
Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

1

CS304-Handouts

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

2

COMPOSITION ..
SIMPLE ASSOCIATION

POLYMORPHISM – ADVANTAGES

POLYMORPHISM IN OO MODEL

AGGREGATION

CONCRETE CLASSES

ABSTRACT CLASSES

INTERFACE

ENCAPSULATION

WHAT IS AN OBJECT?
OBJECT-ORIENTATION - ADVANTAGES

DEFINING A NEW USER DEFINED TYPE

CLASS

SUB-TYPING (EXTENSION)

LECTURE NO.01 ... 8

01.1. INTRODUCTION .. 8
01.2. WHAT IS A MODEL? ... 10
01.3. OO MODELS ... 11
01.4. .. 12
01.5. .. 12
01.6. TANGIBLE AND INTANGIBLE OBJECTS ... 13
01.7. SUMMARY ... 14

LECTURE NO.02 .. 15

02.1. INFORMATION HIDING.. 15
02.2. .. 16
02.3. .. 17
02.4. IMPLEMENTATION ... 18
02.5. SEPARATION OF INTERFACE & IMPLEMENTATION ... 19
02.6. MESSAGES.. 19
02.7. SUMMARY ... 19

LECTURE NO.03 .. 21

03.1. ABSTRACTION .. 21
03.2. CLASSES .. 23
03.3. INHERITANCE ... 25

LECTURE NO.04 .. 29

04.1. CONCEPTS RELATED WITH INHERITANCE .. 29
04.2. GENERALIZATION .. 29
04.3. .. 31
04.4. SPECIALIZATION (RESTRICTION) ... 32
04.5. OVERRIDING ... 34
04.6. ... 36
04.7. .. 38

LECTURE NO.05 .. 40

05.3. ... 50
05.4. .. 52
05.5. ... 54

LECTURE NO.06 .. 55

06.1. CLASS COMPATIBILITY ... 55
06.2. POLYMORPHISM ... 56
06.3. .. 56
06.4. .. 57
06.5. OBJECT-ORIENTED MODELING AN EXAMPLE ... 57

LECTURE NO.07 .. 65

07.1. 65
07.2. TYPE IN C++ .. 65
07.3. ABSTRACTION .. 66
07.4. .. 66
07.5. OBJECT AND CLASS .. 68
07.6. ACCESSING MEMBERS .. 68
07.7. ACCESS SPECIFIERS .. 69

LECTURE NO.08 .. 72

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

3

FRIEND FUNCTIONS

AGGREGATION

MEMBER INITIALIZER LIST

DIFFERENCE BETWEEN INITIALIZATION AND ASSIGNMENT

DEFAULT CONSTRUCTOR

CONSTRUCTOR PROPERTIES

COMPOSITION

BREAKUP OF NEW OPERATION

08.1. MEMBER FUNCTIONS .. 72
08.2. DEFINING MEMBER FUNCTIONS .. 72
08.3. INLINE FUNCTIONS .. 73
08.4. CONSTRUCTOR .. 75
08.5. ... 75
08.6. .. 76
08.7. CONSTRUCTOR OVERLOADING ... 77
08.8. CONSTRUCTOR OVERLOADING ... 78
08.9. COPY CONSTRUCTOR.. 79
08.10. SHALLOW COPY ... 81
08.11. DEEP COPY ... 82

LECTURE NO.09 .. 84

09.1. SHALLOW COPY .. 85
09.2. DEEP COPY .. 90
09.3. IMPORTANT POINTS ABOUT COPY CONSTRUCTOR ... 94
09.4. DESTRUCTOR ... 94
09.5. ACCESSOR FUNCTIONS ... 95

09.6. THIS POINTER.. 96

LECTURE NO.10 .. 99

10.1. USES OF THIS POINTER ... 99
10.2. SEPARATION OF INTERFACE AND IMPLEMENTATION .. 99
10.3. COMPLEX NUMBER .. 100
10.4. CONST MEMBER FUNCTIONS .. 102
10.5. THIS POINTER AND CONST MEMBER FUNCTION .. 104

LECTURE NO.11 ..105

11.1. USAGE EXAMPLE OF CONSTANT MEMBER FUNCTIONS ... 105
11.2. :.. 106
11.3. ... 106
11.4. CONST OBJECTS.. 107
11.5. STATIC VARIABLES .. 109

LECTURE NO.12 ..112

12.1. ACCESSING STATIC DATA MEMBER .. 113
12.2. LIFE OF STATIC DATA MEMBER ... 114
12.3. STATIC MEMBER FUNCTION .. 115
12.4. THIS POINTER AND STATIC MEMBER FUNCTIONS .. 116
12.5. GLOBAL VARIABLE VS. STATIC MEMBERS.. 116
12.6. ARRAY OF OBJECTS ... 116

LECTURE NO.13 ..118

13.1. POINTER TO OBJECTS .. 118
13.2. ... 119
13.3. CASE STUDY .. 119
13.4. COMPLETE CODE OF DATE CLASS ... 121

LECTURE NO.14 ..124

14.1. .. 124

LECTURE NO.15 ..132

15.1. ... 135
15.2. 138

LECTURE NO.16 ..142

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

4

16.1. OPERATOR OVERLOADING... 142

LECTURE NO.17 .. 149

17.1. OVERLOADING ASSIGNMENT OPERATOR .. 151

LECTURE NO.18 .. 155

18.1. SELF ASSIGNMENT PROBLEM .. 155
18.2. OTHER BINARY OPERATORS ... 156
18.3. FRIEND FUNCTIONS AND OPERATOR OVERLOADING .. 157

LECTURE NO.19 .. 158

19.1. STREAM INSERTION OPERATOR .. 158
19.2. STREAM EXTRACTION OPERATOR .. 158
19.3. OVERLOADING STREAM INSERTION OPERATOR .. 159
19.4. OVERLOADING STREAM EXTRACTION OPERATOR .. 160
19.5. OTHER BINARY OPERATORS ... 161

LECTURE NO.20 .. 163

20.1. SUBSCRIPT [] OPERATOR .. 164
20.2. OVERLOADING SUBSCRIPT [] OPERATOR ... 164
20.3. OVERLOADING FUNCTION () OPERATOR .. 165
20.4. FUNCTION OPERATOR PERFORMING SUB STRING OPERATION, 165
20.5. UNARY OPERATORS .. 166

LECTURE NO.21 .. 168

21.1. BEHAVIOR OF ++ AND -- FOR PRE-DEFINED TYPES ... 168
21.2. POST-INCREMENT OPERATOR ... 169
21.3. TYPE CONVERSION... 170
21.4. USER DEFINED TYPES .. 173
21.5. DRAWBACKS OF TYPE CONVERSION OPERATOR ... 174

LECTURE NO.22 .. 175

22.1. PRACTICAL IMPLEMENTATION OF INHERITANCE IN C++ .. 175
22.2. INHERITANCE IN CLASSES .. 175
22.3. UML NOTATION .. 175
22.4. INHERITANCE IN C++ .. 175
22.5. “IS A” RELATIONSHIP ... 176

LECTURE NO.23 .. 183

23.1. ACCESSING BASE CLASS MEMBER FUNCTIONS IN DERIVED CLASS 183
23.2. “PROTECTED” ACCESS SPECIFIER ... 185
23.3. “IS A” RELATIONSHIP ... 186
23.4. STATIC TYPE ... 189

LECTURE NO.24 .. 191

24.1. MODIFIED DEFAULT CONSTRUCTOR .. 199

LECTURE NO.25 .. 207

25.1. OVERLOADING VS. OVERRIDING.. 207
25.2. HIERARCHY OF INHERITANCE .. 211

LECTURE NO.26 .. 213

26.1. BASE INITIALIZATION ... 213
26.2. TYPES OF INHERITANCE.. 214
26.3. PRIVATE INHERITANCE ... 216

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

5

LECTURE NO.27...218

27.1. SPECIALIZATION (RESTRICTION) .. 218
27.2. PROTECTED INHERITANCE ... 222
27.3. PROPERTIES OF PROTECTED INHERITANCE .. 223

LECTURE NO.28 ..225

28.1. VIRTUAL FUNCTIONS .. 225
28.2. VIRTUAL FUNCTIONS .. 230
28.3. SHAPE HIERARCHY .. 230
28.4. STATIC VS DYNAMIC BINDING ... 231

LECTURE NO.29 ..233

29.1. ABSTRACT CLASSES ... 233
29.2. CONCRETE CLASSES ... 234
29.3. ABSTRACT CLASSES IN C++ .. 234
29.4. PURE VIRTUAL FUNCTIONS .. 234
29.5. SHAPE HIERARCHY .. 235
29.6. VIRTUAL DESTRUCTORS .. 236
29.7. VIRTUAL FUNCTIONS – USAGE .. 238
29.8. V TABLE ... 240
29.9. DYNAMIC DISPATCH (DYNAMIC BINDING) .. 242

LECTURE NO.30 ..243

30.1. POLYMORPHISM – CASE STUDY: A SIMPLE PAYROLL APPLICATION 243
30.2. SHAPE HIERARCHY REVISITED ... 246

LECTURE NO.31 ..250

31.1. MULTIPLE INHERITANCE ... 250
31.2. PROBLEMS IN MULTIPLE INHERITANCE .. 251
31.3. VIRTUAL INHERITANCE... 256

LECTURE NO.32 ..258

32.1. GENERIC PROGRAMMING .. 259
32.2. TEMPLATES.. 259
32.3. FUNCTION TEMPLATES .. 260

LECTURE NO.33 ..264

33.1. MULTIPLE TYPE ARGUMENTS .. 264
33.2. USER-DEFINED TYPES .. 264
33.3. OVERLOADING VS. TEMPLATES .. 265
33.4. TEMPLATE ARGUMENTS AS POLICY .. 266
33.5. FIRST SOLUTION ... 267
33.6. SECOND SOLUTION ... 267
33.7. THIRD SOLUTION ... 268
33.8. DEFAULT POLICY .. 269

LECTURE NO.34 ..270

34.1. GENERIC ALGORITHMS ... 270
34.2. CLASS TEMPLATES ... 272
34.3. EXAMPLE – CLASS TEMPLATE .. 273

LECTURE NO.35 ..276

35.1. MEMBER TEMPLATES .. 276
35.2. CLASS TEMPLATE SPECIALIZATION .. 278

LECTURE NO.36 ..282

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

6

36.1. MEMBER TEMPLATES REVISITED... 282
36.2. PARTIAL SPECIALIZATION ... 283
36.3. FUNCTION TEMPLATES ... 284
36.4. COMPLETE SPECIALIZATION .. 285
36.5. USING DIFFERENT SPECIALIZATIONS .. 286
36.6. NON-TYPE PARAMETERS ... 286
36.7. EXAMPLE – TEMPLATE CLASS ARRAY ... 286
36.8. DEFAULT NON-TYPE PARAMETERS ... 288
36.9. DEFAULT TYPE PARAMETERS... 288

LECTURE NO.37 .. 288

37.1. RESOLUTION ORDER .. 289
37.2. FUNCTION TEMPLATE OVERLOADING .. 290
37.3. RESOLUTION ORDER .. 291
37.4. TEMPLATES AND INHERITANCE ... 291
37.5. DERIVATIONS IN CASE OF A GENERAL TEMPLATE CLASS ... 291

LECTURE NO.38 .. 296

38.1. TEMPLATES AND FRIENDS ... 296
38.2. TEMPLATES AND FRIENDS – RULE 1 ... 296
38.3. TEMPLATES AND FRIENDS – RULE 2 ... 297
38.4. TEMPLATES AND FRIENDS – RULE 3 ... 299
38.5. TEMPLATES AND FRIENDS – RULE 4 ... 301

LECTURE NO.39 .. 303

39.1. TEMPLATES & STATIC MEMBERS... 303
39.2. TEMPLATES – CONCLUSION .. 304
39.3. GENERIC ALGORITHMS REVISITED .. 305
39.4. GENERIC ALGORITHMS REVISITED .. 306
39.5. GENERIC ALGORITHM .. 308
39.6. PROBLEMS ... 308

LECTURE NO.40 .. 309

40.1. CURSORS .. 309
40.2. ITERATORS ... 312

LECTURE NO.41 .. 316

41.1. STANDARD TEMPLATE LIBRARY .. 316
41.2. STL CONTAINERS.. 316
41.3. COMMON FUNCTIONS FOR ALL CONTAINERS .. 322
41.4. FUNCTIONS FOR FIRST-CLASS CONTAINERS ... 322
41.5. CONTAINER REQUIREMENTS.. 323

LECTURE NO.42 .. 325

42.1. ITERATORS ... 325
42.2. ITERATOR CATEGORIES .. 325
42.3. ITERATOR SUMMARY ... 325
42.4. CONTAINER AND ITERATOR TYPES .. 326
42.5. SEQUENCE CONTAINERS ... 326
42.6. ASSOCIATIVE CONTAINERS .. 327
42.7. CONTAINER ADAPTERS ... 327
42.8. ITERATOR OPERATIONS ... 327
42.9. ALGORITHMS... 331

LECTURE NO.43 .. 334

43.1. EXAMPLE – ABNORMAL TERMINATION... 334

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

7

43.2. GRACEFUL TERMINATION ... 335
43.3. ERROR HANDLING ... 335
43.4. EXCEPTION HANDLING .. 338
43.5. EXCEPTION HANDLING PROCESS ... 338

LECTURE NO.44 ..342

44.1. STACK UNWINDING ... 342

LECTURE NO.45 ..349

45.1. RESOURCE MANAGEMENT ... 349

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

8

Lecture No.01

01.1. Introduction

Course Objective:
Objective of this course is to make students familiar with the concepts of

object oriented programming. These concepts will be reinforced by their

implementation in C++.

Course Contents:

The main topics that we will study in the 45 lectures of this course are given

below,

 Object Orientation

 Objects and Classes

 Overloading

 Inheritance

 Polymorphism

 Generic Programming

 Exception Handling

 Introduction to Design Patterns

Recommended Text Book:

C++ How to Program (Deitel & Deitel)

Reference Books:

1. Object-Oriented Software Engineering
By Jacobson, Christerson, Jonsson, Overgaard

(For object oriented programming introductory concepts)

2. The C++ Programming Language
By Bjarne Stroustrup

(For better c++ understanding)

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

9

Object-Orientation (OO)

What is Object-Orientation?

It is a technique in which we visualize our programming problems in the form of

objects and their interactions as happens in real life.

Examples:

We have different objects around us in our real life that interact with each other to

perform different operations for example,

A Person A House

A Tree A Car

Different Objects

These objects interact with each other to perform different operations,

Take another example of a School; the objects in a school are student, teacher, books,

pen ,school bag, classroom, parents, playground and so on… ,

Lives in

Drives

Tree Car

House Ali

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

10

Objects in a School

Teacher Student School Bag

Book Pen Playground

Parents Classroom Library

Suppose we want to develop a fee collection system for a school for this we will need

to find out related objects and their interactions as happens in real life.

In this way we can say that object orientation makes it easier for us to solve our real

world problems by thinking solution of the problem in terms of real world objects.

So we can say that in our daily life everything can be taken as an object that behaves in a
certain way and has certain attributes.

In object orientation we move our concentration to objects in contrast to procedural

paradigm in which we simply write our code in functions and call them in our main

program.

01.2. What is a Model?

A model is an abstraction of something real or conceptual.

We need models to understand an aspect of reality.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

11

Model Examples

Highway maps

Architectural models

Mechanical models

01.3. OO Models:

In the context of programming models are used to understand the problem before

starting developing it.

We make Object Oriented models showing several interacting objects to understand

a system given to us for implementation.

Example 1– Object Oriented Model

lives-in

Ali House

drives

Car Tree

Objects

Ali, Car, House, Tree

Interactions
Ali lives in the house

Ali drives the car

Example 2– Object Oriented Model (A School Model)

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

12

A School Model

Teacher

Teaches

Book

Student

Has

Pen

Plays-in

Playground

School Bag

Objects

Teacher, Student, School Bag, Pen,

Book Playground

Interactions
Teacher teaches Student.

Student has School Bag, Book and Pen

01.4. Object-Orientation - Advantages

As Object Oriented Models map directly to reality as we have seen in examples

above therefore,

We can easily develop an object oriented model for a problem.

Everyone can easily understand an object oriented model.

We can easily implement an object oriented model for a problem using any object

oriented language like c++ using its features1 like classes, inheritance, virtual

functions and so on…

01.5. What is an Object?

An object is,

1. Something tangible (Ali, School, House, Car).

2. Something conceptual (that can be apprehended intellectually for example

time, date and so on…).

An object has,

1. State (attributes)

2. Well-defined behavior (operations)

1 We will study these features in detail in this course

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

13

3. Unique identity

01.6. Tangible and Intangible Objects

Examples of Tangible Objects:

Ali is a tangible object, having some characteristics (attributes) and behavior as given

below,

Ali

Characteristics (attributes) Behaviour (operations)

Name

Age

Walks

Eats

We will identify Ali using his name.

Car is also a tangible object having some characteristics (attributes) and behavior

given below,

Car

State (attributes) Behavior (operations)

Color

Model

Accelerate

Start Car

Change Gear

We can identify Car using its registration number

Examples of Intangible Objects (also called as conceptual objects):

Time is an intangible (conceptual) object

Time

State (attributes) Behavior (operations)

Hours

Seconds

Minutes

Set/Get Hours

Set/Get Seconds

Set/Get Minutes

We will assign our own generated unique ID in the model for Time object

Date is also an intangible (conceptual) object

State (attributes) Behavior (operations)

Year Set/Get Year

Day Set/Get Day

Month Set/Get Month

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

14

We will assign our own generated unique ID in the model for Date object.

01.7. Summary:

 Model is the abstraction of some real word scenario. It helps us to understand

that scenario.

 Object oriented model of any scenario (problem) describes that scenario
(problem) in the form of interacting objects.

 We use Object Orientation because it helps us in mapping real world problem

in a programming language.

 Object Orientation is achieved using objects and their relationships.

 Properties of an object are described using its data members and behavior of an

object is described using its functions.

 Objects may be tangible (physical) or intangible (also called conceptual or

virtual).

 Generally when we have given a certain problem description, nouns in that

problem description are candidates for becoming objects of our system.

 There may be more than one aspects of an object

 It is not necessary that every object has a specific role in implementation of a
problem there may be some objects without any role, like school parking in

our school.

 It is easier to develop programs using Object Oriented Programming because

it is closer to real life.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

15

Lecture No.02

Lecture Contents

1. Information Hiding

2. Encapsulation

3. Interface

4. Implementation

5. Separation of Interface & Implementation

6. Messages

02.1. Information Hiding:

Information hiding is one of the most important principles of OOP inspired from real

life which says that all information should not be accessible to all persons. Private

information should only be accessible to its owner.

By Information Hiding we mean “Showing only those details to the outside world which
are necessary for the outside world and hiding all other details from the outside world.”

Real Life Examples of Information Hiding

1. Ali’s name and other personal information is stored in his brain we can’t

access this information directly. For getting this information we need to ask

Ali about it and it will be up to Ali how much details he would like to share

with us.

2. An email server may have account information of millions of people but it

will share only our account information with us if we request it to send

anyone else accounts information our request will be refused.

3. A phone SIM card may store several phone numbers but we can’t read the

numbers directly from the SIM card rather phone-set reads this information

for us and if the owner of this phone has not allowed others to see the

numbers saved in this phone we will not be able to see those phone numbers

using phone.

In object oriented programming approach we have objects with their attributes and

behaviors that are hidden from other classes, so we can say that object oriented

programming follows the principle of information hiding.

In the perspective of Object Oriented Programming Information Hiding is,

“Hiding the object details (state and behavior) from the users”

Here by users we mean “an object” of another class that is calling functions

of this class using the reference of this class object or it may be some other

program in which we are using this class.

Information Hiding is achieved in Object Oriented Programming using the

following principles,

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

16

 All information related to an object is stored within the object

 It is hidden from the outside world

 It can only be manipulated by the object itself

Advantages of Information Hiding

Following are two major advantages of information hiding,

It simplifies our Object Oriented Model:

As we saw earlier that our object oriented model only had objects and their

interactions hiding implementation details so it makes it easier for everyone to

understand our object oriented model.

It is a barrier against change propagation

As implementation of functions is limited to our class and we have only given the

name of functions to user along with description of parameters so if we change

implementation of function it doesn’t affect the object oriented model.

We can achieve information hiding using Encapsulation and Abstraction, so we see

these two concepts in detail now,

02.2. Encapsulation

Encapsulation means “we have enclosed all the characteristics of an object in the object
itself”

Encapsulation and information hiding are much related concepts (information

hiding is achieved using Encapsulation)

We have seen in previous lecture that object characteristics include data members

and behavior of the object in the form of functions.

So we can say that Data and Behavior are tightly coupled inside an object and

both the information structure and implementation details of its operations are

hidden from the outer world.

Examples of Encapsulation

Consider the same example of object Ali of previous lecture we described it as

follows,

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

17

Ali

Characteristics

(attributes)

 Name

 Age

Behavior

(operations)

 Walks

 Eats

You can see that Ali stores his personal information in itself and its behavior is

also implemented in it.

Now it is up to object Ali whether he wants to share that information with

outside world or not. Same thing stands for its behavior if some other object in

real life wants to use his behavior of walking it can not use it without the

permission of Ali.

So we say that attributes and behavior of Ali are encapsulated in it.

Any other object don’t know about these things unless Ali share this information

with that object through an interface,

Same concept also applies to phone which has some data and behavior of

showing that data to user we can only access the information stored in the phone

if phone interface allow us to do so.

Advantages of Encapsulation

The following are the main advantages of Encapsulation,

a. Simplicity and clarity
As all data and functions are stored in the objects so there is no data or function

around in program that is not part of any object and is this way it becomes very

easy to understand the purpose of each data member and function in an object.

b. Low complexity

As data members and functions are hidden in objects and each object has a

specific behavior so there is less complexity in code there will be no such

situations that a functions is using some other function and that functions is

using some other function.

c. Better understanding

Everyone will be able to understand whole scenario by simple looking into object

diagrams without any issue as each object has specific role and specific relation

with other objects.

02.3. Interface

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

18

Interface is a set of functions of an object that he wants to expose to other objects.

As we discussed previously that data and behavior of each object is hidden in

that object it self so we have to use the concept of interface of the object to expose

its behavior to outer word objects.

 Different objects may need different functions of an object so interface of

an object may be different for different objects.

 Interfaces are necessary for object communication. Each object provides

interface/s (operations) to other objects through these interfaces other

objects communicate with this object.

Example – Interface of a Car

 Steer Wheels

 Accelerate

 Change Gear

 Apply Brakes

 Turn Lights On/Off

Example – Interface of a Phone

 Input Number

 Place Call

 Disconnect Call

 Add number to address book

 Remove number

 Update number

02.4. Implementation

It is actual implementation of the behavior of the object in any Object Oriented

language.

It has two parts,

 Internal data structures to hold an object state that will be hidden from us

it will store values for an object data members.

 Functionality in the form of member functions to provide required

behavior.

Examples of Implementation

a. Gear Box in car system

Consider object Gear Box in car system it has a certain structure and

functionality. When this object will be implemented it will have two things,

 Physical structure of the gear box

 Functionality implemented in this structure to change gear.

Both these things are part of implementation.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

19

So it has,

 Data Structure in the form of Mechanical structure of gear box

 Functionality mechanism to change gear

b. Address Book in a Phone

Similarly take the example of contact details saved in the SIM of a phone,

In that case we can say physical structure of SIM card as Data Structure

And Read/write operations provided by the phone as Functionality.

02.5. Separation of Interface & Implementation

As discussed earlier we only show interface of an object to outside world and

hide actual implementation from outside world. The benefit of using this

approach is that our object interface to outside word becomes independent

from inside implementation of that interface.

This is achieved through the concepts of encapsulation and information

hiding.

Real Life example of separation of interface and implementations

 Driver has a standard interface to drive a car and using that interface

he drive can drive any car regardless of its model or type whatever

engine type it has or whatever type of fuel it is using.

02.6. Messages

Objects communicate through messages they send messages (stimuli) by

invoking appropriate operations on the target object. The number and kind of

messages that can be sent to an object depends upon its interface

Examples – Messages

A Person sends message (stimulus) “stop” to a Car by applying brakes

A Person sends message “place call” to a Phone by pressing appropriate button

02.7. Summary

 Information hiding is achieved through encapsulation.

 Encapsulation and Information Hiding are related to each other.

 Interface of an object provides us the list of available functions.

 An object may have more than one interface.

 Interface and implementation are separated from each other to achieve

Information Hiding.

 Objects communicate with each other using messages.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

20

Useful Links:

http://www.alice.org/

A Graphical Programming Environment to teach Computer Programming.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO
http://www.alice.org/

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

21

Lecture No.03
Lecture Contents:

 Abstraction

 Classes

 Inheritance

 Major benefits of inheritance (Reuse)

03.1. Abstraction

Real life objects have a lot of attributes and many kind of behaviors but most of the

time we are interested in only that part of the objects that is related to the problem

we are currently going to solve, for example in implementing a school system we

don’t need to take care of the personnel life of a student or a teacher as it will not

effect our system in any way so we will see these objects in the perspective of school

system and will ignore their other characteristics, this concept is called “Abstraction”.

Abstraction is a way to cope with complexity and it is used to simplify things.

Principle of abstraction:

“Capture only those details about an object that are relevant to current perspective”

Abstraction Example:

Suppose we want to implement abstraction for the following statement,

“Ali is a PhD student and teaches BS students”

Here object Ali has two perspectives one is his student perspective and second is his

teacher perspective.

We can sum up Ali’s attributes as follows,

Name

Age
Student Roll No

Year of Study

CGPA

Employee ID

Designation

Salary

As you can see out of all these listed attributes some belong to Ali’s student

perspective(Roll No, CGPA, Year of study) and some belong to Ali’s teacher

perspective(Employee ID, Designation, Salary).

Similarly we can sum up Ali’s behavior as follows,

Study

DevelopExam

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

22

GiveExam

TakeExam

PlaySports

Eat

DeliverLecture

Walk

As was the case with attributes of object Ali, its behavior can also be divided in Ali’s

student perspective as well as Ali’s teacher perspective.

Student’s Perspective

Attributes:

- Name - Employee ID

- Student Roll No - Designation

- Year of Study - Salary

- CGPA - Age

Behaviour:

- Study - DevelopExam

- GiveExam - TakeExam

- PlaySports - Eat

- DeliverLecture - Walk

Teacher’s Perspective

Attributes:
- Name - Employee ID

- Student Roll No - Designation

- Year of Study - Salary

- CGPA - Age

Behaviour:

- Study - DevelopExam

- GiveExam - TakeExam

- PlaySports - Eat

- DeliverLecture - Walk

A cat can be viewed with different perspectives

Ordinary Perspective Surgeon’s Perspective

A pet animal with A being with

Four Legs A Skeleton
A Tail Heart

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

23

A car can be viewed with different perspectives

Abstraction – Advantages

Abstraction has following major advantages,

1. It helps us understanding and solving a problem using object oriented

approach as it hides extra irrelevant details of objects.

2. Focusing on single perspective of an object provides us freedom to change

implementation for other aspects of for an object later.

Similar to Encapsulation Abstraction is also used for achieving information hiding as

we show only relevant details to related objects, and hide other details.

03.2. Classes

In OOP we create a general sketch for each kind of objects and then we create

different instances using this sketch we call this sketch or prototype or map as

“class”.

All objects of same kind exhibit identical characteristics (information structure and

behavior) however they have data of their own.

Class –Example 1

Consider the objects given below,

 Ali studies mathematics

 Anam studies physics

 Sohail studies chemistry

Each one is a Student so we say these objects are instances of the Student class.

Class –Example 2

Consider the objects given below,

Kidney

Stomach

Two Ears

Sharp Teeth

Engineer’s View

Driver’s View

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

24

 Ahsan teaches mathematics

 Aamir teaches computer science

 Atif teaches physics

Each one is a teacher so we say these objects are instances of the Teacher class

Class Representation:

we can represent a class using a rectangle as follows,

Normal Form Suppressed Form

Class Example: Circle

Normal Form Suppressed Form

Class Example: Person

(Class Name)

(Attributes)

(Operations)

Circle

center
radius

draw
computeArea

(Class Name)

Circle

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

25

Normal Form Suppressed Form

03.3. Inheritance

A child inherits characteristics of its parents, besides inherited characteristics, a child

may have its own unique characteristics

Inheritance in Classes

If a class B inherits from class A then it contains all the characteristics (information

structure and behaviour) of class A

The parent class is called base class and the child class is called derived class

Besides inherited characteristics, derived class may have its own unique

characteristics

Inheritance – “IS A” or “IS A KIND OF” Relationship

Person

Person

name
age
gender

eat
walk

Student Doctor

Line Triangle

Teacher

Person

Circle

Shape

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

26

Each derived class is a kind of its base class

Person

name
age
gender

eat
walk

Here,

Student IS A Person

Teacher IS A Person

Doctor IS A Person

Shape

color
coord

draw
rotate
setColor

Here,

Circle IS A Shape

Line IS A Shape

Triangle IS A Shape

Student

program
studyYear

study
heldExam

Teacher

designation
salary

teach
takeExam

Doctor

designation
salary

checkUp
prescribe

Circle

radius

draw
computeArea

Line

length

draw

Triangle

angle

draw
computeArea

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

27

Inheritance – Advantages

1. Reuse

2. Less redundancy

3. Increased maintainability

Reuse with Inheritance

Main purpose of inheritance is reuse, we can easily add new classes by inheriting

from existing classes.

Select an existing class closer to the desired functionality, create a new class and

inherit it from the selected class, add to and/or modify the inherited functionality

Shape

color
coord

draw
rotate
setColor

Circle

radius

draw
computeArea

Line

length

draw

Triangle

angle

draw
computeArea

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

28

Person

name
age
gender

eat
walk

Person

name
age
gender

eat
walk

Student

program
studyYear

study
heldExam

Teacher

designation
salary

teach
takeExam

Doctor

designation
salary

checkUp
prescribe

Student

program
studyYear

study
heldExam

Teacher

designation
salary

teach
takeExam

Doctor

designation
salary

checkUp
prescribe

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

29

Lecture No.04

Lecture Contents

 Generalization

 Sub typing (extension)

 Specialization (restriction)

 Overriding

 Abstract classes

 Concrete classes

Recap – Inheritance

 Derived class inherits all the characteristics of the base class

 Besides inherited characteristics, derived class may have its own

unique characteristics

 Major benefit of inheritance is reuse

04.1. Concepts Related with Inheritance

o Generalization
o Subtyping (extension)
o Specialization (restriction)

04.2. Generalization

In OO models, some classes may have common characteristics.

We extract these features into a new class and inherit original classes from this new

class. There are many objects with common characteristics in object model. The

common characteristics (attributes and behaviour) of all these objects are combined

in a single general class. Base class encapsulates the idea of commonality of derived

classes. Base class is general class representing common behaviour of all derived

classes.

This concept is known as Generalization.

It reduces the redundancy and gives us reusability, using generalization our solution

becomes less complex.

In generalization there should be “Is a Kind of Relationship” (also called “Is A

relationship”) between base and child classes.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

30

Example: Line, Circle and Triangle

Line is shape Circle is a shape Triangle is a shape

Shape

color
vertices

move
setColor

Common attributes

Color vertices
Common behaviour

Set Color, Move

Example: Student Doctor and Teacher

Line

color
vertices
length

move
setColor
getLength

Circle

color
vertices
radius

move
setColor
computeArea

Triangle

color
vertices
angle

move
setColor
computeArea

Circle

radius

computeArea

Line

length

getLength

Triangle

angle

computeArea

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

31

Person

name
age
gender

eat
walk

Student Teacher Doctor

program
studyYear

designation
salary

designation
salary

study
heldExam

teach
takeExam

checkUp
prescribe

Common attributes,

Name, age, gender

Common behaviour

Eat, Walk

Sub-typing & Specialization

We want to add a new class to an existing model

We have developed an existing class hierarchy

Find an existing class that already implements some of the desired state and

behaviour

Inherit the new class from this class and add unique behaviour to the new

class

04.3. Sub-typing (Extension)

Sub-typing means that derived class is behaviourally compatible with the

base class

Derived class has all the characteristics of base class plus some extra

characteristics

Behaviourally compatible means that base class can be replaced by the

derived class

Doctor

name
age
gender
designation
salary

checkUp
prescribe
eat
walk

Teacher

name
age
gender
designation
salary

teach
takeExam
eat
walk

Student

name
age
gender
program
studyYear

study
heldExam
eat
walk

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

32

Sub-typing (Extension) - Example

Circle is extending the behaviour of

shape, it is extending attributes of shape

by adding radius similarly it is extending

behaviour of shape by adding compute

Circumference and compute Area.

Student has two extra attributes

program and studyYear

Similarly it has extended behaviour

by adding study and takeExam.

Subtyping and generalization are related concepts, Subtyping (extension) and

generalization is a way to look same thing in two ways.

Sub typing is looking at things from Top to bottom whereas in generalization we

look at things from bottom to top.

04.4. Specialization (Restriction)

We want to add a class to existing hierarchy of classes having many similarities to

already existing classes but some part of its behaviour is different or restricted. In

that case we will use the concept of specialization.

Specialization means that derived class is behaviourally incompatible with

the base class

Behaviourally incompatibility means that base class can’t always be replaced

by the derived class

Derived class has some different of restricted characteristics than of base

class.

Example – Specialization (Restriction)

Suppose we want to add one more class of Adult for some special requirement like

for ID card generation such that it is a person but its age is greater than 18 and

having all other behaviour of that of person class. One solution is that we write

Shape

color
vertices

setColor
move

Person

name
age
gender

eats
walks

Circle

radius

computeCF
computeArea

Student

program
studyYear

study
takeExam

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

33

If age < 18 then
error

else
age = a

setAge(a)
…

age : [18..100]
…

another class from beginning and write all code of person again in it with age limit,

but better solution is that we derive adult class from person class and restrict age in

that class as shown below in diagram,

Similarly Natural Numbers2 are also Integers3 with the restriction that natural

numbers set can NOT contain zero or negative integers it consists of only positive

integers so we can implement this relationship also as specialization,

add(elem)
…

add element to the
set

2 Natural numbers: positive integers only (numbers from 1 to

…….onwards)

3 Integers: all positive and negative numbers (…..-3 , -2 , -1 , 0 , 1 , 2 ,

3………)

add(elem)
…

If elem < 1 then
error

else
add element to
the set

…

NaturalSet

…

IntegerSet

setAge(a)
…

age = a

Adult

age : [0..100]
…

Person

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

34

Add method behaviour is present in both base and derived classes but derived class

behaviour is different in derived class. Derived class will not exhibit the behaviour of

base class but it is overriding behaviour of base class with its own behaviour.

04.5. Overriding

A class may need to override the default behaviour provided by its base class

Derived class overrides the behaviour of its base class.

Reasons for overriding

Provide behaviour specific to a derived class (specialization)

Extend the default behaviour (extension)

Restrict the default behaviour (restriction)

Improve performance

It is used for the implementation of inheritance.

Example – Specific Behaviour (Specialization)

Shape

color
vertices

draw
move

Circle

radius

draw
computeArea

Line

length

draw

Triangle

angle

draw
computeArea

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

35

…

NaturalSet

add(elem)
…

If elem < 1 then
give error

else
Add element
to the set

Example – Extention

Example – Restriction

1- Invoke Window’s
draw
2- draw the dialog
box

Window

width
height

open
close
draw

DialogBox

controls

enable
draw

add(elem)
…

Add element to
the set

…

IntegerSet

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

36

Circle

Example – Improve Performance

Class Circle overrides rotate operation of class Shape with a Null operation.

Shape

color
coord

draw
rotate
setColor

Circle

radius

draw
rotate

04.6. Abstract Classes

In our examples we made classes for shape and person. These are abstract concepts

and the classes we make against abstract concepts are called abstract classes. They

are present at or near the top in the class hierarchy to present most generalized

behaviour.

An abstract class implements an abstract concept

Main purpose is to be inherited by other classes

Can’t be instantiated

Promotes reuse

Abstract Classes - Example I

Shape

color
vertices

draw
move
setColor

Here, Shape is an abstract class

Triangle Line

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

37

Abstract Class Shape

Concrete Classes Circle Line Triangle ….

Abstract Classes - Example II

Person

name
age

gender

eat

walk

Here, Person is an abstract class

Abstract Class Person

Concrete Classes Student Teacher Doctor Engineer Director ….

Abstract Classes - Example III

Vehicle

color
model

accelerate
applyBrakes

Here, Vehicle is an abstract class

Bus

Doctor Student
Teacher

Car Truck

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

38

Abstract Class Vehicle

Concrete Classes Car Bus Truck ….

Abstract Classes can not exist standalone in an object model

While making object model we start by finding out objects in our object model and

then we find out objects having common attributes and make them in the form of

general classes at the top of class hierarchies.

04.7. Concrete Classes

The entities that actually we see in our real world are called concrete objects and

classes made against these objects are called concrete classes.

A concrete class implements a concrete concept

These are used to instantiate objects in our programs

Provides implementation details specific to the domain context

Concrete Classes - Example I

Here Student, Teacher and Doctor are concrete classes

Concrete Classes - Example II

Here Car, Bus and Truck are concrete classes

Doctor

Car

Student

program
studyYear

study
heldExam

Truck

capacity

load
unload

Teacher

Person

Bus

Vehicle

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

39

 A concrete class may exist in an object model independently

 Concrete classes mostly lie below the top of class hierarchy in a good object

model.

If there is an abstract class then hierarchy exists in the object model as there will

definitely be some concrete classes as well derived from this abstract class otherwise

there is no use of abstract class.

Glossary:

a. Natural numbers: numbers from 1 to …….onwards

b. Integers: all positive and negative numbers …..-3,-2,-1,0,1,2,3………

c. Whole numbers: numbers from 0 ,1 ,2, 3 ….onwards (natural no’s including

0)
Some times whole numbers are also called numbers without fractional part.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

40

Lecture No.05
Multiple Inheritance

Inheritance:

We saw inheritance purposes in last lecture

 Generalization

 Extention or sub typing

 Specialization or restriction

Abstract and concrete classes, former is used to represent abstract concepts later is

used to represent concrete concepts.

Overriding derived classes override inherited classes (base classes) behaviour.

Overriding is used for Specialization, Extention, Restriction, and Performance.

05.1. Multiple Inheritance

Sometimes we want to reuse characteristics of more than one parent class, in that

case we need to inherit a class from more than one classes.

Example 1– Multiple Inheritance

Consider the example of an imaginary specie Mermaid used in fairy tales that lives in

water having features both of a women as well as of a fish, In Object Oriented

programming perspective Mermaid can be derived from two classes Women and

Fish.

C++ Code:

/*Program to demonstrate simple multiple inheritance*/

class Fish {

};

class Woman {

Mermaid

Fish Woman

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

41

};

class Mermaid : public Woman , public Fish {

};

Our Mermaid class inherits features of both woman and fish suppose our woman

class has method wald() and fish cclass has method swim then our mermaid class

can use both methods i.e can walk as well as can swim.

C++ code:

#include <iostream>

#include <stdlib.h>

using namespace std;

/*Program to demonstrate simple multiple inheritance*/

class Fish

{
public:

void swim(){

cout<<"\n In method swim";

}

};

class Woman

{
public:

void walk(){

cout<<"\n In method walk"<<endl;

}

};

Mermaid

void swim()

Fish

void walk()

Woman

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

42

Boat Amphibious Vehicle Car

Vehicle

class Mermaid : public Woman,public Fish

{

};

int main(int argc, char *argv[])

{

Mermaid mermaid;

/*This Mermaid object will have two implicit objects one of Fish class and one of

Woman class*/

mermaid.swim();

mermaid.walk();

system("PAUSE");

return 0;

}

Output:

Example 2– Multiple Inheritance

Take another example of amphibious vehicle (vehicle that can run on land as well as

on water) so it has properties of both land as well as of water vehicle. The general

hierarchy in this case will be,

Land Vehicle Water Vehicle

Here we have added a general Vehicle class as well to add all common functions of

Land Vehicles and Water Vehicles in that class, and specific functions of Land and

4 class member functions are also called class methods

In method4 swim

In method walk

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

43

Water vehicle in their respective classes then we have derived Amphibious Vehicle

class from Land Vehicle and Water Vehicle classes (we can do the same in first

example as well concerning Woman, Fish and Mermaid).

C++ code:

class Vehicle

{

};

class WaterVehicle : public Vehicle

{

};

class LandVehicle : public Vehicle
{

};

class AmphibiousVehicle : public LandVehicle,public WaterVehicle

{

};

Suppose we have a changeGear method in Vehicle class that is applicable to both

water and land vehicle, we also have Float and Move methods in water and land

vehicles respectively then our amphibious vehicle will have all these methods,

C++ code:

#include <iostream>

#include <stdlib.h>

using namespace std;

/*Multiple Inheritance in case of Amphibious Vehicle*/

class Vehicle

{
public:

void changeGear(){ cout<<"\nI am Vehicle changeGear() function..\n";}

};

class WaterVehicle : public Vehicle

{

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

44

public:

void Float(){ cout<<"\nI am float function of Water Vehicle";}

};

class LandVehicle : public Vehicle

{

public:

void Move(){ cout<<"\nI am move function of Land Vehicle"<<endl;}

};

class AmphibiousVehicle : public LandVehicle,public WaterVehicle

{

};

int main(int argc, char *argv[])

{

AmphibiousVehicle amphibious;

amphibious.Float();

/*Calling Float function of Water Vehicle class*/

amphibious.Move();

/*Calling Move function of Land Vehicle class*/

system("PAUSE");

return 0;

}

Output:

Advantage of Multiple Inheritance:

As was the case with simple (single) inheritance multiple inheritance also decreases

redundant code as we can inherit a class from many classes and can use their

functions without the need to write them again.

I am float function of Water Vehicle
I am move function of Land Vehicle

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

45

However, there are more disadvantages of multiple inheritance, than its advantages.

Problems with Multiple Inheritance

Increased complexity

Amphibious vehicle hierarchy is a complicated as this class is derived from two

classes that will make code more complex and less understandable however this is

obvious as amphibious vehicle is a complicated vehicle. It is generic problem.

Reduced understanding

Due to increased complexity of class hierarchy the object model becomes difficult it

understand especially for someone who is looking it first time.

Duplicate features

As we are deriving a single class from more than one class so there is a chance of

duplication of features (same methods in both parents), following problems may

arise due to duplicate features,

Problem 1: Ambiguity

Consider the class hierarchy of Mermaid class below,

As mermaid also needs to eat and its both parents have their own methods of eating

so here question arises,

Which eat operation Mermaid should inherit as both functions are available?

Solution – We can solve this problem by explicitly calling eat method from any of

the parent classes in Mermaid class according to behaviour of Mermaid (i.e. if it eats

like a Woman we can call eat method of Woman class and if eats like Fish we can call

method of Fish class), for this we will Override the Common method in multiply

inherited class and in that class overridden method we will call the appropriate base

class function.

Mermaid

eat
…

Fish

eat
…

Woman

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

46

eat
…

a.

b.

Override eat method in

Mermaid class
Invoke eat operation of
desired parent class

Example C++ Code

#include <iostream>

#include <stdlib.h>

using namespace std;

/*Program to demonstrate simple multiple inheritance*/

class Fish

{
public:

void eat(){

cout<<"\n In Fish eat method ";

}

};

class Woman

{

public:

void eat(){

cout<<"\n In Woman eat method \n"<<endl;

}

};

class Mermaid : public Woman,public Fish
{

public:

void eat(){

Mermaid

eat
…

Fish

eat
…

Woman

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

47

cout<<"\n In Mermaid eat method "<<endl;

cout<<"\n Explicity calling Woman eat method. "<<endl;

Woman::eat();

}

};

int main(int argc, char *argv[])

{

Mermaid mermaid;

/*This Mermaid object will have two implicit objects one of Fish class and one of

Woman class*/

mermaid.eat();

/*Calling Mermaid eat method*/

system("PAUSE");

return 0;

}

Problem 2: Two instances for same function (Diamond Problem)

Here Amphibious Vehicle will have two copies of changeGear function as it will

have two objects of Vehicle class one with respect to Land Vehicle and one with

respect to Water Vehicle as shown below,

Vehicle

changeGear

Land Vehicle Water Vehicle

Car Amphibious Vehicle Boat

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

48

Actual Memory Layout

Compiler will not be able to decide which changeGear operation Amphibious

Vehicle should inherit so it will generate an error as shown below (two copied of

same method),

error: request for member `changeGear' is ambiguous

error: candidates are: void Vehicle::changeGear()

void Vehicle::changeGear()

Execution terminated

Solution to Diamond Problem

Some languages disallow diamond hierarchy

Others provide mechanism to ignore characteristics from one side. There are two

cases while solving diamond problem virtual inheritance and non virtual inheritance

(we will study these details in coming lectures)

Vehicle

changeGear

Vehicle

changeGear

Amphibious Vehicle

Water Vehicle Land Vehicle

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

49

Boat

Invoke changeGear
operation with respect to
one side

Association:

Interaction of different objects in OO model (or in problem domain) is known as

association.

In object oriented model, objects interact with each other in order to perform some

useful work, while modeling these objects (entities) is done using the association.

Usually an object provides services to several other objects. An object keeps

association with other objects to delegate tasks. This association can be represented

with a line along an arrow head () or without arrow head.

05.2. Kinds of Association:

There are two main types of association which are then further subdivided i.e

1. Class Association

2. Object Association

1. Class Association

Class association is implemented in terms of Inheritance. Inheritance implements

generalization/specialization relationship between objects. Inheritance is considered

class association.

 In case of public inheritance it is “IS-A” relationship.

 In case of private inheritance it is “Implemented in terms of” relationship.
This relationship ensures that public members of base class are available to derived

class in case of public inheritance.

When we create objects of classes in which we have implemented inheritance

relationships we are forcing the inheritance relationship between created objects. In

this case the derived class objects will also contain base class objects attributes and

methods.

2. Object Association

Amphibious Vehicle Car

Water Vehicle Land Vehicle

changeGear

Vehicle

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

50

lives-in House Ali

It is the interaction of stand alone objects of one class with other objects of anther

class.

It can be of one of the following types,

 Simple Association

 Composition

 Aggregation

05.3. Simple Association

The two interacting objects have no intrinsic relationship with other object. It is the

weakest link between objects. It is a reference by which one object can interact with

some other object.

Customer gets cash from cashier

Employee works for a company

Ali lives in a house
Ali drives a car

1 1

drives

1 *

It is generally called as “association” instead of “simple association”

Kinds of Simple Association

Simple association can be categorized in two ways,

 With respect to direction (navigation)

 With respect to number of objects (cardinality)

Kinds of Simple Association w.r.t Navigation

With respect to navigation association has the following types,

a. One-way Association

b. Two-way Association

a. One-way Association

In One way association we can navigate along a single direction only, it is denoted

by an arrow towards the server object.

Examples:

Car Ali

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

51

Car Ali

lives-in House Ali

1 1

 Ali lives in a House

drives

1 *

 Ali drives his Car

b. Two-way Association

In two way association we can navigate in both directions, it is denoted by a line

between the associated objects

Examples:

Employee works-for Company

* 1

Employee works for company

Company employs employees

Two-way Association - Example

Yasir friend Ali

1 1

Yasir is a friend of Ali

Ali is a friend of Yasir

Kinds of Simple Association w.r.t Cardinality

With respect to cardinality association has the following types,

a. Binary Association

b. Ternary Association

c. N-ary Association

a. Binary Association

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

52

drives Car Ali

It associates objects of exactly two classes; it is denoted by a line, or an arrow

between the associated objects.

Example

Employee
works-for

Company
* 1

Association “works-for” associates objects of exactly two classes

*

Association “drives” associates objects of exactly two classes

b. Ternary Association

It associates objects of exactly three classes; it is denoted by a diamond with lines

connected to associated objects.
Example

Objects of exactly three classes are associated

c. N-ary Association

An association between 3 or more classes its practical examples are very rare.

05.4. Composition

An object may be composed of other smaller objects, the relationship between the

“part” objects and the “whole” object is known as Composition, Composition is

represented by a line with a filled-diamond head towards the composer object

Example – Composition of Ali

* 1

*
Course

Teacher Student

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

53

Body

Ali Arm

Head

 1

2

1

Example – Composition of Chair

Back

 1

Composition is stronger relationship:

Composition is a stronger relationship, because

Composed object becomes a part of the composer

Composed object can’t exist independently

Example I

Ali is made up of different body parts

They can’t exist independent of Ali

Example II

Chair’s body is made up of different parts

2
Leg

2 1 4

Leg Seat Arm

Chair

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

54

Chair Room

1

Cupboard

They can’t exist independently

05.5. Aggregation

An object may contain a collection (aggregate) of other objects, the relationship

between the container and the contained object is called aggregation, Aggregation is

represented by a line with unfilled-diamond head towards the container

Example – Aggregation

Bed

 1

* 1

Example – Aggregation

Aggregation is weaker relationship

Aggregation is weaker relationship, because

 Aggregate object is not a part of the container

 Aggregate object can exist independently

Example I

Furniture is not an intrinsic part of room

Furniture can be shifted to another room, and so can exist independent of a

particular room

Example II

A plant is not an intrinsic part of a garden

It can be planted in some other garden, and so can exist independent of a particular

garden

http://www.codeproject.com/KB/cpp/oopuml.aspx

Table

*
Plant Garden

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO
http://www.codeproject.com/KB/cpp/oopuml.aspx

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

55

Lecture No.06

06.1. Class Compatibility
A class is behaviorally compatible with another if it supports all the operations of the

other class. Such a class is called subtype. A class can be replaced by its subtype.

Derived class is usually a subtype of the base class. It can handle all the legal

messages (operations) of the base class. Therefore, base class can always be replaced

by the derived class.

Examples
Child class also includes characteristics of its base class.

Shape

color
vertices

move
setColor
draw

All the three derived class are behaviourally compatible with base class.

Circle

radius

draw
computeArea

Line

length

draw
getLength

Triangle

angle

draw
computeArea

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

56

View

File

size
…

open
print
…

Wherever the file class is it can be replaced by any of its child classes.

06.2. Polymorphism
It is also essential component of object oriented modeling (paradigm).

In general, polymorphism refers to existence of different forms of a single entity. For

example, both Diamond and Coal are different forms of Carbon.

06.3. Polymorphism in OO Model

In OO model, polymorphism means that different objects can behave in different

ways for the same message (stimulus). Consequently, sender of a message does not

need to know exact class of the receiver.

Sender sends message to receiver and appropriate method is called on receiver side.

Example – Polymorphism

draw

Line Circle Triangle

draw draw draw

draw

Shape

ASCII File

…

print
…

PDF File

…

print
…

PS File

…

print
…

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

57

Editor

View

Shape class hierarchy shape is base class and there are three child classes line circle ,

triangle. View send draw method to shape class and draw is called according to the

nature of actual object present.

print

ASCII File PDF File PS File

print print print

Editor sends message print to file class and print is called based on the actual child

object of file class message is same and appropriate execution will be done.

06.4. Polymorphism – Advantages

Messages can be interpreted in different ways depending upon the receiver class

New classes can be added without changing the existing model

draw

Square Line Circle Triangle

draw draw draw draw

In general, polymorphism is a powerful tool to develop flexible and reusable systems

06.5. Object-Oriented Modeling an Example

Problem Statement

Develop a graphic editor that can draw different geometric shapes such as line, circle

and triangle. User can select, move or rotate a shape. To do so, editor provides user

with a menu listing different commands. Individual shapes can be grouped together

and can behave as a single shape.

print

File

draw

Shape

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

58

 Line

Identify Classes
Extract nouns in the problem statement

Develop a graphic editor that can draw different geometric shapes such as line,

circle and triangle. User can select, move or rotate a shape. To do so, editor provides

user with a menu listing different commands. Individual shapes can be grouped

together and can behave as a single shape.

Eliminate irrelevant classes

Editor – Very broad scope. But it is the name of overall system and we are going to

model it so we will not make its object. For example if we are going to model

computer we will not make its object but its components however if it is component

of some other system then it will behave as an object. So it is marked as irrelevant.

User – Out of system boundary, it is interacting with the system from outside of the

system.
Add classes by analyzing requirements

Group (of shapes) – required to behave as a shape so it should behave as an object in

our system

“Individual shapes can be grouped together and can behave as a single shape”

View – graphic editor must have a display area to show the shapes. We made this

object using domain knowledge.

 Shape

 Line

 Circle

 Triangle

 Menu

 Group

 View

So we have the following classes,

Menu

Triangle

Shape

Group

Circle

View

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

59

Finding Associations:

Next step is to find associations between the objects.

Identify Associations

Find relationships between objects,

1. Extract verbs connecting objects,

“Individual shapes can be grouped together”

 Group consists of lines, circles, triangles

 Group can also consists of other groups (Composition)

Line, circle and triangle have composition relationship.

2. Verify access paths

a. View contains (draws) shapes

 View contains lines

 View contains circles

 View contains triangles

 View contains groups

So there is Aggregation relationship between shapes and View.

Menu sends message to View

So there is Simple One-Way Association relationship between Menu and View.

Identify Attributes of the identified objects

Extract properties of the object,

a. From the problem statement

Properties are not mentioned

b. From the domain knowledge

 Line

i. Color

ii. Vertices

iii. Length

 Circle

i. Color

ii. Vertices

iii. Radius

 Triangle

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

60

i. Color

ii. Vertices

iii. Angle

 Shape

i. Color

ii. Vertices

 Group

i. noOfObjects

 View

i. noOfObjects

ii. selected

 Menu

i. Name

ii. isOpen

Object Model – Graphic Editor

Object model so far is shown below,

Identify Operations

Extract verbs connected with an object

Develop a graphic editor that can draw different geometric shapes such as line, circle

and triangle. User can select, move or rotate a shape. To do so, editor provides user

with a menu listing different commands. Individual shapes can be grouped together

and can behave as a single shape.

Eliminate irrelevant operations

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

61

Develop – out of system boundary

Behave – have broad semantics

Following are selected operations:

• Line

– Draw

– Select

– Move

– Rotate

• Circle

– Draw

– Select

– Move

– Rotate

• Triangle

– Draw

– Select

– Move

– Rotate

• Shape

– Draw

– Select

– Move

– Rotate

• Group

– Draw

– Select

– Move

– Rotate

• Menu

– Open

– Select

– Move

– Rotate

Extract operations using domain knowledge

• View

– Add

– Remove

– Group

– Show

– Select

– Move

– Rotate

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

62

Object Model after adding operations:

Identify Inheritance

a. Search lines like “is a kind of” by looking at keywords like “such as”, “for

example”, etc

“…shapes such as line, circle and triangle…”

Line, Circle and Triangle inherits from Shape

By analyzing requirements

“Individual shapes can be grouped together and can behave as a single shape”

Group inherits from Shape

Refining the Object Model

Application of inheritance demands an iteration over the whole object model

In the inheritance hierarchy,

 All attributes are shared

 All associations are shared

 Some operations are shared

 Others are overridden

View

noOfObjects

selected

add()

remove()

group()

show()

select()

move()

rotate()

Shape

color

vertices

n draw()

select()

move()

rotate()

n

n n

Line n

length
n

Circle

radius

Triangle

angle

Group

noOfObjects

n

draw()
n

draw() draw()

n draw()

Menu

name

isOpen

open()

select()

move()

rotate()

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

63

Refining the Object Model

 Share associations

 Share attributes

 Share operations

o View contains all kind of shapes
o Group consists of all kind of shapes

o Shape – Line, Circle, Triangle and Group

 Color, vertices

o Shape – Line, Circle, Triangle and Group

 Select

 Move

 Rotate

 Share the interface and override implementation

o Shape – Line, Circle, Triangle and Group

 Draw

n n

Group

noOfObjects

draw()

Triangle

angle

draw()

Circle

radius

draw()

Line

length

draw()

Shape

color

vertices

draw()
select()
move()

rotate()

Menu

name

isOpen

open()
select()
move()

rotate()

View

noOfObjects

selected

add()
remove()
group()
show()
select()
move()

rotate()

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

64

n

n

n
n

n

n

n

Group

noOfObjects

draw()

Triangle

angle

draw()

n

Shape

color

vertices

n draw()

select()
move()

rotate()

Circle

radius

draw()

View

noOfObjects

selected

add()
remove()
group()

show()
select()
move()
rotate()

Line

length

draw()

Menu

name

isOpen

open()
select()
move()
rotate()

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

65

Lecture No.07

The basic concept “Object” of Object Orientation (thinking in terms of objects) is

realized using classes in programming languages.

07.1. Class

It is a way (Mechanism) given by c++ to realize objects in a program. It is concrete

implementation of objects in c++. We capture any object attributes and behaviour in

a programming language using classes.

In other words it can be defined as facility given by c++ to create new types

according to our requirement. (Class is composite data type made from basic c++

types like integers, chars and float).

Example:
Consider the examples of entity lion there are many lions but all lions will have

similar attributes and behaviour.

Similarly consider student object all students have separate existence but all students

have similar attributes and they exhibit similar behaviour.

When we hear word student or think about student a sketch comes in our mind for

student along with its attributes and behaviour. The attributes of student comes in

our mind are its name, roll no, class, degree so on. Similarly the behaviour of student

comes in our mind are study, register and many more.

We need to capture the characteristic features of any object (attributes and

behaviour) in the programming language. The concept of class is used for this

purpose.

Now consider the scenario having many interacting objects: a University System

having many objects like student, subject, classroom, and teacher so on…we will

realize all these objects in our software using classes. These all object will use the

services of each other for example student will ask teacher to teach him. This

approach is closer to real life instead of having simple functions being called from

main here these objects will call each other to get their services. This is the reason we

say that object oriented programming mimics real life.

Uses

Objects are structured in terms of class so our problem becomes easier to understand

in the terms c++ program.

We can implement interactions easily in terms of classes.

Student objects will interact with each other to take and give services to each other as

happens in real life and mapped in object oriented programming approach.

Now we see how class mechanism helps us in implementing real life concept.

07.2. Type in C++

We implement generic concepts using types.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

66

We have to model generic concept of Student. But there is no built in type student in

c++ like built-in c++ type’s int or float. Class is mechanism in c++ that will allow us

to define student as user defined type, similarly generic concept circle will also be

implemented in the same way. User define types will be,

 Student in student management system

 Circle in a drawing software

As objects have attributes and behaviour so corresponding classes will also have data

members and methods as shown below,

Ali
Corresponding class

Characteristics (attributes)
/*c++ code for class Person, we can create any
object like Ali from it*/
class Person {
private: /* attributes are generally made
private*/
char name[]; /*char array to store name*/
int age; /*int age to store age*/
public: /* methods are generally made
public*/
Person(); /*constructor used to initialize
data members*/
void walks(); /* method walk */
void eats(); /*method eats*/
}

Name
Age

Behavior (operations)

Walks
Eats

a. object b. class code

07.3. Abstraction

We only include those details in the system that are required for making a functional

system so we will leave out irrelevant attributes and behaviour from our objects.

Take the example of student,

Student

 Name

 Address

 Sibling

 Father Business

07.4. Defining a New User Defined Type

There are two ways to create user defined types for objects in c++ these are,

Structure Definition:

Partially we can use Structures to define an object

Struct{

};

Not relevant to our problem

Relevant to our problem

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

67

class identifier

class keyword (small case)

In c we can not define functions in a structure however in c++ we can add functions

in both structure and classes.

Class Definition:

class ClassName
{

Access Specifier: (public, private or protected)

DataType MemberVariable;

… …. …

Access Specifier: (public, private or protected)

ReturnType MemberFunction();

… …. …

};

Example

class Student
{

private:

int rollNo;

char *name;

float CGPA;

char *address;

public:

void setName(char *newName);

void setRollNo(int newRollNo);

};

Why Member Functions:

They model the behaviors of an object,

Objects can make their data invisible (in accordance with the principle of data

hiding). Setters and getters functions are provided by class to access the its members

it also minimizes the changes to move the objects in inconsistent state as we can write

checks in our setter functions for example we can check that whether the user has

entered correct age value and has not entered negative value for age.

Object remains in consistent state

Member Variables

Function members

Data members

Member Functions

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

68

Example:

We can check that the entered roll number by user is positive or negative,

Student aStudent;

aStudent.rollNo = 514;

aStudent.rollNo = -514; //Error

07.5. Object and Class:

Object is an instantiation of a user defined type or class. Once we have defined a

class we can create as many objects for that class as we require.

Declaring class variables

Variables of classes (objects) are declared just like variables of structures and built-in

data types as follows,

TypeName VariableName;

int var; // declaring built in int data type variable
Student aStudent; // declaring user defined class Student object

07.6. Accessing members

Members of an object can be accessed using,

a. dot operator (.) to access via the variable name

Student aStudent; // declaring Student object

aStudent. rollNo = 5;

b. arrow operator (->) to access via a pointer to an object

Student * aStudent = new Student();

// declaring and initializing Student pointer
aStudent->rollNo = 5;

Note: it is against the principle of OOP to access the data members directly using

object of class as we have done above. This code is given for example only we should

write assessor functions (setters and getters) wherever we want to access the

members of the class.

Member functions are accessed in the similar way using dot or arrow operator.

Example

class Student{

int rollNo;

void setRollNo(int aNo);

};

Student aStudent;

aStudent.setRollNo(5);

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

69

Student *ptr_student = new Student();

ptr_student->setRollNo(5);

07.7. Access specifiers
These are used to enforce access restrictions to members of a class, there are three

access specifiers,

1. ‘public’ is used to tell that member can be accessed whenever you have

access to the object

2. ‘private’ is used to tell that member can only be accessed from a member

function

3. ‘protected’ to be discussed when we cover inheritance

Example

class Student{

private:

char * name;

int rollNo;

public:

void setName(char *);

void setRollNo(int);

...
};

Example Program

class Student{

char * name;
int rollNo;

public:

void setName(char *);

void setRollNo(int aNo);

};

void Student::setName(char * aName){

if (strlen(aName) > 0)

{

name = new char[strlen(aName)];

strcpy(name,aName);

}
}

void Student::setRollNo(int arollNo){

if(arollNo > 0)

rollNo = arollNo;

}

int main(){

Student aStudent;

aStudent.rollNo = 5;

Can be accessed outside the class

Can not be accessed outside the class

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

70

/* Error: we can not access private member of the class. */

aStudent.name = “Ali”;

/* Error: we can not access private member of the class */

aStudent.setRollNo(1);

aStudent.setName(“Ali”);

/* Correct way to access the data member using public setter functions */

}

Default access specifier

When no access specifier is mentioned then default access specifier is private.

Example

Example

We should use keyword public before the methods of the class as given below of will

not use public keyword they will also be treated as private ad will not be accessible

outside the class as shown below,

class Student

{

char * name;

int RollNo;

void SetName(char *);

};

Student aStudent;

aStudent.SetName(Ali);

Corrected code will be,

class Student

{

public:

char * name;

int RollNo;

void setName(char *);

Error in accessing

SetName it will be

inaccessible

Equivalent

class Student

{

private:

char * name;

int RollNo;

};

class Student

{

char * name;

int RollNo;

};

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

71

};

Student aStudent;

aStudent.SetName(“Ali”);

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

72

Lecture No.08

08.1. Member Functions

• Member functions are the functions that operate on the data encapsulated in

the class

• Public member functions are the interface to the class

08.2. Defining Member Functions

We can define member functions in two ways,

a. We can define member functions of the class inside the class definition when

we define any class in our program.

OR

b. We declare member function inside the class definition and declare them

outside the class.

In this case class definition is added in ClassName.h file and class implementation

code is added in ClassName.cpp file.

Function definition inside the class:

General Syntax:

class ClassName {

…

public:

ReturnType FunctionName() {

…

}
};

Example:

Define a class of student that has a roll number. This class should have a function

that can be used to set the roll number

class Student{

int rollNo;

public:
void setRollNo(int aRollNo){

rollNo = aRollNo;

}
};

Function definition outside class

General Syntax:

class ClassName {

…

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

73

public:

ReturnType FunctionName();

};

ReturnType ClassName::FunctionName()

{

…

}

Example

class Student{

…

int rollNo;

public:

};

void setRollNo(int aRollNo);

void Student::setRollNo(int aRollNo){

…

rollNo = aRollNo;

}

08.3. Inline Functions

 Inline functions is a way used by compilers to improve efficiency of the

program, when functions are declared inline normal process of function

calling (using stack) is not followed instead function code is added by

compiler at all points where these functions have been called. Basic concept

behind inline functions is that they are functions in our code but in compiler

generated files these functions code is added by compiler at all places where

they were called in the code.

 Normally small size functions that need to be called many times during

program execution are declared inline. Inline functions decrease the code

execution time because program in their case doesn’t involve function call

overhead.

 Keyword ‘inline’ is used to request compiler to make a function inline.

 However using inline keyword with function doesn’t guarantee that function

will definitely in inlined, it depends on the compiler if it finds it can make

function inline it does so otherwise it ignores the keyword inline and treat the

function as normal function.

Example

inline int Area(int len, int hi)

{

return len * hi;
}

int main()

{

cout << Area(10,20);

Scope resolution operator

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

74

return 0;

}

Inline Functions

The functions defined inside the class are by default inline (whether we mention

keyword inline with them or not)

In case we define function outside the class then we must use the keyword ‘inline’ to

make the function inline.

However compiler decides whether it will implement these functions code as inline

or not.

Example
Inline function inside the class:

class Student{

int rollNo;

public:

void setRollNo(int aRollNo){

…

rollNo = aRollNo;

}
};

Example
Inline function outside the class:

class Student{

…

public:

inline void setRollNo(int aRollNo);

};
void Student::setRollNo(int aRollNo){

…

rollNo = aRollNo;

}

class Student{

…

public:

void setRollNo(int aRollNo);

};
inline void Student::setRollNo(int aRollNo){

…

rollNo = aRollNo;
}

class Student{

…

public:

Function setRollNo

will be automatically

inlined by compiler.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

75

inline void setRollNo(int aRollNo);

};
inline void Student::setRollNo(int

aRollNo){

…

rollNo = aRollNo;

}

08.4. Constructor

Constructor is used to initialize the objects of a class. Constructor is used to ensure

that object is in well defined state at the time of creation.

The constructor of a class is automatically generated by compiler however we can

write it by our self also.

Constructor is automatically called when the object is created. Constructors are not

usually called explicitly by us.

08.5. Constructor Properties

• Constructor is a special function having same name as the class name

• Constructor does not have return type

• Constructors are commonly public members

Example

class Student{

int rollNo;

public:

};

Student(){

rollNo = 0;

}

int main()
{

Student aStudent;
/*constructor is implicitly called at this point*/

}

We can assure that constructor is called automatically by adding cout statement in

constructor as shown below,

#include <iostream>

using namespace std;

class Student{

int rollNo;

public:
Student(){

rollNo = 0;
cout<<”I am constructor of Student class…\n”;

Student Class

constructor

Student Class

constructor

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

76

}

};

int main()
{

Student aStudent;
/*constructor is implicitly called at this point*/

system(“pause”);

return 0;

}

08.6. Default Constructor

• Constructor without any parameter or with all parameters with default

values is called default constructor

• If we do not define a default constructor the compiler will generate a default

constructor

• Compiler generated default constructor is called implicit and user written

default constructor is called explicit

• This compiler generated default constructor initialize the data members to

their default values
• If we have given any constructor for a class whether it is

• our own explcit default constructor (i.e parameterless or with

parameters having default values)

or

• our own constructor with parameters

Then compiler will not create implicit default constructor5.

Example

Consider the class student below it has no constructor so compiler will generate one

for it,

Code of Compiler generated implicit default constructor

5 compiler generated default constructor is called implicit and user written default constructor is called
explicit

class Student

{

int rollNo;

char *name;

float GPA;

public:

… //no constructors

};

{

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

77

08.7. Constructor Overloading

We can write constructors with parameters as well. These parameters are used to

initialize the data members with user supplied data (passed as parameter). The

example is shown below, here example Student class has four constructors their

prototypes are,

1. Student(); /* explicit default parameterless constructor */

2. Student(char * aName); /* constructor with one parameter* /

3. Student(char * aName, int aRollNo); /* constructor with two parameters */

4. Student(int aRollNo, int aRollNo, float aGPA); /* constructor with three

parameters */

Example

rollNo = 0;

GPA = 0.0;

name = NULL;

}

class Student{

int rollNo;

char *name;

float GPA;

public:

Student(); /* explicit default constructor */

Student(char * aName); /* constructor with one parameter* /

Student(char * aName, int aRollNo); /* constructor with two parameters */

Student(int aRollNo, int aRollNo, float aGPA); /* constructor with three

parameters */

};

Student::Student(){

rollNo = 0;

name = NULL; // to indicate it is pointing to nothing at this moment

otherwise it can generate erroneous code.

GPA = 0.0;

}

Student::Student(int aRollNo){

if(aRollNo < 0){

rollNo = 0;

}

else {

rollNo = aRollNo;

}

name = NULL;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

78

We can create this Student class object using any one of these constructors as follows,

08.8. Constructor Overloading

We can use default parameter values to reduce the writing effort in that case we will

have to write only one constructor and it will serve the purpose of all constructors as

given below,

Example

It is equivalent to all three constructors,

Student::Student(

…

char * aName = NULL, int aRollNo= 0, float aGPA = 0.0) {

}

}

Student::Student(int aRollNo,

char * aName){

if(aRollNo < 0){

rollNo = 0;

}

else {

rollNo = aRollNo;

}

if (strlen(aName) > 0)

{

name = new char[strlen(aName)+1];

strcpy(name,aName);

}

else

{

name = NULL;

}

}

int main()

{

Student student1; // default constructor will be used

Student student2(“Name”); // one parameter constructor will be used

Student student3(”Name”, 1); // two parameter constructor will be used

Student student4(”Name”,1,4.0); // three parameter constructor will be used
}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

79

Student();
Student(char * aName);
Student(char * aName, int aRollNo);
Student(char * Name, int aRollNo, float aGPA);

It will use default values if values are not passed as arguments while creating

objects) it is described in code given below,

08.9. Copy Constructor
Copy constructors are used when:

• Initializing an object at the time of creation (we want to create an object with

state of a pre existing object)

• When an object is passed by value to a function (As you know temporary

copy of object is created on stack so we need copy constructor to create that

temporary object with the state of actual object being passed).

Example

int main(){

Student studentA;
Student studentB = studentA;

Copy constructor will

be called to create

temporary student

object

void func1(Student student){
…
}

int main()

{

Student student1; /*char * aName = NULL, int aRollNo= 0, float aGPA = 0.0*/

Student student2(“Name”); /*char * aName = Name, int aRollNo= 0, float

aGPA = 0.0*/

Student student3(”Name”, 1); /*char * aName = Name, int aRollNo= 1, float

aGPA = 0.0*/

Student student4(”Name”, 1 , 4.0); /*char * aName = Name, int aRollNo= 1,

float aGPA = 4.0*/

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

80

As was the case with default constructor compiler also generates copy constructor by

itself however we can override that copy constructor by writing our own copy

constructor as shown in example below,

func1(studentA);

}

Copy Constructor (Syntax)

Copy constructor will

be called as we are

creating studentB in

terms of studentA.

Student::Student(const Student &obj){

/*copying values to newly created object*/

rollNo = obj.rollNo;

name = obj.name;

GPA = obj.GPA;

}

#include <iostream>

using namespace std;

class Student{

int rollNo;

public:

Student(){

rollNo = 0;

Student class default

constructor

cout<<”I am default constructor of Student class…\n”;

}

Student(const Student &obj){

cout<<”I am copy constructor of Student class\n”;

rollNo = obj.rollNo;

}

};

int main()

{

Student aStudent;

Student class copy

constructor

/*default constructor is implicitly called at this point*/

Student bStudent = aStudent;

/*copy constructor is implicitly called at this point*/

system(“pause”);

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

81

08.10. Shallow Copy

• When we initialize one object with another then the compiler copies state of

one object to the other using copy constructor by assigning data member

values of previous object to newly created object.

Shallow copy using default Copy Constructor (Syntax)

• This kind of copying is called shallow copying

Example

Student studentA;

Student studentB = studentA; /*Shallow copy: compiler will use copy constructor to

assign studentA values to newly created object studentB*/

Shallow copy works fine if our class doesn’t include dynamic memory allocation but

in case of dynamic memory allocation it leads to dangling pointer problem as

explained below,

Problem is Shallow Copy

Student class data member name of char * type is added to store the name of student

and it is using dynamic memory according to the length of name entered by user for

student.

Student::Student(const Student & obj){

rollNo = obj.rollNo;

name = obj.name;

GPA = obj.GPA;

}

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

82

studentA

Memory

studentB

Object studentB is also pointing to memory allocated object studentA for Student

class data member name of char * type, now there are two problems with this sort of

copying,

Suppose we delete first object studentA for some reason then its destructor will also

free memory allocated by it hence memory area containing name “AHMAD” will

also be freed and will be given to some other application by operating system, but

studentB member name is still pointing to that area so issue of “Dangling Pointer”

will arose. [Pointer pointing to incorrect memory location]. If we will try to print the

name of object studentB our program will terminate abnormally as it was pointing

memory of some other applications.

Secondly if for some reason we change name of studentA the value of object

studentB will also be changed as it pointing to same memory location.

We resolve these two issues using deep copy.

08.11. Deep Copy
We write our own deep copy code in copy constructor so that when we create new

object from an existing object using copy constructor we also allocate new dynamic

memory for data members involving dynamic memory as shown below,

Student::Student(const Student & obj){

int len = strlen(obj.name);

name = new char[len+1];

// assignming new dynamic memory to data member name of char * type for

newly created object*/

strcpy(name, obj.name);

…

//copy rest of the data members in the same way

}

Name

RollNo

GPA

Name

RollNo

GPA

A

H

M
A

D
…

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

83

Memory
A

B

Example

In case our class doesn’t involve dynamic memory then default copy constructor that

performs shallow copy works fine.

In case our class has any data member involving dynamic memory we have to write

our own code to do deep copy.

A

 H

M

 A

D

Name

RollNo

GPA

A

H

M

A

D

Name

RollNo

GPA

Student studentA;

Student studentB = studentA; // now copy constructor will perform deep

copy (separate memory for both objects)

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

84

Lecture No.09
Review
Copy Constructor

Copy constructors are used when:

Initializing an object at the time of creation (we want to create an object with state of

a pre existing object)

When an object is passed by value to a function (As you know temporary copy of

object is created on stack so we need copy constructor to create that temporary object

with the state of actual object being passed).

Example

void func1(Student student){
…
}

int main(){

Student studentA;
Student studentB = studentA;
func1(studentA);
return 0;

Copy constructor will

be called as a

temporary student

object will be created.

}

Copy constructor will

be called as we are

creating studentB in

terms of studentA.

Copy Constructor (Syntax)

As was the case with default constructor compiler also generates copy constructor by

itself however we can override that copy constructor by writing our own copy

constructor as shown in example below,

As was the case with default constructor compiler also generates copy constructor by

itself however we can override that copy constructor by writing our own copy

constructor as shown in example below,

Student::Student(const Student &obj){

/*copying values to newly created object*/

rollNo = obj.rollNo;

name = obj.name;

GPA = obj.GPA;

}

#include <iostream>

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

85

09.1. Shallow Copy

When we initialize one object with another then the compiler copies state of one

object to the other using copy constructor by assigning data member values of

previous object to newly created object. This kind of copying is called shallow

copying.

Shallow copy using default Copy Constructor (Syntax)

Student::Student(const Student & obj){

rollNo = obj.rollNo;
name = obj.name;
GPA = obj.GPA;

}

This kind of copying is called shallow copying

Example

using namespace std;

class Student{

int rollNo;

public:

Student(){

rollNo = 0;

Student class default

constructor

cout<<”I am default constructor of Student class…\n”;

}

Student(const Student &obj){

cout<<”I am copy constructor of Student class\n”;

rollNo = obj.rollNo;

}

};

int main()

{

Student aStudent;

Student class copy

constructor

/*default constructor is implicitly called at this point*/

Student bStudent = aStudent;

/*copy constructor is implicitly called at this point*/

system(“pause”);

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

86

Heap

A

H

M

A

D

Heap

A

H

M

A

D

Student studentA;

Student studentB = studentA; /*Shallow copy: compiler will use copy constructor to

assign studentA values to newly created object studentB*/

Example
Student studentA(“Ahmad”);

studentA

RollNo

Name

GPA

Student studentB = studentA;

studentA

RollNo

Name

GPA

studentB

RollNn

Name

GPA

#include <iostream>

using namespace std;

class Student{

char * name;

int rollNo;

public:
Student(char * aName, int arollNo){

name = new char[strlen(aName)+1];

strcpy(name,aName);

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

87

Shallow copy works fine if our class doesn’t include dynamic memory allocation but

in case of dynamic memory allocation it leads to dangling pointer problem as

explained below.

Problem is Shallow Copy

Student class data member name of char * type is added to store the name of student

and it is using dynamic memory according to the length of name entered by user for

student.

Student class data member name (char *) of object studentB is also pointing to

memory allocated for datamember name of object studentA, due to this there may be

two kinds of problems.

Suppose we delete first object studentA for some reason then its destructor will also

free memory allocated by it hence memory area containing name “AHMAD” will

also be freed and will be given to some other application by operating system, but

rollNo = arollNo;

}

Student(const Student &obj){

name = obj.name;

rollNo = obj.rollNo;

}

void showName(){

cout<<name<<endl;

}

~Student(){

delete []name;

}

};

int main()

{

Student studentA("AHMAD",1);

Student studentB = studentA;

/*copy constructor is implicitly called at this point*/

studentA.showName();

studentB.showName();

system("pause");

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

88

Irrelevant
address

Heap

studentB member name is still pointing to that area so issue of “Dangling Pointer”

[Pointer pointing to incorrect memory location] will arose.

Same will happen if object studentB is deleted then studentA object data member

name will become dangling pointer. This has been explained below,

Let us change code in main to make our second object studentB in a new local scope

as shown below,

int main(){

Student studentA(“Ahmad”,1);

{

Student studentB = studentA;

}

return 0;

}

Now if we will try to print the name of object studentA our program will not show

any output as name is pointing to some irrelevant memory address,

studentA

RollNo

Name

GPA

Complete program code is given below,

#include <iostream>

using namespace std;

class Student{

char * name;
int rollNo;

public:

Student(char * aName, int arollNo){

name = new char[strlen(aName)+1];

strcpy(name,aName);
rollNo = arollNo;

}

Student(const Student &obj){

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

89

Secondly if for some reason we change name of object studentA the value of object

studentB will also be changed as it pointing to same memory location.

name = obj.name;

rollNo = obj.rollNo;

}

void showName(){

cout<<name<<endl;

}

~Student(){

delete []name;

}

};

int main()

{

Student studentA("AHMAD",1);

{

Student studentB = studentA;

/*copy constructor is implicitly called at this point*/

}

studentA.showName();

system("pause");

return 0;
}

#include <iostream>

using namespace std;

class Student{

char * name;

int rollNo;
public:

Student(char * aName, int arollNo){

name = new char[strlen(aName)+1];

strcpy(name,aName);

rollNo = arollNo;

}

Student(const Student &obj){

name = obj.name;

rollNo = obj.rollNo;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

90

We resolve these two issues using deep copy.

09.2. Deep Copy

We write deep copy code in copy constructor so that when we create new object from

an existing object using copy constructor we also allocate new dynamic memory for

data members involving dynamic memory as shown below,

Student::Student(const Student & obj){

}

void setName(char * aName){

strcpy(name,aName);

}

void showName(){

cout<<name<<endl;

}

~Student(){

delete []name;

}

};

int main()

{

Student studentA("AHMAD",1);

Student studentB = studentA;

/*copy constructor is implicitly called at this point*/

studentA.showName();

studentB.showName();

studentA.setName("MOEEN");

studentA.showName();

studentB.showName();

system("pause");

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

91

A
H
M
A

D

A
H
M
A

D

int len = strlen(obj.name);
name = new char[len+1]; // assignming new

/*dynamic memory to data member name of char * type for newly created object.*/
strcpy(name, obj.name);
…
//copy rest of the data members in the same way

}

Now we see what happens when we created objects in main as shown below,

int main(){
Student studentA(“Ahmad”,1);

{
Student studentB = studentA;

}
}

Now when we will execute code with object studentB in local scope our code still

works fine and shows name for object studentA as now deletion of object studentB

has no effect on object studentA as shown below,

studentA

RollNo

Name

GPA

studentB

RollNo

Name

GPA

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

92

Heap

A
H
M
A
D

studentA

RollNo

Name

GPA

Example

#include <iostream>

using namespace std;

class Student{

char * name;

int rollNo;

public:

Student(char * aName, int arollNo){

name = new char[strlen(aName)+1];

strcpy(name,aName);

rollNo = arollNo;

}

Student(const Student &obj){

name = new char[strlen(obj.name)+1];

strcpy(name,obj.name);

rollNo = obj.rollNo;

}

void showName(){

cout<<name<<endl;

}

~Student(){

delete []name;

}

};

int main()

{

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

93

Student studentA("AHMAD",1);

{

Student studentB = studentA;

/*copy constructor is implicitly called at this point*/

}

studentA.showName();

system("pause");

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

94

09.3. Important points about copy constructor:

1. In case our class doesn’t involve dynamic memory then default copy

constructor that performs shallow copy works fine.

2. In case our class has any data member involving dynamic memory we have

to write our own code in copy constructor to perform deep copy.

3. Copy constructor is normally used to perform deep copy

4. If we do not make a copy constructor then the compiler performs shallow

copy

5. Shallow copy performs bitwise copy.

09.4. Destructor

1. Destructor is used to free memory that is allocated through dynamic

allocation. We have to free memory allocated using new operator by over self

in destructor otherwise it remain occupied even after our program ends.

2. Destructor is used to perform house keeping operations.

3. Destructor is a function with the same name as that of class, but preceded

with a tilde ‘~’

Example

class Student

{

public:

…

~Student(){

if(name){
delete []name;

}
}

};

Overloading

Destructors cannot be overloaded.

Sequence of Calls
Constructors and destructors are called automatically

Constructors are called in the sequence in which object is declared

Destructors are called in reverse order

Example
Student::Student(char * aName){

…
cout << aName << “Constructor\n”;

}
Student::~Student(){

cout << name << “Destructor\n”;
}

};
Example

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

95

int main()
{

Student studentB(“Ali”);
Student studentA(“Ahmad”);
return 0;

}

Example

Output:

Ali Constructor

Ahmad Constructor

Ahmad Destructor

Ali Destructor

09.5. Accessor Functions

In accordance to principle of information hiding data members of a class are declared

as private so that outside world can not access the private data of the object only an

interface is provided to outside world in the form of functions.

Accessor functions are also used to access private data of the object, we provide

accessor functions to get and set private data members of the class.

We also add error checking code in accessor functions to reduce errors so that object

doesn’t move in illegal state.

Example – Accessing Data Member

Example - Setter

class Student{
…
int rollNo;

public:
void setRollNo(int aRollNo){

rollNo = aRollNo;
}

};

Avoiding Error
void Student::setRollNo(int aRollNo){

if(aRollNo < 0){
rollNo = 0;

}
else
{

rollNo = aRollNo;
}

}
Example - Getter

class Student{

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

96

public:

…
int rollNo;

int getRollNo(){

return rollNo;
}

};

Good Practice:

Never return a handle to a data member from getter function because you are never

sure that function accessing the reference will not change the value of the variable.

09.6. this Pointer

Consider the code of a general class given below,

class Student{

int rollNo;
char *name;
float GPA;

public:

…
};

int getRollNo();
void setRollNo(int aRollNo);

The compiler reserves space for the functions defined in the class

 Space for data is not allocated (since no object is yet created)

this Pointer
Student s1, s2, s3;

Function Space
getRollNo(), …

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

97

this Pointer

 Function space is common for every variable

 Whenever a new object is created:

o Memory is reserved for variables only
o Previously defined functions are used over and over again

Memory layout for objects created:

s1
rollNo, …

s2
rollNo, …

s3
rollNo, …

s4
rollNo, …

this Pointer

 Address of each object is passed to the calling function.

 This address is de-referenced by the functions and hence they act on correct

objects

Function

Space

getRollNo(),
…

s2(rollNo,…)

Function Space
getRollNo(), …

s3(rollNo,…)

s1(rollNo,…)

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

98

Student::Student(){

this->rollNo = 0;

}

Student::Student(){

rollNo = 0;

}

s1
rollNo, …

s2
rollNo, …

s3
rollNo, …

s4
rollNo, …

address address address address

Passing this Pointer

 Whenever a function is called the this pointer is passed as a parameter to that

function.

 Function with n parameters is actually called with n+1 parameters

Example

void Student::setName(char *)

is internally represented as,

void Student::setName(char *, const Student *)

Declaration of this

DataType * const this;

Compiler Generated Code

Compiler generated code

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

99

Lecture No.10

10.1. Uses of this Pointer

o There are situations where designer wants to return reference to
current object from a function

o In such cases reference is taken from this pointer like (*this)

Example

Student Student::setRollNo(int aNo)
{

…
return *this;

}
Student Student::setName(char *aName)
{

}

Usage:

…
return *this;

int main()
{

Student aStudent;
Student bStudent;

bStudent = aStudent.setName(“Ahmad”);
…
bStudent = aStudent.setName(“Ali”).setRollNo(2);

return 0;
}

10.2. Separation of interface and implementation

o Public member functions exposed by a class are called interface.
o Separation of implementation from the interface is good software

engineering.
Benefits of separating interface and implementation:

Consider the example of following complex no. class, this complex no. class two

forms of implementations one is new and one is old implementation you can observe

that if you have separated interface and implementation then we can easily change

implementation without changing interface,

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

100

10.3. Complex Number

z = x + i y

o There are two representations of complex number
 Euler form

 Phasor form

z = |z| (cos + i sin)

z is known as the complex modulus and is known as the complex argument or

phase

Example

 Uml notation to show private data members

Example

class Complex{ //old

float x;
float y;

public:
void setNumber(float i, float j){

x = i;
y = j;

}
…

};

Example

class Complex{ //new

float z;
float theta;

public:
void setNumber(float i, float j){

Old implementation

New implementation

Complex

 float x
float y

float getX()

float getY()

void setNumber

(float i, float j)

…

Complex

 float z
float theta

float getX()

float getY()

void setNumber

(float i, float j)

…

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

101

theta = arctan(j/i);
…

}
…

};

Advantages

1. User is only concerned about ways of accessing data (interface)

2. User has no concern about the internal representation and implementation of

the class

Separation of interface and implementation

In c++ generally we can relate the concept of interface of a class to its header (.h) file

and and implementation of a class to its (.cpp) file. However it is not complete

separation of interface and implementation.

 Usually functions are defined in implementation file (.cpp) while the class

definition is given in header file (.h)

 Some authors also consider this as separation of interface and implementation

We only need to include header (.h) file in main.cpp to use the Student class as

shown below,

Student.cpp

#include “student.h”

void Student::setRollNo(int aNo){

…

}

int Student::getRollNo(){

…

}

Student.h

class Student{

int rollNo;

public:

void setRollNo(int aRollNo);

int getRollNo();

…

};

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

102

10.4. const Member Functions

Some functions in our programs are general purpose functions to show or access

data, they are supposed to do read only tasks only however there are chances that

they can change the state of data members of the class while accessing the data

members due to programming mistake, c++ provides the solution of this problem

using constant member functions.

We make those functions as constant who need only read only access (for example

such functions that will only display data or will return the value of data members).

When we make them constant compiler generates an error if these functions try to

change the value of data members of the class.

const Member Functions

Keyword const is placed at the end of the parameter list to make any function as

constant.

Declaration:
Inside class
class ClassName{

ReturnVal Function() const;
};

Definition:
Outside class
ReturnVal ClassName::Function() const{

…
}

Example
class Student{
public:

int getRollNo() const {
return rollNo;

}
};

const Functions

 Constant member functions cannot modify the state of any object

Main.cpp (main file to run the program)

#include “student.h”

int main(){

Student aStudent;

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

103

 They are just “read-only”

 Errors due to typing are also caught at compile time

Example

Consider the function given below that is being used to check if roll no is equal to

entered value if in this function we replace comparison statemtn == with assignment

= statement it will compile correctly but whole code logic will change and we will get

un expected result,

bool Student::isRollNo(int aNo){

if(rollNo = = aNo){
return true;

}
return false;

}

Example

bool Student::isRollNo(int aNo){

/*undetected typing mistake*/
if(rollNo = aNo){

return true;
}
return false;

}

But if we have implemented as constant then compiler will catch this error and will

produce compile time error as shown below,

Example

bool Student::isRollNo

/*compiler error*/
if(rollNo = aNo){

return true;

(int aNo)const{

}
return false;

}

const Functions

Constructors and Destructors cannot be const because Constructors and

destructors are used to modify the object to a well defined state or to clean the

memory occupied by the object.

Example

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

104

class Time{
public:

Time() const {} //error…
~Time() const {} //error…

};

const Function

 Constant member function cannot change data member

 We cannot call non constant functions in constant functions because non

constant member functions may have code for changing state of the object

that is not allowed in the constant functions.

Example
class Student{

char * name;
public:

char *getName();
void setName(char * aName);
int ConstFunc() const{

name = getName(); //error
setName(“Ahmad”);//error

}
};

10.5. this Pointer and const Member Function

As we know that when a class function is called an implicit this pointer is passed to

tell the function about the object it has to operate same is true for constant function

with the difference that it will bbe passed as constant pointer to const data in case of

constant member functions so that this pointer can not be used now to change the

value of data members of the object,

const Student *const this;
// In case of constant member functions

instead of

Student * const this;
// In case of ordinary member functions

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

105

Lecture No.11

11.1. Usage example of Constant member functions
Problem:
Suppose we have requirement to change the class Student such that a student is

given a roll number when the object is created and cannot be changed afterwards our

existing class is given below,

Student Class

Solution of this problem:

We can do this by making rollNo constant so that cannot be changed once it is

defined as shown below,

Modified Student Class

Now there is only one issue of initializing this roll no with initial value but the

problem is that we cannot set the value of roll no in constructor, as when code in

constructor is executed the data member roll no has already been created and when

we try to assign value to it in constructor compiler generates error,

Example

Student::Student(int aRollNo)

{

rollNo = aRollNo;

/*error: cannot modify a constant data member assignment statement not

class Student{

…

const int rollNo;
public:

Student(int aNo);

int getRollNo();

…

};

class Student{

…

int rollNo;

public:

Student(int aNo);

int getRollNo();

…

};

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

106

Second solution is to write separate function but the problem remains same that we

can’t assign value to constant data member,

We also know that we can only declare data members in structure or class but we

cannot initialize them at the time of declaration in structure or class because

before executing constructor code, the class const member roll no has not got life it

will get life along with other class members when constructor will be invoked so we

can not assign any value to this constant member while declaring it. 6

Solution:

so what is the solution of this problem as we can not initialize constant members

while declaring them and we can not initialize them in constructor also because as

soon as they go life they become constant to solve this problem C++ gives us new

mechanism (syntax) for initialization of constant data members of the structure or

class to resolve above mentioned issues,

11.2. Difference between Initialization and Assignment:

Initialization is assigning value along with creation of variable.

int i = 2;

Assignment is assigning value after creation.

int i;

i = 7;

11.3. Member Initializer List

Member initialization list is used where we cannot modify the state of data members

in the member functions of the class including constructor,

 A member initializer list is a mechanism to initialize data members

 It is given after closing parenthesis of parameter list of constructor

6 In c++ static const data members can be initialized in class or structure as well.

initialization*/

}

void Student::SetRollNo(int i)

{

rollNo = i;

/*error: cannot modify a constant data member again assignment

statement not initialization */

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

107

 In case of more than one member use comma separated list

Example

Order of Initialization

 Data member are initialized in order they are declared in the class

 Order in member initializer list is not significant at all

Example

11.4. const Objects

 Objects can be declared constant with the use of const keyword

 Constant objects cannot change their state

Example

 int main()

class ABC{

int x;

int y;

int z;

public:

ABC();

};

ABC::ABC():y(10),x(y),z(y)

{

…

}

/* x = Junk value

y = 10

z = 10 */

class Student{

const int rollNo;

char *name;

float GPA;

public:

Student(int aRollNo) : rollNo(aRollNo), name(Null), GPA(0.0){ //
initialization

…

}

…

};

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

108

Example

const Objects

const objects can access only const member functions so chances of change of state of

const objects once they are created are eliminated.

We make getRollNo function constant so that we can access it using constant objects,

Example

 class Student{

{

const Student aStudent;

return 0;

}

}

int getRollNo(){

return rollNo;

}

};

int main(){

const Student aStudent(5);

int a = aStudent.getRollNo();

//error

system("PAUSE");

return EXIT_SUCCESS;

}

: aRollNo)

class Student{

int rollNo;
public:

Student(int

rollNo(aRollNo){

#include <cstdlib>

#include <iostream>

using namespace std;

int main(){

const Student aStudent;

int a = aStudent.getRollNo();

//error

system("PAUSE");

return EXIT_SUCCESS;

}

class Student{

int rollNo;
public:

Student() {

}

int getRollNo(){

return rollNo;

}

};

#include <cstdlib>

#include <iostream>

using namespace std;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

109

Constant member functions

Make all functions that don’t change the state of the object constant

This will enable constant objects to access more member functions

11.5. Static Variables

Static variables of a class are such variables which are independent of class objects.

Lifetime of static variable is throughout the program life, if static variables are not

explicitly initialized then they are initialized to 0 of appropriate type.

Example

Static variable is initialized once only throughout the program, independent of how

many times the function initializing it is called,

void func1(int i){

static int staticInt = i;
//initialization statement will be executed once
//only as static variables are initialized once

cout << staticInt << endl;
}
int main(){

func1(1);
func1(2);
return 0;

}

void func1(int i){

static int staticInt;
staticInt = i;

//assignment statement will be executed with each function call
cout << staticInt << endl;

…

int rollNo;

public:

…

int getRollNo()const{

return rollNo;

}

};

int main(){

const Student aStudent;

int a = aStudent.getRollNo();

return 0;
}

Output:

1

1

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

110

}
int main(){

func1(1);
func1(2);
return 0;

}

Static Data Member

Definition

“A variable that is part of a class, yet is not part of any object of that class, is called

static data member”

Static Data Member

They are shared by all instances (objects) of the class

They do not belong to any particular instance of a class

Class vs. Instance Variable

Suppose we created three objects of student class as shown below,

Student s1, s2, s3;

Class Variable

s2(rollNo,…)

Class Space

Instance Variable

s3(rollNo,…)

s1(rollNo,…)

Static Data Member (Syntax)

Keyword static is used to make a data member static

class ClassName{
…
static DataType VariableName;
};

Defining Static Data Member

Output:

1

2

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

111

Static data member is declared inside the class

But they are defined outside the class

Defining Static Data Member

class ClassName{

…
static DataType VariableName;
};

DataType ClassName::VariableName;
Initializing Static Data Member

Static data members should be initialized once at file scope

They are initialized at the time of definition

Example
class Student{
private:
static int noOfStudents;

public:
…

};
int Student::noOfStudents = 0;
/*private static member cannot be accessed outside the class except for
initialization*/

Initializing Static Data Member

If static data members are not explicitly initialized at the time of definition then they

are initialized to 0

Example

int Student::noOfStudents;

is equivalent to

int Student::noOfStudents=0;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

112

Lecture No.12

Review:
Static Data Member

Definition
“A variable that is part of a class, yet is not part of an object of that class, is called

static data member”

Static Data members are shared by all instances of the class and they do not belong to

any particular instance of a class.

Class vs. Instance Variable

Memory for static variables in allocated in class space whereas for instance variables

it is separate for each object as shown below, if we have class Student as given below,

class Student{
private:
static int noOfStudents;

public:
…

};

When we will create objects of Student as s1, s2, s3 then memory will be allocated as

given below,

Class Variable

s2(rollNo,…)

Class Space

Instance Variable

s3(rollNo,…)

s1(rollNo,…)

Static Data Member (Syntax)

Keyword static is used to make a data member static,

class ClassName{
…

static DataType VariableName;
};

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

113

Defining Static Data Member (allocating memory for them)

Static data member is declared inside the class

But they are defined outside the class,

class ClassName{
…
static DataType VariableName;
};

DataType ClassName::VariableName;

Initializing Static Data Member(assigning them some initial value)

Static data members should be initialized once at file scope

They are initialized at the time of definition,

Example

class Student{
private:
static int noOfStudents;
public:
…

};
int Student::noOfStudents = 0;
/*private static member cannot be accessed outside the class except for
initialization*/

Initializing Static Data Member

If static data members are not explicitly initialized at the time of definition then they

are initialized to 0

Example
int Student::noOfStudents;

is equivalent to

int Student::noOfStudents=0;

12.1. Accessing Static Data Member

To access a static data member there are two ways

 Access like a normal data member (using dot operator ‘.’)

 Access using a scope resolution operator ‘::’

Example

class Student{
public:

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

114

static int noOfStudents;
};

int Student::noOfStudents;

int main()
{
Student aStudent;
aStudent.noOfStudents = 1;
Student::noOfStudents = 1;
return 0;
}

12.2. Life of Static Data Member

 They are created even when there is no object of a class

 They remain in memory even when all Objects of a class are destroyed

Example

class Student{

public:

static int noOfStudents;

};

int Student::noOfStudents;

int main(){

Student::noOfStudents = 1;

}

Example

class Student{

public:

static int noOfStudents;

};

int Student::noOfStudents;

int main(){

{

Student aStudent;

aStudent.noOfStudents = 1;

}

Student::noOfStudents = 1;

return 0;

}

Uses

They can be used to store information that is required by all objects, like global

variables
Example

Modify the class Student such that one can know the number of student created in a

system

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

115

class Student{
…
public:

static int noOfStudents;
Student();
~Student();

…
};
int Student::noOfStudents = 0;
Student::Student(){

noOfStudents++;

}
Student::~Student(){

noOfStudents--;
}

int Student::noOfStudents = 0;
int main(){

cout <<Student::noOfStudents <<endl;
Student studentA;
cout <<Student::noOfStudents <<endl;
Student studentB;
cout <<Student::noOfStudents <<endl;
return 0;

}

Problem
noOfStudents is accessible outside the class

Bad design as the local data member is kept public

The solution is that we write static member function to access static members,

12.3. Static Member Function
Definition:
“The function that needs access to the members of a class, yet does not need to be

invoked by a particular object, is called static member function”

 They are used to access static data members

 Access mechanism for static member functions is same as that of static data

members

 They cannot access any non-static members

Output:

0

1

2

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

116

Example

Accessing non static data members

12.4. this Pointer and static member functions

 this pointer is passed implicitly to member functions

 this pointer is not passed to static member functions

 Reason is static member functions cannot access non static data members

12.5. Global Variable vs. Static Members

 Alternative to static member is to use global variable

 Global variables are accessible to all entities of the program

 User of Global variables is against the principle of information hiding.
12.6. Array of Objects

 Array of objects can only be created if an object can be created without

supplying an explicit initializer

 There must always be a default constructor if we want to create array of
objects

Example

class Test{

public:

};

int main(){

Test array[2]; // OK

int Student::getTotalStudents(){

return rollNo;

}

int main(){

int i = Student::getTotalStudents();

/*Error: There is no instance of Student, rollNo cannot be accessed*/
return 0;

}

class Student{

static int noOfStudents;

int rollNo;

public:

static int getTotalStudent(){

return noOfStudents;

}

};

int main(){

int i = Student::getTotalStudents();
return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

117

return 0;

}

class Test{

public:

Test();

};

int main(){

Test array[2]; // OK
return 0;

}

class Test{

public:

Test(int i);

};

int main(){

Test array[2]; // Error
return 0;

}

class Test{

public:

Test(int i);

};

int main(){

Test array[2] = {Test(0),Test(0)};
return 0;

}

class Test{
public:

Test(int i);

};

int main(){

Test a(1),b(2);

Test array[2] = {a,b};
return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

118

Lecture No.13

13.1. Pointer to Objects

 Pointer to objects are similar as pointer to built-in types

 They can also be used to dynamically allocate objects

Example

class Student{

…
public:

Student();
Student(char * aName);
void setRollNo(int aNo);

};
Example
int main(){

Student obj;
Student *ptr;
ptr = &obj;
ptr->setRollNo(10);
return 0;

}

Allocation with new Operator

 new operator can be used to create objects at runtime

Example
int main(){

Student *ptr;
ptr = new Student;
ptr->setRollNo(10);
return 0;

}
Example
int main(){

Student *ptr;
ptr = new Student(“Ali”);
ptr->setRollNo(10);
return 0;

}

Example
int main()
{

Student *ptr = new Student[100];

for(int i = 0; i < 100;i++)
{

ptr->setRollNo(10);

}
return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

119

13.2. Breakup of new Operation

new operator is decomposed as follows

 Allocating space in memory

 Calling the appropriate constructor
13.3. Case Study

Design a class date through which user must be able to perform following operations

 Get and set current day, month and year

 Increment by x number of days, months and year

 Set default date

Attributes
Attributes that can be seen in this problem statement are

 Day

 Month

 Year

 Default date

Attributes

The default date is a feature shared by all objects

 This attribute must be declared a static member

Attributes in Date.h
class Date
{

int day;
int month;
int year;
static Date defaultDate;

…
};
Interfaces

 getDay

 getMonth

 getYear

 setDay

 setMonth

 setYear

 addDay

 addMonth

 addYear

 setDefaultDate
Interfaces
As the default date is a static member the interface setDefaultDate should also be

declared static

Interfaces in Date.h
class Date{
…
public:

void setDay(int aDay);
int getDay() const;
void addDay(int x);
…

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

120

…
};
Interfaces in Date.h
class Date{
…
public:

static void setDefaultDate(
int aDay,int aMonth, int aYear);
…

};

Constructors and Destructors in Date.h
Date(int aDay = 0,

int aMonth= 0, int aYear= 0);

~Date(); //Destructor
};
Implementation of Date Class

The static member variables must be initialized

Date Date::defaultDate (07,3,2005);

Constructors

Date::Date(int aDay, int aMonth,
int aYear) {

if(aDay==0) {
this->day = defaultDate.day;

}
else{

}

setDay(aDay);

//similarly for other members
}
Destructor

We are not required to do any house keeping chores in destructor

Date::~Date
{
}

Getter and Setter

void Date::setMonth(int a){
if(a > 0 && a <= 12){

month = a;
}
int getMonth() const{

return month;
}
addYear

void Date::addYear(int x){
year += x;
if(day == 29 && month == 2

&& !leapyear(year)){
day = 1;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

121

month = 3;
}

}

Helper Function

class Date{
…
private:

bool leapYear(int x) const;

…
};
Helper Function

bool Date::leapYear(int x) const{
if((x%4 == 0 && x%100 != 0)

|| (x%400==0)){
return true;

}
return false;

}

setDefaultDate

void Date::setDefaultDate(
int d, int m, int y){
if(d >= 0 && d <= 31){

day = d;
}
…

}

13.4. Complete code of Date class

include<iostream.h>

include<conio.h>

class Date{

private:

int day, month, year;

static Date defaultDate;

public:

void setDefaultDate(int aDay,int aMonth, int aYear);

void setDay(int aDay);

int getDay() const;

void addDay(int x);

void setMonth(int aMonth);

int getMonth() const;

void addMonth(int x);

void setYear(int aYear);

int getYear() const;

void addYear(int x);

bool leapYear(int x)const;

Date(int aDay , int aMonth, int aYear);

void setDate(int aDay , int aMonth, int aYear);

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

122

~Date(); //Destructor

};

Date Date::defaultDate(07,3,2005);

Date::Date(int aDay, int aMonth, int aYear)

{

if(aDay==0)

{

this->day = defaultDate.day;

}

else

{

setDay(aDay);

}

if(aMonth==0)

{

this->month = defaultDate.month;

}

else

{

setMonth(aMonth);

}

if(aYear==0)

{

this->year = defaultDate.year;

}

else

{

setYear(aYear);

}

}

void Date::setMonth(int a) {

if(a > 0 && a <= 12)

{

month = a;

}

}

int Date:: getMonth() const {

return month;

}

void Date::addYear(int x)

{

year += x;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

123

if(day == 29 && month == 2 && !leapYear(year))

{

day = 1;

month = 3;

}

}

bool Date::leapYear(int x) const {

if((x%4 == 0 && x%100 != 0) || (x%400==0))

{

return true;

}

return false;

}

void Date::setYear(int aYear){

year=aYear;

}

void Date::setDay(int aDay){

day=aDay;

}

void Date::setDate(int aDay , int aMonth, int aYear){

setDay(aDay);

setMonth(aMonth);

setYear(aYear);

cout<<day<<"/"<<month<<"/"<<year<<endl;

}

Date::~Date(){

cout<<"Date destructor"<<endl;

}

int main()

{

Date aDate(0,0,0);

aDate.setDate(20,10,2011);

system("pause");

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

124

Lecture No.14

14.1. Composition

Consider the following implementation of the student class we discussed in previous

lectures,

Student

gpa : float
rollNo : int
name : char *

Student(char * = NULL, int = 0,
float = 0.0);

Student(const Student &)
GetName() const : const char
*
SetName(char *) : void
~Student()

…

Composition

If one object is part of another object (relationship of part and whole) in composition

lifetime of one object depends upon the other. The part objects are essential

components of the whole.

For example person is composed of hands, eyes, feet so on.

In student class we assigning dynamic memory for variable name using new

operator as shown,

class Student{

private:

float gpa;

char * name;

int rollNumber;

public:

Student(char * = NULL, int = 0, float = 0.0);

Student(const Student & st);
const char * GetName() const;
// never return handle of private data members or private member functions
~Student();

…

};

Student::Student(char * _name, int roll, float g)

{

cout << "Constructor::Student..\n";

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

125

if (!_name){

name = new char[strlen(_name)+1];

strcpy(name,_name);

}

else name = NULL;

rollNumber = roll;

gpa = g;

}

Student::Student(const Student & st){

if(str.name != NULL){

name = new char[strlen(st.name) + 1];

strcpy(name, st.name);

}

else name = NULL;

rollNumber = st.roll;

gpa = st.g;

}

const char * Student::GetName(){

return name;

}

// never return handle of private data members or private member functions const

ensures that private data members will not be changed

Student::~Student(){

delete [] name; // deleting name array

}

In C++ “it is all about code reuse”

Composition is Creating objects of one class inside another class
“Has a” relationship:

Bird has a beak

Student has a name

Composition

Now we change code slightly replacing name char * by String so that it is whole

object of class String as it qualifies to be an object because we have to apply many

operations on it like string dynamic creation and deletion, string copy using deep

copy, searching a substring and so on….

Conceptual notation:

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

126

Student

gpa : float
rollNo : int
name : String

 String

string : char *

Student(char * = NULL, int = 0,
float = 0.0);

Student(const Student &)
GetName() const : String
GetNamePtr() const : const
char *
SetName(char *) : void
~Student()
…

 String()
SetString(char *) : void
GetString() const : const
char *
~String()
…

Composition

Now we see string class code to see how it simplifies original Student object and how

we have used composition here,

class String{

private:
char * ptr;

public:

String(); // default constructor

String(const String &); // copy constructor

void SetString(const char *); // setter function

const char * GetString() const;

// getter function returning const pointer to data member ptr

~String()

…

};

String::String(){

cout << "Constructor::String..\n";

ptr = NULL;

}

String::String(const String & str){

if(str.ptr != NULL){

ptr = new char[strlen(str.ptr)+1];

strcpy(ptr, str.ptr);
}

else ptr = NULL;

}

void String::SetString(const char * str){

if(ptr != NULL){

delete [] ptr;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

127

ptr = NULL;

}

if(str != NULL){

ptr = new char[strlen(str)+1];

strcpy(ptr, str);

}

}

issue of memory leakage (inaccessible memory)

if we simply set pointer here

memory will be outside of our object many cause problems later

user still has pointer of passed value it can itself modify it

We resolve these two issues in SetString by allocating new memory and deleting

previous memory.

const char * String::GetString()const{

return ptr;

}

String::~String(){

delete [] ptr;

cout <<"Destructor::String..\n";

}

Make pointer equal to NULL as well any where you delete dynamic memory.

Now consider the code of Student class again, now by adding composed string object

our code has been simplified very much, (we will use methods of composed object

simply by calling them where needed)

class Student{
private:

float gpa;
int rollNumber;

String name;
public:

Student(char* =NULL, int=0,float=0.0);

Student(const Student &);
void SetName(const char *);

String GetName() const;
const char * GetNamePtr() const;

~Student();
…

};

Student ::Student(char * _name, int roll, float g){

cout <<"Constructor::Student..\n";
name.SetString(_name);

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

128

rollNumber = roll;
gpa = g;

}

Student::Student(const Student & s){
name.SetString(s.name.GetString());
gpa = s.gpa;
rollNumber = s.rollNumber;

}

Explanation:

1. name.SetString(s.name.GetString());

// setting composed name of newly created object

2. name.SetString(s.name.GetString());

//accessing the composed object string name of object to be copied

3. name.SetString(s.name.GetString());

//accessing the value of composed object string name by calling its member

function GetString

4. name.SetString(s.name.GetString());

//overall result : the value of composed object string of object to be copied

will be copied to newly created object composed object string.

const char * Student::GetNamePtr() const{
return name.GetString();

}

void Student::SetName(const char * n){

name.SetString(n);
}

Student::~Student(){

cout <<"Destructor::Student..\n";
}

void main(){

Student *aStudent=new Student("Fakhir", 899, 3.1);
cout << endl;
cout << “Name:” << aStudent->GetNamePtr() << “\n”;

}

Output:

Constructor::String..

Constructor::Student..

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

129

Important Points:

1. We can access methods of composed object in the same way as we can access

methods of other objects.

Name of composed object.MemberFunction

2. Member functions of a class can access its private data members like,

Student::Student(const Student & s){

name.SetString(s.name.GetString());

// accessing private member String name of student using its object s

and then accessing String name member function GetString to access

string value two methods calss in one line

gpa = s.gpa;

// accessing private members of student in student member function

rollNo = s.rollNo;

// accessing private members of student in student member function

}

Constructors & Composition

Constructors of the sub-objects are always executed before the constructors of the

master class

Example:

As you see the example output of program given above,

Output:

Name: Fakhir

Destructor::Student..

Destructor::String..

Constructor::String..

Constructor::Student..

Name: Fakhir

Destructor::Student..

Destructor::String..

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

130

Constructor for the sub-object name is executed before the constructor of Student

and destructor of sub-object is called after destructor of student. It is logical as

composing object has to contain composed object so composed object should be

created first and then composing object. Similarly while destructing objects we

composing object is destructed first and then composed object as shown in diagram

below,

Composition

Constructor calling:

Constructors are called from composed objects to composing objects.

Constructor of composed object

Constructor of

composing object

Student

String

String

Student

Composing

object

String

Composed

object

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

131

Destructor calling:

Destructors are called from composing objects to composed objects.

Destructor of

composing object

Destructor of composed object

Student

String

String

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

132

Lecture No.15

Composition:

We saw composition in last lecture, its Conceptual notation is given below,

Student

gpa : float

rollNo : int

name : String
 String

Student(char * = NULL, int =

0, float = 0.0);

Student(const Student &)

GetName() const : String

GetNamePtr() const : const

char *

SetName(char *) : void

~Student()

string : char *

 String()

SetString(char *) : void

GetString() const : const

char *

~String()

…

We created student object in main as by passing name, rollno and gpa and then
displayed the name of student using GetNamePtr member function of student
class,

int main(){

Student aStudent("Fakhir", 899,3.1);
cout << endl;
cout << “Name:” << aStudent.GetNamePtr()<< endl;
return 0;
}

Output:

The output of our code is given below,

Constructor::String..

Constructor::Student..

Name: Fakhir

Destructor::Student..

Destructor::String..

Constructor Code:

Let us see the constructor code again,

Student::Student(char * n, int roll, float g){

cout <<"Constructor::Student..\n";

name.SetString(n);

rollNumber = roll;

gpa = g;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

133

In this code we are setting string data member name of Student class using SetString

but the problem in this approach is that we have to call SetString method explicitly to

set value in string class, the reason for it is that our String class doesn’t support

setting its value while creating its object this is the reason we have to use the function

SetString in the constructor.

This is an overhead and also not very good way to set any object value, we want to

initialize our string sub-object name in the student class as we initialize other objects

using constructor. For achieving this functionality we add an overloaded constructor

in the String class that takes char string as parameter and initialize the String class

object with this value using the Student constructor’s “Member initialization list” as

shown below in bold text:

class String{

char *ptr;

public:

};

String();

String(char *); // constructor with char * as parameter
String(const String &);

void SetName(char *);

~String();

…

String::String(char * str){

if(str != NULL){

ptr = new char[strlen(str)+1];

strcpy(ptr, str);

}

else ptr = NULL;

cout << "Overloaded Constructor::String..\n";

}

Now Student class constructor code is modified as follows:

class Student{

private:

float gpa;

int rollNumber;

String name;

public:

};

…

Student(char *=NULL, int=0, float=0.0);

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

134

Student()
Student(char *,

const Date &, int,
float)
SetName(char *) : void
GetName() : char *
~Student()
…

…
name : String

birthDate : Date

String()
String(char *)
~String()

…

Student
name: char *

String

Student::Student(char * n,int roll, float g): name(n) {

cout << "Constructor::Student..\n";

rollNumber = roll;
gpa = g;

}

int main(){

Student aStudent("Fakhir", 899, 3.1);

cout << endl;

cout << “Name:” << aStudent.GetNamePtr() << endl;

return 0;

}

Output:

Overloaded Constructor::String..

Constructor::Student..

Name: Fakhir

Destructor::Student..

Destructor::String..

Now suppose we want to add date object in student class to store student Birth Date,

the conceptual diagram will be as given below,

Date

day: int
Month: int
year: int

…
Date()
Date(int,int,int)
Date(const Date &)
…

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

135

Student class is modified as follows:

class Student{
private:

…
Date birthDate;
String name;

public:

};

Student(char *, const Date &, int, float);
~Student();
…

Composition

Student::Student(char * n, const Date & d, int roll, flaot g): name(n),birthDate(d) {

cout << "Constructor::Student..\n";
rollNumber = roll;
gpa = g;

}

Student::~Student(){

cout << "Destructor::Student..\n";
}

int main(){
Date _date(31, 12, 1982);
Student aStudent("Fakhir", _date,899,3.5);
return 0;

}

Output:

Overloaded Constructor::Date..
Copy Constructor::Date..
Overloaded Constructor::String..
Constructor::Student..
Destructor::Student..
Destructor::String..
Destructor::Date..
Destructor::Date..

15.1. Aggregation

In composition we made separate object of those concepts that we think were worthy

to be implemented as an object within other object to make our code simpler and to

make functionality modular (divided in parts) and understandable like we made

String class in Student class, but in real life most situations are such that two distinct

(different) objects and one object is using services of the other one like student and

teacher, student and librarian, room and chair, passenger and bus, book and

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

136

bookshelf, person and computer so on. In this case we cannot make one object as part

of other object because they exist independently and only provide services to each

other like in case of,

Student and Teacher: Student or Teacher object cannot be composed of other one yet

they are taking services of each other.

Passenger and Bus: Passenger and Bus are taking services of each other but exist

standalone also, bus includes passengers but passenger are not Part of Bus they can

exist independently as well.

Composition vs. Aggregation

Aggregation is a weak relationship than composition because in this relationship two

classes get services of each other but can exist independently as well, main difference

is memory organization of two objects as shown below,

Composition

Aggregation

Object 1
Object 2

Object 1
Object 2

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

137

Example:

Take the example of Room and Chair as given below,

Aggregation C++ implementation:

In aggregation, a pointer or reference to an object is created inside a class. The sub-

object has a life that is NOT dependant on the life of its master class.

e.g

 Chairs can be moved inside or outside at anytime

 When Room is destroyed, the chairs may or may not be destroyed

Aggregation:

class Room{

private:
float area;

Chair * chairs[50];

Public:

};

Room();

void AddChair(Chair *, int chairNo);

Chair * GetChair(int chairNo);

bool FoldChair(int chairNo);

…

Room::Room(){

for(int i = 0; i < 50; i++)

chairs[i] = NULL;

Room

area : float

chairs[50]:Chair *

Room(char *, int)

~Room()

FoldChair(int) : bool

…

 Chair

…

Chair()
DoSomething() : void

FoldChair() : bool

UnFoldChair() : bool

~Chair()

…

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

138

}

void Room::AddChair(Chair * chair1, int chairNo){

if(chairNo >= 0 && chairNo < 50)

chairs[chairNo] = chair1;

}

Chair * Room::GetChair(int chairNo){

if(chairNo >= 0 && chairNo < 50)

return chairs[chairNo];

else

}

return NULL;

bool Room::FoldChair(int chairNo){

if(chairNo >= 0 && chairNo < 50)

return chairs[chairNo]->FoldChair();

else

}

return false;

int main(){

Chair ch1;

{

Room r1;

r1.AddChair(&ch1, 1);

r1.FoldChair(1);

}

ch1.UnFoldChair(1);

return 0;

}

15.2. Friend Functions

The functions which are not member functions of the class yet they can access all

private members of the class are called friend functions.

Why they are needed?

They are needed in situations where we have written code for some function in one

class and it need to be used by other classes as well for example,

Suppose we wrote the code to compute a complex mathematical formulae in one

class but later it was required by other classes as well, in that case we will make that

function friend of all other classes.

Are friend functions against the concept of Object Oriented Programming?

It can be said that friend functions are against the principle of object oriented

programming because they violate the principle of encapsulation which clearly says

that each object methods and functions should be encapsulated in it. But there we are

making our private member accessible to other outside functions.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

139

Consider the following class:
class X{
private:

int a, b;
public:

};

void MemberFunction();
…

Suppose we have a global function DoSomething that need to access the private

members of class X, when we will try to access them compiler will generate error as

outside world can not access private members of a class except its member functions.

void DoSomething(X obj){

obj.a = 3; //Error

obj.b = 4; //Error

}

Friend Functions

In order to access the member variables of the class, we must make function friend of

that class,

class X{
private:

int a, b;
public:

…
friend void DoSomething(X obj);

};

Now the function DoSomething can access data members of class X

void DoSomething(X obj){

obj.a = 3;
obj.b = 4;

}

Friend Functions

Prototypes of friend functions appear in the class definition.

But friend functions are NOT member functions.

Friend Functions

Friend functions can be placed anywhere in the class without any effect

Access specifiers don’t affect friend functions or classes

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

140

class X{
...

private:
friend void DoSomething(X);

public:

};

friend void DoAnything(X);
...

Friend Functions

While the definition of the friend function is:

void DoSomething(X obj){

obj.a = 3; // No Error
obj.b = 4; // No Error
…

}

friend keyword is not given in definition.

Friend Functions

If keyword friend is used in the function definition, it’s a syntax error

//Error…

friend void DoSomething(X obj){

…
}

Friend Classes

Similarly, one class can also be made friend of another class:

class X{
friend class Y;
…

};

Member functions of class Y can access private data members of class X

class X{

friend class Y;
private:

int x_var1, x_var2;

...
};

class Y{
private:

int y_var1, y_var2;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

141

public:

X objX;

void setX(){

objX.x_var1 = 1;

};

int main(){

}

}

Y objY;
objY.setX();
return 0;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

142

Lecture No.16

16.1.Operator overloading

Consider the following class,

class Complex{
private:

double real, img;
public:

};

Complex Add(const Complex &);
Complex Subtract(const Complex &);
Complex Multiply(const Complex &);
…

We want to write function to add two complex no. objects, the Add function

implementation to add two complex numbers is shown below, this function is taking

one complex no object and its adding the current (with reference to which it will be

called) and is returning result in new object,

Complex Complex::Add(const Complex & c1){

Complex t;
t.real = real + c1.real;
t.img = img + c1.img;
return t;

};

// adds the contents of c2 to c1
// creating new object c3 and assigning it result of c1+c2

Now we can add two complex no. objects using the following statement,

Complex c3 = c1.Add(c2);

In this statement two operations are taking place,

1. One is addition of two objects using the function call Add and returning the

result in a new object.

Complex c3 = c1.Add(c2);

2. Second is copy of that temporary object to newly created object c3 using copy

constructor.

Complex c3 = c1.Add(c2);

But there are two issues with this implementation,

1. We can’t add two complex no. objects by simple writing ‘+’ as we can add

basic data types like int or float as shown below,

int a = 3;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

143

int b = 5;

c = a + b; // correct

Complex c1(2,3), c2(4,5);

Complex c3 = c1 + c2; // error

Instead we have to explicitly write,

Complex c3 = c1.Add(c2)

If we give our complex no. class code some user in compiled form for use,

user will need to know how we have written Add function (no. of parameters

, return type) to add two complex no. objects so that he can call Add function

correctly.

2. If we want to perform add operation on more than two objects in a single

mathematical statement like:
c1+c2+c3+c4

We are unable to do it.

We have to explicitly write,

c1.Add(c2.Add(c3.Add(c4)))

Alternative way is:

t1 = c3.Add(c4);
t2 = c2.Add(t1);
t3 = c1.Add(t2);

This is also overhead, especially if the mathematical expression is large,

Converting it to C++ code will involve complicated mixture of function calls

Code will become less readable

Chances of human mistakes will become very high

Code produced will be very hard to maintain

The solution to this problem is simple that we can write normal operators like +,-,*,

and so on for our user defined classes as well,

It is “Operator overloading”

Using operator overloading we can perform basic operations (like addition,

subtraction, multiplication, division and so on…) on our own defined classes objects

in the similar way as we perform them on basic built-in types(like int, float, long,

double etc.).
C++ allows us to overload common operators like +, - or * etc…

With operator overloading Mathematical statements don’t have to be explicitly

converted into function calls as we had to do to add two complex no objects using

function call Add.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

144

Operator overloading

Assume that operator + has been overloaded then actual C++ code becomes:

c1+c2+c3+c4
The resultant code is very easy to read, write and maintain

Operator overloading

C++ automatically overloads operators for pre-defined types as these have also been

implemented as classes by c++.

Example of predefined types:

int
float
double
char
long

Operator overloading

float x;

int y;
x = 102.02 + 0.09; // overloaded operator ‘+’ for float type will be called by c++
Y = 50 + 47; // overloaded operator ‘+’ for int type will be called by c++

The compiler probably calls the correct overloaded low level function for addition

i.e:

// for integer addition:

Add(int a, int b)

// for float addition:

Add(float a, float b)

Operator overloading

Operator functions are not usually called directly, they are automatically invoked to

evaluate the operations they implement by compiler.

List of operators that can be overloaded in C++:

List of operators that can’t be overloaded:

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

145

Reason: They take actual current object name, rather than value in their argument as

you have seen previously in the use of dot (‘.’) operator,

Student std;
int roll = std.getRollNo() // dot operator is performing on actual function
(getRollNo) of class Student that will vary from program to program.

?: is the only ternary operator in C++ and can’t be overloaded.

The precedence of an operator:

The precedence of an operator is order of evaluation which operator will be

evaluated first in expression.

The precedence of an operator is NOT affected due to overloading.

Example:

c1*c2+c3
c3+c2*c1

In both lines multiplication * will be done first and then addition.

Associativity:

Associativity is NOT changed due to overloading

Following arithmetic expression always is evaluated from left to right:

c1 + c2 + c3 + c4

Unary operators and assignment operator are right associative, e.g:

a=b=c is same as a=(b=c)

All other operators are left associative:

c1+c2+c3 is same as

(c1+c2)+c3

Important things to consider:

Always write code representing the operator for example adding subtraction code

inside the + operator will create chaos.

Creating a new operator is a syntax error (whether unary, binary or ternary), you

cannot create $.

Arity of Operators

Arity (no of operands it works on) of an operator is NOT affected by overloading

Example:

Division operator will take exactly two operands in any case:

b = c / d

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

146

General syntax of Operators Overloading:

In case of member functions of a class:

return_type class_name::operator operator_symbol(parameters){

/*code*/

}

In case of non member functions of a class (in this case we will make overloaded

operator function as friend function):

return_type operator operator_symbol(parameters){

/*code*/

}

For example:

Complex& Complex::operator + (const Complex & c){

/*code*/

}

Complex& operator + (const Complex & c){

/*code*/

}

Binary Operators Overloading:

Binary operators act on two quantities.

Examples of binary operators:

General syntax of Binary Operators Overloading:

In case of member function of a class:

TYPE class_name::operator operator_symbol(TYPE rhs){

/*code*/

}

In case of non-member function of a class:

TYPE class_name::operator operator_symbol(TYPE rhs1, TYPE rhs2){

/*code*/

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

147

The “operator OP” must have at least one formal parameter of type class (user

defined type)

Following is an error:

int operator + (int, int);

Examples:

Overloading + operator:

class Complex{
private:

double real, img;
public:

};

…
Complex operator +(const Complex & rhs);

Complex Complex::operator +(const Complex & rhs){
Complex t;
t.real = real + rhs.real;
t.img = img + rhs.img;
return t;

}

The return type is Complex so as to facilitate complex statements like:

Complex t = c1 + c2 + c3;

The above statement is automatically converted by the compiler into appropriate

function calls:

(c1.operator +(c2)).operator +(c3);

If the return type was void,
class Complex{

...

public:
void operator+(

const Complex & rhs);
};

void Complex::operator+(const Complex & rhs){

real = real + rhs.real;
img = img + rhs.img;

};

We have to do the same operation c1+c2+c3 as:

c1+c2
c1+c3
// final result is stored in c1

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

148

Drawbacks of void return type:

Assignments and cascaded expressions are not possible

One of the existing objects is used to store result

Code is less readable

Debugging is tough

Code is very hard to maintain

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

149

Lecture No.17

Binary operators (cont.)

The binary operator is always called with reference to the left hand argument.

Example:
In c1+c2,

c1.operator+(c2)
// c1 is calling overloaded + operator and c2 is being passed as
// reference in that function.
In c2+c1,

c2.operator+(c1)
// c2 is calling overloaded + operator and c1 is being passed as
// reference in that function.

Adding basic data type to complex number class:

The overloading code we discussed before for complex no. class can add two

complex number objects but it can not handle the following situation:

Complex c1;
c1 + 2.325 (as we are adding basic data type double to complex no.)

To do this, we have to modify the Complex class.

Modifying the complex class:

class Complex{

...

Complex operator+(const Complex & rhs);

Complex operator+(const double& rhs);
};

Complex operator + (const double& rhs){

Complex t;
t.real = real + rhs;
t.img = img;
return t;

}

Now we can write both forms of statements,
Complex c2, c3;

Complex c1 = c2 + c3;
Complex c4 = c2 + 235.01;

But problem arises if we do the following:

Complex c5 = 450.120 + c1;

The + operator is called with reference to 450.120

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

150

No predefined overloaded + operator is there that takes Complex as an argument

Now if we write the following two functions to the class, we can add a Complex to a

real or vice versa :

Class Complex{
…
friend Complex operator + (const Complex & lhs, const double & rhs);
friend Complex operator + (const double & lhs, const Complex & rhs);
};

We have made them as friend so that we can write them as non member functions

and they are not called with respect to complex no. class object instead we pass both

arguments (complex no. object and double value) to this function compiler invoke

them according to arguments passed. Their implementation is similar,

Complex operator +(const Complex & lhs, const double& rhs){

Complex t;
t.real = lhs.real + rhs;
t.img = lhs.img;
return t;

}

Complex operator + (const double & lhs, const Complex & rhs){

Complex t;
t.real = lhs + rhs.real;
t.img = rhs.img;
return t;

}

Binary operators

So adding three overloaded versions for + operator as shown below allow us to write

code to,

Add two complex objects

Add complex object and a double value.

Class Complex{
…
Complex operator + (const Complex &);
friend Complex operator + (const Complex &, const double &);
friend Complex operator + (const double &, const Complex &);
};

Non members which are not friend call also achieve this functionality but in that case

we need extra four functions two getters and two setters each for real and imag part.

Compiler searches overloaded operator code in member function first and then in

non member functions.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

151

Binary operators

Other binary operators are overloaded in similar to the + operator as demonstrated

in the above examples

Example:

Complex operator * (const Complex & c1, const Complex & c2);
Complex operator / (const Complex & c1, const Complex & c2);
Complex operator - (const Complex & c1, const Complex & c2);

17.1. Overloading Assignment operator

As we know compiler can generate the following three functions for a class if

required on its own,

 Default Constructor (in case we have not written any other constructor for a

class)

 Copy Constructor

 Assignment Operator

However as we discussed previously if our class has any data member using

dynamic memory then we had to write our own code for default constructor, copy

constructor and similarly assignment operator as compiler generated version of these

functions performs shallow copy that creates dangling pointer, and memory leakage

issues in case of dynamic memory allocation.

We have already seen code of default constructor and copy constructor and the code

for overloaded assignment operator is similar,

Consider the string class:

class String{

int size;
char * bufferPtr;

public:

};

String(); // default constructor
String(char *); // overloaded constructor
String(const String &); // copy constructor
…

String::String(){

bufferPtr = NULL;
size = 0;

}

String::String(char * ptr){
if(ptr != NULL){

size = strlen(ptr);

bufferPtr = new char[size+1];
strcpy(bufferPtr, ptr);

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

152

str1

Hello

else{

size = 0;
}
}

bufferPtr = NULL;

String::String(const String & rhs){
size = rhs.size;

if(rhs.size != 0){

bufferPtr = new char[size+1];
strcpy(bufferPtr, ptr);

}

else
bufferPtr = NULL;

}

int main(){
String str1(“Hello");
String str2(“World”);
str1 = str2;78

return 0;

Member wise copy

assignment

}

Assignment operator (Shallow Copy)

Result of str1 = str2 (memory leak)

Second issue is dangling pointer issue as was in the case of copy constructor.

Modified Assignment Operator Code:

So we add overloaded assignment operator to perform deep copy as given below,

7 Here by term member wise copy we mean copying values of members of class one by one blindly
also called bitwise copy.
8 In ANSI c++ standard term member wise copy has also been used to indicate logical copy (the deep
copy)

str2

World

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

153

class String{
…

public:

};

…
void operator =(const String &);

void String::operator = (const String & rhs){
size = rhs.size;
if(rhs.size != 0){

delete [] bufferPtr; // resolving inaccessible memory issue
bufferPtr = new char[rhs.size+1]; // creating new dynamic memory
strcpy(bufferPtr,rhs.bufferPtr); // deep copy

}

else
bufferPtr = NULL;

}

int main(){

String str1(“ABC");
String str2(“DE”), str3(“FG”);
str1 = str2; // Valid…
str1 = str2 = str3; // Error…
return 0;

}

The problem in statement

str1 = str2 = str3 is,

str1=str2=str3 is resolved as:

str1.operator=(str2.operator=(str3))
Assignment operator is beiing called two times one for part str2 = str3 and then for

str1 = (str2 = str3) as assignment operator is right associate so first str2=str3 will be

executed, and str2 will become equal to str3, then first overloaded assignment

operator execution result will be assigned to s1,

str1.operator=(str2.operator=(str3))

Problem is when compiler will try to invoke second assignment operator to assign

value to str1 error will be returned becuase of void return type of oveloaded

assignment operator the reasn is explained below,

As we have studied before values are passed as parameters in operator overloadnig,

str2 = str3 means str2.operator = (str3)

// str3 is being called as parameter

and

str1 = str2 = str3 means str3.operator(str2.operator = (str3))

// str2.operator = (str3) is being passed as parameter

This issue can be resolved by introducing minor change in our code of copy

assignment operator to make it return String object instead of void as shown below,

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

154

class String{

…

public:

…

String & operator = (const String &);
};

String & String :: operator = (const String & rhs){
size = rhs.size;

delete [] bufferPtr;

if(rhs.size != 0){

bufferPtr = new char[rhs.size+1];

strcpy(bufferPtr,rhs.bufferPtr);

}

else bufferPtr = NULL;

return *this;

}

Now we are returning the value by reference of the object with respect to which this

overloaded assignment operator will be called. It will be str2 in the case of str2 = str3,

now when part str1 = (str2 = str3) will be executed, str2 will be passed as argument,

that will be assigned to str1.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

155

Lecture No.18
18.1. Self assignment problem:

In we assign same string to itself as done in main function below our program will

produce unexpected results as source and destination operands for copying are

same,

int main(){

String str1("Fakhir");
str1 = str1; // Self Assignment problem…
return 0;

}

Result of str1 = str1

We can resolve this issue by adding a simple if condition to ensure that both strings

are not same
String & String :: operator = (const String & rhs){

if(this != &rhs){

size = rhs.size;

delete [] bufferPtr; // deleting memory of left hand side operand

if(rhs.bufferPtr != NULL){

bufferPtr = new char[rhs.size+1];

strcpy(bufferPtr,rhs.bufferPtr);

// memory access violation or incorrect data copy

}

else bufferPtr = NULL;

}

return *this;

}

Now self-assignment is properly handled:

int main(){

String str1("Fakhir");
str1 = str1;
return 0;

}

We can make return type String & as constant to avoid assignment to sub

expressions, like (str1 = str2) = str3

???

str1

Fakhir

…

// size = rhs.size;

// delete [] bufferPtr;

…

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

156

class String{

…

public:

…

const String & operator=9

(const String &);

};

int main(){
String s1(“ABC”),

s2(“DEF”),
s3(“GHI”);

// Error…
(s1 = s2) = s3;
return 0;

}

But as we can do that with primitive types so we can allow assignment to sub

expressions by making return type as String & only as we have done before.

int main(){

int a, b, c;
(a = b) = c;

return 0;
}

18.2. Other Binary operators

Overloading += operator:

class Complex{

double real, img;

public:

Complex & operator+=(const Complex & rhs);

Complex & operator+=(const double & rhs);

...

};

Complex & Complex::operator += (const Complex & rhs){

real = real + rhs.real;

img = img + rhs.img;

return * this;

}

Complex & Complex::operator += (const double & rhs){

real = real + rhs;

return * this;

9 We have seen previously that we should not return handle to any private data

member

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

157

}

int main(){

Complex c1, c2, c3;

c1 += c2;

c3 += 0.087;

return 0;

}

18.3. Friend Functions and Operator overloading

Friend functions minimize encapsulation as we can access private data of any class

using friend functions,

This can result in:

 Data vulnerability

 Programming bugs

 Tough debugging

Hence, use of friend functions must be limited we can overload operators without

declaring them friend functions of a class, for example the + operator can be defined

as a non-member, non-friend function as shown below,

(Three versions of overloaded + operator for Complex no class to handle three kinds

of statements)

 obj1 + obj2

o + obj1

 obj1 + 3.78

Complex operator + (const Complex & a, const Complex & b){

Complex t = a; // creating temporary object t to store a+b

return t += b; // returning t by reference

}

Complex operator + (const double & a, const Complex & b){

Complex t = b;

return t += a;

}

Complex operator + (const Complex & a, const double & b){

Complex t = a;

return t += b;

}

Other Binary operators

The operators

-=, /=, *=, |=, %=, &=, ̂ =, <<=, >>=, !=
can be overloaded in a very similar fashion.

CS304 Highlighted Handouts By KST
Learning Paid Services Available
LMS Handling
Assignments, Quiz, GDBs
Paid Projects
CS519 & CS619 Projects
Online Classes
Paid Courses
0347-
2506073

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

158

int i=1, j=2;

Lecture No.19

Overloading stream insertion extraction operators

19.1. Stream Insertion operator
Often

socket as well to send data on network from our program.

Example:

cout << “i= ”<< i << “\n”;

19.2. Stream Extraction operator
We also need to get data from the console or from file or network this is achieved

through c++ provided stream extraction operator (‘>>’) that is used to get data from

input stream, again default input stream is from console.

int i,j;
cin >> i >> j; // getting value of i and j from user

Explanation:

cin and cout are objects of istream and ostream classes used for input and output

respectively, the insertion and extractions operators have been overloaded in istream

and ostream classes to do these tasks.

When we write lines like,

int i;

cin>> i;

cout << i;

Actually we are using istream and ostream class objects and using these objects we

are calling these classes overloaded (>> and <<) operators that have been overloaded

for all basic types like integer, float , long , double and char *.

We have seen previously that actual call of overloaded operators for a class takes

place by passing the objects to overloaded function as parameter like shown below,

cin>>i;

istream & operator >> (istream & in, int & i)
Here cin will be passed as istream object along with int i to be displayed and code of

this functions is returning istream object by reference & to accommodate multiple

input statement in a single line like,

int i , j;

cin>>i >> j;

as we did in our string class before.

we need to display the data on the screen c++ provides us insertion operator

(‘<<’)to put data on output stream default is console but it can be any file or network

cout << “j= ”<< j << “\n”;

Example:

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

159

Same goes for insertion operator <<

cout << i;
ostream & operator >> (ostream & os, const int & i)

Stream insertion and extraction operator have been overloaded for basic data types

but if we try to use them for user defined data types like our Complex no. class

compiler will generate error as it will not find any overloaded operator code for our

complex no class

Complex c1;
cout << c1; // Error
cout << c1 << 2; // Error cascaded statement

// Compiler error: binary '<<' : no operator // defined which takes a right-hand operand of
type ‘class Complex’

Same error will be for stream extraction operator so will need to overload these two

operators (<< and >>) for our Complex no. class.

19.3. Overloading Stream Insertion Operator

First we try to overload insertion << operator as member function as we did before,

class Complex{

…
public:

};

…
void operator << (const

Complex & rhs);

But when we will call this overloaded function is main compiler will generate errors

as shown below,

int main(){
Complex c1;
cout << c1; // Error
c1 << cout;
c1 << cout << 2; // Error
return 0;

};

class Complex{

…
public:

};

…
void operator << (ostream &);

void Complex::operator << (ostream & os){

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

160

os << ‘(‘ << real
<< ‘,’ << img << ‘)’;

}

Now the statement c1 << cout will work but it has two limitations,

Difficult to understand and remember statement syntax (c1 << cout ;)

Cascaded statements not possible (cout << c1 << 2 ;)

Better syntax is given below to resolve these two issues,

class Complex{

...
friend ostream & operator << (ostream & os, const Complex & c);
};

Stream Insertion operator
// we want the output as: (real, img)

ostream & operator << (ostream & os, const Complex & c){
os << ‘(‘ << c.real

<< ‘,‘
<< c.img << ‘)’;

return os;
}

ostream reference can not be const as it store the data in its buffer to insert on output

stream, however Complex reference will be constant as we are only getting data from

Complex object and inserting it to output stream.

Complex c1(1.01, 20.1), c2(0.01, 12.0);
cout << c1 << endl << c2;

Stream Insertion operator

Output:

(1.01 , 20.1)
(0.01 , 12.0)

Now cascading statements are also possible as given below,

cout << c1 << c2;

is equivalent to

operator<<(operator<<(cout,c1),c2);

Because insertion operator is Left to right associative so first left part cout << c1 << c2

will be executed and then the next part as opposed to copy assignment operator that

will right associative.

Same thing can be done with stream extraction operator,

19.4. Overloading Stream Extraction Operator:

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

161

class Complex{
...

friend istream & operator >> (istream & i, Complex & c);
};

istream can not be cont and istream buffer will change as we will get data from it and

assign it to complex reference similarly Complex object can not be const for stream

extraction operator as well because we will add data to it and hence its state will

change.

Stream Extraction Operator Code:

istream & operator << (istream & in, Complex & c){

in >> c.real;

in >> c.img;

return in;

}

Main Program:

Complex c1(1.01, 20.1);

cin >> c1;

// suppose we entered // 1.0025 for c1.real and // 0.0241 for c1.img

cout << c1;

Output:

19.5. Other Binary operators:

Overloading comparison operators (Equality and Inequality operators)

class Complex{

public:

bool operator == (const Complex & c);

//friend bool operator == (const //Complex & c1, const Complex & c2);

bool operator != (const Complex & c);

//friend bool operator != (const //Complex & c1, const Complex & c2);

…

};

Equality operator:

bool Complex::operator ==(const Complex & c){

if((real == c.real) &&

(img == c.img)){

(1.0025 , 0.0241)

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

162

}

else

}

return true;

return false;

As non member friend function:

bool operator ==(const Complex& lhs, const Complex& rhs){

if((lhs.real == rhs.real) &&

(lhs.img == rhs.img)){

return true;

}

else

}

return false;

Inequality Operator:

bool Complex::operator !=(const Complex & c){

if((real != c.real) ||

(img != c.img)){

return true;

}

else

}

return false;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

163

Lecture No.20
Modified String Class:

We have seen the following string class till now,

class String{
private:

char * bufferPtr;
int size;

public:
String();
String(char * ptr);
void SetString(char * ptr);
const char * GetString();
...

};

int main(){
String str1(“Test”);
String str2;
str2.SetString(“Ping”);
return 0;

}

What if we want to change the string from “Ping” to “Pong”?? {ONLY 1 character to be
changed…}

Possible solution:

 Call: str2.SetString(“Pong”);

 This will delete the current buffer and allocate a new one

 Too much overhead if string is too big

Or, we can add a function which changes a character at nth location

class String{
...

public:

};

void SetChar(char c, int pos);
...

void SetChar(char c, int pos){
if(bufferPtr != NULL){

if(pos>0 && pos<=size)
bufferPtr[pos] = c;

}
}

Other Binary Operators

Now we can efficiently change a single character:

String str1(“Ping”);

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

164

str1.SetChar(‘o’, 2);

// str1 is now changed to “Pong”

20.1. Subscript [] Operator

There is another elegant solution present for this problem. It is subscript operator

that is used on basic char [] data type as shown below,

We want to get same functionality for our own defined String class for this we

overload the subscript “[]” operator.

We want function like given below for subscript operator in our String class,

int main(){

String str2;
str2.SetString(“Ping”);
str[2] = ‘o’;

// acting as l-value (left value so that we can assign it some value)
cout << str[2];

// acting as r-value (we are reading value using subscript operator)
return 0;

}

20.2. Overloading Subscript [] Operator

Subscript operator must be overloaded as member function of the class with one

parameter of integer type,

class String{

...

public:

};

char & operator[](int);

...

char & String::operator[](int pos){

assert(pos>0 && pos<=size);

return stringPtr[pos-1];

}

int main() {

String s1(“Ping”);

cout <<str.GetString()<< endl;

s1[2] = ‘o’;

cout << str.GetString();

return 0;

}

Output:

array[1] = ‘o’;
char array[5] = “Ping”;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

165

20.3. Overloading Function () operator

Any number of parameters can be specified

Any return type can be specified

Operator() can perform any generic operation

Function Operator

class String{

...

public:

};

char & operator()(int);

...

char & String::operator()

(int pos){

assert(pos>0 && pos<=size);

return bufferPtr[pos-1];

}

int main(){

String s1(“Ping”);

char g = s1(2); // g = ‘i’

s1(2) = ‘o’;

cout << g << “\n”;

cout << str.GetString();

return 0;

}

Output:

20.4. Function Operator performing Sub String operation,

class String{

...

public:

};

String operator()(int, int);

...

String String::operator()(int index, int subLength){

assert(index>0 && index+subLength-1<=size);

char * ptr = new char[subLength+1];

Ping
Pong

Must be a member function

i
Pong

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

166

for (int i=0; i < subLength; ++i)

ptr[i] = bufferPtr[i+index-1];

ptr[subLength] = ‘\0’;

String str(ptr);

delete [] ptr;

return str;

}

int main(){

String s(“Hello World”);

// “<<“ is overloaded

cout << s(1, 5);

return 0;

}

Function Operator

Output:

20.5. Unary Operators

Unary operators take one operand, they act on the object with reference to which

they have been called as shown below,
& * + - ++ -- ! ~

Examples:

 --x

 -(x++)

 !(*ptr ++)

Unary Operators

Unary operators are usually prefix, except for ++ and --

++ and -- both act as prefix and postfix

Example:

h++;
g-- + ++h - --i;

General syntax for unary operators

As Member Functions:

TYPE & operator OP (); // no argument the object with respect to which it is called
is taken as one operand

As Non-member Functions:

Friend TYPE & operator OP (TYPE & t);
// one argument object with respect to which it is called.

Hello

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

167

Overloading unary ‘-’:

class Complex{

...
Complex operator - ();

// friend Complex operator -(Complex &);

};

Complex Complex::operator -(){

Complex temp;

temp.real = -real;

temp.img = -img;

return temp;

}

Complex c1(1.0 , 2.0), c2;
c2 = -c1;
// c2.real = -1.0
// c2.img = -2.0

Unary ‘+’ is overloaded in the same way.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

168

Lecture No.21
Unary Operators

21.1. Behavior of ++ and -- for pre-defined types:

 Post-increment ++:

Post-increment operator ++ increments the current value and then returns the

previous value

 Post-decrement --: Works exactly like post ++

Example:

int x = 1, y = 2;
cout << y++ << endl;
cout << y;

Output:

2

3

Example:

int y = 2;
y++++;// Error
y++ = x; // Error

Behavior of ++ and -- for pre-defined types:

 Pre-increment ++:

reference

 Pre-decrement --:

Example:

int y = 2;
cout << ++y << endl;
cout << y << endl;

Output:

3

3

Example:

int x = 2, y = 2;
++++y;
cout << y;
++y = x;
cout << y;

Output:

4

2

Pre-increment operator ++ increments the current value and then returns it’s

Works exactly like Pre-increment ++

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

169

Example (Pre-increment):

class Complex{

double real, img;

public:

...

Complex & operator ++ ();
// friend Complex & operator ++(Complex &);

};

Complex & Complex::operator++(){ // member function
real = real + 1;
return * this;

}

Complex & operator ++ (Complex & h){ // non member function

h.real += 1;
return h;

}

Example:

Complex h1, h2, h3;
++h1;

Function operator++() returns a reference so that the object can be used as an lvalue

++h1 = h2 + ++h3;

How does a compiler know whether it is a pre-increment or a post-increment?

A post-fix unary operator is implemented using:

Member function with 1 dummy int argument
OR

Non-member function with two arguments

In post increment, current value of the object is stored in a temporary variable

Current object is incremented

Value of the temporary variable is returned

21.2. Post-increment operator:

class Complex{

...
Complex operator ++ (int);

// friend Complex operator ++(const Complex &, int);
};

Complex Complex::operator ++ (int){

complex t = *this;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

170

real += 1;
return t;

}

Complex operator ++ (const
Complex & h, int){

complex t = h;
h.real += 1;
return t;

}

How does a compiler know whether it is a pre-increment or a post-increment?

The dummy parameter in the operator function tells compiler that it is post-

increment

Example:

Complex h1, h2, h3;
h1++;
h3++ = h2 + h3++; // Error…

The pre and post decrement operator -- is implemented in exactly the same way

21.3. Type Conversion

The compiler automatically performs a type coercion of compatible types

e.g:

int f = 0.021;
double g = 34;
// type float is automatically converted into int. Compiler only issues a warning…

Type Conversion

The user can also explicitly convert between types:

int g = (int)0.0210;
double h = double(35);

// type float is explicitly converted (casted) into int. Not even a warning
// is issued now…

For user defined classes, there are two types of conversions

From any other type to current type

From current type to any other type

We can do the following type conversion by our self,

Conversion from any other type to current type:

Requires a constructor with a single parameter

For example,

String str = 135;
Conversion from current type to any other type:

Requires an overloaded operator

Type Conversion

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

171

For example,

String str;
char * ptr = str;

Conversion from other type to current type (int to String):

class String{

...

public:

String(int a);

char * GetStringPtr()const;

};

String::String(int a){

cout << "String(int) called..." << endl;

char array[15];

itoa(a, array, 10);

size = strlen(array);

bufferPtr = new char [size + 1];

strcpy(bufferPtr, array);

}

char * String::GetStringPtr() const{

return bufferPtr;

}

int main(){

String s = 345;

cout << s.GetStringPtr() << endl;

return 0;

}

Output:

Automatic conversion like shown above using constructor has drawbacks conversion

takes place transparently even if the user didn’t wanted the conversion for example

see the code below, in it user can write the following code to initialize the string with

a single character:

int main(){

String s = ‘A’;

// ASCII value of A that is 65 is being taken automatically it may be what the user //

wants, perhaps user intent was String s = “A” to store A in the string object

// but instead 65 is being stored

cout << s.GetStringPtr()<< endl << s.GetSize() << endl;
return 0;

String(int) called…
345

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

172

}

Output:

Keyword explicit

There is a mechanism in C++ to restrict automatic conversions like this using

constructor code it is to use keyword explicit with such constructors if we have used

this keyword then casting must be explicitly performed by the user.

Keyword explicit only works with constructors.

Example:

class String{

…

public:

};

…
explicit String(int);

int main(){

String s;

s = ‘A’; // Error…

return 0;

}

int main(){

String s1, s2;

s1 = String(101); // valid, explicit casting…
// OR

s2 = (String)204;

return 0;

}

Type Conversion

There is another method for type conversion:

“Operator overloading”

It is used for converting from current type (user defined) to any other basic type or

user defined type.

General Syntax:

TYPE1::operator TYPE2();
Like,

String::operator char * (); // TYPE1 = String , TYPE2 = char *

String(int) called…
65

2

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

173

It will convert our string object to char *.

We write such functions as member function of the class.

NO return type and arguments are specified

Return type is implicitly taken to be TYPE2 by compiler

Type Conversion

Overloading pre-defined types:

class String{

…

public:

};

…

operator int();
operator char *();

String::operator int(){
if(size > 0)

return atoi(bufferPtr);
else

}

return -1;

String::operator char *(){
return bufferPtr;

}

int main(){

String s("2324");

cout << (int)s << endl << (char *)s;
// int a = (int)s;

// int a = int (s);

return 0;

}

Output:

2324
2324

21.4. User Defined types:

User-defined types can be overloaded in exactly the same way

Only prototype is shown below:

class String{

…
operator Complex();
operator HugeInt();
operator IntVector();

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

174

};

21.5. Drawbacks of Type Conversion Operator:

class String{
…

public:

};

…
String(char *);
operator int();

int main(){
String s(“Fakhir");
// << is NOT overloaded
cout << s; // compiler is automatically converting s to int
return 0;

}

Output:

Junk Returned…

To avoid this problem DO NOT use type conversion operators instead use separate

member function for such type conversion as shown below,

Modifying String class:

class String{

…

public:

};

…

String(char *);

int AsInt();

int String::AsInt(){
if(size > 0)

return atoi(bufferPtr);
else

}

return -1;

int main(){

String s(“434");

// << is NOT overloaded

cout << s; //error
cout << s.AsInt();

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

175

Lecture No.22

22.1. Practical implementation of Inheritance in c++

Topics to be discussed in this lecture are,

 Inheritance in Classes

 UML Notation of Inheritance

 Types of Inheritance in c++

 IS A relationship

 Accessing members

 Allocation in memory

 Constructors

 Base class initializers

 Initializing members

 Destructors

 Order of execution constructors and destructors

 Examples of C++ implementation of inheritance

22.2. Inheritance in Classes

The class whose behavior is being inherited is called base class and the class who

inherits the behavior of base class is called derived class. Base class is also called

parent class and child class is called also derived class

Besides inherited characteristics, derived class may have its own unique

characteristics

22.3. UML Notation

We use arrow from derived class to the parent class to show inheritance as shown

below,

22.4. Inheritance in C++

In c++ we can inherit a class from another class in three ways,

 Public

 Private

structure and behavior) of class A.
If a class B inherits from class A, then B contains all the characteristics (information

 Protected

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

176

...

22.5. “IS A” Relationship

Inheritance represents “IS A” relationship for example “a student IS A person”.

In general words we can say that inheritance represents,
“Derived class IS A kind of Parent class”

C++ Syntax of Inheritance

class ChildClass

: public BaseClass{
...
};

Example

class Person{

};

Public members of base class become public member of derived class.

Private members of base class are not accessible from outside of base class, even in

the derived class (Information Hiding)
Example

In the code given below Student and Teacher classes has been derived from single

Person class,

...
};

class Student: public Person{

Accessing Members

Teacher Student

Person

class Person{

char *name;

int age;

...

public:
const char *GetName() const;

int GetAge() const;

...

};

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

177

Example

void Student::Print()

{
cout << name << “ is in” << “ semester ” << semester;

}

corrected Code:

void Student::Print()
{

cout << GetName() << “ is in semester ” << semester;
}
int main(){

Student stdt;

stdt.semester = 0;//error
stdt.name = NULL; //error
cout << stdt.GetSemester();
cout << stdt.GetName();

return 0;
}

Explanation of above code (char * data type)

In C++ char arrays (char []) are handled in two ways one way is statically using

statements like,

char name[30]; // static array of length 30 characters

or dynamically as shown below,

char * name;

name = new char[30];

In dynamic creation of arrays we simply store char * in class and assign it a dynamic

memory according to our need using new operator.

class Student: public

Person{

int semester;

int rollNo;

...

public:
int GetSemester() const;

int GetRollNo() const;

void Print() const;

...

};

class Teacher: public

Person{

char * dept;

int course;

...

public:
char * GetDept() const;

int GetCourse() const;

void Print() const;

...

};

Error

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

178

Allocation in Memory

The object of derived class is represented in memory as follows

Derived Class Object

Every object of derived class has an anonymous object of base class

Constructors

 The anonymous object of base class must be initialized using constructor of

base class

 When a derived class object is created the constructor of base class is executed

Derived Class Object

Example

class Parent{
public:

Parent(){ cout <<
“Parent Constructor...”;}

};
class Child : public Parent{
public:

Child(){ cout <<

“Child Constructor...”;}
};

derived member1

derived member2

...

base member1

base member2

...

derived member1

derived member2

...

base member1

base member2

...

Derived class constructor

initializes the derived class object

Base class constructor initializes

the anonymous (base class) object

Data members of derived

class

Data members of base

class

before the constructor of derived class

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

179

int main(){
Child cobj;
return 0;

}

Output:

Constructor

 If default constructor of base class does not exist then the compiler will try to

generate a default constructor for base class and execute it before executing

constructor of derived class

 If the user has given only an overloaded constructor for base class, the

compiler will not generate default constructor for base class

Example
class Parent{

public:
Parent(int i){}

};
class Child : public Parent{
public:

Child(){}
} Child_Object; //ERROR

Definition of Some Terms:

Default constructor: Default constructor is such constructor which either has no

parameter or if it has some parameters these have default values. The benefit of

default constructor is that it can be used to create class object without passing any

argument.

Implicit Default constructor:

Compiler generates implicit default constructor for any class in case we have not

given any constructor for the class.

If user has given constructor for any class without any arguments or with all

arguments with default values then it is also default constructor according to

definition but it is explicit (user defined) default constructor.

Now if a base class has only non-default constructor (constructor with parameters

without default values), then when we will create object of any class derived from

this base class compiler will not be able to call base class constructor as base class has

no default constructor (constructor that can be called without giving any

parameters) so compiler will generate error.

We can avoid this error by calling base class non-default constructor in derived class

constructor initializer list by ourself.

Parent Constructor...

Child Constructor...

Explicit Default constructor:

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

180

Base Class Initializer

 C++ has provided a mechanism to explicitly call a constructor of base class

from derived class

 The syntax is similar to member initializer and is referred as base-class

initialization

Example

class Parent{
public:

Parent(int i){…};
};
class Child : public Parent{
public:

Child(int i): Parent(i)

{…}
};

Example
class Parent{
public:

Parent(){cout <<
“Parent Constructor...”;}

...
};
class Child : public Parent{
public:

Child():Parent()
{cout << “Child Constructor...”;}
...

};

Base Class Initializer

 User can provide base class initializer and member initializer simultaneously

Example
class Parent{
public:

Parent(){…}
};
class Child : public Parent{

int member;
public:

};

Child():member(0), Parent()
{…}

 The base class initializer can be written after member initializer for derived

Base Class Initializer

class

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

181

 The base class constructor is executed before the initialization of data

Initializing Members

 Derived class can only initialize members of base class using overloaded

constructors

o Derived class can not initialize the public data member of base class

using member initialization list

Example
class Person{

public:

public:

};

int age;
char *name;
...

Person();

Example
class Student: public Person{

private:
int semester;

...
public:

};

Student(int a):age(a)
{ //error
}

Reason

 It will be an assignment not an initialization

 Destructors are called in reverse order of constructor called

Example
class Parent{
public:

Parent(){cout <<“Parent Constructor”;}
~Parent(){cout<<“Parent Destructor”;}

};

class Child : public Parent{
public:

Child(){cout << “Child Constructor”;}
~Child(){cout << “Child Destructo”;}

};

Example

Output:
Parent Constructor

 Derived class destructor is called before the base class destructor is called

members of derived class.

Destructors

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

182

Child Constructor
Child Destructor
Parent Destructor

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

183

Lecture No.23

Lecture Contents:

 Protected Access Specifier in Inheritance

 Implicit and explicit use of IS A relationship

Previous lecture discussion:

Definition of Some Terms:

Default constructor: Default constructor is such constructor which either has no

parameter or if it has some parameters these have default values. The benefit of

default constructor is that it can be used to create class object without passing any

argument.

Implicit Default constructor:

Compiler generates implicit default constructor for any class in case we have not

given any constructor for the class.

Explicit Default constructor:

If user has given constructor for any class without any arguments or with all

arguments with default parameters then it is also default constructor according to

definition but it is explicit default constructor.

Now if a base class has only non-default constructor (implicit or explicit), then when

we will create object of any class derived from this base class compiler will not be

able to call base class constructor as base class has no default constructor (

constructor that can be called without giving any parameters) so compiler will

generate error.

We can avoid this error by calling base class non-default constructor in derived class

constructor initializer list.

23.1. Accessing base class member functions in derived class:

Public methods of base class can directly be accessed in its derived class (derived
class interface consists of its own member functions plus member functions of its
base class).

However there are some class members functions that are written just as helper

functions for other class member functions and they need not to be called directly

using class object for example,

1. Suppose some function in our class wants to get some input from user in the

form of integers only for this we can write another function that checks

whether the entered string by user consists of integers only.

2. Suppose our class has implement encryption of data, and it encodes and

decodes data using some functions these functions will also to helper

functions and should not be accessible to outside word.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

184

3. Similarly take the example of our Date class we studied in lecture no.13 has a

function to check whether an year is leap year or not and according to result

it allows or disallows the days of February to be 29. This bool IsLeapYear(int

) will used by other members functions of Date class like void setDay(int)

and void addDay(int), this functions is also helper function.

These helper functions are made private as there is no need to access them using

class object directly as shown below,

class Date{

int day, month, year;

static Date defaultDate;

public:
void SetDay(int aDay);

int GetDay() const;

void AddDay(int x);

…

static void SetDefaultDate(int aDay,int aMonth, int aYear);

...

private:

bool IsLeapYear(int);
};

int main(){
Date aDate;
aDate.IsLeapYear(year);
return 0;

Error:

bool IsLeapYear(int) is private method of Date
class so it is not accessible here.

}

Making such functions private works fine as long as we don’t derive any child class

from this class, but when we derive some class for specialization these functions will

not be accessible in the derived class as private members functions are accessible

only in those class to which they belong but these functions are needed in derived

classes as well example is given below,

Example:

Suppose we specialize our Date class by adding a child class SpecialDate to handle

only working days in the an year, we will need to use IsLeapYear function in this

child class as well but IsLeapYear function is private member function of base Date

class (in accordance with the principles of data hiding and encapsulation), so it will

not be accessible in child class as shown below,

class SpecialDate: public Date{
…

public:
void AddSpecialYear(int i){

...

bool IsLeapYear(int) is
private method of Date class
so it is not accessible in its
derived SpecialDate class.

if(day == 29 && month == 2
 && !IsLeapyear(year+i)){ //ERROR!

...

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

185

}
}

};

Solution:

Modify Access Specifier

One solution of this problem is that we make “IsLeapYear” function public from

private as shown below,

class Date{
public:

...
bool IsLeapYear(int);

};
void SpecialDate :: AddSpecialYear (int i) {

...
if(day == 29 && month == 2

&& !IsLeapyear(year+i)){
...

}
}

But the problem with making this function public is that now this functions will be

accessible to everyone using Date or SpecialDate class object but we don’t want this,

we want that our base or derived class can access this function only. the solution of

this problem is protected access specifier.

23.2. “protected” access specifier:

c++ provides us with protected access specifier for these sorts of situations;

access specifier ensures that function in base class is accessible in derived class of this

base class and NOT outside of this class. So we can say that scope of protected access

specifier is somewhere in between private and public access specifiers it is similar to

private in the sense that it doesn’t allow the external world to access protected

member and it is similar to public access specifier in the sense that it ensures that

protected member is accessible in derived classes of the protected member class.

Protected members of a class can not be accessed outside the class but only in the

derived class of that class. Protected members of base class become protected

member of derived class.10

class Date{

…

10 This is the case in public and protected inheritance whereas in private inheritance protected members
become private members of derived class public, protected and private inheritance has been discussed
in detail in lecture no.26.

protected

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

186

protected:

};

bool IsLeapYear(int);

int main(){
Date aDate;
aDate.IsLeapYear(); //Error
return 0;

}
void SpecialDate :: AddSpecialYear (int i) {

...
if(day == 29 && month == 2

&& !IsLeapyear(year+i)){
...

Now it is ok to call function bool
IsLeapYear in derived class
SpecialDate.

}
}

Breaks encapsulation

The protected member is part of base class’s implementation as well as derived

class’s implementation. So we can say that protected members breaks the principle of

Encapsulation to some extent which says “A class data members and functions

should be encapsulated in the class itself”

23.3. “IS A” Relationship

We have seen previously that Public inheritance models the “IS A” relationship for

example see the diagram below,

Here,

 Line IS A Shape

Line Triangle

Disadvantages of protected Members:

Circle

Shape

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

187

 Circle IS A Shape

 Triangle IS A Shape

It means that derived class object is special kind of base object with extra properties

(attributes and behaviour) so derived object has its own properties as well as

properties of its base object this is the reason why base class constructor is also called

while creating derived class object.

We can use derived class object where base class object is required as derived class

object has implicit base class object also but the reverse of this statement is not true,

we can not use base class object where derived class object is required because if we

create base class it will only have base part not its derived class part.

Base Class Object Derived Class Object

Example

See the code below in it first we are using derived class object sobj to call methods

GetName and GetRollNo belonging to classes Person and Student respectively, this is

in accordance to the principle of inheritance that says child class object can access

public and protected members of base class.

class Person {

char * name;
public: ...

const char * GetName();
};
class Student: public Person{

int rollNo;
public: ...

Generally we can say that,

“Derived Object IS A kind of Base Object”

Implicit

Base Class

Object

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

188

int GetRollNo();
};

int main()
{

Student sobj;
cout << sobj.GetName();
cout << sobj.GetRollNo();
return 0;

}

Now as we discussed previously that inheritance represents IS A relationship

meaning relationship like,

Derived class “IS A” Base class

Hence Derived Class Object can be used where its Base Class object is required but

Base Class Object can not be used where Derived Class Object is required example

given below explain this point,

int main(){

Person * pPtr = 0; // base class pointer

Student s; // derived class object
pPtr = &s;

/* assigning derived class object address to base class pointer derived class pointer is

converted to base class pointer */

cout << pPtr->GetName(); // calling base class methods using base class

reference

return 0;

}

So parent class object reference can hold the reference of derived class object as

shown below,

pPtr = &s;

But parent class reference will have access only to the interface of parent class, if we

try to access derived class functions from this parent class reference error will be

generated as shown below,

int main(){

Person * pPtr = 0;
Student s;
pPtr = &s;
cout << pPtr->GetRollNo(); //Error
return 0;

}

Compiler use the concept of static typing to decide the access to member functions as

described below,

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

189

23.4. Static Type

The type that is used to declare a reference or pointer is called its static type

1. In Person * pPtr = 0;

The static type of pPtr is Person * (Person pointer).

2. Student s;

The static type of s is Student.

Member Access

As the static type of pPtr is Person so following call is erroneous

pPtr->GetRollNo();

As pPtr static type is Person pointer and in Person class there is no GetRollNo()

function so compiler will generate an error.

In c++ we can also use references (called as reference identifiers or reference

variables or reference constants) to any type instead of pointers, for example see the

example below where the reference of base object is being initialized with derived

class object,

Example (Explicit use of IS A relationship)

int main(){

Person p;

Student s;

Person & refp = s;

/*Here refp is becoming reference (alias) of Student object but as its own static
type is Person so it can access member functions of Student class only. */

cout << refp.GetName();

cout << refp.GetRollNo(); //Error

return 0;

}

Example (Implicit use of IS A relationship)

Play(const Person& p){

cout << p.GetName()

<< “ is playing”;

}

void Study(const Student& s){

cout << s.GetRollNo()

<< “ is Studying”;

}

int main(){

Person p;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

190

Student s;

Play(p); /* parameter of function Play is being initialized with argument p */
Play(s);
/* parameter of function Play is being is initialized with argument s as student IS
A kind of person*/

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

191

Lecture No.24

Lecture Overview:

Protected Access Specifier

IS-A relationship

Copy constructor and inheritance

Protected Members:

Protected members are somewhere between public and private members. They are

used in inheritance.

From outside the class no once can access protected access specifier however any

publicly derived class can access the protected access specifiers and they behave as

protected members of derived class.

In a single standalone class protected access specifier has no significance but when

we derive any class from this class protected access specifier becomes significant.

IS-A relationship:

Inheritance is used when two classes have IS A kind of relationship between two

In c++ public inheritance is used for IS A relationship.

We can use publicly derived class pointer for its base class pointer because derived

class is a kind of base class or in other words derived class is base class with some

extra properties. In case of “Student IS-A Person relationship” student has all

properties of person for example student walks, eats, drinks and so on as person

does but student has some extra properties like student studies is some study

program.

(We can assign derived class pointer to its base class pointer because for compiler it

is explicit manifestation of IS-A relationship.)

Static type of an identifier:

Static type of an identifier is type used to declare it.

Static type of an identifier is the type used for declaration of that identifier for

example,

Student * student;

Person * person;

Here static type of pointer student is Student and person is Person.

Access to members of an identifier is governed by static type of that identifier,

compiler uses static type for an identifier to allow the identifier to use different

members (functions and variables).

classes.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

192

Copy Constructor:11

Copy constructor is a member function of a class that is used to create an object of

that class by copying values from an already created object.

Copy Constructor in case of Inheritance:

Consider the code given below having two classes Person and Student in this code

Person is base and Student is derived class. Person has one attribute name to store

name of the person and Student has one attribute major to store study program of
the student,

11 See Lecture No.9 for more details about copy constructor.

#include <iostream>

using namespace std;

/*Listing 24.1 */

/*Program to demonstrate Copy Constructor in case of base and derived classes. */

/* Base Class Person */

class Person{

char * name;

public:

Person(char * = NULL);

const char * GetName() const;

~Person();

};

Person::Person(char * nm): name(NULL){

if (nm != NULL)

{
name = new char[strlen(nm)+1];

strcpy(name,nm);
}

}

const char * Person::GetName() const {

if (name != NULL)

return name;

else

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

193

Code Description:

return "NULL";

}

Person::~Person(){

delete []name;

}

/* Child Class Student */

class Student: public Person{

char* major;

public:

Student(char * , char *);

void Print() const;

~Student();

};

Student::Student(char *_name, char *_maj) : Person(_name), major(NULL)

{
if (_maj != NULL) {

major = new char [strlen(_maj)+1];

strcpy(major,_maj);

}
}

void Student::Print() const{

cout << "Name: "<< GetName() << endl;

cout << "Major: " << major << endl;

}

Student::~Student(){

delete []major;

}

int main(){

Student sobj1("Ali","Computer Science");

Student sobj2 = sobj1;

//Student sobj2(sobj1); Similar to above statement to call copy constructor

sobj2.Print();

system("PAUSE");

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

194

The code has two classes Person and Student this code is also manifestation of IS-A

kind of relationship (public inheritance in c++).

Person class has an attribute name to store name of any person as all persons have

specific names.

Student class has an attribute major to store the major of the student.

Person has the following in its public interface:

Constructor // one parameter name with default value NULL

GetName() // getter function

Destructor() // used due to dynamic memory allocation

Student has the following in its public interface:

Constructor // two parameter constructor with default values NULL

Print() // showing student attributes

Destructor // used to free memory dynamically allocated

The constructor’s code of student class is as shown below,

Student::Student(char *_name, char *_maj) : Person(_name), major(NULL)

{
if (_maj != NULL) {

major = new char [strlen(_maj)+1];

strcpy(major,_maj);

}
}

The constructor of student class is taking two char *’s as inputs, one is name of

student and second is major subject of that student.

In initialization list we are initializing major with null value and we are also calling

base class constructor of person class as we discussed today base class part of an

objects is created first and then its derived class part is created.

Then there is code of student constructor in which are checking maj for NULL if it is

not (some value has passed for maj subject) we are creating memory equal to passed

value and assigning it to char * major.

The print function code of student class is given below,

void Student::Print() const {

cout << "Name: "<< GetName() << endl;
cout << "Major: " << major << endl;

}
In print method we are doing two things first we are printing student name using

person GetName method and then we are showing student major.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

195

The main function is given below,

int main(){

Student sobj1("Ali", "Computer Science");

Student sobj2 = sobj1;

//Student sobj2(sobj1); Similar to above statement to call copy

constructor

sobj2.Print();

system("PAUSE");

return 0;

}

In main we are creating one object of Student class with name sobj1 with values

“Ali” and “Study Program” for name and major,

Student sobj1("Ali","Computer Science");

Then we are assigning sobj1 to a new student object sobj2 with the line given below,

Student sobj2 = sobj1;

This line will invoke copy constructor of Student class as we are creating an object of

student class in terms of another object that already exist for student class.

This line is exactly same as commented line,

//Student sobj2(sobj1);

Here one object sobj1 values have been assigned to newly created object using

default compiler generated copy constructor, this copy constructor is created by

compiler in the same way as compiler generates default constructor in case user has

not defined default constructor for that class.

Then we are calling print method of student class to ensure that we values have been

assigned to new object as well,

sobj2.Print();

The output of this code will be as follows:

As we know compiler may generate copy constructor for any class, if needed. In this

case when we are assigning derived class object sobj1 to another newly created

Name: Ali

Major: Computer Science

C++ Out Put:

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

196

constructor will also use shallow copy
Compiler by default uses shallow copy so compiler generated default copy

object sobj2, derived class object Copy constructor will be invoked which in turn will

call the copy constructor of the Base class as base class anonymous object is created

first and then derived part is created.

which simply copies all values of already

existing object to newly created object as shown in the diagram below,

Shallow Copy

Line No.1: Student sobj1("Ali","Computer Science");

Shallow Copy

Sobj2

Memory

Line No.2: Student sobj2 = sobj1; [Shallow Copy]

Fig 24.1 In shallow copy both char * name and char * major of both objects sobj1 and sobj2 will

start pointing to the same memory location.

Sobj1

Memory

Sobj1

char * major

char * name

Computer Science

Ali

Char * major

char * name

Computer Science

Ali

Char * major

char * name

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

197

Compiler generates copy constructor for derived class, calls the copy constructor of

the base class and then performs the shallow copy of the derived class’s data

members.

The problem with shallow copy remains same as was in the case of copy constructor

for a single class that it doesn’t work correctly in case of dynamic memory because in

that case we are only storing pointer of the dynamic memory in class when we will

do copy only the pointer value will be copied and pointers of both objects of student

class will start pointing to same memory location as shown in the diagram now

suppose obj1 is destroyed it frees it’s memory allocated using new operator using its

destructor the result will be that obj2 pointer will also become invalid. The solution is

Deep Copy in deep copy we will write copy constructor code by our self to ensure

that when one object is copied from other object new dynamic memory is allocated

for it as well so that it doesn’t rely on previous object memory.

Deep Copy:

Let we first write code for deep copy in our base class Person.

For this we will write our own copy constructor as we wrote our own default

constructor as shown below,

Person::Person(const Person & rhs): name(NULL){

/* Code for deep copy*/

if (rhs.name != NULL)

{
name = new char[strlen(rhs.name)+1];

strcpy(name,rhs.name);

}

}

int main(){

Student sobj1("Ali","Computer Science");

Student sobj2 = sobj1;

//Student sobj2(sobj1); Similar to above statement to call copy constructor

sobj2.Print();

system("PAUSE");

return 0;

}

When we will run this code the output will again be same,

C++ Out Put:

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

198

In this case as we have written our self written copy constructor of base class so

Compiler will generate copy constructor for only derived class, will call our written

copy constructor of the base class so it will perform the Shallow copy for derived

class’s data members and Deep copy for base class as our base class has our own

written copy constructor with Deep copy code.

Now let us write our own copy constructor for derived class as well as shown below,

Student::Student(const Student & rhs) : major(NULL)

{
if (rhs.major != NULL) {

major = new char [strlen(rhs.major)+1];

strcpy(major,rhs.major);

}
}

int main(){

Student sobj1("Ali","Computer Science");

Student sobj2 = sobj1;

//Student sobj2(sobj1); Similar to above statement to call copy constructor

sobj2.Print();

system("PAUSE");

return 0;

}

But now when we executed this code the output is as follows:

Name of sobj2 was not copied from sobj1 or we can say that only copy constructor of

derived class executed but base class copy constructor did not execute.

The reason for this error is that we have not explicitly called copy constructor of base

class from derived class. And compiler called base class default constructor by itself

to complete the object creation process.

Name: Ali
Major: Computer Science

Name: NULL
Major: Computer Science

C++ Out Put:

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

199

We can check whether base class default constructor was called or not by adding a

cout statement in our base class default constructor as shown below,

24.1.Modified Default Constructor

Person::Person(char * nm): name(NULL){

if (nm != NULL)

{
name = new char[strlen(nm)+1];

strcpy(name,nm);

}
else {

}

}

cout<<"In Person default constructor..\n";

int main(){

Student sobj1("Ali","Computer Science");

Student sobj2 = sobj1;

//Student sobj2(sobj1); Similar to above statement to call copy constructor

sobj2.Print();

system("PAUSE");

return 0;

}

Now when we executed this code the output was,

Now we modify our derived class copy constructor code such that it explicitly call

copy constructor of base class from its initialization list,

Example

Person::Person(const Person & rhs): name(NULL){

if (rhs.name != NULL)

{
name = new char[strlen(rhs.name)+1];

In Person default constructor..
Name: NULL

Major: Computer Science

C++ Out Put:

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

200

strcpy(name,rhs.name);

}

}

Student::Student(const Student & rhs) : Person(rhs), major(NULL)

{

if (rhs.major != NULL) {

major = new char [strlen(rhs.major)+1];

strcpy(major,rhs.major);

}
}

Now our main function shown previously will give following output

The output again is correct now so this is our final code with user defined copy

constructors for both base and derived class and derived class copy constructor

calling base class copy constructor.

In table below we have shown the steps number wise involved in creation of an

object using copy constructor when we executed following lines in main,

int main(){

Student sobj1("Ali","Computer Science");

Student sobj2 = sobj1;
// Here copy constructor of student class will be called

return 0;

}

Table 24.1

Name: Ali
Major: Computer Science

C++ Out Put:

3

4

5

1

6

2

7

Person::Person(const Person &rhs) :

name(NULL) {

//code for deep copy

}

Student::Student(const Student & rhs) :

major(NULL),

Person(rhs){

//code for deep copy

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

201

Assignment Operator

Compiler also generates code for assignment operator for a class, if needed. In the case

of inheritance when we assign one derive class object to another derive class object

compiler uses assignment operator. Derived class copy assignment operator is

invoked which in turn calls the assignment operator of the base class.

There are lot of similarities between copy constructor and assignment operator these

are,

In case our class involves dynamic memory allocation we had to write assignment

operator code by our self as we had to write the user defined code for copy

constructor.

Similarly derived class assignment operator has to call base class assignment

operator to complete the assignment process as derived class also contains implicit

base class part in case of compiler generated assignment operator compiler does it by

itself but if case we programmer has to call assignment operator of base class

explicitly in case of user defined assignment operator.

The example given below explain this concept in detail,

Example

class Person{

public:

Person & operator =

(const Person & rhs){

cout << “Person Assignment”;

// Code for deep copy assignment

}

};

Example

class Student: Public Person{

public:

Student & operator = (const Student & rhs){

cout<< “Student Assignment”;

// Code for deep copy assignment

}

};

int main()

{

Student sobj1, sboj2(“Ali”, “CS”);

sobj1 = sobj2;

return 0;

}

Output

Student Assignment

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

202

The assignment operator of base class is not called

Calling Base Class member functions:
We can not call base class assignment operator from derived class using initialization

list.

There are two ways of calling base class function from derived class one is calling

base class function explicitly (mentioning base class name) and the other is calling

base class function implicitly (without mentioning base class name).

Explicit Way:

In the code below we are calling base class const char *GetName() method explicitly,

const char * Person::GetName() const {

...

...

}

void Student::Print() const{

//cout << "Name: "<< GetName() << endl;

cout << "Name: "<< Person::GetName() << endl;

/*explicit call to base class GetName method (if we even do not write base class

name even then call will work as derived class can call its base class public

methods*/

cout << "Major: " << major << endl;

}

Implicit Way:

We can call the same method implicitly as well as shown below,

const char * Person::GetName() const {

...

...

}

void Student::Print() const {

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

203

/* Implicit call to base class GetName method using this pointer*/

cout <<"Name: "<<static_cast<const Person &>(*this).GetName()<<endl;

cout << "Major: " << major << endl;

}

Assignment Operator

In the same way we can also call assignment operator in base class in two ways also,

Calling assignment operator of base class explicitly
Calling assignment operator of base class implicitly

Explicitly Calling operator =

Student & Student ::operator =(Student & rhs){

Person::operator = (rhs); /*Explicit call to base class*/

/*Student object rhs will be converted to Person object in function call

above as derived class IS A is a kind of Base class*/

/*Implicit calls to base class part*/

//static_cast<Person &>(*this) = rhs;

//Person(*this) = rhs;

//(Person)*this = rhs;

/*All the above three statements have the same meaning.*/

if (major != NULL)

delete [] major; // deleting previous allocated memory for major

if(rhs.major != NULL){

major = new char[strlen(rhs.major)+1];

strcpy(major,rhs.major);

}

}

Implicitly Calling operator =

Student & Student ::operator =(Student & rhs){

//Person::operator = (rhs); /*Explicit call to base class*/

/*Student object rhs will be converted to Person object in function call

above as derived class IS A is a kind of Base class*/

/*Implicit calls to base class part*/

static_cast<Person &>(*this) = rhs; /* c++ way of type casting */

//Person(*this) = rhs; /* c way of type casting */

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

204

//(Person)*this = rhs; /* c way of type casting */

/*All the above three statements have the same meaning.*/

if (major != NULL)

delete [] major; // deleting previous allocated memory for major

if(rhs.major != NULL){

major = new char[strlen(rhs.major)+1];

strcpy(major,rhs.major);

}

}

Appendix:

Type conversion:

C++ is strongly typed language mean we can not use one type instead of other type

we need to convert one type in other type before using it.

Casting:

Casting can be done in two ways ,

Implicit casting conversion :

Conversions that compiler can perform automatically using build in casting

operations without casting request from programmer.

Explicit casting conversion:

another.

There are four types of casting operators that programmer can use to convert one

type ot another as given below,

The C++ draft standard includes the following four casting operators,

1. static_cast

2. const_cast

3. dynamic_cast

In perspective of inheritance casting can be of two kinds,

This conversion from one type to another type is called casting.

Conversion in which programmer requests the compiler to convert one type to

4. reinterpret_cast

a. Up casting (casting from derived to base class)

b. Down casting (casting from base to derived class)

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

205

Downcasting:

Example: (Base to Derive class)

Dynamic cast: (polymorphic behavior)

#include <iostream>

#include <stdlib.h>

using namespace std;

class Base{

public:

virtual void function() { cout<<"I am in Base"<<endl; }

};

class Derived : public Base {

public:

void function() { cout<<"I am in Derived"<<endl; }

};

int main()

{

Base * base = new Derived();

base->function();

Derived * derived = dynamic_cast<Derived*>(base);

derived->function();

system("PAUSE");

return 0;

}

Reinterpret cast:

#include <iostream>

#include <stdlib.h>

using namespace std;

Upcasting Downcasting

Fig a. Fig b.

Derived Class
Derived Class

Base Class Base Class

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

206

class Base{

public:

void function() { cout<<"I am in Base"<<endl; }

};

class Derived : public Base {

public:

void function() { cout<<"I am in Derived"<<endl; }

};

int main()

{

Base * base = new Derived();

base->function();

Derived * derived = reinterpret_cast<Derived*>(base);

derived->function();

system("PAUSE");

return 0;

}

Note:

1. char * is c++ built in data type that can be used exactly like char arrays in fact

char arrays are also treated as char * in c++ so we used char * where we

needed to use char array.

2. In video lecture at duration 24 min there should only be one memory location

to store values, Ali newly created object pointer will be NULL for name and

will not point to any memory location.

References:

http://www.acm.org/crossroads/xrds3-1/ovp3-1.html (Casting Tutorial see this link

for more details about casting)

Open Source Editor Note Pad++ has been used in this document for code
highlighting.

CS304 Highlighted Handouts By KST
Learning Paid Services Available
LMS Handling
Assignments, Quiz, GDBs
Paid Projects
CS519 & CS619 Projects
Online Classes
Paid Courses
0347-
2506073

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO
http://www.acm.org/crossroads/xrds3-1/ovp3-1.html

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

207

Lecture No.25

Overriding Member Functions of Base Class in Derived Class (Function
Overriding)

Derived class can override the member functions of its base class. To override a

function the derived class simply provides a function with the same signature12

(prototype) as that of its base class

Parent

...

Func1

Child

...

Func1

25.1.Overloading vs. Overriding

Function Overloading is done within the scope of one class whereas Function

Overriding is done in scope of parent and child classes (inheritance).

12 same name, parameters and return type

Overriding

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

208

class Parent {
public:

Function Overloading:
Two functions in same class
with same name but different
parameters and return type.

};

class Child: public

Parent {
public:

void Func1();
};

void Func1();
void Func1(int);

class Parent {
public:

void Func1();
void Func1(int);

};

class Child: public

Parent {
public:

void Func1();
};

Overriding within the scope of single class is error due to duplicate declaration (two

member functions with same prototype)

class Parent {

public:

void Func1();

void Func1(); //Error

};

Overriding Member Functions of Base Class

Derive class can override member function of base class such that the working of

function is totally changed.

Example

class Person{

public:
void Walk();

};

class ParalyzedPerson: public Person{

public:

void Walk();

};

class Parent {
public:

void Func1();

void Func1(int);
};

class Child: public
Parent {

public:

void Func1();

};

Function

Overriding:
Two functions in two

base derived classes

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

209

Overriding Member Functions of Base Class

Derive class can override member function of base class such that the working of

function is similar to former implementation.

Example

class Person{

char *name;

public:
Person(char *=NULL);

const char *GetName() const;

void Print(){

cout << “Name: ” << name

<< endl;

}

};

class Student : public Person{

char * major;

public:
Student(char * aName, char* aMajor);

void Print(){

cout <<“Name: ”<< GetName()<<endl

<< “Major:” << major<< endl;

}

};

int main(){

Student a(“Ahmad”, “Computer Science”);

a.Print();
return 0;

}

Output:

Name: Ahmed

Major: Computer Science

Overriding Member Functions of Base Class

Derive class can call base class member function from its overridden member

function to perform the base class part and then can perform its own tasks for

example student class can call base class person method Print to show name of

student and then can show study program of student by itself, this approach is in

accordance with the Object Oriented Programming principles which says that each

class should perform its tasks by itself, this is shown in example below,

Example

class Student : public Person{

char * major;

public:

Student(char * aName, char* m);

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

210

void Print(){

Print(); //Calling Print of Person to print student name
cout<<“Major:” << major <<endl; // Displaying study program of

student

}

};

int main(){

Student a(“Ahmad”, “Computer Science”);

a.Print();

return 0;

}

But there will be no output on the screen after executing this code due to minor

mistake it is due to the reason that our both classes Student and Person have

methods with name Print and we are calling Print method of Person from Student

Print method compiler will call to Print of Student class again and again recursively

as we are calling Print method form Student class.

In this case it is necessary to mention that we are calling base class Print method as

shown below,

class Student : public Person{

char * major;
public:

Student(char * aName, char* m);

void Print(){
Person::Print();
cout<<“Major:” << major <<endl;

}
...
};

Example

int main(){
Student a(“Ahmad”, “Computer Science”);
a.Print();
return 0;

}

Output

Name: Ahmed

Major: Computer Science

Overriding Member Functions of Base Class

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

211

As we see previously when we use pointers to call overridden methods they are

called according to static type of pointer as shown below,

Example

int main(){
Student a(“Ahmad”, “Computer Science”);
Student *sPtr = &a;
sPtr->Print(); // static type of sPtr is Student * so Student Print method will

be called

Person *pPtr = sPtr; // static type of pPtr is Person * so Person Print method

will be called
pPtr->Print();
return 0;

}

Output:

Name: Ahmed

Major: Computer Science

Name: Ahmed

This may be undesirable and to avoid this situation avoid using simple method

overriding in this way its modified form (virtual functions will be covered in coming

lectures).

We represent the classes involved in inheritance relation in tree like hierarchy

Example

25.2.Hierarchy of Inheritance

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

212

Direct Base Class
A direct base class is explicitly listed in a derived class's header with a colon (:)

class Child1:public Parent1 { // Here Parent1 is Direct Base Class of Child1

…

};

Indirect Base Class
An indirect base class is not explicitly listed in a derived class's header with a colon

(:)

It is inherited from two or more levels up the hierarchy of inheritance

class GrandParent {

…

};

class Parent1: public GrandParent {

…

};

class Child1:public Parent1 { // Here GrandParent is InDirect Base Class of

Child1

…

};

Parent2 Parent1

GrandParent

Child2 Child1

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

213

Lecture No.26
26.1. Base Initialization

We saw in the previous lectures, that in the case of copy constructor we have to call

base class constructor from the initialization list of child class because implicit base

class object is created first and then derived class object is created. Now we see this

concept in detail in the perspective of class hierarchy,

 The child can only call constructor of its direct base class to perform its

perform their initialization using its constructor initialization list

It is explained in example code given below,

Example

Overriding in case of class hierarchy:

In class hierarchy Child class can override the function of any of its Parent class

(direct or indirect) as shown in the diagram below (we see this concept in detail in

types of inheritance given below),

 The child cannot call the constructor of any of its indirect base classes to
initialization using its constructor initialization list.

class GrandParent{

int gpData;

public:

GrandParent() : gpData(0){...}

GrandParent(int i) : gpData(i){...}

void Print() const;

};

class Parent1: public GrandParent{

int pData;

public:

Parent1() : GrandParent(), pData(0) {…}

};

class Child1 : public Parent1 {

public:

Child1() : Parent1() {...}

Child1(int i) : GrandParent (i) //Error: Child1 can not call its
indirect base class GrandParent Constructor from its constructor
initialization list.

{...}

void Print() const;

};

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

214

Example

Output

26.2. Types of Inheritance

There are three types of inheritance

 Public

 Protected

 Private

We can use these keywords (public, private or protected) to specify the type of

inheritance

Print()

GrandParent

Child1

Parent1

Print()

void GrandParent::Print() {

cout << “GrandParent::Print”

<< endl;

}

void Child1::Print() {

cout << “Child1::Print” << endl;

}

int main(){

Child1 obj;

obj.Print();

obj.Parent1::Print();

obj.GrandParent::Print();

return 0;

}

Child1::Print

GrandParent::Print

GrandParent::Print

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

215

a. Public Inheritance

class Child: public Parent {…};

Member access in

Base Class Derived Class

 Public Public

 Protected Protected

 Private Hidden

b. Protected Inheritance

class Child: protected Parent {…};
Member access in

Base Class Derived Class

 Public Protected

 Protected Protected

 Private Hidden

c. Private Inheritance

class Child: private Parent {…};
Member access in

Base Class Derived Class

 Public Private

 Protected Private

 Private Hidden

If the user does not specifies the type of inheritance then the default type is private

inheritance,

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

216

class Child: private Parent {…}

is equivalent to,

class Child: Parent {…}

We have seen public inheritance in previous lecture, now we see private and

protected inheritance in detail,

26.3. Private Inheritance

We use private inheritance when we want to reuse code of some class. Private

Inheritance is used to model “Implemented in terms of” relationship

Example

Suppose we have a class collection to store element collection as shown

below,
class Collection {

...

public:

void AddElement(int);

bool SearchElement(int);

bool SearchElementAgain(int);

bool DeleteElement(int);

};

As you can see it supports the following methods,

AddElement: to add elements in collection

SearchElement: search any element in collection it will true as soon as any element

will be found

SearchElementAgain: finds second instance of any element in collection it will

return true as soon as it will find any duplicate entry of any element.

DeleteElement: to delete any entry from collection

You can see that Class collection allows duplicate elements.

Suppose now we want to implement class Set, class Set has very similar functionality

as that of collection class with the difference that Set class can not allow duplicate

elements in it, so we can use the concept of inheritance here, we can derive class Set

from class Collection.

But we can not use public inheritance here as it allows interface (all functions) of base

class to be accessed using derived class object, but we don’t want to allow all

functions of class Collection to act on Set class object. We only want to use some

functions of Collection class (Base class) in derived Set class for to implement Set

class functionality so we will use private inheritance here the two main advantages

we will achieve through private inheritance in this case are,

1. Specialization of class according to set class (removing extra features)

2. Making interface of collection class inaccessible from outside world using

class set reference.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

217

Class Set

class Set: private Collection {

private:

...

public:

void AddMember(int);

bool IsMember(int);

bool DeleteMember(int);

};

void Set::AddMember(int i){

if (! IsMember(i))

AddElement(i);

}

bool Set::IsMember(int i){

return SearchElement(i);

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

218

Lecture No.27

Previous Lecture Review:
In last lecture we saw the use of private inheritance using the example of classes

Collection and Set, we saw that class collection was allowing duplicate elements but

set class can not allow duplicate elements in it however other functionality was same,

so we privately inherited class set from collection and added only those member

functions in derived class set that were related to set class, the two main advantages

we achieved through private inheritance in this case were,

1. Specialization of class collection according to set class (removing extra

features)

2. Making interface of collection class inaccessible from outside world using

class set reference, to avoid any unintentional use of collection class restricted

features in set class.

The code of both classes in shown below,

Class Collection Class Set

class Collection {

...

public:

void AddElement(int);

bool SearchElement(int);

bool SearchElementAgain(int);

bool DeleteElement(int);

};

class Set: private Collection {

private:

...

public:

void AddMember(int);

bool IsMember(int);

bool DeleteMember(int);

};

As we discussed that we achieve specialization using private inheritance so need to

see specialization (Specialization concept was discussed in Lecture No.4) again in

detail,

27.1. Specialization (Restriction)

derived class.

inheritance.

Specialization (Restriction) can be implemented using both private and protected

Behaviourally incompatible means that base class can’t always be replaced by the
In specialization derived class is behaviourally incompatible with the base class.

Specialization is represented by “Implemented in terms of” relationship.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

219

age = a

If age < 18 then
error

else

age = a

Person

age : [0..125]

setAge(a)

Adult

age : [18..125]

setAge(a)

Example – Specialization (Restriction)

Essential properties of Private Inheritance:

class Person{

…

protected:

int age;

public:

bool SetAge(int _age){

if (_age >=0 && _age <= 125) {

age = _age;

return true;

}

return false;

}

};

class Adult : private Person {
public:

bool SetAge(int _age){

if (_age >=18 && _age <= 125) {

age = _age;

return true;

}

return false;

}

};

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

220

1. In Private Inheritance only member functions and friend classes or functions

of a derived class can convert pointer or reference of derived object to that of

parent object

Example

void DoSomething(const Parent &);

Child::Child(){

Parent & pPtr = static_cast<Parent &>(*this); // fine

DoSomething(pPtr);

// DoSomething(*this); // this single line is equal to two lines above.

}

2. As was in the case of public inheritance child class object has an anonymous

object of parent class.

3. As was in the case of public inheritance the default constructor and copy

constructor of parent class are called when constructing object of derived

class.

Example

class Parent{

};

class Child : private Parent{

};

int main(){

Child cobj;

Parent *pptr = & cobj;
return 0;

}

//Error

class Parent{

public:

Parent(){

cout << “Parent Constructor”;

}

Parent(const Parent & prhs){

cout << “Parent Copy Constructor”;

}

};

class Child: private Parent{

public:

Child(){

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

221

Output:

4. In private inheritance the derived class that is more than one level down the

hierarchy cannot access the member functions of grand parent class as public

and protected members functions of derived class become private members

of privately derived class for all practical purposes. For example see the code

below here Child class is derived class that is more than one level down the

hierarchy and hence can not access the member functions of GrandParent

class.

cout << “Child Constructor”;

}

Child(const Child & crhs) : Parent(crhs){

cout << “Child Copy Constructor”;

}

};

int main() {

Child cobj1; // default constructor will be invoked

Child cobj2 = cobj1; // copy constructor will be invoked

//Child cobj2(cobj1); // another way of calling copy constructor

return 0;

}

Parent Constructor

Child Constructor

Parent Copy Constructor

Child Copy Constructor

class GrandParent{

public :

void DoSomething();

};

class Parent: private GrandParent{

void SomeFunction(){

DoSomething();

}

};

class Child: private Parent

{

public:

Child() {

DoSomething();
}

};

//Error

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

222

5. In private inheritance the derived class that is more than one level down the

hierarchy cannot convert the pointer or reference to that of GrandParent , for

example in code given below Child class can not convert its reference to its

GrandParent reference. The reason is same that in private inheritance we

implement specialization and we restrict all features of base class to privately

derived class only and its friend classes or functions.

27.2. Protected Inheritance

If a class D has been derived using protected inheritance from class B (If B is a

protected base and D is derived class) then public and protected members of B can be

accessed by member functions and friends of class D and classes derived from D.

Protected inheritance is used to build class hierarchy using “Implemented in terms

of” relationship.

If B is a protected base and D is derived class then member functions and friends of

class D and classes derived from D can access member functions of class B, (note that

in private inheritance only derived class can access the member functions of base

class). So we can say that protected inheritance lies between public and private

inheritance.

void DoSomething(GrandParent&);

class GrandParent{

};

class Parent: private GrandParent{

public:

Parent() {DoSomething(*this);}

};

class Child: private Parent {

public:

Child()

{

DoSomething(*this);

}

};

//Error

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

223

27.3. Properties of Protected Inheritance

If B is a protected base and D is derived class then only friends and members of D

and friends and members of class derived from D can convert D* to B* or D& to B&

(in private inheritance only derived class or its friends can convert pointer to base

class)

Importance of Private and Protected inheritance:

As we have seen that private and protected inheritance is being used for

implementing “Implemented in terms of” relationship so it is important that we

limit different features of base class in child classes that is what we achieve using

either private or protected inheritance according to our requirement.

class GrandParent{

public :

void DoSomething();

};

class Parent: protected GrandParent{

void SomeFunction(){

DoSomething();

}

};
class Child: protected Parent

{

public:

Child()

{

DoSomething();

}

};

void DoSomething(GrandParent&);

class GrandParent{

};

class Parent: protected GrandParent{

};

class Child: protected Parent {

public:

Child()

{

DoSomething(*this);

}

};

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

224

Comparison of public, protected and private inheritance:

We can show accessibility of public member functions of base class in derived classes

in these three different types of inheritance as follows,

Private data members will NOT be accessible in any derived class or in main

function.

Protected data members will become private data members in case of private

inheritance and protected data members of derived class in case of protected

inheritance.

A Good Programming Exercise:

A good programming exercise would be that you write a program that shows

accessibility of all types of members functions for all types of inheritance in derived

class/es.

Public Inheritance Protected Inheritance Private Inheritance

Base Class Base Class Base Class

Accessibility Accessibility Accessibility

Derived 1 Yes
🗸

Derived 1 Yes
🗸

Derived 1 Yes
🗸

Derived 2
Derived 3

…………

Yes
🗸

Derived 2
Derived 3

…………

Yes
🗸

Derived 2
Derived 3

…………

No
🗸

Main
(Outside

world)

Yes
🗸

Main
(Outside

world)

No
🗸

Main
(Outside

world)

No
🗸

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

225

draw

calcArea

Shape

Lecture No.28
28.1. Virtual Functions

Problem Statement:

Develop a function that can draw different types of geometric shapes from an array

Shape Hierarchy:

We have to implement following shape hierarchy for this,

Line Circle Triangle

draw
calcArea

draw
calcArea

draw
calcArea

Problem Description:

a. We want to implement this shape hierarchy in such a manner that our

function will take Shape pointers array (Shape * []) and this array size as

parameters and then it will draw the appropriate shape.

b. This Shape pointer array (Shape * []) may store pointers to all kinds of Shapes

(Line, Circle and Triangle classes) as these classes have IS-A relationship with

Shape class (We know base class pointer can store pointer of any of its

derived classes in case of public inheritance IS-A relationship).

c. The purpose of implementing this hierarchy in such a way is that we can

avoid complex code of calling draw function for each class separately after

checking the class type, instead we can use a single function call in a loop to

draw all kinds of Shapes as shown below,

void drawShapes(Shapes *array[], int size){

for (int i = 0 ; i < size ; i ++)
array[i]->draw(); // this function call will work for all types of

//Shapes (Line, Circle and Triangle)

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

226

Implementation:

It can be done using concept of inheritance as there exists “IS-A” relationship

between general Shape class and derived Line, Circle and Triangle classes.

So in code below, we wrote a general Shape class and then we publicly derived Line,

Circle and Triangle classes from it, in main we create objects of those Shapes that we

needed like Line, Circle and Triangle and stored them in single shape array, then we

called drawShapes function by passing this array to draw appropriate shapes.

class Shape {
…

protected:
char _type;

public:
Shape() { }
void draw(){ cout << “Shape\n”; }
int calcArea() { return 0; }
char getType() { return _type; }

};
class Line : public Shape {

public:

Line(Point p1, Point p2) {

}
void draw(){ cout << “Line\n”; }

};
class Circle : public Shape {
public:

Circle(Point center, double radius) {

}
void draw(){ cout << “Circle\n”; }

int calcArea() { … }
};
class Triangle : public Shape {

public:

Triangle(Line l1, Line l2, double angle)
{

}
void draw(){ cout << “Triangle\n”; }
int calcArea() { … }

};
int main() {

Shape* _shape[10];

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

227

Shape
Shape
Shape
Shape
…

After compiling this code we will see the following output,

Sample Output

As you have seen this code is not showing correct output, it is showing text Shape

again and again instead of showing appropriate class name that was stored in Shape

array like Line, Circle or Triangle so there is some logical error in this code.

Where is problem?

Problem is that as we stored our derived classes (Line, Circle and Triangles) Objects

in Shape pointer array and then called draw method; every time draw method of

Shape class was called.

Why?

Due to the reason that static type of this array is Shape * so draw method is Shape

class will always be called whether pointer stored in it is Line, Circle or Triangle

pointer or Shape class pointer.

So we have to think about some modification,

Solution 1:
One solution is that we can modify our drawShapes function as follows,

void drawShapes(Shape* _shape[], int size) {

for (int i = 0; i < size; i++) {

// Determine object type with switch & accordingly call draw()
method

Point p1(0, 0), p2(10, 10);
shape[1] = new Line(p1, p2);
shape[2] = new Circle(p1, 15);
void drawShapes(shape, 10);
return 0;

}

/*Function drawShapes()*/

void drawShapes(Shape* _shape[], int size) {

for (int i = 0; i < size; i++) {
_shape[i]->draw();

}
}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

228

}
}

The required Switch Logic for this kind of functionality is given below,

switch (_shape[i]->getType())
{

case ‘L’:
static_cast<Line*>(_shape[i])->draw();
break;

case ‘C’:

static_cast<Circle*>(_shape[i])->draw();
break;

…

}

Equivalent If Logic is given below,

if (_shape[i]->getType() == ‘L’)

static_cast<Line*>(_shape[i])->draw();
else if (_shape[i]->getType() == ‘C’)

static_cast<Circle*>(_shape[i])->draw();
…

Sample Output:

You can see that this code is very complex for both switch or if else conditions.

But there are many Problems with this approach these are given below:

Delocalized Code

Suppose we have to write another function that prints area of each shape from an

input array. We have to write same switch or if else logic in that function

implementation also to work it correctly.

void printArea(Shape* _shape[], int size) {
for (int i = 0; i < size; i++) {

// Print shape name.

// Determine object type with
// switch & accordingly call
// calcArea() method.

}

}

Line
Circle
Triangle
Circle

…

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

229

Required Switch Logic

switch (_shape[i]->getType())
{

case ‘L’:
static_cast<Line*>(_shape[i])->calcArea(); break;

case ‘C’:
static_cast<Circle*>(_shape[i])->calcArea(); break;

…
}

The above switch logic is same as was in function drawArray() with difference of

name of function being called.

So this approach will result in delocalized code (same code in different places) with

following consequences,

Writing same code again and again at different places may produce errors as

programmer may forget to write switch cases.

Suppose we have added one more Shape in our program then we will have to add

one more switch case or if else condition in all functions where we have used this

logic if programmer by mistake forgets to add it in any single function whole

program will show incorrect output.

So due to above mentioned reasons this sort of code is very hard to maintain.

Solution?

To avoid switch, we need a mechanism that can select the message target (class)

automatically!

In OO model, polymorphism means that different objects can behave in different

In other words when we have inheritance relationship and we have written basic

structure of our program correctly we need not to worry about the no. of classes in

our program. For example in case of shapes hierarchy (Line, Circle, Triangle and so

on…) our program will keep working correctly if we add more shapes, draw method

of appropriate shape class should automatically be called, that is the benefit of Object

Oriented Programming,

void drawShapes(Shapes *array[], int size){

for (int i = 0 ; i < size ; i ++)
array[i]->draw(); // this function call will work for all types of

//Shapes (Line, Circle and Triangle)

}

need to know the exact class of receiver.

Polymorphism Revisited:

ways for the same message (stimulus) consequently, sender of a message does not

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

230

draw
calcArea

Shape

But this kind of functionality was not being achieved in above approach in which we

had to write one separate case for each type of shape class.

To achieve this kind of functionality we have the concept of virtual functions we

make those functions virtual in base class which will be implemented by derived

classes according to their requirements.

28.2. Virtual Functions:

Virtual functions achieve exactly same kind of functionality that was achieved in

above code with complex code of switch statement.

 Target class of a virtual function call is determined at run-time automatically.

 In C++, we declare a function virtual by preceding the function header with

keyword “virtual”

Now we see how we can use virtual functions in case of our shape hierarchy,

28.3. Shape Hierarchy

Line Circle Triangle

draw
calcArea

draw
calcArea

draw
calcArea

We will make those functions virtual in shape that need to be overridden by derived

classes like Draw method,

class Shape {

…

virtual void draw();

};

class Shape {

…
virtual void draw();
virtual int calcArea();

};
class Line : public Shape {

…
virtual void draw() { cout<<”Line…\n”;

}
};

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

231

Sample Output:

Similarly if we have another function that will calculate and print area of different

shapes it will also be written in same way, (Now we have no need to add switch or if

else code)

 Static binding means that target function for a call is selected at compile time

 Dynamic binding means that target function for a call is selected at run time

Line _line;
_line.draw(); // Always Line::draw will be called

class Circle : public Shape {
…
virtual void draw() { cout<<”Circle….\n”;

}
virtual int calcArea();

};
class Triangle : public Shape {

…
virtual void draw(){ cout<<”Triangle…\n”;

}

virtual int calcArea();

};
void drawShapes(Shape* _shape[], int size) {

for (int i = 0; i < size; i++) {
_shape[i]->draw();

}
}

Static binding (Early Binding)

Dynamic binding (Late Binding)

Line
Circle
Triangle
Circle

…

void printArea(Shape* _shape[], int size) {
for (int i = 0; i < size; i++) {

// Print shape name
cout<< _shape[i]->calcArea();
cout << endl;

}
}

28.4.Static vs Dynamic Binding

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

232

Shape* _shape = new Line();
_shape->draw(); // Shape::draw called if draw() is not virtual because of static type
of Shape *

Shape* _shape = new Line();
_shape->draw(); // Line::draw called as draw() is virtual in base Shape class

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

233

draw
calcArea

Shape

Lecture No.29

Previous Lecture Review:

The main concept of Polymorphism is that the same method can behave differently

according to the object with respect of which it has been called.

We combine all related classes having same kind of functionality in a class hierarchy

as shown below,

Line Circle Triangle

draw
calcArea

draw
calcArea

draw
calcArea

The draw and calcArea methods here are showing polymorphic behavior as they

exist in base as well as in derived classes, the method that will be called is decided at

runtime according to the nature of the calling object, for example in the case of above

class hierarchy if we call draw method with respect of Line class object, draw of Line

class will be called and if we call it with reference of Circle or Triangle class, draw

method of Circle or Triangle class will be called.

We achieve this type of polymorphism13 using virtual functions.

The advantage of this approach is that sender simply pass method call and

appropriate method is called automatically, as we saw in previous lecture in which

we simply used for loop to draw all kinds of shapes using shape pointers array.

We also saw the drawbacks of achieving same functionality without virtual functions

using switch statement that resulted in delocalized and complex code. Then we saw

solution of this problem using virtual functions.

29.1. Abstract Classes

In our Shape class hierarchy Shape class has no real world existence, there will be no

object in real world with name Shape there will always be an object of kind of shape

like Line, Circle or Triangle, this kind of class with no specific real world existence

are called Abstract Classes, as these classes are Abstract their behavior becomes also

abstract like Draw and calcArea methods in case of Shape class, the actual concepts

13 Polymorphism may exist in same class (function overloading) or it may exist in different classes
(function overriding) here we are referring to function overriding (same functions in base and derived
classes).

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

234

are realized in derived classes, like all kinds of shapes will have draw and calcArea

method, so we add these methods in general Shape class and all kinds of Shapes

inheriting for this general shape class given their own implementation of these

methods.

Abstract class’s objects cannot be instantiated they are used for inheriting interface

and/or implementation, so that derived classes can give implementation of these

concepts.

29.2. Concrete Classes

inherit from an abstract class or another concrete class. So far the classes we studied

were concrete classes.

29.3. Abstract Classes in C++

In C++,

Conversely,

be instantiated)

29.4. Pure Virtual Functions

(which object can

A pure virtual represents an abstract behavior and may have not implementation for

example draw method in Shape class represent abstract behavior as Shape class itself

doesn’t have its existence in real world so there is no question of drawing it however

its derived concrete classes like Line, Circle and Triangle does have physical

existence and overridden draw method in these classes will have implementation . A

function is declared pure virtual by following its header with “= 0”.

A class having pure virtual function(s) becomes abstract

Now when we will try to created object of our Shape class in our program

compiler will give an error as shown below,

a class with no pure virtual function is a concrete class

we can make a class abstract by making its function(s) pure virtual.

Concrete Class Definition

Concrete classes Implements a concrete concept they can be instantiated they may

virtual void draw() = 0;

class Shape {
…

public:
virtual void draw() = 0;

};

Shape s; // Error!

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

235

29.5. Shape Hierarchy

A derived class of an abstract class remains abstract until it provides implementation

for all pure virtual functions as shown below in other words we can say that at least

one class in bottom of class hierarchy should give implementation of pure virtual

function (Abstract classes are present at root or near root of the class hierarchy tree,

whereas concrete classes are near leaves of class hierarchy tree) see the code below of

above class heirarchi here Quadrilateral is also abstract class as it is derived from

Shape class but is not giving implementation of draw method we can also not create

its object and it is necessary to have one more derived class from quadrilateral that

gives implementation of draw method otherwise there will be compiler error as we

can not have all abstract classes in heirarchi there should be at least one concrete

class at leaf in class heirarchi,

Circle Line

draw = 0

Shape

Rectangle

Quadrilateral

draw draw

draw

class Quadrilateral : public Shape {
…
// No overriding draw() method

};
…
Quadrilateral q; // Error!

class Rectangle:public Quadrilateral{

…
public:

// void draw()
virtual void draw() { // once a function is declared as virtual it remains

virtual in all hierarchy
… // function body

}
};
…
Rectangle r; // OK

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

236

The destructor is called according to static type of any class pointer

29.6. Virtual Destructors

for example if we

have saved derived class pointers in shape class pointers array as we did in previous

lecture when we will call destructor using delete operator the destructor of base class

Shape will be called as static type of array is Shape. This will destroy the base class

object only derived class object will not be destroyed this is explained in the example

code below,

When delete operator is applied to a base class pointer, base class destructor is called

regardless of the object type

Output

class Shape {

…
public:
~Shape() {

cout << “Shape destructor
called\n”;
}

};

class Quadrilateral : public Shape {

…
public:
~Quadrilateral() {

cout << “Quadrilateral destructor
called\n”;
}

};

class Rectangle : public Quadrilateral {

…
public:
~Rectangle() {

cout << “Rectangle destructor
called\n”;

}
};

int main() {

Shape* pShape = new Rectangle();
delete pShape;
return 0;

}

Shape destructor called

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

237

Result

You can see by diagram below that only base class part of object will be

deleted other parts will remain as it is this result in memory leak (wastage of

memory),

Before After

This issue will be solved in the same way as we solved the problem of calling

derived classes Draw methods using base class pointer by the use Virtual keyword.

Virtual Destructors

Make the base class destructor virtual as we made Draw method virtual in base class,

Rect Part

Quad Part

Shape Part

Quad Part

Rect Part

pShape pShape

class Shape {

…

public:

virtual ~Shape() {

cout << “Shape destructor called\n”; }

};

class Quadrilateral : public Shape {

…

public:

virtual ~Quadrilateral() {

cout << “Quadrilateral destructor called\n”;

}

};

class Rectangle : public Quadrilateral {

…

public:
virtual ~Rectangle() {

cout << “Rectangle destructor called\n”;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

238

Now base class destructor will run after the derived class destructor

Output

Now you can see that output is correct all destructors are being called in correct

order,

Result

Now you can see result complete object is being deleted so there is no

memory leak (waste of memory),

Shape Part

Quad Part

Rect Part

Before After

29.7. Virtual Functions – Usage

Virtual function are used in two ways,

}

};

int main() {

Shape* pShape = new Recrangle();

delete pShape;

return 0;

}

Rectangle destructor called

Quadrilateral destructor called

Shape destructor called

pShape pShape

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

239

draw = 0

calcArea

Shape

 Virtual Functions can be used to when we want to inherit interface and
implementation (Simple virtual functions) mean base class as well as derived

class will have implementation.

virtual void draw();

 Just inherit interface (Pure Virtual functions) mean only derived classes will

will have implementation base may not have implementation.

Inherit interface and implementation:

First case of simple virtual functions is useful when we have some derived
classes that will also not have implementation of virtual method for example

Line is also also Shape but it doesn’t have area similarly if we had Point

derived class it also doesn’t have any area in both cases we will simply not

write implementation of calcArea() method and hence calcArea of base Shape

class will be called which will simply display area as zero this is shown

below,

Line Circle Triangle

draw draw

calcArea

draw

calcArea

So as calcArea() is simple virtual function so, each derived class of Shape inherits

default implementation of calcArea(), some classes may override this, such as Circle

and Triangle and Others may not, such as Point and Line.

Inherit interface only:

virtual void draw() = 0;

class Shape {

…

virtual void draw() = 0; // pure virtual functions

virtual float calcArea() { // simple virtual functions

return 0;
}

};

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

240

We have made draw method as pure virtual function because each shape will need

to draw whether it is simple point or line or any other shape so its suitable to be

decalred as pure virtual,

As draw() is Pure Virtual Function so, each derived class of Shape inherits interface

(prototype) of draw(), each concrete derived class has to provide body of draw() by

overriding it.

29.8. V Table

Now we see compiler keeps track of virtual functions and call them correctly
occording to nature of the object with respect to which they are being called,

functions
A vTable contains a pointer for each virtual function,

Pointer to
1st virtual
function

Pointer to
2nd virtual
function

…....

…….

…….

V Table

Consider the code below to see how virtual tables are created,

int main() {

Point p1(10, 10), p2(30, 30);

Shape* pShape;

pShape = new Line(p1, p2);
pShape->draw();
pShape->calcArea();
return 0;

}

We are creating Line class object here and storing its refernence in Shape class

pointer and then polymorphically calling methods draw and calcArea as Shape

pointer is having Line class object reference so Line class method draw and calcArea

will be called we see how this actually happens,

Compiler builds a virtual function table (vTable) for each class having virtual

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

241

calcArea

Shape vTable

calcArea

draw

draw

Line object

Shape …

point1 = p1

point2 = p2

pShape

First of all when this code will be compiled v tables along with implementation code

of virtual and non virtual functions for all classes will be generated by compiler as

shown below,

Shape class implementation

Shape vTable
calcArea

draw

calcArea

draw

…

…

…

Line class implementation

Line vTable

…

…

…

0

…

0

Line vTable

…

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

242

When line object will be crated in main it will also have pointer to v table of Line

class as shown below,

Shape class implementation

Line object

Shape vTable

calcArea

draw

calcArea

draw

29.9. Dynamic Dispatch (Dynamic Binding)

.

In case of virtual functions, compiler generates code to

 access the object

 access the associated vTable

 call the appropriate function

Virtual Functions should be added in code with care because they add,

 Processing overhead due to extra pointer manipulation

However, this overhead is acceptable for many of the applications.

Moral: “Think about performance requirements before making a function virtual”.

…

…

…

Line class implementation

Line vTable

…

…

…

0

pShape

point2 = p2

point1 = p1

Shape …

generates code to call the function

Memory overhead due to V-Tables

Disadvantages of Virtual Function

It happens in case of virtual functions, for non-virtual functions, compiler just

Conclusion

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

243

Lecture No.30

30.1. Polymorphism – Case Study: A Simple Payroll Application

We have studied polymorphism implementation in detail using virtual functions

now we see an example showing how it may be useful for us,

Problem Statement
Develop a simple payroll application for a company; there are three kinds of

employees in the system: salaried employee, hourly employee, and commissioned

employee. The system should take input as an array containing employee objects,

calculates salary polymorphically (according to employee object), and generates

report.

OO Model

You can see that this model is very similar to Shape class hierarchy we saw

previously, its implementation in c++ is shown below,

calcSalary

sales

commRate

hours

hourlyRate

salary

CommEmp HourlyEmp SalariedEmp

Employee

name

taxRate

getName
calcSalary

 String

pStr

String

operator =

operator <<

calcSalary calcSalary

class Employee {
private:

String name;
double taxRate;

public:
Employee(String&, double);
String getName();
virtual double calcSalary() = 0;

};
Employee::Employee(String& n, double tr): name(n){
taxRate = tr;

}

Class Employee

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

244

String Employee::getName() {

return name;
}

class SalariedEmp : public Employee
{
private:

double salary;
public:

SalariedEmp(String&,double,double);
virtual double calcSalary();

};
SalariedEmp::SalariedEmp(String& n, double tr, double sal) : Employee(n, tr) {

salary = sal;
}
double SalariedEmp::calcSalary() {

double tax = salary * taxRate;
return salary – tax;

}

Class SalariedEmp

class HourlyEmp : public Employee {
private:

int hours;
double hourlyRate;

public:
HourlyEmp(string&,double,int,double);
virtual double calcSalary();

};
HourlyEmp ::HourlyEmp(String& n, double tr, int h, double hr) : Employee(n, tr
) {

hours = h;
hourlyRate = hr;

}
double HourlyEmp::calcSalary()
{

double grossPay, tax;
grossPay = hours * hourlyRate;
tax = grossPay * taxRate;
return grossPay – tax;

}

Class HourlyEmp

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

245

class CommEmp : public Employee
{
private:

double sales;
double commRate;

public:
CommEmp(String&, double, double, double);
virtual double calcSalary();

};

CommEmp::CommEmp(String& n, double tr, double s, double cr) : Employee(
n, tr) {

sales = s;
commRate = cr;

}
double CommEmp::calcSalary()
{

double grossPay = sales * commRate;
double tax = grossPay * taxRate;
return grossPay – tax;

}

Class CommEmp

int main() {
Employee* emp[10];

emp[0] = new SalariedEmp(“Aamir”, 0.05, 15000);
emp[1] = new HourlyEmp(“Faakhir”, 0.06, 160, 50);
emp[2] = new CommEmp(“Fuaad”, 0.04, 150000, 10);
…
generatePayroll(emp, 10);
return 0;

}

A Sample Payroll

void generatePayroll(Employee* emp[], int size) {

cout << “Name\tNet Salary\n\n”;
for (int i = 0; i < size; i++) {
cout << emp[i]->getName() << ‘\t’ << emp[i]->calcSalary() << ‘\n’;

}

}

Function that takes Empolyee poinsters array and calls appropriate getName
and calcSalary methods

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

246

Sample Output

Name Net Salary

Aamir 14250

Fakhir 7520

Fuaad

…

14400

Output is as required displaying employee names and their salary polymorphically.

Important point to note here is that Polymorphism always works with pointers of class

objects not with actual objects. In above example we used base Employee pointer array

to store pointers of derived classes of class Employee and then we polymorphically

called generatePayroll method to call getName and calcSal methods in a loop.

Never Treat Arrays Polymorphically:

If we use arrays of Objects Polymorphically then problem occurs as shown below,

30.2. Shape Hierarchy Revisited:

We have not made Shape class Abstract so that we can create its objects to show the

point that calling array of objects polymorphically results in errors,
See the shape hierarchy again,

class Shape {
…

public:
Shape();
virtual void draw(){

cout << “Shape\n”;
}
virtual int calcArea() { return 0; }

};

class Line : public Shape {

…

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

247

In above code we created array of ten objects of Shape class and then passed it to

drawShapes function, note that in above code we passed Shapes array (Shapes [])

instead of Shapes pointers array (Shapes * []) to drawShapes function.

The code works draw method for each Object of Shape class is called and output is

displayed below,

Sample Output

Now we try to do polymorphism here by creating lines objects and passing to this

functions as we did previously in case of pointers with the difference that this time

we are passing objects array instead of pointers array.

public:
Line(Point p1, Point p2);
void draw(){ cout << “Line\n”; }

};

void drawShapes(Shape _shape[], int size) {

for (int i = 0; i < size; i++) {
_shape[i].draw();

}
}

//Polymorphism & Arrays

int main() {

Shape _shape[10];
_shape[0] = Shape();
_shape[1] = Shape();
…
drawShapes(_shape, 10);
return 0;

}

Shape
Shape
Shape

…

int main() {
Point p1(10, 10), p2(20, 20), …
Line _line[10];
_line[0] = Line(p1, p2);
_line[1] = Line(p3, p4);
…
drawShapes(_line, 10);
return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

248

Sample Output:

This time also program is compiled correctly but when we executed it only Shape

text is displayed for first object of array and then program terminates abnormally.

The reason behind this output is,

When we passed array of Line objects as parameter this array was converted

implicitly to array of Shapes objects by compiler as Line IS A kind of shape, same

thing was happened with pointers of array objects but the difference now is that this

Line objects array will be treated as Shape objects array, so draw method of first

shape object is called and it displays text Shape, for next iteration of loop when

compiler calculated address of next object it did it with respect to Shape objects but

the actual array consists of Line objects so compiler will incorrectly calculate address

of next object as size of Shape class object and Line class objects are different and

when it will call draw method with incorrect address of object program will

terminate abnormally this is give in diagram below,

Shape Array

Line Array

As shown above compiler will do calculations with respect to Shape array and will

calculate next object address as 0010 because it is treating Line array as Shape array

but actually next Line object is present at address 0015 so runtime error will be

generated as there is no new object at address 0010 and program will terminate

abnormally.

Original drawShapes() method that was using pointers is given below

void drawShapes(Shape* _shape[], int size) {

for (int i = 0; i < size; i++) {

0000

0015

0030

0045

0000

0010

0020

0030

Shape
// Run-time error

_shape[i].draw();

*(_shape + (i * sizeof(Shape))).draw();

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

249

_line3

_line2

_line1

_shape[i]->draw();
}

}

It shows correct output,
Sample Output:

Because in case of pointers array, the size of each entry is same as each entry contains

a pointer and all pointers are of 4 bytes in c++ whatever they are point to Shape class

or to Line class or any other built in or user defined type. So in this case whether our

array contain Shape * or Line * next object address will be present after 4 bytes, so

our drawShapes function will execute correctly,

0000

0004

0008

0012

Shape* _shape[]

So moral of the story is Never use arrays polymorphically because location of

elemetns in any array is calculated using array type and in polymorphism we have

the liberty of changing child array to parent array that will result in erraneous

calcualation of location of elements in array.

Line

Line

Line

…

_shape[i]->draw();

(_shape + (i * sizeof(Shape*)))->draw();

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

250

Lecture No.31
31.1. Multiple Inheritance

We have seen multiple inheritance in start of OOP now we see its implementation in

C++, A class in C++ can inherit from more than one classes like Phone class can

Examples:

class Phone: public Transmitter, public Receiver
// As phone class is publicly inherited so any class derived from Phone class will
also have access to public and protected members of Transmitter and Receiver
class
{
...
};

classes

class Mermaid: private Woman, private Fish
// As Mermaid class is privately inherited from Woman and Fish so any class
derived from Mermaid class will Not have access to public and protected members
of Woman and Fish classes

{
...
};

Multiple Inheritance

The derived class inherits data members and functions from all the base classes

Object of derived class can perform all the tasks that an object of base class can

perform

Phone

Transmitter

.......

Transmit()

Receiver

.......

Receive()

inherit from Transmitter or Receiver.

Derived class can inherit from public base class as well as private and protected base

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

251

Example

int main(){

Phone obj;

obj.Transmit(); // method of Transmitter class

obj.Receive(); // method of Receiver class

return 0;

}

Multiple Inheritance

When using public multiple inheritance, the object of derived classes can replace the

objects of all the base classes

Example

int main(){

Phone obj;

Transmitter * tPtr = &obj;

Receiver * rPtr = &obj;

return 0;

}

However note the following,

The pointer of one base class cannot be used to call the function of another base class

The functions are called based on static type

Example:

31.2. Problems in Multiple Inheritance

 If more than one base class have a function with same signature then the child

will have two copies of that function.

 Calling such function will result in ambiguity.

int main(){

Phone obj;

Transmitter * tPtr = &obj;

tPtr->Transmit();

int main(){

Phone obj;

Receiver * rPtr = &obj;

rPtr->Receive();

tPtr->Receive(); //Error

return 0;

rPtr->Transmit();

return 0;
//Error

} }

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

252

Example:

Amphibious Vehicle

Boat Amphibious Vehicle Car

Land Vehicle Water Vehicle

Land Vehicle Water Vehicle

class LandVehicle{

public:

int GetMaxLoad();

};

class WaterVehicle{

public:

int GetMaxLoad();

};

class AmphibiousVehicle: public LandVehicle, public WaterVehicle {

};

int main(){

AmphibiousVehicle obj;

obj.GetMaxLoad(); // Error

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

253

The solution of this problem is that Programmer must explicitly specify the class

name when calling ambiguous function

Multiple Inheritance

The ambiguous call problem can arise when dealing with multiple level of multiple

inheritance

Example:

int main(){

AmphibiousVehicle obj;

obj.LandVehicle::GetMaxLoad();

obj.WaterVehicle::GetMaxLoad();

return 0;

}

Water Vehicle Land Vehicle

Vehicle

Boat Amphibious Vehicle Car

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

254

The error is due to the reason that object of AmphibiousVehicle class has two implicit

Vehicle class objects one with respect to LandVehicle and one with respect to

WaterVehicle class,

Boat Amphibious Vehicle Car

Land Vehicle

Vehicle

Water Vehicle

Vehicle

class Vehicle{

public:

int GetMaxLoad();

};

class LandVehicle : public Vehicle{

};

class WaterVehicle : public Vehicle{

};

class AmphibiousVehicle: public LandVehicle, public WaterVehicle {

};

int main(){

AmphibiousVehicle obj;

obj.GetMaxLoad(); // Error

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

255

When call to GetMaxLoad method is made, compiler gets confused which copy of

this method should be called.

When we try to remove this error by mentioning that this method belongs to Vehicle

class as shown below; error remained as it is due to above mentioned fact.

Example

int main()

{

AmphibiousVehicle obj;

obj.Vehicle::GetMaxLoad(); //Error

return 0;

}

The reason is same that Vehicle is accessible through two paths, we can avoid this

error by explicity mentioning the name of intermediate base class LandVehicle or

WaterVehicle with respect to which we want to call this GogMaxLoad method as

shown below,

Example

Due to the same reason as mentioned above Data member must be used with care

when dealing with more than one level on inheritance.

Example

class Vehicle{

protected:

int main(){

AmphibiousVehicle obj;

obj.LandVehicle::GetMaxLoad();

obj.WaterVehicle::GetMaxLoad();

return 0;

}

Vehicle
int GetMaxLoad(); Vehicle

int GetMaxLoad();

AmphibiousVehicle

LandVehicle WaterVehicle

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

256

Here AmphibiousVehicle object has multiple copies of data member weight.

Memory View:

Data Members of Vehicle Data Members of Vehicle

Data Members of LandVehicle Data Members of WaterVehicle

Data Members of AmphibiousVehicle

31.3. Virtual Inheritance

Memory View:

Data Members of Vehicle

Data Members of LandVehicle Data Members of WaterVehicle

Data Members of AmphibiousVehicle

separate copies.

inheritance only one copy of base class is generated as shown below instead of two

int weight;

};

class LandVehicle : public Vehicle{

};

class WaterVehicle : public Vehicle{

};

class AmphibiousVehicle:

public LandVehicle,

public WaterVehicle{

public:

AmphibiousVehicle(){

LandVehicle::weight = 10;

WaterVehicle::weight = 10;

}

};

The solution to avoid this problem is virtual inheritance so that in multiple

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

257

In virtual inheritance there is exactly one copy of the anonymous base class object.

Example:

class Vehicle{

protected:

int weight;

};

class LandVehicle : public virtual Vehicle{

};

class WaterVehicle : public virtual Vehicle{

};

Example

class AmphibiousVehicle: public LandVehicle, public WaterVehicle {

public:

AmphibiousVehicle(){

weight = 10;

}

};

When to use Virtual Inheritance?

Virtual inheritance must be used when necessary. It can be used in the situations

Example

BS Student MS Student PhD Student

MS/PhD Student

rather than one.
when programmer wants to use two distinct data members inherited from base class

GPA

Student

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

258

Lecture No.32
Generic Programming

Motivation:

Following function prints an array of integer elements:

void printArray(int* array, int size)
{

for (int i = 0; i < size; i++)
cout << array[i] << “, ”;

}

If we want to print an array of character elements we will write similar function

again with different parameters as shown below:

void printArray(char* array, int size)
{

for (int i = 0; i < size; i++)
cout << array[i] << “, ”;

}

similarly for double array we can write,

void printArray(double* array, int size)
{

for (int i = 0; i < size; i++)
cout << array[i] << “, ”;

}

Same will be the case for array of float, short, long and so on….

You can see all these functions are doing same kind of functionality on different data
types and it looks repeated task for all data types (basically it is function

overloading)

Now if we want to change the way function prints the array. e.g.

from 1, 2, 3, 4, 5

to 1 2 3 4 5 or ‘1’ ‘ 2’ ‘3’ ‘4’ ‘5’ or “1” ”2” “3” “4” “5”

We will have to change the code in all functions for all data types.

Now consider the Array class that is developed to overcome the shortcomings of

C++ built in arrays. In C++ arrays, there is no check for array bounds we can insert

element at 100th position in an array of size 10 only, our program will compile

correctly however this will result in abnormal termination of the program on

execution.

class Array {

public:

int* pArray;
int size;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

259

…
};

The above class has been written for integer arrays. Now, if we want to write the

same kind of class for all other data types like double or boolean (true/false), the

code will be written as shown below,

class Array {

public:

double* pArray;
int size;

…

};

class Array {

public:

bool* pArray;
int size;

…

};

This also looks like repeated code and adds effort to write code. Secondly if we want

to add a function sum in Array class, we have to change all the three classes.

We want some mechanism that enables us to write single function or class that
works for all data types this technique of writing programs is called Generic

Programming.

32.1. Generic Programming

Generic programming refers to programs containing generic abstractions (general

code that is same in logic for all data types like printArray function), then we
instantiate that generic program abstraction (function, class) for a particular data

type, such abstractions can work with many different types of data.

Major benefits of this approach are:
a. Reusability: Code can work for all data types.

b. Writability: Code takes lesser time to write.

c. Maintainability: Code is easy to maintain as changes are needed to be made

in a single function or class instead of many functions or classes.

32.2. Templates

In C++ generic programming is done using templates.

a. Function Templates (in case we want to write general function like

printArray)

b. Class Templates (in case we want to write general class like Array class)

Advantages

Templates are of two kinds,

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

260

Compiler generates different type-specific copies from a single template.

This concept is similar to concept of making prototype in the form of class for all

objects of same kind.

32.3. Function Templates

A function template can be parameterized to operate on different types of data types.

We write template keyword above any function make any function as template

function, they can be declared in any one of the following ways,

// OR

template< typename T >
void funName(T x);

// OR

template< class T, class U, … >
void funName(T x, U y, …);

Note here T is typename of class name and we use this T instead of data type(s) for

which we want our function to work as template.

For Example – Function Templates

Following function template prints an array having almost any type of elements

(note the use of T instead of int or float or char in implementation of function):

template< typename T >
void printArray(T* array, int size)
{

for (int i = 0; i < size; i++)
cout << array[i] << “, ”; // here data type of array is T

}

Similarly we can also write same function as,

template< class T >
void printArray(T* array, int size)
{

for (int i = 0; i < size; i++)
cout << array[i] << “, ”; // here data type of array is T

}

There is no difference in above two implementations.

void funName(T x);

Declaration:

template< class T >

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

261

Template function will be instantiated for a particular data type according to passed

argument as shown below,

int main() {

int iArray[5] = { 1, 2, 3, 4, 5 };
void printArray(iArray, 5); // Instantiated for int[] as passed array is of

type int []

char []

}

char cArray[3] = { ‘a’, ‘b’, ‘c’ };
void printArray(cArray, 3); // Instantiated for char[] as argument is of type

return 0;

Explicit Type Parameterization:

In case a function template does not have any parameter then we have to explicitly

mention the data type for which we want to create that function as shown below,

template <typename T>
T getInput() {

T x;
cin >> x;
return x;

}

Explicit Type Parameterization

int main() {
int x;
x = getInput(); // Error!

double y;
y = getInput(); // Error!
return 0;

}

Explicit Type Parameterization

int main() {

int x;
x = getInput< int >();

double y;
y = getInput< double >();
return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

262

User-defined Specializations

A template compiler generated code may not handle all the types successfully; in

that case we can give explicit specializations for a particular data type(s).

For example suppose we have written a function isEqual(…, …) that compares two

values of data type and return true or false depending upon the values are equal or

not,

template< typename T >
bool isEqual(T x, T y) {

return (x == y);

}

isEqual (6,6) should return true
isEqual (6,7) should return false
isEqual (6.6,6.6) should return true
isEqual (6.5,6.6) should return false
isEqual (‘A’,’A’) should return true
isEqual (‘A’,’a’) should return false

Until here the function will work correctly but consider the statement below,

isEqual (“abc”,”xyz”)

This is instantiation of isEqual function for built in type char [] or char *14, this

function will fail to give correct result simply because we have given its

implementation as

return (x == y);

So here it will be translated by compiler in,

return (char * == char *); or return (char [] == char []);

As arrays consists of many elements, comparison of arrays in this way is not possible

it will simply compare first element of both arrays and will return result, this is given

in code below,

14 In C++, both char [] and char * are of same data types.

#include <cstdlib>

#include <iostream>

using namespace std;

template< typename T >

bool isEqual(T x, T y) {

return (x == y);

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

263

So all statements with starting same characters like below will return true,

isEqual(“abc”, “acc”);

isEqual(“badac”, “bacc”);

isEqual(“cafaa”, “ccda”);

This is logical error, solution of this problem is that we give our own correct

implementation of isEqual template function for char * data type, for this we can

write specialization code below general template function as follows,

Example – User Specializations

int main (){

cout<<isEqual(5, 6); // Ok
cout<<isEqual(7.5, 7.5); // Ok
cout<<isEqual("abc", "bca"); // Logical Error!

system("PAUSE");

return EXIT_SUCCESS;

}

#include <cstdlib>

#include <iostream>

using namespace std;

template< typename T >

bool isEqual(T x, T y) {

return (x == y);

}

template< >
bool isEqual< const char* >(

const char* x, const char* y) {
return (strcmp(x, y) == 0);

}

int main (){

cout<<isEqual(5, 6); // OK

cout<<isEqual(7.5, 7.5); // OK

cout<<isEqual("abc", "aba"); //OK will return False

system("PAUSE");

return EXIT_SUCCESS;
}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

264

Lecture No.33
Recap

 Templates are generic abstractions

 C++ templates are of two kinds

o Function Templates
o Class Templates

 A general template can be specialized to specifically handle a particular type
like we did for char []

33.1. Multiple Type Arguments

Suppose we want to write code to convert different types into one another (like char

to int or int to char or float to int or int to float), the problem is same we have to write

many functions corresponding to each type, as no of types will increase the required

no. of functions will also increase, the concept of templates can be used here as well

to write general function to convert one type into another, in this case we will need

two type arguments as shown below,

template< typename T, typename U >
T my_cast(U u) {

return (T)u; // U type will be converted to T type and will be returned
}

int main() {

double d = 10.5674;
int j = my_cast(d); //Error
int i = my_cast< int >(d);

// need to explicity mention about type of T (int in this case) as it is used only

for
// return type not as parameter

return 0;
}

33.2. User-Defined Types

Besides primitive types, user-defined types can also be passed as type arguments to

templates, compiler performs static type checking to diagnose type errors.

Consider the String class without overloaded operator “==“

class String {

char* pStr;

…

// Operator “==“ not defined

};

template< typename T >

bool isEqual(T x, T y) {

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

265

we want to have similar operations on different data types we need function

We can use String class objects as arguments to template function isEqual also but in

this case we should have defined overloaded == operator for our string class as

friend function because this operator is being used in isEqual function,

33.3. Overloading vs. Templates

Function templates are used when we want to have exactly identical operations on

different data types in case of function templates we can not change implementation

from data type to data type however we can specialize implementation for a
particular data type.

In case

different implementation for each data type.

return (x == y);

}

int main() {

String s1 = “xyz”, s2 = “xyz”;

isEqual(s1, s2); // Error!

return 0;

}

class String {

char* pStr;

…

friend bool operator ==(const String&, const String&);

};

bool operator ==(const String& x, const String& y) {

return strcmp(x.pStr, y.pStr) == 0;

}

template< typename T >

bool isEqual(T x, T y) {

return (x == y);

}

int main() {

String s1 = “xyz”, s2 = “xyz”;

isEqual(s1, s2); // OK

return 0;

}

overloading. In case of function overloading, we can give similar but slightly

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

266

Example: Overloading vs. Templates

 ‘+’ operator is overloaded for different types of opeerands (different

implementation in each case).

 A single function template can calculate sum of array of many types.

33.4. Template Arguments as Policy:

We can change behaviour of a template using template parameter. We can pass a

template argument to enforce some rule (policy). For example see the problem

statement below:

“Write a function that compares two given character strings.”

This function is similar to built in string comparison function strcmp with the

difference that it can perform both case sensitive and case insensitive comparisons.

tmp.pStr = new char[strlen(x.pStr) + strlen(y.pStr) + 1];

strcpy(tmp.pStr, x.pStr);

strcat(tmp.pStr, y.pStr);

return tmp;

}

String operator +(const char * str1, const String& y) {

String tmp;

tmp.pStr = new char[strlen(str1) + strlen(y.pStr) + 1];

strcpy(tmp.pStr, str1);

strcat(tmp.pStr, y.pStr);

return tmp;

}

const String& y) { String operator +(const String& x,

String tmp;

Function Overloading

template< class T >

T sum(T* array, int size) {

T sum = 0;

for (int i = 0; i < size; i++)

sum = sum + array[i];

return sum;

}

Templates

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

267

33.5. First Solution:

We can write two separate functions for both cases and call any of them as required,

This function will return 0 in case string length of both strings is same and they have

identical elements otherwise it will return 1.

This function will return 0 in case string length of both strings is same and they have

same alphabets (ignoring they are in lower case or in upper case) otherwise it will

return 1.

33.6. Second Solution:

We write a single compare function and pass a bool type parameter to indicate type

of comparison and from this function we return result based on passed bool

parameter used to indicate case sensitive or case insensitive comparison,

int compare(char* str1, char* str2, bool caseSen)
{

for (int i = 0; i < strlen(str1) && i < strlen(str2); i++)
if (…)

return str1[i] - str2[i];

return strlen(str1) - strlen(str2);

}

// if condition:

int caseSencompare(char* str1, char* str2)

{

for (int i = 0; i < strlen(str1) && i < strlen(str2); ++i)

if (str1[i] != str2[i])

return str1[i] - str2[i];

return strlen(str1) - strlen(str2);

}

int nonCaseSencompare(char* str1, char* str2)

{

for (int i = 0; i < strlen(str1) && i < strlen(str2); i++)

if (toupper(str1[i]) != toupper(str2[i]))

return str1[i] - str2[i];

return strlen(str1) - strlen(str2);

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

268

(caseSen && str1[i] != str2[i]) || (!caseSen && toupper(str1[i]) != toupper(str2[i]))

Here bool variable caseSen will work as flag, and will activate either left sub-

expression or right sub-expression in if-statement, in case we are performaing case

sensitive comparison caseSen will be true (1) and will activate sub-expression,
(caseSen && str1[i] != str2[i])

and in case caseSen is false it will activate second sub-expression involving !caseSen

as given below,
(!caseSen && toupper(str1[i]) != toupper(str2[i])

other logic is same as in case 1 functions.

33.7. Third Solution

Third solution is most elegant solution out of all these, in which we write two classes

one for case sensitive and other for case insensitive comparison, and pass one of

these classes as argument when instantiating template compare function, in compare

function isEqual function of passed class is being called to perform either case

sensitive or case insensitive comparison,

class CaseSenCmp {
public:

static int isEqual(char x, char y) {
return x == y;

}
};

class NonCaseSenCmp {
public:

static int isEqual(char x, char y) {
return toupper(x) == toupper(y);

}
};

template< typename C >
int compare(char* str1, char* str2)
{

for (int i = 0; i < strlen(str1) && i < strlen(str2); i++)
if (!C::isEqual (str1[i], str2[i]))

return str1[i] - str2[i];

return strlen(str1) - strlen(str2);
};

int main() {
int i, j;
char *x = "hello", *y = "HELLO";
i = compare< CaseSenCmp >(x, y);
j = compare< NonCaseSenCmp >(x, y);
cout << "Case Sensitive: " << i;
cout << "\nNon-Case Sensitive: “<< j << endl;
return 0;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

269

}
Sample Output

Case Sensitive: 32 // Not Equal
Non-case Sensitive: 0 // Equal

33.8. Default Policy
We can set default class type as default comparison type as we set default parameters

in case of constructors,

template< typename C = CaseSenCmp >
int compare(char* str1, char* str2)
{

for (int i = 0; i < strlen(str1) && i < strlen(str2); i++)
if (!C::isEqual

(str1[i], str2[i]))
return str1[i] - str2[i];

return strlen(str1) - strlen(str2);

};

int main() {
int i, j;
char *x = "hello", *y = "HELLO";
i = compare(x, y);
j = compare< NonCaseSenCmp >(x, y);
cout << "Case Sensitive: " << i;
cout << "\nNon-Case Sensitive: “

<< j << endl;
return 0;

}

CS304 Highlighted Handouts By KST
Learning Paid Services Available
LMS Handling
Assignments, Quiz, GDBs
Paid Projects
CS519 & CS619 Projects
Online Classes
Paid Courses
0347-
2506073

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

270

Lecture No.34
Generic Algorithms - A Case Study

Consider the template printArray function we wrote in previous lecture,

Although this function will work for all data types but still it is taking array as an

argument so this function still depends upon nature of data structure used to pass

data, we want this function to be independent from data structure as well means it

should print single values as well as arrays of basic data types.

34.1.Generic Algorithms

We want to provide such implementation that is independent of data structures also

for example in case of printing of values we want printing of both single values and

arrays, this can be achieved using Generic Programming in which a function work for

all types of containers, let us see how we can make a function generic step by step

with the help of an example, consider the find function below it is similar to

printArray function with the difference that it tries to find an element in an array and

return pointer to that element if it is found in the array otherwise it returns zero

(NULL).

First step obviously will be to write it as template so that it may work for all data

types instead of only integers,

We write it as template function,

template< typename T >
void printArray(T* array, int size)
{

for (int i = 0; i < size; i++)
cout << array[i] << “, ”;

}

Printing an Array

const int* find(const int* array, int _size, int x) {
const int* p = array;
for (int i = 0; i < _size; i++) {

if (*p == x)
return p;

p++;
}

return 0;
}

Find function that tries to find an integer value in an integer array

template< typename T >
T* find(T* array,int _size, const T& x) {

Template function to find a value within an array

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

271

In next step we simply pass a pointer that is pointing one location next after array

instead of passing size of array as shown below, (this will make our code simplified)

We also change the return statement of the function by returning the beyond pointer

instead of zero in case element is not found, so now we will not check the return

value for NULL pointer we will simply check whether it points to any value or it

points to beyond pointer, (we are doing it so that we can use a single return

statement to return a single pointer as we have done below)

using single return statement,

T* p = array;
for (int i = 0; i < _size; i++) {

if (*p == x)
return p;

p++;
}
return 0;

}

template< typename T >

T* find(T* array, T* beyond, const T& x) {

T* p = array;

while (p != beyond) {

if (*p == x)

return p;

p++;

}

return 0;

}

template< typename T >

T* find(T* array, T* beyond, const T& x) {

T* p = array;

while (p != beyond) {

if (*p == x)

return p;

p++;

}

return beyond;

}

template< typename T >

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

272

Now our code is so generic that it will work for all types of containers (data

structures) supporting two operations,

 Increment operator (++) as we are incrementing value in this container

 Dereference operator (*) as we are getting value from container for

comparison by dereferencing

Although this template function will now work for all containers in same way but it

has one limitation that we will need to pass container pointers in this function this is

against the concept of generic programming so we simply remove pointer notation

from our code,

Now this implementation will work for all references of containers as shown in code

below,

We can apply the same concept of Generic Algorithms to class templates and

develop a generic Vector class that will work for all built-in types as shown below,

T* find(T* array, T* beyond, const T& x) {

T* p = array;

while (p != beyond && *p != x)

p++;

return p;

}

template< typename P, typename T >

P find(P start, P beyond, const T& x) {

while (start != beyond && *start != x)

start++;

return start;

}

int main() {

int iArray[5];

iArray[0] = 15;

iArray[1] = 7;

iArray[2] = 987;

…

int* found;

found = find(iArray, iArray + 5, 7);

return 0;

}

34.2.Class Templates

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

273

As we saw before a single class template provides functionality to operate on

different types of data and in this way facilitates reuse of classes (like we wrote our

own array class to overcome the limitations of built-in array class in c++).

 template< class T > class Xyz { … };

 template< typename T > class Xyz { … };

Now we write a template Vector class using the concept of Generic Algorithms such

that it can store everything, basically it will act as container to store anything in it, it

can store objects that are them self collections like arrays or it can store basic data

types. This will be possible because we are going to implement this Vector class

using the concept of Generic Algorithms.

34.3.Example – Class Template

A Vector class template can store data elements of different types, without templates,

we need a separate Vector class for each data type.

We start with the basic definition of Vector class using templates,

Its implementation is,

template< class T >

class Vector {

private:

int size;

T* ptr;

public:

Vector<T>(int = 10);

Vector<T>(const Vector< T >&);

~Vector<T>();

int getSize() const;

const Vector< T >& operator =(

const Vector< T >&);

T& operator [](int);

};

Class Template

We can definition a class template as follows:

template< class T >

Vector<T>::Vector<T>(int s) {

size = s;

if (size != 0)

ptr = new T[size];

else

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

274

ptr = 0;

}

template< class T >

Vector<T>:: Vector<T>(

const Vector<T>& copy) {

size = copy.getSize();

if (size != 0) {

ptr = new T[size];

for (int i = 0; i < size; i++)

ptr[i] = copy.ptr[i];

}

else ptr = 0;

}

template< class T >

Vector<T>::~Vector<T>() {

delete [] ptr;

}

template< class T >

int Vector<T>::getSize() const {

return size;

}

template< class T >

const Vector<T>& Vector<T>::operator

=(const Vector<T>& right) {

if (this != &right) {

delete [] ptr;

size = right.size;

if (size != 0) {

ptr = new T[size];

for(int i = 0; i < size;i++)

ptr[i] = right.ptr[i];

}

else

ptr = 0;

}

return *this;

}

template< class T >

T& Vector< T >::operator [](int index) {

if (index < 0 || index >= size) {

cout << “Error: index out of

range\n”;

exit(1);

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

275

We can create this vector class instances for int or char data type as given below,

Vector< int > intVector;
Vector< char > charVector;

This Vector class is parameterized class and will always be instantiated for a

particular type only. Now we can not create object of type Vector only it will be

instantiated for a particular data type like Vector<int> or Vector <float> and so on…

}

return ptr[index];

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

276

Lecture No.35

35.1. Member Templates:
Member functions of a template class implicitly become functions templates; they

work for instantiations (int, char, float, double so on…) of that class, however there

are some situations where we need explicit template functions in our class taking

more template parameters other than one implicit template parameter (parameter

given to this class as parameter while creating its object).

A class or class template can have member functions that are themselves templates

Note that in C++ while declaring class there is no need to mention template

parameter for class member functions as compiler implicitly understand it, however

if we are using some other template parameter like we are doing for copy constructor

then we need to give its name as well.

Now see that main function for this class in which we are assigning Complex class

float instance to double, it will result in an error,

Because, our Complex copy constructor is taking argument of same template type T

so this copy constructor will work for statements like,

Complex< float > f1c(0, 0);
Complex< float > f2c = f1c;

Complex< double > d1c(0, 0);
Complex< double > d2c = d1c;

But will not work for statements like,

Complex< float > fc(0, 0);

template<typename T> class Complex {

T real, imag;

public:

// Complex<T>(T r, T im)

Complex(T r, T im) :

real(r), imag(im) {}

// Complex<T>(const Complex<T>& c)

Complex(const Complex<T>& c) :

real(c.real), imag(c.imag) {}

…

};

int main() {

Complex< float > fc(0, 0);
Complex< double > dc = fc; // Error

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

277

Complex< double > dc = fc;

Complex< double > d1c(0, 0);
Complex< float > d2c = d1c;

When we created Complex object for double compiler generated class for double like

shown below,

class Complex<double> {
double real, imag;

public:

};

Complex(double r, double im) :real(r), imag(im)
{}
Complex(const Complex<double>& c) :real(c.real), imag(c.imag)
{}
…

So, there is need of some sort of overloading of copy constructor such that we can

assign two instances of Complex class for two different data types.

Now we change copy constructor as function template explicitly, so that it may work

for copy of different types of data types as well,

template<typename T> class Complex {

T real, imag;
public:

Complex(T r, T im) :
real(r), imag(im) {}

template <typename U>
// this copy constructor is now taking two template parameters one implicit T
// and other explicit U

Complex(const Complex<U>& c) :
real(c.real), imag(c.imag) {}

…
};

Now assignment of float Complex instance to double instance will fine,

int main() {

Complex< float > fc(0, 0);
Complex< double > dc = fc; // OK
return 0;

}

Because, here copy constructor

Complex(const Complex<U>& c) :

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

278

Will be instantiated for implicit template type (T) double and explicit template type

(U) float because now our Copy constructor is acting as explicity template function

written for two different parameters.

Important points to Note:

1. Only that instantiation of copy constructor is generated that is required.

2. Good compilers only generate required template function instances for

Complex class instantiation for a particular data type as shown below,

For statement: Complex< double > dc = fc;

the functions that will be generated for float and double instance of complex class are

shown below,

<double> Instantiation

class Complex<double> {

double real, imag;
public:

Complex(double r, double im) :
real(r), imag(im) {}

template <typename U>
Complex(const Complex<U>& c) :

real(c.real), imag(c.imag) {}
…

};

<float> Instantiation

class Complex<float> {

float real, imag;
public:

Complex(float r, float im) :
real(r), imag(im) {}

// No Copy Constructor code is generated as there is no need for it
…

};

This approach avoid code bloat (unnecessary code generation).

35.2. Class Template Specialization

Like function templates a class template may also not handle all the types

successfully, for example for char arrays (char *) the behaviour of template class

vector may be not be as desired as shown below,

Vector class to store integers

int main() {
Vector< int > iv1(2);
iv1[0] = 15;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

279

Vector class to store char arrays (char *)

We can write explicit specialization for Vector class for char arrays as we wrote for

template function isEqual,

int main() {
Vector< char* > sv1(2);
sv1[0] = "Aamir";

// compiler will generate a const C String having value Aamir and will assign its
//pointer to sv1[0]

sv1[1] = "Nasir";
Vector< char* > sv2(sv1); // issue of shallow copy
Vector< char* > sv3(2);
sv3 = sv1; // issue of shallow copy
return 0;

}

iv1[1] = 27;
Vector< int > iv2(iv1);
Vector< int > iv3(2);
iv3 = iv1;
return 0;

}

template<>
class Vector< char* > {
private:

int size;
char** ptr;

public:
// Vector< char* >(int = 10);
Vector(int = 10);
Vector(const Vector< char* >&);
virtual ~Vector();
int getSize() const;
const Vector< char* >& operator =(const Vector< char* >&);
const char*& operator [](int);
void insert(char*, int);

};
template<>
Vector<char*>::Vector(int s) {

size = s;
if (size != 0) {

ptr = new char*[size];
for (int i = 0; i < size; i++) ptr[i] = 0;

}
else

ptr = 0;
}
template<>

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

280

Vector< char* >::Vector(const Vector<char*>& copy) {
size = copy.getSize();
if (size == 0) {

ptr = 0;
return;

}

ptr = new char*[size];
for (int i = 0; i < size; i++)

if (copy.ptr[i] != 0) {
ptr[i] = new char[strlen(copy.ptr[i]) + 1];
strcpy(ptr[i], copy.ptr[i]);

}

else
ptr[i] = 0;

}

template<>
Vector<char*>::~Vector() {

for (int i = 0; i < size; i++)
delete [] ptr[i];

delete [] ptr;

}

template<>
int Vector<char*>::getSize() const {

return size;
}

template<>
const Vector<char*>& Vector<char*>::
operator=(const Vector<char*>& right)
{

if (this == &right)
return *this;

for (int i = 0; i < size; i++)
delete [] ptr[i];

delete [] ptr;
size = right.size;
if (size == 0) {

ptr = 0;
return *this;

}

ptr = new char*[size];
for (int i = 0; i < size; i++)

if (right.ptr[i] != 0) {
ptr[i] = new char[strlen(right.ptr[i]) + 1];
strcpy(ptr[i], right.ptr[i]);

}

else
ptr[i] = 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

281

This code is similar to general template Vector class with the difference that now we

are allocating and taking care of dynamic memory associated with char arrays.

The main program showing usage of above main program is given below,

template<>
const char*& Vector<char*>:: operator [](int index) {

if (index < 0 || index >= size) {
cout << "Error: index out of range\n";

exit(1);
}

return ptr[index];
}

template<>
void Vector< char* >::insert(char* str, int i) {

delete [] ptr[i];
if (str != 0) {

ptr[i] = new char[strlen(str)+ 1];
strcpy(ptr[i], str);

}
else

ptr[i] = 0;
}

int main() {

Vector< char* > sv1(2);
sv1[0] = “Aamir”;

// Error as now we have to changed code of overloaded subscript operator to
return //const Vector pointer now and we can not assign new value to constant
reference //of Vector now we have to use insert function explicity written for that
purpose

sv1.insert("Aamir", 0);

sv1.insert("Nasir", 1);
Vector< char* > sv2(sv1);
Vector< char* > sv3(2);
sv3 = sv1;

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

282

Lecture No.36

Recap

We saw in previous lecture that how we can implement our programming problems

easily using Generic Algorithms. Then we saw how we can add explicit template

functions to our Class templates to add our desired functionality.

A class template may not handle all the types successfully explicit specializations are

required to deal such types we can implement concept of template specialization for

such classes as well as we did for function templates.

Now, we move forward to see other cases for member templates,

36.1.Member Templates Revisited
We can add member templates for ordinary classes as well, for example following

code is adding any instance of Complex class to ComplexSet class, (as we know

complex class can be instantiated for int, float or double and ComplexSet class will be

collection of Complex class instantiations) as shown below,

Complex Class objects,

Complex<int> Complex<float>

real 5.3286

img 5.3284

Complex<double>

real 8

img 3

real 5.69

img 8.25

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

283

Complex<int> Complex<float> Complex<double>

real 8 real 5.69 real 5.3286

img 3 img 8.25 img 5.3284

ComplexSet Object

class ComplexSet {

template< class T >
insert(Complex< T > c) // any instance of complex class

{
// Add instance Complex class to Complex set class having many // Complex class
instances
}

};
int main() {

Complex< int > ic(10, 5);
Complex< float > fc(10.5, 5.7);
Complex< double > dc(9.567898, 5);
ComplexSet cs;
cs.insert(ic);
cs.insert(fc);
cs.insert(dc);
return 0;

}

We can also perform partial specialization instead of complete specialization,

complete specialization for example we can specialize a class to behave in a certain

manner in case of pointers or in case of parameter of a certain type, see the example

below to understand the difference between complete and partial specialization,

In partial specialization, the number of template parameters remains the same,

however, their nature varies (they become more specific).

a

36.2.Partial Specialization:

partial specialization of a template exists between general specialization and

template< class T, class U, class V > // general template
template< class T, class U, int > // partial specialization

template< class T, float , int > // partial specialization
template< int , float , int > // complete specialization

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

284

Example – Partial Specialization

Example – Partial Specialization

Example – Complete Specialization

Example – Complete Specialization

36.3. Function Templates

Similar to class templates a function template may also have partial specializations,

15 non type parameters are those parameters which are not template parameters

template< class T >

class Vector { };

template< class T >

class Vector< T* > { }; // Here T can take any type pointer

template< class T, class U, class V >

class A {};

template< class T, class V >
class A< T, T*, V > {}; // the parameters in header of are two but in class we are
using same three parameters

template< class T, class U, int I >

class A< T, U, I > {}; // here we have changed third parameter to non type
parameter15

template< class T >

class A< int, T*, 5 > {}; // here we have changed first parameter to non type
parameter and second is T * any data type pointer and third one is constant
expression 5

template< class T >

class Vector { };

template< >

class Vector< char* > { };

template< class T, class U, class V >
class A {};

template< >
class A< int, char*, double > {};

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

285

Example – Partial Specialization

template< class T, class U, class V >

void func(T, U, V);

template< class T, class V >

void func(T, T*, V);

template< class T, class U, int I >

void func(T, U);

template< class T >

void func(int, T, 7);

36.4. Complete Specialization

We have already used this complete specialization in case of function templates,

Example

Consider the following template

Following partial specialization of this function deals with pointers to objects,

So complete having all types of specializations for isEqual function is shown below,

template< >
bool isEqual< const char* >(

const char* x, const char* y) {
return (strcmp(x, y) == 0);

}

template< typename T >
bool isEqual(T x, T y) {

return (x == y);

}

template< typename T >

bool isEqual(T* x, T* y) {
return (*x == *y);

}

template< typename T >
bool isEqual(T x, T y) {

return (x == y);
}

template< typename T >
bool isEqual(T* x, T* y) {

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

286

36.5. Using Different Specializations

The code below shows how we can use different type of specializations for isEqual

function given above,

36.6. Non-type Parameters

The parameters given in template definition other than those used for mentioning

templates types are called non type parameters, for example,

template <class T, class U, int I>

Here int I is not type parameter.

Template parameters may include non-type parameters, the non-type parameters

may have default values, for example,

template <class T, class U, int I = 5>

They are treated as constants and are commonly used is static memory allocation

mean when we want to pass the length of memory we need in template at compile

time (statically) the example below shows all this,

36.7. Example – template class Array

return (*x == *y);
}

template< >
bool isEqual< const char* >(

const char* x, const char* y) {
return (strcmp(x, y) == 0);

}

int main() {

int i, j;

char* a, b;

Shape *s1 = new Line();

Shape *s2 = new Circle();

isEqual(i, j); // Template

isEqual(a, b); // Complete Sp.

isEqual(s1, s2); // Partial Sp.

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

287

Consider the Array class again that we discussed in template classes introduction, in

this template array class we are creating a c++ array of any built in data type by

passing array size in Array object constructor as shown below,

We can do the same by passing the array size as non type parameter while creating

an Array class object itself, for this we will need to change to template class

definition by adding a non type parameter SIZE as shown below,

Now we can simply pass array size as argument while creating Array class object,

template< class T >

class Array {

private:

T* ptr;

public:

Array(int size);

~Array();

…

};

template< class T >

Array<T>::Array() {

if (size > 0)

ptr = new T[size];

else

ptr = NULL;

}

int main() {

Array< char > cArray(10);

Array< int > iArray(15);

Array< double > dArray(20);

return 0;

}

template< class T, int SIZE >
class Array {
private:

T ptr[SIZE];
public:

Array();
…

};

int main() {
Array< char, 10 > cArray;
Array< int, 15 > iArray;
Array< double, 20 > dArray;

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

288

36.8. Default Non-type Parameters
We can set default value for this non type parameters, as we do for parameters

passed in ordinary functions,

Now default value will be used if we will not pass any value for array size,

36.9. Default Type Parameters

We can also specify default type for type parameters (template parameters like T, U,

V), consider the Vector class again we can mention default type of Vector class (that

type will be used in case we have not mentioned any type while creating Vector class

object)

Lecture No.37

return 0;
}

template< class T, int SIZE = 10 >
class Array {
private:

T ptr[SIZE];
public:

void doSomething();
…

};

int main() {
Array< char > cArray; // here Array of size 10 will be created
return 0;

}

template< class T = int > // default type for Vector class is now int
class Vector {

…
};

Vector< > v; // same as Vector< int > v

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

289

Lecture No. 37

37.1. Resolution Order

Consider the following specializations of template Vector class,

As these all are template implementations of class Vector, when compiler have to use

this template class having many specializations from partial to complete, compiler

searches all these specializations in a particular order called resolution order, so

resolution order it is the sequence in which compiler searches for required template

specialization and is given below,

a. First of all compiler looks for complete specialization

b. If it can not find any required complete specialization then it searches for

some partial specialization

c. In the end it searches for some general template

So in other words we can say that compiler searches template specializations from

more specific to more general.

Example – Resolution Order

The code below shows which particular instantiation of template Vector class will be

used,

Explanation of code:

In all three cases above, compiler will search for required template specialization in

the order given below,

int main() {
Vector< char* > strVector;

// Vector< char* > instantiated (complete specialization used)

Vector< int* > iPtrVector;

// Vector< T* > instantiated (partial specialization used)

Vector< int > intVector;

// Vector< T > instantiated (general specialization used)
return 0;

}

template< typename T >
class Vector { … };

template< typename T >
class Vector< T* > { … };

template< >

class Vector< char* > { … };

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

290

1. Complete specialization (Vector< char* >)

2. Partial specialization (Vector< T* >)

3. General specialization (Vector< T>)

 When compiler will find the following line,

Vector< char* > strVector;

It will find corresponding complete specialization and will stop there.

 When compiler will find the following line,

Vector< int* > iPtrVector;

It will start its searching from complete specializations available but there is only one

complete specialization for char * (Vector< char* >) and there is no complete

specialization for int *, so compiler will move to partial specialization and will try to

match some with int *, compiler will find one (Vector <T *>) that is working for all

pointer data types and therefore it will use that.

 When compiler will find the following line,

Vector< int > intVector;

It will start from complete specializations available but there is only one complete

specialization for char * (Vector< char* >) and there is no complete specialization for

int, so compiler will move to partial specialization and will try to match some with

int, compiler will find one partial speciation (Vector <T *>) that is working for all

pointer data types only hence not applicable here, then compiler will move to general

template class Vector <T> and will use it.

37.2. Function Template Overloading

We can specialize function templates also, this is called function template

overloading,

Consider the specializations of template function sort,

template< typename T >

void sort(T); // general template function

template< typename T >

void sort(Vector< T > &); // specialization for template Vector class instantiated

for any data type

template< >

void sort< Vector<char*> >(Vector< char* > &); // specialization for template

Vector instantiated for char * data type

void sort(char*); // specialization for char * data type.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

291

37.3. Resolution Order

 Ordinary Function

 Complete Specialization

 Partial Specialization

 Generic Template

This is the same order as was in case of class template with the addition of ordinary

functions (non template functions with the same name).

Example – Resolution Order

37.4. Templates and Inheritance

We can use inheritance comfortably with templates or their specializations, but we

must follow one rule:

 If we have a template class then all classes derived from it should also be

class templates.

 Derived class must take at least as many template parameters as the base

class requires for an instantiation.

37.5. Derivations in case of a General Template class

 A class template may inherit from another class template. Consider the

following code segment in which we are defining a template class A and we

are deriving another class B from it which is also a template class.

of templates,

1
2
3
4

Compiler searches target of a function call in the following order in case of function

int main() {

char* str = “Hello World!”;

sort(str); // Ordinary function sort(char*)

Vector<char*> v1 = {“ab”, “cd”, … };

sort(v1); //Complete specialization sort(Vector<char*> &)

Vector<int> v2 = { 5, 10, 15, 20 };

sort(v2); // partial specialization sort(Vector<T> &)

int iArray[] = { 5, 2, 6 , 70 };

sort(iArray); // general template sort(T)

return 0;

}

template< class T >

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

292

 A partial specialization may inherit from a class template

 Complete specialization or ordinary class cannot inherit from a class template

because as you can see complete specialization is in fact instance of the class

for one data type and in this way it is similar to ordinary class as ordinary

class also can be instantiated for its members of a particular data type,

Derivations in case of a partially specialized class

 A class template may inherit from a partial specialization

template< class T >
class B< T* > : public A< T >// same template parameter T is used here also

to //ensure that both classes will be instantiated for same data types

{ … };

int main() {

A< int > obj1;
B< int* > obj2;
return 0;

}

class A

{ … };

template< class T >

class B : public A< T >

// same template parameter T in both classes declarations ensures that both classes

will be instantiated for same types

{ … };

int main() {

A< int > obj1;

B< int > obj2;

return 0;
}

template< >
class B< char* > : public A< T >

{ … };
// Error: ‘T’ undefined, derived class is taking less parameters than base class

class B : public A< T >

{ … };
// Error: ‘T’ undefined, derived class is taking less parameters than base class

template< class T >

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

293

 A partial specialization may inherit from a partial specialization

 Complete specialization or ordinary class cannot inherit from a partial

specialization

Derivations in case of Completely Specialized class

class A

{ … };

template< class T >
class A< T* >

{ … };

template< class T >

class B : public A< T* >

{ … } ;

int main() {

A< int* > obj1;

B< int > obj2;

return 0;

}

template< class T >

class B< T* > : public A< T* >

{ … };

int main() {

A< int* > obj1;

B< int* > obj2;

return 0;

}

template< >

class B< int* > : public A< T* >

{ … }; // Error: Undefined ‘T’

class B : public A< T* >

{ … }; // Error: Undefined ‘T’

template< class T >

class B : public A< float* >

{ … };

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

294

 A partial specialization may inherit from a complete specialization

 A complete specialization may inherit from a complete specialization

 An ordinary class may inherit from a complete specialization

Derivations in case of Ordinary Class

 A class template may inherit from an ordinary class

int main() {

A< float* > obj1;

B< int > obj2;

return 0;

}

template< class T >

class B< T* > : public A< float* >

{ … };

int main() {

A< float* > obj1;

B< int* > obj2;

return 0;

}

template< >

class B< double* > : public A< float* >

{ … };

int main() {

A< float* > obj1;

B< double* > obj2;

return 0;

}

class B : public A< float* >

{ … };

int main() {

A< float* > obj1;

B obj2;

return 0;

}

class A

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

295

 A partial specialization may inherit from an ordinary class

 A complete specialization may inherit from an ordinary class

{ … };

template< class T >

class B : public A

{ … };

int main() {

A obj1;

B< int > obj2;
return 0;

}

class A{

};

template<class T>

class B {};

template <class T>

class B<T*>: public A{};

int main() {

A obj1;

B <int *> obj2;

return 0;

}

template <class T>

class B{};

template< >

class B< char* > : public A

{ … };

int main() {

A obj1;

B< char* > obj2;

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

296

Lecture No.38

38.1. Templates and Friends

Templates or their specializations are also compatible with friendship feature of C++

as they are with inheritance.

We consider the following rules when dealing with templates and friend functions

and classes.

38.2. Templates and Friends – Rule 1
When an ordinary function or class is declared as friend of a class template then it

becomes friend of each instantiation of that template class.

Consider the code below in which we are declaring a class A as friend of a class B

and in this class A, we are accessing private data of class B without any error,

In case of friend classes,

In case of friend functions,

class A {

…

};

template< class T >

class B {

int data;

friend A; // declaring A as friend of B
…

};

class A {

void method() {

B< int > ib;

B< char > cb

ib.data = 5; // OK: Accessing private member ‘data’ for class B
instantiation ib

cb.data = 6; // OK: Accessing private member ‘data’ for class B
instantiation cb

}

};

void doSomething(B< char >&);

template< class T >

class B {

int data;
friend void doSomething(B<char>&);

// declaring function doSomething as friend of B

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

297

In combined way both can be written as follows,

The Rule 1 is simple. Now, we go to Rule 2.

38.3. Templates and Friends – Rule 2
Rule 2 applies when we make template function or template class friend of another

template class.

According to Rule 2 when a friend function template or friend class template is

instantiated with the type parameters of class template granting friendship then its

instantiation for a specific type is a friend of that class template instantiation for that

particular type only. The example below explains this concept,

Consider the code below it has a template friend function and a template friend

class of template class B, note that in template class B we have given the same

parameter T to both template friend function doSomething and template friend class

A, according to Rule 2 when we write implementations of friend template class A

…

};

void doSomething(B< char >& cb) {

B< int > ib;

ib.data = 5; // OK: Accessing private data of class B
cb.data = 6; // OK: Accessing private data of class B

}

void doSomething(B< char >&);

class A { … };

template< class T > class B {

int data;

friend void doSomething(B<char>&);

friend A;

…

};

void doSomething(B< char >& cb) {

B< int > ib;

ib.data = 5; // OK
cb.data = 6; // OK

}

class A {

void method() {

B< int > ib;

B< char > cb

ib.data = 5; // OK
cb.data = 6; // OK

}

};

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

298

and friend template function doSomething we create instance of class B for same

date type for which function doSomething or class A will be instantiated as shown

below otherwise compiler will generate error,

/***

One template function and one template class

**/

template< class U >

void doSomething(U); // template function with template parameter U

template< class V >
class A { … }; // template function with template parameter V

/***

Making template function and template class friends of class B

Note that in code of class B below we are using same type parameter T for

instantiating template function doSomething and template class A.

**/

template< class T >
class B {

int data;

friend void doSomething(T); // granting friendship to template

doSomething in // class B

friend A< T >; // granting friendship to class A in class B

};

/***

Implementation of template function doSometing and template class A

As we have used same type parameter T in class B for declaring doSomething and

class A as friend so now we can only instantiate object of class B according to the

passed parameter

**/

template< class U >

void doSomething(U u) { // here template T will be passed as U

B< U > ib;

// it is OK as we are instantiating class B for same type that is passed from class B

i.e // T

ib.data = 78;

}

int main() {

int i = 5;

char c = ‘x’;

doSomething(i); // OK

doSomething(c); // OK

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

299

Now, suppose we change instantiation of doSomething and in it we cerate B class

instance for int,

Now, we can only create doSomething instance for integers as shown below, in case

we create that function instance for any other date type error will be generated by

compiler ,

The reason for the error is that we are creating class B instance for int data type in

function doSomething(), but function doSomething itself has been instantiated for

char in main.

Same Rule applied to template friend class A is shown below,

38.4. Templates and Friends – Rule 3

When a friend function / class template takes different ‘type parameters’ from the

class template granting friendship, then its each instantiation is a friend of each

int main() {
int i = 5;
char c = ‘x’;
doSomething(i); // OK
doSomething(c); // Error!
return 0;

}

template< class U >

void doSomething(U u) {

B< int > ib;

ib.data = 78;

}

class B< int > {

int data;

friend void doSomething(int);

friend A< int >;

};

template< class T >

class A {

void method() {

B< char > cb; // Error!

cb.data = 8;

B< int > ib; // OK

ib.data = 9;

}

};

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

300

instantiation of the class template granting friendship. Basically here we are

removing restriction imposed by Rule 2, due to the use of same type parameter in

class B while declaring function doSomething and class A as its friends as shown

below,

int main() {
int i = 5;
char c = ‘x’;
doSomething(i); // OK
doSomething(c); // OK
return 0;

}

For classes same Rule is applicable as follows,

……………………..

/**

class A implementation

**/

template< class T >

class A {

void method() {

B< char > cb; // OK!

cb.data = 8;

B< int > ib;

ib.data = 9;

}

template< class U >

void doSomething(U);

template< class V >

class A { … };

template< class T >
class B {

int data;

template< class W >
friend void doSomething(W); // type name is W
template< class S >
friend class A; // type name is S

};

template< class U >

void doSomething(U u) {

B< int > ib; // Now it is ok to use B for int in function doSomething

instantiated for // char in main

ib.data = 78;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

301

};

38.5. Templates and Friends – Rule 4

Rule 4 says that when we declare a template as friend of any class then all kinds

specializations of that function – explicit, implicit and partial, also becomes friends of

the class granting friendship.

In case of functions demonstration of this Rule is below,

template< class T >

class B {

T data;

template< class U >
friend class A; // granting friendship to class A for all data types

(Rule 3)

};

template< class U >

class A { // general template class A

A() {

B< int > ib;

ib.data = 10; // OK

}

};

template< class U >

class A< U* > { // template class A specialized for pointer data types

A() {

B< int > ib;

ib.data = 10; // OK

}

};

template< class T >

class B {

T data;

template< class U >
friend void doSomething(U); // granting friendship to

doSomething for all data types (According to Rule 3)

};

template< class U >

void doSomething(U u) {

B< int > ib;

ib.data = 56; // OK

}

template< >

void doSomething< char >(char u) {

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

302

Note:

You can see that there is need to concentrate on Rule 2 as it is somewhat difficult to

understand other rules are simple.

B< int > ib;

ib.data = 56; // OK

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

303

Lecture No.39

39.1. Templates & Static Members

We have studied in case of general classes that their static members are created and

initialized at class scope, meaning that memory is reserved for them when a class is

compiled and they are initialized as well at that time, they are not dependent on the

creation of any object of a class, all these tings are true in case of static members of

template classes as well with different that they are created when a template class is

instantiated for each date type, each instantiation of template class has its own copy

of static data members, suppose we have template class with static members,

compiler will create this template class implementation for different date types as

required, and each implementation will have its own copy of static data members.16

Consider the class A with a public static data member and a static member function.

(It is not good practice to make any data member public but it is declared as public

here to demonstrate that separate copy of this data member will be created for each

data type).

Output

ia.data = 5
ca.data = 7

16 We can take each implementation of template class for a particular data type as a general class
written explicitly for that data type.

#include <cstdlib>

#include <iostream>

using namespace std;

template< class T >

class A {

public:

static int data;

static void doSomething(T &);

};

template<class T>

int A<T>::data = 0;

int main() {

A< int > ia;

A< char > ca;

ia.data = 5;

ca.data = 7;

cout << "ia.data = " << ia.data << endl << "ca.data = " << ca.data;

system("PAUSE");

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

304

This output clearly shows that we have two separate copies of data for int and char

types.

Also note that each date type instantiation will have single copy of static members as

demonstrated below, here objects ia,ib and ic will have single copy of data being

shared by all of them as was the case for static members of a general class,

Output

ia.data = 9
ib.data = 9
ic.data = 9

As same data member is being shared so same member value is being changed

39.2. Templates – Conclusion

Templates provide

 Reusability

 Writability

#include <cstdlib>

#include <iostream>

using namespace std;

template< class T >

class A {
public:

static int data;

static void doSomething(T &);

};

template<class T>

int A<T>::data = 0;

int main() {

A< int > ia, ib , ic;

ia.data = 5;

ib.data = 7;

ic.data = 9;

cout << "ia.data = " << ia.data << endl << "ib.data = " << ib.data << endl <<

"ic.data = " << ic.data << endl;

system("PAUSE");

return 0;

}

Advantages:

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

305

Disadvantages:

 Can consume memory if used without care.

 Templates may affect reliability of a program as they give same type of

implementation for all data types with may not be correct for a particular

data type like isEqual function given below may give incorrect result for char

*.

template< typename T >
bool isEqual(T x, T y) {

return (x == y);
}

 As we are free to give any kind of implementation for a particular data type

we may given incorrect implementation, considering the above isEqual

function, it will produce incorrect result for char * (char arrays) as it will

compare first value of both arrays only,

int main() {

char* str1 = “Hello ”;
char* str2 = “World!”;
isEqual(str1, str2);

// Compiler accepts!
}

39.3. Generic Algorithms Revisited

We studied the concept of Generic Algorithms before that made our code type

independent as well as independent of underlying data structure,

For this we developed step by step the following find algorithm that is so generic

that it works for all containers,

template< typename P, typename T >

P find(P start, P beyond, const T& x) {

while (start != beyond && *start != x)

++start;
return start;

}

int main() {

int iArray[5];

iArray[0] = 15;

iArray[1] = 7;

iArray[2] = 987;

…

int* found;

found = find(iArray, iArray + 5, 7);

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

306

template< class T >

class Vector {

private:

T* ptr;

int size;
int index; // initialized with zero

public:

Vector(int = 10);

Vector(const Vector< T >&);

T& operator [](int);
int getIndex() const;
void setIndex(int i);
T& operator *();
bool operator !=(const Vector< T >& v);
Vector< T >& operator ++();

};

template< class T >
int Vector< T >::getIndex() const {

return index;
}

template< class T >
void Vector< T >::setIndex(int i) {

if (index >= 0 && index < size)
index = i;

}
template< class T >
Vector<T>& Vector<T>::operator ++() {

if (index < size)
++index;

return *this;
}
template< class T >
T& Vector< T >::operator *() {

39.4. Generic Algorithms Revisited

We claimed that this algorithm is generic, because it works for any aggregate object

(container) that defines following three operations

a. Increment operator (++)

b. Dereferencing operator (*)

c. Inequality operator (!=)

Let us now try to apply this generic algorithms to our template Vector class to

examine whether our generic algorithm find works on this container (our template

Vector class can store in it data of all types), for this our Vector class need to support

the three operations given above and we will have to add one more integer data

member index to track the traversal when we will apply increment operation (++),

we will also add its setter and getter members to access its value.

So now our modified Vector class is as follows,

Example – Vector

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

307

Now we want to apply our generic find method on this Vector container, as our

generic find algorithm is taking three parameters we will create three instances of

our Vector class as follows,

1. First Vector instance to store our data (integers in this case).

2. Second Vector instance to pass address of beyond (One position next to first

Vector instance)

3. Third Vector instance to get result

return ptr[index];
}
template< class T >
bool Vector<T>::operator !=(Vector<T>& v) {

if (size != v.size || index != v.index)
return true;

for (int i = 0; i < size; i++)

if (ptr[i] != v.ptr[i])
return true;

return false;

}

int main() {

Vector<int> iv(3);

// First Vector instance to store integer values from which we need to find

integer

// value

iv[0] = 10;

iv[1] = 20;

iv[2] = 30;

Vector<int> beyond(iv),found(3);

// declaring Second (beyond) and third (found) instance in same

statement

// beyond is initialized with first Vector instance iv

// third vector instance of length 3 will be used to store the result

beyond.setIndex(iv.getSize()); // We have set index of beyond to 3

where no

// element exists in it so it is behaving as pointing to one element next to

iv.

found = find(iv, beyond, 20);

cout<<“Index: ”<<found.getIndex();

return 0;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

308

39.5. Generic Algorithm

Now, we want to apply our generic algorithm find on this Vector container,

This algorithm will run as follows,

First iteration:

Iteration No

iv
size

beyond
size

iv
index

beyond
index

start !=
beyond

*start != x

1 3 3 0 3 true true

2 3 3 1 3 true true

3 3 3 2 3 true true

4 3 3 3 3 false undefined

In above scenario this algorithm will run till second iteration only as element 20 will

be found iv will be returned with index equal to 1 pointing to second element (20).

As you can see our generic algorithm is working fine with our container Vector class
instance.

However there are some other things to consider with this generic algorithm

implementation.

39.6. Problems

a. Our algorithm doesn’t support multiple traversals

We can move forward in single steps that may be very inefficient approach in case of

huge Vector object with large number of values, there is no facility to make multiple

movements like one in forward direction and at the same time once in reverse

direction,
b. Our algorithm shows inconsistent behavior

We generally use pointers to mark a position in a data structure of some primitive

type and then return it but here we are using whole container as marker and return it

e.g. we returned whole found object of Vector class to tell whether we find the value

or not we could have done that using single pointer value.

c. Supports only a single traversal strategy
Also there is no way to change traversal strategy (moving beyond more than one

value in single step).

template< typename P, typename T >
P find(P start, P beyond, const T& x) {

while (start != beyond && *start != x)
++start;

return start;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

309

template< class T >
class Vector {
private:

T* ptr;

int size;
public:

Vector(int = 10);
Vector(const Vector< T >&);
~Vector();
int getSize() const;
const Vector< T >& operator =(const Vector< T >&);
T& operator [](int);
T* first();
T* beyond();
T* next(T*);

};
template< class T >
T* Vector< T >::first() {

Lecture No.40

Recap

In previous lecture we studied that we can apply Generic Algorithms on any

container that supports three operations (++, *, !=)

Then we applied Generic Algorithms find on our Vector class by giving

implementation of these three operations in Vector class

At the end we saw that this approach has some drawbacks as given below,

• No support for multiple traversals

• Supports only a single traversal strategy

• Inconsistent behavior

We saw that we have to made distinct three Vector objects for a simple find method

this approach may not be efficient when we have a lot of elements in Vector object.

Now, we see how we can use pointers to modify this approach, we will use three

cursors (pointers) to vector class to avoid creating three Vector objects, in this

approach we will use pointers to store vector elements addresses (basic concept is

similar to link lists).

40.1. Cursors

• T* first()

• T* beyond()

• T* next(T*)

In this approach, we will add three methods given above in our Vector class that will

return pointer to elements of Vector elements instead of whole vector object.

Now, our vector class is as follows,

Vector

Aggregate object provides methods that help a cursor to traverse the elements

is a pointer that is declared outside the container / aggregate object A cursor
A better way is to use cursors.

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

310

Note our generic find method remained as it as shown below, simply we used

cursors (pointers) in our main method to make our code so efficient.

Cursors-Usage

are placed at consecutive memory locations or Vector whice we have implemented in

terms of arrays with extra functionality to overcome shortcomings of c++ arrays,

however cursors does now work with containers that use complicated data

structures and are non contiguous because in this case we can not simply use ++

operation that we used on our find method, in that case we have to rely on the that

container own traversal operations that results in inefficient approach of last lecture,

return ptr;
}

template< class T >
T* Vector< T >::beyond() {

return (ptr + size);
}

template< class T >
T* Vector< T >::next(T* current)
{

if (current < (ptr + size))
return (current + 1);

// else
return current;

}

int main() {

Vector< int > iv(3);

iv[0] = 10;
iv[1] = 20;
iv[2] = 30;
int* first = iv.first();
int* beyond = iv.beyond();
int* found = find(first,beyond,20);
return 0;

}

template< typename P, typename T >
P find(P start, P beyond, const T& x) {

while (start != beyond && *start != x)
++start;

return start;
}

This technique works fine for a contiguous sequence like c++ arrays where elements

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

311

Example – Works Fine

This cursor works fine when we have

a b c d e f g …

Example – Problem

a b c d …

Example – Problem

In case of non contiguous container we have issues because when we apply find

method on non contiguous containers our find method increment operation fails as

elements are not placed at next locations in order, in code below we are calling find

method for non contiguous container Set that we are going to study in next lectures

in this case our find method will give error as indicated,

Cursor

Cursor

int main() {

Set< int > is(3);

is.add(10);

is.add(20);

is.add(30);

ET* first = iv.first();

ET* beyond = iv.beyond();

ET* found = find(first, beyond, 20);

return 0;

}

template< typename P, typename T >

P find(P start, P beyond, const T& x) {

while (start != beyond && *start != x)

++start; // Error

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

312

ursors – Conclusion

In this case we need to use that container own increment operation like shown

below, then our find algorithm will work fine,

C
The

for each traversal, however

40.2. Iterators

We studied cursors previously, cursors were external pointer that we accessing

internal data of any container like vector, it is against the principle of data hiding as

we can access any container data using cursors so it is not good programming

practice to given access in container for the use of cursors (first, next, beyond

methods) we have alternate to cursors in the form of Iterators which are that traverse

Iterators are for containers exactly

like pointers are for ordinary data structures (you can see this line as we have made a

mechanism to declare pointers to our containers like we declare pointers to ordinary

data types, in case of cursors we were using ordinary data type pointer but in case of

Iterators we will use container pointers without exposing their internal details)

General Iterator class can point to any container because it is implemented using

templates, basically it provides us the functionality to create any container object

containers.

return start;

}

we can not use cursors in place of pointers for all

hat we are using external pointer so we can do now any kind of is t main benefit

a container without exposing its internal representation. Mean they are not external

pointers but internal data member of container.

Advantages

Disadvantages

template< typename CT, typename ET >
P find(CT& cont, const ET& x) {

ET* start = cont.first();
ET* beyond = cont.beyond();
while (start != beyond && *start != x)

start = cont.next(start);
return start;

}

int main() {
Set< int > is(3);
is.add(10);
is.add(20);

is.add(30);
int* found = find(is, 20);
return 0;

}

many traversals as we need only we will need one pointer i.e. as traversal in any way

Generic Iterators

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

313

using templates and operator overloading this has been explained in code below,

now we will not directly use methods first , beyond and next of container but we

will use them through Iterator class i.e we will create Iterator class objects and will

iterate container through these methods, however these objects will not be able to

directly access internal elements of container. A generic Iterator works with any kind

of container. We need the same set of operations in container class to use Iterators,

• T* first()

• T* beyond()

• T* next(T*)

Example – Generic Iterator

Generic Iterator

operator *
operator ++
operator !=
…

Iterator

first()
beyond()
next()
…

Container

template< class CT, class ET >

// Template Iterator class taking two Vector type parameters one for CT

(pointer to

// container type) and ET (pointer to individual element of the container)

class Iterator {

CT* container;

ET* index;

public:

Iterator(CT* c, bool pointAtFirst = true);

Iterator(Iterator< CT, ET >& it);

Iterator& operator ++();

ET& operator *();

bool operator !=(Iterator< CT, ET >& it);

};

template< class CT, class ET >

Iterator< CT, ET >::Iterator(CT* c, bool pointAtFirst) { // constructor
container = c;

if (pointAtFirst)

index = container->first();

else

index = container->beyond();

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

314

}

template< class CT, class ET >

Iterator< CT, ET >::Iterator(Iterator< CT, ET >& it) { // standard copy

constructor

container = it.container;

index = it.index;

}

template< class CT, class ET >

Iterator<CT,ET>& Iterator<CT,ET>:: operator ++() { // increment operator

index = container->next(index);

return *this;

}

template< class CT, class ET >

ET& Iterator< CT, ET >::operator *() // deference operator

{

return *index;

}

template< class CT, class ET >

bool Iterator< CT, ET >::operator !=(Iterator< CT, ET >& it) {

// inequality operator result will be false if containers are pointing

// to same memory location or at same index otherwise true

if (container != it.container || index != it.index)

return true;

// else

return false;

}

int main() {

Vector< int > iv(2);

Iterator < Vector<int>, int > it(&iv) , beyond(&iv, false);

// creating two Iterator objects of type <Vector <int >, int >

// i.e Iterator will have Vector class object for integers and element type

will be

// integers so index will be integer pointer

// first object it is taking Vector class object iv as reference and making

iterate

//index to point to its first element as bool pointAtFirst is true by default

// second object beyond is also taking same Vector object as reference

// so that it may also point to it by as poinAtFrist is false now so index will

point

// to one position beyond the last element in iv

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

315

Note that in above code we are NOT creating multiple objects of Vector class instead

we are creating objects of Iterator class against one Vector class object

Iterators – Advantages
a. With Iterators more than one traversal can be pending on a single

container

b. Iterators allow to change the traversal strategy without changing the

aggregate object

c. They contribute towards data abstraction by emulating pointers

iv[0] = 10;

iv[1] = 20;

Iterator< Vector<int>, int > found = find(it, beyond, 20);

// creating Iterator object found of type <Vector <int >, int > and saving in

it

// result of found note that now we have saved index of our vector

// class element if element is found, without creating extra element of
Vector class.

return 0;

}

template< typename P, typename T >

P find(P start, P beyond, const T& x) {

while (start != beyond && *start != x)

++start;

return start;

}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

316

Associative Containers

Lecture No.41

41.1. Standard Template Library:

When we started discussing about templates and generic algorithms, our basic aim

was to make standard solutions for different problems (like searching or comparison)

that should work for all data types and for all containers.

many different applications; we can use solutions from this template library in our

programs using different header files.

Standard Template Library

• Containers

• Iterators

• Algorithms

STL Promotes Reuse
STL promotes reuse as we don’t need to rewrite the already written standard code

for different problems, it saves our development time and cost . Secondly these

solutions have been thoroughly tested so there is no change of error due to their use.

41.2. STL Containers

Container is an object that contains a collection of data elements like we have studied

before now we will study them in detail.

STL provides three kinds of containers,

1. Sequence Containers

2.

3.

Sequence Containers

Sequence Containers

a. vector

• Rapid insertions and deletions at back end

• Random access to elements

b. deque17

17 deque behaves like queue (line) such that we can add elements on both side of it.

arrangement

Container Adapters

C++ programmers started working on these concepts from very beginning and gave

many standard solutions to these problems these standard solutions after the
approval of C++ standardization committee were added to a combined library name

as Standard Template Library (STL). STL is designed to operate efficiently across

STL History

STL Definition

STL Advantages

Algorithms

STL consists of three key components

A sequence organizes a finite set of objects, all of the same type, into a strictly linear

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

317

• Rapid insertions and deletions at front or back

• Random access to elements

c.

• Doubly linked list

• Rapid insertions and deletions anywhere

Example – STL Vector

Sample Output

18 list is linear data structure but can not directly move to any element using index we have to move to a
certain by moving sequentially from start element.

list18

#include <vector>

int main() {

std::vector< int > iv;

int x, y;

char ch;

do {

cout<<"Enter the first integer:";

cin >> x;

cout<<"Enter the second

integer:";

cin >> y;

iv.push_back(x);

iv.push_back(y);

cout << “Current capacity of iv = “ << iv.capacity() << endl;

cout << “Current size of iv =“<< iv.size() << endl;

cout<<"Do you want to continue?";

cin >> ch;
} while (ch == 'y');

return 0;

}

Enter the first integer: 1

Enter the second integer: 2

Current capacity of iv = 2

Current size of iv = 2

Do you want to continue? y

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

318

Sample Output

Sample Output

Example – STL Deque

Example – STL List

Enter the first integer: 3

Enter the second integer: 4

Current capacity of iv = 4

Current size of iv = 4

Do you want to continue? y

Enter the first integer: 5

Enter the second integer: 6

Current capacity of iv = 8

Current size of iv = 6

Do you want to continue? n

#include <deque>

int main() {

std::deque< int > dq;

dq.push_front(3);

dq.push_back(5);

dq.pop_front();

dq.pop_back()

return 0;

}

#include <list>

int main() {

std::list< float > _list;

_list.push_back(7.8);

_list.push_back(8.9);

std::list< float >::iterator it = _list.begin();

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

319

An associative container provide fast retrieval of data based on keys

Associative Containers

mean we add

elements in these containers using some formula and retriever the elements using the

same formula again. It ensures that we do not have to traverse the container one by

one but we directly move to the required element for example formula may be,

Value % 10 (remainder function),

Using this formula,

 11 will be stored at 1st place

 13 will be strored at 3rd place

and so on…

Note that this remainder function will always result in a value between 0 and 9 so if

we have an array of size 10 we can use this remainder function easily.

When we need to retrieve a value we will use inverse process to find index of value

and will then retrieve it.

Associative Containers

No duplicates

multiset

map

No duplicate keys

Duplicate keys allowed

Example – STL Set

#include <set>

int main() {

std::set< char > cs;

cout << “Size before insertions: “ << cs.size() << endl;

cs.insert(‘a’);

cs.insert(‘b');

cs.insert(‘b');

cout << “Size after insertions: ”

<< cs.size();

return 0;

set

_list.insert(++it, 5.3);

return 0;
}

Algorithm

6 will be stored at 6th place

Duplicates allowed

multimap

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

320

Output

Size before insertions: 0

Size after insertions: 2

Example – STL Multi-Set

Output

Size before insertions: 0

Size after insertions: 3

Example – STL Map

Output

Value @ key 2 is b

}

#include <set>

int main() {

std::multiset< char > cms;

cout << "Size before insertions: " << cms.size() << endl;

cms.insert('a');

cms.insert('b');

cms.insert('b');

cout << "Size after insertions: "

<< cms.size();

return 0;

}

#include <map>

int main() {

typedef std::map< int, char > MyMap;

MyMap m;

m.insert(MyMap::value_type(1, 'a'));

m.insert(MyMap::value_type(2, 'b'));

m.insert(MyMap::value_type(3, 'c'));

MyMap::iterator it = m.find(2);

cout << "Value @ key " << it->first << " is " << it->second;

return 0;
}

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

321

Example – STL Multi-Map

Output

Container Adapters

Container Adapters

a. stack19

• Last in first out (LIFO)

• Can adapt vector, deque or list

b. queue20

• First in first out (FIFO)

• Can adapt deque or list

19 Stack is basically a data structure used to store and retrieve values in speedy way because it grows
and shrinks from one end only you can consider it like pile of plates present at somewhere plates can be
added or retrieved from front end only. It is very efficient approach however it follows last in first out
(LIFO) principle meaning things are retrieved in reverse order from stack.
20 Queue is also data structure and it is similar to queue of people waiting to submit a form or pay their
utility bills queue follows first in first out principle (FIFO).
21 Priority Queue also follows FIFO principle with difference that we add elements in priority queue
according to certain priority its example may be printer queue which has priority option the person send

c. priority_queue21

containers

Algorithm

#include <map>

int main() {

typedef std::multimap< int, char > MyMap;

MyMap m;

m.insert(MyMap::value_type(1, 'a'));

m.insert(MyMap::value_type(2, 'b'));

m.insert(MyMap::value_type(3, 'b'));

MyMap::iterator it1 = m.find(2);

MyMap::iterator it2 = m.find(3);

cout << "Value @ key " << it1->first << " is " << it1->second << endl;

cout << "Value @ key " << it2->first << " is " << it2->second << endl;

return 0;

}

Value @ key 2 is b

Value @ key 3 is b

First-class Containers

Sequence and associative containers are collectively referred to as the first-class

A container adapter is a constrained version of some first-class container

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

322

• Always returns element with highest priority

• Can adapt vector or deque

41.3. Common Functions for All Containers
Common functions that can be applied to all containers are given below (these are

basically general functions we can use them with any class),

1.
2.

4. empty()
o Returns true if container contains no elements

5. max_size()
 o Returns the maximum number of elements

6. size()

o Return current number of elements
7. operator = ()

o Assigns one container instance to another
8. operator < ()

9. operator <= ()
o Returns true if the first container is less than or equal to the second

container
10. operator > ()

o Returns true if the first container is greater than the second
container

11. operator >= ()
o Returns true if the first container is greater than or equal to the

 second container

12. operator == ()
o Returns true if the first container is equal to the second container

13. operator != ()
o Returns true if the first container is not equal to the second

container

41.4. Functions for First-class Containers

As first class containers are both sequence and associative containers both allow fast

retrieval of data values so they have following additional functions,

1. begin()
 o Returns an iterator object that refers to the first element of the
 container

print having higher priority will find its data at higher level of the queue than other people having low
priority

o swaps the elements of the two containers

Default constructor
Copy Constructor

3. Destructor

o Returns true if the first container is less than the second container

14. swap ()

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

323

41.5. Container Requirements

As each container need to perform certain operations on the elements added to it like

their copy while creating another instance of container or their comparison while

performaing certain operation on them like their sorting , so the elements that we are

going to add in containers should provide this kind of basic functionality.
Examples of these functionalities are given below,

 When an element is inserted into a container, a copy of that element is made

using,

o Copy Constructor
o Assignment Operator

So, the elements need to be added to any container should provide copy and

assignment functionality. Builtin C++ data types already provide these types of

functionalities and we have studied that compiler also generates copy constructor

and overloaded assignment operator for our user defined data types like structures

and classes if we have not done so.

 Associative containers and many algorithms compare elements so the

functionality,

o Operator ==
o Operator <

2. end()

o Returns an iterator object that refers to the next position beyond the
last element of the container

o Returns an iterator object that refers to the last element of the
container

4. rend()

o Returns an iterator object that refers to the position before the first
element

5. erase(iterator)

o Removes an element pointed to by the iterator

6. erase(iterator, iterator)
o Removes the range of elements specified by the first and the

second iterator parameters

7. clear()
o erases all elements from the container

3. rbegin()

elements that are added to associative containers should have this

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

324

C++ doesnot provide functionality of comparison operator (==) or less than operator

(<) by itself so we have to provide this functionality by ourself in element class if we

want to use it in associative containers.

[STL components Iterators and Algorithms will be discussed in next lecture.]

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

325

efficiently without accessing internal details,

they are used to traverse Containers

they can bookmark a position in the container

that can be solved in one pass

Lecture No.42

We have studied about Iterators before;

now we see Iterators provided to us in

standard template library, Iterators are for containers like pointers are for ordinary

data structures STL Iterators provide pointer operations such as * and ++

42.2

We can divid

a. Input Iterators

b. Output Iterators

c. Forward Iterators

Input Iterators

Using input iterators we can read an element, and we can only move in forward

(moving container once in single direction from start

to end like find algorithm we studied in last lecture).

Output Iterators

(moving container once in single direction from start

to end like find algorithm we studied in last lecture).
Forward Iterators

(we can set one position as bookmark

while traversing the container this will be more understandable when we will see

example below)

They have all the capabilities of forward Iterators plus they can be moved in

backward direction, as a result they support multi-pass algorithms (algorithms that

need more that need to traverse container more than once).

They have all the capabilities of bidirectional Iterators plus they can directly access

any element of a container.

42.3.Iterator Summary:
Following diagram shows the capabilities and scope of different iterators you can see

that Random access iterators have all the capabilities and input and output iterators

have least capabilities,

e. Random-access Iterators

e Iterators given to us in STL in the following categories,
.Iterator Categories

Using output iterators we can read an element, and we can only move in forward

direction one element at a time, these can be used in implementing those algorithms

that can be solved in one pass

42.1.Iterators

d. Bidirectional Iterators

direction one element at a time, these can be used in implementing those algorithms

Forward iterators have the capabilities of both input and output Iterators, in addition

Bidirectional Iterators

Random Access Iterators

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

326

Forward

Input Output

We can use the following different types of iterators with different types of

containers, (it is according to the nature of container)

42.5. Sequence Containers

Container
Type

Iterator Type Reason

vector random access (as we can access any element

of vector using its index so

we can use random access

iterator)

deque random access (in deque we can add elements

only in front and back

however we can access any

element of deque using its

index so we can use random

access Iterator)

 list bidirectional (in list we can move in both
directions in sequence,

however cannot access an

element at specific index

randomly so we can use

bidirectional iterator with

list)

Random Access

Bidirectional

42.4.Container and Iterator Types:

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

327

42.6. Associative Containers

In associative containers we save values based on keys, and we cannot access

elements randomly based on indexes as elements are not stored at contiguous

memory locations, however, we can traverse them in both directions so, we can use

bidirectional iterators with them.

Container Type Iterator Type

-- set --bidirectional

-- multiset -- bidirectional

-- map -- bidirectional

-- multimap -- bidirectional

42.7. Container Adapters

Container adapters are made with special restrictions, most important restriction is

that they don’t allow free traversal of their elements so we CANNOT use iterators

with them as given below,

Container Type Iterator Type

-- stack -- (none)

-- queue -- (none)

-- priority_queue -- (none)

42.8. Iterator Operations

Iterators support following operations,

All Iterators support,

Input Iterators support,

++p

pre-increment an iterator

post-increment an Iterator
p++

*p

Dereference operator used as rvalue (right value mean they can be used on right side

of expression) for reading only, not for assigning value lvalue (left value, assignment

only taken place when we are allowed to use them as left value)
p1 = p2

Assignment (two Iterators)

p1 == p2

Equality operator

Inequality operator

p->

p1 != p2

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan

Join VU Group: https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

328

Output Iterators support,

Dereference operator (here we can use it for assigning new value lvalue as iterator is

output iterator that can be used to set any value)

Assignment

As Forward Iterators have combined properties of both input and output iterators so

they support operations of both input and output Iterators.

Bidirectional Iterators

As bidirectional iterators can move in backward direction also, so they support

decrementing operations also (moving pointer one element back),

--p

Pre-decrement operator

p--

Post-decrement operator

Besides the operations of bidirectional Iterators, they also support

Access Operator

*p

p1 = p2

Random-access Iterators

p + i
Result is an iterator pointing at p + i

p – i

Result is an iterator pointing at p – i

Increment iterator p by i positions

p –= i

Decrement iterator p by i positions

p[i]

Returns a reference of element at p + i

p1 < p2
Returns true if p1 is before p2 in the container

Returns true if p1 is before p2 in the container or p1 is equal to p2

Returns true if p1 is after p2 in the container
p1 >= p2

Returns true if p1 is after p2 in the container or p1 is equal to p2

p1 > p2

p1 <= p2

p += i

https://chat.whatsapp.com/BRsFI1ajc3uAYeILz789fO

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 329

Example – Random Access Iterator

Sample Output

Example – Bidirectional Iterator

Example – Bidirectional Iterator

typedef std::vector< int > IntVector;

int main() {

const int SIZE = 3;

int iArray[SIZE] = { 1, 2, 3 };

IntVector iv(iArray, iArray + SIZE);

IntVector::iterator it = iv.begin();

cout << “Vector contents: ”;

for (int i = 0; i < SIZE; ++i)

cout << it[i] << ", ";

return 0;

}

Vector contents: 1, 2, 3,

typedef std::set< int > IntSet;

int main() {

const int SIZE = 3;

int iArray[SIZE] = { 1, 2, 3 };

IntSet is(iArray, iArray + SIZE);

IntSet::iterator it = is.begin();

cout << “Set contents: ”;

for (int i = 0; i < SIZE; ++i)

cout << it[i] << ", "; // Error

return 0;
}

typedef std::set< int > IntSet;

int main() {

const int SIZE = 3;

int iArray[SIZE] = { 1, 2, 3 };

IntSet is(iArray, iArray + SIZE);

IntSet::iterator it = is.begin();

cout << “Set contents: ”;

for (int i = 0; i < SIZE; ++i)

cout << *it++ << ", "; // OK

return 0;

}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 330

Sample Output

Example – Bidirectional Iterator

Sample Output

Example – Input Iterator

Set contents: 1, 2, 3,

typedef std::set< int > IntSet;

int main() {

const int SIZE = 3;

int iArray[SIZE] = { 1, 2, 3 };

IntSet is(iArray, iArray + SIZE

IntSet::iterator it = is.end();

cout << “Set contents: ”;

for (int i = 0; i < SIZE; ++i)

cout << *--it << ", ";
return 0;

}

);

Set contents: 3, 2, 1,

#include <iostream>

using std::cin;

using std::cout;

using std::endl;

#include <iterator>

int main() {

int x, y, z;

cout << "Enter three integers:\n";

std::istream_iterator< int > inputIt(cin);

x = *inputIt++;

y = *inputIt++;

z = *inputIt;

cout << "x = " << x << endl;

cout << "y = " << y << endl;

cout << "z = " << z << endl;

return 0;

}

int main() {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 331

Example – Output Iterator

Example – Output Iterator

42.9. Algorithms

STL includes 70 standard algorithms

These algorithms may use Iterators to manipulate containers

STL algorithms also work for ordinary pointers and data structures

 An algorithm works with a particular container only if that container supports a
particular Iterator category

A multi-pass algorithm for example, requires bidirectional Iterator(s) at least

Algorithm: Examples

Mutating-Sequence Algorithms (that required changing of elements position)

int x = 5;

std::istream_iterator< int > inputIt(cin);

*inputIt = x; // Error

return 0;

}

int main() {

int x = 1, y = 2, z = 3;

std::ostream_iterator< int > outputIt(cout, ", ");

*outputIt++ = x;

*outputIt++ = y;

*outputIt++ = z;

return 0;

}

int main() {

int x = 1, y = 2, z = 3;

std::ostream_iterator< int > outputIt(cout, ", ");

x = *outputIt++; // Error

return 0;

}

Copy

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 332

Non-Mutating-Sequence Algorithms (that don’t require changing of element

position)

Numeric Algorithms (involves mathematical calculation)

Example – copy Algorithm

copy_backward

fill

fill_n

generate

generate_n

iter_swap

partition

………

adjacent_find

count

count_if

equal

find

find_each

find_end

find_first_of

…

accumulate

inner_product

partial_sum

adjacent_difference

#include <iostream>

using std::cout;

#include <vector>

#include <algorithm>
typedef std::vector< int > IntVector;

int main() {

int iArray[] = {1, 2, 3, 4, 5, 6};

IntVector iv(iArray, iArray + 6);

std::ostream_iterator< int >

output(cout, ", ");

std::copy(begin, end, output);

return 0;

}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 333

Output

Example – fill Algorithm

CS304 Highlighted Handouts By KST
Learning Paid Services Available
LMS Handling
Assignments, Quiz, GDBs
Paid Projects
CS519 & CS619 Projects
Online Classes
Paid Courses
0347-
2506073

CS304 Highlighted Handouts By KST
Learning Paid Services Available
LMS Handling
Assignments, Quiz, GDBs
Paid Projects
CS519 & CS619 Projects
Online Classes
Paid Courses
0347-
2506073

1, 2, 3, 4, 5, 6,

#include <iostream>

using std::cout;

using std::endl;

#include <vector>

#include <algorithm>

typedef std::vector< int > IntVector;

int main() {

int iArray[] = { 1, 2, 3, 4, 5 };

IntVector iv(iArray, iArray + 5);

std::ostream_iterator< int > output(cout, ", ");

std::copy(iv.begin(), iv.end(), output);

std::fill(iv.begin(), iv.end(), 0);

cout << endl;

std::copy(iv.begin(), iv.end(), output);

return 0;
}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 334

Lecture No.43

Techniques for Error Handling:

Sometimes our program terminates abnormally, sometimes they even crash the

external resource error (like network or hard disk).

If we allow these errors to happen we may lose our work for example if a text editor

terminates abnormally without allowing us to save our work we will lost our work,

so it is important that we add some type of error handling mechanism in our

program, we use the following techniques for error handling,

a.

b. Graceful termination

c. Return the illegal value

d. Return error code from a function

e. Exception handling

43.1. Example – Abnormal Termination

In abnormal termination we do nothing and our program is terminated abnormally

by operating system if case of any error without saving program data,

input/output error, sometimes it is our program fault and sometimes it is some

Abnormal termination

system, these errors occur mostly due to incorrect memory access or due to

void GetNumbers(int &a, int &b) {

cout << “\nEnter two integers”;

cin >> a >> b;

}

int Quotient(int a, int b){

return a / b;

}

void OutputQuotient(int a, int b, int quo) {

cout << “Quotient of ” << a << “ and ”

<< b << “ is ” << quo << endl;

}

int main(){

int sum = 0, quot;

int a, b;

for (int i = 0; i < 10; i++){

GetNumbers(a,b);

quot = Quotient(a,b);

sum += quot;

OutputQuotient(a,b,quot);

}

cout << “\nSum of ten quotients is ”<< sum;
return 0;

}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 335

Output

43.2. Graceful Termination

Example – Graceful Termination

Output

43.3. Error Handling

a. Return Illegal Value

The clean-up tasks are of local nature only; there remains the possibility of

information loss.

check for expected errors (using if conditions),

causes the wastage of resources, program performs clean up tasks, mean we add

Enter two integers

10

10

Quotient of 10 and 10 is 1

Enter two integers

10

0

Program terminated abnormally

Program can be designed in such a way that instead of abnormal termination, that

int Quotient (int a, int b) {

if(b == 0){

cout << “Denominator can’t “ << “ be zero” << endl;

// Do local clean up

exit(1);

}

return a / b;

}

Enter two integers

10

10

Quotient of 10 and 10 is 1

Enter two integers

10

0

Denominator can’t be zero

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 336

Example – Return Illegal Value

Output

b. Return Error Code
Programmer has avoided the system crash but the program is now in an inconsistent

Example – Return Error Code

Part of main Function

int Quotient(int a, int b){

if(b == 0)

b = 1;

OutputQuotient(a, b, a/b);

return a / b ;

}

int main() {

int a,b,quot; GetNumbers(a,b);

quot = Quotient(a,b);

return 0;

}

Enter two integers

10

0

Quotient of 10 and 1 is 10

state

bool Quotient (int a, int b, int & retVal) {

if(b == 0){

return false;

}

retVal = a / b;

return true;

}

for(int i = 0; i < 10; i++){

GetNumbers(a,b);

while (! Quotient(a, b, quot)) {

cout << “Denominator can’t be ” << “Zero. Give input again

\n”;

GetNumbers(a,b);

}
sum += quot;

OutputQuotient(a, b, quot);

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 337

Output

Error Handling

 Issues in Error Handling:

 Programmer sometimes has to change the design to incorporate error

handling

 Programmer has to check the return type of the function to know whether an

 Programmer of calling function can ignore the return value

crash later

The error handling code increases the complexity of the code

o Error handling code is mixed with program logic
o The code becomes less readable
o Difficult to modify

The example below shows these concepts,

Example- without error handling

Example – with error handling

 The result of the function might contain illegal value, this may cause a system

}

Enter two integers

10

0

Denominator can’t be zero. Give input again.

Enter two integers

10

10

Quotient of 10 and 10 is 1

...//there will be exactly ten quotients

error has occurred

 Program’s Complexity Increases

int main() {

function1();

function2();

function3();

return 0;

}

int main(){

if(function1()) {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 338

43.4. Exception Handling

 Exception handling is a much elegant solution as compared to other error

handling mechanisms

 It enables separation of main logic and error handling code

43.5. Exception Handling Process

 Programmer writes the code that is suspected to cause an exception in try

 Code section that encounters an error throws an object that is used to

 Catch blocks follow try block to catch the object thrown

Syntax – Throwing an exception

 The keyword throw is used to throw an exception

 Any expression can be used to represent the exception that has occurred

o throw X;
o throw (X);

Examples

int a;

Exception obj;

throw 1; // throw with literal (const)

throw (a); // throw with variable

throw obj; // throw with object

throw Exception(); // anonymous object

throw 1+2*9; // mathematical expression

 Primitive data types may be avoided as throw expression, as they can cause

ambiguity

 Define new classes to represent the exceptions that has occurred

o This way there are less chances of ambiguity

represent exception

if(function2()) {

if(function3()) {

...

}

else cout << “Error Z has occurred”;

}

else cout << “Error Y has occurred”;

}

else cout << “Error X has occurred”;

return 0;

}

block

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 339

Syntax – Try and Catch

Catch Blocks

 Catch handler must be preceded by a try block or an other catch handler

 Catch handlers are only executed when an exception has occurred

 Catch handlers are differentiated on the basis of argument type

 The catch blocks are tried in order they are written

 They can be seen as switch statement that do not need break keyword

Complete Example of try catch and throw:

Related part of main getting user input and calling Quotient method in try catch

block this method will throw exception (DividebyZero class object) if user enter no. b

(denominator, divider) equal to zero and this exception will be caught in catch block

below, (you can write it as complete program to test the actual working of program)

int main () {

try {

... exception with be thrown here in case of error

}

catch (Exception1) { // exception with be caught here if

exception was thrown

...

}

catch (Exception2 obj) { // exception with be caught here if

exception was

// thrown

...

}

return 0;

}

class DivideByZero { // class just use to indicate and throw an exception

public:

DivideByZero() {

}

};

int Quotient(int a, int b){

if(b == 0){

throw DivideByZero(); // throwing above class object as

exception in

// case of error

}

return a / b;

}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 340

Output

Catch Handler

 The catch handler catches the DivideByZero exception through anonymous

object

 Program logic and error handling code are separated

 We can modify this to use the object to carry information about the cause of
error

Separation of Program Logic and Error Handling

You can see now that error handling code is separated from man logic of program as

shown below,

for(int i = 0; i < 10; i++) {

try{

GetNumbers(a,b);

quot = Quotient(a,b);

OutputQuotient(a,b,quot); sum += quot;

}

catch(DivideByZero) {

i--;

cout << “\nAttempt to divide

numerator with zero”;

}

}

Enter two integers

10

10

Quotient of 10 and 10 is 1

Enter two integers

10

0

Attempt to divide numerator (dividend) with zero

...

int main() {

try {
function1();

function2();

function3();

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 341

}

catch(ErrorX) { ... }

catch(ErrorY) { ... }

catch(ErrorZ) { ... }

return 0;

}

CS304 Highlighted Handouts By KST
Learning Paid Services Available
LMS Handling
Assignments, Quiz, GDBs
Paid Projects
CS519 & CS619 Projects
Online Classes
Paid Courses
0347-
2506073

CS304 Highlighted Handouts By KST
Learning Paid Services Available
LMS Handling
Assignments, Quiz, GDBs
Paid Projects
CS519 & CS619 Projects
Online Classes
Paid Courses
0347-
2506073

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 342

Lecture No.44

Previous Lecture Example of Exception Handling:

Now, we want to see what happens actually to local variables in try block when an

exception is thrown, this concept is called stack unwinding which tells how try catch

blocks are un winded (executed) when there are nested function calls involving try

catch blocks or nested try catch blocks themselves.

44.1.Stack Unwinding
The flow control (the order in which code statements and function calls are made) as

a result of throw statement is referred as “stack unwinding”

Stack Unwinding can take place in the following two ways,

1. When we have nested try catch blocks (one try catch block into other try catch

block), for example
try {

try {

} catch(Exception e) {

}

class DivideByZero {

public:

DivideByZero() {

}

};

int Quotient(int a, int b){

if(b == 0){

throw DivideByZero();

}

return a / b;

}

//main Function

int main() {

try{ …

quot = Quotient(a,b);

…

}

catch(DivideByZero) {

…

}

return 0;

}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 343

} catch(exception e){

}

2. When exception is thrown from nested functions having try catch blocks

void function1() {

throw Exception();
}
void function2() {

function1();

}

int main() {
try{

function2();

} catch(Exception) { }
return 0;

}

Stack unwinding is more complex than simple nested function calls (or recursive

function calls) as in case of nested try catch block, exception can be thrown from any

try block, so transfer of control to catch handler is complex, we see this is detail,

First note these points,

 All the local objects of an executing block are destroyed when an exception is

thrown

 Dynamically allocated memory is not destroyed automatically

 If no catch handler catches the exception the function terminate is called,

which by default calls function abort

Examples

Nested Functions example:

In example below we have two functions function1 and function2, function2 is

calling function1, in function1 we have added exception throwing code so it is

necessary now to call function1 in try catch blocks otherwise compiler will generated

an error, we are calling function2 in main, now note that function2 ifself is calling

function1 that needs try catch block so we need to call function2 in try catch block,

(otherwise compiler will generate an error), in case function1 code generates an

exception stack unwinding takes place control will be returned to function2 which

will return control to main the diagram below code explain this concept,

void function1() {

throw Exception();

}

void function2() {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 344

function1()

function2()

main()

Nested Try catch blocks example:

The stack unwinding is also performed if we have nested try catch blocks,

Example

When an exception will be thrown from a try block control will go to catch block of

that try block if it is not appropriate catch block then control will go to ctach blocks of

other try blocks above it one by one, Stack Unwinding will occur in following order

in above example,

int main() {

try {

try {

throw 1;

}

catch(float) { }

}

catch(int) {

}

return 0;

}

function1();

}

int main() {

try{

function2();

} catch(Exception) { }

return 0;

}

main()

function2()

main()

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 345

 If exception is thrown from innermost try block,

 Firstly the catch handler with float parameter is tried (innermost), this

catch handler will not be executed as its parameter is of different type

– no coercion (match)

 Secondly the catch handler with int parameter is tried and executed

 If exception is thrown from outer try block, then as there is no other

try block above it so only this block catch handler will be matched

with exception if it matches catch block will be exectuted otherwise

default terminate and abort functions (discussed in this lecture start)

will be called.

Catch Handler

 We can modify the code in catch handler to use the exception object to carry

information about the cause of error

 The exception object thrown is copied to the object given in the handler

 We pass the exception as reference instead of by value in the catch handler to

avoid problem caused by shallow copy

Example

We have added a method Print in our exception class that to show the user cause of

error,

class DivideByZero { // exception class

int numerator;

public:
DivideByZero(int i) { // constructor taking one parameter (dividend)

numerator = i;

}

void Print() const{
cout << endl << numerator
<< “ was divided by zero”;

}

};

int Quotient(int a, int b) {

if(b == 0){

throw DivideByZero(a);

}

return a / b;

}

for (int i = 0; i < 10; i++) {

try {

GetNumbers(a, b);

quot = Quotient(a, b); ...

} catch(DivideByZero & obj) {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 346

obj.Print();

i--;

}

}

Body of main Function
Output

Catch Handler

The object thrown as exception is destroyed when the execution of the catch handler

completes

Avoiding too many Catch Handlers

There are two ways to catch more then one object in a single catch handler

 Use inheritance

 Catch every exception

Inheritance of Exceptions

In inheritance we Group all exceptions according to their categories and catch single

exception for whole category for example for code below we have divided the

exceptions as follows,

 Math exceptions (Divide by Zero and IntegerOutOfRange exception)

 Input Output exceptions(InputStreamError)

Enter two integers

10

10

Quotient of 10 and 10 is 1

Enter two integers

10

0

10 was divided by zero

...

try{

...

}

catch(DivideByZero){

...

}

catch(IntergerOutOfRange){

...

}

catch (InputStreamError){

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 347

Example–With Inheritance

Catch Every Exception

C++ provides a special syntax that allows to catch every object thrown

Re-Throw

A function can catch an exception and perform partial handling

Re-throw is a mechanism of throw the exception again after partial handling

throw; /*without any expression*/

Example

catch (…)

{

//...

}

}

try{

...

}

catch (MathError){

}

catch (InputStreamError){

}

int main () {

try {

Function();

}

catch(Exception&) {

...

}

return 0;

}

void Function() {

try {

/*Code that might throw

an Exception*/

}

catch(Exception&) {

if(can_handle_completely) {

// handle exception

} else {

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 348

Order of Handlers

Order of the more than one catch handlers can cause logical errors when using

inheritance or catch all (however compiler will not generate any error in this case)

Example

// partially handle exception
throw; //re-throw exception

}

} // end of catch

} // end of function

try{

...

}

catch (...) {

}

catch (MathError) { ...

}

catch (DivideByZero) {

}

...

...

// last two handlers can never be invoked as general exception class will catch all
// exceptions including the next two

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 349

Lecture No.45

45.1. Resource Management

 Function acquiring a resource must properly release it

 Throwing an exception can cause resource wastage

Example

In case of exception the call to fclose will be ignored and file will remain opened.

We can remove this issue in following ways,

First Attempt

But it is,code duplication.

Second Attempt:
Adding a separate class file handling what will have constructor to open file and

destructor to close it, as you know objects and local variables in try block are

destroyed automatically when try block complete its execution or in case exception is

thrown, so this file object will automatically be destroyed,

int function1(){

FILE *fileptr = fopen(“filename.txt”,“w”);

...

throw exception();

...

fclose(fileptr);

return 0;
}

int function1(){

try{

FILE *fileptr = fopen(“filename.txt”,“w”);

fwrite(“Hello World”,1,11,fileptr);

...

throw exception();

fclose(fileptr);

} catch(...) {

fclose(fileptr); // adding fclose in catch handler as well

throw;

}

return 0;

}

class FilePtr{

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 350

 The destructor of the FilePtr class will close the file

 Programmer does not have to close the file explicitly in case of error as well
as in normal case

Exception in Constructors

Exception thrown in constructor cause the destructor to be called for any object built

as part of object being constructed before exception is thrown

Destructor for partially constructed object is not called

Example

class Student{

};

String FirstName;

String SecondName;

String EmailAddress;

…

If the constructor of the SecondName throws an exception then the destructor for the

First Name will be called.

So, generally we can say that in constructor if an exception is thrown than all objects

created so far are destroyed, if EmailAddress String object had thrown exception

then SecondName and FirstName objects will be destroyed using their destructor.

However destructor of Student class itself will not be called in any case as its object

was not completely constructed.

FILE * f;

public:

FilePtr(const char *name, const char * mode) {

f = fopen(name, mode);

}

~FilePtr() {

fclose(f);

}

operator FILE * () {

return f;

}

};

int function1(){

FilePtr file(“filename.txt”,“w”);

fwrite(“Hello World”,1,11,file);

throw exception();

...

return 0;

}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 351

Exception in Initialization List

Exception due to constructor of any contained object or the constructor of a parent

class can be caught in the member initialization list

Example

Student::Student (String aName) : name(aName)

/*The constructor of String can throw a exception*/

{

...

}

Exception in Initialization List

The programmer may want to catch the exception and perform some action to rectify

the problem

Example

Student::Student (String aName)

try : name(aName) {

...

}

catch(…) {

}

Exceptions in Destructors

Exception should not leave the destructor, because when a destructor is running it

means that we have a stack unwinding going on that has run this destructor to delete

this object if this exception will be allowed to run it will run another stack unwinding

mechanism and this will be called leaving the exception from destructor and is not

allowed. C++ allows running only one stack unwinding process at a time.

If a destructor is called due to stack unwinding, and an exception leaves the

destructor then the function std::terminate() is called, which by default calls the

std::abort()

Example

class Exception;

class Complex{

…

public:

~Complex(){

throw Exception();

}

};

int main(){

try{

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 352

So add catch exception in destructor itself as shown below, in this case single stack

unwinding process may handle the situation.

Example

Exception Specification

 Program can specify the list of exceptions a function is allowed to throw

 This list is also called throw list

 If we write empty list then the function wont be able to throw any exception
Syntax

void Function1() {…}

void Function2() throw () {…}

void Function3() throw (Exception1, …){}

Here,

 Function1 can throw any exception

 Function2 cannot throw any Exception

 Function3 can throw any exception of type Exception1 or any class derived

from it

Exception Specification

 If a function throws exception other then specified in the throw list then the

function unexpected is called

Complex obj;

throw Exception();

…

}

catch(…){

}

return 0;

}

// The program will terminate abnormally

Complex::~Complex()

{

try{

throw Exception();

}

catch(…){

}

}

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 353

 The function unexpected calls the function terminate and terminates the
program

 If programmer wants to handle such cases also then he must provide a
handler function and tell the compiler to call handler using set_unexpected

Course Review

We have studied the following topics in this course,

Object Orientation

 What is an object

 Object-Oriented Model

o Information Hiding
o Encapsulation
o Abstraction

 Classes

Object Orientation

 Inheritance

o Generalization
o Sub-Typing
o Specialization

 “IS-A” relationship

 Abstract classes

 Concrete classes

Object Orientation

 Multiple inheritance

 Types of association

o Simple association
o Composition
o Aggregation

 Polymorphism

Classes – C++ Constructs

 Classes

o Data members
o Member functions

 Access specifier

 Constructors

 Copy Constructors

 Destructors

Classes – C++ Constructs

 this pointer

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 354

 Constant objects

 Static data member

 Static member function

 Dynamic allocation

Classes – C++ Constructs

 Friend classes

 Friend functions

 Operator overloading

o Binary operator
o Unary operator
o operator []
o Type conversion

Inheritance – C++ Constructs

 Public inheritance

 Private inheritance

 Protected inheritance

 Overriding

 Class hierarchy

Polymorphism – C++ Constructs

 Static type vs. dynamic type

 Virtual function

 Virtual destructor

 V-tables

 Multiple inheritance

 Virtual inheritance

Templates – C++ Constructs

 Generic programming

 Classes template

 Function templates

 Generic algorithm

 Templates specialization

o Partial Specialization
o Complete specialization

Templates – C++ Constructs

 Inheritance and templates

 Friends and templates

 STL

o Containers
o Iterators

Object Oriented Programming (CS304) VU

© Virtual University of Pakistan 355

o Algorithms

Writing Reliable Programs

 Error handling techniques

o Abnormal termination
o Graceful termination
o Return the illegal value
o Return error code from a function
o Exception handling

Note:

Please give your suggestions/comments about this document at the email address
cs304@vu.edu.pk, in the following format

CS304 Highlighted Handouts By KST
Learning Paid Services Available
LMS Handling
Assignments, Quiz, GDBs
Paid Projects
CS519 & CS619 Projects
Online Classes
Paid Courses
0347-
2506073

Page No.# Issue/Error

mailto:cs304@vu.edu.pk

	Lecture No.01
	01.1. Introduction
	Examples:
	Objects in a School
	01.2. What is a Model?
	Model Examples
	01.3. OO Models:
	Example 1– Object Oriented Model
	01.4. Object-Orientation - Advantages
	01.5. What is an Object?
	01.6. Tangible and Intangible Objects Examples of Tangible Objects:
	We will identify Ali using his name.

	Examples of Intangible Objects (also called as conceptual objects):
	We will assign our own generated unique ID in the model for Time object

	01.7. Summary:

	Lecture No.02
	02.1. Information Hiding:
	Real Life Examples of Information Hiding
	Advantages of Information Hiding
	It simplifies our Object Oriented Model:
	It is a barrier against change propagation

	02.2. Encapsulation
	Examples of Encapsulation
	Advantages of Encapsulation
	a. Simplicity and clarity
	b. Low complexity
	c. Better understanding
	02.3. Interface
	Example – Interface of a Car
	Example – Interface of a Phone
	02.4. Implementation
	Examples of Implementation
	b. Address Book in a Phone
	02.5. Separation of Interface & Implementation
	Real Life example of separation of interface and implementations
	02.6. Messages
	Examples – Messages
	02.7. Summary

	Lecture No.03
	Lecture Contents:
	03.1. Abstraction
	Principle of abstraction:
	Abstraction Example:
	teacher perspective.

	Similarly we can sum up Ali’s behavior as follows,
	Student’s Perspective Attributes:
	Behaviour:
	Teacher’s Perspective Attributes:
	Behaviour: (1)
	A cat can be viewed with different perspectives
	Abstraction – Advantages
	03.2. Classes
	Class Representation:
	03.3. Inheritance
	Inheritance in Classes
	Inheritance – “IS A” or “IS A KIND OF” Relationship
	Inheritance – Advantages
	Reuse with Inheritance

	Lecture No.04
	Lecture Contents
	Recap – Inheritance
	04.1. Concepts Related with Inheritance
	04.2. Generalization
	Example: Line, Circle and Triangle
	Example: Student Doctor and Teacher
	Common attributes,
	Common behaviour
	Sub-typing & Specialization
	04.3. Sub-typing (Extension)
	Sub-typing (Extension) - Example
	04.4. Specialization (Restriction)
	Example – Specialization (Restriction)
	3 Integers: all positive and negative numbers (…..-3 , -2 , -1 , 0 , 1 , 2 , 3………)
	04.5. Overriding
	Example – Specific Behaviour (Specialization)
	Example – Restriction
	04.6. Abstract Classes
	Abstract Classes - Example I
	Abstract Classes - Example II
	Abstract Classes - Example III
	04.7. Concrete Classes
	Concrete Classes - Example I
	Concrete Classes - Example II
	Glossary:

	Lecture No.05
	Multiple Inheritance
	05.1. Multiple Inheritance
	using namespace std;
	using namespace std; (1)
	Advantage of Multiple Inheritance:
	Problems with Multiple Inheritance Increased complexity
	Reduced understanding
	Duplicate features
	Problem 1: Ambiguity
	Which eat operation Mermaid should inherit as both functions are available?
	Example C++ Code
	using namespace std; (2)
	Actual Memory Layout
	void Vehicle::changeGear()
	Solution to Diamond Problem
	Association:
	05.2. Kinds of Association:
	1. Class Association
	2. Object Association
	05.3. Simple Association
	Kinds of Simple Association w.r.t Navigation
	a. One-way Association
	Examples:
	b. Two-way Association
	Examples: (1)
	Two-way Association - Example
	Kinds of Simple Association w.r.t Cardinality
	a. Binary Association
	Example
	b. Ternary Association
	Example (1)
	c. N-ary Association
	05.4. Composition
	Example – Composition of Ali
	Example – Composition of Chair
	Example I
	05.5. Aggregation
	Example – Aggregation
	Example – Aggregation (1)
	Example I (1)
	Example II

	Lecture No.06
	06.1. Class Compatibility
	Examples
	06.2. Polymorphism
	06.3. Polymorphism in OO Model
	Example – Polymorphism
	06.4. Polymorphism – Advantages
	06.5. Object-Oriented Modeling an Example Problem Statement
	Identify Classes
	Eliminate irrelevant classes
	Add classes by analyzing requirements
	Finding Associations:
	Identify Associations
	1. Extract verbs connecting objects,
	2. Verify access paths
	Identify Attributes of the identified objects
	Object Model – Graphic Editor
	Identify Operations
	Extract operations using domain knowledge
	Object Model after adding operations:
	Line, Circle and Triangle inherits from Shape
	Group inherits from Shape
	Refining the Object Model
	Refining the Object Model (1)

	Lecture No.07
	07.1. Class
	Example:
	Uses
	07.2. Type in C++
	a. object b. class code
	07.4. Defining a New User Defined Type
	Structure Definition:
	Class Definition:
	{
	DataType MemberVariable;
	};
	public:
	Example: (1)
	07.5. Object and Class:
	Declaring class variables
	TypeName VariableName;
	Student aStudent; // declaring user defined class Student object
	// declaring and initializing Student pointer aStudent->rollNo = 5;
	Member functions are accessed in the similar way using dot or arrow operator.
	07.7. Access specifiers
	Example
	Example Program
	Example (1)
	void SetName(char *);
	aStudent.SetName(Ali); Corrected code will be,
	public: (1)

	Lecture No.08
	08.1. Member Functions
	08.2. Defining Member Functions
	Function definition inside the class: General Syntax:
	Example:
	Function definition outside class General Syntax:
	Example
	Example (1)
	Example (2)
	08.5. Constructor Properties
	Example (3)
	public:
	Student(){
	}
	{
	/*constructor is implicitly called at this point*/
	public: (1)
	rollNo = 0;
	} (1)
	int main()
	Student aStudent;
	} (2)
	Example (4)
	Code of Compiler generated implicit default constructor
	08.7. Constructor Overloading
	Example (5)
	08.8. Constructor Overloading
	Example (6)
	Student(); Student(char * aName);
	08.9. Copy Constructor
	Example (7)
	Student studentA;
	08.10. Shallow Copy
	Shallow copy using default Copy Constructor (Syntax)
	Example (8)
	Problem is Shallow Copy

	studentA
	studentB
	08.11. Deep Copy
	Example

	Lecture No.09
	Copy Constructor
	Example
	…
	int main(){
	Student studentB = studentA; func1(studentA);
	Copy constructor will be called as we are creating studentB in terms of studentA.
	Copy Constructor (Syntax)
	09.1. Shallow Copy
	Shallow copy using default Copy Constructor (Syntax) Student::Student(const Student & obj){
	}
	Example
	Example (1)
	Problem is Shallow Copy
	09.2. Deep Copy
	Student::Student(const Student & obj){
	name = new char[len+1]; // assignming new
	…
	} (1)
	int main(){
	{
	} (2)
	Example (2)
	09.4. Destructor
	Example class Student
	public:
	~Student(){
	delete []name;
	} (3)
	Overloading
	Sequence of Calls
	Example (3)
	… (1)
	} (4)
	cout << name << “Destructor\n”;
	};
	int main()
	Student studentB(“Ali”); Student studentA(“Ahmad”); return 0;
	Example (4)
	09.5. Accessor Functions
	Example – Accessing Data Member Example - Setter
	… (2)
	public: (1)
	} (5)
	Avoiding Error
	rollNo = 0;
	else
	rollNo = aRollNo;
	} (6)
	public: (2)
	int rollNo;
	return rollNo;
	}; (1)
	09.6. this Pointer
	class Student{
	public: (3)
	}; (2)
	void setRollNo(int aRollNo);
	this Pointer Student s1, s2, s3;
	Memory layout for objects created:
	Passing this Pointer
	Example (5)

	Compiler generated code
	10.1. Uses of this Pointer
	Example
	{
	return *this;
	Student Student::setName(char *aName)
	}
	return *this; (1)
	{ (1)
	Student bStudent;
	…
	return 0;
	10.2. Separation of interface and implementation
	Benefits of separating interface and implementation:
	 Phasor form
	Uml notation to show private data members
	Example
	float y;
	void setNumber(float i, float j){ x = i;
	}
	};
	class Complex{ //new float z;
	public:
	theta = arctan(j/i);
	} (1)
	}; (1)
	Separation of interface and implementation
	10.4. const Member Functions
	const Member Functions
	Declaration:
	class ClassName{
	}; (2)
	Outside class
	…
	Example class Student{ public:
	return rollNo;
	}; (3)
	Example (1)
	bool Student::isRollNo(int aNo){ if(rollNo = = aNo){
	} (2)
	} (3)
	bool Student::isRollNo(int aNo){
	return true;
	return false;
	Example (2)
	/*compiler error*/ if(rollNo = aNo){
	(int aNo)const{
	return false; (1)
	const Functions
	Example (3)
	}; (4)
	Example class Student{
	public: (1)
	void setName(char * aName); int ConstFunc() const{
	} (4)
	10.5. this Pointer and const Member Function
	const Student *const this;
	Student * const this;

	Lecture No.11
	11.1. Usage example of Constant member functions Problem:
	Student Class
	Modified Student Class
	Example
	Solution:
	11.2. Difference between Initialization and Assignment:
	11.3. Member Initializer List
	Example (1)
	Example (2)
	Example (3)
	const Objects
	Example (4)
	11.5. Static Variables
	Example (5)
	void func1(int i){
	//initialization statement will be executed once
	}
	func1(1);
	} (1)
	static int staticInt; staticInt = i;
	} (2)
	func1(1); (1)
	} (3)
	Static Data Member
	Class vs. Instance Variable

	Class Variable
	s2(rollNo,…)

	Instance Variable
	s3(rollNo,…)
	Static Data Member (Syntax)
	class ClassName{
	static DataType VariableName;
	Defining Static Data Member
	Defining Static Data Member class ClassName{
	static DataType VariableName; (1)
	DataType ClassName::VariableName; Initializing Static Data Member
	Example class Student{ private:
	…
	int Student::noOfStudents = 0;
	Initializing Static Data Member
	Example

	Lecture No.12
	Review:
	Definition
	Class vs. Instance Variable
	class Student{ private:
	…

	Class Variable (1)
	s2(rollNo,…)

	Instance Variable (1)
	s3(rollNo,…)
	Static Data Member (Syntax)
	class ClassName{
	static DataType VariableName;
	Defining Static Data Member (allocating memory for them)
	class ClassName{ (1)
	static DataType VariableName; (1)
	DataType ClassName::VariableName;
	Example
	static int noOfStudents; public:
	};
	/*private static member cannot be accessed outside the class except for initialization*/
	Example (1)
	int Student::noOfStudents=0;
	Example (2)
	static int noOfStudents;
	int Student::noOfStudents; int main()
	Student aStudent; aStudent.noOfStudents = 1;
	return 0;
	12.2. Life of Static Data Member
	Uses
	Example (3)
	class Student{
	static int noOfStudents; Student();
	…
	int Student::noOfStudents = 0; Student::Student(){
	}
	noOfStudents--;
	int Student::noOfStudents = 0; int main(){
	cout <<Student::noOfStudents <<endl; Student studentB;
	} (1)
	12.3. Static Member Function Definition:
	Example (4)
	12.4. this Pointer and static member functions
	12.5. Global Variable vs. Static Members
	12.6. Array of Objects

	Lecture No.13
	13.1. Pointer to Objects
	Example class Student{
	Student(); Student(char * aName);
	};
	Student obj; Student *ptr; ptr = &obj;
	}
	int main(){
	ptr = new Student; ptr->setRollNo(10); return 0;
	Example int main(){
	ptr = new Student(“Ali”); ptr->setRollNo(10); return 0;
	Example int main()
	Student *ptr = new Student[100]; for(int i = 0; i < 100;i++)
	ptr->setRollNo(10);
	return 0;
	13.2. Breakup of new Operation
	13.3. Case Study
	Attributes
	Attributes (1)
	class Date
	int day; int month; int year;
	…
	Interfaces
	Interfaces (1)
	Interfaces in Date.h class Date{
	void setDay(int aDay); int getDay() const; void addDay(int x);
	… (1)
	Interfaces in Date.h class Date{ (1)
	static void setDefaultDate(int aDay,int aMonth, int aYear);
	Constructors and Destructors in Date.h Date(int aDay = 0,
	~Date(); //Destructor
	Implementation of Date Class
	Date Date::defaultDate (07,3,2005);
	Date::Date(int aDay, int aMonth,
	if(aDay==0) {
	} (1)
	} (2)
	//similarly for other members
	Date::~Date
	} (3)
	void Date::setMonth(int a){ if(a > 0 && a <= 12){
	} (4)
	return month;
	void Date::addYear(int x){ year += x;
	month = 3;
	} (5)
	class Date{
	bool leapYear(int x) const;
	}; (1)
	bool Date::leapYear(int x) const{ if((x%4 == 0 && x%100 != 0)
	return true;
	return false;
	void Date::setDefaultDate(int d, int m, int y){ if(d >= 0 && d <= 31){
	} (6)
	} (7)

	Lecture No.14
	14.1. Composition
	Composition
	const char * GetName() const;
	name = new char[strlen(_name)+1];
	name = new char[strlen(st.name) + 1];
	// never return handle of private data members or private member functions const ensures that private data members will not be changed
	Composition (1)
	Composition (2)
	char * ptr;
	class Student{ private:
	int rollNumber; String name; public:
	void SetName(const char *); String GetName() const;
	~Student();
	};
	rollNumber = roll; gpa = g;
	Student::Student(const Student & s){ name.SetString(s.name.GetString()); gpa = s.gpa;
	}
	4. name.SetString(s.name.GetString());
	const char * Student::GetNamePtr() const{ return name.GetString();
	void Student::SetName(const char * n){ name.SetString(n);
	Student::~Student(){
	} (1)
	Student *aStudent=new Student("Fakhir", 899, 3.1); cout << endl;
	} (2)
	Important Points:
	Name of composed object.MemberFunction
	Student::Student(const Student & s){
	} (3)
	Example:
	Output:
	Constructor calling:

	Constructor of composed object
	Destructor calling:

	Destructor of composing object
	Lecture No.15
	Composition:
	We created student object in main as by passing name, rollno and gpa and then displayed the name of student using GetNamePtr member function of student class,
	Student aStudent("Fakhir", 899,3.1); cout << endl;
	}
	Constructor Code:
	String(char *); // constructor with char * as parameter
	Student::Student(char * n,int roll, float g): name(n) {
	Output:
	class Student{ private:
	Date birthDate;
	public:
	Student(char *, const Date &, int, float);
	…
	Student::Student(char * n, const Date & d, int roll, flaot g): name(n),birthDate(d) { cout << "Constructor::Student..\n";
	} (1)
	cout << "Destructor::Student..\n";
	int main(){
	Student aStudent("Fakhir", _date,899,3.5); return 0;
	Output: (1)
	Overloaded Constructor::String.. Constructor::Student..
	Destructor::String..
	Destructor::Date..
	Composition vs. Aggregation
	Example:
	Aggregation C++ implementation:
	Aggregation:
	15.2. Friend Functions
	Why they are needed?
	Are friend functions against the concept of Object Oriented Programming?
	Consider the following class: class X{
	int a, b;
	};
	… (1)
	void DoSomething(X obj){
	} (2)
	class X{ private:
	… (2)
	}; (1)
	void DoSomething(X obj){ (1)
	obj.b = 4;
	Friend Functions
	Friend Functions (1)
	class X{
	private:
	public: (1)
	friend void DoAnything(X);
	Friend Functions (2)
	void DoSomething(X obj){ (2)
	obj.b = 4; // No Error
	} (3)
	Friend Functions (3)
	//Error…
	… (3)
	Friend Classes
	class X{ (1)
	… (4)
	class X{ (2)
	int x_var1, x_var2;
	}; (2)
	private: (1)
	public: (2)
	void setX(){
	}; (3)
	} (4)
	Y objY; objY.setX(); return 0;
	class Complex{ private:
	public: (3)
	Complex Add(const Complex &); Complex Subtract(const Complex &); Complex Multiply(const Complex &);
	Complex Complex::Add(const Complex & c1){ Complex t;
	}; (4)
	// creating new object c3 and assigning it result of c1+c2
	Complex c3 = c1.Add(c2);
	c = a + b; // correct
	c1+c2+c3+c4
	t1 = c3.Add(c4); t2 = c2.Add(t1); t3 = c1.Add(t2);
	Operator overloading
	c1+c2+c3+c4 (1)
	Operator overloading (1)
	int float double char long
	int y;
	// for integer addition:
	// for float addition:
	List of operators that can be overloaded in C++:
	Student std;
	The precedence of an operator:
	c1*c2+c3 c3+c2*c1
	Associativity:
	c1 + c2 + c3 + c4
	(c1+c2)+c3
	Arity of Operators
	General syntax of Operators Overloading:
	For example:
	Binary Operators Overloading:
	General syntax of Binary Operators Overloading: In case of member function of a class:
	In case of non-member function of a class:
	int operator + (int, int); Examples:
	class Complex{ private: (1)
	public: (4)
	… (5)
	Complex Complex::operator +(const Complex & rhs){ Complex t;
	} (5)
	Complex t = c1 + c2 + c3;
	(c1.operator +(c2)).operator +(c3);
	...
	void operator+(
	}; (5)
	img = img + rhs.img;
	c1+c2 c1+c3
	Drawbacks of void return type:

	Lecture No.17
	Binary operators (cont.)
	Example:
	c1.operator+(c2)
	// reference in that function.
	c2.operator+(c1)
	// reference in that function. (1)
	Complex c1;
	Modifying the complex class:
	Complex operator+(const double& rhs);
	Complex operator + (const double& rhs){ Complex t;
	}
	Complex c2, c3; Complex c1 = c2 + c3;
	Complex c5 = 450.120 + c1;
	Class Complex{
	friend Complex operator + (const Complex & lhs, const double & rhs); friend Complex operator + (const double & lhs, const Complex & rhs);
	Complex operator +(const Complex & lhs, const double& rhs){ Complex t;
	t.img = lhs.img; return t;
	Complex operator + (const double & lhs, const Complex & rhs){
	t.real = lhs + rhs.real; t.img = rhs.img; return t;
	Binary operators
	Class Complex{ (1)
	Complex operator + (const Complex &);
	};
	Binary operators (1)
	Complex operator * (const Complex & c1, const Complex & c2); Complex operator / (const Complex & c1, const Complex & c2); Complex operator - (const Complex & c1, const Complex & c2);
	17.1. Overloading Assignment operator
	class String{
	char * bufferPtr;
	}; (1)
	String(const String &); // copy constructor
	String::String(){
	} (1)
	size = strlen(ptr);
	} (2)
	size = 0;
	} (3)
	String::String(const String & rhs){ size = rhs.size;
	bufferPtr = new char[size+1]; strcpy(bufferPtr, ptr);
	else
	} (4)
	String str1(“Hello"); String str2(“World”); str1 = str2;78

	Member wise copy assignment
	}
	Modified Assignment Operator Code:
	class String{
	public:
	…
	void String::operator = (const String & rhs){ size = rhs.size;
	delete [] bufferPtr; // resolving inaccessible memory issue bufferPtr = new char[rhs.size+1]; // creating new dynamic memory strcpy(bufferPtr,rhs.bufferPtr); // deep copy
	else
	} (1)
	String str1(“ABC");
	} (2)
	str1.operator=(str2.operator=(str3))
	String & operator = (const String &);
	String & String :: operator = (const String & rhs){

	Lecture No.18
	18.1. Self assignment problem:
	int main(){
	str1 = str1; // Self Assignment problem… return 0;
	Result of str1 = str1
	if(this != &rhs){
	}
	int main(){ (1)
	return 0;
	int main(){ (2)
	s2(“DEF”),
	// Error…
	return 0; (1)
	int main(){ (3)
	(a = b) = c; return 0;
	18.2. Other Binary operators Overloading += operator:
	18.3. Friend Functions and Operator overloading
	Other Binary operators
	-=, /=, *=, |=, %=, &=, ^=, <<=, >>=, !=

	Lecture No.19
	19.1. Stream Insertion operator
	cout << “i= ”<< i << “\n”;
	19.2. Stream Extraction operator
	int i,j;
	Explanation:
	Complex c1;
	cout << c1 << 2; // Error cascaded statement
	19.3. Overloading Stream Insertion Operator
	class Complex{
	public:
	…
	Complex & rhs);
	int main(){
	cout << c1; // Error c1 << cout;
	};
	… (1)
	}; (1)
	os << ‘(‘ << real
	}
	class Complex{ (1)
	friend ostream & operator << (ostream & os, const Complex & c);
	Stream Insertion operator
	ostream & operator << (ostream & os, const Complex & c){ os << ‘(‘ << c.real
	<< c.img << ‘)’; return os;
	Complex c1(1.01, 20.1), c2(0.01, 12.0);
	(1.01 , 20.1)
	cout << c1 << c2;
	19.4. Overloading Stream Extraction Operator:
	...
	}; (2)
	Stream Extraction Operator Code:
	Main Program:
	Output:
	19.5. Other Binary operators:
	Overloading comparison operators (Equality and Inequality operators)
	Equality operator:
	Inequality Operator:

	Lecture No.20
	Modified String Class:
	class String{ private:
	public:
	String(char * ptr);
	...
	int main(){
	}
	class String{
	public: (1)
	void SetChar(char c, int pos);
	void SetChar(char c, int pos){ if(bufferPtr != NULL){
	bufferPtr[pos] = c;
	} (1)
	String str1(“Ping”);
	20.1. Subscript [] Operator
	int main(){ (1)
	} (2)
	20.2. Overloading Subscript [] Operator
	20.3. Overloading Function () operator
	Function Operator
	Output:
	20.4. Function Operator performing Sub String operation,
	Function Operator (1)
	20.5. Unary Operators
	 --x
	 !(*ptr ++) Unary Operators
	h++;
	General syntax for unary operators
	TYPE & operator OP (); // no argument the object with respect to which it is called is taken as one operand
	Friend TYPE & operator OP (TYPE & t);
	Overloading unary ‘-’:
	Complex c1(1.0 , 2.0), c2; c2 = -c1;

	Lecture No.21
	Unary Operators
	21.1. Behavior of ++ and -- for pre-defined types:
	int x = 1, y = 2;
	int y = 2; y++++;// Error
	Behavior of ++ and -- for pre-defined types:
	int y = 2;
	int x = 2, y = 2;
	cout << y;
	Example (Pre-increment):
	Complex & operator ++ ();
	};
	return * this;
	Complex & operator ++ (Complex & h){ // non member function h.real += 1;
	}
	Complex h1, h2, h3;
	++h1 = h2 + ++h3;
	OR
	21.2. Post-increment operator: class Complex{
	Complex operator ++ (int);
	}; (1)
	real += 1; return t;
	Complex operator ++ (const
	complex t = h; h.real += 1; return t;
	How does a compiler know whether it is a pre-increment or a post-increment?
	Complex h1, h2, h3; h1++;
	21.3. Type Conversion
	int f = 0.021; double g = 34;
	Type Conversion
	int g = (int)0.0210; double h = double(35);
	String str = 135;
	String str;
	Conversion from other type to current type (int to String):
	int main(){
	cout << s.GetStringPtr()<< endl << s.GetSize() << endl; return 0;
	Output:
	}; (2)
	explicit String(int);
	s = ‘A’; // Error…
	s1 = String(101); // valid, explicit casting…
	s2 = (String)204;
	Type Conversion (1)
	TYPE1::operator TYPE2();
	Type Conversion (2)
	operator int(); operator char *();
	if(size > 0)
	else
	return -1;
	} (1)
	cout << (int)s << endl << (char *)s;
	2324
	21.4. User Defined types:
	class String{
	operator Complex(); operator HugeInt(); operator IntVector();
	21.5. Drawbacks of Type Conversion Operator: class String{
	public:
	…
	int main(){ (1)
	// << is NOT overloaded
	} (2)
	Junk Returned…
	Modifying String class:
	int String::AsInt(){
	return atoi(bufferPtr);
	} (3)
	cout << s.AsInt();

	Lecture No.22
	22.1. Practical implementation of Inheritance in c++
	22.2. Inheritance in Classes
	22.3. UML Notation
	22.4. Inheritance in C++
	22.5. “IS A” Relationship
	C++ Syntax of Inheritance class ChildClass
	...
	Example class Person{
	Example
	Example (1)
	{
	}
	void Student::Print()
	cout << GetName() << “ is in semester ” << semester;
	int main(){
	stdt.semester = 0;//error stdt.name = NULL; //error cout << stdt.GetSemester(); cout << stdt.GetName();
	} (1)
	Allocation in Memory
	Constructors
	Example (2)
	Parent(){ cout <<
	};
	Child(){ cout <<
	}; (1)
	Child cobj; return 0;
	Constructor
	Parent(int i){}
	class Child : public Parent{ public:
	} Child_Object; //ERROR
	Implicit Default constructor:
	Base Class Initializer
	Parent(int i){…};
	class Child : public Parent{ public: (1)
	{…}
	Parent(){cout <<
	... (1)
	class Child : public Parent{ public: (2)
	{cout << “Child Constructor...”;}
	}; (2)
	Parent(){…}
	class Child : public Parent{ int member;
	}; (3)
	{…} (1)
	Initializing Members
	public:
	int age; char *name;
	Person();
	class Student: public Person{ private:
	... (2)
	}; (4)
	{ //error
	Reason
	Example class Parent{ public:
	~Parent(){cout<<“Parent Destructor”;}
	class Child : public Parent{ public: (3)
	~Child(){cout << “Child Destructo”;}

	Lecture No.23
	Lecture Contents:
	 Implicit and explicit use of IS A relationship Previous lecture discussion:
	Implicit Default constructor:
	Explicit Default constructor:
	23.1. Accessing base class member functions in derived class:
	private:
	int main(){
	}
	Example:
	class SpecialDate: public Date{
	public:
	...
	if(day == 29 && month == 2
	... (1)
	} (1)
	Solution:
	class Date{ public:
	bool IsLeapYear(int);
	void SpecialDate :: AddSpecialYear (int i) {
	if(day == 29 && month == 2 (1)
	... (2)
	} (2)
	class Date{
	protected:
	bool IsLeapYear(int); (1)
	Date aDate; aDate.IsLeapYear(); //Error return 0;
	void SpecialDate :: AddSpecialYear (int i) { (1)
	if(day == 29 && month == 2 (2)
	... (3)
	} (3)
	Breaks encapsulation
	23.3. “IS A” Relationship
	Example
	class Person {
	const char * GetName();
	class Student: public Person{ int rollNo;
	int GetRollNo();
	int main()
	Student sobj;
	} (4)
	pPtr = &s;
	pPtr = &s; (1)
	int main(){ (1)
	pPtr = &s; (2)
	} (5)
	23.4. Static Type
	Member Access
	pPtr->GetRollNo();
	Example (Explicit use of IS A relationship)
	Person & refp = s;
	cout << refp.GetRollNo(); //Error
	Example (Implicit use of IS A relationship)
	Play(p); /* parameter of function Play is being initialized with argument p */ Play(s);

	Lecture No.24
	Lecture Overview:
	Protected Members:
	IS-A relationship:
	Static type of an identifier:
	Copy Constructor:11
	Copy Constructor in case of Inheritance:
	Code Description:
	Student sobj1("Ali","Computer Science");
	Student sobj2 = sobj1;
	//Student sobj2(sobj1);
	sobj2.Print();
	Deep Copy:
	24.1.Modified Default Constructor
	if (nm != NULL)
	Example
	Assignment Operator
	Example (1)
	Output
	Calling Base Class member functions:
	Explicit Way:
	cout << "Name: "<< Person::GetName() << endl;
	Explicitly Calling operator =
	Implicitly Calling operator =
	Appendix:
	Casting:
	Explicit casting conversion:
	Dynamic cast: (polymorphic behavior)
	Reinterpret cast:
	Note:
	References:

	Lecture No.25
	Overriding Member Functions of Base Class in Derived Class (Function Overriding)
	25.1.Overloading vs. Overriding
	Overriding Member Functions of Base Class
	Overriding Member Functions of Base Class (1)
	Overriding Member Functions of Base Class (2)
	Print(); //Calling Print of Person to print student name cout<<“Major:” << major <<endl; // Displaying study program of
	class Student : public Person{ char * major;
	Student(char * aName, char* m); void Print(){
	cout<<“Major:” << major <<endl;
	...
	int main(){
	return 0;
	Overriding Member Functions of Base Class (3)
	int main(){ (1)
	sPtr->Print(); // static type of sPtr is Student * so Student Print method will be called
	pPtr->Print(); return 0;
	Example
	Indirect Base Class
	class GrandParent {
	class Parent1: public GrandParent {

	Lecture No.26
	Overriding in case of class hierarchy:
	26.2. Types of Inheritance
	class Child: protected Parent {…};
	class Child: private Parent {…};
	class Child: private Parent {…} is equivalent to,
	26.3. Private Inheritance

	Suppose we have a class collection to store element collection as shown below,

	Lecture No.27
	Previous Lecture Review:
	27.1. Specialization (Restriction)
	inheritance.
	Essential properties of Private Inheritance:
	Parent & pPtr = static_cast<Parent &>(*this); // fine
	// DoSomething(*this); // this single line is equal to two lines above.
	Output:
	27.2. Protected Inheritance
	27.3. Properties of Protected Inheritance
	Importance of Private and Protected inheritance:
	Comparison of public, protected and private inheritance:
	A Good Programming Exercise:

	Lecture No.28
	28.1. Virtual Functions
	Shape Hierarchy:
	Problem Description:
	void drawShapes(Shapes *array[], int size){ for (int i = 0 ; i < size ; i ++)
	//Shapes (Line, Circle and Triangle)
	Implementation:

	Solution 1:
	void drawShapes(Shape* _shape[], int size) { for (int i = 0; i < size; i++) {
	method
	}
	switch (_shape[i]->getType())
	case ‘L’:
	case ‘C’:
	…
	if (_shape[i]->getType() == ‘L’) static_cast<Line*>(_shape[i])->draw();
	… (1)
	Required Switch Logic
	{
	static_cast<Line*>(_shape[i])->calcArea(); break; case ‘C’:
	… (2)
	void drawShapes(Shapes *array[], int size){ for (int i = 0 ; i < size ; i ++)
	//Shapes (Line, Circle and Triangle)
	28.2. Virtual Functions:
	28.3. Shape Hierarchy
	Line _line;
	Shape* _shape = new Line();
	Shape* _shape = new Line(); (1)

	Lecture No.29
	29.1. Abstract Classes
	29.2. Concrete Classes
	29.3. Abstract Classes in C++
	29.4. Pure Virtual Functions
	29.5. Shape Hierarchy
	29.6. Virtual Destructors
	You can see by diagram below that only base class part of object will be deleted other parts will remain as it is this result in memory leak (wastage of memory),
	Virtual Destructors
	29.7. Virtual Functions – Usage

	First case of simple virtual functions is useful when we have some derived classes that will also not have implementation of virtual method for example Line is also also Shape but it doesn’t have area similarly if we had Point derived class it also ...
	Inherit interface only:
	29.8. V Table

	Now we see compiler keeps track of virtual functions and call them correctly occording to nature of the object with respect to which they are being called,
	functions
	int main() {
	Shape* pShape;
	pShape->calcArea(); return 0;

	Shape vTable
	draw
	pShape
	29.9. Dynamic Dispatch (Dynamic Binding)

	Lecture No.30
	30.1. Polymorphism – Case Study: A Simple Payroll Application
	Problem Statement
	OO Model
	Never Treat Arrays Polymorphically:
	30.2. Shape Hierarchy Revisited:
	Sample Output
	Sample Output:

	Shape Array
	void drawShapes(Shape* _shape[], int size) { for (int i = 0; i < size; i++) {
	}
	Sample Output:

	Shape* _shape[]
	Lecture No.31
	31.1. Multiple Inheritance
	Examples:
	// As phone class is publicly inherited so any class derived from Phone class will also have access to public and protected members of Transmitter and Receiver class
	...
	class Mermaid: private Woman, private Fish
	{
	};
	Multiple Inheritance
	31.2. Problems in Multiple Inheritance
	Example:
	Example
	Example (1)
	31.3. Virtual Inheritance

	Lecture No.32
	Generic Programming Motivation:
	void printArray(int* array, int size)
	for (int i = 0; i < size; i++)
	}
	void printArray(char* array, int size)
	for (int i = 0; i < size; i++) (1)
	} (1)
	void printArray(double* array, int size)
	for (int i = 0; i < size; i++) (2)
	} (2)
	to 1 2 3 4 5 or ‘1’ ‘ 2’ ‘3’ ‘4’ ‘5’ or “1” ”2” “3” “4” “5”
	class Array {
	int* pArray; int size;
	};
	class Array { (1)
	double* pArray; int size;
	}; (1)
	public:
	…
	32.1. Generic Programming
	32.2. Templates
	32.3. Function Templates
	// OR
	// OR (1)
	template< typename T >
	{
	cout << array[i] << “, ”; // here data type of array is T
	template< class T >
	{ (1)
	cout << array[i] << “, ”; // here data type of array is T (1)
	int main() {
	void printArray(iArray, 5); // Instantiated for int[] as passed array is of type int []
	} (3)
	void printArray(cArray, 3); // Instantiated for char[] as argument is of type return 0;
	template <typename T> T getInput() {
	cin >> x; return x;
	Explicit Type Parameterization int main() {
	x = getInput(); // Error!
	y = getInput(); // Error! return 0;
	Explicit Type Parameterization
	int x;
	double y;
	} (4)
	template< typename T > bool isEqual(T x, T y) {
	} (5)
	isEqual (“abc”,”xyz”)

	Lecture No.33
	33.1. Multiple Type Arguments
	template< typename T, typename U > T my_cast(U u) {
	}
	double d = 10.5674;
	// need to explicity mention about type of T (int in this case) as it is used only for
	return 0;
	33.2. User-Defined Types
	33.3. Overloading vs. Templates
	Example: Overloading vs. Templates
	33.4. Template Arguments as Policy:
	“Write a function that compares two given character strings.”
	33.5. First Solution:
	33.6. Second Solution:
	int compare(char* str1, char* str2, bool caseSen)
	for (int i = 0; i < strlen(str1) && i < strlen(str2); i++) if (…)
	return strlen(str1) - strlen(str2);
	// if condition:
	(caseSen && str1[i] != str2[i])
	(!caseSen && toupper(str1[i]) != toupper(str2[i])
	33.7. Third Solution
	class CaseSenCmp { public:
	} (1)
	class NonCaseSenCmp { public:
	} (2)
	template< typename C >
	{
	return str1[i] - str2[i];
	};
	int i, j;
	i = compare< CaseSenCmp >(x, y);
	cout << "\nNon-Case Sensitive: “<< j << endl; return 0;
	Sample Output
	33.8. Default Policy
	template< typename C = CaseSenCmp > int compare(char* str1, char* str2)
	for (int i = 0; i < strlen(str1) && i < strlen(str2); i++) if (!C::isEqual
	return strlen(str1) - strlen(str2); (1)
	int main() {
	char *x = "hello", *y = "HELLO"; i = compare(x, y);
	cout << "\nNon-Case Sensitive: “
	return 0; (1)

	Lecture No.34
	Generic Algorithms - A Case Study
	34.1.Generic Algorithms
	34.3.Example – Class Template
	Vector< int > intVector; Vector< char > charVector;

	Lecture No.35
	35.1. Member Templates:
	Complex< float > f1c(0, 0); Complex< float > f2c = f1c;
	Complex< float > fc(0, 0);
	Complex< double > d1c(0, 0); Complex< float > d2c = d1c;
	class Complex<double> { double real, imag;
	};
	{}
	{} (1)
	template<typename T> class Complex { T real, imag;
	Complex(T r, T im) :
	Complex(const Complex<U>& c) : real(c.real), imag(c.imag) {}
	}; (1)
	int main() {
	}
	Complex(const Complex<U>& c) :
	Important points to Note:
	class Complex<double> { double real, imag; (1)
	Complex(double r, double im) : real(r), imag(im) {}
	real(c.real), imag(c.imag) {}
	}; (2)
	class Complex<float> {
	public:
	// No Copy Constructor code is generated as there is no need for it
	}; (3)
	35.2. Class Template Specialization

	Lecture No.36
	Recap
	36.1.Member Templates Revisited

	ComplexSet Object
	class ComplexSet {
	insert(Complex< T > c) // any instance of complex class
	// Add instance Complex class to Complex set class having many // Complex class instances
	};
	Complex< int > ic(10, 5); Complex< float > fc(10.5, 5.7);
	cs.insert(ic); cs.insert(fc); cs.insert(dc); return 0;
	Example – Partial Specialization
	Example – Complete Specialization
	36.3. Function Templates
	Example – Partial Specialization (1)
	36.4. Complete Specialization
	Example
	36.5. Using Different Specializations
	36.6. Non-type Parameters
	36.7. Example – template class Array
	36.8. Default Non-type Parameters
	36.9. Default Type Parameters

	Lecture No.37
	37.1. Resolution Order
	Example – Resolution Order
	Explanation of code:
	Vector< char* > strVector;
	Vector< int* > iPtrVector;
	Vector< int > intVector;
	37.2. Function Template Overloading
	37.3. Resolution Order
	Example – Resolution Order (1)
	37.4. Templates and Inheritance
	37.5. Derivations in case of a General Template class
	Derivations in case of a partially specialized class
	Derivations in case of Completely Specialized class
	Derivations in case of Ordinary Class

	Lecture No.38
	38.1. Templates and Friends
	38.2. Templates and Friends – Rule 1
	38.3. Templates and Friends – Rule 2
	38.4. Templates and Friends – Rule 3
	int main() {
	doSomething(i); // OK doSomething(c); // OK return 0;
	For classes same Rule is applicable as follows,
	class A implementation
	38.5. Templates and Friends – Rule 4
	Note:

	Lecture No.39
	39.1. Templates & Static Members
	Output
	ca.data = 7
	Output (1)
	ib.data = 9
	39.2. Templates – Conclusion
	Disadvantages:
	template< typename T > bool isEqual(T x, T y) {
	}
	int main() {
	// Compiler accepts!
	39.3. Generic Algorithms Revisited
	39.4. Generic Algorithms Revisited
	39.5. Generic Algorithm
	39.6. Problems
	b. Our algorithm shows inconsistent behavior
	c. Supports only a single traversal strategy

	Lecture No.40
	Recap
	40.1. Cursors
	Cursors-Usage
	Example – Works Fine
	Example – Problem
	C
	40.2. Iterators
	Example – Generic Iterator
	Iterators – Advantages

	Lecture No.41
	41.1. Standard Template Library:
	Standard Template Library
	STL Promotes Reuse
	41.2. STL Containers
	Sequence Containers
	a. vector
	c.
	Example – STL Vector
	Sample Output
	Example – STL Deque
	Associative Containers
	multiset
	Output
	Output (1)
	Example – STL Map
	Example – STL Multi-Map
	Container Adapters
	41.3. Common Functions for All Containers

	1.
	4. empty()
	5. max_size()
	7. operator = ()
	8. operator < ()
	10. operator > ()
	11. operator >= ()
	13. operator != ()
	o Returns true if the first container is not equal to the second container
	41.4. Functions for First-class Containers
	41.5. Container Requirements

	Lecture No.42
	42.2
	Input Iterators
	Output Iterators
	Forward Iterators
	42.3.Iterator Summary:
	42.5. Sequence Containers
	42.6. Associative Containers
	42.7. Container Adapters
	42.8. Iterator Operations
	Input Iterators support,
	Bidirectional Iterators
	--p
	p--
	Example – Random Access Iterator
	Example – Output Iterator
	42.9. Algorithms

	Lecture No.43
	Techniques for Error Handling:
	43.1. Example – Abnormal Termination
	43.2. Graceful Termination
	Output
	43.3. Error Handling
	a. Return Illegal Value
	Output (1)
	Output (2)
	Example- without error handling
	43.4. Exception Handling
	43.5. Exception Handling Process
	Syntax – Throwing an exception
	Syntax – Try and Catch
	Complete Example of try catch and throw:
	Output (3)
	Separation of Program Logic and Error Handling

	Lecture No.44
	44.1.Stack Unwinding
	Examples
	Nested Try catch blocks example:
	 If exception is thrown from innermost try block,
	Catch Handler
	Example
	Body of main Function Output
	Avoiding too many Catch Handlers
	Inheritance of Exceptions
	Example–With Inheritance
	Re-Throw
	Example (1)

	Lecture No.45
	45.1. Resource Management
	Example
	First Attempt
	Second Attempt:
	Exception in Constructors
	Example (1)
	Exception in Initialization List
	Example (2)
	Exception in Initialization List (1)
	Example (3)
	Exceptions in Destructors
	Example (4)
	Example (5)
	Syntax
	Exception Specification
	Course Review
	Object Orientation
	Object Orientation (1)
	Object Orientation (2)
	Classes – C++ Constructs
	Classes – C++ Constructs (1)
	Classes – C++ Constructs (2)
	Inheritance – C++ Constructs
	Polymorphism – C++ Constructs
	Templates – C++ Constructs
	Templates – C++ Constructs (1)
	Writing Reliable Programs

