
Mobile Web Development For
Portable Devices

(CS420)

 Welcome to CS420 Mobile Web Development. We're here to teach
you to apply your web development skills to this Mobile Web
Development because as you're probably aware the mobile web is
kind of a big deal.

 Most statistics project that mobile web usage will soon over take
desktop web usage, so you might ask what’s the difference between
developing for the desktop web and developing for the mobile web.

Welcome

1) Introduction to Mobile Web Development
2) Differences of Mobile Web and Ordinary Web
3) Development Tools
4) Development tools for Desktop
5) Mobile Development Tools
6) Setup for Mobile
7) Using Development Tools on Mobile
8) Reverse Port Forwarding
9) Mobile Tools for iOS
10) Mobile First
11) Constraints of the Canvas

Topics To Be Covered:Topics To Be Covered:

Introduction to Mobile Web
Development

The mobile web is one of those over-used terms that has lost all of its
meaning, or worse yet, continues to confuse and perpetuate the mobile myth.

If you were to ask web developers to define what the mobile web means, you
would get as many different answers as people you asked. It is important then,
to define what I mean by the mobile web and how you should be discussing
and thinking about it.

Introduction to Mobile Web Development

 Well mobile web development is really just normal web development with
some additional key considerations and a few additional API's. We're going
to assume that you're familiar with the building block HTML, CSS and
javascript. The mobile web is also built on these technologies, although we
are going to cover some specific advanced features that apply to the mobile
space. Of course, there are a lot of additional considerations for developing
for mobile.

 Things like smaller screen sizes and limited network bandwidth and
computing power. Well you might think these constraints are a bad thing. In
fact, developing mobile first forces you to focus on the key points of your
user experience.

Differences of Differences of Mobile Mobile Web and Ordinary WebWeb and Ordinary Web

 Before we get started, I want to be clear about what we're not going to
teach you in this course. We're not going to be teaching mobile frameworks
like bootstrap, or native app wrappers like PhoneGap.

 These are great tools, but we want to teach the fundamentals that you as a
mobile web developer need to know first.

 Mobile websites' content must comply with users' expectations. In most
cases, users visit mobile webpages in search of specific information, they
want speedy access. Available content must therefore be clear, accessible,
and needs to have undergone rigorous selection.

Differences of Differences of Mobile Mobile Web and Ordinary WebWeb and Ordinary Web

 On a traditional website, depth and completeness are king: a user
must be able to find all the information on a brand, a product. In
many ways this is the opposite to a mobile web page as a mobile
user only accesses essential information and functions.

 These differences entail that these websites' ergonomics must be
adapted to phone and tablet format in order to allow the user to
browse through the mobile webpages with ease.

Differences of Mobile Web and Ordinary WebDifferences of Mobile Web and Ordinary Web

Development Tools

Difference of Mobile and Web DevelopmentDifference of Mobile and Web Development

For example, the Google News experience on the desktop shows a lot of
information, but the mobile experience focuses on just the news stories.
Pushing all of the secondary information out of the way.

 In this topic, we're going to be discussing the mobile development tools,
showing you how to hook up the DevTools to your mobile browser. The
Chrome developer tools, which enable you to analyze and debug, your web
applications.

 Now you may already, be familiar with the Dev Tools. But, what's really
exciting, about them, is that you can now, easily ,use these tools, for your
mobile debugging. Let's get started.

Development Development ToolsTools

 On any web page, like www.vu.edu.pk, you can open the con developer
tools in the google chrome by clicking on the shortcut listed in tools,
developer tools.

 Now technically speaking you don't need a mobile device in order to take
this course or even to test out most of what you'll learn. But you're missing a
lot of the experience of mobile web development, without a device.
Preferably at least one Android device.

 You can use Chrome's great mobile debugging tools. Which we'll be using
in this course. But, the more devices you have, and the more variety, the
better.

Development Development Tools for DesktopTools for Desktop

 A traditional website is accessed via computer, with help from a mouse and
a large screen. A mobile website, on the other hand, is accessed via
smartphone or tablet, with a smaller screen and touchscreen navigation.

 Chrome Dev tools provides a series of tabs that allow you to debug and
inspect your web apps. For example you can select any element on the
page by right clicking the element and selecting inspect element or as I'll
do here you can click on the magnifying glass and hover over the area that
you would like to inspect

Development Development Tools for DesktopTools for Desktop

 Let's change the text in one of the floor selectors. We can do that by simply
expanding the element that contains it and then editing it live on the page.

Development Tools for DesktopDevelopment Tools for Desktop

 You can also make live edits to the CSS. Let's take a look at changing the
selected floor class. Here, I can set the background color to whatever I
want. For example, blanched almond because who doesn't like blanched
almonds. Because the background color is now pretty light, we may also
want to change the text color. Chrome Depth Tools provides a handy color
picker for that. We can pick any color we want.

Development Tools for DesktopDevelopment Tools for Desktop

 Shift + clicking the color picker, allows you to cycle through the different
color schemes. RGB HSL, and so on. If we scroll a little bit further, so our
floor selector class, we can play around with the different settings there.
You can use the scroll wheel to cycle through the different sizes. And we
can set the border width in a similar fashion.

 As you can see, Chrome Dev Tools provides with rich functionality to edit
and inspect your pages. And than was just one tab. We'll be diving deeper
into the Network, Timeline, and Profiles tabs.

Development Tools for DesktopDevelopment Tools for Desktop

 You also want to make sure you're set up correctly to debug and profile
your web apps on mobile. We're going to show you how to do that with
chrome dev tools and chrome for android.

 The set up is simple. All you need is an Android device, a USB cable,
and your development machine. Let's take a look. Before you get
started you need to turn on the Developer Mode in your Android device.

Setup For MobileSetup For Mobile

 This may be different on any given device and you can check your device's
manual on how to do this. In many cases though, you need to go to your
device's settings, click on About Device and then click on Build Number
seven times. Seriously.

Setup For MobileSetup For Mobile

 Next you'll want to turn on USB debugging Again, this varies slightly on your
given device, but this is usually located in the developer options.

 We also need to make sure we have the right tools. On my laptop, I have
Chrome Canary and on my mobile device, I have Chrome Beta installed.

 Now that we have everything set up the way we need,
 open Chrome on your development machine and go to Chrome inspect.

Make sure the site you want to debug is open on your mobile device and
then connect your laptop to your mobile device via USB.

 Then confirm that you want to allow USB debugging. Back in our
development machine, we can see a list of the attached devices and the
Chrome tabs that are open on the devices. You can even open other tabs.
We can also focus on specific tabs, you can reload them And you can even
close a tab.

Setup For Mobile

 The best part of course is that you can inspect the pages that are running
on your mobile device, from your development machine let's take a look.

 One of my favorite new features is the new screen cast mode. This allows
you to drive the experience on your mobile device from your development
machine. You can click on links, and see them update simultaneously on
the device. As well as on your desktop.

 While continuing to cast a video in full screen mode to your TV. Now you
can! With Chrome 35.0.1900.0 (or later), when you go full screen (with both
HTML content/video and Flash) when you're already casting a tab, we'll size
things correctly for TV, but show that content within the tab. On the TV,
content should fill the entire screen.

Using Development Using Development Tools Tools on on MobileMobile

 To try this feature, you do need to be running the very latest and
greatest version of Chrome. It's available today if you install Chrome
Canary (https://www.google.com/intl/en/chrome/browser/canary.html)
as a secondary browser on your computer, and it works on Windows,
Mac, Chrome OS, and Linux.

 As you can see, you have all the familiar features from the development
tools available for mobile now.

Using Development Tools on MobileUsing Development Tools on Mobile

 Now all of these examples, we're accessing a live site. But you can also
setup Port Forwarding to allow your mobile device to access a local server
on your development machine over USB. Let's take a look.

 To do this, you want to make sure you have a server running on your local
development machine. In this case, I'm going to use Python's simple HTTP
server on Port 9999. Now to verify that it is actually working, I'm going to
access that on the local machine and it's working fine. If I want to now
access that same page on my mobile device, I need to set up Port
Forwarding. I can go back to the Chrome Inspect page, click on Port
Forwarding and set up a port forwarding rule.

 In this case, port 9999 on local host or IP address 127001. I enable Port
Forwarding and click on Done. When I refresh this page, you'll see that Port
Forwarding is now running on Port 80 80, and 99 99.

Reverse Port ForwardingReverse Port Forwarding

 At this point, we're all set up. So let's try it out. I'll open a new tab, navigate
to localhost 9999 on the mobile device. And the page is ready to go.

 Now, that was really easy and it's also possible to do this on mobile Safari
with the web inspector using the iOS web kit debug proxy. Now, that's a little
bit harder to set up.

 Now that you are equipped with the right tools we can get to work. In the
next lesson, we're going to get started with a mobile user experience.

Mobile Tools for iOSMobile Tools for iOS

 We will discuss now the tools which build designs that scale across multiple
devices. And one of the first challenges with developing for the mobile web,
is the display screen.

 The typically small display screen compared to your desktop or laptop
device really forces you to focus on what's critical for your users, in fact this
is what's led to the recent adoption of the mantra mobile first. Now, mobile
first isn't about designing for the mobile web before you even think about
the desktop experience.

 It's really a design philosophy of stripping down to your core user
experience and then layering additional gravy on top if you have the
appropriate space. For example you might put your company info links
inside a menu rather then cluttering up your home screen with them.

Mobile FirstMobile First

 What is Mobile First?

 Mobile first design is an approach outlined in 2009 by Luke Wroblewski.
Simply, mobile first is an approach to responsive design: design for smaller
screens first, then add more features and content for bigger and bigger
screens. This design approach is also known as "progressive
enhancement.“

Mobile FirstMobile First

 When creating a visual design layout, it's tempting to think of your design
surface like a canvas, a fixed surface. Now web design used to be like this.
You drew on this canvas, it was a fixed size and shape, just like an artist
draws on a canvas. What do you think the problems with this will be, as you
move to a mobile first design.

 Fundamentally, the problem is all of these. With a layout that's designed for
a particular screen size and aspect ratio, the user is going to have to zoom
and scroll around in order to see everything and there will frequently be
blank space left on the screen.

Constraints of the CanvasConstraints of the Canvas

When Mobile browsers first came along the content on the Web wasn't
designed for narrow small screen devices. It was designed for Windows that
were around 1,000 pixels wide and wider than they were tall with easy
scrolling. To show this content into a tiny Mobile screen since rendering a Web
Page designed for 1,000 pixels across and a 320 pixel wide screen would
mean you'd be scrolling a lot. Mobile browsers basically lied about the Window
width.

They made the Window act as if it were 980 pixels wide, even though the
original iPhone was only 320 pixels across. This enabled sites that were
designed for a 1024 by 768 screen, that is, that were around 980 pixels wide
to fit on the Mobile screen. Although you needed to do a lot of Zooming to
read the text sometimes. Unfortunately if your site did not happen to match
that 980 pixel width you were either going to overflow or underflow the screen.

Screen Size for MobileScreen Size for Mobile

Either wasting space or forcing the User to Zoom. In order to control this,
Apple provided a viewport meta tag to be added to your HTML to control the
default. For how big should my screen act on this page? The default is 980
pixels. So, if you put 980 pixels here, it would have no effect. The Mobile
browser already defaults to 980. But setting a viewport tells the browser how
wide the content is intended to be, and then the browser scales to make that
size fit on the device's screen. There are two ways to use this tag.

Screen Size for MobileScreen Size for Mobile

 The first way lets us take a page that was designed to be precisely one size.
This is an application I built that's using a fixed layout, and it's a bit smaller
than default. It's 916 pixels wide. Notice that it's not using all the space on
the screen because the browser by default is assuming the

 layout wants to be 980 pixels wide.

 So let's a viewport that tells the browser it was designed for 916 pixels
across. What would you put in the viewport to tell the browser that this
should be 916 pixels?

 Now the mobile browser will automatically scale that width to fit on the
screen, no matter what size screen the user has, or whatever device width
the user has.

Screen Size for MobileScreen Size for Mobile

Let us take a page that was designed to be precisely one size. This is an
application I built that's using a fixed layout, and it's a bit smaller than default.
It's 916 pixels wide. Notice that it's not using all the space on the screen
because the browser by default is assuming the layout wants to be 980 pixels
wide.

 Before tablets and mobile phones, web pages were designed only for
computer screens, and it was common for web pages to have a static
design and a fixed size.

 Then, when we started surfing the internet using tablets and mobile phones,
fixed size web pages were too large to fit the viewport. To fix this, browsers
on those devices scaled down the entire web page to fit the screen.

Fixed WidthFixed Width

This was not perfect!! But a quick fix. So let's a viewport that tells the browser
it was designed for 916 pixels across. What would you put in the viewport to
tell the browser that this should be 916 pixels?

The viewport is the user's visible area of a web page. The viewport varies with
the device, and will be smaller on a mobile phone than on a computer screen.

Now the mobile browser will automatically scale that width to fit on the screen,
no matter what size screen the user has, or whatever device width the user
has.

Fixed WidthFixed Width

Let's take a look at an app given below across a few devices with different
width screens, an iPhone at 640 pixels across and a nexus 7 tablet in
landscape, at double that width 1280 and note that it rescales properly on both
of these devices. Note this takes into account orientation as well.

Rescaling On DevicesRescaling On Devices

The default scaling is to available screen width, so it will properly adjust when
you flip the screen. There's also a height property on viewport which you could
use instead of width, to control the scaling based on the height, but of course,
most designs are built as width primary. That is, they're designed to scroll up
and down.

Rescaling On DevicesRescaling On Devices

Although typically View-port is only being set on Load, you can actually play
around with the View-port settings in the development tools to tweak it, and
get it just right. If I go into the page and set the Viewport meta element
contents from the mobile dev tools It will change the page, as if it had been
refreshed, however, and this is where it gets a bit confusing, the zoom level is
maintained by the browser across pager refreshes, so when you change
viewport settings in the source code, and you're reloading, be sure to actually
close the tab first. Don't just hit reload or it won't necessarily show the effects
on the screen.

Changing Viewport SettingsChanging Viewport Settings

For example, let's go back to our last bit of code. And change that width to
something really different. Let's double the width to 1832. And now let's save
that to the server and reload it on our mobile device. Our new View-port
setting doesn't take effect. On the other hand,

if we close the tab first and then reopen it, our new View-port setting now
takes effect. So pro tip, always remember to close the tab.

Changing Viewport SettingsChanging Viewport Settings

 Your content is almost always going to be scaled.
 Users of some devices will have to zoom.
 Text & UI will look small on a large desktop screen

A fixed width lets you tell the browser what width your webpage was designed
for and the browser will automatically scale that width to fit to the screen no
matter what size screen the user has or what device width the user has. Now
what would be some of the downsides or side effects of using a fixed width
view port?

It is true, that using effects with viewport, means that your content, is almost
always going to be scaled, and not match the native resolution. And definitely,
in some cases, users are going to have to zoom, to be able to see or read
anything, particularly text. Since, everything, all scaled depending on the size
of the screen, fitting the current layout, precisely, into the users screen.

Downsides of Fixed WidthsDownsides of Fixed Widths

Whether, it's a four inch phone or a 12 inch tablet, but actually, your text in UI
will not change at all on the desktop. Because, currently, at least, none mobile
browsers, don't respond to the view port at all. In some cases of course, it's
the right thing to do, if you just want to get the UI to fit on the screen, to use,
fix with view port, like in my sync app, but of course those dials are awfully
small, which makes the UI very hard to use.

Downsides of Fixed WidthsDownsides of Fixed Widths

 Let's talk about how to make truly scalable pages. Now, HTML, by default,
is supposed to reflow text anyway. And text sizes are supposed to be
consistent. But the worst side effect of this viewport stuff, by default, is that,
even with nothing set, the mobile browser is going to reflow text and render
as if the window were 980 pixels wide. And then scale it to fit it on to the
screen.

Text ReflowText Reflow

This may mean that the text looks really small on my mobile browser by
default. So, the second way to use viewport is if your page knows how to
adapt to width. For example, if it knows how to wrap the contents based on
the screen width. You can simply set the width to device width which tells the
browser, my website knows how to adapt to your width. This is really the best
approach. To build applications that scale their own layout and make
intelligent decisions about how to do so, rather than just trying to scale a fixed
layout to fit the screen.

<meta name=“viewport” content=“width=device-width”>

Text ReflowText Reflow

So let's try this out on this page. Let's add a device with meta element to a
page, and refresh it on the mobile browser. This is what our page looked like
before. Now with the meta tag in place. Let's try reloading it. And you can see,
the page now chooses a better size because it's reflowing at the native size of
the screen.

Device WidthDevice Width

On iOS, if you only set width to device width and you don't set the initial scale,
like in this page, when you rotate the screen the iOS web engine will keep the
same view port width and rescale it to fit across the landscape screen. It's just
stretching the portrait layout, to fit, across the landscape width. Even though
I've set width to device width, iOS is still scaling the landscape width.

In fact, the interesting bit is that even if you load this page initially in landscape
mode, it still thinks it's the portrait width, it just rescaling it to fit in the
landscape screen. Now, if you have the same page, but you set the initial
scale to 1 in the viewport meta-element along with setting device width, it'll
change the viewport size when you rotate, instead of rescaling. You can see
now the window size is 480 pixels across. It's the landscape width, not the
portrait width.

Other Viewport Controls: Initial Other Viewport Controls: Initial ScaleScale

I did want to mention at this point that there are other viewpoint controls.
There's an initial scale property that lets you set what the browser's initial
scaling factor will be. It defaults to one and usually, you don't really want to
mess with it. If you change it to another number, this changes the initial zoom
factor. And the user will probably have to pan or zoom. There is one very
critical use to initial scale though.

Initial ScaleInitial Scale

So, in short, this is what you really need to use as your default boiler plate
viewport meta-element. You'll need the initial scale, so that IRS, when flipping
from portrait to landscape mode will still scale correctly. An interesting side
note I discovered is that on iphones - Although they are changing the viewport
size properly if an initial scale is that, they are also changing the default font
size for the document and orientation change, effectively zooming up the text
when you go to landscape mode. This means you should probably set a
default font size of the page, not just use an percentages. You may want to
use a reset style sheet to do this, if you aren't already.

Initial ScaleInitial Scale

So really, fixed viewport widths are historical. Resizing by default was an
attempt to shoe horn the desktop web into a mobile device. Fixed viewport
sizes were a quick way to provide some minimal controls on that resizing, with
device whip, gets us back to the same scalable sized canvas that the desktop
web has, so the right way to do fluid flexible design, in the modern mobile web
starts with this tag. This marker let's the browser know your one of the cool
kids and you know what you are doing.

There are also minimum scale and maximum scale properties too. Which is a
way to limit the extents, that the system is allowed to scale the page on the
device. That seems a little esoteric at first, but, there is one use that, I wanted
to mention I don't want, you to think, that I'm biased.

Fixed VS DeviceFixed VS Device

So, after describing how you need to add initial scale, for iOS to work as
expected. I wanted to give equal time, for, Android. If your page, with device
width happens to forcibly, overflow the page, like this page, where I've added
an element that's very wide, Android will actually, do some rescaling, when
you change screen orientation, to, try to get the whole page to fit onto the
screen. Now, unfortunately, it gets it wrong, and it tries to zoom it the wrong
way.

Now, the only way that I found, to get around this, other than not overflowing
the screen to begin with, is to set the minimum scale and maximum scale
properties, to one, which will prevent the user from zooming altogether. As
well as, disabling automatic scaling. Let's do that in the dev tools now. Now
let's try rotating again.

Min and Max ScaleMin and Max Scale

We're back to normal here, and now, you see that even in landscape mode,
we get the proper width. Now, the problem with this, of course, is i can't zoom
anymore. We really don't want to disable zooming, for, your users; this is an
accessibility problem. So, don't do this in production pages, but, it can help
your testing, in, general just don't overflow the page and you'll be good.

Min and Max ScaleMin and Max Scale

There is one more property you can set. You can disable users zooming
entirely by setting user scalable to no. Fundamentally, you really shouldn't do
this. It's bad for accessibility and you're more likely to just annoy your users by
preventing them from zooming than to make their experience any better.

User Scalable

There is one more thing, on viewports. You're naturally, going to want to lay
out, elements on the page, relative to the size of the viewport. Particularly,
when you're sizing columns on the page, for example. So, we have a new unit
type, in, CSS called, viewport units.

You can use these units, to size things, in percentage of width of viewport or
percentage of height of viewport. Without having to push percentage sizing,
everywhere, which makes things a little easier. The really exciting thing, is,
these unit types even work in desktop browsers, as well as in mobile
browsers.

Viewport Units

There are also vmin and vmax units, which let you size things based on the
smallest or largest units of width and height. This helps make layouts that stay
consistent across portrait and landscape mode. Using this feature, it's pretty
easy to create a button that takes up 1/3rd of the biggest square that will fit in
the screen. Now using these units, the button stays as large as it can be and
still fit in a third of the space.

VMin and VMax

So you've had about wraps it up, for how to design for a particular view port.
With all of this complexity though, you might have noticed, some developers
decide to build two separate applications, a desktop app. And a separate
mobile web app, but there are some problems with doing this, which of these
problems might you encounter with having separate mobile and desktop
sites?

Separate Desktop and Mobile

First, you really need all your features to be available and fully usable on the
mobile version. If you try to guess what content or features your users won't
miss on the mobile, you'll probably get it wrong. It might seem logical, right up
until the point where I try to browse store inventory for my mobile device, only
to find that feature is not availbale. Secondly, with two apps or sites, there's a
natural tendency to focus on one or the other and to get out of sync between
them.

Maintaining two separate applications and keeping them fundamentally the
same is hard to do. And finally, there's the problem that it's difficult to identify
when you really want the mobile version. My tablet for example has nearly as
big a screen as my laptop, and it's actually higher resolution than my laptop.
Mobile design is actually more of a spectrum that spans all the way from low-
resolution devices up into desktop design.

Rules for Mobile Only

At the very least, there are three simple rules if you want to offer a mobile-only
site.

First, you want to make sure a user can still get to the full site from the mobile
site if they want to, in case you forgot any features.

Secondly, you should put canonical URL in meta-information. This is
commonly done for search engine optimization, but it's also important to keep
your mobile site and your desktop site together.

Finally, if someone links to a specific page on your desktop site, you shouldn't
transfer them to your top-level mobile page. You need to transfer them to that
specific page or its equivalent, on the mobile site. It's really frustrating when
you get redirected to the top-level page.

Rules for Mobile Only

It's great if you've sunk development money into developing a native mobile
app, and it's fine if you want to make sure your users know it's available, but
you shouldn't block access to your web application with a full page ad for your
native mobile app. Make this offer unobtrusive, and make my decision to
ignore it sticky. Now, you can use smart app banners, in iOS, to make this
offer a little less intrusive, but if I open a URL in a browser, I probably want to
stay in the browser.

Don’t Block Access

Fluid Layouts

As we discussed already that one of the first challenges of developing for
mobile devices is the screen. As mobile developers, we need to design pages
that can adapt across various screen sizes and scenarios. This will prepare
you for building fluid layouts, designs that can adapt across different screen
sizes. And hopefully we'll break the bad habits of designing to the fixed page.

Building Fluid Designs

Now, if you resize this window, nothing really changes. Nothing adjusts other
than the amount of margin space. It's really a fixed width layout. Now, let's
take a look at this on the phone. Now here, I get a very different version of a
blog. It fits well on the phone, but I'm only getting this because blog is running
on Wordpress.

Blog Layout

And, Wordpress is configured to give a totally different version to phones. But,
that's not actually what I want. Because I really want to have a shared layout
between the two.

Let's take a look at this on a intermediate device. My seven inch Android
tablet. Now here, what I'm getting is essentially the desktop version. I can still
scroll through the site but you can tell all the text is pretty small. Although
interestingly, if I rotate to landscape mode, it adapts.

Blog Layout

Now why does it do that? Well it turns out it's our old friend viewport. There's
now viewport set in this page. So, what does that mean? Does layout happen
if the device flipped? Or does layout happen at the magic 980 pixel width and
then get rescaled to fit on the screen?

Blog Layout

So if we dig around the page with the developer tools, we'd see a lot of pixel
widths. Including the main content of the page, which is inside this page
element. And you'll notice it has a width set in pixels. If I turn it off, well, the
page is still not working properly. But at least we've started.

Instead of this fixed code let's use a different technique, Fluid Layout. Fluid
Layout means I should stop fixing all those widths in absolute terms like pixels
or points and start thinking in terms of areas of screen real estate.
Percentages of the widths, for example, and sizes based on the initial font or
Em units.

Digging Around

With all this complexity, you might ask, why don't I just set the viewport width
to 760 pixels? The width of that column of text I showed you in the Dev tools,
and call it a day. Is it because that would be too easy? Or because, then my
site would scale the same layout across all devices? Or because the fonts
would be wrong in some way?

Well, the answer isn't because this would be too easy there really is a good
reason for why you don't want to set viewport width to a fixed size. Namely
that then your site would scale the same layout across all devices, you'd get
the same layout of text and images on a four inch cell phone as you do on a
ten inch tablet. And of course this means the fonts would be are consistent
size with that layout. You'd get the same size fonts rescaled on to a four inch
phone as you would on a ten inch tablet. And fundamentally this would result
in a poor user experience across mobile devices.

Fixed Viewport WidthFixed Viewport Width

Well, the answer isn't because this would be too easy there really is a good
reason for why you don't want to set viewport width to a fixed size. Namely
that then your site would scale the same layout across all devices, you'd get
the same layout of text and images on a four inch cell phone as you do on a
ten inch tablet. And of course this means the fonts would be are consistent
size with that layout. You'd get the same size fonts rescaled on to a four inch
phone as you would on a ten inch tablet. And fundamentally this would result
in a poor user experience across mobile devices.

Fixed Viewport WidthFixed Viewport Width

So let’s go fix my page. Now the first thing we need to do in order to make a
mobile friendly page, is to set the viewport. The mobile browser needs to know
that this webpage knows how to format itself on devices with varying width. It
doesn’t need the mobile browser to pretend that it’s a desktop screen with a
given width. Once you set the viewport correctly, it will be able to resize
properly and lay out properly. So what should my viewport meta say?

Set Set Viewport WidthViewport Width

That's right, you need to set the width to device width, and optionally, you can
set the initial scale to one if you want, to help avoid some iOS device
formatting issues.

Set Viewport WidthSet Viewport Width

So now that you know how to support the view port meta, lets poke around in
the developer tools to see what we need to do to fix this page. Now, the
biggest problem here is that the page has a fixed column width. If I resize the
window, you'll notice the column of text doesn't actually change size, just
margin position. As we mouse around the elements inside the dev tools, we
can pretty quickly find, the first offending element.

This page element here actually has a width set on it. Let's disable that and
see what happens. Well, it certainly changed things, but I don't think that it
actually improved things very much. Let's keep digging inside the content and
see what we can find.

Making it Fluid

You will find a rapper element having a width of 100% already. Which is good.
It means that it's not preventing us from resizing. But this content element
does have a width set in pixels. Let's disable that. Now as we resize the page
our content is fine but the sidebar is appearing and disappearing. Sure
enough, it has a width set.
If we set its width as a percentage also, now we're resizing a little bit better. So
now let's go back up to the page, and let's try giving it a width but let's give it a
width in view port units instead, now our only remaining problem seems to be
that the header is actually not resizing as we want it to let's go take a look at
the header image again.

Making it Fluid

The image has a max width set, but not just a width. So, let's set its width. And
now, everything seems to be resizing well. Now, this isn't perfect, but all that I
really wanted to get at was that as you try to transition pages from fixed layout
to fluid layout, The core things to look for, are fixed pixel sizes and lack of
percentage resize.

Making it Fluid

So there's really two rules for building fluid layouts. Use percentages or
viewport units, something that'll size as you resize the window. And then, test
while you're resizing the window. Let's take a look at how this worked out on
the mobile device. We went from this layout without any changes to my blog.
To this layout, definitely an improvement. I don't have to scroll left or right to
see everything on the screen. And, you may notice the font size is actually a
bit larger now. The font size was always set in M units, although it's actually
still a bit small for a mobile device. So, we should probably bump that up. Just
take a look on the tablet.

Use Fluid Layouts

In the tablet layout, you will get a definite improvement. This is actually a
pretty readable experience. And, even when you rotate the screen, you end
up with a nice reformatting. All this is really just a long winded way of saying,
be sure to create fluid layouts. Be sure to reflow to use all the space on the
screen and take advantage of every bit you can. And be sure you adapt to
different screens as well. One tool that makes reflow a lot easier, particularly
across very different screen sizes, is the new flex box layout in CSS. This new
tool lets you stack elements in flexible rows or columns.

Use Fluid Layouts

FlexBox has been kicking around for a couple of years now, but it's gone
through some pretty major revisions during that time.

It's just recently shipped in iOS 7, and it's been shipping in Android for a little
while, but you should test your FlexBox layouts thoroughly, across browsers.
This may be a little too bleeding edge for you, but, let's take a look.

We're going to walk through an interactive demo, talking you through each
feature in FlexBox, as you change the page, live, in the developer tools.

FlexBox Intro

Okay, that was a ton of detail. Really I recommend you, just sketch out your
design, and then party on it with FlexBox.

Flex Box is super powerful, and it's really super easy to use. Incidentally, I did
mention, Flex Box is still making its way into all the browsers out there. So,
there are some Flex Box polyfills out there, that can help you, like Flexy.

FlexBox Compatibility

So these tools give us the ability to build designs that are fluid. But as it
turns out, that's not enough. As you may have noticed as you went
through this lesson, the experience of re-flow from a very small window
size to a very large window size is not really a great one for the user. Now
that you know how to build fluid designs, you need to learn to adapt those
designs to radically different scenarios, like a four inch phone screen, and
a 30 inch desktop screen.

Fluid to Fluid to Responsive DesignResponsive Design

 Fixed websites have a set width and resizing the browser
or viewing it on different devices won’t affect on the way
the website looks.

 Fluid websites are built using percentages for widths. As
a result, columns are relative to one another and the
browser allowing it to scale up and down fluidly.

 Adaptive websites introduce media queries to target
specific device sizes, like smaller monitors, tablets, and
mobile.

 Responsive websites are built on a fluid grid and use
media queries to control the design and its content as it
scales down or up with the browser or device.

Fixed, Fluid, Adaptive, and Responsive web Fixed, Fluid, Adaptive, and Responsive web
designdesign

 we can't use reflow across all devices.

Different devices has different designDifferent devices has different design

Why we can't use reflow across all devices?Why we can't use reflow across all devices?

 New form factors come out all the time

Reflow Reflow across all devicesacross all devices

Changing LayoutsChanging Layouts

 Mobile Tablet Monitor

Changing LayoutsChanging Layouts

 Responsive web design is the practice of building a
website suitable to work on every device and every
screen size, no matter how large or small, mobile or
desktop.

Responsive Web DesignResponsive Web Design

 Responsive web design makes your web page look
good on all devices.

 Responsive web design uses only HTML and CSS.

 Responsive web design is not a program or a
JavaScript.

Responsive Responsive Web DesignWeb Design

Why Responsive Web Design?Why Responsive Web Design?

 Monitor Tablet Mobile

Responsive Web DesignResponsive Web Design

 Media Queries is a W3C Candidate Recommendation—a
widely reviewed document which is ready for implementation
by browser vendors.

 It's an extension of media dependent stylesheets tailored for
different media types (i.e. screen and print) found in CSS2.

 It uses the @media rule to include a block of CSS properties
only if a certain condition is true.

 A media query consists of a media type and an expression to
check for certain conditions of a particular media feature. The
most commonly used media feature is width.

Media QueriesMedia Queries

 Example 1: If the browser window is smaller than
500px, the background color will change to light blue:

 @media only screen and (max-width:500px)

{
 body {
 background-color: lightblue;
 }
}

Media Media QQueries Examplesueries Examples

Media Queries Media Queries Examples (Example 1)Examples (Example 1)

Media Queries Examples (Example 1)Media Queries Examples (Example 1)

 Example 2:The following example shows a menu that
will float to the left of the page if the viewport is 480
pixels wide or wider (if the viewport is less than 480
pixels, the menu will be on top of the content):

 @media screen and (min-width: 480px) {
 #leftsidebar {width: 200px; float: left;}
 #main {margin-left:216px;}
}

Media Media QQueries Examples 2ueries Examples 2

Media Queries Examples 2Media Queries Examples 2

Media Queries Examples 2Media Queries Examples 2

Width Orientation Color
Height Aspect-ratio Color-index
Device-width Device-aspect-ratio Monochrome
Device-height Grid Resolution

Available Media Query ExpressionAvailable Media Query Expression

 Flexible boxes, or flexbox, is a new layout mode in
CSS3.

 Use of flexbox ensures that elements behave predictably
when the page layout must accommodate different
screen sizes and different display devices.

 For many applications, the flexible box model provides
an improvement over the block model in that it does not
use floats, nor do the flex container's margins collapse
with the margins of its contents.

 Flexbox

Flexbox consists of flex containers and flex items.

<!DOCTYPE html>
<html>
<head>
<style>
.flex-container {
 display: -webkit-flex;
 display: flex;
 width: 400px;
 height: 250px;
 background-color: lightgrey;
}

Flexbox Flexbox ((Example)Example)

.flex-item {
 background-color: cornflowerblue;
 width: 100px;
 height: 100px;
 margin: 10px;
}
</style>
</head>
<body>

<div class="flex-container">
 <div class="flex-item">flex item 1</div>
 <div class="flex-item">flex item 2</div>
 <div class="flex-item">flex item 3</div>
</div>

</body>
</html>

Flexbox (Flexbox (Example continue)Example continue)

Flexbox (Flexbox (Example out put)Example out put)

Property Description

display Specifies the type of box used for an HTML element

flex-direction Specifies the direction of the flexible items inside a flex
container

justify-content Horizontally aligns the flex items when the items do not use
all available space on the main-axis

align-items Vertically aligns the flex items when the items do not use all
available space on the cross-axis

flex-wrap Specifies whether the flex items should wrap or not, if there
is not enough room for them on one flex line

align-content Modifies the behavior of the flex-wrap property. It is similar
to align-items, but instead of aligning flex items, it aligns
flex lines

flex-flow A shorthand propert for flex-direction and flex-wrap

order Specifies the order of a flexible item relative to the rest of
the flex items inside the same container

Flexbox Properties

The device pixel ratio is the ratio between physical
and logical pixels

The The Device Pixel RatioDevice Pixel Ratio

 A pixel is simply the individual point of color on a digital
image. A pixel doesn't have a particular size. It is an
abstract representation of a specific coordinate, like a
point on a map.

 Pixel is used to describe the number of discrete points
that can be captured by digital cameras, and because
most cameras can actually recognize millions of points,
the term Megapixel is used to shorten the number of
zeros needed.

 What is Pixel What is Pixel

 Physical pixel :
 The actual number of pixels that mobile or computer

device support e.g. physical pixel size of iphone6 plus is
1080*1920 pixels.

 logical pixel:
 Device independent pixels are called logical pixel e.g.

1 Logical pixel may be equal to 2 or more physical
pixels in digital image.

Difference Between Physical and Logical PixelDifference Between Physical and Logical Pixel

 The device pixel ratio is the ratio between physical pixels
and logical pixels. For instance, the iPhone 4 and iPhone
4S report a device pixel ratio of 2, because the physical
linear resolution is double the logical resolution.

 Physical resolution: 960 x 640
 Logical resolution: 480 x 320

 Other devices report different device pixel ratios, including
non-integer ones. For example, the Nokia Lumia 1020
reports 1.6667, the Samsumg Galaxy S4 reports 3, and
the Apple iPhone 6 Plus reports 2.46 (source: dpilove).
But this does not change anything in principle, as you
should never design for any one specific device.

The Device Pixel RatioThe Device Pixel Ratio

 800 pixels 1080 pixels

 Nexus 7 Table GalaxyS4

The Device Pixel RatioThe Device Pixel Ratio

The Device Pixel RatioThe Device Pixel Ratio

 Mobile devices not only have different numbers of
actual pixels, but they fit very different numbers of
pixels into each inch of the screen real estate

Mobile Device PixelsMobile Device Pixels

The Device Pixel RatioThe Device Pixel Ratio

The Device Pixel RatioThe Device Pixel Ratio

 Web applications need to deliver good image quality
across a broad range of devices, but they need to do so
at a minimum cost.

Image QualityImage Quality

 If you have used to browsing the Web on a smartphone
you’ll notice how websites are scaled out to fully display
within the screen.

 When you get into building a responsive mobile design,
the auto-zoom can really mess up your layout elements.
Specifically, images and navigation content may appear
small or too large in your layout.

Removing the Default ZoomRemoving the Default Zoom

 There is a special meta tag you can append into the
document header which resets this in most Android and
iPhone devices.

<meta name="viewport" content="width=device-width; initial-scale=1.0;
maximum-scale=1.0; user-scalable=0;" />

 This is known as the viewport meta tag which sets up
some custom variables within the content. Apple has a
documentation page regarding a few other meta tags
you should look into, although these are geared
specifically toward websites on iOS. The initial-scale
value is important as this defaults your website to a full
100% zoom.

Removing the Default ZoomRemoving the Default Zoom

Images are important facet of practically every website.
Mobile users may not be looking to stream videos, but
photos are a whole different story. These are also the
biggest problem when it comes to layouts breaking out of
the box model.

Difference in image QualityDifference in image Quality

 img { max-width: 100%; }

 The standard rule for CSS is to apply a max-width
property to all images. Since they’ll always be set at
100% you will never notice distortions. When the user re
-sizes their browser window smaller than your image. it’ll
automatically re-adjust to 100% width scaled down. The
problem is that Internet Explorer cannot understand this
property, so you’ll need to put together an IE-specific
stylesheet using width: 100%;

Difference in image QualityDifference in image Quality

When we render images to the screen. A pixel layout
dimensions may well not equal to pixel in real device
terms.

Difference in image QualityDifference in image Quality

Difference in image QualityDifference in image Quality

There should be our goal to make image as beautiful as
they can using as little bandwidth as possible.

Beautiful images, low bandwidthBeautiful images, low bandwidth

 Chromebook pixel screen: 4.1 mPx
 Nexus 4 screen : 0.9 mPx
 Iphone 5 screen :0.7 mPx

Beautiful images, low bandwidthBeautiful images, low bandwidth

Different Devices have different display densities. Some of
them can make use of pixels and some of them can’t .

Producing Different Producing Different QQuality Contentuality Content

 What is SVG?
SVG stands for Scalable Vector Graphics.SVG is used to
define graphics for the Web.

 The HTML <svg> Element
The HTML <svg> element (introduced in HTML5) is a
container for SVG graphics.
SVG has several methods for drawing paths, boxes,
circles, text, and graphic images.

Producing different quality contentProducing different quality content

<!DOCTYPE html>
<html>
<body>

<svg width="100" height="100">
 <circle cx="50" cy="50" r="40" stroke="green" stro
ke-width="4" fill="yellow" />
</svg>

</body>
</html>

Producing different quality contentProducing different quality content

Producing different quality contentProducing different quality content

 What is HTML Canvas?
The HTML <canvas> element is used to draw graphics, on
the fly, via scripting (usually JavaScript).
The <canvas> element is only a container for graphics.
You must use a script to actually draw the graphics.
Canvas has several methods for drawing paths, boxes,
circles, text, and adding images.

Producing different quality contentProducing different quality content

<!DOCTYPE html>
<html>
<body>

<canvas id="myCanvas" width="200" height="100"
style="border:1px solid #000000;">
Your browser does not support the HTML5 canvas tag.
</canvas>

</body>
</html>

Producing different quality contentProducing different quality content

Producing different quality contentProducing different quality content

Comparison of Comparison of SVG and SVG and Canvas Canvas

Canvas SVG

•Resolution dependent
•No support for event handlers
•Poor text rendering capabilities
•You can save the resulting
image as .png or .jpg
•Well suited for graphic-intensive
games

•Resolution independent
•Support for event handlers
•Best suited for applications with
large rendering areas (Google
Maps)
•Slow rendering if complex
(anything that uses the DOM a
lot will be slow)
•Not suited for game
applications

Let’s presume, we really need a raster image because
some images can’t be represented well by vector drawing.

Large area,low quality imagesLarge area,low quality images

.

Large area, low quality imagesLarge area, low quality images

Deliver high resolution but highly compressed images

Large area,low quality imagesLarge area,low quality images

 Using a higher resolution image to every device is not
proper solution.

q Should we use a low quality source image ,replace it
with JavaScript?

q Should we expect the server to give us the proper pixel
density image magically?

q Should we make several copies of the image and
conditionally request the right one from the client?

Do the right selection of quality imageDo the right selection of quality image

q Should we use a low quality source image ,replace it
with JavaScript?

Do the right selection of quality imageDo the right selection of quality image

q Should we expect the server to give us the proper pixel
density image magically?

Do the right selection of quality imageDo the right selection of quality image

This specification defines a set of HTTP request header
fields, known as Client Hints, that are intended to be used
as input to proactive content negotiation; just as the accept
header allows clients to indicate what formats they prefer,
Client Hints allow clients to indicate a list of device and
agent specific preferences.

HTTP Client HintsHTTP Client Hints

 Available hints
Current list includes DPR (device pixel

ratio), Width (resource width), Viewport-Width (layout
viewport width), and Downlink(maximum downlink speed)
request headers, and Content-DPR response header that
is used to confirm the DPR of selected image resources.

HTTP Client HintsHTTP Client Hints

 Delivering DPR-aware images
DPR hint automates device-pixel-ratio-based selection
and enables delivery of optimal image variant without
any changes in markup. For example, given the
following HTML markup:

HTTP Client HintsHTTP Client Hints

GET /img.jpg HTTP/1.1
User-Agent: Awesome Browser Accept: image/webp, image/jpg
DPR: 2.0
CH-RW: 160

HTTP/1.1 200 OK
Server: Awesome Server
Content-Type: image/jpg
Content-Length: 124523
Vary: CHoDPR, CH-RW
DPR: 2.0

HTTP Client Hints

q Should we make several copies of the image and
conditionally request the right one from the client?

Do the right selection of quality imageDo the right selection of quality image

Responsive images is a method for providing the browser
with multiple image sources depending on display density,
size of the image element in the page, or any number of
other factors to make possible flexible approach to images.

Responsive Images

Graphics are often a problem in responsive layouts
designed to adapt automatically to different device sizes
from desktop monitors to hand-held smartphones.
Traditionally, graphics have fixed dimensions that break
responsive layouts on screens that are smaller than the
graphic.
Length is not a problem, because pages can always scroll
vertically. However, you never want the page to have to
scroll horizontally on mobile devices with fluid layouts.

Responsive Images

 What Are The Problems?
One major factor in the need for responsive images is
overall website size - even today, a huge percentage of
mobile-version sites are as large (or even larger) than their
desktop versions, thereby affecting performance
negatively

Problems in Responsive Images

 Problem 1 - Semantics
Making responsive images work cleanly and reliably
across multiple platforms sometimes involves using
techniques that aren't ‘semantic'. Why? Because when the
source of an image points to a real image, with an alt text
to describe it, even if the source is the smallest image
possible, it means you're downloading unnecessary data.

Problems in Responsive Images

 Problem 2 - Art Direction
A picture tells a thousand words ... most of the time. Many
responsive image techniques enable you to provide
several resolution versions of an image, which can then be
used accordingly for suit a given platform. However, this
can sometimes have a negative effect where the message
of the image is diluted or lost altogether. What's the
minimum size for an image? The answer, of course,
depends on context.

Problems in Responsive Images

 Problem 3 - Validity
If you are customizing markup, checking markup validity
using a validation service such as W3C ensures that a
construct follows the correct syntax of whatever language
it works with (for example, HTML). While most of the time
browsers are able to think ahead to present Web pages
that aren't strictly ‘valid' without any problems, these
results can sometimes vary between one browser and
another. In rare cases, it can cause confused layouts or
even crashes. ‘Validating' every page is a bulletproof way
of identifying these problems before they occur.

Problems in Responsive Images

Problem 4 - Bandwidth Capabilities
Much as we'd all like to say otherwise, a world of super-
speed connections and lighting-fast load times for
everyone is still some way off. That's why in many
developers' opinions, responsive images ought to consider
the bandwidth available on any given device, and adjust
the image size accordingly to cut out excess downloads.

Problems in Responsive Images

 Problem 5 - Server Side Components
The bulk of Adaptive Images' work is done through
.htaccess and PHP 5.x, which offers a great solution
without complete dependency on JavaScript. The
problem with .htaccess is that it assumes your website is
running on an Apache server. If you're using something
else, such as Nginx, you can port the .htaccess over to
Nginx syntax - which is similar to Apache's but this still
involves some work. Additionally, adding PHP files to
your site's root directory may not be possible if you're
running on other technologies, such as Ruby or Python.
Clearly this isn't ideal for everyone, so be sure to check
first before you dive in.

Problems in Responsive Images

 Problem 6 - JavaScript
As you've probably noticed, many of the responsive image
techniques above require some JavaScript. If you'd prefer
to keep things as simple as possible and want to avoid
using JavaScript you can use the third-party Sencha.io
solution.

Problems in Responsive Images

Responsive images is a method for providing the browser with
multiple image sources depending on display density, size of the
image element in the page, or any number of other factors to
make possible flexible approach to images.

Responsive imagesResponsive images

Using The width Property:

If the width property is set to 100%, the image will be
responsive and scale up and down:

img {
 width: 100%;
 height: auto;
}

Responsive Images using CSS3Responsive Images using CSS3

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
img {
 width: 100%;
 height: auto;
}
</style>
</head>
<body>

<p>Resize the browser window to see how the image will scale.</p>
</body>
</html>

Responsive Images using CSS3Responsive Images using CSS3

Responsive Images using CSS3Responsive Images using CSS3

 Using The max-width Property

If the max-width property is set to 100%, the image will
scale down if it has to, but never scale up to be larger than
its original size:

img {

 max-width: 100%;
 height: auto;

}

Responsive Images using CSS3Responsive Images using CSS3

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
img {
 max-width: 100%;
 height: auto;
}
</style>
</head>
<body>

<p>Resize the browser window to see how the image wil scale when the width is less
than 460px.</p>
</body>
</html>

Responsive Images using CSS3Responsive Images using CSS3

Responsive Images using CSS3Responsive Images using CSS3

In order to do responsive images , we need to request
different images based on the device pixel ratio, but also
possibly based on the layout width.

These images may be the same image transcoded to
different sizes.

They may be actually different images depending on the
layout size.

Use of high quality and different sized copies
of image

Use of high quality and different sized copies
of image

We shall need to provide multiple copies of this image so
that low pixel count devices can save bandwidth or high
pixel count devices can get a crisp image.

It is possible to manage on server side in some cases.

In fact, some content systems let you simply specify what
size you want a given source image app.

Use of high quality and different sized copies
of image

If you want the images to actually represent different art,
different crops for example you'll have to do that
manually.

For each of these images though you should remember to
tune the quality parameters to minimize file size while
maximizing quality.

We'll need at least 1x and 2x versions of images as 1x or
2x for device pixel ratio purpose.

For responsive images, We may request different images
based on available layout width.

Use of high quality and different sized copies
of image

 Client should request for the “right” image.

 We need to get the client to ask for the right image to be
downloaded.

Request Right ImageRequest Right Image

 It needs to know what device pixel ratio the device
is using and potentially the layout size too, if it's
responsive to the layout width and then request
only the appropriate image.

Request Right ImageRequest Right Image

 This last part is the hard part, because the web browser
tries to download image as early as possible which of
course is a good thing for getting content on the screen
quickly, but bad if the client asks for more than one
version particularly on a mobile device with limited
bandwidth.

Request Right ImageRequest Right Image

So we should try to find the solution for the problem
of right image at the right time.

Request Right ImageRequest Right Image

 What we really need is the ability for our client to
selectively choose what image to use.

Ideal Image SolutionIdeal Image Solution

Ø Ideal solution would be semantic and validate
properly.It would only load one copy of the image and
work and be accessible across all browsers.

Ideal Image SolutionIdeal Image Solution

 Unfortunately that solution does not exist.

Ideal Image SolutionIdeal Image Solution

The CSS background properties are used to define
the background effects for elements.

We shall discuss following properties of background
images:

 Background Image - Repeat Horizontally or Vertically
 Background Image - Set position and no-repeat
 Background Image -background-position:

Background Background ImageImage

 Background Image:
 The background-image property
specifies an image to use as the background of an
element. By default, the image is repeated so it covers the
entire element.

Background ImageBackground Image

Example:
<!DOCTYPE html>
<html>
<head>
<style>

body {
 background-image: url ("paper.gif");

}
</style>
</head>
<body>

<h1>Hello World!</h1>
<p>This page has an image as the background!</p>
</body>
</html>

Background ImageBackground Image

Background ImageBackground Image

 Background Image - Repeat Horizontally or
Vertically
By default, the background-image property repeats an image both
horizontally and vertically.Some images should be repeated only
horizontally or vertically, or they will look strange, like this:

Background ImageBackground Image

 Background Image - Repeat Horizontally or Vertically:

<!DOCTYPE html>
<html>
<head>
<style>
body {
 background-image: url("gradient_bg.png");
}
</style>
</head>
<body>

<h1>Hello World!</h1>
<p>Strange background image...</p>

</body>
</html>

Background ImageBackground Image

Background ImageBackground Image

 Background Image - Set position and no-repeat:

Background ImageBackground Image

Example:

<!DOCTYPE html>
<html>
<head>
<style>
body
{
 background-image: url("img_tree.png");
 background-repeat: no-repeat;
}
</style>
</head>
<body>

<h1>Hello World!</h1>
<p>Background image example.</p>
<p>The background image is only showing once, but it is disturbing the reader!</p>
</body>
</html>

Background ImageBackground Image

Background ImageBackground Image

background-position:
In the example above, the background image is shown in the same place as the
text. We want to change the position of the image, so that it does not disturb the
text too much.
The position of the image is specified by the background-position property:
Example
body {
 background-image: url("img_tree.png");
 background-repeat: no-repeat;
 background-position: right top;
}

Background ImageBackground Image

Background ImageBackground Image

Why we use image-set instead of media queries?

I. The problem with media queries for higher resolution
displays is they don’t give the browser any discretion.
They say explicitly that if the pixel density equals 1 or
2 or whatever, that the browser must use a particular
image source.

II. The various resolutions of the image are all in the
same place in css. When we use media queries to
specify different image resolutions, we can end up
with the image sources separated by dozens of lines
of css which makes tracking down the different image
sources more challenging.

Image-setImage-set

 The emerging trend on HD screens for computer devices
has changed the way we build websites, including how
we add images. In the past, we can simply use
background-image and set the image URL.

 Today, this is no longer relevant, since we also need
to provide an image that is optimized for higher resolution
displays or the image will look pixelated or blurred. So,
technically we need two sets of image, one in regular size
and another twice the size.

Image-setImage-set

Image-setImage-set

 CSS Image Set Function:
By using this function, we can insert multiple images which
will be set for normal and high-res display.

Apart from that, this function is also trying to deliver the most
appropriate image resolution based on the connection speed.
So, regardless of the screen resolution, if the user accesses the
image through a slow Internet connection.

CSS Image Set is experimental. It is only supported in Safari
6 and Google Chrome 21 and is prefixed — -webkit-image-
set().ection, the smaller-sized image will be delivered.

Image-setImage-set

 This function is declared within the background-image
property, while the background URL is added within the
function followed by the resolution parameter (1x for
normal display and 2x is for high-res display), like so.

Image-setImage-set

.selector {
 background-image: -webkit-image-set(url('../img/image-
1x.jpg') 1x, url('../img/image-2x.jpg') 2x);
}

Image-setImage-set

body {
background-image: url('../img/bg.png');

}
.demo-wrapper {

width: 600px;
margin: 0 auto;

}
.demo-wrapper .theimage {

margin-top: 100px;
border: solid 8px #f3f3f3;
width: 100%;
height: 360px;
background-size: 100% auto;
background-repeat: no-repeat;
background-position: center center;
background-image: url('../img/image-1x.jpg');
background-image: -webkit-image-set(url('../img/image-1x.jpg')

1x, url('../img/image-2x.jpg') 2x);
}

Image-setImage-set

Image-setImage-set

 Finally:
image-set() function seems to be a promising solution for
serving images in high-res. But, with the current limited
browser support, image-set() is not ready to be
implemented in a live site. In addition, the implementation
could be changed along the way in the near future.

Image-setImage-set

Importance of
Performance

 A slow site means that you will have less user
engagement.

Why performance

let's say you accidentally, introduce a
performance issue, that causes your page to
take an extra half second to load. That's just
500 milliseconds.

That's a pretty small difference.

What kind of difference, in user engagement
,do you think this would cause?

Example

Even such a small change, causes a slightly
more than one percent drop
in user engagement, and income from your
site.

Many well publicized studies from Google,
Microsoft, Amazon, Facebook, and others, all
show that UI performance translates directly to
profit. A drop in performance directly drives a
drop in user engagement. In short, speed is
not a feature, it's a requirement. Users won't
use your app if it's not fast.

It is a requirement

Analyzing Performance

Of course, it's nearly impossible to graph
performance into your application after it's
already been built, but before we get into good
performance patterns, the first step to insuring
great performance, is being able to analyze
your performance

When to consider Performance

#perfmatters

Chrome Development Tools

Chrome Development Tools

Understanding Network

 Three pillars of performance are

 Network
 Render
 Compute

Pillars of Performance

 Examples
1. www.vu.edu.pk
2. http://playbiolab.com/
3. https://www.eecs.mit.edu/

Network

Touch Interaction

One of the most important factors in an
immersive user experience on a mobile device
is touch interaction. You expect a responsive
interaction from a device that you hold in the
palm of your hand, and with most mobile
screens, your primary pointing device is your
finger.

As a mobile web developer, you need to be
sure that you're building great touch enabled
user devices

Simple rules for touch UI

Do not relay on Hover Effect

Buttons Source: http://www.w3schools.com/css/css3_buttons.asp

Rule 1

Size of Touch Area should be at-least

10mm X 10 mm

Rule 2

Touch and mouse are not mutually exclusive

Rule 3

Provide Mouse support as well.

Rule 4

Don’t do anything

It is important to understand that you may not
even need to do anything in order to support
touch.

Touch events emulate mouse clicks already,
and the web browser builds in some gestures
like scrolling and zooming.

So, you only need to implement something
here in cases where the gesture support Or
mouse emulation does not give an optimal user
experience.

 http://www.w3schools.com/css/css3_button
s.asp

Example

Click Delay

Touch supporting mobile browsers, usually
interpret double tapping, as a zoom into this
element gesture. Unfortunately, this means the
platform, delays firing click of it until it can
decide whether, the user is double tapping.

This delay is about a third of a second.

Chrome has recently checked in some changes,
that minimize this behavior.
But, pretty much, all mobile browsers,
have this click delay feature, to some degree.

There are a few ways to fix this problem, and,
get clicks without a delay,

1) You can set the view port, to be non-
scalable. Either, set user scalable, to no, or set
minimum scale and maximum scale, to one,
which has the same effect. This can cause
accessibility problems, though, so be careful
jumping, to this solution. You need to make
sure, if you do this, that your site will never
,need to be zoomed.

Fix

2) You can use a fast click library, like the ft
labs one, that we've linked down below. But
,you do have to be careful, about how this
impacts, your scrolling performance, be sure to
read the directions, very carefully.

https://github.com/ftlabs/fastclick

3) Where finally, of course, you can implement
tech support yourself directly, if you consume
the touch events, you won't have this issue.

Supporting Touch

Go to www.caniuse.com

And search for “touch”

Or go to http://caniuse.com/#feat=touch

 touchstart -> mousedown
 touchmove -> mousemove
 touchend -> mouseup
 touchcancel

Touch Events

Touch Events

Source: https://www.w3.org/TR/touch-events/#touchevent-interface

Source: https://www.w3.org/TR/touch-events/#touch-interface

Touch events are always delivered to the element
that first received that Touch.

They don't walk across boundaries like Mouse
Events do. So it's important to hook the right
elements. In fact, it's a good idea to add the touch
end handler during your touch start handler. And,
keep in mind too that even if you remove a DOM
element from your tree, it still gets the events until
the touch ends.

DOM http://www.w3schools.com/js/js_htmldom.asp

Touch Events are Fired on The
Original Target

Mouse Emulation

Example:

https://webaudiodemos.appspot.com/midi-
synth/

Synthesizer Application

https://webaudiodemos.appspot.com/

Application Link

https://github.com/cwilso/midi-synth

We will Initially start with touch events.

There were two challenges, though. First,
you'll notice that on the desktop, if I don't
have that touch event emulation turned on, it
doesn't actually work at all when I use the
mouse.

Of course, this is expected. But I didn't really
want two code paths, one for mouse and one
for touch. Secondly, I really wanted to be able
to have a drag across the keyboard. Play each
note as you slid across it in turn. But with the
way touch delivers all the events to the
originally touched down element, I would have
had to calculate the hit testing myself for these.
And that was kind of a pain.

I really wanted these touch events to be
delivered to the down element for each key.
Instead what happens in this synth, is when I
hit one key and then drag, it doesn't actually
move where the events are delivered.

Getting Started With
Touch Events

Example - 1

 We define a touch-sensitive div to which we
will attach an event listener. We also define
a div at the top where we will display the
screen coordinates of the most recent touch.

 Next we add some JavaScript to register the
event listener, and add a handler function to
do something with the touch data:

 So, here we’re simply identifying the
touchzone div, attaching a listener for
the touchstartevent, and registering a handler
function: touchHandler.

In the touchHandler function we grab
the x and y coordinates of the touch, and write
them to the coords div:

Adding Mouse Support

Pointer Events

To handle the mouse events, touch events and
pen events we have to write the code
separately for each of these.

Problem

To rectify this situation, Microsoft made a
standards proposal that reconciles touch
events and mouse events and pen input too,
into one model called pointer events.

Solution

Go to www.caniuse.com

Support in Browsers

Pointer Events Object

While the Touch Events API was defined in
terms of Touches, the Pointer Events API is
defined in terms of Pointers,

where a Pointer is defined as:

A hardware agnostic representation of input
devices that can target a specific coordinate (or
set of coordinates) on a screen

PointerEvent inherits and extends MouseEvent,
so it has all the usual properties that
MouseEvent has, such as clientX, clientY etc.,
as well as a few additional ones, such as
tiltX, tiltY, and pressure

Attribute Description
pointerId unique numeric identifier

screenX horizontal coordinate relative to screen

screenY vertical coordinate relative to screen

clientX horizontal coordinate of point relative to viewport, excluding scroll offset

clientY vertical coordinate of point relative to viewport, excluding scroll offset

pageX horizontal coordinate of point relative to page, including scroll offset

pageY vertical coordinate of point relative to page, including scroll offset

width width of pointer contact on screen
height height of pointer contact on screen

tiltX angle of tilt of stylus between Z and X axes, where X and Y plane is on the
surface of the screen

tiltY angle of tilt of stylus between Z and Y axes, where X and Y plane is on the
surface of the screen

pressure pressure of contact on screen

pointerType class of Pointer: mouse, pen, or touch

isPrimary is this the main Pointer for a pointer type

The pointer attributes

event type fired when…

pointerover pointer moves over an element
(enters its hit test boundaries)

pointerenter
pointer moves over an element or
one of its descendants. Differs to
pointerover in that it doesn’t bubble

pointerdown
active buttons state is entered: for
touch and stylus, this is when
contact is made with screen; for
mouse, when a button is pressed

pointermove
pointer changes coordinates, or
when pressure, tilt, or button
changes fire no other event

Event types defined by
the PointerEvent interface

pointerup
active buttons state is left: i.e. stylus
or finger leaves the screen, or mouse
button released

pointercancel
pointer is determined to have ended,
e.g. in case of orientation change,
accidental input e.g. palm rejection,
or too many pointers

pointerout

pointer moves out of an element
(leaves its hit test boundaries). Also
fired after pointerup event for no-
hover supported devices, and
afterpointercancel event

pointerleave pointer moves out of an element and
its descendants

gotpointercapture when an element becomes target of
pointer

lostpointercapture when element loses pointer capture

Mouse event Touch event Pointer event

mousedown touchstart pointerdown

mouseenter pointerenter

mouseleave pointerleave

mousemove touchmove pointermove

mouseout pointerout

mouseover pointerover

mouseup touchend pointerup

Mouse events, pointer events, and
touch events equivalence

For comparison, the following table shows the corresponding events from
each of these input related APIs

Polyfill Library

It refers to a JavaScript library that implements
an HTML5 web standard, either an established
standard (supported by some browsers) on
older browsers, or a proposed standard (not
supported by any browsers) on existing
browsers.

Polyfill Library

Pointer Code Example

<html lang="en">
<head>
 <meta charset="utf-8">
 <title>PEP (Pointer Events Polyfill)</title>
 <meta name="viewport" content="width=device-width">
 <!-- include PEP -->
 <script src="https://code.jquery.com/pep/0.4.1/pep.js"></script>
</head>
<body>
<button id="b" touch-action="none">Test button!</button>
<p><output id="o"></output></p>
<script>
document.getElementById("b").addEventListener("pointerdown", function(e) {
 document.getElementById("o").innerHTML = "that was a " +
 e.pointerType + " " + e.type + " on a "+ e.target.nodeName;
});
</script>
</body>
</html>

Pointer Code Example

Pointer Code Example 2

Touch Handler Guide
Lines

It is good practice To use as few handlers as
necessary in your application and keep the
areas with touch handlers as tightly
constrained as you can. That way the default
scrolling mechanisms can take over as much as
possible.

Touch Handler Guide Lines

Input Introduction

 Some users can easily type longer text on
mobile devices.

 But it is still very touch to just type with
thumbs.

Input Introduction

 So we must make of Input entry easy for all
the users.

 Also while entering data it should be clearly
visible. It is much difficult to enter the small
font data.

Keyboard Input

Phones and tablets do not have the benefit
most desktops and laptops do, which is a large
input device called the "keyboard". Virtual
keyboards offered by mobile devices are
physically smaller and usually more tedious to
operate, but the great news is that HTML5 has
already standardized a handful of input types
which make them easier to use.

search email url tel

number range date month

week time datetime datetime-
local

color

Input Types in HTML5

The most common input type

<input type="text">

Text

Entering an email on the standard keyboard is
very difficult. When we use Input Type as email.
We get a @ sign as well as the .com and other
handy buttons to just make entering an email
address as easy as possible.

<input type="email">

Email

Tel input provides the user with ability to add
the numbers , it provides ability to quickly add
*, # , + signs as well.

<input type="tel">


Tel

Number input provides a key board to quickly
add the numbers.

<input type="number">

Number

Date input types makes it very easy to enter
the date on Webpage. Using Calendar can be
little difficult for users

<input type="date">

Date

Entering Date and Time is very Difficult but for
mobile devices, using Date & Time input it
becomes very easy to enter data.

<input type="datetime">

Date & Time

 Month
 Search

Regular Expression
Validation

For some types like e-mail, there's some basic
validation. But this is not very smart validation.

If you want to do better client side validation
though,HTML-5 supports that too.

There's also a pattern attribute on the input
element, that you can use to validate on the
client side.

The pattern element takes a regular
expression, as expressed by the java script
regex syntax.

For example, let's1presume we want to only
allow Country code in a specific field in our
mobile web application like PAK

Example

I can put in a regular expression for this, and
now when I try to input a Country code of more
then three letters and then submit, it pops up
an error message that says I have to match the
requested format.

An <input> element with type="password" that
must contain 6 or more characters:

Example 2

 http://www.w3schools.com/jsref/jsref_obj_re
gexp.asp

To Learn more about Regular
Expressions

Two Important Features
of Input

 There are two more features I wanted to
mention on inputs.

 The required attribute and the place holder
attribute.

 Required just lets me say, this field is
required before you can submit the form. So,

Two Important Features of Input

For example, if I want to make sure that a user
enters the username,

Example

Now if user will try to submit this form with out
entering the username he will get the error
message

The other feature, is the placeholder text. You
may want to give hints to your users. In some
fields, they go away when they start typing.
You can do that pretty easily by just setting a
placeholder attribute.

Placeholder Text

 The placeholder attribute specifies a short
hint that describes the expected value of an
input field (e.g. a sample value or a short
description of the expected format).

 The short hint is displayed in the input field
before the user enters a value.

 Note: The placeholder attribute works with
the following input types: text, search, url,
tel, email, and password.

Example

Input in older browsers

 The HTML spec says that unrecognized input
types are to be

 treated as text. So, new input types will still
work even if they are not supported on a
particular browser.

 They'll just function like text inputs. Not quite
as useful, but still functional.

Wrapping in Label

You should always wrap label elements around
your input elements, and their associated
labeling texts, because it increases the
touchable area of the control.

 The only difference between these two
controls is that one of them has a label
element around it.

 But you'll notice, it's much easier to touch the
one with the label. The one without a label,
you have to actually touch the check box
itself, in order to activate the control.

telecolon URL

On mobile, you can use a telecolon URL to
create a URL that when activated will actually
dial a telephone number. This is a really handy
feature, particularly for business websites.
Customers can instantly dial you.

 Of course, on desktop, these URLs will
typically fail, so you probably want to
deactivate them.

Sensors on mobile

One of the most amazing things about the
mobile platform is the incredible array of
sensors these devices typically have.

This phone has a camera that can take stills
and video, has audio input and output, it has a
GPS, a compass, a tilt sensing accelerometer.

A Mobile device has far more sensors than a
desktop or laptop typically has.

 And all this, in a device that one can typically
hold in the palm of his/her hand.

This enables the mobile platform to play host
to incredibly engaging and interactive user
experiences.

Camera Access

The camera is not just for taking pictures and
making videos.

The camera can be a great way to get quick
input into the mobile device.

For example you can snap a new profile picture
using your mobile camera and upload it

 You capture a QR code to transfer a
hyperlink

 You can capture a map or a business card.

Capture Extension

There is a simple way to get access to the
camera and the audio input, the capture
extension on the accept attribute on the file
input element in HTML.

This will give you a button that opens up the
system camera or Audio recorder app on a
mobile device.

The accept attribute takes a comma-separated
list of unique content types of files that are
acceptable values for the file input type only.
The comma separated values can include file
extensions, MIME types without extensions,

<input type="file" accept="image/*">
 (images only)

Accept Attribute

<input type="file"
accept="image/*;capture=camera">

<input type="file"
accept="video/*;capture=camcorder">

<input type="file"
accept="audio/*;capture=microphone">

For Mobile Devices

Drawbacks of Capture
Extension

 The first problem is that this feature only
works in mobile, not in desktop. On desktop,
you only get the normal file open dialogue.
Not access to the webcam.

 Secondly, the interface is a file open button,
which is hard to style and make look the way
you might want it to.

 Third issue is , taking you to a different
application to take a picture or record some
audio, makes it kind of hard to keep a
consistent flow in your application.

Live Input

We can get Live Input, Audio and Video,
directly under our App by using an API called
getUserMedia.

Link:-
https://developer.mozilla.org/en/docs/Web/A
PI/Navigator/getUserMedia

Example

This is a simple example where we just call
getUserMedia, passing some constraints that
say we want video, and then we assign the
resulting stream to a video element in the
page. Of course, this just gives us a rectangle
with live Video Input.

We probably want to do something with it. If
we want to grab Snapshots like if we want to
implement a Camera Application, we can do
this with a canvas context and DrawImage.
Whenever we want to take a Snapshot, we
simply grab the image from the video and we
draw it to the camera with DrawImage.

Of course a canvas in different than an image.
You can't directly copy a canvas and paste it
somewhere else, or download it your hard drive
or post it to your social networks. Or any of the
other typical User flows centered around
images, but it turns out, canvas has a1 handy
function to encode itself as an image. The
canvas toDataURL method.

Here, instead of displaying the canvas itself,
we're copying the canvas contents as a data
earl to the source of an image tag. And if you
want to save these images to the Mobile's local
storage.

Navigator.getUserMedia()

navigator.getUserMedia(constraints,
successCallback, errorCallback);

Syntax

Constraints
A MediaStreamConstaints object specifying the
types of media to request, along with any
requirements for each type.

Parameters

 To require a capability, use the
keywords min, max, or exact (a.k.a. min ==
max). The following demands a minimum
resolution of 1280x720

When the call succeeds, the function specified
in the successCallback is invoked with
theMediaStream object that contains the media
stream. You may assign that object to the
appropriate element and work with it, as shown
in the following example:

successCallback

When the call fails, the function specified in the
errorCallback is invokedwith a
MediaStreamError object as its sole argument

errorCallback

Error Description

PermissionDeniedError
Permission to use a media device
was denied by the user or the
system.

NotFoundError
No media tracks of the type
specified were found that satisfy
the constraints specified.

