

able. Let's consider the square(double) function again, this time we

lt, on the contrary to the ‘Call by Value’, it affected

the calling functions original variable. So these kinds of functions are ‘Call by

Reference’ functions.

Let us see, what actually happens inside Call by Reference?

As apparent from the name ‘By Reference’, we are not passing the value itself but

some form of reference or address. To understand this, you can think in terms of

variables which are names of memory locations. We always access a variable by its

name (which in fact is accessing a memory location), a variable name acts as an

address of the memory location of the variable.

If we want the called function to change the value of a variable of the calling function,

we must pass the address of that variable to the called function. Thus, by passing the

address of the variable to the called function, we convey to the function that the

number you should change is lying inside this passed memory location, square it and

put the result again inside that memory location. When the calling function gets the

control back after calling the called function, it gets the changed value back in the

same memory location.

In summary, while using the call by reference method, we can’t pass the value. We

have to pass the memory address of the value. This introduces a new mechanism

which is achieved by using ‘&’ (ampersand) operator in C language. This ‘&’

operator is used to get the address of a variable. Let's look at a function, which

actually is a modification of our previous square() function.

 #include <iostream.h>

 {

 double x;

 x = 123.456;

 cout << “\n” << “ In main(), before calling square(), x = “ << x;

 square(&x); //Passing address of the variable x

for that. All the prototypes of those functions are inside ‘<math.h>’. In order to use

any of the functions declared inside ‘<math.h>’, the following line will be added.

 #includ

Reme

c

called by value. Whatever variable you will pass in as an argument to these funct

nothing will happen to the original value of the variable. Rather a copy is passed to

the functi

Now, we will see why Call by Reference is used.

We would like to use 'call by reference' while using a function to change the value of

the original vari

want the original variable ‘x’ to be squared. For this purpose, we passed a variable to

the square() function and as a resu

© Copyright Virtual University of Pakistan

void square(double *);

main()

CS201 – Introduction to Programming

 96

 cout << “\n” << “ In main(), after calling square(), x = “ << x;

void square(double* x) //read as: x is a pointer of type double

{

 *x = *x * *x; //Notice that there is no space in *x

}

ver the x points to and &x means address of the variable x. We

we have

ld a box number to the function square(double*) and asked it to take the value

ultiply it with itself and put the result back in the same box. This is

m of ‘Call by Reference’.

Notice statement of square(double*) as we are putting the

changed value (that could be returned) inside the same memory location that was

passed the c

The output of the program will be as under:

In main(), before calling square(), x = 123.456

In main(), after calling square(), x = 15241.4

By and large, we try to avoid a call by reference. Why? Mainly due to the side-effects,

its use may cause. As mentioned above, it will be risky to tell the address of some

variables to the called function. Also, see the code above for some special

arrangements for call by reference in C language. Only when extremely needed, like

the size of the data to be passed as value is huge or original variable is required to be

changed, you should go for call by reference, otherwise stick to the call by value

convention.

Now in terms of call by reference, we see that there are some places in ‘C’ where the

call by reference function happens automatically. We will discuss this later in detail.

For the moment, as a hint, consider array passing in ‘C’.

Recursive Function

This is the special type of function which can call itself. What kind of function it

would be? There are many problems and specific areas where you can see the

repetitive behavior (pattern) or you can find a thing, which can be modeled in such a

way that it repeats itself.

 }

ere *x means whateH

will discuss Pointers in detail later.

We are calling function square(double*) with the statement square

ctually passing the address of the variable x , not its value. In other words,

(&x) that is

a

to

inside that box, m

the mechanis

that there is no return

by alling function.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 97

Let us take simple example of x
10

, how will we calculate it? There are many ways of

m a simple perspective, we can say that by definition x
10

 = x * x
9.

 So

o compute it, we can always write a program to take the power of some number.

teger ‘n’ is defined as:

(n-1)! = (n-1) * (n-2)!

n)

 return 1;

else

 n * fact(n-1);

}

e iterative functions and constructs we have

udied until now. So the question is: do we need to use recursive functions? Yes, it

e of the function but there is a huge price to pay for this.

s use may lead to the problems of having memory overhead. There may also be

stacking overhead as lots of function calls are made. A lot of functions can be written

without recursion (iteratively) and more efficiently.

So as a programmer, you have an option to go for elegant code or efficient code,

sometimes there is a trade-off. As a general rule, when you have to make a choice out

of elegance and efficiency, where the price or resources is not an issue, go for

elegance but if the price is high enough then go for efficiency.

doing it. But fro

what is x
9
? It is x

9
= x * x

8
 and so on.

We can see the pattern in it:

x
n
 = x * x

n-1

T

How to do it? The power function itself is making recursive call to itself. As a

recursive function writer, you should know where to stop the recursive call (base

case). Like in this case, you can stop when the power of x i.e. n is 1 or 0.

Similarly, you can see lot of similar problems like Factorials. A factorial of a positive

in

 n! = (n) * (n-1) * (n-2) * ….. * 2 * 1

Note that

n! = (n) * (n-1)!

and

This is a clearly a recursive behavior. While writing a factorial function, we can stop

recursive calling when n is 2 or 1.

long fact(long

 {

 if (n <= 1)

 return

Note that there are two parts (branches) of the function: one is the base case (which

indicates when the function will terminate) and other is recursively calling part.

All the problems can be solved using th

st

adds little elegance to the cod

It

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

98

‘C’ language facilitates us for recursive functions like lot of other languages but not

all computer languages support recursive functions. Also, all the problems can not be

solved by recursion but only those, which can be separated out for base case, not

iterative ones.

Tips

Header file is a nice mechanism to put function prototypes and define constants

(global constants) in a single file. That file can be included simply with a single line

of code.

There are three levels of scopes to be taken care of, associated with identifiers: global

scope, function level scope and block level scope.

For Function calling mechanism, go for ‘Call by Value’ unless there is a need of ‘Call

by Reference’.

Apply the recursive function where there is a repetitive pattern, elegance is required

and there is no resource problem.

CS201 – Introduction to Programming

Lecture No. 11

Reading Material

Program D & l - C++ How to eitel Deite chapter 4

4.2, 4.3, 4.4

rrays

 Linear Search

Summary

 Introduction

 Arrays

 Initialization of Arrays

 Sample Program 1

 Copying A

 The Keyword ‘const’

 Tips

© Copyright Virtual University of Pakistan

99

CS201 – Introduction to Programming

Introduction

 100

writing functions, which will become a part of our every program. As

, so we will be dealing with too many

programming toolkit is almost complete but still a very important

omponent is missing. We are going to discuss this component i.e. Arrays in this

t,

en sum up all the

ges and divide this with 10 to get the average age. Suppose, we have 100 students

ch student’s age. Is there

ny other way to deal with this problem? Arrays are possible solution to the problem.

rray is a special data-type. If we have a collection of data of same type as in the case

in

ther

n C language, every array has a data type i.e. name and size. Data type can be any

ing convention apply to array names. The

ze of the array tells how many elements are there in the array. The size of the array

eir size

nd have contiguous area of memory. We can access the arrays using the array index.

 arrays is as follows:

data_type array_name [size] ;

r example:

is case it will occupy forty

ytes (one int = 4 bytes). The elements of the array are manipulated using the index.

emory image of an array:

We have started

C language is a function-oriented language

functions. Our

c

lecture.

Let us consider an example about calculation of average age of 10 students. At firs

we will declare 10 variables to store the age of each student and th

a

instead of 10, we have to declare 100 variables i.e. one for ea

a

A

of storage of ages of 100 students, arrays can be used. Arrays are data structure

which identical data types are stored. The concept of arrays is being explained fur

in the following parts of the lecture.

Arrays

 I

valid data type. The rules of variable nam

si

should be a precise number. The arrays occupy the memory depending upon th

a

Declaration:

The declaration of

fo

 int ages[10];

Let's consider an array int C[10]; This is an array of integer and has a name ’C'. It has

a size ten which depicts that the array ‘C’ can contain ten elements of int data type. In

the memory, the array occupies the contiguous area, in th

b

In C language, the index of array starts from zero and is one less than array's size.

Index of array is also called subscript.

M

Name

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 101

e

ero position (C[0]) is 24 while that of the element at

e

sage

o dec e have to give their data type, name and size. These are fixed-size

by

cript) may be used to access the first element of the array. In

lement we write like age[0]. To access the 5
th

 element, we

e age[4] and so on. Using the index mechanism, we can use the array

 as simple variables. Their use can be anywhere where there we can use a

ple assignment statements, expressions etc. Please do not confuse

declaration of array. When we write int age [10], it means we

of type int, its name is age and its size is 10. When we write

 C[0]

 C[1]

 C[3]

Index

 C[8]

 C[9]

In the above figure, the memory chunk containing the array C is shown. On the first

line, C[0] is written while on the 2
nd

 line, C[1] is written and so on. The number in th

[] is the index of the array. C[0] is used for the first element, followed by C[1] for

the second element and so on. It is important to note that in an array the index 6 ([6])

means the seventh element of the array and thus the eighth element will have an index

7. Thus, the index of the last element of the array will be 1 less than the size of the

array. On the right hand side, the values of the elements are shown in the memory i.e.

he value of the element at zt

first position (C[1]) is 59 and so on. The important thing to be noted here is that th

indexing of the array starts from zero, not from one. So in the above example, the

index of the array C will be from C[0] to C[9]. If we have an array of size 25, its

index will be from 0 to 24.

U of Arrays

T lare arrays, w

arrays. In the coming lectures, we will discuss arrays without using size at declaration

time. Arrays may be declared with simple variables in a single line.

int i, age [10];

nt height [10], length [10] ; i

o access array, we can’t use the whole array at a time. We access arrays element T

element. An index (subs

his case, to access first et

will writ

ementsel

ims variable i.e. in

the usage of array and

are declaring an array

 C[2]

 C[7]

...

59

24

..
...

…

Memory

35

..

..

..

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 102

ge[5], it means we are referring to the single element of the array not the whole

onsid the e ent’s ages again. Is there a way to calculate the average

ge of a l the s

ccessed with indexing. So we can use a 'for loop' as

nder;

r (i = ; i < 1

se enter the age of the student “;

the above 'for loop' the value of i is changing from 0 to 9. Here the loop condition

 i<10. This means that the cin and cout statements will be executed 10 times. We

t of

 array age.

for (i = 0 ; i < 10 ; i++)

 totalAge += age [i];

the above loop, all the elements of the array age will be added to the variable

alAge. When the value of i is 0 i.e. age[0] the value of first element will be added

the totalAge. As the value of i is changing from 0 to 9 so all the 10 elements of the

ay will be added to the totalAge. By dividing this totalAge by 10 we will get the

rage age.

Initialization of Arrays

here are many ways to initialize an array. Don't use the default initialization of

lue.

a

array.

C er xample of stud

a l tudents in an array?

As we know that arrays can be a

u

 fo 0 0 ; i++)

 {

 cout << “Plea

 cin >> age [i];

 }

In

is

have used i as the index of the array. The index we are referring to the array needs to

be an integer. It can be 4, 5 or an integer variable like i. In the first repetition, the

value of i is 0, i.e. age[0] so the value of first element of the age will be read. In the

second repetition, the value of i becomes 1 i.e. age[1] so the value of 2
nd

 elemen

the age will be read and so on. We get all the 10 values from the user which will be

stored in the

Now we will calculate the total of ages. We can use another 'for loop' to add up all the

elements of the array age.

 int totalAge = 0;

 {

 }

In

tot

to

arr

ave

T

arrays. Compiler may assign some value to each declared array. Always initialize the

array in such a manner that the process is clear.

We can initialize an array using a 'loop' while assigning some va

 int i, age [10];

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 103

for (i = 0; i < 10 ; i++)

}

ith the help of this simple loop, we have initialized all the elements of array age to

ero. I dition, we have used the condition i < 10, where the size of the

now, the array index is one less than the size of the array. Here

 index of array and its values are from 0 to 9.

 the array at the time of declaration as:

y using any other number

stead of zero. However, generally, zero is used to initialize the integer variables.

e can ing shortcut.

he above statement has also initialized all the elements of the array to zero.

 of loop

Consider the following statement:

ize of the array. The compiler is quite intelligent as

 detects the initialization list which consists of ten 0’s. Therefore, it creates an array

starts from the index 0 and is up to one less than the size of

e array. So if the size of the array is ten, the index will be from 0 to 9. Similarly, if

of the array is 253, the index will be from 0 to 252.

 {

 age[i] = 0;

W

z n the loop con

array is ten. As we k

we are using i as the

We can also initialize

 int age [10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

The above statement creates an array age of integers and initializes all the elements

with zero. We can use any value to initialize the array b

in

W do it by using the follow

 int age [10] = { 0 };

T

We have different ways of initializing the arrays. Initialization through the use

is a better choice. If the size of the array gets larger, it is tedious to initialize at the

declaration time.

 int age [] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

Here we have not mentioned the s

it

of 10 integers and initializes all the elements with zero.

The index of the arrays

th

the size

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 104

gram 1

ment:

 user and
ores these ones in an array. User can enter a maximum of 100
umbers. Stop taking input when user enters -1.

lution:

e have to declare an integer array of size 100 to be used to store the integers. We

d a loop to get the input from the users. There are two conditions to terminate the

p i.e. either user has entered 100 numbers or user entered -1. 'For' and 'while' loops

 execute zero or more times whereas ‘do-while’ may execute one or more times.

 analyzing the problem, the loop will be executed at least once so do-while loop

cally fits in this problem. We take an integer z to get the input from the user and i

ion will be as (z != -1 && i < 100). && is used to

nforce that both the conditions are true. If any of the two conditions becomes false,

 counter is less than 100 because the index of the

 99.

e will read a number from the user and store it at some particular location of the

Sample Pro

Problem State

Write a program which reads positive integers from the
st
n

So

W

use

loo

can

By

logi

as the counter so the condit

e

the loop will be terminated. The loop

array will be from 0 to

W

array unless user enters -1 or 100 numbers are entered. In the loop, we will use the if

statement whether the number entered by user is -1 or not. If the number entered is

not -1, then we will store it in the array. The index of the array will also be

incremented in each repetition. We can assign some value to array element as:

 c[3] = 33;

In an assignment statement, we cannot use expression on the left hand side. Here c[3]

is used as a variable which represents the 4
th

 element of the array.

The complete code of the program as under:

// This program reads the input from user and store it into an array and stop at -1.

#include <iostream.h>

main()

{

int c [100] ;

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 105

int z , i = 0 ;

cout << “Please enter the number (-1 to end input) “ << endl;

 cin >> z ;

 (z != -1)

;

;

 while & i < 100) ;

cout << “ The total number of positive integers entered by user is “ << i -1;

 do

 {

 if

 {

 c[i] = z

 }

 i ++

 } (z != -1 &

}

T ove code showshe ab that the assignment statement of the array is inside the if block.

ere the numbers will be assigned to the array elements when the 'if statement'

 -1, the if statement will evaluate it false. So the

ecuted and next i will be incremented. The

while loop' will be tested. As the value of z is -1, the loop will be

rminated.

te how many positive numbers, the user has entered. In the

ositive integers entered by the users is i -1.

erms of its practical usage. Suppose we have to

ents of the class. If we don’t know the exact number of

ass, we can declare an array of integers of larger size and get the ages

rom the user and use -1 to end the input from the user.

 the program is as follow.

ease enter the number (-1 to end input) 1

H

evaluates to true. When the user enters

assignment statement will not be ex

condition in the '

te

Now we have to calcula

end, we have incremented i so the actual p

The above example is very useful in t

calculate the ages of stud

students in the cl

f

A sample out put of

Pl

2

3

4

5

6

-1

The total number of positive integers entered by user is 6

Copying Arrays

Sometimes, we need to copy an array. That means after copying, both the arrays will

contain elements with same values. For being copy able, both arrays need to be of

same data type and same size. Suppose, we have two arrays a and b and want to copy

array a into array b. Both arrays are of type int and of size 10.

 int array a[10];

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 106

 b[10];

e know that a value can be assigned to an element of array using the index. So we

……

……

0, its index will be from 0 to 9. Using the above technique, we

 another. Now if the array size is 100 or 1000, this method can

e used. Is there some other way to do things in a better way? We can use the loop

t to deal with this easily in the following way.

; i < 10 ; i ++)

loop, it becomes very simple. We are no more worried about the size

ll work by just changing the condition. We are

responding values of array a into array b. The value of first element

f array a is assigned to the first element of array b and so on.

ake the sum of squares of 10 different numbers stored in an array.

ogram m of squares of numbers stored in an array.

t sum

cout << "Please enter the ten numbers one by one " << endl;

 cin >> a [i];

 int array

W

can write assignment statements to copy these arrays as:

 b[0] = a[0] ;

 b[1] = a[1] ;

 b[2] = a[2] ;

 ……

 b[9] = a[9] ;

As the size of array is 1

can copy one array to

b

construc

 for (i = 0

 {

 b[i] = a[i];

}

With the help of

of the array. The same loop wi

assigning the cor

o

Example:

T

Here is the code of the program:

// This pr calculates the su

#include <iostream.h>

main()

{

 int a[10];

 in OfSquares = 0 ;

 int i =0;

 // Getting the input from the user.

 for (i = 0 ; i < 10 ; i++)

 {

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 107

 sumOfSquares = sumOfSquares + a[i] * a[i] ;

 }

 // Calculating the sum of squares.

 for (i = 0 ; i < 10 ; i ++)

 {

 }

 cout << “The sum of squares is “ << sumOfSquares << endl;

}

A sample out put of the program is given below.

Please enter the ten numbers one by one

1

2

3

4

5

6

7

8

9

10

The sum of squares is 385

Linear Search

Arrays are used to solve many problems. As we have seen that loops are used along

with the arrays, so these two constructs are very important. Suppose, we are given a

list of numbers to find out a specific number out of them. Is the number in the list or

not? Let's suppose that there are 100 numbers in the list. We take an array of size 100

as int a [100]. For populating it, , we can request the user to enter the numbers. Either

tored into the array or we can just popthese numbers can be s

om 0 99. W

ulate it with numbers

and assign the values as a[i] = i. This means

at at i h posit position the value is 5 and so

nt

ber is not found.

 the number or not. If the value of found is

ill mean that number has been

 compare it with other elements of

ped out of the loop.

alue is 1, it means number has been

und. Otherwi

Here is the complete code of the program.

fr to e can write a simple loop

t ion, the value is i i.e. (a[5] = 5), at 5th th

on. Then we can request the user to enter any number and store this number into an i

variable. To search this number in the array, we write a loop and compare all the

elements with the number. The loop will be terminated, if we found the number or we

ave compared all the elements of the array, which means that numh

We used a flag to show that we have found

ero, the number is not found while the value 1 wz

found. When we find the number, is there a need to

e array? May be not, so when we found the number, we just jumth

In the end, we check the variable found. If the v

se number stands unfound. fo

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

// This program is used to find a number from the array.

#include <iostream.h>

 108

ain()

{

int z, i ;

int a [100] ;

cout << “ Please enter a positive integer “ ;

 cin >> z ;

 int found = 0 ;

 // loop to search the number.

 for (i = 0 ; i < 100 ; i ++)

 {

 if (z == a [i])

 {

 found = 1 ;

 break ;

 }

 }

 if (found == 1)

 cout << “ We found the integer at index ” << i ;

 else

 cout << “ The number was not found ” ;

}

m

 // Initializing the array.

 for (i =0 ; i < 100 ; i ++)

 {

 a [i] = i ;

 }

The following is an output of the program.

Please enter a positive integer 34

We found the integer at index 34

The loop in the above program may run 100 times or less. The loop will terminate if

the number is found before the 100
th

 repetition. Therefore, in the linear search the

maximum limit of the loop execution is the size of the list. If the size of list is 100,

then the loop can execute a maximum of 100 times.

Using random function (Guessing Game):

We can turn this problem into an interesting game. If we as programmers do not

know, which number is stored in the array? We can make this a guessing game. How

can we do that? We need some mechanism by which the computer generates some

number. In all the C compilers, a random number generation function is provided. The

function is rand() and is in the standard library. To access this function, we need to

include <stdlib.h> library in our program. This function will return a random number.

The number can be between 0 and 32767. We can use this function as:

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 109

 = rand ();

nerates an integer which is assigned to variable x. Let's

consider the function-calling mechanism. The program starts its execution in the main

nction. When the control goes to the statement containing a function call, the main

program stops here and the control goes inside the function called. When the function

ome value, the control comes back to the main program.

 using rand().

eam.h>

main()

{

 nitializing th

 }

 cout << “ Please enter a positive integer “ ;

 cin >> z ;

 int found = 0 ;

 // loop to search the number.

 for (i = 0 ; i < 100 ; i ++)

 {

 if (z == a [i])

 {

 found = 1 ;

 break ;

 }

 }

 if (found == 1)

 cout << “ We found the integer at position ” << i ;

 else

 cout << “ The number was not found ” ;

}

x

The random function ge

fu

completes or returns s

Here is the complete code of the program

// This program is used to find a number from the array.

#include <iostr

#include <stdlib.h>

int z, i ;

int a [100] ;

// I e array.

for (i =0 ; i < 100 ; i ++)

{

 a [i] = rand() ;

The following is an output of the program.

Please enter a positive integer 34

The number was not found

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 110

he function rand () returns a value between 0 and 32767. Can we limit the generated

 smaller range? Suppose we have a die with six faces marked with

, 2, 3, 4, 5 and 6. We want to generate random die number i.e. the number should be

efore, the

en 0 and 5 inclusive. We want the number between 1 and 6,

n

tor.

ed to guess the tossing of the coin.

me and size. We use simple integer for

ay to

ue in

 ; i ++)

T

random number in a

1

between 1 and 6 inclusive. Here we can use the modulus operator to achieve this.

Modulus operator returns the remainder. What will be the result of the statement?

 rand () % 6

When 6 divides any number, the remainder will always be less than 6. Ther

result will be betwe

therefore we will add 1.

 1 + rand () % 6;

The above statement will give us the desired result. We need to know whether this is a

fair die or not. A fair die is a die when it is rolled 10 or 100 million of times. Then o

average, equal number of 1’s, equal number of 2’s, equal number of 3’s etc. will be

generated. Can we test our die i.e. it is fair or not? That is there are equal numbers of

chances of 1 or 2 etc. Think about generating a test for our random number genera

Does it produce a fair die?

The random function is very useful. It can be us

There can be only two possibilities of tossing a coin. Therefore we can use rand () %

2 which will give 0 or 1.

The Keyword ‘const’:

To declare an array, we need its data type, na

the size like 10 or 100. While using arrays in loops, we use the size a lot. Suppose if

we have to change the size of the array from 10 to 100, it will have to be changed at

all the places. Missing a place will lead to unexpected results. There is another w

deal this situation i.e. keyword construct. The keyword const can be used with any

data type and is written before the data type as:

 const int arraySize = 100;

This statement creates an identifier arraySize and assigns it the value 100. Now the

arraySize is called integer constant. It is not a variable. We cannot change its val

the program. In the array declaration, we can use this as:

 int age [arraySize];

Now in the loop condition, we can write like this:

 for (i = 0; i < arraySize

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 111

d

If we have to change the size of the array, we only have to change the value of

arraySize where it is declared. The program will work fine in this case. This is a goo

programming practice to use const for array size.

Tips

Initialize the array explicitly

Array index (subscript) starts from 0 and ends one less than the array size

To copy an array, the size and data type of both arrays should be same

n Array subscript may be an integer or an integer expressio

Assigning another value to a const is a syntax error

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

Lecture No. 12

 112

eading MaterialR

 to Program chapter 4

4.4, 4.5, 4.6, 4.8, 4.9

ummary

on

rrays

Deitel & Deitel - C++ How

 S

 Character Arrays

 Initialization Of Character Arrays

 Arrays Comparis

 Sorting A

 Searching arrays

 Functions And arrays

 Example 1

 Multidimensional Arrays

 Example 2

 Tips

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 113

haracter Arrays

hile dealing with words and sentences, we actually make use of character arrays.

s and storing integer values. Here we

ave to ing a name. A simple variable can't be used

 a single

racter array to grab a name. A character array is not different

rom an intege character array, we will write as under:

har name [100] ;

er array. There are some special properties

 enter a

ters. These characters in the array occupy 15-20 character

paces. ow w as happened to the remaining character spaces in

e array. Similarly, a question arises, will an array displayed on the screen, show 100

blanks for the remaining. Here C has a

haract en we place a string in a

puter keeps a mark to identify that the array was of this size

hile t strin ze. That marker is a special character,

alled null character. The ASCII code of null character is all zeros. In C language, we

eprese erminate a string. All

ith the null character.

ow, w will see how the character arrays are stored in memory. While declaring a

haracter array, we normally declare its size larger than the required one. By using a

 store a string. We declare a character array as

nder.

is array simply by using the cin statement in the

 ;

ove statement, there is an array on right hand side of cin instead of a simple

 has a built-in intelligence that allows the compiler (program)

 read hole e le character as in case of simple

he compiler determines that the name is not a simple variable.

ather it is a string or character array. Thus cin reads a character array until the user

 enter key is pressed, cin takes the whole input (i.e. string)

 itself, attaches a null character at

 end of the string. In this way, the total number of spaces occupied in the array by

e string is the number of characters entered by the user plus 1 (this one character is

e null character inserted at the end of the string by C automatically). The null

 be careful while declaring a character array.

he size of array should be one more than the number of characters you want to store.

itialization Of Character Arrays

C

W

Up to now, we were dealing with integer array

h see what needs to be done for stor

to store a name (which is a string of characters) as a variable stores only

character. We need a cha

f r array. To declare a

c

In this way, we declare a string or charact

of character arrays. Suppose that we declare an array of 100 characters. We

name with 15-20 charac

s N e have to see what h

th

characters with a name in 15-20 spaces and

c er handling capability i.e. the notion of strings. Wh

character array, the com

w he g stored in it is of the other si

c

r nt the null character as “\0”. C uses this character to t

strings are terminated w

N e

c

character array, it becomes easy to

u

 char name [100] ;

Now we can store a string in th

following way.

 cin >> name

In the ab

variable. The cin stream

to w string at a tim rather than a sing

variable of type char. T

R

presses the enter key. When

and stores it into the array name. The C language, by

the

th

th

character is used to determine where the populated area of the array has ended. If we

put a string larger than the size of the array in absence of a null character in it, then it

is not possible to determine where a string is terminated in the memory. This can

cause severe logical error. So, one should

T

In

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 114

w we will look into integer array initialization process that can provide a list of

eger values separated by commas and enclosed in curly braces. Following is the

tement through which we initialize an integer array.

;

we don’t mention the size of the array and assign a list of values to the array, the

mpiler itself generates an array of the size according the number of values in the

t. Thus, the statement int age [] = {14, 15, 13}; will allocate a memory to the

ay of size 3 integers. These things also apply to character arrays as well. We can

tialize an array by giving a list of characters of the string, the way we assign integer

aracters of this string one by one in single

n single quotes), separated by commas and

itialization line will be as under

 char name [100] = {‘i’, ‘m’, ‘r’, ‘a’, ‘n’};

e can also write the string on right hand side in double quotes as

 char name [100] = “imran” ;

y to initialize a character array is to assign it a string in double quotes.

 size of the array in the square brackets. We know that the compiler

f

e

e. We can display it with cout statement. To display the string, we have

e ca write

ing. As

rray o one by one in a 'for

.

t want to display the garbage data that is in the array after

is null character. While using the statement cout << name; the cout stream takes

No

int

sta

 int age [5] = {12, 13, 16, 13, 14}

If

co

lis

arr

ini

values in integer array. We write the ch

quotes (as we write a single character i

enclosed in curly braces. So the in

w

The easy wa

We can skip the

allocates the memory at the declaration time, which is used during the execution o

the program. In this case, the compiler will allocate the memory to the array of size

equal to the number of characters in the provided string plus 1 (1 is for the null

character that is inserted at the end of string). Thus it is a better to initialize an array in

the following way.

 char name [] = “Hello World” ;

In the above statement, a memory of 12 characters will be allocated to the array name

as there are 11 characters in double quotes (space character after Hello is also

considered and counted) while the twelfth is the null character inserted automatically

at the end of the string.

We can do many interesting things with arrays. Let’s start with reading a string (for

example your name) from keyboard and displaying it on the screen. For this purpose,

we can write the following code segment

 char name [100] ;

 cout << “Please enter your name : “ ;

 cin >> name ;

In the cin statement, when the user presses the enter key the previous characters

entered, that is a string will be stored in the array name. Now we have a string in th

rray nama

stored in name. W n as under

cout << name ;

play the strThis will display the string. Alternatively, we can use a loop to dis

he string is an a f characters, we can display these characterst

loop'. We can write a loop as under

for (i = 0 ; i < 100 ; i ++)

cout << name [i] ;

Thus this loop will display the characters in the array one by one in each iteration.

First, it will display the character at name [0], followed by that at name [1] and so on

Here we know that the string in the array is terminated by a null character and after

this null character, there are random values that may not be characters (some garbage

ata) in the array. We don’d

th

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 115

f the array name up to the null character and the remaining part of the

e

s in the first array are equal to the

orresponding values of the second array, then both the arrays will be equal. Suppose,

 i

es.

l operator (!=). The advantage of using not-

qual operator is that in case if the values at some position are not equal to each other,

remaining values. We terminate the loop here and

If the values at a position are equal, we continue to

the characters o

array is ignored. When we are displaying the characters one by one, it is necessary to

stop the displaying process at the end of a string (which means when null character is

reached). For this purpose, we may put a condition in the loop to terminate the loop

when the null character is reached. So we can use if statement in the loop to check the

null character. We can modify the above for loop so that it could terminate when null

haracter reaches in the array. c

r (i = 0 ; i < 100 ; i ++) fo

{ if (name [i] == ‘\0’)

 break ;

cout << name [i] ;

}

Here a while loop can also be used instead of a 'for loop'.

Arrays Comparison

We can use this character-by-character manipulation of the array to compare the

characters of two arrays of the same size. Two arrays can be equal only when first of

all their sizes are equal. Afterwards, we compare the values of the two arrays with on

to one correspondence. If all the value

c

we have two integer arrays num1 and num2 of size 100 each and want to find

whether both arrays are equal. For this purpose, we will declare a flag and set it to

zero, that means that arrays are not equal this time. For this flag, we write int equals

= 0 ;

To compare the values of the arrays one by one, we write a for loop i.e. for (i = 0 ;

< 100 ; i ++). In the body of the for loop, we use an if statement to check the valu

In the if statement, we use the not equa

e

then we need not to compare the

y that the arrays are not equal. sa

compare the next values. If all the values are found same, we set the flag equal to 1

and display the results that both the arrays are identical. The same criterion applies to

character arrays. The comparison of character arrays is very common. While finding a

name in a database, we will compare two character arrays (strings). The comparison

of two strings is so common in programming that C has a function in its library to

manipulate it. We will discuss it later in the lecture on string handling. For the time

being, we will write our own function to find the equality of two strings.

Following is the code of a program, which takes two arrays of 5 numbers from the

user and compares them for equality.

// This program takes two arrays of 5 integers from user

//displays them and after comparing them displays the result

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

include <iostream.h>

 116

i < 5 ; i ++)

he values in the second array are : “ ;

r (i = 0 ; i < 5 ; i ++

um2 [i];

s

{ if (num1 [i] != num2 [i])

 equals = 0 ; //set the flag to false

main ()

{

 int num1 [5], num2 [5], i, equals = 0 ;

 // input of 5 integers of first array

 cout << “Please enter five integers for the first array” << endl ;

for (i = 0 ;

 cin >> num1 [i] ;

 // input of 5 integers of 2nd array

 cout << “Please enter five integers for the second array” << endl ;

for (i = 0 ; i < 5 ; i ++)

 cin >> num2 [i] ;

 //display the elements of two arrays

 cout << “\n The values in the first array are : “ ;

for (i = 0 ; i < 5 ; i ++)

 cout << “\t” << num1 [i] ;

 cout << “\n T

fo)

 cout << “\t” << n

 // compare the two array

 for (i = 0 ; i < 5 ; i ++)

 {

 cout << “\n The arrays are not equal “ ;

break ;

 }

 equals = 1; //set flag to true

 }

 if (equals)

 cout << “\n Both arrays are equal” ;

}

Similarly, we can write a program that compares two strings (character arrays) of the

same size. While comparing strings, a point to remember is that C language is case-

sensitive. In C-language ‘A’ is not equal to ‘a’. Similarly, the string “AZMAT” is no

equal to the string “azmat” or “Azmat”.

A sample out-put of the program is given below.

Please enter five integers for the first array

t

1

3

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

5

7

9

Please enter five integers for the second array

1

3

4

5

6

The values in the first array are : 1 3 5 7 9

The values in the first array are : 1 3 4 5 6

The arrays are not equal

Sorting

e want to sort an array in ascending order. ThereW may be many ways to sort an

we have an array of 100 numbers. To sort it in ascending order, we

st number (number at zero index) and find the smallest number in the

rray. Suppose, we find it at sixteenth position (index 15). If we assign this number

. For

s

ariable before assigning the second number (i.e. to be swapped) to the first variable.

riable to the first variable. Afterwards, the

of an

rray is treated as a single variable so we can swap two numbers of an array with each

.

 our sorting process, we declare a variable x and assign it the number at the first

mber at sixteenth position to the first position. After this,

e assign the number in x (that is actually the number that was at first position in the

the sixteenth position. In programming, this can be done in the following

hion.

 x

um [0 teenth position to first position

um [1 tion

ow we start reading the array

m second position (index 1) and find the smallest number. We swap this number

om index 2. The same process can be

eated later. We continue this process of finding smallest number and swapping it

number of the array. The sorting of array in this way is a brute

he co puter will do fine with small arrays. The large

own.

array. Suppose

start from the fir

a

directly to the first position, the number already placed at first position will be over

written. But we want that number should exist in the array. For this purpose, we use a

technique called swapping. In this technique, we swap two values with each other

this purpose, we declare a variable and assign the value of first variable to thi

v

Then we assign the value of second va

number, which we have stored in a separate third variable (that is actually the value of

first variable) is assigned to the second variable. In arrays, the single element

a

other with this technique

In

position. Then assign the nu

w

array) to

fas

x = num [0] ; // assign number at first position to

n] = num [15] ; // assign number at six

n 5] = x ; // assign number in x to sixteenth posi

We have the smallest number at the first position. N

fro

with the second position before starting fr

rep

till we reach the last

force and a very tedious work. T m

arrays may slow it d

© Copyright Virtual University of Pakistan

117

CS201 – Introduction to Programming

 118

earching

echnique of linear search. In this technique, there may be as many

mparisons as numbers in the array. We make comparison of the number to be found

 any number in the array.

er by using a binary search algorithm.

ch Algorithm

rch algorithm, the ‘divide and conquer’ strategy is applied. This

plies only to sorted arrays in ascending or descending order. Suppose that

earch a number in an ascending array. For this purpose, we divide the

o parts (say left and right). We compare the target value with the value at

ion of the array. If it does not match, we see whether it is greater or less

dle value. If it is greater than the middle value, we discard the left part of

ing an ascending array, the left part contains the smaller numbers than

e middle. Our target number is greater than the middle number. Therefore, it will be

 the right part of the array. Now we have a sub-array, which is the half of the actual

rray (right side portion of main array). Now we divide this array into two parts and

 is not found, we discard a portion of the array

ccording to the result whether target value is greater or less than the middle value. In

s

ould

ay

ays

en

n

sed value (that has placed at some other place) and manipulates it

 to a

 to the function. As the array is

eclared in the calling function, it is visible there. The calling function knows its size

being called does not know the size of the array. So it is necessary to

the array along with its name. Suppose we have declared a character

array in the program by the following statement:

S
The same applies to the search algorithms. For finding out a particular number in an

array, we can use t

co

with each number in the array and find it out if it matches

However, we can perform even bett

Binary Sear

In binary sea

algorithm ap

we want to s

array into tw

middle locat

than the mid

the array. Be

th

in

a

check the target value. If target value

a

each iteration of testing the target value, we get an array that is half of the previou

array. Thus, we find the target value.

The binary search is more efficient than the linear search. In binary search, each

iteration reduces the search by a factor of two (as we reduce to half array in each

iteration). For example, if we have an array of 1000 elements, the linear search c

require 1000 iterations. The binary search would not require more than 10. If an arr

has elements 2
n,
 then the maximum number of iterations required by binary search

will be n. If there are 1000 elements (i.e. 2
10

, actually it will 1024), the number of

iterations would not be more than 10.

Functions and Arr

In C language, the default mechanism of calling a function is ‘call by value’. Wh

we call a function, say fn, and pass it a parameter x (argument value) by writing

statement fn(x), the calling mechanism puts the value of x at some other place. The

calls the function and gives this value to it. This means a copy of the value is sent to

the program. The original x remains untouched and unchanged at its place. The

function uses the pas

in its own way. When the control goes back to the calling program, the value of

original x is found intact. This is the call by value mechanism.

Now let’s see what happens when we pass an array to a function. To pass an array

function, we will tell the function two things about the array i.e. the name of the array

and the size. The size of the array is necessary to pass

d

but the function

ass the size of p

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 119

rray elements and displays them.

 in its return type. Secondly, we

nction will get. We write these parameters with

void reverse (char [], int) ;

ary. These brackets indicate that an

r will be passed to the function. If we skip these brackets and simply

aracter will be passed to the function. In

dition, the second parameter i.e. of type int, is of array's size. Note that in the

t is not

s of the parameters in function prototype. However, if we

 an error. The compiler will simply ignore these names.

w we will define the function reverse. In the function's definition, we will use the

rray and variable names. These names are local to this function so we can give these

stored in it. We call

reverse (

ame, 100);

 name of the array to the function i.e. name

hich reverses the array and displays it. After this, the control comes back to the main

 next to the function call statement. The return type of the

is void so it does not return any thing. Now in the main, we write the

tement cout << name; What will be displayed by this statement? Whether it will be

e orig eversed array. In this

stance, we see that whatever the function reverse did to the array (that was passed

It means that the original array in the calling

n changed. Here we change (reverse) the order of the characters of

s of the array in the calling function are

ersed. This means that the called function has not a copy of the array but has the

s a copy

'call by value' mechanism, which is by default in case of

ys, the by default mechanism is ‘call by reference’. While

ssing arrays to a function, we don’t need to use & and * operators, as we use for

echanism.

sed to the function. This is

ray, the name of the array has the address of

 char name[50] ;

We have a function (say reverse, you should write it as an exercise) that reverses the

a

Firstly, we need to write the prototype of the function reverse. We say that this

function returns nothing so we use the keyword void

have to write the parameters this fu

their type.

Now the prototype of this function will be written as

In the above statement, the brackets [] are necess

array of type cha

write char, it will mean that a single ch

ad

prototype of the function we have not written the names of the parameters. I

necessary to write the name

write the names, it is not

No

a

variables a name other than the one used in declaration in the calling program. We

write this as below.

 void reverse (char characters [], int arraySize)

 {

 // The body of the function.

 }

Here, the body of the function is left over for an exercise.

Let’s say we have a character array name and a name ‘adnan’ is

the reverse function by passing the array name to it. For this we write

n

In this function call, we are sending the

and the size of the array that is 100. When this call of the function is executed the

control goes to the function reverse. The statements in this function are executed

w

function to the statement

function

sta

th inal name ‘adnan’ or something else. It will display the r

in

to it) is appearing in the calling function.

program has bee

array in the function and find that the character

rev

original array itself. Whereas in case of simple variables, a called function use

of variables passed to it in a

simple variables. In arra

pa

variables in call by reference m

Thus if we pass an array to a function, the array itself is pas

due to the fact that when we declare an ar

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 120

tion from where the array starts. In other words, it is the address of

e firs f the array actually represents the

dress of the first location of the array. Passing the name of array to a function

e array which is exactly the same as we do in

atever the function does to the array, it is happening in the

me m mory ay, any

difications that the function does to the contents of the array are taking place in the

ontents of the original array too. This means that any change to the array made by

 function will be reflected in the calling program. Thus an important point to

member is that whenever we pass simple variables to a function, the default

echanism is call by value and whenever we pass an array to a function, the default

echanism is call by reference. We know that when we talk about a single element of

ment of an array to a function (let’s say like

le whose copy is passed to the function (as

 the element in the array remains the same.

ingle element of array to functions. This can

amples.

xample 1

n program and pass this array to a function,

e function call, we display the elements of the

rray and see that it contains the values that were given in the function call. This

emonstrates that the called function changes the original array passed to it.

ollowing is the code of the program.

 to a function then it is a call by

[], int) ;

 [10], i ;

getvalues (num, 10) ; //function call, passing array num

 //display the values of the array

 cout << “\n The array is populated with values \n” ;

 for (i = 0 ; i < 10 ; i ++)

cout << " num[" << i << "] = " << num[i]<< endl ;

}

void getvalues (int num[], int arraysize)

{

 int i ;

for (i = 0 ; i < arraysize ; i ++)

 num[i] = i ;

 }

the memory loca

th t element of the array. Thus the name o

ad

means the passing of the address of th

call by reference. So wh

sa e locations where the array originally resides. In this w

mo

c

the

re

m

m

an array like x [3] (which means the fourth element of the array x), it is treated as

simple variable. So if we pass a single ele

fn (x [3]);), it is just like a simple variab

it is a call by value). The original value of

So be careful while passing arrays and a s

be well understood from the following ex

E

Suppose we declare an array in the mai

which populates it with values. After th

a

d

F

//This program demonstrates that when an array is passed

//reference and the changes made by the function effects the original array

include <iostream.h>

void getvalues(int

main ()

{

 int num

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

Here in the function getvalues, we can get the values of the array from user by using

the cin statement.

Following is the output of the execution of the program.

he array is populated with values

num[0] = 0

um[2] = 2

um[7] = 7

um[9] = 9

T

num[1] = 1

n

num[3] = 3

num[4] = 4

num[5] = 5

num[6] = 6

n

num[8] = 8

n

Multidimensional Arrays

in daily life. In mathematics, there are

rays. Let’s talk about vectors. A vector is a set of values which

ave independent coordinates. There may be two-dimensional vector or three-

 number of columns. So we can declare an array numbers of two rows and

ree columns as follows.

 we can do the addition, multiplication and other

anipulations of matrices. A value in a two-dimensional array is accessed by using

e can do addition, multiplication and other manipulations of two-dimensional

1, 2, 3

ing n pair of brackets [] after the

 7

There may be many applications of arrays

many applications of ar

h

dimensional vector. There are dot and cross products of vectors besides many other

manipulations. We do all the manipulations using arrays. We manipulate the arrays

with loops. Then there is a mathematical structure matrix, which is in rows and

columns. These rows and columns are manipulated in two-dimensional arrays. To

work with rows and columns, C provides a structure i.e. a two-dimensional array. A

two dimensional array can be declared by putting two sets of brackets [] with the

name of array. The first bracket represents the number of rows while the second one

depicts the

th

 int numbers [2] [3] ;

Using two-dimensional arrays,

m

the row number and column number. To put values in a two-dimensional array is

different from the one-dimensional array. In one-dimensional array, we use a single

'for loop' to populate the array while nested loops are used to populate the two-

dimensional array.

W

arrays. In C language, we can declare arrays of any number of dimensions (i.e.

… n). We declare a n-dimensional array by putt

name of the array. So a three-dimensional array with values of dimensions 3, 5 and

respectively, will be declared as int num [3] [5] [7] ;

Example 2

© Copyright Virtual University of Pakistan

121

CS201 – Introduction to Programming

 122

t

mensional array of two rows and three

st, we will declare the array by writing

 int matrix [2] [3] ;

r.

r (col = 0 ; col < maxcols ; col ++)

alue for position [“ << row << “, ” << col << ”]” ;

 [row] [col] ;

 }

ents of the array one row at a time. It fills all the

rements the row after each iteration. In the

ove code segment, the inner loop executes for each iteration of the outer loop. Thus,

hen th row 0, the inner loop is executed for a

ons equal to the number of columns i.e. 3 in our program. Thus the

]. Then

 to 1 and the inner loop is again executed

hich completes the second row (i.e. the positions [1,0], [1,1] and [1,2]). All the

having two rows and three columns are found.

milarly, to display these values one by one, we again use nested loops.

o

 int matrix [2] [3], row, col, maxrows = 2, maxcols = 3 ;

 // get values for the matrix

for (row = 0 ; row < maxrows ; row ++)

 {

 for (col = 0 ; col < maxcols ; col ++)

{

cout << “Please enter a value for position [“ << row << “, ” << col << ”] ” ;

cin >> matrix [row] [col] ;

 }

}

// Display the values of matrix

cout << “The values entered for the matrix are “ << endl ;

for (row = 0 ; row < maxrows ; row ++)

Let’s have a matrix (two-dimensional array) of two rows and three columns. We wan

to fill it with values from the user and to display them in two rows and three columns.

Solution

To solve this problem, we use a two-di

columns. Fir

We declare different variables in our program. To put the values in the array, we use

two nested for loops, which can be written as unde

for (row = 0 ; row < maxrows ; row ++)

 {

fo

{

cout << “Please enter a v

cin >> matrix

}

The inner for loop totals the elem

columns of a row. The outer for loop inc

ab

w e outer loop starts with the value of

number of iterati

first row is completed for the three columns with positions [0,0], [0,1] and [0,2

the outer loop increments the row variable

w

values of matrix

Si

Following is the code of the program.

//This program takes values from user to fill a two-dimensional array (matrix) having tw

//rows and three columns. And then displays these values in row column format.

include <iostream.h>

main ()

{

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

123

 {

 for (col = 0 ; col < maxcols ; col ++)

{

cout << “\t” << matrix [row] [col] ;

 }

 cout << endl ; //to start a new line for the next row

}

}

A sample output of the program is given below.

Please enter a value for position [0,0] 1

Please enter a value for position [0,1] 2

Please enter a value for position [0,2] 3

Please enter a value for position [1,0] 4

Please enter a value for position [1,1] 5

Please enter a value for position [1,2] 6

The values entered for the matrix are

 1 2 3

 4 5 6

Tips

A character array can be initialized using a string literal

Individual characters in a string stored in an array can be accessed directly

using array subscript

Arrays are passed to functions by reference

To pass an array to a function, the name of the array(without any brackets) is passed

along with its size

To receive an array, the function’s parameter list must specify that an array will be

received

Including variable names in function prototype is unnecessary. The compiler ignores

these names.

CS201 – Introduction to Programming

Lecture No. 13

Reading Material

Deitel & Deitel – C++ How to Program Chapter 4

 4.5, 4.9

 Summary

Array Manipulation

Real World Problem and Design Recipe

Exercises

Array Manipulation

We have already discussed what an array is. Identical or similar values are stored in

 related to the context of the problem

f an individual is a number. We don't

 in one array as, in contextual terms, they are different things.

ight of individuals will be stored in one

ay and the age in some other one. The idea behind the array is that whenever you

is the easiest way and what are the

ng in terms of loops. We pick up the first element of the array and process it.

bers, we should try to understand it in terms of a matrix.

atrices in mathematics have rows and column and there is always a number at each

w and column intersection. Suppose we have a matrix of dimension 3 * 3 i.e. a

simple two-dimensional array. We want to input some numbers to that array first.

After reading these numbers, we want to output them in such a fashion that the last

an array. The identical and similar terms here are

we try to solve. For example, height or age o

store height and age

These can not be mixed in one array. So the he

arr

have similar data with multiple values, it is easier and more elegant to store them in

an array.

Let's try to find out, how to process arrays. What

issues related to this process.

As discussed in previous lectures, whenever we come across an array, we start

thinki

Then the second array element is processed and so on. Naturally that falls into an

iterative structure.

Let's try to understand how to process a two dimensional array. The following

example can help us comprehend it effectively.

Suppose we have a two-dimensional array of numbers. While dealing with a two-

dimensional array of num

M

ro

© Copyright Virtual University of Pakistan

124

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

125

row is printed first, followed by second last and so on till the first row that is printed

at the bottom. We don't want to change the column numbers with this output. It is not

a difficult task. As it is a two-dimensional array so there is a row subscript and a

column subscript. Following example will make the matter further clear.

Suppose we have the following array:

int a[3][3];

We will access elements of it as: a[row index][column index] e.g. a[1][2]. This is a

single element at row 1 and column 2 of array a.

The flow chart to read in numbers into the two-dimensional array is given on the next

page. See the code snippet below:

const int maxRows = 3;

const int maxCols = 3;

int row, col;

int a[maxRows][maxCols];

// To input numbers in the array

for (row = 0; row < maxRows; row ++)

{

 for(col=0; col < maxCols; col ++)

 {

 cout << "\n" << "Enter " << row << "," << col << "element: ";

 cin >> a[row][col];

 }

}

Now let's see what this nested loop structure is doing. The outer loop takes the first

row i.e. row 0, then instantly inner loop begins which reads col 0, 1 and 2 elements of

the row 0 into the array. Afterwards, control goes back to the outer loop. The row

counter is incremented and becomes 1 i.e. row 1 or second row is taken for

processing. Again, the inner loop reads all the elements of second row into the array.

This process goes on until all the elements for three rows and three columns array are

read and stored in the array called a.

CS201 – Introduction to Programming

No

maxRows = n

maxCols = n

a[maxRows][maxCol

s]

while

row

maxRows

<

Yes

No

col = 0

while

col <

maxCols

Read

a[row][col]

Yes

col++

row++

Flow Chart to Input Two-dimensional Array

Exit

Exit

© Copyright Virtual University of Pakistan

126

CS201 – Introduction to Programming

 127

 reverse the rows of the matrix (flip the matrix) and display it. There

several ways of doing it. You might have already started thinking of how can we

ix and copy the array elements into this

x while flipping the elements at the same time. But we should keep in mind the

ent. The problem statement is 'to read the array elements and then

imply oes not state anything about storing the

lements inside the memory.

lease e flow chart to display the flipped matrix on the next page.

ally, we start our loops from zero and keep incrementing the counter until a

ertain bigger value is attained. But this is not mandatory. We can start from a bigger

mber and keep on decrementing the counter every time. To display the rows in

everse order, we can start from the last row and go to the first row by decrementing

rogramming trick. However, we have to

e care of the value of the index.

r code inside nested loops for flipping the elements as under-

<< '\n' << "The flipped matrix is: " << '\n';

+)

a [row][col] << '\t';

}

cout << '\n';

Note the '\t' character in the above code. It is a tab character that displays tab (spaces)

at the cursor position on the screen. Similary '\n' as told in previous lectures is newline

character which takes the cursor to the new line.

It is better to print the original matrix elements before showing the flipped matrix

elements so that you can really see whether your function has flipped the matrix or

not.

To run this function for the big-sized arrays, adjust the values of the maxRows and

maxCols constants as the rest of the program remains the same..

Whenever we work with arrays, normally the loops are there. If the array is single

dimensional, there will be one loop. A two-dimensional arrays is going to have pair of

nested loops and so on.

Now we want to

are

flip the matrix. We may declare a new matr

matri

problem statem

s display it in the reverse row order'. It d

e

P see th

Norm

c

nu

r

the row counter every time. It is very simple p

tak

We can write ou

// To flip the elements of the matrix

cout

for (row = maxRows-1; row >= 0; row --)

{

 for (col = 0; col < maxCols; col +

 {

 cout <<

}

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

128

No

Flow Chart to Display Array Elements in the Reverse
Row Order

maxRows = n

maxCols = n

a[maxRows][maxCol

while

row >= 0

Yes

No

col = 0

while

col <

s maxCol

][col]

Yes

Print

a[row

+ col+

row--

Input the array ‘a’

elements

row = maxRows - 1

Exit

Exit

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

129

/* Array Manipulation - Flipping of a Matrix (reversing the row order): This program reads a

matrix (two-dimensional array), displays its contents and also displays the flipped matrix

*/

#include <iostream.h>

const int maxRows = 3;

const int maxCols = 3;

void readMatrix(int arr[][maxCols]);

void displayMatrix(int a[][maxCols]);

void displayFlippedMatrix(int a[][maxCols]);

void main(void)

{

 int a[maxRows][maxCols];

 // Read the matrix elements into the array

 readMatrix(a);

 // Display the original matrix

 cout << "\n\n" << "The original matrix is: " << '\n';

 displayMatrix(a);

 // Display the flipped matrix

 cout << "\n\n" << "The flipped matrix is: " << '\n';

 displayFlippedMatrix(a);

}

void readMatrix(int arr[][maxCols])

{

 int row, col;

 for (row = 0; row < maxRows; row ++)

 {

 for(col=0; col < maxCols; col ++)

 {

 cout << "\n" << "Enter " << row << ", " << col << " element: ";

 cin >> arr[row][col];

 }

 cout << '\n';

 }

}

void displayMatrix(int a[][maxCols])

CS201 – Introduction to Programming

{

 130

playFlippedMatrix(int a[][maxCols])

 for (row = maxRows - 1; row >= 0; row --)

 for(col = 0; col < maxCols; col ++)

 {

ow][col] << '\t';

 }

 }

 int row, col;

 for (row = 0; row < maxRows; row ++)

 {

 for(col = 0; col < maxCols; col ++)

 {

 cout << a[row][col] << '\t';

 }

 cout << '\n';

 }

}

void dis

{

 int row, col;

 {

 cout << a[r

 cout << '\n';

}

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 131

ly solved very simple problems to understand processing of

ys. You can t t your capability of doing so through an exercise by inputting

ading in) a matrix and print it in re column order. Here, the rows remain the

ame.

al problem

derstand the concept of Trans ose of a Matrix. Transpose of a matrix means that

ange rows and columns, the first row becomes the first column,

nd row becomes the second column and so on. Mathematically, the transpose can

) should be replaced with A(j,i) wh d column indexes.

or thi ose, we take a square matrix (a matrix with equal number of rows and

olumn

ight. L t's say he arr s ‘arraySize’. Please see the flow chart

ge.

e wr d loops:

 temp;

or (row = 0; row < arraySize; row ++)

 0; col < arraySize; col ++)

{

re using the swapping mechanism

 temp = a[row][col]; // Save the original value in the temp variable

[row][col] = a[col][row];

t the original value

e interchanging values, we should be careful. We can't simply write: a[row][col]

 a[col][row]. We will lose information this way. We need a swapping mechanism

re to interchange the elements properly.

 solved. You are strongly recommended to

ite this program and run it to see the problem area.

ng interesting that we are interchanging the value of first row, first

hen we are doing transpose of a matrix,

iagonal elements will remain unchanged as the row and column indexes are the

e. Then we interchange the row 0, col 1 element with row 1, col 0. The row 0, col

hen we process second row i.e. row

he 1, col 0 will be swapped with row 0, col 1 but these are the same elements,

at

ents swapped once are swapped again to their original positions if the loops are

.

Till now, we have on

arra es

(re verse

s

Let's move on to slightly more practic . Before going ahead, we need to

un p

when we interch

seco

be written as:

A(i,j ere i and j are row an

F s purp

c s) to transpose. Here, if you are thinking in terms of loops, you are absolutely

r e t ay is 'a', with dimension a

for this problem on the next pa

W ite a pair of neste

int

f

{

 for (col =

 // Interchange the values he

 a

 a[col][row] = temp; //Take ou

 }

}

Whil

=

he

We have yet to do more to get the problem

wr

It is somethi

column with itself, which means nothing. W

the d

sam

2 element with row 2, col 0. What will happen w

1. T row

already swapped in the above iteration. Therefore, this is the problem area th

elem

run in all the rows and columns. As a result, the resultant matrix remains unchanged

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

132

No

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

132

No

arraySize = n

arraySize][arraySiza[

]

while

row <

arraySize

Yes

No

col = row

while

col <

arraySize

temp = a[row][col]

a[row][col] =

a[col][row]

[l][] t

Yes

col++

row ++

Flow Chart of Transpose of a Square Matrix

Input the array ‘a’

elements

row = 0

Exit

Exit

CS201 – Introduction to Programming

 133

nally. We will get two triangles i.e.

oking at a triangle, let's say upper triangle, we can see that all

e

before

e.

w i.e.

be

(two-

l array), displays its contents, transposes it and then displays the transposed matrix.

 matrix

 cout << "\n\n" << "The transposed matrix is: " << '\n';

Then what is the solution of the problem?

ow draw a matrix on the paper and cut it diagoN

upper triangle and lower triangle. We only need to interchange one triangle with the

other and not the whole of the matrix. Now the question is, how we can determine the

limits of triangles? By lo

the rows are being processed as the triangle crosses every row. Similarly all the

columns are being processed because the first row in the upper triangle covers all th

columns. The only difference is that we will not process the beginning element

starting each row. That means that we will not start the inner loop (columns loop)

with index 0. Rather we start with the current row number. Therefore, for first row i.

row 0, we will process from row 0, col 0 to row 0, col arraySize-1. For second ro

row 1, we will process from row 1, col 1 to row 1, col arraySize-1 while in case of

third row i.e. row 2, we will go from row 2, col 2 to row 2 , col arraySize-1. If you

structure the loops in this manner, the correct behavior of matrix transposition will

found.

The full source code to solve this problem by taking the upper triangle and swapping

it with the lower triangle is given below:

/* Array Manipulation - Transpose of a Square Matrix: This program reads a matrix

imensionad

*/

#include <iostream.h>

const int arraySize = 3;

void readMatrix(int arr[][arraySize]);

void displayMatrix(int a[][arraySize]);

void transposeMatrix(int a[][arraySize]);

void main(void)

{

 int a[arraySize][arraySize];

 // Read the matrix elements into the array

 readMatrix(a);

 // Display the matrix

 cout << "\n\n" << "The original matrix is: " << '\n';

 displayMatrix(a);

 //Transpose the matrix

 transposeMatrix(a);

 //Display the transposed

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 displayMatrix(a);

}

 134

)

ow << ", " << col << " element: ";

 for (col = row; col < arraySize; col ++)

 /* Interchange the values here using the swapping mechanism */

e the original value in the temp variable

 a[row][col] = a[col][row];

void readMatrix(int arr[][arraySize])

{

 int row, col;

 for (row = 0; row < arraySize; row ++

 {

 for(col=0; col < arraySize; col ++)

 {

 cout << "\n" << "Enter " << r

 cin >> arr[row][col];

 }

 cout << '\n';

 }

}

void displayMatrix(int a[][arraySize])

{

 int row, col;

 for (row = 0; row < arraySize; row ++)

 {

 for(col = 0; col < arraySize; col ++)

 {

 cout << a[row][col] << '\t';

 }

 cout << '\n';

 }

}

void transposeMatrix(int a[][arraySize])

{

 int row, col;

 int temp;

 for (row = 0; row < arraySize; row ++)

 {

 {

 temp = a[row][col]; // Sav

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 135

 a[col][row] = temp; //Take out the original value

 }

 }

}

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 136

or all

esign recipe.

etimes, the

 is charged on that amount, which is deducted every month. But if

s getting Rs. 20,000 per m

The interesting situation develops if there

 an anomaly in the tax rates i.e. a person who is getting higher salary takes home

 design recipe, let's see what steps we need to follow.

uter language

ine what are the inputs of this program. What data should

ram. We will also try to determine if there are some constants

 or manipulation. We list down all the constants. Then we split

precise problem

ine those employees

less take-home salary than others with lower initial income."

w states that:

ersons with salaries ranging from Rs. 0 to Rs. 5,000 per

duction rate is 0%.

 the persons with salaries ranging from Rs. 5,001

 month.

Real Word Problem and Design Recipe

We will take one problem that is not very complex but will follow it rigorously f

eps of dst

 practical life, the employees get salaries and pay taxes honestly. SomIn

process of drawing salaries and payment of taxes may lead to some interesting

situation. Suppose, a person draws salary of Rs. 10,000 per month. A certain

percentage of tax

e sala y of thth r e person is more than Rs. 10,000 per month, then the tax rate is

ly if a person i onth, he/she would be different. Similar

arged more under a different tax rate slab. ch

is

lesser money as compared to the other person with less gross salary.

To further elaborate it, we suppose that there is company 'C' where 100 or less than

100 persons are employed. The salaries of the employees and their tax rates are

known to us. We are required to list those unlucky persons, who are getting lesser

take-home salary (net salary) than their colleagues with less gross salaries but lower

tax rates.

s per ourA

A design recipe asks us to analyze the problem first and write it in a precise statement

that what actual the problem is. Also by formulating the precise statement, we need to

provide some examples to illustrate. At the design phase, we try to break up the

roblem into functional units and resort to a detailed designing. Then we move to p

implementation stage where the pseudo code is translated into the comp

nd then the program is compiled and run to ensure that it works as expected. a

sis, we try to have a precise problem statement. Once it is At the first step i.e Analy

stablished, we try to determe

be provided to this prog

quired for calculationre

it up into functions and modules.

Let's try to make a precise statement of the above problem. The

statement is:

iven tax brackets and given employees gross salaries, determ"G

who actually get

Suppose the tax deduction la

No tax will be deducted for p

month or in other words tax de

 will be made from5% tax deduction

s. 10,000 perto R

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 137

uction

ed.

h salaries ranging from Rs. 20,001 and higher, 15% tax deduction

ld be made.

ulate the problem.

s per rules,

 10,000 is 500 rupees. So the take

. 9500.

 the unfortunate individual, whose gross salary is Rs, 10,001 falls in the next

ve to pay tax worth Rs 1000.1. That means the

lesser than the person with

he problem.

 can calculate the net salaries of all individuals, determining all the unlucky ones.

. For looking into the

input the salaries of these people.

 stated in the problem, the number of employees of the company 'C is at most 100.

o we know the size of the array. But for some other company, suppose company 'D',

e don't know the number of employees. Therefore, it makes sense to take input from

e have determined the number of

ployees, we will input the gross salary of each of employees. But where will we

will store the gross salary. Our program after calculating the net

ind the

ithms. At the higher level design, we assume that there would be a

y to determine the unlucky individuals. Finally, a list of unlucky employees would

e prepared. For that, we will simply output the employee numbers.

rements of this problem. As earlier

ntioned, we will use a two dimensional array to store the gross and net salaries and

take a single dimensional array of 'int' type. We will initialize the

ore, by default, all

re lucky. Whenever, we will find an unlucky individual by using the two

imensional array for that individual. So

the program.

ce guidelines are the same

e. be p and try to explain what is required from the user. When the program runs

 him/her. So there would be prompts in the

e input data will be coming from

d displayed on the screen. This is a rudimentary interface analysis.

istributed the program into four major parts:

ion of unlucky individuals and

For persons with salaries ranging from Rs. 10,001 to Rs. 20,000, a 10% tax ded

rate would be employ

For persons wit

wou

Taking these rules, let's form

Consider the example of a person with a salary of Rs. 10,000 per month. A

he/she would be charged by 5% of tax rate. 5% of

home salary of the person is Rs

Now

bracket of tax rate of 10%. He will ha

take home salary of this person is Rs. 9000.9, which is

lower gross salary of Rs. 10,000. This is t

We

Now we will carry out the analysis of the requirements

requirements, we have to see, how to

As

S

w

the user for the number of employees. Once w

em

store the gross salary? For this purpose, we will use the two-dimensional array. In the

first column, we

salary for each employee will write (store) it in the second column of the array.

At the next stage, we will f out the unlucky individuals. This will be based on

analysis of algor

wa

b

We want to workout the space and storage requi

me

output the list of unlucky employees. That means we need a storage to store that list.

For this, we will

array with zero. '0' means the individual is lucky. Theref

individuals a

dimensional array, we will write '1' in single d

this is the storage requirement of

Afterwards, we will discuss the interface issues. The interfa

i. olite

the user will know what is required from

program where the user will key in the data. All th

keyboard an

We have d

Input

Salary calculation

Identificat

Output

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 138

 phase of this program.

m should be function calls. The main

s very simple as it contains functions:

t

lucky individuals

y output

he arrays will be declared inside the main function. As we already know the

a constant:

nce th done inside main, we want to run the input function to read the salaries of

l get value for number of

mployees from the user. We have already set the upper limit as 100 but the actual

umber am. If we take that input

put data function, what can be the problem. Well, there is no problem in

claration of the variable

 which contains the current number of employees. If the 'numEmps'

ut data function returns, the 'numEmps' will no longer be there because it

ot visible in any other function. So it is better to

 variables inside the main function. But the problem arises: how the input

ain function. We

send it to input data function, either through call by reference or we can

umEmp' as a global variable so that it is visible in all the functions. Global

riables are useful but tricky. They exist when we need them but they exist even

hen we don’t need them. Therefore, it might be good to declare this variable

 to the function, we write in the function

type as:

ust specify the

ns because this depends on how a computer stores the two

onal array in the memory. The computer stores the rows in a contiguous (row

here the first row

ished or the second row starts, it should know the number of columns.

er of columns

e specified. We will pass two dimensional array 'sal' to input

nction getInput() in the same manner. We also want to pass 'numEmps'

Let's start the coding or detailed design

In a true tradition, all the four parts of the progra

program i

Get inpu

Calculate salary

Locate un

Displa

T

maximum number of employees is 100, so we can declare it as

const int arraySize=100;

double sal[arraySize][2];

int lucky[arraySize] = {0}; //Notice the array initialization

O is is

the employees. Now, inside the input data function, we wil

e

n of employees will be entered by the user of the progr

inside the in

taking the input within that function but the problem is the de

'numEmps',

variable is declared inside the input data function, it will be local to that function.

After the inp

was local to input data function and n

declare the

data function will get information about it, if we declare it inside m

will have to

declare 'n

va

w

'numEmps' inside main function and then pass by reference to the input data function.

While passing one-dimensional array

proto

 f(int a[]);

However, when we pass two-dimensional array to a function, we m

number of colum

dimensi

after row) fashion inside memory. Therefore , in order to locate w

has fin

Whenever, we pass two-dimensional array to a function, the numb

inside that array should b

data fu

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 139

ble by reference using the '&' sign to this function. This will ensure that whatever

 user inputs inside this function getInput(), will be available in the main function.

here is another way that we get input from the user inside the main function and then

 are going to do the same in our

nction.

put(double sal[][2], int numEmps);

for (int i = 0; i < numEmps; i ++) //Note that this numEmps is local to this

{

 cin >> sal[i][0]; // Get the gross salary for each employee

}

e tax, we will write a function. This function will be passed in similar

arameters as getInput function to calculate the taxes for all the employees. There is

ce.

ten

d are available inside main function. The 'numEmps' variable on

e other hand is passed by value to getInput() function. Therefore, any changes done

main

 condition. The function to calculate net

lary also has interesting issues which will be explained in the next lecture.

Here is the source code of the first cut solution for real world problem:

* This is the first cut of the program to solve the real world problem of

'Unlucky Employees' */

#include <iostream.h>

void getInput(double sal[][2], int numEmps);

void calcNetSal(double sal[][2], int numEmps);

void findUnluckies(double sal[][2], int numEmps, int lucky[]);

void markIfUnlucky(double sal[][2], int numEmps, int lucky[], int upperBound, int empNbr);

void printUnluckies(int lucky[], int numEmps);

void main(void)

{

 const int arraySize=100;

 double sal[arraySize][2];

 int lucky[arraySize] = {0};

 int numEmps;

 /* Read the actual number of employees in the company */

varia

the

T

pass this by value to the getInput() function. We

fu

getIn

{

function

}

To calculat

p

one important point to reiterate here i.e. by default, arrays are passed by referen

That means if getInput() function puts some values in the 'sal' array, these are writ

in the 'sal' array an

th

by geInput() function will not affect the original value of 'numEmps' inside the

function.

We will continue with this problem to determine algorithm that what is the precise

sequence of steps to determine the unlucky employees. For this, we need to analyze a

bit more because it contains a complex 'if'

sa

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 140

 cout << "\n Please enter the total number of employees in your company: ";

ps;

 /* Read the gross salaries of the employees into the array 'sal' */

 getInput(sal, numEmps);

aries of the employees and store them in the array */

ies .. ";

 /* Find the unlucky employees */

 cout << "\n\n Locating the unlucky employees ... ";

 findUnluckies(sal, numEmps, lucky);

 /* Print the unlucky employee numbers */

\n Printing the unlucky employees ... ";

kies(lucky, numEmps);

}

void ge ut(

{

for (int i = 0; i < numEmps; i++) //Note that this numEmps is local to this function

{

ss salary for employee no." << i << ": ";

in >> sal[i][0]; // Store the gross salary for each employee

ction

al[i][0] >= 0 && sal[i][0] <= 5000)

 {

 cin >> numEm

 cout << '\n';

 /* Calculate net sal

 cout << "\n\n Calculating the net salar .

 calcNetSal(sal, numEmps);

 cout << "\n

 printUnluc

tInp double sal[][2], int numEmps)

 cout << "\n Please enter the gro

 c

 }

}

void calcNetSal(double sal[][2], int numEmps)

{

 for (int i = 0; i < numEmps; i++) //Note that this numEmps is local to this fun

 {

 if(s

 /* There is no tax deduction */

 sal[i][1] = sal[i][0];

 }

 else if(sal[i][0] >= 5001 && sal[i][0] <= 10000)

 {

 /* Tax deduction is 5% */

 sal[i][1] = sal[i][0] - (.05 * sal[i][0]);

 }

 else if (sal[i][0] >= 10001 && sal[i][0] <= 20000)

 {

 /* Tax deduction is 10% */

 sal[i][1] = sal[i][0] - (.10 * sal[i][0]);

 }

 else if (sal[i][0] >= 20001)

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 141

tion is 15% */

 sal[i][1] = sal[i][0] - (.15 * sal[i][0]);

 < numEmps; i++) //Note that this numEmps is local to this function

 if(sal[i][0] >= 0 && sal[i][0] <= 5000)

 ;

] >= 5001 && sal[i][

 {

 }

 else if (sal[i][0] >= 10001 && sal[i][0] <= 20000)

 {

 markIfUnlucky(sal, numEmps, lucky, 10001, i);

 }

 else if (sal[i][0] >= 20001)

 {

 markIfUnlucky(sal, numEmps, lucky, 20001, i);

 }

 }

mpNbr)

 */

d && sal[i][1] >= sal[empNbr][1])

 {

 /* Tax deduc

 }

 else

 {

 /* No need to do anything here */

 }

 }

}

void findUnluckies(double sal[][2], int numEmps, int lucky[])

{

 for (int i = 0; i

 {

 {

 /* No need to check for unlucky employees for this tax bracket */

 }

 else if(sal[i][0 0] <= 10000)

 markIfUnlucky(sal, numEmps,

lucky, 5001, i);

}

void markIfUnlucky(double sal[][2], int numEmps, int lucky[], int upperBound, int e

{

 for (int i = 0; i < numEmps; i++)

 {

 /*

 See the if the condition below, it will mark the employee

 unlucky even if an employee in the higher tax bracket is getting

 the same amount of net salary as that of a person in the lower

 tax bracket

 if (sal[i][0] < upperBoun

 {

 lucky[empNbr] = 1; //Employee marked as unlucky

 break;

 }

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 142

 for (int i = 0; i < numEmps; i++)

 cout <<"\n Employee No.: " << i;

 }

 }

}

void printUnluckies(int lucky[], int numEmps)

{

 {

 if(lucky[i] == 1)

 {

 }

}

Exercises

Suppose you have a Square matrix of order 5 * 5. Draw flow chart and write a

program to input (read in) a matrix and print it in reverse column order, the rows

main the same.

r triangle and swap it with upper triangle.

n Identity matrix is a square matrix whose diagonal elements are '1' and remaining

re

Suppose you have a Square matrix of order 5 * 5. Draw flow chart and write a

program to transpose the matrix, take lowe

A

elements are '0'. Suppose you are given a square matrix of size n * n. Write a program

to determine if this is an Identity matrix.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

Lecture No. 14

 143

 MaterialReading

eitel - C++ How to Program

Chapter 5

5.1, 5.2, 5.3, 5.4,

1) Pointers

2) Declaration of Pointers

Example 1 (Bubble Sort)

Pointers and Call By Reference

5) Example 2

 the earlier lectures, we had briefly referred to the concept of pointers.
et’s see what a pointer is and how it can be useful.

emory address is
contain a memory address, not the value of the variable.

e following

ne to take a parcel to the house of a
erson, named Ahmad. Here the point of reference is a name.

f we specifically tell him the number of house and the street
umber. Then this is a reference by the address of the house. It means

that we have two ways to locate an address. To understand further the
oncept of memory address, the example of the computers can be

helpful. In computers, one can have a name x which is associated with
y 6000 or

sses interchangeably to refer to memory locations. When a value
is referred by a normal variable is known as direct reference. While the

Deitel & D

5.5, 5.6

Summary

3)

4)

Pointers

In
L

Pointers are a special type of variables in which a m
stored. They
The concept of the pointers can be well understood from th
example.

Suppose, we request someo
p
However, i
n

c

a memory location. We can have the memory address of x, sa
whatever it is. So the simple variable names are those of specific
locations in memory. But in terms of addresses, these are the
addresses of those memory locations. We can use these names and
addre

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 144

on is with reference to the

address of that memory location. In other words, ‘assign a value to the

 are
d to refer the values at

those addresses.

Following figure shows directly and indirectly referencing a variable.

a variable whose val

xptr indirectly references a variable
whose value is 10 xptr x

value referred through the use of memory address may be known as
indirect reference.

To understand further the terms of direct reference and indirect
reference, suppose that we want to assign a value 10 to x. This can be
done by writing x = 10. In this statement, the value 10 will be
assigned to the memory location which has label (name) x. The second
way to assign a value to a memory locati

memory location whose address is contained in the variable (that is a
pointer) on right hand side of the assignment operator’. Operators
used to refer the address of memory locations an

x directly references

ue is 10
x

ow we will try to comprehend the concept with another daily life
example. Suppose, hundreds of people are sitting in an auditorium. The
ost is for a person amongst the audience.
here re tw met zewinner to dais. The host can

 the number of the seat. These are
quiva ent to ‘call by name’ and ‘call by address’ methods. In both
ases the p ze wi to a person whether he is called by
ame or referred by address (seat number in this case). In

programming, pointers are used to refer by the addresses.

inter to a character and so on. It

10

10

N

h going to announce a prize
T a o hods to call the pri
either call the name of the person or
e l
c , ri ll be delivered
n

Declaration of Pointers

Pointers work by pointing to a particular data type. We can have pointer
to an integer, pointer to a double, po

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 145

he

en

 with data
pe (like int*) may confuse the declaration statement. Suppose, we
ant to declare a pointer to an integer. We will write as:

d
t.

ters requires the
use of * with each variable name. This is evident from the following

lares three pointers.

int *ptr1, *ptr2, *ptr3 ;

n with simple variables on

 int *ptr, x, a [10] ;

 array of integers.

henever used, these pointers hold memory addresses.

means that a type is associated to a pointer. Pointer, being a variable,
needs a name. The rules for naming a pointer are the same as for the
simple variable names. The pointers are declared in a specific way. T
syntax of declaring a pointer is:

 data type *name ;

Here ‘name’ is the name of the pointer and data type is the type of the
data to which the pointer (name) points. There is no space betwe
asterisk (*) and the name. Each variable being declared as a pointer
must be preceded by *. The * is associated with the name of the
variable, not with the data type. To associate the * (asterisk)
ty
w

 int *myptr;

Here myptr is the name of the pointer. The easiest way to understan
the pointer declaration line is the reading the statement from right to lef
For the above statement, we say that myptr is a pointer to an integer
(int). Similarly for the declaration double *x , x is a pointer to a data of
type double. The declaration of char *c shows that c is a pointer to a
data of type character. The declaration of multiple poin

example which dec

Moreover, we can mix the pointers declaratio
one line.

In this declaration ptr is a pointer to data of type int, x is a simple
variable of type int and a is an

W

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 146

ow w derstand what address a pointer holds. Suppose,
we declare a pointer variable ptr and a variable x and assign a value 10

 it. We write this as under.

Here x is a name of a memory location where a value 10 is stored. We

into the pointer ptr. To get the address of x, we use address operator
ddress of x

 pointer ptr, we write

x

N e will try to un

to

int *ptr ;

int x ;

x = 10 ;

want to store the address of this memory location (which is labeled as x)

i.e. &. (it is & not &&, the && is logical AND). To assign the a
to

ptr = &x ;

This statement assigns the memory address of the location x to the
pointer ptr. The following figure shows a schematic representation of
memory after the preceding assignment is executed.

 ptr

The pointers contain whole numbers as they contain memory
addresses. An address can be represented

1

 only in whole numbers.
Therefore, a pointer is a whole number, sufficient enough, to hold any
memory address of the computer. The pointers have no specific data
type.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 147

 we have a pointer to a memory
location. Now, it can be ascertained what value is stored in that memory

 at a memory address, we use the
 by asterisk (*). The * is used with
lue stored at that address. To get

e value stored at the memory address ptr, we write *ptr which is read
s the value of whatever ptr points to. Thus the line z = *ptr; means, z

 ptr

Address: 500000
 400000

In the above assignment statement,

location. To get the value stored
dereferencing operator, represented
the name of the pointer to get the va
th
a
has the value of whatever ptr points to.

The following example can explain the representation of the pointer in
memory. Assume that variable x is stored at location 400000 and
pointer variable ptr is stored at location 500000.

 x

400000 10

We can use this operator (*) to get any arithmetic
operation with it. The following m make it further clear.

the value and can do
state ents

 z = *ptr + 2 ;

ere *ptr giv mory address where the pointer

ng practice to initialize a variable
re that there will be no unknown value

e later stage.

 z = *ptr * 2 ;

 z = *ptr – 2 ;

H es the value stored at me
ptr points to.

We know that it is a good programmi
when we declare it. This will ensu
in the variable at som

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 148

imilarly, we should assign an initial value to a pointer after declaring it.
Taking the address of a variable and assigning it to the pointer is one

tart of the program. The

ero is not considered as a valid address for a memory location.
owever, at some later stage, we use the pointer in an assignment

 part of
d

of a variable by putting & operator before the name of the variable and
ign it to a pointer as in the following statement ptr = &x;

uage, the default mechanism of function call is
‘call by value’. Sometimes we want to make a call by reference. In call

ss the address of the variable to a function by using
.

e pass the
 to a function being called by using & operator.
 as fn(&x) where &x indicates that the address

f variable x is being passed to the function fn. In the receiving function,
the function must know that the parameter passed to it is an address.

eclaration of the receiving function will be as

 statement(s) ;

int *num ion declaration indicates that the receiving
variable is a pointer to a memory address. In the body of the function,

S

way of initializing a pointer. A pointer can be initialized by assigning
either value 0 or the word NULL. The NULL is a global variable declared
in many header files that we include at the s
pointer initialized by NULL as ptr = NULL; is called null pointer which
points to nothing. Similarly, when we assign a zero to a pointer like ptr =
0; it means that the pointer is pointing to nothing at the moment. Here
z
H
statement either on left hand side to assign a value to it or as a
an expression on right hand side. The pointer must have a vali
memory address where a value should have stored. We get the address

ass

We know that in C lang

by reference, we pa
& operator

One of the major usages of pointers is to simulate call by reference
while using it with function calls. In the calling function, w
address of the variable
We write a function call
o

So the d

void fn (int *num)

 {

 }

The in the funct

we will use this variable as:

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 149

is statement describes that the value entered through the keyboard
s wherever the

lue soci we write *num and &num
the address. This thing can be summarized as follows

ints to and

dres of the variable num”

ers the left hand side exactly like ordinary
u would have an address statement on the

 (operator (&)) cannot be of an expression.
 alway le variable. We cannot write &(x+y). The
) would be either of x (&x) or of y (&y). The address operator

(&) operates on a simple variable. Precisely speaking, whenever we
a pointer on left hand side, the right hand side should have an

er appears on the right hand side of an expression, it
n participate in any expression. In this case, we use the operator *

ith the pointer name and get the value stored where the pointer points
. Obviously we can do any calculation with this value (i.e. it can be

ubble Sort)

 knowing the technique of bubble sorting. Its application
helps us compare two values each time and interchange the larger and

ler values. In this way, we sort the arrays. To interchange the
position of larger and smaller value, the technique of swapping is used.

 common in programming. While using this technique,
mporary location to preserve it and

e of second variable to the first. Then the temporary
 to the second variable.

se, we want to swap the values of two variables x and y. For this
se, a third variable temp is used in the following fashion.

 cin >> *num ;

Th
(as cin is used) will be stored at the memory addres
pointer num is pointing to.

While using va as ated with the pointer,
in case of using

 “*num means the value of whatever the num po

 &num means the ad s

The point can appear on
variables. In this case, yo
right hand side. The address
Rather, it is s of a simp
address (&

have
address. If a point
ca
w
to
used in any expression).

Example (B

You might be

smal

Swapping is very
we put value of one variable in a te
assign the valu
value is assigned

Suppo
purpo

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 150

 temp = x ;

 x = y ;

program to swap the
 the question arises, can we call a function swap

(x, y) which has a code to swap the values of x and y. We call the
ontrol comes back to the

lues of x and y are the same as before. These
are not swapped. This is mainly due to the fact that passing value to

ange the values in the
wap function receives a copy of the values and

inal values remain the

 a call by reference to
To write the swap function

ues always use pointers in the function to get the
wapped values in the calling function. The code fragment in our main
rogram will be written as follows:

 yptr = &y ; // address of y is stored in

of swap function will be:

 y = temp ;

We can write the above three statements in a
value of x and y. Now

function swap by passing x and y. When the c
calling function, the va

function swap is a call by value. It does not ch
calling function. The s
interchanges the values in that copy. The orig
same.

To interchange two values in a function, we make
the function. Here comes the use of pointers.
to interchange two val
s
p

yptr

 xptr = &x ; // address of x is stored in
xptr

 swap (yptr, xptr) ; // addresses are passed

The receiving function must know that addresses are being passed to it.
So the declaration

 swap (int *yptr, int *xptr)

 {

 … … …

 }

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 151

f

o interchange the elements of the array is given here.

rs

inclu e <io ream

include <stdlib.h>

int x [] = {1,3,5,7,9,2,4,6,8,10};

 {

This use of pointers implements a call by reference. We can use this
technique in bubble sort. The swap function can switch the elements o
the array by using pointers and * operator.

 The code of the program that sorts an array by bubble sort and use the
swap function t

/* This program uses bubble sorting to sort a given array.

* We use swap function to interchange the values by using pointe

*/

d st .h>

#

/* Prototye of function swap used to swap two values */

void swap(int *, int *) ;

main()

{

 int i, j, tmp, swaps;

 for(i = 0; i < 10; i ++)

 {

 swaps = 0;

 for(j = 0; j < 10; j ++)

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 if (x[j] > x[j+1]) // compare two values and interchange if
needed

{

 152

 swap(&x[j],&x[j+1]);

 }

displ y the ach comparison

 for (j=0; j<10; j++)

function using pointers to interchange the values

 if(*x > *y)

 *y = tmp;

 swaps++;

 }

 // a array’s elements after e

 cout << x[j] << '\t';

 cout << endl;

 if (swaps == 0)

 break;

 }

}

void swap(int *x, int *y) //

{

 int tmp;

 {

 tmp = *x;

 *x = *y;

 }

}

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

Following is the output of the program of bubble sort.

1 3 5 7 2 4 6 8 9 10

 153

8 9 10

5 6 7 8 9 10

 2 3 4 5 6 7 8 9 10

 3 4 5 6 7 8 9 10

1 3 5 2 4 6 7

1 3 2 4

1

1 2

Pointe

ction that performs a specific task again and
ach time. One way to do this is to

le variable in the pointer variable
d pass it to the function. This is a call by reference. Thus the same

ointer variable can be used each time by assigning it the address of a
ifferent variable.

all a

sed with in the function. In call by value mechanism, the values of
ese variables are written somewhere else in the memory. That means

f these values is made. Then control goes to the called function
nd this copy of values is used in the function. If we have to pass a

bers of values. In such cases, it is better to pass the reference

rs and Call By Reference

Suppose, we have a fun
again but with different variables e
pass a different variable to the function, each time, by reference. We
can also write the function with pointers. In this case, before calling the

nction, put the address of the simpfu
an
p
d

The mechanism behind calling a function is that, when we c
function we pass it some variables. The values of these variables are
u
th
a copy o
a
huge number of values to a function, it is not advisable to copy these
huge num

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 154

rform
ray, where we can pass, say, 100

alues (size of the array) to the called function, by only passing the
ame of the array. When we pass an array to a function, actually the
tarting address of the array is passed to the function. Thus the default
alling mechanism to call a function while passing an array to it is a call
y reference.

The problem with call by reference is that ‘we are letting the function to
change the values at their actual storage place in the memory’.
Sometimes, we want to do this according to the requirement of the logic
of the program. At some other occasion, we may pass the addresses for
efficiency while not affecting the values at that addresses. The use of
const can be helpful in overcoming this problem..

Let’s look at the use of const. Consider the following line of declaration:

 int *const myptr = &x ;

The right hand side of this assignment statement could be read as,
myptr is a constant pointer to an integer. Whenever we use the keyword
const with a variable, the value of that variable becomes constant and
no other value can be assigned to it later on. We know that when we
declare a constant variable like const int x ; it is necessary to assign a
value to x and we write const int x = 10 . After this, we cannot assign
some other value to x. The value of x can not be changed as it is
declared as a constant.

Now consider the previous statement

 int *const myptr = &x ;

Here we declare a constant pointer to an integer. Being a constant
pointer, it should immediately point to something. Therefore, we assign
this pointer an address of a variable x at the time of declaration. Now
this pointer cannot be changed. The pointer myptr will hold the address
of variable x throughout the program. This way, it becomes just another
name for the variable x. The use of constant pointers is not much
useful.

of the variables, which is a call by reference phenomenon. We pe
a similar function in case of an ar
v
n
s
c
b

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 155

he use of keyword const in declaration statement is a little tricky. The
statement

 int *const myptr = &x ;

to integer. But if we change the

 *myptr = &x ;

This s e is a pointer to a constant integer.
This means that the value of pointer myptr can be changed but the

ue stored at that location cannot be changed. This declaration is
seful. It has a common use in call by reference mechanism. When we

guments to a function by reference without changing
red at that addresses. Then we use this construct of

 {

 cannot change the
value

corresponding uppercase letters.

T

means myptr is a constant pointer an
place of const in this statement and write

 const int

tatem nt describes that myptr

val
u
want to pass the ar
the values sto
declaration (i.e. const int *myptr) in the called function declaration. We
write the declaration of the function like

 fn (const int *myptr)

 ….

 }

This declaration informs the function that the receiving value is a
constant integer. The function cannot change this value. Thus we can
use the address of that value for manipulations but

stored at that location.

Example 2
Let’s consider an example in which we use the pointers to make a call by reference.

We want to convert the lowercase letters of a string (character array), to their

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 156

c. In the body of the function, we pass the character to

 function islower. This function returns true if the character is a lowercase letter and

acters in the range ‘a’ through ‘z’ are converted to their

 letters by function toupper. Function toupper takes one

haracter as an argument. If the character is a lowercase letter, the corresponding

we have

eader file in our program. We include it in the same way, as we

clude .h>.

 include <stdlib.h>

if (islower (*sptr))

++ sptr; // move sptr to the next

We write a function convertToUppercase, which processes the string s one character

at a time using pointer arithmeti

a

false otherwise. The char

corresponding uppercase

c

uppercase letter is returned, otherwise the original character is returned. The functions

toupper and islower are part of the character handling library <ctype.h>. So

to include this h

in <iostream

The complete code of the program is given below.

//This program converts a string into an uppercase string

include <iostream.h>

include <ctype.h>

#

//declare the functions prototype

void convertToUppercase (char *)

main ()

{

 char s [30] = “Welcome To Virtual University” ;

 cout << “The string before conversion is: “ << s << endl ;

convertToUppercase (s) ; //function call

 cout << “The string after conversion is: “ << s ;

}

void convertToUppercase (char *sptr)

{

 while (*sptr != ‘\0’)

 {

 *sptr = toupper (*sptr); //convert to uppercase

character

}

}

Following is the output of the program.

The string before conversion is : Welcome To Virtual University

The string after conversion is : WELCOME TO VIRTUAL UNIVERSITY

E e xercis

. ring from user and converts it into

1 Modify the above program so that it gets a st

lowercase.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 157

. Write a program, which converts a string of uppercase letters into its

2

corresponding lowercase letters string.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 158

re No. 15

Reading Materi

Lectu

al

Deitel &

Summ

6) Introduction

7) Relationship between Pointers and Arrays

ions and Arithmetic

9) Pointers Comparison

ded. In today’s

cture, we will discuss pointers, the relationship between pointers and arrays, pointer

elationship between Pointers and Arrays

t means that we have attached a symbolic name x, at some

x = 10 which replaces the value at that memory

with 10. Similarly while talking about arrays, suppose an array as int y[10].

is means that we have reserved memory spaces for ten integers and named it

collect is? 'y' represents the memory

address of the beginning of this collective memory space. The first element of the

array can be accessed as y[0]. 0 in C language, so

the me

The name of the array is a constant pointer which contains the memory

ent of the array”

The di

constan the array name will always point to the start of the

array. In other words, it always contains the memory address of the first element of

 Deitel - C++ How to Program Chapter 5

5.7, 5.8

ary

8) Pointer Express

10) Pointer, String and Arrays

11) Tips

Introduction

In the previous lecture, we had just started the discussion on the topic of pointers.

This topic is little complicated, yet the power we get with the pointers is very

interesting. We can do many interesting things with pointers. When other languages

like Java evolve with the passage of time, pointers are explicitly exclu

le

expressions, arithmetic with pointers, relationship between arrays and pointer, strings

etc.

R

When we write int x, i

memory location. Now we can use

location

Th

ively as y. Now we will see what actually y

 Remember arrays index starts from

mory address of first element i.e. y[0] is stored in y.

“

address of the first elem

ff between this and an ordinary pointer is that the array name is a erence

t pointer. It means that

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 159

e array and cannot be reassigned any other address. Let's elaborate the point with

ay y of ten integers and a pointer to an

emory address of an integer.

of y i.e. the address of the first element of

wo things pointing to the same place, y

nd yptr. Both are pointing to the first element of the array. However, y is a constant

ointer and always points to the same location whereas yptr is a pointer variable that

hmetic
uppose we have an array y and yptr, a pointer to array. We can manipulate arrays

o access the fourth element of the array using y, we can say

[3]; with yptr, we can write as *(yptr + 4). Now we have to see what happens when

ment or add something to a pointer. We know that y is a constant pointer and

can not be incremented. We can write y[0], y[1] etc. On the other hand, yptr is a

ointer nd can be written as the statement yptr = y. It means that yptr

e first element of the array. However, when we say yptr++,

e value of yptr is incremented. But how much? To explain it further, we increment a

ormal iable like x++. If x contains 10, it will be incremented by 1 and

ecome 11. The increment of a pointer depends on its data type. The data type, the

se, yptr is an integer

ointer ext integer in the

emory. If an integer occupies four bytes in the memory, then the yptr++; will

 This can be understood from the following example.

ented address.

clude<iostream.h>

ain()

int y[10]; // an array of 10 integers

ter

 the start of array address to pointer

emory address

cout << “The memory address of yptr = “ << yptr << endl ;

yptr++; // incrementing the pointer

th

the help of following example.

 int y[10];

 int *yptr;

In the above statements, we declare an arr

integer i.e. yptr. This pointer may contain a m

 yptr = y;

This is an assignment statement. The value

the array is assigned to yptr. Now we have t

a

p

can also point to any other memory address.

Pointer Expressions and Arit
S

with both y and yptr. T

y

we incre

it

p variable a

contains the address of th

th

n integer var

b

pointer points to, determines the amount of increment. In this ca

p . Therefore, when we increment the yptr, it points to the n

m

increment its value by four.

// This program will print the memory address of a pointer and its increm

#in

m

{

 int *yptr; // an integer poin

 yptr = y; // assigning

 // printing the m

 // printing the incremented memory address

 cout << “The memory address after incrementing yptr = ” << yptr << endl;

}

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 160

“When a pointer is incremented, it actually jumps the number of memory

The sam

ncrementing yptr = 0x22ff54

In the above program, the statement cout << yptr will show the memory address the

yptr points to. You will notice the difference between the two printed addresses. By

default, the memory address is printed in hexadecimal by the C output system.

Therefore, the printed address will be in hexadecimal notation. The difference

between the two addresses will be four as integer occupies four bytes and yptr is a

pointer to an integer.

spaces according to the data type that it points to”

ple out put of the program is:

 The memory address of yptr = 0x22ff50

 The memory address after i

yptr which was pointing to the start of the array y, starts pointing to the next integer in

memory after incrementing it. In other words, yptr is pointing to the 2
nd

 element of

the array. On being incremented again, the yptr will be pointing to the next element of

the array i.e. y[2], and so on. We know that & is address operator which can be used

to get the memory address. Therefore, we can also get the address of the first element

f the array in yptr as:

[0] is a single element and its address can be got with the use of. the address

tr will display the contents of the 2
nd

 element of the array(i.e.

[1]) and so on.

o

 yptr = &y[0] ;

y

operator (&). Similarly we can get the address of 2
nd

 or 3
rd

 element as &y[1], &y[2]

respectfully. We can get the address of any array element and assign it to yptr.

Suppose the yptr is pointing to the first element of the array y. What will happen if we

increment it too much? Say, the array size is 10. Can we increment the yptr up to 12

times? And what will happen? Obviously, we can increment it up to 12 times. In this

case, yptr will be pointing to some memory location containing garbage (i.e. there

may be some value but is useless for us). To display the contents where the yptr is

pointing we can use cout with dereference pointer as:

 cout << *yptr ;

The above statement will display the contents where yptr is pointing. If the yptr is

pointing to the first element of the array, cout << *yptr will display the contents of

the first element of the array (i.e. y[0]). While incrementing the yptr as yptr ++, the

statement cout << * yp

y

Here is an example describing different methods to access array elements.

/* This program contains different ways to access array elements */

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 161

int *yptr;

yptr = y; // Assigning the address of first element of array.

cout << “Accessing 6 element of array as y[5] = ” << y[5] << endl;

cout << “Accessing 6
th

 element of array as *(yptr + 5) = ” << *(yptr + 5) << endl;

cout << “Accessing 6
th

 element of array as yptr[5] = “ << yptr[5] << endl;

#include <iostream.h>

main ()

{

int y[10] = {0,5,10,15,20,25,30,35,40,45};

th

}

Th tput of the progre ou am is:

ccessing 6th element of array as y[5] = 25

cessing 6th element of array as yptr[5] = 25

A

Accessing 6th element of array as *(yptr + 5) = 25

Ac

In the above example, there are two new expressions i.e. *(yptr+5) and yptr[5]. In the

atement *(yptr+5), yptr is incremented first by 5 (parenthesis are must here).

s to the 6
th

 element of the array. The dereference pointer gives the

alue at that address. As yptr is a pointer to an integer, so it can be used as array

ame. So the expression yptr[5] gives us the 6
th

 element of the array.

yptr = y; // Assigning the address of first element of array.

for (i = 0; i < 10 ; i ++)

{

 cout << “\n The value of the element at position ” << i << “ is “ << *yptr;

 yptr ++ ;

}

}

st

Resultantly, it point

v

n

The following example can explain how we can step through an entire array using

pointer.

/* This program steps through an array using pointer */

#include <iostream.h>

main ()

{

int y[10] = {10,20,30,40,50,60,70,80,90,100};

int *yptr, i;

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 162

The output of the program is:

The value of the element at position 0 is 10

The value of the element at position 1 is 20

The value of the element at position 2 is 30

The value of the element at position 3 is 40

The value of the element at position 4 is 50

The value of the element at position 5 is 60

The value of the element at position 6 is 70

The value of the element at position 7 is 80

The value of the element at position 8 is 90

he value of the element at position 9 is 100 T

Consider another example to elaborate the pointer arithmetic.

/* Program using pointer arithmetic */

include <iostream.h> #

main()

{

 int x =10;

 int *yptr;

 yptr = &x;

 cout << “The address yptr points to = ” << yptr << endl ;

cout << “The contents yptr points to = ” << *yptr << endl;

 (*yptr) ++;

 cout << “After increment, the contents are ” << *yptr << endl;

 cout << “The value of x is = ” << x << endl;

}

The output of the program is:

The address yptr points to = 0x22ff7c

The contents yptr points to = 10

tents are 11

he value of x is = 11

After increment, the con

T

Here the statement (*yptr) ++ is read as “increment whatever yptr points to”. This

the value of the variable. As yptr and x both are pointing to the same

nsider the statement *yptr + 3 ;

his is on and there is no assignment so the value of x will not be changed

will increment

location, the contents at that location becomes 11. Co

T an expressi

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 163

here as the statement *yptr += 3; will increment the value of x by 3. If we want to

crem points to, we can do this as yptr

+; No ptr is pointing? The yptr will be now pointing four bytes away from

e memory location of x. The memory location of x is a part of program, yet after

rem e memory area, which is not part of the

 as an exercise. Print the value of yptr and *yptr and see what is

isplayed? Be sure, it is not illegal and the compiler does not complain. The error will

e disp rite some value at that memory address.

When ory address of a simple variable, do

ment or decrement the pointer. When a pointer is used to hold the

n array, it makes sense to increment or decrement the pointer “

ul whi ill be given, in case of any problem.

point at any memory location, so one can easily get the computers

shed by using pointers.

he pointer and incrementing the value where the pointer

oints to are two different things. When we want to increment the pointer, to make it

emory, we write as (yptr++); Use parenthesis when

crementing the address. If we want to increment the value where the pointer points

+; Keep in mind the precedence of operator. Write a

rogram to test this.

he decrement of the pointer is also the same. yptr --; yptr -= 3 ; will decrement the

ptr. Whereas the statement (*yptr) --; will decrement the value where the yptr is

ointing. So if the yptr is pointing to x the value of x will be decremented by 1.

ata type as pointer to integer, pointer to float and

ter is incremented or decremented, it changes the

ddress by the number of bytes occupied by the data type that the pointer points to.

ted by eight bytes. Similarly, in

ase of a pointer to a char, which normally takes one byte, incrementing a pointer to

har w dress by one. If we move to some other architecture like

acintosh, write a simple program to check how many bytes integer, float or char is

systems like

indows XP, windows 2000, calculator is provided under tools menu. Under the view

view. Here we can do hexadecimal calculations. So we can

y in programs are displaying on the screen and by subtracting, we

an see etween the two addresses. Try to write different programs and

ormally compiler will not allow this operation. Can we subtract the pointers? Yes,

w

in ent the pointer and not the contents where it

+ w where y

th

inc enting yptr, it is pointing to som

program. Take this

d

b layed if we try to w

“ a pointer is used to hold the mem

not incre

address of a

Be caref le using pointers, as no warning w

As pointers can

cra

Remember that incrementing t

p

point to next element in the m

in

to, it can be written as (*yptr) +

p

T

y

p

Pointers are associated to some d

pointer to char etc. When a poin

a

For example, if we have a pointer to an integer, by incrementing the pointer the

address will be incremented by four bytes, provided the integer occupies four bytes on

that machine. If it is a pointer to float and float occupies eight bytes, then by

incrementing this pointer, its address will be incremen

c

c ill change the ad

M

taking with the use of simple pointer arithmetic. In the modern operating

w

option, select scientific

ke the addresses our

c the difference b

experiment with these.

We have seen that we can do different arithmetic operations with pointers. Let's see

can two pointers be added? Suppose we have two pointers yptr1 and yptr2 to integer

and written as yptr1 + yptr2 ; The compiler will show an error in this statement.

Think logically what we can obtain by adding the two memory addresses. Therefore,

n

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 164

we can. Suppose we have two pointers pointing to the same memory address. When

e subtract these, the answer will be zero. Similarly, if a pointer is pointing to the

int y[10], *yptr1, *yptr2;

 yptr1 = &y[0];

}

w

first element of an integer array while another pointer pointing to the second element

of the array. We can subtract the first pointer from second one. Here the answer will

be one, i.e. how many array elements are these two pointers apart.

Consider the following sample program:

/* Program using the pointer subtraction */

#include <iostream.h>

main ()

{

 yptr2 = &y[3];

cout << “ The difference = “ << yptr2 - yptr1;

The ou

nce = 3

tput of the program is:

The differe

In the above program, we have taken two integer pointers yptr1 and yptr2 and an

 the first element of

e array while yptr2 is pointing to the 4
th

 element of the array. The difference

ters can be shown by using cout statement. Here the result

ould be twelve. But the program will show the result as three. When we increment

r pointer by 1, we have seen that the address is changed by four. When we

tract pointers, it tells us the distance between the two elements that the pointers

y elements are between these two pointers. As

nd the yptr2 is pointing to y[3], so the answer is three. In

 way, it tells how many units of data type (pointers data type) are between the two

ointer it ter subtraction is allowed as it

et are the same as the data

pe of the pointer.

 mem

integer array y[10]. The pointer yptr1 is pointing to the address of

th

between these two poin

sh

an intege

sub

pointed to. It will tell us how many arra

the yptr1 is pointing to y[0] a

a

p s. Pointer add ion is not allowed, however, poin

gives the distance b ween the two pointers in units, which

ty

A ory image of an array with a pointer.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

165

 cin >> x ;

This diagram shows how an array occupies space in the memory. Suppose, we have

an integer array named y and yptr is a pointer to an integer and is assigned the address

of the first element of the array. As this is an integer array, so the difference between

each element of the array is of four bytes. When the yptr is incremented, it starts

pointing to the next element in the array.

Pointer Comparison

We have seen pointers in different expressions and arithmetic operations. Can we

compare pointers? Yes, two pointers can be compared. Pointers can be used in

conditional statements as usual variables. All the comparison operators can be used

with pointers i.e. less than, greater than, equal to, etc. Suppose in sorting an array we

are using two pointers. To test which pointer is at higher address, we can compare

them and take decision depending on the result.

Again consider the two pointers to integer i.e. yptr1 and yptr2. Can we compare

*yptr1 and *yptr2? Obviously *yptr1 and *yptr2 are simple values. It is the value of

integer yptr1, yptr2 points to. When we say *yptr1 > *yptr2, this is a comparison of

simple two integer values. Whenever we are using the dereference pointer (pointers

with *), all normal arithmetic and manipulation is valid. Whenever we are using

pointers themselves, then certain type of operations are allowed and restrictions on

other. Make a list what can we do with a pointer and what we cannot.

Consider a sample program as follows:

/* Program using the dereference pointer comparison */

#include <iostream.h>

main ()

{

 int x, y, *xptr, *yptr;

 cout << “ \n Please enter the value of x = “ ;

yptr

y[0] y[1] y[2] y[4] y[3]

3000 3004 3008 3012 3016 esses: Addr

yptr yptr++

CS201 – Introduction to Programming

 cout << “ \n Please enter the value of y = “;

 166

 cout << “ \n x is greater than y “;

else

 cout << “\n y is greater than x “;

 cin >> y ;

 xptr = &x;

 yptr = &y;

 if (*xptr > *yptr)

 {

 }

 {

 }

}

The output of the program is;

ease enter the value of x = 6

lease enter the value of y = 9

 Pl

 P

 y is greater than x

Pointer, String and Arrays

ypes i.e. char, int, float and double. Character strings are

ose, there is a word or name like Amir to store in one entity.

tore it into a char variable because it can store only one character. For this

r array is used. We can write it as:

char name [20];

clared an array name of 20 characters .It can be initialized as:

name[3] = ‘r’ ;

rray element is initialized with a single character enclosed in single quote. We

nnot is a syntax error. Is the

inated by

the end of the array.

We have four basic data t

racters. Supparrays of cha

not sWe can

purpose, a characte

We have de

name[0] = ‘A’ ;

name[1] = ‘m’ ;

name[2] = ‘i’ ;

ach aE

ca use more than one character in single quotes, as it

initialization of the array complete? No, the character strings are always term

null character ‘\0’. Therefore, we have to put the null character in

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

name[4] = ‘\0’ ;

 167

ase. Whenever

ack slash (\) is used, the compiler considers both the characters as single (also

known as escape characters). So ‘\n’ is new line character, ‘\t’ a tab character and ‘\0’

a null character. All of these are considered as single characters. What is the benefit of

having this null character at the end of the string? Write a program, do not use the null

character in the string and try to print the character array using cout and see what

happens? cout uses the null character as the string terminating point. So if cout does

not find the null character it will keep on printing. Remember, if we want to store

fifteen characters in an array, the array size should be at least sixteen i.e. fifteen for

the data and one for the null character. Do we always need to write the null character

at the end of the char array by ourselves? Not always, there is a short hand provided in

C, i.e. while declaring we can initialize the arrays as:

 char name[20] = “Amir”;

When we use double quotes to initialize the character array, the compiler appends null

character at the end of the string.

“Arrays must be at least one character space larger than the number of

printable characters which are to be stored”

Example:

Write a program which copies a character array into given array.

Solution:

Here is the complete code of the program:

/* This program copies a character array into a given array */

#include <iostream.h>

main()

{

 char strA[80] = "A test string";

 char strB[80];

 char *ptrA; /* a pointer to type character */

 char *ptrB; /* another pointer to type character */

 ptrA = strA; /* point ptrA at string A */

 ptrB = strB; /* point ptrB at string B */

 while(*ptrA != '\0')

 {

 *ptrB++ = *ptrA++; // copying character by character

 }

 *ptrB = '\0';

Here we are using two characters in single quotes. But it is a special c

b

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 168

 cout << “String in strA = ” << strA << endl; /* show strA on screen */

in strB = ” << strB << endl; /* show strB on screen */

 cout << “String

}

The output of the program is:

String in strB = A test string

String in strA = A test string

Explanation:

have declared a char array named strA of size 80 and initialized it with

some value say “A test String” using the double quotes. Here we don’t need to put a

null ch ter. insert it. But while declaring another

array strB of two char pointers *ptrA and *ptrB. The

objective of th rray into another array. We have assigned

the star g add d strB to ptrB. Now we have to run a loop

to copy all the characters from one array to other. To terminate the loop, we have to

know about the actual number of characters or have to use the string termination

haracter. As we know, null character is used to terminate a string, so we are using the

ondition in 'while loop' as: *ptrA != ‘\0’ , simply checking that whatever ptrA is

ointing to is not equal to ‘\0’. Look at the statement *ptrB++ = *ptrA++. What has

t of all, whatever ptrA is pointing to will be assigned

ll be copied to the

rst character of strB. Afterwards, the pointers will be incremented, not the values

they ar pointing to the 2
nd

 element of the array strA

nd ptrB is pointing to the 2 element of the array strB. In the 2
nd

 repetition, the loop

strA are copied to array strB. Is this program complete? No,

e array strB is not containing the null character at the end of the string. Therefore,

we hav cter to strB. Do we need to increment the

rray pointer? No, simply due to the fact that in the assignment statement (*ptrA++ =

ptrB++;), the pointers are incremented after the assignment. This program now

uccessfully copies one string to other using only pointers. We can also write a

nction for the string copy. The prototype of the function will be as:

void myStringCopy (char *destination, const char *source) ;

his function takes two arguments. The first one is a pointer to a char while second

rgument is a const pointer to char. The destination array will be changed and all the

haracters from source array are copied to destination. At the same time, we do not

ed the keyword const

Suppose, we

arac The compiler will automatically

the same size, we declare

is exercise is to copy one a

tin ress of array strA to ptrA an

c

c

p

happened in this statement? Firs

to the location where ptrB is pointing to. When the loop starts, these pointers are

pointing to the start of the array. So the first character of strA wi

fi

e pointing to. Therefore, ptrA is
nd

a

condition will be tested. If ptrA is not pointing to a null character the assignment for

the 2
nd

 element of the array takes place and so on till the null character is reached. So

all the characters of array

th

e explicitly assigned the null chara

a

*

s

fu

T

a

c

want that the contents of source should be changed. So we us

with it. The keyword const makes it read only and it can not be changed accidentally.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 169

the original

rray is passed. Therefore, any change in the array elements in the function will

 these are

simple variables, we will have to send the address and get the called program to

hange it. Therefore, we do not need to return anything from this function after

successfully copying an array into the other.

void m

{

 hile(*source != ‘\0’)

{

*destination = ‘\0’;

If we try to change the contents of source array, the compiler will give an error. The

body is same, as we have seen in the above program.

This function will not return anything as we are using pointers. It is automatically call

by reference. Whenever arrays are passed to functions, a reference of

a

change the actual array. The values will be written to the original array. If

c

Here is the code of the function. Write a program to test this function.

yStringCopy (char *destination, const char *source)

w

 *destination++ = *source++;

 }

}

We can also write the string copy function using arrays. Here is the code of the

yStringCopy function using arrays notation.

yStringCopy(char dest[], char source[])

 {

 int i = 0;

 i++;

m

 void m

 while (source[i] != '\0')

 {

 dest[i] = source[i];

 }

 dest[i] = '\0';

 }

Exercise:

1) Print out the address and the value of a character pointer pointing to some

character.

2) Write a function which copies an array of integers from one array to other

Tips

 While incrementing the pointers, use the parenthesis

 Increment and decrement the pointers while using arrays

 When a pointer is incremented or decremented, it changes the address by the

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 170

number of bytes occupied by the data type that the pointer points to

 Use key word const with pointers to avoid unwanted changes

 The name of array is a constant pointer. It cannot be reassigned

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

Lecture No. 16

Reading Material

Deitel & Deitel - C++ How to Program Chapter 5, 18

5.9, 5.10, 18.4

rays

nters to Pointers

 Command-line Arguments

 Exercises

)
l continue with the elaboration of the concept of pointers in this lecture. To

rther understand pointers, let's consider the following statement.

;

es it with a string. Remember the

achieve the same thing with the

Summary

 Pointers (continued)

 Multi-dimensional Ar

 Poi

 Tips

Pointers (continued
We wil

fu

char myName[] = "Full Name"

This statement creates a 'char' type array and populat

character strings are null ('\0') terminated. We can

use of pointer as under:

char * myNamePtr = "Full Name";

Full Name\0

Full Name\0 myName

myNamePtr

Let's see what's the difference between these two approaches?

When we create an array, the array name, 'myName' in this case, is a constant pointer.

The starting address of the memory allocated to string "FullName" becomes the

© Copyright Virtual University of Pakistan

171

CS201 – Introduction to Programming

 172

cation to which array names points to

an not be changed. In the second statement, the 'myNamePtr' is a pointer to a string

ays

s discussed above, the array name points to the starting memory location of the

emory allocated for the array elements. Here the question arises where the 'multi'

ill be pointing if we add 1 to ‘multi’.

e know that a pointer is incremented by its type number of bytes. In this case,

ulti' is an array of 'char' type that takes 1 byte. Therefore, ‘muti+1’ should take us to

contents of the array name 'myName' and the array name 'myName' can not be

assigned any other value. In other words, the lo

c

"FullName", which can always be changed to point to some other string.

Hence, the array names can be used as pointers but only as constant ones.

Multi-dimensional Arr

Now we will see what is the relationship between the name of the array and the

pointer. Suppose we have a two-dimensional array:

char multi[5][10];

In the above statement, we have declared a 'char' type array of 5 rows and 10

columns.

[0] [1] [2] [3] [5] [6] [7] [8] [9] [0]

A

m

w

W

'm

the second element of the first row (row 0). But this time, it is behaving differently. It

is pointing to the first element (col 0) of the second row (row 1). So by adding '1' in

the array name, it has jumped the whole row or jumped over as many memory

locations as number of columns in the array. The width of the columns depends upon

the type of the data inside columns. Here, the data type is 'char', which is of 1 byte. As

the number of columns for this array 'multi' is 10, it has jumped 10 bytes.

Remember, whenever some number is added in an array name, it will jump as many

rows as the added number. If we want to go to the second row (row 1) and third

column (col 2) using the same technique, it is given ahead but it is not as that straight

forward. Remember, if the array is to be accessed in random order, then the pointer

approach may not be better than array indexing.

We already know how to dereference array elements using indexing. So the element

at second row and third column can be accessed as 'multi[1][2]'.

75

72

68

82

80

[4]

79

69

67

73

77

83

1st row 1st col 2nd row 1st col

Multi-dimensional array in the memory

80

1] [

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 173

ereferencing using pointers we use '*' operator. In case of one-dimensional

rray, '*multi' means 'the value at the address, pointed to by the name of the array'.

 This ay name as pointer */

To do d

a

But for two-dimensional array '*multi' still contains an address of the first element of

the first row of the array or starting address of the array 'multi'. See the code snippet

to prove it.

/* program uses the multi-dimensional arr

#include <iostream.h>

void main(void)

{

 //To avoid any confusion, we have used ‘int’ type below

int multi[5][10];

 cout << "\n The value of multi is: " << multi;

 cout << "\n The value of *multi is: " << *multi;

}

Now, look at the output below:

The value of multi is: 0x22feb0

The va eb0 lue of *multi is: 0x22f

It is pertinent to note that in the above code, the array ‘multi’ has been changed to

nt’ from ‘char’ type to avoid any confusion.

o access the elements of the two-dimensional array, we do double dereferencing like

*multi'. If we want to go to, say, 4th row (row 3), it is achieved as 'multi + 3' . Once

ached in the desired row, we can dereference to go to the desired column. Let's say

e want to go to the 4th column (col 3). It can be done in the following manner.

((multi+3)+3)

his is an alternative way of manipulating arrays. So 'multi[3][3]' element can also be

de

flects it.

‘i

T

'*

re

w

T

accessed by '*(*(multi+3)+3)'.

There is another alternative of doing this by using the normal pointer. Following co

re

/* This program uses array manipulation using indexing */

#include <iostream.h>

void main(void)

{

 int multi [5][10];

 int *ptr; // A normal ‘int’ pointer

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 174

 ptr = *multi; // ‘ptr’ is assigned the starting address of the first row

 for (int

 {

 mult

 co

 }

 /* Array ma

 cout "\n Array manipulated using pointer is: \n";

 /* Initialize the array elements */

 for(int i=0; i < 5; i++)

 {

 j=0; j < 10; j++)

 i[i][j] = i * j;

 }

 }

 /* Array manipulation using indexing */

 cout << "\n Array manipulated using indexing is: \n";

 for(int i=0; i < 5; i++)

 {

 for (int j=0; j < 10; j++)

 {

 cout << multi[i][j] << '\t';

 }

 ut << '\n';

nipulation using pointer */

 <<

 for(int k=0; k < 50; k++, ptr ++) // 5 * 10 = 50

 {

 cout << *ptr << '\t';

 }

}

The output of this program is:

Array manipulated using indexing is:

0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

0 2 4 6 8 10 12 14 16 18

0 3 6 9 12 15 18 21 24 27

0 4 8 12 16 20 24 28 32 36

 Array manipulated using pointer is:

0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5

6 7 8 9 0 2 4 6 8 10 12 14 16 18 0 3

6 9 12 15 18 21 24 27 0 4 8 12 16 20 24

28 32 36

The above line of output of array manipulation is wrapped because of the fixed width

of the table. Actually, it is a single line.

Why it is a single line? As discussed in the previous lectures, computer stores array in

straight line (contiguous memory locations). This straight line is just due to the fact

that a function accepting a multi-dimensional array as an argument, needs to know all

the dimensions of the array except the leftmost one. In case of two-dimensional array,

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 175

e function needs to know the number of columns so that it has much information

bout the end and start of rows within an array.

 is recommended to write programs to understand and practice the concepts of

ouble dereferencing, single dereferencing, incrementing the name of the array to

ccess different rows and columns etc. Only hands on practice will help understand

e concept thoroughly.

ointers to Pointers

hat we have been talking about, now we will introduce a new terminology, is

n case of single dereference, the value of the pointer is the address of the variable

at contains the value desired as shown in the following figure. In the case of pointer

nter contains the address of the second

the address of the variable, which contains the desired value.

o Pointers are very useful. But you need to be very careful while using the

ount the students of

e of the array as the number of students, say 53. Being

look ahead and think about the maximum size of the

th

a

It

d

a

th

P

W

actually a case of ‘Pointer to Pointer’. We were doing double dereferencing to access

the elements of a two-dimensional array by using array name (a pointer) to access a

row (another pointer) and further to access a column element (of ‘int’ data type).

I

th

to pointer or double dereference, the first poi

pointer, which contains

address

value

ointers t

Si l I di i (i l d f)

D bl I di i (d bl d f)

address

address

value

P

technique to avoid any problem.

Earlier, we used arrays and pointers interchangeably. We can think that a pointer to

pointer is like a pointer to a group of arrays because a pointer itself can be considered

as an array. We can elaborate with the following example by declaring character

trings. s

While using an array, we at first decide about the length of the array. For example,

you are asked to calculate the average age of your class using the array. What would

e the dimension of the array? Normally, you will look around, cb

the class and keep the same siz

 good programmer, you will a

class in the future and decide to take the size of the array as 100. Here, you have taken

care of the future requirements and made the program flexible. But the best thing

could be: to get the size of the array from the user at runtime and set it in the program

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 176

stead of declaring the array of maximum size. We will cover this topic at some later

hen we initialize an array with a character string, the number of characters in the

er to include the ‘\0’

haracter). eg. it is a single-dimensional array:

is 13.

ppose, we have a group of character strings and we want to store them in a two-

 As we already discussed, an array has same number of columns in

a[5][10] array has 10 columns in each row. Now if we store character

s of variable length in a two-dimensional array, it is necessary to set the number

gest character string in the group (plus

s of the array would be wasted for

trings with shorter length as compared to the number of columns. We

t want to waste this space and want to occupy the minimum space required to

e a character string in the memory.

ke a [5] [10], there is no way of

 variable space for rows. All the rows will have fixed ’10’ number of columns in

n case of an Array of Pointers, we can allocate variable space. An array

inters is used to store pointers in it. Now we will try to understand how do we

an array of pointers. The following statement can help us in comprehending it

erly.

char * myarray[10];

s to character’. If we take out the size

e array, it will become variable as:

char * myarray[] = {“Amir”, “Jehangir”};

inte tes for ‘Amir’ plus 1 byte for ‘\0’) of

mory has been allocated. For second pointer myarray[1], 9 bytes of memory is

llocated. So this is variable allocation depending on the length of character string.

in

stage.

W

character string determines the length of array (plus one charact

c

char name[] = “My full name”;

The size of the ‘name’ array

Su

dimensional array.

each row, e.g.

string

of columns of the array as the length of the lon

1 byte for ‘\0’ character). But the space within row

all character s

don’

stor

If we use the conventional two-dimensional array li

using

this case. But i

of po

declare

prop

We read it as: ‘myarray is an array of 10 pointer

of th

For first po r myarray[0], 5 bytes (4 by

Amir\0

Jehangir\0

myarray

me

a

What this construct has done for us? If we use normal two-dimensional array, it will

require fixed space for rows and columns. Therefore, we have used array of pointers

here. We declared an array of pointers and initialized it with variable length character

strings. The compiler allocates the same space as required for the character string to

fit in. Therefore, no space goes waste. This approach has huge advantage.

We will know more about Pointers to Pointers within next topic of Command-line

Arguments and also in the case study given at the end of this lecture.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 177

ments

ntil now, we have always written the ‘main()’ function as under:

ut we are now in a position to write something inside the parenthesis of the ‘main()’

 C language, whenever a program is executed, the user can provide the

e argument1 argument2 ……argumentN

Command Line Argu

U

main()

{

 . . . // code statements

}

B

function. In

command-line arguments to it like:

C:\Dev-cpp\work>Program-nam

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

we rom the command line just before executing the

mechanism. In C, this can be done by using

rgc’ and ‘argv’ arguments inside the main() function as:

 ‘main()’ function. However, you can give the desired names to them.

argc =

rgv = It is a pointer to an array of character strings that contain the arguments, one

er to pointer to char.

We have so far been taking input using the ‘cout’ and ‘cin’ in the program. But now

can also pass arguments f

program. For this purpose, we will need a

‘a

void main(int argc, char **argv)

{

 . . .

}

Note that ‘argc’ and ‘argv’ are conventional names of the command line parameters

of the

Number of command line arguments. Its type is ‘int’.

a

per string. ‘**argv’ can be read as point

© Copyright Virtual University of Pakistan

178

CS201 – Introduction to Programming

 179

 int disp, count;

 }

 if(argc == 3 && !strcmp(*(argv + 2), "display"))

 else

 }

for(count = atoi(*(argv + 1)); count; --count)

 }

’causes the computer to beep

 return 0;

This has been further explained in the following program. It counts down from a

value specified on the command line and beeps when it reaches 0.

/* This program explains the use of command line arguments */

#include <iostream.h>

#include <stdlib.h> //Included for ‘atoi()’ function

main(int argc, char **argv)

{

 if(argc < 2)

 {

 cout << "Enter the length of the count\n";

 cout << "on the command line. Try again.\n";

 return 1;

 {

 disp = 1;

 }

 {

 disp = 0;

 {

 if(disp)

 {

 cout << count <<' ';

 }

 cout << '\a'; // ’\a

}

You must have noted that if no arguments are specified, an error message will be

rogram that uses command-line arguments to issue

tructions if an attempt has been made to run it without the availability of proper

forma nt containing the number is converted into an integer

sing the standard function ‘atoi()’. Similarly, if the string ‘display’ is present as the

ill also be displayed on the screen.

arguments but most operating systems do not

maximum length of command-line. These

printed. It is common for a p

ins

in tion. The first argume

u

second command-line argument, the count w

In theory, you can have up to 32,767

allow more than a few because of the fixed

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 180

 option. Using command-

ne arguments lends your program a very professional touch and facilitates the

ase Study: A Card Shuffling and Dealing Simulation

 pointer

pointer mechanism.

 deck of cards and to deal it out.

 The are 4 uits in

s 13 c

ueen and King.

A deck has 13 * 4 = 52 cards in total.

roblem Analysis, Design and Implementation:

ent, we are dealing with the deck of cards,

 identified by its suit i.e. it may be one of the

onds or Clubs. Also every card has one value in the range

 to King. So we want to identify them in our program and our

use English like ‘five of Clubs’. We will declare one array of suit

*suite[4] = {“Hearts”, “Diamonds”, “Clubs”, “Spades” };

 of values of cards:

ce[13] = { “Ace”, “Deuce”, “Three”, “Four”, “Five”, “Six”,

”, “Nine”, “Ten”, “Jack”, “Queen” and “King”};

iced the use of array of pointers and ‘const’ keyword here. Both the

n a way to avoid any wastage of space. Also notice the use of

tants because we want to use these values

em.

ck which has 52 cards. The deck is the one that is being shuffled

 it has some algorithmic requirements.

 be size and structure of the deck. It can either be linear array of

uites and 13 values (faces) per suit. Logically, it makes sense to

array of 4 suites and 13 faces per suit like:

3] = {0};

rms of Algorithm Analysis.

 with the 0 value, so that it holds no cards at start or it is

distribute 52 cards. Who will load the ‘deck’ first, shuffle the

arguments are normally used to indicate a file name or an

li

program’s use in batch files.

C

Now we want to move on to a real-world example where we can demonstrate

to

Problem:
Write a program to randomly shuffle the

Some Facts of Card Games:

- re s one deck: Hearts, Spades, Diamonds and Clubs.

- Each suit ha ards: Ace, Deuce, Three, Four, Five, Six, Seven, Eight, Nine,

Ten, Jack, Q

-

P

As obvious from the problem statem

required to be identified. A card is

Hearts, Spades, Diam

starting from Ace

requirement is to

like:

const char

The second array is

const char *fa

“Seven”, “Eight

You must have not

arrays are declared i

‘const’ keyword. We declared arrays as cons

without modifying th

Now we come to de

and dealt. Definitely,

Firstly, what should

52 elements or 4 s

have two-dimensional

int deck[4][1

We will now think in te

The ‘deck’ is initialized

empty. We want to

cards and deal them out. How to do it?

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 181

52 cards (a deck) randomly, therefore, we can think of a loop to

ly in every iteration. We will randomly choose one out of the 4

lue out of 13 values and store the card with its card number

y this way, we will be writing numbers in the two-dimensional

domly. That functionality is part of ‘shuffle ()’ function.

 int wDeck[][13])

lumn, card;

card = 1; card <= 52; card++){

do{

 row = rand() % 4;

column = rand() % 13;

} while(wDeck [row][column] != 0);

wDeck[row][column] = card;

the ‘rand()’ function usage to generate random numbers. We are

mly generated number by 4 and 13 to ensure that we get numbers

ange. That is 0 to 3 for suites and 0 to 12 for values or faces. You

n inside the ‘while statement, ‘wDeck[row][column] != 0 ‘.

e don’t overwrite row and column, which has already been

ccupied by some card.

Now we want to deal the deck. How to deal it?

At first, search for card number 1 inside the deck, wherever it is found inside the

‘deck’ array, note down the row of this element. Use this row to get the name of the

 ‘suite’ array. Similarly use the column to take out the value of the card

om the ‘face’ array.” See that the deal function is quite simple now.

1; card <= 52; card++)

 for(column = 0; column <= 12; column++)

 if(wDeck[row][column] == card)

cout << card << ". " <<wFace[column]

<< " of " << wSuit [row] << '\n';

r

he

w

‘ran

As we want to select

get one card random

suites and select one va

value in the deck. B

array of ‘deck’ ran

 void shuffle(

{

 int row, co

 for (

 }

 }

You have noticed

dividing the rando

within our desired r

also see the conditio

This is to ensure that w

o

“

suite from the

fr

 void deal(const int wDeck[][13], const char *wFace[], const char *wSuit[])

{

 row, column; int card,

 for (card =

 for(row = 0; row <= 3; row++)

}

He e, we are not doing binary search that is more efficient. Instead, we are using

simple brute force search. Also see the ‘for loops’ carefully and how we are printing

desired output. t

No we will discuss a little bit about the srand() function used while generating

random numbers. We know that computers can generate random numbers through the

d()’ function. Is it truly random? Be sure , it is not truly random. If you call

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 182

‘ran

you want your number to be really random number, it is better to set the sequence to

art every time from a new value. We have used ‘srand()’ function for this purpose. It

generator with a different value every time to generate true random numbers. We call

rand()’ function with a different value every time. The argument to ‘srand()’

one

of s s an argument so that the seed to

e random number generator is a different number. It means that the random number

ter executing it, but this is

ot the objective of this exercise. You are required to study the problem and see the

poi e in the

eal world problem etc.

 Card shuffling and dealing program */

#include <iostream.h>

#include <stdlib.h>

#include <time.h>

void shuffle(int [] [13]);

void deal(const int [][13], const char *[], const char *[]);

int main()

{

 const char *suite[4] = {"Hearts", "Diamonds", "Clubs", "Spades" };

 const char *face[13] = { "Ace", "Deuce", "Three", "Four", "Five", "Six", "Seven",

"Eight", "Nine", "Ten", "Jack", "Queen", "King"};

 int deck[4][13] = { 0 };

 srand(time(0));

 shuffle(deck);

 deal(deck, face, suite);

 return 0;

}

void shuffle(int wDeck[][13])

{

 int row, column, card;

 for (card = 1; card <= 52; card++){

 do{

 row = rand() % 4;

 column = rand() % 13;

d()’ function again and again. It will give you numbers in the same sequence. If

st

is a seed to the random number generator. Seed initializes the random number

‘s

function is taken from the ‘time()’ function which is giving us a new value after every

 second. Every time we try to run the program, ‘time()’ returns a different number

econds, which are passed to ‘srand()’ function a

th

generator now generates a different sequence of random numbers.

Although, you can copy this program and see the output af

n

constructs very carefully. In this problem, you have examples of nested loops, array of

nters, variable sized strings in an array of pointers and random number usag

r

/*

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 183

 } while(wDeck [row][column] != 0);

ow][column] = card;

}

Deck[][13], const char *wFace[], const char *wSuit[])

 for (card = 1; card <= 52; card++)

 for(column = 0; column <= 12; column++)

 if(wDeck[row][column] == card)

[row] << '\n';

 wDeck[r

}

void deal(const int w

 {

 int card, row, column;

 const char *space;

 for(row = 0; row <= 3; row++)

 cout << card << ". " <<wFace[column] << " of " << wSuit

}

 sample output of the program is:

onds

rts

u

4. Kin f He

5. Que of C

6. Five of Clubs

7. Queen of Hearts

8. Eight of Hearts

9. Ace of Diam nds

10. Ten of Dia onds

11. Se of S

12. Te f Clu

3. Seven of Clubs

4. Three of Spades

15. Deuce of Clubs

A

1. Six of Diam

2. Ten of Hea

3. Nin f Cle o bs

g o arts

en lubs

o

m

ven pades

n o bs

1

1

16. Eight of Diamonds

7. Eight of Clubs 1

18. Nine of Spades

19. Three of Clubs

20. Jack of Clubs

21. Queen of Spades

22. Jack of Hearts

23. Jack of Spades

24. Jack of Diamonds

25. King of Diamonds

26. Seven of Hearts

27. Five of Spades

28. Seven of Diamonds

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

29. Deuce of Hearts

30. Ace of Spades

31. Five of Diamonds

32. Three of Hearts

33. Six of Clubs

34. Four of Hearts

35. Ten of Spades

36. Deuce of Spades

37. Three of Diamonds

 184

0. Ace of Clubs

38. Eight of Spades

39. Nine of Hearts

4

41. Four of Spades

42. Queen of Diamonds

3. King of Clubs 4

44. Five of Hearts

45. Ace of Hearts

46. Deuce of Diamonds

47. Four of Diamonds

48. Four of Clubs

49. Six of Hearts

50. Six of Spades

51. King of Spades

52. Nine of Diamonds

Exercises

1. Write the program ‘tail’, which prints the last n lines of its input. By default, n is

ptional argument, so that

ips

 Pointers and arrays are closely related in C. The array names can be used as

ers but only as constant pointers.

 A f ing a multi-dimensional array as a parameter must minimally

def he leftmost one.

 e er is incremented, it points to the memory location of the next

ent of o-dimensional array, if you add some

10,

let’s say, but it can be changed by an o

tail -n

prints the last n lines.

T

point

unction receiv

ine all dimensions except t

Each tim a point

elem its base type but in case of tw

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 185

n er in a two-dimensional array name, it will jump as many rows as the added

ber.

 If the array is to be accessed in random order, then the pointer approach may not

 Pointers may be arrayed (stored in an array) like any other data type.

s to pointers.

umb

num

be better than array indexing.

 The use of pointers may reduce the wastage of memory space. As discussed in this

lecture if we store a set of character strings of different lengths in a two-

dimensional array, the memory space is wasted.

 An array of pointers is the same as pointer

 Although, you can give your desired names to the command line parameters

inside ‘main()’ function but ‘argc’ and ‘argv’ are conventionally used.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 186

1

Reading Material

Lecture No. 7

Deitel & Deitel - C

30, 5.31, 5.32,

–

16.33 (Pages 869 –

884)

,

g may be handled. Before actually discussing the subject, it is

ertinent to know how the things were going on before the evolution of the concept of

ere being developed in BELL

aboratories, the scientists wanted to publish the articles. They needed a text editor to

hat they needed was some easy mechanism by which the

matted and published. We are talking about the times when PCs

 did not exist. It may be very strange thing for you people who

an perform the tasks like making the characters bold, large or format a paragraph

++ How to Program Chapter 5

 5.29,5.

5.33, 5.34

 Chapter 16

 16.16

Summary

 String Handling

 String Manipulation Functions

 Character Handling Functions

 Sample Program

 String Conversion Functions

 String Functions

 Search Functions

 Examples

 Exercises

String Handling

We have briefly talked about 'Strings' in some of the previous lectures. In this lecture

you will see how a strin

p

'strings'.

When C language and UNIX operating system w

L

publish the articles. W

articles could be for

and word processors

c

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 187

 help of word processors these days. Those scientists had not such a facility

ailable with them. The task of writing article and turning into publishable material

as ma e with the help of typewriters. Then these computer experts decided to

t editing in an easy

anner. The resultant efforts led to the development of a program for editing the text.

ands were

itten as a part of the text and were processed on out put. Later, such programs were

olved erted for the functions like making the character

. The effect of this command could be preview and then modified if needed.

s again, we will discuss in detail the in-built

nctio to handle the strings.

in Ma ctions

ctions to manipulate strings. To understand the

io s, let’s lock (or unit) of a string i.e., a character. Characters

ted rs in terms of numbers. There is a code number for

 computer. Mostly the computers use ASCII (American

ation Interchange) code for a character to store it. This is

r memory for manipulation. It is used as an output in the form of

ct r. We can write a program to see the ASCII values.

av dat type c ore a character. A character includes every thing, which

 can a, full stop and colon etc

numbers, they are treated

her data type is called as int, which

rs are stored in side computer as

m. A character is stored in the

ns that 2
8

(256) different combinations for

to ascertain what number it stores, when we

we will see what character will be displayed

emory.

e code of the program, which displays the characters and their corresponding

teger, values (ASCII codes) as under.

n the program the statement c = i ; has integer value on right hand side (as i is an int)

lay the value of i and c. It shows us

 the ASCII code table

iostream.h>

int i, char c ;

for (i = 0 ; i < 256 ; i ++)

 cout << i << “\t” << c << “\n” ;

with the

av

w inly don

develop a program, which could help in the processing of tex

m

The process to edit text was called text processing. The in- line comm

wr

ev in which a command was ins

bold

Now coming to the topic of string

fu ns

Str g nipulation Fun

funC language provides many

ctfun n consider building b

 inside the computeare represen

each character, used by a

ode for InformStandard C

used in the compute

chara e

e h a har to stW e a

we type with a keyboard for example white space, comm

 also characters. Though, as all are characters. 0, 1, 2 are

differently, yet they are typed as characters. Anot

stores whole numbers. As we know that characte

ted in the same fornumbers so these can be manipula

memory in one byte i.e. 8 bits. It mea

different values can be stored. We want

 other words, press a key on the board. In

en we have a number in mwh

hT

ni

I

while c has its character representation. We disp

the characters and their integer values.

//This program displays

include <

main ()

{

 {

 c = i ;

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 }

}

In the output of this program, we will see integer numbers and their character

esentation. For example, there is a character, say white space (which we use

ords). It is a non-printab a space. From the

values o get the

 adding 1 to So what we

 is the valu

n

s to

ctype.h. The programs

on character data must have included this

ctype.h

bed

s a

s a

tion

 will return true for alphabet a-z for small and capital

 (is

false

th

repr

between two w le character and leaves

ASCII table, we can see that the f a-z and A-Z are continuos. We can

value of an alphabet letter by the value of its previous letter.

need to remember as a baseline e of ‘a’ and ‘A’.

Character Handling Functio

s

C language provides many function

character data. These functions are found in the header file

 perform useful tests and manipulations of

that have character manipulation or tests

header file to avoid a compiler error. Each function in receives a character (an

int) or EOF (end of file; it is a special character) as an argument. ctype.h has many

functions, which have self-explanatory names.

Of these, int isdigit (int c) takes a simple character as its argument and returns true or

false. This function is like a question being asked. The question can be descri

whether it is a character digit? The answer may be true or false. If the argument i

numeric character (digit), then this function will return true otherwise false. This i

useful function to test the input. To check for an alphabet (i.e. a-z), the func

isalpha can be used. isalpha

letters. Other than alphabets, it will return false. The function isalnum

alphanumeric) returns true if its argument is a digit or letter. It will return

otherwise. All the functions included in ctype.h are shown in the following table wi

their description.

 Prototype Description

 i (int c) Returns true if c is a digit and false otherwise. nt isdigit

 int isalpha(int c) Returns true if c is a letter and false otherwise.

 i true if c is a digit or a letter and false otherwise. nt isalnum(int c) Returns

 i t isxdi cimal digit character and false

herwise.

n git(int c) Returns true if c is a hexade

ot

 int islow if c is a lowercase letter and false otherwise. er(int c) Returns true

 int isupper(int c) Returns true if c is an uppercase letter; false otherwise.

 i) If c is an uppercase letter, tolower returns c as a lowercase letter.

 the argument unchanged.

nt tolower(int c

Otherwise, tolower returns

 i er returns c as an uppercase letter.

O

nt toupper(int c) If c is a lowercase letter, toupp

therwise, toupper returns the argument unchanged.

© Copyright Virtual University of Pakistan

188

CS201 – Introduction to Programming

 189

 int isspac R e ('\n'), space

(' '), form feed ('\f'), carriage return ('\r'), horizontal tab ('\t'), or

vertical tab ('\v')—and false otherwise

e(int c) eturns true if c is a white-space character—newlin

 i control character and false otherwise. nt iscntrl(int c) Returns true if c is a

 int ispunct(int c) Returns true if c is a printing character other than a space, a digit,

or a letter and false otherwise.

 i s true value if c is a printing character including space (' ')

and false otherwise.

nt isprint(int c) Return

 i rns true if c is a printing character other than space (' ') and

 otherwise.

nt isgraph(int c) Retu

false

The functions tolower and toupper are conversion functions. The tolower function

converts its uppercase letter argument into a lowercase letter. If its argument is other

than uppercase letter, it returns the argument unchanged. Similarly the toupper

function converts its lowercase letter argument into uppercase letter. If its argument is

other than lowercase letter, it returns the argument without effecting any change.

Let’s consider the following example to further demonstrate the use of the functions

 whi

Then the string entered is checked to count different types of characters (digit, upper

e ke

d in

different types will be displayed. In this exam using a function getchar(),

tion is

While carrying out character manipulation, w is

function reads a single character from the input buffer or keyboard. This function can

get the new line character ‘\n’ (the ENTER key) so we run the loop for input until

the g

(i.e. new line character ‘\n’), the loop is termi t

returns a value. When we use an assignment s

getchar()), the value assigned to the left hand

a to

char c. Afterwards, this value is compared wit

equal inside the loop, we apply the tests on c t ter,

Following is the code of this program.

 using <ctype.h> l

#include <iostream.h>

include <stdio.h>

ample Program S

of ctype.h. Suppose, we write a program ch prompts the user to enter a string.

and lowercase letters, white space etc). W

character entered. When the user ends the inp

ep a counter for each category of

ut, the number of characters entere

ple we are

instead of cin to get the input. This func defined in header file as stdio.h.

e use the getchar() function. Th

user presses the ENTER key. As soon as etchar() gets the ENTER key pressed

nated. We know that, every C statemen

tatement (as used in our program c =

side variable is the value of the

statement too. Thus, the statement (c = getch r()) returns the value that is assigned

h the new line character ‘\n’. If it is not

o check whether it is uppercase let

lowercase letter or a digit etc. In this program

manipulated character.

, the whole string entered by the user is

// Example: analysis of text ibrary

#

#include <ctype.h>

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 190

ain()

 lc++;

out << "You typed:"<< endl;

wer case letters = "<< lc<< endl;

pper case letters = " << uc <<endl;

m

{

 char c;

 int i = 0, lc = 0, uc = 0, dig = 0, ws = 0, pun = 0, oth = 0;

 cout << "Please enter a character string and then press ENTER: ";

 // Analyse text as it is input:

 while ((c = getchar()) != '\n')

 {

 if (islower(c))

 else if (isupper(c))

 uc++;

 else if (isdigit(c))

 dig++;

 else if (isspace(c))

 ws++;

 else if (ispunct(c))

 pun++;

 else

 oth++;

 }

 // display the counts of different types of characters

c

 cout<< "lo

 cout << "u

cout<< "digits = " << dig << endl;

cout<< "white space = "<< ws << endl;

cout<< "punctuation = "<< pun<< endl;

out<< "others = "<< oth; c

}

A sample output of the program is given below.

ter string and then press ENTER: Sixty Five = 65.00

ou typed:

tters = 7

per case letters = 2

unctuation = 2

Please enter a charac

Y

lower case le

up

digits = 4

white space = 3

p

others = 0

String Conversion Functions

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 191

unctions, used for different conversions. When we

 the type of variable in which the value is being

that type into another type. These conversion

n argument of a type and return it after converting into another type.

e below.

 Pr n

The header file stdlib.h includes f

get input of a different type other than

stored, it warrants the need to convert

functions take a

These functions and their description are given in the tabl

 ototype Descriptio

 double atof(const char *nPtr) Converts the string nPtr to double.

 Int atoi(const char *nPtr) Converts the string nPtr to int.

 long atol(const char *nPtr) Converts the string nPtr to long int.

*

 Converts the string nPtr to double. double strtod(const char *nPtr, char

*endPtr)

 long strtol(const char *nPtr, char

*

 Converts the string nPtr to long.

*endPtr, int base)

 unsigned long strtoul(const char

*nPtr, char **endPtr, int base)

 Converts the string nPtr to unsigned long.

Use of these functions:

While writing main () in a program, we can put them inside the parentheses of main.

arg c is the count of

ram including the name of the program itself

hile arg v is a vector of strings or an array of strings. It is used while giving

 will

for example 12.8 or

5) are stored as strings. While using the numbers in the program, we need these

ollowing is a simple program which demonstrate the use of atoi function. This

ompts the user to enter an integer between 10-100, and checks if a valid

eger is entered.

use of atoi function

.h>

int anInteger;

char myInt [20]

0-100 : ";

nt;

 0)

 cout << "\nError : Not a valid input"; // could be non numeric

 anInteger = atoi(myInt);

 if (anInteger < 10 || anInteger > 100)

 cout << "\nError : only integers between 10-100 are allowed!";

 else

‘int arg c, char ** arg v are written inside the parentheses. The

number of arguments passed to the prog

w

command line arguments to the program. The arguments in the command line

always be character strings. The number in the command line (

4

conversion functions.

F

program pr

int

//This program demonstrate the

include <iostream

include <stdlib.h>

main()

{

 cout << "Enter an integer between 1

 cin >> myI

 if (atoi(myInt) ==

 else

 {

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 cout << "\n OK, you have entered " << anInteger;

 }

}

The output of the program is as follows.

Enter an integer between 10-100 : 45.5

OK, you have entered 45

String Functions

We know a program to guess a number, stored in the computer. To find out a name

(which is a character array) among many names in the memory, we can perform string

comparison on two strings by comparing a character of first string with the

length

py a

heir description. All

corresponding character of the second string. Before doing this, we check the

of both the strings to compare. C library provides functions to compare strings, co

string and for other string manipulations.

pulation functions and tThe following table shows the string mani

these functions are defined in the header file string.h, in the C library.

 Function prototype Function description

ch st char *s2) Copies string s2 into character array s1.

The value of is returned.

ar *strcpy(char *s1, con

s1
ch

2

ar *strncpy(char *s1, const char *s2,

 size_t n)

Copies at most n characters of string s
into array s1. The value of s1 is

returned.

ch t

inating null character of s1. The

value of is returned.

ar *strcat(char *s1, const char *s2) Appends string s2 to array s1. The firs

character of s2 overwrites the

term

s1
c strncat(char *s1, conshar * t char 2, ters of string s2*s Appends at most n charac

 size_t n) to array s1. The first character of s2

overwrites the terminating null character

of s1. The value of s1 is returned.

int strcmp(const char *s1, const ch

=

ar *s2) Compares string s1 to s2. Returns a

negative number if s1 < s2, zero if s1 =

s2 or a positive number if s1 > s2

int strncmp(const char *s1, const c

 size_t n)

har *s2, Compares up to n characters of string

to s2. Returns a negative number if s1 <

s2, zero if s1 == s2 or a positive number

if s1 > s2.

s1

 int strlen (const char *s) Determines the length of string s. The

number of characters preceding the

terminating null character is returned.

Let’s look at the string copy function which is strcpy. The prototype of this function

is

© Copyright Virtual University of Pakistan

192

CS201 – Introduction to Programming

 193

 char *strcpy(char *s1, con

gument is a pointer to a st

pointer to that resultant string is retu

 keyword is used before the na

any change in the source string (i.e.

a string instead of the entire string,

strncpy has arguments a pointer to g

(s2) . The third argument is int n. H

to copy from s2 into s1. Here s1 mu

characters.

he next function is strcat (string concatenation). This function concatenates (joins)

r example, in a string, we have first name of a student, followed by

ar *strcat(

 the end of

 of s1 are not overwritten. We can

f characters of s2 to s1 by using the function strncat. Here we

three arguments, a character pointer to s1, a character pointer to

ent is the number of characters to be concatenated. The prototype

unction is written as

char *strncat(char *s1, const char *s2, size_t n)

onstrate the use of strcpy, strncpy,

ns. To begin with, we can fully understand the use of the

.

ogram to display the operation of the strcpy() and strncpy()

id m

har string1[15]="String1";

ut<<"Before the copy :"<<endl;

<<endl;

//copy string1 into string2

st char *s2)

Here the first argument is a pointer

second ar

to a character array or string s1 whereas the

ring s2. The string s2 is copied to string s1 and a

rned. The string s2 remains the same. We can

describe the string s1 as the destina

source remains the same during the

const

tion string and s2 as the source string. As the

 execution of strcpy and other string functions, the

me of source string. The const keyword prevents

 s2). If we want to copy a number of characters of

the function strncpy is employed. The function

destination strings (s1), a pointer to source strin

ere n is the number of characters which we want

st be large enough to copy the n number of

T

two strings. Fo

another string, the last name of the student is found. We can concatenate these two

strings to get a string, which holds the first and the last name of the student. For this

purpose, we use the strcat function. The prototype of this function is ch

char *s1, const char *s2). This function writes the string s2 (source) at

the string s1(destination). The characters

concatenate a number o

provide the function

s2 while third argum

of this f

Examples

le examples to demLet’s consider some simp

strcat and strncat functio

strncpyfunction strcpy and

Example 1
//Pr

include<iostream.h>

include<string.h>

vo ain()

{

c

char string2[15]="String2";

co

cout<<"String 1:\t"<<string1<<endl;

cout<<"String 2:\t"<<string2

 //copy the whole string

strcpy(string2,string1);

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

194

out<< opy :"<<endl;

out<<"String 1:\t"<<string1<<endl;

y three characters of the string1 into string3

cout << “strncpy (string3, string1, 3) = “ << string3 ;

c "After the c

c

cout<<"String 2:\t"<<string2<<endl;

//cop

 strncpy(string3, string1, 3);

}

Following is the output of the program.

Before the copy :

tring 1: String1

tring 2: String2

1

) = Str

S

S

After the copy :

String 1: String

String 2: String1

Strncpy (string3, string1, 3

Example 2 (strcat and strncat)

the use of function strcat and strncat.

t() and strncat()

include <iostream.h>

nclude <string.h>

3 << endl;

 “<< strcat(s1, s2);

cout << "strncat(s3, s1, 6) = “ << strncat(s3, s1, 6);

}

The following example demonstrates

//Program to display the operation of the strca

#

#i

int main()

{

char s1[20] = "Welcome to ";

char s2[] = "Virtual University ";

char s3[40] = "";

out<< "s1 = " << s1 << endl << "s2 = " << s2 << endl << "s3 = " << sc

cout<< "strcat(s1, s2) =

The output of the program is given below.

s1 = Welcome to

s2 = Virtual University

s3 =

strcat(s1, s2) = Welcome to Virtual University

strncat(s3, s1, 7) = Welcome

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

195

Now we come across the function strcmp. This function compares two strings, and

depending upon the result of the comparison. The prototype

int strcmp(const char *s1, const char *s2)

s a number less than zero (a negative number), if s1 is less than

s1 and s2 are identical and returns a positive number (greater than

ara ter in string and lower and upper case

re not identical.

sed to compare a number of

ings. The prototype of this function is

 const char *s1, const char *s2, size_t n)

gs and n is the number upto which the characters of s1

s also int. It returns a negative number if first n

haracters of s2. It returns zero if n characters of

entical. However, it returns a positive number if n

greater than n characters of s2.

e will talk about the function, ‘strlen’ (string length) which is used to

ith

ng.

returns an integer value

f this function iso

This function return

2. It returns zero ifs

zero) if s1 is greater than s2. The space ch c a

red while comparing two strings. So the strings “Hello”,letters are also conside

“hello” and “He llo” are three different strings these a

here is a function strncmp, which can be uSimilarly t

characters of two str

int strncmp(

inHere s1 and s2 are two str

and s2 are compared. Its return type i

an first n ccharacters of s1 are less th

f s2 are ids1 and n characters o

haracters of s1 arec

Now w

determine the length of a character string. This function returns the length of the

string passed to it. The prototype of this function is given below.

int strlen (const char *s)

This function determines the length of string s. the number of characters preceding the

terminating null character is returned.

Search Functions

C provides another set of functions relating to strings, called search functions. W

the help of these functions, we can do different types of search in a string. For

example, we can find at what position a specific character exists. We can search a

character starting from any position in the string. We can find the preceding or

proceeding string from a specific position. We can find a string inside another stri

These functions are given in the following table.

 Function prototype Function description

c n stringhar *strchr(const char *s, int c); Locates the first occurrence of character c i

s. If c is found, a pointer to c in s is returned.

Otherwise, a NULL pointer is returned.

s

co

ize_t strcspn(const char *s1,

nst char *s2);

Determines and returns the length of the initial

segment of string s1 consisting of characters not

contained in string s2.

s

ch

lize_t strspn(const char *s1, const

ar *s2);

Determines and returns the length of the initia

segment of string s1 consisting only of characters

contained in string s2.

c

co s2 is

rned.

har *strpbrk(const char *s1,

nst char *s2);

Locates the first occurrence in string s1 of any

character in string s2. If a character from string

found, a pointer to the character in string s1 is

returned. Otherwise, a NULL pointer is retu

c

);

har *strrchr(const char *s, int c Locates the last occurrence of c in string s. If c is

found, a pointer to c in string s is returned.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

Otherwise, a NULL pointer is returned.

c

ch

.har *strstr(const char *s1, const

ar *s2);

Locates the first occurrence in string s1 of string s2

If the string is found, a pointer to the string in s1 is

returned. Otherwise, a NULL pointer is returned.

c

*s

o

.

and

har *strtok(char *s1, const char

2);

A sequence of calls to strtok breaks string s1 int

“tokens”—logical pieces such as words in a line of

text—separated by characters contained in string s2

The first call contains s1 as the first argument,

subsequent calls to continue tokenizing the same

string contain NULL as the first argument. A

pointer to the current token is returned by each call

If there are no more tokens when the function is

called, NULL is returned.

.

Example 3
which shows the use of different string mHere is an example, anipulation functions.

g.h>

.h>

ity);

);

The code of the program is given below.

//A program which shows string manipulation using <string.h> library

include <iostream.h>#

#include <strin

#include <stdlib

ain()m

{

char s1[] = "Welcome to " ;

char s2[] = "Virtual University" ;

char s3[] = "Welcome to Karachi" ;

char city[] = "Karachi";

char province[] = "Sind";

 char s[80];

char *pc;

int n;

cout << "s1 = " << s1 << endl << "s2 = " << s2 << endl ;

cout << "s3 = " << s3 << endl ;

// function for string length

cout << "The length of s1 = " << strlen(s1) << endl ;

cout << "The length of s2 = " << strlen(s2) << endl ;

cout << "The length of s3 = " << strlen(s3) << endl ;

strcpy(s, "Hyderabad"); // string copy

cout<< "The nearest city to "<< city << " is " << s << endl ;

strcat(s, " and "); // string concatenation

 strcat(s,c

strcat(s, " are in "

 strcat(s, province);

strcat(s, ".\n");

© Copyright Virtual University of Pakistan

196

CS201 – Introduction to Programming

197

re not identical" << endl ;

,7))) // ! is used as zero is returned for equality

cout << "First 7 characters of s1 and s3 are identical" << endl ;

l ;

cout << s;

if (!(strcmp (s1,s2))) // ! is used as zero is returned if s1 & s2 are equal

cout << "s1 and s2 are identical" << endl ;

else

cout << "s1 and s2 a

if (!(strncmp (s1,s3

else

cout << "First 7 characters of s1 and s3 are not identical" << end

}

F ing is the output of the prollow ogram.

1 = Welcome to S

S2 = Virtual University

S3 = Welcome to Karachi

The length of s1 = 11

The length of s2 = 18

The length of s3 = 18

The nearest city to Karachi is Hyderabad

Hyderabad and Karachi are in Sind.

S1 and s2 are not identical

First 7 characters of s1 and s3 are identical

Exercises

1: Write a program that displays the ASCII code set in tabular form on the screen.

2: Write your own functions for different manipulations of strings.

3: Write a program, which uses different search functions.

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

198

8

eadin

Lecture No. 1

g MaterialR

Deitel & Deitel - C++ How to Program Chapter 14

14.3, 14.4, 14.5, 14.6

Summary

 Files

Text File Handling

 Example 1

Output File Handling

Example 2

 Tips

Files

Today’s topic is about files and file handling. We have been talking about bit, bytes,

character, numbers etc. Then we discuss about strings, which are actually chara

rrays. When we combine a

cter

ll these things, it becomes a program. We type a letter or a

ilarly, we can have a novel as a combinations of

 words and sentences. These are no

es, paragraphs as files. There are many

splayed. Similarly, Windows

ows, click on some folder to see the list of the files in that

ese are the names of the files, which we see. The file

ory of data files is

e pad, type the

s no formatting of text

text using the ‘type’ command of the dos (type

, our source programs are also plain text files. There is no

 which are not plain

nes. T ese ar formatted like, bold,

alic, underline, colored text and tables. This formatting information is also stored in

xt. Therefore such files are not plain text files. Same thing

Word,

puter. Normally, executable files contain only

ation. There are different ways of handling these files.

e utility of files in our programs. We know that all the

puter memory is volatile. It means when we turn off the

ation will be lost. The data, written in a program, is actually the

sk. Whenever we execute the program that

a

document in word processor. Sim

characters, words, sentences, bigger collection of

onger bits and bytes. We call these sentencl

types of files in computer. Primarily, there are two types of files i.e. text files and

executable program files. Text files consist of readable English characters. These

include our simple text files, or word processor file etc. On the other hand, the

executable program files run the program. In the dos (command prompt window),

hen we issue the command ‘dir’, a list of files is diw

explorer is used in the wind

t panel. Thfolder in the righ

properties show the length of the file, date of creation etc. One categ

ndows notplain text files. We can create plain text files using the wi

ry text, meaning that there itext and save it. It is an ordina

involved and we can view this

filename). Similarly

ormatt d textf e in cpp files. There is another kind of text files,

h e the word processor files, containing text that iso

it

the file along with the te

applies to spreadsheets having formatting, formulae, cell characteristic etc. Though

these files contain some binary information along with the text, yet these are not

program files. We created these files using some other program like Microsoft

xcel etc. Such files also fall in the category of text files. The other type is thee

program file that executes on the com

non-printable binary inform

Today we will see what is th

information in the com

computer that inform

part of the program and is saved on the di

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

199

ata will be available. Suppose we have to develop a payroll system for a factory. For

t first need to gather the data like name of the employees, their

ries etc. Enter all this information before getting their attendance. After collecting

the salary. Now

r we will have to enter the name and salary of employees

every month. The better way is to store this information once and re-use it every

month. We can save this information in a file and can calculate the salary after getting

the current month’s attendance of employees. We have to do all the calculations

again in case of not saving the report on the disk. It will be nicer if we have saved the

output file on the disk. We can take the print out whenever we need. We are

discussing this just to give you the justification of using files. The data in the memory

is volatile. Similarly, the data, which we key in the program during the execution of a

program, is also volatile. To save the data on permanent basis, we need files so that

we keep these on the disk and can use whenever needed. Now there is need to learn

how to create a file on the disk, read from the file, and write into the file and how to

manipulate the data in it. This is the file handling.

Text file Handling

Let's look what are the basic steps we need for file handling. Suppose we have a file

on the disk and want to open it. Then read from or write into the file before finally

closing it. The basic steps of file handling are:

Open the file

Read and write

Close the file

We have been using cin and cout a lot in our programs. We know that these are the

doors by which data can enter and come out. cin is used to enter the data and cout is

used to display the data on the screen. Technically, these are known as streams in

C++. We will discuss in detail about streams in later lectures. Today we will see some

more streams about file handling. This is how 'C++ language' handles files. For this

purpose, the header file to be used is <fstream.h> (i.e. file stream). Whenever using

files in our program, we will include this header file as #include <fstream.h>. These

streams are used the way we have been employing cin and cout but we can do more

with these streams. While handling files, one can have three options. Firstly, we will

only read the file i.e. read only file. It means the file is used as input for the program.

We need to have a stream for input file i.e. ifstream (input file stream). Similarly, if

we want to write in some file, ofstream (output file stream) can be used. Sometimes

we may need to read and write in the same file. One way is to read from a file,

manipulate it and write it in another file, delete the original file and renaming the new

file with the deleted file name. We can read, write and manipulate the same file using

fstream.h.

Let us take a look how can we use these files in our programs. First, we have to

include the fstream.h in our programs. Then we need to declare file streams. cin and

cout are predefined streams therefore we did not declare these. We can declare file

stream as:

ifstream inFile; // object for reading from a file

ofstream outFile; // object for writing to a file

d

this purpose, we will a

sala

all the information, you can calculate their salary and print a report of

the question arises whethe

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

200

The variables inFile and outFile are used as handle to refer files. These are like

internal variables which will be used to handle the files that are on the disk. If we

want to read a file, we will use inFile as declared above to read a file. Any meaningful

and self-explanatory name can be used. To deal with a payroll system,

payrollDataFile can be used as a file stream variable i.e. ifstream payrollDataFile;.

Consider the following statement:

 ifstream myFile;

Here myFile is an internal variable used to handle the file. So far, we did not attach a

file with this handle. Before going for attachment, we will have to open a file.

Logically, there is function named ‘open’ to open a file. While associating a file with

the variable myFile, the syntax will be as under:

 myFile.open(filename);

You have noted that this is a new way of function calling. We are using dot (.)

between the myFile and open function. myFile is an object of ifstream and open() is a

function of ifstream. The argument for the open function filename is the name of the

file on the disk. The data type of argument filename is character string, used to give

the file name in double quotation marks. The file name can be simple file name like

“payroll.txt”. It can be fully qualified path name like “C:\myprogs\payroll.txt”. In the

modern operating systems like Windows, disks are denoted as C: or D: etc. We have

different folders in it like ‘myprogs’ and can have files in this folder. The fully

qualified path means that we have to give the path beginning from C:\.

To under stand it further, suppose that we are working in the folder ‘myprogs’ and our

source and executable files are also in this folder. Here, we don’t need to give a

complete path and can write it as “payroll.txt”. If the file to be opened is in the current

directory (i.e. the program and text file are in the same folder), you can open it by

simply giving the name. If you are not familiar with the windows file system, get

some information from windows help system. It is a hierarchical system. The disk,

which is at the top, contains folder and files. Folders can contain subfolders and files.

It is a multi-level hierarchical system. In UNIX, the top level is “root”, which contains

files and directories. So it’s like a bottom-up tree. Root is at the top while the

branches are spreading downward. Here ‘root’ is considered as root of a tree and files

or subfolders are branches.

To open a file, we use open function while giving it the name of the file as fully

qualified path name or simple name. Then we also tell it what we want to do with that

file i.e. we want to read that file or write into that file or want to modify that file. We

have declared myFile as ifstream (input file stream) variable so whenever we tried to

open a file with ifstream variable it can only be opened for input. Once the file is

open, we can read it. The access mechanism is same, as we have been using with

streams. So to read a word from the file we can write as:

 myFile >> c;

So the first word of the file will be read in c, where c is a character array. It is similar

as we used with cin. There are certain limitations to this. It can read just one word at

one time. It means, on encountering a space, it will stop reading further. Therefore,

CS201 – Introduction to Programming

 201

we have to use it repeatedly to read the complete file. We can also read multiple

words at a time as:

 myFile >> c1 >> c2 >> c3;

The first word will be read in c1, 2
nd

 in c2 and 3
rd

 in c3. Before reading the file, we

should know some information regarding the structure of the file. If we have a file of

an employee, we should know that the first word is employee’s name, 2
nd

 word is

salary etc, so that we can read the first word in a string and 2
nd

 word in an int variable.

Once we have read the file, it must be closed. It is the responsibility of the

programmer to close the file. We can close the file as:

 myFile.close();

The function close() does not require any argument, as we are going to close the file

associated with myFile. Once we close the file, no file is associated with myfile now.

Lets take a look on error checking mechanism while handling files. Error checking is

very important. Suppose we have to open a text file myfile.txt from the current

directory, we will write as:

 ifstream myFile;

 myFile.open(“myfile.txt”);

If this file does not exist on the disk, the variable myFile will not be associated with

any file. There may be many reasons due to which the myFile will not be able to get

 the

pe s is successful. We can write as:

if (!myFile)

here is some error opening file” << endl;

 << “ File cannot be opened” << end;

 exit(1);

ut << “ File opened successfully “ << end;

d print it on

xt” contains employee’s name, salary and department of

mployees. Following is the complete program along with “myfile.txt” file.

Department

Sales

R

Marketing

the handle of the file. Therefore, before going ahead, we have to make sure that

file o ning proces

 {

 cout << “T

 cout

 }

 else

 co

Example 1

Let’s write a simple program, which will read from a file ‘myfile.txt’ an

the screen. “myfile.t

e

.txt”. Sample “myfile

Name Salary

Aamir 12000

Amara 15000 H

dnan 13000 IT A

Afzal 11500

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

 202

gram.

 reads from a txt file “myfile.txt” which contains the

rmation

 char name[50]; // used to read name of employee from file

// used to read salary of employee from file

of employee from file

; // Handle for the input file

"; // file name, this file is in the current directory

 inFile.open(inputFileName); // Opening the file

g the complete file word by word and printing on screen

 inFile >> name >> sal >> dept;

Code of the pro

/*

* This program

* employee info

*/

#include <iostream.h>

#include <fstream.h>

main()

{

 char sal[10];

 char dept[30]; // used to read dept

 ifstream inFile

 char inputFileName[] = "myfile.txt

 // checking that file is successfully opened or not

 if (!inFile)

 {

 cout << "Can't open input file named " << inputFileName << endl;

 exit(1);

 }

 // Readin

 while (!inFile.eof())

 {

 cout << name << "\t" << sal << " \t" << dept << endl;

 }

 inFile.close();

}

Output of the program.

Name Salary Department

Aamir 12000 Sales

Amara 15000 HR

Adnan 13000 IT

Afzal 11500 Marketing

In the above program, we have declared three variables for reading the data from the

input file (i.e. name, sal, dept). The text file “myfile.txt” and the program file should

be in the same directory as there is no fully qualified path used with the file name in

the open() function. After opening the file, we will check that file is successfully

opened or not. If there is some error while opening the file, we will display the error

on screen and exit from the program. The statement exit(1) is used to exit from the

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

203

program at any time and the control is given back to the operating system. Later, we

will read all the data from the file and put it into the variables. The condition in ‘while

loop’ is “!inFile.eof()” means until the end of file reached. The function eof() returns

true when we reached at the end of file.

Output File Handling

Let’s talk about the output file handling. You can do several things with output files

like, creation of a new file on the disk and writing data in it. Secondly, we may like to

open an existing file and overwrite it in such a manner that all the old information is

lost from it and new information is stored. Thirdly, we may want to open an existing

file and append it in the end. Fourthly, an existing file can be opened and modified in

a way that it can be written anywhere in the file. Therefore, when we open a file for

output we have several options and we might use any one of these methods. All these

things are related to the file-opening mode. The actual syntax of open function is:

 open (filename, mode)

The first argument is the name of the file while the second will be the mode in which

file is to be opened. Mode is basically an integer variable but its values are pre-

defined. When we open a file for input, its mode is input file that is defined and

available through the header files, we have included. So the correct syntax of file

opening for input is:

 myFile.open(“myfile.txt” , ios::in);

The 2
nd

 argument ios::in associates myFile stream object with the “myfile.txt” for

input. Similarly, for output files, there are different modes available. To open a file for

output mode, ios::out is used. Here is the complete list of modes:

Mode Meaning

in Open a file or stream for extraction (input)

out Open a file or stream for insertion (output)

app Append rather than truncate an existing file. Each insertion

(output) will be written to the end of the file

trunc Discards the file’s contents if it exists. (similar to default

behavior)

ate Opens the file without truncating, but allows data to be

written anywhere in the file

binary Treat the file as binary rather than text. A binary file has

data stored in internal formats, rather than readable text

format

If a file is opened with ios::out mode, a new file is created. However, if the file

already exists, its contents will be deleted and get empty unless you write something

into it. If we want to append into the file, the mode will be ios::app. When we write

into the file, it will be added in the end of the file. If we want to write anywhere in the

file, the mode is ios::ate. We can position at some particular point and can write there.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

204

It is like append mode. But in ‘ate mode’ we can write anywhere in the file. With the

trunc mode, the file is truncated, it is similar to out mode.

Exercise:

Write a program, which creates a new file, and write “Welcome to VU” in it.

The code of the program is:

/*

* This program writes into a txt file “myfileOut.txt” which contains the

* “Welcome to VU”

*/

#include <iostream.h>

#include <fstream.h>

main()

{

 ofstream outFile; // Handle for the input file

 char outputFileName[] = "myFileOut.txt"; // The file is created in the current directory

 char ouputText[100] = "Welcome to VU"; // used to write into the file

 outFile.open(outputFileName, ios::out); // Opening the file

 // checking that file is successfully opened or not

 if (!outFile)

 {

 cout << "Can't open input file named " << outputFileName << endl;

 exit(1);

 }

 // Writing into the file

 outFile << ouputText;

 outFile.close();

}

The file “myFileOut.txt”:

Welcome to VU

Exercise:

Write a program, which reads an input file of employee’s i.e. “employeein.txt”, add

the salary of each employee by 2000, and write the result in a new file

“employeeout.txt”.

The sample input file “employeein.txt”

Aamir 12000

Amara 15000

Adnan 13000

Afzal 11500

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

205

The output file “employeeout.txt” should be as:

Name Salary

Aamir 14000

Amara 17000

Adnan 15000

Afzal 13500

We have been using ‘>>’ sign for reading data from the file. There are some other

ways to read from the file. The get() function is used to get a character from the file,

so that we can use get() to read a character and put it in a char variable. The last

character in the file is EOF, defined in header files. When we are reading file using

get() function the loop will be as:

 char c;

 while ((c = inFile.get()) != EOF)

 {

 // do all the processing

 outFile.put(c);

 }

There is one limitation with the ‘>>’ and that is it does not read the new line character

and in the output file we have to insert the new line character explicitly, whereas get()

function reads each character as it was typed. So if we have to make a copy of a file,

the function get() should be used. Can we have a function to put a character in the

output file? Yes, the function to write a single character in the out put file is put(), so

with the output file stream handle, we can use this function to write a character in the

output file.

Exercise:

Write the above programs using the get() function and verify the difference of ‘>>’

and ’get()’ using different input files.

Whenever we declare a variable we initialize it like if we declare an integer as int i.

We initialize it as i = 0. Similarly we can declare and initialize an input or output file

stream variable as:

 ifstream inFile(“myFileIn.txt”);

 ofstream outFile(“myfileOut.txt”, ios::out);

This is a short hand for initialization. This is same as we open it with open() function.

Normally we open a file explicitly with the open() function and close it explicitly with

close() function. Another advantage of using explicitly opening a file using the open()

function is, we can use the same variable to associate with other files after closing the

first file.

We can also read a line from the file. The benefit of reading a line is efficiency, but

clarity should not be sacrificed over efficiency. We read from the disk and write to the

disk. The disk is an electro mechanical device and is the slowest component in the

computer. Other parts like processors, memory etc are very fast nowadays i.e. up o

2Ghz. When we talk about hard disk, we say its average access time is 7 mili sec. It

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

206

means when we request hard disk to get data it will take 7 mili sec (7/1000 of a sec) to

get the data where as processor is running on GHz speed which is thousand million

cycles per sec. Processor and memory are much much faster than the hard disk.

Therefore reading a single character from the file is too slow. Although nowadays, the

buffering and other techniques are used to make the disk access faster. It will be quite

efficient if we read the data in bigger chunks i.e. 64k or 256k bytes and also write in

bigger chunks. Today’s operating system applies the buffering and similar techniques.

Instead of reading and writing character-by-character or word-by-word, reading and

writing line by line is efficient. A function is available for this purpose i.e. getLine()

for input file stream and putLine() for output file stream. The syntax of getLine() is as

follows:

 char name[100];

 int maxChar = 100;

 int stopChar = ‘o’;

 inFile.getLine(name, maxChar, stopChar);

The first argument is a character array, the array should be large enough to hold the

complete line. The second argument is the maximum number of characters to be read.

The third one is the character if we want to stop somewhere. Suppose we have an

input file containing the line ‘Hello World’, then the statements:

 char str[20];

 inFile.getLine(str, 20, ‘W’);

 cout << “The line read from the input file till W is ” << str;

The getLine() function will read ‘Hello ’. Normally we do not use the third argument.

The default value for the third argument is new line character so getLine() will read

the complete line up to the new line character. The new line character will not be

read. The line read will be stored in the array, used in the first argument. It is our

responsibility that the array should be large enough to hold the entire line and then we

can manipulate this data. Using the getLine() repeatedly to read the file is much more

efficient rather than using the get() function. As the getLine() function does not read

the new line character, we have to put it explicitly. If we have large file to be read

then difference in speed with both the programs i.e. using get() and getLine() can be

noted.

Exercise:

Write a program which reads a file using the getLine() function and display it on the

screen.

Sample input file:

This is a test program

In this program we learn how to use getLine() function

This function is faster than using the get() function

The complete code of the program:

/*

* This program reads from a txt file line by line

*

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

207

*/

#include <iostream.h>

#include <fstream.h>

main()

{

 ifstream inFile; // Handle for the input file

 char inputFileName[] = "test.txt"; // file name, this file is in the current directory

 const int MAX_CHAR_TO_READ = 100; // maximum character to read in one line

 char completeLineText[MAX_CHAR_TO_READ]; // to be used in getLine function

 inFile.open(inputFileName); // Opening the file

 // checking that file is successfuly opened or not

 if (!inFile)

 {

 cout << "Can't open input file named " << inputFileName << endl;

 exit(1);

 }

 // Reading the complete file line by line and printing on screen

 while (!inFile.eof())

 {

 inFile.getline(completeLineText, MAX_CHAR_TO_READ);

 cout << completeLineText << endl;

 }

 inFile.close();

}

The output of the program is:

This is a test program

In this program we learn how to use getLine() function

This function is faster than using the get() function

Example 2

Problem statement:

A given input file contains Name of the employee and salary of current month. There

is a single space between the name and the salary. Name and salary can not contain

spaces. Calculate the total salaries of the employees. Create an output file and write

the total salary in that file.

Solution:

We can read a line from the input file using the getLine() function. Now we need to

break this line into pieces and get the name and salary in different variables. Here we

can use the string token function i.e. strtok(). The string token function (strtok()) takes

a string and a delimiter i.e. the character that separates tokens from each other. As

there is a space between the name and the salary, we can use the space character as

delimiter. So the first call to the string token function will return the name of the

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

208

employee, the second call will return the salary of the employee. The syntax to get the

next token from the strtok() function is: strtok(NULL, ‘ ‘), it means return the next

token from the same string. The second token contains the salary of the employee and

is in a char string. We need to add the salaries of all the employees. So we need to

convert the salary from character to integer. For this purpose we can use atoi()

function.

Sample input file:

Aamir 12000

Amara 15000

Adnan 13000

Afzal 11500

Complete code of the program:

/*

* This program reads name and salary from a txt file

* Calculate the salaries and write the total in an output file

*/

#include <iostream.h>

#include <fstream.h>

#include <cstring>

#include <cstdlib>

main()

{

 ifstream inFile; // Handle for the input file

 char inputFileName[] = "salin.txt"; // file name, this file is in the current directory

 ofstream outFile; // Handle for the output file

 char outputFileName[] = "salout.txt"; // file name, this file is in the current directory

 const int MAX_CHAR_TO_READ = 100; // maximum character to read in one line

 char completeLineText[MAX_CHAR_TO_READ]; // used in getLine function

 char *tokenPtr; // Used to get the token of a string

 int salary, totalSalary;

 salary = 0;

 totalSalary = 0;

 inFile.open(inputFileName); // Opening the input file

 outFile.open(outputFileName); // Opening the output file

 // Checking that file is successfully opened or not

 if (!inFile)

 {

 cout << "Can't open input file named " << inputFileName << endl;

 exit(1);

 }

 if (!outFile)

 {

 cout << "Can't open output file named " << outputFileName << endl;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

209

 exit(1);

 }

 // Reading the complete file line by line and calculating the total salary

 while (!inFile.eof())

 {

 inFile.getline(completeLineText, MAX_CHAR_TO_READ);

 tokenPtr = strtok(completeLineText, " "); // First token is name

 tokenPtr = strtok(NULL, " "); // 2nd token is salary

 salary = atoi(tokenPtr);

 totalSalary += salary;

 }

 // Writing the total into the output file

 outFile << "The total salary = " << totalSalary;

 // closing the files

 inFile.close();

 outFile.close();

}

The contents of output file:

The total salary = 51500

Exercise:

Modify the above program such that the input and output files are given as the

command line arguments. Add another information in the input file i.e. the age of the

employee. Calculate the average age of the employees and write it in the out put file.

Write a program, which reads an input file. The structure of the input file is First

Name, Middle Initial, Last Name. Create an output file with the structure First Name,

Login Name, Password. First name is same as in the input file. The login name is

middle initial and last name together. The password is the first four digits of the first

name. First name, middle initial and last name does not contain space.

The sample input file is:

Syed N Ali

Muhammad A Butt

Faisal A Malik

Muhammad A Jamil

If the above file is used as input, the output should be as follows:

Syed Nali Syed

Muhammad Abutt Muha

Faisal Amalik Fais

Muhammad Ajamil Muha

Tips

Always close the file with the close function.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

210

Open a file explicitly with open function

Always apply the error checking mechanism while handling with files.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

211

Lecture No. 19

Reading Material

Deitel & Deitel - C++ How to Program Chapter 6

Summary

 Sequential Access Files (Continued)

 Last Lecture Reviewed

 Random Access Files

- Position in a File

- Setting the Position

- Example of seekg() and tellg() Functions

- Example of Data Insertion in the Middle of a File

- Efficient Way of Reading and Writing Files

- Copying a File in Reverse Order

 Sample Program 1

 Sample Program 2

 Exercises

 Tips

Sequential Access Files (Continued)

In the last lecture, we discussed little bit about Sequential Access Files

under the topic of File Handling. Sequential Access Files are simple

character files. What does the concept of sequential access mean? While

working with the sequential access files, we write in a sequence, not in a

random manner. A similar method is adopted while reading such a file.

In today’s lecture, we will discuss both the topics of File Handling and

Random Access Files.

Before going ahead, it is better to recap of File Handling discussed in the

previous lecture. Let’s refresh the functions or properties of File streams in

our minds.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

212

Last Lecture Reviewed

It is so far clear to all of us that we use open () function to open files.

Similarly, to close a file close () function is used. open () has some

parameters in its parenthesis as open (filename, mode) but close () brackets

remain empty as it does not have any parameter.

A file can be opened for reading by using the open () function. It can also

be opened for writing with the help of the same open () function . But

different argument value will be needed for this purpose. If we are opening

for reading with ifstream (Input File Stream), a simple provision of the

filename is sufficient enough, as the default mode is for reading or input.

We can also provide an additional argument like open ("filename",

ios::in). But this is not mandatory due to the default behavior of ifstream.

However, for ofstream (Output File Stream), we have several alternatives.

If we open a file for writing, there is default mode available to destroy

(delete) the previous contents of the file, therefore, we have to be careful

here. On the other hand, if we don’t want to destroy the contents, we can

open the file in append mode (ios::app). ios:trunc value causes the contents

of the preexisting file by the same name to be destroyed and the file is

truncated to 0 length.

/* Following program writes an integer, a floating-point value, and

a character to a file called ‘test’ */

#include <iostream.h>

#include <fstream.h>

main(void)

{

ofstream out(“test”); //Open in default output mode

if (!out)

{

cout << “Cannot open file”;

return 1;

}

out << 100 << “ “ << 123.12 << “a”;

out.close();

return 0;

}

 If you want to open a file for writing at random positions forward and

backward, the qualifier used is ios:ate. In this case, the file is at first opened

and positioned at the end. After that, anything written to the file is appended

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

213

at the end. We will discuss how to move forward or backward for writing in

the file later in this lecture.

/* Following program reads an integer, a float and a character from

the file created by the preceding program. */

#include <iostream.h>

#include <fstream.h>

main(void)

{

char ch;

int i;

float f;

ifstream in(“test”); //Open in default output mode

if(!in)

{

cout << “Cannot open file”;

return 1;

}

in >> i;

in >> f;

/* Note that white spaces are being ignored, you can turn

this off using unsetf(ios::skipws) */

in >> ch;

cout << i << “ “ << f << “ “ << ch ;

in.close();

return 0;

}

Besides open() and close () functions, we have also discussed how to read

and write files. One way was character by character. This means if we read

(get) from a file; one character is read at a time. Similarly, if we write (put),

one character is written to the file. Character can be interpreted as a byte

here. On the other hand, the behavior of stream extraction operator (>>) and

stream insertion operator (<<) is also valid as we just saw in the simple

programs above. We will discuss this a little more with few new properties

in this lecture.

/* Code snippet to copy the file ‘thisFile’ to the file ‘thatFile’ */

ifstream fromFile("thisFile");

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

214

if (!fromFile)

{

cout << "unable to open ’thisFile’ for input";

}

ofstream toFile ("thatFile");

if (!toFile)

{

cout << "unable to open ’thatFile’ for output";

}

char c ;

while (toFile && fromFile.get(c))

{

 toFile.put(c);

}

This code:

- Creates an ifstream object called fromFile with a default mode of ios::in

and connects it to thisFile. It opens thisFile.

- Checks the error state of the new ifstream object and, if it is in a failed state,

displays the error message on the screen.

- Creates an ofstream object called toFile with a default mode of ios::out and

connects it to thatFile.

- Checks the error state of toFile as above.

- Creates a char variable to hold the data while it is passed.

- Copies the contents of fromFile to toFile one character at a time.

It is, of course, undesirable to copy a file this way, one character at a time.

This code is provided just as an example of using fstreams.

We have also discussed a function getline (), used to read (get) one line at a

time. You have to provide how many characters to read and what is the

delimiter. Because this function treats the lines as character strings. If you

use it to read 10 characters, it will read 9 characters from the line and add

null character (‘\0’) at the end itself.

You are required to experiment with these functions in order to understand

them completely.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

215

Random Access Files

Now we will discuss how to access files randomly, forward and backward.

Before moving forward or backward within a file, one important factor is

the current position inside the file. Therefore, we must understand that there

is a concept of file position (or position inside a file) i.e. a pointer into the

file. While reading from and writing into a file, we should be very clear

from where (which location inside the file) our process of reading or writing

will start. To determine this file pointer position inside a file, we have two

functions tellg() and tellp().

Position in a File

Let’s say we have opened a file stream myfile for reading (getting),

myfile.tellg () gives us the current get position of the file pointer. It returns

a whole number of type long, which is the position of the next character to

be read from that file. Similarly, tellp () function is used to determine the

next position to write a character while writing into a file. It also returns a

long number.

For example, given an fstream object aFile:

Streampos original = aFile.tellp(); //save current position

aFile.seekp(0, ios::end); //reposition to end of file

aFile << x; //write a value to file

aFile.seekp(original); //return to original position

So tellg () and tellp () are the two very useful functions while reading from

or writing into the files at some certain positions.

Setting the Position

The next thing to learn is how can we position into a file or in other words

how can we move forward and backward within a file. Suppose we want to

open a file and start reading from 100th character. For this, we use seekg ()

and seekp () functions. Here seekg () takes us to a certain position to start

reading from while seekp () leads to a position to write into. These

functions seekg () and seekp () requires an argument of type long to let

them how many bytes to move forward or backward. Whether we want to

move from the beginning of a file, current position or the end of the file,

this move forward or backward operation, is always relative to some

position.. From the end of the file, we can only move in the backward

direction. By using positive value, we tell these functions to move in the

forward direction .Likewise, we intend to move in the backward direction

by providing a negative number.

By writing:

aFile. seekg (10L, ios::beg)

We are asking to move 10 bytes forward from the begining of the file.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

216

Similarly, by writing:

aFile. seekg (20L, ios::cur)

We are moving 20 bytes in the forward direction starting from the current

position. Remember, the current position can be obtained using the tellg ()

function.

By writing:

aFile. seekg (-10L, ios:cur)

The file pointer will move 10 bytes in the backward direction from the

current position. With seekg (-100L, ios::end), we are moving in the

backward direction by 100 bytes starting from the end of the file. We can

only move in the forward direction from the beginning of the file and

backward from the end of the file.

You are required to write a program to read from a file, try to move the file

pointer beyond the end of file and before the beginning of the file and

observe the behavior to understand it properly.

seekg() and tellg() Functions
One of the useful things we can do by employing these functions is to
determine the length of the file. Think about it, how can we do it.

In the previous lectures, we have discussed strlen () function that gives the

number of characters inside a string. This function can also be used to

determine the length of the string placed inside an array. That will give us

the number of characters inside the string instead of the array length. As you

already know that the length of the array can be longer than the length of

the string inside it. For example, if we declare an array of 100 characters but

store "Welcome to VU" string in it, the length of the string is definitely

smaller than the actual size of the array and some of the space of the array is

unused.

Similarly in case of files, the space occupied by a file (file size) can be more

than the actual data length of the file itself.

Why the size of the file can be greater than the actual data contained in that

file? The answer is little bit off the topic yet it will be good to discuss.

As you know, the disks are electromagnetic devices. They are very slow as

compared to the controlling electronic devices like Processors and RAM

(Random Access Memory). If we want to perform read or write operations

to the disk in character by character fashion, it will be very wasteful of

computer time. Take another example. Suppose ,we want to write a file, say

53 bytes long to the disk . After writing it, the next file will start from 54th

byte on the disk. Obviously, this is very wasteful operation of computer

time. Moreover, it is also very complex in terms of handling file storage on

the disk.

To overcome this problem, disks are divided into logical blocks (chunks or

clusters) and size of one block is the minimum size to read and write to the

disk. While saving a file of 53 bytes, we can’t allocate exactly 53 bytes but

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

217

have to utilize at least one block of disk space. The remaining space of the

block except first 53 bytes, goes waste. Therefore, normally the size of the

file (which is in blocks) is greater than the actual data length of the file.

When this file will be read from the disk, the whole chunk (block) is read

instead of the actual data length.

By using seekg () function, we can know the actual data length of the file.

For that purpose, we will open the file and go to the end of the file by

asking the seekg () function to move 0 bytes from the end of the file as:

seekg (0, ios::end). Afterwards, (as we are on end of file position), we will

call tellg () to give the current position in long number. This number is the

actual data bytes inside the file. We used seekg () and tellg () functions

combination to determine the actual data length of a file.

/* This is a sample program to determine the length of a file. The program

accepts the name of the file as a command-line argument. */

#include <fstream.h>

#include <stdlib.h>

ifstream inFile;

ofstream outFile;

main(int argc, char **argv)

{

 inFile.open(argv[1]);

 if(!inFile)

 {

 cout << "Error opening file in input mode"<< endl;

 }

/* Determine file length opening it for input */

 inFile.seekg(0, ios::end); //Go to the end of the file

 long inSize = inFile.tellg(); //Get the file pointer position

 cout << "The length of the file (inFile) is: " << inSize;

 inFile.close();

/* Determine file length opening it for output */

 outFile.open(argv[1], ios::app);

 if(!outFile)

 {

 cout << "Error opening file in append mode"<< endl;

 }

 outFile.seekp(0, ios::end);

 long outSize = outFile.tellp();

 cout << "\nThe length of the file (outFile) is: " << outSize;

 outFile.close();

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

218

}

Run this program to see its output that shows different results for both input

and output modes. Discuss it on discussion board.

Data Insertion in the Middle of a File

The question arises why to talk about seekg () and tellg () functions before

proceeding to our original topic of random access to files. This can be well-

understood from the following example. Let’s suppose, we have written a

file containing names, addresses and dates of birth of all students of our

class. There is a record of a student, who is from Sukkur. After sometime,

we come to know that the same student has moved to Rawalpindi. So we

need to update his record. But that record is lying somewhere in the middle

of the file. How can we update it?

We can search Sukkur using seekg () and tellg () functions. After finding

it, can we update the word sukkur with the Rawalpindi. No. It is just due

to the fact that Rawalpindi is longer in length than the word Sukkur and

the subsequent data of Data of Birth of the student will be overwritten. So

the structure of the file is disturbed and as a result your data file will be

corrupted. This is one of the issues to be taken care of while writing in the

middle of a sequential file.

Let’s think again what is the actual problem. The file is lying on the disk.

We started reading that file and reached somewhere in the middle of the file

to replace data at that position. But the data we are going to replace is

shorter in length as compared to the new one. Consider how is this on the

disk. We need some kind of mechanism to cut the disk, slide it further to

make some space to insert the data into. But this is not practically possible.

In the times of COBOL, the Merge Method was employed to insert data into

the middle of the file. The logic of Merge method is to copy all the data into

a new file starting from beginning of the file to the location where we want

to insert data. So its algorithm is:

- Opened the data file and a new empty file.

- Started reading the data file from beginning of it.

- Kept on copying the read data into the new file until the location we

want to insert data into is reached.

- Inserted (appended) new data in the new file.

- Skipped or jumped the data in the data file that is to be overwritten or

replaced.

- Copied (appended) the remaining part of the file at the end of the new

file

This is the only way of inserting the data in the middle of a sequential file.

After this process, you may delete the old file and rename the new file with

the same name as that of the old file. This was done in the past . But now

nowadays, it is used some time when the size of the data is not huge. But

obviously, it is very wasteful as it takes lot of time and space in case of

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

219

large-sized data . The file size can be in hundred of megabytes or even in

gigabytes. Suppose, you have to copy the whole file just to change one

word. This is just a wasteful activity. Therefore, we must have some other

mechanism so that we can randomly read and write data within a file,

without causing any disturbance in the structure of file.

To achieve this objective, we have to have random access file and the

structure of the file should be such that it is not disturbed in case of

updations or insertions in the middle . The language C/C++ does not impose

any structure on the file. The file can be English text or a binary file. Be

sure that a language has nothing to do with it. For a language, a file is

nothing but a stream of bytes. In our previously discussed example of

students of a class, it makes lot of sense that each record of the file (a

student record) occupies the same space. If the record size is different, the

updations will have similar problems as discussed above. So what we need

do is to make sure that size of each student data is identical in the file. And

the space we have decided on is large enough such that, if we wrote Sukkur

into it, the spaces were there at the end of it. If we want to replace Sukkur

with Ralwalpindi or Mirpur Khas, it can fit into the same allotted space. It

means that the file size remains the same and no destruction takes place,. So

the constant record length is the key element in resolving that issue of

insertion in the middle of the file without disturbing the structure of the file.

Normally, we also keep some key (it is a database terminology) inside these

files. The key is used to locate the record. Consider the example of students

again. Suppose we had written student’s name, say Jamil Ahmed, city and

data of birth, what could we do to locate the student to change the student’s

information from Sukkur to Rawalpindi. We could have written a loop to

read the names and to compare it with Jamil Ahmed to locate the particular

record of that student to replace the city to Rawalpindi. But this

comparison of names is expensive in terms of computation. It could be nicer

to store a serial number with each record of the students. That serial number

will be unique for each student. It can also be roll number or ID number of a

student. So we can say that replace the city of the student with id number 43

to Rawalpindi. So in this case, we will also be doing comparison based on

the basis of ID numbers of student. Here we have made a comparison

again. But is a number-related comparison, not a string comparison. It will

be even easier if the file is sorted on the basis of student id numbers which

have no gaps. If the data is of 50 students, the first student’s id number is 1

and last one is 50.

Let’s take this example little further. Suppose the record of one student can

be stored in 100 bytes. The student id field that is also contained within

these 100 bytes is there in the file to uniquely identify each student’s record.

If we want to read the 23
rd

 student’s record (with id 23) in the file. One way

is the brute force technique discussed earlier to start a loop from the

beginning of the file to the required student id 23.

We have added following conditions with this file.

- Each student record takes 100 bytes

- The first ten bytes of a record are student id number. Student’s name

and City are 40 characters long respectively and last 10 bytes are for

Date of Birth.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

220

- The student ids are in order (sorted) and there are no holes in student

ids. If let’s say there is 50 students data then the file will start with id 1

student’s record and end with id 50 student’s record.

After becoming aware of the above-mentioned conditions, can we find a

quick way of finding the 23
rd

’s student data? The answer is obviously yes as

we know that one student’s data is taking 100 bytes then 22 student’s data

will be 22 * 100 = 2200 bytes. The data for 23
rd

’s student starts from 2201
st

byte and goes to 2300
th

 byte. We will jump first 2200 bytes of the file using

seekg () function and there will be no wastage of resources as there are no

loops, no if-else comparisons. After being aware of structure of a student’s

record, we can go to the desired position and perform update operation

wherever needed. We can update the name of the student, change the name

of the city and correct the data of birth etc. So seekg () allows us to jump to

any position in the file.

seekg() is used for input file or for reading from the file while seekp() is

used for output during the process of writing to the file. Remember, a file

opened with ifstream is used for input and cannot be used for output.

Similarly, a file opened in output mode using ofstream cannot be used for

input mode. But a file opened with the help of fstream; can be used for both

purposes i.e. input and output. The qualifier ios::in || ios::out is passed into

the open () function while opening the file with fstream for both purposes.

Why are we doing the OR ‘||’ operation for opening the file in both the

modes. You might remember that when we do OR operation (if either of

the expression is true), the result becomes true. The qualifiers ios::in ||

ios::out are flags and exist in memory in the form of 0’s and 1’s. The input

flag ios::in has one bit on (as 1) and output flag ios::out possesses another

bit on. When we perform OR ‘||’ operation to these two flags, the resultant

of this expression contains the bits as on (as 1) from both of the flags. So

this resultant flag bits depict that the file will be used for both input and

output . We can use this technique of ORing for other qualifiers as well.

Remember that it is not a case of AND. Although, we want input and output

, yet we have to do OR operation ios::in || ios::out to achieve our desired

behavior.

Lets see how can these tricks work

As discussed in the example of data updation within a file, what can happen

if we know the exact things and want to replace a q character in a sentence?

We should think of the logic first as it has always to be with logic and

analysis that what would be algorithm for a problem. Lets say we wrote a

sentence This is an apple in a file and want to change it to This is a

sample. The length of both the sentences is same.

/* This program firstly writes a string into a file and then replaces

its partially. It demonstrates the use of seekp(), tellp() and write()

functions. */

#include <fstream>

int main ()

{

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

221

 long pos;

 ofstream outfile;

 outfile.open ("test.txt"); // Open the file

 outfile.write ("This is an apple",16); // Write the string in the file

 pos = outfile.tellp(); // Get the File pointer position

 outfile.seekp (pos-7); // Move 7 positions backward

 outfile.write (" sam",4); // Write 4 chars in the current position

 outfile.close(); // Close the file

 return 0;

}

Efficient Way of Reading and Writing Files

Let’s consider another example. We know how to read a file character by

character, write into another file or on the screen. If we want to write into a

file after reading another file, there are already enough tools to get (read)

one character from a file and put (write) into the other one. We can use

inputFile.getc () to get a character and outputFile.putc () to write a

character into a file.

As mentioned earlier, there is very inefficient way of doing things . We also

know that for reading and writing to disk, processing in chunks is more

efficient. Can we handle more data than a single byte or a single line? The

answer is yes. We can use read () and write () functions for this purpose.

These functions are binary functions and provided as a part of the stream

functions. The term binary means that they read and write in binary mode ,

not in characters. We tell a location in memory to read () function to write

the read data and with the number of bytes to read or write. Usually,

read(arrayname, number of bytes) e.g. read(a, 10).

Now depending on our computer’s memory, we can have a very large data

in it. It may be 64K.

You are required to write two programs:

One program will be used to get to read from a file and put to write into the

other file. Prepare a simple character file using notepad or any other editor

of your choice. Put some data inside and expand the size of the data in the

file by using the copy-paste functions. A program can also be written to

make this big-sized data file. The file size should be more than 40K

preferably. Read this file using getc () and write it another file using putc ().

Try to note down the time taken by the program. Explore the time ()

function and find out how to use it in your program to note the processing

time.

Write another program to do the same operation of copying using read and

write functions. How to do it?

- First declare a character array:

char str[10000];

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

222

- Call the read function for input file.

myInputFile.read(str, 10000);

- To write this, use the write function for output file.

myOutputFile.write(str);

Here, a loop will be used to process the whole file. We will see that it is

much faster due to being capable of reducing the number of calls to reading

and writing functions. Instead of 10000 getc () calls, we are making only

one read () function call. The performance is also made in physical reduced

disk access (read and write). Important part of the program code is given

below:

ifstream fi;

ofstream fo;

. . .

. . .

fi.open("inFilename", ios::in); // Open the input file

fo.open("outFilename", ios::out); // Open the output file

fi.seekg(0,ios::end); // Go the end of input file

j = fi.tellg(); // Get the position

fi.seekg(0,ios::beg); // Go to the start of input file

for(i = 0; i < j/10000; i++)

{

fi.read(str, 10000); // Read 10000 bytes

fo.write(str, 10000); // Wrote 10000 bytes

}

fi.read(str, j-(i * 10000)); // Read the remaining bytes

fo.write(str, j-(i * 10000)); // Wrote the remaining bytes

fi.close(); // Close the input file

fo.close(); // Close the output file

The fine points in this exercise are left open to discover. Like what happens

if the file length is 25199 bytes. Will our above solution work? Definitely, It

will work but you have to figure out what happened and why does it work.

Has the last read () function call read 10000 bytes? You have to take care

of few things while doing file handling of character and binary files.

Remember that the size of the physical file on the disk may be quite

different from the actual data length contained in the file.

Copying a File in the Reverse Order

We can also try copying a file in reverse. Suppose, we want to open a text

file and write it in reverse order in a new file after reading. That means the

last byte of the input file will be the first byte of the output file, second last

byte of the input file will be the second byte of the output file until the first

byte of the input file becomes the last byte of the output file. How will we

do it?

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

223

Open the input file. One of the ways of reading the files is to go to its end

and start reading in the reverse direction byte by byte. We have already

discussed , how to go to the end the file using seekg (0, ios:end). By now,

you will be aware that while reading, the next byte is read in the forward

direction. With the use of seekg (0, ios:end), we are already at end of the

file. Therefore, if want to read a byte here it will not work. To read a byte,

we should position file pointer one byte before the byte we are going to

read. So we don’t want to go to the end but one byte before it by using:

aFile.seekg (-1, ios::end);

We also know that whenever we read a byte, the file pointer automatically

moves one byte forward so that it is ready to read the next byte. But in our

case, after positioning, the file pointer 1 byte before the end of file and

reading 1 byte has caused the file pointer to move automatically to the end

of file byte and there is no further data of this file to read. What we need to

do now to read the next byte (second last byte of input file) in reverse order

is to move 2 positions from the end of file:

aFile.seekg (-2, ios::end);

Generically, this can also be said as moving two positions back from the

current position of the file pointer. It will be ready to read the next

character. This is little bit tricky but interesting. So the loop to process the

whole file will run in the same fashion that after initially positioning file

pointer at second last byte, it will keep on moving two positions back to

read the next byte until beginning of the input file is reached. We need to

determine the beginning of the file to end the process properly. You are

required to workout and complete this exercise, snippet of the program is

given below:

 aFile.seekg(-1L, ios::end);

 while(aFile)

 {

 cout << aFile.tellg() << endl;

 aFile.get(c);

 aFile.put(c);

 aFile.seekg(-2L,ios::cur) ;

 }

Remember, generally, if statement is very expensive computation-wise. It

takes several clock cycles. Sequential reading is fairly fast but a little bit

tedious. To reach to 100
th

 location, you have to read in sequence one by

one. But if you use seekg () function to go to 100
th

 location, it is very fast as

compared to the sequential reading.

As discussed, in terms of speed while doing file handling are read () and

write () functions. The thing needed to be taken care of while using these

functions is that you should have enough space in memory available. We

have discussed very simple example of read () and write () functions earlier

. But it is more complex as you see in your text books. Don’t get confused,

you remember we used array . Array name is a pointer to the beginning of

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

224

the array. Basically, the read () requires the starting address in memory

where to write the read information and then it requires the number of bytes

to read. Generally, we avoid using magic numbers in our program. Let’s say

we want to write an int into a file, the better way is to use the sizeof ()

function that can write an integer itself without specifying number of bytes.

So our statement will be like:

aFile.write (&i, sizeof (i));

What benefits one can get out of this approach?. We don’t need to know the

internal representation of a type as same code will be independent of any

particular compiler and portable to other systems with different internal

representations. You are required to write little programs and play with this

function by passing different types of variables to this function to see their

sizes. One can actually know that how many bytes take the char type

variable, int type variable or a double or a float type variable.

You are required to write a program to write integers into a file using the

write () function. Open a file and by running a loop from 0 to 99, write

integer counter into the file. After writing it, open the file in notepad. See if

you can find integers inside of it. You will find something totally different.

Try to figure out what has happened. The clue lies in the fact that this was a

binary write. It is more like the internal representation of the integers not

what you see on the screen. You are required to play with it and experiment

it by writing programs.

It is mandatory to try out the above example . Also experiment the use of

read () function to read the above written file of integers and print out the

integers on the screen. Can you see correct output on the screen? Secondly,

change the loop counter to start from 100 to 199, write it using write ()

function and print it on the screen after reading it into an integer variable

using read () function. Does that work now? Think about it and discuss it

on discussion board.

Sample Program 1

/* This is a sample program to demonstrate the use of open(), close(), seekg(), get()

functions and streams. It expects a file named my-File.txt in the current directory having

some data strings inside it. */

#include <fstream.h>

#include <stdlib.h>

/* Declare the stream objects */

ifstream inFile;

ofstream scrn, prnt;

main()

{

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

225

 char inChar;

 inFile.open("my-File.txt", ios::in); // Open the file for input

 if(!inFile)

 {

 cout << "Error opening file"<< endl;

 }

 scrn.open("CON", ios::out); // Attach the console with the output stream

 while(inFile.get(inChar)) // Read the whole file one character at a time

 {

 scrn << inChar; // Insert read character to the output stream

 }

scrn.close(); // Close the output stream

inFile.seekg(0l, ios::beg); // Go to the beginning of the file

prnt.open("LPT1", ios::out); // Attach the output stream with the LPT1 port

while(inFile.get(inChar)) // Read the whole file one character at a time

{

 prnt << inChar; // Insert read character to the output stream

 }

prnt.close(); // Close the output stream

inFile.close(); // Close the input stream

}

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

226

Sample Program 2

/* This sample code demostrates the use of fstream and seekg() function. It will create a

file named my-File.txt write alphabets into it, destroys the previous contents */

#include <fstream.h>

fstream rFile; // Declare the stream object

main()

{

char rChar;

/* Opened the file in both input and output modes */

rFile.open("my-File.txt", ios::in || ios::out);

if(!rFile)

{

cout << "error opening file"<< endl;

}

/* Run the loop for whole alphabets */

for (rChar ='A'; rChar <='Z'; rChar++)

{

rFile << rChar; // Insert the character in the file

}

rFile.seekg(8l, ios::beg); // Seek the beginning and move 8 bytes forward

rFile >>rChar; // Take out the character from the file

cout << "the 8th character is " << rChar ;

rFile.seekg(-16l, ios::end); // Seek the end and move 16 positions backword

rFile >>rChar; // Take out the character at the current position

cout << "the 16th character from the end is " << rChar ;

rFile.close(); // Close the file

}

Exercises

1. Write a program to concatenate two files. The filenames are provide as

command-line arguments. The argument file on the right (first

argument) will be appended to the file on the left (second argument).

2. Write a program to read from a file, try to move the file pointer beyond

the end of file and before the beginning of the file and observer the

behavior.

3. Write a program reverse to copy a file into reverse order. The program

will accept the arguments like:

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

227

reverse org-file.txt rev-file.txt

 Use the algorithm already discussed in this lecture.

4. Write a program to write integers into a file using the write () function.

Open a file and by running a loop from 0 to 99, write integer counter

into the file. After writing it, open the file in notepad. See if you can

find integers inside it.

Tips

 Be careful for file mode before opening and performing any operation on a

file.

 The concept of File Pointer is essential in order to move to the desired location

in a file.

 tellg(), seekg(), tellp() and seekp() functions are used for random movement

(backward and forward) in a file.

 There are some restrictions (conditions) on a file to access it randomly. Like

its structure and record size should be fixed.

 Ability to move backward and forward at random positions has given

significance performance to the applications.

 Binary files (binary data) can not be viewed properly inside a text editor

because text editors are character based.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

228

Lecture No. 20

Reading Material

Deitel & Deitel - C++ How to Program

 Chapter 6, 16

6.2, 6.3, 6.4, 16.2,

16.3, 16.4, 16.5

Summary

1) Structures

 - Declaration of a Structure

 - Initializing Structures

 - Functions and structures

 - Arrays of structures

 - sizeof operator

2) Sample Program 1

3) Sample Program 2

4) Unions

Structures
Today, we will discuss the concepts of structures and unions which are very

interesting part of C language. These are also in C++. After dilating upon structures,

we will move to the concept of classes, quite similar to ‘structures’.

What a structure is? We can understand ‘structure’ with the example of students of a

class discussed in some of the earlier lectures. Suppose we have data about students of

a class i.e. name, addresses, date of birth, GPA and courses of study. This information

is related to only a single entity i.e. student. To understand the matter further, we can

think of a car with its specifications like model, manufacturer company, number of

seats and so on. But there is always a requirement in most of our data processing

applications that the relevant data should be grouped and handled as a group. This is

what the concept of structure is. In structure, we introduce a new data type. In the

previous lectures, we had been dealing with int, float, double and char in our

programs. You are fully familiar with the term ’strings’ but there is no data type

called strings. We have used ‘array of char’ as strings. While dealing with numbers,

there is no built-in mechanism to handle the complex numbers. This means that there

is no data type like complex. The FORTRAN language (Formula Translation) written

for scientific application, has a complex data type. Therefore, in FORTRAN, we can

say complex x; now x is a variable of type complex and has a real part and an

imaginary part. There is no complex data type in C and C++. While trying to solve the

quadratic equation on the similar grounds, we may have a complex number as answer

i.e. if we have to calculate the square root of -1, an iota () will be used. So the

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

229

combination of real and imaginary parts is called complex number. In C, C++ we deal

with such situations with structures. So a structure is not simply a grouping of real

world data like students, car etc, it also has mathematical usage like complex number.

The definition of structure is as under:

“A structure is a collection of variables under a single name. These variables can be of

different types, and each has a name that is used to select it from the structure”

Declaration of a Structure:
Structures are syntactically defined with the word struct. So struct is another keyword

that cannot be used as variable name. Followed by the name of the structure. The data,

contained in the structure, is defined in the curly braces. All the variables that we have

been using can be part of structure. For example:

struct student{

 char name[60];

 char address[100];

 float GPA;

};

Here we have a declared a structure, ‘student’ containing different elements. The

name of the student is declared as char array. For the address, we have declared an

array of hundred characters. To store the GPA, we defined it as float variable type.

The variables which are part of structure are called data members i.e. name, address

and GPA are data members of student. Now this is a new data type which can be

written as:

 student std1, std2;

Here std1 and std2 are variables of type student like int x, y; x and y in this case are

variables of int data type. This shows the power of C and C++ language and their

extensibility. Moreover, it means that we can create new data types depending upon

the requirements. Structures may also be defined at the time of declaration in the

following manner:

struct student{

 char name[60];

 char address[100];

 float GPA;

}std1, std2;

We can give the variable names after the closing curly brace of structure declaration.

These variables are in a comma-separated list.

Structures can also contain pointers which also fall under the category of data type. So

we can have a pointer to something as a part of a structure. We can’t have the same

structure within itself but can have other structures. Let’s say we have a structure of

an address. It contains streetAddress like 34 muslim town, city like sukhar,

rawalpindi, etc and country like Pakistan. It can be written in C language as:

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

230

 struct address{

 char streetAddress[100];

 char city[50];

 char country[50];

 }

Now the structure address can be a part of student structure. We can rewrite student

structure as under:

struct student{

 char name[60];

 address stdAdd;

 float GPA;

};

Here stdAdd is a variable of type Address and a part of student structure. So we can

have pointers and other structures in a structure. We can also have pointers to a

structure in a structure. We know that pointer hold the memory address of the

variable. If we have a pointer to an array, it will contain the memory address of the

first element of the array. Similarly, the pointer to the structure points to the starting

point where the data of the structure is stored.

We have used the card-shuffling example before. What will be the structure of card?

Its one attribute may be the suit i.e. spades, clubs, diamonds or hearts. The second

attribute is the value of the card like ace, deuce, 3 up to king. The structure of card

contains a char pointer to suit and a char pointer to value i.e.

struct card {

 char *suit;

 char *value;

};

 card card1, card2;

We have defined card1 and card2 of type card. We can also define more cards. There

are also arrays of structure. The syntax is same as with the normal data type. So a set

of cards or an array of hundred students can be defined as under:

 card fullSet[52];

 student s[100];

The pointers to structure can be defined in the following manner i.e.

 student *sptr;

Here sptr is a pointer to a data type of structure student. Briefly speaking, we have

defined a new data type. Using structures we can declare:

Simple variables of new structure

Pointers to structure

Arrays of structure

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

231

There are also limitation with structures as we can not say card1 + card2; As the

operator plus (+) does not know how to add two structures. We will learn to overcome

these limitations at the advanced stage. On the other hand, assignment of structures

works. Therefore if s1 and s2 are of type student structure, we can say that s1 = s2.

The assignment works because the structure is identical. So the name will be copied

to the name, address to address and so on. If we want to display the structure with

cout, it will also work. The cout is a very intelligent function as it interprets the

structure besides showing the output.

Initializing Structures
We have so far learnt how to define a structure and declare its variables. Let’s see

how can we put the values in its data members. The following example can help us

understand the phenomenon further.

 struct student{

 char name[64];

 char course[128];

 int age;

 int year;

 };

 student s1, s2, s3;

Once the structure is defined, the variables of that structure type can be declared.

Initialization may take place at the time of declaration i.e.

 student s1 = {“Ali”, “CS201”, 19, 2002 };

In the above statement, we have declared a variable s1 of data type student structure

and initialize its data member. The values of data members of s1 are comma separated

in curly braces. “Ali” will be assigned to name, “CS201” will be assigned to the

course, 19 to age and 2002 to year. So far we have not touched these data members

directly.

To access the data members of structure, dot operator (.) is used. Therefore while

manipulating name of s1, we will say s1.name. This is a way of referring to a data

member of a structure. This may be written as:

 s1.age = 20;

 s1.year = 2002;

The above statement will assign the value 20 to the age data member of structure s1.

Can we assign a string to the name of s1? Write programs to see how to do this? You

may need string copy function to do this. Also, initialize the pointers to structure and

see what is the difference.

Similarly, to get the output of data members on the screen, we use dot operator. To

display the name of s1 we can write it as:

 cout << “The name of s1 = “ << s1.name;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

232

Other data members can be displayed on the screen in the same fashion.

Here is a simple example showing the initialization and displaying the structure.

/* Simple program showing the initialization of structure.*/

#include <iostream.h>

main()

{

 // Declaring student structure

 struct student{

 char name[64];

 char course[128];

 int age;

 int year;

 };

 // Initializing the structure

 student s1 = {"Ali", "CS201- Introduction to programming", 22, 2002};

 cout << "Displaying the structure data members" << endl;

 cout << "The name is " << s1.name << endl;

 cout << "The course is " << s1.course << endl;

 cout << "The age is " << s1.age << endl;

 cout << "The year is " << s1.year << endl;

}

The output of the above program is:

Displaying the structure data members

The name is Ali

The course is CS201- Introduction to programming

The age is 22

The year is 2002

Here, s1 is a unit. The data members have been grouped together. If we have s1 and

s2 as two variables of student type and want to copy the data of s1 to s2, it can be

written as:

 s2 = s1;

Functions and structures
We can pass structures to functions. Structures are passed into functions as per the

C/C++ calling conventions by value. In other words, a copy of entire structure is put

on the stack. The function is called which removes it from the stack and uses the

structure. We can also pass the structures by reference to function. This can be

performed in the same way we do with the normal variables i.e. pass the address of

the structure to the function. This is call by reference.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

233

When we pass an array to a function, the reference of the array is passed to the

function. Any change in the array elements changes the original array. Suppose we

have a structure containing an array. What will happen to the array if the structures

are passed as value? Is the array passed as value or reference? As the array is a part of

structure, it will be passed as value. The advantage of ‘pass by value’ process is that if

the function makes some changes to the array elements, it does not affect the original

array. However, it may be disadvantageous as the complete array is copied on the

stack and we can run out of memory space. So be careful while passing the structures

to functions. We know that functions return value, int, char etc. Similarly functions

can also return structures. In a way, the behavior of structure is same as ordinary data

type.

Suppose we have a pointer to structure as student *sptr; here sptr is a pointer to

student. Now s1 is a variable of type student and sptr = &s1 and sptr is pointing to s1.

How can we access the data with sptr? We cannot say *sptr.name. The precedence of

dot operator (.) is higher than * operator. So dot operator is evaluated first and then *

operator. The compiler will give error on the above statement. To get the results, we

have to evaluate * operator first i.e. (*sptr).name will give the desired result. There is

another easy and short way to access the structure’s data member i.e. using the arrow

(->) in place of dot operator. We normally use the arrow (-> i.e. minus sign and then

the greater than sign) to manipulate the structure’s data with pointers. So to access the

name with sptr we will write:

 sptr->name;

Remember the difference between the access mechanism of structure while using the

simple variable and pointer.

 While accessing through a simple variable, use dot operator i.e. s1.name

 While accessing through the pointer to structure, use arrow operator i.e. sptr-

>name;

Following is the example, depicting the access mechanism of structure’s data member

using the pointer to structure.

The code of the sample example is:

/* This program shows the access of structure data members with pointer to structure */

#include <iostream.h>

main()

{

 // Declaration of student structure

 struct student{

 char name[64];

 char course[128];

 int age;

 int year;

 };

 // Initializing the s1

 student s1 = {"Ali", "CS201- Introduction to programming", 22, 2002};

 student *sptr;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

234

 // Assigning a structure to pointer

 sptr = &s1;

 cout << "Displaying the structure data members using pointers" << endl;

 cout << "Using the * operator" << endl;

 cout << endl;

 cout << "The name is " << (*sptr).name << endl;

 cout << "The course is " << (*sptr).course << endl;

 cout << "The age is " << (*sptr).age << endl;

 cout << "The year is " << (*sptr).year << endl;

 cout << endl;

 cout << "Using the -> operator" << endl;

 cout << endl;

 cout << "The name is " << sptr->name << endl;

 cout << "The course is " << sptr->course << endl;

 cout << "The age is " << sptr->age << endl;

 cout << "The year is " << sptr->year << endl;

}

The output of the program is:

Displaying the structure data members using pointers

Using the * operator

The name is Ali

The course is CS201- Introduction to programming

The age is 22

The year is 2002

Using the -> operator

The name is Ali

The course is CS201- Introduction to programming

The age is 22

The year is 2002

Arrays of structures

Let’s discuss the arrays of structure. The declaration is similar as used to deal with the

simple variables. The declaration of array of hundred students is as follows:

 student s[100];

In the above statement, s is an array of type student structure. The size of the array is

hundred and the index will be from 0 to 99. If we have to access the name of first

student, the first element of the array will be as under:

 s[0].name;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

235

Here s is the array so the index belongs to s. Therefore the first student is s[0], the 2
nd

student is s[1] and so on. To access the data members of the structure, the dot operator

is used. Remember that the array index is used with the array name and not with the

data member of the structure.

Sizeof operator
As discussed earlier, the sizeof operator is used to determine the size of data type. The

sizeof operator can also be used with the structure. Structure contains different data

types. How can we determine its size in the memory? Consider the student structure

that contains two char arrays and two int data types. We can simply use the sizeof

operator to determine its size. It will tell us how many bytes the structure is

occupying.

 sizeof(s1);

We don’t need to add the size of all the data members of the structure. This operator is

very useful while using the write() function to write the structure in the file.

Here is a small example which shows the number of bytes a structure occupies in

memory.

/* this program shows the memory size of a structure*/

#include <iostream.h>

main()

{

 // Declaring student structure

 struct student{

 char name[64];

 char course[128];

 int age;

 int year;

 };

 student s1 = {"Ali", "CS201- Introduction to programming", 22, 2002};

 // using sizeof operator to determine the size

 cout << "The structure s1 occupies " << sizeof(s1) << " bytes in the memory";

}

The output of the above program is:

The structure s1 occupies 200 bytes in the memory

Let’s summarize what we can do with structures:

We can define the structure

We can declare variables of that type of structure

We can declare pointers to structure

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

236

We can declare arrays of structure

We can take the size of structure

We can do simple assignment of two variables of the same structure type

Sample Program 1

Problem:

Suppose we have ten students in a class. The attributes of student are name, course,

age and GPA. Get the data input from the user to populate the array. Calculate the

average age, average GPA of the class. Find out the grade of the class and student

with max GPA.

Solution:

The problem is very simple. We will declare a structure of student with name, course,

age and GPA as data members. In a loop, we will get the data from the user to

populate the array. Then in a loop, we will calculate the totalAge and totalGPA of the

class besides determining the max GPA in that loop. Finally calculate the average age

and average GPA by dividing the totalAge and totalGPA by the number of students

i.e. 10. The grade of the class can be determined by the average GPA.

The complete code of the program is:

/* This program calculates the average age and average GPA of a class. Also determine

the grade of the class and the student with max GPA. We will use a student structure and

manipulate it to get the desired result. */

#include <iostream.h>

main()

{

 // Declaration of student structure

 struct student

 {

 char name[30];

 char course[15];

 int age;

 float GPA;

 };

 const int noOfStudents = 10; // total no of students

 student students[noOfStudents]; // array of student structure

 int totalAge, index, averageAge;

 float totalGPA, maxGPA, averageGPA;

 // initializing the structure, getting the input from user

 for (int i = 0; i < noOfStudents; i++)

 {

 cout << endl;

 cout << "Enter data for Student # : " << i + 1 << endl;

 cout << "Enter the Student's Name : " ;

 cin >> students[i].name ;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

237

 cout << "Enter the Student's Course : " ;

 cin >> students[i].course ;

 cout << "Enter the Student's Age : " ;

 cin >> students[i].age ;

 cout << "Enter the Student's GPA : " ;

 cin >> students[i].GPA ;

 }

 maxGPA = 0;

 // Calculating the total age, total GPA and max GPA

 for (int j = 0; j < noOfStudents; j++)

 {

 totalAge = totalAge + students[j].age ;

 totalGPA = totalGPA + students[j].GPA ;

 // Determining the max GPA and storing its index

 if (students[j].GPA > maxGPA)

 {

 maxGPA = students[j].GPA;

 index = j;

 }

 }

 // Calculating the average age

 averageAge = totalAge / noOfStudents ;

 cout << "\n The average age is : " << averageAge << endl;

 // Calculating the average GPA

 averageGPA = totalGPA / noOfStudents ;

 cout << "\n The average GPA is : " << averageGPA << endl;

 cout << "\n Student with max GPA is : " << students[index].name << endl ;

 // Determining the Grade of the class

 if (averageGPA > 4)

 {

 cout << "\n Wrong grades have been enter" << endl ;

 }

 else if (averageGPA == 4)

 {

 cout << "\n The average Grade of the class is : A" << endl;

 }

 else if (averageGPA >= 3)

 {

 cout << "\n The average Grade of the class is : B" << endl;

 }

 else if (averageGPA >= 2)

 {

 cout << "\n The average Grade of the class is : C" << endl;

 }

 else

 {

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

238

 cout << "\n The average Grade of the class is : F" << endl;

 }

}

The output of the program with three students i.e. when noOfStudents = 3

Enter data for Student # : 1

Enter the Student's Name : Ali

Enter the Student's Course : CS201

Enter the Student's Age : 24

Enter the Student's GPA : 3.5

Enter data for Student # : 2

Enter the Student's Name : Faisal

Enter the Student's Course : CS201

Enter the Student's Age : 22

Enter the Student's GPA : 3.6

Enter data for Student # : 3

Enter the Student's Name : Jamil

Enter the Student's Course : CS201

Enter the Student's Age : 25

Enter the Student's GPA : 3.3

 The average age is : 24

 The average GPA is : 3.46667

 Student with max GPA is : Faisal

 The average Grade of the class is : B

Sample Program 2

Problem:

Read the student data from a file, populate the structure and write the structure in

another file.

Solution:

We have to read from a file. We will write a function which will read from a file and

return a structure to the calling program. The prototype of function is:

 returnType functionName (argument list)

As the function is returning a student structure so the return type will be ‘student’. We

can name the function as getData() as it is reading from a file a returning the data (i.e.

student structure). In the arguments, we can give it the handle of the file from which

the data is to be read. For the simplicity, we keep the argument list empty. Therefore,

the prototype of our function is as under:

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

239

 student getData();

This function is going to read from a file. The handle of the file has to be global so

that function can access that file handle. We will define the handle of the file before

main function to make it global. We will open the file in the main function before

calling the getData function. The getData function returns a student structure .We

will assign this to some variable of type student like:

 s1 = getData();

Where s1 is a variable of type student. It means that the structure, returned by the

getData function is assigned to s1. The getData function can read the data from the

file using extraction operators (i.e. >>). As this function is returning a student

structure, we declare tmpStd of type student. Data read from the file will be assigned

to the tmpStd. In the end of the getData function, we will return the tmpStd using the

return keyword (i.e. return tmpStd).

Let’s have a look what is happening in the memory. When we entered into the

getData function from main, it creates locally a tmpStd of type student structure.

tmpStd is created somewhere in the memory. It starts reading data from the file

assigning it at that memory location. On its return, the function copies this tmpStd on

to the stack. Stack is the way the function communicates with the main function or

calling program. When the function returns, it will destroy the tmpStd as it is local

variable of getData function. It does not exist anymore. It just came into being while

you were inside the getData function. It disappears once getData finishes. However,

before it disappears, the getData copies tmpStd in the memory so the main function

pick up those value use it to assign to s1. Similarly we write the writeData function to

write the data into a file. We will pass this function a student type structure to write it

on the file. The prototype of writeData is as:

 void writeData(student s1);

The sample input file:

nasir

CS201

23

3

Jamil

CS201

31

4

Faisal

CS201

25

3.5

Here is the complete code of the program:

/* this program reads from a file, populate the structure, and write the structure in a file */

#include <stdlib.h>

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

240

#include <fstream.h>

// Global variables for input and output files

ifstream inFile;

ofstream outFile;

//student structure

struct student

{

 char name[30];

 char course[15];

 int age;

 float GPA;

};

// function declarations

void openFile(); // open the input and output files

student getData(); // Read the data from the file

void writeData(student); // write the structure into a file

{

 const int noOfStudents = 3; // Total no of students

 openFile(); // opening input and output files

 student students[noOfStudents]; // array of students

 // Reading the data from the file and populating the array

 for(int i = 0; i < noOfStudents; i++)

 {

 if (!inFile.eof())

 {

 students[i] = getData();

 }

 else

 {

 break ;

 }

 }

 // Writing the structures to the file

 for(int i = 0; i < noOfStudents; i++)

 {

 writeData(students[i]);

 }

 // Closing the input and output files

 inFile.close () ;

 outFile.close () ;

}

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

241

/* This function opens the input file and output file */

void openFile()

{

 inFile.open("SAMPLE.TXT", ios::in);

 inFile.seekg(0L, ios::beg);

 outFile.open("SAMPLEOUT.TXT", ios::out | ios::app);

 outFile.seekp(0L, ios::end);

 if(!inFile || !outFile)

 {

 cout << "Error in opening the file" << endl;

 exit(1);

 }

}

/* This function reads from the file */

student getData()

{

 student tempStudent;

 // temp variables for reading the data from file

 char tempAge[2];

 char tempGPA[5];

 // Reading a line from the file and assigning to the variables

 inFile.getline(tempStudent.name, '\n');

 inFile.getline(tempStudent.course, '\n');

 inFile.getline(tempAge, '\n');

 tempStudent.age = atoi(tempAge);

 inFile.getline(tempGPA, '\n');

 tempStudent.GPA = atof(tempGPA);

 // Returning the tempStudent structure

 return tempStudent;

}

/* This function writes into the file the student structure*/

void writeData(student writeStudent)

{

 outFile << writeStudent.name << endl;

 outFile << writeStudent.course << endl;

 outFile << writeStudent.age << endl;

 outFile << writeStudent.GPA << endl;

}

The contents of output file is:

nasir

CS201

23

3

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

242

Jamil

CS201

31

4

Faisal

CS201

25

3.5

Unions

We have another construct named union. The concept of union in C/C++ is: if we

have something in the memory, is there only one way to access that memory location

or there are other ways to access it. We have been using int and char interchangeably

in our programs. We have already developed a program that prints the ACSII codes.

In this program, we have stored a char inside an integer. Is it possible to have a

memory location and use it as int or char interchangeably? For such purposes, the

construct union is used. The syntax of union is:

 union intOrChar{

 int i,

 char c;

 };

The syntax is similar as that of structure. In structures, we have different data

members and all of these have their own memory space. In union, the memory

location is same while the first data member is one name for that memory location.

However, the 2
nd

 data member is another name for the same location and so on.

Consider the above union (i.e. intOrChar) that contains an integer and a character as

data members. What will be the size of this union? The answer is the very simple. The

union will be allocated the memory equal to that of the largest size data member. If

the int occupies four bytes on our system and char occupies one byte, the union

intOrChar will occupy four bytes. Consider another example:

 union intOrDouble{

 int ival;

 double dval;

 };

The above union has two data members i.e. ival of type int and dval of type double.

We know that double occupies more memory space than integer. Therefore, the union

will occupy the memory space equivalent to double. The data members of unions are

accessed in a similar way as we use with structures i.e. using the dot operator. For

example:

 intOrDouble uval;

 uval.ival = 10;

To get the output of the data members, cout can be used as:

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

243

 cout << “ The value in ival = “ << uval.ival;

It will print “The value in ival = 10”. Now what will be output of the following

statement?

 cout << “ The value in dval = “ << uval.dval;

We don’t know. The reason is that in the eight bytes of double, integer is written

somewhere. When we use integer, it is printed fine. When we printed the double, the

value of int will not be displayed. Rather something else will be printed. Similarly in

the following statement i.e.

 uval.dval = 100.0;

 cout << “ The value in dval = “ << uval.dval;

It will print the right value of dval. The value of this double is written in such a way

that it will not be interpreted by the integer. If we try to print out ival, it will not

display 100. Unions are little bit safer for integer and characters. But we have to think

in terms that where to store the value in memory.

Suppose, we have some integer value 123 and want to append 456 to it so that it

becomes 123456. How can we do that? To obtain this result, we have to shift the

integer three decimal places i.e. we can multiply the integer 123 by 1000 (i.e. 123000)

and then add 456 to it (i.e. 123456). Consider a union containing four characters and

an integer. Now the size of the char is one and integer is four so the size of the union

will be four. We assign the character ‘a’ to the integer, and display the chars and

integer value. If we want to shift the value of first byte into the second byte, the

integer will be multiplied by 256(i.e. A byte contains 8 bits and 2 to power 8 is 256),

then add character ‘b’ to it. We see that the char variables of union contains ‘a’ and

‘b’.

Here is the code of the program;

/* This program uses a union of int and char and display the memory usage by both */

#include <iostream.h>

main()

{

 // Declaration of union

 union intOrChar{

 char c[4];

 int x;

 }u1;

 u1.x = 'a'; // Assigning ‘a’ to x

 // Displaying the char array and integer value

 cout << "The value of c = " << u1.c[0] << "," << u1.c[1]

 << "," << u1.c[2] << "," << u1.c[3]<< endl;

 cout << "The value of x = " << u1.x << endl;

 // Shifting the values one byte and adding ‘b’ to the int

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

244

 u1.x *= 256;

 u1.x += 'b';

 // Displaying the char array and integer value

 cout << "The value of c = " << u1.c[0] << "," << u1.c[1]

 << "," << u1.c[2] << "," << u1.c[3]<< endl;

 cout << "The value of x = " << u1.x << endl;

 // Shifting the values one byte and adding ‘b’ to the int

 u1.x *= 256;

 u1.x += 'c';

 // Displaying the char array and integer value

 cout << "The value of c = " << u1.c[0] << "," << u1.c[1]

 << "," << u1.c[2] << "," << u1.c[3]<< endl;

 cout << "The value of x = " << u1.x << endl;

 // Shifting the values one byte and adding ‘b’ to the int

 u1.x *= 256;

 u1.x += 'd';

 // Displaying the char array and integer value

 cout << "The value of c = " << u1.c[0] << "," << u1.c[1]

 << "," << u1.c[2] << "," << u1.c[3]<< endl;

 cout << "The value of x = " << u1.x << endl;

}

The output of the program is;

The value of c = a, , ,

The value of x = 97

The value of c = b,a, ,

The value of x = 24930

The value of c = c,b,a,

The value of x = 6382179

The value of c = d,c,b,a

The value of x = 1633837924

Unions are very rarely used. They become very important when we want to do some

super efficient programming. Experiment with the unions and structures.

We have learnt how to use structures and unions. These are relatively less used parts

of C/C++ language. But structures at least are very useful. They allow us a convenient

way of grouping data about a single entity. We have used student entity in our

example. You can think of a car or any other object and find out its properties before

grouping them in a structure. We don’t need to manipulate its properties individually

as grouping them into a unit is a better option. Try to write different programs using

structures.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

245

Lecture No. 21

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 16

 16.7

Summary

Bit Manipulation

Bit Manipulation Operators

AND Operator

OR Operator

Exclusive OR Operator

NOT Operator

 Bit Flags

 Masking

 Unsigned Integers

Sample Program

Shift Operators

Bit Manipulation

We have so far been dealing with bytes using different data types. In this lecture, we

will see what a bit is? Bit is the basic unit of memory. Eight bits form a byte. As you

know that data is stored in computers in 0’s and 1’s form. An integer uses four bytes

and the integer calculations occur in four bytes. Thus, we are manipulating bytes

while using different data types. Now we will try to understand the process of ‘bit

manipulation’. Now we will deal with each bit in a byte and explore how to do on or

off each bit. A bit, having 1 is said on while the one with 0 is called off. Here we will

discuss different operators to manipulate bits.

The concept of bit manipulation means that we can do work with a bit, the smallest

unit of memory. Bit manipulations utilize very small memory. Thus, we can make an

efficient use of the memory. The bit fields are of great use in operating systems and

files attributes. The bit manipulations are useful while working at operating system

level.

Let’s have a look on different operators, used for bit manipulations.

Bit Manipulation Operators

The following table shows different operators used for bit manipulation.

Operator Operator

Sign

Bitwise AND Operator &

Bitwise OR Operator |

Bitwise Exclusive OR

Operator

 ^

NOT Operator ~

Left Shift Operator <<

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

246

Right Shift Operator >>

Here & is the bit-wise AND operator. Don’t confuse it with the logical AND operator

&&. Similarly | is the bit-wise OR operator. Don’t confuse it with the logical OR

operator ||.

Now let’s talk about these operators in detail.

AND Operator (&)

The AND operator (&) works just like the logical AND operator (&&) but on bits. It

compares two bits and returns 1 if both bits are 1. If any of the two bits being

compared is 0, the result will be 0.

Following table, also called truth table, will further explain the operation of &

operator.

Bit1 Bit2 Bit1 & Bit2

1 1 1

1 0 0

0 1 0

0 0 0

We know that when a number is stored in memory, it gets stored in bit pattern which

has binary representation (only 1 and 0). So we can use & to AND two numbers bit-

wise. To understand this, consider the following example.

Suppose we have two numbers - 12 and 8 and want to apply & on these ones. Here we

will make use of the binary number system. The binary representation (base 2 system)

of 12 and 8 are as 12 = (1100)2 and 8 = (1000) 2. Now we apply the & operator on

these numbers and get the result as follows

12 = 1 1 0 0

&

 8 = 1 0 0 0

 1 0 0 0

Thus 12 & 8 = (1000) 2 = 8. Don’t think 12 & 8 as an arithmetic operation. It is just a

bit manipulation or a pattern matching issue. Each bit of first number is matched

(compared) with corresponding bit of the second number. The result of & is 1 if both

bits are 1. Otherwise, it will be 0. The & operator is different from the && operator.

The && operator operates on two conditions (expressions) and returns true or false

while the & operator works on bits (or bit pattern) and returns a bit (or bit pattern) in 1

or 0.

Example 1

We want to determine whether in a number a specific bit is 1 or 0. Suppose we want

to determine whether the fourth bit (i.e. 2
3
) of a number is 1 or 0. We will pick the

number whose fourth bit is 1 and the remaining are zero. It is 2
3
 (i.e. 8). Now we will

take AND of the given number with 8 (i.e 1000 in bit pattern.). In bit manipulation,

the number is written in hexadecimal form. In the C language, we put 0x or 0X before

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

247

the number to write a number in hexadecimal. Here we will write 8 as 0x8 in our

code. Now all the bits of 8 are zero except the fourth one which is 1. The result of the

number being ANDed with 8 will be non-zero if the fourth bit of the number is 1. As

the fourth bit of 8 is also 1, & of these two bits will result 1. We call the result non-

zero just due to the fact that we are not concerned with the numbers like 1,2,3 or

whatsoever. We will write this in the form of a statement as under

if (number & 0x8)

 instead of if ((number & ox8) > =1)

The if looks for a true or false. Any non-zero value is considered true and a zero is

considered false. When we do bit-wise AND of two numbers if the result is non-zero

(not 1 only, it may be 1 or any other number), this if statement will be true.

Otherwise, it will be false.

By a non-zero value we simply conclude that the fourth bit of the number is set (i.e.

1). A bit is said to be set in case it is 1 and ‘not set’ if it is 0. This way, we can set any

bit pattern in the power of 2, to determine whether a specific bit of a number is set or

not. For example, to determine bit no. 3 of a number we can AND it with 2
2
 (4).

Following is the code of the example finding out whether the fourth bit of a number is

set (1) or not set (0).

//This program determines whether the fourth bit of a number entered by user is set or not

#include <iostream.h>

main()

{

 int number ;

 cout << “Please enter a number “ ;

 cin >> number ;

 if (number & 0x8) //8 is written in hexadecimal form

 cout << "The fourth bit of the number is set" << endl;

 else

 cout << "The fourth bit of the number is not set" << endl;

}

Sample output of the program.

Please enter a number 12

The fourth bit of the number is set

OR Operator (|)

The OR operator, represented by ‘|’ works just like the & operator with the only

difference that it returns 1 if any one of the bits is 1. In other words, it returns 0 only if

both the input bits are 0. The | (bit-wise OR) operator is different from the || (logical

OR) operator. The || operator operates on two conditions (expressions) and returns

true or false while the | operator works on bits (bit pattern) and returns a bit (or bit

pattern) in 1 or 0.

The truth table of OR operator is given below.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

248

Bit1 Bit2 Bit1 | Bit2

1 1 1

1 0 1

0 1 1

0 0 0

We can make it sure that a specific bit in a number should be 1 with the help of |

operator. For this purpose, we take OR of this number with another number whose bit

pattern has 1 in that specific bit. Then OR will produce 1 as the bit at that position in

second number is 1 and OR gives 1 if any one bit is one. Thus in the output that

specific bit will have 1.

Let us consider the following example in which we apply OR operator on two

numbers 12 and 8.

12 = 1 1 0 0

|

 8 = 1 0 0 0

 1 1 0 0

Hence we get 12 | 8 = 12.

In case, x = 8 | 1, the OR operation will be as under.

 8 = 1 0 0 0

 |

 1 = 0 0 0 1

 1 0 0 1

Thus x = 8 | 1 = 9.

Don’t take the statement in mathematical or arithmetical terms. Rather consider it

from the perspective of pattern matching.

The & operator is used to check whether a specific bit is set or not while the | operator

is used to set a specific bit.

Exclusive OR Operator (^)

Exclusive OR operator uses the sign ^ . This operator returns 1 when one input is

zero and the second is 1. It returns 0 if both bits are same i.e. both are either 0 or 1.

The truth table of exclusive OR, also called xor (zor) , is given below.

Bit1 Bit2 Bit1 ^ Bit2

1 1 0

1 0 1

0 1 1

0 0 0

To understand exclusive OR, let’s work out exclusive OR of 8 and 1.

In the following statement, the pattern matching is shown for 8 ^ 1.

 8 = 1 0 0 0

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

249

 ^

 1 = 0 0 0 1

 1 0 0 1

This shows that 8 ^ 1 = 9. If we take again exclusive OR of 9 with 1. The result will

be 8 again as shown below.

 9 = 1 0 0 1

 ^

 1 = 0 0 0 1

 1 0 0 0

While taking ^ (exclusive OR) of a number with a second number and then ^ of the

result with the second number, we get the first number again. This is a strength of the

^ operator that is very useful.

NOT Operator (~)

This is a unary operator. It inverts the bits of the input number, meaning that if a bit of

the input number is 1, the operator will change it to 0 and vice versa. The sign ~ is

used for the NOT operator. Following is the truth table of the NOT operator.

Bit1 ~ Bit1

1 0

0 1

Let’s take NOT of the number 8. This will be as follows

 8 = 1 0 0 0

Now ~8 will invert the bits from 1 to 0 and from 0 to 1. Thus ~8 will be

 ~8 = 0 1 1 1

which is 7.

The bit manipulation operators are very useful. Let’s consider some examples to see

the usefulness of these operators.

Example (Bit Flags)

The first example relates to operating system. In Windows, you can view the

properties of a file. You can get the option properties by right clicking the mouse on

the file name in any folder structure. You will see a window showing the properties of

the file. This will show the name of the file, the date of creation/modification of the

file etc. In the below part of this window, you will see some boxes with check marks.

These include read only and archive etc. While looking at a check mark, you feel of

having a look at a bit. If there is a check mark, it means 1. Otherwise, it will be 0. So

we are looking at bit flags which will depict the status of the file. If the file is marked

read-only, a specific bit is set to 1 in the operating system. This 1 indicates that the

status of the file is read-only.

When we look for directory in UNIX operating system, rwx, rx or rw are seen before

the name of a file. The rwx are actually symbols used for read, write and execute

permissions of the file. These are the attributes of the file.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

250

In operating systems, the attributes of a file are best get as bit fields. The 1 in a bit

means the attribute is set and 0 means the attribute is not set (or cleared).

Example (Masking)
Let’s see how ^ operator works. Whenever you log on to a system or server or to a

web site like yahoo or hotmail, you enter your user name and then the password. The

system or server validates your password and allows the access. Your password is

kept in the database of the system/server. When you enter the password, the system

compares it with the one earlier stored in its database. If it matches, the system allows

you to access the system. But there may be a problem at this stage from the security

perspective. If the password is stored in the database as it is, then the administrative

(or any person having access to database) can read the password of any account. He

can make misuse of password. To prevent this and make the password secure, most of

the operating systems keep the password in an encrypted fashion. It codes the

passwords to a different bit pattern before storing it in its database so that no body can

read it. Now when a user enters his password, there are two methods to compare this

password with the password earlier stored in the database. Under the first method, on

entering the password, the password stored will be decoded to the original password

and compare with the password entered. This is not a best way because of two

reasons. If there is a method to decrypt a password, the administrator can decrypt the

password for any sort of misuse. The second method is that when you enter a

password, it travels through wires to go to somewhere for comparison. While it is

traveling on wire, someone can get it. Another reason to compare the password in

encrypted form is that it is very easy to do encryption but the decryption process is

very difficult. Therefore, to make this process secure and easy, the password entered

is encrypted and compared to the password in the database, which is already stored in

encrypted form.

The Exclusive OR operator (^) can be used to encrypt and decrypt the password.

Suppose there are two numbers a and b. We take c = a ^ b. Now if we take ^ of the

result c with b (i.e. c ^ b), the result will be a. Similarly, if we take Exclusive OR of

the result c with a (c ^ a) , the answer will be b. You can do exercise this phenomenon

by taking any values of a and b. This phenomenon of Exclusive OR can be used to

secure a password. You can take Exclusive OR of the password with a secret number

and save it to the database. Now when it is needed to be compared with entered

password, you again take Exclusive OR of the saved password with the same secret

number and get the original password back. If someone else wants to get the

password, it is very difficult for him/her to get that because the original password will

be got by taking Exclusive OR of the saved password with the same secret number.

Here is another example of Exclusive OR. Sometimes, there are bad sectors in a hard

disk, which bring it to a halt. We cannot access our data from it. This is worst

situation. In large systems like servers, there is a requirement that these should work

twenty four hours a day, seven days a week. In such systems, we cannot take the risk.

To avoid this and meet the requirements, we use a technique which is called RAID.

RAID stands for Redundant Array of Inexpensive Devices. In this technique, we use

many disks instead of one. Suppose we have nine disks. Now when we say write a

byte on the disk, The RAID will write a bit on first disk then second bit on the second

disk and so on. Thus 8 bits (one byte) are written on 8 disks. Now what will be written

on the ninth disk? We take exclusive OR of these 8 bits pair by pair and write the

result on the ninth disk. The benefit of this process that in case one disk stops

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

251

working, we may place a new disk in its place. And to write a bit on this disk, we

again take Exclusive OR of eight bits on the other disks and write the result on this

disk. This will be the same bit that was written in the damaged disk.

You can prove it by the doing the following exercise on paper.

Write eight bits, take their Exclusive OR one by one and write it at ninth position.

Now erase any one bit and take Exclusive OR of the remaining eight bits. You will

get the same bit which was erased. Thus it is a useful technique for recovering the lost

data without shutting down the system. We replace the bad disk with a new one while

the system is on. The system using the RAID technique, writes the data to the new

disk. This technique of replacing a disk is known as Hot Plug.

We have read the technique of swapping two numbers. In this method, we use a third

temporary place to swap two numbers. Suppose a and b are to be swapped. We store

a in a temporary place c. Then we store b in a and put the value of c (which has the

value of a) in b. Thus a and b are swapped.

We can swap two numbers without using a third place with the help of Exclusive OR.

Suppose we want to swap two unsigned numbers a and b. These can be swapped by

the following three statements.

 a = a ^ b ;

 b = b ^ a ;

 a = a ^ b ;

Do exercises of this swap technique by taking different values of a and b.

Unsigned Integers

The bit manipulations are done with unsigned integers. The most significant bit is

used as a sign bit. If this bit is zero, the number is considered positive. However, if it

is 1, the number will be considered negative. Normally these bit manipulations are

done with unsigned integers. The unsigned integers are declared explicitly by using

the word ‘unsigned’ as follow.

 unsigned int i, j, k ;

By this declaration the integers i, j and k will be treated as positive numbers only.

Sample Program
The following program demonstrate the encryption and decryption of a password. The

program takes a password from user, encrypts it by using Exclusive OR (^) with a

number. It displays the encrypted password. Then it decrypts the encrypted password

using Exclusive OR (^) with the same number and we get the original password

again.

Following is the code of the program.

//This program demonstrate the encryption by using ^ operator

include<iostream.h>

main ()

{

 char password[10] ;

 char *passptr ;

 cout << "Please enter a password(less than 10 character): " ;

 cin >> password ;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

252

 passptr = password ;

 //now encrypting the password by using ^ with 3

 while (*passptr != '\0')

 {

 *passptr = (*passptr ^ 3);

 ++passptr ;

 }

 cout << "The encrypted password is: " << password << endl;

 //now decrypting the encrypted password by using ^ with 3

 passptr = password ;

 while (*passptr != '\0')

 {

 *passptr = (*passptr ^ 3);

 ++passptr ;

 }

 cout << "The decrypted password is: " << password << endl;

}

The following is a sample output of the program.

Please enter a password(less than 10 character): zafar123

The encrypted password is: ybebq210

The decrypted password is: zafar123

Shift Operators

Shifting the binary numbers is similar to shifting the decimal numbers. Suppose we

have 1 in decimal system and want to shift it left in a way that zero is put at the

ending place. Thus 1 becomes 10. Mathematically, it is a multiplication by 10. Now if

we shift 10 to left and place 0 at the last place, we get 100. It is again a multiplication

by 10. In pictorial terms, we can show this as under.

(In decimal system)

The value is 1

Shift Left, The value is 10 (i.e. multiplication by 10)

Shift Left, The value is 100 (i.e. multiplication by 10)

1000 100 10 1

0 0 0 1

0 1 0 0

1 0 0 0

The same thing applies when we do bit shifts. If we shift a bit to the left in the binary

system, it is multiplied by 2. If we do left shift again we are multiplying by 2 again.

Same applies in the other direction. By shifting to the right, we will be dividing by 2

in the binary system and dividing by 10 in decimal system. In this process, the shifted

digit/bit is discarded. When we do left shift, zeroes are inserted in the right side bits.

The same applies to right shift, as zeros are inserted in the left side bits. But the

situation will be different if we use signed numbers. As we know that in signed

numbers the most significant bit is 1. Now you have to see that what happens while

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

253

right shifting the signed number? If zero is inserted at the left most bit, the negative

number will become a positive number. Normally the operating systems or compilers

treat it differently.

The following figures show the shift operations.

Shift Left:

(In binary system, bits representation)

The value is 2

Shift Left , The value is 4 (i.e. multiplication by 2)

Shift Left, The value is 8 (i.e. multiplication by 2)

 8 4 2 1

0 0 1 0

0 1 0 0

Shift Right:

(In binary system, bits representation)

The value is 12

Shift Right , The value is 6 (i.e. division by 2)

Shift Right, The value is 3 (i.e. division by 2)

 8 4 2 1

1 1 0 0

0 1 1 0

We have specific operators for left and right shifts. The left shift operator is << and

right shift operator is >>. These are the same signs as used with cout and cin. But

these are shift operators. We can give a number with these operators to carry out shift

operation for that number of times. The following program demonstrates the left and

right shift operators.

//This program demonstrate the left and right shift

include <iostream.h>

main()

{

 int number, result ;

 cout << "Please enter a number: " ;

 cin >> number ;

 result = number << 1 ;

 cout << "The number after left shift is " << result << endl ;

 cout << "The number after left shift again is " << (result << 1) << endl ;

 cout << "Now applying right shift" << endl ;

 result = number >> 1 ;

 cout << "The number after right shift is " << result << endl ;

 cout << "The number after right shift again is " << (result >> 1) << endl ;

}

0 0 1 1

1 0 0 0

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

254

Here is the out put of the program.

Please enter a number: 12

The number after left shift is 24

The number after left shift again is 48

Now applying right shift

The number after right shift is 6

The number after right shift again is 3

In the output, we see that the left shift operator (<<) has multiplied the number by 2

and the right shift operator (>>) has divided the number by 2. The shift operator is

more efficient than direct multiplication and division.

Exercises

Write different programs to demonstrate the use of bit manipulation operators.
Write a program which takes two numbers, displays them in binary numbers and then

displays the results of AND, OR and Exclusive OR of these numbers in binary

numbers so that operations can be clearly understood.
Write a program which swaps two numbers without using a temporary third variable.
Write a program, which takes a password from the user, saves it to a file in encrypted

form. Then allow the user to enter the password again and compare it with the stored

password and show is the password valid or not.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

255

Lecture No. 22

Reading Material

Deitel & Deitel - C++ How to Program Review previous lectures

Summary

 Bitwise Manipulation and Assignment Operator

 Design Recipes

 Variables

 Data Types

 Operators

- Arithmetic operators

- Logical operators

- Bitwise operators

 Programming Constructs

 Decisions

- if statement

- Nested if statement

 Loops

- while loop

- do-while loop

- for loop

 switch, break and continue Statements

 Functions

- Function Calling

- Top-Down Methodology

 Arrays

 Pointers

 File I/O

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

256

Bitwise Manipulation and Assignment Operator

Last time we discussed bitwise operators, we will continue with the elaboration of

bitwise manipulation and assignment operator.

C/C++ are well constructed languages, at start we used to write:

 a = a + 1;

This is used to increment the variable. Then we came to know of doing it in a

different manner:

 a += 1;

This is addition and assignment operation using single operator +=.

The same thing applies to bitwise operators; we have compound assignment operators

for & (bitwise AND), | (bitwise OR) and ^ (bitwise exclusive OR). It is written in the

same way as for the above mentioned arithmetic operators . Suppose we want to

write:

 a = a & b;

It can be written as:

 a &= b;

Similarly for | and ^ operations we can write the statement in the following fashion.

 a |= b;

and

 a ^= b;

Remember, the ~ (NOT) operator is unary as it requires only one operand. Not of a

variable a is written as: ~a. There is no compound assignment operator available for

it.

Now we will recap topics covered in the previous lectures one by one.

Design Recipe

Our problems, typically, are of real world nature, e.g., Payroll of a company. These

problems are expressed in words. As a programmer we use those words to understand

the problem and to come up with its possible solution.

To begin with the comprehension and resolution process, we analyze the problem and

express the problem in words in reduced and brief manner. Once we have reduced it

into its essence, we put some examples to formulate it. For example, if the problem is

to calculate the annual net salary of employees, we can take an example for a

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

257

particular employee X. Later we will refine the problem, write program and test it.

Finally we review it if it has met objectives. We have discussed all these steps in

Design Recipe. There was a main heading in the topic, "Pay attention to the detail".

Never forget this as our computers are very dump machines. They perform exactly

whatever we tell them.

It is important to keep in mind that we are using C/C++ as a vehicle to understand

programming concepts.

Variables

The computer memory can be thought of as pigeon holes each with an address. To

store numbers or characters in computer memory, we need a mechanism to

manipulate it and data types are required for different types of data. Instead of using

hard coded memory addresses with data types, symbolic names are used. These

symbolic names are called variables because they can contain different values at

different times. For example,

 int i;

 double interest;

i and interest are symbolic names or variables with types of int and double

respectively.

Data Types

int type is used to store whole numbers. There are some varieties of data types to

store whole numbers e.g., short and long. unsigned qualifier is used for non-negative

numbers. To represent real numbers we use float data type. For bigger-sized real

numbers double data type is used. char data type is used to store one character.

Generally, the size of the int type on our machines is 4 bytes and char is 1 byte.

chars are enclosed in single quotation mark. ASCII table contains the numeric values

for chars.

We further discussed a bit later stage about the aggregations or collections of basic

data types (int, float and char etc) called arrays. Arrays are used to aggregate

variables of same data type.

Operators

We discussed three types of operators:

- Arithmetic Operators

- Logical Operators

- Bitwise Operators

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

258

Arithmetic Operators

+ operator is used to add two numbers, - is used to subtract one number from the

other, * is used to multiply two numbers, / is used to divide numbers. We also have a

modulus operator % , used to get the remainder. For example, in the following

statement:

 c = 7 % 2;

7 will be divided by 2 and the remainder 1 will be the stored in the variable c. We also

used this operator in our programs where we wanted to determine evenness or

oddness of a number. There are also compound arithmetic operators +=, -=, *=, /= and

also %= for our short hand. It is pertinent to note that there is no space between these

compound operators.

Logical Operators
The result for logical operators is always true or false. && (AND operator) and || (OR

operator). Logical Comparison operators are used to compare two numbers. These

operators are: <, <=, ==, >, >=. Don't confuse the == operator of equality with =

operator of assignment.

 It is important for us to remember the difference between these two operators of

equality (==) and assignment (=) . However, C/C++ creates a little problem for us

here. When we write a statement as:

 a = b;

The assignment statement itself has a value, which is the same as that of the

expression on the right hand side of the assignment operator. We can recall from our

last lecture that we only wrote a number inside the if statement. We also know that if

the resultant inside the if statement is non-zero then its code block is executed. In

case, the result is zero, the control is transferred to the else part.

If we want to compare two variables a and b inside if statement but wrongly write as:

 if (a = b)

 { // if code block

// do something

 }

 else

 {

 // do something else

 }

In this case, if the value of the variable b is non-zero (and hence value of the

statement a = b is non-zero) then if code block will be executed. But this was not

required, it is a logical fault and compiler was unable to detect it. Our objective was to

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

259

compare two variables. For that purpose, we should have used assignment operator

== for that as:

 if (a == b)

One should be very careful while using comparison operators. You should not miss

any case of it and be sure about what you wanted to do and what will be the output of

a comparison statement.

You should keep in mind straight line of Calculus for the sake of completeness; you

should always divide your domain into two regions. If we take >= as one region then

the other region is <. Similarly if we say < as a region, the other region is >=.

Depending on the problem requirements, these regions should be very clear.

Bitwise Operators

& is bitwise AND operator, | is bitwise OR operator, ^ is bitwise Exclusive OR

operator and ~ is bitwise inversion or NOT operator. ~ (NOT operator) is unary

operator as it requires one operator and the remaining operators &, | and ^ are binary

operators because they require two operands.

Programming Constructs

For us, it is not necessary to know who is the one to devise or decide about these

constructs to be part of the program logic. The important thing is the concept of

programming constructs, required to write a program. We have earlier discussed three

constructs.

1. The sequential execution of statements of a program. Execution of statements

begins from very first statement and goes on to the last statement.

2. Secondly we need decisions that if something is true then we need to do

something otherwise we will do something else. We use if statement for this.

3. The third construct is loops. Loops are employed for repetitive structures.

Decisions

Normally, if statement is used where decisions are required.

If statement

The syntax of if statement is fairly simple i.e.

 if (condition)

 {

 // if code block

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

260

 }

 else

 {

 // else code block

 }

The result of the condition can be either true or false. If the condition is true, if code

block is executed. Braces of the if code block are mandatory but if there is only one

statement in the if code block then the braces can be omitted or are optional. Now if

the condition is false, the if code block is skipped and the control is transferred to the

else part and else code block is executed. Else part is optional to associate with the if

part. So without else the statement looks like the following:

 if (condition)

 { // if code block

 // Do something here

 }

Use of braces is again mandatory. Again, however, if there is only statement inside

the else part then brace is optional.

As a programming practice, use of braces all the time is recommended. It makes your

program more readable and logically sound.

What happens when the condition is complex?

Nested if statement

For complex conditions, we use logical connectives like &&, ||. For example:

 if (a > b && a < c)

If there are nested decisions structure that we want to do something based on some

condition and further we want to do something more based on an additional condition.

Then we use nested if-statements as under:

 if (a > b && a < c)

 {

 // Do something

 if (a == 100)

 {

 // Do something more

 }

 else

 {

 // Do something else more

 }

 }

 else

 {

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

261

 // Do something else

 }

From stylistic and readability perspective, we properly indent the statements inside if-

statements as shown above.

We discussed pictorial representation of if-statement. By using flowchart of if

statement that was a bit different than normally we see inside books, we introduced

structured flowcharting.

In structured flowcharting, we never go to the left of the straight line that joins

Start and Stop buttons. There is a logical reason for it as while writing code, we can’t

move to the left outside the left margin. Left margin is the boundary of the screen and

indentation is made towards the right side. So we follow the construct that is

equivalent to the program being written. The major advantage of this approach is

achieved when we draw a flowchart of solution of a complex problem. The flowchart

is the logical depiction of the solution to the problem. One can write code easily with

the help of the flowchart. There will be one to one correspondence between the

segments of the flowcharts and the code.

Loops

Going on from the decision structures we discussed about loops. In our program if we

have to do something repeatedly then we can think of applying loop structure there.

There are few variants of loops in C language. However, other languages might have

lesser number of loop variants but a programming language always has loops

constructs.

While Loop

The syntax of the while loop is as follows:

 while (condition)

 { // while code block

// Do something

}

The condition is a logical expression like a == b that returns true or false. Braces are

mandatory to for while loop when there are multiple lines of code inside the while

code block. If there is only single line inside the while code block, the braces become

optional. It is good practice to use braces. The statements inside the while code block

are never executed, if the while condition results in false for very first time it is

entered. In other words, statements inside the while code block executes 0 to n times.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

262

The flowchart for the while loop is as follows:

Do-While Loop

Next loop variant is Do-while. It syntax is as under

 do

 { // do-while code block

// Do something

 }

 while (condition)

The important difference of this loop from the rest ones is that it is executed once

before the condition is evaluated. That means the statements of do-while code block

execute at least once.

False

condition

hile

Process

Exit

True

w

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

263

The flowchart for do-while loop is given below:

For Loop

The for loop becomes bread and butter for us as it gathers three things together. The

syntax for the for loop is as follows:

 for (initialization statements; condition; incremental statements)

 { //for code block

 // Do something

 }

E.g.,

 for (int i = 0; i < 10; i ++)

 {

 }

The for loop is executed until the condition returns true otherwise it is terminated.

The braces are not mandatory if there is single statement in the for code block. But for

sake of good programming practice, the single statement is also enclosed in braces.

Some people write the for loop in the following manner:

 for (initialization statements; condition; incremental statements){

//for code block

do while

Exit
False

condition

True

Process

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

264

 // Do something

 }

Both the methods for writing of for loop are perfectly correct. You can use anyone of

these. If you indent your code properly, the process will become easier.

The flowchart for for loop is as under:

False

condition

for

Process

Exit

True

for
Initialization
Statements

for
Incre/Decre
Statements

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

265

switch, break and continue Statements

For multi-way decisions, we can use nested if-statements or separate if-statements or

switch statement. There are few limitations of switch statement but it is necessary to

use break statements in every case inside the switch statement. If a case results in

true when there is no break statement inside it, all the statements below this case

statement are executed. break statement causes to jump out of the switch statement.

We use break at the end of every case statement. By using break, the jumping out

from switch statement is in a way bit different from the rules of structured

programming. But break statement is so elegant and useful that you can use it inside

switch statement and inside loops. If we use break inside a loop, it causes that loop to

terminate. Similarly continue statement is very useful inside loops. continue

statement is used, when at a certain stage, you don’t want to execute the remaining

statements inside your loop and want to go to the start of the loop.

Functions

In C/C++, functions are a way of modularizing the code. A bigger problem is broken

down into smaller and more manageable parts. There is no rule of thumb for the

length of each part but normally one function’s length is not more than one screen.

Function Calling

We covered Functions Calling by value and by reference. The default of C language

is call by value. Call by value means that when we call a function and pass some

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

266

parameter to it, the calling function gets the copy of the value and the original value

remains unchanged. On the other hand, sometimes, we want to call a function and

want to see the changed value after the function call then call by reference mechanism

is employed. We achieved call by reference by using Pointers. Remember while

calling functions, call by value and call by reference are different techniques and

default for ordinary variables is call by value.

Top-Down Methodology

We discussed top-down design methodology. How do we see a problem at a high

level and identify major portions of it. Then by looking at each portion we identify

smaller parts inside it to write them as functions.

Arrays

After discussing functions and playing little bit with function calling, we had

elaborated the concept of Arrays. As discussed previously in this lecture, arrays are

used to aggregate variables of same data type. We wrote little functions about it and

did some exercises e.g., when we wanted to store age of students of our class. Then

instead of using a separate variable for each student, an array was employed to store

the ages of the students. Then to manipulate or to access individual array elements, a

technique array indexing was used. One important point to remember is that array

indexes start from 0. Let’s say our array name is a of 10 ints, its first element will be

a[0] while the last one will be a[9]. Other languages like Fortran carry out 1-based

indexing. Due to this 0 based indexing for arrays in C language, programmers prefer

to start loops from 0.

red in row major

torage

me ent of the second row then we have to

jump as many numbers as the number of columns in the first row. This fact becomes

important when we are passing arrays to functions. In the receiving function

parameters, we have to write all the dimensions of the array except the extreme-left

one. When passing arrays to functions, it is always call by reference by default; it is

not call by value as in the default behavior of ordinary variables. Therefore, if the

called function changes something in the array, that change is actually made in the

original array of the calling function. When we pass ordinary variables to functions,

they are passed by value because of the default behavior. But when an array is passed

to a function, the default behavior changes and array is passed by reference. We also

did some examples of arrays by using Matrices and did some exercises by transposing

and reversing a squared matrix. Arrays are not just used in Mathematics or Linear

Algebra but are employed in a number of other problems like when we store ages,

names, and grades or want to calculate grade point of average. This is very useful

Arrays can also be multi-dimensional. In C language, arrays are sto

order that a row is stored at the end of the previous row. Because of this s

thodology, if we want to access the first elem

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

267

construct especially when used with loops. Normally it is very rare that you see an

array in a program and loop is not being used to manipulate it.

Like nested if-statements, we have nested loops, used with multi-dimensional arrays.

A while loop can have an inner while loop. Similarly a for loop can have a for loop

inside. It is also not necessary that a while loop should have only a while loop but it

can be a for loop also or any other construct like if-statement.

Pointers

It is very important topic of C/C++ . Pointers are different types of variables that

contain memory address of a variable instead of a value.

The very first example we discussed for pointers was for implementing function

calling by reference. Suppose we want to interchange (swap) two numbers by making

a function call. If we pass two variables to the function, these will be passed as

ordinary variables by value. Therefore, it will be ineffective as swapping of variables

inside the function will only be on the copies and not on the original variables. So

instead of passing variables we pass their addresses. In the called function, these

addresses are taken into pointer variables and pointers start pointing the original

variables. Therefore, the swapping operation done inside the function is actually

carried out on the original variables.

We also saw that Pointers and Arrays are inter-linked. The array name itself is a

pointer to the first element. It is a constant pointer that cannot be incremented like

normal pointer variables. In case of two-dimensional arrays, it points to the first row

and first column. In three-dimensional array, you can imagine it pointing to the front

corner of the cube.

File I/O

We discussed about Files and File I/O for sequential and random files. We used a

mixture of C/C++ for file handling and how the sequential and random files are

accessed. We saw several modes of opening files. The important functions were seek

and tell functions. Seek functions (seekg and seekp) used to move into the file and

tell functions (tellg and tellp) provided us the location inside the file.

You are required to go with very clear head, try to understand concepts and assess

how much you have learned so far to prepare for the mid-term examination.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

268

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

269

Lecture No. 23

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 17

Summary

 Pre-processor

 include directive

 define directive

 Other Preprocessor Directives

 Macros

 Example

 Tips

Preprocessor

Being a concise language, C needs something for its enhancement. So a preprocessor

is used to enhance it. It comes with every C compiler. It makes some changes in the

code before the compilation. The compiler gets the modified source code file.

Normally we can’t see what the preprocessor has included. We have so far been using

#include preprocessor directive like #include<iostream.h>. What actually #include

does? When we write #include<somefile>, this somefile is ordinary text file of C

code. The line where we write the #include statement is replaced by the text of that

file. We can’t see that file included in our source code. However, when the compiler

starts its work, it sees all the things in the file. Almost all of the preprocessor

directives start with # sign. There are two ways to use #include. We have so far been

including the file names enclosing the angle brackets i.e. #include <somefile>. This

way of referring a file tells the compiler that this file exists in some particular folder

(directory) and should be included from there. So we have included iostream.h,

stdlib.h, fstream.h, string.h and some other files and used angle brackets for all of

these files. These files are located in a specific directory. While using the Dev-Cpp

compiler, you should have a look at the directory structure. Open the Dev-Cpp folder

in the windows explorer, you will see many subfolders on the right side. One of these

folders is ‘include’. On expansion of the folder ‘include’, you will see a lot of files in

this directory. Usually the extension of these files is ‘h’. Here ‘h’ stands for header

files. Normally we add these files at the start of the program. Therefore these are

known as header files. We can include files anywhere in the code but it needs to be

logical and at the proper position.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

270

include directive

As you know, we have been using functions in the programs. If we have to refer a

function (call a function) in our program, the prototype of function must be declared

before its usage. The compiler should know the name of the function, the arguments it

is expecting and the return type. The first parse of compilation will be successful. If

we are using some library function, it will be included in our program at the time of

linking. Library functions are available in the compiled form, which the linker links

with our program. After the first parse of the compiler, it converts the source code

into object code. Object code is machine code but is not re-locateable executable. The

object code of our program is combined with the object code of the library functions,

which the program is using. Later, some memory location information is included and

we get the executable file. The linker performs this task while the compiler includes

the name and arguments of the function in the object code. For checking the validity

of the functions, the compiler needs to know the definition of the function or at least

the prototype of the function. We have both the options for our functions. Define the

function in the start of the program and use it in the main program. In this case, the

definition of the function serves as both prototype and definition for the function. The

compiler compiles the function and the main program. Then we can link and execute

it. As the program gets big, it becomes difficult to write the definitions of all the

functions at the beginning of the program. Sometimes, we write the functions in a

different file and make the object file. We can include the prototypes of these

functions in our program in different manners. One way is to write the prototype of all

these functions in the start before writing the program. The better way is to make a

header file (say myheaderfile.h) and write the prototypes of all the functions and save

it as ordinary text file. Now we need to include it in our program using the #include

directive. As this file is located at the place where our source code is located, it is not

included in the angle brackets in #include directive. It is written in quotation marks as

under:

 #include “myHeaderFile.h”

The preprocessor will search for the file “myHeaderFile.h” in the current working

directory. Let’s see the difference between the process of the including the file in

brackets and quotation marks. When we include the file in angle brackets, the

compiler looks in a specific directory. But it will look into the current working

directory when the file is included in quotation marks. In the Dev-Cpp IDE, under the

tools menu option, select compiler options. In this dialogue box, we can specify the

directories for libraries and include files. When we use angle brackets with #include,

the compiler will look in the directories specified in include directories option. If we

want to write our own header file and save it in ‘My Document’ folder, the header file

should be included with the quotation marks.

When we compile our source code, the compiler at first looks for the include

directives and processes them one by one. If the first directive is

#include<iostream.h>, the compiler will search this file in the include directory. Then

it will include the complete header file in our source code at the same position where

the ‘include directive’ is written. If the 2
nd

 include directive contains another file, this

file will also be included in the source code after the iostream.h and so on. The

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

271

compiler will get this expanded source code file for compilation. As this expanded

source code is not available to us and we will get the executable file in the end.

Can we include the header file at the point other than start of the program? Yes. There

is no restriction. We can include wherever we want. Normally we do this at the start

of the program as these are header files. We do not write a portion of code in a

different file and include this file somewhere in the code. This is legal but not a

practice. We have so far discussed include directive. Now we will discuss another

important directive i.e. define directive.

define directive

We can define macros with the #define directive. Macro is a special name, which is

substituted in the code by its definition, and as a result, we get an expanded code. For

example, we are writing a program, using the constant Pi. Pi is a universal constant

and has a value of 3.1415926. We have to write this value 3.1415926 wherever

needed in the program. It will be better to define Pi somewhere and use Pi instead of

the actual value. We can do the same thing with the variable Pi as double Pi =

3.1415926 while employing Pi as variable in the program. As this is a variable, one

can re-assign it some new value. We want that wherever we write Pi, its natural value

should be replaced. Be sure that the value of Pi can not be changed. With the define

directive, we can define Pi as:

 #define PI 3.1415926

We need to write the name of the symbolic constant and its value, separated by space.

Normally, we write these symbolic constants in capitals as it can be easily identifiable

in the code. When we request the compiler to compile this file, the preprocessor looks

for the define directives and replaces all the names in the code, defined with the

define directives by their values. So compiler does not see PI wherever we have used

PI is replaced with 3.1415926 before the compiler compiles the file.

A small program showing the usage of #define.

/* Program to show the usage of define */

#include <iostream.h>

#define PI 3.1415926 // Defining PI

main()

{

 int radius = 5;

 cout << "Area of circle with radius " << radius << " = " << PI * radius * radius;

}

What is the benefit of using it? Suppose we have written a program and are using the

value of PI as 3.14 i.e. up to two decimal places. After verifying the accuracy of the

result, we need to have the value of PI as 3.1415926. In case of not using PI as define,

we have to search 3.14 and replace it with 3.1415926 each and every place in the

source code. There may be a problem in performing this ‘search and replace’ task. We

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

272

can miss some place or replace something else. Suppose at some place, 3.14 is

representing something else like tax rate. We may change this value too accidentally,

considering it the value for PI. So we can’t conduct a blind search and replace and

expect that it will work fine. It will be nicer to define PI at the start of the program.

We will be using PI instead of its value i.e. 3.1415926. Now if we want to change the

value of PI, it will be changed only at one place. The complete program will get the

new value. When we define something with the #define directive, it is substituted with

the value before the compiler compiles the file. This gives us a very nice control

needed to change the value only at one place. Thus the complete program is updated.

We can also put this definition of PI in the header file. The benefit of doing this is,

every program which is using the value of PI from this header file, will get the

updated value when the value in header file is changed. For example, we have five

functions, using the PI and these functions are defined in five different files. So we

need to define PI (i.e. #define PI 3.1415926) in all the five source files. We can define

it in one header file and include this header file in all the source code files. Each

function is getting the value of PI from the header file by changing the value of PI in

the header file, all the functions will be updated with this new value. As these

preprocessor directives are not C statements, so we do not put semicolon in the end of

the line. If we put the semicolon with the #include or #define, it will result in a syntax

error.

Other Preprocessor Directives

There are some other preprocessor directives. Here is the list of preprocessor

directives.

• #include <filename>

• #include “filename”

• #define

• #undef

• #ifdef

• #ifndef

• #if

• #else

• #elif

• #endif

• #error

• #line

• #pragma

• #assert

All the preprocessor directives start with the sharp sign (#). We can also do

conditional compilation with it. We have #if, #else, #endif and for else if #elif is used.

It can also be checked whether the symbol which we have defined with #define, is

available or not. For this purpose, #ifdef is used. If we have defined PI, we can always

say:

 #ifdef PI

 … Then do something

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

273

 #endif

This is an example of conditional compilation. If a symbolic constant is defined, it

will be error to define it again. It is better to check whether it is already defined or not.

If it is already defined and we want to give it some other value, it should be undefined

first. The directive for undefine is #undef. At first, we will undefine it and define it

again with new value. Another advantage of conditional compilation is ‘while

debugging’. The common technique is to put output statements at various points in the

program. These statements are used in the code to check the value of different

variables and to verify that the program is working fine. It is extremely tedious to

remove all these output statements which we have written for the debugging. To

overcome this problem, we can go for conditional compilation. We can define a

symbol at the start of the program as:

 #define DEBUG

Here we have defined a symbol DEBUG with no value in front of it. The value is

optional with the define directive. The output statements for debugging will be written

as:

 #ifdef DEBUG

 cout << ”Control is in the while loop of calculating average”;

 #endif

Now this statement will execute if the DEBUG symbol is defined. Otherwise, it will

not be executed.

Here is an example using the debug output statements:

// Program that shows the use of Define for debugging

// Comment the #define DEBUG and see the change in the output

#include <iostream.h>

#include <stdlib.h>

#define DEBUG

main()

{

 int z ;

 int arraySize = 100;

 int a[100] ;

 int i;

 // Initializing the array.

 for (i = 0; i < arraySize; i++)

 {

 a[i] = i;

 }

 // If the symbol DEBUG is defined then this code will execute

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

274

 #ifdef DEBUG

 for (i = 0 ; i < arraySize ; i ++)

 cout << "\t " << a[i];

 #endif

 cout << " Please enter a positive integer " ;

 cin >> z ;

 int found = 0 ;

 // loop to search the number.

 for (i = 0 ; i < arraySize ; i ++)

 {

 if (z == a[i])

 {

 found = 1 ;

 break ;

 }

 }

 if (found == 1)

 cout << " We found the integer at position " << i ;

 else

 cout << " The number was not found " ;

}

With preprocessor directives, we can carry out conditional compilation, a macro

translation that is replacement of a symbol by the value in front of it. We can not

redefine a symbol without undefining it first. For undefining a symbol, #undef is used.

e.g. the symbol PI can be undefined as:

 #undef PI

Now from this point onward in the program, the symbol PI will not be available. The

compiler will not be able to view this symbol and give error if we have used it in the

program after undefining.

As an exercise, open some header files and read them. e.g. we have used a header file

conio.h (i.e. #define<conio.h>) for consol input output in our programs. This is

legacy library for non-graphical systems. We have two variants of conio in Dev-Cpp

i.e. conio.h and conio.c (folder is ‘Dev-Cpp\include’). Open and read it. Do not try to

change anything, as it may cause some problems. Now you have enough knowledge

to read it line by line. You will see different symbols in it starting with underscore (_

). There are lots of internal constants and symbolic names starting with double

underscore. Therefore we should not use such variable names that are starting with

underscore. You can find the declaration of different functions in it e.g. the function

getche() (i.e. get character with echo) is declared in conio.h file. If we try to use the

function getche() without including the conio.h file, the compiler will give error like

‘the function getche() undeclared’. There is another interesting construct in conio.h

i.e.

 #ifdef __cplusplus

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

275

 extern "C" {

 #endif

If the symbol __cplusplus is defined, the statement ‘extern “C” { ‘ will be included in

the code. We have an opening brace here. Look where the closing brace is. Go to the

end of the same file. You will find the following:

 #ifdef __cplusplus

 }

 #endif

This is an example of conditional compilation i.e. if the symbol is defined, it includes

these lines in the code before compiling. Go through all the header files, we have been

using in our programs so that you can see how professional programmers write code.

If you have the linux operating system, it is free with a source code. The source code

of linux is written in C language. You can see the functions written by the C

programming Gurus. There may be the code of string manipulation function like

string copy, string compare etc.

Macros

Macros are classified into two categories. The first type of macros can be written

using #define. The value of PI can be defined as:

 #define PI 3.1415926

Here the symbol PI will be replaced with the actual value (i.e. 3.1415926) in the

program. These are simple macros like symbolic names mapped to constants.

In contrast, the second type of macros takes arguments. It is also called a

parameterized macros. Consider the following:

 #define square(x) x * x

Being a non-C code, it does not require any semicolon at the end. Before the compiler

gets the file, the macro replaces all the occurrences of square (x) (that may be square

(i), square (3) etc) with (x * x) (that is for square (i) is replaced by i * i, square(3) is

replaced by 3 * 3). The compiler will not see square(x). Rather, it will see x * x, and

make an executable file. There is a problem with this macro definition as seen in the

following statement.

 square (i + j);

Here we have i+j as x in the definition of macro. When this is replaced with the macro

definition, we will get the statement as:

 i + j * i + j

This is certainly not the square of i + j. It is evaluated as (i + (j * i) + j due to the

precedence of the operators. How can we overcome this problem? Whenever you

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

276

write a parameterized macro, it is necessary to put the parenthesis in the definition of

macro. At first, write the complete definition in the parenthesis, and then put the x

also in parenthesis. The correct definition of the macro will be as:

 #define square(x) ((x) * (x))

This macro will work fine. When this macro definition is replaced in the code,

parenthesis will also be copied making the computation correct.

Here is a sample program showing the use of a simple square macro:

/* Program to show the use of macro */

#include <iostream.h>

// Definition of macro square

#define square(x) ((x) * (x))

main()

{

 int x;

 cout << endl;

 cout << " Please enter the value of x to calculate its square ";

 cin >> x;

 cout << " Square of x = " << square(x) << endl;

 cout << " Square of x+2 = " << square(x+2) << endl;

 cout << " Square of 7 = " << square(7);

}

We can also write a function to square(x) to calculate the square of a number. What is

the difference between using this square(x) macro and the square(x) function?

Whenever we call a function, a lot of work has to be done during the execution of the

program. The memory in machine is used as stack for the program. The state of a

program (i.e. the value of all the variables of the program), the line no which is

currently executing etc is on the stack. Before calling the function, we write the

arguments on the stack. In a way, we stop at the function calling point and the code

jumps to the function definition code. The function picks up the values of arguments

from the stack. Do some computation and return the control to the main program

which starts executing next line. So there is lot of overhead in function calling.

Whenever we call a function, there is some work that needed to be done. Whenever

we do a function call, like if we are calling a function in a loop, this overhead is

involved with every iteration. The overhead is equal number of times the loop

executed. So computer time and resources are wasted. Obviously there are a number

of times when we need to call functions but in this simple example of calculating

square, if we use square function and the program is calling this function 1000 times,

a considerable time is wasted. On the other hand, if we define square macro and use

it. The code written in front of macro name is substituted at all the places in the code

where we are using square macro. Therefore the code is expanded before compilation

and compiler see ordinary multiplication statements. There is no function call

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

277

involved, thus making the program run faster. We can write complex parameterized

macros. The advantage of using macros is that there is no overhead of function calls

and the program runs faster. If we are using lot of macros in our program, it is

replaced by the macro definition at every place in the code making the program bloat.

Therefore our source code file becomes a large file, resulting in the enlargement of

the executable file too. Sometimes it is better to write functions and define things in it.

For simple things like taking a square, it is nice to write macros that are only one line

code substitution by the preprocessor.

Take care of few things while defining macros. There is no space between the macro

name and the starting parenthesis. If we put a space there, it will be considered as

simple macro without parameters. We can use more than one argument in the macros

using comma-separated list. The naming convention of the arguments follows the

same rules as used in case of simple variable name. After writing the arguments,

enclosing parenthesis is used. There is always a space before starting the definition of

the macro.

Example

Suppose we have a program, which is using the area of circle many times in it.

Therefore we will write a macro for the calculation of the area of circle. We know that

the formula for area of circle is PI*r
2
. Now this formula is substituted wherever we

will be referring to this macro. We know that the PI is also a natural constant. So we

will define it first. Then we will define the macro for the area of the circle. From the

perspective of visibility, it is good to write the name of the macro in capital as

CIRCLEAREA. We don’t need to pass the PI as argument to it. The only thing,

needed to be passed as argument, is radius. So the name of the macro will be as

CIRCLEAREA (X).We will write the formula for the calculation of the area of the

circle as:

 #define CIRCLEAREA(X) (PI * (X) * (X))

Here is the complete code of the program:

/* A simple program using the area of circle formula as macro */

#include <iostream.h>

// Defining the macros

#define PI 3.14159

#define CIRCLEAREA(X) (PI * X * X)

main()

{

 float radius;

 cout << “ Enter radius of the circle: ”;

 cin >> radius;

 cout << “ Area of circle is ” << CIRCLEAREA (radius);

}

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

278

The CIRCLEAREA will be replaced by the actual macro definition including the

entire parenthesis in the code before compilation. As we have used the parenthesis in

the definition of the CIRCLEAREA macro. The statement for ascertaining the area of

circle with double radius will be as under:

 CIRCLEAREA(2 * radius);

The above statement will work fine in calculating the correct area. As we are using

multiplication, so it may work without the use of parenthesis. But if there is some

addition or subtraction like CIRCLEAREA(radius + 2) and the macro definition does

not contain the parenthesis, the correct area will not be calculated. Therefore always

use the parenthesis while writing the macros that takes arguments.

There are some other things about header files. As a proficient programmer writing

your own operating systems, you will be using these things. There are many operating

systems, which are currently in use. Windows is a popular operating system, DOS is

another operating system for PC’s, Linux, and different variety of Unix, Sun Solaris

and main frame operating systems. The majority of these operating systems have a C

compiler available. C is a very elegant operating systems language. It is very popular

and available on every platform. By and large the source code which we write in our

programs does not change from machine to machine. The things, which are changed,

are system header files. These files belong to the machine. The header files, which we

have written for our program, will be with the source code. But the iostream, stdlib,

stdio, string header files have certain variations from machine to machine. Over the

years as the C language has evolved, the names of these header files have become

standard. Some of you may have been using some other compiler. But you have noted

that in those compilers, the header files are same, as iostream.h, conio.h etc are

available. It applies to operating systems. While changing operating systems, we

come up with the local version of C/C++ compiler. The name of the header files

remains same. Therefore, if we port our code from one operating system to another,

there is no need to change anything in it. It will automatically include the header files

of that compiler. Compile it and run it. It will run up to 99 % without any error. There

may be some behavioral change like function getche() sometimes read a character

without the enter and sometimes you have to type the character and press enter. So

there may be such behavioral change from one operating system to other. Nonetheless

these header files lead to a lot of portability. You can write program at one operating

system and need not to take the system header file with the code to the operating

system.

On the other hand, the header files of our program also assist in the portability in the

sense that we have all the function prototypes, symbolic definitions, conditional

compilations and macros at one place. While writing a lot of codes, we start writing

header files for ourselves because of the style in which we work. We have defined

some common functions in our header files. Now when we are changing the operating

system, this header file is ported with the source code. Similarly, on staring some

program, we include this header file because it contains utility function which we

have written.

Here is an interesting example with the #define. If you think you are sharp here is a

challenge for you. Define you own vocabulary with the #define and write C code in

CS201 – Introduction to Programming

 279

front of it. One can write a poem using this vocabulary which will be replaced by the

preprocessor with the C code. What we need is to include one header file that contains

this vocabulary. So an ordinary English poem is actually a C code. Interesting things

can be done using these techniques.

Tips

 All the preprocessor directives start with the # sign

 A symbol can not be redefined without undefining it first

 The conditional compilation directives help in debugging the program

 Do not declare variable names starting with underscore

 Always use parenthesis while defining macros that takes arguments

Lecture No. 24

Reading Material

Deitel & Deitel - C++ How to Program Chapter 15, 18

 15.3, 18.10

Summary

1) Memory Allocation

2) Dynamic Memory Allocation

3) calloc Function

4) malloc Function

5) free ()

6) realloc Function

7) Memory Leak

8) Dangling Pointers

9) Examples

10) Exercise

11) Tips

© Copyright Virtual University of Pakistan

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

280

Memory Allocation

After having a thorough discussion on static memory allocation in the previous

lectures, we will now talk about dynamic memory allocation. In this lecture, the topics

being dilated upon include- advantages and disadvantages of these both types of

memory allocation and the common errors, which usually take place while

programming with dynamic memory allocation. Let’s first talk about the dynamic

memory allocation.

Dynamic Memory Allocation

Earlier, whenever we declared arrays, the size of the arrays was predefined. For

example we declared an array of size 100 to store ages of students. Besides, we need

20, 25 or 50 number of students to store their ages. The compiler reserves the memory

to store 100 integers (ages). If there are 50 integers to be stored, the memory for

remaining 50 integers (that has been reserved) remains useless. This was not an

important matter when the programs were of small sizes. But now when the programs

grow larger and use more resources of the system, it has become necessary to manage

the memory in a better way. The dynamic memory allocation method can be helpful

in the optimal utilization of the system.

It is better to compare both the static and dynamic allocation methods to understand

the benefits of the usage of dynamic memory allocation. In static memory, when we

write the things like int i, j, k ; these reserve a space for three integers in memory.

Similarly the typing of char s[20] will result in the allocation of space for 20

characters in the memory. This type of memory allocation is static allocation. It is also

known as compile time allocation. This memory allocation is defined at the time when

we write the program while exacting knowing how much memory is required.

Whenever, we do not know in advance how much memory space would be required,

it is better to use dynamic memory allocation. For example if we want to calculate the

average age of students of a class. Instead of declaring an array of large number to

allocate static memory, we can ask number of students in the class and can allocate

memory dynamically for that number. The C language provides different functions to

allocate the memory dynamically.

The programs, in which we allocate static memory, run essentially on stack. There is

another part of memory, called heap. The dynamic memory allocation uses memory

from the heap. All the programs executing on the computer are taking memory from it

for their use according to the requirement. Thus heap is constantly changing in size.

Windows system may itself use memory from this heap to run its processes like word

processor etc. So this much memory has been allocated from heap and the remaining

is available for our programs. The program that will allocate the memory

dynamically, will allocate it from the heap.

Let’s have a look on the functions that can be used to allocate memory from the heap.

Before actually allocating memory, it is necessary to understand few concepts. We

have already studied these concepts in the lectures on ‘pointers’. Whenever we

allocate a memory what will we get? We need to be careful about that. When we say

int i, a space is reserved for an integer and it is labeled as i. Here in dynamic

memory, the situation is that the memory will be allocated during the execution of the

program. It is difficult to determine whether the memory allocated is an array, an

integer, 20 integers or how much space is it? To over this uncertainty, we have to use

pointers.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

281

Whenever we allocate any memory from the heap, the starting position of the block of

the memory allocated is returned as an address that is kept in a pointer. Then we

manipulate the memory with the help of this pointer. We have to introduce a new type

of a pointer, called ‘void’. We have used the pointers of type- int, char, float etc. For

these, we write like int *i ; which means i is a pointer to an integer. In this case, the

compiler automatically knows that i has the address of the memory, occupied by an

integer. Same thing applies when we write char *s . It means s is a pointer to a

character data type. So every pointer we have used so far pointed to a specific data

type.

The functions used for dynamic memory allocation, provide a chunk of memory from

heap. The function does not know for what data type this chunk of memory will be

used? It returns a pointer of type void. A pointer ptr of type void is declared as under.

 void *ptr ;

The ‘void’ is a special type of pointers. We have to cast it before its use. The cast

means the conversion of ‘void’ into a type of pointer that can be used for native data

type like int, char, float etc. The operator used for casting, in C, is standard cast

operator. We write the name of the type in parentheses. Suppose we have a pointer ptr

defined as a void pointer like

 void *ptr ;

Before using this pointer to point to a set of integers, we will at first cast it. It means

that it will be converted into a type of a pointer to an integer. The syntax of doing this

casting is simple and is given below.

 (int *) ptr ;

Here both int and * are written in parentheses. The int is the data type into which we

are converting a void pointer ptr. Now ptr is a pointer to an integer. Similarly, we

can write char, float and double instead of ‘int’, to convert ptr into a pointer to char,

float and double respectively.

Casting is very useful in dynamic memory allocation. The memory allocation

functions return a chunk of memory with a pointer of type void. While storing some

type of data , we at first, cast the pointer to that type of data before its usage. It is an

error to try to use the void pointer and dereference it. In case, we write *ptr and use it

in an expression, there will be an error. So we have to cast a void pointer before its

use.

Another interesting aspect of pointer is the NULL value. Whenever we define a

pointer or declare a pointer, normally, it is initialized to a NULL value. NULL has

been defined in the header files stdlib.h and stddef.h. So at least one of these files

must be included in the program’s header to use the NULL. A NULL pointer is a

special type of pointer with all zeros value. All zeros is an invalid memory address.

We can’t use it to store data or to read data from it. It is a good way to ascertain

whether a pointer is pointing to a valid address or has a NULL value.

calloc Function
The syntax of the calloc function is as follows.

 void *calloc (size_t n, size_t el_size)

This function takes two arguments. The first argument is the required space in terms

of numbers while the second one is the size of the space. So we can say that we

require n elements of type int. We have read a function sizeof. This is useful in the

cases where we want to write a code that is independent of the particular machines

that we are running on. So if we write like

 void calloc(1000, sizeof(int))

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

282

It will return a memory chunk from the heap of 1000 integers. By using sizeof (int)

we are not concerned with the size of the integer on our machine whether it is of 4

bytes or 8 bytes. We will get automatically a chunk that can hold 1000 integers. The

said memory will be returned if a chunk of similar size is available on the heap.

Secondly, this memory should be available on heap in continuous space. It should not

be in split blocks. The function returns a pointer to the starting point of the allocated

memory. It means that if starting point of the chunk is gotten, then the remaining

memory is available in a sequence from end to end. There cannot be gaps and holes

between them. It should be a single block. Now we have to see what happens when

either we ask for too much memory at a time of non-availability of enough memory

on the heap or we ask for memory that is available on the heap , but not available as a

single chunk?. In this case, the call to calloc will fail. When a call to memory

allocation functions fails, it returns a NULL pointer. It is important to understand that

whenever we call a memory allocation function, it is necessary to check whether the

value of the pointer returned by the function is NULL or not. If it is not NULL, we

have the said memory. If it is NULL, it will mean that either we have asked for too

much memory or a single chunk of that size is not available on the heap.

Suppose, we want to use the memory got through calloc function as an integer block

We have to cast it before using. It will be written as the following statement.

 (int *) calloc (1000, sizeof (int)) ;

Another advantage of calloc is that whenever we allocate memory by using it. The

memory is automatically initialized to zeros. In other words it is set to zeros. For

casting we normally declare a pointer of type which we are going to use. For

example, if we are going to use the memory for integers. We declare an integer

pointer like int *iptr; Then when we allocate memory through calloc, we write it as

 iptr = (int *) calloc (1000, sizeof(int)) ;

(int *) means cast the pointer returned by calloc to an integer pointer and we hold it in

the declared integer pointer iptr. Now iptr is a pointer to an integer that can be used

to manipulate all the integers in that memory space. You should keep in mind that

after the above statement, a NULL check of memory allocation is necessary. An ‘if

statement’ can be used to check the success of the memory allocation. It can be

written as under

 if (iptr == NULL)

 any error message or code to handle error ;

If a NULL is returned by the calloc, it should be treated according to the logic so that

the program can exit safely and it should not be crashed.

The next function used for allocating memory is malloc.

malloc Function
The malloc function takes one argument i.e. the number of bytes to be allocated. The

syntax of the function is

 void * malloc (size_t size) ;

It returns a void pointer to the starting of the chunk of the memory allocated from the

heap in case of the availability of that memory. If the memory is not available or is

fragmented (not in a sequence), malloc will return a NULL pointer. While using

malloc, we normally make use sizeof operator and a call to malloc function is written

in the following way.

 malloc (1000 * sizeof(int)) ;

Here * is multiplication operator and not a dereference operator of a pointer.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

283

In the above call, we request for 1000 spaces in the memory each of the size, which

can accommodate an integer. The ‘sizeof(int)’ means the number of bytes, occupied

by an integer in the memory. Thus the above statement will allocate memory in bytes

for 1000 integers. If on our machine, an integer occupies 4 bytes. A 1000 * 4 (4000)

bytes of memory will be allocated. Similarly if we want memory for 1000 characters

or 1000 floats, the malloc function will be written as

 malloc (1000 * sizeof(char)) ;

 and malloc (1000 * sizeof(float)) ;

respectively for characters and floats.

So in general, the syntax of malloc will be.

 malloc (n * sizeof (datatype)) ;

where ‘n’ represents the numbers of required data type. The malloc function differs

from calloc in the way that the space allocated by malloc is not initialized and

contains any values initially.

Let’s say we have a problem that states ‘Calculate the average age of the students in

your class.’ The program prompts the user to enter the number of students in the class

and also allows the user to enter the ages of the students. Afterwards, it calculates the

average age. Now in the program, we will use dynamic memory. At first, we will ask

the user ‘How many students are in the class? The user enters the number of students.

Let’s suppose, the number is 35. This number is stored in a variable say ‘numStuds’.

We will get the age of students in whole numbers so the data type to store age will be

int. Now we require a memory space where we can store a number of integers equal

to the value stored in numStuds. We will use a pointer to a memory area instead of an

array. So we declare a pointer to an integer. Suppose we call it iptr. Now we make a

call to calloc or malloc function. Both of them are valid. So we write the following

statement

 iptr = (int *) malloc (numStuds * sizeof (int)) ;

Now we immediately check iptr whether it has NULL value. If the value of iptr is

not NULL, it will mean that we have allocated the memory successfully. Now we

write a loop to get the ages of the students and store these to the memory, got through

malloc function. We write these values of ages to the memory by using the pointer

iptr with pointer arithmetic. A second pointer say sptr can be used for pointer

arithmetic so that the original pointer iptr should remain pointing to the starting

position of the memory. Now simply by incrementing the pointer sptr, we get the

ages of students and store them in the memory. Later, we perform other calculations

and display the average age on the screen. The advantage of this (using malloc) is that

there is no memory wastage as there is no need of declaring an array of 50 or 100

students first and keep the ages of 30 or 35 students in that array. By using dynamic

memory, we accurately use the memory that is required.

free ()
Whenever we get a benefit, there is always a cost. The dynamic memory allocation

has also a cost. Here the cost is incurred in terms of memory management. The

programmer itself has to manage the memory. It is the programmer’s responsibility

that when the memory allocated is no longer in use, it should be freed to make it a

part of heap again. This will help make it available for the other programs. As long as

the memory is allocated for a program, it is not available to other programs for use. So

it is programmer’s responsibility to free the memory when the program has done with

it. To ensure it, we use a function free. This function returns the allocated memory,

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

284

got through calloc or malloc, back to the heap. The argument that is passed to this

function is the pointer through which we have allocated the memory earlier. In our

program, we write

 free (iptr) ;

By this function, we call the memory allocated by malloc and pointed by the pointer

iptr is freed. It goes back to the heap and becomes available for use by other

programs. It is very important to note that whenever we allocate memory from the

heap by using calloc or malloc, it is our responsibility to free the memory when we

have done with it.

Following is the code of the program discussed above.

//This program calculates the average age of a class of students

//using dynamic memory allocation

#include <iostream.h>

#include <stdlib.h>

#include <string.h>

int main()

{

 int numStuds, i, totalAge, *iptr, *sptr;

 cout <<"How many students are in the class ? " ;

 cin >> numStuds;

 // get the starting address of the allocated memory in pointer iptr

 iptr = (int *) malloc(numStuds * sizeof(int));

 //check for the success of memory allocation

 if (iptr == NULL)

 {

 cout << "Unable to allocat space for " << numStuds << " students\n";

 return 1;

 // A nonzero return is usually used to indicate an error

 }

 sptr = iptr ; //sptr will be used for pointer arithmetic/manipulation

 i = 1 ;

 totalAge = 0 ;

 //use a loop to get the ages of students

 for (i = 1 ; i <= numStuds ; i ++)

 {

 cout << "Enter the age of student " << i << " = " ;

 cin >> *sptr ;

 totalAge = totalAge + *sptr ;

 sptr ++ ;

 }

 cout << "The average age of the class is " << totalAge / numStuds << endl;

 //now free the allocated memory, that was pointed by iptr

 free (iptr) ;

 sptr = NULL ;

 }

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

285

Following is a sample out put of the program.

How many students are in the class ? 3

Enter the age of student 1 = 12

Enter the age of student 2 = 13

Enter the age of student 3 = 14

The average age of the class is 13

realloc Function
Sometimes, we have allocated a memory space for our use by malloc function. But

we see later that some additional memory is required. For example, in the previous

example, where (for example) after allocating a memory for 35 students, we wanted

to add one more student. So we need same type of memory to store the new entry.

Now the question arises ‘Is there a way to increase the size of already allocated

memory chunk ? Can the same chunk be increased or not? The answer is yes. In such

situations, we can reallocate the same memory with a new size according to our

requirement. The function that reallocates the memory is realloc. The syntax of

realloc is given below.

 void realloc (void * ptr, size_t size) ;

This function enlarges the space allocated to ptr (in some previous call of calloc or

malloc) to a (new) size in bytes. This function receives two arguments. First is the

pointer that is pointing to the original memory allocated already by using calloc or

malloc. The second is the size of the memory which is a new size other than the

previous size. Suppose we have allocated a memory for 20 integers by the following

call of malloc and a pointer iptr points to the allocated memory.

 (iptr *) malloc (20 * sizeof(int)) ;

Now we want to reallocate the memory so that we can store 25 integers. We can

reallocate the same memory by the following call of realloc.

 realloc (iptr, 25 * sizeof(int)) ;

There are two scenarios to ascertain the success of ‘realloc’. The first is that it

extends the current location if possible. It is possible only if there is a memory space

available contiguous to the previously allocated memory. In this way the value of the

pointer iptr is the same that means it is pointing to the same starting position, but now

the memory is more than the previous one. The second way is that if such contiguous

memory is not available in the current location, realloc goes back to the heap and

looks for a contiguous block of memory for the requested size. Thus it will allocate a

new memory and copy the contents of the previous memory in this new allocated

memory. Moreover it will set the value of the pointer iptr to the starting position of

this memory. Thus iptr is now pointing to a new memory location. The original

memory is returned to the heap. In a way, we are handling dynamic arrays. The size

of the array can be increased during the execution. There is another side of the

picture. It may happen that we have stored the original value of iptr in some other

pointer say sptr. Afterwards, we are manipulating the data through both the pointers.

Then ,we use realloc for the pointer iptr. The realloc does not find contiguous memory

with the original and allocates a new block of memory and points it by the pointer

iptr. The original memory no longer exists now. The pointer iptr is valid now as it is

pointing to the starting position of the new memory. But the other pointer sptr is no

longer valid. It is pointing to an invalid memory that has been freed and may be is

being used some other program. If we manipulate this pointer, very strange things can

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

286

happen. The program may crash or the computer may halt. We don’t know what can

happen. Now it becomes the programmer’s responsibility again to make it sure that

after realloc, the pointer(s) that have the value of the original pointer have been

updated. It is also important to check the pointer returned by realloc for NULL value.

If realloc fails, that means that it cannot allocate the memory. In this case, it returns a

NULL value. After checking NULL value, (if realloc is successful), we should

update the pointer that was referencing the same area of the memory.

We have noticed while getting powers of dynamic memory allocation, we face some

dangerous things along with it. These are real problems. Now we will talk about the

common errors that can happen with the memory allocation.

Memory Leak
The first problem may be the unreferenced memory. To understand this phenomenon,

suppose, we allocate memory from heap and there is a pointer pointing to this

memory. However, it is found that this pointer does not exist any more in our

program. What will happen to the memory we had allocated. That chunk of memory

is now unreferenced. Nothing is pointing to that memory. As there is no pointer to this

memory, our program can’t use it. Moreover, no other program can use it. Thus, this

memory goes waste. In other words, the heap size is decreased as we had allocated

memory from it despite the fact that it was never utilized. If this step of allocating

memory and then destroy the pointer to this memory carries on then the size of the

heap will going on to decrease. It may become of zero size. When there is no memory

on heap, the computer will stop running and there may be a system crash. This

situation is called a memory leak. The problem with memory leak is that you may be

unaware of the memory leak caused by the program. Suppose there is 128 MB

memory available on heap. We run our program that allocates 64 KB memory and

terminates without freeing this memory. It does not effect but when if the memory is

being allocated in a loop, that, suppose runs 1000 times and in each loop it allocates

64 KB of memory with out freeing the previous one. Then this program will try to

allocate 64 * 1000 KB memory and at a certain point there will be no memory

available and the program will crash. The same thing (no memory available) happens

to other programs and the whole system locks up. So memory leak is a very serious

issue.

This bug of memory leak was very common in the operating systems. This was a

common thing, that the system was running well and fine for 4-5 hours and then it

halted suddenly. Then the user had to reboot the system. When we reboot a system all

the memory is refreshed and is available on the heap. People could not understand

what was happening. Then there come the very sophisticated debugging techniques by

which this was found that memory is being allocated continuously without freeing and

thus the heap size becomes to zero. Thus memory is leaking out and it is no longer

useable.

Let us see how does this happen and what we can do to prevent it. A simple way in

which memory leak can happen is that suppose our main program calls a function.

There, in the function, a pointer iptr is declared as a pointer to an integer. Then we

call calloc or malloc in the function and allocate some memory. We use this memory

and goes back to the main function without freeing this memory. Now as the pointer

iptr has the function scope it is destroyed when the function exits. It is no longer there

but the memory allocated remains allocated and is not being referenced as the pointer

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

287

pointing to it no longer exists. Now this memory is unreferenced which means it is

leaked. This is a memory leak. Now if this function is being called repeatedly it

means a chunk of memory is being allocated and is left unreferenced each time. Thus,

each time a memory chunk from heap will be allocated and will become useless(as

this will be unreferenced) and the heap size may become zero. As a programmer, it is

our responsibility and a good rule of thumb will be that in which function the memory

is allocated, it should be freed in the same function.

Sometimes the logic of the program is that the memory is being allocated somewhere

and is being used somewhere else. It means we allocate memory in a function and use

it in another function. In such situations, we should keep in mind that this all scenario

is memory management and we have to take care of it. We allocate memory in a

function and cannot free it here because it is being used in some other function. So we

should have a sophisticated programming to make it sure that whenever we allocate a

memory it should be freed somewhere or the other. Now it is not to do just with

function calls. It also has to do when the program ends. Let consider, our program is

running and we allocate memory somewhere and somewhere else there is a condition

on which the program exits. If we exit without freeing the memory then there is a

memory leak. The memory leakage is at operating system level. The operating system

does not know that this memory is not being used by anyone now. From its aspect,

some program is using this memory. So whenever we write program we should free

the allocated memory wherever it is allocated. But at the program exit points we

should do some task. This task is make it sure that when we allocated memory in the

program this memory should be freed at exit points. The second necessary thing is

that after freeing the memory, explicitly assign NULL to the pointer. Its benefit is that

this pointer can be checked if it is pointing to some memory.

Whereas we do get this considerable flexibility in doing dynamic memory

management, it is also our responsibility for freeing all the memory that we allocated

from the heap. The other side of the coin is also that if we are using dynamic memory

allocation in our program then we should check immediately if we have got memory.

If we did not get (allocated) memory then exit the program in a good and safe way

rather than to crash the program.

Dangling Pointers
Memory leak is one subtle type of error that can happen. There is another one. This

other one is even more dangerous. This is dangling pointer. It has the inverse effect of

the memory leak. Suppose, there was a pointer that was pointing to a chunk of

memory, now by some reason that memory has deallocated and has gone back to

heap. The pointer still has the starting address of that chunk. Now what will happen if

we try to write something in the memory using this pointer? Some very strange thing

can happen. This can happen that when we have put that memory back to heap some

other program starts to use that memory. Operating system itself might have started

using that memory. Now our program, by using that pointer try to write something in

the memory that is being used by some other program. This may halt the machine as

the position that is being tried to written may be a critical memory position. How does

this situation arise? Lets consider a case. We have two pointers ptr1 and ptr2. These

are pointers to integers. We allocate some memory from the heap by using calloc or

malloc. The pointer ptr1 is pointing to the starting point of this allocated memory. To

use this memory through a variable pointer we use the pointer ptr2. At start, we put

the address of ptr1 in ptr2 and then do our processing with the help of ptr2. In the

meantime, we go to exit the function. To free the allocated memory we use the pointer

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

288

ptr1. Thus the memory allocated goes back to heap and some other program may use

it. The pointer ptr2 has the address of the same memory that it got from the ptr1. Now

ptr2 points in a way to the memory that no longer belongs to the program. It has gone

back to the heap. We can read the data residing at that memory location. But now if

we try to write something in that location everything might break loose. We have to

be very careful. The pointer ptr2 points to no location it is called dangling pointer. We

have to be very careful about memory leak and dangling pointer.

The dynamic memory allocation is a very useful technique. In it what memory we

require we take from the heap and use it and when it is no longer required we send it

back to the heap. All the programs running on our machine (which are running on

modern operating systems which are multitasking) work efficiently. They take

memory of their requirement from the memory resources and return it back after

using.

The sharing is not limited to memory resources this also include printers attached with

the computer. The printer resource is being used by different programs like MS

WORD, EXCEL and even may be by our program if we want to print something. We

are also sharing the other resources like keyboard, monitor, and hard disk etc. But in

terms of dynamic usage we are also sharing the memory. Our program in a way has to

be a good neighbor to use the memory. It should use memory as long as it required

and then after use it should give back this memory to the heap so that other programs

can use this resource. So remember to free the memory it is as important as the

allocation of memory.

So what interesting things we can do with memory allocation. A common thing in file

handling is to copy a file. Our hard disks being electro mechanical devices are very

slow. It is very expensive to access them. So while reading from them or writing to

them we try that a big chunk should be written or read from them so that fewest disk

writes and disk reads should occur. In order to do that, think combining dynamic

memory allocation with disk read and write. Suppose we have to copy a file. We can

easily find out the size of the file in bytes. Now we allocate this number of bytes from

heap. If this size of memory is successfully allocated, we can say for a single file read

of this allocated size. This means the entire file will be read to memory. This way we

read a whole file with one command. Similarly, we can use a command to write the

whole file. In this way we can be assured that we are doing the more efficient disk

access.

Examples
Following are the examples, which demonstrate the use of dynamic memory

allocation.

Example 1

In the following simple example we allocate a memory which is pointing by a

character pointer. We copy an array of characters to that location and display it. After

that we free that memory before exiting the program.

//This program allocates memory dynamically and then frees it after use.

#include <iostream.h>

#include <stdlib.h>

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

289

#include <string.h>

int main()

{

 char s1[] = "This is a sentence";

 char *s2;

 s2 = (char *) malloc(strlen(s1) + 1);

 /* Remember that stings are terminated by the null terminator, "\0',

 and the strlen returns the length of a string not including the terminator */

 if (s2 == NULL)

 {

 cout << "Error on malloc";

 return 1;

 /* Use a nonzero return to indicate an error has occurred */

 }

 strcpy(s2,s1);

 cout << "s1: “ << s1 << endl;

 cout << "s2: “ << s2 << endl;

 free(s2);

 return 0;

}

The output of the program is given below.

S1: This is a sentence

S2: This is a sentence

Example 2

Following is another example that allocates a memory dynamically according to the

requirement and displays a message for the failure or success of the memory

allocation.

// This program shows the dynamic allocation of memory according to the

requirement to //store a certain number of a structure.

#include <iostream.h>

#include <stdlib.h>

#include <string.h>

struct Employee

{

 char name[40];

 int id;

};

int main()

{

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

290

 Employee *workers, *wpt;

 int num;

 cout <<"How many employees do you want\n“ ;

 cin >> num;

 // the pointer workers gets the starting address of the memory if allocated

successfully

 workers = (Employee *) malloc(num * sizeof(Employee));

 if (workers == NULL)

 {

 cout << "Unable to allocate space for employees\n";

 return 1;

 // A nonzero return is usually used to indicate an error

 }

 cout << “Memory for “ << num << “ employees has allocated successfully” ;

 //now free the allocated memory

 free(workers) ;

}

A sample output of the program is as below.

How many employees do you want

235

Memory for 235 employees has allocated successfully

Exercise
As an exercise, you can find the maximum available memory from the heap on your

computer. You can do this by using a loop in which first time you allocate a certain

number of bytes(say 10000). If it is successfully allocated then free it and in the next

iteration allocate twice of the previous size of memory. Thus we can find the

maximum amount of memory available. Suppose you find that 2MB memory is

available. Then run some other applications like MS WORD, MS EXCEL etc. Now

again run your program and find out the size of the memory available now. Is there

any difference in the size of the memory allocated? Yes, you will see that the size has

decreased. It proves that the heap is being shared between all of the programs running

on that machine at that time.

Dynamic memory allocation is a very efficient usage of computer resources as oppose

to static memory allocation. The benefit of static memory is that its usage is very neat

and clean, there are no errors. But disadvantage is that there are chances of wastage of

resources.

The dynamic memory allocation is very efficient in terms of resources but added

baggage is that freeing the memory is necessary, pointers management is necessary.

You should avoid the situations that create memory leakage and dangling pointers.

Tips
 Using dynamic memory is more efficient then the static memory.

 Immediately after a memory allocation call, check whether the memory has

allocated successfully.

 Whenever possible free the allocated memory in the same function.

 Be careful about memory management to prevent memory leakage and

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

291

dangling pointers.

 Before exiting the program, make sure that the allocated memory has freed.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

292

Lecture No. 25

Reading Material

Deitel & Deitel - C++ How to Program Chapter 3

 3.16, 3.18, 3.20

Summary

 Lecture Overview

 History of C/C++

 Structured Programming

 Limitations of Structured Programming

 Default Function Arguments

 Example of Default Function Arguments

 Placement of Variable Declarations

 Example of Placement of Variable Declarations

 Inline Functions

 Example of Inline Functions versus Macros

 Function Overloading

 Example of Function Overloading

Lecture Overview

From this lecture we are starting exciting topics, which we have been talking about

many times in previous lectures. Until now, we have been discussing about the

traditional programming following top down approach using C/C++. By and large we

have been using C language, although, we also used few C++ functions like C++ I/O

using cin and cout instead of standard functions of C i.e., printf() and scanf(). Today

and in subsequent lectures, we will talk about C++ and its features. Note that we are

not covering Object Oriented Programming here as it is a separate subject.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

293

History of C/C++

C language was developed by scientists of Bell Labs in 1970s. It is very lean and

mean language, very concise but with lot of power. C conquered the programming

world and took it by storm. Major operating systems e.g., Unix was written in C

language.

Going briefly into the history of languages, after the Machine Language (language of

0s and 1s), the Assembly Language was developed. Using Assembly language,

programmers could use some symbolic codes, which were easier to understand by

novice people. After that high-level languages like COBOL, FORTRAN were

developed. These languages were more English like and as a result easier to

understand for us as human beings. This was the age of spaghetti code where

programs were not properly structured and their branches were growing in every

direction. As a result, it is difficult o read, understand and manage. These problems

lead to the innovation of structured programming where a problem was broken into

smaller parts. But this approach also had limits. In order to understand those limits,

we will see what is structured programming first before going into its limitations

detail.

Structured Programming

We have learned so far, C is a language where programs are composed of functions.

Basically, a problem is broken into small pieces or modules and each small piece

corresponds to a function. This was the top-down structured programming

approach. We have already discussed few rules of structured programming, which are

still valid and will remain valid in the future. Let’s reiterate those:

- Divide and Conquer; one should not write very long functions. If a function is

getting longer than two or three pages or screens then it is divided into smaller,

concise and well-defined tasks. Later each task becomes a function.

- Inside the functions, Single Entry Single Exit rule should be tried to obey as

much as possible. This rule is very important for readability and useful in

managing programs. Even if the developer itself tries to use the same function

after sometime, it would be easier for him to read his own code if he has followed

the rules properly. We try to reuse our code as much as possible. It is likely that

we may reuse our code or functions. That reuse might happen quite after

sometime. Never think that your written code will not change or will not be used

again.

- You should comment your programs well. Your comments are only not used by

other people but by yourself also, therefore, you should write useful and lots of

comments. At least comment, what the function does, what are its parameters and

what does it return back. The comments should be meaningful and useful about

the processing of the function.

You should use the principles of structured programming as the basis of your

programs.

Limitations of Structured Programming

When we design a functional program, the data it requires to process, is an entity that

lies outside of the program. We take care of the function rather than the data it is

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

294

going to process. When the problems became complex, we came to know that we

can’t leave the data outside. Somehow the data processed by the program should be

present inside it as a part of it. As a result, a new thought process became prevalent

that instead of the program driven by functions, a program should be driven by data.

As an example, while working with our Word processors when we want a text to be

bold, firstly that text is selected and then we ask Word to make it bold. Notice in this

example the data became first and then the function to make it bold. This is

programming driven by data. This approach originated the Object Oriented

Programming.

In the early 1980s a scientist in Bell Labs Bejarne Stroustrup started working in

enhancing C language to overcome the shortcomings of structured approach. This

evolution of C language firstly known to be C with Classes, eventually called C++.

Then the follow-up version of C++ is the Java language. Some people call Java as C

plus plus minus. This is not exactly true but the evolution has been the same way.

C++ does not contain the concept of Classes only but some other features were also

introduced. We will talk about those features before we talk about the classes.

Default Function Arguments

While writing and calling functions, you might have noticed that sometimes the

parameter values remain the same for most of the calls and others keep on changing.

For example, we have a function:

 power(long x, int n)

Where x is the number to take power of and n is the power to which x is required to

be raised.

Suppose while using this function you came to know that 90% of the calls are for

squaring the number x in your problem domain. Then this is the case where default

function arguments can play their role. When we find that there are some parameters

of a function that by and large are passed the same value. Then we start using default

function arguments for those parameters.

The default value of a parameter is provided inside the function prototype or function

definition. For example, we could declare the default function arguments for a

function while declaring or defining it. Below is the definition of a very simple

function f() that is called most of the times with parameters values of i as 1 and x as

10.5 most of the times then by we can give default values to the parameters as:

void f (int i = 1, double x = 10.5)

 {

 cout << “The value of i is: “ << i;

 cout << “The value of x is: “ << x;

 }

Now this function can be called 0, 1 or 2 arguments.

Suppose we call this function as:

 f();

See we have called the function f() without any parameters, although, it has two

parameters. It is perfectly all right and this is the utility of default function arguments.

What do you think about the output. Think about it and then see the output below:

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

295

The value of i is: 1

The value of x is: 10.5

In the above call, no argument is passed, therefore, both the parameters will use their

default values.

Now if we call this function as:

 f(2);

In this case, the first passed in argument is assigned to the first variable (left most

variable) i and the variable x takes its default value. In this case the output of the

function will be as under:

The value of i is: 2

The value of x is: 10.5

The important point here is that your passed in argument is passed to the first

parameter (the left most parameter). The first passed in value is assigned to the first

parameter, second passed in value is assigned to the second parameter and so on. The

value 2 cannot be assigned to the variable x unless a value is explicitly passed to the

variable i. See the call below:

 f(1, 2);

The output of the function will be as under:

The value of i is: 1

The value of x is: 2

Note that even the passed in value to the variable i is the same as its default value, still

to pass some value to the variable x, variable i is explicitly assigned a value.

While calling function, the arguments are assigned to the parameters from left to

right. There is no luxury or feature to use the default value for the first parameter and

passed in value for the second parameter. Therefore, it is important to keep in mind

that the parameters with default values on left cannot be left out but it is possible for

the parameter with default values on right side.

Because of this rule of assignment of values to the parameters, while writing

functions, the default values are written from right to left. For example, in the above

example of function f(), if the default value is to be provided to the variable x only

then it should be on the left side as under:

 void f(int i, double x = 10.5)

 {

 // Display statements

 }

If we switch the parameters that the variable x with default value becomes the first

parameter as under:

 void f(double x = 10.5, int i)

 {

 // Display statements

 }

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

296

Now we cannot use the default value of the variable x, instead we will have to supply

both of the arguments. Remember, whenever you want to use default values inside a

function, the parameters with default values should be on the extreme right of the

parameter list.

Example of Default Function Arguments

// A program with default arguments in a function prototype

#include <iostream.h>

void show(int = 1, float = 2.3, long = 4);

main()

{

 show(); // All three arguments default

 show(5); // Provide 1st argument

 show(6, 7.8); // Provide 1st and 2nd

 show(9, 10.11, 12L); // Provide all three argument

}

void show(int first, float second, long third)

{

 cout << "\nfirst = " << first;

 cout << ", second = " << second;

 cout << ", third = " << third;

}

The output of the program is:

first = 1, second = 2.3, third = 4

first = 5, second = 2.3, third = 4

first = 6, second = 7.8, third = 4

first = 9, second = 10.11, third = 12

Placement of Variable Declarations

This has to do with the declaration of the variables inside the code. In C language, all

the variables are declared at the top of the function or code block and then we can use

them later on in the code. We have already relaxed this rule, now, we will discuss it

explicitly.

One of the enhancements in C++ over C is that a variable can be declared anywhere in

the function. The philosophy of this enhancement is that a variables is declared just

before it is actually used in the code. That will increase readability of the code.

It is not hard and fast direction but it is a tip of good programming practice. One can

still declare variables at the start of the program, function or code block. It is a matter

of style and convenience. One should be consistent in his/her style.

We should be clear about implications of declaring variables at different locations.

For example, we declare a variable i as under:

 { // code block

 int i;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

297

 . . .

 . . .

 }

The variable i is declared inside the code block in the beginning of it. i is visible

inside the code block but after the closing brace of this code block, i cannot be used.

Be aware of this, whenever you declare a variable inside a block, the variable i is alive

inside that code block. Outside of that code block, it is no more there and it can not

referenced any further. Compiler will report an error if it is tried to access outside that

code block.

You must have seen in your books many times, a for loop is written in the following

manner:

 for (int i = 0; condition; increment/decrement statements)

 {

 . . .

 }

 i = 500; // Valid statement and there is no error

The variable i is declared with the for loop statement and it is used immediately. We

should be clear about two points here. Firstly, the variable i is declared outside of the

for loop opening brace, therefore, it is also visible after the closing brace of the for

loop.

So the above declaration of i can also be made as under:

 int i;

 for (i = 0; condition; increment/decrement statements)

 {

 . . .

 }

This approach is bit more clear and readable as it clearly declares the variable i

outside the for statement. But again, it is a matter of style and personal preference,

both approaches are correct.

Example of Placement of Variables Declarations

// Variable declaration placement

#include <iostream.h>

{

// int lineno;

 for(int lineno = 0; lineno < 3; lineno++)

 {

 int temp = 22;

 cout << "\nThis is line number " << lineno

 << " and temp is " << temp;

 }

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

298

 if(lineno == 4) // lineno still accessible

 cout << "\nOops";

 // Cannot access temp

}

The output of the program is:

This is line number 0 and temp is 22

This is line number 1 and temp is 22

This is line number 2 and temp is 22

Inline Functions

This is also one of the facilities provided by C++ over C. In our previous lectures, we

discussed and wrote macros few macros like max and circlearea.

While using macros, we use the name of the macro in our program. Before the

compilation process starts the macro names are replaced by the preprocessor with

their definitions (defined with #define).

Inline functions also work more or less in the same manner as macros. The functions

are declared inline by writing inline keyword before the name of the function. This is

a directive to the compiler and it causes the full definition of the function to be

inserted in each place the function is called. Inserting individual copies of functions

eliminates the overhead of calling a function (such as loading parameters onto the

stack).

We see what are the advantages and disadvantages of it:

We’ll discuss the disadvantages first. Let’s suppose the inline function is called 100

times inside your program and that function itself is of 10 lines in length. Then at 100

places inside your program this 10 lines function definition is written, causes the

program size to increase by 1000 lines. Therefore, the size of the program increases

significantly. The increase in size of program may not be an issue if you have lots of

resources of memory and disk space available but preferably, we try not to increase

the size of the program without any benefit.

Also the inline directive is a request to the compiler to treat the function as inline. The

compiler is on its own to accept or reject the request of inlining. To get to know

whether the compiler has accepted the request to make it inline or not, is possible

through the program’s debugging. But this is bit tedious at this level of our

programming expertise.

Now we’ll see what are the advantages of this feature of C++. While writing macros,

we knew that it is important to enclose the arguments of macros within parenthesis.

For example, we wrote square macro as:

#define square(x) (x) * (x)

when this macro is called by the following statement in our code:

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

299

 square(i + j);

then it is replaced with the definition of the square macro as:

 (i + j) * (i + j);

Just consider, we have not used parenthesis and written our macro as under:

 #define square(x) x * x

then the substitution of the macro definition will be as:

 i + j * i + j;

But the above definition has incorrect result. Because the precedence of the

multiplication operator (*) is higher than the addition operator (+), therefore, the

above statement is executed semantically as:

 i + (j * i) + j;

Hence, the usage of brackets is necessary to make sure that the macros work as

expected.

Secondly, because the macros are replaced with preprocessors and not by compiler,

therefore, they are not aware of the data types. They just replace the macro definition

and there is no type checking on the parameters of the macro. Same macro can be

used for multiple data types. For instance, the above square macro can be used for

long, float, double and char data types.

Inline functions behave as expected like a function and they don’t have any side

effects. Secondly, the automatic type checking for parameters is also done for inline

functions. If there is a difference between data types provided and expected, the

compiler will report an error unlike a macro.

Now, we see a program code to differentiate between macros and inline functions:

Example of Inline Functions versus Macros

// A macro vs. an inline function

#include <iostream.h>

#define MAX(A, B) ((A) > (B) ? (A) : (B))

inline int max(int a, int b)

{

 if (a > b)

return a;

 return b;

}

{

 int i, x, y;

 x = 23; y = 45;

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

300

 i = MAX(x++, y++); // Side-effect:

 // larger value incremented twice

 cout << "x = " << x << " y = " << y << '\n';

 x = 23; y = 45;

 i = max(x++, y++); // Works as expected

 cout << "x = " << x << " y = " << y << '\n';

}

The output of this program is:

x = 24 y = 47

x = 24 y = 46

You can see that the output from the inline function is correct while the macro has

produced incorrect result by incrementing variable y two times. Why is this so?

The definition of the macro contains the parameters A and B two times in its body and

keeping in mind that macros just replace the argument values inside the definition, it

looks like the following after replacement.

((x++) > (y++) ? (x++) : (y++));

Clearly, the resultant variable either x or y, whichever is greater (y in this case) will

be incremented twice instead of once.

Now, the interesting point is why this problem is not there in inline functions. Inside

the code, the call to the inline function max is made by writing the following

statement:

 i = max(x++, y++);

While calling the inline function, compiler does the type checking and passes the

parameters in the same way as in normal function calls. The arguments are

incremented once after their values are replaced inside the body of the function max

and this is our required behavior.

Hence, by and large it is better to use inline functions rather than macros. Still macros

can be utilized for small definitions.

The inline keyword is only a suggestion to the compiler. Functions larger than a few

lines are not expanded inline even if they are declared with the inline keyword.

If the inline function is called many times inside the program and from multiple

source files (until now, usually we have been using only one source file) then the

inline function is put in a header file. That header file can be used (by using #include)

by multiple source files later.

Also keep in mind that after multiple files include the header file that contains the

inline function, all of those files must be recompiled after the inline function in the

header file is changed.

Now, we are going to cover exciting part of this lecture i.e., Function Overloading.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

301

Function Overloading

You have already seen overloading many times. For example, when we used cout to

print our string and then used it for int, long, double and float etc.

 cout << “This is my string”;

cout << myInt ;

This magic of cout that it can print variables of different data types is possible

because of overloading. The operator of cout (<<) that is stream insertion operator is

overloaded for many data types. Header file iostream.h contains prototypes for all

those functions. So what actually is overloading?

“Using the same name to perform multiple tasks or different tasks depending on the

situation.”

cout is doing exactly same thing that depending on the variable type passed to it, it

prints an int or a double or a float or a string. That means the behavior is changing

but the function cout << looks identical.

As we all know that computers are dumb machines and they cannot decide anything

on their own. Therefore, if it is printing variables of different types, we have to tell it

clearly and separately for each type like int or double etc. In this separately telling

process, the operator used is the same <<. So in a way that operator of << is being

overloaded. For this lecture, we will not go into the detail of operator overloading but

we will limit our discussion to function overloading.

Function overloading has the same concept that the name of the function will remain

same but its behavior may change. For example, if we want to take square root of a

number. That number can be an integer, float or a double and depending on the type

of the argument, we may need to do different calculation. If we want to cater to the

two data types int and double, we will write separate functions for int and double.

 double intsqrt (int i);

double doublesqrt (double d);

We can use the function intsqrt() where integer square root is required and

doublesqrt() where square root of double variable is required. But this is an overhead

in the sense that we have to remember multiple function names, even if the behavior

of the functions is of similar type as in this case of square root. We should also be

careful about auto-widening that if we pass an int to doublesqrt() function, compiler

will automatically convert it to double and then call the funtion doublesqrt(). That

may not be what we wanted to achieve and there is no way of checking that we have

used the correct function. The solution to this problem is function overloading.

While overloading functions, we will write separate functions for separate data types

but the function name will remain same. Return type can be different if we want to

change, for example in the above case we might want to return an int for square root

function for ints and double for a square root of a double typed variable. Now, we

will declare them as under:

 int sqrt (int i);

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

302

double sqrt (double d);

Now, we have two functions with the same name. How will they be differentiated

inside the program?

The differentiation comes from the parameters, which are passed to these functions. If

somewhere in your program you wrote: sqrt(10.5), the compiler will automatically

determine that 10.5 is not an integer, it is either float or a double. The compiler will

look for the sqrt() with parameter of type float or a parameter with type as double. It

will find the function sqrt() with double parameter and call it. Suppose in the

subsequent code, there is a call to sqrt() function as under:

 int i;

 sqrt (i);

Now, the compiler will automatically match the prototype and will call the sqrt() with

int as parameter type.

What is the advantage of this function overloading?

Our program is more readable after using function overloading. Instead of having lot

of functions doing the same kind of work but with different names. How does the

compiler differentiate, we have already discussed that compiler looks at the type and

number of arguments. Suppose there are two overloaded functions as given below:

int f(int x, int y);

 int f(int x, int y, int z);

One function f() takes two int parameter and other one takes three int type

parameters. Now if there is call as the following:

 int x = 10;

 int y = 20;

 f(x, y);

 The function f() with two int parameters is called.

In case the function call is made in the following way:

 int x = 10;

 int y = 20;

 int z = 30;

 f(x, y, z);

The function f() with three int parameters is called.

We have not talked about the return type because it is not a distinguishing feature

while overloading functions. Be careful about it, you cannot write:

 int f (int);

 double f (int);

The compiler will produce error of ambiguous declarations.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

303

So the overloaded functions are differentiated using type and number of arguments

passed to the function and not by the return type. Let’s take a loop of some useful

example. We want to write functions to print values of different data types and we

will use function overloading for that.

/* Overload functions to print variables of different types */

#include <iostream.h>

void print (int i)

{

cout << "\nThe value of the integer is: " << i;

}

void print (double d)

{

cout << "\nThe value of the double is: " << d;

}

void print (char* s)

{

cout << "\nThe value of the string is: " << s;

}

main (void)

{

int i = 100;

double d = 123.12;

char *s = "This is a test string";

print (i);

print (d);

print (s);

}

The output of the program is:

The value of the integer is: 100

The value of the double is: 123.12

The value of the string is: This is a test string

You must have noticed that automtically the int version of print() function is called

for i, double version is called for d and string version is called for s.

Internally, the compiler uses the name mangling technique to generate a unique

token that is assigned to each function. It processes the function name and its

parameters within a logical machine to generate this unique number for each function.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

304

Example of Function Overloading

/* The following example replaces strcpy and strncpy with the single function name

stringCopy. */

// An overloaded function

#include <iostream.h>

#include <string.h>

inline void stringCopy(char *dest, const char *src)

{

 strcpy(dest, src); // Calls the standard C library function

}

inline void stringCopy(char *dest, const char *src, int len)

{

 strncpy(dest, src, len); // // Calls another standard C library function

}

static char stringa[20], stringb[20]; // Declared two arrays of characters of size 20

main()

{

 stringCopy(stringa, "That"); // Copy the string ‘That’ into the array stringa

 stringCopy(stringb, "This is a string", 4); // Copy first 4 characters to stringb array

 cout << stringb << " and " << stringa; // Display the contents on the screen

}

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

305

Lecture No. 26

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 6

 6.5, 6.7, 6.8, 6.10, 6.11, 6.14

Summary

 Classes and Objects

 Definition of a class

 Separation of Interface from the Implementation

 Structure of a class

 Sample program

 Constructor

 Default arguments with constructors

 Tips

Classes and Objects
In today’s lecture, we will try to learn about the concepts of ‘classes’ and ‘objects’.

However, we are not going to formally cover the object-oriented programming but

only the ways to manipulate the classes and objects.

We had talked about structures in our previous lectures. In structures, some data

variables are gathered, grouped and named as a single entity. Class and structure are

very closely related. In classes, we group some data variables and functions. These

functions normally manipulate these variables.

Before going ahead, it is better to understand what a class is:

 “A class includes both data members as well as functions to manipulate that

data”

These functions are called ‘member functions’. We also call them methods. So a class

has data (the variables) and functions to manipulate that data. A class is a ‘user

defined’ data type. This way, we expand the language by creating a new data type.

When we create variables of a class, a special name is used for them i.e. Objects.

 “Instances of a class are called objects”

With the definition of class, we have a new data type like int, char etc. Here int i;

means ‘i’ is an instance of data type int. When we take a variable of a class, it

becomes the instance of that class, called object.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

306

Definition of a class
Let’s have a look on the structure of a class. It is very similar to the struct keyword.

Keyword class is used and the braces enclose the definition of the class i.e.

 class name_of_class{

 // definition of class

 }

The new data type i.e. classes helps us to have grouped data members and member

functions to manipulate the data. Consider a structure of Date having data members

i.e. year, month and day. Now we can declare a variable of structure Date and use dot

operator to access its members i.e.

 Date myDate;

 myDate.month=3;

We have to use the name of the object, a dot operator and the data member of

structure to be accessed. The data members are of normal data types like int, float,

char etc. Other data types can also be used.

Let’s consider an example of Date Class shown in the following statement.

 class Date{

 int Day;

 int month;

 int year;

 };

Now we will take its object in the fashion given below:

 Date myDate;

Separation of Interface from the Implementation
To access the data members of the class, we will again use dot operator. Before going

ahead, we will see what is the difference between struct and class. It is the visibility of

the data members that differentiates between struct and class. What does the word

‘visibility’ mean? Consider an example of payroll system. We have stored the tax rate

i.e. 5% in a variable i of type int. Later, we used the same i in a loop and changed the

value of tax rate unintentionally. Now the calculation of the pay in the end will not

provide the correct results. To avoid this problem, we can tag the tax rate variable as

int tax_rate;. But this variable again is visible in the whole program and anyone can

change its value. The data is open and visible to every part of the program, creating a

big problem.

In normal programming, we will like to see the data encapsulated. It means that data

is hidden somewhere. However, it can be used. Let’s consider a real world problem to

understand it. Most of us have wrist-watches. To have accuracy, it is necessary to

adjust the time. How can we do that? We can change the time by using the button that

is provided on one side of the watch. This is a kind of encapsulation. We can see the

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

307

hands of the watch but cannot touch them. To change their position we used the

button. Whenever we talk about the class, we have to think of this concept that data is

available somewhere. We don’t need to know about the exact structure i.e. what is

inside the watch. All we know is that its internal structure is defined somewhere that

cannot be seen or touched. We can only see its interface. If we need to adjust the time,

a button may be used. It is a nice separation of implementation and interface. Classes

allow us to do that.

Structure of a class
Let’s have a look inside a class. Consider the example of class Date. Can we set the

values of the data members of the object ‘myDate’ i.e. day, month or year. We cannot

say like myDate.month = 11;. Try to do this. The compiler will give error and stop

compiling the program. It will not recognize the variable ‘month’. In other words, it

cannot see ‘month’. The default visibility for the data members of the class is called

‘private’. These can only be used within the class and are not visible outside.

 “The default visibility of all the data members and member function of a class

is

 hidden and private”

‘private’ is also a keyword. What will be the opposite of the private? What we will

have to do to use the data members and manipulate them. The keyword for this

purpose is public. In the class definition, if you do not mention the visibility and start

defining the data and functions, these will be by default private. As a good

programmer, we should always write the keyword private with a colon as:

 private:

Now all the data and functions following this statement will have the private

visibility. To define the public data, we need to write the keyword public with a colon

as:

 public:

Now all the data and functions following the public keyword will have the public

visibility. These will be visible from outside the class. We can have multiple public

and private parts in the class definition but it becomes confusing. So normally we

have only one public and one private part. Again consider the Date example. By

making the data members as private, we will write functions to set and get the date.

As this is needed to be visible from outside the class, these functions will be defined

as public.

class Date

{

 private:

 // private data and functions

 public:

 // public data and functions

};

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

308

Normally, the data in a class is kept private. If we make the data public, it is same as

structure and anyone can access this data. On the other hand, the functions which we

have written to manipulate this data, are kept as public. These methods can be called

from outside the class i.e. from the main program. These are the member functions of

the class. The difference between these and the ordinary functions is that they are part

of class. Moreover, they can see the private data members of the class and also

manipulate them.

We have made the data members private in the Date class. In the program, we take an

object of Date class as Data myDate;. myDate is a variable of type Date. Now if we

say myDate.month = 3; this statement will be illegal as the month is a private data

member of the Date class. Now try to understand this concept. You can think class as

a box having different things in it. How can we touch inside the box? We have a

window and can see only those things that are visible through this window. Those

things which we cannot see from the window, can not be accessed from outside. Day,

month and year are somewhere inside the box and are not visible through the window.

Now we want to assign some values to these data members. For this purpose, we will

define a member function in the class in the public section. Being present in public

section, it will be visible through the window. As this is the member function, it can

see and manipulate the private data of the class. Now it’s a two-step process. We can

see the public functions and public functions can view the private data members of the

class. We will write a function to set the value to the month. We cannot write it as

myDate.month = 10;. So our function prototype will be as:

 void setMonth(int month)

and we may call this function as:

 myDate.setMonth(10);

Now the function setMonth will assign the value 10 to month data member of the

object myDate. The same thing will be applicable if we want to print the date. We can

write a public function print and can access it as:

 myDate.print();

The function print can see the private data members. So it will format the date and

print it. In structures, the data members are public by default. It means that these are

visible to all and anyone can change them. Is there any disadvantage of this? Think

about the date. What may be the valid values of the day? Can we have a day less than

zero or greater than 32. So the minimum and maximum values of the day are 1 and 31

respectively. Similarly, in case of month, the minimum and maximum values may be

1 and 12. We can assign different values to year like 1900, 2002 etc. If we are using

Date structure instead of a class, we can write in the program as myDate.month=13;

and the month will be set to 13. So the date will become invalid. We may want that

other programmers also use this structure. But other programmers may put invalid

values to the data-member as these are publicly accessible. Similarly in structures,

everything is visible i.e. what are the names of the data members. How are these

manipulated?

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

309

Now we want that only those things should be visible which we want to show and

those things which we want to hide should not be visible We can get this by using the

private and public in the classes. Public becomes the interface of the class, what we

want to show to others. With the use of public interface, the objects can be

manipulated. Private becomes the inside of the class i.e. the data members, the

implementation. We don’t want to show the implementation of our classes to others.

This is the concept of separation of interface from implementation. It is a crucially

important concept in modern programming. We have separated the interface from the

implementation. As long as the interface remains the same, the implementation can be

changed. Let’s think about it in real world. The example from the automobiles sector

can help us understand further. The production of cars in the world started in the late

18
th

 century and early 19
th

 century. Let’s compare these early or prototype cars with

today’s modern ones. There is a big difference between the old and new cars.

Technology has changed. Now what is still common in both the types. Steering,

clutch, brakes and accelerator pads are still the basic components of a car. So the

interface is same. The internal functionality can be changed. To turn the car, old cars

used rod mechanisms and modern cars have the microprocessor to do this job. Our

physical action is same in both the cases. The interface i.e. steering is same and also

the effect that wheels have turned to right is the same too. The internal

implementation has completely changed. The old combustion engine cannot be

compared with the state-of-the technology based modern engines. But the interface is

the same i.e. we turn the key to start an engine. This concept of separation of

implementation from interface comes into our programming. We have written a

program today to calculate the orbital time of moon around the earth. In today’s

physics, we have formula to calculate this. We have defined the interface

calculateOrbitalTime(). This is a function that will calculate the orbital time of moon

around earth. This formula may prove wrong after some time. Now what can we do?

Despite the change in the implementation, interface remains the same i.e. the name of

the function is same. Now when the program will use this function, it gets the correct

result as we have implemented the new formula inside the function. Moreover, the

main program does not need to be changed at all. Being a very neat concept, it can be

used while dealing with objects and classes.

Sample program
Let’s see the example of Date class in detail.

class Date

{

 public:

 void display();

 Date(int, int, int);

 private:

 int day, month, year;

};

Date is the name of new user defined data type. After the braces, we have written the

keyword public. In this section, we will define the interface of the class. We have

declared a function display() which will print the date on the screen. Another function

Date(int day, int month, int year) is declared. The name of this function is same as the

name of the class, having no return type. This function is called constructor. Then we

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

310

write the keyword private and define the implementation of the class. Here we have

three variables i.e. day, month and year of type int. In the end closing braces and the

semi-colon. This is the definition of user defined data type i.e. class. It will not

occupy any memory space as it has no data currently. It is the same as we write in

case of ‘int’. It does not occupy any memory but when we say int I, the memory is

reserved for i. The class is a ‘user defined data’ type. Now in our program, when we

write Date myDate; an instance of the class is created i.e. an object. Object reserves

space in the memory. Object will have these data members. What about the

‘functions’? For a moment, we can say that functions are also in the memory.

We want to use this class in our program and display the date using the display()

function. We have written the prototype of the display() function in the class without

defining the display() function yet. A special way is used to define these functions.

We will write the name of the class, followed by two colons and the name of the

function. The rest is same as we used to do with ordinary functions.

 Date::display()

 {

 // the definition of the function

 cout << “The date is “ << day << “-“ << month << “-“ << year <<

endl;

 }

You might have noted the difference in the first line. The double colon is called scope

resolution operator. It resolves the scope and tells that this function belongs to whom.

In this case, the (Date::display())) tells that the display() function belongs to the Date

class. So the scope resolution is required. In a way, consider it as function is defined

inside the class. If you have private function, even then the definition mechanism is

same. We will define the function outside of the class. Even then it will not be visible

as its visibility is private. The way to define the member functions is, class name,

double colon, name of the function including arguments and then the body of the

function. Can we define the function inside the class? Yes we can. When we write the

function inside the class, the compiler tries to treat that function as inline function. As

a good programming practice, we define the functions outside of the class. So to make

sure that the function belongs to the class, the scope resolution operator is used.

We have so far tried to discuss Date class at a rudimentary level. That is we can create

objects of Date class and display the date using its functions. We can do a lot of other

things with this class. When we say int i; and ask to print its value. The answer is that

we have not assigned any value to it yet and don’t know what will be there at that

memory location. Similarly, when we declare an object of the Date class as Date

myDate; an object is created. But we don’t know about the values of day, month and

year. Now if we call its public function display() using the dot operator as

myDate.display(). It will print whatever the value is in the data members. We need

functions to set/change the date. Suppose we want to set the day, the month and the

year separately. For this purpose, we need three more public functions. We can name

these functions as setDay(int), setMonth(int) and setYear(int). These functions may

be called inside the program as myDate.setDay(15), myDate.setMonth(12) and

setYear(2002). These functions will change the value of day, month and year. As

these are member functions, so scope resolution operator is being used.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

311

 void Date::setDay(int i)

 {

 day = i;

 }

 void Date::setMonth(int i)

 {

 month = i;

 }

 void Date::setYear(int i)

 {

 year = i;

 }

The question arises, which objects data members are being set. In the setDay function,

we are assigning value to the day. But this day belongs to which object. The answer

is, we have just defined the function, it is not called yet. The functions are called by

the objects, not by the class. When we say Date myDate; it means that we have an

object of type Date. Now we can say myDate.setDay(10). The value of day of myDate

object will be set to 10. When we create objects, these will reserve space in memory.

Suppose, the objects are date1, date2, date3. These will be created at different

memory locations having there own data members. When we call a member function

with the object name, this function will manipulate the data of this object. Let’s

consider the following code snippet to understand it.

 Date date1, date2, date3;

 // Manipulating date1 object

 date1.setDay(10);

 date1.setMonth(12);

 date1.setYear(2002);

 date1.display();

 // Manipulating date2 object

 date2.setDay(15);

 date2.setMonth(1);

 date2.setYear(2003);

 date2.display();

We have declared three objects of type Date. All these objects have data members

day, month and year. When we call a function, that is defined in class, with some

object name, it uses the data of that object which is calling the function. Suppose,

when we write date1.setMonth(12); it will manipulate the data of object date1.

Similarly when we say date2.display(), the function is defined inside the class.

However, it will use the data of date2 object. Remember that we will always call

these member functions by referring to some specific object. We can call these

functions with date1, date2 or date3 respectively. We will never call these functions

referring to a class that is we cannot say Date.display(); It is illegal. The functions of

getting data from objects and setting data of objects are standard. So we normally use

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

312

the word ‘set’ for setting the data and ‘get’ for getting the data. It is a matter of style.

You can call it whatever you want. But it will be a bad idea to name a function print()

and it is setting the value of month. It will work but in a very confused manner. If we

want to write a function to set month, the logical choice of the function name is

setMonth(int). Similarly, setDay(int) and setYear(int) will be used to set the day and

year respectively. If we want to get the values of these data members, the logical

choice will be getDay(), getMonth() and getYear(). The names are self-explanatory.

These functions are defined as member functions of the class. They are put in the

public section of the class and constitute the public interface of the class. These will

be visible from outside the class. Normally they manipulate the data that is hidden

inside the class i.e. in the private section of the class. No need to show the working of

the functions only its name, argument and the return type is told to the user. User of

the class is our program.

Here is the complete code of the Date class.

/* A sample program with the Date class. Set methods are given to set the day, month

and year.The date is also diplayed on the screen using member function. */

#include <iostream.h>

// defining the Date class

class Date{

 // interface of the class

 public:

 void display(); // to display the date on the screen

 void setDay(int i); // setting the day

 void setMonth(int i); // setting the month

 void setYear(int i); // setting the year

 // hidden part of the class

 private:

 int day, month, year;

};

// The display function of the class date

void Date::display()

{

 cout << "The date is " << day << "-" << month << "-" << year << endl;

}

// setting the value of the day

void Date::setDay(int i)

{

 day = i;

}

// setting the value of the month

void Date::setMonth(int i)

{

 month = i;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

313

}

// setting the value of the year

void Date::setYear(int i)

{

 year = i;

}

// Main program. We will take two date objects, set day, month, year and display the

date.

int main()

{

 Date date1,date2; // taking objects of Date class

 // setting the values and displaying

 date1.setDay(1);

 date1.setMonth(1);

 date1.setYear(2000);

 date1.display();

 // setting the values and displaying

 date1.setDay(10);

 date1.setMonth(12);

 date1.setYear(2002);

 date1.display();

}

The output of the program is:

The date is 1-1-2000

The date is 10-12-2002

Constructors
We have written a function named Date(int, int, int) in our class. This is in the public

section of our class. It has no return type, having the name as that of class. Such

functions are called constructors. When we create an object by writing Date myDate;

A function is invisibly called which does something with this object. This function is

constructor. If we do not write a constructor, C++ writes a default constructor for us.

By and large, we want that the object should be created in a certain state. When our

object myDate is created its data members-day, month and year have some value. We

can initialize these data members with zero or with some specific date. How can we

do that? Native data types can be initialized as:

 int i;

 i = 10;

OR

 int i = 10;

Generally, a constructor initializes the object into a state that is recognizable and

acceptable. The default constructor does not take any parameter. We can have many

constructors of a class by overloading them. The constructor for Date class is:

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

314

 Date(int, int, int);

This is the prototype of the constructor that is defined in the class. The definition of

constructor is same as we used with the member functions.

 Date::Date(int theDay, int theMonth, int theYear)

 {

 day = theDay;

 month = theMonth;

 year = theYear;

 }

How can we call this constructor? We know that constructor is automatically called

when an object is created. To use this constructor, we will take an object as:

 Date myDate(1, 1 , 2003);

Here two things have taken place. 1) An object is created 2) The data members are

initialized. This is happening in the memory at run time. Nothing will happen at

compile time. The constructor will be called after the object creation and before the

control given back to the program. Here the value of day of the myDate object is 1,

the value of month is 1 and the value of year is 2003. It has created and initialized an

object. Now if we call the display() function. These values will be displayed.

Constructor is used to initialized an object and put it into a consistent and valid state.

Default arguments with constructors
We can also use the default arguments with the constructors. In the case of Date,

normally the days and months are changing and the year remains same for one year.

So we can give the default value to year.

 Date::Date(int theDay, int theMonth, int theYear = 2002)

 {

 // The body of the constructor

 }

Now we have different ways of creating objects of class Date.

 Date myDate;

In this case, the default constructor will be called while the data members remain un-

initialized.

 Date myDate(1, 1, 2000);

The constructor will be called and initialized. The day will be 1, month will be 1 and

the year will be 2000.

 Date myDate(1, 1);

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

315

The constructor will be called and initialized. The day will be 1, month will be 1 and

the year will be initialized to the default value i.e. 2002.

There are some complications. Constructor is itself a function of C++ and can be

overloaded. We can have many constructors. Suppose, we are asked to write the date

i.e. 1, 1, 2000. Some of us may write it as 1, 1, 2000. Some will write it as 1/1/2000.

A considerable number may write as 1-1-2000. One can write date as 1 Jan. 2000.

There may have many formats of dates. It will be nice if we can initialize the object

using any of these formats. So we may have a constructor which takes a character

string. The date format is ’01-Jan-2003’. So the constructor should parse the string.

The string before the hyphen is day (i.e. 01) convert it into an integer and assign it to

day. Again get the strings before the 2
nd

 hyphen (i.e. Jan), check which month is it

(i.e. 1) and assign it to month. Rest of the string is year so convert it into integer and

assign it to year. We are doing a lot of horizontal integration here. The good thing is

that the rules of simple functions overloading applies to constructors also. The rules of

default arguments also apply while we are using default arguments with constructors.

The idea is to make the class as friendly as possible for the users. We have two

constructors. Of these, one takes three ints and the other takes the date as a character

string. We may want to add more constructors. But we don’t want to add too many

constructors in the class as there is a limit of everything. Within limits and the

reasons, provision of two to three alternatives to the users of the class for object

creation is nice. May be the program that is using our class, is applying months as

character strings. We should provide a constructor that deals with this. We will further

explain this subject in the coming lectures. A constructor is a special kind of function

having same name as that of a class. It has no return type. Declare it without return

type. Constructor can take arguments. The default constructor takes no argument.

Here is the code of the Date class using the different constructors.

/*

A sample program with the Date class. Use of constructors is shown here.

*/

#include <iostream.h>

//#include <stdlib.h>

// defining the Date class

class Date{

 // interface of the class

 public:

 void display(); // to display the date on the screen

 void setDay(int i); // setting the day

 void setMonth(int i); // setting the month

 void setYear(int i); // setting the year

 int getDay(); // getting the value of day

 int getMonth(); // getting the value of month

 int getYear(); // getting the value of year

 // Constructors of the class

 Date();

 Date(int, int, int);

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

316

 // hidden part of the class

 private:

 int day, month, year;

};

// defining the constructor

// default constructor. setting the date to a default date

Date::Date()

{

 day = 1;

 month = 1;

 year = 1900;

}

// Constructors with default arguments

Date::Date(int theDay, int theMonth, int theYear = 2002)

{

 day = theDay;

 month = theMonth;

 year = theYear;

}

// The display function of the class date

void Date::display()

{

 cout << "The date is " << getDay() << "-" << getMonth() << "-" << getYear()

<< endl;

}

// setting the value of the day

void Date::setDay(int i)

{

 day = i;

}

// setting the value of the month

void Date::setMonth(int i)

{

 month = i;

}

// setting the value of the year

void Date::setYear(int i)

{

 year = i;

}

// getting the value of the day

int Date::getDay()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

317

{

 return day;

}

// getting the value of the month

int Date::getMonth()

{

 return month;

}

// getting the value of the year

int Date::getYear()

{

 return year;

}

// Main program. We will take three date objects using constructors, and display the

date.

int main()

{

 Date date1, date2(1, 1, 2000), date3(10,12); // taking objects of Date class

 // displaying the dates on the screen

 date1.display();

 date2.display();

 date3.display();

}

The output of the program is:

The date is 1-1-1900

The date is 1-1-2000

The date is 10-12-2002

Summary

A class is a user defined data type. It has data members and member functions.

Normally member functions are called methods. Data members are generally kept as

private. The member functions, used to manipulate the data members, are kept public

so that these are visible from outside the class. The public part of the class is known

as the interface of the class. It may contain data members and functions but normally

we put functions as public. The member functions can manipulate the data members

(public and private) of the class. Non-member functions can not see or access the

private part of the class. We try to separate the implementation of the class from its

interface.

Tips

 Explicitly write keyword private in the class definition

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

318

 Separate the interface and implementation

 The default constructor has no arguments

 Constructor has the same name as of class

 The data members of the class are initialized at runtime

 Initializing the data members in the definition of the class is a syntax error

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

319

Lecture No. 27

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 6

 6.9, 6.10, 6.11, 6.12, 6.13, 6.14

Summary

1) Classes And Objects

2) Constructors

3) Types of Constructors

4) Utility Functions

5) Destructors

Classes and Objects

This lecture is a sequel of the previous discussion on 'Classes' and 'Objects'. The use

of 'classes and objects' has changed our way of thinking. Instead of having function-

oriented programs i.e. getting data and performing functions with it, we have now

data that knows how to manipulate itself. This way, now the programming is object-

oriented. It means that our programs revolve around data and the objects. Therefore, it

would be nice to have some building blocks for programs so that these can be

combined to write a program. We have so far talked about simple variables like

integer, double and char, followed by strings of characters and arrays of different data

types. But now, in the form of an object, we have a block which knows itself about

contents and the behavior. The upcoming discussion will further explain it. We have

used cout for displaying many things like integers, doubles and strings. Here integer

did not know how it is going to display itself. However, cout knows how to display an

integer on the screen. Now we want to see that an integer should know how to display

itself. So it will be a different process. Now the question arises whether it will be good

to see an integer knowing how to display itself? For this purpose, we will have to

expand the scope of thinking.

While engaged in the process of programming, we try to solve a real-world problem.

The real world is not only of integers, floats, doubles and chars, but there are other

things like cycles, cars, buildings, schools and people. We perceive all these things as

objects. Each object has a behavior associated with it. Consider the example of a man

who can talk, walk, sit and stand etc. Similarly, we can think of a vehicle that has

many functions. These objects also have attributes. For example, a man has height,

weight, color of eyes and hair and so on. These all are his attributes. His actions will

be referred as functions or methods. This principle may be applicable to vehicles,

aeroplanes and all other real-world things. An aeroplane has attributes like its height,

width, number of seats and number of engines etc. These are attributes called data

members. Its actions include takeoff, flying and landing. These actions are its

functions or methods.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

320

In terms of language, the attributes and actions may be equated with nouns and verbs.

The verbs are actions which are also called methods in the programming terminology.

These methods should be included in the object in such a way that the object itself

knows how to achieve this function or method. Now consider this all in terms of data.

Is it always in terms of salary, payroll, amount and numbers? Actually, data comes in

different varieties. Now a day, a computer is a multimedia equipment. We see that

there are not only alphabets and digits displayed on the screen, but also pictures,

images, windows, dialogue boxes, color and so many other things. These are

numbers, letters and graphics. Other than this, we can see videos on our computer. It

is just another type of media. Similarly, we find audio material, which can be played

on the computer. Thus in the expanded terms of data, we come across numbers,

pictures, audio and video while dealing with multimedia.

Now we think about the concept that an integer should know how to display itself.

With the enhanced scope of data, we can also have an audio, which knows how to

play itself. The same applies to video.

Class

A class is a way of defining a user-defined data type. In a class, one may find data

members and functions that can manipulate that data. In the previous lectures, we

have talked about the concept of data hiding i.e. encapsulation that means that the data

of a class cannot be accessed from outside. However, it can be done through some

defined functions (methods). These are the member functions of the class. To hide the

data, we declare it private. If a data is private, it will be available only to member

functions of the class. No other function outside the class (except friend functions)

can access the private data. Normally in a class we divide the private part which is

normally what we called implementation of the class, from the functions that

manipulate that private data which is called the interface (which is the front end).

The example of a room can help us understand private and public parts of a class. A

class is a room having a curtain in its middle. The things behind the curtain (private)

are visible to the residents (insiders) of the room. They know about every thing

present in the room. When the door opens, the outsiders see only the things in front of

the curtain. This is the public interface of the class while behind the curtain is the

private interface. A function inside the class (i.e. a member function) can access and

manipulate all things in the class. A function outside the class can only access and

manipulate its public interface part. A constructor has to be in the public section of the

class. There should also be a public interface so that it can be called from outside.

Constructors

Constructor is a special function, called whenever we instantiate an object of a class.

If we do not define a constructor function in a class, the C++ provides a default

constructor. It is executed at the time of instantiating an object.

To understand the basic function of constructor, we have to go back. While writing

c++ Stroustrup noticed that the majority of programming problems, which we call

bugs, occur due to the use of uninitialized data. That is, we declare variables and use

them without providing them any value. For example, we declare an integer as int i ;

And it is not initialized with a value like i= 0; or i = 5; And then somewhere in the

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

321

program, we write, say, j = 2 * i ;. This is the usage of an uninitialized data variable.

This technique has a demerit that despite having no syntax error, it may cause a

logical error, which is difficult to find. Thus, initialization of data is a very critical

activity. The constructors give us an opportunity to initialize the data members of an

object in such a way that when our program gets an object, the data part of the object

is in a known state. Being in a valid state, it can be used. The constructors are used to

initialize the data members of an object. A class is a user defined data type it does not

take space in the memory unless we create an object from it. The constructors create

space for data members and put values in them. We want these values to be there

when an object is instantiated. Thus initialization is a good reason for using

constructors.

Types of Constructors

Compiler Generated Constructor
If a constructor is not defined by the use the compiler generates it automatically. This

constructor has no parameter. It does nothing. Although the compiler will create a

default constructor for us, the behavior of the compiler-synthesized constructor is

rarely what we want. Thus the default constructor provided by the compiler does no

initialization for us.

Simple Constructor
We have earlier discussed that we can write a constructor that takes no argument. The

user defined constructor, that takes no argument is called a simple constructor. We

know that when a compiler generated default constructor is called, it does no

initialization. It does not know whether to put a value in data members like day,

month in our previous class Date. We can avoid this problem by not writing a class

without having its constructor.

A simple constructor can do initialization without any need to take any argument. So

we can write a constructor of Date class like Date ();. When we write such a

constructor, it automatically assumes the roll of the default-constructor. The compiler

will not call the default constructor. Rather, the constructor written by the

programmer will be called whenever an object will be instantiated. It is also a good

programming practice to provide a default constructor (i.e. a constructor wit no

argument).

Parameterized constructors
We may define a constructor, which takes arguments as well. This constructor will be

automatically called when the required number of arguments are passed to it. Through

this, we can easily assign the passed values to our class data members for that

particular object.

In our previous example of class Date, we have written a constructor as follows

 Date (int, int, int);

This is a parameterized constructor which takes three arguments of type int.

Constructor Overloading
We can provide more than one constructors by using function overloading. The rules

for function overloading are that the name of the function remains the same.

However, its argument list may be different. There are two ways to change the

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

322

argument list. It can either vary in the number or type of the arguments. We cannot

have two functions with the same number and type of arguments. In such a case, these

will be identical. So it will not be function overloading. The function overloading

requires the argument list to be different. The same concept of function overloading

applies to constructors. If we supply more than one constructor for a class, it can be

called one or the other depending on the way of calling.

As the constructor does not return any thing, so it has no return type. It means that the

body of the construct function cannot have any return statement. Otherwise, the

compiler will give a syntax error.

Explanation of Constructors
The main purpose of the constructor is to initialize the object in such a manner that it

is in a known valid state. Consider the example of Date class again. In that example,

there were three data members i.e. day, month and year of type int. What values will

we give to these data variables by default if we create an object of Date? There may

be any valid date. We can give a value 01 to day, month and 1901 to year or what

ever we want. It will be a known state despite being meaningless. We can write a

constructor of class Date which takes three arguments int day, int month and int year,

and puts values in the data members of the object, being created. Now the question

arises when does this happen? It happens when we instanciate an object of class Date

by writing Date myDate; When this line executes in the program, some space for

'myDate' is reserved in the memory. This space contains the space for day, month and

year variables. Then control goes to the constructor that assigns values to day, month

and year. Being a member of the class, the constructor can write values to the data

members of the class that is private. .

In C++ language, we can provide default arguments to functions. As a function, the

constructor can take default arguments. Suppose we have written a constructor of

class date with the arguments by providing default values to its arguments. We can

write a constructor as Date (int day=1, int month=1, int year=1);

and create an object of class Date as

 Date myDate;

This creates an object of type Date. Which constructor will be called? A constructor

with no arguments or the parameterized constructor in which each argument has given

a value? If we provide a constructor which has default values for all the arguments, it

will become the default constructor for the class. Two constructors cannot be

considered same. So it will be better not to write a constructor Date (); (constructor

with no argument) in case of providing a fully qualified constructor (with default

values for all arguments).

Now suppose, we want to initialize the Date object properly by passing a character

string to its constructor. Is it possible to write such a constructor? Yes, we can write

such a constructor. This constructor will take date as a string, say, 01-jan-1999. And

in the constructor, we can split up this string with 'string manipulation functions' and

assign respective values to day, month and year.

Now we recapture the concept of constructors with special reference to their

characteristics.

A constructor is a function which has the same name as the class.

It has no return type, so it contains no return statement.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

323

Whenever an instance of a class comes into scope, the constructor is executed.

The constructors can be overloaded. We can write as many constructors as we require.

At one time, the compiler will call the correct version of the constructor".

Utility Functions
The second issue, we usually come across while dealing with the concepts of 'classes

and objects' is that a class has a data on one side (normally private part) and functions

on the other (normally public part). The functions (methods) are normally written in

public part of the class. Are there functions which are private to a class? Answer is

yes. The functions of a class may be of two categories. One category contains the

member functions which manipulate the data or extract the data and display it.

Through these, we can set and get values to manipulate data. These are the functions

which are in public interface of the class and manipulate the data in the object. But

sometimes, we need such functions that is the requirement of these member functions.

Suppose we write a setDate function. This function is given an argument and it does

the same thing as done by the constructor. In other words, it sets a value of date. Now

that function can be public so that it can be called from outside the class. Now we

want that the member functions of the class can call this function. But it should not be

called from outside. In this case, we put this function in private section of the class.

These functions are called utility functions. These are a utility used by other methods

of the class. However, they are not functions, supposed to be accessed from outside

the class. So they are kept private.

Destructors
The name of the destructor is the same as that of a class with a preceding tilde sign

(~). The ~ and name of the class is written as a single word without any space

between them. So the name of the destructor of class Date will be ~Date. The

destructor can not be overloaded. This means that there will be only one destructor for

a class.

A destructor is automatically called when an object is destroyed. When does an object

gets destroyed? When we create an object in a function, this is local to that function.

When the function exits the life of the object also comes to end. It means that the

object is also destroyed. What happens if we declare an object in the main program?

When the main program ends, its objects also comes to end and the destructor will be

called.

The destructor is normally used for memory manipulation purposes. Suppose we have

such a class that when we create an object of it then its constructor has allocated some

memory. As we know that we have to free the allocated memory to ensure its

utilization for some other program. The destructor is used normally for this purpose to

make sure that any allocated memory is de-allocated and returned to free store (heap).

The destructors can be summarized as the following.

The destructors cannot be overloaded.

The destructors take no arguments.

The destructors don’t return a value. So they don’t have a return type and no return

statement in the body.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

324

Now we come to the previously defined class Date. Let's see what can we further put

in it. We have put in it constructors. We have provided a parameterized constructor

without default arguments. So the constructor with no arguments will become default

one. We have another constructor with three parameters so that we can pass it the

values for day, month and year. There is also provided a destructor. We have written

some methods to set day, month and year. These were setDay, setMonth and setYear

respectively. Each one of them takes one parameter, a simple integer. Then we have

get functions. The functions getDay, getMonth and getYear return a simple integer.

There is also a function setDate, which takes three parameters (i.e. day, month and

year) and sets them. In set function, we do not simply assign the values to the data

members. This can be done through a constructor. Whenever we put data into an

object, it is necessary to make it sure that valid values should be stored. For example,

if we say Date myDate ; and give it values like 35 for day, 13 for month and 2000

for year. The constructor will set these values. But these are invalid values for a date.

Here we want that these values should be validated before being assigned to data

members. So we write some code for error checking of the values and store only valid

values in data members i.e. day, month and year. We do the same thing in set

function. Then what is the advantage of using set functions. The set functions are

public part of the class and can be called from outside the class and also by the

constructor. So write all the code for error checking and to validate the data in set

function and call this set function in the constructor. Thus when we create an object of

class date, it is written as the following

 Date myDate (12,10,2000);

Then an object of Date class is created and the constructor of the class that takes three

arguments, is executed by passing these three values. In the constructor, we call the

set function which sets the values of the data members properly. Thus we get a fine

initialization of the data members.

What an Object is ? An object is an instance of a class. When we say an instance that

means that this object exists and takes space in the memory. What happens when we

create an object i.e. take an instance of the class. A class contains data and methods.

Are these methods reproduced for every object? Every object has data of its own as

every object is distinct from the other. For example, in case of the date class, there

may be objects date1, date2 and date3. These are three different objects having their

own value of date. Being distinct objects, they must have distinct space in memory.

What about functions inside the class?

Whenever we create an object of a class, the functions of the class take a space in the

memory and remain there. There is only one copy of these functions in the memory.

The data part of the class takes individual locations in the memory. So if we create

three objects of a class, say date, there will be one copy of the functions in the

memory at the time of execution of the program. The data will have allocated three

spaces in the memory with different values. Now suppose, we want to change the data

of date1, there is need of setting month of date1 to 3. So we call setMonth function for

the object date1. We use dot operator (.) to call the function of an object. We write

this as date1.setMonth(3); The setMonth function is called from the copy of the

functions that is in the memory. The object name with dot operator makes sure that

the function will operate on the data of that object. Thus only the value of the month

of date1 will be set to 3. The values of date2 and date3 will remain untouched.

Similarly if we say date2.setDay(23); the setDay function will be called for object

date2 and day of date2 will be set to 23. Thus it is clear that which object calls the

function the data of that object is visible to the function and it manipulates only that

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

data. Thus we have not wasted the memory by making separate copy of the functions

for each object. All objects of one class share the common functions. On the other

hand, every object has its own data space. The overloaded functions and constructors

are also found in this single copy and called whenever needed. In the overloaded

functions, the appropriate function to be called is resolved by the parameter list (type

and number of the arguments to be passed).

In our class Date, we need no functionality for the destructor. We write the destructor

~Date and a cout statement in it. That displays the message ‘The object has

destroyed’ just to demonstrate the execution of the destructor. Similarly we can

display a message like ‘Date object created’ in our constructor function. By this, we

can see when the constructor is called. By seeing these messages on the screen we

know that the object is being created and destroyed properly. If the constructor

function is overloaded, we can put appropriate message in each constructor to know

which constructor is called while creating an object. For example in default

constructor, we can display a message ‘Default constructor is called’.

The following program demonstrates the execution of constructors and destructors. It

is the previous example of Date class. It displays appropriate messages according to

the constructor called. You will see that the constructor is called depending upon the

parameter list provided when the object is being created.

/*

A sample program with the Date class. Use of constructors and destructor is shown

here.

A message is displayed to show which one constructor is called

*/

#include <iostream.h>

//#include <stdlib.h>

// defining the Date class

class Date{

 // interface of the class

 public:

 void display(); // to display the date on the screen

 void setDay(int i); // setting the day

 void setMonth(int i); // setting the month

 void setYear(int i); // setting the year

 int getDay(); // getting the value of day

 int getMonth(); // getting the value of month

 int getYear(); // getting the value of year

 // Constructors of the class

 Date();

 Date (int, int);

 Date(int, int, int);

 // Destructor of the class

 ~Date ();

 // hidden part of the class

 private:

 int day, month, year;

};

325

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

326

// defining the constructor

// default constructor. setting the date to a default date

Date::Date()

{

 day = 1;

 month = 1;

 year = 1900;

 cout << "The default constructor is called" << endl;

}

// Constructors with two arguments

Date::Date(int theDay, int theMonth)

{

 day = theDay;

 month = theMonth;

 year = 2002;

 cout << "The constructor with two arguments is called" << endl ;

}

// Constructors with three arguments

Date::Date(int theDay, int theMonth, int theYear)

{

 day = theDay;

 month = theMonth;

 year = theYear;

 cout << "The constructor with three arguments is called" << endl;

}

//Destructor

Date::~Date()

{

cout << "The object has destroyed" << endl;

}

// The display function of the class date

void Date::display()

{

 cout << "The date is " << getDay() << "-" << getMonth() << "-" << getYear()

<< endl;

}

// setting the value of the day

void Date::setDay(int i)

{

 day = i;

}

// setting the value of the month

void Date::setMonth(int i)

{

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

327

 month = i;

}

// setting the value of the year

void Date::setYear(int i)

{

 year = i;

}

// getting the value of the day

int Date::getDay()

{

 return day;

}

// getting the value of the month

int Date::getMonth()

{

 return month;

}

// getting the value of the year

int Date::getYear()

{

 return year;

}

/* Main program. We will take three date objects using the three constructors

(default, two arguments and three arguments and display the date.

*/

int main()

{

 Date date1, date2(12,12), date3(25,12,2002); // taking objects of Date class

 // displaying the dates on the screen

 date1.display();

 date2.display();

 date3.display();

}

 Following is the output of the above program.

The default constructor is called

The constructor with two arguments is called

The constructor with three arguments is called

The date is 1-1-1900

The date is 12-12-2002

The date is 25-12-2002

The object has destroyed

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

328

The object has destroyed

The object has destroyed

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

329

Lecture No. 28

Reading Material

Deitel & Deitel - C++ How to Program Chapter 7

 7.6, 7.8

Summary

 Lecture Overview

 Memory Allocation in C

 Memory Allocation in C++

 new Operator and Classes

 Example Program 1

 Classes and Structures in C++

 new Operator and Constructors

 delete Operator and Classes

 Example Program 2

 new, delete outside Constructors and Destructors

 main() Function and Classes

 Class Abstraction

 Messages and Methods

 Classes to Extend the Language

 Tips

Lecture Overview

In the previous lectures, we have been discussing about Classes, Objects, Constructors

and Destructors. In this lecture we will take them further while discussing Memory

Allocation.

- We’ll see how the memory allocation is done in C++, while discussing

memory allocation in C?

- How C++ style is different from the C-style of allocation discussed earlier?

- What are the advantages of C++ approach as compared to that of C?

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

330

Memory Allocation in C

Before further proceeding with the concept of memory, it is better to know what else

we can create with classes besides objects.

Recapturing of the concept of ‘structures’ can help us to move forward. Consider the

following statement.

struct abc

{

int integer;

float floatingpoint;

};

We could have declared a structure object as:

struct abc xyz; // Declared an object of structure type

and access data members inside structure by using dot operator (“.”) as:

xyz.integer = 2134;

xyz.floatingpoint = 234.34;

Similarly, we could have a pointer to a structure object as:

struct abc* abcPtr; // Declared a pointer of a structure type

abcPtr = xyz; // Pointer is pointing to xyz object now

We can access the individual data member as:

abcPtr->integer = 2134;

abcPtr->floatingpoint = 234.34;

We can have pointers to different data structures, similarly, pointer to a class object.

Here we are going to discuss about Pointers, Classes and Objects.

Let’s start by talking about memory allocation. We introduced few functions of

memory allocation in C: malloc(), calloc() and realloc(). Using these functions,

memory is allocated while the program is running. This means while writing your

program or at compile time, you don’t need to know the size of the memory required.

You can allocate memory at runtime (dynamically) that has many benefits. The

classic example will be of an array declared to store a string. If the length of the actual

string is lesser than the size of the array, then the part that remains unoccupied will be

wasted. Suppose we declare an array of length 6 to contain student name. It is alright

if the student name is let’s say Jamil but what will happen for the student named

Abdul Razzaq. This is a case where dynamic memory allocation is required.

In C language, the region of memory allocated at runtime is called heap. However, in

C++, the region of available memory is called free store. We have different functions

to manipulate memory in both C and C++.

You know that while using malloc(), we have to tell the number of bytes required

from memory like:

malloc(number of bytes required to be allocated);

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

331

Sometimes, we also do a little manipulation while calculating the number of bytes

required to be allocated: i.e.

malloc(10 * (sizeof(int)));

The malloc() returns a void pointer (void *). A pointer that points to a void type of

memory. So in order to use this memory, we have to cast it to our required type.

Suppose, we want to use it for ints. For this purpose, you will cast this returned void

pointer to int * and then assign it to an int * before making its further use. The

following code is an example of malloc() usage.

class Date

{

 public:

 Date() ;

 Date(int month, int day, int year);

 ~Date () ;

setMonth(int month) ;

setDay(int day) ;

 setYear(int year) ;

 int getDay () ;

 int getMonth () ;

 int getYear () ;

 setDate(int day, int month, int year);

 private:

 int month, day, year;

};

Date *datePtr; // Declared a pointer of

Date type.

int i;

datePtr = (Date *) malloc(sizeof(Date)); // Used malloc() to

allocate memory

i = datePtr->getMonth(); // Returns undefined month value

So there is some house-keeping involved during the use of this function. We have to

determine the number of bytes required to be allocated and cast the returned void

pointer to our required type and then assign it to a variable pointer. Lastly, the

memory returned from this function is un-initialized and it may contain garbage.

The contrasting function used to free the allocated memory using malloc() is free()

function. As a programmer, if you have allocated some memory using malloc(), it is

your responsibility to free it. This responsibility of de-allocation will be there while

using C++ functions. But these new functions are far easier to use and more self-

explanatory.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

332

Memory Allocation in C++

The memory allocation in C++ is carried out with the use of an operator called new.

Notice that new is an operator while the malloc() was a function. Let’s see the syntax

of new operator through the following example.

 new int;

In the above statement, the new operator is allocating memory for an int and returns a

pointer of int type pointing to this region of memory. So this operator not only

allocated required memory but also spontaneously returned a pointer of required type

without applying a cast.

In our program, we can write it as:

int *iptr;

iptr = new int;

So while using new operator, we don’t need to supply the number of bytes allocated.

There is no need to use the sizeof operator and cast the pointer to the required type.

Everything is done by the new operator for us. Similarly, new operator can be used

for other data types like char, float and double etc.

The operator to free the allocated memory using new operator is delete. So whenever,

we use new to allocate memory, it will be necessary to make use of ‘delete’ to de-

allocate the allocated memory.

 delete iptr;

The delete operator frees the allocated memory that is returned back to free store for

usage ahead.

What if we want to allocate space for any array? It is very simple. Following is the

syntax:

new data_type [number_of_locations];

For example, we want to allocate an array of 10 ints dynamically. Then the statement

will be like this:

int *iptr;

iptr = new int[10];

What it does is, it tries to occupy memory space for 10 ints in memory. If the memory

is occupied successfully, it returns int * that is assigned to iptr.

Whenever we allocate memory dynamically, it is allocated from free store. Now we

will see what happens if the memory in the free store is not sufficient enough to fulfill

the request. malloc() function returns NULL pointer if the memory is not enough. In

C++, 0 is returned instead of NULL pointer. Therefore, whenever we use new to

allocate memory, it is good to check the returned value against 0 for failure of the

new operator.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

333

Remember, new is an operator,it is not a function. Whenever we use new, we don’t

use parenthesis with it, no number of bytes or sizeof operator is required and no cast

is applied to convert the pointer to the required type.

delete operator is used to free the memory when the allocation is done by using new

as shown below:

int *iptr;

iptr = new int [10]; // Memory for 10 ints is allocated dynamically.

delete iptr; // Allocated is freed and returned to the free store.

Can we apply the concept of dynamic memory allocation/deallocation while using

new/delete with classes and objects? The answer is obviously yes.

new Operator and Classes

 As we declare a pointer to a primitive datatype, similarly, we can have a pointer to a

class object.
 Date *dptr; // dptr is a pointer to an object of type Date.

Now, we create the object using the new operator. Remember, the basic definition of a

class i.e. it is a user-defined data type. In other words, the language has been extended

to a programmer to have user defined data types. When we use them in our programs,

these are used in the same manner as the primitive data types.

 dptr = new Date;

Whatever amount of memory is required for a Date object, is allocated from the free

store. A pointer to of Date type is returned back and assigned to the dptr pointer

variable. Is this all what new is doing? If it is so, can we use malloc() function by

Process

(Program in memory)

Date class

main ()

{

 Date* = new Date();

 . . .

 . . .

}

BasicData class

dptr

Free Store

0

0

0

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

334

providing number of bytes required for Date object with the help of sizeof operator.

The answer to this question lies in the further discussion.

Date mydate;

cout << sizeof (mydate);

As discussed in the last lecture, whenever we instantiate an object of a class, the data

members are allocated for each object. However, the member functions occupy a

common region in memory for all objects of a class. Therefore, sizeof operator returns

the size of the data-members storage excluding the member functions part. In the

above statement, the sizeof operator returns the sum of the sizes of three integers day,

month and year, declared in the Date class.

The amount of memory allocated in the above statement using new (dptr = new

Date;) is same as reflected in the following statement:

 dptr = (Date *) malloc(sizeof(Date));

The new operator in the above statement (dptr = new Date;) has automatically

determined the size of the Date object and allocated memory before returning a

pointer of Date * type. Is this all what new is doing? Actually, it is doing more than

this. It is also creating an object of type Date. C functions like malloc() do nothing for

object creation. Rather these C functions allocate the required number of bytes and

return a void * pointing to the allocated memory where the memory might contain

garbage. But the new operator not only allocates the memory after automatically

determining the size of the object but also creates an object before returning a pointer

of object’s class type.

Additionally, within the call to the new operator, the memory assigned to the created

object with the use of new operator can be initialized with meaningful values instead

of garbage (think of C functions like malloc()).

How the data members are initialized with meaningful values? Actually, a

constructor is called whenever an object is created. Inside the constructor, individual

data members can be initialized. The C++ compiler generates a default constructor for

a class if the programmer does not provide it. But the default constructor does not

perform any data members initialization. Therefore, it is good practice that whenever

you write a class, use a constructor function to initialize the data members to some

meaningful values.

Whenever new operator is used to create an object, following actions are performed

by it:

- It automatically determines the size of the memory required to store that object,

leaving no need for the use of sizeof operator.

- Calls the constructor of the Class, where the programmers normally write

initialization code.

- Returns pointer of the class type that means no casting is required.

Hence, new operator is extremely useful, powerful and a good way of allocating

memory.

Let’s suppose, we want to allocate space for 10 ints as under:

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

335

int * iptr;

iptr = new int [10];

This new statement allocates contiguous space for an array of 10 ints and returns back

pointer to the first int. Can we do this operation for objects of a class? The answer to

this question is yes. The syntax in this case will be identical. To create an array of 10

objects of Date type, following code is written:

Date * dptr;

dptr = new Date [10];

int day = dptr->getDay();

Here the new operator allocates memory for 10 Date objects. It calls the default or

parameter-less constructors of the Date class and returns the pointer to the first object,

assigned to the dptr variable. Arrow operators (->) is used while accessing functions

or data members from the pointer variable.

Example Program 1

/* Following program demonstrates the new operator. This program has the problem of

memory leak because delete operator is not called for the allocated memory. */

#include <iostream.h>

class MyDate

{

 public: // public members are below

 /* Parameterless constructor of MyDate class */

 MyDate()

 {

 cout << "\n Parameterless constructor called ...";

 month = day = year = 0; // all data member initialized to 0

 }

 /* Parameterized constructor of MyDate class. It assigns the parameter values to the

……..data members of the class */

 MyDate(int month, int day, int year)

 {

 cout << "\n Constructor with three int parameters called ...";

 this->month = month; // Notice the use of arrow operator (->)

 this->day = day;

 this->year = year;

 }

 /* Destructor of the MyDate class */

 ~MyDate ()

 {

 cout << "\n Destructor called ...";

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

336

 }

 /* Setter function for the month data member. It assigns the parameter value to

 the month data member */

 void setMonth (int month)

 {

 this->month = month;

 }

 /* Setter function for the day data member. It assigns the parameter value to the

 day data member */

 void setDay (int day)

 {

 this->day = day;

 }

 /* Setter function for the year data member. It assigns the parameter value to the

 year data member */

 void setYear (int year)

 {

 this->year = year;

 }

 /* Getter function for the day data member. It returns the value of the day data

 member */

 int getDay ()

 {

 return this->day;

 }

 /* Getter function for the month data member. It returns the value of the

 month data member */

 int getMonth ()

 {

 return this->month;

 }

 /* Getter function for the year data member. It returns the value of the year data

 member */

 int getYear ()

 {

 return this->year;

 }

 /* A function to set all the attributes (data members) of the Date object */

 void setDate (int day, int month, int year)

 {

 this->day = day;

 this->month = month;

 this->year = year;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

337

 }

 private: // private members are below

 int month, day, year;

};

main(void)

{

 MyDate *dptr; // Declared a pointer dptr to MyPointer class object

 dptr = new MyDate [10]; // Created 10 objects of MyDate and assigned the

 // pointer to the first object to dptr pointer variable.

// delete should have been called here before the program terminates.

}

The output of this example program is as follows:

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Notice that the constructor is called 10 times with 10 new calls but there is no call to

destructor. What is the reason? The objects are created with the new operator on free

store, they will not be destroyed and memory will not be de-allocated unless we call

delete operator to destroy the objects and de-allocate memory. So memory allocated

on free store is not de-allocated in this program and that results in memory leak. There

is another point to be noted in this example program, which is not relevant to our

topics of discussion today that all the functions are requested to be inline

automatically as the functions are defined within the class body.

Classes and Structures in C++

Structures and classes in C++ are quite similar. C++ structure is declared with the

same keyword struct as in C. Unlike C structure, C++ structure can have data and

member functions. The difference between class and structure is of visibility. Every

data member or function written inside the structure is public (visible from outside)

by default unless declared otherwise. Similarly, everything declared inside a class is

private (not visible from outside) by default unless declared as public.

While writing classes, good programming practice is to write private keyword

explicitly, despite the fact that this is the default behavior. Similarly, while writing

structures, it is good to write the public keyword explicitly. This averts confusion and

increases readability.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

338

Another good practice is to write public or private keywords only once in the class or

structure declaration, though there is no syntactical or logical problem in writing them

multiple times.

Also remember while writing a class or a structure that once a keyword is written, say

public, the declarations falling below this keyword will be public until the private

keyword is mentioned.

There is another keyword protected. We are not using this keyword in this course

because that deals with inheritance that is a part of Object Oriented Programming, a

separate course.

new Operator and Constructors

It is clear that whenever new operator is called to create an object, the constructor is

also called for that object. What will happen if we have to call new from inside a

constructor function. Can we do that? The answer is definitely yes. There are times

when we have to do dynamic memory allocation or create new objects from inside a

constructor. For example, we have a Student class with attributes i.e. roll number,

age, height and name. The attributes like roll number, age and height can be

contained in ints or floats but the name attribute will require a string. Because of the

nature of this attribute (as it can have different lengths for different students), it is

better to use dynamic memory allocation for this. So we will use new operator from

within the constructor of Student class to allocate memory for the name of the

student.

We know whenever we use new to allocate memory, it is our responsibility to de-

allocate the memory using the delete operator. Failing which, a memory leak will

happen. Remember, the memory allocated from free store or heap is a system

resource and is not returned back to the system (even if the allocating program

terminates) unless explicitly freed using delete or free operators.

Now, we will see how the delete works for objects and what is the syntax.

Student

{

 publi

 Studen

 {

 srcp

 }

 . . .

}

 class

c:

t(char* name)

 = new char (strlen(name)+1) ;

y(this->name, name) ;

main ()

{

 . . .

}

BasicData class

Process

(Program in memory)
Free Store

J

m

a

i

l

\0

namethis->

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

339

delete Operator and Classes

As in our Student class, as we will be allocating memory from within the constructor

of it. Therefore, there is a need to call delete to de-allocate memory. What is the

appropriate location inside the class Student to call delete operator to de-allocate

memory? In normal circumstances, the location is the destructor of a class (Student

class’s destructor in this case). The destructor is used to de-allocate memory because

it is called when the object is no more needed or going to be destroyed from the

program’s memory. So this is the real usefulness of destructors that these are used to

release the system resources including memory occupied by the objects.

As a thumb rule , whenever there is a pointer data member inside our class and

pointer is being used by allocating memory at runtime. It is required to provide a

destructor for that class to release the allocated memory. A constructor can be

overloaded but not a destructor. So there is only one destructor for a class. That one

destructor of a class must do house keeping before the object is destroyed. Normal

data members int, char, float and double, not allocated using malloc() or new

operator, don’t need to be de-allocated using free() or delete. These are automatically

destroyed.

Let’s be sure that free() is used with malloc() function while delete operator with

new operator. Normally, new will be called in a constructor. However, delete will be

called in the destructor.

Example Program 2

/* Following program demonstrates the new and delete operators. It deallocates the

memory properly before terminating. */

#include <iostream.h>

class MyDate

{

 public: //public members are below

 /* Parameterless constructor of MyDate class */

 MyDate()

 {

 cout << "\n Parameterless constructor called ...";

 month = day = year = 0; // all data member initialized to 0

 }

 /* Parameterized constructor of MyDate class. It assigns the parameter values to the

……..data members of the class */

 MyDate(int month, int day, int year)

 {

 cout << "\n Constructor with three int parameters called ...";

 this->month = month; // Notice the use of arrow operator (->)

 this->day = day;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

340

 this->year = year;

 }

 /* Destructor of the MyDate class */

 ~MyDate ()

 {

 cout << "\n Destructor called ...";

 }

 /* Setter function for the month data member. It assigns the parameter value to

 the month data member */

 void setMonth (int month)

 {

 this->month = month;

 }

 /* Setter function for the day data member. It assigns the parameter value to the

 day data member */

 void setDay (int day)

 {

 this->day = day;

 }

 /* Setter function for the year data member. It assigns the parameter value to the

 year data member */

 void setYear (int year)

 {

 this->year = year;

 }

 /* Getter function for the day data member. It returns the value of the day data

 member */

 int getDay ()

 {

 return this->day;

 }

 /* Getter function for the month data member. It returns the value of the

 month data member */

 int getMonth ()

 {

 return this->month;

 }

 /* Getter function for the year data member. It returns the value of the year data

 member */

 int getYear ()

 {

 return this->year;

 }

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

341

 /* A function to set all the attributes (data members) of the Date object */

 void setDate (int day, int month, int year)

 {

 this->day = day;

 this->month = month;

 this->year = year;

 }

 private: // private members are below

 int month, day, year;

};

main(void)

{

 MyDate *dptr; // Declared a pointer dptr to MyPointer class object

 dptr = new MyDate [10]; // Created 10 objects of MyDate and assigned the

 // pointer to the first object to dptr pointer variable.

 delete [] dptr; // Deleted (freed) the assigned memory to the objects

}

The output of this example program is as follows:

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Parameterless constructor called ...

Destructor called ...

Destructor called ...

Destructor called ...

Destructor called ...

Destructor called ...

Destructor called ...

Destructor called ...

Destructor called ...

Destructor called ...

Destructor called ...

It is very clear from the output that the destructor for all the objects is called to avert

any memory leak. The memory allocated using new operator is being de-allocated

using the delete operator. Notice the syntax of delete while de-allocating an array, the

brackets ([]) precedes the name of the array after the delete operator.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

342

new, delete outside Constructors and Destructors

Can new be called from some location other than constructor? The answer is yes and

we usually need to do that. Suppose, we have an object of Student class. The name of

the student is: Abdul Khaliq. So for the name attribute, the space is allocated

dynamically to store the string Abdul Khaliq. When our program is running and we

have already allocated space for the Abdul Khaliq string using the new operator,

after sometime, we are required to increase the size of the string. Let’s say we want to

change the string to Abdul Khaliq Khan now.

So what we can do, without destroying this student object:

De-allocate the name previously occupied string using the delete operator, determine

the size of memory required with the help of strlen() function, allocate the memory

required for the new string Abdul Khaliq Khan using the new operator and finally

assign the returned pointer to the name data member.

Hence, we can call new and delete operators, not only outside the class to create

objects but also within the class. The objects of the same class can have different sizes

of memory space like in case of objects of Student class, student 1 object can be of

one size and student 2 object can be of an another size, primarily varying because of

string name. But independent of this object size, the destructor of the object remains

the same and de-allocates memory for different objects regardless of their different

sizes. delete operator is used from within the destructor to deallocate the memory. We

call delete operator to determine the size of the memory required to be de-allocated

and only provide it a pointer pointing to it.

Please note that C functions like malloc() and free() functions can also be used from

within C++ code. But while writing classes inside C++ code, we prefer to use new

and delete operators as they are designed to work with classes and objects.

main() Function and Classes

We used to discuss about main() function a lot while writing our programs in C. You

might have noticed that while discussing about classes and objects, we are not talking

about the main() function. This does not mean that main() function is not there in

C++. It is there but it does not contain as much code in C++ . But as you go along and

write your own classess, you will realize that almost 90% of your program’s code lies

inside the class definitions. So firstly we write our classes and main() function is

written after classes have been defined. That is why the main() function is very small.

Our example programs clearly depict this fact.

Class Abstraction

Whenever we write a class, we think about its users. Who are the ones going to use

this class? The users are not only the main() function of the program but also our

colleagues around us. Remember, we only expose interface to our users and not the

class implementation. All what users need to know is provided in the interface, the

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

343

methods signatures and what can be achieved by calling that method. The users do not

need to know how the functions or interfaces are implemented, what are the variables,

how is the data inside and how is it being manipulated, it is abstract to the users.

Messages and Methods

When we create an object, we ask that object to do something by calling a function.

This way of asking objects in Windows operating system is called Messaging or in

other words function calling is sending a message to the object. Sending a message is

a synonym of calling a method of an object. The word ‘method’ is from the fact that it

is a way of doing something. So the whole program is sending messages and getting

responses back. It is a different way of looking at things.

Notice lot of things have been repeated in this lecture many times, the reason is that

now, you are required to think differently, more in terms of classes and objects. There

are lots of exciting things coming up to be covered later.

Classes to Extend the Language

We know that in C, there is no data type for complex numbers. Therefore, we needed

to define our own class for complex numbers. We might use double data type for real

and imaginary parts. From basic Mathematics, we also know that whenever two

complex numbers are added, real part of one complex number is added into the real

part of other complex number and imaginary part of one complex number is added

into the imaginary part of other complex number. We might write a function for this

operation and might call this as cadd(). We might also write other functions for

multiplication and division. In C++, the operators like ‘+’, ‘*’ and ‘/’ can be

overloaded, therefore, we could overload these operators for complex numbers, so

that we could easily use these ordinary addition, multiplication, and division operators

for complex numbers. Actually, we don’t need to write this class on our own because

this is already been provided in many C++ libraries.

Remember, there is no primitive data type in C++ for complex numbers but a class

has been written as part of the many C++ libraries. Moral of the above paragraph is;

by using user defined data types i.e., classes, we can now really extend the language.

Tips

- Classes are one way of extending the C++ language.

- Whenever new operator is used, no number of bytes or sizeof operator is required

and no cast is applied to convert the pointer to the required type.

- Whenever new operator is called to create an object, the constructor is also called

for that object. It is a good practice that whenever you write a class, use a

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

344

constructor function to initialize the data members to some meaningful values.

- The usual practice is to use constructor to allocate memory or system resources

and destructors to de-allocate or return the resources back to the system.

- In C language, the region of memory allocated at runtime is called heap.

However, in C++, the region of available memory is called free store. There are

different functions in C and C++ to manipulate memory at runtime. However, all

C functions are useable in C++ code.

- The memory allocated from free store or heap is a system resource and is not

returned back to the system unless explicitly freed using delete or free operators.

- If the memory in the free store is not sufficient enough to fulfill the request,

malloc() function returns NULL pointer. Similarly, the new function returns 0 in

case the request could not be fulfilled.

- Whenever we use new operator, the returned value from the new should be

checked against 0 for any possible failures.

- While writing classes, good programming practice is to write private keyword

explicitly, despite the fact that this is the default scope. Additionally, the good

practice is to write public or private keywords only once in the class or structure

definitions, though there is no syntactical or logical problems in writing them

multiple times.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

345

Lecture No. 29

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 7

 7.4

Summary

6) Friend functions

7) Declaration of Friend Functions

8) Sample Program 1

9) Sample Program 2

10) Sample Program 3

11) Friend Classes

12) Summary

Friend functions

Today, we are going to discuss a very interesting subject i.e. Friend Functions. We

will see what is the relationship of friendship with our object-based programming.

Before going into details of the subject, it is better to have a fresh look on the

definition of ‘class’. ‘Class is a user defined data type’. The ‘class’ provides

encapsulation facility to the programmer. We can gather data at some place and some

function that manipulates that data. In the previous lecture, two keywords, ‘private’

and ‘public’ were introduced. We define data members as ‘private’ that are visible

only from inside the class and hidden from the outside. However, ‘public data

member functions’ is the interface of the class available for outside world. Objects are

accessed by these functions that can manipulate the private data of the class. We

cannot access the private data of the class directly. This concept of data encapsulation

and data hiding is very important concept in software engineering. It allows us to

separate the interface from the implementation of the class i.e. we can hide how we

have done the task and make visible what to do. It is critically important for large and

complex systems. Sometimes, a need may arise to access the private data of the class

from outside.

Let’s talk about the concept of friendship. What you see on the screen during the

lecture is the picture of the instructor. This is the public interface. That is all you

know. What is inside his mind you never know. It is all ‘private’. The instructor has

access to his own mind and feelings. But you do not have access to that. Do you know

any human being who has access to your mind and feelings? What we call that human

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

346

being. He is known as friend. Normally other people don’t know about our thoughts.

Only friends know about it. Friends have access to the inner thoughts and have inner

knowledge of a friend. Can we apply this definition to objects?

The friend functions of a class have access to the private data members of class.

Despite being a good thing, there is possibility of vulnerability. We are opening our

thoughts, inside view for somebody else. Without having 100% trust, it will be risky

to make our thoughts and feelings public. We want that our private data is accessible

to someone outside, not public for everybody. Otherwise, the data encapsulation and

data-hiding concept will be violated. We keep the data members private and declare

some specific functions that are not member of the class but friend of the class. As

friends, they have access to the inside data structure of the class despite not being

members.

Declaration of Friend functions
To declare a friend function, we can put it anywhere in the class. According to the

definition of the friend functions, they have access to the private data members of the

class. These can also access the private utility functions of the class. The question

arises where we should put the friend function whether in the private or public part of

the class. Be sure that friend is a very strong statement. It is too strong to be affected

by public or private. We can put it anywhere in the class. But remember that friend

functions are not member of the class. So their definition will be always outside the

class. However, the prototype of the function will be written in the class. We use the

keyword ‘friend’ before the prototype of the function.

 friend return_type friend_function_name(int, char);

If we have a class, suppose ‘Date’ and want to declare a friend function of this class.

In the definition of the class, we will write the friend function’s prototype with the

keyword ‘friend’. To access the private data, friend function will need the object.

Therefore, usually in the parameter list of friend function, we provide the object of

that class. Normally, the programmers work this way. As the friend function is not

affected by the private or public keyword, so we can declare it anywhere inside the

class definition. Programmers generally declare the friend functions at the top of the

class definition. So, the friend functions are declared at the start of the class

definition, followed by the private data and public data. This is a guideline. You can

develop your own style. We normally make a header file of the class definition and

implementation in the other file. The member functions are defined in the

implementation file and compiled to get an object file. We declare the friend function

in the class definition that is in the header file.

Let’s go back to the definition of the friendship. I can declare you my friend and tell

you about my inner thoughts and feelings. But it does not work both ways. In other

words, friendship is granted, never taken. So, a class can declare a friend function and

someone from outside the class cannot declare itself friend of a class. This is also an

important concept. If someone from outside the class can declare itself friend of the

class, then by definition that external function would have access to the private data

member of the class. But this will negate the concept of the encapsulation and data

hiding. It does not work this way. A function cannot declare itself friend of a class.

Rather, a class has to declare itself that a function is friend of the class or not. So the

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

347

class declares a friend function. These functions can not declare themselves friend of

a class from outside. Once, the friend functions are declared and the class is compiled,

no one from outside cannot make his function friend of your class. Outside functions

can only view the interface of the class.

Let’s summaries this concept. Friend functions are not member functions of the class.

The class itself declares the friend functions. The prototype of friend functions is

written in the definition of the class with the keyword ‘friend’. These functions have

access to the private data member of the class, which means they have access to

everything in the class. Normally we pass an object of the class to these functions in

the argument list so that it can manipulate the data of the object. Style is up to you but

normally we write friend functions at the top of the class definition.

Sample Program 1
We have a class with a single private data member of type int. We have declared a

friend function that accepts an object of that class as argument. We call that friend

function increment. This friend function will increment the private integer data

member of the class. We will give another integer argument to that function that will

be added to the data member. The name of the private data member is, for example,

topSecret. Let’s call the class as myClass. In the interface, we write display() function

that will print the value of the topSecret. The constructor of the class will initialize the

topSecret with 100. The definition of the friend function will be outside the class. We

do not write the keyword ‘friend’ with the function definition. It will be a void

function, having two arguments as:

 void increment(myClass *a, int i)

 {

 a->topSecret += i;

 }

Now the increment function has added the value of i to the private data member i.e.

topSecret of the passed object. In the main function, we declare an object of type

myClass as myClass x; On the execution of this statement, an object will be created in

the memory. A copy of its data members and functions will also be created besides

calling a constructor. The place for topSecret will be reserved in the memory while

the constructor will assign the value 100 to the variable topSecret. Now if we say

x.display(); it will display the value of the topSecret i.e.100. After this, we call the

increment friend function and pass it &x and 10 as arguments. Again we call the

display function of myClass as x.display(); Now the value of the topSecret will be

110. That means the ‘topSecret’ which was the private data member of the class has

been changed by the increment friend function. Be sure that the increment function is

not the member function of the class. It is an ordinary function sitting outside the class

but class itself has declared it as friend. So now the friend function has access to the

private data member and has the ability to change it. Try to write an ordinary function

(not friend function) ‘increment2’ which tries to manipulate the topSecret. See what

will happen? The compiler will give an error that a non- member function can not

access the private data of the class.

Here is the complete code of the program.

/*

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

348

A sample program showing the use of friend function,

which access the private data member of the class.

*/

#include <iostream.h>

class myClass

{

 friend void increment(myClass *, int);

 private:

 int topSecret;

 public:

 void display() { cout << "\n The value of the topSecret is " <<

topSecret; }

 myClass();

};

// constructor of the class

myClass::myClass()

{

 topSecret = 100;

}

// Friend function definition

void increment(myClass *a, int i)

{

 a->topSecret += i; // Modify private data

}

// showing the use of the friend function

main()

{

 myClass x;

 x.display();

 increment(&x, 10);

 x.display();

}

The output of the program is:

 The value of the topSecret is 100

 The value of the topSecret is 110

Sample Program 2
Let’s consider some complex example. We have two classes-myClass1 and myClass2.

Both classes have one private data member of type int i.e. int topSecret; Now we want

to add the values of private data members of both the classes and display it on the

screen. topSecret is a private data member of both the classes. One class can not see

inside the other class. myClass1 and myClass2 are both separate classes. We need a

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

349

function sitting outside the classes but can access the private data members of both the

classes. Let’s call the function as addBoth. This function will add the value of

topSecret of myClass1 to topSecret of myClass2 and display the result on the screen.

We need a function that can look inside both classes i.e. friend of both classes. We

know that classes have to declare a function as friend.

The arguments of addBoth function will contain myClass1 and myClass2. In the

definition of the myClass1, we will write the prototype of addBoth function as:

 friend void addBoth(myClass1, myClass2);

Can we write this line in the definition of the myClass1? We know that if we refer

some function as f(x) and the function f() is not defined or declared before this, the

compiler will give an error that function f() is not defined. So we at least declare the

function before main() so that compiler successfully compile the program. So there

was declaration of the function before its being called. Now same problem is in our

friend function prototype. We are referring both classes in it and our program does not

know anything about myClass2. We can tackle this problem by writing a line before

the definition of the class myClass1 as:

 class myClass2;

It will declare that myClass2 is a class having its definition somewhere else. It is the

same as we declare functions before main. After writing that statement, we can refer

myClass2 in our code. The definition of the class myClass1 will be as:

 class myClass1

{

 private:

 int topSecret;

 public:

 void display() { cout << "\nThe value of the topSecret is " <<

topSecret; }

 myClass1();

 friend void addBoth(myClass1, myClass2);

};

myClass1::myClass1()

{

 topSecret = 100;

}

The definition of myClass2 is also similar to myClass1.

 class myClass2

{

 private:

 int topSecret;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

350

 public:

 void display() { cout << "\nThe value of the topSecret is " <<

topSecret; }

 myClass2();

 friend void addBoth(myClass1, myClass2);

};

myClass2::myClass2()

{

 topSecret = 200;

}

You must have noted that we have used the topSecret data member in both the

classes. Is it legal? Yes it is. There is no problem as one topSecret is part of myClass1

and other is part of myClass2. Will there be same problem while declaring the friend

function in myClass2, i.e. myClass1 is not known? No. We have already defined the

myClass1. We have to declare a class only at a time when we are referring to it and it

is not defined yet.

In the main program, we will take the object of myClass1 i.e. myClass1 a; The object

will be created in the memory and constructor is called to initialize the data members.

The value of topSecret will be 100. In the next line, we will take the object of

myClass2 as myClass2 b; Now b is an object of class myClass2. The memory will be

reserved for it. It has its own data members and the value of topSecret will be 200,

initialized by the constructor. Now we will display the values of both data members,

using display() function.

Now we will call the addBoth(a, b); As this function is friend of both classes, so it

has access to both the classes and their private data members. The definition of

addBoth function will be as under:

 void addBoth(myClass1 a, myClass2 b)

 {

 cout << “\nThe value of topSecret in the myClass1 object is ”

<< a.topSecret;

 cout << “\nThe value of topSecret in the myClass2 object is ”

<< b.topSecret;

 cout << “\nThe sum of values of topSecret in myClass1 and

myClass2 is ” << a.topSecret + b.topSecret;

 }

This is an interesting function. Despite not being the member of any class, it can

access the data of both the classes. This function is friend of both the classes.

Here is the complete code of the program.

/*

A sample program showing the use of friend function,

which access the private data members of two classes.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

351

*/

#include <iostream.h>

class myClass2; // declaring the class for the friend function in myClass1

// definition of the myClass1

class myClass1

{

 // private data members. Hidden

 private:

 int topSecret;

 // interface of the class

 public:

 void display() { cout << "\nThe value of the topSecret is " << topSecret; }

 myClass1();

 // friend function

 friend void addBoth(myClass1, myClass2);

};

// definition of the constructor.

myClass1::myClass1()

{

 topSecret = 100;

}

// Definition of the myClass2

class myClass2

{

 // private data members. Hidden

 private:

 int topSecret;

 // interface of the class

 public:

 void display() { cout << "\nThe value of the topSecret is " << topSecret; }

 myClass2();

 // friend function

 friend void addBoth(myClass1, myClass2);

};

// definition of the constructor.

myClass2::myClass2()

{

 topSecret = 200;

}

// The definition of the friend function which is adding the topSecret data member of both

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

352

the classes.

void addBoth(myClass1 a, myClass2 b)

 {

 cout << "\nThe value of topSecret in the myClass1 object is " <<

a.topSecret;

 cout << "\nThe value of topSecret in the myClass2 object is " <<

b.topSecret;

 cout << "\nThe sum of values of topSecret in myClass1 and

myClass2 is " << a.topSecret + b.topSecret;

 }

// main program

main()

{

 // declaring the objects and displaying the values

 myClass1 a;

 myClass2 b;

 a.display();

 b.display();

 // calling friend function and passing the objects of both the classes

 addBoth(a, b);

}

The output of the program is;

The value of the topSecret is 100

The value of the topSecret is 200

The value of topSecret in the myClass1 object is 100

The value of topSecret in the myClass2 object is 200

The sum of values of topSecret in myClass1 and myClass2 is 300

The classes have defined and declared this function addBoth to be a friend. In each

class, we have declared it as a friend function. This function cannot declare itself a

friend function for these classes from outside. So be careful about this as a class

declares its friend functions. A function out side the class cannot declare itself a friend

of the class. The friend functions are not used very often.

Sample Program 3
Now we can expand our previous example. We can define functions subBoth,

mulBoth and divBoth as friend functions of the class, in addition of addBoth function.

These friend functions can manipulate the data members of the class.

Following is the code of the example that shows the usage of friend functions.

/* The following program demonstrate the declaration and uses of friend functions of

a class

We set values in the constructors of the classes. The program prompts the user to

enter a choice of addition, subtraction, multiplication or division. And then performs

the appropriate

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

353

operation by using the friend functions.

*/

#include <iostream.h>

#include <stdlib.h>

class myClass2; // declaration of the myClass2 for the friend functions

class myClass1

{

 private:

 float value ;

 public:

 myClass1 ()

 {

 value = 200 ;

 }

 // friend functions

 friend float addBoth (myClass1, myClass2) ;

 friend float subBoth (myClass1, myClass2) ;

 friend float mulBoth (myClass1, myClass2) ;

 friend float divBoth (myClass1, myClass2) ;

};

class myClass2

{

 private:

 float value ;

 public:

 myClass2 ()

 {

 value = 100 ;

 }

 // friend functions

 friend float addBoth (myClass1 , myClass2) ;

 friend float subBoth (myClass1 , myClass2) ;

 friend float mulBoth (myClass1 , myClass2) ;

 friend float divBoth (myClass1 , myClass2) ;

};

void main ()

{

 myClass1 myClass1Obj ; //create an object of class myClass1

 myClass2 myClass2Obj ; //create an object of class myClass2

 char choice;

 cout << "Please enter one of the operator +, -, /, * " << "followed by Enter " <<

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

354

endl;

 cin >> choice;

 if (choice == '+')

 {

 cout << "The sum is : " << addBoth(myClass1Obj , myClass2Obj) << endl;

 }

 else if (choice == '-')

 {

 cout << "The difference is : " << subBoth(myClass1Obj , myClass2Obj) <<

endl;

 }

 else if (choice == '*')

 {

 cout << "The multiplication is : " << mulBoth(myClass1Obj , myClass2Obj) <<

endl;

 }

 else if (choice == '/')

 {

 cout << "The division is : " << divBoth(myClass1Obj , myClass2Obj) << endl;

 }

 else

 {

 cout << "Enter a valid choice next time. The program is terminating" << endl;

 }

 system ("PAUSE") ;

}

float addBoth (myClass1 object1 , myClass2 object2)

{

 return (object1.value + object2.value) ;

}

float subBoth (myClass1 object1 , myClass2 object2)

{

 return (object1.value - object2.value) ;

}

float mulBoth (myClass1 object1 , myClass2 object2)

{

 return (object1.value * object2.value) ;

}

float divBoth (myClass1 object1 , myClass2 object2)

{

 return (object1.value / object2.value) ;

}

Following is the output of the program.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

355

Please enter one of the operator +, -, /, * followed by Enter

*

The multiplication is : 20000

Friend Classes
We have seen that a class can define friend functions for itself. Similarly a class can

be declared as a friend class of the other class. In that case, the function of a class gets

complete access to the data members and functions of the other class. So it is an

interesting expansion of the definition that not only the functions but also a class can

be a friend of the other class. The syntax of declaring a friend class is that within the

class definition, we write the keyword friend with the name of the class. It is going to

be a friend class. i.e. friend class-name;

We can also write the word class after the keyword friend and before the class name

as

 friend class class-name ;

Now let’s take another example of a class. Suppose, we have classes ClassOne and

OtherClass. We want to make OtherClass a friend class of the ClassOne. So we

declare OtherClass a friend class in the definition of the ClassOne as following.

 class ClassOne

 {

 friend OtherClass ;

 private:

 //here we write the data members of ClassOne

 };

The line

 friend OtherClass ;

can also be written as

 friend class OtherClass ;

The line friend OtherCalss; explains that OtherClass is a friend of ClassOne. If

OtherClass is the friend of ClassOne, all the functions of OtherClass will have access

to all the inside part of ClassOne.

The following code segment shows the declaration of friend class. It shows that

OtherClass is a friend of ClassOne so it has access to the private data of ClassOne.

class ClassOne

{

 friend class OtherClass;

 private:

 int topSecret;

};

class OtherClass

{

 public:

 void change(ClassOne co)

};

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

356

void OtherClass::change(ClassOne co)

{

 co.topSecret++; // Can access private data of class one

}

The friend keyword provides access in one direction only. This means that while

OtherClass is a friend of ClassOne, the reverse is not true. Here ClassOne declares

that OtherClass is my friend. But it does not work the other way. It does not mean

that ClassOne has access to the inside data members and methods of OtherClass.

Thus, it is a one way relationship i.e. the OtherClass can look into ClassOne, but

ClassOne cannot look inside OtherClass. If we want a two-way relationship,

OtherClass will have to declare ClassOne as a friend class, resulting in a complete

two-way relationship.

Like functions, a class cannot declare itself a friend of some other class. A class can

declare its friend classes in its declaration and cannot be a friend of other classes by

declaring itself their friend. In the above example, ClassOne declares that OtherClass

is my friend class. So otherClass can access all the data members and methods

(private, public or utility functions) of ClassOne. It does not (and cannot) declare that

I (ClassOne) am a friend class of OtherClass. So ClassOne has no access to private

data members and methods of OtherClass. It can access these only if OtherClass

declares ClassOne as its friend. This means that by using the keyword friend, a class

gives rights of accessing its data members and methods to other classes and does not

get the rights to access other classes.

By declaring friend functions and classes, we negate the concept of data hiding and

data encapsulation and show the internal structure of the class to the friends. But the

good thing in it is that a class declares its friends while the other functions or classes

cannot look inside the class. The disadvantage of friend classes is that if we declare

such a relationship of friendship for two classes, this will become a pair of classes. To

explain it we go back to the concept of separating the interface and implementation.

In case of change in the implementation of ClassOne, the private data structure will

also change. For example, at first we have an integer variable int i; and later, we need

two more variables and we write it as int j, k, l; As the implementation of ClassOne

has now changed, the functions of OtherClass that wanted to manipulate the members

of ClassOne will not work now. It is critically important that friend classes should be

declared very carefully. When is it necessary? This can be understood by an example

from mathematics. We have straight line in math. The equation of straight line is: y =

mx + c. Here m is the slope of line i.e. the angle which the line makes with x-axis.

And c is the intercept at y-axis. So if we have to define a straight line, there is need of

two numbers i.e. m and c. Now if we have to define a class StraightLine, the private

data of it will be double m, c; or let’s use the names which are self explanatory like

double slope, intercept; And then in the class, there will be the methods of the class.

We can write it as

 calss StraightLine

 {

 //some methods

 private:

 double slope, intercept ;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

357

 };

Now we can also have another class quadratic that also belongs to mathematics.

Suppose, we have a parabola, the equation of which is y= ax
2
 + bx + c. Where a, b

and c, for the time being, are real constants. To define this quadratic equation as class,

we have to define the three coefficients a, b and c. The statement will be as under:

 class Quadratic

 {

 //some methods

 private:

 double a, b, c ;

 };

Now we have two classes i.e. StraightLine and Quadratic. In a mathematical problem,

when we have given a parabola (a quadratic equation) and a straight line (straight line

equation) and are asked to find the point at which the straight line intersects the

parabola. To solve it, we setup equations and solve them simultaneously and find out

the result, which may be in three forms. Firstly, there is the line that does not intersect

the parabola. The second is that it intersects the parabola at one point (i.e. it is a

tangential line) and third may be that the line intersects the parabola at two points.

When we setup these equations, we come to know that here the constants m, c(of

straight line), a, b and c of quadratic equation are being used. So from a programming

perspective if we had an object l1 of type StraighLine and an object q1 of type

quadratic. And wanted to find the intersection of l1 with q1. Now here is a situation

where we need either a friend function of both classes, so that it can manipulate the

data of both classes, or need to declare both classes as friend classes of each other and

then write their methods to find the intersection. Similarly we can have many other

examples in which a class may need to look into the other class. But it is not some

thing to be done all the time. It should be done only when necessary. Use of friend

functions is normally a better idea. Using friend classes means that both the classes

are linked with each other. If the code in any one of the class is modified i.e. its

implementation is changed, we have to recompile both the classes. Due to change in

one class, the other class also needs to be changed, necessitating the compilation of

both the classes.

So we have lost the principle of separating the interface from the implementation.

Now let’s talk about the limitations of this friendship business. Firstly, there is no

transitive dependency in friend declarations. Suppose I say student A is my friend and

being a friend he knows my thoughts and ideas. Now the student A says ”student B is

my friend” i.e. student B knows thoughts and ideas of student A. Does it mean that

student B is also my friend? Does student B knows my thoughts and ideas? The

answer is no. As I have not declared student B a friend of mine, so he (student B) does

not know about my thoughts and ideas. The same applies to the friend definition for

classes. The friendship is not transitive. It is not like ‘A is a friend of B and B is a

friend of C, therefore A is a friend of C‘. It does not work. A has to specifically

declare ‘B is my friend and C is my friend’ to make B and C friends of him. There is

no transitive dependency in friend declarations.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

358

Secondly, I can declare you to be my friend. This means I have unveiled my thoughts

and ideas to you. But I cannot get your thoughts and ideas unless you declare me a

friend of yours. So there is no association, which means A saying B is my friend does

not imply in any way that A is a friend of B. Here B is a friend of A. But B has to

declare ‘A’ its friend. Thus the friend keyword produces one-way relationship.

Summary

The concept of classes allows us to separate implementation from interface.

A class is a user defined data type. In a class, we declare private data members and

utility functions so that they cannot be access from outside. Similarly, we declare

some parts of the class public that become the interface for the class and can be

accessed from the outside. These interface methods or public methods can manipulate

the data of the class. This is the encapsulation and data hiding.

We have the concept of friend functions. By declaring an external function as a friend

function, that function gets the complete access to the inner structure of the class

including all private data. When classes need to be interactive, these must be declared

friends of each other. Thus we have the concept of friend classes. The use of friend

function and class is a useful feature that sometimes we need to use. But we should

use it very sparingly and carefully as it basically negates the concepts of

encapsulation and data hiding.

The principles of friendship of functions and classes are that the friendship is granted,

not taken. So a class declares its friend functions and friend classes. If a class

declares another class as a friend, it is not always reciprocal. So declaration and

granting of a right is one way. The owner of the right grants it. So the class itself

grants the privilege of access to outsider functions or to other classes. It is not

transitive. It does not go ‘A is a friend of B and B is a friend of C therefore A is a

friend of C’. It does not work that way. It is restricted to a one-step relationship. If A

is a friend of B, and B is a friend of C. If A wants C to be a friend, it has to declare,

“C is my friend”.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

359

Lecture No. 30

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 3

 3.17

Summary

13) Reference data type

14) Example 1

15) Difference Between References and Pointers

16) Dangling References

17) Example 2

Reference data type

Out today’s topic is about references. This is a very important topic from the C++

prospective. Today we will see what is a reference, how can we use them. C++

defines a thing by which we can create an alias or synonym of any data type. That

synonym is called reference. How do we declare a reference? We declare it by using

& operator. Now it is little bit confusing. We have used & as address-of operator and

here we are using it for referencing. We will write as

 int &i;

It means that i is a reference to an integer. Keep that statement very clear in your

mind. It is easier to read from right to left. A reference is a synonym. If we want to

give two names to same thing then we use reference. Reference has to be initialized

when it is declared. Suppose if we have an integer as i and we want to give it second

name. We will reference it with j as:

 int &j = i;

We declared an integer reference and initialized it. Now j is another name for i. Does

it mean that it creates a new variable? No, its not creating a new variable. Its just a

new name for the variable which already exists. So if we try to manipulate i and j

individually, we will came to know that we have been manipulating the same number.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

360

Lets take a look at a very simple example. In the main function we take an int variable

i and then we write int &j = i; Now we assign some value (say 123) to i. Now display

the value of i using cout. It will show its value as 123. Display the value of j using

cout. We will not use & operator to display the value of j. We will only use it at the

time of declaration and later we don’t need it. The & is not reference operator rather it

acts as reference declarator. The value of j will be same as of i i.e. 123.

 int i;

 int &j = i;

 i = 123;

 cout << “\n The value of i = “ << i;

 cout << “\n The value of j = “ << j;

Now what will happen if we increment i as i++; and print the values of i and j. You

will note that the value of i and j both have been incremented. We have only

incremented i but j is automatically incremented. The reason is that both are referring

to the same location in the memory. j is just another name for i.

What is the benefit of reference and where can we use it? References are synonyms

and they are not restricted to int’s, we can have reference of any data type. We can

also take reference of a class. We wrote a function to show the use of pointers. That

function is used to interchange two numbers. If we have two integers x and y. We

want that x should contain the value of y and y should get the value of x. One way of

doing this is in the main program i.e.

 int x = 10;

 int y = 20;

 int tmp;

 tmp = y;

 y = x;

 x = tmp;

The values of both x and y have been interchanged. We can also swap two numbers

using a function. Suppose we have a swap function as swap(int x, int y) and we write

the above code in it, what will happen? Nothing will be changed in the calling

program. The reason is call by value. So when the main function calls the function

swap(x, y). The values of x and y will be passed to the swap function. The swap

function will get the copies of these variables. The changes made by the swap

function have no effect on the original variables. Swap function does interchange the

values but that change was local to the swap function. It did not effect anything in the

main program. The values of x and y in the main program remains same.

We said that to execute actual swap function we have to call the function by

reference. How we did that. We did not send x and y rather we sent the addresses of x

and y. We used address operator to get the addresses. In the main function we call

swap function as swap(&x, &y); In this case we passed the addresses of two integers.

The prototype of the swap function is swap(int*, int*) which means that swap

function is expecting pointers of two integers. Then we swap the values of i and j

using the * notations. It works and in the main program, the values are interchanged.

This was a clumsy way. We can use reference in this case with lot of ease. Let us see

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

361

how we can do that. Lets rewrite the swap function using references. The prototype

will be as:

 swap (int &i, int &j);

Swap is a function that is expecting i as a reference to an integer and the second

argument is j which is also a reference to an integer. The calling function has to pass

references. What will we write in the body of the function? Here comes the elegance

of the references. In the body we will treat i and j as they are ordinary integers. We

will take a temporary integer and interchange the values of i and j.

 swap (int &i, int &j)

 {

 int temp;

 temp = x;

 x = y;

 y = temp;

 }

In the main program, you will see that the values of two integers have been

interchange. What is the way to call this function? In the main program, we will call

this function as swap(x, y). Its an ordinary call but the function is expecting addresses

which is automatically done. The memory locations of the integers are passed and the

function is interchanging the original numbers. This is one beautiful example in which

we avoided all the cumbersome of pointer notation. What is the downfall of this? As

nothing comes for free. In this case when you are reading the main function you will

see swap (x, y) which seems a call by value. This is a rule of C/C++ that when we

pass two variables to some function they are passed by values. You will have to look

for the definition of swap function to realize that it is not call by value but is call by

reference. Second thing is if we have another swap function, which is receiving two

integers. Can we define two functions as swap(int x, int y) and swap(int &x, int &y)?

One function is receiving two integers and other is receiving two references of

integers. Can we do that? Types are different so we can overload. Unfortunately not,

in the main function the way to call both functions is same i.e. swap(x, y). How does

the compiler know that which functions is being called? There is no way for the

compiler to find out. Therefore there is an ambiguity and that is not allowed. The only

thing to realize is the side effect. Side effects are critical to take care of whenever you

are doing call by reference. Here in this example we do want that two numbers should

be interchanged. There may be some situation where we want to send the references

and don’t want that original data should be affected. These situations arise when we

want to pass a large data structure to a function. To understand this we have to

understand how the function call executes. We have discussed it before, now lets

recap it. In real world, suppose I am reading a book. While reading I notice a word

which I think I have to look up. I stop reading, markup the page and then look that

word in dictionary or encyclopedia. While reading the definition of that word I look

another special word which I need to lookup. I put a marker here and go for looking

the definition of that new word. Eventually I understand all the words I need to look

up. Now I want to go to the point at which I left the study. I close the dictionary or

encyclopedia and goes back to the original book which I was studying. Now I

understand all the words in my study and continue the study from the point where I

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

362

left. If we think about it, it was a function call. We were doing some work, suddenly

we call a function and stop that work and execution went to the function. When the

execution of the function came to end, we came back to our calling function and

continued with it. Computers do the same work with stack. So when the program

comes back from the function it should know the point at which it lefts. We supposed

here a word to look up, now consider that it was a paragraph or essay I am going to

look up. Now to lookup that essay in other books I have to take the entire paragraph

or essay with me to that book. Think about the stack. On the stack, the original

condition of the program (state) has saved. Now we put our essay or paragraph on it

and then opened the other book and searched the book for this essay. In this way, we

want to explain that the thing we passed to the function from the main was itself a

huge/large thing (as we resemble it with paragraph or essay). So there was a big

overhead in writing that thing out into a temporary space in memory and then picking

it up and looking it up.

We can make this process more efficient. The issue is that in this example we do not

want to change the paragraph or essay which we are going to look up. We only want

to look it up. We want only to use it but don’t want to change its words. Unfortunately

the baggage that comes with doing this is that first make a copy of this (essay) then go

with this copy and when the work with it ends, leave (through away) the copy and

start the original work. This is inefficient.

But if we took the reference of that essay and passed the address of it and went to the

function to look it up. There is a danger that comes with the address, that is while

looking up that essay I underlined different words and when I came back to original

book I saw that these line marks were also there. Thus we passed something by value

rather we passed something by reference. By passing the reference, we actually pass

the original. Think about it in another way. We go to a library and said the librarian to

issue us a book, which we want to take home for study. Suppose, that book is the only

one copy available in the library (or in the world). The librarian will not issue the

book. Because it is the only copy available in the world. He does not want to issue

this original book to someone as someone can marks different lines with a pen and

thus can damage the original book. The librarian will do that he will take a photocopy

of that book and issue it. Making a photocopy of the book and then take the book is a

bothersome work.

Here we don’t want to damage the book. We just want to read it. But can I somehow

take the original book? Put it in a special polythene bag and give it to you in such a

way that you can read it without damaging it. By doing this we get efficiency but

danger is still there. This is actually a call by reference. We have the reference (the

original book). If we do something to the original book, the library book will be

damaged. Can we somehow prevent this from happening? And also have the

efficiency of not having to make a copy.

Now come back to the computer world. Suppose we have a data structure. There is a

string of 1000 characters in it. We want to pass that data structure to a function. If we

pass it by value which is sake, the original structure will not be affected. We first will

copy that string of 1000 characters at some place, which is normally made on the

stack. Then the function will be called. The function will take the copy of these 1000

characters and will manipulate it. Then it will give the control back to the caller

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

363

program and will destroy that copy of string. For efficiency, we want that instead of

making a copy of this string, its reference should be written. We have been doing this

with pointers and addresses. So we write there the address and pass it to the function.

How we can prevent the side effects? There may be these side effects with references.

So be very careful while using references with function calls.

Can we do something to prevent any changes? The way we do it is by using the const

key word. When we write the const key word with the reference, it means that it is a

reference to some thing but we cannot change it. Now we have an elegant mechanism.

We can get the efficiency of call by reference instead of placing a string of 1000

characters on the stack, we just put the address of the string i.e. reference on the stack.

In the prototype of the function, it is mentioned that it takes a const. This is a

reference that may be to a char, int, double or whatever but it is a const. The function

cannot change it. The function gets the address, does its work with it but cannot

change the original value. Thus, we can have an efficiency of a call by reference and a

safety of a call by value. To implement all this we could have used the key word const

with an address operator or a pointer but we can use a reference that is an elegant

way. There is no need in the function to dereference a reference by using * etc, they

are used as ordinary variable names.

Example 1

Now let us have an example. Here we defined a structure bigone that has a string of

1000 characters. Now we want to call a function by three different ways to manipulate

this string. The first way is the call by value, which is a default mechanism, second is

the call by reference using pointers and the third way is call by reference using

reference variables. We declared the prototypes of these functions. Here we declared

three functions. The first function is valfunc which uses a call by value. We simply

wrote the value of the structure. The function prototype is as under.

 void valfunc(bigone v1);

The second function is ptrfunc in which we used call by reference using pointers. We

passed a pointer to the structure to this function. The prototype of it is as follows.

 void ptrfunc(const bigone *p1);

The third function is reffunc which uses the way of calling by reference using

references. We wrote its prototype as

 void reffunc(const bigone &r1);

Note that we wrote & sign with the name of the variable in the prototype of the

function, we will not write it in the call of the function.

In the main program, we called these function. The call to the valfunc is a simple one

we just passed the name of the object of the structure i.e. v1. As the function is called

by using the call by value the manipulation in the function will not affect the original

value. We wrote it as:

 valfunc (bo);

In this call a copy of bo is placed on the stack and the function uses that copy.

Next we called the function ptrfunc. We passed the address of the structure to ptrfunc

by using the & operator. Here we are talking about the function call (not function

prototype) and in function call we write ptrfunc (&bo) ; which means we passed the

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

364

address of bo (the object of structure) to the function. The efficiency here is that it

writes only the address of the object to the stack instead of writing the whole object.

The call to the third function reffunc is simple and looks like the call by value. There

is no operator used in this call it is simply written as:

 reffunc (bo) ;

Here we cannot overload the valfunc and reffunc, their names must be different.

Otherwise the calls look same and become ambiguous.

The pointer call and reference call are sending the references to the original structures

so these are dangerous. If we want to prevent the function from changing that then we

should define the function by const keyword with its argument pointer or reference.

Then the function can not modify the original value, it can only read it. So by this we

get the efficiency of the call by reference and the safety of the call by value.

The complete code of the example is given here.

// Reference parameters for reducing overhead

// and eliminating pointer notation

#include <iostream.h>

// A big structure

struct bigone

{

 int serno;

 char text[1000]; // A lot of chars

} bo = {123, "This is a BIG structure"};

// Three functions that have the structure as a parameter

void valfunc(bigone v1); // Call by value

void ptrfunc(const bigone *p1); // Call by pointer

void reffunc(const bigone &r1); // Call by reference

// main program

{

 valfunc(bo); // Passing the variable itself

 ptrfunc(&bo); // Passing the address of the variable

 reffunc(bo); // Passing a reference to the variable

 }

//Function definitions

// Pass by value

void valfunc(bigone v1)

{

 cout << '\n' << v1.serno;

 cout << '\n' << v1.text;

}

// Pass by pointer

void ptrfunc(const bigone *p1)

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

365

{

 cout << '\n' << p1->serno; // Pointer notation

 cout << '\n' << p1->text;

}

// Pass by reference

void reffunc(const bigone &r1)

{

 cout << '\n' << r1.serno; // Reference notation

 cout << '\n' << r1.text;

}

Following is the output of the above program.

123

This is a BIG structure

123

This is a BIG structure

123

This is a BIG structure

Difference Between References and Pointers

The reference in a way keeps the address of the data entity. But it is not really an

address it is a synonym, it is a different name for the entity. We have to initialize the

reference when we declare it. It has to point to some existing data type or data value.

In other words, a reference cannot be NULL. So immediately, when we define a

reference, we have to declare it. This rule does not apply to functions. When we are

writing the argument list of a function and say that it will get a reference argument,

here it is not needed to initialize the reference. This reference will be passed by the

calling function. But in the main program if we declare a reference then we have to

initialize it. When a reference is initialized, we cannot reassign any other value to it.

For example, we have ref that is a reference to an integer. In the program we write the

line int &ref = j ;

Here j is an integer which has already been declared. So we have declared a reference

and initialized it immediately. Suppose we have an other integer k. We cannot write in

the program ahead as ref = k; Once a reference has defined, it always will refer to the

same integer location as j. So it will always be pointing to the same memory location.

We can prove this by printing out the address of the integer variable and the address

of the reference that points to it.

In programming, normally we do not have a need to create a reference variable to

point to another data member or data variable that exists, because creating synonym

that means two names for the same thing, in a way is confusing. We don’t want that

somewhere in the program we are using i (actual name of variable) and somewhere

ref (reference variable) for manipulating the same data variable. The main usage of it

is to implement the call by reference through an elegant and clean interface. So

reference variables are mostly used in function calls.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

366

The difference between pointers and references is that we can do arithmetic with

pointers. We can increment, decrement and reassign a pointer. This cannot be done

with references. We cannot increment, decrement or reassign references.

References as Return Values

A function itself can return a reference. The syntax of declaration of such a function

will be as under.

 datatype& function_name (parameter list)

Suppose we have a function myfunc that returns the reference to an integer. The

declaration of it will be as:

 int & myfunc() ;

Dangling Reference

The functions that return reference have danger with it. The danger is that when we

return a value from such a function, that value will be reference to some memory

location. Suppose that memory location was a local variable in the function which

means we declare a variable like int x; in the function and then returns its reference.

Now when the function returns, x dies (i.e. goes out of scope). It does not exist outside

the function. But we have sent the reference of that dead variable to the calling

function. In other words, the calling program now has a reference variable that points

to nowhere, as the thing (data variable) to which it points does not exist. This is called

a dangling reference. So be careful while using a function that returns a reference. To

prevent dangling reference the functions returning reference should be used with

global variables. The function will return a reference to the global variable that exists

throughout the program and thus there will be no danger of dangling reference. It can

be used with static variables too. Once the static variables are created, they exist for

the life of the program. They do not die. So returning their reference is all right.

So, never return a reference to a local variable otherwise, there will be a dangling

reference. Some compilers will catch it but the most will not. The reason is that the

function that is returning a reference has defined separately. It does not know whether

the reference is to a global or local variable, because we can do many manipulations

in it and then return it. But normally compilers will catch this type of error.

Example 2

Let us look at an example of functions returning references. First, we declare a global

variable that is an integer called myNum and say it is zero. Then we declare a function

num that returns a reference to an integer. This function returns myNum, the global

variable, in the form of reference. So now when there will be a function call, the

return of the function will be a reference to the global variable called myNum. Now

we can write the main function. Here we write myNum = 100 ; This assigns a value

100 to the global variable. Next we write

 int i ;

 i = num () ;

Now a reference to myNum is returned. We would want to assign a reference to a

reference but we can use it as an ordinary variable. Thus that value is assigned to i.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

367

Now look at the next line which says num () = 200 ; We know that the left hand side

of the assignment operator can only be a simple variable name, what we called l-value

(left hand side value). It cannot be an expression, or a function call. But here in our

program the function call is on left hand side of the assignment. Is it valid? In this

case it is valid, because this function called num is returning a reference to a global

variable. If it returns a reference, it means it is a synonym. It is like writing myNum =

200 ; The example shows that it can be done but it is confusing and is a bad idea. We

can put a reference returning function on the left hand side of an assignment statement

but it is confusing and bad idea.

Following is the code of the example.

/*Besides passing parameters to a function, references can also be used to return

values from a function */

#include <iostream.h>

int myNum = 0; // Global variable

int& num()

{

 return myNum;

}

main()

{

 int i;

 i = num();

 cout << " The value of i = " << i << endl;

 cout << " The value of myNum = " << myNum << endl;

 num() = 200; // mynum set to 200

 cout << " After assignment the value of myNum = " << myNum << endl;

}

Following is the output of the program.

The value of myNum = 0

 After assignment the value of myNum = 200

The references are useful in implementing a call by reference in an efficient fashion

and writing the function very elegantly without using dereference operators.

We use & sign for declaring a reference. In the program code, how do we find out that

it is a reference or an address is being taken? The simple rule is that if in the

declaration line there is reference symbol (& sign) with the variable name then that is

a reference declaration. These will be like int &i, float &f and char &c etc. In the code

whenever we have simply &i, it means we are taking address. So it’s a simple rule

that when, in the code, we see a data type followed by & sign, it’s a reference. And

when the & sign is being used in the code with a variable name then it is the address

of the variable.

In C and C++ every statement itself returns a value. It means a statement itself is a

value. Normally the value is the value of left hand side. So when we write a = b; the

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

368

value of b is assigned to a and the value of a becomes the value of the entire

statement. Therefore when we write a = b = c ; first b = c executes and the value of c

is assigned to b. Since b = c is a statement and this statement has the value of b. Now

a takes the value of this statement (which happened to be b). So a = b also works.

Similarly a + b + c also works in the same way that the value of c is added to b and

then this result is added to a.

What happens when we write cout << “The value of integer is ” << i << endl ;

Here first extreme right part will be executed and then the next one and so on or the

other way. On the screen the “The value of integer is“ displayed first and then the

value of the i and in the end new line. So it is moving from left to right. When cout

gets the first part i.e. “The value of integer is”, this is a C statement. When this will be

executed, the sentence “The value of integer is” is displayed on the screen. But what

will be its value? That has to do something with the next << part and is needed with

this << sign. We know that we need cout on the left side of << sign. So actually what

happened is when the first part of the statement is executed. When the statement cout

<< “ The value of integer is” executed cout is returned. The next part is << i and it

becomes cout << i; the value of i is printed and as a result of the statement cout is

returned again which encounters with << endl; and a new line is inserted on the

screen and cout is returned as a result of the statement execution. The return of the

complete statement remains cout. The cout is stream, it does not have value per se.

The reference to the stream is returned. The same reference which we have discussed

today. The same thing applies to operators like +, -, *, /. This will also apply to =

(assignment operator) and so on. We will be using lot of reference variables there.

Summary
We have learned a new data type i.e. reference data type. We said that reference is

synonym or alias for another type of data. Take int’s synonym or double’s synonym.

In other words, it’s the second name of a variable. Then we talk about some do’s and

dont’s. Normally we do not use two names for the same variable. It’s a bad idea and

leads to confusing the programmer. Then we found the most useful part of using a

reference. If we have to implement call by reference with function then using the

prototype of the function which is expecting references and it leads to clean

programming. You use the names of the arguments without using any dereferencing

operator like *. The most useful part is implementing the call by reference. Then we

looked at the difference of pointers and references. We cannot increment the reference

variable. Arithmetic is not allowed with references but most importantly, reference

variables must be initialized when they are declared. This is import. We can declare

pointers and later can assign it some value. The use of reference with classes will be

covered later. We have also seen a preview of the usage of references. In that preview

we have learned new things that every statement itself has some value and that value

is returned. Use it or not it’s a different issue. We call a function on a single line like

f(x); may be f(x) returns some value and we did not use it. Not a problem. Similarly if

we say a = b; this statement itself have some value whether we use it or not. Then we

see how the cout statement is executed. Every part of the statement returns some

value which is the reference to cout itself. It becomes the reference to the stream.

How these references will be declared and used? We will cover this with operator

overloading. Try to write some programs using references and implement call by

reference using references instead of pointers.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

369

Tips

 The use of reference data type is the implementation of call by reference in an

elegant way.

 We cannot do arithmetic with references like pointers.

 Reference variables must be initialized immediately when they are declared.

 To avoid dangling reference, don’t return the reference of a local variable

from a function.

 In functions that return reference, use global or static variables.

 The reference data types are used as ordinary variables without any

dereference operator.

Lecture No. 31

Reading Material

Deitel & Deitel - C++ How to Program Chapter 8

 8.2, 8.3, 8.4, 8.6, 8.7

Summary

 Lecture Overview

 What is Operator Overloading and Why is it Required

 Where is it Relevant to Apply

 Operators to Overload

 Restrictions on Operator Overloading

 Examples of Operator Overloading

 Non-member Operator Functions

 Example Program 1

 Example Program 2

 Tips

Lecture Overview

The topic of this lecture is Operator Overloading. In previous lectures, we discussed

about it a bit while discussing about references. So we will see in detail what is

operator overloading, how to overload operators, where it is relevant to apply and

what are the restrictions on it.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

370

What is Operator Overloading and Why is it Required?

Operator overloading is to allow the same operator to be bound to more than one

implementation, depending on the types of the operands.

As you know that there are standard arithmetic operators in C/C++ for addition (+),

subtraction (-), multiplication (*) and division (/). We should only use these

operators for their specific purposes. If we want to add two ints, say i and j, the

addition will take place in the following manner i.e. i + j. To add two double

numbers, we use the same operator and write d1 + d2. We may add two floats with

the help of the same operator as f1 + f2. Similarly other operations of -, * and / on the

primitive types (sometimes called as native or built-in types) can be employed. In

other words, these operators are already overloaded for primitive types in C++. But

these C++ operators cannot be used for classes and their objects. We have to write our

own operator functions that can work with objects.

Let’s take an example of complex numbers. There are two parts of a complex number

i.e. real and imaginary. As complex numbers are part of mathematical vocabulary, so

the mathematical manipulations are done on them like addition, subtraction and

multiplication. Suppose, we write our own class for complex numbers named

Complex, but we can’t add two complex numbers c1 and c2 as c1 + c2 because until

now we don’t know how to write it. Although, we are able to write a function say

cadd() to serve this purpose.

 Complex cadd (Complex c1, Complex c2) ;

It accepts two complex numbers as parameters and returns back the resultant complex

number. But the usage of this function to add two complex numbers is generally

clumsy. It gets more cumbersome and complex if we want to carry out cascading

operations like

i + j + k. It is better to use the standard operators of +, -, * and / as they are more

readable and elegant.

Where is it Relevant to Apply?

Firstly, the operator overloading gets relevant whenever there is the application of the

mathematical functions of addition, subtraction, multiplication and division. Complex

number is one example of it. As discussed earlier, in case of Date class, the operators

can be effectively used to get the future or past dates.

Secondly, the operators are also used sometimes in case of non-mathematical

manipulation. The example of String class to manipulate strings help us understand it

in a better way. The operator + can be used to concatenate two strings. Previously, we

used strcat() function declared inside string.h header file to concatenate two strings.

As compared to strcat(), the use of + to concatenate two strings is definitely easier

and more readable. But there is a little bit cost associated with this process of

operators overloading.

The cost is involved whenever we overload an operator. We have to write a function

and make use of the operator semantics correctly while implementing the function.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

371

This means that the function written to overload + operator should do addition or

concatenation of strings in case of String objects.

Operators to Overload

 There are two types of operators to overload:

1. Unary

2. Binary

Unary operators are the ones that require only one operator to work. Unary operators

are applied to the left of the operand. For example, ^, &, ~ and !.

Binary operators require two operands on both sides of the operator. +, -, *, /, %, =,

< and > are examples of binary operators.

The complete list of C++ operators that can be overloaded is as follows:

+ - * / % ^ &

| ~ ! = < > +=

-= *= /= %= ^= &= |=

<< >> >>= <<= == != <=

>= && | | ++ - - -> * ,

[] () new new[] delete delete[]

The following operators can’t be overloaded.

. : :: .* ? sizeof

Let’s start with operator overloading mechanism. Consider an object date of the Date

class. The data member day can be accessed as follows:

date.day = 2;

In this statement, the day data member of the date object is accessed and assigned

value 2. This expression (date.day) is driven by the object name at left.

Similarly, while using operators, the statement like a + b is driven by the object at the

left. In this case, + operator function for the object a will be called and b object is

passed explicitly to the + operator function as an argument. The rules of function

overloading are applied to the operator overloading. We cannot write two + operator

functions with exactly identical parameters. Following the overloading rules, the two

operator functions have to be different by the type or number of arguments.

The syntax of the prototype of the overloaded operator function is:

return-type operator operator-symbol (parameter-list);

operator is the keyword here. An example of this will be as follows:

Complex operator + (Complex &);

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

372

We sometimes write only operator to refer to the operator function in our discussion.

Restrictions on Operator Overloading

There are some restrictions on operator overloading.

- The operator overloading functions for overloading (), [], -> or the assignment (=)

Operators must be declared as class members.

- The arity (number of operands) cannot be changed. If you are overloading an

operator that requires two operands e.g. *. It cannot be used as a unary operator

that requires one operand.

- No new operators can be created. Like in Fortran language, we have ** as ‘raise

to the power (exponent) operator’ but this operator does not exist in C++.

Therefore, it can’t be overloaded. Hence, only existing operators of C++ are used.

- Overloading can’t be performed for the built-in (sometimes called primitive or

native) data types. For example, we cannot change how two ints are added. That

means that operators are overloaded to use with defined data types like classes.

- Precedence of an operator cannot be changed. For example, the * has higher

precedence than +. This precedence cannot be changed.

- Associativity of an operator cannot be changed. If some operator is right

associative, it cannot be changed to be left associative.

Examples of Operator Overloading

Let’s take the complex number’s class Complex and define a + operator function.

We know that when we write the following line:

 x = y + z ;

y and z operands are take part in the addition operation but there is no change in them

due to this operation. This is the + operator’s functionality. The resultant is being

assigned to the variable x. This is assignment operator’s functionality.

Now we will discuss a little bit about the assignment operator as well. Let’s say we

write the following statement for two complex numbers c1 and c2.

 c1 = c2 ;

Here c2 is being assigned to c1. Will this assignment work when we have not written

any assignment operator function for complex number? Apparently, it looks that the

statement will produce a compilation error (as there is assignment operator defined by

us) but this is not true. Whenever, we write our own class and compile it, the compiler

automatically generates a default assignment operator. The default assignment

operator makes a member to member assignment. This works fine unless there is a

pointer data member inside our class and that pointer is pointing to some data inside

memory. For that case (when there is a pointer data member) we have to write our

own assignment operator otherwise the default assignment operator works fine for us.

That will be discussed in the subsequent lectures.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

373

By definition of addition of complex numbers, we know that whenever two complex

numbers are added, the real part of one number is added into the real part of other

number. Similarly, the imaginary part of one number is added to the imaginary part of

the other number. We also know that when a complex number is added to another

complex number, the resultant is also a complex number consisting of real and

imaginary parts. This addition of real, imaginary parts and return of resultant complex

number is the functionality of the + operator function we are going to write.

Another thing to decide for this + operator is whether this operator will be a member

operator or a friend operator. Normally, operators are member operators but there are

situations when they cannot be member operators. In case of member operator,

following is the syntax of its prototype:

 Complex operator + (parameter-list);

For member operator, the object on the left side of the + operator is driving this +

operation. Therefore, the driving object on the left is available by this pointer to +

operator function. But the object on the right is passed explicitly to the + operator as

an argument.

We can define a member operator as under:

1. Complex Complex :: operator + (Complex c)

2. {

3. Complex temp ;

4. temp.real = real + c.real ;

5. temp.imag = imag + c.imag ;

6. return temp ;

7. }

Let’s see this code line by line.

Line 1 indicates that the return type is Complex, it is an operator + function and it is

accepting a Complex object by value as an argument.

In line 3, a local Complex object is declared, called temp.

In line 4, real part of the calling object (that is the one, driving) on the left of the +

operator is being added to the real part of the object c, where c is passed as an

argument.

In line 5, imag part of the calling object (that is the one, driving) on the left of the +

operator is being added to the imag part of the object c, where c is passed as an

argument.

In line 6, the Complex object temp containing the resultant of + operation is being

returned by value.

In our code, we can write something as:

 Complex c1, c2, c3 ;

 . . .

 . . .

 c3 = c1 + c2 ;

In the above statement (c3 = c1 + c2;), c1 is the object that is calling or driving

the + operator. c2 object is being passed as an argument to the + operator. So c1 and

c2 objects are added by the + operator and resultant Complex object containing the

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

374

addition of these two numbers is returned back. That returned Complex object is

assigned to the c3 Complex object using the default assignment operator (that is

created by the C++ compiler automatically).

What happens if we want to add a double number to a complex number (a instance of

Complex)? Like the following:

 c3 = c1 + d ;

This + operation is driven by the c1 object of Complex while double number d of

type double is passed as argument. Therefore, our above written + operator is not

useable for this operation of addition. We need to overload + operator for accepting a

parameter of type double, i.e. we need to write another operator function. The

definition of this newly overloaded + operator is:

 Complex Complex :: operator + (double d)

 {

 Complex temp ;

 temp.real = real + d ; // d is added into the real part

 temp.imag = imag ;

 return temp ;

 }

By now, you should have noticed that operator overloading and function overloading

are quite similar.

When we write the following statement:

 c3 = d + c1;

The operand on the left of + operator is a double number d. Therefore, this +

operation should be driven by (called by) the double number. Until now, we have not

written such an operator. Our previously written two + operators were driven by the

Complex object. Operator functions, not driven by the class type objects, are kept as

friends to the class. friend is the keyword used to declare such functions. A friend

function to a class also has access to the private members of that class.

 friend Complex operator + (double d, Complex c)

 {

 Complex temp;

 temp.real = d + c.real; // d is added into the real part of c

 temp.imag = c.imag;

 return temp;

 }

You might have noticed that all the three overloaded + operator functions are

accepting and returning variables by value. To make these functions better, we can

also use references. So our first member + operator’s prototype can be rewritten as:

 Complex& operator + (Complex& c);

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

375

Now this operator function is accepting a complex number Complex by reference and

returning a reference to the resultant complex number.

As discussed above, in case of assignment, the default assignment operator is used

because we have not implemented (overloaded) our own assignment operator (‘=’).

But in case, we want to perform the following operation where the two operands are

added and the resultant is assigned to one of them as:

c1 = c1 + c2;

There is one operator (+=) that can be used to do both the operations of addition and

assignment instead of doing these operations separately within operator + and

operator =. So we can overload this one operator (+=) here to make the code more

efficient and reduce our work. Therefore, instead of writing:

c1 = c1 + c2;

We will write:

 c1 += c2;

We will write our operator += as:

 void Complex :: operator += (Complex& c)

 {

 real += c.real;

 imag += c.imag;

 }

Non-member Operator Functions

Now we are much clear that when an operator function is implemented as a member

function, the leftmost operator must be a class object or reference to a class object of

the operator’s class.

When an operator function is implemented as a non-member function, the left-most

operand may be an object of the operator’s class, an object of a different class, or a

built-in type. Now we discuss it in a detailed manner.

We can always write our operators as non-member functions. As a non-member

functions, the binary operators like + gets both the operands as arguments. One thing

to take care of while writing non-member functions that they cannot access the private

members of classes. Actually, this is just to this reason that we make those non-

member functions as friends to the classes whose private data members are required

to be accessed. But the question arises, can we write a non-member operator function

without making it a friend of a class. The answer to this question is yes; If there are

public member functions to access the private data members of the class then they

serve the purpose. In this case of Complex class, let’s say we have two public

member functions:

double real();

double imaginary();

to access the private data members real and imag respectively. Then we can write

non-member operator + function as:

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

376

 Complex operator + (Complex& c1, Complex& c2)

 {

 Complex temp;

 temp.real (c1.real() + c2.real());

 temp.imaginary (c1.imaginary() + c2.imaginary());

 return temp;

 }

But this non-member operation functions without declaring a friend of the class is

definitely slower than the member function or a friend one. The reason for this is

obvious from the code that it is making three additional function calls of real() and

imaginary() for each private data member. Also it is not easy to write as compared to

member functions. Therefore, it is recommended to write the member functions for

operators instead of non-members.

Let’s take an example where the operators are performing a non-arithmetical

operation. We are writing a class String for strings manipulation as:

class String

{

 private :

 char string [30] ;

 public :

 String ()

 {

 strcpy (string , "") ;

 }

 void getString ()

 {

 cout << "Enter the String : " ;

 cin >> string ;

 }

 void displayString ()

 {

 cout << "The String Is : " << string << endl ;

 }

 // Declaration (prototype) of overloaded sum operator

 String operator + (String & s) ;

};

We want to write + operator to concatenate two strings. Firstly, we will see the

operator’s behavior in ordinary context (behavior with primitive variables for

example) and try to implement the same behavior for this class. We want to

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

377

concatenate two strings (two String objects) and then assign the resultant string to a

new String object. Here is how we will write + operator function.

String String :: operator + (String &s)

{

 String temp; // Declared object temp of String type

 strcpy (temp.string , ""); // Initialized the temp with empty string

 strcat (temp.string , string); // Concatenated the driving object’s string to //

temp object

strcat (temp.string , s.string); // Concatenated the argument’s string to the

// temp object

 return temp; // Returned the temp object

}

As you might have guessed already, the String object on the left will be the one to

drive this + operation and the second String object on the left of + will be passed as an

argument to this function. Note that we are not doing the error checking here, the size

of the resultant string temp may increase the array size 30 (the array size defined in

the class).

Example Program 1

Rudimentary implementation of a class named Complex class to cater complex

numbers. A + operator function has been implemented to add two complex numbers.

/* This program implements the basic class for complex numbers and demonstrates +

operator function */

#include <iostream.h>

class Complex

{

 private :

 double real ; // Real Part

 double imag ; // Imaginary Part

 public :

 /* Parameterless Constructor */

 Complex ()

 {

 cout << "\n Parameterless Constructor called ..." ;

 }

 /* Parameterized Constructor */

 Complex (double r, double i)

 {

 cout << "\n Parameterized Constructor called ...";

 real = r ;

 imag = i ;

 }

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

378

 /* Setter of real data member */

 void real (double r)

 {

 real = r ;

 }

 /* Getter of the real data member */

 double real ()

 {

 return real ;

 }

 /* Setter of the imag data member */

 void imaginary (double i)

 {

 imag = i ;

 }

 /* Getter of the imag data member */

 double imaginary ()

 {

 return imag ;

 }

 /* A Function to display parts of a Complex object */

 void display ()

 {

 cout << "\n\n Displaying parts of complex number ...";

 cout << "\n Real Part : " << real << endl ;

 cout << " Imaginary Part : " << imag << endl ;

 }

 /* Declaration (prototype) of overloaded sum operator */

 Complex operator + (Complex & c2) ;

};

Complex Complex :: operator + (Complex & c1)

{

 cout << "\n Operator + called ...";

 Complex temp ;

 temp.real = real + c1.real ;

 temp.imag = imag + c1.imag ;

 return temp ;

}

 main ()

{

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

379

 Complex c1 (1 , 2) ; // Consturct an object using the parameterized constructor

 Complex c2 (2 , 3) ; // Consturct another object using the parameterized

 // constructor

 Complex result ; // Construct an object using a parameterless constructor

 result = c1 + c2 ; // Call the Operator + to add two complex numbers (c1 & c2)

 // and then assign the result to 'result' object

 result.display () ; // Display the result object contents

}

The output of the program is as follows:

Parameterized Constructor called ...

Parameterized Constructor called ...

Parameterless Constructor called ...

Operator + called ...

Parameterless Constructor called ...

Displaying parts of complex number ...

Real Part : 3

Imaginary Part : 5

The + operator function can be enhanced to return reference of Complex object. We

can also implement += operator. += operator and the enhanced operator + are

implemented as:

Complex & Complex :: operator + (Complex & c1)

{

 real = real + c1.real ;

 imag = imag + c1.imag ;

 return *this;

}

// Declaration (prototype) of overloaded sum assignment operator definition

Complex & Complex :: operator += (Complex & c2)

{

 real += c2.real ;

 imag += c2.imag ;

 return *this;

}

Example Program 2

Rudimentary Implementation of String class to manipulate strings. It uses + operator

to concatenate strings.

/* This program implements the basic class for strings and demonstrates + operator

function to concatenate two strings*/

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

380

#include <iostream.h>

#include <string.h>

class String

{

 private :

 char string [30] ; // Array to store string

 public :

 /* Parameterless Constructor */

 String ()

 {

 strcpy (string , "") ;

 }

 /* Getter function of string */

 void getString ()

 {

 cout << "Enter the String: " ;

 cin >> string ;

 }

 /* Function to display string */

 void displayString ()

 {

 cout << "The String is : " << string << endl ;

 }

 // Declaration (prototype) of overloaded sum operator

 String operator + (String & s) ;

};

String String :: operator + (String &s)

{

 String temp ;

 strcpy (temp.string , "") ;

 strcat (temp.string , string);

 strcat (temp.string , s.string);

 return temp;

}

void main ()

{

 String string1 , string2 ; // Declared two String objects

 string1.getString () ; // Get string for string1 object

 string2.getString () ; // Get string for string2 object

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

381

 String hold = string1 + string2 ; // Concatenate string1 and string2 and store the

 // result in hold object

 hold.displayString () ; // Display the string

}

The output of the above program is as follows:

Enter the String: Operator

Enter the String: Overloading

The String is : OperatorOverloading

Tips

Operator Overloading is quite similar to Function Overloading.

There are two types of operators to overload: unary and binary.

C++ built-in operators work for built-in (primitve) types but for user defined data

types, user has to write his/her own operators.

There are some restriction while performing Operator Overloading. For example, only

existing C++ operators are overloaded without creating a new one in the language.

Also, it should not impact the type, semantics (behavior), arity (number of operands

required), precedence and associativity of the operator.

For binary member operators, operands on the left drives (calls) the operation.

Operator functions written as non-members but friends of the class, get both the

operands as their arguments.

Operators can be written as non-members and even without making them friends. But

this is tedious and less efficient way, therefore, it is not recommended.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

382

Lecture No. 32

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 8

 8.6, 8.7, 8.12

Summary

18) Recap

19) Overloading Minus Operator

20) Operators with Date Class

21) Unary Operators

Recap

Before further discussing the concept of the ‘Overloading’, we will recapture the

things dilated upon in the previous lecture. It is necessary to know that new

operators i.e. new symbols cannot be introduced. Only existing symbols can be

overloaded. Overloading of operators is exactly like writing functions. However, one

should remain close to the original meaning of the operator. Similarly, it is good not

to define something in opposite terms e.g. ‘plus operator is doing subtraction or

multiplication operator carrying out division’. We can do that but it will ultimately a

bad thing for a programmer. It makes our program practically unreadable and mis-

interpretable. Under operator overloading technique, the binary and unary operators

will remain unchanged that is we cannot make unary operator work as binary operator

or vice versa. In the previous lectures, we also came across some concepts in terms of

driving force behind the operator, e.g. in case of binary operator, the driving force is

left hand operand. We have also studied when to use member operators and non-

member operators. Today we continue discussion on ‘use of operators’.

Overloading Minus Operator

Let’s define minus operator (-) with special reference to the complex class. The

process of defining the minus operator is quite similar to that of the plus operator.

Let’s first understand the action of minus operator. It is a binary operator, having two

arguments. In this case, both the arguments will be complex numbers. When we

subtract two complex numbers, it always return a complex number. Here the

subtraction of complex numbers is defined as, ‘subtract the real part from real part

and subtract the imaginary part from the imaginary one”. So a member operator will

look like as under:

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

383

 Complex operator – (Complex c)

As we are defining it as a member operator, only one argument will be passed to it. It

is going to be on the right hand side of the minus operator. The left-hand-side will call

this as it is already available to this function. In the body, we will declare a temporary

Complex number. This means that the real part of this temporary complex number is

the difference of the calling Complex number and the Complex number passed as

argument i.e.:

 tmp.real = real – c.real;

In the next line, we calculate the difference of imaginary part as:

 tmp.imag = imag – c.image;

and return the tmp Complex number. By defining, the minus operator does not mean

that minus equal operator has also been defined. If we want to overload the minus

equal operator (-=), it is necessary to define it. Let’s see how the defining process is

carried out. Minus equal to operator like the plus equal to operator behaves in the way

that the value of calling party (i.e. the complex number which is on the left hand side)

will also be changed. So now we will see that the number itself changing the value

when it takes part in the minus equal to operator. Again, we will make this a member

function. So only one argument will be passed to it. The complex number will be on

the right hand side of the minus equal to operator. In the body of the function, there is

no need of any temporary complex number as we are going to change the number on

the left hand side of the minus equal to operator. We can write it as:

 real -= c.real;

 imag -= c.image;

Here c is the complex number which is passed as an argument. Now the minus equal

to (-=) operator, used in the above statements, is an ordinary minus equal to operator

for the integers defined by the C++. So this is a classic example of overloading i.e. the

operator being overloaded is using the original or basic operator of same type. That is

the end of this function. The original number has been changed. We can return its

reference. It depends on its usage.

Here is the code:

// The minus operator definition

Complex Complex::operator - (Complex c)

{

 Complex tmp; // defining a temporary var

 tmp.real = real - c.real;

 tmp.imag = imag - c.imag;

 return tmp;

}

// The -= operator definition

Complex Complex::operator -= (Complex c)

{

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

384

 real -= c.real ;

 imag -= c.imag ;

}

Last time, we discussed the string class besides defining the plus operator as joining

the two strings. Can we define minus for the string class? Is the minus operator

relevant to the class string? For me it does not. Unless we come with some very

artificial definition. Suppose we have a string as “This is a test” and a second string as

“test”. The subtraction of these two strings means the deletion of a word or words of

second string from the first string. It may make some sense in this example. What will

happen if the second string contains “My name is xyz”. The subtraction of these

strings does not make any sense. The thing we need to understand at this point is that

every operator does not make sense for every class. Operators should be used only

when these make some common sense so that reader can understand it easily. When

you add two strings, it makes lot of sense. We can use either cat function or write this

plus operator. As subtraction of strings does not make much sense, so it is not

advisable to define it. Only define things that are self-explanatory, readable and

understandable.

Operators with Date Class

We have so far been using the Date class. Let’s think what operators make sense for

Date class. What will be the meaning of plus operator or minus operator? Here we

want to remind you a key thing i.e. “Paying attention to detail”. Suppose you have

some date and want to add some number to it like today’s date plus 5. Does that make

sense to you? We will get a new date by adding five to today’s date i.e. date after five

days. Similarly, if we want to subtract, say 10 from today’s date, we should get the

date of ten days before. Here is the usage of plus and minus which makes some sense.

Can we subtract two dates together like subtraction of 1
st
 Jan. 2002 from 15

th
 Oct.

2002. What meaning it will convey? Perhaps nothing.

Let’s consider the addition of a number to a date. Adding an integer to some date,

according to the definition we will get some date in the future. The Date object will

be returned from this function. We need a new date after the addition of integer

number. We are defining this as a member-function so that the Date object that is

calling it, will be passed to the function. The integer that is on the right hand side

should be passed as an argument. Therefore in the parenthesis, we will have the

integer. Now let’s discuss it in detail. How can we add an integer to some date? Let’s

take today’s date. Write it in your copy and see how can five be added to it. If you try

to add a number to date, there are so many possibilities that can happen. Suppose,

today is second day of the current month. After adding five to it, we will get 7
th

 of this

month. That was case I. Let’s take the case II. Today is 27
th

 of any month. Now what

will be the new date after adding five. First thing, which is very obvious, that the

month will get changed. But what will be the date of this new month. It depends

whether there are 30 days or 31 days in this month. It may be the month of February.

Is it the leap year or not? If it is non-leap year, there will be 28 days in February.

Otherwise there will be 29 days. What is a leap year? There are rules to determine

whether the year is leap year or not. If the year is divisible by four, it will be leap

year. Similarly, being a century year, it may be divided by 400. Then again it is a leap

year. Now we have seen that there are many cases when we are adding five to 27
th

 of

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

385

any month. Two things happen. The month is changed and the date changes according

to the days in the month. What if it is the 27
th

 of the December? Now you want to add

five days. There are 31 days in December, after adding five it will be 1
st
 of next

month. We may have declared an array of twelve months. As December is the twelfth

month, the last month of the year, so we have to go to first month of the next year.

Here the year has also changed. We will also need to increment 1 to year too. It seems

very simple that we have to add an integer number of days to some date. It becomes a

complex function. Now suppose we have written this complex function and embedded

all the rules in it. Then our life will become much easier. Suppose our semester starts

from any date. After adding the period of semester, we will get the end date of the

semester. We can do date arithmetic. This is a classic example of “paying attention to

detail”. To use the class for general purposes, we cannot miss even a single case. If

you want to publish this class for others to use, you need to pay attention to detail and

make sure that your class handles all of the stuff.

Here is the complete code of the program.

File “Date.h”

// The Date class is defined here

class Date{

 private:

 int day;

 int month;

 int year;

 int daysOfMonth(Date d); // returns the no of days in a month

 static const int daysInMonth[]; // array containing the 12 month’s days

 bool leapYear(int); // tells the year is leap year or not

 public:

 Date(int d = 1, int m = 1, int y = 1900); // constructor with default arguments

 void setDate(int, int, int); // set the date with given

arguments

 void display(); // Display the date on the screen

 // operators prototypes

 Date operator ++ (); // pre increment operator used as ++date1

 Date operator + (int); // Plus operator used as date1 + 5

};

// The implementation of the date class.

// initializing the no of days, take 0 for month zero.

const int Date::daysInMonth[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

// Displaying the function on the screen

void Date::display()

{

 cout <<"\nDate:" << day << "-" << month << "-" << year;

}

//constructor of the date

Date::Date(int d, int m, int y)

{

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

386

 setDate(d, m, y);

}

// setting the date as given arguments

void Date::setDate(int d, int m, int y)

{

 year = y;

 // if month is wrong then set it to 1

 if (month < 1 && month > 12)

 month = 1;

 else

 month = m;

 // if day is wrong then set it to 1

 if (month == 2 && leapYear(y))

 if (d >=1 && d <=29)

 day = d;

 else

 day = 1;

 else

 if(d >= 1 && d <= daysInMonth[month])

 day = d;

 else

 day = 1;

}

// This function return the number of days in a month

int Date::daysOfMonth(Date d)

{

 if (d.month == 2 && leapYear(d.year)) // if leap year then Feb is 29

 return 29;

 else

 return daysInMonth[d.month];

}

// Testing that the year is leap or not.

bool Date::leapYear(int y)

{

 if ((y%400 == 0) || (y%100 != 0 && y%4 == 0))

 return true;

 else

 return false;

}

// + operator overloaded for the date. Used as date1 + 5

Date Date::operator + (int numberOfDays)

{

 for (int i = 1; i <= numberOfDays; i++)

 {

 ++(*this); // calling the pre increment operator

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

387

 }

 return *this;

}

// Pre increment operator

Date Date::operator ++ ()

{

 if (day == daysOfMonth(*this) && month == 12) // end year

 {

 day = 1;

 month = 1;

 ++year;

 }

 else if(day == daysOfMonth(*this)) // end month

 {

 day = 1;

 ++month;

 }

 else // not the last day of the month

 {

 day++;

 }

}

The main program is:

#include <iostream.h>

#include "date.h"

main()

{

 Date d1 (26, 12, 2002), d2(28,2 ,2000), d3;

 d1.display();

 ++d1;

 cout << "\nAfter adding 1 day, the date is ";

 d1.display();

 cout << endl;

 d2.display();

 d2 = d2 + 5;

 cout << "\nAfter adding 5 days to the above date";

 d2.display();

 }

Output of the program:

Date:26-12-2002

After adding 1 day, the date is

Date:27-12-2002

Date:28-2-2000

After adding 5 days to the above date

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

388

Date:4-3-2000

Similarly we may have a counter-function that subtracts some number from the date.

This is the same but of reverse nature. Suppose it is Jan 3
rd

 and we have to subtract

ten days from it. The month will be changed to December while the year is going to

be decremented by 1. To determine the date of December, we need to know the

number of days in December and count backwards. Now we don’t need the number of

days of current month. Rather the number of days in previous month is important.

Suppose it is 3
rd

 of March and subtract seven from it. What will be the date? Now you

have to do complex arithmetic and take care of all the cases. It is very complicated but

having only one time effort. Date arithmetic is very important and common in

business applications. If someone applies for vacations, you just have to enter that this

person is going on leave from this date for ten days and you will know his date of re-

joining the duty. If someone works on daily wages and paid after a week. Someday,

he comes and says that he is going on vacations. We need to calculate the number of

days from the day of last payment to to-date. It is simple date arithmetic. Writing a

Date class with these appropriate operators overloaded will be very useful exercise. It

adds to your overall programming vocabulary.

There are two kinds of programming vocabulary. One is the keywords of C/C++ etc

while the second is higher-level vocabulary. What sort of vocabulary we have in our

tool- box. In the first part of this course, we have learned how to write loops, nested

loops etc. We learn to handle matrices and vectors using those rudimentary rules.

Now if you think about that we have written a matrix class and a member function

inverseOfMatrix(). We can use this function again and again. Similarly in the Date

class, we can put in some rudimentary calculations on date arithmetic. Add or subtract

number of days from some date. These are very useful functions. In the daily wages

example, you need to subtract a date from a date. Now we need to overload the minus

operator again with date minus date. First we overload the minus operator with date

minus some integer number. There may be two versions of minus operator. Here, you

have to work in detail. Subtracting a date from another date is relatively non-trivial.

As a programming idea, you can think that subtracting two dates involves huge

calculations. Can we perform some logical tests here? If we want to implement date1

– date2 while date1 is smaller than date2. The first question is do we want to return a

negative number. Let’s say we want this, then date1 – date2 can return a negative

number. So it can return a negative number or zero (if the dates are identical) or

positive number (the number of days). How we can implement this functionality? One

way to do it is with the help of calendar. Under this method, we will start a loop till

the other date is got. Then by reading the loop counter, we can tell the difference in

days. It is a good idea. But for that, we need a calendar somewhere. If the dates are in

different years, we will have to ensure the availability of calendar of next year. Think

about it and try to write this function.

Now what about the plus-operator for two dates? Minus operator for strings did not

make a lot of sense. Similarly, the plus operator for two dates does not make much

sense. We can add some number to date. But how can we add a date to some other

date. There is no logical and straight forward answer to this. So we don’t define such

a function. The meaning of our operator should be obvious. You can write whatever

you want in the function. But it is bad idea. The idea of this exercise is to pay

attention to detail. Think of all the various things that can happen. Tabulate them,

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

389

determine the logic and then start programming. Don’t start typing your program

before your brain has come up to the same point. First analyze the problem,

understand it, look at all the cases, draw a flow chart, write pseudo code. Once you

are comfortable with this and know what you want to do then start writing your

program. The time spending on analyses is arguably the best usage of your time as a

programmer. The time you spend on debugging and removing errors from faulty code

is huge. Spending time on good design pays off. You should debug for syntax errors

like a semi-colon is missing somewhere. You should not face any logical error at

debugging stage because logic errors are very hard to track. You may just not worry

about the design and start writing code. The program may work for two or three cases.

You may declare that you have written the program. When other starts using it on

some other case which you did not cater, the program does not work or produces

some strange results. There is no syntax error in the program. The compiler compiles

it successfully and makes an executable file. Now we have to check the logic.

Determining the logic from the code is a million times more difficult than determining

code from logic. In this case, analysis will be always followed by design and then

code. Please keep this in mind.

Unary Operators

Let’s talk about unary operators. Unary operators take one argument like i++ or i--

(Post Increment or post decrement operators for integers) or ++i, --i (Pre increment or

pre decrement operator). You can’t make unary operator as binary operator or binary

operator as unary. Let’s overload unary operator in the Date class. We want to

overload ++. This operator should add a day in the current date. When we say

++date1 or date1++, it should get tomorrow’s date. This is same as date1 +=1 or

date1 = date1 + 1. We simply have to change to tomorrow’s date. If this is the

member function, it will get the date object automatically. The internal structure of

the object is available to the function so that it takes no argument. It will return a Date

object. Its prototype will be as:

 Date operator ++ (); // pre increment operator

What will be in the function definition? You have to pay attention to details. The

argument that we used in the plus operator, is also applicable here. What will be the

next date when we add 1 to the current date. Let’s work it out. If it is not the last date

of the month, then simply add one to the day. If the date is the last day of the month,

then change the month and date to 1
st
. If the date is the last date of the year, then

increment the year too. Suppose we have some function available which returns the

days of month given the month number. So if we say daysOfMonth(6) it should return

30. The function is intelligent enough that when we say daysOfMonth(2) it should

return 28 if the year is not leap year. Otherwise, it will be 29. Therefore we have to

send it year too along with the month number. We can also pass it the complete Date

structure as daysOfMonth(date1); We will use this function in writing the ++

operator. In a way, the logic is same as we used in the plus operator. Suppose the

object d is calling this ++ operator as d++ where d is an object of type Date.

Therefore the day, month and year data members will be available to this function. In

the body of the function, first of all we will check whether this is the last date of the

month as:

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

390

 if (day == daysOfMonth (*this))

 {

 // this is the last day of the month

 // process accordingly

 }

In the above condition, we have checked that day is equal to the number of days in the

month or not. If the condition returns true it means that this is the last day of the

month. Here we have used this to pass the object (current object) to the function

daysOfMonth. ‘this’ pointer is implicitly available to every member function and this

pointer points to the current object. As per requirement of the program, we have

written d++ where d is the object of type Date. We are not using the object d in the

program. This object is itself available.

Now the data of object d is available in the function as day, month or year. The object

d is itself present either from its member data (day, month, year) or through the ‘this

pointer’ which points to the current object. We can also expand the definition of the

function daysOfMonth() as daysOfMonth(int day, int month, int year). If the given

day is the last day of the month, we will increment the month. Before doing this, we

need to check whether this is the last month or not. Therefore we have to introduce

another nested ‘if’ condition. The code segment will now be as:

 if (day == daysOfMonth (this))

 {

 // this is the last day of the month

 if (month < 12)

 {

 day = 1;

 month++;

 }

 else // this is the last month i.e. December

 {

 day = 1;

 month = 1;

 year++;

 }

 }

 else // not the last day of the month

 {

 day++;

 }

The ++ operator simply adds one to the date of the calling object. We define it as

member function. Therefore, no argument is needed. We can make it non-member but

have to pass it a Date object.

To distinguish the pre increment operator with post increment operator, an int

argument is passed to it. The prototype of post increment operator for Date is:

 Date operator ++ (int); // post increment operator

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

391

Here we don’t need to use this int argument. The implementation is same as pre

increment operator as in both cases we want to add 1 to the date.

Can we implement the plus operator using this function? We can write the plus

operator in some new fashion. We pass it a positive integer number, which has to be

added to the date. We can write a loop in the plus operator. The loop condition will be

as i < number where number is the argument passed to it. So in the program if we

have written as date1+5; the loop will run for five times and in the body of the loop

we have ++date1. Suddenly our complicated logic has been boiled down to simple as

incremented by 1. This is the classic example of code reuse.

We don’t know who is going to use this code. Nobody is perfect. But we should think

before writing the program about the structure, interface, the setters and getters and

the operators to be overloaded. The thumb rule is if the meaning of + and ++ operator

is same as in ordinary arithmetic, then + operator can be used in the ++ operator.

Keep in mind that we can call a function from another function. This is a good

example of code reuse. We can call the + operator as many times as needed. The

daysOfMonth is a member function and it is used in ++ operator function. ‘+

operator’ is a member function, used in ++ operator. We are building a hierarchy.

Suppose there is some small logical error in the code and the daysOfMonth is not

returning the correct value. This will effect the + operator as well as ++ operator.

When we remove that error, then + and ++ operator both will be corrected. Moral of

the story is that whenever we write some code, it is better to see whether we are

rewriting some code in the same class. If we are calculating the number of months at

two places or determining the leap year at two places, then try to combine this in such

a way that things should be calculated at one place. That piece of code may become

some utility function. This will not be called from outside the class so we will put this

function in the private area. But the member functions can call it. We will make the

daysOfMonth() as a private member function of the class. It will return the days of the

month having checked whether this is leap year or not. Using this utility function, we

have written + and ++ operator function. Don’t repeat code inside a class. Make it a

general rule. Make a function for the repeated code and call it where needed. For

efficiency and speed, we can repeat the code. For this, we start using macros. It means

that if you put all your logic in a single place and then reuse it. You will get lot of

safety and security with this. A correction at one place will make the behavior of the

whole class correct.

Let’s see another interesting function of the Date class. Sometimes, we need to

compare two dates i.e. whether a date is greater or less than the other date. In other

words, the comparison operator is applied. Comparison operators <, >, <=, >=, == can

also be overloaded. How do we determine whether date1 is greater than date2? First

of all, what will be its return type. Return type has to be either true or false. It says

date1 is greater than date2 or date1 is not greater than date2. Let’s introduce another

keyword bool. It is a new data type. It is very simple, it only takes two values true or

false. So, the return type of greater than operator (>) is bool. The prototype of this

member function is as:

 bool operator > (Date d);

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

392

The argument d is the Date object that is on the right side of the greater than sign. The

left hand side Date object is available to this as this is the member operator of the

class. Before writing the code, think abut the logic. We have to determine that the

calling date is greater than the date d or not. If the year of current date is greater than

date d, will the current date greater than date d? Certainly, it will be so. If the year is

greater, obviously date is greater. If the years of both the dates are equal, then we

have to check whether the month of the current date is greater than date d or not. If

the month of the current date is greater than the date d, current date is greater. If the

months are also equal, we will compare the days. It’s a very simple hierarchical logic.

To be able to write this logic cleanly, you should write case by case on paper. Analyze

it thoroughly. The logic can be written in reverse too. If the year of the date d is

greater than the current date, return false and so on. So we can go either true, true,

true or false, false, false logic. You will find the false logic quicker. We can use if,

‘else if’ structures. Return type of this function is ‘boolean’. Suppose that in our

calling function we have two Date objects as d1 and d2. We will write as if(d1 > d2).

Why should we write this? As our operator is returning true or false and ‘if’ also

needs true or false, we can write very clean and neat code. This greater than operator

is a member operator of Date class. In this case, we have the return type as boolean

and not returning the Date object. Is it the violation of any rule? The answer is no.

The return type can be anything. It needs not to be the same as the class. It can be

anything. The same applies to difference between two dates. The difference between

two dates will be an integer. It is still a member function. It simply tells us the number

of days between two days. It could be negative or positive but it is an integer. There is

no such rule that the member operators should return the object of the same class.

The code of the greater than operator is as follows:

// Definition of the greater than operator

bool Date :: operator > (Date d)

{

 if (year > d.year) // if year is greater date is greater

 {

 return true;

 }

 else if (year == d.year) //if years are equal check month

 {

 if (month > d.month) // if month is greater date is greater

 {

 return true;

 }

 else if (month == d.month) // if months are equal check dates

 {

 if(day > d.day)

 return true;

 else // otherwise return false

 return false;

 }

 else

 return false;

 }

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

393

 else

 {

 return false;

 }

}

Now you can write all the comparison operator of the Date class. The comparison

operators are greater than, greater than or equal to, equal to, less than, less than or

equal to. If you are writing one, you might want to write all of them. Now we have

expanded the Date class enough. As an exercise, write your own Date class. Keep in

mind the principles. What should be in the Date class? How should we set its values?

How many constructors we need? Do we need a destructor or default destructor is

enough. After this, define its public interface that is the member functions that are

visible from outside. What operators should be overloaded?

In the program, if we say date1 + 5, we know that we will get a date which is five

days later. What will happen if we write 5 + date1? The situation like this may

happen. You have published your Date class and someone wants to use it in this

fashion. Here we have an integer, the plus operator and a Date object. It should return

an object of type Date. To make this work properly, we need to have another operator.

You will have to look at the set of operators needed for this class. List them out and

write down their behavior. Be very clear what you expect them to do and start writing

the class. How can we implement integer + date? On the left hand side, we have an

integer. If the integer is at the left side, it can’t be a member function. Member

function is always called by object. Here object is not calling the function. Rather

integer is calling. So it has to be a friend function that is sitting outside. It will get two

arguments, integer and Date. As this is the friend function, the internal structure of the

Date will be available to it. You will create a new Date object based on the given

Date object and the integer and return it. We have seen that member functions are

returning integers or Boolean. Here, a non-member function is returning an object of

Date class. When we have listed out comprehensively that what will be the interface

of our class. Which functions and operators will be visible from outside? When we

have written the behavior of our class on paper, it is good to start writing the code.

You may have to write a lot of code for this class. Once we have compiled the code

and have object file, then anyone can use Date object. There will be no problem. We

will include the “date.h” file in the program and use and manipulate the Date objects.

We can use its operators, member functions etc very easily. The effort we put in

writing this code does not go waste. It will provide a lot of ease in the main program.

The biggest advantage is the encapsulation that has happened. All of the logic that

was needed to manipulate the object of class Date is now encapsulated in that class. In

case of any problem in the behavior of the class, we will need to correct the class,

compile it. In the conventional function programming or structured programming, this

logic has been split at different locations of the program. It was everywhere. Different

things have been embedded at different points. In the function oriented programming,

we have written a lot of functions at different locations. Here we have a new data type

as Date. All the date related functions are at one place. We are encapsulating all the

functionalities in the Date class that is another reason for doing all of the homework,

all the thinking before we write the code. No one can determine all the usage of the

Date class. If you start determining all the usage of Date class and writing the

definition of the Date class for the last six months, this will be impractical. You

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

394

would want to keep it within limits but do the homework then you write it. Now you

can reuse it as many times as you want.

We need a friend operator when the driving thing is not the object of the class like

integer + date. The operator is derived by integer. Here, we use a friend function.

There are instances where friend operators are used to manipulate two different

classes. A classic example in the mathematics is of the multiplication of vector and

matrix. If we have to multiply a vector with a matrix, the multiplication operator will

be friend of both the classes. It will get both vector and matrix as arguments and

manipulate them. Keep in mind that friend operators in a way can also be used to glue

two classes. The disadvantage of clubbing them together is that they become

interlinked. Write your own overloaded operators and see how they work.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

395

Lecture No. 33

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 7, 8

 7.5, 8.1, 8.2, 8.7, 8.9

Summary

22) Operator Overloading

23) Assignment Operator

24) Example

25) this Pointer

26) Self Assignment

27) Returning this Pointer from a Function

28) Conversions

29) Sample Program (conversion by constructor)

Operator Overloading

As earlier discussed, overloading of operators is carried out in classes on some

occasions to enable ourselves to write a code that looks simple and clean. Suppose,

there is a class and its two objects, say a and b, have been defined. Addition of these

objects in the class by writing a + b will mean that we are adding two different

objects (objects are instance of a class which is a user defined data type). We want our

code to be simple and elegant. In object base programming, more effort is made in

class definitions, as classes are data types that know how to manipulate themselves.

These know how to add objects of their own type together, how to display themselves

and do many other manipulations. While discussing date class in the previous lecture,

we referred to many examples. In an example, we tried to increment the ‘date’. The

best way is to encapsulate it in the class itself and not in the main program when we

come around to use the date class.

Assignment Operator

At first, we ascertain whether there is need of an assignment operator or not? It is

needed when we are going to assign one object to the other, that means when we want

to have expression like a = b. C++ provides a default assignment operator. This

operator does a member-wise assignment. Let’s say, we have in a structure of a class

three integers and two floats as data members. Now we take two objects of this class a

and b and write a = b. Here the first integer of a will have the value of first integer of

b. The second will have the value of second integer and so on. This means that it is a

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

396

member-wise copy. The default assignment operator does this. But what is to do if we

want to do something more, in some special cases?

Now let’s define a String class. We will define it our self, without taking the built in

String class of C. We know that a string is nothing but an array of characters. So we

define our String class, with a data member buffer, it is a pointer to character and is

written as *buf i.e. a pointer to character (array). There are constructors and

destructors of the class. There is a member function length that returns the length of

the string of the calling object. Now we want an assignment operator for this class.

Suppose we have a constructor that allows placing a string into the buffer. It can be

written in the main program as under:

 String s1 (“This is a test”) ;

Thus, an object of String has been created and initialized. The string “This is a test”

has been placed in its buffer. Obviously, the buffer will be large enough to hold this

string as defined in our constructor. We allocate the memory for the buffer by using

new operator. What happens if we have another String object, let’s say s2, and want to

write s2 = s1 ; Here we know that the buffer is nothing but a pointer to a memory

location. If it is an array of characters, the name of the array is nothing but a pointer to

the start of the memory location. If default assignment operator is used here, the value

of one pointer i.e. buf of one object will be assigned to buf of the other object. It

means there will be the same address in the both objects. Suppose we delete the object

s1, the destructor of this object will free the allocated memory while giving it back to

the free store. Now the buf of s2 holds the address of memory, which actually has

gone to free store, (by the destructor of s1). It is no longer allocated, and thus creates a

problem. Such problems are faced often while using default assignment operator. To

avoid such problems, we have to write our own assignment operator.

Before going on into the string assignment operator, let’s have a look on the addition

operator, which we have defined for strings. There is a point in it to discuss. When we

defined addition operator for strings, we talked about that what we have to do if we

want to add (concatenate) a string into the other string. There we had a simple

structure i.e. there is a string defined char buf with a space of 30 characters. If we

have two string objects and the strings are full in the both objects. Then how these

will be added? Now suppose for the moment that we are not doing memory

allocation. We have a fixed string buffer in the memory. It is important that the

addition operator should perform an error check. It should take length of first string ,

then the length of second string, before adding them up, and check whether it is

greater than the length defined in the String (i.e. 30 in this case). If it is greater than

that, we should provide it some logical behavior. If it is not greater, then it should add

the strings. Thus, it is important that we should do proper error checking.

Now in the assignment operator, the problem here is that the buf, that we have

defined, should not point to the same memory location in two different objects of type

String. Each object should have its own space and value in the memory for its string.

So when we write a statement like s2 = s1, we want to make sure that at assignment

time, the addresses should not be assigned. But there should be proper space and the

strings should be copied there. Let’s see how we can do this.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

397

Now take a look on the code itself. It is quiet straight forward what we want to do is

that we are defining an assignment operator (i.e. =) for the String class. Remember

that the object on left side will call the = operator. If we write a statement like s2 = s1;

s2 will be the calling object and s1 will be passed to the = operator as an argument. So

the data structure of s2 i.e. buf is available without specifying any prefix. We have to

access the buf of s1 by writing s1.buf.

Suppose s2 has already a value. It means that if s2 has a value, its buffer has allocated

some space in the memory. Moreover, there is a character string in it. So to make an

assignment first empty that memory of s2 as we want to write something in that

memory. We do not know whether the value, we are going to write, is less or greater

than the already existing one. So the first statement is:

 delete buf ;

Here we write buf without any prefix as it is buf of the calling object. Now this buffer

is free and needs new space. This space should be large enough so that it can hold the

string of s1. First we find the length of the string of s1 and then we use the new

operator and give it a value that is one more than the length of the buffer of s1. So we

write it as:

 buf = new char[length + 1] ;

where length is the length of s1. Here buf is without a prefix so it is the buf of object

on the left hand side i.e. s2. Now, when the buf of s2 has a valid memory address, we

copy the buf of s1 into the buf of s2 with the use of string copy function (strcpy). We

write it as:

strcpy (buf, s1.buf) ;.

Now the buf of string of s1 has been copied in the buf of s2 that are located at

different spaces in the memory. The advantage of it is that now if we delete one object

s1 or s2, it will not affect the other one. The complete code of this example is given

below.

Example

/*This program defines the assignment operator. We copy the string of one object

into the string of other object using different spaces for both strings in the memory.

*/

#include <iostream.h>

#include <string.h>

#include <stdlib.h>

// class definition

class String

{

 private :

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

398

 char *buf ;

 public:

 // constructors

 String();

 String(const char *s)

 {

 buf = new char [30];

 strcpy (buf,s);

 }

 // display the string

 void display ()

 {

 cout << buf << endl ;

 }

 // getting the length of the string

 int length ()const

 {

 return strlen(buf);

 }

 // overloading assignment operator

 void operator = (const String &other);

};

// ----------- Assignment operator

void String::operator = (const String &other)

{

 int length ;

 length = other.length();

 delete buf;

 buf = new char [length + 1];

 strcpy(buf, other.buf);

}

//the main program that uses the new String class with its assignment operator:

main()

{

 String myString("here's my string");

 cout << “My string is = ” ;

 myString.display();

 cout << '\n';

 String yourString("here's your string");

 cout << “Your string is = ” ;

 yourString.display();

 cout << '\n';

 yourString = myString;

 cout << “After assignment, your string is = ” ;

 yourString.display();

 cout << '\n';

 system ("pause");

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

399

}

Following is the output of the program.

My string is = here's my string

Your string is = here's your string

After assignment, your string is = here's my string

The above example is regarding the strings. Yet in general, this example pertains to

all classes in which we do memory manipulations. Whenever we use objects that

allocate memory, it is important that an assignment operator (=) should be defined for

it. Otherwise, the default operator will copy the values of addresses and pointers. The

actual values and memory allocation will not be done by it.

Let’s go on and look what happens when we actually do this assignment? In the

assignment of integers, say we have three integers i, j and k with some values. It is

quiet legal to write as i = j ; By this ,we assign the value of j to i. After this we write k

= i ; this assigns the value of i to k. In C, we can write the above two assignment

statements in one line as follows

 k = i = j ;

This line means first the value of j is assigned to i and that value of i is assigned to k.

The mechanism that makes this work is that in C or C++ every expression itself has a

value. This value allows these chained assignment statements to work. For example,

when we write k = i = j ; then at first i = j is executed. The value at the left hand side

of this assignment statement is the value of the expression that is returned to the part

‘k =’ .This value is later assigned to k. Now take another example. Suppose we have

the following statement:

k = i = ++j ;

In this statement, we use the pre-increment operator, as the increment operator (++) is

written before j. This pre-increment operator will increment the value of j by 1 and

this new value will be assigned to i. It is pertinent to note that this way ++j returns a

value that is used in the statement. After this, the value of i is assigned to k. For

integers, it is ok. Now, how can we make this mechanism work with our String

objects. We have three String objects s1, s2 and s3. Let’s say there is a value (a string

) in the buffer of s1. How can we write s3 = s2 = s1;. We have written s2 = s1 in the

previous example in assignment operator. We notice that there is no return statement

in the code of the assignment operator. It means that operator actually returns nothing

as it has a void return type. If this function is not returning any thing then s3 = s2 = s1

; cannot work. We make this work with the help of this pointer.

this Pointer
Whenever an object calls a member function, the function implicitly gets a pointer

from the calling object. That pointer is known as this pointer. ‘this’ is a key word. We

cannot use it as a variable name. ‘this’ pointer is present in the function, referring to

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

400

the calling object. For example, if we have to refer a member, let’s say buf, of our

String class, we can write it simply as:

 buf ;

That means the buf of calling object is being considered. We can also write it as

 this->buf ;

i.e. the data member of the object pointed by this pointer is being called. These (buf

and this->buf) are exactly the same. We can also write it in a third way as:

 (*this).buf ;.

So these three statements are exactly equivalent. Normally we do not use the

statements written with this key word. We write simply buf to refer to the calling

object.

In the statement (*this).buf ; The parentheses are necessary as we know that in

object.buf the binding of dot operator is stronger than the *. Without parentheses the

object.buf is resolved first and is dereferenced. So to dereference this pointer to get

the object, we enforced it by putting it in parentheses.

Self Assignment
Suppose, we have an integer ‘i. In the program, somewhere, we write i = i ; It’s a do

nothing line which does nothing. It is not an error too. Now think about the String

object, we have a string s that has initialized to a string, say, ‘This is a test’. And then

we write s = s ; The behavior of equal operator that we have defined for the String

object is that it, at first deletes the buffer of the calling object. While writing s = s ;

the assignment operator frees the buffer of s. Later, it tries to take the buffer of the

object on right hand side, which already has been deleted and trying to allocate space

and assign it to s. This is known as self-assignment. Normally, self -assignment is not

directly used in the programs. But sometimes, it is needed. Suppose we have the

address of an object in a pointer. We write:

 String s, *sptr ;

Now sptr is a pointer to a String while s is a String object. In the code of a program

we can write

 sptr = &s ;

This statement assigns the address of s to the pointer sptr. Now some where in the

program we write s = *sptr ; that means we assign to s the object being pointed by

sptr. As sptr has the address of s , earlier assigned to it. This has the same effect as s

= s ;. The buffer of s will be deleted and the assignment will not be done. Thus, the

program will become unpredictable. So self-assignment is very dangerous especially

at a time when we have memory manipulation in a class. The String class is a classic

example of it in which we do memory allocation. To avoid this, in the equal operator

(operator=), we should first check whether the calling object (L.H.S.) and the object

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

401

being gotten (R.H.S.) are the same or not. So we can write the equal operator

(operator=) as follows

 void String::operator=(const String &other)

 {

 if(this == &other)

 return;

 delete buf;

 length = other.length;

 buf = new char[length + 1];

 strcpy(buf, other.buf);

 }

Here above, the statement if (this == &other) checks that if the calling object (which

is referred by this) is the same as the object being called then do nothing and return as

in this case it is a self assignment. By doing this little change in our assignment

operator, it has become safe to use. So it is the first usage of this pointer that is a

check against self assignment.

Returning this Pointer From a Function
Now lets look at the second use of this pointer. We want to do the assignment as

 s3 = s2 = s1 ;

In this statement the value of s2 = s1 is assigned to s3. So to do this it is necessary

that the assignment operator should return a value. Thus, our assignment operator will

expand so that it could return a value. The assignment operator, till by now copies the

string on right hand side to the left hand side. This means s2 = s1 ; can be done by

this. Now we want that this s2 should be assigned to s3, which can be done only if s2

= s1 returns s2 (an object). So we need to return a String object. Here becomes the

use of this pointer, we will write as

 return *this ;

Here, in the assignment operator code this is referring to the calling object (i.e. s2 in

this case). So when we write return *this ; it means return the calling object (object

on L.H.S.) as a value. Thus s3 gets the value of s2 by executing s3 = s2 where s2 is

the value returned by the assignment operator by s2 = s1; Thus the complete

assignment operator (i.e. operator= function) that returns a reference to an object will

be written as under

 String &String::operator=(const String &other)

{

 if(&other == this) //if calling and passed objects are

 return *this; // same then do nothing

and return

 delete buf;

 length = other.length;

buf = new char[length + 1];

strcpy(buf, other.buf);

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

402

return *this;

}

Now, here the first line shows that this operator= function returns a reference to an

object of type String and this function takes a reference as an argument. The above

version of operator= function takes a reference as an argument. First of all it checks it

with the calling object to avoid self assignment. Then it deletes the buffer of calling

object and creates a new buffer large enough to hold the argument object. And then at

the last it returns the reference of the calling object by using this pointer.

With this version of the assignment operator (operator= function) we can chain

together assignments of String objects like s3 = s2 = s1 ;

Actually, we have been using this pointer in chained statements of cout. For example,

we write

 cout << a << b << c ;

Where a, b, and c are any data type. It works in the way that the stream of cout i.e. <<

is left associative. It means first cout << a is executed and to further execute it, the

second << should have cout on its left hand side. So here, in a way, in this operator

overloading, a reference to the calling object that is cout is being returned to the

stream insertion <<. Thus a reference of cout is returned, and (as a reference to cout is

returned) the << sees a cout on left hand side and thus the next << b is executed and it

returns a reference to cout and with this reference the next << c works. This all work

is carried out by this pointer.

We have seen that value can be returned from a function with this pointer. We used it

with assignment operator. Lets consider our previous example of Date class. In that

class we defined increment operator, plus operator, plus equal operator, minus

operator and minus equal operator. Suppose we have Date objects d1, d2 and d3.

When we write like d2 = d1++ ; or d2 = d1 + 1 ; here we realize that the + operator

and the ++ operator should return a value. Similarly, other operators should also

return a value. Now let’s consider the code of Date class. Now we have rewritten

these operators. The difference in code of these is not more than that now it returns a

reference to an object of type Date. There are two changes in the previous code. First

is in the declaration line where we now use & sign for the reference and we write it

like

 Date& Date::operator+=(int days)

We write this for the all operators (i.e. +, ++, - and -=). Then in the function definition

we return the reference of the left hand side Date object (i.e. calling object) by

writing

 return *this ;

Now we can rewrite the operator+= of the Date class as follows.

The declaration line in the class definition will be as

 Date& operator+=(int days);

And the function definition will be rewritten as the following.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

403

 Date& Date::operator+=(int days) // return type reference to

object

 {

 for (int i=0; i < days; i++)

 *this++;

 return *this; // return reference to object

 }

This concludes that whenever we are writing arithmetic operator and want that it can

be used in chained statements (compound statements) then we have to return a value.

The easiest and most convenient way of returning that value is by returning a

reference to the calling object. So, by now we can easily write the statements of date

object, just like we write for integers or floats. We can write

 date2 = date1 + 1 ;

 Or date2 = date1++ ;

and so on.

Conversions

Being in the C language, suppose we have an integer i and a float x. Now in the

program we write x = i ; As we know that the operations of int and float are different

in the memory. Therefore, we need to do some kind of conversion. The language

automatically converts i (int) to a float (or to whatever type is on the L.H.S.) and then

does the assignment.

Both C and C++ have a set of rules for converting one type to another. These rules are

used in the following situations

- When assigning a value. For example, if you assign an integer to a variable of

type long, the compiler converts the integer to a long.

- When performing an arithmetic operation. For example, if you add an integer

and a floating-point value, the compiler converts the integer to a float before it

performs the addition.

- When passing an argument to a function; for example, if you pass an integer to

a function that expects a long.

- When returning a value from a function; for example, if you return a float

from a function that has double as its return type.

In all of these situations, the compiler performs the conversion implicitly. We can

make the conversion explicit by using a cast expression.

Now the question arises that can we do conversion with objects of our own classes.

The answer is yes. If we go to the basic definition of a class it is nothing but a user

defined data type. As it is a user defined data type, we can also define conversion on

it. When we define a class in C++, we can specify the conversions that the compiler

can apply when we use instances of that class. We can define conversions between

classes, or between a class and a built-in type

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

404

There is an example of it. Suppose we have stored date in a serial number form. So

now it is not in the form of day, month and year but it is now a long integer. For

example if we start from January 1, 1900 then 111900 will be the day one, second

January will be the day 2, third January will be the day 3 and so on. Going on this

way we reached in year 2000. There will be a serial number in year 2000. This will be

a single long integer that represents the number of days since a particular date. Now if

we have a Date object called d and an integer i. We can write d = i ; which means we

want that i should go in the serial part of d. This means convert the integer i into date

object and then the value of i should go into the serial number and then that object

should be assigned to d. We can make this conversion of Date object. We do this in

the constructor of the class. We pass the integer to the constructor, here convert it into

a date, and the constructor then returns a Date object. On the other hand, if there is no

constructor then we can write conversion function. We have used the conversion

operator with cast. The way of casting is that we write the name of the cast (type to

which we want to convert) before the name of variable. Thus if we have to write x = i

; where x is a float and i is an integer then we write it with conversion function as x =

(float) i ; The (float) will be the conversion operator. Normally this conversion is done

by default but sometimes we have to force it. Now we want to write a conversion

operator, which converts an integer to a Date object. (here Date is not our old class,

it’s a new one). We can write a conversion function. This function will be a member

of the Date class. This function will return nothing, as it is a conversion function. The

syntax of this function will be Date () that means now this is a conversion function.

In the body of this function we can write code of our own. Thus we can define the

operator, and it will work like that we write within the parentheses the name of the

conversion operator. The conversion functions are quiet interesting. They allow us to

manipulate objects of different classes. For example, we have two classes one is a

truck and other is a car. We want to convert the car to a truck. Here we can write a

conversion function, which says take a car convert it into a truck and then assign it to

an object of class truck.

Sample Program (conversion by constructor)

Lets take a look at an example in which the conversion functions are being used.

There is a class Fraction. Lets talk why we called it Fraction class. Suppose we have

an assignment

 double x = 1/3 ;

When we store 1/3 in the computer memory, it will be stored as a double precision

number. There is a double precision division of 1 by 3 and the answer 0.33333… is

stored. Here the number of 3s depends upon the space in the memory for a double

precision number. That value is assigned to a double variable. What happens if we

multiply that double variable by 3, that means we write 3 * x; where x was equal to

1/3 (0.33333…). The answer will be 0.99999…, whatever the number of digits was.

The problem here is that the answer of 3 * 1 / 3 is 1 and not 0.99999. This problem

occurs, when we want to represent the numbers exactly. The fraction class is the class

in which we provide numerator and denominator to the object and it stores them

separately. It will always keep them as an integer numerator and an integer

denominator and we can do all kinds of arithmetic with it. Now if 1 and 3 are stored

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

405

separately as numerator and denominator, how we can add them to some other

fraction. We have enough tools at our disposal. One of which is that we can overload

the addition operator. We can add 1/3 and 2/5, the result of which is another fraction

i.e. numerator and denominator. In this way we have no worries of round off errors,

the truncation and conversions of int and floats.

Considering the Fraction class we can think of a constructor which takes an integer

and converts it into a fraction. We do not want that as a fraction there should be some

value divided by zero. So we define the default constructor that takes two integers,

one for numerator and one for denominator. We provide a default value for the

denominator that is 1. It means that now we can construct a fraction by passing it a

single integer, in which case it will be represented as a fraction with the passed integer

as a numerator and the default vale i.e. 1 as the denominator. If we have a fraction

object f and we write f = 3; Then automatically this constructor (i.e. we defined) will

be called which takes a single integer as an argument. An object of type fraction will

be created and the assignment will be carried out. In a way, this is nothing more than

a conversion operation. That is a conversion of an integer into a fraction. Thus a

constructor that takes only one parameter is considered a conversion function; it

specifies a conversion from the type of the parameter to the type of the class.

So we can write a conversion function or we can use a constructor of single argument

for conversion operation. We cannot use both, we have to write one or the other. Be

careful about this. We don’t use conversion functions often but sometimes it is useful

to write them. The conversion operators are useful for defining an implicit conversion

from the class to a class whose source code we don't have access to. For example, if

we want a conversion from our class to a class that resides within a library, we cannot

define a single-argument constructor for that class. Instead, we must use a conversion

operator.

It makes our code easier and cleaner to maintain. It is important that pay more

attention while defining a class. A well-defined class will make their use easy in the

programming.

Following is the code of the example stated above.

/* This program defines a class Fraction which stores numerator and

denominator of a fractional number separately. It also overloads the

addition operator for adding the fractional numbers so that exact results

can be obtained.

*/

#include <stdlib.h>

#include <math.h>

#include <iostream.h>

// class definition

class Fraction

{

 public:

 Fraction();

 Fraction(long num, long den);

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

406

 void display() const;

 Fraction operator+(const Fraction &second) const;

 private:

 static long gcf(long first, long second);

 long numerator, denominator;

};

// ----------- Default constructor

Fraction::Fraction()

{

 numerator = 0;

 denominator = 1;

}

// ----------- Constructor

Fraction::Fraction(long num, long den)

{

 int factor;

 if(den == 0)

 den = 1;

 numerator = num;

 denominator = den;

 if(den < 0)

 {

 numerator = -numerator;

 denominator = -denominator;

 }

 factor = gcf(num, den);

 if(factor > 1)

 {

 numerator /= factor;

 denominator /= factor;

 }

}

// ----------- Function to print a Fraction

void Fraction::display() const

{

 cout << numerator << '/' << denominator;

}

// ----------- Overloaded + operator

Fraction Fraction::operator+(const Fraction &second) const

{

 long factor, mult1, mult2;

 factor = gcf(denominator, second.denominator);

 mult1 = denominator / factor;

 mult2 = second.denominator / factor;

 return Fraction(numerator * mult2 + second.numerator * mult1,

 denominator * mult2);

}

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

407

// ----------- Greatest common factor

// computed using iterative version of Euclid's algorithm

long Fraction::gcf(long first, long second)

{

 int temp;

 first = labs(first);

 second = labs(second);

 while(second > 0)

 {

 temp = first % second;

 first = second;

 second = temp;

 }

 return first;

}

//main program

{

 Fraction a, b(23, 11), c(2, 3);

 a = b + c;

 a.display();

 cout << '\n';

 system("pause");

}

The output of the program is as follows

91/33

Here is an example from the real world. What happens if we are dealing with

currency? The banks deal with currency by using computer programs. These

programs maintain the accounts by keeping the track of transactions and manipulating

deposits and with drawls of money. Suppose the bank declares that this year the profit

ratio is 3.76 %. Now if the program calculates the profit as 3.67 % of the balance, will

it be exactly in rupees and paisas or in dollars and cents? Normally, all the currencies

have two decimal digits after decimal point. Whenever we apply some kind of rates in

percentage the result may become in three or four decimal places. The banks cannot

afford that the result of 90 paisas added to 9 rupees and 10 paisas become 10 rupees

and 1 paisa. They have to accurate arithmetic. So they do not rely on programs that

use something like double precisions to represent currencies. They would have rather

written in the program to treat it as a string. Thus 9 is a string, 10 is a string and the

program should define string addition such that the result of addition of the strings .10

and .90 should be 1.00. Thus, there are many things that happen in real world that

force us as the programmer to program the things differently. So we do not use native

data types.

The COBOL, COmmon Business Oriented Language has a facility that we can

represent the decimal numbers exactly. Internally it (the language) keeps them as

strings in the memory. There is no artificial computer representation of numbers. Now

a day, the languages provide us the facility by which we can define a data type

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

408

according to a specific requirement, as we defined fraction to store numerator and

denominator separately. By using this fraction data type, we never loose precision in

arithmetic. The same thing applies to the object like currency, where we can store the

whole number part and the fractional part both as separate integers and never loose

accuracy. But whenever we get into these classes, it is our responsibility to start

writing all of the operators that are required to make a complete class.

Lecture No. 34

Reading Material

Deitel & Deitel - C++ How to Program Chapter 8

Summary

 Arrays of Objects

 Dynamic Arrays of Objects

 Overloading new and delete Operators

 Example of Overloading new and delete as Non-members

 Example of Overloading new and delete as Members

 Overloading [] Operator to Create Arrays

Arrays of Objects

A class is a user-defined data type. Objects are instances of classes the way int

variables are instances of ints. Previously, we have worked with arrays of ints. Now,

we are going to work with arrays of objects.

The declaration of arrays of user-defined data types is identical to the array of

primitive data types.

Following is a snapshot of our veteran Date class:

/* Snapshot of Date class discussed in previous lectures */

class Date

{

 private:

 int day, month, year;

 public:

 /* Parameterless constructor, it is created by the compiler automatically when we

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

409

 don’t write it for any of our class. */

 Date()

 {

 cout << "\n Parameterless constructor called ...";

 month = day = year = 0;

 }

 /* Parameterized constructor; has three ints as parameters. */

 Date(int month, int day, int year)

 {

 cout << "\n Constructor with three int parameters called ...";

 this->month = month;

 this->day = day;

 this->year = year;

 }

 ~Date ()

 {

 cout << "\n Destructor called ...";

 }

 . . .

 . . .

};

Consider the example of declaring an array of 10 date objects of Date class. In this

case, the declaration of arrays will be as under:

Following is the declaration:

 Date myDates [10] ;

With this line (when this line is executed), we are creating 10 new objects of Date

class. We know that a constructor is called whenever an object is created. For every

object like myDate[0], myDate[1],…. myDate[9], the constructor of the Date class is

called. Theimportant thing to know here is that which constructor of Date class is

being called to construct objects of the array myDates. As we are not doing any

initialization of the array objects explicitly, the default constructor (parameterless

constructor) of the Date class is called. Remember, the default constructor is defined

by the C++ compiler automatically for every class that has no parameterless

constructor defined already. In our case of Date class, we have defined a

parameterless constructor, therefore, the compiler will not generate default

constructor automatically.

We can also initialize the array elements at the declaration time. This initialization is

similar to that done for native data types. For int array, we used to do initialization in

the following manner:

 int array [10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } ;

Similarly, we initialize Date array while declaring it:

Date yourDate [3] = { Date(10, 24, 1980), Date(06, 14, 1985), Date(07,

09,1986) };

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

410

The above statement will call the parameterized constructor Date (int month, int day,

int year) of Date class to create three objects of myDate array. This parameterized

constructor carries out initialization of the objects data member (month, day, year)

with the values supplied as arguments to it.

It will be interesting to know, how the following statement works:

 Date myDate [10] = { Date(09, 03, 1970), Date(08, 23, 1974) } ;

We are trying to declare an array of 10 Date objects while supplying only

initialization values for the first two elements. At first, we might be doubtful if the

statement is compiled successfully. Not only it compiles successfully but also does

the initialization of the first two objects (myDate[0], myDate[1]). What will happen

to the remaining objects in the array? Actually, all the 10 objects are created

successfully by the above statement. The parameterized constructor is called for the

first two objects (myDate[0], myDate[1]) and parameterless constructor is called for

the remaining objects (myDate[2], myDate[3], …, myDate[9]).

You might have noticed that at the array initialization stage, we have explicitly called

parameterized constructor of Date for every object. We may specify only the

argument when a constructor with only one parameter is called.

/* A snapshot of String class discussed in previous lectures */

class String

{

private :

char *buf ;

public:

// Constructors

String ();

String(const char *s)

{

buf = new char [30];

strcpy (buf,s);

}

. . .

. . .

};

For example, in the above-mentioned case of String class, we have a constructor that

is accepting one argument of type char *. While writing our code, we can declare and

initialize an array of Strings as follows:

String message [10] = { "First line of message\n",

 "Second line of message\n",

 String("Third line of message\n"),

 String()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

411

};

See the initializing arguments for first two objects i.e, (message[0], message[1]) in

the array. Here only one string is being passed. Therefore, for the first two objects,

constructor with one parameter of type char * of String class is called automatically.

That constructor is String (char * str). For the third object (message[2]), the same

constructor with one char * as parameter is being called explicitly. For fourth object

(message[3]), parameterless constructor i.e., String () is being called explicitly,

though, this was optional as parameterless constructor is called up automatically when

no initialization is made. As there is no explicit initialization for the remaining six

objects, the parameterless constructor is called up automatically.

Can we create arrays of objects dynamically? As usual, the answer is yes. Let’s

discuss it in detail.

Dynamic Arrays of Objects

Consider the following statement:

1. String *text ;

2. text = new String [5] ;

In line 1, we have declared a pointer text of String type.

In line 2, we are creating an array of 5 objects of String type. This statement allocates

space for each object of the array, calls the parameterless constructor for each object

and starting address of the first object is assigned to the pointer text.

The important point to be noted here is that in line 2, we can’t initialize objects

because there is no way to provide initializers for the elements of an array allocated

with new.

The default constructor (parameterless constructor) is called for each element in the

array allocated with new. Remember, the default constructor for a class is generated

by C++ compiler automatically if it is not defined already in the class definition.

To deallocate these arrays of objects, the delete operator is used in the same way as it

is used for the native data types.

There are few cautions that should be taken care of while performing these operations

of allocation and deallocation with arrays of objects.

Firstly, while deallocating an array allocated with new operator, it is important to tell

the compiler that an array of objects is being deleted. The brackets ([]) are written in

our delete statement after the delete keyword to inform the delete operator that it is

going to delete an array. The consequences of using the wrong syntax are serious. For

example, if we want to delete previously created array of five String objects using the

following statement:

 delete text; // Incorrect syntax of deleting an array

The delete operator in this case will not be aware of deleting (deallocating) an array of

objects. This statement will call the destructor only for the object pointed by the text

pointer i.e. String[0] and deallocate the space allocated to this object. The

requirement is to call the destructor for all the objects inside the array and deallocate

the space allocated to all of these objects. But on account of the wrong syntax, only

the first object is deleted and the remaining four objects (String[1], String[2],

String[3], String[4] pointed by text[1], text[2], text[3], text[4] respectively) remain

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

412

in the memory intact. The memory space occupied by these four objects results in

memory leak as the same program or any other program on the same computer cannot

use it unless it is deallocated.

Calling the destructor while destroying an object becomes essential when we have

allocated some memory in free store from inside the object (usually from within the

constructor).

To destroy an array of objects allocated on free store using the new operator, an array

equivalent of delete operator is used. The array equivalent of delete operator is to

write empty square brackets after the delete keyword (delete []). So the correct

statement is:

 delete [] text ;

This statement destroys the whole array properly. It calls destructor for each object

inside the array and deallocates the space allotted to each object. Actually, by looking

at the brackets ([]) after delete, the compiler generates code to determine the size of

the array at runtime and deallocate the whole array properly. Here, it will generate

code to deallocate an array of 5 objects of String type.

If we create an array of Date objects and want to delete them without specifying array

operator: It will look as under:

 // Bad Technique: deleting an array of objects without []

// for a class that is not doing dynamic memory allocation internally

Date * ppointments;

appointments = new Date[10];

. . .

delete appointments; // Same as delete [] appointments;

Although, this is good to deallocate an array of objects without specifying array

operator ([]) as there is no dynamic memory allocation occurring from inside the Date

class. But this is a bad practice. In future, the implementation of this class may

change. It may contain some dynamic memory allocation code. So it is always safer to

use array operator ([]) to delete arrays.

Can we overload new and delete operators? Yes, it is possible to overload new and

delete operators to customize memory management. These operators can be

overloaded in global (non-member) scope and in class scope as member operators.

Overloading of new and delete Operators

Firstly, we should know what happens when we use new operator to create objects.

The memory space is allocated for the object and then its constructor is called.

Similarly, when we use delete operator with our objects, the destructor is called for

the object before deallocating the storage to the object.

When we overload new or delete operators, it can only lead to a change in the

allocation and deallocation part. The call to the constructor after allocating memory

while using new operator and call to the destructor before deallocating memory while

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

413

using delete operator will be there. These calls to constructors and destructors are

controlled by the language itself and these cannot be altered by the programmer.

One of the reasons of overloading new and delete operators can be their limited

current functionality. For example, we allocate space on free store using the new

operator for 1000 ints. It will fail and return 0 if there is no contiguous space for 1000

ints in free store. Rather the free store has become fragmented. The total available

memory is much more than 1000 ints , but in fragments. There is no contiguous

segment of at least 1000 ints. The built-in new operator will fail to get the required

space but we can overload our own new operator to de-fragment the memory to get at

least 1000 ints space. Similarly, we can overload delete operator to deallocate

memory.

In the embedded and real-time systems, a program may have to run for a very long

time with restricted resources. Such a system may also require that memory allocation

always takes the same amount of time. There is no allowance for heap exhaustion or

fragmentation. A custom memory allocator is the solution. Otherwise, programmers

will avoid using new and delete altogether in such cases and miss out on a valuable

C++ asset.

There are also downsides of this overloading. If we overload new or delete operator at

global level, the corresponding built-in new or delete operator will not be visible to

whole of the program. Instead our globally written overloaded operator takes over its

place all over. Every call to new operator will use our provided new operator’s

implementation. Even in the implementation of new operator, we cannot use the built-

in new operator.

Nonetheless,when we overload new operator at a class level then this implementation

of new operator will be visible to only objects of this class. For all other types

(excluding this class) will still use the built-in new operator. For example, if we

overload new operator for our class Date then whenever we use new with Date, our

overloaded implementation is called.

 Date* datePtr = new Date;

This statement will cause to call our overloaded new operator. However, when we use

new with any other type anywhere in our program as under:

 int* intPtr = new int [10];

The built-in new operator is called. Therefore, it is safer to overload new and delete

operators for specific types instead of overloading it globally.

An important point to consider while overloading new operator is the return value

when the new operator fails to fulfill the request. Whether the operator function will

return 0 or throw an exception.

Following are the prototypes of the new and delete operators:

void * operator new (size_t size) ;

void operator delete (void * ptr) ;

The new operator returns a void * besides accepting a parameter of whole numbers

size_t. This prototype will remain as it is while overloading new operator. In the

implementation of overloaded new operator, we may use calloc() or malloc() for

memory allocation and write some memory block’s initialization code.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

414

The delete operator returns nothing (void) and accepts a pointer of void * to the

memory block. So the same pointer that is returned by the new operator, is passed as

an argument to the delete operator. Remember, these rules apply to both if operators

(new and delete) are overloaded as member or non-member operators (as global

operators). Importantly, whenever we use these operators with classes, we must know

their sequence of events that is always there with these operators. For new operator,

memory block is allocated first before calling the constructor. For delete operator,

destructor for the object is called first and then the memory block is deallocated.

Importantly, our overloaded operators of new and delete only takes the part of

allocation and deallocation respectively and calls to constructors and destructors

remain intact in the same sequence.

Because of this sequence of events, the behavior of these new and delete operators is

different from the built-in operators of new and delete. The overloaded new operator

returns void * when it is overloaded as non-member (global). However, it returns an

object pointer like the built-in new operator, when overloaded as a member function.

It is important to understand that these operator functions behave like static functions

when overloaded as member functions despite not being declared with static keyword.

static functions can access only the static data members that are available to the class

even before an object is created. As we already know that new operator is called to

construct objects, it has to be available before the object is constructed. Similarly, the

delete operator is called when the object has already been destructed by calling

destructor of the object.

Example of Overloading new and delete as Non-members

Suppose we want new to initialize the contents of a memory block to zero before

returning it. We can achieve this by writing the operator functions as follows:

/* The following program explains the customized new and delete operators */

#include <iostream.h>

#include <stdlib.h>

#include <stddef.h>

// ------------- Overloaded new operator

void * operator new (size_t size)

{

 void * rtn = calloc(1, size); // Calling calloc() to allocate and initialize memory

 return rtn;

}

// ----------- Overloaded delete operator

void operator delete (void * ptr)

{

 free(ptr); // Calling free() to deallocate memory

}
main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

415

{

 // Allocate a zero-filled array

 int *ip = new int[10];

 // Display the array

 for (int i = 0; i < 10; i ++)

 cout << " " << ip[i];

 // Release the memory

 delete [] ip;

}

The output of the program is as follows.

0 0 0 0 0 0 0 0 0 0

Note that the new operator takes a parameter of type size_t. This parameter holds the

size of the object being allocated, and the compiler automatically sets its value

whenever we use new. Also note that the new operator returns a void pointer. Any

new operator we write must have this parameter and return type.

In this particular example, new calls the standard C function calloc to allocate

memory and initialize it to zero.

The delete operator takes a void pointer as a parameter. This parameter points to the

block to be deallocated. Also note that the delete operator has a void return type. Any

delete operator we write, must have this parameter and return type.

In this example, delete simply calls the standard C function free to deallocate the

memory.

Example of Overloading new and delete as Members

// Class-specific new and delete operators

#include <iostream.h>

#include <string.h>

#include <stddef.h>

const int MAXNAMES = 100;

class Name

{

public:

 Name(const char *s) { strncpy(name, s, 25); }

 void display() const { cout << '\n' << name; }

 void * operator new (size_t size);

 void operator delete(void * ptr);

 ~Name() {}; // do-nothing destructor

private:

 char name[25];

};

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

416

// -------- Simple memory pool to handle fixed number of Names

char pool[MAXNAMES] [sizeof(Name)];

int inuse[MAXNAMES];

// -------- Overloaded new operator for the Name class

void * Name :: operator new(size_t size)

{

 for(int p = 0; p < MAXNAMES; p++)

 if(!inuse[p])

 {

 inuse[p] = 1;

 return pool + p;

 }

 return 0;

}

// --------- Overloaded delete operator for the Names class

void Name :: operator delete(void *ptr)

{

 inuse[((char *)ptr - pool[0]) / sizeof(Name)] = 0;

}

{

 Name * directory[MAXNAMES];

 char name[25];

 for(int i = 0; i < MAXNAMES; i++)

 {

 cout << "Enter name # " << i+1 << ": ";

 cin >> name;

 directory[i] = new Name(name);

 }

 for(i = 0; i < MAXNAMES; i++)

 {

 directory[i]->display();

 delete directory[i];

 }

}

The output of the above program is given below.

Enter name # 1: ahmed

Enter name # 2: ali

Enter name # 3: jamil

Enter name # 4: huzaifa

Enter name # 5: arshad

Enter name # 6: umar

Enter name # 7: saleem

Enter name # 8: kamran

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

417

Enter name # 9: babar

Enter name # 10: wasim

ahmed

ali

jamil

huzaifa

arshad

umar

saleem

kamran

babar

wasim

This program declares a global array called pool that can store all the Name objects

expected. There is also an associated integer array called inuse, which contains

true/false flags that indicate whether the corresponding entry in the pool is in use.

When the statement directory[i] = new Name(name) is executed, the compiler

calls the class's new operator. The new operator finds an unused entry in pool, marks

it as used, and returns its address. Then the compiler calls Name's constructor, which

uses that memory and initializes it with a character string. Finally, a pointer to the

resulting object is assigned to an entry in directory.

When the statement delete directory[i] is executed, the compiler calls Name 's

destructor. In this example, the destructor does nothing; it is defined only as a

placeholder. Then the compiler calls the class's delete operator. The delete operator

finds the specified object's location in the array and marks it as unused, so the space is

available for subsequent allocations.

Note that new is called before the constructor, and that delete is called after the

destructor.

Overloading [] Operator to Create Arrays

We know that if we overload operators new and delete for a class, those overloaded

operators are called whenever we create an object of that class. However, when we

create an array of those class objects, the global operator new() is called to allocate

enough storage for the array all at once, and the global operator delete() is called to

release that storage.

We can control the allocation of arrays of objects by overloading the special array

versions of operator new[] and operator delete[] for the class.

Previously, while employing global new operator to create an array of objects, we

used to tell the delete operator by using the array operator([]) to deallocate memory

for an array. But it is our responsibility to provide or to overload different type of new

and different type of delete.

There is a common problem when working with arrays. While traversing elements

from the array, we might run off the end of the array. This problem might not be

caught by the compiler. However, some latest compilers might be able to detect this.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

418

 int iarray [10] ;

 for (int i = 0; i < 100; i++)

 {

 // Some code to manipulate array elements

 }

If a variable is used in the condition of the loop instead of the constant value, the

probability of that error increases. Variable might have an entirely different value than

that anticipated by the programmer.

We can overcome this problem of array bound by overloading array operator ‘[]’. As

usual before overloading, we should be clear about the functionality or semantics of

the array operator. We use array operator to access an element of array. For example,

when we write iarray[5], we are accessing the 6
th

 element inside array iarray. As we

want to check for validity of index every time, an array element is accessed. We can

do this by declaring the size of the array using #define and checking the index against

the size every time the array is accessed.

 #define MAXNUM 1000

 int iarray [MAXNUM];

Below is the syntax of declaration line of overloaded array operator:

 int& operator [] (int index) ;

In the body of this operator, we can check whether the index is greater or equal to the

MAXNUM constant. If this is the case, the function may throw an exception. At the

moment, the function only displays an error message. If index is less than MAXNUM

and greater than or equal to zero, a reference to the value at the index location is

returned.

Let’s write a class IntArray and see the array manipulation.

/*

The following example defines the IntArray class, where each object contains

an array of integers. This class overloads the [] operator to perform

range checking.

*/

#include <iostream.h>

#include <string.h>

class IntArray

{

public:

 IntArray(int len);

 int getLength() const;

 int & operator[] (int index);

 ~IntArray();

private:

 int length;

 int *aray;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

419

};

// ------------ Constructor

IntArray :: IntArray(int len)

{

 if(len > 0)

 {

 length = len;

 aray = new int[len];

 // initialize contents of array to zero

 memset(aray, 0, sizeof(int) * len);

 }

 else

 {

 length = 0;

 aray = 0;

 }

}

// ------------ Function to return length

inline int IntArray :: getLength() const

{

 return length;

}

// ------------ Overloaded subscript operator

// Returns a reference

int & IntArray :: operator [](int index)

{

 static int dummy = 0;

 if((index = 0) &&

 (index < length))

 return aray[index];

 else

 {

 cout << "Error: index out of range.\n";

 return dummy;

 }

}

// ------------ Destructor

IntArray :: ~IntArray()

{

 delete aray;

}

{

 IntArray numbers(10);

 int i;

 for(i = 0; i < 10; i ++)

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

420

 numbers[i] = i; // Use numbers[i] as lvalue

 for(i = 0; i < 10; i++)

 cout << numbers[i] << '\n';

}

This program first declares numbers of type IntArray object that can hold ten integers.

Later, it assigns a value to each element in the array. Note that the array expression

appears on the left side of the assignment. This is legal as the operator[] function

returns a reference to an integer. This means the expression numbers[i] acts as an

alias for an element in the private array and it can be the recipient of an assignment

statement. In this situation, returning a reference is not simply more efficient but also

necessary.

The operator[] function checks whether the specified index value is within range or

not. If it is within the range, the function returns a reference to the corresponding

element in the private array. If it is not, the function prints out an error message and

returns a reference to a static integer. This prevents out-of-range array references

from overwriting other regions of memory while causing unexpected program

behavior.

Tips

 The default constructor is defined by the C++ compiler automatically for

every class that has no default constructor (parameterless constructor) defined

already.

 The default constructor (parameterless constructor) is called for each element

in the array allocated with new.

 The new operator returns a void *, accepts a parameter of type size_t.

 The delete operator returns nothing (void) and accepts a pointer of void * to

the memory block.

 With new operator function, a block of memory is allocated first and then

constructor is called.

 With delete operator, destructor of the object is called first and then memory

block is deallocated.

 By overloading new and delete operators, only allocation and deallocation part

can be overridden.

 The same pointer that is returned by the new operator, is passed as an

argument to the delete operator. These rules apply to both, if operators (new

and delete) are overloaded as member or non-member operators (as global

operators).

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

421

 By overloading the array operator ([]), one can implement mechanism to

check for array bound.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

422

Lecture No. 35

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 11

 11.1, 11.2, 11.3, 11.3.1, 11.3.2,

 11.4, 11.4.1, 11.4.2, 11.4.3, 11.5

Summary

30) Streams

31) Source and Destination of streams:

32) Formatted Input and Output

33) Recap Streams

34) Buffered Input/Output

35) Methods with streams

36) Examples using streams

Streams

We have been discussing the concept of ‘Streams’ from the very beginning of the

course. In this lecture, various aspects of this concept will be discussed. There are two

types of streams i.e. input streams and output streams. Before going into minute

details, we will see what actually these two types are. You are well aware of the terms

‘cin’ and ‘cout’, used several times in our previous programs. We have used cout for

output and cin for input. Similarly, the terms of file input and file output are very

much known to us. We leaned how to write in files and how to read from files. These

are also streams. Let’s have a look on the things and functions we can do with

streams. There are some specific functions for input and output in C. printf and scanf

are normally used in C. In these functions, we have to tell what type of data we are

using and in which variable. Streams are counterpart of this in C++. The input output

system in C++ is streams. As the name applies, it’s a stream of bytes. As told earlier,

it may also be termed as a door through which program can communicate with the

outside world. For entering some data, we use cin stream while the data is read from

the keyboard and stored in some variable. To display data on the screen, we can take

help of cout.

For making the things more comprehensive, we will consider the example of a class-

room. Suppose you are sitting in the class and listening to this lecture. All of a

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

423

sudden, the students are asked by the instructor to go out of the classroom. How

would you do it? You will get up from the seat and walk through the door. But you

can see that all of you cannot go through the door simultaneously. You would go

through the door one by one. Similarly if you have to come to the classroom, you will

enter one by one and sit on the seats. In a way you are forming a sequence of people

in this case. Stream is a sequence of bytes. It is an ordered sequence. Let’s compare it

with the door example. The person who enters first will go out of the door first. The

person who enters behind someone will go out behind that person. Similarly streams

are also ordered sequence. The thing that enters first into the stream will go out first.

You should think streams as ordered sequence of bytes. Byte is a unit of measure. A

byte can store one character, so you can think of an ordered sequence of characters.

As programmers, we communicate with our programs in English through the

keyboard. We may be typing the letters, abc or the numbers, 012 on the keyboard.

These all are the characters. In the programs, we store these characters in variables of

different data types. Sometimes, these may be in some of our objects. On the

keyboard, we type the character ‘a’ that is stored in some variable c in our program.

How these two are linked? This link is formed in cin stream. Consider cin as a pipe or

a door. The character ‘a’ is entered from one side and then a conversion takes place

i.e. character is converted into its binary representation, stored in the character

variable named c. So there is an implicit conversion happening. The same thing

happens, if we have an integer i and press the key 1 from the keyboard. The digit 1

travels as a character but inside it is stored as number. You have to be careful while

dealing with this concept. We have talked about the ASCII characters. On the

keyboard, we have alphabets, numbers and symbols. When you press the number key

from the keyboard, it goes at number inside the computer. In general terms, it is a

character. It means that when you enter a key on your keyboard, a character sequence

is generated that later goes into the computer. This character sequence has some

binary representation. It does not mean a sequence of characters, but a code that goes

inside the computer on pressing a key on the keyboard. This code is called as ASCII

code. It is the binary representation of a character. Here both the characters ‘A’ and

‘B’ have some binary representation. Similarly ‘0’,’1’,’2’ have some binary

representation. It does not mean that the character representation of ‘1’ is also ‘1’. If

you are aware of the ASCII table (you have already written a program to display the

ASCII table), it will be evident that the binary representation of character ‘1’ is some

other value. Similarly all the numbers 1, 2, 3 etc have some ASCII value. So

whenever you press any key on the keyboard, its ASCII code goes inside the

computer.

Now when we use cin stream to read some number from the keyboard and store it in

the integer variable, its binary representation is ignored and the value is stored. So cin

is performing this transformation operation. It is taking a character ASCII code and

knows that it is supposed to represent some number. It has the ability to convert it into

the appropriate number before putting it into the integer variable i. What happen if we

use cin to read some value and store it in some integer variable and press some

alphabet key instead of numeric keys. Some error will occur. So in the cin stream, an

error can be detected.

Let’s us look at the collection of input and output classes. These are objects having

functions. This collection of classes and their functions are known as input-output

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

424

streams in the C++. The most common things that we have been using are cin, used to

get input from the keyboard and cout employed to display something on the screen.

So one is input stream and the other one is output stream. Since we are not going to

discuss the object- oriented programming in this course. We will not discuss the

hierarchy through which these classes are derived. We have some objects for input

stream and out put stream e.g. cin and cout respectively. Being objects, they have

member methods that we can call. They also have the operators like ‘<<’ and ‘>>’, as

used in the earlier programs. These operators ‘<<’, ‘>>’ are heavily overloaded. What

does this mean? If we write cin >> i; here i is an integer. Automatically cin will take

a character in ASCII code from the keyboard, convert it into number and store it into

the integer variable. On the other hand, if we write cin >> c; where c is a character

data type. When we press a key from the keyboard, it will be stored in c as a

character. So the stream extractor operator of cin (i.e. >>, which gets the data from the

stream and stores it into the variable) is already overloaded. It knows how to behave

with int, char, float etc data type and what sort of conversion is required. In case of

float number, we have decimal point, cin knows how to treat it besides converting and

storing it into a float variable. Similarly if we use any character pointer i.e. string, the

same >> operator has the capability of reading strings too. Obviously, one operator

can’t perform all these functions. It seems that we are using the same operator.

Internally, this operator is overloaded. It is not the same for int, char, float, string and

so on. But due to the operator overloading, its usage is very simple. We just write cin

>> i; it works perfectly.

Source and Destination of streams

As earlier said that streams are sort of door or pipe between two things. What are

these two things? For every stream, there must be some source and some destination.

For cin, the source is normally keyboard and the destination can be an ordinary

variable i.e. native-data type variable. It could be some area of memory or our own

data type, i.e. object for which we have overloaded the operator and so on. So always

there is a source and there is a destination.

cout is output stream. It takes the data from the program and presents it in human

readable form. It also has some source and destination. The source may be some file,

or the region in memory or the processor or a simple variable or our own object of our

data type. The destination is normally screen. The destination can be a file, screen, or

printer etc. You have used file input and file output so you know how it works. When

we talk about area in memory, it may be an array that we read or write. It could also

be a character string which is itself an area in the memory.

 “Every stream has an associated source and a destination”

Now we will talk about yet another concept i.e. the state of stream. What does it

mean? We say that cin >> i ; where i is an integer. When we give it the input ‘a’ and

press the key ‘enter’, the stream knows that it is a bad input. So it is capable of

signaling and setting its state specifying that some thing not good has been done. So

from a program, we can always test whether the state of stream is right or not. We

should carry out all kinds of error checking, debugging and error handling while

writing programs. We don’t want to manipulate bad data. So checking for this

everywhere will be good. For example, if we write a simple program that takes two

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

425

integers from key-board, divides one number by the other and displays the result.

Following will be the code segment.

 int i, j ;

 cin >> i ;

 cin >> j ;

 cout << i / j ;

Now we have to see what happens if the user gives a value 0 for j. We don’t want to

divide it by zero as even the computer does not know how to do it. When we have

zero in j, our program probably will work through an exception or error before

coming to a halt. If we trap this error inside the program, it would be much nicer. We

can say if j is not zero, it will be good to carry out the division. So error checking and

handling is always important. The same thing applies to I/O streams. When we

execute input or output operation, we should check whether the operation has been

carried out correctly or not. To do this, we can check the state of the stream.

Here is a simple example showing the simple use of streams.

/* Avoiding a precedence problem between the stream-insertion operator and the

conditional operator. */

#include<iostream>

int main()

{

 int x,y;

 cout<< "Enter two integers: ";

 cin>>x>>y;

 cout<<x << (x ==y ? " is" : " is not") <<" equal to "<< y;

 return 0;

 }

The output of the program:

Enter two integers: 3 3

3 is equal to 3

Formatted Input and Output

Other things that the streams provide us are a capability of formatted input and output.

We have been using cin and cout very simply without any formatting. As the output

of a program, we do not want that numbers should be printed in a way that makes it

difficult to read and understand. We want to format the output in a way that the

numbers are placed correctly at the correct position on the paper. You might have

seen the electricity bills or telephone bills printed by the computers. First the empty

bills are printed in the printing press containing headings with blank boxes to put in

the bill entries. Then the computer prints the entries in these boxes from the system.

These entries (data regarding the bill) are printed at correct places on the bill.

Sometimes, you see that the entries are properly printed. That is not a computer-fault

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

426

but only due to poor paper adjustment in the printer. The printing of these entries is

carried out by with the use of formatted output.

The second example is the display of a matrix on the screen. Suppose, we want that

the numbers of a column are displayed up and down in a column. Similarly the second

column should be displayed and so on. At first, we will format these things.

When we do word processing, we type a paragraph. The lines of the paragraph are left

justified but ragged on right hand side. In word processing, we have a choice to justify

the paragraph. By doing this, the left and right margins of the paragraph are put in a

straight line while adjusting the space between the words. Now look what happens if

we want to print a string with cout and want it left or right justified. This is what we

call formatting the output. Similarly, we want to print the value of pi which is stored

in a variable as 3.1415926. But we want that it should be printed as 3.141 that means

up to three decimal places.

There should be a method of formatting it. Thus by formatting the output, the

presented representation (which we read as human being) can be different from the

internal representation. So we can do a lot of formatting with these streams.

Besides, there are member functions with the streams. Let’s look at the member

functions of cin. The first one is the get function. We can use it by writing:

 cin.get();

The notation explains that cin is an object (cin is an object of input stream) and get is

a member function of it. This function reads a character. In this case, it reads a single

character from key board and returns it as cin is calling it. We have two variants of

this get function with cin. One is that cin.get returns a character. W e can write it as

under:

 c = cin.get() ;

The second method is cin.get(character variable) i.e. one character at a time. It works

with characters, not through number or string. It is one character at a time.

The second function of cin is the read function. This function differs from the get

function in the way that it returns a buffer instead of a single character. So we can

point to a buffer and tell the number of characters to be read. We normally provide a

delimiter, a specific character up to which we want to read. Normally we use the new

line character as a delimiter and read a single line at a time.

Thus, we have three ways of obtaining input with cin, which is an object of type input

stream (istream). If we create an object of type istream, it will also get these functions

as it is derived from the same class.

We have seen that there are many methods and operators associated with cin. The

same thing applies to cout. cout is the output stream which usually, presents the data

from the computer in human readable form. The operator associated with cout is the

stream insertion (<<). That means we insert the operator in the stream and the stream

displays the output on the screen. So the operator with cout is << and it displays the

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

427

value of the data variable that we provide it after the << sign. Thus to display the

value of an integer variable i, we can write cout << i ; If we want to format the

output, it can also be done here.

The cout has a function write with it. This function can be used if we want to write a

chunk of data from the buffer. Similarly, to output a single character, cout has the

function named put. It can be written as:

 cout.put(character variable) ;

Here, it will display the value of the character variable.

Recap streams

Streams are nothing but an ordered sequence of bytes.

They allow data to move from one part of the computer to another which may be the

screen or key board from and to, or from memory or files on disc and so on.

Byte stream is used to connect the source and the destination.

These byte streams are implemented as objects. Being objects, they do have their

member functions and have their member operators. The member operators are

heavily overloaded to allow these streams to handle a variety of data types.

The streams have a state that can be checked by us. We have used eof (end of file)

with the file reading. This is a way to check the state of the stream.

While using I/O streams, we have to include some header files. Whenever we use cin

and cout, the file iostream.h, is included in which all these classes and objects have

been defined. For the formatted input and output, we manipulate the streams. To do

stream manipulations, we have to include a header file having the name iomanip.h.

We can understand that iomanip is a short hand for input output manipulation.

Now let’s take a look at the standard streams which are provided to our programs.

Whenever we write a C++ program and include iostream.h in it, we get a stream for

input (reading) that is cin. This is a built in thing. We can use this object. Similarly,

for output (writing), we get cout. Other than these, we get some other streams by

default. These include cerr (read as c error) and clog. To understand these streams, we

have to talk about buffered input and output.

Buffered Input/Output
In computers, most of the components relate to electronics like chips, memory, micro

processor etc. There are also electro-mechanical things like disc. The key board itself

is an electro mechanical accessory. The electro mechanical parts of the computer are

normally very slow as compared to the electronic components. So there is a difference

between the two in terms of speed. Secondly, every input/output operation costs

computer time. Input/output costs and the I/O devices (keyboard, monitor and disc

etc) are slower as compared to the speed of the microprocessor and the memory being

used. To overcome this speed difference, we use the mechanism, called buffered

input/output. Suppose, we have a program which executes a loop. That loop outputs a

number in each of iteration to store in a file on the disc. If we write the output number

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

428

to the disc in each iteration, it will be the horrendously wastage of computer time. It

means that the disc is electro mechanical device. Similarly in each iteration, the

mechanical movement takes time. But if we gather the data and write it to the disc,

there will be one mechanical movement. The heads of the disc will move

mechanically once to a point and the whole chunk of data will be written on the disc.

This is the more efficient way of using the disc. So whenever we have a program that

writes the output data to the disc, it will be nice to collect the output data (numbers)

and write it on the disc in one write operation instead of writing the numbers one by

one. The area where we gather the numbers is known as buffer. The example stated in

this case is the buffered output. In this case, the output does not go directly to the disc.

We first gather the data in a buffer and then write it on the disc.

Now think about another situation. Suppose we have a program that performs very

complex calculations. It means that there is a while loop that performs so heavy

calculations that each of the iteration takes, say one minute and then provides the

result. Now we want to write that output to a file on the disc and see the iteration

number of the loop on the screen. We do not want to write the output to the disc after

each iteration. We gather the data in a buffer. In the meantime, we want to see the

loop counter on the screen. If we gather this output of counter number in a buffer, it

may happen that the buffer gathers the iteration numbers for 250 iterations before

displaying it on the screen. Thus, we see on the screen the numbers 1, 2, 3 …..250,

when 250 iterations have been performed. There are again 250 numbers gathered at

one time. We see numbers 251, 252 ……500, when 500 iterations have been

performed. When we start the program, there will be two buffers gathering data. One

buffer gathers the data to write to the disc and the other gets the data of iteration

numbers to display on the screen. As we said that each iteration takes one minute,

meaning that the iteration numbers will not be seen for a long time. Rather, these will

be shown after 250 iterations (i.e. 250 minutes). During this period, we do not show

any thing on the screen. Here, we are not sure whether the program is executing

properly as we do not see any iteration number on the screen. We want to know after

every minute that loop has executed once. So after every minute, the loop counter

should be displayed on the screen, so that at any time we could see how many

iterations have been performed. For this, we need unbufffered output on the screen.

Thus, in the same program we require buffered and unbuffered output.

Now these requirements are contradictory with different issues. These are met in our

system with the cerr object. cout is a buffered output. We cannot see it as nowadays

compilers are very intelligent. If you know UNIX, or command prompt and input

output redirection, we can actually see this in operation. Perhaps, you can create an

example to understand this. For the moment just try to understand that cout is

buffered output. It gathers data and sends it to the screen. On the other hand, cerr is

unbuffered output. It will show the data on the screen at the same time when it gets it.

So cerr is an output stream, an ostream object but unbuffered. It shows data

immediately. So we can use something like the cerr object that will show how many

loops have been executed. It will use something like cout to write on the disk to buffer

the output. In this case, we are getting efficiency in addition to information. Normally

we use cerr object in C++ for this purpose. Besides, we also have clog. It is also

known as standard log having detailed information of the log. To collect information

of the program, we write it with clog. Normally when we execute our programs- cout,

cerr and clog, all are connected to screen. We have ways to direct them at different

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

429

destinations. That depends on the operating system. Suppose, we specify the buffer

size, normally the operating system or compiler does this for us. A typical size of

buffer is 512 bytes. When the information is of 512 byte size, output will take place.

But in the program, we may want at some point that whatever is in the buffer, show

them. Is there a way of doing that? The normal mechanism is flush. Flush the stream.

The flush command forces the data from the buffer to go to its destination which is

normally a screen or file and make the buffer empty.

Uptil now, we have been using two things to end the line. One is new line character

i.e. “\n”. When we are displaying something on the screen, it makes the next output to

start from the next line. The cursor moves to the left margin of the next line on the

screen. New line is just a character. The other one was endl. If we write cout << endl;

It seems that the same thing happens i.e. the cursor moves to the left margin of the

new line. But endl actually does something else. It flushes the output too. As a result,

it seems that cout is unbuffered i.e. its output is immediately available on the screen.

Depending on the compiler and operating system, you may or may not see the

buffered effect. But one thing is clear that while reading the source code, you will

know where cout is used and where cerr. Typically, that is also the programming style

where the output of cerr is informative and small. It shows that where is the control in

the program. The output of cout is more detailed and the actual output of the program.

There are benefits of these things in the code. In case of cin, it is alone. For output, we

have cout, cerr and clog. In DOS, we have two more output streams i.e. caux

(auxiliary input output stream) and cprn (printer output). These are no more relevant

now.

Predefined Stream Objects:

Object Meaning

cin Standard input

cout Standard output

cerr Standard error with unbuffered output.

clog Standard error with buffered output

caux Auxiliary (DOS only)

cprn Printer(DOS only)

Now let’s take a look at the operators associated with these streams. We have been

using the stream insertion operators ‘<<’ with cout. We need to understand that how

these operators are implemented. Using cout, we can chained the output. It means that

we can write as cout << “The value of the first integer is “ << i; This is the single

cout statement. How does that work? What happens is the first part goes to cout. In

this case, it is the string “The value of the first integer is”. The data travels in the

direction of the arrows. This string is inserted in the stream and displayed on the

screen. What about the rest of the statement i.e. << i; this again needs cout on the left

side to be executed. It should look like as cout << i; Once, we have defined that this

is the behavior expected by us. Then, we understand that this is exactly the way it has

been programmed. The stream insertion operator ‘<<’ is overloaded for the output

stream and it returns the reference of the output stream. The syntax of stream insertion

operator is:

 ostream& ostream::operator << (char *text);

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

430

The important thing to note is that this operator returns the reference to the ostream

object itself. Whenever we write a chained output statement, it is executed from left to

right. So cout << “ The value of the first integer is” is processed first from left to

right. The process is that this character string is displayed on the screen. As per the

prototype and definition, it returns the reference to the ostream object. In this case, the

object was cout, so a reference to the cout object is returned. Now the rest of the

statement becomes as cout << i; It is processed quite nicely. This allows the stream

insertions to be chained. It is also applicable to the input. So if we say something like

cin >> i >> j; both i and j are integers. Now again, it is processed from left to right.

This is the istream and the extraction operator will return the reference to the istream

object i.e. cin. So at first, the cin >> i is processed which will return the reference to

the cin object. The rest of the statement seems as cin << j; It is important to

understand how these operators work. You can see their prototypes that they return

iostream objects themselves. That is the why, we can chain them. Now let’s see what

are the other various methods associated with these input output streams.

Methods of streams
There are some other functions associated with cin stream. We have used some of

them. We have used get() and read() methods with input stream. Another member

function of cin is getline(). It reads a complete buffer i.e. the number of character

specified up to a delimiter we specify. We can write something like:

 cin.getline(char *buffer, int buff_size, char delimiter = ‘\n’)

The character data is stored in *buffer. buff_size represents the number of characters

to be read. If we specify its value 100, then getline will read 99 characters from the

keyboard and insert a null character in the end. As you know, in C++ every character

string ends with a null character. We can also give it a delimiter. Sometimes, we may

want to read less character. Normally, the delimiter is the new line character. So while

typing on the keyboard, if we press the enter key then it should stop reading further

and put the data into the variable buffer. So there is a getline fiunction.

There are some other interesting functions also. When we use cin.get(), a character is

read. We can throw back the character gotten by this get function by using the unget()

function. So we can use cin.unget() that will return the most recently (last) gotten

single character.

We have a function peek(), also written as cin.peek(); The purpose of this function is

that we can see the next character that we are going to get. This function returns the

next character that would be read if we issue cin.get().

All these functions (getline, get, read, unget and peek) are implemented as member

functions of the input class.

Similarly, there are functions associated with cout. We have cout.putline(); which

outputs a buffer. Actually we have no need of this function because cout, itself, knows

how to handle character strings. Then we have cout.write(); which can perform a raw,

unformatted output. The function cout.put(); is like a formatted output. It performs

character by character output. We can do many formatting conversions by using the

stream insertion operator (i.e. <<) with cout. We can write an overloaded function of

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

431

stream insertion (<<) to input or output a complex number. We know that a complex

number has two parts i.e. real and imaginary. We can write the overloaded function

such that if we give two numbers with space between them it could read it. We can

also write it as that it could read two numbers (that are real and imaginary parts of a

complex number) separated by comma. Thus there may be different ways to write the

overloaded operator.

The white space character is very significant. We can show it by a simple example.

Suppose we have an array name of 60 characters. We get a name from the user in this

array by using cin and then display this string by cout. The code segment for this

purpose can be written as:

 char name [60] ;

 cin >> name ;

 cout << name ;

Now when the user enters the name, suppose it enters ‘naveed malik’ that is a name

containing two words with a space between them. When we display this name by

using cout, only ‘naveed’ is displayed on the screen. It means that only one word

‘naveed’ was stored in the array. The reason for it that the streams (cin, cout) are

sensitive to white space character that is treated as a delimiter. Now where is the

second word ‘malik’. It has not got deleted yet. It is in the buffer of the stream. This

example will read like the following:

 char nam1 [30], name2 [30] ;

 cin >> name1 >> name2 ;

Thus, we have two character arrays now. We can write ‘naveed malik’ and press

enter. The first part before space (naveed) will go to the first array name1 when that

array is used with cin. We will write another cin with name2 and the second part

(malik) will go to the second array name2. So things don’t disappear. They stay in the

buffer till you actually expect them. We have to be careful about that.

Examples using streams
A simple example showing the use of getline function.

// A simple example showing the use of getline function.

#include <iostream.h>

int main()

{

 const int SIZE = 80;

 char buffer[SIZE];

 cout << " \n Enter a sentence: \n" ;

 cin.getline(buffer, SIZE);

 cout << " The sentence entered is: \n" << buffer << endl;

 return 0;

}

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

432

Output of the program.

Enter a sentence:

this is a test

The sentence entered is:

this is a test

A simple example showing the use of read and write functions.

// A simple example showing the use of read and write functions.

#include <iostream.h>

int main()

{

 const int SIZE = 80;

 char buffer[SIZE];

 cout << " \n Enter a sentence: \n" ;

 cin.read(buffer, 20);

 cout << " The sentence entered was: \n";

 cout.write(buffer, cin.gcount());

 cout << endl;

 return 0;

}

Output of the program.

Enter a sentence:

This is a sample program using read and write functions

The sentence entered was:

This is a sample pro

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

433

Lecture No. 36

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 11

 11.6, 11.7

Summary

37) Stream Manipulations

38) Manipulators

39) Non Parameterized Manipulators

40) Parameterized Manipulators

41) Format State Slags

42) Formatting Manipulation

43) Showing the Base

44) Scientific representation

45) Exercise

Stream Manipulations

After having a thorough look into the properties and object definition of I/O streams,

we will discuss their manipulations. Here, there is need of some header files to

include in our program the way, cin and cout are used. We include iostream.h and

fstream.h while using file manipulations. In case of manipulation of the I/O streams,

the header file with the name of iomanip.h is included. It is required to be included

whenever there is need of employing manipulators.

As discussed earlier, we can determine the state of a stream. The states of the stream

can be determined. For example, in case of cin, we can check where the end of file

comes.

For state- checking, these stream objects have set of flags inside them. These flags can

be considered as an integer or long integer. The bit position of these integers specifies

some specific state. There is a bit for the end of file to test. It can be written as under:

 cin.eof() ;

It will return the state of end of file. The bit will be set if the file comes to an end.

Similarly, there is a fail bit. This bit determines whether an operation has failed or not.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

434

For example, an operation could be failed due to a formatting error. The statement

cin.fail; will return the value of the fail bit. As this statement returns a value, we can

use it in an ‘if statement’ and can recover the error. Then there is a bad bit. This bit

states that data has lost. The presence of this bit means that some data has lost during

I/O operation. So we can check it in the following manner.

 cin.bad();

It can be used in parentheses as a function call that will allow us to check whether the

operation failed or successful. Similarly we can also check for’ good’, that is a bit

showing that everything is good. This bit will be set if fail and bad bits are not set. We

can check this bit as cin.good ; and can find out whether the input operation was

successful. If some bit like bad has been set, there should also be a mechanism to

clear it. For this, we have

 cin.clear() ;

as a member function for these objects. This will reset the bits to their normal good

state. This is a part of checking input stream.

Manipulators

Whenever carrying out some formatting, we will want that the streams can manipulate

and a number should be displayed in a particular format. We have stream

manipulators for doing this. The manipulators are like something that can be inserted

into stream, effecting a change in the behavior. For example, if we have a floating

point number, say pi (), and have written it as float pi = 3.1415926 ; Mow there is

need of printing the value of pi up to two decimal places i.e. 3.14 . This is a

formatting functionality. For this, we have a manipulator that tells about width and

number of decimal points of a number being printed. Some manipulators are

parameter less. We simply use the name of the manipulator that works. For example,

we have been using endl, which is actually a manipulator, not data. When we write

cout << endl ; a new line is output besides flushing the buffer. Actually, it

manipulates the output stream. Similarly flush was a manipulator for which we could

write cout << flush that means flushing the output buffer. So it manipulates the

output.

A second type of manipulators takes some argument. It can be described with the help

of an example. Suppose we want to print the value of pi up to two decimal places. For

this purpose, there should be some method so that we can provide the number i.e. two

(2) up to which we want the decimal places. This is sent as a parameter in the

manipulators. Thus we have the parameterized manipulators.

Let’s have a look on what streams do for us. We know that streams are like ordered

sequence of bytes and connect two things i.e., a source and a destination. In the

middle, the stream does some conversion. So it may take some binary representation

of some information and convert it into human readable characters. It may also take

characters and convert them into an internal representation of data. With in the

conversion of data, we can do some other things. For example, you might have seen

that if a system prints computerized cheques, it puts some special characters with the

numbers. If there is a cheque for four thousand rupees, this amount would be written

on it as ****4000.00. The idea of printing * before the amount is that no body could

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

435

insert some number before the actual amount to change it. As we don’t want that

somebody has increased the amount on the cheque from Rs 4000 to Rs 14000.The

printing of * before the amount is a manipulation that we can do with input or output

objects. We can also tell the width for a number to be printed. So there are many

conversions that we can do. We can use fill characters like * as mentioned in the

example of cheque printing. To accomplish all these tasks, there are different

methods. So it becomes a little confusing that the same work is being done through 2-

3 different methods. Some are inline manipulators like endl. We can use it with <<

and write inline as cout << endl ; The same work could be done with the flush

method. We could also write cout.flush ; Thus it is confusing that there is an inline

manipulator and a function for the same work.

Non-Parameterized Manipulators

Let’s start with simple manipulators. We have been dealing with numbers like

integers, floats etc for input and out put. We know that our number representations are

associated with some base. In daily life, the numbers of base 10 are used in arithmetic.

When we see 4000 written on a cheque, we understand that it is four thousands

written in the decimal number system (base 10). But in the computer world, many

systems are used for number representation that includes binary (base 2), octal (base

8), decimal (base 10) and hexadecimal (base 16) systems. A simple justification for

the use of these different systems is that computers internally run on bits and bytes. A

byte consists of eight bits. Now if we look at the values that can be in eight bits. 256

values (from 0 to 255) can be stored in eight bits. Now consider four bits and think

what is the highest number that we can store in four bits. We know that the highest

value in a particular number of bits can be determined by the formula 2
n
 - 1 (where n

is the number of bits). So the highest value that can be stored in four bits will be 2
4
 - 1

i.e. 15. Thus the highest value, we can store in four bits is 15 but the number of

different values that can be stored will be 2
n
 i.e. 16 including zero. Thus we see that

while taking half of a byte i.e. four bits, 16 (which is the base of hexadecimal system)

different numbers can be stored in these four bits. It means that there is some

relationship between the numbers that have a base of some power of two. So they can

easily be manipulated as bit format. Thus four bits are hex. What about eight (octal)?

If we have three bits, then it is 2
3
 = 8, which is the base of octal system. Thus, we can

use three bits for octal arithmetic.

We can use manipulators to convert these numbers from one base to the other. The

manipulators used for this purpose, can be used with cin and cout. These are non-

parameterized manipulators. So if we say the things like int i = 10 ; Here i has the

decimal value 10. We write cout << i ; and 10 is being displayed on the screen. If we

want to display it in octal form, we can use a manipulator here. If we write

 cout << oct << i ;

it will display the octal value of i (10) which is 12. This manipulator converts the

decimal number into an octal number before displaying it. So the octal representation

of 10 which is 12, will be displayed on the screen. Similarly if we write

 cout << hex << i ;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

436

Here hex stands for the hexadecimal. hex is the manipulator that goes into the out put

stream before i and manipulates the stream by converting the decimal number into a

hexadecimal number. As a result, the hexadecimal value of 10 is displayed on the

screen. If we have a number in octal or hexadecimal system , it can be converted into

a decimal number by putting the dec manipulator in the stream like

 cout << dec << i ;

These (oct, hex and dec) are very simple inline manipulators without any argument.

There is also a manipulator for white space. The white space has a special meaning. It

is a delimiter that separates two numbers (or words). In cin and cout, the white space

acts as a delimiter. If we want that it should not act as a delimiter, it can used as a ws

manipulator. This manipulators skips white space. This manipulator takes no

argument. This ws manipulator is sometime useful but not all the times. The following

table shows the non-parameterized manipulators and their description.

Manipulator Domain Effect

dec In / Out Use decimal conversion base

hex In / Out Use hexadecimal conversion base

oct In / Out Use octal conversion base

endl Output Inserts a new line and flush the stream

ends Output Terminate a string with NULL

flush Output Flush the stream

ws Input Skip leading whitespace for the next

string extraction only

The base becomes important while doing programming of scientific programs. We

may want that there is the hexadecimal presentation of a number. We have discussed

the justification of using hexadecimal or octal numbers, which is that they match with

bits. Here is another justification for it. Nowadays, computers are just like a box with

a button in front of them. A reset button is also included with the main power button.

While seeing the pictures or in actual Miniframe and mainframe computers, you will

notice that there is a row of switches in front of them. So there are many switches in

front of these computers that we manipulate. These switches are normally setting

directly the values of registers inside the computer. So you can set the value of

register as 101011 etc by switching on and off the switches. We can do that to start a

computer or signaling something to computer and so on. There are a lot of switches in

front of those computers ranging between 8 to 16. You have to simply remember what

is the value to start the computer. Similarly, it will require the reading the

combinations of switches from the paper to turn on the computer. This combination

tells you which switch should be on and which should be off. As a human being

instead of remembering the whole pattern like 10110000111 etc, it could be easy to

remember it as 7FF. Here we are dealing with HEX numbers. For the digit 7, we need

four bits. In other words, there is need to set four switches. The pattern of 7 is 0111.

So we set 7 with this combination. For F, all the four bits should be on as 1111 and so

on. Thinking octal and hexadecimals straight away maps to the bits. It takes a little bit

of practice to effectively map on the switches. On the other hand, decimal does not

map to those bits. What will be its octal number in case of decimal number 52.? You

have to calculate this. What is the binary representation of 52? Again you have to

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

437

calculate. There are a lot of things which you have to calculate. On the hand, if we say

7ABC in case of HEX, we are mapping the number straight away on four bits. In octal

system, we map the number on three bits. A is ten so it will be 1010 so you can

quickly set the switches. It may not be relevant today. But when you are working with

big computers, it will become quite relevant. There are many times when we have to

manipulate binary data using mechanical device while thinking in hexadecimal and

octal terms. In the language, you have the facility to set the base. You can use

setbase(), hex, oct, dec and setf. There are many ways of doing the same thing.

Programmers write these languages. Therefore they make this facility available in the

language as built in.

Parameterized Manipulators

Suppose we want to print the number 10 within a particular width. Normally the

numbers are written right justified. In case of no action on our part, cout displays a

number left justified and in the space required by the number. If we want that all

numbers should be displayed within the same particular width, then the space for the

larger number has to be used. Let’s say this number is of four digits. Now we want

that there should be such a manipulator in the output that prints every number in a

space of four digits. We have a manipulator setw (a short for set width), it takes as an

argument the width in number of spaces. So to print our numbers in four spaces we

write

 cout << setw(4) << number ;

When printed, this number gets a space of four digits. And this will be printed in that

space with right justification. By employing this mechanism, we can print values in a

column (one value below the other) very neat and clean.

Now in the example of printing a cheque, we want that the empty space should be

filled with some character. This is required to stop somebody to manipulate the

printed figure. To fill the empty space, there is need of manipulator setfill. We can

write this manipulator with cout as the following

cout << setfill (character) ;

where the character is a single character written in single quotes. Usually, in cheque

printing, the character * is used to fill the empty spaces. We can use any character for

example, 0 or x. The filling character has significance only if we have used setw

manipulator. Suppose, we are going to print a cheque with amount in 10 spaces. If

the amount is not of 10 digits, the empty space will be filled with *. Thus the usage of

setfill is there where we use setw for printing a number in a specific width. So if we

want to print an amount in 10 spaces and want to fill the empty spaces with *, it can

be written as under.

cout << setfill(*) << setw(10) << amount ;

Thus the manipulators can also be of cascading nature. The stream insertion operator

(<<) is overloaded and every overload of it returns a reference to the cout object itself.

This means that while working from left to right, first the fill character will be set

returning a reference to cout . Later, its width will be set to 10 character and return a

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

438

reference to cout again. Finally, the amount will be displayed in the required format.

Thus, we have manipulated the stream in two ways. Example of a pipe with two

bends can help it understand further. Now whatever figure goes into it, its width and

the fill character is set and things are displayed in the space of 10 characters. If we

want to print an amount of Rs 4000 on the cheque, it will be printed on the cheque as

******4000. Thus, we have two manipulators, setw and setfill which are used with

cout.

Let’s further discuss the same example of cheque. In real world, if we look at a

computer printed cheque , the amount is printed with a decimal point like 4000.00

even if there is no digit after decimal point. We never see any amount like 4000.123,

as all the currencies have two- digit fractional part. Thus, we examine that the

fractional part has been restricted to two decimal places. The decimal digits can be

restricted to any number. We have a manipulator for this purpose. The manipulator

used for this purpose is setprecision. This is a parameterized manipulator. It takes an

integer number as an argument and restrict the precision to that number. If we write

cout << setprecision (2) << float number ;

The above statement will display the given float number with two decimal places. If

we have the value of pi stored in a variable, say pi, of type float with a value of

3.1415926 and want to print this value with two decimal places. Here, manipulator

setprecision can be used. It can be written as under.

cout << setprecision (2) << pi ;

This will print the value of pi with two decimal places.

Now think about it and write on the discussion board that whether the value of pi is

rounded or truncated when we print it with setprecision manipulator. What will be the

value of pi with five decimal places and with four decimal places? Will the last digit

be rounded or the remaining numbers will be truncated?

At this point, we may come across some confusion. We have learned the inline

manipulators that are parameter less. For these, we simply write cout << hex <<

number; which displays the number in hexadecimal form. There is also a

parameterized manipulator that performs the same task. This manipulator is setbase. It

takes the base of the system (base, to which we want to format the number) as an

argument. Instead of using oct, dec and hex manipulators, we can use the setbase

manipulator with the respective base as an argument. So instead of writing

cout << oct << number ;

we can write

 cout << setbase (8) << number ;

The above two statements are equivalent in the way for having the same results. It is a

matter of style used by one of these manipulators. We can use either one of these,

producing a similar effect. The cout << setbase(8) means the next number will be

printed in the base 8. Similarly cout << setbase(16) means the next number will be

printed in hexadecimal (base 16) form. Here a point to note is that setbase (0) is the

same as setbase(10).

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

439

Following is the table, in which the parameterized manipulators with their effect are

listed.

Manipulator Domain Effect

resetioflags(long

f)

In / Out Clear flags specified in f

setbase (int b) In / Out Set numeric conversion base to b (b may be 0, 8, 10 or

16)

setfill (int c) Output Set fill character to c

setiosflags(long f) In / Out St flags specified in f

setprecision (int

p)

Output Set floating point precision to p

setw (int w) Output Set field width to w

Format State Flags

We have discussed that there are flags with the stream objects. This set of flags is

used to determine the state of the stream. The set includes good, fail, eof etc that tells

the state of the stream. There is also another set of flags comprising the ones for

input/output system (ios). We can use setioflag, and give it as an argument a long

number. Different bit values are set in this number and the flags are set according to

this. These flags are known as format state flags and are shown in the following table.

These flags can be controlled by the flags, setf and unsetf member functions.

Format state flag Description

ios::skipws Skip whitespace character on an input stream.

ios::left Left justify output in a field, padding characters appear to the

right if necessary.

ios::right Right justify output in a field, padding characters appear to the

left if necessary.

ios::internal Indicate that a number’s sign should be left justified in a field

and a number’s magnitude should be right justified in that same

field (i.e. padding characters appear between the sign and the

number).

ios::dec Specify that integers should be treated as decimal (base 10)

values.

ios::oct Specify that integers should be treated as octal (base 8) values.

ios::hex Specify that integers should be treated as hexadecimal (base 16)

values.

ios::showbase Specify that the base of a number is to be output ahead of the

number(a leading 0 for octals, a leading 0x or 0X for

hexadecimals).

ios::showpoint Specify that floating-point numbers should be output with a

decimal point. This is normally used with ios::fixed.

ios::uppercase Specify that uppercase letters (i.e X and A through F) should be

used in the hexadecimal integers and the uppercase E in

scientific notation.

ios::showpos Specify that positive and negative numbers should be preceded

by a + or - sign, respectively.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

440

ios::scientific Specify output of a floating-point value in scientific notation.

ios::fixed Specify output of a floating-point value in fixed point notation

with a specific number of digits to the right of the decimal

point.

Let’s talk about more complicated things. We discussed a parameterized manipulator

setw that sets the width to print in the output. There is an alternative for it i.e. the

member function, called ‘width()’. This function also takes the same parameter and an

integer, in which width the things are to display or read. This function applies to both

input and output stream. For this, we write cin.width (7). This will create a format

field of the width of 7 characters for an input. Now we write cout.width (10) ; this will

set the width of output field to 10. With it, the next number to be printed will be

printed in 10 spaces. Thus setw, inline manipulator has the alternative function

cin.width and cout.width with single argument.

It equally applies to the setprecision. This is the parameterized, inline- manipulator

that sets the places after the decimal point. There is a member function as well in

these objects that is precision. The setprecision is an inline manipulator, used along

with stream insertion (<<). If we want to do the same thing with a function call,

cout.precision(2) is written. It has the same effect as that of cout << setprecision (2).

Thus we have different ways of doing things.

We have used setfill manipulator. Here is another member- function i.e. cout.fill. The

behavior of this function is exactly the same. We simply write cout.fill(‘*’) ; identical

to cout << setfill(‘*’). The filling character is mostly used whenever we use financial

transactions but not necessarily. We can also use zero to fill the space.

So fill and setfill, width and setw, precision and setprecision and almost for every

inline manipulator, there are member functions that can be called with these streams.

The member functions are defined in iostream.h. However, the manipulators are

defined in iomanip.h. Normally we have been including iostream.h in our programs to

utilize the member functions easily. But inclusion of a header file ‘iomanip.h file is

must for the use of manipulators.

We should keep in mind that when we can write inline manipulators in the following

fashion.

cout << setw (7) << i ;

And in the next line we write

cout << j ;

Here the setw manipulator will apply to i only and not after that to j. This means that

inline manipulators apply only to the very next piece of data i.e. output. It does not

apply to subsequent output operations.

Formatting Manipulation

We can adjust the output to left side, right side or in the center. For this purpose, we

have a member function of the object whose syntax is as under:

 cout.setf(ios:: flag, ios:: adjust field)

The setf is a short for set flag. The flags are long integers, also the part of the objects.

They are the bit positions, representing something. Here we can set these flags. The

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

441

flags of adjustfield are set with values i.e. left, right, left | right and internal. The

description of these is as follows.

Value of flag Meaning Description

left Left-justify

output

Justifies the output to left side

right Right-justify

output

Justifies the output to right side

left | right Center output Centralized the output

internal Insert padding Places padding between signs or base indicator

and the first digit of a number. This applies only

to number values and not to character array.

Following is the code of a program that shows the effects of these manipulators.

//This program demonstrate the justified output

#include <iomanip.h>

#include <iostream.h>

{

 int i = -1234;

 cout.setf(ios::left, ios::adjustfield);

 cout << "|" << setw(12) << i << "|" << endl;

 cout.setf(ios::right, ios::adjustfield);

 cout << "|" << setw(12) << i << "|" << endl;

 cout.setf(ios::internal, ios::adjustfield);

 cout << "|" << setw(12) << i << "|" << endl;

 cout.setf(ios::left | ios::right,

 ios::adjustfield);

 cout << "|" << setw(12) << i << "|" << endl;

 cin >> i ;

 }

Following is the output of the above program.

|-1234 |

| -1234|

|- 1234|

| -1234|

We have discussed two types of manipulators for base, the parameter less manipulator

in which we look for oct, dec and hex. On the other hand, there is a parameterized

manipulator setbase which takes an integer to set the base. It uses 0 or 10 for decimal,

8 for octal and 16 for hexadecimal notations.

Now we have a generic function setf that sets the flags. We can write something like

 cout.setf(ios::hex)

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

442

The hex is defined in ios. It has the same effect. It sets the output stream, in this case

cout, to use hexadecimal display for integers. So it is the third way to accomplish the

same task. The use of these ways is a matter of programming style.

Showing the base

Now there should be someway to know which base has the number output by the

programmer. Suppose we have a number 7ABC, then it be nothing but hexadecimal.

What will be the nature of 7FF. It is hexadecimal. However, the number 77 (seven

seven) is a valid number in all of different basis. We have a built-in facility showbase.

It is a flag. We can set the showbase for output stream that will manipulate the

number before displaying it. If you have the showbase falg on (by default it is off), a

number will be displayed with special notations. The setf function is used to set the

flag for the base field. Its syntax is as under:

 cout.setf(ios::base, ios::basefield);

Here base has three values i.e. oct, dec and hex for octal, decimal and hexadecimal

systems respectively. If the basefield is set to oct (octal), it will display the number

with a preceding zero. It shows that the number is in octal base. If the basefield is set

to hex (hexadecimal), the number will be displayed with a preceding notation 0x. The

number will be displayed as such if the basefield is set to dec (decimal). If there is a

number, say 77, it will be difficult to say that it is in octal, decimal or hexadecimal

base, a valid number for all the three systems. However, if we output it with the use of

showbase, it will be easy to understand in which base the output number is being

represented. The following example, demonstrates this by showing the number (77)

along with the base notation.

/* This program demonstrate the use of show base.

It displays a number in hex, oct and decimal form.

*/

#include <iostream.h>

{

 int x = 77;

 cout.setf(ios::showbase);

 cout.setf(ios::oct,ios::basefield); //base is 8

 cout << x << '\n'; //displays number with octal notation

 cout.setf(ios::hex,ios::basefield); //base is 16

 cout << x << '\n'; //displays number with hexadecimal notation

 cout.setf(ios::dec,ios::basefield);

 cout << x << '\n';

}

Following is the output of the program.

 0115

0x4d

77

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

443

Scientific Representation

When the numbers get bigger, it becomes difficult to write and read in digits format.

For example, one million will be written as 1000000. Similarly hundred million will

be 100000000 (one with eight zeros). How will we display the number which is of 20-

digit long? For this, we use scientific notation. To do it, a manipulator ios:: scientific

can be used. If the flag in setf to the scientific is set, it can be written as

cout.setf(ios::scientific, ios::floatfield) ;

Then the floating point numbers will be displayed in scientific notation. A number in

scientific is like 1.946000e+009. So we can set the state of output stream to use

scientific notation for outputting a number.

To do the scientific notation off and restore the default notation, we set the flag in setf

function to fixed (which is a short for fixed point notation). This can be written as

cout.setf(ios::fixed, ios::floatfield) ;
Uppercase/Lowercase Control

Similarly, we have a manipulator ios::uppercase. While using this manipulator, the e

in scientific notation is written in uppercase i.e. E. If we are using hexadecimal

numbers, then the characters of it will be displayed in uppercase letters as A, B, C, D,

E and F.

Exercise

 We have been using matrices i.e. a two dimensional array. As an exercise, try

to print out a matrix of three rows and three columns, in such a way that it

should be nicely formatted. The numbers should be aligned as we write it in a

neat and clean way on the paper. You can use the symbol | at the start and end

of each row as we don’t have a so big square bracket to put around three rows.

To be more elegant to print a matrix, we can use a proper graphic symbol to

put square brackets around the matrix instead of using | symbol. In the ASCII

table, there are many symbols that we can use to print in our programs. We

have the integer values of these symbols in the table. Suppose you have a

value 135 of a symbol. Now to print this symbol, press the ‘alt’ key and

keeping the key pressed enter the integer value i.e. 135 from the num pad of

the key board, release the ‘alt’ key. Now you will see that symbol on the

screen. For the value 135, the symbol is ç. In programming, we can provide

this symbol to be printed as a single character in single quotes. For this, put a

single quote and then enter the symbol in the way stated above and then put

the single quote. It will be written as ‘ç’. Find out proper symbols from the

ASCII table that can comprise to put a square bracket around the matrix.

 Write simple programs to demonstrate the use of different manipulators and

examine their effects.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

444

Lecture No. 37

Reading Material

Deitel & Deitel - C++ How to Program Chapter 11

 11.3, 11.3.1, 11.4, 11.4.1

Summary

 Overloading Insertion and Extraction Operators

 Example 1

 Example 2

 Tips

Overloading Insertion and Extraction Operators

We are already aware that while overloading operators, functions are written and

spirit or behavior of the operators (+, -, *, /) is maintained in their implementations.

Similarly the operator’s spirit is kept intact while overloading stream insertion and

extraction operators.

We get an integer as input by writing the following lines:

int i;

cin >> i;

Have a look on the stream extraction operator’s (>>) behavior here. The similar

behavior is maintained when we overload this stream extraction operator (>>) or

stream insertion operator (<<).

There are couple of important things to take care of, before starting implementation

for overloading an operator:

The first thing to see is the type of the operator i.e. whether the operator is binary or

unary. The binary operator takes two operands while unary operator takes one. The

number of operands for an operator cannot be changed while overloading it.

Secondly, the programmer has to take care of, what an operator is returning back. For

example, in case of addition (+), it returns back the result of addition. So the

cascading statement like a + b + c; can be executed successfully. In this case, at first,

b + c is executed. The result of this operation is returned by the operator +, to add it

in the variable a. So in actual, the operation is carried out as:

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

445

a + (b + c).

We want to overload stream extraction (>>) and insertion (<<) operators which are

actually already overloaded. See the code lines below:

1. int i = 123;

2. double d = 456.12;

3. float f = 789.1;

4.

5. cout << i << “ “;

6. cout << d << “ “;

7. cout << f;

You can see the lines 5, 6 and 7. The same stream insertion operator (<<) has been

used with different data types of int, double and float. Alternatively, these lines (5, 6

and 7) can be written within statement of one line:

 cout << i << “ “<< d << “ “<< f;

Similarly, the stream extraction operator (>>) is used with different data types in the

following manner:

 cin >> i;

 cin >> d;

 cin >> f;

Here, stream extraction operator is used with different data types of int, double and

float. The three lines given above can be written in one cascading line:

 cin >> i >> d >> f;

The file iostream.h contains the operator overloading declarations for these stream

insertion (<<) and extraction (>>) operators for native data types. The declarations

inside this file look like the following:

 istream& operator>>(char*);

 istream& operator>>(unsigned char* p) { return operator>>((char*)p); }

 istream& operator>>(signed char*p) { return operator>>((char*)p); }

 istream& operator>>(char& c);

 istream& operator>>(unsigned char& c) {return operator>>((char&)c);}

 istream& operator>>(signed char& c) {return operator>>((char&)c);}

 istream& operator>>(int&);

 istream& operator>>(long&);

#if defined(__GNUC__)

 __extension__ istream& operator>>(long long&);

 __extension__ istream& operator>>(unsigned long long&);

#endif

 istream& operator>>(short&);

 istream& operator>>(unsigned int&);

 istream& operator>>(unsigned long&);

 istream& operator>>(unsigned short&);

#if _G_HAVE_BOOL

 istream& operator>>(bool&);

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

446

#endif

 istream& operator>>(float&);

 istream& operator>>(double&);

 istream& operator>>(long double&);

 istream& operator>>(__manip func) {(*func)(*this); return *this;}

 istream& operator>>(__imanip func) { return (*func)(*this); }

 istream& operator>>(streambuf*);

In order to use these insertion (<<) and extraction (>>) operators with classes, we

have to overload these operators.

As discussed in the previous lectures, there are two ways of overloading operators,

either as class members or non-members. But these insertion (<<) and extraction (

>>) operators cannot be overloaded as members. The reason is obvious as the driving

object is on the left side of the operator for member operators. In case of stream

insertion (<<) and extraction operators (>>), the object on the left side is either cin

or cout usually. These cin and cout objects will remain intact for our overloaded

insertion and extraction operators. Therefore, the overloaded operators cannot be

member operators. Now, we are left with no option but to overload these operators as

non-members. While overloading these operators as non-members, either we can use

setters and getters of the objects (provided that they are present as part of the class

interface) or declare the operator as the friend of the class to access the private

members directly. Remember, we can only declare friends of our classes and not

those of library classes e.g., we cannot declare a function as a friend of istream or

ostream class. Normally, when define a class (declare functions as friends inside it),

the friend functions are defined below the class’s definition.

Here we are going to declare our overloaded operators as friends of our classes. The

object on the left of the operator will be a stream object like cin, cout and on the right

will be the object of our class.

We should be clear about the return type of the overloaded operator as the operator

function has to support the cascading operations. In case of stream insertion operator (

<<), the operator function returns a reference to the ostream to support cascading

operations. An example prototype of stream insertion operator (<<) is as under:

ostream & operator << (ostream & output, Vehicle v);

cout object will be replaced with its reference output, therefore, in the definition of

this operator function, output will be used as cout. Note that the first parameter is

passed by reference and the compiler does not allow it to pass by value. The first

object is returned back by reference by the operator function. That’s why, the

compiler does not allow to pass first parameter by value. We must be remembering

that the objects passed by value are local to the function and destroyed when the

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

447

function returns. Therefore, it does not make sense to return references of the objects,

passed by value to the function.

As we are declaring this operator function as friend of our class Vehicle, the private

members of Vehicle will be accessible to this operator function. For example, tyre is a

private data member of type int inside Vehicle class and inside the operator function’s

implementation, we can access it by simply writing v.tyre as:

 output << v.tyre;

The above statement actually is:

 cout << v.tyre;

tyre is of native data type int. The output will work for native data types as it is

actually cout, which is overloaded for all native data type. We are constructing a

building using the basic building blocks. We can use the already used bricks to

construct new walls. Similarly, while writing out programs, we implement our

overloaded operators using the already available functionality of native data types.

Here is how we overload stream insertion operator (<<) for our Date class:

#include <iostream.h>

class Date

{

 friend ostream& operator << (ostream & os, Date d);

 // this non-member function is a friend of class date

 . . .

 . . .

};

ostream & operator << (ostream & os, Date d)

{

 os << d.day << ”.” << d.month << ”.” << d.year; // access private

data

// as friend

 return os;

};

Likewise, we can overload stream extraction operator (>>). All the conditions for

overloading this operator are similar to that of stream insertion operator (>>). It

cannot be a member operator, always a non-member operator function, declared as

friend of the class to be overloaded for. It returns an object of type istream &, accepts

first parameter of type istream &. There is one additional restriction on extraction

operator (>>) i.e. the second parameter is also passed by reference as that object is

modified by this operator function. For our Date class, it is declared as:

istream & operator >> (istream & input, Date & d);

Note that second parameter can also be passed by reference for insertion operator (<<

) but that is not mandatory and may be used to gain performance. But in case of

extraction operator (>>), it is mandatory to have second parameter of reference type.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

448

Example 1

Following is our Date class containing the overloaded
insertion (<<) and extraction (>>) operators:

/* Date class containing overloaded insertion and extraction operators. */

include <iostream.h>

class Date

{

 public:

 Date()

 {

 cout << "\n Parameterless constructor called ...";

 month = day = year = 0;

 }

 ~Date ()

 {

// cout << "\n Destructor called ...";

 }

 // Methods, not directly related to the example have been taken out from the class

 friend ostream & operator << (ostream & os, Date d);

 friend istream & operator >> (istream & is, Date & d);

 private:

 int month, day, year;

};

ostream & operator << (ostream & os, Date d)

{

 os << d.day << "." << d.month << "." << d.year; // access private data of

 //Date being a friend

 return os;

};

istream & operator >> (istream & is, Date& d)

{

 cout << "\n\n Enter day of the date: ";

 cin >> d.day;

 cout << " Enter month of the date: ";

 cin >> d.month;

 cout << " Enter year of the date: ";

 cin >> d.year;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

449

 return is;

};

main(void)

{

 Date date1, date2;

 cout << "\n\n Enter two dates";

 cin >> date1 >> date2;

 cout << "\n Entered date1 is: " << date1 << "\n Entered date2 is: " << date2;

}

The output of the program is:

 Parameterless constructor called ...

 Parameterless constructor called ...

 Enter two dates: ...

 Enter day of the date: 14

 Enter month of the date: 12

 Enter year of the date: 1970

 Enter day of the date: 05

 Enter month of the date: 09

 Enter year of the date: 2000

 Entered date1 is: 14.12.1970

 Entered date2 is: 5.9.2000

Example 2

Following is an example of a Matrix class, where until now, we have not overloaded

insertion (<<) and extraction operators (>>).

/* Matrix class, which is without overloading stream operators */

#include <iostream.h>

#include <stdlib.h>

class Matrix

{

 private :

 int numRows, numCols ;

 float elements [30] [30] ;

 public :

 Matrix(int rows , int cols) ;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

450

 void getMatrix () ;

 void displayMatrix () ;

};

Matrix :: Matrix (int rows = 0 , int cols = 0)

{

 numCols = cols ;

 numRows = rows ;

 for (int i = 0 ; i < numRows ; i ++)

 {

 for (int j = 0 ; j < numCols ; j ++)

 {

 elements [i] [j] = 0 ;

 }

 }

}

void Matrix :: getMatrix ()

{

 for (int i = 0 ; i < numRows ; i ++)

 {

 for (int j = 0 ; j < numCols ; j ++)

 {

 cin >> elements [i] [j] ;

 }

 }

}

void Matrix :: displayMatrix ()

{

 for (int i = 0 ; i < numRows ; i ++)

 {

 cout << "| " ;

 for (int j = 0 ; j < numCols ; j ++)

 {

 cout << elements [i] [j] << " " ;

 }

 cout << "|" << endl ;

 }

}

{

 Matrix matrix (2, 2) ;

 matrix.getMatrix () ;

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

451

 matrix.displayMatrix () ;

 system ("PAUSE") ;

}

The operator functions (<<, >>) are not overloaded for this program. A specific

function getMatrix() has been called to get the values for the matrix object this

entirely a different way than we used to do for primitive data types. For example, we

used to get int i as; cin >> i. Similarly, we called a method displayMatrix() to display

the values in the matrix object. We can see here, if we overload insertion (<<) and

extraction (>>) operators then the user of our class, does not need to know the

specific names of the functions to input and display our objects.

The changed program after overloading insertion, extraction operators and few

additional statements to format the output properly:

/* Matrix class, with overloaded stream insertion and extraction operators. */

#include <iostream.h>

#include <stdlib.h>

class Matrix

{

 float elements[30][30];

 int numRows, numCols;

public:

 Matrix (int rows = 0 , int cols = 0)

 {

 numRows = rows;

 numCols = cols;

 }

 friend ostream & operator << (ostream & , Matrix &);

 friend istream & operator >> (istream & , Matrix &);

};

istream & operator >> (istream & input , Matrix & m)

{

 for (int i = 0; i < m.numRows; i ++)

 {

 for (int j = 0; j < m.numCols; j ++)

 {

 input >> m.elements [i] [j] ;

 }

 }

 return input;

}

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

452

ostream & operator << (ostream & output , Matrix & m)

{

 for (int r = 0; r < m.numRows; r++)

 {

 for (int c = 0; c < m.numCols; c++)

 {

 output << m.elements [r] [c] << ‘\t’ ;

 }

 output << endl;

 }

 return output ;

}

int main ()

{

 Matrix matrix (3 ,3);

cout << “\nEnter a 3 * 3 matrix \n\n“;

 cin >> matrix ;

cout << “\nEntered matrix is: \n”;

 cout << matrix;

 system ("PAUSE");

 return 0;

}

The output of the program is:

Enter a 3 * 3 matrix

45

65

34

23

72

135

90

78

45

Entered matrix is:

45 65 34

23 72 135

90 78 45

Press any key to continue . . .

You can see both the operators are declared friends of the Matrix class so that they

can directly access the private members of the Matrix.

The insertion operator (<<) is accepting both the parameters left and right by

reference. We already know that for insertion operator (<<), it is not really required

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

453

to pass the second parameter (the Matrix object in this case) by reference but we have

used here to gain efficiency. The function is returning an object ostream &, i.e., it is

returning a reference to a ostream object, that actually is the required in order to

support cascaded operations using this operator.

The extraction operator (>>) is also accepting both the parameters by reference. But

for this operator, it is mandatory to accept the Matrix object by reference because this

function is modifying that object. Similar to the insertion operation, this function is

also returning a reference to istream object in order to support cascaded operations.

Clearly after overloading the operators << and >>, it is more convenient for the

programmer to use these already familiar operators to display and input the object

data members. Readability of the program has also comparatively increased.

Tips

 Stream insertion (<<) and extraction operators (>>) are
always implemented as non-member functions.

 operator << returns a value of type ostream & and operator
>> returns a value of type istream & to support cascaded
operations.

 The first parameter to operator << is an ostream & object.
cout is an example of an ostream object. Similarly first
parameter to operator >> is an istream & object. cin is an
example of an istream object. These first parameters are
always passed by reference. The compiler won't allow you
to do otherwise.

 For operator >>, the second parameter must also be
passed by reference.

 The second parameter to operator << is an object of the class that we are

overloading the operator for. Similar is the case for operator >>.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

454

Lecture No. 38

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 11, 7, 3

 11.6.4, page 181, 7.7, 3.10

Summary

46) User Defined Manipulator

47) Examples of user defined manipulator

48) Static keyword

49) Static Objects

50) Static data members of a class

Today, we will discuss the concepts like ‘user-defined manipulators’ and ‘static

keywords’. Despite being considered minor subjects, these become very important

while carrying out complex programming. Let’s start with ‘User-defined

manipulators’.

User Defined Manipulators

We have talked a lot about the manipulators that are provided with the streams in the

C++. These are similar to ‘setw’ function, used to set the width of the output. These

are employed as inline like cout << endl << i; Remember that these functions work

for only the immediately next output. How can we write our own manipulator? To

determine it, it is better to understand what parameter-less manipulators are? These

are the manipulators without any parameter like endl. This is a parameter-less built-in

manipulator that inserts the new line besides flushing the buffer. If we want to write

our own manipulator, how can we do this? In case of operator overloading, it is pre-

requisite to know that where the operator will be used, what will be on its left-hand

and right-hand sides. On reviewing the manipulators, you will find a stream object,

normally on the left-hand side. Here, we are talking about ostream, an output stream.

So that object will be cout. The cout will take this manipulator to carry out some

manipulation. These are written in cascading style as cout << manipulator << “some

data” << endl. With this cascading style, you can get a hint about the operation of

this manipulator and its requirements. The point is, the left-hand side is going to be

ostream object that will call the manipulator. What will be passed to the manipulator

and what will be the return type.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

455

Normally on the right-hand side of the manipulator, we have another stream insertion

operator i.e. <<. Here we are considering a parameter-less manipulator, that is no

argument or number will be passed to it. It may be something like inserting a tab

between two numbers for formatting or a manipulator to end the line or to make a

sound of bell and so on. The left hand side is ostream object. There are no other

parameters. The right-hand side is normally a stream insertion operator. We use it as

cout << manipulator which is itself an action. We overload the stream insertion

operator in such a way that the cascading works. So we return an ostream object.

More accurately, a reference to ostream objects is returned. Manipulator is also going

to be used in the same way, so that it returns a reference to an object of type ostream.

Therefore we want to return the cout object or whatever stream we are using.

Secondly it also needs the object that is calling it. Here we are not talking about our

own class. ostream class is built-in and not under our control. So it can not be

modified. We can only extend it by defining external things. So it is not a member

function or member operator, but only a standalone operator. Normally the

declaration of this manipulator is as:

 ostream& manipulator_name (ostream& os)

This is also not a friend function. We cannot define friends for the classes that are

already written and not in our control. The argument os here is the same object which

is calling this function. We have to explicitly declare it. After this, we have to define

this. Definition is just as another function. You can always write whatever you want

inside the function. But we have to look at the spirit of the manipulator. When we are

talking about the spirit of the manipulator, it means that the manipulator should only

do something regarding output and return. It is normally very simple. Its return type is

ostream object. In case of tab character, we can write as return os << ‘\t’; It can be

bell or something else. We can write useful manipulators to leave single or double

blank lines or formatting the strings etc. Remember that it has to return a reference of

object of type ostream. It automatically gets that object as parameter passed in to the

function.

Examples of user defined manipulator

Here is the sample program using the manipulators.

/* A small program which uses the user defined manipulators.

*/

#include <iostream.h>

#include <stdlib.h>

// Gives System Beep

ostream & bell (ostream & output) // Manipulator

{

 return output << '\a' ;

}

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

456

// Gives Tab

ostream & tab (ostream & output) // Manipulator

{

 return output << '\t' ;

}

// Takes the cursor to next line

ostream & endLine (ostream & output) // Manipulator

{

 return output << '\n' << flush ;

}

{

 cout << "Virtual " << tab << "University" << bell << endLine ; // Use of Mainpulator

 system ("PAUSE") ;

}

Lets see another example of matrix using the user defined manipulators for displaying

the matrix on the screen.

Here is the code:

/*

A small program showing the use of user defined manipulators.

The display function of matrix is using these manipulators to

format the display.

*/

#include <iostream.h>

#include <stdlib.h>

#include <iomanip.h>

// definition of class matrix

class Matrix

{

 private:

 int numRows;

 int numCols;

 float elements[3][3];

 public:

 // constructor

 Matrix(int rows = 0, int cols = 0)

 {

 numRows = rows ;

 numCols = cols;

 }

 // overloading the extraction and insertion operators

 friend ostream & operator << (ostream & , Matrix &);

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

457

 friend istream & operator >> (istream & , Matrix &);

 // defining the user defiined manipulators

 friend ostream & spaceFirst (ostream &);

 friend ostream & spaceBetween (ostream &);

 friend ostream & line (ostream &);

 friend ostream & newLine (ostream &);

 friend ostream & star (ostream &);

 friend ostream & sound (ostream &);

};

//defining the operator >>

istream & operator >> (istream & input , Matrix & m)

{

 for (int i = 0 ; i < m.numRows ; i ++)

 {

 for (int j = 0 ; j < m.numCols ; j ++)

 {

 input >> m.elements [i] [j] ;

 }

 }

 return input;

}

//defining the operator <<

ostream & operator << (ostream & output , Matrix & m)

{

 for (int i = 0 ; i < 60 ; i ++)

 {

 if (i == 30)

 {

 output << "Displaying The Matrix" ;

 }

 else

 {

 output << star ;

 }

 }

 output << newLine;

 for (int r = 0 ; r < m.numRows ; r++)

 {

 output << spaceFirst << line;

 for (int c = 0 ; c < m.numCols ; c++)

 {

 output << spaceBetween << m.elements [r] [c] << sound << spaceBetween ;

 }

 output << spaceBetween << line;

 output << newLine;

 }

 output << newLine;

 return output;

}

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

458

//defining the user defined manipulator, inserting the space

ostream & spaceFirst (ostream & output)

{

 output << setw(33);

 return output;

}

//defining the user defined manipulator, inserting the space

ostream & spaceBetween (ostream & output)

{

 output << setw (4);

 return output;

}

//defining the user defined manipulator, inserting the | sign

ostream & line (ostream & output)

{

 output << "|" ;

 return output ;

}

//defining the user defined manipulator, inserting the new line

ostream & newLine (ostream & output)

{

 output << endl;

 return output;

}

//defining the user defined manipulator, inserting the *

ostream & star (ostream & output)

{

 output << "*" ;

 return output ;

}

//defining the user defined manipulator, making sound

ostream & sound (ostream & output)

{

 output << "\a" ;

 return output ;

}

// the main function

int main ()

{

 // declaring a matrix of 3*3, taking its input and displaying on the screen

 Matrix matrix(3, 3);

 cin >> matrix;

 cout << matrix;

 system("PAUSE");

 return 0;

}

The output of the program:

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

459

3

5

1

8

7

6

2

5

2
******************************Displaying The Matrix*****************************

 | 3 5 1 |

 | 8 7 6 |

 | 2 5 2 |

Press any key to continue . . .

Static keyword

We have been using static keyword in our examples. What is the meaning of static?

The word refers to something that is stationary, stopped and not moveable. What are

the types of these variables, declared as static? How can we make use of them? Static

as the word implies are variables which exist for a certain amount of time, much

longer than that by ordinary automatic variables. Let’s consider the example about the

lifetime of data variables. One of the variable types is global variable. Global

variables are those that are defined outside of main. They are written as standalone

statements before main function as int i; the variable i is a global variable. It is not

only accessible in main but also in all the functions. They can assign some value to i

or obtain the value of i. Global variables come into existence whenever we execute

the program and the memory is allocated for i. It exists all the time when the program

is running. At the end of the program execution, the memory will be de-allocated and

returned to the operating system. So it has a very long lifetime. We need a value

which exists for the complete execution of the program and is available in all the

functions. We use global variables. It is not a good idea to do that unless it is

absolutely necessary. The major plus point of these variables is that these are

accessible from everywhere in the program. The inconvenience is that theses variables

are visible in those functions too which does not need them.

Suppose, we have a global variable i declared as int i; and in some function we are

writing a for loop as for(i = 0; i < n; i++); Now which i is being used here. This is

the variable i, declared as global. This global i may have some valuable value, like the

number of cars or the number of students etc. Here, in the function when we run the

loop, the value of i will be changed. The global variables have this bad habit of being

around, even when we don’t need them. What will happen if we declare another i

variable inside the function? A local variable will be created inside the function at run

time and the global i is not going to be accessible. But this can be very subtle and hard

to track programming errors. These are not syntax errors but logical ones. So beware

of using too many global variables. Now have a look on the other side of the picture.

While writing functions, we pass values to them. So instead of passing the value of i

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

460

again and again, we declare it as global. Now it is available in the function, leaving no

need of passing it.

Let’s now come to the next variety of variables. The variables, defined in the main

function are local to the function main. It means that they are accessible in all parts of

the main function. Their values can be assigned, used in computations and later

displayed. When we enter some function other than main, these variables are not

accessible there. They are hidden. The global and the local variables, declared in a

function are visible. The arguments passed to a function, are also visible. We pass the

parameters through stack. Parameters are written on the stack. Later, the function is

called which reads from the stack and makes a temporary copy for its use. The

variables, declared and used inside the function are called automatic variables. They

automatically come into being when the function is called. When the function

finishes, these variables are destroyed. So automatic variables are created constantly

and destroyed all the time. Here, we are talking about variables ordinary as well as

user defined objects. Their behavior is same. They are automatic when the function is

called, memory is allocated normally on the stack at the same time and used. When

the function exits, these variables are destroyed. What happens if we want that when

the function exits, some value, computed inside the function, is remembered by the

function and not destroyed. This should not be visible by the other parts of the

program.

Let’s consider the example of a refrigerator. When we open the door of a refrigerator,

the light turns on and we can see the things inside it. However, on closing the door,

the light turns off. Do we know that light is off because whenever we open the door

the light is on. When we close the door what is inside. We do not know. May be

things magically disappear. When we open the door, magically, the things are at their

position. You can think of this like a function. When we enter in the function, these

automatic variables are available there and visible. When we came out of the function,

it is like closing the door of the refrigerator and the light is turned off. We cannot see

anything. Function goes one step ahead of this and it actually destroys all the

variables. Whereas, in the refrigerator, we know that things are there. Somehow we

want the function to behave like that. Outside the refrigerator, these things are not

available. We can not access them. Let’s say there is a bottle of water inside the

refrigerator. You open the door and place it some other place. Next time, when you

will open the door, the bottle is seen at the same position where you have moved it. It

would not have moved to some other position. If you think of automatic variables,

suppose we say inside the body of the function int i = 0; Every time the function is

called and you go into the function where i is created. It has always the value 0 to start

with and later on we can change this value.

What we want is that whenever we go back into the function, once we call the

function like we open the door of the refrigerator and move the bottle to some other

place and close the door. So we made one function call. Next time, when we call the

function, the bottle is found in its new place. In other words, if we have defined an

integer variable, its value will be set at 10 in the function when we return from the

function. Next time when we call the function, the value of that integer variable

should be 10 instead of 0. We want somehow to maintain the state of a variable. We

want to maintain its previous history.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

461

If we declare a global variable, the state would have been maintained. The global

variable exists all the time. Whatever value is set to it, it is there and accessible from

any function. The drawback is that variable exists even when we don’t want it. Static

keyword allows us a mechanism from getting away of the downside of the global

variables and yet maintaining a state inside a function. When we visit, it is found out

what are its values before that we go ahead with this value. For this, whenever we

declare a variable inside the function, static keyword is employed before the variable

declaration. So we write as:

 static int i;

That declares i to be a static integer inside the function. Think about it. Should we

declare static variables inside the main function? What will happen? ‘main’ itself is a

function so it is not illegal. There is no objective of doing this in main because main is

a function from where our programs start and this function executes only for once. So

its state is like an ordinary variable, declared inside main. It is only relevant for the

called functions. We write inside the function as static int i; while initializing it once.

It will be created only once irrespective of the number of function calls. Now once it

is created, we increment or decrement its value. The function should remember this

value. The programmer may go out of the function and come back into it. We should

get the value that should be same as that at the time of leaving the function. It is

necessary for the static variables that when these are created, they should be

initialized. This initialization will be only for once for the complete life cycle of the

program. They will be initialized only once.

Here, we have to take care of the subtle difference. In case of ordinary variable

declaration, we should initialize them before using. If you have to initialize an int with

zero, it can be written as int i; and on the next line i = 0; But in case of static

variables, we have to use a different type of initialization. We have to use it as static

int i = 0; It means that creation of i and the allocation of memory for it takes place

simultaneously. It is initialized and the value 0 is written. This is initialization

process. If somewhere in the function, we have statement i = 10; it will not be treated

as initialization. Rather, it is an assignment statement. Here we want that as soon as

the variable is created, it should be initialized. This initialization will be only for once

for the lifetime of the program and it takes place when first time we enter in to the

function. However we can manipulate this variable as many times as we want. We can

increment or decrement it. However, it will remember its last value. How does this

magic work? So far, we have been talking about the stack and free store. There is

another part of memory, reserved for the variables like static variables. On the stack,

automatic variables are being created and destroyed all the time. The heap or free

store has the unused memory and whenever we need memory, we can take it from

there and after use return it. This is the third part which is static memory area where

static variables are created and then they exist for the rest of the program. These

variables are destroyed on the completion of the program. So they are different from

automatic variables which are normally created on stack. They are different from

dynamic variables that are obtained from free store.

To prove this whole point let’s write a simple program to fully understand the concept

and to see how this works. Write a small function while stating that static int i = 0;

Here, we are declaring i as a static integer and initializing it with zero. Then write

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

462

i++; print the value of i using cout. Now this function just increments the value of i.

This i is a static integer variable inside the function. Now write a main function. Write

a loop inside the main and call this function in the loop. Let’s say the loop executes

for ten times. You will notice that whenever you go inside the function, the value of i

is printed. The value of i should be printed as 1.2.3…10. If you remove the word

static from the declaration of i, you will notice that every time 1 is printed. Why 1? As

i is now automatic variable, it is initialized with zero and we increment it and its value

becomes 1. cout will print its value as 1. When we return from the function i is

destroyed. Next time when function is called, i will be created again, initialized by

zero, incremented by 1 and cout will print 1. By adding the static keyword, creation

and initialization will happen once in the life time of our program. So i is created once

and is initialized once with the value of zero. Therefore i++ will be incrementing the

existing value. At first, it will become 1. In this case, function will return from the

loop in the main program, call this function again. Now its value is 1, incremented by

1 and now the value of i becomes 2 and printed by cout. Go back to main, call it again

and so on, you will see it is incrementing the last value. You can prove that static

works.

Here is the code of the program:

/* This is a simple program. This shows the use of static variables inside a function.

*/

#include <iostream.h>

void staticVarFun();

void nonstaticVarFun();

void main(void)

{

 cout << "\nCalling the function which is using static variable \n";

 for(int i = 0; i < 10; i++)

 staticVarFun();

 cout << " \nCalling the function which is using automatic variable \n";

 for(int i = 0; i < 10; i++)

 nonstaticVarFun();

}

// function definiition using static variables

void staticVarFun()

{

 static int i = 0;

 i++;

 cout << "The value of i is:" << i << endl;

}

// function definiition using automatic variables

void nonstaticVarFun()

{

 int i = 0;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

463

 i++;

 cout << "The value of i is:" << i << endl;

}

The output of the program:

Calling the function which is using static variables

The value of i is:1

The value of i is:2

The value of i is:3

The value of i is:4

The value of i is:5

The value of i is:6

The value of i is:7

The value of i is:8

The value of i is:9

The value of i is:10

Calling the function which is using automatic variables

The value of i is:1

The value of i is:1

The value of i is:1

The value of i is:1

The value of i is:1

The value of i is:1

The value of i is:1

The value of i is:1

The value of i is:1

The value of i is:1

Static Objects

Let us look at some more uses of this keyword. As mentioned earlier that the user

defined data types are the classes and objects that we created. These are now variables

as for as we are concerned. If these are variables, then we can declare them as static.

Now we have to be careful when we think about it. When we declared static int, we

said that it should be initialized there. We initialized it with zero. What is the

initialization of objects? We have defined a class and instantiated an object of that

class. So we can say something like vehicle A or truck B where vehicle and truck are

the classes which we have defined. ‘A’ and ‘B’ are their objects, being created in

some function or main. When are these objects initialized? You know that the

initialization is done in constructors. So normally C++ provides a default constructor.

Here we have to write our own constructors as initialization can happen only once, if

declared static. Again we are talking about these static objects inside a function

instead of the main. These objects should maintain their values while getting out of

the function.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

464

Whenever we create a static object, it must be initialized. Most of the time, we want

that when the object of our class is created, its data members should be initialized by

some value. For this purpose, we have to provide a constructor so that whenever an

object is created, its data members are initialized. Only then it will work. Otherwise

we will have problems. We may want to do as truck A, but our constructor takes some

arguments. Now how this object will be created. How many wheels this truck will

have? How many seats will be there? We have a solution to overcome this problem.

Define a constructor which takes arguments and provides the default value to it

simultaneously. If you provide a constructor with default values, then the object

which is created will automatically get these values. If you write truck A(4, 6), there

may be some constructor which will initialize it with 4 wheels and 6 seats. But the

point to remember is if you ever go to use a static object, it is necessary to provide a

constructor with default arguments so that the object which you have created is

initialized properly. Other than that the whole behavior of a static object is exactly the

same as we have a static variable of an ordinary data type or native data type. Static

variable means maintaining the state of a variable. It exists and lives around even

when we are outside the function. It is an alternative to using a global which exists

even when we don’t want it. Now we try to learn about the destructors of static

objects. If you create an object inside a function as truck A, when the function

finishes, the object A will be destroyed. Destructor for this static object will be called.

To prove this write a class, inside the constructor. Also write a cout statement which

should print ‘inside the constructor of ’and the name of the object which will be

passed as an argument. In the destructor write a cout statement as cout <<” Inside the

destructor of ” << name, where name will tell us that which object is this. Now

experiment with it. Declare a global variable of this class before main as truck A(‘A’).

When the constructor for this object is called the line ‘Inside the constructor of A’

will be displayed. Now within the main function, declare another object as ordinary

variable i.e. truck B(‘B’). Its constructor will also be called. You will see it. Write a

small function and create another object within that function as truck C(‘C’). Define

another function and declare a static object in it as truck D(‘D’). Call these two

functions from main. Now compile and execute this program, as we have written cout

statements inside the constructor and destructor. Now you will be able to determine

which object is being created and which one being destroyed. Here you will also

notice that first of all global object A will be created. There is going to be a line

‘Inside the constructor of object A’. After that, object B will be created, followed by

the display of constructor cout line. From main, we are calling function F which is

creating object C. So object C will be created then. What next? The function F will

finish and the control go back to main. If the function F finishes, its local data will be

destroyed. So the object C will be destroyed. Here, you see it on the screen ‘Inside the

destructor C’. After this the function G will be called and we will have ‘Inside the

constructor for D’. This object D is a static object. Now when the function G finishes,

you will not see the destructor line for object D. After this, the main function finishes

and the destructors will be called for objects A (which is global), object B (which is

inside the main) and object D (which is created as static inside the function G). In

which order these will be called?. If you look at this very simple program, you will

find that the last object to be created was the static object inside the function G.

Should that deleted first i.e. the destructor of object D should be called? Well actually

not true, the local variables of main function will be first destroyed. Static objects

remain for longer period of time. Later, the static object D will be destroyed and the

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

465

thing finally destroyed is the global object, which was created first of all. You will

find that the destructor for object A is called. With this exercise, you will know the

sequence in which things are created and destroyed. Another thing that you will notice

is that when the function G finishes the static object is not destroyed.

The code of the program;

// An example of static objects, notice the sequence of their creation and destruction

#include <iostream>

// defining a sample class

class truck {

 private:

 char name; // Identifier

 public:

 // constructor displaying the output with the object name

 truck(char cc):name(cc) {

 cout << "inside the constructor of " << name << endl;

 }

 // distructor displaying the output with the object name

 ~truck() {

 cout << "Inside the destructor of " << name << endl;

 }

};

// defining a global object

truck A('A');

// a simple function creating an object

void f() {

 truck C('C');

}

// a simple function creating a static object

void g() {

 static truck D('D');

}

// main function

int main() {

 // an ordinary object

 truck B('B');

 // calling the functions

 f();

 g();

}

The output of the program:

inside the constructor of A

inside the constructor of B

inside the constructor of C

Inside the destructor of C

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

466

inside the constructor of D

Inside the destructor of B

Inside the destructor of D

Inside the destructor of A

Lets recap these concepts. When you declare a static variable (native data type or

object) inside a function, it is created and initialized only once during the lifetime of

the program and therefore it will be destroyed or taken out of memory only once

during the lifetime of the program. So it is a good way of maintaining state. It is an

alternative to using a global data type which has some side effects. In the main, we

can write static variables but it is a meaningless exercise because these are exactly

like ordinary variables inside main.

Static data member of a class

Lets talk about the keyword static inside the class. Static variables are used to

maintain state. We are talking about the state in which we left the function. While

extending the concept, we will go inside an object. Here, we should find certain things

left exactly the way they were initially. So now we are talking of static data members

inside a class. What does it mean?

Literally speaking, the word ‘Static’ means the stationary condition of things.

Stationary for object or class? Here it will be stationary for the class. That means that

static data will be created once and initialized once for that class. Therefore it is not

related to the objects of that class. There is only one copy of the static data member

inside a class. The copy is not repeated for the objects. Whenever we create an object

of a class, the complete data structure is copied for that object and there is one copy of

functions which the objects may use. Static members are single for the whole class in

the static memory area. It will not be repeated whenever we create an object of the

class.

Now the question arises when it will be created? When it will be initialized? And

when it will be destroyed? Now these are on class level and not on object level. To

understand this, we have to talk about the lifetime of the static data member. The

lifetime of the static data member of a class is the lifetime of the program. In other

words, when you include a class in the program as a class definition, the memory is

allocated for its static data members. We have some techniques to initialize it. We

initialize it only once. Initialization is done at file scope which means almost at the

global scope. We initialize it outside of the main. The memory is allocated for these

static members. No other copy can be created for them. Therefore we can create and

initialize them outside of main. There is no object so far. How can we initialize its

static data members?

Suppose we have a class truck as:

 class truck{

 public:

 int wheels;

 int seats;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

467

 }

Now we refer the data members with the object as:

 truck A;

 A.wheels = 6;

 A.seats = 4;

That’s a way to refer to a data member. Here we are saying that we have some static

data member of class and the object A has not been created yet. But we have the

memory for the static members. Now we want to initialize that memory. How can we

do that? We do this by using the scope resolution operator (::) and on its left hand

side, we have class name and not the object name. On the right side, we write the

name of the static data member. Suppose we have some static integer data member i

in the class truck, so we can write it as:

 truck::i = 10;

This initialization is taking place at file scope outside of the main .As it is happening

only once in the program, it will not be executed again. It is being initialized once for

the class. You can create as many object as you want. Objects can read and change

that value.

Static data members of a class can be public or private. The objects of the class have

access to them. They can manipulate it. But it is created and initialized only once.

There is a single copy of these static data members regardless of how many objects of

the class you create.

Let’s take a look at the problems having static data members of a class. Suppose we

have a class as ‘savingsAccount’. We deposit money in that account. Some profit is

also earmarked for it. Over a period of time, bank declares the rate of the profit. Profit

rate is same for all PLS accounts. We have defined a class savingsAccount which

have the information like person name, account number, current balance etc. We also

have to keep the profit rate so that we can apply that on the account. Do we have

different profit rate of every account? No, the bank has declared say 3% profit rate.

That will be applied to all the PLS accounts. So we want that the profit rate should be

defined at one place. It should be the part of the class but not defined for each object.

So it is a good place to use a static variable as a data member of the class. We can

initialize it at file scope as:

 savingsAccount::profit_rate = 3.0;

We will write this before main function. As soon as, we compile the program and try

to run it, the space is created in the static storage area. The above statement will

initialize that static memory with 3.0. No savings account has been created yet. We

will be creating saving accounts (object of class savingsAccount) in the main or some

other function as account1, account2, etc. This profit rate will be available to every

account. We can access it as:

 account1.profit_rate;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

468

and can use it in computations. This is legal but a bad usage. Why it is a bad usage?

Suppose we write as;

 account1.profit_rate = 4.0;

What will happen? Does the profit rate for only account1 has been changed? No.

There is only one copy of profit_rate for all the objects of this class. That means if an

object manipulates the static data member, which it can through the member functions

or directly depending on it is private or public. It is actually modifying the value of

that static data member for all objects of this class. So don’t assume that it will change

profit_rate for one object. It is a legal but a bad usage. Always use it with the class

name and not with the object. So you should access it as savingsAccount::profit_rate.

It means you are resolving it at class scope. Be careful while applying it.

Let’s consider another example. We have a class as student and a data member for

how many students in the class. Now every time, a student enrolls in the course, we

want that number of students should be incremented. Whenever a student withdraws,

fails or passes out from the course, the number of students should be decremented.

We want this to be inside the student class. How does it work? We define a static data

member as static int how_many; and initialize it to zero as:

 student::how_many = 0;

In the constructor of the class we write as:

 how_many++;

This way, whenever a student object is created, how_many will be incremented.

Whenever a student leaves the course, its destructor should be called. We will write in

the destructor as:

 how_many--;

So it’s a good way of keeping track of how many objects of a particular type exist at

this time inside the program. To display that we can write a member function that will

display ‘how_many’. The merit of this technique is that we have done all this work

inside the class. We did not use two classes or global variable or go through the

source code to count the number of students. Using these, you can make your program

more and more dynamic. The usage of static is very import. So you should understand

it clearly. Static is maintaining the state. The state may be how many students are in

the class.

Today we have covered the parameter-less manipulators which will return the

ostream object and ostream object is passed as an argument to them. Then we

discussed about the static data, both at the ordinary level and then the static data

members inside the class. These are very useful. As you write bigger and more

complex programs, you will find that these concepts are very useful. Again from a

generic prospective, you will be working hopefully in your professional career with

many different languages. You have to understand that every language might

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

469

represent the static concept in a different way. But just knowing that concept

empowers you and help you to understand more complex programming languages as

well.

Lecture No. 39

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 5, 6, 7

 Revise old topics

Summary

51) Pointers

52) References

53) Call by Value

54) Call by Reference

55) Dynamic Memory Allocation

56) Assignment and Initialization

57) Copy constructor

58) Example

59) Rules for Using Dynamic Memory Allocation

60) Usage of Copy Constructor

61) Summary

62) Exercise

In this lecture, we will review the concepts like pointers, references and memory

allocation, discussed in the previous lectures. The review of these topics will help

enhance our understanding of the programming. Let’s discuss these topics one by one.

Pointers
Pointer is a special type of variable that contains a memory address. It is not a

variable that contains a value, rather an address of the memory that is contained inside

a pointer variable.

In C++ language, variables can be without type. Either we can have a void pointer or

these can be typed. So we can have a pointer to an integer, a pointer to a character and

a pointer to a float etc. Now we have a user-defined data type, which we call classes,

so we can have pointers to classes.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

470

While talking about pointers, we actually refer to pointing to an area in memory. A

pointer to an integer, points to a location opted by an integer in memory. If there is an

array of integers in the memory, we can still use a pointer to point to the beginning of

the array. This is a simple manipulation. To have the address of a memory location,

we use & sign. The ‘&’ sign is also used in references. So we have to be very cautious

while making its use. To further overcome this ambiguity, we will now recapture the

concept of reference.

References

A reference can be considered as a special type of pointer as it also contains memory

address. There are some differences between pointers and references. Pointers may

point to nothing while references always have to point to something. A reference is

like an alias for an object or a variable. The references should be used when we are

implementing the call by reference. This helps us make our syntax easier as we can

implement the call by reference with out using the * operator.

Call by Value

Whenever we call a function and pass an argument, an object or variable to the

function, then by the default rule of C and C++, it is a call by value. It means that the

original data remains at its place and a temporary copy of it is made and passed to the

function. Whatever the function does with this copy, the original value, in the calling

function, remains intact. This is a call by value.

Call by Reference

If we want a function to change something in the original object variable or whatever,

that variable or object by reference would be passed. To do this, we don’t make

temporary copy of that object or variable. Rather, the address of the variable is sent.

When the function manipulates it, the original object will be manipulated, effecting

change in its values. The use of call by reference is also important for the sake of

efficiency. If we have a large object, sending of its copy will be something

insufficient. It will occupy a large space on the stack. Here, we can use call by

reference instead of call by value only for efficiency while we need not to change the

original object. For this, we use a keyword const that means that a const (constant)

reference is being passed. The function can use its values but cannot change it.

Now we come to the dynamic memory allocation.

Dynamic Memory Allocation

In C language, we have a method to allocate dynamic memory. In it, while executing

the program, we allocate some memory from the free store (heap) according to our

need, use it and after using, send it back to the free store. This, dynamic memory

allocation, is a very common function in programming. While writing C++ language,

it was decided that it should not be implemented by a function call. There should be

native operators, supposed to be very efficient. These operators are new and delete.

We allocate memory with the new operator from the free store. It returns a pointer.

For example, if we say p is a pointer to an integer, the statement will be written as

 int *p ;

Now we write

 p = new int ;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

471

This statement performs the task in the way that it gets memory for an integer from

the free store. There is no variable name for that memory location but the address of

this location is stored in the pointer p. Now by using the syntax *p (which means

whatever p points to), we can manipulate that integer value. We can also write to and

read from that location. This memory allocation is done during the execution of the

program. Whenever we allocate memory with the new operator, it is our responsibility

to de-allocate this memory after the termination of the program. To do this de-

allocation, we have an operator delete. To de-allocate the memory, allocated with p =

new int ; we will write

 delete (p) ;

It will not delete the p rather, it will send the memory gotten and pointed by p back to

the free store.

Same thing happens when we try to allocate more than a simple variable i.e. when we

are trying to allocate arrays. When we use new operator to allocate a space for an

array, we tell the size of the array in square brackets (i.e. []). We can write it like

 p = new int [10] ;

This statement says p is pointing to an area of memory having the capability to store

10 integers. So there is an array of 10 integers whereas p is pointing to the beginning

point of the array. Now we can access the elements of the array by manipulating the

pointer p. To make the memory allocated for an array free, the syntax is a little bit

different. Whenever, we allocate an array then to free it we write

 delete [] p ;

This will free the array that is pointed by p. In this case, the space of 10 integers that

was pointed by p, will be de-allocated despite the fact that we write empty brackets

with the delete operator. This is due to the fact that C++ internally has the record that

how much memory was allocated while allocating an array. After delete, the pointer

points to nothing. So it’s a free pointer and can be reused.

Now let’s go on and look at a special type of objects. These are the objects with the

data members as the pointers. In the previous lectures, we had discussed the example

of a class Matrix. In that class, we said that it will be a two dimensional matrix while

talking about its size etc. In this example, it will be a generic class besides being a

matrix of 3 x 3. Now we want to see the Matrix class defined such a way that the

programmer can take an object of it of any size at any time, say a matrix of 3 x 3, 5 x

5 or 10 x 10. It means that the size of the matrix should be variable. Now we have to

bring every thing together in terms of how we declare and manipulate arrays inside a

C++ program.

Whenever we declare an array, we have to mention its size. It is necessary, as

otherwise no memory will be allocated, it’s about the static memory allocation. In it,

we declare like that it will be a two dimensional array of m rows and n columns. The

compiler will allocate a memory for this array at the start of the program. Now we are

talking about that at the compilation time, we don’t know the size of the array. We

want to allocate an array of the required size at run time. When the constructor of the

class is called, the memory required by that object should be allocated at that time.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

472

For example, in case of Matrix class, we will like to tell the number of rows and

columns of the object of the Matrix in the constructor, so that the constructor could

allocate the memory for that object. A keyword new is used for this purpose. Here, we

realize that in case of data member of this class Matrix, fixed rows and columns

cannot be used in the class definition. We cannot define a two-dimensional array

inside the class as it negates the concept of extensibility. Here, inside the class we

define something like int *m; which means m is a pointer to an integer. It is the data

member of the class. In the constructor of the class, we say that it will take two

integer arguments, rows and columns. Whenever we declare an object, which is an

instantiation of the class, the constructor of the class is called. Now in the constructor

of this class we want to allocate memory from the free store equal to the memory

required by m x n (m multiply by n) integers. So if we say a Matrix of 3 rows and 3

columns then we require memory for 9 (3 * 3) integers. If we say four rows and five

columns then we require a memory for 20 (4 * 5) integers. Now it is very simple,

inside the constructor we will write

 m = new int [rows * columns] :

Thus we created a Matrix to which we tell the number of rows and columns, through

variables, during the execution of the program. When we created an object of the class

its constructor is called to which the variable values are passed and by multiplying

these variables (number of rows and columns), we allocate a memory for these

integers by the new operator and its address is assigned to m. Thus the object is

initialized and the required memory is available to it. Now we can use it as a two

dimensional array and can put values inside it. Now the class definition of the class

Matrix can be written as under.

 class Matrix

 {

 private:

 int *m;

 int row, col;

 public:

 Matrix(int rows, int cols)

 {

 m = new int[rows * cols];

 }

 };

There is a requirement that if the constructor of a class allocates the memory, it is

necessary to write a destructor of that class. We have to provide a destructor for that

class, so that when that object ceases to exist, the memory allocated by the

constructor, is returned to the free store. It is critically important. Otherwise, when the

object is destroyed, there will be an unreferenced block of memory. It cannot be used

by our program or by any other program. It’s a memory leak that should be avoided.

So whenever we have a class in which the constructor allocates dynamic memory, it is

necessary to provide a destructor that frees the memory. Freeing the memory is an

easy process. We have no need to remember that how many rows and columns were

used to allocate the memory. We simply use the delete operator with empty brackets

and the pointer that points to the allocated memory. We write this as follows

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

473

 delete [] m ;

This statement frees the allocated memory (whatever its size is) that is being pointed

by m.

Assignment and Initialization

Let us discuss the assignment and initialization. We do initialization as

 int i = 0 ;

This is declaring an integer and initializing it. The second way to do this is

 int i ;

 i = 0 ;

This has the same effect as the first statement but the behavior is different. At first, a

space is allocated for i before assigning a value to it..

The same applies whenever we create an object. We can either create an object,

initialize it at the creation time that means constructor is being called, or we can create

an object and then assigns values to its data members later. This is usually done either

by set functions or with the assignment statements. Here the thing to differentiate is

that if we have two objects of a class, say Matrix, m1 and m2. We have, in some way,

created m1, its rows and columns have been allocated, and values have been put in

these rows and columns. Now somewhere in the program, if we write

 m2 = m1 ;

It is an assignment statement. If we have not defined the overloaded operator for

assignment, the default assignment of C will be carried out. The default assignment is

a member-to-member assignment. Now let’s again look at the construct for the Matrix

class. In it, we have only one data member i.e. a pointer to an integer. We have

written int *m ; in the class definition. So in m1, there is a pointer to an integer but m1

is a fully qualified developed object. It is, let’s say, a 5 x 5 matrix and has values for

its entities. Now when we write

 m2 = m1 ;

m2 has also a pointer m to an integer as its own data member. If we have not written

an overloaded assignment operator for this class, the value of m of the object m1 will

be assigned to m of the object m2. Now we have two objects, having pointer variables

that hold the same address. So these are pointing to the same region in the memory.

There arise many problems with this. Firstly, if we destroy m1, the destructor of m1 is

called and it frees the memory. So the memory being pointed by m of the object m1

has gone back to the free store. Now what happens to m2? There is a pointer in m2,

pointing to the same memory, which has been sent to the free store by the destructor

of m1. The memory is no longer allocated. It has been sent to the free store. So we

have a serious problem. We don’t want two objects to point to the same region in the

memory. Therefore, we write an assignment operator of our own. This assignment

operator is such that whenever we do some object assignment, it allocates separate

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

474

memory for one object and copies the values of the second object into that space.

Thus the second object becomes an independent object. So we have to be careful.

Whenever we have a class with a dynamic memory allocation, there is need for

writing an assignment operator for it.

Copy Constructor

Now we will see what a copy constructor is? We have discussed the dangers that a

programmer may face during the process of assigning the objects. The same danger

comes to the scene, when we pass an object like the Matrix class to a function that

does some manipulations with it. Suppose, we have a function that takes an object of

a class Matrix as an argument. The default mechanism of calling a function in C or

C++ is call by value. Now what is the value for this object, being passed to the

function? The values of the data members of the object will be placed on the stack.

The function will get a temporary object, as it is a call by value. The original object

remains intact. The values of data members of that temporary object will be the same

as the values in the original object. Now if it is a simple class, there will be no

problem. However, if there is a class with a pointer as its data member and that

pointer has allocated some memory, then the value of that pointer is copied. This

value is passed to the function and not the memory. Now in the function, we have a

temporary object that has a pointer as data member, pointing to the same memory

location as the original object. If we are just reading or displaying that object, there is

no problem with it. If we change the values of the object, the values in the temporary

object get changed. However, when we manipulate the pointer, it changes the values

in the memory of the original object. This change in the original values is the

mechanism of the call by reference and here we have done call by value. We know

that a temporary object is passed to the function. So how we get around this problem?

The way to resolve this problem is to create a complete copy of the object. We want

that in this copy of the object the pointer value must not point to the same memory

location. Rather, it must point to the memory location of its own. So we want to have

a copy constructor. That means a constructor that will create a new object with a full

copy of the other object. This is also known as deep copy as opposed to shallow copy.

The shallow copy makes a member-to-member copy of the object without taking care

whether the pointer is a pointer or an ordinary variable. The copy of the ordinary

variables is perfectly valid and legal. But if we make a member copy of a pointer,

there may be the problem in which a new pointer variable is created with the same

value, without creating a new area of memory. Therefore, we have to write something

special that is called copy constructor.

The basic line in the syntax of the copy constructor is that we are trying to create a

new object by passing an object of the same class as the argument. So we should think

of a constructor. For example if we have the class Matrix, its prototype will be as

under.

 Matrix (Matrix &) ;

The ‘&’ sign shows that a reference of the object of type Matrix will be passed. Now

whenever we write a copy constructor, there is need to be very cautious. We have to

allocate a new memory for that copy. When we go into this copy constructor, at first,

it is determined that how much memory the original object has allocated? Since we

pass the object, so all the queries might have answers. For example, in case of Matrix

class, we can find the number of rows and columns. We create a temporary object

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

475

inside the constructor and allocate it a memory. Then the values of memory of the

original object are copied into this memory. Now the pointer of this new object will

point to this new location. As the constructor returns nothing and just creates a new

object, so there is no return statement in the constructor. Thus, this copy constructor is

completed. The syntax of this constructor is given below

 Matrix::Matrix (const Matrix &other)

 {

 size = other.size ; // size is a function

to determine the

 memory allocated by object

 m = new int [size] ;

 copyvalues (m, other) ;

 }

In this case, it creates a new object that actually creates memory. It does not make the

shallow copy so there is no copy of the pointer value. In fact, the pointer has a new

value. But the values pointed to by this pointer (i.e. the values in the new allocated

memory) are the copy of the values in the memory of the original object, and then this

fully constructed object is returned.

Now we have the facility of copy constructor. With it, we can define new objects

based on the existing objects. This copy constructor is necessary for the objects in

which the memory is allocated dynamically. We can use this copy constructor without

causing any problems. Suppose we have written as

 Matrix a (3,3) ;

We have defined a constructor that takes two arguments rows and columns, as a

matrix ‘initializer’. We allocate memory for these rows and columns and create an

object. Then somewhere, later in the program, We write

 Matrix b (a) ;

This statement makes a complete copy of already created object a and a new object b

is created. This new object has its own pointer and own memory allocation. This

memory location is different from the memory allocated inside the matrix a. Now if a

dies then b is still a valid object. So a copy constructor is critically useful. It is used

when we want to create a duplicate copy of an object. It is always used whenever we

want to do a call by value into a function to which an object is being passed, and the

object is of a class in which we have allocated the memory dynamically.

Example

Let’s look at an example to further understand these concepts. We write a class String.

It has a data member c that is a pointer to a character. We write a member function

(copy function) of the class, which can copy values in the character array of the class.

There is a constructor that will allocate a space for the character arrays i.e. string. The

starting address of this array will be stored in data member of the class i.e. in a

pointer. We have not written any copy constructor. Now we want to make two objects

of this String class, say, s1 and s2. We create object s1 and assign a string to it. We

write it as

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

476

 String s1 (“test1”) ;

Now after this we write

 String s2 = s1 ;

Thus we create a new object s2. The values of s2 are initialized with the values of s1.

As we have written no copy constructor, C will provide the default copy constructor.

Now if we display the string of s2, it will be the same as of s1. Now use the copy

function to assign new values to the string inside the object s1. So we write

 s1.copy(“A new string”) ;

Thus we write a new string in s1. Now again if we display the string of s2 by writing

 s2.print ;

We will see that it displays the same value, assigned to s1 in the previous statement.

The reason is that the default copy constructor has done member-to-member copy. It

has copied the value of the character pointer to the pointer of s2 and thus both pointers

are pointing to the same memory location.

Now there is need of providing a copy constructor for a class like this. We also have

to provide a destructor as we are doing memory allocation inside the constructor of

the class.

Following is the code of the example in which we provide a copy constructor. We

create an object based on an existing object. The copy constructor creates an object

with full copy of the existing object with its values in a new memory location.

/*This program has a copy constructor and demonstrate the use of it.

We create a new object by passing it an existing object, this calls

the copy constructor and thus creates a complete copy of the passing

object, and has its values in new location of memory.

*/

#include <iostream.h>

#include <stdlib.h>

// class definition

class String

{

 char *c;

 public:

 // copy function

 void copy (char *s)

 {

 c = s ;

 }

 // getting the length of the string

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

477

 int length ()const

 {

 return strlen(c);

 }

 //constructors

 String ();

 String (const char *s)

 {

 c = new char [30];

 strcpy (c, s);

 }

 // copy constructor

 String(const String &other);

 //display the string

 void print()

 {

 cout << c << endl ;

 }

 //destructor

 ~String()

 {

 delete []c ;

 }

};

// definition of copy constructor

String::String(const String &other)

{

 int length;

 length = other.length();

 c = new char[length + 1];

 strcpy(c, other.c);

}

main ()

{

 String s1("test1");

 cout << "The string of s1 is " ;

 s1.print();

 String s2(s1);

 cout << "The string of s2 is " ;

 s2.print();

 s1.copy("A new string"); // assign new value to string s1

 cout << "The string of s1 is " ;

 s1.print();

 cout << "The string of s2 is " ;

 s2.print(); //s2 has its own previous value

}

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

478

The following is the output of the program which shows the use of copy constructor.

The string of s1 is test1

The string of s2 is test1

The string of s1 is A new string

The string of s2 is test1

The other affected part is the assignment operator itself. We know that there are

dangers in the assignment operators of a class in which memory is being allocated.

We cannot write an assignment operator for such a class blindly. When we write an

assignment operator for such a class, that operator must first look at the fact whether

there is self-assignment being done.

Suppose we have an integer i. We have written as

 int i ;

 i = 10 ;

And down to this we write

 i = i ;

There is no problem with it. It is a legal statement. It is complicated if we do such

assignment through pointers. In such a case, pointer is pointing to itself and even it

has no problem. But when we do this with objects that have allocated dynamic

memory, the method of assignment is changed. Let’s take the example of Matrix. We

have an object of Matrix, say m1, which has three rows and three columns. Another

object, say m2, has five rows and five columns. Somewhere in the program we write

 m1 = m2 ;

Here m2 is a big object while m1 is a small one. We want to assign the big object to

the smaller one. The assignment operator for this type of class, first de-allocates the

memory reserved by the left-hand side object. It frees this by the delete operator. Then

it will determine the memory required by the object on right hand side. It will get that

memory from the free store by using new operator. When it gets that memory, it will

copy the values and thus the statement m1 = m2; becomes effective. So assignment

has a requirement.

Now if we say

 m1 = m1 ;

We have defined assignment operator. This operator will delete the memory allocated

by m1 (i.e. object on L.H.S.). Now it wants to determine the memory allocated by the

object on the right hand side, which in this case, is the same i.e. m1. Its memory has

been deleted. So here we get a problem. To avoid such problem, whenever we write

an assignment operator, for objects of the class that has done memory allocation.

After this, we do other things.

We have discussed the example in which we create an object of Matrix. We create it

using a copy constructor by giving it another object. The syntax of it we have written

as

 Matrix m2 (m1) ;

This is the syntax of creating an object based on an existing object. We can write it in

the following fashion.

 Matrix m2 = m1 ;

While this statement, we should be very clear that it is not an assignment only. It is

also a construction. So whenever we are using initialization, the assignment operator

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

479

seems as equal to operator. But actually assignment operator is not called. Think

about it logically that why assignment operator is not called? The assignment

operator is called for the existing objects. There should be some object on the left-

hand side, which will call the assignment operator. When we have written the

declaration line

 Matrix m2 = m1 ;

The m2 object has not constructed yet. This object of Matrix does not exist at the time

of writing this statement. So it cannot be calling the assignment function or

assignment operator. This is an example of the use of a copy constructor. Thus, there

are two different ways to write it. Remember that whenever we create an object and

initialize it in the declaration line, it calls the copy constructor.

Let’s talk about another danger faced by the programmers when they do not provide

copy constructor. The ordinary constructor is there which allocates memory for the

objects of this class. Suppose we do a call by value to a function. Here, we know that

a temporary copy of the object is made and provided to the function. The function

does manipulations with this copy. When the function returns that temporary copy is

destroyed. As no copy constructor is there, a shallow copy, with values of pointers, is

made. The destructor should be there as we do memory allocation in the class. Now

suppose that there is a destructor for that class. Now when this temporary object

destroys its destructor executes and de-allocates the memory. Now as it was a shallow

copy so its pointers were pointing to the same memory as of the original object. In

this way, actually, the memory of the original object is de-allocated. So the pointer of

the original object now points to nothing. Thus, in the process of function call, we

destroyed the original object as it is an invalid object now. Its pointer is pointing to an

unknown memory location. This is a subtle but very critical. This can be avoided by

providing a copy constructor, which actually constructs a fully formed object with its

own memory. That temporary object will go to the function . When it is destroyed, its

destructor will de-allocate this memory. However, the original object will remain the

same.

Rules for Using Dynamic Memory Allocation

Whenever we have a class in which we do dynamic memory allocation, there are

some rules that should be followed.

First, we must define a constructor for it. Otherwise, we will not be able to carry out

dynamic memory allocation. This constructor should be such that it gets memory

from the free store, initializes the object properly, sets the value of the pointer and

returns a fully constructed object.

Secondly, we must write an assignment operator for that class. This assignment

operator should first check the self-assignment and then make a deep copy.. So that a

properly constructed object should be achieved..

Thirdly, as we are doing dynamic memory allocation in the constructor, it is necessary

to provide a destructor. This destructor should free the allocated memory.

These three rules are must to follow.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

480

Usage of Copy Constructor

Let us see where the copy constructors are being used?

First, it is used explicitly at some places, where we write

 Matrix m2 (m1) ;

This is an explicit call to a copy constructor. Here m1 is being passed by reference. If

we want that there should be no change in m1, then it is necessary to use the key word

const with it to prevent any change in m1. The presence of this key word means that

the constructor will do nothing with the object, being passed to it. The use of copy

constructor in this explicit way is clear.

The second way to use the copy constructor is by writing the declaration line as

 Matrix m2 = m1 ;

Here the use of copy constructor is not clear. It is not clear by the statement that copy

constructor is being used. It seems an assignment operator is being used. Be careful

that it is not an assignment operator. It is a copy constructor.

The third use of the copy constructor is calling a function and passing it an object by

value. If we have provided a copy constructor, it will be called automatically and a

complete temporary copy (with memory allocation) of the object is given to the

function. If we do not provide copy constructor, the call by value functions will create

problems. In the function, if we change any value of the object, it will change the

value in the original object.

In function calling, when we do the call by value, the copy constructor is called. On

the other hand, in call by reference, copy constructor is not called and the address of

the original object is passed.

Summary

A pointer is a variable that holds memory address. The & operator is used to get the

address of a variable or an object. The & sign is also used as a short hand for a

reference. Whenever we have a & sign in the declaration, it implies a reference.

Whenever we have & sign on right hand side of an assignment operator, it is taken as

address of an object. We can do dynamic memory allocation by using pointers.

In C++ language, we have two very efficient operators provided which are new and

delete. We use the new operator for obtaining memory from the free store. It returns a

pointer to the allocated memory. We store the value of this pointer in a pointer

variable.

In a class, which allocates memory dynamically, there is a data member i.e. a pointer.

When we create an object of the class at run time, it will allocate memory according

to our requirement. So there is no waste of memory and the situations in which we

want to store large data in small memory or vice versa are prevented. So we do

dynamic memory allocation inside these classes.

Whenever we have dynamic memory allocation inside a class, we have to provide few

things. We must provide a constructor that does the memory allocation for us

producing a well-formed object.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

481

We must provide a copy constructor that is able to create fully formed copies of the

objects. That means is should not only make the copies of the values of the pointers

but it should give the pointers new values by allocating new memory for the object.

And should copy the values of the original object into this new memory location.

We must provide an assignment operator. This operator should be able to check the

self-assignment and can assign one object to the other in a proper fashion using the

concept of deep copy and not a shallow copy. So we allocate memory space then copy

element by element in this allocated memory.

And finally we must do de-allocation which means whenever we destroy an object

and it goes out of scope, we should free the memory allocated by that object. To do

the memory de-allocation we must provide the destructor of the class in which we free

(delete) the memory by using deletes operator.

Exercise

You should write small programs to examine the working of these rules. You can

check this if we allocate memory and do not delete it in the destructor. Then the next

time, when we execute the program it will allocate a new memory. We can find that

which memory is assigned by displaying the value of the pointer (not the value it

points too). It will be a number with 0x-notation i.e. it will be in hexadecimal. We

don’t care about the exact value but we will find that if we have provided a proper

destructor. Then on the same computer, in the same session, we execute the program,

a specific address of memory will be assigned to the program. With the proper

destructor, we stop the program and then again start it. Nine out of ten times, we get

the same memory. That means we will see the same address. Nine times out of ten is

because the operating system can use this memory somewhere else between the times

of two executions of the program. If we do not provide a destructor i.e. we do not

deallocate the memory, it is necessary that each time we will get a new memory. The

previous memory is being wasted. You can prove it by yourselves by writing small

programs.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

482

Lecture No. 40

Reading Material

Deitel & Deitel - C++ How to Program Chapter 7

 7.3, 7.4

Summary

 Objects as Class Members

 Example 1

 Example 2

 Advantages of Objects as Class Members

 Structures as Class Members

 Classes inside Classes

 Tips

Objects as Class Members

A class is a user defined data type and it can be used inside other classes in the same

way as native data types are used. Thus we can create classes that contain objects of

other classes as data members.

When one class contains objects of other classes, it becomes mandatory to understand

how and in what sequence the contained and containing objects are constructed. An

important point in construction of an object is that the contained data members of the

object (regardless whether they are native or user defined data types) are constructed

before the object itself. The order of destruction of an object is reverse to this

construction order, where the containing object is destroyed first before the contained

objects.

To elaborate the construction and destruction orders of objects, we take a class A and

contain its instance (object) in another class B.

/* This program illustrates the construction and destruction orders of objects. */

#include <iostream.h>

class A

{

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

483

 public:

 A()

 {

 cout << "\n A Constructor ...";

 }

 ~A()

 {

 cout << "\n A Destructor ...";

 }

};

class B

{

 public:

 B()

 {

 cout << "\n B Constructor ...";

 }

 ~B()

 {

 cout << "\n B Destructor ...";

 }

 private:

 A a;

};

void main(void)

{

 B b;

}

The output of this code is as follows:

 A Constructor ...

 B Constructor ...

 B Destructor ...

 A Destructor ...

In the code above, we have contained an instance of the class A inside class B. In the

main function, we have only created an object of the class B.

From the output, we can see the first line that the contained object a’s default

constructor is called before the default constructor of the class B. At destruction time,

the destructor of the class B is called first before A’s. Note that the contained object

‘a’ of class A is constructed by calling the default constructor. Hence, we have found

one way of constructing contained objects by means of default constructors and then

setting the values of data members by calling setter methods of the object. But this is

cumbersome and wasteful, we have a better way provided by the language to initialize

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

484

contained objects at construction time using the initializer list. Initializer list is used to

initialize the contained objects at the construction time.

Example 1

Let’s take a class of PersonInfo that stores name, address and birthday of a person.

This PersonInfo class contains an instance of our veteran Date class to store birthday

of a person.

class PersonInfo

{

public:

 // public member functions...

private:

 char name[30];

 char address[60];

 Date birthday; // member object

};

This declaration specifies a Date object birthday as a private data member. Note that

no arguments are specified in the declaration of birthday. However, this does not

mean that the default constructor is called when the PersonInfo object is constructed

but we can always specify a member initializer to call a parameterized constructor.

A colon is placed after the parameter list of the containing class's constructor,

followed by the name of the member and a list of arguments as shown below:

class PersonInfo

{

public:

 PersonInfo(char * nm, char * addr, int month, int day, int year);

 // ...

private:

 // ...

};

PersonInfo::PersonInfo(char * nm, char * addr, int month, int day, int year)

 : birthday(month, day, year) // Member initializer

{

 strncpy(name, nm, 30);

 strncpy(address, addr, 60);

}

Note that there are five parameters inside PersonInfo constructor including the three

parameters month, day and year parameters to be passed to Date class’s

parameterized constructor as birthday(month, day, year). We are using the initializer

list, therefore, there is no need to call setter methods of the Date class to initialize the

birthday object. Similarly, multiple contained objects can be initialized by using

comma separated initializers. The order of the execution of initializers is the same as

the order of declarations of objects inside the outer class. To confirm about the order

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

485

of execution, let us have another Date object drvLicenseDate declared after birthday

object in the PersonInfo class:

 /* This program illustrates the initializer list, order of execution of constructor’s inside

the list. */

#include <iostream.h>

#include <string.h>

class Date

{

 public:

 Date();

 Date(int month, int day, int year);

 ~Date ();

 private:

 int month, day, year;

};

Date::Date()

{

 cout << "\n Date -- Default constructor called ...";

 month = day = year = 0;

 }

Date::Date(int month, int day, int year)

 {

 cout << "\n Date -- Constructor with month=" << month

 << ", day= " << day << ", year= " << year << " called ...";

 this->month = month;

 this->day = day;

 this->year = year;

 }

Date::~Date ()

 {

 cout << "\n Date -- Destructor called ...";

 }

class PersonInfo

{

public:

 // public member functions...

 PersonInfo(char * nm, char * addr, int month, int day, int year,

 int licMonth, int licDay, int licYear);

 PersonInfo::~PersonInfo();

private:

 char name[30];

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

486

 char address[60];

 // member objects

 Date birthday;

 Date drvLicenseDate;

};

PersonInfo::PersonInfo(char * nm, char * addr, int month, int day, int year,

 int licMonth, int licDay, int licYear)

 : drvLicenseDate(licMonth, licDay, licYear), birthday(month, day, year)

 // Above line is initializer list

{

 cout << "\n PersonInfo -- Constructor called ...";

 strncpy(name, nm, 30);

 strncpy(address, addr, 60);

}

PersonInfo::~PersonInfo()

{

 cout << "\n PersonInfo -- Destructor called ...";

}

main(void)

{

 PersonInfo pi("Abbas", "12-Y, DHS, Lahore, Pakistan", 12, 12, 1972, 12, 10, 1992);

}

The output of this program is:

Date -- Constructor with month=12, day= 12, year= 1972 called ...

Date -- Constructor with month=12, day= 10, year= 1992 called ...

PersonInfo -- Constructor called ...

PersonInfo -- Destructor called ...

Date -- Destructor called ...

Date -- Destructor called ...

Because birthday is declared before drvLicenseDate, it is clear from the output that

the constructor for birthday is called first and then for the drvLicenseDate object,

although drvLicenseDate is present before birthday in the initializer list.

Example 2

Let’s take another example to work with the size of a matrix. We declare a Column

class first then a Row class. Row class contains an instance of Column class to store

the number of columns (number of elements) inside one Row instance. Further, the

Matrix class contains an instance of Row class. See the code below.

/* Program to illustrate the initialization lists, construction and destruction sequences of

contained and containing objects. */

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

487

#include <iostream.h>

#include <stdlib.h>

class Column

{

 private :

 int size ;

 public :

 Column (int size)

 {

 cout << "Column created" << endl << endl ;

 this->size = size ;

 }

 ~Column ()

 {

 cout << "Column destroyed " << endl << endl ;

 }

 void showSize () ;

 void setSize (int) ;

};

void Column :: showSize ()

{

 cout << "Column size is : " << size << endl << endl ;

}

void Column :: setSize (int sz)

{

 size = sz ;

}

class Row

{

 private :

 int size ;

 Column col ;

 public :

 Row (int rowSize, int colSize) : col(colSize)

 {

 cout << "Row created" << endl << endl ;

 this->size = rowSize ;

 }

 ~Row ()

 {

 cout << "Row destroyed " << endl << endl ;

 }

 void showSize () ;

 void setSize (int) ;

};

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

488

void Row :: showSize ()

{

 col.showSize () ;

 cout << "Row size is : " << size << endl << endl ;

}

void Row :: setSize (int sz)

{

 size = sz ;

}

class Matrix

{

 private :

 Row row ;

 public :

 Matrix (int rowSize, int colSize) : row(rowSize, colSize)

 {

 cout << "Matrix created" << endl << endl ;

 }

 ~Matrix ()

 {

 cout << "Matrix destroyed" << endl << endl ;

 }

 void displayMatrixSize () ;

} ;

void Matrix :: displayMatrixSize ()

{

 row.showSize () ;

}

void f()

{

 Matrix matrix(3, 4) ;

 matrix.displayMatrixSize () ;

}

int main()

{

 f();

 system("PAUSE");

 return 0;

}

The output of the program is as follows:

Column created

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

489

Row created

Matrix created

Column size is : 4

Row size is : 3

Matrix destroyed

Row destroyed

Column destroyed

Press any key to continue . . .

Notice the construction sequence of objects. In order to create a Matrix object, a Row

object is created first and to create a Row object, a Column object is created. So the

contained object Column is constructed first of all, then comes the Row object and

finally the Matrix object. At destruction time, the very first object to destroy is the last

object constructed, which is the Matrix object. The second object destroyed is Row

object and then the Column object at the end. See also the use of initializer list in the

code, how the colSize and rowSize arguments are passed to the constructors.

The public data members of a contained object can also be accessed from outside of

the containing class. For example, if row object inside Matrix class is declared as

public and has a public variable named size then it can be accessed using the dot

operator (“.”) as:

 int main (void)

 {

 Matrix matrix (4, 5) ;

 Matrix.row.size = 8 ;

}

Advantages of Objects as Class Members

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

490

It is a way of reusing the code when we contain objects of our
already written classes into a new class. For example, Date
class can be used as data member of Student, Employee or
PersonInfo class. In this approach, we don’t have to test our
previously written classes again and again. We write a class,
test it once and add it into our components library to use it
later.

It gives clarity and better management to the source code of our programs when we

break up problems into smaller components. The smaller components can be managed

independently from their contained objects forming their own classes. For example, in

the previous example program, Matrix was subdivided into Row and Column classes.

When we declare an object as a constant data member inside a class then that constant

object is initialized using the initializer list. Therefore, a class, whose object is

contained as const object, must have a parameterized constructor.

Structures as Class Members

We have already studied that structures and classes are very similar in C++ except the

default scope of members. The default scope for members of structures is public

whereas the default visibility for class members is private.

Likewise, objects of different classes can act as data members, structures and unions

can also act as data members of a class. In fact, all the discussion above for Class

Objects as Class Members applies to this topic of Structure Objects as Class

Members.

#include <iostream.h>

#include <stdlib.h>

struct VehicleParts

{

 int wheels;

 int seats;

 VehicleParts()

 {

 cout << "\n VehicleParts - default constructor";

 }

 VehicleParts(int wheels, int seats)

 {

 this->wheels = wheels;

 this->seats = seats;

 cout << "\n VehicleParts - parameterized constructor";

 }

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

491

 ~VehicleParts()

 {

 cout << "\n VehicleParts - destructor" << endl;

 }

} ;

class Vehicle

{

 private :

VehicleParts vehicleParts ;

 public :

 Vehicle()

 {

 cout << "\n Vehicle - default constructor" << endl;

 }

 Vehicle(int a, int b) : vehicleParts(a, b)

 {

 cout << "\n Vehicle - parameterized constructor";

 }

 ~Vehicle()

 {

 cout << "\n Vehicle - destructor";

 }

 void setPartsNum (int a, int b)

 {

vehicleParts.wheels = a ;

vehicleParts.seats = b ;

 }

 void displayNumVehicleParts ()

 { /* The data members of the structure are public,

 therefore, directly accessible from outside. */

 cout << "\n Number of wheels for this vehicle are "

 << vehicleParts.wheels;

 cout << "\n Number of seats for this vehicle are "

 << vehicleParts.seats << endl;

 }

} ;

void f()

{

 Vehicle car(4, 2) ;

 car.displayNumVehicleParts() ;

}

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

492

{

 f();

 system ("PAUSE") ;

}

The output of the program is:

VehicleParts - parameterized constructor

 Vehicle - parameterized constructor

 Number of wheels for this vehicle are 4

 Number of seats for this vehicle are 2

 Vehicle - destructor

 VehicleParts - destructor

 Press any key to continue . . .

Classes inside Classes

In C language, structures can be defined inside structures, Similarly in C++, we can

have structures or classes defined inside classes. Classes defined within other classes

are called nested classes.

A nested class is written exactly in the same way as a normal class. We write its data

members, member functions, constructors and destructors but no memory is allocated

for a nested class unless an instance of it is created. C++ allows multiple levels of

nesting. Importantly, we should be clear about the visibility of the nested class. If a

class is nested inside the public section of a class, it is visible outside the outer

(enclosed) class. If it is nested in the private section, it is only visible to the members

of the outer class. The outer class has no special privileges with respect to the inner

class. So, the inner class still has full control over the accessibility of its members by

the outer class. Interestingly, the friend operator can be used to declare enclosed class

as a friend of inner class to provide access to inner class’s private members. This

operator is used in the same way as we use it for other classes that are not nested. We

can also make the inner class to access the private members of enclosed class by

declaring the inner class as a friend of outer class.

The reason of nesting classes within other classes is simply to keep associated classes

together for easier manipulation of the objects.

/* This program illustrates the nested classes */

#include <iostream.h>

#include <stdlib.h>

class Surround

{

 public :

 class FirstWithin

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

493

 {

 public:

 FirstWithin ()

 {

 cout << "\n FirstWithin - default constructor";

 }

 ~FirstWithin()

 {

 cout << "\n FirstWithin - destructor";

 }

 int getVar() const

 {

 return (variable);

 }

 private:

 int variable;

 };

 FirstWithin myFirstWithin;

 private:

 class SecondWithin

 {

 public:

 SecondWithin()

 {

 cout << "\n SecondWithin - default constructor";

 }

 ~SecondWithin()

 {

 cout << "\n SecondWithin - destructor ";

 }

 int getVar() const

 {

 return (variable);

 }

 private:

 int variable;

 };

// other private members of Surround

};

void f(void)

{

 Surround::SecondWithin a;

 Surround::FirstWithin b;

 Surround c;

 c.myFirstWithin.getVar();

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

494

}

int main()

{

 f();

 cout << endl << " ";

 system("PAUSE");

 return 0;

}

The output of the program is as follows:

SecondWithin - default constructor

 FirstWithin - default constructor

 FirstWithin - default constructor

 FirstWithin - destructor

 FirstWithin - destructor

 SecondWithin - destructor

 Press any key to continue . . .

Notice the access specifier (::) usage in function f() to access the members of inner

class.

The class FirstWithin is visible both outside and inside Surround. The class

FirstWithin has therefore global scope. The constructor FirstWithin() and the member

function getVar() of the class FirstWithin are also globally visible. The int variable

data member is only visible for the members of the class FirstWithin as it is declared

private. Neither the members of Surround nor the members of SecondWithin can

access the variable of the class FirstWithin directly. The class SecondWithin is visible

only inside Surround. The public members of the class SecondWithin canalso be used

by the members of the class FirstWithin, as nested classes can be considered members

of their surrounding class.

The constructor SecondWithin() and the member function getVar() of the class

SecondWithin can also only be reached by the members of Surround (and by the

members of its nested classes). The int variable data member of the class

SecondWithin is only visible to the members of the class SecondWithin. Neither the

members of Surround nor the members of FirstWithin can access the variable of the

class SecondWithin directly.

The nested classes can be considered members of the surrounding class, but the

members of nested classes are not members of the surrounding class. So, a member of

the class Surround may not access FirstWithin::getVar() directly. The nested classes

are only available as type names. They do not imply as objects containment by the

surrounding class. If a member of the surrounding class uses a (non-static) member of

a nested class then a pointer to a nested class object or a nested class data member is

defined in the surrounding class. The pointer is further used by the members of the

surrounding class to access members of the nested class.

It is important to know how do we define Member functions of nested classes. They

may be defined as inline functions or they can also be defined outside of their

surrounding class. Consider the constructor of the class FirstWithin in the previous

example.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

495

The constructor FirstWithin() is defined in the class FirstWithin, which is, in turn,

defined within the class Surround.

Consequently, the class scopes of the two classes must be used to define a constructor

as the following:

Surround :: FirstWithin :: FirstWithin ()

{

 variable = 0 ;

}

The classes FirstWithin and SecondWithin are both nested within Surround, and can

be considered members of the surrounding class. Since members of a class may

directly refer to each other, members of the class SecondWithin can refer to public

members of the class FirstWithin but they cannot access private members of the

FirstWithin unless SecondWithin is declared as a friend of FirstWithin.

See the code snippet below, we have used friend operator here extensively so that all

the three classes Surround, FirstWithin and SecondWithin can access private members

of each other.

class Surround

{

 class SecondWithin ;

 public :

 class FirstWithin

 {

 friend class Surround ;

 friend class SecondWithin ;

 public :

 int getValue()

 {

 Surround :: variable = SecondWithin :: variable ;

 return (variable);

 }

 private :

 static int variable ;

 } ;

 friend class FirstWithin ;

 int getValue ()

 {

 FirstWithin :: variable = SecondWithin :: variable ;

 return (variable) ;

 }

 private :

 class SecondWithin

 {

 friend class Surround ;

 friend class FirstWithin ;

 public :

 int getValue ()

 {

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

496

 Surround::variable = FirstWithin::variable;

 return (variable) ;

 }

 private:

 static int variable;

 };

 friend class SecondWithin ;

 static int variable;

};

We can also define structures inside classes in the same manner as we defined classes

within classes. Again, all the above discussion is valid for structures inside classes

except the default scope of members in structures is public unless explicitly declared

otherwise.

Tips

 A class can contain instances of other classes as its
data members.

 It is a way of reusing the code when we contain objects of our already written

classes into a new class.

 The inner data members of the object are constructed and then the object itself.

The order of destruction of an object is reverse to this construction order,

where the outer object is destroyed first before the inner data members.

 Initializer list is used to initialize the inner objects at the construction time.

 In C++, we can have structures or classes defined inside classes. Classes

defined within other classes are called nested classes.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

497

Lecture No. 41

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 12

 12.2, 12.3

Summary

63) Template Functions

64) Overloading Template Functions

65) Explicitly Specifying the Type in a Template Function

66) Template Functions and Objects

67) Recap

In the previous lecture, we talked about the objects used as data members within

classes. In this case, you will find that there is a lot of code reuse. A completely debug

code is used as building blocks for developing new and more complex classes.

Today’s discussion will mainly focus on a new way of code reuse with an entirely

different style of reuse. This method is called templates.

Template Functions
There are two different types of templates in C++ language i.e.’ function templates

and class templates. Before going ahead, it will be sagacious to know what a template

is? You have used a lot of templates in the childhood. There are small scales being

marketed at the stationary shops having some figures on them like circle, a square,

rectangle or a triangle. We have been using these articles to draw these shapes on the

paper. We put the scale on the paper and draw the lines with the pencil over that

figure to get that shape. These engraved shapes are generally called stencils. But in a

way, these are also templates. We may also take these ‘cut-outs’ as sketches. So a

template is a sketch to draw some shape or figure. While drawing a special design,

say of furniture, we develop a template for this, which is not an actual piece of

furniture. We try that its shape should be like the outline. Later, the cut out prepared

out of wood in line with the template, is actual piece of furniture. We can think of

making a triangular template and then drawing it on a piece of wood and shaping it

into a triangle. We can use the same template and put it on a piece of metal and can

cut it into a triangle and so on. In a way, that template is allowing us the reuse of a

certain shape. This is the concept we are going to try and build on here.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

498

Here we are going to discuss the benefits of the function templates. We have been

using a swap function. We want to interchange two things. You know the technique

that we need a third temp-place holder. If we want to swap two integers i and j, the

code will be as under:

 void swap(int &i, int &j)

 {

 int tmp;

 tmp = i;

 i = j;

 j = tmp;

 }

This is a very generic way of interchanging two values. We have written a swap

function to interchange two integers. To interchange two doubles, we have to come up

with some other swap function for doubles and so on. Whenever, a need to use this

swapping technique for different data type arises, we have to write a new function.

Can we write such functions? Yes, we can. These functions can be overloaded. We

can have functions with the same name as long as the types or the number or the

arguments are different. Compiler can detect which function should be used. It will

call that function appropriately. So you can define swap for integers, floats and

doubles. There is also no problem in defining multiple versions of this function with

different data types. Depending on what is required, the compiler will automatically

make a call to the correct function. This is the overloading. The code for every data

type looks like:

 void swap(SomeDataType &firstThing, SomeDataType &secondThing)

 {

 SomeDataType tmp;

 tmp = firstThing;

 firstThing = secondThing;

 secondThing = tmp;

 }

This is a sort of generic code, we are writing again and again for different data types.

It will be very nice if somehow we can write the code once and let the compiler or

language handle everything else. This way of writing is called templates or function

templates. As seen in the example of a template of a triangle, we will define a generic

function. Once it is defined and determined where it will be called for some specific

data type, the compiler will automatically call that function.

As discussed in the example of overloaded functions, the automatic part is also there.

But we wrote all those functions separately. Here the automatic part is even deeper. In

other words, we write one template function without specifying a data type. If it is to

be called for int data type, the compiler will itself write an int version of that function.

If it is to be called for double, the compiler will itself write it. This does not happen at

run time, but at compile time. The compiler will analyze the program and see for

which data type, the template function has been called. According to this, it will get

the template and write a function for that data type.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

499

Now, we will see the idea or technique for defining template function. Here you will

come across some new keywords. First keyword is “template”. These are the recent

addition to the language. Some old compilers may not have these features. However,

now almost all of the compilers implement these features. Another keyword is class

that is quite different than we have been using for defining the classes. This is another

use of the same keyword. Normally, when we define a generic function, it is

independent of the data type. The data type will be defined later in the program on

calling this function. The first line will be as template<generic data type>. This

generic data type is written while using the class key word as template<class

variable_name>. So the first line will be as;

 template<class T>

We generally use the variable name as T (T evolves from template). However, it is not

something hard and fast. After the variable name, we start writing the function

definition. The function arguments must contain at least one generic data type.

Normal function declaration is:

 return_type function_name(argument_list)

return_type can also be of generic type. There should be at least an argument of

generic type in the argument_list. Let’s take a very simple example. This is the

function reverse. It takes one argument and returns its minus version. The int version

of this function is as:

 int reverse(int x)

 {

 return (-x);

 }

Similarly its double version will be as:

 double reverse(double x)

 {

 return (-x);

 }

Similarly, we can define it for other data types.

Let’s see how can we make a template of this function. The code is as:

 template<class T>

T reverse(T x)

{

 return (-x);

}

In the above function definition, we have used T as generic type. The return type of

the function is T which is accepting an argument of type T. In the body of the

function, we just minus it and return x that is of type T. Now in the main program, if

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

500

we write it as int i and then call reverse(i), what will happen? The compiler will

automatically detect that i is an int and reverse is a template function. So, an int

version of reverse function is needed in the program. It uses the template to generate

an int version. How does it do that? It replaces the T with int in the template function.

You will get exactly the same function as we have written before as int reverse(int x).

This copy is generated at compile time. After the compilation, all the code is included

in the program. A normal function call will happen. When we write reverse(i) in the

main or some other function, it is not required to tell that an int version is needed.

The compiler will automatically detect the data type and create a copy of the function

of the appropriate data type. This is important to understand. Similarly if we have

double y; and we call the reverse function as reverse(y); the compiler will

automatically detect that this program is calling reverse(i) and reverse(y). Here i is an

int and in reverse(y), y is a double. So the compiler will generate two versions of

reverse function, one with int and the other with double. Then it will be compiled and

the program will execute correctly. This is the classic example of code reuse. We have

to pay attention to writing the template. It should be generic in nature.

For a programmer, there are facilities of the macros and #define which have the

limitations. Macro is a code substitution while #define is a value substitution. Here, in

templates, we write a generic code and the compiler generates its copies of

appropriate types. It is always better than ordinary function overloading. Now let’s

take the previous example of reverse. When we write the function of reverse and give

it a value of type double, a version of the reverse function for double is created,

compiled and used. If we write the same template in some other program and call it

for an integer, it will still work. It will automatically generate code for int. We should

write a template while doing the same functionality with different data types. The rule

for templates is that at least one argument in the function should be of generic data

type. Other wise, it is not a template function. We write a template class T and use T

as a new data type. Being a template data type, it does not really exist. The compiler

will substitute it on its use besides generating an appropriate code. There are some

limitations that should be kept in mind. We cannot store the declarations and

definitions of these functions in different files. In classes, we have this for certain

purposes. In case of a class, we put the declaration of the class and its basic structure

in the header file to facilitate the users to know what the class does implement. The

definition of the class, the actual code of its functions and the manipulations are

provided along with as object code. Here in the template case, the compiler makes a

copy of the source code and converts it to object code. We cannot give the declaration

of the template function in one file and the definition in some other. If we store these

in different files, it will not compile. It does not have real data type and still has

parameterized or generic data type in it. So the declaration and definition of a

template function should be in the same file. We will include this file or keep the

template with our main program. When it will be used, the copies of code will be

automatically generated. So it is a slight limitation with templates. In any case,

template class or template functions are for our own use. We do not write template

functions as libraries for other people as it is like giving away our source code.

For template functions, we must have at least one generic argument. There may be

more than one generic arguments. We have to pass it to pieces of data to be swapped.

We can write swap function as:

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

501

 template<class T>

 void swap(T &x, T &y)

 {

 T tmp;

 tmp = x;

 x = y;

 y = tmp;

 }

In the above function, we are passing both arguments of generic type and declared a

tmp variable of generic type. We can also mix generic data types and native data types

including user defined data types. This template version of swap function can be used

for integer, double, float or char. Its copy will be created after writing the swap(a, b)

in the program. If we have int a, b; in the program, int copy of swap function will be

generated. If you have written char a, b; a char copy of swap function will be

generated. A copy is simple substitution of char with T. Just replace T with char in

the swap function and remove the first line i.e. template<class T>, this is the function

that the compiler will generate. Now we have seen examples of one generic and two

generic arguments functions. You can write template functions with more than two

generic arguments.

So far, we have been using only one generic data type. However, the things can not be

restricted to only one generic data type. We can use more than one generic data types

in template functions. We can do that by extending the template<class T>. The use of

two generic types can be written as:

 template <class T, class U>

We can use any name in place of T and U. Two data types can be mixed here. So we

can write a function that takes an int and float and can multiply these two. We can use

T as int and U as float or whatever is the function requirement. Let’s look at another

example of template function. We want to write a function that takes two arguments

of same type and tells which of the two is greater. The code will be as below:

// A small program shows the use of template function

#include<iostream.h>

// template function of deciding a larger number

template<class T>

T larger(T x, T y)

{

 T big;

 if (x > y)

 big = x;

 else

 big = y;

 return(big);

}

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

502

// the main function

{

 int i = 7, j = 12;

 double x = 4.5, y = 1.3;

 cout << "The larger of " << i << " and " << j << " is " << larger(i, j)<< endl;

 cout << "The larger of " << x << " and " << y << " is " << larger(x, y)<< endl;

 //cout << "The larger of " << x << " and " << y << " is " << larger(i, y)<< endl;

}

The output of the program is:

The larger of 7 and 12 is 12

The larger of 4.5 and 1.3 is 4.5

The function larger is very simple. We have two arguments in it, compared these two

arguments and set the variable bigger. You have noticed that the definition of larger

is not exactly correct. In the if condition, we check that x is greater than y. So in the

else-part x can be equal to or lesser than y. Let’s see their use in the main. We declare

two integers i and j and two doubles x and y. Then we use the cout to display the

result. The larger function will return the bigger argument. When we write larger(i,

j), the compiler will detect it and generate an int version of the larger function. In the

next line, we have used larger(x, y) as x and y are double. Here, the compiler will

generate a double version of the larger function. Now compile the program and it is

ready to be executed. The two versions of larger functions will be executed .We get

the larger of two integers and larger of two doubles. You have noticed that the last

line of the code is commented out. In that line, we are trying to call the larger (i, y).

There is a problem that if you uncomment this line, it will not be compiled. We have

only defined one generic class type in the templatized function i.e. class T. Here we

are trying to call it with an int and a double. The compiler does not know what to do

with it. Either it should promote the int to double and call the double version or

demote the double into int and call the int version. But the compiler will not make this

decision. It will be a compile time error. We can write another template function that

handles two data types or try to call this function with one data type. Be careful about

these fine points. Template is a nice thing to use but needs to be used carefully. The

compiler may give an error, so you have to correctly use it. Here in the larger

function, we have to provide both arguments of the same data type.

Following is an example of larger function using two different generic types.

// A template function example using two generic types

#include<iostream.h>

// template function

template <class T, class U>

void larger(T val1, U val2)

{

 if (val1 > val2)

 cout<<"First is larger"<<endl;

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

503

 else

 cout<<"First is not larger"<<endl;

}

// main function

{

 larger(2.1, 9);

 larger('G', ‘A’);

}

The output of the program is:

First is not larger

First is larger

Overloading Template Functions
Let’s take benefit of our knowledge and discuss the things of the next level i.e.

function overloading. Under the techniques employed in function overloading, the

functions have the same name but differ either by the number of arguments or the

type of the arguments. Remember that the return type is not a differentiator when you

are overloading the functions. Now if the number or type of the arguments is different

and the function name is same, the compiler will automatically call the correct

version. The same rule applies to the template function. We can write overloaded

template functions as long as there is use of different number or type of arguments.

We have written a templatized swap function. Let’s rename that function as inverse. It

will swap the variables. We have another inverse function that takes one argument

and return the minus of the argument supplied. We have two template functions

named inverse. Here is the code of the program:

// An example of overloaded template functions.

#include<iostream.h>

// template function

template<class T>

void inverse(T &x, T &y)

{

 T temp;

 temp = x;

 x = y;

 y = temp;

}

// overloaded inverse fucntion

template<class T>

T inverse(T x)

{

 return (-x);

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

504

}

// the main fucntion

{

 int i = 3, j = 5;

 // calling the templatized functions

 inverse(i);

 inverse(i, j);

 cout << “i = ” << i << ", j = " << j << endl;

}

The output of the program is:

i = 5.6, j = -3.4

In the above program, we have overloaded template functions. When we write

invers(i), the compiler will detect the inverse function with one argument and

generate its int code. However, on writing inverse (i, j), it will generate an int version

of the inverse function which takes two parameters. This is not a good example as the

function names are confusing. The function which does swapping should be named as

swap while the one doing negative should be named as negative. There might be good

occasions where you might want to use overloaded templates. The same rule of

ordinary function overloading applies on template function overloading.

Explicitly Specifying the Type in a Template Function
In the template functions, sometimes we want to see which version of the template

function should be used. Let’s take the example of reverse function. We call that

function for double data type. A function for the double would have been generated

and its negative value will be returned. Suppose we want to pass it a double but return

an integer. We want to return a negative integer that was a part of the double variable,

passed to the function. We can force the compiler to generate an int version of this

function while not passing it an int. It can take place when we are going to call the

function in the program. We write the data type in the angle brackets between the

function name and argument list. For example, if we have a template reverse function,

which returns -x. In the program, we have double a. As soon as we write reverse(a),

the compiler will generate a double version of reverse function. Now we want that ‘a’

should be passed to this function while returning an int. The prototype of the function

is T reverse(T x). We want that T should be replaced by int. At the same time, we

want to pass it double. To obtain this, we will write as reverse <int> (a); writing

<int> forces the compiler to also generate an integer version of the function. There

may be instances where this technique is useful.

Suppose, we have a template of reverse function that depends on two generic data

types. The function template is as follows:

 template <class T, class U>

 T reverse (U x)

 {

 return -x;

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

505

 }

Now the return type is T while the argument is of type U. In the body of the function,

we return -x and the conversion automatically takes place. In this function template,

we are using two generic types. The return type cannot force anything as it is used

later in the assignment statement. If we have double a in the program, and say

reverse(a); What version will be generated? What will be replaced with T and U? We

can force it as reverse<int>(a); In that case, it will force T to become int. It will force

U to become of the type a i.e. double. It will take a double number, reverse and

convert it into int and return it. You can explicitly specify it as reverse<int, double>

(a); so we have specified both T and U. We are specifying this to the compiler so that

when the compiler generates the code, it carries out it for these versions. It is like the

default argument list. You can not force the second part only i.e. you can not force U

only while missing T. It has to go left to right. You can do as revere<double, double>

(a); or reverse(double, int>(a). The appropriate versions will be generated. Actually,

you can force what type of versions should be generated in your code. Normally, we

do not need to force the template functions. Normally the template function is used

for different data types while generating appropriate versions by the compiler.

Here is the code of the above-explained program:

// An example of forcing the template functions for some specific data type

#include<iostream.h>

template <class T, class U>

T reverse (U x)

{

 return (-x);

}

// main function

{

 double amount = -8.8;

 // calling the function as double reverse(int)

 cout << reverse<double, int>(amount) << endl;

 // calling the function as double reverse(double a)

 cout << reverse<double>(amount) << endl;

 // calling the function as double reverse(double a)

 cout << reverse<double, double>(amount) << endl;

 // calling the function as int reverse(int a)

 cout << reverse<int, int>(amount) << endl;

}

The output of the code is as follows:

8

8.8

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

506

8.8

8

Template Functions and Objects
We have seen the template functions and know that classes also have member

functions. Can we use these templates with the member functions of a class? Yes, we

can templatize member functions. The operations used within template functions

should be present in the public part of the class. Let’s see an example to understand

this. Suppose we have created a class PhoneCall. We have a lengthOfCall data

member in the class that tells about the duration of the call. Another character data

member is billCode. The billCode will tell us that this call is local, domestic or

international. Suppose, we browse the bill and notice a wrong call. What should we

do? We will pick up the phone and call the phone company or go the phone company

office to get the bill corrected. How will they do that? They will verify it with the

record and see there is no such call or the duration is not chargeable. So far, we have

been using the reverse function to minus the input argument. Here we want to reverse

the phone call. Suppose, we define that when the billCode is ‘c’, it means that call has

been reversed or cancelled. Can we use this concept and write a reverse function for

this class. Let’s revisit the reverse function template.

 template<class T>

T reverse(T x)

{

 return (-x);

}

Here T is the generic type that will be replaced with int, float etc. Can we replace T

with the object of the class PhoneCall. How will that work? Let’s replace the T with

PhoneCall, the code looks like:

 PhoneCall reverse(PhoneCall x)

{

 return (-x);

}

The declaration line shows that it returns an object of PhoneCall and takes an

argument of type PhoneCall. Inside the body of the function, we are returning -x.

What does –PhoneCall mean? When we are using template functions in the classes, it

is necessary to make sure that whatever usage we are implementing inside the

template function, the class should support it. Here we want to write –PhoneCall. So a

minus operator should be defined for the PhoneCall class. We know how to define

operators for classes. Here the minus operator for PhoneCall will change the billCode

to ‘c’ and return the object of type PhoneCall. Let’s have a look on the code.

// A simple program to show the usage of the template functions in a class

#include<iostream.h>

// reverse template function

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

507

template<class T>

T reverse(T x)

{

 return (-x);

}

// definition of a class

class PhoneCall

{

 private:

 int lengthOfCall; // duration of the call

 char billCode; // c for cancelled, d for domestic, i for international, l for local

 public:

 PhoneCall(const int l, const char b); // constructor

 PhoneCall PhoneCall::operator-(void); // overloaded operator

 int getLengthOfCall(){ return lengthOfCall;}

 void showCall(void);

};

PhoneCall::PhoneCall(const int len=0, const char b='l')

{

 lengthOfCall = len;

 billCode = b;

}

void PhoneCall::showCall(void)

{

 cout <<"The duration of the call is " << lengthOfCall << endl;

 cout <<"The code of the call is " << billCode << endl;

}

// overloaded operator

PhoneCall PhoneCall::operator-(void)

{

 PhoneCall::billCode='c';

 Return (*this);

}

// main function

{

 PhoneCall aCall(10, 'd');

 aCall.showCall();

 aCall = reverse(aCall);

 aCall.showCall();

}

The output of the code is:

The duration of the call is 10

The code of the call is d

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

508

The duration of the call is 10

The code of the call is c

We have overloaded the minus operator in the PhoneCall class. We cannot change the

unary or binary nature of operators. The minus operator is lucky due to being unary as

well as binary simultaneously. Here, we have overloaded unary minus operator so, it

can be written as -x. The definition of operators is same as ordinary functions. We

can write whatever is required. Here we are not taking negative of anything but using

it in actual meaning that is reversing a phone call. In the definition of the minus

operator, we have changed the billCode to ‘c’ that is cancelled and the object of type

PhoneCall is returned. Now look at the definition of the reverse template function and

replace the T with PhoneCall. In the body of the function where we have written –x,

the minus operator of the PhoneCall class will be called. Since it is a member

operator and the calling object is available to it. Now let’s look at the main program.

We take an object of PhoneCall as PhoneCall aCall(10, ‘d’); The object aCall is

initialized through the constructor. Now we display it as aCall.showCall(); that shows

the length of the call and bill code. After this, we say reverse(aCall); The reverse

function should not be changing aCall and should return an object of type PhoneCall.

It means that aCall = reverse(aCall); the object returned is assigned to aCall. Reverse

is a template function, so the compiler will generate a reverse function for PhoneCall.

When it will call -x, the member minus operator of the class PhoneCall will be called.

It will change the billCode of that object and return the object. As we have written

aCall = reverse(aCall) so the object returned from reverse having billCode as ‘c’ will

be assigned to aCall. Now while displaying it using the aCall.showCall(), you will

see that the billCode has been changed. So reverse works.

Recap

Let’s just recap what we just did in this lecture. We have defined a template function

reverse. In the template definition, this function returns -x whatever x is passed to it.

After this, we wrote a PhoneCall class and defined its minus operator. Whenever we

have to take minus of the PhoneCall, this operator will be called. This action is based

on the phone call domain and is to change the bill code to ‘c’. So the minus operator

returns an object of type PhoneCall after changing its bill code. Now these two are

independent exercises. The class PhoneCall does not know about the reverse

function. It only has defined its minus operator. On the other hand, the reverse

template function has nothing to do with the PhoneCall class. It is the main program,

linking these two things. The main function declared an object of type PhoneCall and

called the reverse function with that object. When we write the statement aCall =

reverse (aCall); the compiler automatically detects that we have got a situation where

reverse template function is called with the object of type PhoneCall. It needs to

generate a copy of this template function that will work with PhoneCall. When it goes

to generate that copy, it encounters with return(-x). It has to know that a minus

operator exists for that class. If we have not defined the minus operator what will

happen. The compiler may give an error that it does not know what is -PhoneCall. On

the other hand, sometimes default substitution takes place. It may not be what you

want to do. You have to be careful and look at the implications of using a template

function with a class and make sure all the operations within template function should

be defined explicitly for the class so that function should work correctly. Once this is

done, you realize that life has become simpler. The same reverse function works for

this class. Now you can extend the concept and say how to reverse a car, how to

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

509

reverse a phone call, how to reverse an int and so on. The idea is combining two very

powerful techniques i.e. operator overloading and template mechanism which

provides for writing the code at once. In the normal overloading, the facility is that we

can use the same name again and again. But we have to write the code each time.

Normally, the code is different in these overloaded functions. In this case, we are

saying that we have to write identical code i.e. to reverse something, swap two things.

So the code is same only data type is different then we should go and define a

template for that function and thus, template is used again and again. We started with

the template function, used at program level. The use of template with class was also

demonstrated. This combination has some rules. This is that all the operations that

template function is using should be defined in the class. Otherwise, you will have

problems.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

510

Lecture No. 42

Reading Material

Deitel & Deitel - C++ How to Program Chapter. 12, 20

 12.4, 12.5, 12.7, 12.8, 20.1

Summary

68) Class Templates

69) Class Templates and Nontype Parameters

70) Templates and Static Members

71) Templates and Friend Functions

72) Example

73) Sample Program

74) Advantages and Disadvantages of Templates

75) Standard Template Library

As discussed earlier, template functions are utilized while writing functions for

generic data type. We take benefit of templates in case of writing the same function

repeatedly. In this case, the writing code seems very similar, in fact identical. But the

data type is changed for different versions. So we write a function for generic data

type whose syntax we have used as under

 template <class T>

Here T is a generic data type. Now in the function we write T while dealing with a

data type. This becomes a generic template of the function. During the process of

using this template, this function with a particular data type is called. The compiler

automatically detects the type of the data passed (say we passed an int) and generates

a new copy of the function with int. Here T is written in the original template. The

copy is compiled to the object code while existing in the program. The same thing

applies to other data types, used for the same function. Thus, we create a family of

functions with a single template. The functionality of these functions is the same but

with different data types. For example, if we want to find the square of a number, a

template square will be written first. It will be called with int, double or float.

Otherwise, we have to write the over loaded versions of the square function for

different data types. So template functions are of good use for the programmers. They

promote code reuse. The major advantage of their use is that once we write correct

code with correct logic for a template function, there will be no need to re-write it.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

511

How can we test a template? We write the template in reverse technique at the

moment. When it is known what the template has to do, we take a data type for

example int. A complete function for int is written and tested. After the ascertainment

of the accuracy of function’s working, the int in the function is replaced with T and

declared a template by writing template <class T>. We cannot see the code generated

by the compiler in the editor. So it becomes difficult to debug the template code. We

have to read and check the code carefully while writing it.

After having a detailed discussion on the template function, we will now talk about

template classes.

Class Templates

Creation of a data type of our own with the same behavior for int, float and double

etc, is the case of defining a complete interface and implementation in a generic

fashion. To further understand this concept, let’s talk about a data structure called

stack. We will now try to understand how does stack work, what its properties are and

can we make it generic.

You might have seen the plates, kept together in a orderly manner i.e. one on the

other. This is a stack. Now if someone wants to add a plate on the pile, he will have to

put it on the top of the stack. So, there is only one way to add something on the stack.

Similarly, if we want to pick a plate from the pile, it will be taken from the upper-

most tier. Thus the property of the stack is that the last placed thing will be picked

first. This phenomenon is called ‘Last-in, first out’ or LIFO. In programming, we can

understand what thing we want to add, the required thing is added to the top of the

stack. When we pick up a thing from it, the last placed item is picked first. Following

this rule of stack (last in first out), we can make a stack of integers, floats and doubles

etc. Here, the stack is a class with a defined behavior, interface and the data, it holds.

Now we say that the data held by the class is variable to help make a stack of integers,

floats or doubles. Thus, stack is a good candidate for a template class. It means that

when we instantiate the class for creating objects, a stack of integers or floats is

required. The behavior of the compiler in template classes is the same as in template

functions. If we want to instantiate a template class with a new data type, the compiler

will generate a new version of the class with the specific data type at the place of T in

the template class.

We know that a class is a user-defined data type. With the help of a template class, we

make another class of the user defined data type. In other words, things are not

restricted to creating copies of class only for native data type. Copies of class of our

own data type can also be created. It is a case of a real extensibility.

Let’s see the syntax of this generic template class. It is similar to the simple template

function in which we write template <class T>. Here T is the placeholder that will be

replaced by the data type when we use it. The syntax of the template class is

 template <class T>

 class class-name()

 {

 definition of class

 };

In the definition of the class where the generic data type is required, we write T. For

example, there is a class in which we want to write int data type. The int is the data

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

512

type that may be a float or double at different times. For this, T is written wherever

we are using int in the class definition. Be careful that some times, we may use

integers as it in a class. For example, when we create a vector or array, its size will be

an integer. But the array will be of integers, floats or chars. So don’t confuse it them.

It is better to replace T whenever necessary.

We start writing of a template with the following line

 template <class T>

Later, definition of the class in ordinary fashion begins. We should use T wherever in

case of employing the generic data type. T is not something fixed for this purpose. We

can use a, b or c or whatever needed. However, T is normally used.

The member functions are normally defined out side the class. To define the member

functions of the template class, we write

 template <class T>

 class name <T>::function name (argument list)

 {

 // function body

 }

In the function body, the programmer will write T wherever it is needed. This way,

the template-class and its member functions are defined. However, when we use the

class in main program or other function, the objects of this class are declared. Suppose

there is a class Number, say Number x; As Number is a template class, we will have

to tell the type of the number. Let’s see the code of this simple template class

Number. The Number class can store and display a number. The definition of the

class is written as under.

 template<class T>

 class Number

 {

 private:

 T myNumber;

 public:

 Number(T n);

 display();

 };

We create an object of this class in main program by telling the type of the number in

the following way

 Number <data type>

Here data type may be int, float or double. Now we can create an object of this class

for an integer type as follows.

 Number <int> x ;

We can read the line as x is an object of class Number and its parameter is an int. The

way of analyzing it is that wherever we wrote T in the class, now int is written there.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

513

Compiler does it automatically. We will not see the code of this class written for int.

The compiler generates a copy of the class for int and uses it. Similarly, if we write

 Number <double> y ;

Here y will be an object with the data member of type double. Again, the entire copy

of the class will be created with double everywhere instead of T. The program will

compile and run. So it is quiet useful and a big shortcut.

Class Templates and Nontype Parameters

There is a little variation, which is we can also use non-type parameters in templates.

What do non-type parameters mean? We have been writing template <class T>.

However, while writing template <class T, int element>, the non-generic type (i.e.

int) will be treated as a constant in the class definition. In the class definition,

wherever we use the name element, it will be replaced by the value passed to it.

Arrays when declared and given a number in square brackets, the number will be a

constant. Similarly, while using with the # sign, we associate a name with a number

which is a constant. Here the non-type parameter in a way behaves like a constant.

We can use it to give a dimension to the things. Instantiating a class, we not only

replace T but also provide a value for the non-type parameter defined in the class

definition.

By using templates, we save a lot of effort and labor. The other big motivating factor

is the reuse of tested and tried code for a particular problem.

Templates and Static Members

Now let’s talk about the implications of the template classes. To understand the

behavior of templates with static members, we have to comprehend the concept of

static member variables. Static variable members are used to define ordinary classes.

The static variable has a single copy for the whole class. So there are not separate

copies of the static data variable for each object like ordinary data members.

Now let’s see what happens when a static member is a part of a template class. The

instantiation of the class has two parts i.e. one is creating an object while the other is

the type of the object. For example, from the previous class Number, we write

 Number <int> x ;

Here x is an object of generic class Number with a specific type int. We can also use

float or double instead of int. We suppose, there is a static variable in the Number

class. On instantiating the class with int, there will be a copy of static variable for int

set-off objects. If we instantiate the class for float, there is going to be a copy of the

static member for float numbers. So the member is static (i.e. there is one copy) for

that type of the objects. There will be one static value for different object created with

type int while another static value for different objects created for type double. So,

this static value is not class wide. It is something of specific nature. In simple words,

the compiler reads the code of program (main or other function) and generates a copy

of the template class accordingly. It also gives a name of its own to this copy. Thus in

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

514

a way, the compiler generates a new unique class, replacing T with int (or any other

data type we want). The static member of this unique class behaves exactly like the

ordinary class. Similarly the compiler generates a copy for double with a unique

name. Here the static member of this copy will affect the objects created for double

data type. The static variables are instantiated once for each type whenever we

instantiate a class while replacing generic data type with a specific data type.

It is pertinent to note that we can replace the generic data type with our own data type.

This is slightly tricky. Suppose, we have written a class, ‘Person’. There is also a

generic class Array, which can be instantiated with int, float or double data type that

means it may be an array of integers, floats and doubles respectively. Can we do so

with an array of persons? If we have defined a class called Person, there may be an

array of Person. Person now behaves like another data type. At the moment, it does

not matter whether the data type is user defined or not.

We have to be careful that when we are using our own object i.e. our own class in a

template, it must support the functions and interfaces, needed for this generic structure

of the class. So don’t put in something that cannot be used by this generic structure.

We have discussed an example of phoneCall where reverse returns x by converting it

to –x. In that example, we had to define the minus (-) operator for phone call.

Similarly, in that example, billCode is changed to ‘c’. If number is passed, the

negative number will be returned. Its behavior was changed in phoneCall. So we have

to take care of these things.

Whenever we use a template class and instantiate it for one of our own classes, it is

necessary to have compatible function calls in it. It means that member functions

behave properly as per requirements.

Templates and Friend Functions

Now we will have a look on another concept i.e. friend functions. We have read in

classes that a programmer can declare functions as friend of the class. Let’s first look

at the need of friend functions. Suppose we have defined an operator for our class, say

+ operator. We know that + is a binary operator that takes two arguments. It

implements a + b. While implementing + operator for a class, we see that the calling

object is on the left side of the operator (i.e. a). The + operator gets this calling object

through this pointer. It has an argument on the right hand side i.e. b. Here, a is an

object of our class and b, an ordinary data type. Similarly, we have a + 2 ; where a is

an object of a class and 2, an ordinary int. Now this + operator has to behave

intelligently. This way, we have over loaded it within the class definition. What

happens when we say 2 + a ; ? In case of ordinary integers, 2 + 3 is same as 3 + 2. So

we want the same behavior in a class. We want 2 + a behaving the same way as a+ 2.

We cannot carry out overloading of a member function for this. When we write 2 + a;

there will be an int on left- hand side of the + operator. It is not a member function of

the class. For a member function or member operator, the object on left- hand side

should be that of the class. So if we want 2 + a ; we have to write a friend function for

it. Here, the private data of the class is manipulated by this function. For this purpose,

there is need to have access of this function to the private data of the class. The only

way through which an external function can have access to the private data of the

class is declaring that function to be a friend of the class. So this was the motivation

of the friend function.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

515

Now what will be the behavior of friend functions in a template class. For example if

we write in our template class

 friend f ();

Here f is function name. Thus in above statement, we say that f is a friend function of

the class. It is declared in a template class. While creating an object of a template

class, we tell the type (int, float or user defined data type etc) of which the class is to

be generated. Now when we have written friend f(), f becomes a friend function for all

classes generated by using this template. So it is very global that means f will have an

access to the private data structure of any and all different classes which are

instantiated by this template class.

Now we write T in the argument list of the friend function. If we have instantiated a

class for an integer, and we have written the friend function f with T as f <int>. This

will mean that this function is a friend for all int versions of this class. This is an

interesting concept. If we have a double version of the class, this f (i.e. f<int>) will not

be a friend of it. It is only a friend of the integer versions of the class.

Similarly, if we have a friend class declared in the template class as

 friend class Y;

then it means that all the member functions of the class Y can access the private data

of any class-type generated with the help of this template. For example, if we generate

a class for int, the member functions of class Y can handle the data structure of the

object of this class of type int. If we instantiate a class for double from this template,

the member functions of Y can handle the data of the object with double version.

Similarly if we write in a template class

 friend A :: f ()

Here f is a function. It means that the member function f of a class A is a friend of this

template class. We have not granted access to the whole class, but only to a function

of that class. That access applies to all classes generated using this template.

Finally, if we use <T> with the function f, it becomes specific. In other words, this

friend function (i.e. written with <T>) will be a friend of classes generated by the

template with T data type. It will not be a friend of the other versions of the class.

Here T may be int, float, double or any user defined data type.

Example

Let’s apply these concepts on one specific example. We may create a class called

Stack in a generic fashion. There are some properties of the stack. Firstly, we should

be able to know that at what position in the stack we are at a particular time. So this is

a concept of stack pointer. We take an array for stack. The stack pointer always points

to the top of the stack. It will be good to make the array generic so that we can make

an array of any data type. Then there are few questions like is stack empty or full etc.

Here the code seems fairly straight- forward. We start with

 template class <T>

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

516

and then write

 class Stack

In the class definition, An integer variable called size is declared for the size of the

array. Then we declare the array and write its data type as T, which is a generic type

.It will be replaced by int, float, double or char when we will use this array. We can

use the dynamic memory allocation for the array. But we use a fixed size array for the

sake of simplicity. To declare an array, we need a constant value. Normally, this

constant value is not written in the class definition. It will go to the constructor and be

required when the constructor will be called for an object. We can use the constructor

to actually define the array for us. We need some utility functions. The function

push() is used to push an element on the stack. We use the function pop() to get an

element from the stack. The push() and pop() functions put and get things of type T.

So pop() should return something of type T. That means it will return int if int is

pushed and returns double if double is pushed and so on. So we need push() and pop()

which are parameterized with T. After this, there is need of some functions for generic

manipulation like if stack is full or if stack is empty. We can write function isempty()

that returns a Boolean. If it returns TRUE, the stack will be empty. However,

presence of something in the stack will turn it FALSE. Similarly we can write a utility

function isfull() to check whether the stack is full. We cannot store elements more

than that size in the stack. The isfull() returns TRUE, if the stack is full. The code of

the class definition is very simple. We write T wherever we need a generic data type.

It can be written as under.

 template <class T>

 class Stack

 {

 private :

 int size ;

 T array [] ;

 public :

 Stack () ;

 void push (T) ;

 T pop () ;

 bool isEmpty () ;

 bool isFull ()

 } ;

In the definition of the functions of the class, we again use <T> immediately after the

name of the class. It will be followed by the resolution operator (::) and the function

name and finally we write T, wherever we want to use generic data type. It’s a

definition of the class Stack. While using it, say for int, we write Stack <int> and

provide a initializer value so that it can determine the size of the array. We read it as

‘create a stack of type int’. Similarly Stack<double>x will mean x is a stack of type

double. The main advantage of this process is that we write the Stack class once as the

behavior is common regardless of the type of the data we want to put on. Stack class

can be used for int, double or char data type.

This is the analysis of the example of Stack class, now as a programmer, it is left to

you to write the complete code of the example.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

517

Sample Program

Here is a sample program that demonstrates the use of template class.

/* This program defines a template class and shows its use for different data types.

There is also the use of template function. It also overloads the << operator.

*/

#include<iostream.h>

template<class T>

class Generic

{

 private:

 T instance;

 public:

 Generic(T i);

 void print(void);

};

//generic constructor

template<class T>

Generic<T>::Generic(T i=0)

{

 instance=i;

}

template<class T>

void Generic<T>::print(void)

{

 cout<<"Generic printing: "<<endl;

 cout<<instance<<endl;

}

class Employee

{

 private:

 int idNum;

 double salary;

 public:

 Employee(int id);

 friend ostream& operator <<(ostream& out, const Employee &e);

};

Employee::Employee(int id=0)

{

 idNum=id;

 salary=4.9;

}

ostream& operator<<(ostream &out, const Employee &emp)

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

518

{

 out<<"Employee number "<<emp.idNum;

 out<<" Salary "<<emp.salary;

 return(out);

}

{

 Generic<int>anInt(7);

 Generic<double>someMoney(6.65);

 Generic<Employee> aWorker(333);

 anInt.print();

 someMoney.print();

 aWorker.print();

}

Following is the output of the program.

Generic printing:

7

Generic printing:

6.65

Generic printing:

Employee number 333 Salary 4.9

Advantages and Disadvantages of Templates

Although, most of the following uses can also be implemented without templates;

templates do offer several clear advantages not offered by any other techniques:

• Templates are easier to write than writing several versions of your similar

code for different types. You create only one generic version of your class or

function instead of manually creating specializations.

• Templates can be easier to understand, since they can provide a

straightforward way of abstracting type information.

• Templates are type-safe. This is because the types that templates act upon are

known at compile time, so the compiler can perform type checking before

errors occur.

• Templates help in utilizing compiler optimizations to the

 extreme.

Then of course there is room for misuse of the templates. On one hand they provide

an excellent mechanism to create specific type-safe classes from a generic definition

with little overhead. On the other hand, if misused

• Templates can make code difficult to read and follow depending upon coding

style.

• They can present seriously confusing syntactical problems esp. when the code

is large and spread over several header and source files.

• Then, there are times, when templates can "excellently" produce nearly

meaningless compiler errors thus requiring extra care to enforce syntactical

main()

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

519

and other design constraints. A common mistake is the angle bracket problem.

Standard Template Library (STL)

Templates are a major code reuse feature. History of C++ language reveals that the

template feature was introduced later, relative to other features. But it is a very

important feature. We will realize that it makes a lot more sense to keep total code

base very small and very concise. It also helps ensure that the same tested code is

used everywhere. We had earlier referred to this concept while writing classes. We

separated the interface and implementation and sealed the implementation after

testing it. Afterwards, we created different objects of the class and every object knew

its behavior. Thus there was an abstraction of details. The template functions and

template classes go one-step even further. With templates, we can perform different

tasks while using one base code. Objects of different types staying with one particular

framework can be instantiated. This framework (template) is so important that a

couple of researchers actually sat down and started looking at that in programming we

often are using the one concept which applies to so many things that we should

templatise it. For example, with the help of arrays, we do different manipulations like,

‘next element’, go to the end of the array, add something at the end etc. Now suppose

that the size of array is 100. We want to add the 101st element in the array. We can do

it by copying the same array in a new big array and adding the element to that array.

Thus we have solutions for different problems, but these are the things of very

common use. Their every day use is so important that two researchers wrote a whole

library of common use functions. This library is a part of the official standard of C++.

It is called STL i.e. Standard Template Library. As a library, it is a tested code base.

Some one has written, tested and compiled for the ultimate use of programmers. We

can use these templates and can implement different concepts for our own data types.

Equally is true about the use of the array data type. Our code will become very small

with the use of this tested facility. Similarly, there is no bug or error in it. Thus, if we

have a tested and tried code base, we should try our best to write programs by using it.

STL is a lot of important code, pre-developed for us. It is available as a library. We

can write programs by using it. Thus our programs will be small and error free.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

520

Lecture No. 43

Reading Material

Lecture 1, Lecture 25 - Lecture 42

Summary

 Programming Exercise - Matrices

 Design Recipe

 Problem Analysis

 Design Issues and Class Interface

Programming Exercise - Matrices

Mathematics is a good domain to develop different classes and programs. For

example, solutions for Complex numbers, Matrices and Quadratic Equations can be

sought for developing our own classes. In this lecture, we will take a problem to

manipulate and perform different operations on Matrices. Matrices are used in lot of

real world problems. We will perform problem analysis, design and implementation.

Let’s take a look at analysis and design phases first by using our design recipe.

Design Recipe

Firstly we do analysis and try to come up with a problem statement. Express its

essence, abstractly and with examples. After describing the problems in few

sentences, we try to formulate the problem with examples. It is emphasized to pay

attention to the details. We do analysis of the data structures to be used in the program

and choose the best fit to the program requirements. The code is written to implement

the program. After implementation is completed, we do its testing to verify that it is

behaving properly in all scenarios. If any bugs are found, they are fixed. This cycle of

testing and bug fixing continues until the program is working perfectly without any

problem.

We are going to write a program to manage operations on Matrices.

At the start of the problem analysis phase, let’s try to understand the problem domain

first.

Problem Analysis

A matrix is nothing but a two-dimensional array of numbers. It is normally

represented in rows and columns. A matrix is represented as:

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

521

It is a matrix A with 3 rows and 4 columns. So order of the matrix is 3 * 4.

Before going further, let’s consider what are the operations normally performed on

matrices.

- A matrix is added to another matrix.

- A scalar value (an ordinary number) is added to a matrix.

- A matrix is subtracted from another matrix.

- A scalar number is subtracted from a matrix.

- A matrix is multiplied with another matrix.

- A scalar number is multiplied with a matrix.

- A matrix is divided by a scalar.

- A matrix is transposed.

Now, we will define what these operations are and if there are any restrictions on

matrices performing these operations.

The sum or addition of two matrices of the same order is found by adding the

corresponding elements of the two matrices. If A and B are two matrices of order m *

n to be added then their resultant matrix will also have the same order m * n.

 Aij + Bij

Where i varies from 1 to m (max number of rows) and j varies from 1 to n (max

number of cols).

Clearly, there is a restriction on the matrices performing this addition operation that

they should have same numbers of rows and columns, in other words their order

should be the same.

There is another operation of addition of scalar number to a matrix. In this operation,

a number is added to all elements of the matrix.

Subtraction operation works in the same fashion that two matrices of the same order

takes part in this operation and resultant matrix with similar order is obtained by

subtracting each element of one matrix from the corresponding element of other

matrix. For example, see the subtraction operation and assignment below:

 Cij = Aij - Bij

Not to confuse your understanding with assignment in computer programs, the

resultant matrix is put on the left of assignment operator otherwise in Mathematics it

is located on the right.

Each element of matrix B is subtracted from the corresponding element of the matrix

A and the resultant goes to matrix C. C will have the same number of rows and

columns as A and B.

Similar to the addition, there is another operation for subtracting a scalar from a

matrix. In this case, a number is subtracted from each element of the matrix.

 1 2 3 4

 5 6 7 8

 9 10 11 12

A =

= -

2 3

6 7

10 11

 6 8

 4 7

 10 1

 3

 7

 9

 1

 5

 9

 -2

 -2

 -4 -5

 2 0

 0 0 10

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

522

For Division of a matrix by a scalar, the scalar number divides each element of the

matrix. Let x be a scalar number and A be a matrix then division is represented as:

 Cij = Aij / x

Each element of matrix A is divided by the number x to produce the corresponding

number in the resultant matrix C. For example, A11 (element in first row and first

column of matrix A) is divided by the scalar number x to provide C11 (element in first

row and first column of matrix C).

The multiplication operation is bit complicated as compared to the above discussed

operations. We will discuss simple case first, when a scalar is multiplied by a matrix.

Suppose, this time we want to multiply the scalar x with the matrix A as:

 Cij = x * Aij

Each element of matrix A is multiplied with the scalar x and the resultant number is

put in the corresponding location inside the matrix C.

Now, we will see how a matrix is multiplied with another matrix. Firstly, there is a

restriction on order of the matrices involved in this operation. The number of columns

of the first matrix should be equal to the number of rows of the second matrix.

Two matrices are multiplied in the following manner:

We take the first row of first matrix and multiply it with the first column of the second

matrix. The multiplication is done in such a way that the first element of the row is

multiplied with the first element of the column, second element is multiplied with the

second element and so on. The results of all these multiplication operations are added

to produce one number. The resultant number is placed at the corresponding position

(i.e. 1
st
 row 1

st
 col in this case) in the resultant matrix.

Further the same first row is multiplied with the second column of the second matrix

and the resultant number is placed at intersecting position of first row and second

column in the resultant matrix. This process goes on till the last column of the second

matrix.

Then comes the second row of first matrix and whole operation is repeated for this

row, this row is multiplied with all the columns of the second matrix. This process

goes on till the last row of the first matrix.

Note the resultant matrix is put on the left of the =. In Mathematics, this is put on

right but not to confuse your understanding with assignment concept in computer

programs, it is put on left.

* 1 2

 5 6

 2 4

 1 2

 (1)(2 (2)(1) (1)(4)+(2)(2)

 (5)(2)+(6)(1) (5)(4)+(6)(2)

)+

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

523

If a matrix with order m rows, n columns is multiplied with another matrix of n rows

and p columns then the resultant matrix will have m rows and p columns. In the above

diagram, the first matrix has two rows and second matrix has two columns, therefore,

the resultant matrix has two rows and two columns.

Now comes the last operation, we are thinking of implementing i.e. Transpose of a

matrix. Transpose of a matrix is obtained by interchanging its rows and columns.

How do we interchange rows and columns for transposing the matrix? We take the

first row of the matrix and write it as a first column of the new matrix. The second

row of the original matrix is written as second column of the new matrix and similarly

the last row of the original matrix is written as last column of the new matrix. At the

end of this operation, when all rows of the original matrix are finished, we have new

matrix as transpose of the original matrix. There is no change in the size (order or

number of rows and cols of a matrix) of the transposed matrix when the original

matrix is a square matrix. But when the original matrix is not a square matrix, there is

a change in the order of the transposed matrix. The number of rows of the original

matrix becomes the number of columns of the transposed matrix and the number of

columns of the original matrix becomes the number of rows of the transposed matrix.

Until now in this problem analysis phase, we have analyzed the problem in order to

understand what are the matrices and what are their operations to be implemented.

Now at the next stage, we try to determine the followings:

- What are the constants to be used in our class?

- What are going to be the data structures to cater to the different sized matrices?

- How much memory is required and how it will be allocated?

- What is going to be the interface of the class?

Design Issues and Class Interface

We want to specify the size of the matrix at creation time and allocate the memory for

that. So we don’t see any use of constants inside our class named Matrix.

The size of the memory to be allocated is not going to be huge, as we are not catering

to the very huge sized matrices. Therefore, the memory for a matrix is going to be

allocated dynamically bluntly after the size of the matrix is specified in terms of rows

and columns without worrying about the size of the matrix.

For the interface of our Matrix class, we will declare a constructor that will accept

integer number of rows and columns of the matrix to be created as parameters.

 Matrix (int rows, int cols) ;

The constructor function will be doing the memory allocation for the matrix.

1 2 3

 5 6 7

9 10 11

1 5 9

 2 6 10

 3 7 11

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

524

As part of the interface, we will declare a display function inside our Matrix class that

will display the elements on the screen.

 void display (Matrix &);

To perform already discussed different operations on matrices, we need to overload

operators. For example to perform addition of two matrices, + operator will be

overloaded as a member function of the Matrix class. The + operator function will be

called for the Matrix object on the left of the + and the Matrix object on the right to it

will be passed as a parameter to it. This function will add the corresponding elements

of the both matrices and returns the resultant back.

 Matrix operator + (Matrix &) const;

The same thing applies to the subtraction operation of two matrices. – operator

function will be overloaded for that as a member function of the Matrix class.

Matrix operator - (Matrix &) const;

The situation changes a bit, when we want to write the functions to cater to different

operations where both the operands are not matrix objects rather one of them is scalar.

For example, when we want to do the following operation:

 A + x ;

Where A is a matrix and x is a scalar.

Then we write a member function that accepts a scalar number as a parameter instead

of a Matrix object.

 Matrix operator + (Scalar) const;

The Scalar can be an int, double or float, that we will cover later.

But the situation is more different, when we want to perform the scalar addition

operation in the following manner:

 x + A ;

By now we should be clear that member function cannot be written to handle this

operation because there is a scalar number on the left of +. Therefore, we need to

write a friend operator function for this type of operation. The friend functions are

non-members and therefore, defined outside of the class.

 friend Matrix operator + (Scalar , Matrix &) ;

Similarly, when a scalar is subtracted from a Matrix object like the following:

A - x ;

 A member function is written to cater to this operation.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

525

 Matrix operator - (Scalar) const;

But again, when a matrix is subtracted from a scalar number:

 x - A ;

Then we have to write a friend operator to handle this operation.

 friend Matrix operator - (Scalar , Matrix &) ;

In order handle the multiplication operations of two Matrix objects like the following:

 A * B ;

A member operator * function is defined.

 Matrix operator * (const Matrix &) ;

This operator is called for the Matrix object on the left of * and the object on the right

is passed as an argument. The function multiplies both the matrices and returns the

resultant matrix.

When a scalar is multiplied with a scalar like:

 A * x ;

The following member operator * handles this:

 Matrix operator * (Scalar) const;

But for operation like the following:

 x * A;

following friend operator function is written:

 friend Matrix operator * (const Scalar , const Matrix &) ;

For division operation like the following:

 A / x;

A member operator / is overloaded as:

 Matrix operator / (const Scalar);

Now we will talk about transpose of a matrix. For this operation, we will write a

member function transpose that will transpose the original matrix.

 Matrix & transpose(void) ;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

526

Now we are left with few more things to cover to complete the rudimentary interface

of our class Matrix.

Operators += and -= are overloaded as member operators. These composite operators

use the assignment operator (=).

We will also overload stream insertion and extraction operators as friend functions to

our Matrix class as follows:

 friend ostream & operator << (ostream & , Matrix &) ;
friend istream & operator >> (istream & , Matrix &) ;

So here is how we declare our Matrix class. The interface of the class is the public

methods of the class. Here is one important point to understand that what we are

concerned about here is the class interface and not about the program interface to the

user of the program. A programmer can develop user interface by writing his/her code

while using the class interface.

/* Declaration of the Matrix class. This class is containing the double type elements */

class Matrix

{

 private:

 int numRows, numCols;

 double **elements;

 public:

 Matrix(int=0, int=0); // default constructor

 Matrix(const Matrix &); // copy constructor

 ~Matrix(); // Destructor

 int getRows(void) const; // Utility fn, returns no. of rows

 int getCols(void) const; // Utility fn, returns no. of columns

 const Matrix & input(istream &is = cin); // Read matrix from istream

 const Matrix & input(ifstream &is); // Read matrix from istream

 void output(ofstream &os) const; // Utility fn, prints matrix with graphics

 void output(ostream &os = cout) const; // Utility fn, prints matrix with graphics

 const Matrix& transpose(void); // Transpose the matrix and return a ref

 const Matrix & operator = (const Matrix &m); // Assignment operator

 Matrix operator+(Matrix &m) const; // Member op + for A+B; returns matrix

 Matrix operator + (double d) const;

 const Matrix & operator += (Matrix &m);

 friend Matrix operator + (double d, Matrix &m);

 Matrix operator-(Matrix & m) const; // Member op + for A+B; returns matrix

 Matrix operator - (double d) const;

 const Matrix & operator -= (Matrix &m);

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

527

 friend Matrix operator - (double d, Matrix& m);

 Matrix operator*(const Matrix & m);

 Matrix operator * (double d) const;

 friend Matrix operator * (const double d, const Matrix& m);

 Matrix operator/(const double d);

 friend ostream & operator << (ostream & , Matrix &);

 friend istream & operator >> (istream & , Matrix &);

 friend ofstream & operator << (ofstream & , Matrix &);

 friend ifstream & operator >> (ifstream & , Matrix &);

 void display() ;

};

In the above declarations, we should note how we are passing and returning Matrix

objects. We are passing and returning the Matrix objects by reference because passing

the Matrix objects by value will be a overhead that will affect performance and more

memory will be allocated and de-allocated on stack.

Notice that we are doing dynamic memory allocation inside the constructor of the

class. You must be remembering that wherever the dynamic memory allocation is

made, it has to be freed explicitly. To de-allocate the memory, we will write code

inside the destructor of the class Matrix. The other consideration when we are

allocating memory on free store from within constructor is that the default assignment

operator will not work here. Remember, the default assignment operator makes

shallow copy of the object members, therefore, we will have to write our own

assignment operator (=) in order to make deep copy of the object data members.

Remember that a copy constructor is called when a new Matrix object is initialized

and constructed based on an already existent Matrix object. Therefore, we have to

write our own copy constructor in order to make deep copy of the object data

members.

There is one very important point to mention about this class Matrix. A Matrix can be

composed of ints, floats or doubles as their elements. Instead of handling these data

types separately, we can write Matrix class as a template class and write code once for

all native data types. While writing this template class, the better approach to write

will be, to go with a simple data type (e.g. double) first to write a Matrix class and

then extend it to a template class later. Another thing that can be templatized in the

Matrix class is the Scalar number. Actually, this Scalar number can be an int, float or

double; therefore, we may also use a template for this.

We have to perform certain checks and make decisions inside the implementation of

member functions. For example, while writing the division operator member function,

we will check against the number that it should be non-zero. Before adding two

matrices, we will check for their number of rows and columns to be equal. Also in this

exercise, we have declared only one class Matrix to manipulate matrices. There are

alternate approaches to this. For example, we could declare a Row class first and then

contain multiple objects (same in number as number of rows required for the matrix

object) of Row class inside the Matrix class making a matrix of a certain size. To

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

528

make it simple, we have selected to manage matrices using only one class Matrix. The

objective here is to practice the already studied programming constructs as much as

possible.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

529

Lecture No. 44

Reading Material

Lecture 25 - Lecture 43

Summary

 Matrix Class

 Definition of Matrix Constructor

 Destructor of Matrix Class

 Utility Functions of Matrix

 Input Function

 Transpose Function

 Code of the Program

Matrix Class

After talking at length about the concept of matrices in the previous lecture, we are

going to have a review of ‘code’ today with special emphasis on concepts of

constructors and destructors. We may also briefly discuss where should a programmer

return by value, return by reference besides having a cursory look on the usage of the

pointers.

The data structure of the Matrix class is very simple. We have defined an arbitrary

number of functions and operators. You may add and subtract more functions in it. In

this lecture, we have chosen just a few as it is not possible to discuss each and every

one in a brief discourse. As discussed earlier, the code is available to use that can be

compiled and run. This class is not complete and a lot of things can be added to it.

You should try to enhance it, try to improve and add to its functionality.

One of the things that a programmer will prefer to do with this class is its

templatization. We have implemented it for type double. It was done due to the fact

that the elements of the Matrix are of type double. You may like to improve and make

it a templatized class so that it can also handle integer elements. This class is written

in a very straightforward manner. The double is used only for elements to develop it

into a Matrix class for integers if you replace all the double word with the int. Be

careful, you cannot revert it back to double by just changing all the int to double as

integers are used other than element types.

Let’s discuss the code beginning with the data structure of the class. In keeping the

concepts of data hiding and encapsulation, we have put the data in the private section

of the class. We have defined number of rows (i.e. numRows) and number of columns

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

530

(i.e. numCols) as integers. These will always be whole number. As we cannot have

one and a half row or column, so these are integers.

The private part of the Matrix class is:

 int numRows, numCols;

 double **elements;

These are fixed and defined. So whenever you have an object of this class, it will have

a certain number of rows and certain number of columns. These are stored in the

variables- numRows and numCols. Where will be the values of the elements of this

matrix? The next line is double **elements; i.e. elements is an array of pointers to

double. First * is for array and second * makes it a pointer. It means that ‘elements’ is

pointing to a two-dimension array of double. When we say elements[i], it means that

it is pointing to an array of double. If we say elements[i][j], it means we are talking

about a particular element of type double. We have not taken the two-dimension array

in the usual way but going to dynamic memory allocation. We have developed a

general Matrix class. The objects created from it i.e. the instances of this class, could

be small matrices as 2*2. These may also be as big matrix as 20*20. In other words,

the size of the matrix is variable. In fact, there is no requirement that size should be

square. It may not be 20*20. It may be a matrix of 3*10 i.e. three rows and ten

columns. So we have complete flexibility. When we create an object, it will store the

number of rows in numRows and number of columns in numCols. The elements will

be dynamically allocated memory in which the double value is stored.

While using the dynamic memory, it is good to keep in mind that certain things are

necessary to be implemented in the class. 1) Its constructor should make memory

allocation. We will use the new operator, necessitating the need of defining its

destructor also. Otherwise, whenever we create an object, the memory will be

allocated from the free store and not de-allocated resulting in the wastage of the

memory. Therefore a destructor is necessary while de-allocating memory. 2) The

other thing while dealing with classes having dynamic memory allocation, we need to

define an assignment operator. If we do not define the assignment operator, the

default will do the member wise copy i.e. the shallow copy. The value of pointer will

be copied to the pointer but the complete data will not be copied. We will see in the

code how can we overcome this problem..

Let’s discuss the code in the public interface of the class. The first portion of the

public interface is as:

 Matrix(int=0, int=0); // default constructor

 Matrix(const Matrix &); // copy constructor

 ~Matrix(); // Destructor

 In the public interface, the first thing we have is the constructors. In the default

constructor, you see the number of columns and number of rows. The default values

are zero. If you just declare a matrix as Matrix m, it will be an object of class Matrix

having zero rows and zero columns i.e. memory is not allocated yet. Then we have

also written a copy constructor. Copy constructor becomes necessary while dealing

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

531

with dynamic memory allocation in the class. So we have to provide constructor,

destructor, assignment operator and the copy constructor. The declaration line of copy

constructor is always the same as the name of the class. In the argument list, we have

a reference to an object of the same class i.e. Matrix(const Matrix &); The &

represents the reference. This is the prototype. After constructors, we have defined a

destructor. Its prototype is also standard. Here it is ~Matrix(); it takes no argument

and returns nothing. Remember that constructors and destructors return nothing.

After this, we have utility functions for the manipulation of the Matrix.

 int getRows(void) const; // Utility fn, returns no. of rows

 int getCols(void) const; // Utility fn, returns no. of columns

 const Matrix & input(istream &is = cin); // Read from istream i.e. keyboard

 const Matrix & input(ifstream &is); // Read matrix from ifstream

 void output(ofstream &os) const; // Utility fn, prints matrix with graphics

 void output(ostream &os = cout) const; // Utility fn, prints matrix with graphics

 const Matrix& transpose(void); // Transpose the matrix and return a ref

We have defined two small functions as getRows and getCols which will return the

number of rows and number of columns of the matrix respectively. Here, you are

writing the class and not the client which will use this class. During the usage of this

class, there may be need of some more functions. You may need to add some more

functionality depending on its usage. At this point, a function may be written which

will return some particular row as a vector or the nth column of a matrix. These things

are left for you to do.

We need some function to input values into the matrix. There are two input functions

both named as input. One is used to get the value from the keyboard while the other to

get the values from some file. There is a little bit difference between the declaration of

these two that will be discussed later. The input function which will get the input from

the keyboard, takes an argument of type istream. Remember that cin, that is

associated with the keyboard, is of type istream. These are member functions and

called by some object of Matrix. The Matrix object will be available to it through this

pointer. The istream is passed as argument and we have given a temporary name to

the input argument i.e. is and its default value is cin. It is a nice way of handling

default values. If you write in the main program as m.input() where m is an object of

type Matrix, it will get the input from the keyboard. This is due to the fact that it is

getting cin by default. We have defined another input function and that is an example

of function overloading. This function takes ifstream as input argument i.e. a file

stream. If we want to read the matrix data from some file, this input function may be

employed. There is no default argument in it.

Similarly we have two output functions. The names are chosen as arbitrary. You may

want to use print or display. One output function will display the matrix on the screen.

Its argument is ostream while the default value will be cout. The other output function

will be used when we want to write the matrix in some file. It takes ofstream as

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

532

argument and we have not provided any default argument to it. You will have to

provide a file handle to use this function.

Let’s continue to talk about the arithmetic manipulations we want to do with the

matrices.

 Matrix operator+(Matrix &m) const; // Member op + for A+B; returns matrix

 Matrix operator + (double d) const; // Member op + for A+d; returns matrix

 const Matrix & operator += (Matrix &m); // Member op += for A +=B

 friend Matrix operator + (double d, Matrix &m); // friend operator for d+A

 Matrix operator-(Matrix & m) const; // Member op - for A-B; returns matrix

 Matrix operator - (double d) const; // Member op - for A-d;

 const Matrix & operator -= (Matrix &m); // Member op -= for A-=B;

 friend Matrix operator - (double d, Matrix& m); // Friend op - for d-A;

 Matrix operator*(const Matrix & m); // Member op * for A*B;

 Matrix operator * (double d) const; // Member op * for A*d;

 friend Matrix operator * (const double d, const Matrix& m);//friend op*, d*A

 const Matrix& transpose(void); // Transpose the matrix and return a ref

 const Matrix & operator = (const Matrix &m); // Assignment operator

We have defined different functions for plus. Some of these are member operators

while the others called as friend. The first plus operator is to add two matrices. It is a

member operator that takes a Matrix object as argument. The second one is to add

some double number to matrix. Remember that we are having a class of Matrix with

double elements. So we will add double number to it. It is also a member operator.

When you write something like m + d, where m is an object of type Matrix and d is a

double variable, this operator will be called. Here Matrix object is coming on the left-

hand side and will be available inside the operator definition by this pointer. On the

other hand, the double value d is presented as argument to the operator.

There is another variety of adding double to the matrix i.e. if we write as d + m. On

the left-hand side, we don’t have Matrix. It cannot be a member function as the

driving force is not an object of our desired class. If not a member function, it will

have two arguments. First argument will be of type double while the second one is

going to be of Matrix object in which we will add the double number. As it is not a

member function and we want to manipulate the private data members of the class, it

has to be a friend function. Function will be defined outside, at file level scope. In

other words, it will not be a member function of class Matrix but declared here as a

friend. It is defined as:

 Friend Matrix operator + (double d, Matrix &m);

Its return type is Matrix. When we add a double number, it will remain as Matrix .We

will be able to return it. The final variant is included as an example of code reuse i.e.

the += operator. We write in our program i += 3; and it means i = i + 3; It would be

nice if we can write A += B where A and B both are matrices.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

533

After plus, we can do the same thing with the minus operator. Having two matrices-A

and B, we want to do A-B. On the left hand side, we have Matrix, so it will be a

member operator. The other matrix will be passed as argument. In A-B, A is calling

this operator while B being passed as argument. We can also do A-d where A is a

Matrix and d is of type double. For this, we will have to write a member operator. All

these operators are overloaded and capable of returning Matrix. In this overloaded

operator, double will be passed as argument. Then we might want to do it as d - A,

where d is double variable and A is of type Matrix. Since the left hand side of the

minus (-) is double, we will need a friend function, as it is not possible to employ a

member function. Its prototype is as:

 friend Matrix operator - (double d, Matrix& m);

Let’s now talk about multiplication. We have discussed somewhat about it in the

previous lecture. For multiplication, the first thing one needs to do is the

multiplication of two matrices i.e. A*B where A and B both are matrices. As on the

left hand side of the operator * we have a Matrix so it will be a member function so A

can be accessed through this pointer. B will be passed as argument. A matrix should

be returned. Thus, we have a member operator that takes an argument of type Matrix

and returns a Matrix. You may like to do the same thing, which we did with the plus

and minus. In other words, a programmer will multiply a matrix with a double or

multiply a double with a matrix. In either case, we want that a matrix should be

returned. So at first, A * d should be a member function. Whereas d * A will be a

friend function. Again the return type will be a Matrix.

In case of division, we have only one case i.e. the division of the matrix with a double

number. This is A / d where A is a Matrix while d is a double variable. We will divide

all the elements of the matrix with this double number. This will return a matrix of the

same size as of original.

Taking benefit of the stream insertion and extraction operator, we can use double

greater than sign (>>) and write as >> m where m is a Matrix. For this purpose, we

have written stream extraction operator. The insertion and extraction functions will be

friend functions as on the left-hand side, there will be either input stream or output

stream.

We have also defined assignment function in it. As we are using dynamic memory

allocation in the class, assignment is an important operator. Another important

function is transpose, in which we will interchange the rows into columns and return a

Matrix. This is the interface of our Matrix class. You may want to add other functions

and operators like +=, -=, *=. But it is not possible to add /= due to its very limited

scope.

We have used the keyword const in our class. You will find somewhere the return

type as Matrix and somewhere as Matrix &. We will discuss each of these while

dealing with the code in detail.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

534

Definition of Matrix Constructor

Let’s start with the default constructor. Its prototype is as under:

 Matrix(int = 0, int = 0); // default constructor

We are using the default argument values here. In the definition of this function, we

will not repeat the default values. Default values are given at one place. The definition

code is as:

Matrix::Matrix(int row, int col) //default constructor

{

 numRows = row;

 numCols = col;

 elements = new (double *) [numRows];

 for (int i = 0; i < numRows; i++){

 elements[i] = new double [numCols];

 for(int j = 0; j < numCols; j++)

 elements[i][j] =0.0; // Initialize to zero

 }

}

Two integers are passed to it. One represents the number of rows while the other is

related to the number of columns of the Matrix object that we want to create. At first,

we will assign these values to numRows and numCols that form a part of the data

structure of our class. Look at the next line. We have declared elements as **elements

i.e. the array of pointers to double. We can directly allocate it by getting the elements

of numRows times numCols of type double from free store. But we don’t have the

double pointer. Therefore, first of all, we say that element is array of pointer to double

and allocate pointers as much as needed. So we use the new operator and use double*

cast. It means that whatever is returned is of type pointer to double. How many

pointers we need? This is equal to number of rows in the matrix. There is one pointer

for each of the rows i.e. now a row can be an array. This is a favorable condition, as

we have to enter data in the columns. Now elements is numRows number of pointers

to double. After having this allocation we will run a loop.

In C/C++ languages, every row starts from zero and ends with upper-limit – 1. Now

in the loop, we have to allocate the space for every elements[i]; How much space is

needed here? This will be of type double and equal to number of columns. So when

we say new double[numCols], it means an array of double. As elements[i] represents

a pointer and now it is pointing to an array. Remember that pointers and arrays are

synonymous. Now a pointer is pointing to this array. We have the space now and

want to initialize the matrix. For this, we have written another loop. To assign the

value, we will write as:

 elements[i][j] = 0.0;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

535

Let’s review this again. First of all we have assigned the values to numRows and

numCols. Later, we allocated the pointers of double from the free store and assigned

to elements. Then we got the space for each of this pointer to store double. Finally, we

initialized this space with 0.0. Now we have a constructive matrix.

Is there any exceptional value? We can think of assigning negative values to number

of rows or number of columns. If you want to make sure that this does not happen,

you can put a test by saying that numRows and numCols must be greater than or equal

to zero. Passing zero is not a problem as we have zero space and nothing happens

actually. Now we get an empty matrix of dimension 0*0. But any positive number

supplied will give us a constructor and initialize zero matrix.

Let’s discuss the other constructor. This is more important in the view of this class

especially at a time when we are going to do dynamic memory allocation. This is

copy constructor. It is used when we write in our program as Matrix A(B); where A

and B both are matrices. We are going to construct A while B already exists. Here we

are saying that give us a new object called A which should be identical to the already

existing object B. So it is a copy constructor. We are constructing an object as a copy

of another one that already exists. The other usage of this copy constructor is writing

in the main function as Matrix A = B; Remember that this is declaration and not

assignment statement. Here again copy constructor will be called. We are saying that

give us a duplicate of B and its name should be A. Here is the code of this function:

Matrix::Matrix(const Matrix &m)

{

 numRows = m.numRows;

 numCols = m.numCols;

 elements = new (double *) [numRows];

 for (int i = 0; i < numRows; i++){

 elements[i] = new double [numCols];

 for(int j = 0; j < numCols; j++)

 elements[i][j] = m.elements[i][j];

 }

}

We are passing it a constant reference of Matrix object to ensure that the matrix to be

copied is not being changed. Therefore we make it const. We are going to create a

brand new object that presently does not exist. We need to repeat the code of regular

constructor except the initialization part. Its rows will be equal to the rows of the

object supplied i.e. numRows = m.numRows. Similarly the columns i.e. numCols=

m.numCols. Now we have to allocate space while using the same technique earlier

employed in case of the regular constructor. In the default constructor, we initialize

the elements with zero. Here we will not initialize it with zero and assign it the value

of Matrix m as elements[i][j] = m.elements[i][j]. Remember that we use the dot

operator to access the data members. We have not used the dot operator on the left

hand side. This is due to the fact that this object is being constructed and available in

this function through this pointer. Therefore the dot operator on the left hand side is

not needed. We will use it on the right hand side to access the data members of Matrix

m. This is our copy constructor. In this function, we have taken the number of rows

and columns of the object whose copy is being made. Then we allocate it the space

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

536

and copy the values of elements one by one. The other thing that you might want to

know is the use of nested loop both in regular constructor and the copy constructor.

Destructor of Matrix Class

‘Destructor’ is relatively simple. It becomes necessary after the use of new in the

constructor. While creating objects, a programmer gets memory from the free store.

So in the destructor, we have to return it. We will do it as:

 delete [] elements;

Remember that ‘elements’ is the variable where the memory has been allocated. The

[] simply, indicates that it is an array. The compiler automatically takes care of the

size of the array and the memory allocated after being returned, goes back to the free

store. There is only one line in the destructor. It is very simple but necessary in this

case.

Utility Functions of Matrix

The functions getRows() and getCols() are relatively simple. They do not change

anything in the object but only read from the object. Therefore we have made this

function constant by writing the const keyword in the end. It means that it does not

change anything. The code of the getRows() functions is as follows:

int Matrix :: getRows () const

{

 return numRows;

}

This function returns an int representing the number of rows. It will be used in the

main function as i = m.getRows(); where i is an int and m is a Matrix object. Same

thing applies to the getCols() function. It is of type const and returns an int

representing the number of columns.

Let’s talk about little bit more complicated function. It is the output to the screen

functions. We want that our matrix should be displayed on the screen in a beautiful

way. You have seen that in the books that matrix is written in big square brackets.

The code of the function is as:

void Matrix::output(ostream &os) const

{

 // Print first row with special characters

 os.setf(ios::showpoint);

 os.setf(ios::fixed,ios::floatfield);

 os << (char) 218;

 for(int j = 0; j < numCols; j++)

 os << setw(10) << " ";

 os << (char) 191 << "\n";

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

537

 // Print remaining rows with vertical bars only

 for (int i = 0; i < numRows; i++){

 os << (char) 179;

 for(int j = 0; j < numCols; j++)

 os << setw(10)<< setprecision(2) << elements[i][j];

 os << (char) 179 << "\n";

 }

 // Print last row with special characters

 os << (char) 192;

 for(int j = 0; j < numCols; j++)

 os << setw(10) << " ";

 os << (char) 217 << "\n";

}

We have used special characters that can be viewed in the command window. We

have given you an exercise of printing the ASCII characters on the screen. After

ASCII code 128, we have special graphic symbols. We have used the values of those

symbols here. To print those in the symbol form, we have forced it to be printed as

char. If we do not use the char, it would have printed the number 218 i.e. it would

have written an integer. We have forced it to print the character whose ASCII value is

218. Now it prints the graphic symbol for that character. We have referenced the

ASCII table and seen which symbol will fit in the left corner i.e. 218. So we have

written it as:

 os << (char) 218;

os is the output stream. char is forcing it to be print as character. The left corner will

be printed on the screen as . Now we need the space to print the columns of the

matrix. In the first line we will print the spaces using a loop as:

 for(int j = 0; j < numCols; j++)

 os << setw(10) << " ";

Here we have changed the width as 10. You can change it to whatever you like. Then

we print nothing in the space of ten characters and repeat that for the number of

columns in the matrix. After this, we printed the right corner. This is the first line of

the display. Other lines will also contain the values of the elements of the matrix.

These lines will start with a vertical line and then the element values of the row and in

the end we have a vertical line. For each row, we have a vertical bar and the number

values which will be equal to number of columns (elements in each row equals to the

number of columns) and then a vertical bar in the end. In the beginning of this code,

we have used two other utilities to improve the formatting. Here we have a matrix of

type double so every element of the matrix is double. For double, we have used

os.setf(ios::fixed,ios::floatfield); that means that it is a fixed display. Scientific

notation will not be used while decimal number is displayed with the decimal point.

After this, we have set the precision with two number of places. So we have a format

and our decimal numbers will always be printed with two decimal places. The

numbers are being printed with a width of ten characters so the last three places will

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

538

be as .xx. Rest of the code is simple enough. We have used the nested loops.

Whenever you have to use rows and columns, it will be good to use nested loops.

When all the rows have been printed, we will print the below corners. We referenced

the ASCII table, got the graphic symbol, printed it, left the enough space and then

printed the other corner. The matrix is now complete. When this is displayed on the

screen, it seems nicely formatted matrix with graphic symbols. That is our basic

output function.

Let’s look at the file output function. While doing the output on the screen, we made

it nicely formatted. Now you may like to store the matrix in a file. While storing the

matrix in the file, there is no need of these lines and graphic symbol. We only need its

values to read the matrix from the file. So there is a pair of functions i.e. output the

matrix in the file and input from the file. To write the output function, we actually

have to think about the input function.

Suppose, we have declared a 2*2 Matrix m in our program. Somewhere in the

program, we want to populate this matrix from the file. Do we know that we have a

2*2 matrix in the file. How do we know that? It may 5*5 or 7*3 matrix. So what we

need to do is somehow save the number of rows and columns in the file as well. So

the output function that puts out on the file must put out the number of rows and

number of columns and then all of the elements of the matrix. Following is the code

of this function:

void Matrix::output(ofstream &os) const

{

 os.setf(ios::showpoint);

 os.setf(ios::fixed,ios::floatfield);

 os << numRows << " " << numCols << "\n";

 for (int i = 0; i < numRows; i++){

 for(int j = 0; j < numCols; j++)

 os << setw(6) << setprecision(2) << elements[i][j];

 os << "\n";

 }

}

The code is shorter than the other output function due to non-use of the graphical

symbols. First of all, we output the number of rows and number of columns. Then for

these rows and columns, data elements are written. We have also carried out a little

bit formatting. While seeing this file in the notepad, you will notice that there is an

extra line on the top that depicts the number of rows and columns.

Input Functions

Input functions are also of two types like output functions. The first function takes

input from the keyboard while the other takes input from the file. The function that

takes input from the keyboard is written in a polite manner because humans are

interacting with it. We will display at the screen ”Input Matrix size: 3 rows by 3

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

539

columns” and it will ask “Please enter 3 values separated by spaces for row no. 1” for

each row. Spaces are delimiter in C++. So spaces will behave as pressing enter from

the keyboard. If you have to enter four numbers in a row, you will enter as number

(space) number (space) number (space) number before pressing the enter key. We

have a loop inside which will process input stream and storing these values into

elements[i][j]; So the difference between this function and the file input function is 1)

It prompts to the user and is polite. 2) It will read from the keyboard and consider

spaces as delimiter.

The other input function reads from the file. We have also stored the number of rows

and number of columns in the file. The code of this function is:

const Matrix & Matrix::input(ifstream &is)

{

 int Rows, Cols;

 is >> Rows;

 is >> Cols;

 if(Rows > 0 && Cols > 0){

 Matrix temp(Rows, Cols);

 *this = temp;

 for(int i = 0; i < numRows; i++){

 for(int j = 0; j < numCols; j++){

 is >> elements[i][j];

 }

 }

 }

 return *this;

}

First of all, we will read the number of rows and number of columns from the file. We

have put some intelligence in it. It is better to check whether numRows and numCols

is greater than zero. If it is so, then do something. Otherwise, there is nothing to do. If

rows and columns are greater than zero, then there will be a temporary matrix

specifying its rows and columns. These values are read from the file, showing that we

have a matrix of correct size. Now this matrix is already initialized to zero by our

default constructor. We can do two things. We can either read the matrix, return the

value or we can first assign it to the matrix that was calling this function. We have

assigned it first as *this = temp; here temp is a temporary matrix which is created in

this function but *this is whatever this points to. Remember that this is a member

function so this pointer points to the matrix that is calling this function. All we have to

do is to assign the temp to the matrix, which is calling this function. This equal to sign

is our assignment operator, which we have defined in our Matrix class. If the

dimensions of the calling matrix are not equal to the temp matrix, the assignment

operator will correct the dimensions of the calling matrix. It will assign the values,

which in this case is zero so far. Now we will read the values from the file using the

nested loops. The other way is to read the values from the file and populate the temp

matrix before assigning it to the calling matrix in the end. That is the end of the

function. Remember that the temp matrix, which we have declared in this function,

will be destroyed after the exit from the function. This shows that the assignment

operator is important here. All the values will be copied and it will perform a deep

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

540

copy. Does this function return something? Its return type is reference to a const

Matrix. Its ending line is return *this that means return whatever this points to and it

is returned as reference. The rule of thumb is whenever we are returning the this

pointer, it will be returned as a reference because this is the same object which is

calling it. When you are returning a matrix that is not a reference, it is a returned by

value. The complete matrix will be copied on the stack and returned. This is slightly

wasteful. Yet you cannot return a reference to the temp object in this code. The

reference of the temp will be returned but destroyed when the function is finished.

The reference will be pointing to nothing. So you have to be careful while returning a

reference to this.

Transpose Function

The transpose of a matrix will interchange rows into columns. There are two

alternative requirements. In the first case, we have a square matrix i.e. the number of

rows is equal to number of columns. In this situation, we don’t need extra storage to

do this. If the number of rows is not equal to the number of columns, then we have to

deal it in a different way. We can use general case for both purposes but you will

notice that it is slightly insufficient. Here is the code of the function.

const Matrix & Matrix::transpose()

{

 if(numRows == numCols){ // Square matrix

 double temp;

 for(int i = 0;i < numRows; i++){

 for(int j = i+1; j < numCols; j++){

 temp = elements[i][j];

 elements[i][j] = elements[j][i];

 elements[j][i] = temp;

 }

 }

 }

 else // not a square matrix

 {

 Matrix temp(numCols, numRows);

 for(int i = 0; i < numRows; i++){

 for(int j = 0; j < numCols; j++){

 temp.elements[j][i] = elements[i][j];

 }

 }

 *this = temp;

 }

 return *this;

}

In the beginning, we checked the case of square matrix i.e. if the number of rows is

equal to number of columns. Here we are dealing with the square matrix. We have to

change the rows into columns. For this purpose, we need a temporary variable. In this

case, it is a variable of type double because we are talking about a double matrix.

Look at the loop conditions carefully. The outer loop runs for i = 0 to i < numRows

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

541

and the inner loop runs from j = i+1 to j < numCols. Then we have standard swap

functionality. We have processed one triangle of the matrix. If you start the inner loop

from zero, think logically what will happen. You will interchange a number again and

again, but nothing will happen in the end, leaving no change in the matrix. This is the

case of the square matrix. But in case of non-square matrix i.e. the code in the else

part, we have to define a new matrix. Its rows will be equal to the columns of the

calling matrix and its columns will be equal to the number of rows. So we have

defined a new Matrix temp with the number of rows and columns interchanged as

compared to the calling matrix. Its code is straightforward. We are doing the element

to element copy. The difference is, in the loop we are placing the x row, y col element

of the calling matrix to y row, x col of the temp matrix. It is an interchange of the rows

and columns according to the definition of the transpose. When we have all the values

copied in the temp. We do our little magic that is *this = temp. Which means

whatever this points to, now assigned the values of the matrix temp. Now our

horizontal matrix becomes vertical and vice versa. In the end, we return this. This is

the basic essence of transpose code.

We will continue the discussion on the code in the next lecture. We will look at the

assignment operator, stream operator and try to recap the complete course.

Code of the Program

The complete code of the matrix class is:

#include <iostream.h>

#include <iomanip.h>

#include <stdlib.h>

#include <stdio.h>

#include <fstream.h>

class Matrix

{

 private:

 int numRows, numCols;

 double **elements;

 public:

 Matrix(int=0, int=0); // default constructor

 Matrix(const Matrix &); // copy constructor

 ~Matrix(); // Destructor

 int getRows(void) const; // Utility fn, returns no. of rows

 int getCols(void) const; // Utility fn, returns no. of columns

 const Matrix & input(istream &is = cin); // Read matrix from istream

 const Matrix & input(ifstream &is); // Read matrix from istream

 void output(ofstream &os) const; // Utility fn, prints matrix with graphics

 void output(ostream &os = cout) const; // Utility fn, prints matrix with graphics

 const Matrix& transpose(void); // Transpose the matrix and return a ref

 const Matrix & operator = (const Matrix &m); // Assignment operator

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

542

 Matrix operator+(Matrix &m) const; // Member op + for A+B; returns matrix

 Matrix operator + (double d) const;

 const Matrix & operator += (Matrix &m);

 friend Matrix operator + (double d, Matrix &m);

 Matrix operator-(Matrix & m) const; // Member op + for A+B; returns matrix

 Matrix operator - (double d) const;

 const Matrix & operator -= (Matrix &m);

 friend Matrix operator - (double d, Matrix& m);

 Matrix operator*(const Matrix & m);

 Matrix operator * (double d) const;

 friend Matrix operator * (const double d, const Matrix& m);

 Matrix operator/(const double d);

 friend ostream & operator << (ostream & , Matrix &);

 friend istream & operator >> (istream & , Matrix &);

 friend ofstream & operator << (ofstream & , Matrix &);

 friend ifstream & operator >> (ifstream & , Matrix &);

};

Matrix::Matrix(int row, int col) //default constructor

{

 numRows = row;

 numCols = col;

 elements = new (double *) [numRows];

 for (int i = 0; i < numRows; i++){

 elements[i] = new double [numCols];

 for(int j = 0; j < numCols; j++)

 elements[i][j] = 0; // Initialize to zero

 }

}

Matrix::Matrix(const Matrix &m)

{

 numRows = m.numRows;

 numCols = m.numCols;

 elements = new (double *) [numRows];

 for (int i = 0; i < numRows; i++){

 elements[i] = new double [numCols];

 for(int j = 0; j < numCols; j++)

 elements[i][j] = m.elements[i][j];

 }

}

Matrix::~Matrix(void)

{

 delete [] elements;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

543

}

int Matrix :: getRows () const

{

 return numRows;

}

int Matrix :: getCols () const

{

 return numCols;

}

void Matrix::output(ostream &os) const

{

 // Print first row with special characters

 os.setf(ios::showpoint);

 os.setf(ios::fixed,ios::floatfield);

 os << (char) 218;

 for(int j=0; j<numCols; j++)

 os << setw(10) << " ";

 os << (char) 191 << "\n";

 // Print remaining rows with vertical bars only

 for (int i=0; i<numRows; i++){

 os << (char) 179;

 for(int j=0; j<numCols; j++)

 os << setw(10)<< setprecision(2) << elements[i][j];

 os << (char) 179 << "\n";

 }

 // Print last row with special characters

 os << (char) 192;

 for(int j=0; j<numCols; j++)

 os << setw(10) << " ";

 os << (char) 217 << "\n";

}

void Matrix::output(ofstream &os) const

{

 os.setf(ios::showpoint);

 os.setf(ios::fixed,ios::floatfield);

 os << numRows << " " << numCols << "\n";

 for (int i=0; i<numRows; i++){

 for(int j=0; j<numCols; j++)

 os << setw(6) << setprecision(2) << elements[i][j];

 os << "\n";

 }

}

const Matrix & Matrix::input(istream &is)

{

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

544

 cout << "Input Matrix size: " << numRows << " rows by " << numCols << "

columns\n";

 for(int i=0; i<numRows; i++){

 cout << "Please enter " << numCols << " values separated by spaces for row

no." << i+1 << ": ";

 for(int j=0; j<numCols; j++){

 cin >> elements[i][j];

 }

 }

 return *this;

}

const Matrix & Matrix::input(ifstream &is)

{

 int Rows, Cols;

 is >> Rows;

 is >> Cols;

 if(Rows>0 && Cols > 0){

 Matrix temp(Rows, Cols);

 *this = temp;

 for(int i=0; i<numRows; i++){

 for(int j=0; j<numCols; j++){

 is >> elements[i][j];

 }

 }

 }

 return *this;

}

const Matrix & Matrix::transpose()

{

 if(numRows == numCols){ // Square matrix

 double temp;

 for(int i=0; i<numRows; i++){

 for(int j=i+1; j<numCols; j++){

 temp = elements[i][j];

 elements[i][j] = elements[j][i];

 elements[j][i] = temp;

 }

 }

 }

 else

 {

 Matrix temp(numCols, numRows);

 for(int i=0; i<numRows; i++){

 for(int j=0; j<numCols; j++){

 temp.elements[j][i] = elements[i][j];

 }

 }

 *this = temp;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

545

 }

 return *this;

}

const Matrix & Matrix :: operator = (const Matrix & m)

{

 if(&m != this){

 if (numRows != m.numRows || numCols != m.numCols){

 delete [] elements;

 elements = new (double *) [m.numRows];

 for (int i = 0; i < m.numRows; i++)

 elements[i]=new double[m.numCols];

 }

 numRows = m.numRows;

 numCols = m.numCols;

 for (int i=0; i<numRows; i++){

 for(int j=0; j<numCols; j++){

 elements[i][j] = m.elements[i][j];

 }

 }

 }

 return *this;

}

Matrix Matrix::operator + (Matrix &m) const

{

 // Check for conformability

 if(numRows == m.numRows && numCols == m.numCols){

 Matrix temp(m);

 for (int i = 0; i < numRows; i++){

 for (int j = 0; j < numCols; j++){

 temp.elements[i][j] += elements[i][j];

 }

 }

 return temp ;

 }

}

Matrix Matrix::operator + (double d) const

{

 Matrix temp(*this);

 for (int i = 0; i < numRows; i++){

 for (int j = 0; j < numCols; j++){

 temp.elements[i][j] += d;

 }

 }

 return temp ;

}

const Matrix & Matrix::operator += (Matrix &m)

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

546

{

 *this = *this + m;

 return *this;

}

Matrix Matrix::operator - (Matrix &m) const

{

 // Check for conformability

 if(numRows == m.numRows && numCols == m.numCols){

 Matrix temp(*this);

 for (int i = 0; i < numRows; i++){

 for (int j = 0; j < numCols; j++){

 temp.elements[i][j] -= m.elements[i][j];

 }

 }

 return temp ;

 }

}

Matrix Matrix::operator - (double d) const

{

 Matrix temp(*this);

 for (int i = 0; i < numRows; i++){

 for (int j = 0; j < numCols; j++){

 temp.elements[i][j] -= d;

 }

 }

 return temp ;

}

const Matrix & Matrix::operator -= (Matrix &m)

{

 *this = *this - m;

 return *this;

}

Matrix Matrix::operator* (const Matrix& m)

{

 Matrix temp(numRows,m.numCols);

 if(numCols == m.numRows){

 for (int i = 0; i < numRows; i++){

 for (int j = 0; j < m.numCols; j++){

 temp.elements[i][j] = 0.0;

 for(int k = 0; k < numCols; k++){

 temp.elements[i][j] += elements[i][k] * m.elements[k][j];

 }

 }

 }

 }

 return temp;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

547

}

Matrix Matrix :: operator * (double d) const

{

 Matrix temp(*this);

 for (int i = 0; i < numRows; i++){

 for (int j = 0; j < numCols; j++){

 temp.elements[i][j] *= d;

 }

 }

 return temp;

}

Matrix operator * (const double d, const Matrix& m)

{

 Matrix temp(m);

 temp = temp * d;

 return temp;

}

Matrix Matrix::operator / (const double d)

{

 Matrix temp(*this);

 for(int i=0; i< numRows; i++){

 for(int j=0; j<numCols; j++){

 temp.elements[i][j] /= d;

 }

 }

 return temp;

}

Matrix operator + (double d, Matrix &m)

{

 Matrix temp(m);

 for(int i=0; i< temp.numRows; i++){

 for(int j=0; j<temp.numCols; j++){

 temp.elements[i][j] *= d;

 }

 }

 return temp;

}

Matrix operator - (double d, Matrix& m)

{

 Matrix temp(m);

 for(int i=0; i< temp.numRows; i++){

 for(int j=0; j<temp.numCols; j++){

 temp.elements[i][j] = d - temp.elements[i][j];

 }

 }

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

548

 return temp;

}

ostream & operator << (ostream & os, Matrix & m)

{

 m.output();

 return os;

}

istream & operator >> (istream & is, Matrix & m)

{

 m.input(is);

 return is;

}

ofstream & operator << (ofstream & os, Matrix & m)

{

 m.output(os);

 return os;

}

ifstream & operator >> (ifstream & is, Matrix & m)

{

 m.input(is);

 return is;

}

int main()

{

 // declaring two matrices

 Matrix m(4,5), n(5,4);

 // getting input from keyboard

 cout << "Taking the input for m(4,5) and n(5,4) \n";

 m.input();

 n.input();

 // displaying m and taking its transpose

 cout << "Displaying the matrix m(4,5) and n(5,4)\n";

 m.output();

 n.output();

 cout << "Taking the transpose of matrix m(4,5) \n";

 m.transpose();

 cout << "Displaying the matrix m(5,4) and n(5,4) \n";

 m.output();

 cout << "Adding matrices n into m \n";

 m = m + n;

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

549

 m.output();

 cout << "Calling m + m + 4 \n";

 m = m + m + 4;

 m.output();

 cout << "Calling m += n \n";

 m += n;

 m.output();

 cout << "Calling m = m - n \n";

 m = m - n;

 m.output();

 cout << "Calling m = m - 4 \n";

 m = m - 4;

 m.output();

 cout << "Calling m -= n \n";

 m -= n;

 m.output();

 m.transpose();

 Matrix c;

 cout << "Calling c = m * n \n";

 c = m * n;

 c.output();

 cout << "Calling c = c * 4.0 \n";

 c = c * 4.0;

 c.output();

 cout << "Calling c = 4.0 * c \n";

 c = 4.0 * c ;

 c.output();

 cout << "Testing stream extraction \n";

 // cin >> c;

 cout << "Testing stream insertion \n";

 // cout << c;

 cout << "Writing into the file d:\\junk.txt \n" ;

 ofstream fo("D:/junk.txt");

 fo << c;

 fo.close();

 cout << "Reading from the file d:\\junk.txt \n";

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

550

 ifstream fi("D:/junk.txt");

 fi >> c;

 fi.close();

 cout << c;

 system("PAUSE");

 return 0;

}

The output of the program is:

Taking the input for m(4,5) and n(5,4)

Input Matrix size: 4 rows by 5 columns

Please enter 5 values separated by spaces for row no.1: 1.0 2.0 3.0 4.0 5.0

Please enter 5 values separated by spaces for row no.2: 7.0 5.5 2.3 2.0 1.0

Please enter 5 values separated by spaces for row no.3: 3.3 2.2 1.1 4.4 5.5

Please enter 5 values separated by spaces for row no.4: 9.9 5.7 4.3 2.3 1.5

Input Matrix size: 5 rows by 4 columns

Please enter 4 values separated by spaces for row no.1: 11.25 12.25 13.25 14.25

Please enter 4 values separated by spaces for row no.2: 25.25 50.50 75.75 25.50

Please enter 4 values separated by spaces for row no.3: 15.15 5.75 9.99 19.90

Please enter 4 values separated by spaces for row no.4: 25.50 75.75 10.25 23.40

Please enter 4 values separated by spaces for row no.5: 50.50 75.50 25.25 15.33

Displaying the matrix m(4,5) and n(5,4)

 1.00 2.00 3.00 4.00 5.00

 7.00 5.50 2.30 2.00 1.00

 3.30 2.20 1.10 4.40 5.50

 9.90 5.70 4.30 2.30 1.50

 11.25 12.25 13.25 14.25

 25.25 50.50 75.75 25.50

 15.15 5.75 9.99 19.90

 25.50 75.75 10.25 23.40

 50.50 75.50 25.25 15.33

Taking the transpose of matrix m(4,5)

Displaying the matrix m(5,4) and n(5,4)

 1.00 7.00 3.30 9.90

 2.00 5.50 2.20 5.70

 3.00 2.30 1.10 4.30

 4.00 2.00 4.40 2.30

 5.00 1.00 5.50 1.50

Adding matrices n into m

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

551

 12.25 19.25 16.55 24.15

 27.25 56.00 77.95 31.20

 18.15 8.05 11.09 24.20

 29.50 77.75 14.65 25.70

 55.50 76.50 30.75 16.83

Calling m + m + 4

 28.50 42.50 37.10 52.30

 58.50 116.00 159.90 66.40

 40.30 20.10 26.18 52.40

 63.00 159.50 33.30 55.40

 115.00 157.00 65.50 37.66

Calling m += n

 39.75 54.75 50.35 66.55

 83.75 166.50 235.65 91.90

 55.45 25.85 36.17 72.30

 88.50 235.25 43.55 78.80

 165.50 232.50 90.75 52.99

Calling m = m - n

 28.50 42.50 37.10 52.30

 58.50 116.00 159.90 66.40

 40.30 20.10 26.18 52.40

 63.00 159.50 33.30 55.40

 115.00 157.00 65.50 37.66

Calling m = m - 4

 24.50 38.50 33.10 48.30

 54.50 112.00 155.90 62.40

 36.30 16.10 22.18 48.40

 59.00 155.50 29.30 51.40

 111.00 153.00 61.50 33.66

Calling m -= n

 13.25 26.25 19.85 34.05

 29.25 61.50 80.15 36.90

 21.15 10.35 12.19 28.50

 33.50 79.75 19.05 28.00

 60.50 77.50 36.25 18.33

Calling c = m * n

 5117.55 8866.42 4473.54 3066.94

 7952.36 15379.14 7884.15 5202.50

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

552

 4748.18 8540.74 7566.73 3570.75

 3386.23 5949.35 4280.89 2929.51

Calling c = c * 4.0

 20470.19 35465.70 17894.15 12267.75

 31809.46 61516.55 31536.59 20810.01

 18992.71 34162.97 30266.91 14283.00

 13544.91 23797.41 17123.54 11718.05

Calling c = 4.0 * c

 81880.76 141862.80 71576.62 49071.00

 127237.84 246066.20 126146.34 83240.04

 75970.86 136651.88 121067.65 57132.02

 54179.64 95189.64 68494.16 46872.18

Testing stream extraction

Testing stream insertion

Writing into the file d:\junk.txt

Reading from the file d:\junk.txt

 81880.76 0.81 0.62 0.00

 127237.84 0.20 0.35 0.04

 75970.86 0.88 0.66 0.02

 54179.65 0.65 0.16 0.18

Press any key to continue . . .

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

553

Lecture No. 45

Reading Material

Lecture 43 - Lecture 44

Summary

 Example (continued)

 Assignment Operator Function

 Addition Operator Function

 Plus-equal Operator Function

 Overloaded Plus Operator Function

 Minus Operator Function

 Multiplication Operator Function

 Insertion and Extraction Operator Function

 exercise

 Rules for Programming

 Variables and Pointers

 Arrays

 Loops and decisions

 Classes and Object

 Garbage Collection

 Truth Table

 Structured Query Language

Example (continued)

This is a sequel of the discussion on ‘matrix class’ made in the previous lectures.

Assignment Operator Function
Before going into minute details, we will talk about the assignment operator of this

class. This operator occupies very important place in the field of programming. When

we want to write code like a = b; where a and b both are matrices, the assignment

operator attains a critical role as our class does dynamic memory allocation. Here we

don’t know whether the size of a and b will be the same or not. If these are of

different size, then it will be better to reallocate the memory. So it warrants the

existence of some checks and balances. At first, we look at the declaration line of the

assignment operator, it is written below.

 const Matrix & operator = (const Matrix &m);

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

554

The declaration line states that it must return a reference to a matrix. Why do we want

to return a matrix? The return of the matrix is necessary to enable us write the

statement i.e. a = b = c; We know, in C and C++ languages, every expression has a

value of its own. Now if we write a = b ; it will mean that the whole action will have

a value. This value itself will be a reference to a matrix. On the other hand, we have

made it const. In other words, the reference that is being returned is a constant.

Whenever we return a reference of a thing that thing can become on left-hand side of

an assignment statement, which can lead to some very funny behavior. If we write (a

= b) = c ; It will result in the execution of the statement, a = b. It will return a value

that is a reference to a matrix. This reference will be assigned the value of c. this

means that some minor things can take place. We will like to have parentheses only

on right hand side. It is advisable not to do an assignment to the reference that is being

returned. To avoid this, we write const with it. Thus, we get the efficiency as

reference is being returned. We also enjoy safety due to the fact that no value can

assign to this reference in the same statement. Due to the reference returned, we can

write the statement like a = b = c ;

Let’s have a look on the next implication i.e. the size of the matrix. Whenever there is

dynamic memory allocation in a class, we have to check against self-assignment. Self-

assignment means statements like a = a ;. If we take ordinary variables, say integer,

writing i = i ; is quiet right. But if we write something like a = a ; it will be possible

to free the memory of object on the left hand side as it is doing some dynamic

memory allocation. Now we can assign new memory and copy the right hand side in

it. If we write a = a; it will lead to a very tricky situation. This means that we, at first,

delete it (the left-hand side), as right hand side is the same object with same memory,

so it is also deleted. Then, we try to copy the right hand side that has been deleted. So

we must check against self-assignment. While dealing with the code of the

assignment operator, we will first check whether it is for the self-assignment or not.

To ascertain it, we will write the following line.

 if(&m != this)

This way, the self-assignment check has been carried out. In case of not finding self-

assignment, the programmer will have to do further process..

After checking the self-assignment, the program checks the size of both the matrices

and sees whether these are the same or different. If their size is same, then it will copy

the matrix of right hand side element-by-element in the matrix on left-hand side. But

if their size is different in terms of number of rows or columns, then we have to create

a new matrix for the left-hand side. This code is similar to the one that we wrote in the

constructor. We free the memory and reallocate the memory of the correct size. This

size is equal to the size of the matrix on right hand side. After re-allocating the

memory, we readjust the number of rows and columns of the lef- hand side object. So

we write it as

 numerous = m.numRows ;

 numCols = m.numCols ;

While defining rows and columns, we execute a for loop and copy the elements of

right hand side at corresponding positions on left hand side. This way, we define the

assignment operator, which can be used in different functions. Here, we can write

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

555

statement like a = b which will work properly. The same thing is applied to our main

code when we come to a client function of the class. The code of the function of

assignment operator is written as below.

 const Matrix & Matrix :: operator = (const Matrix & m)

 {

 if(&m != this)

 {

 if (numRows != m.numRows || numCols !=

m.numCols)

 {

 delete [] elements;

 elements = new (double *) [m.numRows];

 for (int i = 0; i < m.numRows; i++)

 elements[i]=new double[m.numCols];

 }

 numRows = m.numRows;

 numCols = m.numCols;

 for (int i=0; i<numRows; i++)

 {

 for(int j=0; j<numCols; j++)

 {

 elements[i][j] = m.elements[i][j];

 }

 }

 }

 return *this;

 }

Addition Operator Function
Now we will discuss the addition operator. We have discussed a variety of addition

operators. We come across one of these while writing a + b where a and b are

matrices. While adding two matrices, it is ensured that these are compatible. It means

that the matrices are conformable for addition. Their number of rows and columns

should be equal. The code, we have just, written is very simple. It first checks whether

the matrices are compatible. If so, it does the element-to-element addition. If these are

not compatible, it returns the old matrix. Here the thing to remember is, what is being

returned? The addition operator returns a new matrix after adding two matrices. The

matrices, which were added, remain the same. So, if we add two matrices a and b,

these will remain as it is and addition operator will return a resultant matrix by adding

them. Therefore, if we find the matrices are compatible, a new matrix is defined.

Having defined the new matrix, we can apply some tricks to it. We can define the new

matrix by using copy constructor. So a complete matrix will be copied to it. This is

reflective from the following statement.

 Matrix temp (m) ;

When we a copy of one matrix, i.e. temp, the elements of the other matrix are added

to it. We do this with a loop. After this, temp is returned. This temporary matrix

(temp) which was created in the addition operator, is returned. However, its reference

can not be returned. Here we have to return a matrix, ignoring the problem of

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

556

efficiency. So this whole matrix will be copied on the stack and assigned wherever it

is needed. If we have written c = a + b ; it will be assigned to c. The things where the

reference or matrix is being returned, should be carried out carefully. It is important

for us to know what thing should be returned to where, and what is its usage and

behavior? The code of the addition operator function is written in the program as

below.

 Matrix Matrix::operator + (Matrix &m) const

 {

 // Check for conformability

 if(numRows == m.numRows && numCols == m.numCols)

 {

 Matrix temp(*this);

 for (int i = 0; i < numRows; i++)

 {

 for (int j = 0; j < numCols; j++)

 {

 temp.elements[i][j] += m.elements[i][j];

 }

 }

 return temp ;

 }

 Matrix temp(*this);

 return temp;

 }

Plus-equal (+=) Operator Function
Now we will discuss the += operator. Whenever a programmer writes a += b, he will

come across a different scenario as compared to the one witnessed in the case of the

addition operator. In a way, now ‘a’ itself is being changed. So if a is going to

change, we can return a reference to a. The conformability check remains the same as

in ordinary addition. That means both matrices must have the same number of rows

and columns. There is no need of creating a temporary matrix. Here we can return

reference to left-hand side matrix. Here one finds that there is reuse and efficiency in

the code. The += operator is defined as under.

 const Matrix & Matrix::operator += (Matrix &m)

 {

 *this = *this + m;

 return *this;

 }

Overloaded plus Operator Function
Next concept to be discussed the overloading of the overloaded plus (+) operator. It is

very simple. If we want to add a double variable in a matrix, there will be no problem

of conformability. All we need to do is add a value to every element. Here we are

doing a + d (a is a matrix while d is a double). Here, a will not change. A new matrix

will be returned by adding the value of d to the elements of a. So it is not returning a

reference, but a matrix. If it is returning a matrix, it must return a matrix that is

created inside this function. Thus, we can use copy constructor and write

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

557

 Matrix temp (* this) ;

In this matrix temp, we add the value of d by a nested loop and return it. This way, the

addition of a matrix with a double variable is defined. The code of it is given below.

 Matrix Matrix::operator + (double d) const

 {

 Matrix temp(*this);

 for (int i = 0; i < numRows; i++)

 {

 for (int j = 0; j < numCols; j++)

 {

 temp.elements[i][j] += d;

 }

 }

 return temp ;

 }

Next function is d + a (i.e. double variable + matrix). There is a double variable and

not a matrix on left hand side, leaving no option for having it as a member function. It

is a friend function and defined outside the class. We don’t use the scope resolution

operator (::) with it. It is defined as an ordinary stand-alone function. It still returns a

matrix .So it is written as

 Matrix operator + (double d, Matrix &m)

Two arguments are passed to it that are the variables on left and right side of the

operator. The remaining code is almost the same as that of a + d, and is written as

below.

 Matrix operator + (double d, Matrix &m)

 {

 Matrix temp(m);

 for(int i=0; i< temp.numRows; i++)

 {

 for(int j=0; j<temp.numCols; j++)

 {

 temp.elements[i][j] += d;

 }

 }

 return temp;

 }

Minus Operator (-) Function
The same discussion of plus (+) operator applies to the minus (-) operator as both are

identical. We see the difference between these operators when we do a + d. In case of

addition, it will be the same as that of d + a. However, while dealing with minus case,

the result of a - d will be obviously different from the result of d - a.

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

558

Multiplication Operator (*) Function
The most complicated operator out of all these arithmetic manipulators for matrices is

the multiplication (*) operator. How do we multiply two matrices together? We have

already discussed it while defining matrices. We have discussed that the size of the

resultant matrix will be the number of rows of the first matrix multiplied by the

number of columns of second matrix. We also have discussed the method to calculate

the element of the resultant matrix. Obviously, before doing this, we check the

conformability of the matrices for multiplication. The code of the function for *

operator is defined as below.

Matrix Matrix::operator* (const Matrix& m)

{

 Matrix temp(numRows,m.numCols);

 if(numCols == m.numRows)

 {

 for (int i = 0; i < numRows; i++)

 {

 for (int j = 0; j < m.numCols; j++)

 {

 temp.elements[i][j] = 0.0;

 for(int k = 0; k < numCols; k++)

 {

 temp.elements[i][j] += elements[i][k] *

m.elements[k][j];

 }

 }

 }

 }

 return temp;

}

The multiplication of a matrix with a double is nothing more complicated as that of

doing addition of a matrix with a double. So code used in both cases is similar. In the

case of division of a matrix by a double, the only thing that differs is that while

dividing a matrix with a double, we have to check the division by zero. After having

that little check, we divide the matrix. Without going for some complex method, we

simply return the original matrix if it encounters a division by zero. Mathematically

speaking, it is not correct. We should actually throw an exception so that program

should stop in such a case. But we do not throw an exception and return the original

matrix without trying to divide it by zero. So our program does not generate a run

time error. There may be logical errors. So we have to be careful in such a case.

Insertion (<<) and Extraction (>>) Operator Function
The last set of functions that we have defined is the stream insertion (<<) and

extraction (>>) operators. These operators may be taken as the example of code reuse.

We have already defined input and output functions for this class. These input and

output can handle matrices with files or on screen. Now we want an operator to write

cin >> m ; where m is an object of type Matrix. It means that we have to read from

the keyboard and store these values in the matrix m. Inside the code, we can reuse the

input function and write m.input in the function body. This is the overloaded stream

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

559

extraction operator. The only difference is that we have to return a reference to the

stream. Thus it is a two- line function and is a good example of code reuse. We have

written the input function, which can be used here. Same thing applies if we have to

take input from the file and put it into matrix m. We have declared these functions as

friend functions and in the following their code is written

 istream & operator >> (istream & is, Matrix & m)

 {

 m.input(is);

 return is;

 }

We will now use the input function, written to take input from file.

 ifstream & operator >> (ifstream & is, Matrix & m)

 {

 m.input(is);

 return is;

 }

Similarly, the pair of output functions can be reused to overload the stream insertion

operator.

 ostream & operator << (ostream & os, Matrix & m)

 {

 m.output();

 return os;

 }

And for the file output the code is as follows.

 ofstream & operator << (ofstream & os, Matrix & m)

 {

 m.output(os);

 return os;

 }

Exercise
Now you should study and understand this whole code of the class and use it. Its use

is very simple. You can write the main function and in it write

 Matrix m (3,3) ;

When you will execute it, a matrix of three rows and three columns will be created

and values of it will be zero. To display this matrix on the screen, you can write

 m.output ;

It will display a properly formatted matrix on the screen. Similarly you can define

other matrices and can get their values from the keyboard. You can multiply them and

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

560

see that multiplication is done only if the matrices are conformable for multiplication.

Similarly, addition will work only if the matrices are conformable for addition. You

can write a little test program. You should also try to extend the class by adding new

functions and features into it. In the code, there are not proper error messages. You

can write code to do more error checking and to display proper error messages

wherever an error encounters.

It is very simple to change the whole class from double to int. More complicated one

would may be used to write a template for this class. In the class, wherever there is

double, you will write <T> there and on the top, there will be template <class T>. The

remaining things will almost look identical. You will have to take care in friend

functions. So there is a lot of stuff you can do with it.

Review

Now we will review the different topics of the course briefly and some discussion in

respect of languages and programming. In the beginning of the course, we came

across a few programming guidelines. We have read about design recipe. Then we

went on and developed the way of thinking.

To begin with the review of the previously discussed subjects, we will now talk about

the rules of programming.

Rules for Programming

We need simply three constructs to solve any problem.

1) Things should be executed sequentially. That means the statements are executed in

a sequence i.e. the second statement follows the first and so on.

2) We need to have a decision. The decision means if something is true, the program

executes it. Otherwise, it tries doing something else. So there is simple decision or if-

else decision.

3) The third construct is loop, which is a repetition structure that performs the same

task repeatedly with different values.

So the availability of sequences, decisions and loops can help us write any program.

The code, we write, should be short and concise. It need to be self-contained and

understandable. Comments should be placed liberally. The comments should explain

the logic, not the mechanics. Try to avoid fancy programming. The indentation of the

code has no means programmatically as it does not mean any thing at all. What

actually matters is how you structure the code using braces and semicolons i.e. the

structure of the language. Otherwise, C and C++ are free-format languages. We can

write the whole code in a single line. But it will be very difficult to read. We format

our code so that it could be read easily. So indentation is for us, not for the compiler.

Similarly, any language does not dictate it. On the other hand, if we put our code

inside braces and blocks, it will ensure a logical syntax.

Variables and Pointers

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

561

After constructs, the concept of variables and pointers holds very important position

in programming. The variable is a name for a value. It is like a label on a box in the

memory, which contains a value. We can use this label to manipulate the value,

instead of using the address of the memory that contains the value. There are different

types of variables.

We discussed earlier, the pointers are much more specific to C and C++. A pointer is

an address of a location in the memory. We also have talked about their

manipulations.

Arrays
An array is a type of data structure. We use an array to store multiple values of the

same data type. In C, C++ and FORTRAN languages, the arrays are of the same data

type i.e. every element of the array is of the same data type. There can be an array of

integers, an array of characters and so on. We cannot have elements of different types

in an array. There are the languages in which we can have arrays of mixed-type.

FoxPro is the quotable example in this regard. We can store in a variable whatever we

want. For example if we write a = 3 then a is a numerical value. On other hand

suppose, if we write a = “This is a string”. Here ‘a’ becomes a character string.

Similarly in Visual Basic, there is a data type, called variant that can store data of all

kinds. So remember that whenever we talk of arrays and variables, different languages

behave differently. There are no hard and fast rules.

Loops and Decisions
The loops and decisions are ‘bread and butter’ for a programmer.

While talking about decisions, we read that in C and C++ languages, there is a simple

if statement. There is also ‘if-else statement’. We can write a big structure by using

the nested if-else statements. There is also switch statement. These statements (if, if-

else and switch) are language specific. Almost all the modern programming languages

provide a decision structure. The exact syntax of which can be got from language

reference.

While talking about repetition structure, we come across the concept of loops. The

loops are of three different types in C ++. These include while, do-while and for loop.

There is a subtle difference between them. While using the while loop, if its condition

is false at the start, its body will not execute even once. In other words a while loop

executes zero or more times. On the other hand, if we write a do-while loop, the block

of code written after the do will execute at least once. So a do-while loop executes one

or more times. The for loop is more like the while loop. It will execute zero or more

times. Every loop has a basic structure that is independent of the language. There is

some initialization, a condition that is tested for the execution of the loop. Then there

is the body of the loop in which it performs its task. These are almost same in the

languages. But the syntax is particular to the language.

Classes and Objects
In this course, we discussed, only the concept of, classes and objects. The study of

rudiments of classes and objects can help us understand the difference between

implementation and interface besides comprehend the concept of the encapsulation.

We combine the data and code to form an object. It is a new type of variable, a user-

defined data type. It not only has its data structure but also the code that manipulates

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

562

the data. The major advantage of data hiding and encapsulation is that it makes every

thing tested, debugged and ready to use. When we come in the main program, which

uses these classes or objects, our code becomes very simple. We can reuse this code

repeatedly. When we put all of this together, the concept of doing object-oriented

programming becomes clear. How can a class be made from another class? We will

talk about polymorphism in the course of object oriented programming. It can

determine what function is to call at the execution time of the program not at the

compile time. These are very important and powerful methods. There will be whole

idea of thinking objects. Here we only covered mechanics. When we were talking

about mechanics, we have to understand how can we implement a member function

and a member operator. We use the sequences, decisions and repetition structures

while writing the member or friend functions. So we build on our previous knowledge

and introduce the concepts of classes and objects.

Garbage Collection

The whole concept of using objects and their notation which is object.member, where

member could be a data type or a function, that is what we have been exercising. We

also mentioned that we could have pointers to objects. During the manipulation of the

data variable or data member with pointers, we use the arrow (->) notation rather than

the dot (.) notation. The concept of pointers is very important but quite limited to C

and C++. The modern languages, for example JAVA, describe pointers as dangerous.

We can go anywhere in the memory and can change a value. There is another problem

with pointers, which is that these could be pointing to nowhere. For example, we

allocate memory and de-allocate it there or in some other function, without

reassigning a new memory to the pointer that was pointing to that memory. Thus, a

dangling pointer is there that points to nothing. There is also reverse case of it that we

assign a memory through a pointer where the pointer is destroyed, the memory

remains allocated and is wasted. To address these things, there are only references in

JAVA instead of pointers. JAVA gives the concept of garbage collection with the use

of references. Due to this garbage collection, we are free from the headache of de-

allocating the memory. We allocate and use the memory. When it is no longer in use,

JAVA automatically deletes (frees) it through garbage collection. But in C and C++

languages, we have to take care of de-allocating the memory. In classes where we use

dynamic memory, we have to provide destructors to free this memory. The languages

keep evolving, new constructs will keep evolving in existing or new languages. So the

foundations of our knowledge must be strong. We have to know what is

programming. We have to know how can we take the essence of a problem by

analyzing it. We should repeat the design recipe as many times as needed.

Truth Table

There are some areas where the decision structures become very complicated.

Sometimes, we find it difficult to evaluate a complicated logical expression.

Sometimes the logic becomes extremely complicated so that even writing it as a

simple syntax statement in any language. It becomes complicated to determine what

will be evaluated in what way. We know the concept of truth table. The truth tables

are very important. These are still a tool available for analyzing logical expressions.

We will read logic design in future, which is actually to do with chips and gates. How

we put these things together. In logic design, there are certain techniques that are

CS201 – Introduction to Programming

© Copyright Virtual University of Pakistan

563

known as minimization techniques. These are used to make a big circuit with the use

of minimum chips. These minimization techniques deal with Boolean algebra i.e.

logic. These techniques are also used in programming. So we should keep breadth in

our vision while maintaining a horizontal integration. We should always think outside

the box. There is a way of thinking for us as programmers. We always look at

problems, slice and dice them and come up with solutions. Programming as a skill is

infact important. It helps us think, from a logical perspective. How can we do it is

something else. We can get it from the reference books of the language or from online

help in the compiler. This part that how can we do is always changing. New

languages will be evolved for our help. On the other hand, what is to be done depends

on our logical skills and fundamental knowledge. We have to develop this thing.

Structured Query Language
In the business world, most of the programming is database-oriented. In today’s

databases, like Oracle and SQL Server, a different kind of language is used. These are

the languages that are called as structured query languages i.e. SQL. SQL, is so

important that a standard has been developed for it. So there is an ANSI standard for

this language. There is a major difference between SQL and the conventional

language. The SQL by law says ‘tell me what do you want and I will determine how

to do it’. Whereas in our conventional languages like C or C++, we have to tell the

languages what we want to do and how to do it. These are differentiated in the

terminology like third generation languages and fourth generation languages.

There are optimizers built in those languages. Optimizers mean how a query or

question can be executed more efficiently. In the same way, there are optimizers in

our compilers. When we write the code, the compiler looks into it to determine how

this code can be executed more efficiently. The modern compilers do a large

optimization. Different software companies or computer manufacturers write the

compilers. The standard is the same for writing compilers. The difference is that how

much fast the executable version of a program executes and how much memory it

uses, when compiled by different compilers. The speed and memory usage is the two

yard sticks of output code.

The fundamentals are important. Keeping of a breadth of vision is also critically

important. We have to constantly keep up with literature, keep up with new

development, and experiment with more and more new tools.

Talking about languages is not that important. However, talking about programming

is critically more important. If we have a sound fundamental knowledge, no new

language can frighten us. We will never feel over powered by any new language. The

fundamentals can become strong only by practicing more and experimenting to the

maximum.

