
Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 1

CS304-Handouts

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 2

LECTURE NO.01 ... 8

01.1. INTRODUCTION .. 8
01.2. WHAT IS A MODEL? ... 10
01.3. OO MODELS: .. 11
01.4. OBJECT-ORIENTATION - ADVANTAGES .. 12
01.5. WHAT IS AN OBJECT? .. 12
01.6. TANGIBLE AND INTANGIBLE OBJECTS .. 13
01.7. SUMMARY: .. 14

LECTURE NO.02 ... 15
02.1. INFORMATION HIDING: .. 15
02.2. ENCAPSULATION .. 16
02.3. INTERFACE .. 17
02.4. IMPLEMENTATION ... 18
02.5. SEPARATION OF INTERFACE & IMPLEMENTATION .. 19
02.6. MESSAGES .. 19
02.7. SUMMARY ... 19

LECTURE NO.03 ... 21
03.1. ABSTRACTION .. 21
03.2. CLASSES .. 23
03.3. INHERITANCE ... 25

LECTURE NO.04 ... 29
04.1. CONCEPTS RELATED WITH INHERITANCE .. 29
04.2. GENERALIZATION .. 29
04.3. SUB-TYPING (EXTENSION) .. 31
04.4. SPECIALIZATION (RESTRICTION) ... 32
04.5. OVERRIDING .. 34
04.6. ABSTRACT CLASSES ... 36
04.7. CONCRETE CLASSES .. 38

LECTURE NO.05 ... 40
05.3. SIMPLE ASSOCIATION ... 50
05.4. COMPOSITION .. 52
05.5. AGGREGATION ... 54

LECTURE NO.06 ... 55
06.1. CLASS COMPATIBILITY .. 55
06.2. POLYMORPHISM ... 56
06.3. POLYMORPHISM IN OO MODEL .. 56
06.4. POLYMORPHISM – ADVANTAGES .. 57
06.5. OBJECT-ORIENTED MODELING AN EXAMPLE .. 57

LECTURE NO.07 ... 65
07.1. CLASS .. 65
07.2. TYPE IN C++ ... 65
07.3. ABSTRACTION .. 66
07.4. DEFINING A NEW USER DEFINED TYPE .. 66
07.5. OBJECT AND CLASS: .. 68
07.6. ACCESSING MEMBERS ... 68
07.7. ACCESS SPECIFIERS .. 69

LECTURE NO.08 ... 72

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 3

08.1. MEMBER FUNCTIONS ... 72
08.2. DEFINING MEMBER FUNCTIONS .. 72
08.3. INLINE FUNCTIONS .. 73
08.4. CONSTRUCTOR ... 75
08.5. CONSTRUCTOR PROPERTIES ... 75
08.6. DEFAULT CONSTRUCTOR .. 76
08.7. CONSTRUCTOR OVERLOADING ... 77
08.8. CONSTRUCTOR OVERLOADING ... 78
08.9. COPY CONSTRUCTOR... 79
08.10. SHALLOW COPY ... 81
08.11. DEEP COPY ... 82

LECTURE NO.09 .. 84
09.1. SHALLOW COPY .. 85
09.2. DEEP COPY .. 90
09.3. IMPORTANT POINTS ABOUT COPY CONSTRUCTOR: .. 94
09.4. DESTRUCTOR .. 94
09.5. ACCESSOR FUNCTIONS .. 95
09.6. THIS POINTER ... 96

LECTURE NO.10 .. 99
10.1. USES OF THIS POINTER .. 99
10.2. SEPARATION OF INTERFACE AND IMPLEMENTATION ... 99
10.3. COMPLEX NUMBER ... 100
10.4. CONST MEMBER FUNCTIONS .. 102
10.5. THIS POINTER AND CONST MEMBER FUNCTION .. 104

LECTURE NO.11 .. 105
11.1. USAGE EXAMPLE OF CONSTANT MEMBER FUNCTIONS .. 105
11.2. DIFFERENCE BETWEEN INITIALIZATION AND ASSIGNMENT: .. 106
11.3. MEMBER INITIALIZER LIST ... 106
11.4. CONST OBJECTS .. 107
11.5. STATIC VARIABLES .. 109

LECTURE NO.12 .. 112
12.1. ACCESSING STATIC DATA MEMBER .. 113
12.2. LIFE OF STATIC DATA MEMBER ... 114
12.3. STATIC MEMBER FUNCTION ... 115
12.4. THIS POINTER AND STATIC MEMBER FUNCTIONS ... 116
12.5. GLOBAL VARIABLE VS. STATIC MEMBERS .. 116
12.6. ARRAY OF OBJECTS .. 116

LECTURE NO.13 .. 118
13.1. POINTER TO OBJECTS ... 118
13.2. BREAKUP OF NEW OPERATION ... 119
13.3. CASE STUDY .. 119
13.4. COMPLETE CODE OF DATE CLASS ... 121

LECTURE NO.14 .. 124
14.1. COMPOSITION .. 124

LECTURE NO.15 .. 132
15.1. AGGREGATION ... 135
15.2. FRIEND FUNCTIONS ... 138

LECTURE NO.16 .. 142

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 4

16.1. OPERATOR OVERLOADING ... 142
LECTURE NO.17 ... 149

17.1. OVERLOADING ASSIGNMENT OPERATOR... 151
LECTURE NO.18 ... 155

18.1. SELF ASSIGNMENT PROBLEM: ... 155
18.2. OTHER BINARY OPERATORS ... 156
18.3. FRIEND FUNCTIONS AND OPERATOR OVERLOADING ... 157

LECTURE NO.19 ... 158
19.1. STREAM INSERTION OPERATOR ... 158
19.2. STREAM EXTRACTION OPERATOR .. 158
19.3. OVERLOADING STREAM INSERTION OPERATOR ... 159
19.4. OVERLOADING STREAM EXTRACTION OPERATOR: .. 160
19.5. OTHER BINARY OPERATORS: .. 161

LECTURE NO.20 ... 163
20.1. SUBSCRIPT [] OPERATOR ... 164
20.2. OVERLOADING SUBSCRIPT [] OPERATOR ... 164
20.3. OVERLOADING FUNCTION () OPERATOR .. 165
20.4. FUNCTION OPERATOR PERFORMING SUB STRING OPERATION, 165
20.5. UNARY OPERATORS ... 166

LECTURE NO.21 ... 168
21.1. BEHAVIOR OF ++ AND -- FOR PRE-DEFINED TYPES: .. 168
21.2. POST-INCREMENT OPERATOR: .. 169
21.3. TYPE CONVERSION .. 170
21.4. USER DEFINED TYPES: ... 173
21.5. DRAWBACKS OF TYPE CONVERSION OPERATOR: .. 174

LECTURE NO.22 ... 175
22.1. PRACTICAL IMPLEMENTATION OF INHERITANCE IN C++ .. 175
22.2. INHERITANCE IN CLASSES .. 175
22.3. UML NOTATION .. 175
22.4. INHERITANCE IN C++ .. 175
22.5. “IS A” RELATIONSHIP ... 176

LECTURE NO.23 ... 183
23.1. ACCESSING BASE CLASS MEMBER FUNCTIONS IN DERIVED CLASS: 183
23.2. “PROTECTED” ACCESS SPECIFIER: ... 185
23.3. “IS A” RELATIONSHIP ... 186
23.4. STATIC TYPE ... 189

LECTURE NO.24 ... 191
24.1. MODIFIED DEFAULT CONSTRUCTOR .. 199

LECTURE NO.25 ... 207
25.1. OVERLOADING VS. OVERRIDING .. 207
25.2. HIERARCHY OF INHERITANCE .. 211

LECTURE NO.26 ... 213
26.1. BASE INITIALIZATION ... 213
26.2. TYPES OF INHERITANCE .. 214
26.3. PRIVATE INHERITANCE ... 216

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 5

LECTURE NO.27 .. 218
27.1. SPECIALIZATION (RESTRICTION) ... 218
27.2. PROTECTED INHERITANCE .. 222
27.3. PROPERTIES OF PROTECTED INHERITANCE ... 223

LECTURE NO.28 .. 225
28.1. VIRTUAL FUNCTIONS ... 225
28.2. VIRTUAL FUNCTIONS: .. 230
28.3. SHAPE HIERARCHY .. 230
28.4. STATIC VS DYNAMIC BINDING .. 231

LECTURE NO.29 .. 233
29.1. ABSTRACT CLASSES ... 233
29.2. CONCRETE CLASSES ... 234
29.3. ABSTRACT CLASSES IN C++ .. 234
29.4. PURE VIRTUAL FUNCTIONS .. 234
29.5. SHAPE HIERARCHY .. 235
29.6. VIRTUAL DESTRUCTORS ... 236
29.7. VIRTUAL FUNCTIONS – USAGE ... 238
29.8. V TABLE ... 240
29.9. DYNAMIC DISPATCH (DYNAMIC BINDING) ... 242

LECTURE NO.30 .. 243
30.1. POLYMORPHISM – CASE STUDY: A SIMPLE PAYROLL APPLICATION 243
30.2. SHAPE HIERARCHY REVISITED: .. 246

LECTURE NO.31 .. 250
31.1. MULTIPLE INHERITANCE ... 250
31.2. PROBLEMS IN MULTIPLE INHERITANCE .. 251
31.3. VIRTUAL INHERITANCE ... 256

LECTURE NO.32 .. 258
32.1. GENERIC PROGRAMMING ... 259
32.2. TEMPLATES.. 259
32.3. FUNCTION TEMPLATES .. 260

LECTURE NO.33 .. 264
33.1. MULTIPLE TYPE ARGUMENTS ... 264
33.2. USER-DEFINED TYPES .. 264
33.3. OVERLOADING VS. TEMPLATES ... 265
33.4. TEMPLATE ARGUMENTS AS POLICY: .. 266
33.5. FIRST SOLUTION: .. 267
33.6. SECOND SOLUTION: ... 267
33.7. THIRD SOLUTION ... 268
33.8. DEFAULT POLICY .. 269

LECTURE NO.34 .. 270
34.1. GENERIC ALGORITHMS ... 270
34.2. CLASS TEMPLATES ... 272
34.3. EXAMPLE – CLASS TEMPLATE ... 273

LECTURE NO.35 .. 276
35.1. MEMBER TEMPLATES: .. 276
35.2. CLASS TEMPLATE SPECIALIZATION ... 278

LECTURE NO.36 .. 282

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 6

36.1. MEMBER TEMPLATES REVISITED ... 282
36.2. PARTIAL SPECIALIZATION: ... 283
36.3. FUNCTION TEMPLATES .. 284
36.4. COMPLETE SPECIALIZATION... 285
36.5. USING DIFFERENT SPECIALIZATIONS ... 286
36.6. NON-TYPE PARAMETERS ... 286
36.7. EXAMPLE – TEMPLATE CLASS ARRAY ... 286
36.8. DEFAULT NON-TYPE PARAMETERS .. 288
36.9. DEFAULT TYPE PARAMETERS ... 288

LECTURE NO.37 ... 288
37.1. RESOLUTION ORDER ... 289
37.2. FUNCTION TEMPLATE OVERLOADING .. 290
37.3. RESOLUTION ORDER ... 291
37.4. TEMPLATES AND INHERITANCE ... 291
37.5. DERIVATIONS IN CASE OF A GENERAL TEMPLATE CLASS ... 291

LECTURE NO.38 ... 296
38.1. TEMPLATES AND FRIENDS .. 296
38.2. TEMPLATES AND FRIENDS – RULE 1 .. 296
38.3. TEMPLATES AND FRIENDS – RULE 2 .. 297
38.4. TEMPLATES AND FRIENDS – RULE 3 .. 299
38.5. TEMPLATES AND FRIENDS – RULE 4 .. 301

LECTURE NO.39 ... 303
39.1. TEMPLATES & STATIC MEMBERS ... 303
39.2. TEMPLATES – CONCLUSION .. 304
39.3. GENERIC ALGORITHMS REVISITED ... 305
39.4. GENERIC ALGORITHMS REVISITED ... 306
39.5. GENERIC ALGORITHM ... 308
39.6. PROBLEMS ... 308

LECTURE NO.40 ... 309
40.1. CURSORS ... 309
40.2. ITERATORS .. 312

LECTURE NO.41 ... 316
41.1. STANDARD TEMPLATE LIBRARY: ... 316
41.2. STL CONTAINERS .. 316
41.3. COMMON FUNCTIONS FOR ALL CONTAINERS ... 322
41.4. FUNCTIONS FOR FIRST-CLASS CONTAINERS .. 322
41.5. CONTAINER REQUIREMENTS .. 323

LECTURE NO.42 ... 325
42.1. ITERATORS .. 325
42.2. ITERATOR CATEGORIES .. 325
42.3. ITERATOR SUMMARY:.. 325
42.4. CONTAINER AND ITERATOR TYPES: .. 326
42.5. SEQUENCE CONTAINERS ... 326
42.6. ASSOCIATIVE CONTAINERS .. 327
42.7. CONTAINER ADAPTERS ... 327
42.8. ITERATOR OPERATIONS .. 327
42.9. ALGORITHMS ... 331

LECTURE NO.43 ... 334
43.1. EXAMPLE – ABNORMAL TERMINATION .. 334

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 7

43.2. GRACEFUL TERMINATION ... 335
43.3. ERROR HANDLING ... 335
43.4. EXCEPTION HANDLING ... 338
43.5. EXCEPTION HANDLING PROCESS ... 338

LECTURE NO.44 .. 342
44.1. STACK UNWINDING ... 342

LECTURE NO.45 .. 349
45.1. RESOURCE MANAGEMENT .. 349

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 8

Lecture No.01

01.1. Introduction

Course Objective:
Objective of this course is to make students familiar with the concepts of
object oriented programming. These concepts will be reinforced by their
implementation in C++.

Course Contents:
The main topics that we will study in the 45 lectures of this course are given
below,

• Object Orientation
• Objects and Classes
• Overloading
• Inheritance
• Polymorphism
• Generic Programming
• Exception Handling
• Introduction to Design Patterns

Recommended Text Book:

 C++ How to Program (Deitel & Deitel)

Reference Books:

1. Object-Oriented Software Engineering
By Jacobson, Christerson, Jonsson, Overgaard
(For object oriented programming introductory concepts)

2. The C++ Programming Language
By Bjarne Stroustrup
(For better c++ understanding)

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 9

Object-Orientation (OO)

What is Object-Orientation?

It is a technique in which we visualize our programming problems in the form of
objects and their interactions as happens in real life.

Examples:
We have different objects around us in our real life that interact with each other to
perform different operations for example,

These objects interact with each other to perform different operations,

Take another example of a School; the objects in a school are student, teacher, books,
pen ,school bag, classroom, parents, playground and so on… ,

Ali

Car

House

Tree

Lives in

Drives

A Person A House

A Tree A Car

Different Objects

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 10

Objects in a School

Suppose we want to develop a fee collection system for a school for this we will need
to find out related objects and their interactions as happens in real life.
In this way we can say that object orientation makes it easier for us to solve our real
world problems by thinking solution of the problem in terms of real world objects.

So we can say that in our daily life everything can be taken as an object that behaves in a
certain way and has certain attributes.

In object orientation we move our concentration to objects in contrast to procedural
paradigm in which we simply write our code in functions and call them in our main
program.

01.2. What is a Model?

A model is an abstraction of something real or conceptual.
We need models to understand an aspect of reality.

Teacher Student School Bag

Book Pen Playground

Parents Classroom Library

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 11

Model Examples

Highway maps
Architectural models
Mechanical models

01.3. OO Models:

In the context of programming models are used to understand the problem before
starting developing it.
We make Object Oriented models showing several interacting objects to understand
a system given to us for implementation.

Example 1– Object Oriented Model

Objects
Ali, Car, House, Tree

Interactions
Ali lives in the house
Ali drives the car

Example 2– Object Oriented Model (A School Model)

Ali

Car

House

Tree

lives-in

drives

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 12

A School Model

Objects
Teacher, Student, School Bag, Pen,
Book Playground

Interactions
Teacher teaches Student.
Student has School Bag, Book and Pen

01.4. Object-Orientation - Advantages

As Object Oriented Models map directly to reality as we have seen in examples
above therefore,

We can easily develop an object oriented model for a problem.
Everyone can easily understand an object oriented model.
We can easily implement an object oriented model for a problem using any object
oriented language like c++ using its features1 like classes, inheritance, virtual
functions and so on…

01.5. What is an Object?

An object is,

1. Something tangible (Ali, School, House, Car).
2. Something conceptual (that can be apprehended intellectually for example

time, date and so on…).

An object has,

1. State (attributes)
2. Well-defined behavior (operations)

1 We will study these features in detail in this course

Teacher

Book

Student

School Bag

Teaches

Pen

Has

Playground
Plays-in

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 13

3. Unique identity

01.6. Tangible and Intangible Objects

Examples of Tangible Objects:

Ali is a tangible object, having some characteristics (attributes) and behavior as given
below,

Ali
Characteristics (attributes) Behaviour (operations)
Name
Age

Walks
Eats

We will identify Ali using his name.

Car is also a tangible object having some characteristics (attributes) and behavior
given below,

Car
State (attributes) Behavior (operations)
Color
Model

Accelerate
Start Car
Change Gear

We can identify Car using its registration number

Examples of Intangible Objects (also called as conceptual objects):

Time is an intangible (conceptual) object

Time
State (attributes) Behavior (operations)
Hours
Seconds
Minutes

Set/Get Hours
Set/Get Seconds
Set/Get Minutes

We will assign our own generated unique ID in the model for Time object

Date is also an intangible (conceptual) object

State (attributes)
Year
Day
Month

Behavior (operations)
Set/Get Year
Set/Get Day
Set/Get Month

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 14

We will assign our own generated unique ID in the model for Date object.

01.7. Summary:

• Model is the abstraction of some real word scenario. It helps us to understand
that scenario.

• Object oriented model of any scenario (problem) describes that scenario
(problem) in the form of interacting objects.

• We use Object Orientation because it helps us in mapping real world problem
in a programming language.

• Object Orientation is achieved using objects and their relationships.
• Properties of an object are described using its data members and behavior of an

object is described using its functions.
• Objects may be tangible (physical) or intangible (also called conceptual or

virtual).
• Generally when we have given a certain problem description, nouns in that

problem description are candidates for becoming objects of our system.
• There may be more than one aspects of an object
• It is not necessary that every object has a specific role in implementation of a

problem there may be some objects without any role, like school parking in
our school.

• It is easier to develop programs using Object Oriented Programming because
it is closer to real life.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 15

Lecture No.02

Lecture Contents

1. Information Hiding
2. Encapsulation
3. Interface
4. Implementation
5. Separation of Interface & Implementation
6. Messages

02.1. Information Hiding:

Information hiding is one of the most important principles of OOP inspired from real
life which says that all information should not be accessible to all persons. Private
information should only be accessible to its owner.
By Information Hiding we mean “Showing only those details to the outside world which
are necessary for the outside world and hiding all other details from the outside world.”

Real Life Examples of Information Hiding

1. Ali’s name and other personal information is stored in his brain we can’t
access this information directly. For getting this information we need to ask
Ali about it and it will be up to Ali how much details he would like to share
with us.

2. An email server may have account information of millions of people but it

will share only our account information with us if we request it to send
anyone else accounts information our request will be refused.

3. A phone SIM card may store several phone numbers but we can’t read the

numbers directly from the SIM card rather phone-set reads this information
for us and if the owner of this phone has not allowed others to see the
numbers saved in this phone we will not be able to see those phone numbers
using phone.

In object oriented programming approach we have objects with their attributes and
behaviors that are hidden from other classes, so we can say that object oriented
programming follows the principle of information hiding.

In the perspective of Object Oriented Programming Information Hiding is,

“Hiding the object details (state and behavior) from the users”

Here by users we mean “an object” of another class that is calling functions
of this class using the reference of this class object or it may be some other
program in which we are using this class.

Information Hiding is achieved in Object Oriented Programming using the
following principles,

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 16

• All information related to an object is stored within the object
• It is hidden from the outside world
• It can only be manipulated by the object itself

Advantages of Information Hiding

Following are two major advantages of information hiding,

It simplifies our Object Oriented Model:

As we saw earlier that our object oriented model only had objects and their
interactions hiding implementation details so it makes it easier for everyone to
understand our object oriented model.

It is a barrier against change propagation

As implementation of functions is limited to our class and we have only given the
name of functions to user along with description of parameters so if we change
implementation of function it doesn’t affect the object oriented model.

We can achieve information hiding using Encapsulation and Abstraction, so we see
these two concepts in detail now,

02.2. Encapsulation

Encapsulation means “we have enclosed all the characteristics of an object in the object
itself”
Encapsulation and information hiding are much related concepts (information
hiding is achieved using Encapsulation)
We have seen in previous lecture that object characteristics include data members
and behavior of the object in the form of functions.

So we can say that Data and Behavior are tightly coupled inside an object and
both the information structure and implementation details of its operations are
hidden from the outer world.

Examples of Encapsulation

Consider the same example of object Ali of previous lecture we described it as
follows,

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 17

You can see that Ali stores his personal information in itself and its behavior is
also implemented in it.
Now it is up to object Ali whether he wants to share that information with
outside world or not. Same thing stands for its behavior if some other object in
real life wants to use his behavior of walking it can not use it without the
permission of Ali.

So we say that attributes and behavior of Ali are encapsulated in it.

Any other object don’t know about these things unless Ali share this information
with that object through an interface,

Same concept also applies to phone which has some data and behavior of
showing that data to user we can only access the information stored in the phone
if phone interface allow us to do so.

Advantages of Encapsulation
The following are the main advantages of Encapsulation,

a. Simplicity and clarity
As all data and functions are stored in the objects so there is no data or function
around in program that is not part of any object and is this way it becomes very
easy to understand the purpose of each data member and function in an object.

b. Low complexity
As data members and functions are hidden in objects and each object has a
specific behavior so there is less complexity in code there will be no such
situations that a functions is using some other function and that functions is
using some other function.

c. Better understanding
Everyone will be able to understand whole scenario by simple looking into object
diagrams without any issue as each object has specific role and specific relation
with other objects.

02.3. Interface

Ali
Characteristics

(attributes)
• Name
• Age

Behavior

(operations)
• Walks
• Eats

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 18

Interface is a set of functions of an object that he wants to expose to other objects.

As we discussed previously that data and behavior of each object is hidden in
that object it self so we have to use the concept of interface of the object to expose
its behavior to outer word objects.

• Different objects may need different functions of an object so interface of
an object may be different for different objects.

• Interfaces are necessary for object communication. Each object provides
interface/s (operations) to other objects through these interfaces other
objects communicate with this object.

Example – Interface of a Car

• Steer Wheels
• Accelerate
• Change Gear
• Apply Brakes
• Turn Lights On/Off

Example – Interface of a Phone

• Input Number
• Place Call
• Disconnect Call
• Add number to address book
• Remove number
• Update number

02.4. Implementation

It is actual implementation of the behavior of the object in any Object Oriented
language.

It has two parts,

• Internal data structures to hold an object state that will be hidden from us
it will store values for an object data members.

• Functionality in the form of member functions to provide required
behavior.

Examples of Implementation

a. Gear Box in car system

Consider object Gear Box in car system it has a certain structure and
functionality. When this object will be implemented it will have two things,
• Physical structure of the gear box
• Functionality implemented in this structure to change gear.
Both these things are part of implementation.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 19

So it has,

• Data Structure in the form of Mechanical structure of gear box
• Functionality mechanism to change gear

b. Address Book in a Phone

Similarly take the example of contact details saved in the SIM of a phone,

In that case we can say physical structure of SIM card as Data Structure
And Read/write operations provided by the phone as Functionality.

02.5. Separation of Interface & Implementation

As discussed earlier we only show interface of an object to outside world and
hide actual implementation from outside world. The benefit of using this
approach is that our object interface to outside word becomes independent
from inside implementation of that interface.

This is achieved through the concepts of encapsulation and information
hiding.

Real Life example of separation of interface and implementations

 Driver has a standard interface to drive a car and using that interface
he drive can drive any car regardless of its model or type whatever
engine type it has or whatever type of fuel it is using.

02.6. Messages

Objects communicate through messages they send messages (stimuli) by
invoking appropriate operations on the target object. The number and kind of
messages that can be sent to an object depends upon its interface

Examples – Messages

A Person sends message (stimulus) “stop” to a Car by applying brakes

A Person sends message “place call” to a Phone by pressing appropriate button

02.7. Summary

• Information hiding is achieved through encapsulation.
• Encapsulation and Information Hiding are related to each other.
• Interface of an object provides us the list of available functions.
• An object may have more than one interface.
• Interface and implementation are separated from each other to achieve

Information Hiding.
• Objects communicate with each other using messages.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 20

Useful Links:

http://www.alice.org/

A Graphical Programming Environment to teach Computer Programming.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 21

Lecture No.03
Lecture Contents:

• Abstraction
• Classes
• Inheritance
• Major benefits of inheritance (Reuse)

03.1. Abstraction
Real life objects have a lot of attributes and many kind of behaviors but most of the
time we are interested in only that part of the objects that is related to the problem
we are currently going to solve, for example in implementing a school system we
don’t need to take care of the personnel life of a student or a teacher as it will not
effect our system in any way so we will see these objects in the perspective of school
system and will ignore their other characteristics, this concept is called “Abstraction”.
Abstraction is a way to cope with complexity and it is used to simplify things.

Principle of abstraction:

“Capture only those details about an object that are relevant to current perspective”

Abstraction Example:

Suppose we want to implement abstraction for the following statement,

 “Ali is a PhD student and teaches BS students”

Here object Ali has two perspectives one is his student perspective and second is his
teacher perspective.

We can sum up Ali’s attributes as follows,

Name
Age
Student Roll No
Year of Study
CGPA
Employee ID
Designation
Salary

As you can see out of all these listed attributes some belong to Ali’s student
perspective(Roll No, CGPA, Year of study) and some belong to Ali’s teacher
perspective(Employee ID, Designation, Salary).

Similarly we can sum up Ali’s behavior as follows,

Study
DevelopExam

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 22

GiveExam
TakeExam
PlaySports
Eat
DeliverLecture
Walk

As was the case with attributes of object Ali, its behavior can also be divided in Ali’s
student perspective as well as Ali’s teacher perspective.

Student’s Perspective

Attributes:

- Name - Employee ID
- Student Roll No - Designation
- Year of Study - Salary
- CGPA - Age

Behaviour:

- Study - DevelopExam
- GiveExam - TakeExam
- PlaySports - Eat
- DeliverLecture - Walk

Teacher’s Perspective

Attributes:

- Name - Employee ID
- Student Roll No - Designation
- Year of Study - Salary
- CGPA - Age

Behaviour:

- Study - DevelopExam
- GiveExam - TakeExam
- PlaySports - Eat
- DeliverLecture - Walk

A cat can be viewed with different perspectives

Ordinary Perspective
A pet animal with
Four Legs
A Tail

Surgeon’s Perspective
A being with
A Skeleton
Heart

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 23

Two Ears
Sharp Teeth

Kidney
Stomach

A car can be viewed with different perspectives

 Driver’s View

Engineer’s View

Abstraction – Advantages

Abstraction has following major advantages,

1. It helps us understanding and solving a problem using object oriented
approach as it hides extra irrelevant details of objects.

2. Focusing on single perspective of an object provides us freedom to change

implementation for other aspects of for an object later.

Similar to Encapsulation Abstraction is also used for achieving information hiding as
we show only relevant details to related objects, and hide other details.

03.2. Classes

In OOP we create a general sketch for each kind of objects and then we create
different instances using this sketch we call this sketch or prototype or map as
“class”.
All objects of same kind exhibit identical characteristics (information structure and
behavior) however they have data of their own.

Class –Example 1

Consider the objects given below,

• Ali studies mathematics
• Anam studies physics
• Sohail studies chemistry

Each one is a Student so we say these objects are instances of the Student class.

Class –Example 2

Consider the objects given below,

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 24

• Ahsan teaches mathematics
• Aamir teaches computer science
• Atif teaches physics

Each one is a teacher so we say these objects are instances of the Teacher class

Class Representation:
we can represent a class using a rectangle as follows,

Class Example: Circle

Class Example: Person

(Class Name)

(Attributes)

(Operations)
(Class Name)

Normal Form Suppressed Form

Circle

center
radius

draw
computeArea

Normal Form Suppressed Form

Circle

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 25

03.3. Inheritance

A child inherits characteristics of its parents, besides inherited characteristics, a child
may have its own unique characteristics

Inheritance in Classes

If a class B inherits from class A then it contains all the characteristics (information
structure and behaviour) of class A
The parent class is called base class and the child class is called derived class
Besides inherited characteristics, derived class may have its own unique
characteristics

Inheritance – “IS A” or “IS A KIND OF” Relationship

Person

name
age
gender

eat
walk

Normal Form Suppressed Form

Person

Person

Teacher

DoctorStudent

Shape

Circle

Triangle Line

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 26

Each derived class is a kind of its base class

Here,
Student IS A Person
Teacher IS A Person
Doctor IS A Person

Here,
Circle IS A Shape
Line IS A Shape
Triangle IS A Shape

Person
name
age
gender

eat
walk

Teacher
designation
salary

teach
takeExam

Student
program
studyYear

study
heldExam

Doctor
designation
salary

checkUp
prescribe

Shape

color
coord

draw
rotate
setColor

Circle

radius

draw
computeArea

Line

length

draw

Triangle

angle

draw
computeArea

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 27

Inheritance – Advantages

1. Reuse
2. Less redundancy
3. Increased maintainability

Reuse with Inheritance
Main purpose of inheritance is reuse, we can easily add new classes by inheriting
from existing classes.
Select an existing class closer to the desired functionality, create a new class and
inherit it from the selected class, add to and/or modify the inherited functionality

Shape

color
coord

draw
rotate
setColor

Circle

radius

draw
computeArea

Line

length

draw

Triangle

angle

draw
computeArea

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 28

Person

name
age
gender

eat
walk

Teacher

designation
salary

teach
takeExam

Student

program
studyYear

study
heldExam

Doctor

designation
salary

checkUp
prescribe

Person
name
age
gender

eat
walk

Teacher
designation
salary

teach
takeExam

Student
program
studyYear

study
heldExam

Doctor
designation
salary

checkUp
prescribe

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 29

Lecture No.04

Lecture Contents

• Generalization
• Sub typing (extension)
• Specialization (restriction)
• Overriding
• Abstract classes
• Concrete classes

Recap – Inheritance

• Derived class inherits all the characteristics of the base class
• Besides inherited characteristics, derived class may have its own

unique characteristics
• Major benefit of inheritance is reuse

04.1. Concepts Related with Inheritance

o Generalization
o Subtyping (extension)
o Specialization (restriction)

04.2. Generalization

In OO models, some classes may have common characteristics.
We extract these features into a new class and inherit original classes from this new
class. There are many objects with common characteristics in object model. The
common characteristics (attributes and behaviour) of all these objects are combined
in a single general class. Base class encapsulates the idea of commonality of derived
classes. Base class is general class representing common behaviour of all derived
classes.
This concept is known as Generalization.
It reduces the redundancy and gives us reusability, using generalization our solution
becomes less complex.
In generalization there should be “Is a Kind of Relationship” (also called “Is A
relationship”) between base and child classes.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 30

Example: Line, Circle and Triangle

Line is shape Circle is a shape Triangle is a shape

Common attributes
Color vertices
Common behaviour
Set Color, Move

Example: Student Doctor and Teacher

Circle

color
vertices
radius

move
setColor
computeArea

Line

color
vertices
length

move
setColor
getLength

Triangle

color
vertices
angle

move
setColor
computeArea

Shape

color
vertices

move
setColor

Circle

radius

computeArea

Line

length

getLength

Triangle

angle

computeArea

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 31

Common attributes,

 Name, age, gender
Common behaviour
Eat, Walk

Sub-typing & Specialization

We want to add a new class to an existing model
We have developed an existing class hierarchy
Find an existing class that already implements some of the desired state and

behaviour
Inherit the new class from this class and add unique behaviour to the new

class

04.3. Sub-typing (Extension)

Sub-typing means that derived class is behaviourally compatible with the
base class

Derived class has all the characteristics of base class plus some extra
characteristics

Behaviourally compatible means that base class can be replaced by the
derived class

Teacher

name
age
gender
designation
salary

teach
takeExam
eat
walk

Student

name
age
gender
program
studyYear

study
heldExam
eat
walk

Doctor

name
age
gender
designation
salary

checkUp
prescribe
eat
walk

Person
name
age
gender

eat
walk

Teacher
designation
salary

teach
takeExam

Student
program
studyYear

study
heldExam

Doctor
designation
salary

checkUp
prescribe

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 32

Sub-typing (Extension) - Example

Circle is extending the behaviour of
shape, it is extending attributes of shape
by adding radius similarly it is extending
behaviour of shape by adding compute
Circumference and compute Area.

Student has two extra attributes
program and studyYear
Similarly it has extended behaviour
by adding study and takeExam.

Subtyping and generalization are related concepts, Subtyping (extension) and
generalization is a way to look same thing in two ways.
Sub typing is looking at things from Top to bottom whereas in generalization we
look at things from bottom to top.

04.4. Specialization (Restriction)

We want to add a class to existing hierarchy of classes having many similarities to
already existing classes but some part of its behaviour is different or restricted. In
that case we will use the concept of specialization.

Specialization means that derived class is behaviourally incompatible with
the base class
Behaviourally incompatibility means that base class can’t always be replaced
by the derived class
Derived class has some different of restricted characteristics than of base
class.

Example – Specialization (Restriction)

Suppose we want to add one more class of Adult for some special requirement like
for ID card generation such that it is a person but its age is greater than 18 and
having all other behaviour of that of person class. One solution is that we write

Person

name
age
gender

eats
walks

Student

program
studyYear

study
takeExam

Shape

color
vertices

setColor
move

Circle

radius

computeCF
computeArea

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 33

another class from beginning and write all code of person again in it with age limit,
but better solution is that we derive adult class from person class and restrict age in
that class as shown below in diagram,

Similarly Natural Numbers2 are also Integers3 with the restriction that natural
numbers set can NOT contain zero or negative integers it consists of only positive
integers so we can implement this relationship also as specialization,

2 Natural numbers: positive integers only (numbers from 1 to
…….onwards)

3 Integers: all positive and negative numbers (…..-3 , -2 , -1 , 0 , 1 , 2 ,
3………)

Person

age : [0..100]
…

Adult

age : [18..100]
…

setAge(a)
…

setAge(a)
…

age = a

If age < 18 then
 error
else
 age = a

IntegerSet

…

NaturalSet

…

add(elem)
…

add(elem)
…

add element to the
set

If elem < 1 then
 error
else

add element to
the set

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 34

Add method behaviour is present in both base and derived classes but derived class
behaviour is different in derived class. Derived class will not exhibit the behaviour of
base class but it is overriding behaviour of base class with its own behaviour.

04.5. Overriding

A class may need to override the default behaviour provided by its base class
Derived class overrides the behaviour of its base class.
Reasons for overriding

Provide behaviour specific to a derived class (specialization)
Extend the default behaviour (extension)
Restrict the default behaviour (restriction)
Improve performance

It is used for the implementation of inheritance.

Example – Specific Behaviour (Specialization)

Shape
color
vertices

draw
move
setColor

Circle
radius
draw
computeArea

Line
length
draw

Triangle

angle

draw
computeArea

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 35

Example – Extention

Example – Restriction

DialogBox

controls

enable
draw

Window
width
height

open
close
draw

1- Invoke Window’s
draw
2- draw the dialog
box

IntegerSet

…

NaturalSet

…

add(elem)
…

add(elem)
…

Add element to
the set

If elem < 1 then
 give error
else

Add element
to the set

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 36

Example – Improve Performance
Class Circle overrides rotate operation of class Shape with a Null operation.

04.6. Abstract Classes

In our examples we made classes for shape and person. These are abstract concepts
and the classes we make against abstract concepts are called abstract classes. They
are present at or near the top in the class hierarchy to present most generalized
behaviour.

An abstract class implements an abstract concept
Main purpose is to be inherited by other classes
Can’t be instantiated
Promotes reuse

Abstract Classes - Example I

Here, Shape is an abstract class

Shape

color
vertices

draw
move
setColor

Circle Line Triangle

Shape

color
coord

draw
rotate
setColor

Circle

radius

draw
rotate

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 37

Abstract Class Shape
Concrete Classes Circle Line Triangle ….

Abstract Classes - Example II

Here, Person is an abstract class

Abstract Class Person
Concrete Classes Student Teacher Doctor Engineer Director ….

Abstract Classes - Example III

Here, Vehicle is an abstract class

Teacher
Doctor Student

Person

name
age
gender

eat
walk

Bus

Truck Car

Vehicle

color
model

accelerate
applyBrakes

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 38

Abstract Class Vehicle
Concrete Classes Car Bus Truck ….

Abstract Classes can not exist standalone in an object model
While making object model we start by finding out objects in our object model and
then we find out objects having common attributes and make them in the form of
general classes at the top of class hierarchies.

04.7. Concrete Classes

The entities that actually we see in our real world are called concrete objects and
classes made against these objects are called concrete classes.

A concrete class implements a concrete concept
These are used to instantiate objects in our programs
Provides implementation details specific to the domain context

Concrete Classes - Example I

Here Student, Teacher and Doctor are concrete classes

Concrete Classes - Example II

Here Car, Bus and Truck are concrete classes

Teacher
DoctorStudent

program
studyYear

study
heldExam

Person

Bus
Car

Vehicle

Truck

capacity

load
unload

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 39

• A concrete class may exist in an object model independently
• Concrete classes mostly lie below the top of class hierarchy in a good object

model.

If there is an abstract class then hierarchy exists in the object model as there will
definitely be some concrete classes as well derived from this abstract class otherwise
there is no use of abstract class.

Glossary:

a. Natural numbers: numbers from 1 to …….onwards
b. Integers: all positive and negative numbers …..-3,-2,-1,0,1,2,3………
c. Whole numbers: numbers from 0 ,1 ,2, 3 ….onwards (natural no’s including

0)
Some times whole numbers are also called numbers without fractional part.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 40

Lecture No.05
Multiple Inheritance

Inheritance:
We saw inheritance purposes in last lecture

• Generalization
• Extention or sub typing
• Specialization or restriction

Abstract and concrete classes, former is used to represent abstract concepts later is
used to represent concrete concepts.
Overriding derived classes override inherited classes (base classes) behaviour.
Overriding is used for Specialization, Extention, Restriction, and Performance.

05.1. Multiple Inheritance

Sometimes we want to reuse characteristics of more than one parent class, in that
case we need to inherit a class from more than one classes.

Example 1– Multiple Inheritance

Consider the example of an imaginary specie Mermaid used in fairy tales that lives in
water having features both of a women as well as of a fish, In Object Oriented
programming perspective Mermaid can be derived from two classes Women and
Fish.

C++ Code:

/*Program to demonstrate simple multiple inheritance*/

class Fish {

};

class Woman {

Mermaid

Woman Fish

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 41

};

class Mermaid : public Woman , public Fish {

};

Our Mermaid class inherits features of both woman and fish suppose our woman
class has method wald() and fish cclass has method swim then our mermaid class
can use both methods i.e can walk as well as can swim.

C++ code:

#include <iostream>
#include <stdlib.h>

using namespace std;

/*Program to demonstrate simple multiple inheritance*/

class Fish
{
public:
 void swim(){
 cout<<"\n In method swim";
 }

};

class Woman
{
public:
 void walk(){
 cout<<"\n In method walk"<<endl;
 }

};

Mermaid

Woman Fish

void walk() void swim()

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 42

class Mermaid : public Woman,public Fish
{

};

int main(int argc, char *argv[])
{

Mermaid mermaid;
/*This Mermaid object will have two implicit objects one of Fish class and one of
Woman class*/
mermaid.swim();
mermaid.walk();

system("PAUSE");
return 0;

}

Output:

In method4 swim
In method walk

Example 2– Multiple Inheritance

Take another example of amphibious vehicle (vehicle that can run on land as well as
on water) so it has properties of both land as well as of water vehicle. The general
hierarchy in this case will be,

Here we have added a general Vehicle class as well to add all common functions of
Land Vehicles and Water Vehicles in that class, and specific functions of Land and

4 class member functions are also called class methods

Amphibious Vehicle

Land Vehicle Water Vehicle

Vehicle

Car Boat

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 43

Water vehicle in their respective classes then we have derived Amphibious Vehicle
class from Land Vehicle and Water Vehicle classes (we can do the same in first
example as well concerning Woman, Fish and Mermaid).

C++ code:

class Vehicle
{

};

class WaterVehicle : public Vehicle
{

};

class LandVehicle : public Vehicle
{

};

class AmphibiousVehicle : public LandVehicle,public WaterVehicle
{

};

Suppose we have a changeGear method in Vehicle class that is applicable to both
water and land vehicle, we also have Float and Move methods in water and land
vehicles respectively then our amphibious vehicle will have all these methods,

C++ code:

#include <iostream>
#include <stdlib.h>

using namespace std;

/*Multiple Inheritance in case of Amphibious Vehicle*/

class Vehicle
{
public:
 void changeGear(){ cout<<"\nI am Vehicle changeGear() function..\n";}
};

class WaterVehicle : public Vehicle
{

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 44

public:
void Float(){ cout<<"\nI am float function of Water Vehicle";}
};

class LandVehicle : public Vehicle
{
public:
void Move(){ cout<<"\nI am move function of Land Vehicle"<<endl;}

};

class AmphibiousVehicle : public LandVehicle,public WaterVehicle
{

};

int main(int argc, char *argv[])
{

AmphibiousVehicle amphibious;

amphibious.Float();
/*Calling Float function of Water Vehicle class*/

amphibious.Move();
/*Calling Move function of Land Vehicle class*/

system("PAUSE");
return 0;

}

Output:

I am float function of Water Vehicle
I am move function of Land Vehicle

Advantage of Multiple Inheritance:

As was the case with simple (single) inheritance multiple inheritance also decreases
redundant code as we can inherit a class from many classes and can use their
functions without the need to write them again.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 45

However, there are more disadvantages of multiple inheritance, than its advantages.

Problems with Multiple Inheritance

Increased complexity

Amphibious vehicle hierarchy is a complicated as this class is derived from two
classes that will make code more complex and less understandable however this is
obvious as amphibious vehicle is a complicated vehicle. It is generic problem.

Reduced understanding

Due to increased complexity of class hierarchy the object model becomes difficult it
understand especially for someone who is looking it first time.

Duplicate features

As we are deriving a single class from more than one class so there is a chance of
duplication of features (same methods in both parents), following problems may
arise due to duplicate features,

Problem 1: Ambiguity

Consider the class hierarchy of Mermaid class below,

As mermaid also needs to eat and its both parents have their own methods of eating
so here question arises,

Which eat operation Mermaid should inherit as both functions are available?

Solution – We can solve this problem by explicitly calling eat method from any of
the parent classes in Mermaid class according to behaviour of Mermaid (i.e. if it eats
like a Woman we can call eat method of Woman class and if eats like Fish we can call
method of Fish class), for this we will Override the Common method in multiply
inherited class and in that class overridden method we will call the appropriate base
class function.

Mermaid

Woman Fish

eat
…

eat
…

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 46

Example C++ Code

#include <iostream>
#include <stdlib.h>

using namespace std;

/*Program to demonstrate simple multiple inheritance*/

class Fish
{
public:
 void eat(){
 cout<<"\n In Fish eat method ";
 }

};

class Woman
{
public:
 void eat(){
 cout<<"\n In Woman eat method \n"<<endl;
 }

};

class Mermaid : public Woman,public Fish
{

 public:

 void eat(){

Mermaid

Woman Fish

eat
…

eat
…

eat
…

a. Override eat method in
Mermaid class

b. Invoke eat operation of
desired parent class

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 47

 cout<<"\n In Mermaid eat method "<<endl;
 cout<<"\n Explicity calling Woman eat method...."<<endl;

 Woman::eat();

 }

};

int main(int argc, char *argv[])
{

Mermaid mermaid;
/*This Mermaid object will have two implicit objects one of Fish class and one of
Woman class*/
mermaid.eat();
/*Calling Mermaid eat method*/

system("PAUSE");
return 0;

}

Problem 2: Two instances for same function (Diamond Problem)

Here Amphibious Vehicle will have two copies of changeGear function as it will
have two objects of Vehicle class one with respect to Land Vehicle and one with
respect to Water Vehicle as shown below,

Amphibious Vehicle

Land Vehicle Water Vehicle

Vehicle

Car Boat

changeGear

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 48

Actual Memory Layout

Compiler will not be able to decide which changeGear operation Amphibious
Vehicle should inherit so it will generate an error as shown below (two copied of
same method),

error: request for member `changeGear' is ambiguous
error: candidates are: void Vehicle::changeGear()
 void Vehicle::changeGear()
Execution terminated

Solution to Diamond Problem

Some languages disallow diamond hierarchy
Others provide mechanism to ignore characteristics from one side. There are two
cases while solving diamond problem virtual inheritance and non virtual inheritance
(we will study these details in coming lectures)

Amphibious Vehicle

Land Vehicle Water Vehicle

Vehicle
changeGear

Vehicle
changeGear

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 49

Association:

Interaction of different objects in OO model (or in problem domain) is known as
association.
In object oriented model, objects interact with each other in order to perform some
useful work, while modeling these objects (entities) is done using the association.
Usually an object provides services to several other objects. An object keeps
association with other objects to delegate tasks. This association can be represented
with a line along an arrow head () or without arrow head.

05.2. Kinds of Association:
There are two main types of association which are then further subdivided i.e

1. Class Association
2. Object Association

1. Class Association

Class association is implemented in terms of Inheritance. Inheritance implements
generalization/specialization relationship between objects. Inheritance is considered
class association.

• In case of public inheritance it is “IS-A” relationship.
• In case of private inheritance it is “Implemented in terms of” relationship.

This relationship ensures that public members of base class are available to derived
class in case of public inheritance.

When we create objects of classes in which we have implemented inheritance
relationships we are forcing the inheritance relationship between created objects. In
this case the derived class objects will also contain base class objects attributes and
methods.

2. Object Association

Amphibious Vehicle

Land Vehicle Water Vehicle

Vehicle

Car Boat

changeGear

Invoke changeGear
operation with respect to
one side

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 50

It is the interaction of stand alone objects of one class with other objects of anther
class.
It can be of one of the following types,

• Simple Association
• Composition
• Aggregation

05.3. Simple Association

The two interacting objects have no intrinsic relationship with other object. It is the
weakest link between objects. It is a reference by which one object can interact with
some other object.
Customer gets cash from cashier
Employee works for a company
Ali lives in a house
Ali drives a car

It is generally called as “association” instead of “simple association”

Kinds of Simple Association

Simple association can be categorized in two ways,

• With respect to direction (navigation)
• With respect to number of objects (cardinality)

Kinds of Simple Association w.r.t Navigation

With respect to navigation association has the following types,

a. One-way Association
b. Two-way Association

a. One-way Association

In One way association we can navigate along a single direction only, it is denoted
by an arrow towards the server object.
Examples:

Ali House lives-in

11

Ali Car drives
*1

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 51

• Ali lives in a House

• Ali drives his Car

b. Two-way Association

In two way association we can navigate in both directions, it is denoted by a line
between the associated objects
Examples:

Employee works for company
Company employs employees

Two-way Association - Example

Yasir is a friend of Ali
Ali is a friend of Yasir

Kinds of Simple Association w.r.t Cardinality

With respect to cardinality association has the following types,

a. Binary Association
b. Ternary Association
c. N-ary Association

a. Binary Association

Employee Company works-for

1*

Ali Car drives

*1

Ali House lives-in

11

Yasir Ali friend

11

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 52

It associates objects of exactly two classes; it is denoted by a line, or an arrow
between the associated objects.

Example

Association “works-for” associates objects of exactly two classes

Association “drives” associates objects of exactly two classes

b. Ternary Association
It associates objects of exactly three classes; it is denoted by a diamond with lines
connected to associated objects.
Example
Objects of exactly three classes are associated

c. N-ary Association
An association between 3 or more classes its practical examples are very rare.

05.4. Composition

An object may be composed of other smaller objects, the relationship between the
“part” objects and the “whole” object is known as Composition, Composition is
represented by a line with a filled-diamond head towards the composer object

Example – Composition of Ali

Ali Car drives
*1

Employee Company works-for

1*

Student Teacher

Course

1

*

*

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 53

Example – Composition of Chair

Composition is stronger relationship:
Composition is a stronger relationship, because
Composed object becomes a part of the composer
Composed object can’t exist independently

Example I

Ali is made up of different body parts

They can’t exist independent of Ali

Example II

Chair’s body is made up of different parts

Ali

Body

Arm

Head

Leg

1

1

2 2

Chair

Seat Arm

Back

Leg

1

12 4

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 54

They can’t exist independently

05.5. Aggregation

An object may contain a collection (aggregate) of other objects, the relationship
between the container and the contained object is called aggregation, Aggregation is
represented by a line with unfilled-diamond head towards the container

Example – Aggregation

Example – Aggregation

Aggregation is weaker relationship

Aggregation is weaker relationship, because

• Aggregate object is not a part of the container
• Aggregate object can exist independently

Example I
Furniture is not an intrinsic part of room
Furniture can be shifted to another room, and so can exist independent of a
particular room

Example II
A plant is not an intrinsic part of a garden
It can be planted in some other garden, and so can exist independent of a particular
garden

http://www.codeproject.com/KB/cpp/oopuml.aspx

Room

Cupboard

Bed

Chair Table
*

1

1

1

Garden Plant
*

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 55

Lecture No.06

06.1. Class Compatibility
A class is behaviorally compatible with another if it supports all the operations of the
other class. Such a class is called subtype. A class can be replaced by its subtype.
Derived class is usually a subtype of the base class. It can handle all the legal
messages (operations) of the base class. Therefore, base class can always be replaced
by the derived class.

Examples
Child class also includes characteristics of its base class.

All the three derived class are behaviourally compatible with base class.

Shape

color
vertices

move
setColor
draw

Circle

radius

draw
computeArea

Line

length

draw
getLength

Triangle

angle

draw
computeArea

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 56

Wherever the file class is it can be replaced by any of its child classes.

06.2. Polymorphism
It is also essential component of object oriented modeling (paradigm).
In general, polymorphism refers to existence of different forms of a single entity. For
example, both Diamond and Coal are different forms of Carbon.

06.3. Polymorphism in OO Model

In OO model, polymorphism means that different objects can behave in different
ways for the same message (stimulus). Consequently, sender of a message does not
need to know exact class of the receiver.
Sender sends message to receiver and appropriate method is called on receiver side.

Example – Polymorphism

File

size
…

open
print
…

ASCII File

…

print
…

PDF File

…

print
…

PS File

…

print
…

Shape

Line Circle Triangle

draw

draw

draw draw

draw
View

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 57

Shape class hierarchy shape is base class and there are three child classes line circle ,
triangle. View send draw method to shape class and draw is called according to the
nature of actual object present.

Editor sends message print to file class and print is called based on the actual child
object of file class message is same and appropriate execution will be done.

06.4. Polymorphism – Advantages
Messages can be interpreted in different ways depending upon the receiver class
New classes can be added without changing the existing model

In general, polymorphism is a powerful tool to develop flexible and reusable systems

06.5. Object-Oriented Modeling an Example

Problem Statement
Develop a graphic editor that can draw different geometric shapes such as line, circle
and triangle. User can select, move or rotate a shape. To do so, editor provides user
with a menu listing different commands. Individual shapes can be grouped together
and can behave as a single shape.

File

ASCII File PDF File PS File

print

print

print print

print
Editor

Square

draw

Shape

Line Circle Triangle

draw

draw

draw draw

draw
View

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 58

Identify Classes
Extract nouns in the problem statement

Develop a graphic editor that can draw different geometric shapes such as line,
circle and triangle. User can select, move or rotate a shape. To do so, editor provides
user with a menu listing different commands. Individual shapes can be grouped
together and can behave as a single shape.

Eliminate irrelevant classes
Editor – Very broad scope. But it is the name of overall system and we are going to
model it so we will not make its object. For example if we are going to model
computer we will not make its object but its components however if it is component
of some other system then it will behave as an object. So it is marked as irrelevant.
User – Out of system boundary, it is interacting with the system from outside of the
system.

Add classes by analyzing requirements
Group (of shapes) – required to behave as a shape so it should behave as an object in
our system

“Individual shapes can be grouped together and can behave as a single shape”

View – graphic editor must have a display area to show the shapes. We made this
object using domain knowledge.

• Shape
• Line
• Circle
• Triangle
• Menu
• Group
• View

So we have the following classes,

Line

Circle

Triangle

GroupShape

View

Menu

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 59

Finding Associations:

Next step is to find associations between the objects.

Identify Associations

Find relationships between objects,

1. Extract verbs connecting objects,

“Individual shapes can be grouped together”

• Group consists of lines, circles, triangles
• Group can also consists of other groups (Composition)

Line, circle and triangle have composition relationship.

2. Verify access paths

a. View contains (draws) shapes

• View contains lines
• View contains circles
• View contains triangles
• View contains groups

So there is Aggregation relationship between shapes and View.

Menu sends message to View

So there is Simple One-Way Association relationship between Menu and View.

Identify Attributes of the identified objects

Extract properties of the object,

a. From the problem statement
Properties are not mentioned

b. From the domain knowledge

• Line
i. Color

ii. Vertices
iii. Length

• Circle
i. Color

ii. Vertices
iii. Radius

• Triangle

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 60

i. Color
ii. Vertices

iii. Angle
• Shape

i. Color
ii. Vertices

• Group
i. noOfObjects

• View
i. noOfObjects

ii. selected
• Menu

i. Name
ii. isOpen

Object Model – Graphic Editor

Object model so far is shown below,

Identify Operations

Extract verbs connected with an object

Develop a graphic editor that can draw different geometric shapes such as line, circle
and triangle. User can select, move or rotate a shape. To do so, editor provides user
with a menu listing different commands. Individual shapes can be grouped together
and can behave as a single shape.

Eliminate irrelevant operations

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 61

Develop – out of system boundary
Behave – have broad semantics

Following are selected operations:
• Line

– Draw
– Select
– Move
– Rotate

• Circle
– Draw
– Select
– Move
– Rotate

• Triangle
– Draw
– Select
– Move
– Rotate

• Shape
– Draw
– Select
– Move
– Rotate

• Group
– Draw
– Select
– Move
– Rotate

• Menu
– Open
– Select
– Move
– Rotate

Extract operations using domain knowledge

• View
– Add
– Remove
– Group
– Show
– Select
– Move
– Rotate

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 62

Object Model after adding operations:

Identify Inheritance

a. Search lines like “is a kind of” by looking at keywords like “such as”, “for
example”, etc

“…shapes such as line, circle and triangle…”

By analyzing requirements

“Individual shapes can be grouped together and can behave as a single shape”

Refining the Object Model

Application of inheritance demands an iteration over the whole object model
In the inheritance hierarchy,

• All attributes are shared
• All associations are shared
• Some operations are shared
• Others are overridden

Group inherits from Shape

Line, Circle and Triangle inherits from Shape

Group
noOfObjects

draw()

Triangle
angle

draw()
nCircle

radius

draw()
n

Line
length

draw()

n

Shape
color
vertices

draw()
select()
move()
rotate()

n

View
noOfObjects
selected

add()
remove()
group()
show()
select()
move()
rotate()

n

nn

n

Menu
name
isOpen

open()
select()
move()
rotate()

n

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 63

Refining the Object Model

• Share associations

o View contains all kind of shapes
o Group consists of all kind of shapes

• Share attributes
o Shape – Line, Circle, Triangle and Group

 Color, vertices
• Share operations

o Shape – Line, Circle, Triangle and Group
 Select
 Move
 Rotate

• Share the interface and override implementation

o Shape – Line, Circle, Triangle and Group
 Draw

Line
length

draw()

Circle
radius

draw()

Triangle
angle

draw()

Group
noOfObjects

draw()

Shape
color
vertices

draw()
select()
move()
rotate()

View
noOfObjects
selected

add()
remove()
group()
show()
select()
move()
rotate()

n

Menu
name
isOpen

open()
select()
move()
rotate()

n

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 64

Group
noOfObjects

draw()

Triangle
angle

draw()
nCircle

radius

draw()
n

Line
length

draw()

n

Shape
color
vertices

draw()
select()
move()
rotate()

n

View
noOfObjects
selected

add()
remove()
group()
show()
select()
move()
rotate()

n

nn

n

Menu
name
isOpen

open()
select()
move()
rotate()

n

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 65

Lecture No.07

The basic concept “Object” of Object Orientation (thinking in terms of objects) is
realized using classes in programming languages.

07.1. Class
It is a way (Mechanism) given by c++ to realize objects in a program. It is concrete
implementation of objects in c++. We capture any object attributes and behaviour in
a programming language using classes.
In other words it can be defined as facility given by c++ to create new types
according to our requirement. (Class is composite data type made from basic c++
types like integers, chars and float).

Example:
Consider the examples of entity lion there are many lions but all lions will have
similar attributes and behaviour.
Similarly consider student object all students have separate existence but all students
have similar attributes and they exhibit similar behaviour.

When we hear word student or think about student a sketch comes in our mind for
student along with its attributes and behaviour. The attributes of student comes in
our mind are its name, roll no, class, degree so on. Similarly the behaviour of student
comes in our mind are study, register and many more.

We need to capture the characteristic features of any object (attributes and
behaviour) in the programming language. The concept of class is used for this
purpose.

Now consider the scenario having many interacting objects: a University System
having many objects like student, subject, classroom, and teacher so on…we will
realize all these objects in our software using classes. These all object will use the
services of each other for example student will ask teacher to teach him. This
approach is closer to real life instead of having simple functions being called from
main here these objects will call each other to get their services. This is the reason we
say that object oriented programming mimics real life.

Uses

Objects are structured in terms of class so our problem becomes easier to understand
in the terms c++ program.
We can implement interactions easily in terms of classes.

Student objects will interact with each other to take and give services to each other as
happens in real life and mapped in object oriented programming approach.

Now we see how class mechanism helps us in implementing real life concept.

07.2. Type in C++

We implement generic concepts using types.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 66

We have to model generic concept of Student. But there is no built in type student in
c++ like built-in c++ type’s int or float. Class is mechanism in c++ that will allow us
to define student as user defined type, similarly generic concept circle will also be
implemented in the same way. User define types will be,

• Student in student management system
• Circle in a drawing software

As objects have attributes and behaviour so corresponding classes will also have data
members and methods as shown below,

 a. object b. class code

07.3. Abstraction

We only include those details in the system that are required for making a functional
system so we will leave out irrelevant attributes and behaviour from our objects.
Take the example of student,

Student

• Name
• Address
• Sibling
• Father Business

07.4. Defining a New User Defined Type

There are two ways to create user defined types for objects in c++ these are,

Structure Definition:

Partially we can use Structures to define an object

Struct{

};

Ali Corresponding class

Characteristics (attributes) /*c++ code for class Person, we can create any
object like Ali from it*/
class Person {
private: /* attributes are generally made
private*/
char name[]; /*char array to store name*/
int age; /*int age to store age*/
public: /* methods are generally made
public*/
Person(); /*constructor used to initialize
data members*/
void walks(); /* method walk */
void eats(); /*method eats*/
}

Name
Age

Behavior (operations)

Walks
Eats

Relevant to our problem

Not relevant to our problem

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 67

In c we can not define functions in a structure however in c++ we can add functions
in both structure and classes.

Class Definition:

Example

class Student
{
 private:
 int rollNo;
 char *name;
 float CGPA;
 char *address;

 public:
 void setName(char *newName);
 void setRollNo(int newRollNo);

};

Why Member Functions:
They model the behaviors of an object,

Objects can make their data invisible (in accordance with the principle of data
hiding). Setters and getters functions are provided by class to access the its members
it also minimizes the changes to move the objects in inconsistent state as we can write
checks in our setter functions for example we can check that whether the user has
entered correct age value and has not entered negative value for age.
Object remains in consistent state

class ClassName
{
 Access Specifier: (public, private or protected)

 DataType MemberVariable;
 … …. …
 Access Specifier: (public, private or protected)

 ReturnType MemberFunction();
 … …. …

};

class identifier

class keyword (small case)

Data members

Member Variables

Member Functions

Function members

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 68

Example:

We can check that the entered roll number by user is positive or negative,

Student aStudent;
aStudent.rollNo = 514;
aStudent.rollNo = -514; //Error

07.5. Object and Class:

Object is an instantiation of a user defined type or class. Once we have defined a
class we can create as many objects for that class as we require.

Declaring class variables

Variables of classes (objects) are declared just like variables of structures and built-in
data types as follows,

TypeName VariableName;

int var; // declaring built in int data type variable
Student aStudent; // declaring user defined class Student object

07.6. Accessing members

Members of an object can be accessed using,

a. dot operator (.) to access via the variable name
Student aStudent; // declaring Student object

 aStudent. rollNo = 5;

b. arrow operator (->) to access via a pointer to an object
Student * aStudent = new Student();
// declaring and initializing Student pointer

 aStudent->rollNo = 5;

Note: it is against the principle of OOP to access the data members directly using
object of class as we have done above. This code is given for example only we should
write assessor functions (setters and getters) wherever we want to access the
members of the class.

Member functions are accessed in the similar way using dot or arrow operator.

Example
 class Student{
 int rollNo;
 void setRollNo(int aNo);
 };

 Student aStudent;
 aStudent.setRollNo(5);

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 69

 Student *ptr_student = new Student();
 ptr_student->setRollNo(5);

07.7. Access specifiers
These are used to enforce access restrictions to members of a class, there are three
access specifiers,

1. ‘public’ is used to tell that member can be accessed whenever you have
access to the object

2. ‘private’ is used to tell that member can only be accessed from a member
function

3. ‘protected’ to be discussed when we cover inheritance

Example

class Student{
private:
 char * name;
 int rollNo;
public:
 void setName(char *);
 void setRollNo(int);
...
};

Example Program

class Student{
char * name;
 int rollNo;
public:
 void setName(char *);
void setRollNo(int aNo);
};
void Student::setName(char * aName){
if (strlen(aName) > 0)
 {
 name = new char[strlen(aName)];
 strcpy(name,aName);
 }
}

void Student::setRollNo(int arollNo){
if(arollNo > 0)
rollNo = arollNo;
}

int main(){
 Student aStudent;
 aStudent.rollNo = 5;

Can not be accessed outside the class

Can be accessed outside the class

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 70

/* Error: we can not access private member of the class. */
 aStudent.name = “Ali”;
/* Error: we can not access private member of the class */
 aStudent.setRollNo(1);
 aStudent.setName(“Ali”);
/* Correct way to access the data member using public setter functions */
}

Default access specifier

When no access specifier is mentioned then default access specifier is private.

Example

Example

We should use keyword public before the methods of the class as given below of will
not use public keyword they will also be treated as private ad will not be accessible
outside the class as shown below,

class Student
{
 char * name;
 int RollNo;
 void SetName(char *);
};
Student aStudent;
aStudent.SetName(Ali);

Corrected code will be,

class Student
{
 char * name;
 int RollNo;
public:
 void setName(char *);

class Student
{
 char * name;
 int RollNo;
};

class Student
{
private:
 char * name;
 int RollNo;
};

 Equivalent

Error in accessing
SetName it will be

inaccessible

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 71

};
Student aStudent;
aStudent.SetName(“Ali”);

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 72

Lecture No.08

08.1. Member Functions

• Member functions are the functions that operate on the data encapsulated in
the class

• Public member functions are the interface to the class

08.2. Defining Member Functions
We can define member functions in two ways,

a. We can define member functions of the class inside the class definition when
we define any class in our program.

OR
b. We declare member function inside the class definition and declare them

outside the class.

In this case class definition is added in ClassName.h file and class implementation
code is added in ClassName.cpp file.

Function definition inside the class:

General Syntax:
class ClassName {
 …
 public:
 ReturnType FunctionName() {
 …
 }
};

Example:
Define a class of student that has a roll number. This class should have a function
that can be used to set the roll number

class Student{
 int rollNo;
public:
 void setRollNo(int aRollNo){
 rollNo = aRollNo;
 }
};

Function definition outside class

General Syntax:

class ClassName {
 …

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 73

 public:
 ReturnType FunctionName();
};
ReturnType ClassName::FunctionName()
{
 …
}

Example

class Student{
 …
 int rollNo;
public:
 void setRollNo(int aRollNo);
};
void Student::setRollNo(int aRollNo){
 …
 rollNo = aRollNo;
}

08.3. Inline Functions

• Inline functions is a way used by compilers to improve efficiency of the
program, when functions are declared inline normal process of function
calling (using stack) is not followed instead function code is added by
compiler at all points where these functions have been called. Basic concept
behind inline functions is that they are functions in our code but in compiler
generated files these functions code is added by compiler at all places where
they were called in the code.

• Normally small size functions that need to be called many times during
program execution are declared inline. Inline functions decrease the code
execution time because program in their case doesn’t involve function call
overhead.

• Keyword ‘inline’ is used to request compiler to make a function inline.
• However using inline keyword with function doesn’t guarantee that function

will definitely in inlined, it depends on the compiler if it finds it can make
function inline it does so otherwise it ignores the keyword inline and treat the
function as normal function.

Example

inline int Area(int len, int hi)
{
 return len * hi;
}
int main()
{
 cout << Area(10,20);

Scope resolution operator

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 74

 return 0;
}

Inline Functions

The functions defined inside the class are by default inline (whether we mention
keyword inline with them or not)
In case we define function outside the class then we must use the keyword ‘inline’ to
make the function inline.
However compiler decides whether it will implement these functions code as inline
or not.

Example
Inline function inside the class:

class Student{
 int rollNo;
public:
 void setRollNo(int aRollNo){
 …
 rollNo = aRollNo;
 }
};

Example
Inline function outside the class:

class Student{
 …
 public:
 inline void setRollNo(int aRollNo);
};
void Student::setRollNo(int aRollNo){
 …
 rollNo = aRollNo;
}
class Student{
 …
 public:
 void setRollNo(int aRollNo);
};
inline void Student::setRollNo(int aRollNo){
 …
 rollNo = aRollNo;
}
class Student{
 …
 public:

Function setRollNo
will be automatically
inlined by compiler.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 75

 inline void setRollNo(int aRollNo);
};
inline void Student::setRollNo(int
 aRollNo){
 …
 rollNo = aRollNo;
}

08.4. Constructor

Constructor is used to initialize the objects of a class. Constructor is used to ensure
that object is in well defined state at the time of creation.
The constructor of a class is automatically generated by compiler however we can
write it by our self also.
Constructor is automatically called when the object is created. Constructors are not
usually called explicitly by us.

08.5. Constructor Properties

• Constructor is a special function having same name as the class name
• Constructor does not have return type
• Constructors are commonly public members

Example
class Student{
 int rollNo;
public:
 Student(){
 rollNo = 0;

 }
};

int main()
{
 Student aStudent;
 /*constructor is implicitly called at this point*/
}

We can assure that constructor is called automatically by adding cout statement in
constructor as shown below,

#include <iostream>
using namespace std;

class Student{
 int rollNo;
public:
 Student(){
 rollNo = 0;
 cout<<”I am constructor of Student class…\n”;

Student Class
constructor

Student Class
constructor

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 76

 }
};

int main()
{
 Student aStudent;
 /*constructor is implicitly called at this point*/
system(“pause”);
return 0;
}

08.6. Default Constructor

• Constructor without any parameter or with all parameters with default
values is called default constructor

• If we do not define a default constructor the compiler will generate a default
constructor

• Compiler generated default constructor is called implicit and user written
default constructor is called explicit

• This compiler generated default constructor initialize the data members to
their default values

• If we have given any constructor for a class whether it is
• our own explcit default constructor (i.e parameterless or with

parameters having default values)
 or
• our own constructor with parameters

Then compiler will not create implicit default constructor5.

Example

Consider the class student below it has no constructor so compiler will generate one
for it,

class Student
{
 int rollNo;
 char *name;
 float GPA;
public:
 … //no constructors
};

Code of Compiler generated implicit default constructor

{

5 compiler generated default constructor is called implicit and user written default constructor is called
explicit

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 77

 rollNo = 0;
 GPA = 0.0;
 name = NULL;
}

08.7. Constructor Overloading

We can write constructors with parameters as well. These parameters are used to
initialize the data members with user supplied data (passed as parameter). The
example is shown below, here example Student class has four constructors their
prototypes are,

1. Student(); /* explicit default parameterless constructor */
2. Student(char * aName); /* constructor with one parameter* /
3. Student(char * aName, int aRollNo); /* constructor with two parameters */
4. Student(int aRollNo, int aRollNo, float aGPA); /* constructor with three

parameters */

Example

class Student{
 int rollNo;
 char *name;
 float GPA;
public:
 Student(); /* explicit default constructor */
 Student(char * aName); /* constructor with one parameter* /
 Student(char * aName, int aRollNo); /* constructor with two parameters */
 Student(int aRollNo, int aRollNo, float aGPA); /* constructor with three
parameters */

};
Student::Student(){

 rollNo = 0;
 name = NULL; // to indicate it is pointing to nothing at this moment
otherwise it can generate erroneous code.
 GPA = 0.0;

}
Student::Student(int aRollNo){

 if(aRollNo < 0){
 rollNo = 0;
 }
 else {
 rollNo = aRollNo;
 }
name = NULL;

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 78

}
Student::Student(int aRollNo,
 char * aName){

 if(aRollNo < 0){
 rollNo = 0;
 }
 else {
 rollNo = aRollNo;
 }

 if (strlen(aName) > 0)
 {
 name = new char[strlen(aName)+1];
 strcpy(name,aName);
 }
 else
 {
name = NULL;
}

}

We can create this Student class object using any one of these constructors as follows,

int main()
{
 Student student1; // default constructor will be used
 Student student2(“Name”); // one parameter constructor will be used
 Student student3(”Name”, 1); // two parameter constructor will be used
 Student student4(”Name”,1,4.0); // three parameter constructor will be used
}

08.8. Constructor Overloading

We can use default parameter values to reduce the writing effort in that case we will
have to write only one constructor and it will serve the purpose of all constructors as
given below,

Example
Student::Student(char * aName = NULL, int aRollNo= 0, float aGPA = 0.0) {
…

}

It is equivalent to all three constructors,

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 79

Student();
Student(char * aName);
Student(char * aName, int aRollNo);
Student(char * Name, int aRollNo, float aGPA);

It will use default values if values are not passed as arguments while creating
objects) it is described in code given below,

int main()
{
 Student student1; /*char * aName = NULL, int aRollNo= 0, float aGPA = 0.0*/

 Student student2(“Name”); /*char * aName = Name, int aRollNo= 0, float
aGPA = 0.0*/

 Student student3(”Name”, 1); /*char * aName = Name, int aRollNo= 1, float
aGPA = 0.0*/

 Student student4(”Name”, 1 , 4.0); /*char * aName = Name, int aRollNo= 1,
float aGPA = 4.0*/

}

08.9. Copy Constructor
Copy constructors are used when:

• Initializing an object at the time of creation (we want to create an object with
state of a pre existing object)

• When an object is passed by value to a function (As you know temporary
copy of object is created on stack so we need copy constructor to create that
temporary object with the state of actual object being passed).

Example
void func1(Student student){
…
}

int main(){

 Student studentA;
 Student studentB = studentA;

Copy constructor will

be called to create
temporary student

object

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 80

 func1(studentA);

}

Copy Constructor (Syntax)

Student::Student(const Student &obj){

 /*copying values to newly created object*/
 rollNo = obj.rollNo;
 name = obj.name;
 GPA = obj.GPA;

}

As was the case with default constructor compiler also generates copy constructor by
itself however we can override that copy constructor by writing our own copy
constructor as shown in example below,

#include <iostream>
using namespace std;

class Student{
 int rollNo;
public:
 Student(){
 rollNo = 0;
 cout<<”I am default constructor of Student class…\n”;
 }

Student(const Student &obj){
 cout<<”I am copy constructor of Student class\n”;
 rollNo = obj.rollNo;

}
};

int main()
{
 Student aStudent;
 /*default constructor is implicitly called at this point*/

 Student bStudent = aStudent;
 /*copy constructor is implicitly called at this point*/

system(“pause”);

Copy constructor will

be called as we are
creating studentB in
terms of studentA.

Student class default

constructor

Student class copy

constructor

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 81

return 0;
}

08.10. Shallow Copy

• When we initialize one object with another then the compiler copies state of
one object to the other using copy constructor by assigning data member
values of previous object to newly created object.

Shallow copy using default Copy Constructor (Syntax)
Student::Student(const Student & obj){

 rollNo = obj.rollNo;
 name = obj.name;
 GPA = obj.GPA;
}

• This kind of copying is called shallow copying

Example

Student studentA;
Student studentB = studentA; /*Shallow copy: compiler will use copy constructor to
assign studentA values to newly created object studentB*/

Shallow copy works fine if our class doesn’t include dynamic memory allocation but
in case of dynamic memory allocation it leads to dangling pointer problem as
explained below,

Problem is Shallow Copy

Student class data member name of char * type is added to store the name of student
and it is using dynamic memory according to the length of name entered by user for
student.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 82

Object studentB is also pointing to memory allocated object studentA for Student
class data member name of char * type, now there are two problems with this sort of
copying,

Suppose we delete first object studentA for some reason then its destructor will also
free memory allocated by it hence memory area containing name “AHMAD” will
also be freed and will be given to some other application by operating system, but
studentB member name is still pointing to that area so issue of “Dangling Pointer”
will arose. [Pointer pointing to incorrect memory location]. If we will try to print the
name of object studentB our program will terminate abnormally as it was pointing
memory of some other applications.
Secondly if for some reason we change name of studentA the value of object
studentB will also be changed as it pointing to same memory location.

We resolve these two issues using deep copy.

08.11. Deep Copy
We write our own deep copy code in copy constructor so that when we create new
object from an existing object using copy constructor we also allocate new dynamic
memory for data members involving dynamic memory as shown below,
Student::Student(const Student & obj){

 int len = strlen(obj.name);
 name = new char[len+1];
 // assignming new dynamic memory to data member name of char * type for
newly created object*/
 strcpy(name, obj.name);
 …
 //copy rest of the data members in the same way
}

Name

GPA

RollNo

studentA

Name

GPA

RollNo

studentB
A
H
M
A
D
…

Memory

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 83

Example

Student studentA;
Student studentB = studentA; // now copy constructor will perform deep
copy (separate memory for both objects)

In case our class doesn’t involve dynamic memory then default copy constructor that
performs shallow copy works fine.
In case our class has any data member involving dynamic memory we have to write
our own code to do deep copy.

Name

GPA

RollNo

A

Name

GPA

RollNo

B

A
H
M
A
D

Memory

A
H
M
A
D

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 84

Lecture No.09
Review
Copy Constructor
Copy constructors are used when:

Initializing an object at the time of creation (we want to create an object with state of
a pre existing object)
When an object is passed by value to a function (As you know temporary copy of
object is created on stack so we need copy constructor to create that temporary object
with the state of actual object being passed).

Example

void func1(Student student){
…
}

int main(){

 Student studentA;
 Student studentB = studentA;
 func1(studentA);
 return 0;
}

Copy Constructor (Syntax)

Student::Student(const Student &obj){

 /*copying values to newly created object*/
 rollNo = obj.rollNo;
 name = obj.name;
 GPA = obj.GPA;
}

As was the case with default constructor compiler also generates copy constructor by
itself however we can override that copy constructor by writing our own copy
constructor as shown in example below,
As was the case with default constructor compiler also generates copy constructor by
itself however we can override that copy constructor by writing our own copy
constructor as shown in example below,

#include <iostream>

Copy constructor will

be called as we are
creating studentB in
terms of studentA.

Copy constructor will

be called as a
temporary student

object will be created.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 85

using namespace std;

class Student{
 int rollNo;
public:
 Student(){
 rollNo = 0;
 cout<<”I am default constructor of Student class…\n”;
 }

Student(const Student &obj){
 cout<<”I am copy constructor of Student class\n”;
 rollNo = obj.rollNo;

}
};

int main()
{
 Student aStudent;
 /*default constructor is implicitly called at this point*/

 Student bStudent = aStudent;
 /*copy constructor is implicitly called at this point*/

system(“pause”);
return 0;
}

09.1. Shallow Copy

When we initialize one object with another then the compiler copies state of one
object to the other using copy constructor by assigning data member values of
previous object to newly created object. This kind of copying is called shallow
copying.

Shallow copy using default Copy Constructor (Syntax)

Student::Student(const Student & obj){

 rollNo = obj.rollNo;
 name = obj.name;
 GPA = obj.GPA;
}

This kind of copying is called shallow copying

Example

Student class default

constructor

Student class copy

constructor

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 86

Student studentA;
Student studentB = studentA; /*Shallow copy: compiler will use copy constructor to
assign studentA values to newly created object studentB*/

Example
Student studentA(“Ahmad”);

Student studentB = studentA;

#include <iostream>
using namespace std;

class Student{
 char * name;
 int rollNo;
public:
 Student(char * aName, int arollNo){
 name = new char[strlen(aName)+1];
 strcpy(name,aName);

GPA

Name

RollNn

studentB

Heap

A
H
M
A
D

GPA

Name

RollNo

studentA

Heap

A
H
M
A
D

GPA

Name

RollNo

studentA

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 87

 rollNo = arollNo;

 }
 Student(const Student &obj){
 name = obj.name;
 rollNo = obj.rollNo;

 }
 void showName(){
 cout<<name<<endl;

 }
 ~Student(){

 delete []name;

 }
};

int main()
{
 Student studentA("AHMAD",1);
 Student studentB = studentA;
 /*copy constructor is implicitly called at this point*/

 studentA.showName();
 studentB.showName();

 system("pause");
 return 0;
}

Shallow copy works fine if our class doesn’t include dynamic memory allocation but
in case of dynamic memory allocation it leads to dangling pointer problem as
explained below.

Problem is Shallow Copy

Student class data member name of char * type is added to store the name of student
and it is using dynamic memory according to the length of name entered by user for
student.

Student class data member name (char *) of object studentB is also pointing to
memory allocated for datamember name of object studentA, due to this there may be
two kinds of problems.

Suppose we delete first object studentA for some reason then its destructor will also
free memory allocated by it hence memory area containing name “AHMAD” will
also be freed and will be given to some other application by operating system, but

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 88

studentB member name is still pointing to that area so issue of “Dangling Pointer”
[Pointer pointing to incorrect memory location] will arose.
Same will happen if object studentB is deleted then studentA object data member
name will become dangling pointer. This has been explained below,
Let us change code in main to make our second object studentB in a new local scope
as shown below,

int main(){
Student studentA(“Ahmad”,1);

{
 Student studentB = studentA;
}
return 0;
}

Now if we will try to print the name of object studentA our program will not show
any output as name is pointing to some irrelevant memory address,

Complete program code is given below,

#include <iostream>
using namespace std;

class Student{
 char * name;
 int rollNo;
public:
 Student(char * aName, int arollNo){
 name = new char[strlen(aName)+1];
 strcpy(name,aName);
 rollNo = arollNo;

 }
 Student(const Student &obj){

Irrelevant
address

Heap
GPA

Name

RollNo

studentA

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 89

 name = obj.name;
 rollNo = obj.rollNo;

 }
 void showName(){
 cout<<name<<endl;

 }
 ~Student(){
 delete []name;
 }
};

int main()
{
 Student studentA("AHMAD",1);

 {
 Student studentB = studentA;
 /*copy constructor is implicitly called at this point*/
 }

 studentA.showName();

 system("pause");
 return 0;
}

Secondly if for some reason we change name of object studentA the value of object
studentB will also be changed as it pointing to same memory location.

#include <iostream>
using namespace std;

class Student{
 char * name;
 int rollNo;
public:
 Student(char * aName, int arollNo){
 name = new char[strlen(aName)+1];
 strcpy(name,aName);
 rollNo = arollNo;

 }
 Student(const Student &obj){
 name = obj.name;
 rollNo = obj.rollNo;

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 90

 }

 void setName(char * aName){
 strcpy(name,aName);

 }

 void showName(){
 cout<<name<<endl;

 }
 ~Student(){

 delete []name;

 }
};

int main()
{
 Student studentA("AHMAD",1);
 Student studentB = studentA;
 /*copy constructor is implicitly called at this point*/

 studentA.showName();
 studentB.showName();

 studentA.setName("MOEEN");
 studentA.showName();
 studentB.showName();

 system("pause");
 return 0;
}

We resolve these two issues using deep copy.

09.2. Deep Copy

We write deep copy code in copy constructor so that when we create new object from
an existing object using copy constructor we also allocate new dynamic memory for
data members involving dynamic memory as shown below,

Student::Student(const Student & obj){

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 91

 int len = strlen(obj.name);
 name = new char[len+1]; // assignming new
/*dynamic memory to data member name of char * type for newly created object.*/
 strcpy(name, obj.name);
 …
 //copy rest of the data members in the same way
}

 Now we see what happens when we created objects in main as shown below,

int main(){
Student studentA(“Ahmad”,1);

{
 Student studentB = studentA;
}
}

Now when we will execute code with object studentB in local scope our code still
works fine and shows name for object studentA as now deletion of object studentB
has no effect on object studentA as shown below,

A
H
M
A
D

GPA

Name

RollNo

studentA

GPA

Name

RollNo

studentB

A
H
M
A
D

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 92

Example

#include <iostream>
using namespace std;

class Student{
 char * name;
 int rollNo;
public:
 Student(char * aName, int arollNo){
 name = new char[strlen(aName)+1];
 strcpy(name,aName);
 rollNo = arollNo;

 }
 Student(const Student &obj){

 name = new char[strlen(obj.name)+1];
 strcpy(name,obj.name);
 rollNo = obj.rollNo;

 }

 void showName(){
 cout<<name<<endl;

 }
 ~Student(){

 delete []name;

 }
};

int main()
{

Heap

GPA

Name

RollNo

studentA

A
H
M
A
D

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 93

 Student studentA("AHMAD",1);
 {
 Student studentB = studentA;
 /*copy constructor is implicitly called at this point*/
 }
 studentA.showName();

 system("pause");
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 94

09.3. Important points about copy constructor:

1. In case our class doesn’t involve dynamic memory then default copy
constructor that performs shallow copy works fine.

2. In case our class has any data member involving dynamic memory we have
to write our own code in copy constructor to perform deep copy.

3. Copy constructor is normally used to perform deep copy
4. If we do not make a copy constructor then the compiler performs shallow

copy
5. Shallow copy performs bitwise copy.

09.4. Destructor

1. Destructor is used to free memory that is allocated through dynamic
allocation. We have to free memory allocated using new operator by over self
in destructor otherwise it remain occupied even after our program ends.

2. Destructor is used to perform house keeping operations.
3. Destructor is a function with the same name as that of class, but preceded

with a tilde ‘~’

Example

class Student
{
 …
public:
 ~Student(){
 if(name){
 delete []name;
 }
 }
};

Overloading
Destructors cannot be overloaded.

Sequence of Calls
Constructors and destructors are called automatically
Constructors are called in the sequence in which object is declared
Destructors are called in reverse order

Example
Student::Student(char * aName){
 …
 cout << aName << “Constructor\n”;
 }
 Student::~Student(){
 cout << name << “Destructor\n”;
 }
};
Example

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 95

int main()
{
 Student studentB(“Ali”);
 Student studentA(“Ahmad”);
 return 0;
}

Example

Output:
Ali Constructor
Ahmad Constructor
Ahmad Destructor
Ali Destructor

09.5. Accessor Functions

In accordance to principle of information hiding data members of a class are declared
as private so that outside world can not access the private data of the object only an
interface is provided to outside world in the form of functions.
Accessor functions are also used to access private data of the object, we provide
accessor functions to get and set private data members of the class.
We also add error checking code in accessor functions to reduce errors so that object
doesn’t move in illegal state.

Example – Accessing Data Member

Example - Setter

class Student{
 …
 int rollNo;
public:
 void setRollNo(int aRollNo){
 rollNo = aRollNo;
 }
};

Avoiding Error
void Student::setRollNo(int aRollNo){
 if(aRollNo < 0){
 rollNo = 0;
 }
 else
 {
 rollNo = aRollNo;
 }
}
Example - Getter

class Student{

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 96

 …
 int rollNo;
public:
 int getRollNo(){
 return rollNo;
 }
};

Good Practice:
Never return a handle to a data member from getter function because you are never
sure that function accessing the reference will not change the value of the variable.

09.6. this Pointer

Consider the code of a general class given below,

class Student{
 int rollNo;
 char *name;
 float GPA;
public:
 int getRollNo();
 void setRollNo(int aRollNo);
…
};

The compiler reserves space for the functions defined in the class

• Space for data is not allocated (since no object is yet created)

this Pointer
Student s1, s2, s3;

Function Space
getRollNo(), …

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 97

this Pointer

• Function space is common for every variable
• Whenever a new object is created:

o Memory is reserved for variables only
o Previously defined functions are used over and over again

Memory layout for objects created:

this Pointer

• Address of each object is passed to the calling function.
• This address is de-referenced by the functions and hence they act on correct

objects

s1
rollNo, …

Function
Space

getRollNo(),
…

s2
rollNo, …

s3
rollNo, …

s4
rollNo, …

Function Space
getRollNo(), …

s1(rollNo,…)

s2(rollNo,…)

s3(rollNo,…)

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 98

Passing this Pointer

• Whenever a function is called the this pointer is passed as a parameter to that
function.

• Function with n parameters is actually called with n+1 parameters

Example

void Student::setName(char *)

is internally represented as,

void Student::setName(char *, const Student *)

Declaration of this

DataType * const this;

Compiler Generated Code

address

s1
rollNo, …

s2
rollNo, …

s3
rollNo, …

s4
rollNo, …

address address address

Student::Student(){
 rollNo = 0;
}

Student::Student(){
 this->rollNo = 0;
}

Compiler generated code

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 99

Lecture No.10

10.1. Uses of this Pointer

o There are situations where designer wants to return reference to
current object from a function

o In such cases reference is taken from this pointer like (*this)

Example

Student Student::setRollNo(int aNo)
{
 …
 return *this;
}
Student Student::setName(char *aName)
{
 …
 return *this;
}

Usage:

int main()
{
 Student aStudent;
 Student bStudent;

 bStudent = aStudent.setName(“Ahmad”);
 …
 bStudent = aStudent.setName(“Ali”).setRollNo(2);

 return 0;
}

10.2. Separation of interface and implementation

o Public member functions exposed by a class are called interface.
o Separation of implementation from the interface is good software

engineering.
Benefits of separating interface and implementation:

Consider the example of following complex no. class, this complex no. class two
forms of implementations one is new and one is old implementation you can observe
that if you have separated interface and implementation then we can easily change
implementation without changing interface,

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 100

10.3. Complex Number

o There are two representations of complex number
• Euler form

z = x + i y
• Phasor form

z = |z| (cos θ + i sin θ)
z is known as the complex modulus and θ is known as the complex argument or
phase

Example

Example

class Complex{ //old
 float x;
 float y;
public:
 void setNumber(float i, float j){
 x = i;
 y = j;
 }
 …
};

Example

class Complex{ //new
 float z;
 float theta;
public:
 void setNumber(float i, float j){

Uml notation to show private data members

Old implementation

float getX()
float getY()
void setNumber
 (float i, float j)
…

 float x
 float y

Complex

float getX()
float getY()
void setNumber
 (float i, float j)
…

 float z
 float theta

Complex

New implementation

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 101

 theta = arctan(j/i);
 …
 }
 …
};

Advantages

1. User is only concerned about ways of accessing data (interface)
2. User has no concern about the internal representation and implementation of

the class

Separation of interface and implementation

In c++ generally we can relate the concept of interface of a class to its header (.h) file
and and implementation of a class to its (.cpp) file. However it is not complete
separation of interface and implementation.

• Usually functions are defined in implementation file (.cpp) while the class
definition is given in header file (.h)

• Some authors also consider this as separation of interface and implementation

Student.h

class Student{
 int rollNo;
public:
 void setRollNo(int aRollNo);
 int getRollNo();
 …
};

Student.cpp
#include “student.h”

void Student::setRollNo(int aNo){
 …
}
int Student::getRollNo(){
…
}

We only need to include header (.h) file in main.cpp to use the Student class as
shown below,

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 102

Main.cpp (main file to run the program)
#include “student.h”

int main(){
 Student aStudent;
 return 0;
}

10.4. const Member Functions

Some functions in our programs are general purpose functions to show or access
data, they are supposed to do read only tasks only however there are chances that
they can change the state of data members of the class while accessing the data
members due to programming mistake, c++ provides the solution of this problem
using constant member functions.

We make those functions as constant who need only read only access (for example
such functions that will only display data or will return the value of data members).
When we make them constant compiler generates an error if these functions try to
change the value of data members of the class.

const Member Functions

Keyword const is placed at the end of the parameter list to make any function as
constant.

Declaration:
Inside class
class ClassName{
 ReturnVal Function() const;
};

Definition:
Outside class
ReturnVal ClassName::Function() const{
 …
}

Example
class Student{
public:
 int getRollNo() const {
 return rollNo;
 }
};

const Functions

• Constant member functions cannot modify the state of any object

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 103

• They are just “read-only”
• Errors due to typing are also caught at compile time

Example

Consider the function given below that is being used to check if roll no is equal to
entered value if in this function we replace comparison statemtn == with assignment
= statement it will compile correctly but whole code logic will change and we will get
un expected result,

bool Student::isRollNo(int aNo){
 if(rollNo = = aNo){
 return true;
 }
 return false;
}

Example

bool Student::isRollNo(int aNo){
 /*undetected typing mistake*/
 if(rollNo = aNo){
 return true;
 }
 return false;
}

But if we have implemented as constant then compiler will catch this error and will
produce compile time error as shown below,

Example

bool Student::isRollNo
 (int aNo)const{
 /*compiler error*/
 if(rollNo = aNo){
 return true;
 }
 return false;
}

const Functions

Constructors and Destructors cannot be const because Constructors and
destructors are used to modify the object to a well defined state or to clean the
memory occupied by the object.

Example

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 104

class Time{
public:
 Time() const {} //error…
 ~Time() const {} //error…
};

const Function

• Constant member function cannot change data member
• We cannot call non constant functions in constant functions because non

constant member functions may have code for changing state of the object
that is not allowed in the constant functions.

Example
class Student{
 char * name;
public:
 char *getName();
 void setName(char * aName);
 int ConstFunc() const{
 name = getName(); //error
 setName(“Ahmad”);//error
 }
};

10.5. this Pointer and const Member Function

As we know that when a class function is called an implicit this pointer is passed to
tell the function about the object it has to operate same is true for constant function
with the difference that it will bbe passed as constant pointer to const data in case of
constant member functions so that this pointer can not be used now to change the
value of data members of the object,

const Student *const this;
// In case of constant member functions

instead of

Student * const this;
// In case of ordinary member functions

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 105

Lecture No.11

11.1. Usage example of Constant member functions
Problem:
Suppose we have requirement to change the class Student such that a student is
given a roll number when the object is created and cannot be changed afterwards our
existing class is given below,

Student Class

class Student{
…
 int rollNo;
public:
 Student(int aNo);
 int getRollNo();
 …
};

Solution of this problem:

We can do this by making rollNo constant so that cannot be changed once it is
defined as shown below,

Modified Student Class
class Student{
…
 const int rollNo;
public:
 Student(int aNo);
 int getRollNo();
 …
};

Now there is only one issue of initializing this roll no with initial value but the
problem is that we cannot set the value of roll no in constructor, as when code in
constructor is executed the data member roll no has already been created and when
we try to assign value to it in constructor compiler generates error,
Example
Student::Student(int aRollNo)
{
 rollNo = aRollNo;

 /*error: cannot modify a constant data member assignment statement not

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 106

initialization*/
}

Second solution is to write separate function but the problem remains same that we
can’t assign value to constant data member,

void Student::SetRollNo(int i)
{
 rollNo = i;
 /*error: cannot modify a constant data member again assignment
statement not initialization */
}

We also know that we can only declare data members in structure or class but we
cannot initialize them at the time of declaration in structure or class _____ because
before executing constructor code, the class const member roll no has not got life it
will get life along with other class members when constructor will be invoked so we
can not assign any value to this constant member while declaring it. 6
Solution:
so what is the solution of this problem as we can not initialize constant members
while declaring them and we can not initialize them in constructor also because as
soon as they go life they become constant to solve this problem C++ gives us new
mechanism (syntax) for initialization of constant data members of the structure or
class to resolve above mentioned issues,

11.2. Difference between Initialization and Assignment:

Initialization is assigning value along with creation of variable.

int i = 2;

Assignment is assigning value after creation.
int i;
i = 7;

11.3. Member Initializer List

Member initialization list is used where we cannot modify the state of data members
in the member functions of the class including constructor,

• A member initializer list is a mechanism to initialize data members
• It is given after closing parenthesis of parameter list of constructor

6 In c++ static const data members can be initialized in class or structure as well.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 107

• In case of more than one member use comma separated list

Example
class Student{
 const int rollNo;
 char *name;
 float GPA;
public:
 Student(int aRollNo) : rollNo(aRollNo), name(Null), GPA(0.0){ //
initialization
 …
 }
…
};

Order of Initialization

• Data member are initialized in order they are declared in the class
• Order in member initializer list is not significant at all

Example
class ABC{
 int x;
 int y;
 int z;
public:
 ABC();
};
ABC::ABC():y(10),x(y),z(y)
{
 …
}
/* x = Junk value
 y = 10
 z = 10 */

11.4. const Objects

• Objects can be declared constant with the use of const keyword
• Constant objects cannot change their state

Example
int main()

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 108

{
 const Student aStudent;
 return 0;
}

Example

#include <cstdlib>
#include <iostream>

using namespace std;

class Student{
 int rollNo;
public:

 Student() {

 }

 int getRollNo(){
 return rollNo;
 }
};

int main(){

const Student aStudent;
 int a = aStudent.getRollNo();

 //error

 system("PAUSE");
 return EXIT_SUCCESS;
}

#include <cstdlib>
#include <iostream>

using namespace std;

class Student{
 int rollNo;
public:

 Student(int aRollNo) :
rollNo(aRollNo){

 }

 int getRollNo(){
 return rollNo;
 }
};

int main(){
 const Student aStudent(5);
 int a = aStudent.getRollNo();
 //error

 system("PAUSE");
 return EXIT_SUCCESS;
}

const Objects

const objects can access only const member functions so chances of change of state of
const objects once they are created are eliminated.
We make getRollNo function constant so that we can access it using constant objects,

Example
class Student{

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 109

…
 int rollNo;
public:
…
 int getRollNo()const{
 return rollNo;
 }
};
int main(){
 const Student aStudent;
 int a = aStudent.getRollNo();
 return 0;
}

Constant member functions

Make all functions that don’t change the state of the object constant
This will enable constant objects to access more member functions

11.5. Static Variables
Static variables of a class are such variables which are independent of class objects.

Lifetime of static variable is throughout the program life, if static variables are not
explicitly initialized then they are initialized to 0 of appropriate type.

Example

Static variable is initialized once only throughout the program, independent of how
many times the function initializing it is called,

void func1(int i){
 static int staticInt = i;
//initialization statement will be executed once
//only as static variables are initialized once
 cout << staticInt << endl;
}
int main(){
 func1(1);
 func1(2);
 return 0;
}

void func1(int i){

 static int staticInt;
 staticInt = i;
//assignment statement will be executed with each function call
 cout << staticInt << endl;

Output:
1
1

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 110

}
int main(){
 func1(1);
 func1(2);
 return 0;
}

Static Data Member

Definition
“A variable that is part of a class, yet is not part of any object of that class, is called
static data member”

Static Data Member

They are shared by all instances (objects) of the class
They do not belong to any particular instance of a class

Class vs. Instance Variable

Suppose we created three objects of student class as shown below,
Student s1, s2, s3;

Static Data Member (Syntax)

Keyword static is used to make a data member static

class ClassName{
…
static DataType VariableName;
};

Defining Static Data Member

Class Space

s1(rollNo,…)

s2(rollNo,…)Class Variable
Instance Variable

s3(rollNo,…)

Output:
1
2

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 111

Static data member is declared inside the class
But they are defined outside the class

Defining Static Data Member

class ClassName{
…
static DataType VariableName;
};

DataType ClassName::VariableName;
Initializing Static Data Member

Static data members should be initialized once at file scope
They are initialized at the time of definition

Example
class Student{
private:
static int noOfStudents;
public:
 …
};
int Student::noOfStudents = 0;
/*private static member cannot be accessed outside the class except for
initialization*/

Initializing Static Data Member

If static data members are not explicitly initialized at the time of definition then they
are initialized to 0

Example

int Student::noOfStudents;

is equivalent to

int Student::noOfStudents=0;

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 112

Lecture No.12

Review:
Static Data Member
Definition
“A variable that is part of a class, yet is not part of an object of that class, is called
static data member”

Static Data members are shared by all instances of the class and they do not belong to
any particular instance of a class.

Class vs. Instance Variable

Memory for static variables in allocated in class space whereas for instance variables
it is separate for each object as shown below, if we have class Student as given below,

class Student{
private:
static int noOfStudents;
public:
 …
};

When we will create objects of Student as s1, s2, s3 then memory will be allocated as
given below,

Static Data Member (Syntax)
Keyword static is used to make a data member static,

class ClassName{
…
static DataType VariableName;
};

Class Space

s1(rollNo,…)

s2(rollNo,…) Class Variable
Instance Variable

s3(rollNo,…)

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 113

Defining Static Data Member (allocating memory for them)

Static data member is declared inside the class
But they are defined outside the class,

class ClassName{
…
static DataType VariableName;
};

DataType ClassName::VariableName;

Initializing Static Data Member(assigning them some initial value)

Static data members should be initialized once at file scope
They are initialized at the time of definition,

Example

class Student{
private:
static int noOfStudents;
public:
 …
};
int Student::noOfStudents = 0;
/*private static member cannot be accessed outside the class except for
initialization*/

Initializing Static Data Member

If static data members are not explicitly initialized at the time of definition then they
are initialized to 0

Example
int Student::noOfStudents;

is equivalent to

int Student::noOfStudents=0;

12.1. Accessing Static Data Member

To access a static data member there are two ways

• Access like a normal data member (using dot operator ‘.’)
• Access using a scope resolution operator ‘::’

Example

class Student{
public:

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 114

static int noOfStudents;
};

int Student::noOfStudents;

int main()
{
Student aStudent;
aStudent.noOfStudents = 1;
Student::noOfStudents = 1;
return 0;
}

12.2. Life of Static Data Member

• They are created even when there is no object of a class
• They remain in memory even when all Objects of a class are destroyed

Example
class Student{
public:
static int noOfStudents;
};
int Student::noOfStudents;
int main(){
Student::noOfStudents = 1;
}

Example
class Student{
public:
static int noOfStudents;
};
int Student::noOfStudents;
int main(){
{
 Student aStudent;
 aStudent.noOfStudents = 1;
}
Student::noOfStudents = 1;
return 0;
}

Uses
They can be used to store information that is required by all objects, like global
variables
Example

Modify the class Student such that one can know the number of student created in a
system

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 115

class Student{
…
public:
 static int noOfStudents;
 Student();
 ~Student();
…
};
int Student::noOfStudents = 0;
Student::Student(){
 noOfStudents++;
}
Student::~Student(){
 noOfStudents--;
}

int Student::noOfStudents = 0;
int main(){
 cout <<Student::noOfStudents <<endl;
 Student studentA;
 cout <<Student::noOfStudents <<endl;
 Student studentB;
 cout <<Student::noOfStudents <<endl;
 return 0;
}

Problem
noOfStudents is accessible outside the class
Bad design as the local data member is kept public

The solution is that we write static member function to access static members,

12.3. Static Member Function
Definition:
“The function that needs access to the members of a class, yet does not need to be
invoked by a particular object, is called static member function”

• They are used to access static data members
• Access mechanism for static member functions is same as that of static data

members
• They cannot access any non-static members

Output:
0
1
2

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 116

Example
class Student{
 static int noOfStudents;
 int rollNo;
public:
 static int getTotalStudent(){
 return noOfStudents;
 }
};
int main(){
 int i = Student::getTotalStudents();
 return 0;
}

Accessing non static data members
int Student::getTotalStudents(){
 return rollNo;
}
int main(){
 int i = Student::getTotalStudents();
 /*Error: There is no instance of Student, rollNo cannot be accessed*/
 return 0;
}

12.4. this Pointer and static member functions

• this pointer is passed implicitly to member functions
• this pointer is not passed to static member functions
• Reason is static member functions cannot access non static data members

12.5. Global Variable vs. Static Members

• Alternative to static member is to use global variable
• Global variables are accessible to all entities of the program
• User of Global variables is against the principle of information hiding.

12.6. Array of Objects
• Array of objects can only be created if an object can be created without

supplying an explicit initializer
• There must always be a default constructor if we want to create array of

objects

Example
class Test{
public:
};
int main(){
 Test array[2]; // OK

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 117

 return 0;
}

class Test{
public:
 Test();
};
int main(){
 Test array[2]; // OK
 return 0;
}

class Test{
public:
 Test(int i);
};
int main(){
 Test array[2]; // Error
 return 0;
}

class Test{
public:
 Test(int i);
};
int main(){
 Test array[2] = {Test(0),Test(0)};
 return 0;
}

class Test{
public:
 Test(int i);
};
int main(){
 Test a(1),b(2);
 Test array[2] = {a,b};
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 118

Lecture No.13

13.1. Pointer to Objects

• Pointer to objects are similar as pointer to built-in types
• They can also be used to dynamically allocate objects

Example

class Student{
…
public:
 Student();
 Student(char * aName);
 void setRollNo(int aNo);
};
Example
int main(){
 Student obj;
 Student *ptr;
 ptr = &obj;
 ptr->setRollNo(10);
 return 0;
}
Allocation with new Operator

• new operator can be used to create objects at runtime
Example
int main(){
 Student *ptr;
 ptr = new Student;
 ptr->setRollNo(10);
 return 0;
}
Example
int main(){
 Student *ptr;
 ptr = new Student(“Ali”);
 ptr->setRollNo(10);
 return 0;
}
Example
int main()
{
 Student *ptr = new Student[100];
 for(int i = 0; i < 100;i++)
 {
 ptr->setRollNo(10);
 }
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 119

13.2. Breakup of new Operation

new operator is decomposed as follows

• Allocating space in memory
• Calling the appropriate constructor

13.3. Case Study
Design a class date through which user must be able to perform following operations

• Get and set current day, month and year
• Increment by x number of days, months and year
• Set default date

Attributes
Attributes that can be seen in this problem statement are

• Day
• Month
• Year
• Default date

Attributes
The default date is a feature shared by all objects

• This attribute must be declared a static member
Attributes in Date.h
class Date
{
 int day;
 int month;
 int year;
 static Date defaultDate;
…
};
Interfaces

• getDay
• getMonth
• getYear
• setDay
• setMonth
• setYear
• addDay
• addMonth
• addYear
• setDefaultDate

Interfaces
As the default date is a static member the interface setDefaultDate should also be
declared static
Interfaces in Date.h
class Date{
…
public:
 void setDay(int aDay);
 int getDay() const;
 void addDay(int x);
 …

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 120

…
};
Interfaces in Date.h
class Date{
…
public:
 static void setDefaultDate(
int aDay,int aMonth, int aYear);
…
};
Constructors and Destructors in Date.h
 Date(int aDay = 0,
 int aMonth= 0, int aYear= 0);

 ~Date(); //Destructor
};
Implementation of Date Class
The static member variables must be initialized

Date Date::defaultDate (07,3,2005);
Constructors
Date::Date(int aDay, int aMonth,
 int aYear) {
 if(aDay==0) {
 this->day = defaultDate.day;
 }
 else{
 setDay(aDay);
 }
 //similarly for other members
}
Destructor
We are not required to do any house keeping chores in destructor

Date::~Date
{
}
Getter and Setter
void Date::setMonth(int a){
 if(a > 0 && a <= 12){
 month = a;
}
int getMonth() const{
 return month;
}
addYear
void Date::addYear(int x){
 year += x;
 if(day == 29 && month == 2
 && !leapyear(year)){
 day = 1;

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 121

 month = 3;
 }
}
Helper Function
class Date{
…
private:
 bool leapYear(int x) const;
…
};
Helper Function
bool Date::leapYear(int x) const{
 if((x%4 == 0 && x%100 != 0)
 || (x%400==0)){
 return true;
 }
 return false;
}
setDefaultDate
void Date::setDefaultDate(
 int d, int m, int y){
 if(d >= 0 && d <= 31){
 day = d;
 }
 …
}

13.4. Complete code of Date class

include<iostream.h>
include<conio.h>
class Date{

 private:
 int day, month, year;
 static Date defaultDate;
 public:
 void setDefaultDate(int aDay,int aMonth, int aYear);
 void setDay(int aDay);
 int getDay() const;
 void addDay(int x);
 void setMonth(int aMonth);
 int getMonth() const;
 void addMonth(int x);
 void setYear(int aYear);
 int getYear() const;
 void addYear(int x);
 bool leapYear(int x)const;
 Date(int aDay , int aMonth, int aYear);
 void setDate(int aDay , int aMonth, int aYear);

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 122

 ~Date(); //Destructor
 };

 Date Date::defaultDate(07,3,2005);

Date::Date(int aDay, int aMonth, int aYear)
{
 if(aDay==0)
 {
 this->day = defaultDate.day;
 }
 else
 {
 setDay(aDay);
 }

 if(aMonth==0)
 {
 this->month = defaultDate.month;
 }
 else
 {
 setMonth(aMonth);
 }

 if(aYear==0)
 {
 this->year = defaultDate.year;
 }
 else
 {
 setYear(aYear);
 }

}

void Date::setMonth(int a) {
 if(a > 0 && a <= 12)
 {
 month = a;
 }
 }

 int Date:: getMonth() const {
 return month;
 }

void Date::addYear(int x)
{
 year += x;

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 123

 if(day == 29 && month == 2 && !leapYear(year))
 {
 day = 1;
 month = 3;
 }
}

bool Date::leapYear(int x) const {
 if((x%4 == 0 && x%100 != 0) || (x%400==0))
 {
 return true;
 }
 return false;
}

void Date::setYear(int aYear){
 year=aYear;
 }
void Date::setDay(int aDay){
 day=aDay;

 }

void Date::setDate(int aDay , int aMonth, int aYear){
 setDay(aDay);
 setMonth(aMonth);
 setYear(aYear);
 cout<<day<<"/"<<month<<"/"<<year<<endl;

 }

 Date::~Date(){
 cout<<"Date destructor"<<endl;
}
int main()
{
 Date aDate(0,0,0);

 aDate.setDate(20,10,2011);
 system("pause");
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 124

Lecture No.14

14.1. Composition

Consider the following implementation of the student class we discussed in previous
lectures,

Composition

If one object is part of another object (relationship of part and whole) in composition
lifetime of one object depends upon the other. The part objects are essential
components of the whole.
For example person is composed of hands, eyes, feet so on.

In student class we assigning dynamic memory for variable name using new
operator as shown,

class Student{
private:
 float gpa;
 char * name;
 int rollNumber;
public:
 Student(char * = NULL, int = 0, float = 0.0);
 Student(const Student & st);
 const char * GetName() const;
 // never return handle of private data members or private member functions
 ~Student();
 …
};

Student::Student(char * _name, int roll, float g)
{
 cout << "Constructor::Student..\n";

gpa : float
rollNo : int
name : char *

Student(char * = NULL, int = 0,
 float = 0.0);
Student(const Student &)
GetName() const : const char
*
SetName(char *) : void
~Student()
…

Student

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 125

 if (!_name){
 name = new char[strlen(_name)+1];
 strcpy(name,_name);
 }
 else name = NULL;
 rollNumber = roll;
 gpa = g;
 }

Student::Student(const Student & st){
 if(str.name != NULL){
 name = new char[strlen(st.name) + 1];
 strcpy(name, st.name);
 }
 else name = NULL;
 rollNumber = st.roll;
 gpa = st.g;
}

 const char * Student::GetName(){
 return name;
 }

 // never return handle of private data members or private member functions const
ensures that private data members will not be changed

 Student::~Student(){
 delete [] name; // deleting name array
 }

In C++ “it is all about code reuse”
Composition is Creating objects of one class inside another class
“Has a” relationship:
Bird has a beak
Student has a name

Composition

Now we change code slightly replacing name char * by String so that it is whole
object of class String as it qualifies to be an object because we have to apply many
operations on it like string dynamic creation and deletion, string copy using deep
copy, searching a substring and so on….

Conceptual notation:

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 126

Composition

Now we see string class code to see how it simplifies original Student object and how
we have used composition here,

class String{
 private:
 char * ptr;
 public:
 String(); // default constructor
 String(const String &); // copy constructor
 void SetString(const char *); // setter function
 const char * GetString() const;
// getter function returning const pointer to data member ptr
 ~String()
 …
};
 String::String(){
 cout << "Constructor::String..\n";
 ptr = NULL;
 }

 String::String(const String & str){
 if(str.ptr != NULL){
 ptr = new char[strlen(str.ptr)+1];
 strcpy(ptr, str.ptr);
 }
 else ptr = NULL;
 }
 void String::SetString(const char * str){
 if(ptr != NULL){
 delete [] ptr;

String()
SetString(char *) : void
GetString() const : const
char *
~String()
…

gpa : float
rollNo : int
name : String

Student(char * = NULL, int = 0,
 float = 0.0);
Student(const Student &)
GetName() const : String
GetNamePtr() const : const
char *
SetName(char *) : void
~Student()
…

Student

string : char *

String

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 127

 ptr = NULL;
 }
 if(str != NULL){
 ptr = new char[strlen(str)+1];
 strcpy(ptr, str);
 }
 }

issue of memory leakage (inaccessible memory)
if we simply set pointer here
memory will be outside of our object many cause problems later
user still has pointer of passed value it can itself modify it

We resolve these two issues in SetString by allocating new memory and deleting
previous memory.

const char * String::GetString()const{
 return ptr;
 }
 String::~String(){
 delete [] ptr;
 cout <<"Destructor::String..\n";
 }

Make pointer equal to NULL as well any where you delete dynamic memory.

Now consider the code of Student class again, now by adding composed string object
our code has been simplified very much, (we will use methods of composed object
simply by calling them where needed)

class Student{
private:
 float gpa;
 int rollNumber;
 String name;
public:
 Student(char* =NULL, int=0,float=0.0);
 Student(const Student &);
 void SetName(const char *);
 String GetName() const;
 const char * GetNamePtr() const;
 ~Student();
 …
};

Student ::Student(char * _name, int roll, float g){
 cout <<"Constructor::Student..\n";
 name.SetString(_name);

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 128

 rollNumber = roll;
 gpa = g;
 }

Student::Student(const Student & s){
 name.SetString(s.name.GetString());
 gpa = s.gpa;
 rollNumber = s.rollNumber;
 }

Explanation:

1. name.SetString(s.name.GetString());
// setting composed name of newly created object

2. name.SetString(s.name.GetString());

//accessing the composed object string name of object to be copied

3. name.SetString(s.name.GetString());
//accessing the value of composed object string name by calling its member

function GetString

4. name.SetString(s.name.GetString());
//overall result : the value of composed object string of object to be copied

will be copied to newly created object composed object string.

const char * Student::GetNamePtr() const{
 return name.GetString();
 }

 void Student::SetName(const char * n){
 name.SetString(n);
 }

 Student::~Student(){
 cout <<"Destructor::Student..\n";
 }

void main(){
 Student *aStudent=new Student("Fakhir", 899, 3.1);
 cout << endl;
 cout << “Name:” << aStudent->GetNamePtr() << “\n”;
}

 Output:

Constructor::String..
Constructor::Student..

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 129

Name: Fakhir
Destructor::Student..
Destructor::String..

 Important Points:

1. We can access methods of composed object in the same way as we can access
methods of other objects.

 Name of composed object.MemberFunction

2. Member functions of a class can access its private data members like,

Student::Student(const Student & s){

 name.SetString(s.name.GetString());

// accessing private member String name of student using its object s
and then accessing String name member function GetString to access
string value two methods calss in one line

 gpa = s.gpa;
// accessing private members of student in student member function

 rollNo = s.rollNo;
// accessing private members of student in student member function

 }

Constructors & Composition

Constructors of the sub-objects are always executed before the constructors of the
master class

Example:

As you see the example output of program given above,

Output:

Constructor::String..
Constructor::Student..

Name: Fakhir
Destructor::Student..
Destructor::String..

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 130

Constructor for the sub-object name is executed before the constructor of Student
and destructor of sub-object is called after destructor of student. It is logical as
composing object has to contain composed object so composed object should be
created first and then composing object. Similarly while destructing objects we
composing object is destructed first and then composed object as shown in diagram
below,

 Composition

Constructor calling:
Constructors are called from composed objects to composing objects.

 Student

Constructor of
composing object

String

Constructor of composed object String

 Student

Composing
object

Composed
object

String

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 131

Destructor calling:

Destructors are called from composing objects to composed objects.

Destructor of composed object String

 Student

Destructor of
composing object

String

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 132

Lecture No.15

Composition:
 We saw composition in last lecture, its Conceptual notation is given below,

We created student object in main as by passing name, rollno and gpa and then
displayed the name of student using GetNamePtr member function of student
class,

int main(){
 Student aStudent("Fakhir", 899,3.1);
 cout << endl;
 cout << “Name:” << aStudent.GetNamePtr()<< endl;
 return 0;
 }

 Output:
The output of our code is given below,

Constructor::String..
Constructor::Student..
Name: Fakhir
Destructor::Student..
Destructor::String..

 Constructor Code:
Let us see the constructor code again,

 Student::Student(char * n, int roll, float g){
 cout <<"Constructor::Student..\n";
 name.SetString(n);
 rollNumber = roll;
 gpa = g;
 }

String()
SetString(char *) : void
GetString() const : const
char *
~String()
…

gpa : float
rollNo : int
name : String

Student(char * = NULL, int =
0, float = 0.0);
Student(const Student &)
GetName() const : String
GetNamePtr() const : const
char *
SetName(char *) : void
~Student()

Student

string : char *

String

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 133

In this code we are setting string data member name of Student class using SetString
but the problem in this approach is that we have to call SetString method explicitly to
set value in string class, the reason for it is that our String class doesn’t support
setting its value while creating its object this is the reason we have to use the function
SetString in the constructor.
This is an overhead and also not very good way to set any object value, we want to
initialize our string sub-object name in the student class as we initialize other objects
using constructor. For achieving this functionality we add an overloaded constructor
in the String class that takes char string as parameter and initialize the String class
object with this value using the Student constructor’s “Member initialization list” as
shown below in bold text:

class String{
 char *ptr;
public:
 String();
 String(char *); // constructor with char * as parameter
 String(const String &);
 void SetName(char *);
 ~String();
 …
};

 String::String(char * str){
 if(str != NULL){
 ptr = new char[strlen(str)+1];
 strcpy(ptr, str);
 }

else ptr = NULL;
 cout << "Overloaded Constructor::String..\n";

}

Now Student class constructor code is modified as follows:

class Student{
private:
 float gpa;
 int rollNumber;
 String name;
public:
 …
 Student(char *=NULL, int=0, float=0.0);
};

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 134

 Student::Student(char * n,int roll, float g): name(n) {

 cout << "Constructor::Student..\n";
 rollNumber = roll;
 gpa = g;

 }

int main(){
 Student aStudent("Fakhir", 899, 3.1);
 cout << endl;
 cout << “Name:” << aStudent.GetNamePtr() << endl;
 return 0;
}

Output:

Overloaded Constructor::String..
Constructor::Student..

Name: Fakhir
Destructor::Student..
Destructor::String..

Now suppose we want to add date object in student class to store student Birth Date,
the conceptual diagram will be as given below,

String

name: char *

String()
String(char *)
~String()
…

…
Date()
Date(int,int,int)
Date(const Date &)
…

Student()
Student(char *,
 const Date &, int,
float)
SetName(char *) : void
GetName() : char *
~Student()
…

…
name : String
birthDate : Date

Student

day: int
Month: int
year: int

Date

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 135

Student class is modified as follows:

class Student{
private:
 …
 Date birthDate;
 String name;
public:
 Student(char *, const Date &, int, float);
 ~Student();
 …
};

Composition

 Student::Student(char * n, const Date & d, int roll, flaot g): name(n),birthDate(d) {
 cout << "Constructor::Student..\n";
 rollNumber = roll;
 gpa = g;
 }

 Student::~Student(){
 cout << "Destructor::Student..\n";
 }
int main(){
 Date _date(31, 12, 1982);
 Student aStudent("Fakhir", _date,899,3.5);
 return 0;
}

Output:

 Overloaded Constructor::Date..
 Copy Constructor::Date..
 Overloaded Constructor::String..
 Constructor::Student..
 Destructor::Student..
 Destructor::String..
 Destructor::Date..
 Destructor::Date..

15.1. Aggregation

In composition we made separate object of those concepts that we think were worthy
to be implemented as an object within other object to make our code simpler and to
make functionality modular (divided in parts) and understandable like we made
String class in Student class, but in real life most situations are such that two distinct
(different) objects and one object is using services of the other one like student and
teacher, student and librarian, room and chair, passenger and bus, book and

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 136

bookshelf, person and computer so on. In this case we cannot make one object as part
of other object because they exist independently and only provide services to each
other like in case of,

Student and Teacher: Student or Teacher object cannot be composed of other one yet
they are taking services of each other.
Passenger and Bus: Passenger and Bus are taking services of each other but exist
standalone also, bus includes passengers but passenger are not Part of Bus they can
exist independently as well.

Composition vs. Aggregation

Aggregation is a weak relationship than composition because in this relationship two
classes get services of each other but can exist independently as well, main difference
is memory organization of two objects as shown below,

Object 1
Object 2

Composition

Aggregation

Object 1
Object 2

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 137

Example:

Take the example of Room and Chair as given below,

Aggregation C++ implementation:

In aggregation, a pointer or reference to an object is created inside a class. The sub-
object has a life that is NOT dependant on the life of its master class.
e.g

• Chairs can be moved inside or outside at anytime
• When Room is destroyed, the chairs may or may not be destroyed

Aggregation:

class Room{
private:
 float area;
 Chair * chairs[50];
Public:
 Room();
 void AddChair(Chair *, int chairNo);
 Chair * GetChair(int chairNo);
 bool FoldChair(int chairNo);
 …
};

Room::Room(){
for(int i = 0; i < 50; i++)
chairs[i] = NULL;

Room(char *, int)
~Room()
FoldChair(int) : bool
…

Chair()
DoSomething() : void
FoldChair() : bool
UnFoldChair() : bool
~Chair()
…

area : float
chairs[50]:Chair *

Room

…

Chair

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 138

}
void Room::AddChair(Chair * chair1, int chairNo){
 if(chairNo >= 0 && chairNo < 50)
 chairs[chairNo] = chair1;
}

Chair * Room::GetChair(int chairNo){
 if(chairNo >= 0 && chairNo < 50)
 return chairs[chairNo];
 else
 return NULL;
}

bool Room::FoldChair(int chairNo){
 if(chairNo >= 0 && chairNo < 50)
 return chairs[chairNo]->FoldChair();
 else
 return false;
}
int main(){
 Chair ch1;
 {
 Room r1;
 r1.AddChair(&ch1, 1);
 r1.FoldChair(1);
 }
 ch1.UnFoldChair(1);
 return 0;
}

15.2. Friend Functions

The functions which are not member functions of the class yet they can access all
private members of the class are called friend functions.

Why they are needed?

They are needed in situations where we have written code for some function in one
class and it need to be used by other classes as well for example,
Suppose we wrote the code to compute a complex mathematical formulae in one
class but later it was required by other classes as well, in that case we will make that
function friend of all other classes.

Are friend functions against the concept of Object Oriented Programming?

It can be said that friend functions are against the principle of object oriented
programming because they violate the principle of encapsulation which clearly says
that each object methods and functions should be encapsulated in it. But there we are
making our private member accessible to other outside functions.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 139

Consider the following class:
class X{
private:
 int a, b;
public:
 void MemberFunction();
 …
};

Suppose we have a global function DoSomething that need to access the private
members of class X, when we will try to access them compiler will generate error as
outside world can not access private members of a class except its member functions.

void DoSomething(X obj){

 obj.a = 3; //Error
 obj.b = 4; //Error
 }

Friend Functions

In order to access the member variables of the class, we must make function friend of
that class,

 class X{
 private:
 int a, b;
 public:
 …
 friend void DoSomething(X obj);
 };

Now the function DoSomething can access data members of class X

void DoSomething(X obj){

 obj.a = 3;
 obj.b = 4;
 }

Friend Functions

Prototypes of friend functions appear in the class definition.
But friend functions are NOT member functions.

Friend Functions

Friend functions can be placed anywhere in the class without any effect
Access specifiers don’t affect friend functions or classes

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 140

 class X{
 ...
 private:
 friend void DoSomething(X);
 public:
 friend void DoAnything(X);
 ...
 };

Friend Functions

While the definition of the friend function is:

void DoSomething(X obj){

 obj.a = 3; // No Error
 obj.b = 4; // No Error
 …
}

friend keyword is not given in definition.

Friend Functions

If keyword friend is used in the function definition, it’s a syntax error

//Error…

friend void DoSomething(X obj){
 …
}

Friend Classes

Similarly, one class can also be made friend of another class:
class X{
 friend class Y;
 …
};

Member functions of class Y can access private data members of class X

class X{
 friend class Y;
 private:
 int x_var1, x_var2;
 ...
 };
class Y{
 private:
 int y_var1, y_var2;

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 141

 X objX;
 public:
 void setX(){
 objX.x_var1 = 1;
 }
 };
int main(){
 Y objY;
 objY.setX();
 return 0;
 }

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 142

Lecture No.16

16.1. Operator overloading

Consider the following class,

class Complex{
private:
 double real, img;
public:
 Complex Add(const Complex &);
 Complex Subtract(const Complex &);
 Complex Multiply(const Complex &);
 …
};

We want to write function to add two complex no. objects, the Add function
implementation to add two complex numbers is shown below, this function is taking
one complex no object and its adding the current (with reference to which it will be
called) and is returning result in new object,

Complex Complex::Add(const Complex & c1){
 Complex t;
 t.real = real + c1.real;
 t.img = img + c1.img;
 return t;
};

// adds the contents of c2 to c1
// creating new object c3 and assigning it result of c1+c2

Now we can add two complex no. objects using the following statement,

Complex c3 = c1.Add(c2);

In this statement two operations are taking place,

1. One is addition of two objects using the function call Add and returning the
result in a new object.
Complex c3 = c1.Add(c2);

2. Second is copy of that temporary object to newly created object c3 using copy

constructor.
Complex c3 = c1.Add(c2);

But there are two issues with this implementation,

1. We can’t add two complex no. objects by simple writing ‘+’ as we can add
basic data types like int or float as shown below,

int a = 3;

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 143

int b = 5;
c = a + b; // correct

Complex c1(2,3), c2(4,5);
Complex c3 = c1 + c2; // error

Instead we have to explicitly write,

Complex c3 = c1.Add(c2)

If we give our complex no. class code some user in compiled form for use,
user will need to know how we have written Add function (no. of parameters
, return type) to add two complex no. objects so that he can call Add function
correctly.

2. If we want to perform add operation on more than two objects in a single

mathematical statement like:
c1+c2+c3+c4
 We are unable to do it.

We have to explicitly write,

c1.Add(c2.Add(c3.Add(c4)))

Alternative way is:
 t1 = c3.Add(c4);
 t2 = c2.Add(t1);
 t3 = c1.Add(t2);

This is also overhead, especially if the mathematical expression is large,

Converting it to C++ code will involve complicated mixture of function calls
Code will become less readable
Chances of human mistakes will become very high
Code produced will be very hard to maintain

The solution to this problem is simple that we can write normal operators like +,-,*,
and so on for our user defined classes as well,

It is “Operator overloading”

Using operator overloading we can perform basic operations (like addition,
subtraction, multiplication, division and so on…) on our own defined classes objects
in the similar way as we perform them on basic built-in types(like int, float, long,
double etc.).
C++ allows us to overload common operators like +, - or * etc…
With operator overloading Mathematical statements don’t have to be explicitly
converted into function calls as we had to do to add two complex no objects using
function call Add.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 144

Operator overloading

Assume that operator + has been overloaded then actual C++ code becomes:
 c1+c2+c3+c4
The resultant code is very easy to read, write and maintain

Operator overloading

C++ automatically overloads operators for pre-defined types as these have also been
implemented as classes by c++.
Example of predefined types:
int
float
double
char
long

Operator overloading

float x;
int y;
x = 102.02 + 0.09; // overloaded operator ‘+’ for float type will be called by c++
Y = 50 + 47; // overloaded operator ‘+’ for int type will be called by c++

The compiler probably calls the correct overloaded low level function for addition
i.e:
// for integer addition:
Add(int a, int b)

// for float addition:
Add(float a, float b)

Operator overloading

Operator functions are not usually called directly, they are automatically invoked to
evaluate the operations they implement by compiler.

List of operators that can be overloaded in C++:

List of operators that can’t be overloaded:

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 145

Reason: They take actual current object name, rather than value in their argument as
you have seen previously in the use of dot (‘.’) operator,

Student std;
int roll = std.getRollNo() // dot operator is performing on actual function
(getRollNo) of class Student that will vary from program to program.

?: is the only ternary operator in C++ and can’t be overloaded.

The precedence of an operator:

The precedence of an operator is order of evaluation which operator will be
evaluated first in expression.
The precedence of an operator is NOT affected due to overloading.
Example:

c1*c2+c3
c3+c2*c1
 In both lines multiplication * will be done first and then addition.

Associativity:

Associativity is NOT changed due to overloading
Following arithmetic expression always is evaluated from left to right:
c1 + c2 + c3 + c4

Unary operators and assignment operator are right associative, e.g:
a=b=c is same as a=(b=c)
All other operators are left associative:
c1+c2+c3 is same as
(c1+c2)+c3

Important things to consider:
Always write code representing the operator for example adding subtraction code
inside the + operator will create chaos.
Creating a new operator is a syntax error (whether unary, binary or ternary), you
cannot create $.

Arity of Operators

Arity (no of operands it works on) of an operator is NOT affected by overloading
Example:
Division operator will take exactly two operands in any case:
b = c / d

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 146

General syntax of Operators Overloading:

In case of member functions of a class:

return_type class_name::operator operator_symbol(parameters){
 /*code*/
}

In case of non member functions of a class (in this case we will make overloaded
operator function as friend function):

return_type operator operator_symbol(parameters){
 /*code*/
}

For example:

Complex& Complex::operator + (const Complex & c){
/*code*/
}

Complex& operator + (const Complex & c){
/*code*/
}

Binary Operators Overloading:

Binary operators act on two quantities.
Examples of binary operators:

General syntax of Binary Operators Overloading:

In case of member function of a class:

TYPE class_name::operator operator_symbol(TYPE rhs){
 /*code*/
}

In case of non-member function of a class:

TYPE class_name::operator operator_symbol(TYPE rhs1, TYPE rhs2){
 /*code*/
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 147

The “operator OP” must have at least one formal parameter of type class (user
defined type)

Following is an error:
int operator + (int, int);

Examples:

Overloading + operator:

class Complex{
private:
 double real, img;
public:
 …
 Complex operator +(const Complex & rhs);
};

Complex Complex::operator +(const Complex & rhs){
 Complex t;
 t.real = real + rhs.real;
 t.img = img + rhs.img;
 return t;
}

The return type is Complex so as to facilitate complex statements like:
Complex t = c1 + c2 + c3;

The above statement is automatically converted by the compiler into appropriate
function calls:
(c1.operator +(c2)).operator +(c3);

If the return type was void,
class Complex{
 ...
 public:
 void operator+(
 const Complex & rhs);
};

void Complex::operator+(const Complex & rhs){
 real = real + rhs.real;
 img = img + rhs.img;
};

We have to do the same operation c1+c2+c3 as:
c1+c2
c1+c3
// final result is stored in c1

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 148

Drawbacks of void return type:

Assignments and cascaded expressions are not possible
One of the existing objects is used to store result
Code is less readable
Debugging is tough
Code is very hard to maintain

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 149

Lecture No.17

Binary operators (cont.)

The binary operator is always called with reference to the left hand argument.

Example:
In c1+c2,
 c1.operator+(c2)
// c1 is calling overloaded + operator and c2 is being passed as
// reference in that function.
In c2+c1,
 c2.operator+(c1)
// c2 is calling overloaded + operator and c1 is being passed as
// reference in that function.

Adding basic data type to complex number class:

The overloading code we discussed before for complex no. class can add two
complex number objects but it can not handle the following situation:

Complex c1;
c1 + 2.325 (as we are adding basic data type double to complex no.)

To do this, we have to modify the Complex class.

Modifying the complex class:

class Complex{
...
Complex operator+(const Complex & rhs);
Complex operator+(const double& rhs);
};

Complex operator + (const double& rhs){
 Complex t;
 t.real = real + rhs;
 t.img = img;
 return t;
}

Now we can write both forms of statements,
Complex c2, c3;
Complex c1 = c2 + c3;
Complex c4 = c2 + 235.01;
But problem arises if we do the following:

Complex c5 = 450.120 + c1;
The + operator is called with reference to 450.120

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 150

No predefined overloaded + operator is there that takes Complex as an argument

Now if we write the following two functions to the class, we can add a Complex to a
real or vice versa :

Class Complex{
…
friend Complex operator + (const Complex & lhs, const double & rhs);
friend Complex operator + (const double & lhs, const Complex & rhs);
};

We have made them as friend so that we can write them as non member functions
and they are not called with respect to complex no. class object instead we pass both
arguments (complex no. object and double value) to this function compiler invoke
them according to arguments passed. Their implementation is similar,

Complex operator +(const Complex & lhs, const double& rhs){

 Complex t;
 t.real = lhs.real + rhs;
 t.img = lhs.img;
 return t;
}

Complex operator + (const double & lhs, const Complex & rhs){

 Complex t;
 t.real = lhs + rhs.real;
 t.img = rhs.img;
 return t;
}

Binary operators

So adding three overloaded versions for + operator as shown below allow us to write
code to,
Add two complex objects
Add complex object and a double value.

Class Complex{
…
Complex operator + (const Complex &);
friend Complex operator + (const Complex &, const double &);
friend Complex operator + (const double &, const Complex &);
};

Non members which are not friend call also achieve this functionality but in that case
we need extra four functions two getters and two setters each for real and imag part.
Compiler searches overloaded operator code in member function first and then in
non member functions.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 151

Binary operators

Other binary operators are overloaded in similar to the + operator as demonstrated
in the above examples
Example:

Complex operator * (const Complex & c1, const Complex & c2);
Complex operator / (const Complex & c1, const Complex & c2);
Complex operator - (const Complex & c1, const Complex & c2);

17.1. Overloading Assignment operator

As we know compiler can generate the following three functions for a class if
required on its own,

• Default Constructor (in case we have not written any other constructor for a
class)

• Copy Constructor
• Assignment Operator

However as we discussed previously if our class has any data member using
dynamic memory then we had to write our own code for default constructor, copy
constructor and similarly assignment operator as compiler generated version of these
functions performs shallow copy that creates dangling pointer, and memory leakage
issues in case of dynamic memory allocation.
We have already seen code of default constructor and copy constructor and the code
for overloaded assignment operator is similar,

Consider the string class:

class String{
 int size;
 char * bufferPtr;
public:
 String(); // default constructor
 String(char *); // overloaded constructor
 String(const String &); // copy constructor
 …
};
String::String(){

 bufferPtr = NULL;
 size = 0;
}

String::String(char * ptr){
 if(ptr != NULL){
 size = strlen(ptr);
 bufferPtr = new char[size+1];
 strcpy(bufferPtr, ptr);
 }

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 152

 else{
 bufferPtr = NULL;
size = 0;
}
}

String::String(const String & rhs){
 size = rhs.size;

 if(rhs.size != 0){
 bufferPtr = new char[size+1];
 strcpy(bufferPtr, ptr);
 }
 else
 bufferPtr = NULL;

}

int main(){
 String str1(“Hello");
 String str2(“World”);
 str1 = str2;78
 return 0;
}

Assignment operator (Shallow Copy)

Result of str1 = str2 (memory leak)

Second issue is dangling pointer issue as was in the case of copy constructor.

Modified Assignment Operator Code:

So we add overloaded assignment operator to perform deep copy as given below,

7 Here by term member wise copy we mean copying values of members of class one by one blindly
also called bitwise copy.
8 In ANSI c++ standard term member wise copy has also been used to indicate logical copy (the deep
copy)

str1

Hello

str2

World

Member wise copy
assignment

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 153

class String{
 …
public:
 …
 void operator =(const String &);
};

void String::operator = (const String & rhs){
 size = rhs.size;
 if(rhs.size != 0){
 delete [] bufferPtr; // resolving inaccessible memory issue
 bufferPtr = new char[rhs.size+1]; // creating new dynamic memory
 strcpy(bufferPtr,rhs.bufferPtr); // deep copy
 }
 else
 bufferPtr = NULL;

}

int main(){
 String str1(“ABC");
 String str2(“DE”), str3(“FG”);
 str1 = str2; // Valid…
 str1 = str2 = str3; // Error…
 return 0;
}

The problem in statement
str1 = str2 = str3 is,

str1=str2=str3 is resolved as:
str1.operator=(str2.operator=(str3))
Assignment operator is beiing called two times one for part str2 = str3 and then for
str1 = (str2 = str3) as assignment operator is right associate so first str2=str3 will be
executed, and str2 will become equal to str3, then first overloaded assignment
operator execution result will be assigned to s1,
str1.operator=(str2.operator=(str3))

Problem is when compiler will try to invoke second assignment operator to assign
value to str1 error will be returned becuase of void return type of oveloaded
assignment operator the reasn is explained below,
As we have studied before values are passed as parameters in operator overloadnig,
str2 = str3 means str2.operator = (str3)
// str3 is being called as parameter
and
str1 = str2 = str3 means str3.operator(str2.operator = (str3))
// str2.operator = (str3) is being passed as parameter

This issue can be resolved by introducing minor change in our code of copy
assignment operator to make it return String object instead of void as shown below,

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 154

class String{
…
public:
 …
 String & operator = (const String &);
};

String & String :: operator = (const String & rhs){
 size = rhs.size;
 delete [] bufferPtr;
 if(rhs.size != 0){
 bufferPtr = new char[rhs.size+1];
 strcpy(bufferPtr,rhs.bufferPtr);
 }
 else bufferPtr = NULL;
 return *this;
}

Now we are returning the value by reference of the object with respect to which this
overloaded assignment operator will be called. It will be str2 in the case of str2 = str3,
now when part str1 = (str2 = str3) will be executed, str2 will be passed as argument,
that will be assigned to str1.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 155

Lecture No.18
18.1. Self assignment problem:

In we assign same string to itself as done in main function below our program will
produce unexpected results as source and destination operands for copying are
same,

int main(){
 String str1("Fakhir");
 str1 = str1; // Self Assignment problem…
 return 0;
}

Result of str1 = str1

We can resolve this issue by adding a simple if condition to ensure that both strings
are not same
String & String :: operator = (const String & rhs){
 if(this != &rhs){
 size = rhs.size;
 delete [] bufferPtr; // deleting memory of left hand side operand
 if(rhs.bufferPtr != NULL){
 bufferPtr = new char[rhs.size+1];
 strcpy(bufferPtr,rhs.bufferPtr);
 // memory access violation or incorrect data copy
 }
 else bufferPtr = NULL;
 }
 return *this;
}

Now self-assignment is properly handled:

int main(){
 String str1("Fakhir");
 str1 = str1;
 return 0;
}

We can make return type String & as constant to avoid assignment to sub
expressions, like (str1 = str2) = str3

 …
// size = rhs.size;
// delete [] bufferPtr;

 …

???

str1

Fakhir

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 156

class String{
…
public:
 …
 const String & operator=9
 (const String &);
};

int main(){
 String s1(“ABC”),
 s2(“DEF”),
 s3(“GHI”);
 // Error…
 (s1 = s2) = s3;
 return 0;
}

But as we can do that with primitive types so we can allow assignment to sub
expressions by making return type as String & only as we have done before.

int main(){
 int a, b, c;
 (a = b) = c;
 return 0;
}

18.2. Other Binary operators

Overloading += operator:

class Complex{
 double real, img;
public:
Complex & operator+=(const Complex & rhs);
Complex & operator+=(const double & rhs);
...
};

Complex & Complex::operator += (const Complex & rhs){
 real = real + rhs.real;
 img = img + rhs.img;
 return * this;
}

Complex & Complex::operator += (const double & rhs){
 real = real + rhs;
 return * this;

9 We have seen previously that we should not return handle to any private data
member

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 157

}

int main(){
 Complex c1, c2, c3;
 c1 += c2;
 c3 += 0.087;
 return 0;
}

18.3. Friend Functions and Operator overloading

Friend functions minimize encapsulation as we can access private data of any class
using friend functions,
This can result in:

• Data vulnerability
• Programming bugs
• Tough debugging

Hence, use of friend functions must be limited we can overload operators without
declaring them friend functions of a class, for example the + operator can be defined
as a non-member, non-friend function as shown below,
(Three versions of overloaded + operator for Complex no class to handle three kinds
of statements)

• obj1 + obj2
o + obj1

• obj1 + 3.78

Complex operator + (const Complex & a, const Complex & b){
 Complex t = a; // creating temporary object t to store a+b
 return t += b; // returning t by reference
}

Complex operator + (const double & a, const Complex & b){
 Complex t = b;
 return t += a;
}

Complex operator + (const Complex & a, const double & b){
 Complex t = a;
 return t += b;
}
Other Binary operators

The operators
-=, /=, *=, |=, %=, &=, ^=, <<=, >>=, !=
can be overloaded in a very similar fashion.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 158

Lecture No.19

Overloading stream insertion extraction operators

19.1. Stream Insertion operator
Often we need to display the data on the screen c++ provides us insertion operator
(‘<<’)to put data on output stream default is console but it can be any file or network
socket as well to send data on network from our program.

Example:
int i=1, j=2;
cout << “i= ”<< i << “\n”;
cout << “j= ”<< j << “\n”;

19.2. Stream Extraction operator
We also need to get data from the console or from file or network this is achieved
through c++ provided stream extraction operator (‘>>’) that is used to get data from
input stream, again default input stream is from console.

Example:

int i,j;
cin >> i >> j; // getting value of i and j from user

Explanation:

cin and cout are objects of istream and ostream classes used for input and output
respectively, the insertion and extractions operators have been overloaded in istream
and ostream classes to do these tasks.

When we write lines like,
int i;
cin>> i;
cout << i;

Actually we are using istream and ostream class objects and using these objects we
are calling these classes overloaded (>> and <<) operators that have been overloaded
for all basic types like integer, float , long , double and char *.
We have seen previously that actual call of overloaded operators for a class takes
place by passing the objects to overloaded function as parameter like shown below,

cin>>i;
istream & operator >> (istream & in, int & i)
Here cin will be passed as istream object along with int i to be displayed and code of
this functions is returning istream object by reference & to accommodate multiple
input statement in a single line like,
int i , j;
cin>>i >> j;

as we did in our string class before.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 159

Same goes for insertion operator <<
cout << i;
ostream & operator >> (ostream & os, const int & i)

Stream insertion and extraction operator have been overloaded for basic data types
but if we try to use them for user defined data types like our Complex no. class
compiler will generate error as it will not find any overloaded operator code for our
complex no class

Complex c1;
cout << c1; // Error
cout << c1 << 2; // Error cascaded statement

// Compiler error: binary '<<' : no operator // defined which takes a right-hand operand of
type ‘class Complex’

Same error will be for stream extraction operator so will need to overload these two
operators (<< and >>) for our Complex no. class.

19.3. Overloading Stream Insertion Operator

First we try to overload insertion << operator as member function as we did before,

class Complex{
 …
public:
 …
 void operator << (const
 Complex & rhs);
};

But when we will call this overloaded function is main compiler will generate errors
as shown below,
int main(){
 Complex c1;
 cout << c1; // Error
 c1 << cout;
 c1 << cout << 2; // Error
 return 0;
};

class Complex{
 …
public:
 …
 void operator << (ostream &);
};

void Complex::operator << (ostream & os){

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 160

 os << ‘(‘ << real
 << ‘,’ << img << ‘)’;
}

Now the statement c1 << cout will work but it has two limitations,
Difficult to understand and remember statement syntax (c1 << cout ;)
Cascaded statements not possible (cout << c1 << 2 ;)

Better syntax is given below to resolve these two issues,

class Complex{
 ...
friend ostream & operator << (ostream & os, const Complex & c);
};

Stream Insertion operator
// we want the output as: (real, img)
ostream & operator << (ostream & os, const Complex & c){
 os << ‘(‘ << c.real
 << ‘,‘
 << c.img << ‘)’;
 return os;
}

ostream reference can not be const as it store the data in its buffer to insert on output
stream, however Complex reference will be constant as we are only getting data from
Complex object and inserting it to output stream.
Complex c1(1.01, 20.1), c2(0.01, 12.0);
cout << c1 << endl << c2;

Stream Insertion operator

Output:
 (1.01 , 20.1)
 (0.01 , 12.0)

Now cascading statements are also possible as given below,

 cout << c1 << c2;

 is equivalent to

 operator<<(operator<<(cout,c1),c2);

Because insertion operator is Left to right associative so first left part cout << c1 << c2
will be executed and then the next part as opposed to copy assignment operator that
will right associative.

Same thing can be done with stream extraction operator,

19.4. Overloading Stream Extraction Operator:

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 161

class Complex{
 ...
friend istream & operator >> (istream & i, Complex & c);
};

istream can not be cont and istream buffer will change as we will get data from it and
assign it to complex reference similarly Complex object can not be const for stream
extraction operator as well because we will add data to it and hence its state will
change.

Stream Extraction Operator Code:

istream & operator << (istream & in, Complex & c){
 in >> c.real;
 in >> c.img;
 return in;
}

Main Program:

Complex c1(1.01, 20.1);
cin >> c1;
// suppose we entered // 1.0025 for c1.real and // 0.0241 for c1.img
cout << c1;

Output:

(1.0025 , 0.0241)

19.5. Other Binary operators:

Overloading comparison operators (Equality and Inequality operators)

class Complex{
public:
 bool operator == (const Complex & c);
//friend bool operator == (const //Complex & c1, const Complex & c2);
 bool operator != (const Complex & c);
//friend bool operator != (const //Complex & c1, const Complex & c2);
 …
};

Equality operator:

bool Complex::operator ==(const Complex & c){
 if((real == c.real) &&
 (img == c.img)){

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 162

 return true;
 }
 else
 return false;
}

As non member friend function:

bool operator ==(const Complex& lhs, const Complex& rhs){
 if((lhs.real == rhs.real) &&
 (lhs.img == rhs.img)){
 return true;
 }
 else
 return false;
}

Inequality Operator:

bool Complex::operator !=(const Complex & c){
 if((real != c.real) ||
 (img != c.img)){
 return true;
 }
 else
 return false;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 163

Lecture No.20
Modified String Class:
We have seen the following string class till now,

class String{
private:
 char * bufferPtr;
 int size;
public:
 String();
 String(char * ptr);
 void SetString(char * ptr);
 const char * GetString();
 ...
};

int main(){
 String str1(“Test”);
 String str2;
 str2.SetString(“Ping”);
 return 0;
}

What if we want to change the string from “Ping” to “Pong”?? {ONLY 1 character to be
changed…}
Possible solution:

• Call: str2.SetString(“Pong”);
• This will delete the current buffer and allocate a new one
• Too much overhead if string is too big

Or, we can add a function which changes a character at nth location
class String{
 ...
public:
 void SetChar(char c, int pos);
 ...
};

 void SetChar(char c, int pos){
 if(bufferPtr != NULL){
 if(pos>0 && pos<=size)
 bufferPtr[pos] = c;
 }
}

Other Binary Operators

Now we can efficiently change a single character:

String str1(“Ping”);

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 164

str1.SetChar(‘o’, 2);
// str1 is now changed to “Pong”

20.1. Subscript [] Operator

There is another elegant solution present for this problem. It is subscript operator
that is used on basic char [] data type as shown below,
 char array[5] = “Ping”;
 array[1] = ‘o’;

We want to get same functionality for our own defined String class for this we
overload the subscript “[]” operator.

We want function like given below for subscript operator in our String class,

int main(){
 String str2;
 str2.SetString(“Ping”);
 str[2] = ‘o’;
// acting as l-value (left value so that we can assign it some value)
 cout << str[2];
// acting as r-value (we are reading value using subscript operator)
 return 0;
}

20.2. Overloading Subscript [] Operator

Subscript operator must be overloaded as member function of the class with one
parameter of integer type,

class String{
 ...
public:
 char & operator[](int);
 ...
};

char & String::operator[](int pos){
 assert(pos>0 && pos<=size);
 return stringPtr[pos-1];
}
int main() {
 String s1(“Ping”);
 cout <<str.GetString()<< endl;
 s1[2] = ‘o’;
 cout << str.GetString();
 return 0;
}

Output:

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 165

 Ping
 Pong

20.3. Overloading Function () operator

Must be a member function
Any number of parameters can be specified
Any return type can be specified
Operator() can perform any generic operation

Function Operator
class String{
 ...
public:
 char & operator()(int);
 ...
};

char & String::operator()
 (int pos){
 assert(pos>0 && pos<=size);
 return bufferPtr[pos-1];
}
int main(){
String s1(“Ping”);
char g = s1(2); // g = ‘i’
s1(2) = ‘o’;
cout << g << “\n”;
cout << str.GetString();
return 0;
}
Output:

i
Pong

20.4. Function Operator performing Sub String operation,

class String{
 ...
public:
 String operator()(int, int);
 ...
};

String String::operator()(int index, int subLength){
 assert(index>0 && index+subLength-1<=size);
 char * ptr = new char[subLength+1];

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 166

 for (int i=0; i < subLength; ++i)
 ptr[i] = bufferPtr[i+index-1];
 ptr[subLength] = ‘\0’;
 String str(ptr);
 delete [] ptr;
 return str;
}

int main(){
 String s(“Hello World”);
 // “<<“ is overloaded
 cout << s(1, 5);
 return 0;
}

Function Operator
Output:

 Hello

20.5. Unary Operators

Unary operators take one operand, they act on the object with reference to which
they have been called as shown below,
 & * + - ++ -- ! ~

Examples:

• --x
• -(x++)
• !(*ptr ++)

Unary Operators

Unary operators are usually prefix, except for ++ and --
++ and -- both act as prefix and postfix

Example:
h++;
g-- + ++h - --i;

General syntax for unary operators
 As Member Functions:
TYPE & operator OP (); // no argument the object with respect to which it is called
is taken as one operand
 As Non-member Functions:
Friend TYPE & operator OP (TYPE & t);
// one argument object with respect to which it is called.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 167

Overloading unary ‘-’:

class Complex{
...
Complex operator - ();
// friend Complex operator -(Complex &);
};

Complex Complex::operator -(){
 Complex temp;
 temp.real = -real;
 temp.img = -img;
 return temp;
}

Complex c1(1.0 , 2.0), c2;
c2 = -c1;
// c2.real = -1.0
// c2.img = -2.0

Unary ‘+’ is overloaded in the same way.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 168

Lecture No.21
Unary Operators

21.1. Behavior of ++ and -- for pre-defined types:

• Post-increment ++:
Post-increment operator ++ increments the current value and then returns the
previous value

• Post-decrement --: Works exactly like post ++

Example:
 int x = 1, y = 2;
 cout << y++ << endl;
 cout << y;

Output:
 2
 3

Example:
 int y = 2;
 y++++; // Error
 y++ = x; // Error

Behavior of ++ and -- for pre-defined types:

• Pre-increment ++:
Pre-increment operator ++ increments the current value and then returns it’s
reference

• Pre-decrement --:
Works exactly like Pre-increment ++

Example:
 int y = 2;
 cout << ++y << endl;
 cout << y << endl;

Output:
 3
 3

Example:
 int x = 2, y = 2;
 ++++y;
 cout << y;
 ++y = x;
 cout << y;

Output:
 4
 2

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 169

Example (Pre-increment):

class Complex{
 double real, img;
public:
...
 Complex & operator ++ ();
 // friend Complex & operator ++(Complex &);
};

Complex & Complex::operator++(){ // member function
 real = real + 1;
 return * this;
}

Complex & operator ++ (Complex & h){ // non member function
 h.real += 1;
 return h;
}

Example:

Complex h1, h2, h3;
++h1;

Function operator++() returns a reference so that the object can be used as an lvalue

++h1 = h2 + ++h3;

How does a compiler know whether it is a pre-increment or a post-increment?

A post-fix unary operator is implemented using:
Member function with 1 dummy int argument
OR
Non-member function with two arguments

In post increment, current value of the object is stored in a temporary variable
Current object is incremented
Value of the temporary variable is returned

21.2. Post-increment operator:

class Complex{
...
 Complex operator ++ (int);
// friend Complex operator ++(const Complex &, int);
};

Complex Complex::operator ++ (int){
 complex t = *this;

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 170

 real += 1;
 return t;
}

Complex operator ++ (const
 Complex & h, int){
 complex t = h;
 h.real += 1;
 return t;
}

How does a compiler know whether it is a pre-increment or a post-increment?

The dummy parameter in the operator function tells compiler that it is post-
increment
Example:
Complex h1, h2, h3;
h1++;
h3++ = h2 + h3++; // Error…

The pre and post decrement operator -- is implemented in exactly the same way

21.3. Type Conversion
The compiler automatically performs a type coercion of compatible types
e.g:
int f = 0.021;
double g = 34;
// type float is automatically converted into int. Compiler only issues a warning…

Type Conversion
The user can also explicitly convert between types:

int g = (int)0.0210;
double h = double(35);

// type float is explicitly converted (casted) into int. Not even a warning
// is issued now…

Type Conversion

For user defined classes, there are two types of conversions
From any other type to current type
From current type to any other type

We can do the following type conversion by our self,
Conversion from any other type to current type:
Requires a constructor with a single parameter
For example,
 String str = 135;
Conversion from current type to any other type:
Requires an overloaded operator

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 171

For example,
 String str;
 char * ptr = str;

Conversion from other type to current type (int to String):

class String{
...
public:
 String(int a);
 char * GetStringPtr()const;
};
String::String(int a){
 cout << "String(int) called..." << endl;
 char array[15];
 itoa(a, array, 10);
 size = strlen(array);
 bufferPtr = new char [size + 1];
 strcpy(bufferPtr, array);
}
char * String::GetStringPtr() const{
 return bufferPtr;
}
int main(){
 String s = 345;
 cout << s.GetStringPtr() << endl;
 return 0;
}

Output:

String(int) called…
345

Automatic conversion like shown above using constructor has drawbacks conversion
takes place transparently even if the user didn’t wanted the conversion for example
see the code below, in it user can write the following code to initialize the string with
a single character:

int main(){

 String s = ‘A’;
// ASCII value of A that is 65 is being taken automatically it may be what the user //
wants, perhaps user intent was String s = “A” to store A in the string object
// but instead 65 is being stored

 cout << s.GetStringPtr()<< endl << s.GetSize() << endl;
 return 0;

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 172

}

Output:

String(int) called…
65
2

Keyword explicit

There is a mechanism in C++ to restrict automatic conversions like this using
constructor code it is to use keyword explicit with such constructors if we have used
this keyword then casting must be explicitly performed by the user.
Keyword explicit only works with constructors.

Example:
class String{
 …
public:
 …
 explicit String(int);
};

int main(){
 String s;
 s = ‘A’; // Error…
 return 0;
}

int main(){
 String s1, s2;
 s1 = String(101); // valid, explicit casting…
 // OR
 s2 = (String)204;
 return 0;
}

Type Conversion

There is another method for type conversion:
“Operator overloading”
It is used for converting from current type (user defined) to any other basic type or
user defined type.

General Syntax:

TYPE1::operator TYPE2();
Like,
 String::operator char * (); // TYPE1 = String , TYPE2 = char *

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 173

It will convert our string object to char *.

We write such functions as member function of the class.
NO return type and arguments are specified
Return type is implicitly taken to be TYPE2 by compiler

Type Conversion

Overloading pre-defined types:
class String{
 …
public:
 …
 operator int();
 operator char *();
};
String::operator int(){
 if(size > 0)
 return atoi(bufferPtr);
 else
 return -1;
}

String::operator char *(){
 return bufferPtr;
}

int main(){
 String s("2324");
 cout << (int)s << endl << (char *)s;
 // int a = (int)s;
 // int a = int (s);
 return 0;
}

Output:
 2324
 2324

21.4. User Defined types:

User-defined types can be overloaded in exactly the same way
Only prototype is shown below:

class String{
 …
 operator Complex();
 operator HugeInt();
 operator IntVector();

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 174

};

21.5. Drawbacks of Type Conversion Operator:

class String{
 …
public:
 …
 String(char *);
 operator int();
};

int main(){
 String s(“Fakhir");
 // << is NOT overloaded
 cout << s; // compiler is automatically converting s to int
 return 0;
}

Output:
 Junk Returned…

To avoid this problem DO NOT use type conversion operators instead use separate
member function for such type conversion as shown below,

Modifying String class:

class String{
 …
public:
 …
 String(char *);
 int AsInt();
};
int String::AsInt(){
 if(size > 0)
 return atoi(bufferPtr);
 else
 return -1;
}
int main(){
 String s(“434");
 // << is NOT overloaded
 cout << s; //error
 cout << s.AsInt();
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 175

Lecture No.22

22.1. Practical implementation of Inheritance in c++

Topics to be discussed in this lecture are,

• Inheritance in Classes
• UML Notation of Inheritance
• Types of Inheritance in c++
• IS A relationship
• Accessing members
• Allocation in memory
• Constructors
• Base class initializers
• Initializing members
• Destructors
• Order of execution constructors and destructors
• Examples of C++ implementation of inheritance

22.2. Inheritance in Classes

If a class B inherits from class A, then B contains all the characteristics (information
structure and behavior) of class A.
The class whose behavior is being inherited is called base class and the class who
inherits the behavior of base class is called derived class. Base class is also called
parent class and child class is called also derived class
Besides inherited characteristics, derived class may have its own unique
characteristics

22.3. UML Notation

We use arrow from derived class to the parent class to show inheritance as shown
below,

22.4. Inheritance in C++

In c++ we can inherit a class from another class in three ways,

• Public
• Private
• Protected

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 176

22.5. “IS A” Relationship

Inheritance represents “IS A” relationship for example “a student IS A person”.
In general words we can say that inheritance represents,

“Derived class IS A kind of Parent class”

C++ Syntax of Inheritance

 class ChildClass
 : public BaseClass{
 ...
 };

Example

class Person{
 ...
};
class Student: public Person{
...
};

Accessing Members
Public members of base class become public member of derived class.
Private members of base class are not accessible from outside of base class, even in
the derived class (Information Hiding)
Example
In the code given below Student and Teacher classes has been derived from single
Person class,

Person

Student Teacher

class Person{
 char *name;
 int age;
 ...
public:
 const char *GetName() const;
 int GetAge() const;
 ...
};

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 177

Example

void Student::Print()

{
 cout << name << “ is in” << “ semester ” << semester;
}
corrected Code:
void Student::Print()
{
 cout << GetName() << “ is in semester ” << semester;
}
int main(){
 Student stdt;

 stdt.semester = 0;//error
 stdt.name = NULL; //error
 cout << stdt.GetSemester();
 cout << stdt.GetName();

 return 0;
}

Explanation of above code (char * data type)

In C++ char arrays (char []) are handled in two ways one way is statically using
statements like,
char name[30]; // static array of length 30 characters
or dynamically as shown below,
char * name;
name = new char[30];
In dynamic creation of arrays we simply store char * in class and assign it a dynamic
memory according to our need using new operator.

Error

class Teacher: public
Person{

 char * dept;
 int course;
 ...
public:
 char * GetDept() const;
 int GetCourse() const;
 void Print() const;
 ...
};

class Student: public
Person{

 int semester;
 int rollNo;
 ...
public:
 int GetSemester() const;
 int GetRollNo() const;
 void Print() const;
 ...
};

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 178

Allocation in Memory

The object of derived class is represented in memory as follows

Every object of derived class has an anonymous object of base class

Constructors
• The anonymous object of base class must be initialized using constructor of

base class
• When a derived class object is created the constructor of base class is executed

before the constructor of derived class

Example

class Parent{
public:
 Parent(){ cout <<
 “Parent Constructor...”;}
};
class Child : public Parent{
public:
 Child(){ cout <<
 “Child Constructor...”;}
};

Base class constructor initializes
the anonymous (base class) object

Derived class constructor
initializes the derived class object

base member1
base member2

...

derived member1
derived member2

...

Derived Class Object

Data members of base
class

Data members of derived
class

base member1
base member2

...

derived member1
derived member2

...

Derived Class Object

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 179

int main(){
 Child cobj;
 return 0;
}

Output:

Parent Constructor...
Child Constructor...

Constructor

• If default constructor of base class does not exist then the compiler will try to
generate a default constructor for base class and execute it before executing
constructor of derived class

• If the user has given only an overloaded constructor for base class, the
compiler will not generate default constructor for base class

Example
class Parent{
public:
 Parent(int i){}
};
class Child : public Parent{
public:
 Child(){}
} Child_Object; //ERROR

Definition of Some Terms:

Default constructor: Default constructor is such constructor which either has no
parameter or if it has some parameters these have default values. The benefit of
default constructor is that it can be used to create class object without passing any
argument.
Implicit Default constructor:
Compiler generates implicit default constructor for any class in case we have not
given any constructor for the class.
Explicit Default constructor:
If user has given constructor for any class without any arguments or with all
arguments with default values then it is also default constructor according to
definition but it is explicit (user defined) default constructor.

Now if a base class has only non-default constructor (constructor with parameters
without default values), then when we will create object of any class derived from
this base class compiler will not be able to call base class constructor as base class has
no default constructor (constructor that can be called without giving any
parameters) so compiler will generate error.
We can avoid this error by calling base class non-default constructor in derived class
constructor initializer list by ourself.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 180

Base Class Initializer
• C++ has provided a mechanism to explicitly call a constructor of base class

from derived class

• The syntax is similar to member initializer and is referred as base-class
initialization

Example
class Parent{
public:
 Parent(int i){…};
};
class Child : public Parent{
public:
 Child(int i): Parent(i)
 {…}
};

Example
class Parent{
public:
 Parent(){cout <<
 “Parent Constructor...”;}
 ...
};
class Child : public Parent{
public:
 Child():Parent()
 {cout << “Child Constructor...”;}
 ...
};

Base Class Initializer

• User can provide base class initializer and member initializer simultaneously

Example
class Parent{
public:
 Parent(){…}
};
class Child : public Parent{
 int member;
public:
 Child():member(0), Parent()
 {…}
};

Base Class Initializer

• The base class initializer can be written after member initializer for derived
class

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 181

• The base class constructor is executed before the initialization of data
members of derived class.

Initializing Members
• Derived class can only initialize members of base class using overloaded

constructors
o Derived class can not initialize the public data member of base class

using member initialization list
Example
class Person{
public:
 int age;
 char *name;
 ...
public:
 Person();
};

Example
class Student: public Person{
private:
 int semester;
...
public:
 Student(int a):age(a)
 { //error
 }
};

Reason

• It will be an assignment not an initialization

Destructors

• Destructors are called in reverse order of constructor called
• Derived class destructor is called before the base class destructor is called

Example
class Parent{
public:
 Parent(){cout <<“Parent Constructor”;}
 ~Parent(){cout<<“Parent Destructor”;}
};

class Child : public Parent{
public:
 Child(){cout << “Child Constructor”;}
 ~Child(){cout << “Child Destructo”;}
};

Example

Output:
Parent Constructor

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 182

Child Constructor
Child Destructor
Parent Destructor

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 183

Lecture No.23

Lecture Contents:

• Protected Access Specifier in Inheritance
• Implicit and explicit use of IS A relationship

Previous lecture discussion:

Definition of Some Terms:

Default constructor: Default constructor is such constructor which either has no
parameter or if it has some parameters these have default values. The benefit of
default constructor is that it can be used to create class object without passing any
argument.

Implicit Default constructor:
Compiler generates implicit default constructor for any class in case we have not
given any constructor for the class.

Explicit Default constructor:
If user has given constructor for any class without any arguments or with all
arguments with default parameters then it is also default constructor according to
definition but it is explicit default constructor.

Now if a base class has only non-default constructor (implicit or explicit), then when
we will create object of any class derived from this base class compiler will not be
able to call base class constructor as base class has no default constructor (
constructor that can be called without giving any parameters) so compiler will
generate error.
We can avoid this error by calling base class non-default constructor in derived class
constructor initializer list.

23.1. Accessing base class member functions in derived class:

Public methods of base class can directly be accessed in its derived class (derived
class interface consists of its own member functions plus member functions of its
base class).

However there are some class members functions that are written just as helper
functions for other class member functions and they need not to be called directly
using class object for example,

1. Suppose some function in our class wants to get some input from user in the
form of integers only for this we can write another function that checks
whether the entered string by user consists of integers only.

2. Suppose our class has implement encryption of data, and it encodes and

decodes data using some functions these functions will also to helper
functions and should not be accessible to outside word.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 184

3. Similarly take the example of our Date class we studied in lecture no.13 has a

function to check whether an year is leap year or not and according to result
it allows or disallows the days of February to be 29. This bool IsLeapYear(int
) will used by other members functions of Date class like void setDay(int)
and void addDay(int), this functions is also helper function.

These helper functions are made private as there is no need to access them using
class object directly as shown below,

class Date{
 int day, month, year;
 static Date defaultDate;
public:
 void SetDay(int aDay);
 int GetDay() const;
 void AddDay(int x);
 …
 static void SetDefaultDate(int aDay,int aMonth, int aYear);
 ...
private:

 bool IsLeapYear(int);
};

int main(){
 Date aDate;
 aDate.IsLeapYear(year);
 return 0;
}
Making such functions private works fine as long as we don’t derive any child class
from this class, but when we derive some class for specialization these functions will
not be accessible in the derived class as private members functions are accessible
only in those class to which they belong but these functions are needed in derived
classes as well example is given below,

Example:
Suppose we specialize our Date class by adding a child class SpecialDate to handle
only working days in the an year, we will need to use IsLeapYear function in this
child class as well but IsLeapYear function is private member function of base Date
class (in accordance with the principles of data hiding and encapsulation), so it will
not be accessible in child class as shown below,

class SpecialDate: public Date{
 …
public:
 void AddSpecialYear(int i){
 ...
 if(day == 29 && month == 2
 && !IsLeapyear(year+i)){ //ERROR!
 ...

Error:
bool IsLeapYear(int) is private method of Date
class so it is not accessible here.

bool IsLeapYear(int) is
private method of Date class
so it is not accessible in its
derived SpecialDate class.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 185

 }
 }
};

Solution:

Modify Access Specifier
One solution of this problem is that we make “IsLeapYear” function public from
private as shown below,

class Date{
public:
 ...
 bool IsLeapYear(int);
};
void SpecialDate :: AddSpecialYear (int i) {
 ...
 if(day == 29 && month == 2
 && !IsLeapyear(year+i)){
 ...
 }
}

But the problem with making this function public is that now this functions will be
accessible to everyone using Date or SpecialDate class object but we don’t want this,
we want that our base or derived class can access this function only. the solution of
this problem is protected access specifier.

23.2. “protected” access specifier:

c++ provides us with protected access specifier for these sorts of situations; protected
access specifier ensures that function in base class is accessible in derived class of this
base class and NOT outside of this class. So we can say that scope of protected access
specifier is somewhere in between private and public access specifiers it is similar to
private in the sense that it doesn’t allow the external world to access protected
member and it is similar to public access specifier in the sense that it ensures that
protected member is accessible in derived classes of the protected member class.

Protected members of a class can not be accessed outside the class but only in the
derived class of that class. Protected members of base class become protected
member of derived class.10

class Date{
 …

10 This is the case in public and protected inheritance whereas in private inheritance protected members
become private members of derived class public, protected and private inheritance has been discussed
in detail in lecture no.26.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 186

protected:
 bool IsLeapYear(int);
};

int main(){
 Date aDate;
 aDate.IsLeapYear(); //Error
 return 0;
}
void SpecialDate :: AddSpecialYear (int i) {
 ...
 if(day == 29 && month == 2
 && !IsLeapyear(year+i)){
 ...
 }
}

Disadvantages of protected Members:

Breaks encapsulation

The protected member is part of base class’s implementation as well as derived
class’s implementation. So we can say that protected members breaks the principle of
Encapsulation to some extent which says “A class data members and functions
should be encapsulated in the class itself”

23.3. “IS A” Relationship

We have seen previously that Public inheritance models the “IS A” relationship for
example see the diagram below,

Here,

• Line IS A Shape

Shape

Circle

Triangle Line

Now it is ok to call function bool
IsLeapYear in derived class
SpecialDate.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 187

• Circle IS A Shape
• Triangle IS A Shape

Generally we can say that,

“Derived Object IS A kind of Base Object”

It means that derived class object is special kind of base object with extra properties
(attributes and behaviour) so derived object has its own properties as well as
properties of its base object this is the reason why base class constructor is also called
while creating derived class object.

We can use derived class object where base class object is required as derived class
object has implicit base class object also but the reverse of this statement is not true,
we can not use base class object where derived class object is required because if we
create base class it will only have base part not its derived class part.

Example

See the code below in it first we are using derived class object sobj to call methods
GetName and GetRollNo belonging to classes Person and Student respectively, this is
in accordance to the principle of inheritance that says child class object can access
public and protected members of base class.

class Person {
 char * name;
public: ...
 const char * GetName();
};
class Student: public Person{
 int rollNo;
public: ...

Implicit
Base Class

Object

Base Class Object Derived Class Object

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 188

 int GetRollNo();
};

int main()
{
 Student sobj;
 cout << sobj.GetName();
 cout << sobj.GetRollNo();
 return 0;
}

Now as we discussed previously that inheritance represents IS A relationship
meaning relationship like,

Derived class “IS A” Base class

Hence Derived Class Object can be used where its Base Class object is required but
Base Class Object can not be used where Derived Class Object is required example
given below explain this point,

int main(){
 Person * pPtr = 0; // base class pointer
 Student s; // derived class object
 pPtr = &s;
/* assigning derived class object address to base class pointer derived class pointer is
converted to base class pointer */
 cout << pPtr->GetName(); // calling base class methods using base class
reference
 return 0;
}

So parent class object reference can hold the reference of derived class object as
shown below,

pPtr = &s;

But parent class reference will have access only to the interface of parent class, if we
try to access derived class functions from this parent class reference error will be
generated as shown below,

int main(){
 Person * pPtr = 0;
 Student s;
 pPtr = &s;
 cout << pPtr->GetRollNo(); //Error
 return 0;
}

Compiler use the concept of static typing to decide the access to member functions as
described below,

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 189

23.4. Static Type

The type that is used to declare a reference or pointer is called its static type

1. In Person * pPtr = 0;
The static type of pPtr is Person * (Person pointer).

2. Student s;
The static type of s is Student.

Member Access

As the static type of pPtr is Person so following call is erroneous

pPtr->GetRollNo();

As pPtr static type is Person pointer and in Person class there is no GetRollNo()
function so compiler will generate an error.

In c++ we can also use references (called as reference identifiers or reference
variables or reference constants) to any type instead of pointers, for example see the
example below where the reference of base object is being initialized with derived
class object,

Example (Explicit use of IS A relationship)

int main(){

Person p;
Student s;
Person & refp = s;

/*Here refp is becoming reference (alias) of Student object but as its own static

cout << refp.GetName();
cout << refp.GetRollNo(); //Error
return 0;
}

Example (Implicit use of IS A relationship)

 Play(const Person& p){
 cout << p.GetName()
 << “ is playing”;
}
void Study(const Student& s){
 cout << s.GetRollNo()
 << “ is Studying”;
}

int main(){
Person p;

type is Person so it can access member functions of Person class only. */

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 190

Student s;
Play(p); /* parameter of function Play is being initialized with argument p */
Play(s);
/* parameter of function Play is being is initialized with argument s as student IS
A kind of person*/
return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 191

Lecture No.24

Lecture Overview:

Protected Access Specifier
IS-A relationship
Copy constructor and inheritance

Protected Members:

Protected members are somewhere between public and private members. They are
used in inheritance.
From outside the class no once can access protected access specifier however any
publicly derived class can access the protected access specifiers and they behave as
protected members of derived class.
In a single standalone class protected access specifier has no significance but when
we derive any class from this class protected access specifier becomes significant.

IS-A relationship:

Inheritance is used when two classes have IS A kind of relationship between two
classes.
In c++ public inheritance is used for IS A relationship.
We can use publicly derived class pointer for its base class pointer because derived
class is a kind of base class or in other words derived class is base class with some
extra properties. In case of “Student IS-A Person relationship” student has all
properties of person for example student walks, eats, drinks and so on as person
does but student has some extra properties like student studies is some study
program.

(We can assign derived class pointer to its base class pointer because for compiler it
is explicit manifestation of IS-A relationship.)

Static type of an identifier:

Static type of an identifier is type used to declare it.
Static type of an identifier is the type used for declaration of that identifier for
example,

Student * student;
Person * person;

Here static type of pointer student is Student and person is Person.

Access to members of an identifier is governed by static type of that identifier,
compiler uses static type for an identifier to allow the identifier to use different
members (functions and variables).

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 192

Copy Constructor:11

Copy constructor is a member function of a class that is used to create an object of
that class by copying values from an already created object.

Copy Constructor in case of Inheritance:

Consider the code given below having two classes Person and Student in this code
Person is base and Student is derived class. Person has one attribute name to store
name of the person and Student has one attribute major to store study program of
the student,

#include <iostream>
using namespace std;

/*Listing 24.1 */
/*Program to demonstrate Copy Constructor in case of base and derived classes. */

/* Base Class Person */
class Person{
 char * name;
public:
 Person(char * = NULL);
 const char * GetName() const;
 ~Person();
};

Person::Person(char * nm): name(NULL){

 if (nm != NULL)
 {
 name = new char[strlen(nm)+1];
 strcpy(name,nm);
 }

 }
const char * Person::GetName() const {
 if (name != NULL)
 return name;
 else

11 See Lecture No.9 for more details about copy constructor.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 193

 return "NULL";

 }

Person::~Person(){
delete []name;
 }

/* Child Class Student */
class Student: public Person{
 char* major;
public:
 Student(char * , char *);
 void Print() const;
 ~Student();
};

Student::Student(char *_name, char *_maj) : Person(_name), major(NULL)
{
 if (_maj != NULL) {
 major = new char [strlen(_maj)+1];
 strcpy(major,_maj);
 }
}
void Student::Print() const{
 cout << "Name: "<< GetName() << endl;
 cout << "Major: " << major << endl;

}

Student::~Student(){
 delete []major;
}

int main(){

 Student sobj1("Ali","Computer Science");
 Student sobj2 = sobj1;
 //Student sobj2(sobj1); Similar to above statement to call copy constructor
 sobj2.Print();
 system("PAUSE");
 return 0;

}

Code Description:

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 194

The code has two classes Person and Student this code is also manifestation of IS-A
kind of relationship (public inheritance in c++).

Person class has an attribute name to store name of any person as all persons have
specific names.
Student class has an attribute major to store the major of the student.

Person has the following in its public interface:

Constructor // one parameter name with default value NULL
GetName() // getter function
Destructor() // used due to dynamic memory allocation

Student has the following in its public interface:

Constructor // two parameter constructor with default values NULL
Print() // showing student attributes
Destructor // used to free memory dynamically allocated

The constructor’s code of student class is as shown below,

Student::Student(char *_name, char *_maj) : Person(_name), major(NULL)
{
 if (_maj != NULL) {
 major = new char [strlen(_maj)+1];
 strcpy(major,_maj);
 }
}

The constructor of student class is taking two char *’s as inputs, one is name of
student and second is major subject of that student.
In initialization list we are initializing major with null value and we are also calling
base class constructor of person class as we discussed today base class part of an
objects is created first and then its derived class part is created.
Then there is code of student constructor in which are checking maj for NULL if it is
not (some value has passed for maj subject) we are creating memory equal to passed
value and assigning it to char * major.

The print function code of student class is given below,

void Student::Print() const {
 cout << "Name: "<< GetName() << endl;
 cout << "Major: " << major << endl;

}
In print method we are doing two things first we are printing student name using
person GetName method and then we are showing student major.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 195

The main function is given below,

int main(){

 Student sobj1("Ali", "Computer Science");
 Student sobj2 = sobj1;
 //Student sobj2(sobj1); Similar to above statement to call copy
constructor
 sobj2.Print();
 system("PAUSE");
 return 0;

}

In main we are creating one object of Student class with name sobj1 with values
“Ali” and “Study Program” for name and major,

Student sobj1("Ali","Computer Science");

Then we are assigning sobj1 to a new student object sobj2 with the line given below,

Student sobj2 = sobj1;

This line will invoke copy constructor of Student class as we are creating an object of
student class in terms of another object that already exist for student class.

This line is exactly same as commented line,

//Student sobj2(sobj1);

Here one object sobj1 values have been assigned to newly created object using
default compiler generated copy constructor, this copy constructor is created by
compiler in the same way as compiler generates default constructor in case user has
not defined default constructor for that class.

Then we are calling print method of student class to ensure that we values have been
assigned to new object as well,

sobj2.Print();

The output of this code will be as follows:

C++ Out Put:

Name: Ali
Major: Computer Science

As we know compiler may generate copy constructor for any class, if needed. In this
case when we are assigning derived class object sobj1 to another newly created

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 196

object sobj2, derived class object Copy constructor will be invoked which in turn will
call the copy constructor of the Base class as base class anonymous object is created
first and then derived part is created.

Shallow Copy

Compiler by default uses shallow copy so compiler generated default copy
constructor will also use shallow copy which simply copies all values of already
existing object to newly created object as shown in the diagram below,

Line No.2: Student sobj2 = sobj1; [Shallow Copy]

Sobj1

char * name

Char * major

Ali

Computer Science

Memory

Line No.1: Student sobj1("Ali","Computer Science");

Fig 24.1 In shallow copy both char * name and char * major of both objects sobj1 and sobj2 will
start pointing to the same memory location.

Sobj2

char * name

char * major

Sobj1

char * name

Char * major

Ali

Computer Science

Memory

Shallow Copy

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 197

Compiler generates copy constructor for derived class, calls the copy constructor of
the base class and then performs the shallow copy of the derived class’s data
members.

The problem with shallow copy remains same as was in the case of copy constructor
for a single class that it doesn’t work correctly in case of dynamic memory because in
that case we are only storing pointer of the dynamic memory in class when we will
do copy only the pointer value will be copied and pointers of both objects of student
class will start pointing to same memory location as shown in the diagram now
suppose obj1 is destroyed it frees it’s memory allocated using new operator using its
destructor the result will be that obj2 pointer will also become invalid. The solution is
Deep Copy in deep copy we will write copy constructor code by our self to ensure
that when one object is copied from other object new dynamic memory is allocated
for it as well so that it doesn’t rely on previous object memory.

Deep Copy:

Let we first write code for deep copy in our base class Person.
For this we will write our own copy constructor as we wrote our own default
constructor as shown below,

Person::Person(const Person & rhs): name(NULL){
 /* Code for deep copy*/
 if (rhs.name != NULL)
 {
 name = new char[strlen(rhs.name)+1];
 strcpy(name,rhs.name);
 }

 }

int main(){

 Student sobj1("Ali","Computer Science");
 Student sobj2 = sobj1;
 //Student sobj2(sobj1); Similar to above statement to call copy constructor
 sobj2.Print();
 system("PAUSE");
 return 0;

}

When we will run this code the output will again be same,

C++ Out Put:

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 198

Name: Ali
Major: Computer Science

In this case as we have written our self written copy constructor of base class so
Compiler will generate copy constructor for only derived class, will call our written
copy constructor of the base class so it will perform the Shallow copy for derived
class’s data members and Deep copy for base class as our base class has our own
written copy constructor with Deep copy code.

Now let us write our own copy constructor for derived class as well as shown below,

Student::Student(const Student & rhs) : major(NULL)
{
 if (rhs.major != NULL) {
 major = new char [strlen(rhs.major)+1];
 strcpy(major,rhs.major);
 }
}

int main(){

 Student sobj1("Ali","Computer Science");
 Student sobj2 = sobj1;
 //Student sobj2(sobj1); Similar to above statement to call copy constructor
 sobj2.Print();
 system("PAUSE");
 return 0;

}

But now when we executed this code the output is as follows:

C++ Out Put:

Name: NULL
Major: Computer Science

Name of sobj2 was not copied from sobj1 or we can say that only copy constructor of
derived class executed but base class copy constructor did not execute.
The reason for this error is that we have not explicitly called copy constructor of base
class from derived class. And compiler called base class default constructor by itself
to complete the object creation process.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 199

We can check whether base class default constructor was called or not by adding a
cout statement in our base class default constructor as shown below,

24.1. Modified Default Constructor
Person::Person(char * nm): name(NULL){

 if (nm != NULL)
 {
 name = new char[strlen(nm)+1];
 strcpy(name,nm);
 }
 else {
 cout<<"In Person default constructor..\n";
 }

 }

int main(){

 Student sobj1("Ali","Computer Science");
 Student sobj2 = sobj1;
 //Student sobj2(sobj1); Similar to above statement to call copy constructor
 sobj2.Print();
 system("PAUSE");
 return 0;

}

Now when we executed this code the output was,

C++ Out Put:
In Person default constructor..
Name: NULL
Major: Computer Science

Now we modify our derived class copy constructor code such that it explicitly call
copy constructor of base class from its initialization list,

Example

Person::Person(const Person & rhs): name(NULL){

 if (rhs.name != NULL)
 {
 name = new char[strlen(rhs.name)+1];

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 200

 strcpy(name,rhs.name);
 }

 }

Student::Student(const Student & rhs) : Person(rhs), major(NULL)
{
 if (rhs.major != NULL) {
 major = new char [strlen(rhs.major)+1];
 strcpy(major,rhs.major);
 }
}

Now our main function shown previously will give following output

C++ Out Put:

Name: Ali
Major: Computer Science

The output again is correct now so this is our final code with user defined copy
constructors for both base and derived class and derived class copy constructor
calling base class copy constructor.

In table below we have shown the steps number wise involved in creation of an
object using copy constructor when we executed following lines in main,

int main(){

 Student sobj1("Ali","Computer Science");
 Student sobj2 = sobj1;
// Here copy constructor of student class will be called
 return 0;

}

3 Person::Person(const Person &rhs) :
4 name(NULL) {
5 //code for deep copy
 }
1 Student::Student(const Student & rhs) :
6 major(NULL),
2 Person(rhs){
7 //code for deep copy
 }

Table 24.1

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 201

Assignment Operator

Compiler also generates code for assignment operator for a class, if needed. In the case
of inheritance when we assign one derive class object to another derive class object
compiler uses assignment operator. Derived class copy assignment operator is
invoked which in turn calls the assignment operator of the base class.
There are lot of similarities between copy constructor and assignment operator these
are,
In case our class involves dynamic memory allocation we had to write assignment
operator code by our self as we had to write the user defined code for copy
constructor.

Similarly derived class assignment operator has to call base class assignment
operator to complete the assignment process as derived class also contains implicit
base class part in case of compiler generated assignment operator compiler does it by
itself but if case we programmer has to call assignment operator of base class
explicitly in case of user defined assignment operator.

The example given below explain this concept in detail,

Example

class Person{
public:
 Person & operator =
 (const Person & rhs){
 cout << “Person Assignment”;
 // Code for deep copy assignment
 }
};
Example
class Student: Public Person{
public:
 Student & operator = (const Student & rhs){
 cout<< “Student Assignment”;
 // Code for deep copy assignment
 }
};
int main()
{
 Student sobj1, sboj2(“Ali”, “CS”);
 sobj1 = sobj2;
 return 0;
}

Output

Student Assignment

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 202

The assignment operator of base class is not called

Calling Base Class member functions:
We can not call base class assignment operator from derived class using initialization
list.

There are two ways of calling base class function from derived class one is calling
base class function explicitly (mentioning base class name) and the other is calling
base class function implicitly (without mentioning base class name).

Explicit Way:

In the code below we are calling base class const char *GetName() method explicitly,

const char * Person::GetName() const {

 ...
 ...

}

void Student::Print() const{

 //cout << "Name: "<< GetName() << endl;
 cout << "Name: "<< Person::GetName() << endl;

/*explicit call to base class GetName method (if we even do not write base class
name even then call will work as derived class can call its base class public
methods*/

 cout << "Major: " << major << endl;

}

Implicit Way:

We can call the same method implicitly as well as shown below,

const char * Person::GetName() const {

 ...
 ...

}
void Student::Print() const {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 203

 /* Implicit call to base class GetName method using this pointer*/
 cout <<"Name: "<<static_cast<const Person &>(*this).GetName()<<endl;
 cout << "Major: " << major << endl;

}

Assignment Operator

In the same way we can also call assignment operator in base class in two ways also,
Calling assignment operator of base class explicitly
Calling assignment operator of base class implicitly

Explicitly Calling operator =

Student & Student ::operator =(Student & rhs){

 Person::operator = (rhs); /*Explicit call to base class*/
 /*Student object rhs will be converted to Person object in function call
 above as derived class IS A is a kind of Base class*/

 /*Implicit calls to base class part*/
 //static_cast<Person &>(*this) = rhs;
 //Person(*this) = rhs;
 //(Person)*this = rhs;
 /*All the above three statements have the same meaning.*/

 if (major != NULL)
 delete [] major; // deleting previous allocated memory for major

 if(rhs.major != NULL){
 major = new char[strlen(rhs.major)+1];
 strcpy(major,rhs.major);
 }

}

Implicitly Calling operator =

Student & Student ::operator =(Student & rhs){

 //Person::operator = (rhs); /*Explicit call to base class*/
 /*Student object rhs will be converted to Person object in function call
 above as derived class IS A is a kind of Base class*/

 /*Implicit calls to base class part*/
 static_cast<Person &>(*this) = rhs; /* c++ way of type casting */
 //Person(*this) = rhs; /* c way of type casting */

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 204

 //(Person)*this = rhs; /* c way of type casting */
 /*All the above three statements have the same meaning.*/

 if (major != NULL)
 delete [] major; // deleting previous allocated memory for major

 if(rhs.major != NULL){
 major = new char[strlen(rhs.major)+1];
 strcpy(major,rhs.major);
 }

}

Appendix:

Type conversion:

C++ is strongly typed language mean we can not use one type instead of other type
we need to convert one type in other type before using it.
This conversion from one type to another type is called casting.

Casting:

Casting can be done in two ways ,

Implicit casting conversion :

Conversions that compiler can perform automatically using build in casting
operations without casting request from programmer.

Explicit casting conversion:

Conversion in which programmer requests the compiler to convert one type to
another.
There are four types of casting operators that programmer can use to convert one
type ot another as given below,

The C++ draft standard includes the following four casting operators,

1. static_cast
2. const_cast
3. dynamic_cast
4. reinterpret_cast

In perspective of inheritance casting can be of two kinds,

a. Up casting (casting from derived to base class)
b. Down casting (casting from base to derived class)

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 205

 Fig a.

 Fig b.

Downcasting:

Example: (Base to Derive class)

Dynamic cast: (polymorphic behavior)
#include <iostream>
#include <stdlib.h>

using namespace std;

class Base{
public:
virtual void function() { cout<<"I am in Base"<<endl; }
};
class Derived : public Base {
public:
void function() { cout<<"I am in Derived"<<endl; }
};
int main()
{
Base * base = new Derived();
base->function();
Derived * derived = dynamic_cast<Derived*>(base);
derived->function();
system("PAUSE");
return 0;
}

Reinterpret cast:

#include <iostream>
#include <stdlib.h>

using namespace std;

Base Class

Derived Class

Downcasting

Base Class

Derived Class

Upcasting

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 206

class Base{
public:
void function() { cout<<"I am in Base"<<endl; }
};
class Derived : public Base {
public:
void function() { cout<<"I am in Derived"<<endl; }
};
int main()
{
Base * base = new Derived();
base->function();
Derived * derived = reinterpret_cast<Derived*>(base);
derived->function();
system("PAUSE");
return 0;
}

Note:

1. char * is c++ built in data type that can be used exactly like char arrays in fact
char arrays are also treated as char * in c++ so we used char * where we
needed to use char array.

2. In video lecture at duration 24 min there should only be one memory location
to store values, Ali newly created object pointer will be NULL for name and
will not point to any memory location.

References:

http://www.acm.org/crossroads/xrds3-1/ovp3-1.html (Casting Tutorial see this link
for more details about casting)

Open Source Editor Note Pad++ has been used in this document for code
highlighting.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 207

Lecture No.25

Overriding Member Functions of Base Class in Derived Class (Function
Overriding)

Derived class can override the member functions of its base class. To override a
function the derived class simply provides a function with the same signature12
(prototype) as that of its base class

 Overriding

25.1. Overloading vs. Overriding

Function Overloading is done within the scope of one class whereas Function
Overriding is done in scope of parent and child classes (inheritance).

12 same name, parameters and return type

Parent

...

Func1

Child

...

Func1

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 208

Overriding within the scope of single class is error due to duplicate declaration (two
member functions with same prototype)

class Parent {
public:
 void Func1();
 void Func1(); //Error
};

Overriding Member Functions of Base Class
Derive class can override member function of base class such that the working of
function is totally changed.
Example
class Person{
public:
 void Walk();
};
class ParalyzedPerson: public Person{
public:
 void Walk();
};

class Parent {
public:
 void Func1();
 void Func1(int);
};

class Child: public

Parent {
public:
 void Func1();
};

Function Overloading:
Two functions in same class
with same name but different
parameters and return type.

class Parent {
public:
 void Func1();
 void Func1(int);
};

class Child: public

Parent {
public:
 void Func1();
};

Function
Overriding:
Two functions in two
base derived classes

class Parent {
public:
 void Func1();
 void Func1(int);
};

class Child: public

Parent {
public:
 void Func1();
};

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 209

Overriding Member Functions of Base Class
Derive class can override member function of base class such that the working of
function is similar to former implementation.
Example

class Person{
 char *name;
public:
 Person(char *=NULL);
 const char *GetName() const;
 void Print(){
 cout << “Name: ” << name
 << endl;
 }
};
class Student : public Person{
 char * major;
public:
 Student(char * aName, char* aMajor);
 void Print(){
 cout <<“Name: ”<< GetName()<<endl
 << “Major:” << major<< endl;
 }
};
int main(){
 Student a(“Ahmad”, “Computer Science”);
 a.Print();
 return 0;
}

Output:

Name: Ahmed
Major: Computer Science

Overriding Member Functions of Base Class

Derive class can call base class member function from its overridden member
function to perform the base class part and then can perform its own tasks for
example student class can call base class person method Print to show name of
student and then can show study program of student by itself, this approach is in
accordance with the Object Oriented Programming principles which says that each
class should perform its tasks by itself, this is shown in example below,

Example
class Student : public Person{
 char * major;
public:
 Student(char * aName, char* m);

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 210

 void Print(){
 Print(); //Calling Print of Person to print student name
 cout<<“Major:” << major <<endl; // Displaying study program of
student
 }
};
int main(){
 Student a(“Ahmad”, “Computer Science”);
 a.Print();
 return 0;
}

But there will be no output on the screen after executing this code due to minor
mistake it is due to the reason that our both classes Student and Person have
methods with name Print and we are calling Print method of Person from Student
Print method compiler will call to Print of Student class again and again recursively
as we are calling Print method form Student class.

In this case it is necessary to mention that we are calling base class Print method as
shown below,

class Student : public Person{
 char * major;
public:
 Student(char * aName, char* m);

 void Print(){
 Person::Print();
 cout<<“Major:” << major <<endl;
 }
...
};
Example
int main(){
 Student a(“Ahmad”, “Computer Science”);
 a.Print();
 return 0;
}

Output

Name: Ahmed
Major: Computer Science

Overriding Member Functions of Base Class

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 211

As we see previously when we use pointers to call overridden methods they are
called according to static type of pointer as shown below,

Example
int main(){
 Student a(“Ahmad”, “Computer Science”);
 Student *sPtr = &a;
 sPtr->Print(); // static type of sPtr is Student * so Student Print method will
be called

 Person *pPtr = sPtr; // static type of pPtr is Person * so Person Print method
will be called
 pPtr->Print();
 return 0;
}

Output:

Name: Ahmed
Major: Computer Science

Name: Ahmed

This may be undesirable and to avoid this situation avoid using simple method
overriding in this way its modified form (virtual functions will be covered in coming
lectures).

25.2. Hierarchy of Inheritance
We represent the classes involved in inheritance relation in tree like hierarchy

Example

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 212

Direct Base Class
A direct base class is explicitly listed in a derived class's header with a colon (:)

class Child1:public Parent1 { // Here Parent1 is Direct Base Class of Child1
…
};

Indirect Base Class
An indirect base class is not explicitly listed in a derived class's header with a colon
(:)
It is inherited from two or more levels up the hierarchy of inheritance

class GrandParent {
…
};
class Parent1: public GrandParent {
…
};
class Child1:public Parent1 { // Here GrandParent is InDirect Base Class of
Child1
…
};

GrandParent

Parent1 Parent2

Child1 Child2

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 213

Lecture No.26

26.1. Base Initialization

We saw in the previous lectures, that in the case of copy constructor we have to call
base class constructor from the initialization list of child class because implicit base
class object is created first and then derived class object is created. Now we see this
concept in detail in the perspective of class hierarchy,

• The child can only call constructor of its direct base class to perform its
initialization using its constructor initialization list.

• The child cannot call the constructor of any of its indirect base classes to
perform their initialization using its constructor initialization list

It is explained in example code given below,

Example

class GrandParent{
 int gpData;
public:
 GrandParent() : gpData(0){...}
 GrandParent(int i) : gpData(i){...}
 void Print() const;
};
class Parent1: public GrandParent{
 int pData;
public:
 Parent1() : GrandParent(), pData(0) {…}
};
class Child1 : public Parent1 {
public:
 Child1() : Parent1() {...}
 Child1(int i) : GrandParent (i) //Error: Child1 can not call its
indirect base class GrandParent Constructor from its constructor
initialization list.
 {...}
 void Print() const;
};

Overriding in case of class hierarchy:

In class hierarchy Child class can override the function of any of its Parent class
(direct or indirect) as shown in the diagram below (we see this concept in detail in
types of inheritance given below),

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 214

Example

void GrandParent::Print() {
 cout << “GrandParent::Print”
 << endl;
}

void Child1::Print() {
 cout << “Child1::Print” << endl;
}
int main(){
 Child1 obj;
 obj.Print();
 obj.Parent1::Print();
 obj.GrandParent::Print();
 return 0;
}

Output

Child1::Print
GrandParent::Print
GrandParent::Print

26.2. Types of Inheritance

There are three types of inheritance

• Public
• Protected
• Private

We can use these keywords (public, private or protected) to specify the type of
inheritance

GrandParent

Print()

Parent1

Child1

Print()

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 215

a. Public Inheritance
class Child: public Parent {…};

Member access in

Base Class Derived Class

Public Public

Protected Protected

Private Hidden

b. Protected Inheritance
class Child: protected Parent {…};
Member access in

Base Class Derived Class

Public Protected

Protected Protected

Private Hidden

c. Private Inheritance
class Child: private Parent {…};
Member access in

Base Class Derived Class

Public Private

Protected Private

Private Hidden

If the user does not specifies the type of inheritance then the default type is private
inheritance,

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 216

 class Child: private Parent {…}
is equivalent to,
 class Child: Parent {…}

We have seen public inheritance in previous lecture, now we see private and
protected inheritance in detail,

26.3. Private Inheritance

We use private inheritance when we want to reuse code of some class. Private
Inheritance is used to model “Implemented in terms of” relationship

Example

Suppose we have a class collection to store element collection as shown
below,
class Collection {
...
public:
 void AddElement(int);
 bool SearchElement(int);
 bool SearchElementAgain(int);
 bool DeleteElement(int);
};

As you can see it supports the following methods,
AddElement: to add elements in collection
SearchElement: search any element in collection it will true as soon as any element
will be found
SearchElementAgain: finds second instance of any element in collection it will
return true as soon as it will find any duplicate entry of any element.
DeleteElement: to delete any entry from collection

You can see that Class collection allows duplicate elements.
Suppose now we want to implement class Set, class Set has very similar functionality
as that of collection class with the difference that Set class can not allow duplicate
elements in it, so we can use the concept of inheritance here, we can derive class Set
from class Collection.
But we can not use public inheritance here as it allows interface (all functions) of base
class to be accessed using derived class object, but we don’t want to allow all
functions of class Collection to act on Set class object. We only want to use some
functions of Collection class (Base class) in derived Set class for to implement Set
class functionality so we will use private inheritance here the two main advantages
we will achieve through private inheritance in this case are,

1. Specialization of class according to set class (removing extra features)
2. Making interface of collection class inaccessible from outside world using

class set reference.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 217

Class Set
class Set: private Collection {
private:
 ...
public:
 void AddMember(int);
 bool IsMember(int);
 bool DeleteMember(int);
};
void Set::AddMember(int i){
 if (! IsMember(i))
 AddElement(i);
}
bool Set::IsMember(int i){
 return SearchElement(i);
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 218

Lecture No.27

 Previous Lecture Review:
In last lecture we saw the use of private inheritance using the example of classes
Collection and Set, we saw that class collection was allowing duplicate elements but
set class can not allow duplicate elements in it however other functionality was same,
so we privately inherited class set from collection and added only those member
functions in derived class set that were related to set class, the two main advantages
we achieved through private inheritance in this case were,

1. Specialization of class collection according to set class (removing extra
features)

2. Making interface of collection class inaccessible from outside world using
class set reference, to avoid any unintentional use of collection class restricted
features in set class.

The code of both classes in shown below,

Class Collection Class Set
class Collection {
...
public:
 void AddElement(int);
 bool SearchElement(int);
 bool SearchElementAgain(int);
 bool DeleteElement(int);
};

class Set: private Collection {
private:
 ...
public:
 void AddMember(int);
 bool IsMember(int);
 bool DeleteMember(int);
};

As we discussed that we achieve specialization using private inheritance so need to
see specialization (Specialization concept was discussed in Lecture No.4) again in
detail,

27.1. Specialization (Restriction)

In specialization derived class is behaviourally incompatible with the base class.
Behaviourally incompatible means that base class can’t always be replaced by the
derived class.
Specialization is represented by “Implemented in terms of” relationship.
Specialization (Restriction) can be implemented using both private and protected
inheritance.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 219

Example – Specialization (Restriction)

class Person{
 …
protected:
 int age;
public:
 bool SetAge(int _age){
 if (_age >=0 && _age <= 125) {
 age = _age;
 return true;
 }
 return false;
 }
};
class Adult : private Person {
 public:
 bool SetAge(int _age){
 if (_age >=18 && _age <= 125) {
 age = _age;
 return true;
 }
 return false;
 }
};

Essential properties of Private Inheritance:

Person

age : [0..125]

Adult

age : [18..125]

setAge(a)

setAge(a)

age = a

If age < 18 then
 error
else
 age = a

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 220

1. In Private Inheritance only member functions and friend classes or functions

of a derived class can convert pointer or reference of derived object to that of
parent object

Example

class Parent{
};
class Child : private Parent{
};

int main(){
 Child cobj;
 Parent *pptr = & cobj; //Error
 return 0;
}

void DoSomething(const Parent &);

Child::Child(){
 Parent & pPtr = static_cast<Parent &>(*this); // fine
 DoSomething(pPtr);
 // DoSomething(*this); // this single line is equal to two lines above.
}

2. As was in the case of public inheritance child class object has an anonymous
object of parent class.

3. As was in the case of public inheritance the default constructor and copy
constructor of parent class are called when constructing object of derived
class.

Example

class Parent{
public:
 Parent(){
 cout << “Parent Constructor”;
 }

 Parent(const Parent & prhs){
 cout << “Parent Copy Constructor”;
 }
};
class Child: private Parent{
public:
 Child(){

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 221

 cout << “Child Constructor”;
 }

 Child(const Child & crhs) : Parent(crhs){
 cout << “Child Copy Constructor”;
 }
};
int main() {
 Child cobj1; // default constructor will be invoked
 Child cobj2 = cobj1; // copy constructor will be invoked
 //Child cobj2(cobj1); // another way of calling copy constructor
 return 0;
}

Output:

Parent Constructor
Child Constructor
Parent Copy Constructor
Child Copy Constructor

4. In private inheritance the derived class that is more than one level down the

hierarchy cannot access the member functions of grand parent class as public
and protected members functions of derived class become private members
of privately derived class for all practical purposes. For example see the code
below here Child class is derived class that is more than one level down the
hierarchy and hence can not access the member functions of GrandParent
class.

class GrandParent{
public :
 void DoSomething();
};

class Parent: private GrandParent{
 void SomeFunction(){
 DoSomething();
 }
};
class Child: private Parent
{
public:
 Child() {
 DoSomething(); //Error
 }
};

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 222

5. In private inheritance the derived class that is more than one level down the
hierarchy cannot convert the pointer or reference to that of GrandParent , for
example in code given below Child class can not convert its reference to its
GrandParent reference. The reason is same that in private inheritance we
implement specialization and we restrict all features of base class to privately
derived class only and its friend classes or functions.

void DoSomething(GrandParent&);
class GrandParent{
};
class Parent: private GrandParent{
public:
 Parent() {DoSomething(*this);}
};
class Child: private Parent {
public:
 Child()
 {
 DoSomething(*this); //Error
 }
};

27.2. Protected Inheritance

If a class D has been derived using protected inheritance from class B (If B is a
protected base and D is derived class) then public and protected members of B can be
accessed by member functions and friends of class D and classes derived from D.
Protected inheritance is used to build class hierarchy using “Implemented in terms
of” relationship.

If B is a protected base and D is derived class then member functions and friends of
class D and classes derived from D can access member functions of class B, (note that
in private inheritance only derived class can access the member functions of base
class). So we can say that protected inheritance lies between public and private
inheritance.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 223

27.3. Properties of Protected Inheritance

If B is a protected base and D is derived class then only friends and members of D
and friends and members of class derived from D can convert D* to B* or D& to B&
(in private inheritance only derived class or its friends can convert pointer to base
class)

void DoSomething(GrandParent&);

class GrandParent{
};

class Parent: protected GrandParent{
};
class Child: protected Parent {
public:
 Child()
 {
 DoSomething(*this);
 }
};

Importance of Private and Protected inheritance:
As we have seen that private and protected inheritance is being used for
implementing “Implemented in terms of” relationship so it is important that we
limit different features of base class in child classes that is what we achieve using
either private or protected inheritance according to our requirement.

class GrandParent{
public :
 void DoSomething();
};

class Parent: protected GrandParent{
 void SomeFunction(){
 DoSomething();
 }
};
class Child: protected Parent
{
public:
 Child()
 {
 DoSomething();
 }
};

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 224

Comparison of public, protected and private inheritance:

We can show accessibility of public member functions of base class in derived classes
in these three different types of inheritance as follows,

Public Inheritance Protected Inheritance Private Inheritance

Private data members will NOT be accessible in any derived class or in main
function.
Protected data members will become private data members in case of private
inheritance and protected data members of derived class in case of protected
inheritance.

A Good Programming Exercise:
A good programming exercise would be that you write a program that shows
accessibility of all types of members functions for all types of inheritance in derived
class/es.

Base Class Base Class Base Class

Derived 1

Derived 2
Derived 3
…………

Main
(Outside
world)

Yes

No

No

Accessibility

Derived 1

Derived 2
Derived 3
…………

Main
(Outside
world)

Yes

Yes

No

Accessibility

Derived 1

Derived 2
Derived 3
…………

Main
(Outside
world)

Accessibility

Yes

Yes

Yes

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 225

Lecture No.28

28.1. Virtual Functions

Problem Statement:

Develop a function that can draw different types of geometric shapes from an array

Shape Hierarchy:

We have to implement following shape hierarchy for this,

Problem Description:

a. We want to implement this shape hierarchy in such a manner that our
function will take Shape pointers array (Shape * []) and this array size as
parameters and then it will draw the appropriate shape.

b. This Shape pointer array (Shape * []) may store pointers to all kinds of Shapes
(Line, Circle and Triangle classes) as these classes have IS-A relationship with
Shape class (We know base class pointer can store pointer of any of its
derived classes in case of public inheritance IS-A relationship).

c. The purpose of implementing this hierarchy in such a way is that we can
avoid complex code of calling draw function for each class separately after
checking the class type, instead we can use a single function call in a loop to
draw all kinds of Shapes as shown below,

void drawShapes(Shapes *array[], int size){

for (int i = 0 ; i < size ; i ++)
 array[i]->draw(); // this function call will work for all types of

 //Shapes (Line, Circle and Triangle)

}

Shape

Line Circle Triangle

draw
calcArea

draw
calcArea

draw
calcArea

draw
calcArea

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 226

Implementation:

It can be done using concept of inheritance as there exists “IS-A” relationship
between general Shape class and derived Line, Circle and Triangle classes.

So in code below, we wrote a general Shape class and then we publicly derived Line,
Circle and Triangle classes from it, in main we create objects of those Shapes that we
needed like Line, Circle and Triangle and stored them in single shape array, then we
called drawShapes function by passing this array to draw appropriate shapes.

class Shape {
 …
protected:
 char _type;
public:
 Shape() { }
 void draw(){ cout << “Shape\n”; }
 int calcArea() { return 0; }
 char getType() { return _type; }
};
class Line : public Shape {

public:
 Line(Point p1, Point p2) {

 }
 void draw(){ cout << “Line\n”; }
};
class Circle : public Shape {
public:
 Circle(Point center, double radius) {

 }
 void draw(){ cout << “Circle\n”; }
 int calcArea() { … }
};
class Triangle : public Shape {

public:
 Triangle(Line l1, Line l2, double angle)
 {
}
 void draw(){ cout << “Triangle\n”; }
 int calcArea() { … }

};
int main() {
 Shape* _shape[10];

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 227

 Point p1(0, 0), p2(10, 10);
 shape[1] = new Line(p1, p2);
 shape[2] = new Circle(p1, 15);
 void drawShapes(shape, 10);
 return 0;
}

/*Function drawShapes()*/

void drawShapes(Shape* _shape[], int size) {
 for (int i = 0; i < size; i++) {
 _shape[i]->draw();
 }
}

After compiling this code we will see the following output,

Sample Output
Shape
Shape
Shape
Shape
…

As you have seen this code is not showing correct output, it is showing text Shape
again and again instead of showing appropriate class name that was stored in Shape
array like Line, Circle or Triangle so there is some logical error in this code.
Where is problem?
Problem is that as we stored our derived classes (Line, Circle and Triangles) Objects
in Shape pointer array and then called draw method; every time draw method of
Shape class was called.
Why?
Due to the reason that static type of this array is Shape * so draw method is Shape
class will always be called whether pointer stored in it is Line, Circle or Triangle
pointer or Shape class pointer.

So we have to think about some modification,

Solution 1:
One solution is that we can modify our drawShapes function as follows,

void drawShapes(Shape* _shape[], int size) {
 for (int i = 0; i < size; i++) {

 // Determine object type with switch & accordingly call draw()
method

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 228

 }
}

The required Switch Logic for this kind of functionality is given below,

switch (_shape[i]->getType())
{
 case ‘L’:
 static_cast<Line*>(_shape[i])->draw();
 break;
 case ‘C’:
 static_cast<Circle*>(_shape[i])->draw();
 break;
 …
}

Equivalent If Logic is given below,

if (_shape[i]->getType() == ‘L’)
 static_cast<Line*>(_shape[i])->draw();
else if (_shape[i]->getType() == ‘C’)
 static_cast<Circle*>(_shape[i])->draw();
…

Sample Output:

Line
Circle
Triangle
Circle
…

You can see that this code is very complex for both switch or if else conditions.

But there are many Problems with this approach these are given below:

Delocalized Code
Suppose we have to write another function that prints area of each shape from an
input array. We have to write same switch or if else logic in that function
implementation also to work it correctly.
void printArea(Shape* _shape[], int size) {
 for (int i = 0; i < size; i++) {
 // Print shape name.
 // Determine object type with
 // switch & accordingly call
 // calcArea() method.
 }
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 229

Required Switch Logic

switch (_shape[i]->getType())
{
 case ‘L’:
 static_cast<Line*>(_shape[i])->calcArea(); break;
 case ‘C’:
 static_cast<Circle*>(_shape[i])->calcArea(); break;
 …
}

The above switch logic is same as was in function drawArray() with difference of
name of function being called.

So this approach will result in delocalized code (same code in different places) with
following consequences,
Writing same code again and again at different places may produce errors as
programmer may forget to write switch cases.
Suppose we have added one more Shape in our program then we will have to add
one more switch case or if else condition in all functions where we have used this
logic if programmer by mistake forgets to add it in any single function whole
program will show incorrect output.
So due to above mentioned reasons this sort of code is very hard to maintain.

Solution?

To avoid switch, we need a mechanism that can select the message target (class)
automatically!

Polymorphism Revisited:

In OO model, polymorphism means that different objects can behave in different
ways for the same message (stimulus) consequently, sender of a message does not
need to know the exact class of receiver.
In other words when we have inheritance relationship and we have written basic
structure of our program correctly we need not to worry about the no. of classes in
our program. For example in case of shapes hierarchy (Line, Circle, Triangle and so
on…) our program will keep working correctly if we add more shapes, draw method
of appropriate shape class should automatically be called, that is the benefit of Object
Oriented Programming,

void drawShapes(Shapes *array[], int size){

for (int i = 0 ; i < size ; i ++)
 array[i]->draw(); // this function call will work for all types of

 //Shapes (Line, Circle and Triangle)

}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 230

But this kind of functionality was not being achieved in above approach in which we
had to write one separate case for each type of shape class.

To achieve this kind of functionality we have the concept of virtual functions we
make those functions virtual in base class which will be implemented by derived
classes according to their requirements.

28.2. Virtual Functions:

Virtual functions achieve exactly same kind of functionality that was achieved in
above code with complex code of switch statement.

• Target class of a virtual function call is determined at run-time automatically.
• In C++, we declare a function virtual by preceding the function header with

keyword “virtual”
Now we see how we can use virtual functions in case of our shape hierarchy,
28.3. Shape Hierarchy

We will make those functions virtual in shape that need to be overridden by derived
classes like Draw method,

class Shape {
 …
 virtual void draw();
 };

class Shape {
 …
 virtual void draw();
 virtual int calcArea();
};
class Line : public Shape {
 …
 virtual void draw() { cout<<”Line…\n”;
 }
};

Shape

Line Circle Triangle

draw
calcArea

draw
calcArea

draw
calcArea

draw
calcArea

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 231

class Circle : public Shape {
 …
 virtual void draw() { cout<<”Circle….\n”;
 }
 virtual int calcArea();
};
class Triangle : public Shape {
 …
 virtual void draw(){ cout<<”Triangle…\n”;
 }

 virtual int calcArea();
};
void drawShapes(Shape* _shape[], int size) {
 for (int i = 0; i < size; i++) {
 _shape[i]->draw();
 }
}

Sample Output:

Line
Circle
Triangle
Circle
…

Similarly if we have another function that will calculate and print area of different
shapes it will also be written in same way, (Now we have no need to add switch or if
else code)

void printArea(Shape* _shape[], int size) {
 for (int i = 0; i < size; i++) {
 // Print shape name
 cout<< _shape[i]->calcArea();
 cout << endl;
 }
}

28.4. Static vs Dynamic Binding

• Static binding means that target function for a call is selected at compile time
• Dynamic binding means that target function for a call is selected at run time

Line _line;
_line.draw(); // Always Line::draw will be called

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 232

Shape* _shape = new Line();
_shape->draw(); // Shape::draw called if draw() is not virtual because of static type
of Shape *

Shape* _shape = new Line();
_shape->draw(); // Line::draw called as draw() is virtual in base Shape class

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 233

Lecture No.29

Previous Lecture Review:

The main concept of Polymorphism is that the same method can behave differently
according to the object with respect of which it has been called.
We combine all related classes having same kind of functionality in a class hierarchy
as shown below,

The draw and calcArea methods here are showing polymorphic behavior as they
exist in base as well as in derived classes, the method that will be called is decided at
runtime according to the nature of the calling object, for example in the case of above
class hierarchy if we call draw method with respect of Line class object, draw of Line
class will be called and if we call it with reference of Circle or Triangle class, draw
method of Circle or Triangle class will be called.

We achieve this type of polymorphism13 using virtual functions.
The advantage of this approach is that sender simply pass method call and
appropriate method is called automatically, as we saw in previous lecture in which
we simply used for loop to draw all kinds of shapes using shape pointers array.
We also saw the drawbacks of achieving same functionality without virtual functions
using switch statement that resulted in delocalized and complex code. Then we saw
solution of this problem using virtual functions.

29.1. Abstract Classes

In our Shape class hierarchy Shape class has no real world existence, there will be no
object in real world with name Shape there will always be an object of kind of shape
like Line, Circle or Triangle, this kind of class with no specific real world existence
are called Abstract Classes, as these classes are Abstract their behavior becomes also
abstract like Draw and calcArea methods in case of Shape class, the actual concepts

13 Polymorphism may exist in same class (function overloading) or it may exist in different classes
(function overriding) here we are referring to function overriding (same functions in base and derived
classes).

Shape

Line Circle Triangle

draw
calcArea

draw
calcArea

draw
calcArea

draw
calcArea

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 234

are realized in derived classes, like all kinds of shapes will have draw and calcArea
method, so we add these methods in general Shape class and all kinds of Shapes
inheriting for this general shape class given their own implementation of these
methods.

Abstract class’s objects cannot be instantiated they are used for inheriting interface
and/or implementation, so that derived classes can give implementation of these
concepts.

29.2. Concrete Classes

Concrete classes Implements a concrete concept they can be instantiated they may
inherit from an abstract class or another concrete class. So far the classes we studied
were concrete classes.

29.3. Abstract Classes in C++

In C++, we can make a class abstract by making its function(s) pure virtual.
Conversely, a class with no pure virtual function is a concrete class (which object can
be instantiated)

29.4. Pure Virtual Functions

A pure virtual represents an abstract behavior and may have not implementation for
example draw method in Shape class represent abstract behavior as Shape class itself
doesn’t have its existence in real world so there is no question of drawing it however
its derived concrete classes like Line, Circle and Triangle does have physical
existence and overridden draw method in these classes will have implementation . A
function is declared pure virtual by following its header with “= 0”.

 virtual void draw() = 0;

A class having pure virtual function(s) becomes abstract

class Shape {
 …
public:
 virtual void draw() = 0;
};

Now when we will try to created object of our Shape class in our program
compiler will give an error as shown below,

Shape s; // Error!

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 235

29.5. Shape Hierarchy

A derived class of an abstract class remains abstract until it provides implementation
for all pure virtual functions as shown below in other words we can say that at least
one class in bottom of class hierarchy should give implementation of pure virtual
function (Abstract classes are present at root or near root of the class hierarchy tree,
whereas concrete classes are near leaves of class hierarchy tree) see the code below of
above class heirarchi here Quadrilateral is also abstract class as it is derived from
Shape class but is not giving implementation of draw method we can also not create
its object and it is necessary to have one more derived class from quadrilateral that
gives implementation of draw method otherwise there will be compiler error as we
can not have all abstract classes in heirarchi there should be at least one concrete
class at leaf in class heirarchi,

class Quadrilateral : public Shape {
 …
 // No overriding draw() method
};
…
Quadrilateral q; // Error!

class Rectangle:public Quadrilateral{
 …
 public:
 // void draw()
 virtual void draw() { // once a function is declared as virtual it remains
virtual in all hierarchy
 … // function body
 }
};
…
Rectangle r; // OK

Shape

Line Circle Quadrilateral

draw = 0

draw draw

Rectangle

draw

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 236

29.6. Virtual Destructors

The destructor is called according to static type of any class pointer for example if we
have saved derived class pointers in shape class pointers array as we did in previous
lecture when we will call destructor using delete operator the destructor of base class
Shape will be called as static type of array is Shape. This will destroy the base class
object only derived class object will not be destroyed this is explained in the example
code below,
class Shape {
 …
 public:
 ~Shape() {
 cout << “Shape destructor
 called\n”;
 }
};

class Quadrilateral : public Shape {
 …
 public:
 ~Quadrilateral() {
 cout << “Quadrilateral destructor
 called\n”;
 }
};

class Rectangle : public Quadrilateral {
 …
 public:
 ~Rectangle() {
 cout << “Rectangle destructor
 called\n”;
 }
};

int main() {
 Shape* pShape = new Rectangle();
 delete pShape;
 return 0;
}

When delete operator is applied to a base class pointer, base class destructor is called
regardless of the object type
Output

Shape destructor called

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 237

Result
You can see by diagram below that only base class part of object will be
deleted other parts will remain as it is this result in memory leak (wastage of
memory),

This issue will be solved in the same way as we solved the problem of calling
derived classes Draw methods using base class pointer by the use Virtual keyword.

Virtual Destructors

Make the base class destructor virtual as we made Draw method virtual in base class,

class Shape {
 …
 public:
 virtual ~Shape() {
 cout << “Shape destructor called\n”; }
};
class Quadrilateral : public Shape {
 …
 public:
 virtual ~Quadrilateral() {
 cout << “Quadrilateral destructor called\n”;
 }
};
class Rectangle : public Quadrilateral {
 …
 public:
 virtual ~Rectangle() {
 cout << “Rectangle destructor called\n”;

Shape Part

Quad Part

Rect Part

pShape

Quad Part

Rect Part

Before After

pShape

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 238

 }
};
Now base class destructor will run after the derived class destructor

int main() {
 Shape* pShape = new Recrangle();
 delete pShape;
 return 0;
}

Output
Now you can see that output is correct all destructors are being called in correct
order,

Rectangle destructor called
Quadrilateral destructor called
Shape destructor called

Result
Now you can see result complete object is being deleted so there is no
memory leak (waste of memory),

29.7. Virtual Functions – Usage

Virtual function are used in two ways,

Shape Part

Quad Part

Rect Part

pShape

Before After

pShape

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 239

• Virtual Functions can be used to when we want to inherit interface and
implementation (Simple virtual functions) mean base class as well as derived
class will have implementation.

virtual void draw();
• Just inherit interface (Pure Virtual functions) mean only derived classes will

will have implementation base may not have implementation.
virtual void draw() = 0;

Inherit interface and implementation:

First case of simple virtual functions is useful when we have some derived
classes that will also not have implementation of virtual method for example
Line is also also Shape but it doesn’t have area similarly if we had Point
derived class it also doesn’t have any area in both cases we will simply not
write implementation of calcArea() method and hence calcArea of base Shape
class will be called which will simply display area as zero this is shown
below,

class Shape {
…
 virtual void draw() = 0; // pure virtual functions

 virtual float calcArea() { // simple virtual functions
 return 0;
 }
};

So as calcArea() is simple virtual function so, each derived class of Shape inherits
default implementation of calcArea(), some classes may override this, such as Circle
and Triangle and Others may not, such as Point and Line.

Inherit interface only:

Shape

Line Circle Triangle

draw = 0
calcArea

draw

draw
calcArea

draw
calcArea

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 240

We have made draw method as pure virtual function because each shape will need
to draw whether it is simple point or line or any other shape so its suitable to be
decalred as pure virtual,

As draw() is Pure Virtual Function so, each derived class of Shape inherits interface
(prototype) of draw(), each concrete derived class has to provide body of draw() by
overriding it.
29.8. V Table
Now we see compiler keeps track of virtual functions and call them correctly
occording to nature of the object with respect to which they are being called,

Compiler builds a virtual function table (vTable) for each class having virtual
functions
A vTable contains a pointer for each virtual function,

Pointer to
1st virtual
function
Pointer to
2nd virtual
function
…....

…….

…….

 V Table

Consider the code below to see how virtual tables are created,

int main() {
 Point p1(10, 10), p2(30, 30);
 Shape* pShape;

 pShape = new Line(p1, p2);
 pShape->draw();
 pShape->calcArea();
 return 0;
}

We are creating Line class object here and storing its refernence in Shape class
pointer and then polymorphically calling methods draw and calcArea as Shape
pointer is having Line class object reference so Line class method draw and calcArea
will be called we see how this actually happens,

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 241

First of all when this code will be compiled v tables along with implementation code
of virtual and non virtual functions for all classes will be generated by compiler as
shown below,

…

…

…

Line class implementation

calcArea
draw

Shape vTable

0

…

…

…

Shape class implementation

calcArea
draw

Line vTable

calcArea

draw

…
Shape vTable

draw …

Line vTable

calcArea

0
Line object

pShape

Shape …

point1 = p1

point2 = p2

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 242

When line object will be crated in main it will also have pointer to v table of Line
class as shown below,

29.9. Dynamic Dispatch (Dynamic Binding)

It happens in case of virtual functions, for non-virtual functions, compiler just
generates code to call the function.

In case of virtual functions, compiler generates code to

• access the object
• access the associated vTable
• call the appropriate function

Conclusion

Virtual Functions should be added in code with care because they add,

• Memory overhead due to V-Tables
• Processing overhead due to extra pointer manipulation

However, this overhead is acceptable for many of the applications.

Moral: “Think about performance requirements before making a function virtual”.

…

…

…

Line class implementation

calcArea

draw

Shape vTable

0

…

…

…

Shape class implementation

calcArea

draw

Line vTable

Line object

pShape

Shape …

point1 = p1

point2 = p2

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 243

Lecture No.30

30.1. Polymorphism – Case Study: A Simple Payroll Application

We have studied polymorphism implementation in detail using virtual functions
now we see an example showing how it may be useful for us,

Problem Statement
Develop a simple payroll application for a company; there are three kinds of
employees in the system: salaried employee, hourly employee, and commissioned
employee. The system should take input as an array containing employee objects,
calculates salary polymorphically (according to employee object), and generates
report.

OO Model

You can see that this model is very similar to Shape class hierarchy we saw
previously, its implementation in c++ is shown below,

Class Employee

class Employee {
 private:
 String name;
 double taxRate;
 public:
 Employee(String&, double);
 String getName();
 virtual double calcSalary() = 0;
};
Employee::Employee(String& n, double tr): name(n){
 taxRate = tr;
}

Employee

SalariedEmp HourlyEmp CommEmp

getName
calcSalary

sales
commRate

hours
hourlyRate

salary

calcSalary calcSalary
calcSalary

name
taxRate

String

String
operator =
operator <<

pStr

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 244

String Employee::getName() {
 return name;
}

Class SalariedEmp

class SalariedEmp : public Employee
{
private:
 double salary;
public:
 SalariedEmp(String&,double,double);
 virtual double calcSalary();
};
SalariedEmp::SalariedEmp(String& n, double tr, double sal) : Employee(n, tr) {
 salary = sal;
}
double SalariedEmp::calcSalary() {
 double tax = salary * taxRate;
 return salary – tax;
}

Class HourlyEmp

class HourlyEmp : public Employee {
private:
 int hours;
 double hourlyRate;
public:
 HourlyEmp(string&,double,int,double);
 virtual double calcSalary();
};
HourlyEmp ::HourlyEmp(String& n, double tr, int h, double hr) : Employee(n, tr
) {
 hours = h;
 hourlyRate = hr;
}
double HourlyEmp::calcSalary()
{
 double grossPay, tax;
 grossPay = hours * hourlyRate;
 tax = grossPay * taxRate;
 return grossPay – tax;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 245

Class CommEmp

class CommEmp : public Employee
{
private:
 double sales;
 double commRate;
public:
 CommEmp(String&, double, double, double);
 virtual double calcSalary();
};
CommEmp::CommEmp(String& n, double tr, double s, double cr) : Employee(
n, tr) {
 sales = s;
 commRate = cr;
}
double CommEmp::calcSalary()
{
 double grossPay = sales * commRate;
 double tax = grossPay * taxRate;
 return grossPay – tax;
}

A Sample Payroll

int main() {
 Employee* emp[10];
 emp[0] = new SalariedEmp(“Aamir”, 0.05, 15000);
 emp[1] = new HourlyEmp(“Faakhir”, 0.06, 160, 50);
 emp[2] = new CommEmp(“Fuaad”, 0.04, 150000, 10);
 …
 generatePayroll(emp, 10);
 return 0;
}

Function that takes Empolyee poinsters array and calls appropriate getName
and calcSalary methods
void generatePayroll(Employee* emp[], int size) {

 cout << “Name\tNet Salary\n\n”;
 for (int i = 0; i < size; i++) {
 cout << emp[i]->getName() << ‘\t’ << emp[i]->calcSalary() << ‘\n’;

 }
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 246

Sample Output

Name Net Salary

Aamir 14250
Fakhir 7520
Fuaad 14400
…

Output is as required displaying employee names and their salary polymorphically.

Important point to note here is that Polymorphism always works with pointers of class
objects not with actual objects. In above example we used base Employee pointer array
to store pointers of derived classes of class Employee and then we polymorphically
called generatePayroll method to call getName and calcSal methods in a loop.

Never Treat Arrays Polymorphically:

If we use arrays of Objects Polymorphically then problem occurs as shown below,

30.2. Shape Hierarchy Revisited:

We have not made Shape class Abstract so that we can create its objects to show the
point that calling array of objects polymorphically results in errors,
See the shape hierarchy again,

class Shape {
 …
public:
 Shape();
 virtual void draw(){
 cout << “Shape\n”;
 }
 virtual int calcArea() { return 0; }
};

class Line : public Shape {
 …

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 247

public:
 Line(Point p1, Point p2);
 void draw(){ cout << “Line\n”; }
};

void drawShapes(Shape _shape[], int size) {
 for (int i = 0; i < size; i++) {
 _shape[i].draw();
 }
}

//Polymorphism & Arrays

int main() {
 Shape _shape[10];
 _shape[0] = Shape();
 _shape[1] = Shape();
 …
 drawShapes(_shape, 10);
 return 0;
}

In above code we created array of ten objects of Shape class and then passed it to
drawShapes function, note that in above code we passed Shapes array (Shapes [])
instead of Shapes pointers array (Shapes * []) to drawShapes function.
The code works draw method for each Object of Shape class is called and output is
displayed below,

Sample Output

Shape
Shape
Shape
…

Now we try to do polymorphism here by creating lines objects and passing to this
functions as we did previously in case of pointers with the difference that this time
we are passing objects array instead of pointers array.

int main() {
 Point p1(10, 10), p2(20, 20), …
 Line _line[10];
 _line[0] = Line(p1, p2);
 _line[1] = Line(p3, p4);
 …
 drawShapes(_line, 10);
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 248

Sample Output:

Shape
// Run-time error

This time also program is compiled correctly but when we executed it only Shape
text is displayed for first object of array and then program terminates abnormally.
The reason behind this output is,
When we passed array of Line objects as parameter this array was converted
implicitly to array of Shapes objects by compiler as Line IS A kind of shape, same
thing was happened with pointers of array objects but the difference now is that this
Line objects array will be treated as Shape objects array, so draw method of first
shape object is called and it displays text Shape, for next iteration of loop when
compiler calculated address of next object it did it with respect to Shape objects but
the actual array consists of Line objects so compiler will incorrectly calculate address
of next object as size of Shape class object and Line class objects are different and
when it will call draw method with incorrect address of object program will
terminate abnormally this is give in diagram below,

As shown above compiler will do calculations with respect to Shape array and will
calculate next object address as 0010 because it is treating Line array as Shape array
but actually next Line object is present at address 0015 so runtime error will be
generated as there is no new object at address 0010 and program will terminate
abnormally.

Original drawShapes() method that was using pointers is given below

void drawShapes(Shape* _shape[], int size) {
 for (int i = 0; i < size; i++) {

Line Array

Shape Array

_shape[i].draw();
*(_shape + (i * sizeof(Shape))).draw();

0000
0010
0020
0030

0000

0015

0030

0045

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 249

 _shape[i]->draw();
 }
}

It shows correct output,
Sample Output:

Line
Line
Line
…

Because in case of pointers array, the size of each entry is same as each entry contains
a pointer and all pointers are of 4 bytes in c++ whatever they are point to Shape class
or to Line class or any other built in or user defined type. So in this case whether our
array contain Shape * or Line * next object address will be present after 4 bytes, so
our drawShapes function will execute correctly,

So moral of the story is Never use arrays polymorphically because location of
elemetns in any array is calculated using array type and in polymorphism we have
the liberty of changing child array to parent array that will result in erraneous
calcualation of location of elements in array.

Shape* _shape[]

_line1

_line2

_line3

_shape[i]->draw();
(_shape + (i * sizeof(Shape*)))->draw();

0000
0004
0008
0012

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 250

Lecture No.31
31.1. Multiple Inheritance

We have seen multiple inheritance in start of OOP now we see its implementation in
C++, A class in C++ can inherit from more than one classes like Phone class can
inherit from Transmitter or Receiver.

Examples:

class Phone: public Transmitter, public Receiver
// As phone class is publicly inherited so any class derived from Phone class will
also have access to public and protected members of Transmitter and Receiver
class
{
...
};

Derived class can inherit from public base class as well as private and protected base
classes

class Mermaid: private Woman, private Fish
// As Mermaid class is privately inherited from Woman and Fish so any class
derived from Mermaid class will Not have access to public and protected members
of Woman and Fish classes

{
...
};

Multiple Inheritance
The derived class inherits data members and functions from all the base classes
Object of derived class can perform all the tasks that an object of base class can
perform

Transmitter

.......

Transmit()

Receiver

.......

Receive()

Phone

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 251

Example

int main(){
 Phone obj;
 obj.Transmit(); // method of Transmitter class
 obj.Receive(); // method of Receiver class
 return 0;
}

Multiple Inheritance

When using public multiple inheritance, the object of derived classes can replace the
objects of all the base classes
Example

int main(){
 Phone obj;
 Transmitter * tPtr = &obj;
 Receiver * rPtr = &obj;
 return 0;
}

However note the following,

The pointer of one base class cannot be used to call the function of another base class
The functions are called based on static type

Example:

int main(){
 Phone obj;
 Transmitter * tPtr = &obj;
 tPtr->Transmit();
 tPtr->Receive(); //Error
 return 0;
}

int main(){
 Phone obj;
 Receiver * rPtr = &obj;
 rPtr->Receive();
 rPtr->Transmit(); //Error
 return 0;
}

31.2. Problems in Multiple Inheritance

• If more than one base class have a function with same signature then the child
will have two copies of that function.

• Calling such function will result in ambiguity.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 252

Example:

class LandVehicle{
public:
 int GetMaxLoad();
};
class WaterVehicle{
public:
 int GetMaxLoad();
};
class AmphibiousVehicle: public LandVehicle, public WaterVehicle {
};
int main(){
 AmphibiousVehicle obj;
 obj.GetMaxLoad(); // Error
 return 0;
}

Amphibious Vehicle

Land Vehicle Water Vehicle

Amphibious Vehicle

Land Vehicle Water Vehicle

Car Boat

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 253

The solution of this problem is that Programmer must explicitly specify the class
name when calling ambiguous function

int main(){
 AmphibiousVehicle obj;
 obj.LandVehicle::GetMaxLoad();
 obj.WaterVehicle::GetMaxLoad();
 return 0;
}

Multiple Inheritance

The ambiguous call problem can arise when dealing with multiple level of multiple
inheritance

Example:

Amphibious Vehicle

Land Vehicle Water Vehicle

Vehicle

Car Boat

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 254

class Vehicle{
public:
 int GetMaxLoad();
};
class LandVehicle : public Vehicle{
};
class WaterVehicle : public Vehicle{
};
class AmphibiousVehicle: public LandVehicle, public WaterVehicle {
};

int main(){
 AmphibiousVehicle obj;
 obj.GetMaxLoad(); // Error
 return 0;
}

The error is due to the reason that object of AmphibiousVehicle class has two implicit
Vehicle class objects one with respect to LandVehicle and one with respect to
WaterVehicle class,

Amphibious Vehicle

Land Vehicle Water Vehicle

Vehicle

Car Boat

Vehicle

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 255

When call to GetMaxLoad method is made, compiler gets confused which copy of
this method should be called.
When we try to remove this error by mentioning that this method belongs to Vehicle
class as shown below; error remained as it is due to above mentioned fact.

Example
int main()
{
 AmphibiousVehicle obj;
 obj.Vehicle::GetMaxLoad(); //Error
 return 0;
}

The reason is same that Vehicle is accessible through two paths, we can avoid this
error by explicity mentioning the name of intermediate base class LandVehicle or
WaterVehicle with respect to which we want to call this GogMaxLoad method as
shown below,

Example
int main(){
 AmphibiousVehicle obj;
 obj.LandVehicle::GetMaxLoad();
 obj.WaterVehicle::GetMaxLoad();
 return 0;
}

Due to the same reason as mentioned above Data member must be used with care
when dealing with more than one level on inheritance.

Example
class Vehicle{
protected:

Vehicle
int GetMaxLoad();

LandVehicle

AmphibiousVehicle

WaterVehicle

Vehicle
int GetMaxLoad();

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 256

 int weight;
};
class LandVehicle : public Vehicle{
};
class WaterVehicle : public Vehicle{
};
class AmphibiousVehicle:
 public LandVehicle,
 public WaterVehicle{
public:
 AmphibiousVehicle(){
 LandVehicle::weight = 10;
 WaterVehicle::weight = 10;
 }
};

Here AmphibiousVehicle object has multiple copies of data member weight.

Memory View:

31.3. Virtual Inheritance
The solution to avoid this problem is virtual inheritance so that in multiple
inheritance only one copy of base class is generated as shown below instead of two
separate copies.

Memory View:

Data Members of Vehicle

Data Members of LandVehicle

Data Members of AmphibiousVehicle

Data Members of Vehicle

Data Members of WaterVehicle

Data Members of Vehicle

Data Members of LandVehicle

Data Members of AmphibiousVehicle

Data Members of WaterVehicle

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 257

In virtual inheritance there is exactly one copy of the anonymous base class object.
Example:

class Vehicle{
protected:
 int weight;
};
class LandVehicle : public virtual Vehicle{
};
class WaterVehicle : public virtual Vehicle{
};
Example
class AmphibiousVehicle: public LandVehicle, public WaterVehicle {
public:
 AmphibiousVehicle(){
 weight = 10;
 }
};

When to use Virtual Inheritance?

Virtual inheritance must be used when necessary. It can be used in the situations
when programmer wants to use two distinct data members inherited from base class
rather than one.

Example

BS Student

Student

MS Student PhD Student

MS/PhD Student

GPA

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 258

Lecture No.32
Generic Programming

Motivation:

Following function prints an array of integer elements:

void printArray(int* array, int size)
{
 for (int i = 0; i < size; i++)
 cout << array[i] << “, ”;
}

If we want to print an array of character elements we will write similar function
again with different parameters as shown below:

void printArray(char* array, int size)
{
 for (int i = 0; i < size; i++)
 cout << array[i] << “, ”;
}
similarly for double array we can write,

void printArray(double* array, int size)
{
 for (int i = 0; i < size; i++)
 cout << array[i] << “, ”;
}

Same will be the case for array of float, short, long and so on….

You can see all these functions are doing same kind of functionality on different data
types and it looks repeated task for all data types (basically it is function
overloading)

Now if we want to change the way function prints the array. e.g.
from 1, 2, 3, 4, 5
to 1 2 3 4 5 or ‘1’ ‘ 2’ ‘3’ ‘4’ ‘5’ or “1” ”2” “3” “4” “5”

We will have to change the code in all functions for all data types.

Now consider the Array class that is developed to overcome the shortcomings of
C++ built in arrays. In C++ arrays, there is no check for array bounds we can insert
element at 100th position in an array of size 10 only, our program will compile
correctly however this will result in abnormal termination of the program on
execution.

class Array {
 int* pArray;
 int size;

public:

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 259

 …
};

The above class has been written for integer arrays. Now, if we want to write the
same kind of class for all other data types like double or boolean (true/false), the
code will be written as shown below,

class Array {
 double* pArray;
 int size;
 public:
 …
};

class Array {
 bool* pArray;
 int size;
 public:
 …
};

This also looks like repeated code and adds effort to write code. Secondly if we want
to add a function sum in Array class, we have to change all the three classes.

We want some mechanism that enables us to write single function or class that
works for all data types this technique of writing programs is called Generic
Programming.

32.1. Generic Programming

Generic programming refers to programs containing generic abstractions (general
code that is same in logic for all data types like printArray function), then we
instantiate that generic program abstraction (function, class) for a particular data
type, such abstractions can work with many different types of data.

Advantages
Major benefits of this approach are:

a. Reusability: Code can work for all data types.
b. Writability: Code takes lesser time to write.
c. Maintainability: Code is easy to maintain as changes are needed to be made

in a single function or class instead of many functions or classes.

32.2. Templates
In C++ generic programming is done using templates.

Templates are of two kinds,

a. Function Templates (in case we want to write general function like
printArray)

b. Class Templates (in case we want to write general class like Array class)

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 260

Compiler generates different type-specific copies from a single template.
This concept is similar to concept of making prototype in the form of class for all
objects of same kind.

32.3. Function Templates

A function template can be parameterized to operate on different types of data types.

Declaration:

We write template keyword above any function make any function as template
function, they can be declared in any one of the following ways,

template< class T >
void funName(T x);

// OR

template< typename T >
void funName(T x);

// OR

template< class T, class U, … >
void funName(T x, U y, …);

Note here T is typename of class name and we use this T instead of data type(s) for
which we want our function to work as template.

For Example – Function Templates
Following function template prints an array having almost any type of elements
(note the use of T instead of int or float or char in implementation of function):

template< typename T >
void printArray(T* array, int size)
{
 for (int i = 0; i < size; i++)
 cout << array[i] << “, ”; // here data type of array is T
}

Similarly we can also write same function as,

template< class T >
void printArray(T* array, int size)
{
 for (int i = 0; i < size; i++)
 cout << array[i] << “, ”; // here data type of array is T
}

There is no difference in above two implementations.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 261

Template function will be instantiated for a particular data type according to passed
argument as shown below,

int main() {

 int iArray[5] = { 1, 2, 3, 4, 5 };
 void printArray(iArray, 5); // Instantiated for int[] as passed array is of
type int []

 char cArray[3] = { ‘a’, ‘b’, ‘c’ };
 void printArray(cArray, 3); // Instantiated for char[] as argument is of type
char []
 return 0;
}

Explicit Type Parameterization:

In case a function template does not have any parameter then we have to explicitly
mention the data type for which we want to create that function as shown below,

 template <typename T>
 T getInput() {
 T x;
 cin >> x;
 return x;
 }

Explicit Type Parameterization

int main() {
 int x;
 x = getInput(); // Error!

 double y;
 y = getInput(); // Error!

return 0;
}

Explicit Type Parameterization

int main() {
 int x;
 x = getInput< int >();

 double y;
 y = getInput< double >();
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 262

User-defined Specializations

A template compiler generated code may not handle all the types successfully; in
that case we can give explicit specializations for a particular data type(s).

For example suppose we have written a function isEqual(…, …) that compares two
values of data type and return true or false depending upon the values are equal or
not,

template< typename T >
bool isEqual(T x, T y) {
 return (x == y);
}

isEqual (6,6) should return true
isEqual (6,7) should return false
isEqual (6.6,6.6) should return true
isEqual (6.5,6.6) should return false
isEqual (‘A’,’A’) should return true
isEqual (‘A’,’a’) should return false

Until here the function will work correctly but consider the statement below,

isEqual (“abc”,”xyz”)

This is instantiation of isEqual function for built in type char [] or char *14, this
function will fail to give correct result simply because we have given its
implementation as
 return (x == y);

So here it will be translated by compiler in,

 return (char * == char *); or return (char [] == char []);

As arrays consists of many elements, comparison of arrays in this way is not possible
it will simply compare first element of both arrays and will return result, this is given
in code below,

#include <cstdlib>
#include <iostream>

using namespace std;

template< typename T >
bool isEqual(T x, T y) {
 return (x == y);
}

14 In C++, both char [] and char * are of same data types.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 263

int main (){
 cout<<isEqual(5, 6); // Ok
 cout<<isEqual(7.5, 7.5); // Ok
 cout<<isEqual("abc", "bca"); // Logical Error!

 system("PAUSE");
 return EXIT_SUCCESS;
}

So all statements with starting same characters like below will return true,
 isEqual(“abc”, “acc”);
 isEqual(“badac”, “bacc”);
 isEqual(“cafaa”, “ccda”);

This is logical error, solution of this problem is that we give our own correct
implementation of isEqual template function for char * data type, for this we can
write specialization code below general template function as follows,

Example – User Specializations

#include <cstdlib>
#include <iostream>

using namespace std;

template< typename T >
bool isEqual(T x, T y) {
 return (x == y);
}

template< >
bool isEqual< const char* >(
 const char* x, const char* y) {
 return (strcmp(x, y) == 0);
}

int main (){
 cout<<isEqual(5, 6); // OK
 cout<<isEqual(7.5, 7.5); // OK
 cout<<isEqual("abc", "aba"); //OK will return False

 system("PAUSE");
 return EXIT_SUCCESS;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 264

Lecture No.33
Recap

• Templates are generic abstractions
• C++ templates are of two kinds

o Function Templates
o Class Templates

• A general template can be specialized to specifically handle a particular type
like we did for char []

33.1. Multiple Type Arguments

Suppose we want to write code to convert different types into one another (like char
to int or int to char or float to int or int to float), the problem is same we have to write
many functions corresponding to each type, as no of types will increase the required
no. of functions will also increase, the concept of templates can be used here as well
to write general function to convert one type into another, in this case we will need
two type arguments as shown below,

template< typename T, typename U >
T my_cast(U u) {
 return (T)u; // U type will be converted to T type and will be returned
}

int main() {
 double d = 10.5674;
 int j = my_cast(d); //Error
 int i = my_cast< int >(d);

 // need to explicity mention about type of T (int in this case) as it is used only
for
 // return type not as parameter

 return 0;
}

33.2. User-Defined Types

Besides primitive types, user-defined types can also be passed as type arguments to
templates, compiler performs static type checking to diagnose type errors.
Consider the String class without overloaded operator “==“

class String {
 char* pStr;
 …
 // Operator “==“ not defined
};

template< typename T >
bool isEqual(T x, T y) {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 265

 return (x == y);
}
int main() {
 String s1 = “xyz”, s2 = “xyz”;
 isEqual(s1, s2); // Error!
 return 0;
}

We can use String class objects as arguments to template function isEqual also but in
this case we should have defined overloaded == operator for our string class as
friend function because this operator is being used in isEqual function,

class String {
 char* pStr;
 …
 friend bool operator ==(const String&, const String&);
 };

bool operator ==(const String& x, const String& y) {
 return strcmp(x.pStr, y.pStr) == 0;
}

template< typename T >
bool isEqual(T x, T y) {
 return (x == y);
}

int main() {
 String s1 = “xyz”, s2 = “xyz”;
 isEqual(s1, s2); // OK
 return 0;
}

33.3. Overloading vs. Templates

Function templates are used when we want to have exactly identical operations on
different data types in case of function templates we can not change implementation
from data type to data type however we can specialize implementation for a
particular data type.
In case we want to have similar operations on different data types we need function
overloading. In case of function overloading, we can give similar but slightly
different implementation for each data type.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 266

Example: Overloading vs. Templates

• ‘+’ operator is overloaded for different types of opeerands (different
implementation in each case).

• A single function template can calculate sum of array of many types.

Function Overloading
String operator +(const String& x, const String& y) {
 String tmp;
 tmp.pStr = new char[strlen(x.pStr) + strlen(y.pStr) + 1];
 strcpy(tmp.pStr, x.pStr);
 strcat(tmp.pStr, y.pStr);
 return tmp;
}

String operator +(const char * str1, const String& y) {
 String tmp;
 tmp.pStr = new char[strlen(str1) + strlen(y.pStr) + 1];
 strcpy(tmp.pStr, str1);
 strcat(tmp.pStr, y.pStr);
 return tmp;
}

Templates
template< class T >
T sum(T* array, int size) {
 T sum = 0;

 for (int i = 0; i < size; i++)
 sum = sum + array[i];

 return sum;
}

33.4. Template Arguments as Policy:

We can change behaviour of a template using template parameter. We can pass a
template argument to enforce some rule (policy). For example see the problem
statement below:

“Write a function that compares two given character strings.”

This function is similar to built in string comparison function strcmp with the
difference that it can perform both case sensitive and case insensitive comparisons.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 267

33.5. First Solution:

We can write two separate functions for both cases and call any of them as required,

int caseSencompare(char* str1, char* str2)
{
 for (int i = 0; i < strlen(str1) && i < strlen(str2); ++i)
 if (str1[i] != str2[i])
 return str1[i] - str2[i];

 return strlen(str1) - strlen(str2);
}

This function will return 0 in case string length of both strings is same and they have
identical elements otherwise it will return 1.

int nonCaseSencompare(char* str1, char* str2)
{
 for (int i = 0; i < strlen(str1) && i < strlen(str2); i++)
 if (toupper(str1[i]) != toupper(str2[i]))
 return str1[i] - str2[i];

 return strlen(str1) - strlen(str2);
}

This function will return 0 in case string length of both strings is same and they have
same alphabets (ignoring they are in lower case or in upper case) otherwise it will
return 1.

33.6. Second Solution:

We write a single compare function and pass a bool type parameter to indicate type
of comparison and from this function we return result based on passed bool
parameter used to indicate case sensitive or case insensitive comparison,

int compare(char* str1, char* str2, bool caseSen)
{
 for (int i = 0; i < strlen(str1) && i < strlen(str2); i++)
 if (…)
 return str1[i] - str2[i];

 return strlen(str1) - strlen(str2);
}

// if condition:

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 268

(caseSen && str1[i] != str2[i]) || (!caseSen && toupper(str1[i]) != toupper(str2[i]))
Here bool variable caseSen will work as flag, and will activate either left sub-
expression or right sub-expression in if-statement, in case we are performaing case
sensitive comparison caseSen will be true (1) and will activate sub-expression,
(caseSen && str1[i] != str2[i])
and in case caseSen is false it will activate second sub-expression involving !caseSen
as given below,
(!caseSen && toupper(str1[i]) != toupper(str2[i])
other logic is same as in case 1 functions.

33.7. Third Solution

Third solution is most elegant solution out of all these, in which we write two classes
one for case sensitive and other for case insensitive comparison, and pass one of
these classes as argument when instantiating template compare function, in compare
function isEqual function of passed class is being called to perform either case
sensitive or case insensitive comparison,

class CaseSenCmp {
public:
 static int isEqual(char x, char y) {
 return x == y;
 }
};

class NonCaseSenCmp {
public:
 static int isEqual(char x, char y) {
 return toupper(x) == toupper(y);
 }
};

template< typename C >
int compare(char* str1, char* str2)
{
 for (int i = 0; i < strlen(str1) && i < strlen(str2); i++)
 if (!C::isEqual (str1[i], str2[i]))
 return str1[i] - str2[i];

 return strlen(str1) - strlen(str2);
};

int main() {
 int i, j;
 char *x = "hello", *y = "HELLO";
 i = compare< CaseSenCmp >(x, y);
 j = compare< NonCaseSenCmp >(x, y);
 cout << "Case Sensitive: " << i;
 cout << "\nNon-Case Sensitive: “<< j << endl;
 return 0;

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 269

}
Sample Output

Case Sensitive: 32 // Not Equal
Non-case Sensitive: 0 // Equal

33.8. Default Policy
We can set default class type as default comparison type as we set default parameters
in case of constructors,

template< typename C = CaseSenCmp >
int compare(char* str1, char* str2)
{
 for (int i = 0; i < strlen(str1) && i < strlen(str2); i++)
 if (!C::isEqual
 (str1[i], str2[i]))
 return str1[i] - str2[i];

 return strlen(str1) - strlen(str2);
};

int main() {
 int i, j;
 char *x = "hello", *y = "HELLO";
 i = compare(x, y);
 j = compare< NonCaseSenCmp >(x, y);
 cout << "Case Sensitive: " << i;
 cout << "\nNon-Case Sensitive: “
 << j << endl;
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 270

Lecture No.34
Generic Algorithms - A Case Study

Consider the template printArray function we wrote in previous lecture,

Printing an Array
template< typename T >
void printArray(T* array, int size)
{
 for (int i = 0; i < size; i++)
 cout << array[i] << “, ”;
}

Although this function will work for all data types but still it is taking array as an
argument so this function still depends upon nature of data structure used to pass
data, we want this function to be independent from data structure as well means it
should print single values as well as arrays of basic data types.

34.1. Generic Algorithms
We want to provide such implementation that is independent of data structures also
for example in case of printing of values we want printing of both single values and
arrays, this can be achieved using Generic Programming in which a function work for
all types of containers, let us see how we can make a function generic step by step
with the help of an example, consider the find function below it is similar to
printArray function with the difference that it tries to find an element in an array and
return pointer to that element if it is found in the array otherwise it returns zero
(NULL).

Find function that tries to find an integer value in an integer array
const int* find(const int* array, int _size, int x) {
 const int* p = array;
 for (int i = 0; i < _size; i++) {
 if (*p == x)
 return p;
 p++;
 }
 return 0;
}

First step obviously will be to write it as template so that it may work for all data
types instead of only integers,
We write it as template function,

Template function to find a value within an array
template< typename T >
T* find(T* array,int _size, const T& x) {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 271

 T* p = array;
 for (int i = 0; i < _size; i++) {
 if (*p == x)
 return p;
 p++;
 }
 return 0;
}

In next step we simply pass a pointer that is pointing one location next after array
instead of passing size of array as shown below, (this will make our code simplified)

template< typename T >
T* find(T* array, T* beyond, const T& x) {
 T* p = array;
 while (p != beyond) {
 if (*p == x)
 return p;
 p++;
 }
 return 0;
}

We also change the return statement of the function by returning the beyond pointer
instead of zero in case element is not found, so now we will not check the return
value for NULL pointer we will simply check whether it points to any value or it
points to beyond pointer, (we are doing it so that we can use a single return
statement to return a single pointer as we have done below)

template< typename T >
T* find(T* array, T* beyond, const T& x) {
 T* p = array;
 while (p != beyond) {
 if (*p == x)
 return p;
 p++;
 }
 return beyond;
}

using single return statement,

template< typename T >

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 272

T* find(T* array, T* beyond, const T& x) {
 T* p = array;
 while (p != beyond && *p != x)
 p++;
 return p;
}

Now our code is so generic that it will work for all types of containers (data
structures) supporting two operations,

• Increment operator (++) as we are incrementing value in this container
• Dereference operator (*) as we are getting value from container for

comparison by dereferencing

Although this template function will now work for all containers in same way but it
has one limitation that we will need to pass container pointers in this function this is
against the concept of generic programming so we simply remove pointer notation
from our code,

template< typename P, typename T >
P find(P start, P beyond, const T& x) {
 while (start != beyond && *start != x)
 start++;
 return start;
}

Now this implementation will work for all references of containers as shown in code
below,

int main() {
 int iArray[5];
 iArray[0] = 15;
 iArray[1] = 7;
 iArray[2] = 987;
 …
 int* found;
 found = find(iArray, iArray + 5, 7);
 return 0;
}

We can apply the same concept of Generic Algorithms to class templates and
develop a generic Vector class that will work for all built-in types as shown below,

34.2. Class Templates

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 273

As we saw before a single class template provides functionality to operate on
different types of data and in this way facilitates reuse of classes (like we wrote our
own array class to overcome the limitations of built-in array class in c++).

We can definition a class template as follows:

• template< class T > class Xyz { … };
• template< typename T > class Xyz { … };

Now we write a template Vector class using the concept of Generic Algorithms such
that it can store everything, basically it will act as container to store anything in it, it
can store objects that are them self collections like arrays or it can store basic data
types. This will be possible because we are going to implement this Vector class
using the concept of Generic Algorithms.

34.3. Example – Class Template

A Vector class template can store data elements of different types, without templates,
we need a separate Vector class for each data type.

We start with the basic definition of Vector class using templates,
Class Template
template< class T >
class Vector {
private:
 int size;
 T* ptr;
public:
 Vector<T>(int = 10);
 Vector<T>(const Vector< T >&);
 ~Vector<T>();
 int getSize() const;
 const Vector< T >& operator =(
 const Vector< T >&);
 T& operator [](int);
};

Its implementation is,

template< class T >
Vector<T>::Vector<T>(int s) {
 size = s;
 if (size != 0)
 ptr = new T[size];
 else

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 274

 ptr = 0;
}
template< class T >
Vector<T>:: Vector<T>(
 const Vector<T>& copy) {
 size = copy.getSize();
 if (size != 0) {
 ptr = new T[size];
 for (int i = 0; i < size; i++)
 ptr[i] = copy.ptr[i];
 }
 else ptr = 0;
}

template< class T >
Vector<T>::~Vector<T>() {
 delete [] ptr;
}

template< class T >
int Vector<T>::getSize() const {
 return size;
}
template< class T >
const Vector<T>& Vector<T>::operator
 =(const Vector<T>& right) {
 if (this != &right) {
 delete [] ptr;
 size = right.size;

 if (size != 0) {
 ptr = new T[size];
 for(int i = 0; i < size;i++)
 ptr[i] = right.ptr[i];
 }
 else
 ptr = 0;
 }
 return *this;
}
template< class T >
T& Vector< T >::operator [](int index) {
 if (index < 0 || index >= size) {
 cout << “Error: index out of
 range\n”;
 exit(1);

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 275

 }
 return ptr[index];
}

We can create this vector class instances for int or char data type as given below,

 Vector< int > intVector;
 Vector< char > charVector;

This Vector class is parameterized class and will always be instantiated for a
particular type only. Now we can not create object of type Vector only it will be
instantiated for a particular data type like Vector<int> or Vector <float> and so on…

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 276

Lecture No.35

35.1. Member Templates:
Member functions of a template class implicitly become functions templates; they
work for instantiations (int, char, float, double so on…) of that class, however there
are some situations where we need explicit template functions in our class taking
more template parameters other than one implicit template parameter (parameter
given to this class as parameter while creating its object).
A class or class template can have member functions that are themselves templates

template<typename T> class Complex {
 T real, imag;
public:
 // Complex<T>(T r, T im)
 Complex(T r, T im) :
 real(r), imag(im) {}
 // Complex<T>(const Complex<T>& c)
Complex(const Complex<T>& c) :
 real(c.real), imag(c.imag) {}
 …
};

Note that in C++ while declaring class there is no need to mention template
parameter for class member functions as compiler implicitly understand it, however
if we are using some other template parameter like we are doing for copy constructor
then we need to give its name as well.
Now see that main function for this class in which we are assigning Complex class
float instance to double, it will result in an error,

int main() {
 Complex< float > fc(0, 0);
 Complex< double > dc = fc; // Error
 return 0;
}

Because, our Complex copy constructor is taking argument of same template type T
so this copy constructor will work for statements like,

 Complex< float > f1c(0, 0);
 Complex< float > f2c = f1c;

 Complex< double > d1c(0, 0);
 Complex< double > d2c = d1c;

But will not work for statements like,

Complex< float > fc(0, 0);

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 277

 Complex< double > dc = fc;

 Complex< double > d1c(0, 0);
 Complex< float > d2c = d1c;

When we created Complex object for double compiler generated class for double like
shown below,

class Complex<double> {
 double real, imag;
public:
 Complex(double r, double im) :real(r), imag(im)

{}
 Complex(const Complex<double>& c) :real(c.real), imag(c.imag)

{}
 …
};

So, there is need of some sort of overloading of copy constructor such that we can
assign two instances of Complex class for two different data types.

Now we change copy constructor as function template explicitly, so that it may work
for copy of different types of data types as well,

template<typename T> class Complex {
 T real, imag;
public:
 Complex(T r, T im) :
 real(r), imag(im) {}
 template <typename U>
// this copy constructor is now taking two template parameters one implicit T
// and other explicit U
 Complex(const Complex<U>& c) :
 real(c.real), imag(c.imag) {}
 …
};

Now assignment of float Complex instance to double instance will fine,

int main() {
 Complex< float > fc(0, 0);
 Complex< double > dc = fc; // OK
 return 0;
}

Because, here copy constructor
Complex(const Complex<U>& c) :

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 278

Will be instantiated for implicit template type (T) double and explicit template type
(U) float because now our Copy constructor is acting as explicity template function
written for two different parameters.

Important points to Note:

1. Only that instantiation of copy constructor is generated that is required.
2. Good compilers only generate required template function instances for

Complex class instantiation for a particular data type as shown below,

For statement: Complex< double > dc = fc;
the functions that will be generated for float and double instance of complex class are
shown below,

<double> Instantiation

class Complex<double> {
 double real, imag;
public:
 Complex(double r, double im) :
 real(r), imag(im) {}
 template <typename U>
 Complex(const Complex<U>& c) :
 real(c.real), imag(c.imag) {}
 …
};

<float> Instantiation

class Complex<float> {
 float real, imag;
public:
 Complex(float r, float im) :
 real(r), imag(im) {}
// No Copy Constructor code is generated as there is no need for it
 …
};

This approach avoid code bloat (unnecessary code generation).

35.2. Class Template Specialization

Like function templates a class template may also not handle all the types
successfully, for example for char arrays (char *) the behaviour of template class
vector may be not be as desired as shown below,

Vector class to store integers
int main() {
 Vector< int > iv1(2);
 iv1[0] = 15;

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 279

 iv1[1] = 27;
 Vector< int > iv2(iv1);
 Vector< int > iv3(2);
 iv3 = iv1;
 return 0;
}

Vector class to store char arrays (char *)
int main() {
 Vector< char* > sv1(2);
 sv1[0] = "Aamir";
// compiler will generate a const C String having value Aamir and will assign its
//pointer to sv1[0]
 sv1[1] = "Nasir";
 Vector< char* > sv2(sv1); // issue of shallow copy
 Vector< char* > sv3(2);
 sv3 = sv1; // issue of shallow copy
 return 0;
}

We can write explicit specialization for Vector class for char arrays as we wrote for
template function isEqual,

template<>
class Vector< char* > {
private:
 int size;
 char** ptr;
public:
 // Vector< char* >(int = 10);
 Vector(int = 10);
 Vector(const Vector< char* >&);
 virtual ~Vector();
 int getSize() const;
 const Vector< char* >& operator =(const Vector< char* >&);
 const char*& operator [](int);
 void insert(char*, int);
};
template<>
Vector<char*>::Vector(int s) {
 size = s;
 if (size != 0) {
 ptr = new char*[size];
 for (int i = 0; i < size; i++) ptr[i] = 0;
 }
 else
 ptr = 0;
}
template<>

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 280

Vector< char* >::Vector(const Vector<char*>& copy) {
 size = copy.getSize();
 if (size == 0) {
 ptr = 0;
 return;
 }
 ptr = new char*[size];
 for (int i = 0; i < size; i++)
 if (copy.ptr[i] != 0) {
 ptr[i] = new char[strlen(copy.ptr[i]) + 1];
 strcpy(ptr[i], copy.ptr[i]);
 }
 else
 ptr[i] = 0;
}

template<>
Vector<char*>::~Vector() {
 for (int i = 0; i < size; i++)
 delete [] ptr[i];

 delete [] ptr;
}

template<>
int Vector<char*>::getSize() const {
 return size;
}

template<>
const Vector<char*>& Vector<char*>::
operator=(const Vector<char*>& right)
{
 if (this == &right)
 return *this;
 for (int i = 0; i < size; i++)
 delete [] ptr[i];
 delete [] ptr;
size = right.size;
if (size == 0) {
 ptr = 0;
 return *this;
}
ptr = new char*[size];
for (int i = 0; i < size; i++)
 if (right.ptr[i] != 0) {
 ptr[i] = new char[strlen(right.ptr[i]) + 1];
 strcpy(ptr[i], right.ptr[i]);
 }
 else
 ptr[i] = 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 281

template<>
const char*& Vector<char*>:: operator [](int index) {
 if (index < 0 || index >= size) {
 cout << "Error: index out of range\n";
 exit(1);
 }
 return ptr[index];
}

template<>
void Vector< char* >::insert(char* str, int i) {
 delete [] ptr[i];
 if (str != 0) {
 ptr[i] = new char[strlen(str)+ 1];
 strcpy(ptr[i], str);
 }
 else
 ptr[i] = 0;
}

This code is similar to general template Vector class with the difference that now we
are allocating and taking care of dynamic memory associated with char arrays.
The main program showing usage of above main program is given below,

int main() {
 Vector< char* > sv1(2);
 sv1[0] = “Aamir”;
 // Error as now we have to changed code of overloaded subscript operator to
return //const Vector pointer now and we can not assign new value to constant
reference //of Vector now we have to use insert function explicity written for that
purpose
 sv1.insert("Aamir", 0);
 sv1.insert("Nasir", 1);
 Vector< char* > sv2(sv1);
 Vector< char* > sv3(2);
 sv3 = sv1;
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 282

Lecture No.36

Recap

We saw in previous lecture that how we can implement our programming problems
easily using Generic Algorithms. Then we saw how we can add explicit template
functions to our Class templates to add our desired functionality.
A class template may not handle all the types successfully explicit specializations are
required to deal such types we can implement concept of template specialization for
such classes as well as we did for function templates.

Now, we move forward to see other cases for member templates,

36.1. Member Templates Revisited
We can add member templates for ordinary classes as well, for example following
code is adding any instance of Complex class to ComplexSet class, (as we know
complex class can be instantiated for int, float or double and ComplexSet class will be
collection of Complex class instantiations) as shown below,

Complex Class objects,

Complex<int>

real 8

img 3

Complex<double>

real 5.3286

img 5.3284

Complex<float>

real 5.69

img 8.25

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 283

class ComplexSet {

 template< class T >
 insert(Complex< T > c) // any instance of complex class
 {
// Add instance Complex class to Complex set class having many // Complex class
instances
}
 };
int main() {
 Complex< int > ic(10, 5);
 Complex< float > fc(10.5, 5.7);
 Complex< double > dc(9.567898, 5);
 ComplexSet cs;
 cs.insert(ic);
 cs.insert(fc);
 cs.insert(dc);
 return 0;
}

36.2. Partial Specialization:

We can also perform partial specialization instead of complete specialization, a
partial specialization of a template exists between general specialization and
complete specialization for example we can specialize a class to behave in a certain
manner in case of pointers or in case of parameter of a certain type, see the example
below to understand the difference between complete and partial specialization,

template< class T, class U, class V > // general template
template< class T, class U, int > // partial specialization
template< class T, float , int > // partial specialization
template< int , float , int > // complete specialization

In partial specialization, the number of template parameters remains the same,
however, their nature varies (they become more specific).

Complex<int>

real 8

img 3

Complex<double>

real 5.3286

img 5.3284

Complex<float>

real 5.69

img 8.25

ComplexSet Object

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 284

Example – Partial Specialization

template< class T >
class Vector { };
template< class T >
class Vector< T* > { }; // Here T can take any type pointer

Example – Partial Specialization

template< class T, class U, class V >
class A {};
template< class T, class V >
class A< T, T*, V > {}; // the parameters in header of are two but in class we are
using same three parameters
template< class T, class U, int I >
class A< T, U, I > {}; // here we have changed third parameter to non type
parameter15
template< class T >
class A< int, T*, 5 > {}; // here we have changed first parameter to non type
parameter and second is T * any data type pointer and third one is constant
expression 5

Example – Complete Specialization

template< class T >
class Vector { };

template< >
class Vector< char* > { };

Example – Complete Specialization

template< class T, class U, class V >
class A {};

template< >
class A< int, char*, double > {};

36.3. Function Templates

Similar to class templates a function template may also have partial specializations,

15 non type parameters are those parameters which are not template parameters

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 285

Example – Partial Specialization

template< class T, class U, class V >
void func(T, U, V);

template< class T, class V >
void func(T, T*, V);

template< class T, class U, int I >
void func(T, U);

template< class T >
void func(int, T, 7);

36.4. Complete Specialization
We have already used this complete specialization in case of function templates,
template< >
 bool isEqual< const char* >(
 const char* x, const char* y) {
 return (strcmp(x, y) == 0);
 }

Example
Consider the following template

template< typename T >
 bool isEqual(T x, T y) {
 return (x == y);
 }

Following partial specialization of this function deals with pointers to objects,

template< typename T >
 bool isEqual(T* x, T* y) {
 return (*x == *y);
 }

So complete having all types of specializations for isEqual function is shown below,

template< typename T >
 bool isEqual(T x, T y) {
 return (x == y);
 }
template< typename T >
 bool isEqual(T* x, T* y) {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 286

 return (*x == *y);
 }
template< >
 bool isEqual< const char* >(
 const char* x, const char* y) {
 return (strcmp(x, y) == 0);
 }

36.5. Using Different Specializations

The code below shows how we can use different type of specializations for isEqual
function given above,

int main() {
 int i, j;
 char* a, b;
 Shape *s1 = new Line();
 Shape *s2 = new Circle();
 isEqual(i, j); // Template
 isEqual(a, b); // Complete Sp.
 isEqual(s1, s2); // Partial Sp.
 return 0;
}

36.6. Non-type Parameters

The parameters given in template definition other than those used for mentioning
templates types are called non type parameters, for example,

template <class T, class U, int I>

Here int I is not type parameter.

Template parameters may include non-type parameters, the non-type parameters
may have default values, for example,

template <class T, class U, int I = 5>

They are treated as constants and are commonly used is static memory allocation
mean when we want to pass the length of memory we need in template at compile
time (statically) the example below shows all this,

36.7. Example – template class Array

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 287

Consider the Array class again that we discussed in template classes introduction, in
this template array class we are creating a c++ array of any built in data type by
passing array size in Array object constructor as shown below,

template< class T >
class Array {
private:
 T* ptr;
public:
 Array(int size);
 ~Array();
 …
};
template< class T >
Array<T>::Array() {
 if (size > 0)
 ptr = new T[size];
 else
 ptr = NULL;
}
int main() {
 Array< char > cArray(10);
 Array< int > iArray(15);
 Array< double > dArray(20);
 return 0;
}

We can do the same by passing the array size as non type parameter while creating
an Array class object itself, for this we will need to change to template class
definition by adding a non type parameter SIZE as shown below,

template< class T, int SIZE >
class Array {
private:
 T ptr[SIZE];
public:
 Array();
 …
};

Now we can simply pass array size as argument while creating Array class object,

int main() {
 Array< char, 10 > cArray;
 Array< int, 15 > iArray;
 Array< double, 20 > dArray;

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 288

 return 0;
}

36.8. Default Non-type Parameters
We can set default value for this non type parameters, as we do for parameters
passed in ordinary functions,

template< class T, int SIZE = 10 >
class Array {
private:
 T ptr[SIZE];
public:
 void doSomething();
 …
};

Now default value will be used if we will not pass any value for array size,

int main() {
 Array< char > cArray; // here Array of size 10 will be created
 return 0;
}

36.9. Default Type Parameters

We can also specify default type for type parameters (template parameters like T, U,
V), consider the Vector class again we can mention default type of Vector class (that
type will be used in case we have not mentioned any type while creating Vector class
object)

 template< class T = int > // default type for Vector class is now int
 class Vector {
 …
 };

 Vector< > v; // same as Vector< int > v

Lecture No.37

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 289

Lecture No. 37

37.1. Resolution Order
Consider the following specializations of template Vector class,

template< typename T >
class Vector { … };

template< typename T >
class Vector< T* > { … };

template< >
class Vector< char* > { … };

As these all are template implementations of class Vector, when compiler have to use
this template class having many specializations from partial to complete, compiler
searches all these specializations in a particular order called resolution order, so
resolution order it is the sequence in which compiler searches for required template
specialization and is given below,

a. First of all compiler looks for complete specialization
b. If it can not find any required complete specialization then it searches for

some partial specialization
c. In the end it searches for some general template

So in other words we can say that compiler searches template specializations from
more specific to more general.

Example – Resolution Order
The code below shows which particular instantiation of template Vector class will be
used,
int main() {
 Vector< char* > strVector;
 // Vector< char* > instantiated (complete specialization used)

 Vector< int* > iPtrVector;
 // Vector< T* > instantiated (partial specialization used)

 Vector< int > intVector;
 // Vector< T > instantiated (general specialization used)
 return 0;
}

Explanation of code:

In all three cases above, compiler will search for required template specialization in
the order given below,

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 290

1. Complete specialization (Vector< char* >)
2. Partial specialization (Vector< T* >)
3. General specialization (Vector< T>)

• When compiler will find the following line,

Vector< char* > strVector;

It will find corresponding complete specialization and will stop there.

• When compiler will find the following line,

Vector< int* > iPtrVector;

It will start its searching from complete specializations available but there is only one
complete specialization for char * (Vector< char* >) and there is no complete
specialization for int *, so compiler will move to partial specialization and will try to
match some with int *, compiler will find one (Vector <T *>) that is working for all
pointer data types and therefore it will use that.
• When compiler will find the following line,

Vector< int > intVector;

It will start from complete specializations available but there is only one complete
specialization for char * (Vector< char* >) and there is no complete specialization for
int, so compiler will move to partial specialization and will try to match some with
int, compiler will find one partial speciation (Vector <T *>) that is working for all
pointer data types only hence not applicable here, then compiler will move to general
template class Vector <T> and will use it.

37.2. Function Template Overloading

We can specialize function templates also, this is called function template
overloading,
Consider the specializations of template function sort,

template< typename T >
void sort(T); // general template function
template< typename T >
void sort(Vector< T > &); // specialization for template Vector class instantiated
for any data type
template< >
void sort< Vector<char*> >(Vector< char* > &); // specialization for template
Vector instantiated for char * data type
void sort(char*); // specialization for char * data type.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 291

37.3. Resolution Order

Compiler searches target of a function call in the following order in case of function
of templates,

• Ordinary Function
• Complete Specialization
• Partial Specialization
• Generic Template

This is the same order as was in case of class template with the addition of ordinary
functions (non template functions with the same name).

Example – Resolution Order

int main() {

 char* str = “Hello World!”;
 sort(str); // Ordinary function sort(char*)

 Vector<char*> v1 = {“ab”, “cd”, … };
 sort(v1); //Complete specialization sort(Vector<char*> &)

 Vector<int> v2 = { 5, 10, 15, 20 };
 sort(v2); // partial specialization sort(Vector<T> &)

 int iArray[] = { 5, 2, 6 , 70 };
 sort(iArray); // general template sort(T)

 return 0;
}

37.4. Templates and Inheritance

We can use inheritance comfortably with templates or their specializations, but we
must follow one rule:

• If we have a template class then all classes derived from it should also be
class templates.

• Derived class must take at least as many template parameters as the base
class requires for an instantiation.

37.5. Derivations in case of a General Template class

• A class template may inherit from another class template. Consider the
following code segment in which we are defining a template class A and we
are deriving another class B from it which is also a template class.

 template< class T >

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 292

 class A
 { … };

 template< class T >
 class B : public A< T >
// same template parameter T in both classes declarations ensures that both classes
will be instantiated for same types
 { … };

int main() {
 A< int > obj1;
 B< int > obj2;
 return 0;
}

• A partial specialization may inherit from a class template
 template< class T >
 class B< T* > : public A< T >// same template parameter T is used here also
to //ensure that both classes will be instantiated for same data types
 { … };

int main() {
 A< int > obj1;
 B< int* > obj2;
 return 0;
}

• Complete specialization or ordinary class cannot inherit from a class template
because as you can see complete specialization is in fact instance of the class
for one data type and in this way it is similar to ordinary class as ordinary
class also can be instantiated for its members of a particular data type,

template< >
class B< char* > : public A< T >
 { … };
// Error: ‘T’ undefined, derived class is taking less parameters than base class

class B : public A< T >
 { … };
// Error: ‘T’ undefined, derived class is taking less parameters than base class

Derivations in case of a partially specialized class

• A class template may inherit from a partial specialization

template< class T >

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 293

 class A
 { … };

 template< class T >
 class A< T* >
 { … };
template< class T >
class B : public A< T* >
{ … } ;

int main() {
 A< int* > obj1;
 B< int > obj2;
 return 0;
}

• A partial specialization may inherit from a partial specialization

template< class T >
 class B< T* > : public A< T* >
 { … };

int main() {
 A< int* > obj1;
 B< int* > obj2;
 return 0;
}

• Complete specialization or ordinary class cannot inherit from a partial
specialization

 template< >
 class B< int* > : public A< T* >
 { … }; // Error: Undefined ‘T’

 class B : public A< T* >
 { … }; // Error: Undefined ‘T’

Derivations in case of Completely Specialized class

template< class T >
class B : public A< float* >
{ … };

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 294

int main() {
 A< float* > obj1;
 B< int > obj2;
 return 0;
}

• A partial specialization may inherit from a complete specialization

template< class T >
 class B< T* > : public A< float* >
 { … };

int main() {
 A< float* > obj1;
 B< int* > obj2;
 return 0;
}

• A complete specialization may inherit from a complete specialization

template< >
 class B< double* > : public A< float* >
 { … };

int main() {
 A< float* > obj1;
 B< double* > obj2;
 return 0;
}

• An ordinary class may inherit from a complete specialization

class B : public A< float* >
 { … };

int main() {
 A< float* > obj1;
 B obj2;
 return 0;
}

Derivations in case of Ordinary Class

• A class template may inherit from an ordinary class

class A

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 295

 { … };

 template< class T >
 class B : public A
 { … };
int main() {
 A obj1;
 B< int > obj2;
 return 0;
}

• A partial specialization may inherit from an ordinary class

class A{
 };

 template<class T>
 class B {};
template <class T>
class B<T*>: public A{};

int main() {
 A obj1;
 B <int *> obj2;
 return 0;
}

• A complete specialization may inherit from an ordinary class

 template <class T>
 class B{};
 template< >
 class B< char* > : public A
 { … };

int main() {
 A obj1;
 B< char* > obj2;
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 296

Lecture No.38

38.1. Templates and Friends

Templates or their specializations are also compatible with friendship feature of C++
as they are with inheritance.
We consider the following rules when dealing with templates and friend functions
and classes.

38.2. Templates and Friends – Rule 1
When an ordinary function or class is declared as friend of a class template then it
becomes friend of each instantiation of that template class.
Consider the code below in which we are declaring a class A as friend of a class B
and in this class A, we are accessing private data of class B without any error,
In case of friend classes,

class A {
 …
};

template< class T >
class B {
 int data;
 friend A; // declaring A as friend of B
 …
};

class A {
 void method() {
 B< int > ib;
 B< char > cb
 ib.data = 5; // OK: Accessing private member ‘data’ for class B
instantiation ib
 cb.data = 6; // OK: Accessing private member ‘data’ for class B
instantiation cb
 }
};

In case of friend functions,

void doSomething(B< char >&);

template< class T >
class B {
 int data;
 friend void doSomething(B<char>&);
 // declaring function doSomething as friend of B

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 297

 …
};

void doSomething(B< char >& cb) {
 B< int > ib;
 ib.data = 5; // OK: Accessing private data of class B
 cb.data = 6; // OK: Accessing private data of class B
}

In combined way both can be written as follows,

void doSomething(B< char >&);

class A { … };

template< class T > class B {
 int data;
 friend void doSomething(B<char>&);
 friend A;
 …
};
void doSomething(B< char >& cb) {
 B< int > ib;
 ib.data = 5; // OK
 cb.data = 6; // OK
}
class A {
 void method() {
 B< int > ib;
 B< char > cb
 ib.data = 5; // OK
 cb.data = 6; // OK
 }
};

The Rule 1 is simple. Now, we go to Rule 2.

38.3. Templates and Friends – Rule 2
Rule 2 applies when we make template function or template class friend of another
template class.
According to Rule 2 when a friend function template or friend class template is
instantiated with the type parameters of class template granting friendship then its
instantiation for a specific type is a friend of that class template instantiation for that
particular type only. The example below explains this concept,

Consider the code below it has a template friend function and a template friend
class of template class B, note that in template class B we have given the same
parameter T to both template friend function doSomething and template friend class
A, according to Rule 2 when we write implementations of friend template class A

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 298

and friend template function doSomething we create instance of class B for same
date type for which function doSomething or class A will be instantiated as shown
below otherwise compiler will generate error,

/***
One template function and one template class
**/
template< class U >
void doSomething(U); // template function with template parameter U
template< class V >
class A { … }; // template function with template parameter V

/***
Making template function and template class friends of class B
Note that in code of class B below we are using same type parameter T for
instantiating template function doSomething and template class A.
**/
template< class T >
class B {
 int data;
 friend void doSomething(T); // granting friendship to template
doSomething in // class B
 friend A< T >; // granting friendship to class A in class B
};

/***
Implementation of template function doSometing and template class A
As we have used same type parameter T in class B for declaring doSomething and
class A as friend so now we can only instantiate object of class B according to the
passed parameter
**/

template< class U >
void doSomething(U u) { // here template T will be passed as U
 B< U > ib;
 // it is OK as we are instantiating class B for same type that is passed from class B
i.e // T
 ib.data = 78;
}
int main() {
 int i = 5;
 char c = ‘x’;
 doSomething(i); // OK
 doSomething(c); // OK
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 299

Now, suppose we change instantiation of doSomething and in it we cerate B class
instance for int,

template< class U >
void doSomething(U u) {
 B< int > ib;
 ib.data = 78;
}

Now, we can only create doSomething instance for integers as shown below, in case
we create that function instance for any other date type error will be generated by
compiler ,
int main() {
 int i = 5;
 char c = ‘x’;
 doSomething(i); // OK
 doSomething(c); // Error!
 return 0;
}

The reason for the error is that we are creating class B instance for int data type in
function doSomething(), but function doSomething itself has been instantiated for
char in main.

Same Rule applied to template friend class A is shown below,

class B< int > {
 int data;
 friend void doSomething(int);
 friend A< int >;
};
template< class T >
class A {
 void method() {
 B< char > cb; // Error!
 cb.data = 8;
 B< int > ib; // OK
 ib.data = 9;
 }
};

38.4. Templates and Friends – Rule 3

When a friend function / class template takes different ‘type parameters’ from the
class template granting friendship, then its each instantiation is a friend of each

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 300

instantiation of the class template granting friendship. Basically here we are
removing restriction imposed by Rule 2, due to the use of same type parameter in
class B while declaring function doSomething and class A as its friends as shown
below,
template< class U >
void doSomething(U);
template< class V >
class A { … };

template< class T >
 class B {
 int data;
 template< class W >
 friend void doSomething(W); // type name is W
 template< class S >
 friend class A; // type name is S
};

template< class U >
void doSomething(U u) {
 B< int > ib; // Now it is ok to use B for int in function doSomething
instantiated for // char in main
 ib.data = 78;
}

int main() {
 int i = 5;
 char c = ‘x’;
 doSomething(i); // OK
 doSomething(c); // OK
 return 0;
}

For classes same Rule is applicable as follows,
……………………..
/**
class A implementation
**/
template< class T >
class A {
 void method() {
 B< char > cb; // OK!
 cb.data = 8;
 B< int > ib;
 ib.data = 9;
 }

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 301

};

38.5. Templates and Friends – Rule 4
Rule 4 says that when we declare a template as friend of any class then all kinds
specializations of that function – explicit, implicit and partial, also becomes friends of
the class granting friendship.

template< class T >
class B {
 T data;
 template< class U >
 friend class A; // granting friendship to class A for all data types
(Rule 3)
};

template< class U >
class A { // general template class A
 A() {
 B< int > ib;
 ib.data = 10; // OK
 }
};

template< class U >
class A< U* > { // template class A specialized for pointer data types
 A() {
 B< int > ib;
 ib.data = 10; // OK
 }
};

In case of functions demonstration of this Rule is below,

template< class T >
class B {
 T data;
 template< class U >
 friend void doSomething(U); // granting friendship to
doSomething for all data types (According to Rule 3)
};

template< class U >
void doSomething(U u) {
 B< int > ib;
 ib.data = 56; // OK
}

template< >
void doSomething< char >(char u) {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 302

 B< int > ib;
 ib.data = 56; // OK
}

Note:

You can see that there is need to concentrate on Rule 2 as it is somewhat difficult to
understand other rules are simple.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 303

Lecture No.39

39.1. Templates & Static Members

We have studied in case of general classes that their static members are created and
initialized at class scope, meaning that memory is reserved for them when a class is
compiled and they are initialized as well at that time, they are not dependent on the
creation of any object of a class, all these tings are true in case of static members of
template classes as well with different that they are created when a template class is
instantiated for each date type, each instantiation of template class has its own copy
of static data members, suppose we have template class with static members,
compiler will create this template class implementation for different date types as
required, and each implementation will have its own copy of static data members.16

Consider the class A with a public static data member and a static member function.
(It is not good practice to make any data member public but it is declared as public
here to demonstrate that separate copy of this data member will be created for each
data type).

#include <cstdlib>
#include <iostream>

using namespace std;

template< class T >
class A {
public:
 static int data;
 static void doSomething(T &);
};
template<class T>
int A<T>::data = 0;

int main() {
 A< int > ia;
 A< char > ca;
 ia.data = 5;
 ca.data = 7;
 cout << "ia.data = " << ia.data << endl << "ca.data = " << ca.data;
 system("PAUSE");
 return 0;
}

Output

 ia.data = 5
 ca.data = 7

16 We can take each implementation of template class for a particular data type as a general class
written explicitly for that data type.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 304

This output clearly shows that we have two separate copies of data for int and char
types.

Also note that each date type instantiation will have single copy of static members as
demonstrated below, here objects ia,ib and ic will have single copy of data being
shared by all of them as was the case for static members of a general class,

#include <cstdlib>
#include <iostream>

using namespace std;
template< class T >
class A {
public:
 static int data;
 static void doSomething(T &);
};

template<class T>
int A<T>::data = 0;

int main() {
 A< int > ia, ib , ic;

 ia.data = 5;
 ib.data = 7;
 ic.data = 9;
 cout << "ia.data = " << ia.data << endl << "ib.data = " << ib.data << endl <<
"ic.data = " << ic.data << endl;
 system("PAUSE");
 return 0;
}

Output

 ia.data = 9
 ib.data = 9
 ic.data = 9

As same data member is being shared so same member value is being changed

39.2. Templates – Conclusion
Advantages:
Templates provide

• Reusability
• Writability

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 305

Disadvantages:
• Can consume memory if used without care.
• Templates may affect reliability of a program as they give same type of

implementation for all data types with may not be correct for a particular
data type like isEqual function given below may give incorrect result for char
*.

 template< typename T >
 bool isEqual(T x, T y) {
 return (x == y);
 }

• As we are free to give any kind of implementation for a particular data type
we may given incorrect implementation, considering the above isEqual
function, it will produce incorrect result for char * (char arrays) as it will
compare first value of both arrays only,

 int main() {
 char* str1 = “Hello ”;
 char* str2 = “World!”;
 isEqual(str1, str2);
 // Compiler accepts!
 }

39.3. Generic Algorithms Revisited

We studied the concept of Generic Algorithms before that made our code type
independent as well as independent of underlying data structure,
 For this we developed step by step the following find algorithm that is so generic
that it works for all containers,

template< typename P, typename T >
P find(P start, P beyond, const T& x) {
 while (start != beyond && *start != x)
 ++start;
 return start;
}

int main() {
 int iArray[5];
 iArray[0] = 15;
 iArray[1] = 7;
 iArray[2] = 987;
 …
 int* found;
 found = find(iArray, iArray + 5, 7);
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 306

39.4. Generic Algorithms Revisited
We claimed that this algorithm is generic, because it works for any aggregate object
(container) that defines following three operations

a. Increment operator (++)
b. Dereferencing operator (*)
c. Inequality operator (!=)

Let us now try to apply this generic algorithms to our template Vector class to
examine whether our generic algorithm find works on this container (our template
Vector class can store in it data of all types), for this our Vector class need to support
the three operations given above and we will have to add one more integer data
member index to track the traversal when we will apply increment operation (++),
we will also add its setter and getter members to access its value.
So now our modified Vector class is as follows,

Example – Vector

template< class T >
class Vector {
private:
 T* ptr;
 int size;
 int index; // initialized with zero
public:
 Vector(int = 10);
 Vector(const Vector< T >&);
 T& operator [](int);
 int getIndex() const;
 void setIndex(int i);
 T& operator *();
 bool operator !=(const Vector< T >& v);
 Vector< T >& operator ++();
};
template< class T >
int Vector< T >::getIndex() const {
 return index;
}
template< class T >
void Vector< T >::setIndex(int i) {
 if (index >= 0 && index < size)
 index = i;
}
template< class T >
Vector<T>& Vector<T>::operator ++() {
 if (index < size)
 ++index;
 return *this;
}
template< class T >
T& Vector< T >::operator *() {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 307

 return ptr[index];
}
template< class T >
bool Vector<T>::operator !=(Vector<T>& v) {
 if (size != v.size || index != v.index)
 return true;

 for (int i = 0; i < size; i++)
 if (ptr[i] != v.ptr[i])
 return true;

 return false;
}

Now we want to apply our generic find method on this Vector container, as our
generic find algorithm is taking three parameters we will create three instances of
our Vector class as follows,

1. First Vector instance to store our data (integers in this case).
2. Second Vector instance to pass address of beyond (One position next to first

Vector instance)
3. Third Vector instance to get result

int main() {
 Vector<int> iv(3);
 // First Vector instance to store integer values from which we need to find
integer
 // value
 iv[0] = 10;
 iv[1] = 20;
 iv[2] = 30;

 Vector<int> beyond(iv),found(3);
 // declaring Second (beyond) and third (found) instance in same
statement
 // beyond is initialized with first Vector instance iv
 // third vector instance of length 3 will be used to store the result
 beyond.setIndex(iv.getSize()); // We have set index of beyond to 3
where no
 // element exists in it so it is behaving as pointing to one element next to
iv.
 found = find(iv, beyond, 20);
 cout<<“Index: ”<<found.getIndex();
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 308

39.5. Generic Algorithm
Now, we want to apply our generic algorithm find on this Vector container,

template< typename P, typename T >
P find(P start, P beyond, const T& x) {
 while (start != beyond && *start != x)
 ++start;

 return start;
}

This algorithm will run as follows,
First iteration:
Iteration No

iv
size

beyond
size

iv
index

beyond
index

start !=
beyond

*start != x

1 3 3 0 3 true true
2 3 3 1 3 true true
3 3 3 2 3 true true
4 3 3 3 3 false undefined

In above scenario this algorithm will run till second iteration only as element 20 will
be found iv will be returned with index equal to 1 pointing to second element (20).
As you can see our generic algorithm is working fine with our container Vector class
instance.
However there are some other things to consider with this generic algorithm
implementation.

39.6. Problems

a. Our algorithm doesn’t support multiple traversals
We can move forward in single steps that may be very inefficient approach in case of
huge Vector object with large number of values, there is no facility to make multiple
movements like one in forward direction and at the same time once in reverse
direction,

b. Our algorithm shows inconsistent behavior
We generally use pointers to mark a position in a data structure of some primitive
type and then return it but here we are using whole container as marker and return it
e.g. we returned whole found object of Vector class to tell whether we find the value
or not we could have done that using single pointer value.

c. Supports only a single traversal strategy
Also there is no way to change traversal strategy (moving beyond more than one
value in single step).

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 309

Lecture No.40

Recap
In previous lecture we studied that we can apply Generic Algorithms on any
container that supports three operations (++, *, !=)
Then we applied Generic Algorithms find on our Vector class by giving
implementation of these three operations in Vector class
At the end we saw that this approach has some drawbacks as given below,

• No support for multiple traversals
• Supports only a single traversal strategy
• Inconsistent behavior

We saw that we have to made distinct three Vector objects for a simple find method
this approach may not be efficient when we have a lot of elements in Vector object.
Now, we see how we can use pointers to modify this approach, we will use three
cursors (pointers) to vector class to avoid creating three Vector objects, in this
approach we will use pointers to store vector elements addresses (basic concept is
similar to link lists).

40.1. Cursors

A better way is to use cursors.
A cursor is a pointer that is declared outside the container / aggregate object
Aggregate object provides methods that help a cursor to traverse the elements

• T* first()
• T* beyond()
• T* next(T*)

In this approach, we will add three methods given above in our Vector class that will
return pointer to elements of Vector elements instead of whole vector object.
Now, our vector class is as follows,

Vector
template< class T >
class Vector {
private:
 T* ptr;
 int size;
public:
 Vector(int = 10);
 Vector(const Vector< T >&);
 ~Vector();
 int getSize() const;
 const Vector< T >& operator =(const Vector< T >&);
 T& operator [](int);
 T* first();
 T* beyond();
 T* next(T*);
};
template< class T >
T* Vector< T >::first() {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 310

 return ptr;
}

template< class T >
T* Vector< T >::beyond() {
 return (ptr + size);
}

template< class T >
T* Vector< T >::next(T* current)
{
 if (current < (ptr + size))
 return (current + 1);
 // else
 return current;
}

int main() {
 Vector< int > iv(3);
 iv[0] = 10;
 iv[1] = 20;
 iv[2] = 30;
 int* first = iv.first();
 int* beyond = iv.beyond();
 int* found = find(first,beyond,20);
 return 0;
}

Note our generic find method remained as it as shown below, simply we used
cursors (pointers) in our main method to make our code so efficient.

template< typename P, typename T >
P find(P start, P beyond, const T& x) {
 while (start != beyond && *start != x)
 ++start;
 return start;
}

Cursors-Usage

This technique works fine for a contiguous sequence like c++ arrays where elements
are placed at consecutive memory locations or Vector whice we have implemented in
terms of arrays with extra functionality to overcome shortcomings of c++ arrays,
however cursors does now work with containers that use complicated data
structures and are non contiguous because in this case we can not simply use ++
operation that we used on our find method, in that case we have to rely on the that
container own traversal operations that results in inefficient approach of last lecture,

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 311

Example – Works Fine

This cursor works fine when we have

Example – Problem

Example – Problem
In case of non contiguous container we have issues because when we apply find
method on non contiguous containers our find method increment operation fails as
elements are not placed at next locations in order, in code below we are calling find
method for non contiguous container Set that we are going to study in next lectures
in this case our find method will give error as indicated,

int main() {
 Set< int > is(3);
 is.add(10);
 is.add(20);
 is.add(30);
 ET* first = iv.first();
 ET* beyond = iv.beyond();
 ET* found = find(first, beyond, 20);
 return 0;
}

template< typename P, typename T >
P find(P start, P beyond, const T& x) {
 while (start != beyond && *start != x)
 ++start; // Error

a b c d g f e …

Cursor

a b dc …

Cursor

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 312

 return start;
}

In this case we need to use that container own increment operation like shown
below, then our find algorithm will work fine,

template< typename CT, typename ET >
P find(CT& cont, const ET& x) {
 ET* start = cont.first();
 ET* beyond = cont.beyond();
 while (start != beyond && *start != x)
 start = cont.next(start);
 return start;
}

int main() {
 Set< int > is(3);
 is.add(10);
 is.add(20);
 is.add(30);
 int* found = find(is, 20);
 return 0;
}

Cursors – Conclusion
The main benefit is that we are using external pointer so we can do now any kind of
traversal in any way i.e. as many traversals as we need only we will need one pointer
for each traversal, however we can not use cursors in place of pointers for all
containers.

40.2. Iterators
We studied cursors previously, cursors were external pointer that we accessing
internal data of any container like vector, it is against the principle of data hiding as
we can access any container data using cursors so it is not good programming
practice to given access in container for the use of cursors (first, next, beyond
methods) we have alternate to cursors in the form of Iterators which are that traverse
a container without exposing its internal representation. Mean they are not external
pointers but internal data member of container. Iterators are for containers exactly
like pointers are for ordinary data structures (you can see this line as we have made a
mechanism to declare pointers to our containers like we declare pointers to ordinary
data types, in case of cursors we were using ordinary data type pointer but in case of
Iterators we will use container pointers without exposing their internal details)

Generic Iterators
General Iterator class can point to any container because it is implemented using
templates, basically it provides us the functionality to create any container object

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 313

using templates and operator overloading this has been explained in code below,
now we will not directly use methods first , beyond and next of container but we
will use them through Iterator class i.e we will create Iterator class objects and will
iterate container through these methods, however these objects will not be able to
directly access internal elements of container. A generic Iterator works with any kind
of container. We need the same set of operations in container class to use Iterators,

• T* first()
• T* beyond()
• T* next(T*)

Example – Generic Iterator

Generic Iterator

template< class CT, class ET >
// Template Iterator class taking two Vector type parameters one for CT
(pointer to
// container type) and ET (pointer to individual element of the container)

class Iterator {
 CT* container;
 ET* index;
public:
 Iterator(CT* c, bool pointAtFirst = true);
 Iterator(Iterator< CT, ET >& it);
 Iterator& operator ++();
 ET& operator *();
 bool operator !=(Iterator< CT, ET >& it);
};

template< class CT, class ET >
Iterator< CT, ET >::Iterator(CT* c, bool pointAtFirst) { // constructor
 container = c;
 if (pointAtFirst)
 index = container->first();
 else
 index = container->beyond();

Container Iterator
first()
beyond()
next()
…

operator *
operator ++
operator !=
…

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 314

}

template< class CT, class ET >
Iterator< CT, ET >::Iterator(Iterator< CT, ET >& it) { // standard copy
constructor
 container = it.container;
 index = it.index;
}

template< class CT, class ET >
Iterator<CT,ET>& Iterator<CT,ET>:: operator ++() { // increment operator
 index = container->next(index);
 return *this;
}

template< class CT, class ET >
ET& Iterator< CT, ET >::operator *() // deference operator
{
 return *index;
}

template< class CT, class ET >
bool Iterator< CT, ET >::operator !=(Iterator< CT, ET >& it) {
// inequality operator result will be false if containers are pointing
// to same memory location or at same index otherwise true
 if (container != it.container || index != it.index)
 return true;
// else
 return false;
}

int main() {
 Vector< int > iv(2);
 Iterator < Vector<int>, int > it(&iv) , beyond(&iv, false);
 // creating two Iterator objects of type <Vector <int >, int >
 // i.e Iterator will have Vector class object for integers and element type
will be
 // integers so index will be integer pointer
 // first object it is taking Vector class object iv as reference and making
iterate
 //index to point to its first element as bool pointAtFirst is true by default
 // second object beyond is also taking same Vector object as reference
 // so that it may also point to it by as poinAtFrist is false now so index will
point
 // to one position beyond the last element in iv

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 315

 iv[0] = 10;
 iv[1] = 20;

 Iterator< Vector<int>, int > found = find(it, beyond, 20);

 // creating Iterator object found of type <Vector <int >, int > and saving in
it
 // result of found note that now we have saved index of our vector
 // class element if element is found, without creating extra element of
Vector class.

 return 0;
}

Note that in above code we are NOT creating multiple objects of Vector class instead
we are creating objects of Iterator class against one Vector class object

template< typename P, typename T >
P find(P start, P beyond, const T& x) {
 while (start != beyond && *start != x)
 ++start;
 return start;
}

Iterators – Advantages
a. With Iterators more than one traversal can be pending on a single

container
b. Iterators allow to change the traversal strategy without changing the

aggregate object
c. They contribute towards data abstraction by emulating pointers

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 316

Lecture No.41

41.1. Standard Template Library:

When we started discussing about templates and generic algorithms, our basic aim
was to make standard solutions for different problems (like searching or comparison)
that should work for all data types and for all containers.
C++ programmers started working on these concepts from very beginning and gave
many standard solutions to these problems these standard solutions after the
approval of C++ standardization committee were added to a combined library name
as Standard Template Library (STL). STL is designed to operate efficiently across
many different applications; we can use solutions from this template library in our
programs using different header files.

Standard Template Library

STL consists of three key components

• Containers
• Iterators
• Algorithms

STL Promotes Reuse
STL promotes reuse as we don’t need to rewrite the already written standard code
for different problems, it saves our development time and cost. Secondly these
solutions have been thoroughly tested so there is no change of error due to their use.

41.2. STL Containers

Container is an object that contains a collection of data elements like we have studied
before now we will study them in detail.
STL provides three kinds of containers,

1. Sequence Containers
2. Associative Containers
3. Container Adapters

Sequence Containers

A sequence organizes a finite set of objects, all of the same type, into a strictly linear
arrangement

Sequence Containers

a. vector

• Rapid insertions and deletions at back end
• Random access to elements

b. deque17

17 deque behaves like queue (line) such that we can add elements on both side of it.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 317

• Rapid insertions and deletions at front or back
• Random access to elements

c. list18

• Doubly linked list
• Rapid insertions and deletions anywhere

Example – STL Vector

#include <vector>
int main() {
 std::vector< int > iv;
 int x, y;
 char ch;
 do {
 cout<<"Enter the first integer:";
 cin >> x;
 cout<<"Enter the second
 integer:";
 cin >> y;
 iv.push_back(x);
 iv.push_back(y);
 cout << “Current capacity of iv = “ << iv.capacity() << endl;
 cout << “Current size of iv =“<< iv.size() << endl;
 cout<<"Do you want to continue?";
 cin >> ch;
 } while (ch == 'y');
 return 0;
}

Sample Output

Enter the first integer: 1

Enter the second integer: 2

Current capacity of iv = 2

Current size of iv = 2

Do you want to continue? y

18 list is linear data structure but can not directly move to any element using index we have to move to a
certain by moving sequentially from start element.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 318

Sample Output

Enter the first integer: 3

Enter the second integer: 4

Current capacity of iv = 4

Current size of iv = 4

Do you want to continue? y

Sample Output

Enter the first integer: 5

Enter the second integer: 6

Current capacity of iv = 8

Current size of iv = 6

Do you want to continue? n

Example – STL Deque

#include <deque>

int main() {
 std::deque< int > dq;
 dq.push_front(3);
 dq.push_back(5);
 dq.pop_front();
 dq.pop_back()
 return 0;
}

Example – STL List

#include <list>
int main() {
 std::list< float > _list;
 _list.push_back(7.8);
 _list.push_back(8.9);
 std::list< float >::iterator it = _list.begin();

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 319

 _list.insert(++it, 5.3);
 return 0;
}

Associative Containers

An associative container provide fast retrieval of data based on keys mean we add
elements in these containers using some formula and retriever the elements using the
same formula again. It ensures that we do not have to traverse the container one by
one but we directly move to the required element for example formula may be,

 Value % 10 (remainder function),

 Using this formula,

 6 will be stored at 6th place
 11 will be stored at 1st place
 13 will be strored at 3rd place

 and so on…

Note that this remainder function will always result in a value between 0 and 9 so if
we have an array of size 10 we can use this remainder function easily.
When we need to retrieve a value we will use inverse process to find index of value
and will then retrieve it.

Associative Containers
set
No duplicates
multiset
Duplicates allowed
map
No duplicate keys
multimap
Duplicate keys allowed

Example – STL Set

#include <set>
int main() {
 std::set< char > cs;
 cout << “Size before insertions: “ << cs.size() << endl;
 cs.insert(‘a’);
 cs.insert(‘b');
 cs.insert(‘b');
 cout << “Size after insertions: ”
 << cs.size();
 return 0;

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 320

}

Output

Size before insertions: 0

Size after insertions: 2

Example – STL Multi-Set

#include <set>
int main() {
 std::multiset< char > cms;
 cout << "Size before insertions: " << cms.size() << endl;
 cms.insert('a');
 cms.insert('b');
 cms.insert('b');
 cout << "Size after insertions: "
 << cms.size();
 return 0;
}

Output

Size before insertions: 0

Size after insertions: 3

Example – STL Map

#include <map>
int main() {
 typedef std::map< int, char > MyMap;
 MyMap m;
 m.insert(MyMap::value_type(1, 'a'));
 m.insert(MyMap::value_type(2, 'b'));
 m.insert(MyMap::value_type(3, 'c'));
 MyMap::iterator it = m.find(2);
 cout << "Value @ key " << it->first << " is " << it->second;
 return 0;
}

Output
Value @ key 2 is b

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 321

Example – STL Multi-Map

#include <map>

int main() {
 typedef std::multimap< int, char > MyMap;
 MyMap m;
 m.insert(MyMap::value_type(1, 'a'));
 m.insert(MyMap::value_type(2, 'b'));
 m.insert(MyMap::value_type(3, 'b'));
 MyMap::iterator it1 = m.find(2);
 MyMap::iterator it2 = m.find(3);
 cout << "Value @ key " << it1->first << " is " << it1->second << endl;
 cout << "Value @ key " << it2->first << " is " << it2->second << endl;
 return 0;
}

Output

Value @ key 2 is b

Value @ key 3 is b

First-class Containers

Sequence and associative containers are collectively referred to as the first-class
containers

Container Adapters

A container adapter is a constrained version of some first-class container

Container Adapters

a. stack19
• Last in first out (LIFO)
• Can adapt vector, deque or list

b. queue20
• First in first out (FIFO)
• Can adapt deque or list
c. priority_queue21

19 Stack is basically a data structure used to store and retrieve values in speedy way because it grows
and shrinks from one end only you can consider it like pile of plates present at somewhere plates can be
added or retrieved from front end only. It is very efficient approach however it follows last in first out
(LIFO) principle meaning things are retrieved in reverse order from stack.
20 Queue is also data structure and it is similar to queue of people waiting to submit a form or pay their
utility bills queue follows first in first out principle (FIFO).
21 Priority Queue also follows FIFO principle with difference that we add elements in priority queue
according to certain priority its example may be printer queue which has priority option the person send

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 322

• Always returns element with highest priority
• Can adapt vector or deque

41.3. Common Functions for All Containers
Common functions that can be applied to all containers are given below (these are
basically general functions we can use them with any class),

1. Default constructor
2. Copy Constructor
3. Destructor
4. empty()

o Returns true if container contains no elements
5. max_size()

o Returns the maximum number of elements
6. size()

o Return current number of elements
7. operator = ()

o Assigns one container instance to another
8. operator < ()

o Returns true if the first container is less than the second container
9. operator <= ()

o Returns true if the first container is less than or equal to the second
container

10. operator > ()
o Returns true if the first container is greater than the second

container
11. operator >= ()

o Returns true if the first container is greater than or equal to the
second container

12. operator == ()
o Returns true if the first container is equal to the second container

13. operator != ()
o Returns true if the first container is not equal to the second

container
14. swap ()

o swaps the elements of the two containers

41.4. Functions for First-class Containers
As first class containers are both sequence and associative containers both allow fast
retrieval of data values so they have following additional functions,

1. begin()
o Returns an iterator object that refers to the first element of the

container

print having higher priority will find its data at higher level of the queue than other people having low
priority

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 323

2. end()

o Returns an iterator object that refers to the next position beyond the
last element of the container

3. rbegin()

o Returns an iterator object that refers to the last element of the
container

4. rend()

o Returns an iterator object that refers to the position before the first
element

5. erase(iterator)

o Removes an element pointed to by the iterator

6. erase(iterator, iterator)
o Removes the range of elements specified by the first and the

second iterator parameters
7. clear()

o erases all elements from the container

41.5. Container Requirements
As each container need to perform certain operations on the elements added to it like
their copy while creating another instance of container or their comparison while
performaing certain operation on them like their sorting , so the elements that we are
going to add in containers should provide this kind of basic functionality.
Examples of these functionalities are given below,

• When an element is inserted into a container, a copy of that element is made
using,

o Copy Constructor
o Assignment Operator

So, the elements need to be added to any container should provide copy and
assignment functionality. Builtin C++ data types already provide these types of
functionalities and we have studied that compiler also generates copy constructor
and overloaded assignment operator for our user defined data types like structures
and classes if we have not done so.

• Associative containers and many algorithms compare elements so the
elements that are added to associative containers should have this
functionality,

o Operator ==
o Operator <

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 324

C++ doesnot provide functionality of comparison operator (==) or less than operator
(<) by itself so we have to provide this functionality by ourself in element class if we
want to use it in associative containers.

[STL components Iterators and Algorithms will be discussed in next lecture.]

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 325

Lecture No.42

42.1. Iterators

We have studied about Iterators before; they are used to traverse Containers
efficiently without accessing internal details, now we see Iterators provided to us in
standard template library, Iterators are for containers like pointers are for ordinary
data structures STL Iterators provide pointer operations such as * and ++

42.2. Iterator Categories
We can divide Iterators given to us in STL in the following categories,

a. Input Iterators
b. Output Iterators
c. Forward Iterators
d. Bidirectional Iterators
e. Random-access Iterators

Input Iterators
Using input iterators we can read an element, and we can only move in forward
direction one element at a time, these can be used in implementing those algorithms
that can be solved in one pass (moving container once in single direction from start
to end like find algorithm we studied in last lecture).
Output Iterators
Using output iterators we can read an element, and we can only move in forward
direction one element at a time, these can be used in implementing those algorithms
that can be solved in one pass (moving container once in single direction from start
to end like find algorithm we studied in last lecture).
Forward Iterators
Forward iterators have the capabilities of both input and output Iterators, in addition
they can bookmark a position in the container (we can set one position as bookmark
while traversing the container this will be more understandable when we will see
example below)

Bidirectional Iterators

They have all the capabilities of forward Iterators plus they can be moved in
backward direction, as a result they support multi-pass algorithms (algorithms that
need more that need to traverse container more than once).

Random Access Iterators

They have all the capabilities of bidirectional Iterators plus they can directly access
any element of a container.

42.3. Iterator Summary:
Following diagram shows the capabilities and scope of different iterators you can see
that Random access iterators have all the capabilities and input and output iterators
have least capabilities,

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 326

42.4. Container and Iterator Types:

We can use the following different types of iterators with different types of
containers, (it is according to the nature of container)

42.5. Sequence Containers

Container
Type

Iterator Type Reason

vector random access (as we can access any element
of vector using its index so
we can use random access
iterator)

deque random access (in deque we can add elements

only in front and back
however we can access any
element of deque using its
index so we can use random
access Iterator)

list bidirectional (in list we can move in both

directions in sequence,
however cannot access an
element at specific index
randomly so we can use
bidirectional iterator with
list)

Input Output

Forward

Random Access

Bidirectional

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 327

42.6. Associative Containers
In associative containers we save values based on keys, and we cannot access
elements randomly based on indexes as elements are not stored at contiguous
memory locations, however, we can traverse them in both directions so, we can use
bidirectional iterators with them.

Container Type Iterator Type
-- set --bidirectional
-- multiset -- bidirectional
-- map -- bidirectional
-- multimap -- bidirectional

42.7. Container Adapters
Container adapters are made with special restrictions, most important restriction is
that they don’t allow free traversal of their elements so we CANNOT use iterators
with them as given below,

Container Type Iterator Type
-- stack -- (none)
-- queue -- (none)
-- priority_queue -- (none)

42.8. Iterator Operations

Iterators support following operations,

All Iterators support,

++p
pre-increment an iterator

p++
post-increment an Iterator

Input Iterators support,

*p
Dereference operator used as rvalue (right value mean they can be used on right side
of expression) for reading only, not for assigning value lvalue (left value, assignment
only taken place when we are allowed to use them as left value)
p1 = p2
Assignment (two Iterators)
p1 == p2
Equality operator
p1 != p2
Inequality operator
p->

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 328

Access Operator

Output Iterators support,

*p
Dereference operator (here we can use it for assigning new value lvalue as iterator is
output iterator that can be used to set any value)

p1 = p2
Assignment

As Forward Iterators have combined properties of both input and output iterators so
they support operations of both input and output Iterators.

Bidirectional Iterators

As bidirectional iterators can move in backward direction also, so they support
decrementing operations also (moving pointer one element back),

--p
Pre-decrement operator
p--
Post-decrement operator

Random-access Iterators

Besides the operations of bidirectional Iterators, they also support

p + i
Result is an iterator pointing at p + i
p – i
Result is an iterator pointing at p – i
p += i
Increment iterator p by i positions
p –= i
Decrement iterator p by i positions
p[i]
Returns a reference of element at p + i
p1 < p2
Returns true if p1 is before p2 in the container

p1 <= p2
Returns true if p1 is before p2 in the container or p1 is equal to p2
p1 > p2
Returns true if p1 is after p2 in the container
p1 >= p2
Returns true if p1 is after p2 in the container or p1 is equal to p2

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 329

Example – Random Access Iterator

typedef std::vector< int > IntVector;
int main() {
 const int SIZE = 3;
 int iArray[SIZE] = { 1, 2, 3 };
 IntVector iv(iArray, iArray + SIZE);
 IntVector::iterator it = iv.begin();
 cout << “Vector contents: ”;
 for (int i = 0; i < SIZE; ++i)
 cout << it[i] << ", ";
 return 0;
}

Sample Output

Vector contents: 1, 2, 3,

Example – Bidirectional Iterator

typedef std::set< int > IntSet;
int main() {
 const int SIZE = 3;
 int iArray[SIZE] = { 1, 2, 3 };
 IntSet is(iArray, iArray + SIZE);
 IntSet::iterator it = is.begin();
 cout << “Set contents: ”;
 for (int i = 0; i < SIZE; ++i)
 cout << it[i] << ", "; // Error
 return 0;
}

Example – Bidirectional Iterator

typedef std::set< int > IntSet;
int main() {
 const int SIZE = 3;
 int iArray[SIZE] = { 1, 2, 3 };
 IntSet is(iArray, iArray + SIZE);
 IntSet::iterator it = is.begin();
 cout << “Set contents: ”;
 for (int i = 0; i < SIZE; ++i)
 cout << *it++ << ", "; // OK
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 330

Sample Output

Set contents: 1, 2, 3,

Example – Bidirectional Iterator

typedef std::set< int > IntSet;
int main() {
 const int SIZE = 3;
 int iArray[SIZE] = { 1, 2, 3 };
 IntSet is(iArray, iArray + SIZE);
 IntSet::iterator it = is.end();
 cout << “Set contents: ”;
 for (int i = 0; i < SIZE; ++i)
 cout << *--it << ", ";
 return 0;
}

Sample Output

Set contents: 3, 2, 1,

Example – Input Iterator

#include <iostream>
using std::cin;
using std::cout;
using std::endl;
#include <iterator>

int main() {
 int x, y, z;
 cout << "Enter three integers:\n";
 std::istream_iterator< int > inputIt(cin);
 x = *inputIt++;
 y = *inputIt++;
 z = *inputIt;
 cout << "x = " << x << endl;
 cout << "y = " << y << endl;
 cout << "z = " << z << endl;
 return 0;
}

int main() {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 331

 int x = 5;
 std::istream_iterator< int > inputIt(cin);
 *inputIt = x; // Error
 return 0;
}

Example – Output Iterator

int main() {
 int x = 1, y = 2, z = 3;
 std::ostream_iterator< int > outputIt(cout, ", ");
 *outputIt++ = x;
 *outputIt++ = y;
 *outputIt++ = z;
 return 0;
}

Example – Output Iterator

int main() {
 int x = 1, y = 2, z = 3;
 std::ostream_iterator< int > outputIt(cout, ", ");
 x = *outputIt++; // Error
 return 0;
}

42.9. Algorithms

STL includes 70 standard algorithms

These algorithms may use Iterators to manipulate containers

STL algorithms also work for ordinary pointers and data structures

An algorithm works with a particular container only if that container supports a
particular Iterator category

A multi-pass algorithm for example, requires bidirectional Iterator(s) at least

Algorithm: Examples

Mutating-Sequence Algorithms (that required changing of elements position)

 Copy

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 332

 copy_backward
 fill
 fill_n
 generate
 generate_n
 iter_swap
 partition
 ………

Non-Mutating-Sequence Algorithms (that don’t require changing of element
position)

 adjacent_find
 count
 count_if
 equal
 find
 find_each
 find_end
 find_first_of
 …

Numeric Algorithms (involves mathematical calculation)

accumulate

inner_product

partial_sum

adjacent_difference

Example – copy Algorithm

#include <iostream>
using std::cout;
#include <vector>
#include <algorithm>
typedef std::vector< int > IntVector;

int main() {
 int iArray[] = {1, 2, 3, 4, 5, 6};
 IntVector iv(iArray, iArray + 6);
std::ostream_iterator< int >
 output(cout, ", ");
 std::copy(begin, end, output);

 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 333

Output

1, 2, 3, 4, 5, 6,

Example – fill Algorithm

#include <iostream>
using std::cout;
using std::endl;
#include <vector>
#include <algorithm>
typedef std::vector< int > IntVector;
int main() {
 int iArray[] = { 1, 2, 3, 4, 5 };
 IntVector iv(iArray, iArray + 5);
std::ostream_iterator< int > output(cout, ", ");
 std::copy(iv.begin(), iv.end(), output);
 std::fill(iv.begin(), iv.end(), 0);
 cout << endl;
 std::copy(iv.begin(), iv.end(), output);
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 334

Lecture No.43

Techniques for Error Handling:

Sometimes our program terminates abnormally, sometimes they even crash the
system, these errors occur mostly due to incorrect memory access or due to
input/output error, sometimes it is our program fault and sometimes it is some
external resource error (like network or hard disk).
If we allow these errors to happen we may lose our work for example if a text editor
terminates abnormally without allowing us to save our work we will lost our work,
so it is important that we add some type of error handling mechanism in our
program, we use the following techniques for error handling,

a. Abnormal termination
b. Graceful termination
c. Return the illegal value
d. Return error code from a function
e. Exception handling

43.1. Example – Abnormal Termination
In abnormal termination we do nothing and our program is terminated abnormally
by operating system if case of any error without saving program data,

void GetNumbers(int &a, int &b) {
 cout << “\nEnter two integers”;
 cin >> a >> b;
}
int Quotient(int a, int b){
 return a / b;
}
void OutputQuotient(int a, int b, int quo) {
 cout << “Quotient of ” << a << “ and ”
 << b << “ is ” << quo << endl;
}

int main(){
 int sum = 0, quot;
 int a, b;
 for (int i = 0; i < 10; i++){
 GetNumbers(a,b);
 quot = Quotient(a,b);
 sum += quot;
 OutputQuotient(a,b,quot);
 }
 cout << “\nSum of ten quotients is ”<< sum;
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 335

Output
Enter two integers
10
10
Quotient of 10 and 10 is 1
Enter two integers
10
0
Program terminated abnormally

43.2. Graceful Termination

Program can be designed in such a way that instead of abnormal termination, that
causes the wastage of resources, program performs clean up tasks, mean we add
check for expected errors (using if conditions),

Example – Graceful Termination

int Quotient (int a, int b) {
 if(b == 0){
 cout << “Denominator can’t “ << “ be zero” << endl;
 // Do local clean up
 exit(1);
 }
 return a / b;
}

Output

Enter two integers
10
10
Quotient of 10 and 10 is 1
Enter two integers
10
0
Denominator can’t be zero

43.3. Error Handling

a. Return Illegal Value
The clean-up tasks are of local nature only; there remains the possibility of
information loss.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 336

Example – Return Illegal Value

int Quotient(int a, int b){
 if(b == 0)
 b = 1;
 OutputQuotient(a, b, a/b);
 return a / b ;
}
int main() {
 int a,b,quot; GetNumbers(a,b);
 quot = Quotient(a,b);
 return 0;
}

Output

Enter two integers
10
0
Quotient of 10 and 1 is 10

b. Return Error Code
Programmer has avoided the system crash but the program is now in an inconsistent
state

Example – Return Error Code

bool Quotient (int a, int b, int & retVal) {
 if(b == 0){
 return false;
 }
 retVal = a / b;
 return true;
}

Part of main Function

for(int i = 0; i < 10; i++){
 GetNumbers(a,b);
 while (! Quotient(a, b, quot)) {
 cout << “Denominator can’t be ” << “Zero. Give input again
\n”;
 GetNumbers(a,b);
 }
 sum += quot;
 OutputQuotient(a, b, quot);

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 337

}

Output

Enter two integers
10
0
Denominator can’t be zero. Give input again.
Enter two integers
10
10
Quotient of 10 and 10 is 1
...//there will be exactly ten quotients

Error Handling

• Issues in Error Handling:
• Programmer sometimes has to change the design to incorporate error

handling
• Programmer has to check the return type of the function to know whether an

error has occurred
• Programmer of calling function can ignore the return value
• The result of the function might contain illegal value, this may cause a system

crash later
• Program’s Complexity Increases

The error handling code increases the complexity of the code
o Error handling code is mixed with program logic
o The code becomes less readable
o Difficult to modify

The example below shows these concepts,

Example- without error handling

int main() {
 function1();
 function2();
 function3();
 return 0;
}

Example – with error handling

int main(){
 if(function1()) {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 338

 if(function2()) {
 if(function3()) {
 ...
 }
 else cout << “Error Z has occurred”;
 }
 else cout << “Error Y has occurred”;
 }
 else cout << “Error X has occurred”;
 return 0;
}

43.4. Exception Handling

• Exception handling is a much elegant solution as compared to other error
handling mechanisms

• It enables separation of main logic and error handling code

43.5. Exception Handling Process

• Programmer writes the code that is suspected to cause an exception in try
block

• Code section that encounters an error throws an object that is used to
represent exception

• Catch blocks follow try block to catch the object thrown

Syntax – Throwing an exception

• The keyword throw is used to throw an exception
• Any expression can be used to represent the exception that has occurred

o throw X;
o throw (X);

Examples
 int a;
 Exception obj;
 throw 1; // throw with literal (const)
 throw (a); // throw with variable
 throw obj; // throw with object
 throw Exception(); // anonymous object
 throw 1+2*9; // mathematical expression

• Primitive data types may be avoided as throw expression, as they can cause
ambiguity

• Define new classes to represent the exceptions that has occurred
o This way there are less chances of ambiguity

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 339

Syntax – Try and Catch

int main () {
 try {
 ... exception with be thrown here in case of error
 }
 catch (Exception1) { // exception with be caught here if
exception was thrown
 ...
 }
 catch (Exception2 obj) { // exception with be caught here if
exception was
 // thrown
 ...
 }
 return 0;
}

Catch Blocks

• Catch handler must be preceded by a try block or an other catch handler
• Catch handlers are only executed when an exception has occurred
• Catch handlers are differentiated on the basis of argument type
• The catch blocks are tried in order they are written
• They can be seen as switch statement that do not need break keyword

Complete Example of try catch and throw:

class DivideByZero { // class just use to indicate and throw an exception
public:
 DivideByZero() {
 }
};
int Quotient(int a, int b){
 if(b == 0){
 throw DivideByZero(); // throwing above class object as
exception in
 // case of error
 }
 return a / b;
}

Related part of main getting user input and calling Quotient method in try catch
block this method will throw exception (DividebyZero class object) if user enter no. b
(denominator, divider) equal to zero and this exception will be caught in catch block
below, (you can write it as complete program to test the actual working of program)

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 340

for(int i = 0; i < 10; i++) {
 try{
 GetNumbers(a,b);
 quot = Quotient(a,b);
 OutputQuotient(a,b,quot); sum += quot;
 }
 catch(DivideByZero) {
 i--;
 cout << “\nAttempt to divide
 numerator with zero”;
 }
}

Output

Enter two integers
10
10
Quotient of 10 and 10 is 1
Enter two integers
10
0
Attempt to divide numerator (dividend) with zero
...

Catch Handler

• The catch handler catches the DivideByZero exception through anonymous
object

• Program logic and error handling code are separated
• We can modify this to use the object to carry information about the cause of

error

Separation of Program Logic and Error Handling

You can see now that error handling code is separated from man logic of program as
shown below,

int main() {
 try {
 function1();
 function2();
 function3();

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 341

 }
 catch(ErrorX) { ... }
 catch(ErrorY) { ... }
 catch(ErrorZ) { ... }
 return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 342

Lecture No.44

Previous Lecture Example of Exception Handling:
class DivideByZero {
public:
 DivideByZero() {
 }
};
int Quotient(int a, int b){
 if(b == 0){
 throw DivideByZero();
 }
 return a / b;
}

//main Function

int main() {
 try{ …
 quot = Quotient(a,b);
 …
 }
 catch(DivideByZero) {
 …
 }
 return 0;
}

Now, we want to see what happens actually to local variables in try block when an
exception is thrown, this concept is called stack unwinding which tells how try catch
blocks are un winded (executed) when there are nested function calls involving try
catch blocks or nested try catch blocks themselves.

44.1. Stack Unwinding
The flow control (the order in which code statements and function calls are made) as
a result of throw statement is referred as “stack unwinding”
Stack Unwinding can take place in the following two ways,
1. When we have nested try catch blocks (one try catch block into other try catch

block), for example
try {
 try {

 } catch(Exception e) {

 }

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 343

 } catch(exception e){

}

2. When exception is thrown from nested functions having try catch blocks

void function1() {

 throw Exception();
}
void function2() {

 function1();

}

int main() {
 try{
 function2();
 } catch(Exception) { }
 return 0;
}

Stack unwinding is more complex than simple nested function calls (or recursive
function calls) as in case of nested try catch block, exception can be thrown from any
try block, so transfer of control to catch handler is complex, we see this is detail,

First note these points,

• All the local objects of an executing block are destroyed when an exception is
thrown

• Dynamically allocated memory is not destroyed automatically
• If no catch handler catches the exception the function terminate is called,

which by default calls function abort

Examples

Nested Functions example:

In example below we have two functions function1 and function2, function2 is
calling function1, in function1 we have added exception throwing code so it is
necessary now to call function1 in try catch blocks otherwise compiler will generated
an error, we are calling function2 in main, now note that function2 ifself is calling
function1 that needs try catch block so we need to call function2 in try catch block,
(otherwise compiler will generate an error), in case function1 code generates an
exception stack unwinding takes place control will be returned to function2 which
will return control to main the diagram below code explain this concept,

void function1() {
 throw Exception();
}
void function2() {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 344

 function1();
}
int main() {
 try{
 function2();
 } catch(Exception) { }
 return 0;
}

Nested Try catch blocks example:

The stack unwinding is also performed if we have nested try catch blocks,

Example

int main() {
 try {
 try {
 throw 1;
 }
 catch(float) { }
 }
 catch(int) {
 }
 return 0;
}

When an exception will be thrown from a try block control will go to catch block of
that try block if it is not appropriate catch block then control will go to ctach blocks of
other try blocks above it one by one, Stack Unwinding will occur in following order
in above example,

function2()

main()

function1()

function2()

main()

main()

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 345

 If exception is thrown from innermost try block,

• Firstly the catch handler with float parameter is tried (innermost), this

catch handler will not be executed as its parameter is of different type
– no coercion (match)

• Secondly the catch handler with int parameter is tried and executed

 If exception is thrown from outer try block, then as there is no other
try block above it so only this block catch handler will be matched
with exception if it matches catch block will be exectuted otherwise
default terminate and abort functions (discussed in this lecture start)
will be called.

Catch Handler

• We can modify the code in catch handler to use the exception object to carry
information about the cause of error

• The exception object thrown is copied to the object given in the handler
• We pass the exception as reference instead of by value in the catch handler to

avoid problem caused by shallow copy

Example

We have added a method Print in our exception class that to show the user cause of
error,

class DivideByZero { // exception class
 int numerator;
public:
 DivideByZero(int i) { // constructor taking one parameter (dividend)
 numerator = i;
 }
 void Print() const{
 cout << endl << numerator
 << “ was divided by zero”;
 }
};
int Quotient(int a, int b) {
 if(b == 0){
 throw DivideByZero(a);
 }
 return a / b;
}
for (int i = 0; i < 10; i++) {
 try {
 GetNumbers(a, b);
 quot = Quotient(a, b); ...
 } catch(DivideByZero & obj) {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 346

 obj.Print();
 i--;
 }
}

Body of main Function
Output

Enter two integers
10
10
Quotient of 10 and 10 is 1
Enter two integers
10
0
10 was divided by zero
...

Catch Handler

The object thrown as exception is destroyed when the execution of the catch handler
completes

Avoiding too many Catch Handlers

There are two ways to catch more then one object in a single catch handler

• Use inheritance
• Catch every exception

Inheritance of Exceptions

In inheritance we Group all exceptions according to their categories and catch single
exception for whole category for example for code below we have divided the
exceptions as follows,

• Math exceptions (Divide by Zero and IntegerOutOfRange exception)
• Input Output exceptions(InputStreamError)

try{
 ...
}
catch(DivideByZero){
 ...
}
catch(IntergerOutOfRange){
 ...
}
catch (InputStreamError){

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 347

}

Example–With Inheritance

try{
 ...
}
catch (MathError){
}
catch (InputStreamError){
}

Catch Every Exception
C++ provides a special syntax that allows to catch every object thrown
catch (…)
{
 //...
}

Re-Throw

A function can catch an exception and perform partial handling
Re-throw is a mechanism of throw the exception again after partial handling

 throw; /*without any expression*/

Example

int main () {
 try {
 Function();
 }
 catch(Exception&) {
 ...
 }
 return 0;
}
void Function() {
 try {
 /*Code that might throw
 an Exception*/
 }

 catch(Exception&) {
 if(can_handle_completely) {
 // handle exception
 } else {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 348

 // partially handle exception
 throw; //re-throw exception
 }
 } // end of catch
 } // end of function

Order of Handlers
Order of the more than one catch handlers can cause logical errors when using
inheritance or catch all (however compiler will not generate any error in this case)

Example

try{
 ...
}
catch (...) { ...
}
catch (MathError) { ...
}
catch (DivideByZero) { ...
}
// last two handlers can never be invoked as general exception class will catch all
// exceptions including the next two

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 349

Lecture No.45

45.1. Resource Management

• Function acquiring a resource must properly release it
• Throwing an exception can cause resource wastage

Example

int function1(){
 FILE *fileptr = fopen(“filename.txt”,“w”);
 ...
 throw exception();
 ...
 fclose(fileptr);
 return 0;
}

In case of exception the call to fclose will be ignored and file will remain opened.

We can remove this issue in following ways,

First Attempt

int function1(){
 try{
 FILE *fileptr = fopen(“filename.txt”,“w”);
 fwrite(“Hello World”,1,11,fileptr);
 ...
 throw exception();
 fclose(fileptr);
 } catch(...) {
 fclose(fileptr); // adding fclose in catch handler as well
 throw;
 }
 return 0;
}

But it is,code duplication.

Second Attempt:
Adding a separate class file handling what will have constructor to open file and
destructor to close it, as you know objects and local variables in try block are
destroyed automatically when try block complete its execution or in case exception is
thrown, so this file object will automatically be destroyed,

class FilePtr{

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 350

 FILE * f;
public:
 FilePtr(const char *name, const char * mode) {
 f = fopen(name, mode);
 }
 ~FilePtr() {
 fclose(f);
 }
 operator FILE * () {
 return f;
 }
};

int function1(){
 FilePtr file(“filename.txt”,“w”);
 fwrite(“Hello World”,1,11,file);
 throw exception();
 ...
 return 0;
}

• The destructor of the FilePtr class will close the file
• Programmer does not have to close the file explicitly in case of error as well

as in normal case

Exception in Constructors

Exception thrown in constructor cause the destructor to be called for any object built
as part of object being constructed before exception is thrown
Destructor for partially constructed object is not called

Example

class Student{
 String FirstName;
 String SecondName;
 String EmailAddress;
 …
};

If the constructor of the SecondName throws an exception then the destructor for the
First Name will be called.

So, generally we can say that in constructor if an exception is thrown than all objects
created so far are destroyed, if EmailAddress String object had thrown exception
then SecondName and FirstName objects will be destroyed using their destructor.
However destructor of Student class itself will not be called in any case as its object
was not completely constructed.

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 351

Exception in Initialization List

Exception due to constructor of any contained object or the constructor of a parent
class can be caught in the member initialization list

Example

Student::Student (String aName) : name(aName)
/*The constructor of String can throw a exception*/
{
 ...
}

Exception in Initialization List

The programmer may want to catch the exception and perform some action to rectify
the problem

Example

Student::Student (String aName)
 try : name(aName) {
 ...
 }
 catch(…) {
 }

Exceptions in Destructors

Exception should not leave the destructor, because when a destructor is running it
means that we have a stack unwinding going on that has run this destructor to delete
this object if this exception will be allowed to run it will run another stack unwinding
mechanism and this will be called leaving the exception from destructor and is not
allowed. C++ allows running only one stack unwinding process at a time.
If a destructor is called due to stack unwinding, and an exception leaves the
destructor then the function std::terminate() is called, which by default calls the
std::abort()

Example

class Exception;
class Complex{
 …
public:
 ~Complex(){
 throw Exception();
 }
};
int main(){
 try{

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 352

 Complex obj;
 throw Exception();
 …
 }
 catch(…){
 }
 return 0;
}

// The program will terminate abnormally

So add catch exception in destructor itself as shown below, in this case single stack
unwinding process may handle the situation.

Example

Complex::~Complex()
{
 try{
 throw Exception();
 }
 catch(…){
 }
}

Exception Specification

• Program can specify the list of exceptions a function is allowed to throw
• This list is also called throw list
• If we write empty list then the function wont be able to throw any exception

Syntax

void Function1() {…}
void Function2() throw () {…}
void Function3() throw (Exception1, …){}

Here,

• Function1 can throw any exception
• Function2 cannot throw any Exception
• Function3 can throw any exception of type Exception1 or any class derived

from it

Exception Specification

• If a function throws exception other then specified in the throw list then the
function unexpected is called

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 353

• The function unexpected calls the function terminate and terminates the
program

• If programmer wants to handle such cases also then he must provide a
handler function and tell the compiler to call handler using set_unexpected

Course Review

We have studied the following topics in this course,

Object Orientation

• What is an object
• Object-Oriented Model

o Information Hiding
o Encapsulation
o Abstraction

• Classes

Object Orientation

• Inheritance
o Generalization
o Sub-Typing
o Specialization

• “IS-A” relationship
• Abstract classes
• Concrete classes

Object Orientation

• Multiple inheritance
• Types of association

o Simple association
o Composition
o Aggregation

• Polymorphism

Classes – C++ Constructs

• Classes
o Data members
o Member functions

• Access specifier
• Constructors
• Copy Constructors
• Destructors

Classes – C++ Constructs

• this pointer

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 354

• Constant objects
• Static data member
• Static member function
• Dynamic allocation

Classes – C++ Constructs

• Friend classes
• Friend functions
• Operator overloading

o Binary operator
o Unary operator
o operator []
o Type conversion

Inheritance – C++ Constructs

• Public inheritance
• Private inheritance
• Protected inheritance
• Overriding
• Class hierarchy

Polymorphism – C++ Constructs

• Static type vs. dynamic type
• Virtual function
• Virtual destructor
• V-tables
• Multiple inheritance
• Virtual inheritance

Templates – C++ Constructs

• Generic programming
• Classes template
• Function templates
• Generic algorithm
• Templates specialization

o Partial Specialization
o Complete specialization

Templates – C++ Constructs

• Inheritance and templates
• Friends and templates
• STL

o Containers
o Iterators

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 355

o Algorithms

Writing Reliable Programs

• Error handling techniques
o Abnormal termination
o Graceful termination
o Return the illegal value
o Return error code from a function
o Exception handling

Note:

Please give your suggestions/comments about this document at the email address
cs304@vu.edu.pk, in the following format

Page No.# Issue/Error

