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1. Introduction to FALSIM

2. Preparing source files for FALSIM

3. Using FALSIM

4. FALCONA assembly language techniques

FALSIM

1. Introduction to FALSIM:

FALSIM 1is the name of the software application which consists of the
FALCONA assembler and the FALCONA simulator. It runs under
Windows XP.

FALCON(A Assembler:

Figure 1 shows a snapshot of the FALCONA Assembler. This tool loads a
FALCONA assembly file with a (.asmfa) extension and parses it. It shows

the parse results in an error log, lets the user view the assembled file’s
contents in the file listing and also provides the features of printing the
machine code, an Instruction Table and a Symbol Table to a FALCONA
listing file. It also allows the user to run the FALCONA Simulator.

The FALCONA Assembler has two main modules, the Istpass and the
2ndpass. The Istpass module takes an assembly file with a (.asmfa)
extension and processes the file contents. It then creates a Symbol Table
which corresponds to the storage of all program variables, labels and data
values in a data structure at the implementation level. If the Istpass
completes successfully a Symbol Table is produced as an output, which is
used by the 2ndpass module. Failures of the Istpass are handled by the
assembler using its exception handling mechanism.
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The 2ndpass module sequentially processes the .asmfa file to interpret the
instruction opcodes, register opcodes and constants using the symbol table.

It then produces a list file with a .Istfa extension independent of successful

or failed pass. If the pass is successful a binary file with a .binfa extension is
produced which contains the machine code for the program in the assembly

file.
FALCON(A Simulator:

Figure 6 shows a snapshot of the FALCONA Simulator. This tool loads a
FALCONA binary file with a (.binfa) extension and presents its contents
into different areas of the simulator. It allows the user to execute the
program to a specific point within a time frame or just executes it, line by
line. It also allows the user to view the registers, I/O port values and memory
contents as the instructions execute.

FALSIM Features:
The FALCONA Assembler provides its user with the following features:

Select Assembly File: Labeled as “1” in Figure 1, this feature enables the
user to choose a FALCONA assembly file and open it for processing by the
assembler.

Assembler Options. Labeled as “2” in Figure 1.

e Print Symbol Table
This feature if selected writes the Symbol Table (produced after the
execution of the Istpass of the assembler) to a FALCONA list file with an
extension of (.Istfa). The Symbol Table includes data members, data
addresses and labels with their respective values.

o Print Instruction Table
This feature if selected writes the Instruction Table to a FALCONA list file
with an extension of (.Istfa).

List File: Labeled as “3”, in Figure 1, the List File feature gives a detailed
insight of the FALCONA listing file, which is produced as a result of the
execution of the 1st and 2ndpass. It shows the Program Counter value in
hexadecimal and decimal formats along with the machine code generated for
every line of assembly code. These values are printed when the 2ndpass is
completed.
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Error Log: The Error Log is labeled as “4” in Figure 1. It informs the user
about the errors and their respective details, which occurs in any of the
passes of the assembler.

Search: Search is labeled as “5” in Figure 1 and helps the user to search for

a certain input with the options of searching with “match whole” and
“match any” parts of the string. The search also has the option of checking
with/without considering “case(sensitivity”. It searches the List File area
and highlights the search results using the yellow color. It also indicates the
total number of matches found.

Start Simulator: This feature is labeled as “6” in Figure 1. The FALCONA
Simulator 1s run using the FALCONA Assembler’s Start Simulator option.
The FALCONA Simulator is invoked by the user from the FALCONA
Assembler. Its features are detailed as follows:

Load Binary File: The button labeled as “11” in Figure 6, allows the user to

choose and open a FALCONA binary file with a (.binfa) extension. When a
file 1s being loaded into the simulator all the register, constants (if any) and
memory values are set.

Registers: The area labeled as “12” in Figure 6. enables, the user to see
values present in different registers before during and after execution.

Instruction: This area is labeled as “13” in Figure 6 and contains the value of
PC, address of an instruction, its representation in Assembly, the Register
Transfer Language, the opcode and the instruction type.

1/0 Ports: 1/0 ports are labeled as “14” in Figure 6. These ports are available
for the user to enter input operation values and visualize output operation
values whenever an I/O operation takes place in the program. The input
value for an input operation is given by the user before an instruction
executes. The output values are visible in the I/O port area once the
instruction has successfully executed.

Memory: The memory is divided into 2 areas and is labeled as “15” in
Figure 6, to facilitate the view of data stored at different memory locations
before, during and after program execution.

Processor’s State: Labeled as “16” in Figure 6, this area shows the current
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values of the Instruction register and the Program Counter while the program
executes.

Search: The search option for the FALCONA simulator is labeled as “17”

in Figure 6. This feature is similar to the way the search feature of the
FALCONA Assembler works. It offers to highlight the search string which
goes as an input, with the “All *“ and “ Part “ option. The results of the search
are highlighted in the color yellow. It also indicates the total number of
matches.

The following is a description of the options available on the button panel

labeled as “18” in Figure 6.

Single Step: “Single Step” lets the user execute the program, one instruction
at a time. The next instruction is not executed unless the user does a “single
step” again. By default, the instruction to be executed will be the one next in
the sequence. It changes if the user specifies a different PC value using the
Change PC option (explained below).

Change PC. This option lets the user change the value of PC
(Program Counter). By changing the PC the user can execute the
instruction to which the specified PC points.

Execute. By choosing this button the user is able to execute the
instructions with the options of execution with/without breakpoint
insertion (refer to Fig. 5). In case of breakpoint insertion, the user has
the option to choose from a list of valid breakpoint values. It also has
the option to set a limit on the time for execution. This “Max
Execution Time” option restricts the program execution to a time
frame specified by the user, and helps the simulator in exception
handling.

Change Register: Using the Change Register feature, the user can
change the value present in a particular register.

Change Memory Word: This feature enables the user to change values
present at a particular memory location.

Display Memory: Display Memory shows an updated memory area,
after a particular memory location other than the preexisting ones is
specified by the user.
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Change I/O. Allows the user to give an I/O port value if the
instruction to be executed requires an /O operation. Giving in the
input in any one of the I/O ports areas before instruction execution,
indicates that a particular I/O operation will be a part of the program
and it will have an input from some source. The value given by the
user indicates the input type and source.

Display I/O: Display I/O works in a manner similar to Display
Memory. Here the user specifies the starting index of an I/O port. This
features displays the I/O ports stating from the index specified.

2. Preparing source files for FALSIM:

In order to use the FALCONA assembler and simulator, FALSIM,

the source file containing assembly language statements and directives
should be prepared according to the following guidelines:

e The source file should contain ASCII text only. Each line should be
terminated by a carriage return. The extension .asmfa should be used
with each file name. After assembly, a list file with the original
filename and an extension .Istfa, and a binary file with an extension
.binfa will be generated by FALSIM.

e Comments are indicated by a semicolon (;) and can be placed anywhere

in the source file. The FALSIM assembler ignores any text after the

semicolon.

e Names in the source file can be of one of the following types:

e Variables: These are defined using the .equ directive. A value must
also be assigned to variables when they are defined.

e Addresses in the “data and pointer area” within the memory: These
can be defined using the .dw or the .sw directive. The difference
between these two directives is that when .dw is used, it is not
possible to store any value in the memory. The integer after .dw
identifies the number of memory words to be reserved starting at the
current address. (The directive .db can be used to reserve bytes in
memory.) Using the .sw directive, it is possible to store a constant or
the value of a name in the memory. It is also possible to use pointers
with this directive to specify addresses larger than 127. Data tables
and jump tables can also be set up in the memory using this directive.
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e Labels: An assembly language statement can have a unique label
associated with it. Two assembly language statements cannot have the
same name. Every label should have a colon (:) after it.

e Use the .org 0 directive as the first line in the program. Although the use
of this line is optional, its use will make sure that FALSIM will start
simulation by picking up the first instruction stored at address O of the
memory. (Address 0 is called the reset address of the processor). A jump
[first] instruction can be placed at address 0, so that control is transferred
to the first executable statement of the main program. Thus, the label
first serves as the identifier of the “entry point” in the source file. The
.org directive can also be used anywhere in the source file to force code
at a particular address in the memory.

e Address 2 in the memory is reserved for the pointer to the Interrupt
Service Routine (ISR). The .sw directive can be used to store the address
of the first instruction in the ISR at this location.

e Address 4 to 125 can be used for addresses of data and pointers'.
However, the main program must start at address 126 or less’, otherwise
FALSIM will generate an error at the jump [first] instruction.

e The main program should be followed by any subprograms or
procedures. Each procedure should be terminated with a ret instruction.
The ISR, if any, should be placed after the procedures and should be
terminated with the iret instruction.

e The last line in the source file should be the .end directive.

e The .equ directive can be used anywhere in the source file to assign
values to variables.

e [t is the responsibility of the programmer to make sure that code does not
overwrite data when the assembly process is performed, or vice versa. As
an example, this can happen if care is not exercised during the use of the
.org directive in the source file.

3. Using FALSIM:

e To start FALSIM (the FALCONA assembler and simulator), double

click on the FALSIM icon. This will display the assembler window,
as shown in the Figure 1.

1 Any address between 4 and 14 can be used in place of the displacement field in load or
store instructions. Recall that the displacement field is just 5 bits in the instruction word.
2 This restriction is because of the face that the immediate operand in the movi
instruction must fit an 8bit field in the instruction word.
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e Select one or both assembler options shown on the top right corner of
the assembler window labeled as “2”. If no option is selected, the
symbol table and the instruction table will not be generated in the list

(.Istfa) file.

e Click on the select assembly file button labeled as “1”. This will open
the dialog box as shown in the Figure 2.

e Select the path and file containing the source program that is to be
assembled.

e C(lick on the open button. FALSIM will assemble the program and
generate two files with the same filename, but with different
extensions. A list file will be generated with an extension .Istfa, and a
binary (executable) file will be generated with an extension .binfa.
FALSIM will also display the list file and any error messages in two
separate panes, as shown in Figure 3.

e Double clicking on any error message highlights and displays the
corresponding erroneous line in the program listing window pane for
the user. This is shown in Figure 4. The highlight feature can also be
used to display any text string, including statements with errors in
them. If the assembler reported any errors in the source file, then these
errors should be corrected and the program should be assembled again
before simulation can be done. Additionally, if the source file had
been assembled correctly at an earlier occasion, and a correct binary
(.binfa) file exists, the simulator can be started directly without
performing the assembly process.

e To start the simulator, click on the start simulation button labeled as
“6”. This will open the dialog box shown in Figure 6.

e Select the binary file to be simulated, and click open as shown in
Figure 7.

e This will open the simulation window with the executable program
loaded in it as shown in Figure 8. The details of the different panes in
this window were given in section 1 earlier. Notice that the first
instruction at address 0 is ready for execution. All registers are
initialized to 0. The memory contains the address of the ISR (i.e., 64h
which is 100 decimal) at location 2 and the address of the printer
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driver at location 4. These two addresses are determined at assembly
time in our case. In a real situation, these addresses will be
determined at execution time by the operating system, and thus the
ISR and the printer driver will be located in the memory by the
operating system (called relocatable code). Subsequent memory
locations contain constants defined in the program.

e Click single step button labeled as “19”. FALSIM will execute the
jump [main] instruction at address 0 and the PC will change to 20h
(32 decimal), which is the address of the first instruction in the main
program (i.e., the value of main).

e Although in a real situation, there will be many instructions in the
main program, those instructions are not present in the dummy calling
program. The first useful instruction is shown next. It loads the
address of the printer driver in r6 from the pointer area in the memory.
The registers r5 and r7 are also set up for passing the starting address
of the print buffer and the number of bytes to be printed. In our
dummy program, we bring these values in to these registers from the
data area in the memory, and then pass these values to the printer

driver using these two registers. Clicking on the single step button twice,
executes these two instructions.

e The execution of the call instruction simulates the event of a print
request by the user. This transfers control to the printer driver. Thus,
when the call r4, r6 instruction is single stepped, the PC changes to
32h (50 decimal) for executing the first instruction in the printer
driver.

e Double click on memory location 000A, which is being used for
holding the PB (printer busy) flag. Enter a 1 and click the change
memory button. This will store a 0001 in this location, indicating that
a previous print job is in progress. Now click single step and note that
this value is brought from memory location 000E into register rl.
Clicking single step again will cause the jnz r1, [message] instruction
to execute, and control will transfer to the message routine at address
0046h. The nop instruction is used here as a place holder.

e Click again on the single step button. Note that when the ret r4

instruction executes, the value in r4 (i.e., 28h) is brought into the PC.
The blue highlight bar is placed on the next instruction after the call
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r4, r6 instruction in the main program. In case of the dummy calling
program, this is the halt instruction.

e Double click on the value of the PC labeled as “20”. This will open a
dialog box shown below. Enter @
value of the PC (i.e., 26h) Change PC
corresponding to the call r4, ré Enter Now Yialus for PC o]
instruction, so that it can be G =
executed again. A “list” of possible
PC values can also be pulled down ok Carcel_|
using, and 0026h can be selected
from there as well.

Click single step again to enter the printer driver again.

Change memory location 000A to a 0, and then single step the first
instruction in the printer driver. This will bring a 0 in r1, so that when
the next jnz r1, [message] instruction is executed, the branch will not
be taken and control will transfer to the next instruction after this
instruction. This i1s mivi rl, 1 at address 0036h.

e Continue single stepping.

e Notice that a 1 has been stored in memory location 000A, and rl
contains 11h, which is then transferred to the output port at address
3Ch (60 decimal) when the out rl, controlp instruction executes.
This can be verified by double clicking on the top left corner of the
[/O port pane, and changing the address to 3Ch. Another way to
display the value of an I/O port is to scroll the I/O window pane to
the desired position.

e Continue single stepping till the int instruction and note the changes
in different panes of the simulation window at each step.

e When the int instruction executes, the PC changes to 64h, which is the
address of the first instruction in the ISR. Clicking single step executes
this instruction, and loads the address of temp (i.e., 0010h) which is a
temporary memory area for storing the environment. The five store
instructions in the ISR save the CPU environment (working registers)
before the ISR change them.

Last Modified: 12Jan11 Page 12



Advanced Computer ArchitectureCS501

Single step through the ISR while noting the effects on various registers,
memory locations, and I/O ports till the iret instruction executes. This will
pass control back to the printer driver by changing the PC to the address of

the jump [finish] instruction, which is the next instruction after the int
instruction.

Double click on the value of the PC. Change it to point to the int
instruction and click single step to execute it again. Continue to single step
till the in r1, statusp instruction is ready for execution.

Change the I/O port at address 3Ah (which represents the status port at

address 58) to 80 and then single step the in rl, statusp instruction. The
value in rl1 should be 0080.

Single step twice and notice that control is transferred to the movi r7,
FFFF® instruction, which stores an error code of —1 in rl.

IR

1 c——— CmEd
Assambler Optians ﬂ

FALCOMN

/“\ ( Hex | Der Marhing | Line No, | Souwce Statement

Case Sensilve

N

Higniight Total Maich g ois T MEANY gy gimudaton Aot Ent

- /

Figure 1

3 The instruction was originally movi r7, (1. Since it was converted to machine language
by the assembler, and then reverse assembled by the simulator, it became movi r7,
FFFF. This is because the machine code stores the number in 16bits after sign
extension. The result will be the same in both cases.
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Figure 5
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Figure 8
4. FALCON(A assembly language programming techniques:

e I[fa signed value, x, cannot fit in 5 bits (i.e., it is outside the range 16 to
+15), FALSIM will report an error with a load r1, [x] or a store r1, [x]

instruction. To overcome this problem, use movi r2, x followed by load
rl, [r2].

o Ifasigned value, x, cannot fit in 8 bits (i.e., it is outside the range
128 to +127), even the previous scheme will not work. FALSIM will
report an error with the movi r2, x instruction. The following instruction
sequence should be used to overcome this limitation of the FALCONA.
First store the 16bit address in the memory using the .sw directive. Then
use two load instructions as shown below:

a:  SwW X
load r2, [a]
load r1, [r2]

This 1s essentially a “memoryregisterindirect” addressing. It has been
made possible by the .sw directive. The value of a should be less than 15.
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e A similar technique can be used with immediate ALU instructions for
large values of the immediate data, and with the transfer of control (call
and jump) instructions for large values of the target address.

e Large values (16bit values) can also be stored in registers using the mul
instruction combined with the addi instruction. The following
instructions bring a 201 in register r1.

movi r2, 10

movi r3, 20

mul r1, r2, r3 ; r1 contains 200 after this instruction
addirl, r1,1 ; r1 now contains 201

e Moving from one register to another can be done by using the instruction
addi r2, r1, 0.

e Bit setting and clearing can be done using the logical (and, or, not, etc)
instructions.

e Using shift instructions (shiftl, asr, etc.) is faster that mul and div, if the
multiplier or divisor is a power of 2.
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Lecture No. 1

Introduction
Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 1
Computer Systems Design and Architecture 1.1,1.2,13,1.4,1.5
Summary

1) Distinction between computer architecture, organization and design
2) Levels of abstraction in digital design

3) Introduction to the course topics

4) Perspectives of different people about computers

5) General operation of a stored program digital computer

6) The FetchExecute process

7) Concept of an ISA(Instruction Set Architecture)

Introduction

This course is about Computer Architecture. We start by explaining a few key terms.
The General Purpose Digital Computer

How can we define a ‘computer’? There are several kinds of devices that can be termed
“computers”: from desktop machines to the microcontrollers used in appliances such as a
microwave oven, from the Abacus to the cluster of tiny chips used in parallel processors,
etc. For the purpose of this course, we will use the following definition of a computer:
“an electronic device, operating
under the control of instructions
stored in its own memory unit, that
can accept data (input), process data
arithmetically and logically, produce
output from the processing, and store
the results for future use.” [1]

Thus, when we use the term computer,
we actually mean a digital computer.
There are many digital computers,
which have dedicated purposes, for
example, a computer used in an \
automobile that controls the spark Notion of a System

Electrical
Systems

Digital
Systems

General Purpose
Digital Computers

timing for the engine. This means that when we use the term computer, we actually mean

a generalpurpose digital computer that can perform a variety of arithmetic and logic
tasks.

The Computer as a System
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Now we examine the notion of a system, and the place of digital computers in the general
universal set of systems. A “system” is a collection of elements, or components, working
together on one or more inputs to produce one or more desired outputs.
There are many types of systems in the world. Examples include:
* Chemical systems
* Optical systems
* Biological systems
* Electrical systems
*  Mechanical systems, etc.
These are all subsets of the general universal set of “systems”. One particular subset of
interest is an “electrical system”. In case of electrical systems, the inputs as well as the
outputs are electrical quantities, namely voltage and current. “Digital systems” are a
subset of electrical systems. The inputs and outputs are digital quantities in this case.
Generalpurpose digital computers are a subset of digital systems. We will focus on
generalpurpose digital computers in this course.
Essential Elements of a General Purpose Digital Computer
The figure shows the block diagram of &.
a modern generalpurpose digital ﬁA

computer.
We observe from the diagram that a [ <

CPU
[ (nP)

generalpurpose computer has three S“:;:;‘:g“ |

main  components: a  memory

subsystem, an input/ output subsystem,

and a central processing unit.

Programs are stored in the memory, vo "
. Subsystem

the execution of the program Pestohiecnl) =

instructions takes place in the CPU,

and the communication with the (X “address By

external world is achieved through the B ¢

I/O  subsystem  (including the

peripherals).

Architecture

Now that we understand the term “computer” in our context, let us focus on the term

architecture. The word 'architecture, as defined in standard dictionaries, is “the art or

science of building”, or “a method or style of building”. [2]

Computer Architecture

This term was first used in 1964 by Amdahl, Blaauw, and Brooks at IBM [3]. They

defined it as

“the structure of a computer that a machine language programmer must understand to

write a correct (time independent) program for that machine.”

By architecture, they meant the programmer visible portion of the instruction set. Thus, a

Block Diagram of a Computer System

family of machines of the same architecture should be able to run the same software
(instructions). This concept is now so common that it is taken for granted. The x86
architecture is a wellknown example.
The study of computer architecture includes

e astudy of the structure of a computer

¢ astudy of the instruction set of a computer
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e astudy of the process of designing a computer
Computer Organization versus Computer Architecture
It is difficult to make a sharp distinction between these two. However, architecture refers
to the attributes of a computer that are visible to a programmer, including

e The instruction set

e The number of bits used to represent various data types

¢ [/O mechanisms

e Memory addressing modes, etc.
On the other hand, organization refers to the operational units of a computer and their
interconnections that realize the architectural specifications. These include

e The control signals

e Interfaces between the computer and its peripherals

e Memory technology used, etc.
It is an architectural issue whether a computer will have a specific instruction or not,
while it is an organizational issue how that instruction will be implemented.
Computer Architect
We can conclude from the discussion above that ‘a computer architect is a person who
designs computers.
Design
Design is defined as
“the process of devising a system, component, or process to meet desired needs.”
Most people think of design as a “sketch”. This is the usage of the term as a noun.
However, the standard engineering usage of the term, as is quite evident from the above
definition, is as a verb, i.e., “design is a process”. A designer works with a set of stated
requirements under a number of constraints to produce the best solution for a given
problem. Best may mean a “costeffective” solution, but not always. Additional or
alternate requirements, like efficiency, the client or the designer may impose robustness,
etc.. Therefore, design is a decisionmaking process (often iterative in nature), in which
the basic sciences, mathematical concepts and engineering sciences are applied to convert
a given set of resources optimally to meet a stated objective.
Knowledge base of a computer architect
There are many people in the world who know how to drive a car; these are the “users” of
cars who are familiar with the behavior of a car and how to operate it. In the same way,
there are people who can use computers. There are also a number of people in the world
who know how to repair a car; these are “automobile technicians”. In the same way, we
have computer technicians. However, there are a very few people who know how to
design a car; these are “automobile designers”. In the same way, there are only very few
experts in the world who can design computers. In this course, you will learn how to
design computers!

These computer design experts are familiar with
e the structure of a computer
e the instruction set of a computer
e the process of designing a computer
as well as few other related things.
At this point, we need to realize that it is not the job of a single person to design a
computer from scratch. There are a number of levels of computer design. Domain experts
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of that particular level carry out the design activity for each level. These levels of
abstraction of a digital computer’s design are explained below.
Digital Design: Levels of Abstraction
ProcessorMemorySwitch level (PMS level)
The highest is the processormemoryswitch level. This is the level at which an architect
views the system.

The components are specified in the form of a block diagram.
Instruction Set Level
The next level is instruction set level. It defines the function of each instruction. The
emphasis is on the behavior of the system rather than the hardware structure of the
system.

Register Transfer Level
Next to the ISA(instruction set architecture) level is the register transfer level. Hardware

structure is visible at this level. In addition to registers, the basic elements at this level are
multiplexers, decoders, buses, buffers etc.

The above three levels relate to “system design”.

Logic Design Level

The logic design level is also called the gate level. The basic elements at this level are
gates and flipflops. The behavior is less visible, while the hardware structure
predominates.

The above level relates to “logic design”.

Circuit Level

Mask Level

The above two levels relate to “circuit design”.

The focus of this course will be the register transfer level and the instruction set level,
although we will also deal with the PMS level and the Logic Design Level.

Objectives of the course

This course will provide the students with an understanding of the various levels of
studying computer architecture, with emphasis on instruction set level and register
transfer level. They will be able to use basic combinational and sequential building
blocks to design larger structures like ALUs (Arithmetic Logic Units), memory
subsystems, I/0 subsystems etc. It will help them understand the various approaches used

to design computer CPUs (Central Processing Units) of the RISC (Reduced Instruction
Set Computers) and the CISC (Complex Instruction Set Computers) type, as well as the

principles of cache memories.
Important topics to be covered
* Review of computer organization
* C(lassification of computers and their instructions
*  Machine characteristics and performance
* Design of a Simple RISC Computer: the SRC
* Advanced topics in processor design
* Inputoutput (I/O) subsystems
* Arithmetic Logic Unit implementation

Last Modified: 12Janl1 Page 22


akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight


Advanced Computer ArchitectureCS501

*  Memory subsystems
Course Outline

Introduction:

e Levels of abstraction in digital design
e Introduction to the course topics

e Distinction between Computer Architecture, Organization and design

Brief review of computer organization:
e Perspectives of different people about computers
e General operation of a stored program digital computer
e The Fetch — Execute process
e (Concept of an ISA

Foundations of Computer Architecture:
¢ A taxonomy of computers and their instructions
e Instruction set features
e Addressing Modes
e RISC and CISC architectures
e Measures of performance

An example processor: The SRC:
e Introduction to the ISA and instruction formats
¢ Coding examples and Hand assembly
e Using Behavioral RTL to describe the SRC
o Implementing Register Transfers using Digital Logic Circuits

ISA: Design and Development
¢ Outline of the thinking process for ISA design
e Introduction to the ISA of the FALCON — A
¢ Solved examples for FALCONA
e [_earning Aids for the FALCONA

Other example processors:

e FALCONE

e EAGLE and Modified EAGLE
e Comparison of the four ISAs

CPU Design:

The Design Process

A UniBus implementation for the SRC
Structural RTL for the SRC instructions
Logic Design for the 1Bus SRC

The Control Unit

The 2and 3Bus Processor Designs

The Machine Reset

Machine Exceptions

Term Exam — [

Advanced topics in processor design:
e Pipelining

e InstructionLevel Parallelism

e Microprogramming
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Input(output (I/0):

¢ /O interface design

e Programmed I/O

e Interrupt driven I/O

e Direct memory access (DMA)

Term Exam — 11

Arithmetic Logic Shift Unit (ALSU) implementation:

e Addition, subtraction, multiplication & division for integer unit
¢ Floating point unit

Memory subsystems:

e Memory organization and design
e Memory hierarchy

e (Cache memories

e Virtual memory
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A brief review of Computer Organization

Perceptions of Different People about Computers

There are various perspectives that a computer can take depending on the person viewing

it. For example, the way a child perceives a computer is quite different from how a
computer programmer or a designer views it. There are a number of perceptions of the
computer, however, for the purpose of understanding the machine, generally the
following four views are considered.

The User’s View

A user is the person for whom the machine is designed, and who employs it to perform

some useful work through application software. This useful work may be composing
some reports in word processing software, maintaining credit history in a spreadsheet, or
even developing some application software using highlevel languages such as C or Java.

The list of “useful work” is not allinclusive. Children playing games on a computer may
argue that playing games is also “useful work”, maybe more so than preparing an internal
office memo.

At the user’s level, one is only concerned with things like speed of the computer, the
storage capacity available, and the behavior of the peripheral devices. Besides
performance, the user is not involved in the implementation details of the computer, as
the internal structure of the machine is made obscure by the operating system interface.
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The Programmer’s View
By “programmer” we imply machine or assembly language programmer. The machine or
the assembly language programmer is responsible for the implementation of software
required to execute various commands or sequences of commands (programs) on the
computer. Understanding some key terms first will help us better understand this view,
the associated tasks, responsibilities and tools of the trade.
Machine Language
Machine language consists of all the primitive instructions that a computer understands
and is able to execute. These are strings of 1s and 0s.Machine language is the computer’s
native language. Commands in the machine language are expressed as strings of 1s and
0s. It is the lowest level language of a computer, and requires no further interpretation.
Instruction Set
A collection of all possible machine language commands that a computer can understand
and execute is called its instruction set. Every processor has its own unique instruction
set. Therefore, programs written for one processor will generally not run on another
processor. This is quite unlike programs written in higherlevel languages, which may be
portable. Assembly/machine languages are generally unique to the processors on which
they are run, because of the differences in computer architecture.
Three ways to list instructions in an instruction set of a computer:

* by function categories

* by an alphabetic ordering of mnemonics

* by an ascending order of opcodes
Assembly Language
Since it is extremely tiring as well as errorprone to work with strings of 1s and Os for
writing entire programs, assembly language is used as a substitute symbolic
representation using “English like” key words called mnemonics. A pure ‘assembly
language is a language in which each statement produces exactly one machine
instruction, i.e. there is a onetoone correspondence between machine instructions and
statements in the assembly language. However, there are a few exceptions to this rule, the

Pentium jump instruction shown in the table below serves as an example.
Example
The table provides us with some assembly statement and the machine language
equivalents of the Intel x 86 processor
families.
Alpha is a label, and its value will be
determined by the position of the jmp
instruction in the program and the position
of the instruction whose address is alpha.
So the second byte in the last instruction
can be different for different programs.
Hence there is a onetomany correspondence of the assembly to machine language in
this instruction.
Users of Assembly Language
e The machine designer

The designer of a new machine needs to be familiar with the instruction sets of

other machines in order to be able to understand the tradeoffs implicit in the

design of those instruction sets.
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The compiler writer

A compiler is a program that converts programs written in highlevel languages to
machine language. It is quite evident that a compiler writer must be familiar with

the machine language of the processor for which the compiler is being designed.
This understanding is crucial for the design of a compiler that produces correct
and optimized code.

The writer of time or space critical code

A complier may not always produce optimal code. Performance goals may force
programspecific optimizations in the assembly language.

Special purpose or embedded processor programmer

Higherlevel languages may not be appropriate for programming special purpose

or embedded processors that are now in common use in various appliances. This

is because the functionality required in such applications is highly specialized. In

such a case, assembly language programming is required to implement the
required functionality.

Useful tools for assembly language programmers

The assembler:

Programs written in assembly language require translation to the machine
language, and an assembler performs this translation. This conversion process is
termed as the assembly process. The assembly process can be done manually as
well, but it is very tedious and errorprone.

An “assembler” that runs on one processor and translates an assembly language
program written for another processor into the machine language of the other
processor is called a “cross assembler”.

The linker:

When developing large programs, different people working at the same time can
develop separate modules of functionality. These modules can then be ‘linked’ to

form a single module that can be loaded and executed. The modularity of

programs, that the linking step in assembly language makes possible, provides the

same convenience as it does in higherlevel languages; namely abstraction and

separation of concerns. Once the functionality of a module has been verified for

correctness, it can be reused in any number of other modules. The programmer

can focus on other parts of the program. This is the socalled “modular” approach,

or the “topdown’ approach.

The debugger or monitor:

Assembly language programs are very lengthy and nonintuitive, hence quite

tedious and errorprone. There is also the disadvantage of the absence of an

operating system to handle runtime errors that can often crash a system, as

opposed to the higherlevel language programming, where control is smoothly

returned to the operating system. In addition to runtime errors (such as a divide

byzero error), there are syntax or logical errors.

A “debugger”, also called a “monitor”, is a computer program used to aid in

detecting these errors in a program. Commonly, debuggers provide functionality

such as

o The display and altering of the contents of memory, CPU registers and flags

o Disassembly of machine code (translating the machine code back to assembly
language)
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o Single stepping and breakpoints that allow the examination of the status of the
program and registers at desired points during execution.

While syntax errors and many logical errors can be detected by using debuggers,

the best debugger in the world can catch not every logical error.
e The development system

The development system is a complete set of (hardware and software) tools

available to the system developer. It includes

o Assemblers
Linkers and loaders
Debuggers
Compilers
Emulators
Hardwarelevel debuggers
o Logic analyzers, etc.

Difference between Higher(Level Languages and Assembly Language
Higherlevel languages are generally used to develop application software. These high
level programs are then converted to assembly language programs using compilers. So it
is the task of a compiler writer to determine the mapping between the highlevel
language constructs and assembly language constructs. Generally, there is a “manyto
many” mapping between highlevel languages and assembly language constructs. This
means that a given HLL construct can generally be represented by many different
equivalent assembly language constructs. Alternately, a given assembly language
construct can be represented by many different equivalent HLL constructs.
Highlevel languages provide various primitive data types, such as integer, Boolean and a
string, that a programmer can use. Type checking provides for the verification of proper

© O O 0 O

usage of these data types. It allows the compiler to determine memory requirements for
variables and helping in the detection of bad programming practices.

On the other hand, there is generally no provision for type checking at the machine level,
and hence, no provision for type checking in assembly language. The machine only sees
strings of bits. Instructions interpret the strings as a type, and it is usually limited to
signed or unsigned integers and floating point numbers. A given 32bit word might be an
instruction, an integer, a floatingpoint number, or 4 ASCII characters. It is the task of the
compiler writer to determine how highlevel language data types will be implemented
using the data types available at the machine level, and how type checking will be
implemented.

The Stored Program Concept

This concept is fundamental to all the generalpurpose computers today. It states that the
program is stored with data in computer’s memory, and the computer is able to
manipulate it as data. For example, the computer can load the program from disk, move it
around in memory, and store it back to the disk.

Even though all computers have unique machine language instruction sets, the ‘stored
program’ concept and the existence of a ‘program counter’ is common to all machines.
The sequence of instructions to perform some useful task is called a program. All of the
digital computers (the general purpose machine defined above) are able to store these
sequences of instructions as stored programs. Relevant data is also stored on the
computer’s secondary memory. These stored programs are treated as data and the
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computer is able to manipulate them, for example, these can be loaded into the memory

for execution and then saved back onto the storage.

General Operation of a Stored Program Computer

The machine language programs are brought into the memory and then executed

instruction by instruction. Unless a branch instruction is encountered, the program is

executed in sequence. The instruction that is to be executed is fetched from the memory

and temporarily stored in a CPU register, called the instruction register (IR). The

instruction register holds the instruction while it is decoded and executed by the central

processing unit (CPU) of the computer. However, before loading an instruction into the

instruction register for execution, the computer needs to know which instruction to load.

The program counter (PC), also called the instruction pointer in some texts, is the register

that holds the address of the next instruction in memory that is to be executed.

When the execution of an instruction is completed, the contents of the program counter

(which is the address of the next instruction) are placed on the address bus. The memory

places the instruction on the corresponding address on the data bus. The CPU puts this
instruction onto the IR (instruction register) to decode and execute. While this
instruction is decoded, its length in bytes is determined, and the PC (program counter)

is incremented by the length, so that the PC will point to the next instruction in the
memory. Note that the length of the instruction is not determined in the case of RISC
machines, as the instruction length is fixed in these architectures, and so the program

counter is always incremented by a fixed number. In case of branch instructions, the

contents of the PC are replaced by the address of the next instruction contained in the
present branch instruction, and the current status of the processor is stored in a register

called the Processor Status Word (PSW). Another name for the PSW is the flag register.

It contains the status bits, and control bits corresponding to the state of the processor.
Examples of status bits include the sign bit, overflow bit, etc. Examples of control bits
include interrupt enable flag, etc. When the execution of this instruction is completed, the
contents of the program counter are placed on the address bus, and the entire cycle is
repeated. This entire process of reading memory, incrementing the PC, and decoding the
instruction is known as the Fetch and Execute principle of the stored program computer.
This is actually an oversimplified situation. In case of the advanced processors of this
age, a lot more is going on than just the simple “fetch and execute” operation, such as
pipelining etc. The details of some of these more involved techniques will be studied later
on during the course.

The Concept of Instruction Set Architecture (ISA)

Now that we have an understanding of some of the relevant key terms, we revert to the
assembly language programmer’s perception of the computer. The programmer’s view is
limited to the set of all the assembly instructions or commands that can the particular
computer at hand execute understood/, in addition to the resources that these instructions
may help manage. These resources include the memory space and the entire programmer
accessible registers. Note that we use the term ‘memory space’ instead of memory,
because not all the memory space has to be filled with memory chips for a particular
implementation, but it is still a resource available to the programmer.

This set of instructions or operations and the resources together form the instruction set
architecture (ISA). It is the ISA, which serves as an interface between the program and

the functional units of a computer, i.e., through which, the computer’s resources, are
accessed and controlled.
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The Computer Architect’s View
The computer architect’s view is concerned with the design of the entire system as well
as ensuring its optimum performance. The optimality is measured against some
quantifiable objectives that are set out before the design process begins. These objectives
are set on the basis of the functionality required from the machine to be designed. The
computer architect
e Designs the ISA for optimum programming utility as well as for optimum
performance of implementation
e Designs the hardware for best implementation of instructions that are made
available in the ISA to the programmer
e Uses performance measurement tools, such as benchmark programs, to verify that
the performance objectives are met by the machine designed
e Balances performance of building blocks such as CPU, memory, I/O devices, and
interconnections
e Strives to meet performance goals at the lowest possible cost
Useful tools for the computer architect
Some of the tools available that facilitate the design process are
e Software models, simulators and emulators
Performance benchmark programs
Specialized measurement programs
Data flow and bottleneck analysis
Subsystem balance analysis
Parts, manufacturing, and testing cost analysis
The Logic Designer’s View
The logic designer is responsible for the design of the machine at the logic gate level. It is
the design process at this level that determines whether the computer architect meets cost
and performance goals. The computer architect and the logic designer have to work in
collaboration to meet the cost and performance objectives of a machine. This is the
reason why a single person or a single team may be performing the tasks of system’s
architectural design as well as the logic design.
Useful Tools for the Logic Designer
Some of the tools available that aid the logic designer in the logic design process are
e CAD tools
Logic design and simulation packages
Printed circuit layout tools
IC (integrated circuit) design and layout tools
e Logic analyzers and oscilloscopes
e Hardware development systems
The Concept of the Implementation Domain
The collection of hardware devices, with which the logic designer works for the digital
logic gate implementation and interconnection of the machine, is termed as the
implementation domain. The logic gate implementation domain may be
e VLSI (very large scale integration) on silicon
e TTL (transistortransistor logic) or ECL (emittercoupled logic) chips
e Gallium arsenide chips
e PLAs (programmablelogic arrays) or seaofgates arrays
e Fluidic logic or optical switches
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Similarly, the implementation domains used for gate, board and module interconnections
are

e Polysilicon lines in ICs

e Conductive traces on a printed

circuit board o] S
e Electrical cable o I 10
e Optical fiber, etc. -
At the lower levels of logic design, the 11

designer is concerned mainly with the
functional details represented in a
symbolic form. The implementation

details are not considered at these EN c»—_|"5
lower levels. They only become an gL 8 T
issue at higher levels of logic design. 4] A E-

A, &
An example of a twotoone AL
multiplexer in various implementation o E? £
domains will illustrate this point. 1
Fi is th ic logi Ave o T

gure (a) is the generic logic gate o1

(abstract domain) representation of a 02lyp 25?50 % 10
2tol multiplexer. DL n
Figure (b) shows the 2tol
multiplexer logic gate implementation (b) TTL implementation domain

in the domain of TTL (VLSI on Silicon) logic using part number ‘257, with
interconnections in the domain of printed circuit

board traces.

Figure (c) is the implementation of the 2tol 0— 10
multiplexer with a fiber optic directional coupler TO —11
switch, which has an interconnection domain of

optical fiber. \—'—‘

Classical logic design versus computer logic g

design I1 { ¢ ) Optical switch implementation

We have already studied the sequential circuit _
design concepts in the course on Digital Logic Design, and thus are familiar with the
techniques used. However, these traditional techniques for a finite state machine are not

very practical when it comes to the design of a computer, in spite of the fact that a
computer is a finite state machine. The reason is that employing these techniques is much

too complex as the computer can assume hundreds of states.

Sequential Logic Circuit Design

When designing a sequential logic circuit, the problem is first coded in the form of a state
diagram. The redundant states may be eliminated, and then the state diagram is translated

into the next state table. The minimum number of flipflops needed to implement the
design is calculated by making “state assignments” in terms of the flipflop “states”. A
“transition table” is made using the state assignments and the next state table. The flip
flop control characteristics are used to complete a set of “excitation tables”. The
excitation equations are determined through minimization. The logic circuit can then be
drawn to implement the design. A detailed discussion of these steps can be found in most
books on Logic Design.
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Computer Logic Design
Traditional Finite State Machine (FSM) design techniques are not suitable for the design
of computer logic. Since there is a natural separation between the data path and the
control path in case of a digital computer, a modular approach can be used in this case.
The data path consists of the storage cells, the arithmetic and logic components and their
interconnections. Control path is the circuitry that manages the data path information
flow. So considering the behavior first can carry out the design. Then the structure can be
considered and dealt with. For this purpose, welldefined logic blocks such as
multiplexers, decoders, adders etc. can be used repeatedly.
Two Views of the CPU Program Counter Register
The view of a logic designer is more detailed than that of a programmer. Details of the
mechanism used to control the machine are unimportant to the programmer, but of vital
importance to the logic designer. This can be illustrated through the following two views
of the program counter of a machine.
As shown in figure (a), to a programmer the program counter is just a register, and in this
case, of length 32 bits or 4 bytes.

31 0

C

P_amn g

(a) Program Counter: Programmer’s view

Figure (b) illustrates the logic designer’s view of a 32bit program counter, implemented

as an array of 32 D flipflops. It shows the contents of the program counter being gated

out on ‘A bus’ (the address bus) by applying a control signal PC,,. The contents of the
‘B bus’ (also the address bus), can be stored in the program counter by asserting the
signal PCin on the leading edge of the clock signal CK, thus storing the address of the
next instruction in the program counter.

| 32 32
A Bus Q D—BBus
§ pc
PCout <
CK PG,

(b) Program Counter: Logic Designer’s View
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Lecture No. 2
Instruction Set Architecture

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3
Computer Systems Design and Architecture 2.1,2.2,3.2
Summary

1) A taxonomy of computers and their instructions
2) Instruction set features

3) Addressing modes

4) RISC and CISC architectures

Foundations Of Computer Architecture

Taxonomy of computers and their instructions

Processors can be classified on the basis of their instruction set architectures. The
instruction set architecture, described in the previous module gives us a ‘programmer’s
view’ of the machine. This module discussed a number of topics related to the
classifications of computers and their instructions.

CLASSES OF INSTRUCTION SET ARCHITECTURE:

The mechanism used by the CPU to store instructions and data can be used to classify the
ISA (Instruction Set Architecture). There are three types of machines based on this
classification.

*  Accumulator based machines

» Stack based machines

* General purpose register (GPR) machines

ACCUMULATOR BASED MACHINES

Accumulator based machines use special registers called the accumulators to hold one
source operand and also the result of the arithmetic or logic operations performed. Thus

the accumulator registers collect (or ‘accumulate’) data. Since the accumulator holds one

of the operands, one more register may be required to hold the address of another
operand. The accumulator is not used to hold an address. So accumulator based machines

are also called 1address machines. Accumulator machines employ a very small number

of accumulator registers, generally only one. These machines were useful at the time
when memory was quite expensive; as they used one register to hold the source operand

as well as the result of the operation. However, now that the memory is relatively

inexpensive, these are not considered very useful, and their use is severely limited for the
computation of expressions with many operands.
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STACK BASED MACHINES

A stack is a group of registers organized as a lastinfirstout (LIFO) structure. In such a
structure, the operands stored first, through the push operation, can only be accessed last,
through a pop operation; the order of access to the operands is reverse of the storage
operation. An analogy of the stack is a “platedispenser” found in several selfservice
cafeterias. Arithmetic and logic operations successively pick operands from the topof
thestack (TOS), and push the results on the TOS at the end of the operation. In stack
based machines, operand addresses need not be specified during the arithmetic or logical
operations. Therefore, these machines are also called Oaddress machines.

GENERAL(PURPOSE(REGISTER MACHINES

In general purpose register machines, a number of registers are available within the CPU.
These registers do not have dedicated functions, and can be employed for a variety of
purposes. To identify the register within an instruction, a small number of bits are
required in an instruction word. For example, to identify one of the 64 registers of the
CPU, a 6bit field is required in the instruction.

CPU registers are faster than cache memory: Registers are also easily and more
effectively used by the compiler compared to other forms of internal storage. Registers
can also be used to hold variables, thereby reducing memory traffic. This increases the
execution speed and reduces code size (fewer bits required to code register names
compared to memory) .In addition to data, registers can also hold addresses and pointers

(i.e., the address of an address). This increases the flexibility available to the
programmer.

A number of dedicated, or special purpose registers are also available in generalpurpose
machines, but many of them are not available to the programmer. Examples of
transparent registers include the stack pointer, the program counter, memory address
register, memory data register and condition codes (or flags) register, etc.

We should understand that in reality, most machines are a combination of these machine
types. Accumulator machines have the advantage of being more efficient as these can
store intermediate results of an operation within the CPU.

INSTRUCTION SET

An instruction set is a collection of all possible machine language commands that are
understood and can be executed by a processor.

ESSENTIAL ELEMENTS OF COMPUTER INSTRUCTIONS:

There are four essential elements of an instruction; the type of operation to be performed,

the place to find the source operand(s), the place to store the result(s) and the source of

the next instruction to be executed by the processor.

Type of operation

In module 1, we described three ways to list the instruction set of a machine; one way of
enlisting the instruction set is by grouping the instructions in accordance with the
functions they perform. The type of operation that is to be performed can be encoded in

the opcode (or the operation code) field of the machine language instruction. Examples

of operations are mov, jmp, add; these are the assembly mnemonics, and should not be

confused with opcodes. Opcodes are simply bitpatterns in the machine language format
of an instruction.
Place to find source operands
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An instruction needs to specify the place from where the source operands will be
retrieved and used. Possible locations of the source operands are CPU registers, memory

cells and I/O locations. The source operands can also be part of an instruction itself; such
operands are called immediate operands.

Place to store the results

An instruction also specifies the location in which the result of the operation, specified by
the instruction, is to be stored. Possible locations are CPU registers, memory cells and
I/O locations.

Source of the next instruction

By default, in a program the next instruction in sequence is executed. So in cases where
the nextinsequence instruction execution is desired, the place of next instruction need
not be encoded within the instruction, as it is implicit. However, in case of a branch, this
information needs to be encoded in the instruction. A branch may be conditional or
unconditional, a subroutine call, as well as a call to an interrupt service routine.
Example

The table provides examples of assembly language commands and their machine
language equivalents. In the instruction

add cx, dx, the contents of the location

dx are added to the contents of the

location cx, and the result is stored in

cx. The instruction type is arithmetic,

and the opcode for the add instruction

1s 0000, as shown in this example.

CLASSIFICATIONS OF
INSTRUCTIONS:

We can classify instructions according to the format shown below.
* 4address instructions
* 3address instructions
» 2address instructions
* laddress instructions
* (Oaddress instructions
The distinction is based on the fact that some operands are accessed from memory, and
therefore require a memory address, while others may be in the registers within the CPU
or they are specified implicitly.
4(address instructions
The four address instructions specify the addresses of two source operands, the address of
the destination
operand and the next
instruction address.
4address
instructions are not
very common because the next instruction to be executed is sequentially stored next to
the current instruction in the

memory. Therefore, specifying its address is redundant. These instructions are used in
the microcoded control unit, which will be studied later.
3(address instruction

Last Modified: 12Jan11 Page 34



akbar
Highlight

akbar
Highlight

akbar
Highlight


Advanced Computer ArchitectureCS501

A 3address instruction specifies the addresses of two operands and the address of the
destination operand.

2(address instruction
A 2address instruction has three fields; one for the opcode, the second field specifies
the address of one of the source operands as
well as the destination operand, and the last
field is used for holding the address of the
second source operand. So one of the fields serves two purposes; specifying a source
operand address and a destination operand address.

1(address instruction
A laddress instruction has a dedicated CPU register,

called the accumulator, to hold one operand and to storej

the result. There is no need of encoding the address of the accumulator register to access
the operand or to store the result, as its usage is implicit. There are two fields in the
instruction, one for specifying a source operand address and a destination operand

address.

O(address instruction
A Oaddress instruction uses a stack to hold both the operands and the
result. Operations are performed on the operands stored on the top of the
stack and the second value on the stack. The result is stored on the top of
the stack. Just like the use of an accumulator register, the addresses of
the stack registers need not be specified, their usage is implicit. Therefore, only one field
is required in Oaddress instruction; it specifies the opcode.
COMPARISON OF INSTRUCTION FORMATS:
Basis for comparison
Two parameters are used as the basis for comparison of the instruction sets discussed
above. These are
e Code size
Code size has an effect on the storage requirements for the instructions; the
greater the code size, the larger the memory required.
e Number of memory accesses
The number of memory accesses has an effect on the execution time of
instructions; the greater the number of memory accesses, the larger the time
required for the execution cycle, as memory accesses are generally slow.
Assumptions
We make a few assumptions, which are
e A single byte is used for the op code, so (256 instructions can be encoded using
these 8 bits, as 2° =256
e The size of the memory address space is 16 Mbytes
e A single addressable memory unit is a byte
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o (Size of operands is 24 bits. As the memory size is 16Mbytes, with byte-
addressable memory, 24 bits are required to encode the address of the operands.

e The size of the address bus is 24 bits

e Data bus size is 8 bits
Discussion4-address instruction
* The code size
is 13 bytes
(1+3+3+3+3
= 13 bytes)
* Number of

bytes
accessed from memory is 22 (13 bytes for instruction fetch + 6 bytes for source
operand fetch + 3 bytes for storing destination operand = 22 bytes)
Note that there is no need for an additional memory access for the operand corresponding
to the next instruction, as it has already been brought into the CPU during instruction
fetch.

3-address instruction
* The code size is 10 bytes
(1+3+343 = 10 bytes)
*  Number of bytes accessed

from memory is 19

(10 bytes for instruction fetch
+ 6 bytes for source operand fetch + 3 bytes for storing destination operand = 19
bytes)

2-address instruction

* The code size is 7 bytes (1+3+3 =7
bytes)
* Number of bytes accessed from
memory is 16(7 bytes for instruction
fetch + 6 bytes for source operand
fetch + 3 bytes for storing destination operand = 16

bytes)
1-address instruction
* The code size is 4 bytes (1+3= 4 bytes)
*  Number of bytes accessed from memory is 7
(4 bytes for instruction fetch + 3 bytes for source
operand fetch + 0 bytes for storing destination operand = 7 bytes)

0-address instruction
* The code size is 1 byte
* Number of bytes accessed from memory is 10
(1 byte for instruction fetch + 6 bytes for source operand fetch + 3
bytes for storing destination operand = 10 bytes)
The following table summarizes this information
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HALF ADDRESSES Instruction Format Code Number of
In the preceding discussion we have size memory bytes
talked about memory addresses. This | 3-address instruction i 22
di . 1 1i to CPU 3-address instruction 10 15
IS(.)USSIOI’I also applies to . 2-address instruction 7 16
registers. However, to specify/ encode [1-address instruction 4 3
a CPU register, less number of bits is|0-address instruction 1 10

required as compared to the memory addresses. Therefore, these addresses are also called
“halfaddresses”. An instruction that specifies one memory address and one CPU register
can be called as a 1'%address instruction
Example
mov al, [34h]

THE PRACTICAL SITUATION

Real machines are not as simple as the classifications presented above. In fact, these
machines have a mixture of 3,2, 1,0, and 1'%address instructions. For example, the
VAX 11 includes instructions from all classes.

CLASSIFICATION OF MACHINES ON THE BASIS OF OPERAND
AND RESULT LOCATION:

A distinction between machines can be made on the basis of the ALU instructions;

whether these instructions use data from the memory or not. If the ALU instructions use

only the CPU registers for the operands and result, the machine type is called “load(
store”. Other machines may have a mixture of registermemory, or memorymemory
instructions.

The number of memory operands supported by a typical ALU instruction may vary from

0 to 3.

Example

The SPARC, MIPS, Power PC, ALPHA: 0 memory addresses, max operands allowed = 3
X86, 68x series: 1 memory address, max operands allowed = 2

LOAD( STORE MACHINES

These machines are also called the registertoregister machines. They typically use the
1% address instruction format. Only the load and store instructions can access the
memory. The load instruction fetches the required data from the memory and temporarily
stores it in the CPU registers. Other instructions may use this data from the CPU
registers. Then later, the results can be stored back into the memory by the store
instruction. Most RISC computers fall under this category of machines.
Advantages (of register(register instructions)
Registerregister instructions use 0 memory operands out of a total of 3 operands. The
advantages of such a scheme is:
e The instructions are simple and fixed in length
e The corresponding code generation model is simple
e All instructions take similar number of clock cycles for execution
Disadvantages (register(register instructions)
e The instruction count is higher; the number of instructions required to complete a
particular task is more as separate instructions will be required for load and store
operations of the memory
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® Since the instruction size is fixed, the instructions that do not require all fields
waste memory bits
Register(memory machines
In registermemory machines, some operands are in the memory and some are in
registers. These machines typically employ 1 or 1% address instruction format, in which
one of the operands is an accumulator or a generalpurpose CPU registers.
Advantages
Registermemory operations use one memory operand out of a total of two operands. The
advantages of this instruction format are
e Operands in the memory can be accessed without having to load these first
through a separate load instruction
e Encoding is easy due to the elimination of the need of loading operands into
registers first
e Instruction bit usage is relatively better, as more instructions are provided per
fixed number of bits
Disadvantages
e Operands are not equivalent since one operand may have two functions (both
source operand and destination operand), and the source operand may be
destroyed
e Different size encoding for memory and registers may restrict the number of
registers
e The number of clock cycles per instruction execution vary, depending on the
operand location operand fetch from memory is slow as compared to operands in
CPU registers
Memory(Memory Machines
In memorymemory machines, all three of the operands (2 source operands and a
destination operand) are in the memory. If one of the operands is being used both as a
source and a destination, then the 2address format is used. Otherwise, memorymemory
machines use 3address formats of instructions.
Advantages
e The memorymemory instructions are the most compact instruction where
encoding wastage is minimal.
e As operands are fetched from and stored in the memory directly, no CPU registers
are wasted for temporary storage
Disadvantages
e The instruction size is not fixed; the large variation in instruction sizes makes
decoding complex
e The cycles per instruction execution also vary from instruction to instruction

e Memory accesses are generally 3-Address | 2-Address | 1-Address | 0-Address
slow, so too many references adda,b,c |loada,b Ida b push b
cause performance degradation “"I—;'JY a,a d|adda, '-'-d add Cd szh c
suba, a, e | mpya, mpy a
Example 1 . . sub a, e sub e push d
The expression a = (b+c)*d — e is staa mpy
evaluated with the 3,2, 1, and 0 push e
address machines to provide a sub
pop a
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comparison of their advantages and disadvantages discussed above. The instructions
shown in the table are the minimal instructions required to evaluate the given expression.

Note that these are not machine language instructions, rather the pseudocode.

Example 2

The instruction z = 4(a +b) — 16(c+58) is with the 3, 2, 1, and Oaddress machines in the
table.

FUHCtional CIaSSiﬁcation Of F-Addrezz | 2-Addrese 1-Address D-Addreze
instruction sets:
Instructions can be classified into the |addxab |loadye |:owderchangedioreduce codesize | pushe
. . muly, x, 4 addy, b ldac push 58
follpwmg fpur c.ategorles based on addhosg; |amiyd  |asdass X
their funCtlonallty. muls r, 16 |loads, e muala 16 push 16
» Data processing subzy,s |adds 38 |stas G
. muls, 16 ldaa pusha
* Data storage (main memory) sbys  |addeb  jaddbtoace st
® Data movement (I/O) storez, ¥ mula 4 add
o ﬂ 1 suba g ssubtract acc from s fush 4
Program flow contro g .
These are discussed in detail sub
* Data processing B

Data processing instructions are the ones that perform some mathematical or logical
operation on some operands. The Arithmetic Logic Unit performs these operations,
therefore the data processing instructions can also be called ALU instructions.

* Data storage (main memory)
The primary storage for the operands is the main memory. When an operation needs to be
performed on these operands, these can be temporarily brought into the CPU registers,
and after completion, these can be stored back to the memory. The instructions for data
access and storage between the memory and the CPU can be categorized as the data
storage instructions.

* Data movement (I/0)
The ultimate sources of the data are input devices e.g. keyboard. The destination of the
data is an output device, for example, a monitor, etc. The instructions that enable such
operations are called data movement instructions.

*  Program flow control
A CPU executes instructions sequentially, unless a program flowchange instruction is
encountered. This flow change, also called a branch, may be conditional or unconditional.
In case of a conditional branch, if the branch condition is met, the target address is loaded
into the program counter.
ADDRESSING MODES:
Addressing modes are the different ways in which the CPU generates the address of
operands. In other words, they provide access paths to memory locations and CPU
registers.
Effective address
An “effective address” is the address (binary bit pattern) issued by the CPU to the
memory. The CPU may use various ways to compute the effective address. The memory
may interpret the effective address differently under different situations.

COMMONLY USED ADDRESSING MODES

Some commonly used addressing modes are explained below.

Immediate addressing mode
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In this addressing mode, data is the part of the instruction itself, and so there is no need of
address calculation. However, immediate addressing mode is used to hold source

operands only; cannot be used for storing results. The range of the operands is limited by

the number of bits available for encoding the operands in the instruction; for n bit fields,
the range is 2(n1) to +(2(nl)y),

Example: 1da 123

In this example, the immediate
operand, 123, is loaded onto the
accumulator. No address calculation is
required.

Direct Addressing Mode

The address of the operand is specified
as a constant, and this constant is
coded as part of the instruction. The address space that can be accessed is limited address
space by the operand field size (2operand field size locations).

Example: Ida [123] Mermory
As shown in the figure, the address of
the operand is stored in the instruction. iR [Opeode I |

The operand is then fetched from that (atirees | 456|123
memory address. acc| Fier | M

Indirect Addressing Mode

The address of the location where the
address of the data is to be found is
stored in the instruction as the operand.
Thus, the operand is the address of a memory location, which holds the address of the
operand. Indirect addressing mode can access a large address space (2memory word size
locations). To fetch the operand in this addressing mode, two memory accesses are
required. Since memory accesses are slow, this is not efficient for frequent memory
accesses. The indirect addressing mode
may be used to implement pointers.
Example: 1da [[123]]

As shown in the figure, the address of
the memory location that holds the
address of the data in the memory is
part of the instruction.

Register (Direct) Addressing Mode

The operand is contained in a CPU register, and the address of this register is encoded in

the instruction. As no memory access is needed, operand fetch is efficient. However,
there are only a limited number of CPU registers available, and this imposes a limitation

on the use of this addressing mode.

Example: 1da R2

This load instruction specifies the address of the register and the operand is fetched from

this register. As is clear from the diagram, no memory access is involved in this
addressing mode.
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REGISTER INDIRECT

ADDRESSING MODE

In the register indirect mode, the
address of memory location that
contains the operand is in a CPU
register. The address of this CPU
register is encoded in the instruction. A
large address space can be accessed
using this addressing mode (2register size
locations). It involves fewer memory
accesses compared to indirect addressing.
Example: 1da [R1]

Memory

The address of the register that IR [opcoge|  addressorR1 |
contains the address of memory the instruction points to a CPUyregister crsr?t':}ﬁ;
location holding the operand is < itrthald
encoded in the instruction. There is ‘521 12

one memory access involved. R3

Displacement addressing mode A

The displacementaddressing mode is

CPU Registers

data

also called based or indexed

ACC | 456

456

123

addressing mode. Effective memory address is calculated by adding a constant (which is
usually a part of the instruction) to the value in a CPU register. This addressing mode is
useful for accessing arrays. The addressing mode may be called ‘indexed’ in the situation
when the constant refers to the first element of the array (base) and the register contains
the ‘index’. Similarly, ‘based’ refers to the situation when the constant refers to the offset
(displacement) of an array element with respect to the first element. The address of the

first element is stored in a register.

Example: lda [R1 + 8] Memnny
In this example, R1 is the address of R [Gpcode] Address ofRi (s ]

the register that holds a memory I ? e
address, which is to be used to £e —_— rer
calculate the effective address of the R1 | 120 I|

operand. The constant (8) is added to CPUregisters ®

this address held by the register and acc |

456

this effective address is used to
retrieve the operand.
Relative addressing mode

The relative addressing mode is similar to the indexed addressing mode with the
exception that the PC holds the base address. This allows the storage of memory
operands at a fixed offset from the current instruction and is useful for ‘short’ jumps.

Example: jump 4

IR | Opcode |

4

The constant offset (4) is a part of the
instruction, and it is added to the
address held by the Program Counter.

l Address of the next

( ; instruction

|

PC

120

RISC and CISC architectures:
Last Modified: 12Janl1

Memory

128

Mend instruction

124
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Generally, computers can be classified as being RISC machines or CISC machines. These
concepts are explained in the following discussion.

RISC (Reduced instruction set computers)

RISC is more of a philosophy of computer design than a set of architectural features. The
underlying idea is to reduce the number and complexity of instructions. However, new
RISC machines have some instructions that may be quite complex and the number of
instructions may also be large. The common features of RISC machines are

* One instruction per clock period
This is the most important feature of the RISC machines. Since the program execution
depends on throughput and not on individual execution time, this feature is achievable by
using pipelining and other techniques. In such a case, the goal is issuing an average of
one instruction per cycle without increasing the cycle time.

* Fixed size instructions
Generally, the size of the instructions is 32 bits.

* CPU accesses memory only for Load and Store operations
This means that all the operands are in the CPU registers at the time these are used in an
instruction. For this purpose, they are first brought into the CPU registers from the
memory and later stored back through the load and store operation respectively.

* Simple and few addressing modes
The disadvantage associated with using complex addressing modes is that complex
decoding is required to calculate these addresses, which reduces the processor
performance as it takes significant time. Therefore, in RISC machines, few simple
addressing modes are used.

* Less work per instruction
As the instructions are simple, less work is done per instruction, and hence the clock
period T can be reduced.

* Improved usage of delay slots
A ‘delay slot’ is the waiting time for a load or store operation to access memory or for a
branch instruction to access the target instruction. RISC designs allow the execution of
the next instruction after these instructions are issued. If the program or compiler places
an instruction in the delay slot that does not depend on the result of the previous
instruction, the delay slot can be used efficiently. For the implementation of this feature,
improved compilers are required that can check the dependencies of instructions before
issuing them to utilize the delay slots.

* Efficient usage of Pre(fetching and Speculative Execution Techniques
Prefetching and speculative execution techniques are used with a pipelined architecture.
Instruction pipelining means having multiple instructions in different stages of execution
as instructions are issued before the previous instruction has completed its execution;
pipelining will be studied in detail later. The RISC machines examine the instructions to
check if operand fetches or branch instructions are involved. In such a case, the operands
or the branch target instructions can be ‘prefetched’. As instructions are issued before
the preceding instructions have completed execution, the processor will not know in case
of a conditional branch instruction, whether the condition will be met and the branch will
be taken or not. But instead of waiting for this information to be available, the branch can
be “speculated” as taken or not taken, and the instructions can be issued. Later if the

speculation is found to be wrong, the results can be discarded and actual target
instructions can be issued. These techniques help improve the performance of processors.
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CISC (Complex Instruction Set Computers)
The complex instruction set computers does not have an underlying philosophy. The
CISC machines have resulted from the efforts of computer designers to efficiently utilize
memory and minimize execution time, yet add in more instruction formats and
addressing modes. The common attributes of CISC machines are discussed below.
* More work per instruction
This feature was very useful at the time when memory was expensive as well as slow; it
allows the execution of compact programs with more functionality per instruction.
* Wide variety of addressing modes
CISC machines support a number of addressing modes, which helps reduce the program
instruction count. There are 14 addressing modes in MC68000 and 25 in MC68020.
* Variable instruction lengths and execution times per instruction
The instruction size is not fixed and so the execution times vary from instruction to
instruction.
» CISC machines attempt to reduce the “semantic gap”
‘Semantic gap’ is the gap between machine level instruction sets and highlevel language
constructs. CISC designers believed that narrowing this gap by providing complicated
instructions and complexaddressing modes would improve performance. The concept
did not work because compiler writes did not find these “improvements” useful. The
following are some of the disadvantages of CISC machines.
* Clock period T, cannot be reduced beyond a certain limit
When more capabilities are added to an instruction the CPU circuits required for the
execution of these instructions become complex. This results in more stages of logic
circuitry and adds propagation delays in signal paths.
This in turn places a limit on the smallest possible value of T and hence, the maximum
value of clock frequency.
* Complex addressing modes delay operand fetch from memory
The operand fetch is delayed because more time is required to decode complex
instructions.
» Difficult to make efficient use of speedup techniques
These speedup techniques include
e Pipelining
e Prefetching (Intel 8086 has a 6 byte queue)
e Super scalar operation
e Speculative execution
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Lecture No. 3

Introduction to SRC Processor
Reading Material
Vincent P. Heuring&Harry F. Jordan Chapter2, Chapter 3
Computer Systems Design and Architecture 2.3,24,3.1
Summary

1) Measures of performance
2) Introduction to an example processor SRC
3) SRC:Notation

4) SRC features and instruction formats

Measures of performance:
Performance testing
To test or compare the performance of machines, programs can be run and their
execution times can be measured. However, the execution speed may depend on the
particular program being run, and matching it exactly to the actual needs of the customer
can be quite complex. To overcome this problem, standard programs called “benchmark
programs” have been devised. These programs are intended to approximate the real
workload that the user will want to run on the machine. Actual execution time can be
measured by running the program on the machines.
Commonly used measures of performance
The basic measure of performance of a machine is time. Some commonly used measures
of this time, used for comparison of the performance of various machines, are

* Execution time

*  MIPS

« MFLOPS

*  Whetstones

* Dhrystones

*+ SPEC
Execution time
Execution time is simply the time it takes a processor to execute a given program. The
time it takes for a particular program depends on a number of factors other than the
performance of the CPU, most of which are ignored in this measure. These factors
include waits for I/O, instruction fetch times, pipeline delays, etc.
The execution time of a program with respect to the processor, is defined as

Execution Time =IC x CPIx T
Where, IC = instruction count
CPI = average number of system clock periods to execute an instruction
T = clock period
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Strictly speaking, (IC-CPI) should be the sum of the clock periods needed to execute
each instruction. The manufacturers for each instruction in the instruction set usually
provide such information. Using the average is a simplification.
MIPS (Millions of Instructions per Second)
Another measure of performance is the millions of instructions that are executed by the
processor per second. It is defined as
MIPS =1IC/ (ET x 10°)
This measure is not a very accurate basis for comparison of different processors. This is
because of the architectural differences of the machines; some machines will require
more instructions to perform the same job as compared to other machines. For example,
RISC machines have simpler instructions, so the same job will require more instructions.
This measure of performance was popular in the late 70s and early 80s when the VAX
11/780 was treated as a reference.
MFLOPS (Millions of Floating Point Instructions per Second)
For computation intensive applications, the floatingpoint instruction execution is a better
measure than the simple instructions. The measure MFLOPS was devised with this in
mind. This measure has two advantages over MIPS:

e Floating point operations are complex, and therefore, provide a better picture of

the hardware capabilities on which they are run
e Overheads (operand fetch from memory, result storage to the memory, etc.) are
effectively lumped with the floating point operations they support

Whetstones
Whetstone is the first benchmark program developed specifically as a benchmark
program for performance measurement. Named after the Whetstone Algol compiler, this
benchmark program was developed by using the statistics collected during the compiler
development. It was originally an Algol program, but it has been ported to FORTRAN,
Pascal and C. This benchmark has been specifically designed to test floating point
instructions. The performance is stated in MWIPS (millions of Whetstone instructions per
second).
Dhrystones
Developed in 1984, this is a small benchmark program to measure the integer instruction
performance of processors, as opposed to the Whetstone’s emphasis on floating point
instructions. It is a very small program, about a hundred highlevellanguage statements,
and compiles to about 1~ 1'% kilobytes of code.
Disadvantages of using Whetstones and Dhrystones
Both Whetstones and Dhrystones are now considered obsolete because of the following
reasons.

e Small, fit in cache

e Obsolete instruction mix

e Prone to compiler tricks

¢ Difficult to reproduce results

e Uncontrolled source code
We should note that both the Whetstone and Dhrystone benchmarks are small programs,
which encourage ‘overoptimization’, and can be used with optimizing compilers to
distort results.
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SPEC
SPEC, System Performance Evaluation Cooperative, is an association of a number of
computer companies to define standard benchmarks for fair evaluation and comparison of
different processors. The standard SPEC benchmark suite includes:
e A compiler
e A Boolean minimization program
e A spreadsheet program
e A number of other programs that stress arithmetic processing speed
The latest version of these benchmarks is SPEC CPU2000.
Advantages
e [t provides for ease of publication.
Each benchmark carries the same weight.
SPEC ratio is dimensionless.
It is not unduly influenced by long running programs.
It is relatively immune to performance variation on individual benchmarks.
It provides a consistent and fair metric.
An example computer: the SRC: “simple RISC computer”
An example machine is introduced here to facilitate our understanding of various design
steps and concepts in computer architecture. This example machine is quite simple, and
leaves out a lot of details of a real machine, yet it is complex enough to illustrate the
fundamentals.
SRC Introduction
Attributes of the SRC
* The SRC contains 32 General Purpose Registers: RO, R1, ..., R31; each register is
of size 32bits.
*  Two special purpose registers are included: Program Counter (PC) and Instruction
Register (IR)
*  Memory word size is 32 bits
+  Memory space size is 2” bytes
+  Memory organization is 2 x 8 bits, this means that the memory is byte aligned
*  Memory is accessed in 32 bit words ( i.e., 4 byte chunks)
* Bigendian byte storage isused = |-—————————————— .

| RO = ol 7 0

Programmer’s View of the SRC | R1 I 0
The figure shows the attributes of the i : i 1
SRC; the 32 ,32bit registers thatarea | R31 1 ! =
part of the CPU, the two additional | Register file :
CPU registers (PC & IR), and the main | }
memory which is 232 1byte cells. R ] I
SRC Notation l } 2324
We examine the notation used for the | PC[_____ | |
SRC with the help of some examples. S —— :

* R[3] means contents of register CPU Main memory

3 (R for register)
*  M][8] means contents of memory location 8 (M for memory)
* A memory word at address 8 is
defined as the 32 bits at address
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8,9,10 and 11 in the memory. This is shown in the figure.
* A special notation for 32bit memory words is
M[8]<31...0>=M[8] M[9] M[10] M[11]
[ is used for concatenation.
Some more SRC Attributes
* All instructions are 32 bits long (i.e., instruction size is 1 word)
* All ALU instructions have three operands
* The only way to access memory is through load and store operations
*  Only a few addressing modes are supported
SRC: Instruction Formats
Four types of instructions are
supported by the SRC. Their
representation is given in the figure
shown.
Before discussing these instruction
types in detail, we take a look at the
encoding of general purpose registers
(the ra, rb and rc fields).
Encoding of the General Purpose
Registers
The encoding for the general purpose
registers is shown in the table; it will
be used in place of ra, rb and rc in the — —
instruction formats shown above. Note
that this is a simple 5 bit encoding. ra, W | ww | @ | e
rb and rc are names of fields used as| = | =~ '
“placeholders”, and can represent any il [
one of these 32 registers. An
exception is tb = 0; it does not mean the register R0, rather it means no operand. This will
be explained in the following discussion.
Type A
Type A is used for only two
instructions:
e No operation or nop, for which the opcode = 0. This is useful in pipelining
e Stop operation stop, the opcode is 31 for this instruction.
Both of these instructions do not need an operand (are Ooperand instructions).
Type B
Type B format includes three
instructions; all three use relative
addressing mode. These are
e The Idr instruction, used to load register from memory using a relative address.

(opcode = 2).
o Example:
1dr R3, 56

This instruction will load the register R3 with the contents of the memory
location M [PC+56]
e The lar instruction, for loading a register with relative address (opcode = 6)
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o Example:
lar R3, 56
This instruction will load the register R3 with the relative address itself
(PC+56).
e The str is used to store register to memory using relative address (opcode = 4)
o Example:
str R8, 34
This instruction will store the register R8 contents to the memory location
M [PC+34]
The effective address is computed at runtime by adding a constant to the PC. This makes
the instructions ‘relocatable’.
Type C
Type C format has three load/store
instructions,  plus  three =~ ALU
instructions. These load/ store instructions are
e 1d, the load register from memory instruction (opcode = 1)
o Example I:
1d R3, 56
This instruction will load the register R3 with the contents of the memory
location M [56]; the b field is 0 in this instruction, i.e., it is not used. This
is an example of direct addressing mode.
o Example 2:
1d R3, 56(R5)
The contents of the memory location M [56+R [5]] are loaded to the
register R3; the rb field # 0. This is an instance of indexed addressing
mode.
e lais the instruction to load a register with an immediate data value (which can be
an address) (opcode =5)
o Examplel:
laR3, 56
The register R3 is loaded with the immediate value 56. This is an instance
of immediate addressing mode.
o Example 2:
la R3, 56(R5)
The register R3 is loaded with the indexed address 56+R [5]. This is an
example of indexed addressing mode.
e The st instruction is used to store register contents to memory (opcode = 3)
o Example 1:
st R8, 34
This is the direct addressing mode; the contents of register R8 (R [8]) are
stored to the memory location M [34]
o Example 2:
st R8, 34(R6)
An instance of indexed addressing mode, M [34+R [6]] stores the contents
of R8(R [8])
The ALU instructions are
e addi, immediate 2’s complement addition (opcode = 13)
o Example:
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addi R3, R4, 56
R[3] < R[4]+56 (rb field = R4)
e andi, the instruction to obtain immediate logical AND, (opcode =42 )
o Example:
andi R3, R4, 56
R3 is loaded with the immediate logical AND of the contents of register
R4 and 56(constant value)
e ori, the instruction to obtain immediate logical OR (opcode = 23 )
o Example:
ori R3, R4, 56
R3 is loaded with the immediate logical OR of the contents of register R4
and 56(constant value)
Note:
1. Since the constant ¢2 field is 17 bits,
For direct addressing mode, only the first 2 bytes of memory can
be accessed (or the last 2'° bytes if c2 is negative)
In case of the la instruction, only constants with magnitudes less
than +2'° can be loaded
During address calculation using c2, sign extension to 32 bits must
be performed before the addition
2. Type C instructions, with some modifications, may also be used for
shift instructions. Note
the modification in the
following figure.
The four shift instructions are
o shr is the instruction used to shift the bits right by using value in (5bit) ¢3
field(shift count)
e (opcode = 26)
o Example:
shr R3, R4, 7
shift R4 right 7 times in to R3. Immediate addressing mode is used.
e shra, arithmetic shift right by using value in ¢3 field (opcode = 27)
o Example:
shra R3, R4, 7
This instruction has the effect of shift R4 right 7 times in to R3. Immediate
addressing mode is used.
e The shl instruction is for shift left by using value in (5bit) ¢3 field (opcode = 28)
o Example:
shl R8, RS, 6
shift R5 left 6 times in to R8. Immediate addressing mode is used.
e shg, shift left circular by using value in ¢3 field (opcode = 29)
o Example:
shc R3, R4, 3
shift R4 circular 3 times in to R3. Immediate addressing mode is used.
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Lecture No. 4
ISA and Instruction Formats

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 2
Computer Systems Design and Architecture 2.3, 2.4,slides
Summary

1) Introduction to ISA and instruction formats
2) Coding examples and Hand assembly

An example computer: the/SRC: “simple RISC computer”

An example machine is introduced here to facilitate our understanding of various design
steps and concepts in computer architecture. This example machine is quite simple, and

leaves out a lot of details of a real machine, yet it is complex enough to illustrate the
fundamentals.

SRC Introduction
Attributes of the SRC
* The SRC contains 32 General Purpose Registers: RO, R1, ..., R31; each register is
of size 32bits.
»  Two special purpose registers are included: Program Counter (PC) and Instruction
Register (IR)
*  Memory word size is 32 bits
+  Memory space size is 2” bytes
»  Memory organization is 2 x 8 bits, this means that the memory is byte aligned

words ( i.e., 4 byte chunks) I RO 2 < i 7 0

* Bigendian byte storage is used i R1 : 0
Programmer’s View of the | : | A
SRC o N
The figure below shows the attributes | Register file |
of the SRC; the 32 ,32bit registers that i i
are a part of the CPU, the two R[]
additional CPU registers (PC & IR), ! l 2321
and the main memory which is 232 ; | Pcl ] }
byte cells. CPU Main memory

SRC Notation

We examine the notation used for the SRC with the help of some examples.
R[3] means contents of register 3 (R for register)

M[8] means contents of memory location 8 (M for memory)
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* A memory word at address 8 is
defined as the 32 bits at address

]

8,9,10 and 11 in the memory. & & [ @ One memory “word"
This is shown in the figure gl |31 24|23 15|15 s|? u|
3 2] h[5] (1 0] M[11]
below. 5 a3 M
5
.

MS Byte LS Byte

* A special notation for 32bit
memory words is
M[8]<31...0>:=M[8] M[9] M[10] M[11]

[ is used for concatenation.
Some more SRC Attributes
All instructions are 32 bits long (i.e., instruction size is 1 word)
All ALU instructions have three operands
The only way to access memory is through load and store operations

Only a few addressing modes
are supported

SRC: Instruction Formats
Four types of instructions are
supported by the SRC. Their
representation is given in the following
figure. Before discussing these
instruction types in detail, we take a
look at the encoding of general
purpose registers (the ra, rb and rc
fields).

Encoding of the General Purpose M| | e

Registers

The encoding for the general purpose

registers is shown in the following W | o

table; it will be used in place of ra, rb W | o

and rc in the instruction formats shown i e et ot aha

above. Note that this is a simple 5 bit sl i ) i

encoding. ra, rb and rc are names of fields used as “placeholders”, and can represent any
one of these 32 registers. An exception is tb = 0; it does not mean the register R0, rather
it means no operand. This will be explained in the following discussion.

Type A

Type A is used for only two instructions:

e No operation or nop, for which
the opcode = 0. This is useful
in pipelining
e [Stop operation stop, the opcode is 31 for this instruction.
Both of these instructions do not need an operand (are Ooperand instructions).

Type B
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Type B format includes three
instructions; all three use relative
addressing mode. These are

e The Idr instruction, used to load register from memory using a relative address.

(opcode = 2).
o Example:
ldr R3, 56

This instruction will load the register R3 with the contents of the memory
location M [PC+56]
e The lar instruction, for loading a register with relative address (opcode = 6)
o Example:
lar R3, 56
This instruction will load the register R3 with the relative address itself
(PC+56).
e The str is used to store register to memory using relative address (opcode = 4)
o Example:
str R8, 34
This instruction will store the register R8 contents to the memory location
M [PC+34]
The effective address is computed at runtime by adding a constant to the PC. This makes
the instructions ‘relocatable’.

Type C
Type C format has three load/store
instructions,  plus  three = ALU
mstructions. These load/ store instructions are
e 1d, the load register from memory instruction (opcode = 1)
o Example 1:
1d R3, 56
This instruction will load the register R3 with the contents of the memory
location M [56]; the b field is O in this instruction, i.e., it is not used. This
is an example of direct addressing mode.
o Example 2:
1d R3, 56(RS)
The contents of the memory location M [56+R [5]] are loaded to the
register R3; the rb field # 0. This is an instance of indexed addressing
mode.
o la is the instruction to load a register with an immediate data value (which can be
an address) (opcode =5)
o Examplel:
laR3, 56
The register R3 is loaded with the immediate value 56. This is an instance
of immediate addressing mode.
o Example 2:
la R3, 56(R5)
The register R3 is loaded with the indexed address 56+R [5]. This is an
example of indexed addressing mode.
e The st instruction is used to store register contents to memory (opcode = 3)
o Example 1:
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st R8, 34
This is the direct addressing mode; the contents of register R8 (R [8]) are
stored to the memory location M [34]
o Example 2:
st R8, 34(R6)
An instance of indexed addressing mode, M [34+R [6]] stores the contents
of R8(R [8])
The ALU instructions are
e addi, immediate 2’s complement addition (opcode = 13)
o Example:
addi R3, R4, 56
R[3] [1R[4]+56 (rb field = R4)
e andi, the instruction to obtain immediate logical AND, (opcode =21 )
o Example:
andi R3, R4, 56
R3 is loaded with the immediate logical AND of the contents of register
R4 and 56(constant value)
e ori, the instruction to obtain immediate logical OR (opcode =23 )
o Example:
ori R3, R4, 56
R3 is loaded with the immediate logical OR of the contents of register R4
and 56(constant value)

Note:
1. Since the constant ¢2 field is 17 bits,
For direct addressing mode, only the first 2 bytes of memory can
be accessed (or the last 2'° bytes if c2 is negative)
In case of the la instruction, only constants with magnitudes less
than £2" can be loaded
During address calculation using ¢2, sign extension to 32 bits must
be performed before the addition
2. Type C instructions, with some modifications, may also be used for
shift instructions. Note the modification in the following figure.

The four shift instructions are
e shr is the instruction used to
shift the bits right by using
value in (5bit) ¢3 field(shift count) (opcode = 26)
o Example:
shr R3, R4, 7
shift R4 right 7 times in to R3 and shifts zeros in from the left as the value
is shifted right. Immediate addressing mode is used.
e shra, arithmetic shift right by using value in c3 field (opcode = 27)
o Example:
shra R3, R4, 7
This instruction has the effect of shift R4 right 7 times in to R3 and copies
the msb into the word on left as contents are shifted right. Immediate
addressing mode is used.
e The shl instruction is for shift left by using value in (5bit) ¢3 field (opcode = 28)
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o Example:
shl R8, RS, 6
shift RS left 6 times in to R8 and shifts zeros in from the right as the value
is shifted left. Immediate addressing mode is used.
e shc, shift left circular by using value in c3 field (opcode = 29)
o Example:
shc R3, R4, 3
shift R4 circular 3 times in to R3 and copies the value shifted out of the
register on the left is placed back into the register on the right. Immediate
addressing mode is used.
Type D
Type D includes four ALU
instructions, four register based shift
instructions, two logical instructions
and two branch instructions.
The four ALU instructions are given below
e add, the instruction for 2’s complement register addition (opcode = 12)
o Example:
add R3, R5, R6

result of 2’s complement addition R[5] + R[6] is stored in R3. Register

addressing mode is used.
e sub, the instruction for 2’s complement register subtraction (opcode = 14)
o Example:
sub R3, R5, R6
R3 will store the 2’s complement subtraction, R[5] R[6]. Register
addressing mode is used.
e and, the instruction for logical AND operation between registers (opcode = 20)
o Example:
and R8, R3, R4
R8 will store the logical AND of registers R3 and R4. Register addressing
mode is used.
e or the instruction for logical OR operation between registers (opcode = 22)
o Example:
or R8, R3, R4
R8 is loaded with the value R[3] v R[4], the logical OR of registers R3 and
R4. Register addressing mode is used.
The four register based shift instructions use register addressing mode. These use a
modified form of type D, as shown in
figure
e shr, shift right by using value in
register rc (opcode = 26)
o Example:
shr R3, R4, RS
This instruction will shift R4 right in to R3 using number in RS
e shra, the arithmetic shift right by using register rc (opcode = 27)
o Example:
shra R3, R4, RS
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A shift of R4 right using RS, and the result is stored in R3
e shl is shift left by using register rc (opcode = 28)
o Example:
shl R8, RS, R6
The instruction shifts R5 left in to R8 using number in R6
e shc, shifts left circular by using register rc (opcode = 29)
o Example:
shc R3, R4, R6
This instruction will shift R4 circular in to R3 using value in R6
The two logical instructions also use a modified form of the Type D, and are the
following.

0 neg stores the 2’s complement
of register rc in ra (opcode =
15)

o Example:
neg R3, R4
Negates (obtains 2’s complement) of R4 and stores in R3. 2address
format and register addressing mode is used.

e not stores the 1’s complement of register rc in ra (opcode = 24)

o Example:
not R3, R4
Logically inverts R4 and stores in R3. 2address format with register
addressing mode is

used. el 2736 2291 4746 1211 52 O
Type D has twobranch instruction, Op-code  |unused | rb re |unused | cond
modified forms of type D.

e br ,the instruction to branch to address in rb depending on the condition in rc.
There are five possible conditions, explained through examples. (opcode = 8).
All branch instructions use registeraddressing mode.

o Example 1:

brzr R3, R4

Branch to address in R3 (if R4 == 0)
o Example 2:

brnz R3, R4

Branch to address in R3 (if R4 # 0)
o Example 3:

brpl R3, R4

Branch to address in R3 (if R4 > 0)
o Example 4:

brmi R3, R4

Branch to address in R3 (if R4 < 0)
o Example 5:
br R3, R4
Branch to address in R3 (unconditional)
e Brl the instruction to branch to address in rb depending on condition in rc.
Additionally, it copies the PC in to ra before branching (opcode = 9)
o Example I:
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brlzr R1,R3, R4
R1 will store the contents of PC, then branch to address in R3 (if R4 == 0)
o Example 2:

brlnz R1,R3, R4
R1 stores the contents of PC, then a branch is taken, to address in R3 (if
R4 £0)
o Example 3:
brlpl R1,R3, R4

R1 will store PC, then

branch to address in R3 Mnemonic c3<2..0= Branch Condition

(lf R4> 0) hrlny 000 Link but never branch*
o Example 4: b, hrl 001 Unconditional branch

brimi Rl ’R3’ R4 brzr, brlzr 010 Branch if re is zero

R1 will store PC and

. brnz, hrinz 011 B h if rc is not

then branch to address in | " RS
R3 (lf R4 < O) hrpl, hripl 100 Branch if re is positive
0 Example 5: hrmi, hrlmi 101 Branch if rc is negative

brl R1,R3, R4
R1 will store PC, then it will ALWAYS branch to address in R3
o Example 6:
brlnv R1,R3, R4
R1 just stores the contents of PC but a branch is not taken (NEVER
BRANCH)
In the modified type D instructions for branch, the bits <2..0> are used for specifying the
condition; these condition codes are shown in the table.
The SRC Instruction Summary

The instructions implemented by the SRC ~ [conto!l [ | dl I
. . . . opcode
are listed, grouped on functionality basis. (g5 operation w000
Functional Groups of Instructions Halt Machine stop | 1[1[1[1
LOg-fc Opcode
Shift right by count ohe A |l L.
Shift right by count in a register shr T 1] 0] 1] 0| — _ e
AShift right by count R T I | = 1d o[ o] of of 1
—— _ _ L oad relative register ldr ool ol 1|0
AShift right by count in a register shra 11 1 of 1] 1 Store register oy Sl R
= =1
Sh!ftleft by count_ - G 1 11010 Store relative register str ol ol 1 ol o
Shift left by countin a register 2kl 11 1 o] o
e Load address la o o] 1) 001
Shift circ. by count she 11 1 1 0] 1 -
et - - Load relative address lar ol ol 1] 1] 0
Shift cire. by countina reglster she T 10 1] 0] 1
Alphabetical Listing based on SRC
Mnemonics

Notice that the op code field for all br instructions is the same. The difference is in the
condition code field, which is in effect, an op code extension.

Examples

Some examples are studied in this section to enhance the student’s understanding of the

SRC.
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[Mremonic | 3] se e [2s] 7] la ofol1joi
lar gloji1j1|no
z : 14 olojojofd
Advanced Computer Agchitecinmgaseg (L g '3 ? } ?
addi ol 1] 1] o] 1 e
and (1] 0f1f0] D e ? D1 % % %
not
an di 1] o) 1] 0] 1 e TREIEIE
br gp1jojojo ari 1o 1] 11
krl o] 1|1 ofof 1 she {11101
brimi o 1) ofof 1 shr ipip1jof1
brinw of 1{of oy 1 :hl 111100
brinz | 0] 1] o] of 1 shl 1100
belpl | 0] 1] 0] 0] 1 she L HCIEUE LD
brizz | 0] 1] 0] 0] 1 she LU0 LD
bewi | 0] 1] 00| D o e SR a1 s 6
bere | 0] 1/ 0] D] D i ot O]
It o) ojojifi
brnm gy 1| ofofao PR IERELERE
brpl oy 1| ojo|o R ol ol 1Tol o
bror g1 ojojo sub o 11 1] 1{ 0
Branching Instructions [ T T1
Branch when ... Opcode
never bhrnw 0l 1 0] 0p 0
ahways hr 0l 1 0] 0p 0
ZEero brzr of 1) 0] 0f 0
nan Zero hrnz 0l 1 0] 0p 0
postive (including Zerm) brpl of 1) o] of o
negative brmi af 1) 0] of 0
Branch and link when ...
never hrlnw 0] 1] 0] 0] 1
ahways brl Ol 1] 0] 0] 1
ZEro brlzr ol 17 0f 0] 1
non Zero brlnz 0] 1] 0] 0] 1
postive (including zer) bripl af 1) 0] of 1
negative brlmi of 1) 0] 0] 1

Example 1: Expression Evaluation

Write an SRC assembly language program to evaluate the expression:

z=4(a +b) — 16(c+58)

Your code should not change the source operands.

Solution A: Notice that the SRC does not have a multiply instruction. We will make use
of the fact that multiplication with powers of 2 can be achieved by repeated shift left
operations. A possible solution is give below:

IdR1, ¢ ; ¢ is a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

shl R7, R3, 4 ; R7 contains 16(c+58)

Id R4, a

IdR5, b

add R6, R4, RS ; R6 contains (a+b)

shl R8, R6, 2 ; R8 contains 4(a+b)

sub R9, R8, R7 ; the result is in R9

stR9, z ; store the result in memory location z
Note:

The memory labels a, b, ¢ and z can be defined by using assembler directives like .dw or
.db, etc. in the source file.
A semicolon ‘;’ is used for comments in assembly language.

Last Modified: 12Jan11 Page 57


Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight


Advanced Computer ArchitectureCS501

Solution B:

We may solve the problem by assuming that a multiply instruction, similar to the add
instruction, exists in the instruction set of the SRC. The shl instruction will be replaced

by the mul instruction as given below.

IdRI1, ¢ ; ¢ is a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

mul R7, R3, 4 : R7 contains 16(c+58)

Id R4, a

Id RS, b

add R6, R4, R5 ; R6 contains (a+b)

mul R§, R6, 2 ; R8 contains 4(a+b)

sub R9, R&, R7 ; the result is in R9

stR9, z ; store the result in memory location z
Note:

The memory labels a, b, ¢ and z can be defined by using assembler directives like .dw or
.db, etc. in the source file.

Solution C:

We can perform multiplication with a multiplier that is not a power of 2 by doing
addition in a loop. The number of times the loop will execute will be equal to the
multiplier.

Example 2: Hand Assembly

Convert the given SRC assembly language program in to an equivalent SRC machine
language program.

IdR1, c ; ¢ is a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

shl R7,R3, 4 ; R7 contains 16(c+58)

Id R4, a

IdRS5, b

add R6, R4, R5 ; R6 contains (a+b)

shl R8, R6, 2 ; R8 contains 4(a+b)

sub R9, R&, R7 ; the result is in R9

stR9, z ; store the result in memory location z
Note:

This program uses memory labels a,b,c and z. We need to define them for the assembler
by using assembler directives like .dw or .equ etc. in the source file.
Assembler Directives
Assembler directives, also called pseudo opcodes, are commands to the assembler to
direct the assembly process. The directives may be slightly different for different
assemblers. All the necessary directives are available with most assemblers. We explain
the directives as we encounter them. More information on assemblers can be looked up in
the assembler user manuals.
Source program with directives

.ORG 200 ; start the next line at address 200

a: DW 1 ; reserve one word for the label a in the memory
b: DW 1 ; reserve a word for b, this will be at address 204
c: DW 1 ; reserve a word for ¢, will be at address 208

z: .DW 1 ; reserve one word for the result
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.ORG 400 ; start the code at address 400
; all numbers are in decimal unless otherwise stated
IdR1, ¢ ; ¢ is a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)
shl R7, R3, 4 ; R7 contains 16(c+58)
Id R4, a
IdR5, b
add R6, R4, R5 ; R6 contains (a+b)
shl R8, R6, 2 ; R8 contains 4(a+b)
sub R9, R8, R7 ; the result is in R9
stR9, z ; store the result in memory location z

This is the way an assembly program will appear in the source file. Most assemblers
require that the file be saved with an .asm extension.
Solution:
Observe the first line of the program
.ORG 200 ; start the next line at address 200
This is a directive to let the following code/ variables ‘originate’ at the specified address
of the memory, 200 in this case.
Variable statements, and another .ORG directive follow the .ORG directive.

a: DW 1 ; reserve one word for the label a in the memory
b: DW 1 ; reserve a word for b, this will be at address 204
c: DW 1 ; reserve a word for ¢, will be at address 208
z .DW 1 ; reserve one word for the result
.ORG 400 ; start the code at address 400
We conclude the following from the above statements: Label | Address | Value
The code starts at address 400 and each instruction takes 32 = 200 | inkaswa

bits in the memory. The memory map for the program is
shown in given table.
Memory Map for the SRC example program

b 204 unknoewn
c 208 unknoewn
Z 212 unknown

Mmooy Memonyr
A ddress Comterts

200 b
204 b
03 bz
212 b

400 ElLc

404 addi B3, R1, 58
403 shlE7, B34
412 1dE4.a

414 AR5 b

420 add R R4, RS
424 sh1 B2, R, 2

422 sub B9, RY R&
4352 st B9,z
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We have to convert these instructions to machine language. Let us start with the first

instruction:

IdR1, ¢

Notice that this is a type C instruction with the rb field missing.
1. We pick the opcode for this load instruction from the SRC instruction tables
given in the SRC instruction summary section. The opcode for the load register

‘1d’ instruction is 00001.

2. Next we pick the register code corresponding to register R1 from the register table

(given in the section ‘encoding of general
purpose registers’). The register code for
R1 is 00001.

3. The rb field is missing, so we place zeros

in the field: 00000

4. The value of c is provided by the

assembler, and should be converted to 17

bits. As ¢ has been assigned the memory

address 208, the binary value to be

encoded is 00000 0000 1101 0000.

5. So the instruction 1d R1, ¢ is 00001 00001

00000 00000 0000 1101 0000 in the

machine language.

6. The hexadecimal representation of this

instructionis0 84000 D 0 h.

We can update the memory map with these
values.

We consider the next instruction,

addi R3, R1, 58.

Notice that this is a type C instruction.

1. We pick the opcode for the instruction addi from

the SRC instruction table. It is 01101

2. We pick the register codes for the registers R3 and
R1, these codes are 00011 and 00001 respectively
3. For the immediate data, 58, we use the binary

value, 00000 0000 0011 1010

4. So the complete instruction becomes: 01101

00011 00001 00000 0000 0011 1010

5. The hexadecimal representation of the instruction

is68C2003Ah
We update the memory map, as shown in table.

The next instruction is shl R7,R3, 4, at address 408.

Again, this is a type C instruction.

1. The opcode for the instruction shl is picked from

the SRC instruction table. It is 11100
2. The register codes for the registers R7 and

from the register table are 00111 and 00011

respectively

Last Modified: 12Janl1

Mamony Memony Hexadacimal
Address Conterts Meamorny Corterds
200 wmbroRn
204 AbIORT
08 bR
12 bR
400 M4ElL« 02400000 1
404 addi B3, R1, 58
408 shlR7. B34
412 1AE4,a
416 RSB
420 add Ré, R4, RS
424 sl R, RA,2
428 sub B9, R7 B3
432 st B9, 2
Memozy Menoxy Hexadecimal
Address Contents Memory Cortents
a00 oW
04 mbrowT
08 mbrowe
212 ko
400 WRl.c 02400000 b
404 addiR3,R1, 58 GECA003AR
405 sh1E7.B3.4
412 1dR4.a
416 dR5.b
420 add Ré, B4, RS
424 sh1 B2, RA.2
428 sub B9, R7, RS
433 SLR9, 3
Memony Memony Hexadecimal
Address Cortents Memony Conterts
200 TR
204 mbremn
a0ns Wil
212 TR
400 MRl 05400000 h
404 addi B3, 1, 52 GEC2003010
R3 402 shlR7, B3, 4 E1C60004 h
412 ldE4.a
416 WERSb
420 add R6, R4, RS
424 shl RS, R6,2
428 sub RO BT RS
433 SLER.Z
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3. For the immediate data, 4, the corresponding binary value 00000 0000 0000 0100
is used.
4. We can place these codes in accordance with the type C instruction format to
obtain the complete instruction: 11100 00111 00011 00000 0000 0000 0100
5. The hexadecimal representation of the instruction is E1C60004
The memory map is updated, as shown in table.

Marmonyr Memory Hazxadecimal
The next instruction, ld R4, a, is also a type C instruction. | Ades Conterts Mesmory Corterts
Rb field is missing in this instruction. To obtain the S —
machine equivalent, we follow the steps given below. o o
1. The opcode of the load instruction ‘1d’ is 00001 e
2. The register code corresponding to the register R4 Sl il
is obtained from the register table, and it is 00100 P TR CITTY
3. As the 5 bit rb field is missing, we can encode | > [==%» -
zeros in its place: 00000 & mae TS
4. The value of a is provided by the assembler, and *¢ [uwse
is converted to 17 bits. It has been assigned the = ﬁ:::;:j
memory address 200, the binary equivalent of AT
which is: 00000 0000 1100 1000 R

5. The complete instruction becomes: 00001 00100 00000 00000 0000 1100 1000
6. The hexadecimal equivalent of the instructionis090000C 8 h

Memory map can be updated with this value.

The next instruction is also a load type C instruction, with

the rb field missing. Wusmiy o Huradesinal
1d RS, b Corterts Memowy Conterts
The machine language conversion steps are 20 [wiaom
1. The opcode of the load instruction is obtained = e
from the SRC instruction table; it is 00001 W [meem
2. The register code for RS, obtained from the ST ke
regiSter table, is 00101 404 2ddiR3,RL, 5% 680200340
3. Again, the 5 bit rb field is missing. We encode 5 [R7RSS ELCSO0004 1
zeros in its place: 00000 M e iicioc
4. The value of label b is provided by the assembler, T TV T TN
and should be converted to 17 bits. It has been | = |=#%°
assigned the memory address 204, so the binary —mTzms

value is: 00000 0000 1100 1100
5. The complete instruction is: 00001 00101 00000 00000 0000 1100 1100
6. The hexadecimal value of this instruction is 0 9 4

Memony Memony Hezxadecimal
000CCh Address Conterts Memony Conterts
Memory map is then updated with this value. —
The next instruction is a type Dadd instruction, with the TR e
constant field missing: B i
add R6,R4,R5
The steps followed to obtain the assembly code for thig L T T
lnStruCtlon are 405 sth?,;B.; ELCG0004 b
1. The opcode of the instruction is obtained from 2 [WRi 0500008
the SRC instruction table; it is 01100 T i
2. The register codes for the registers R6, R4 and R5 T FREER )
are obtained from the register table; these are :jz :‘bR:tR?‘RS
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3.

4.
3.

00110, 00100 and 00101 respectively.

The 12 bit constant field is unused in this instruction, therefore we encode zeros

in its place: 0000 0000 0000

The complete instruction becomes: 01100 00110 00100 00101 0000 0000 0000

The hexadecimal value of the instructionis 61 8 8 5000 h

Memory map is then updated with this value.

The instruction shl R8,R6, 2 is a type C instruction with
the rc field missing. The steps taken to obtain the
machine code of the instruction are

1.

2.

3.

4,

5.

The opcode of the shift left instruction ‘shl’,
obtained from the SRC instruction table, is 11100
The register codes of R8 and R6 are 01000 and
00110 respectively

Binary code is used for the immediate data 2:
00000 0000 0000 0010

The complete instruction becomes: 11100 01000
00110 00000 0000 0000 0010

The hexadecimal equivalent of the instruction is E
20C0002

Memory map is then updated with this value.

The instruction at the memory address 428 is sub R9, R8, R7.

instruction.
We decode it into the machine language, as follows:

1.

2.

3.

4.

5.

The opcode of the subtract instruction ‘sub’ is
01110

The register codes of R9, R7 and RS, obtained
from the register table, are 01001, 00111 and
01000 respectively

The 12 bit immediate data field is not used, zeros
are encoded in its place: 0000 0000 0000

The complete instruction becomes: 01110 01001
00111 01000 0000 0000 0000

The hexadecimal equivalentis 724 E8000h

We again update the memory map

The last instruction is is a type C instruction with the rb
field missing:

st R9, z

The machine equivalent of this instruction is obtained
through the following steps:

1.

2.
3.

The opcode of the store instruction ‘st’, obtained
from the SRC instruction table, is 00011

The register code of R9 is 01001

Notice that there is no register coded in the 5 bit
b field, therefore, we encode zeros: 00000

Last Modified: 12Jan11

Memozy Memozy Hexzadecimal
Address Contents Memory Corterts
200 mbromm
204 koA
08 mbromm
212 mbromm
400 WEl.c 02400000 h
404 addi B3, R1, 58 GEC2003 AT
403 sh1RT. R34 ELCA0004 1k
412 MiE4.2 0900002 ko
416 MRS 094000CCh
420 add RA. R4, ES G1855000 b
424 MR8 RE.2 E20C00021h
428 b RY,R7.E8
432 B3:UR §

This is a type D

Merony Mernoay Hexaderimal

Address Covtents Mermory Cortets
200 rbromm
204 mbromm
208 rbremn
212 mrbrom
400 WRLc 03400000 b
404 addiR3, R1,58 GECAN0ZA R
402 shlR7,B3.4 ELCE0004 b
412 11R4.a2 09000028 ko
416 JLRER ] 0940000 Ch
420 add kA, R4, RS 61885000k
424 <hlE3.RA.2 E20C0002 1k
428 sub B2, R7,R2 TIMERN0h
433 stRe.3

Memoxy Memory Hezxadecimal

Address Contents Memory Cortarts
200 rbroRm
204 wbromm
208 rbroRm
212 wbromm
400 WERl.c 0240000 b
404 2ddi B3, R1, 58 GEC2003 40
408 sh1R7. B34 ELC60004 b
412 11 R4, 09000005 kb
416 RS 0940000 CH
420 add Ré, B4, RS 61355000
424 sh1R2.R6.2 E20C0002k
438 sub B9, BT RS TI4ES000 h
432 A R9,3 LAA000D4 b
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4. The value of the label z is provided by the assembler, and should be converted to
17 bits. Notice that the memory address assigned to z is 212. The 17 bit binary

equivalent is: 00000 0000 1101 0100 Sy s | Blas
5. The complete instruction becomes: 00011 01001 00000 =

00000 0000 1101 0100

6. The hexadecimal form of this instructionis Ll A4000D 4

h 4
The memory map, after the conversion of all the instructions, is T
We have shown the memory map as an array of 4 byte cells in the -

above solution. However, since the memory of the SRC is arranged

in 8 bit cells (i.e. memory is byte aligned), the real representation of

the memory map is :

Example 3: SRC instruction analysis ™

Identify the formats of following SRC instructions and specify the <

values in the fields

Solution:
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Lecture No. 5
Description of SRC in RTL

Reading Material
Handouts Slides

Summary
1) Reverse Assembly
2) Description of SRC in the form of RTL
3) Behavioral and Structural description in terms of RTL

Reverse Assembly
Typical Problem:

Given a machine language instruction for the SRC, it may be required to find the
equivalent SRC assembly language instruction
Example:
Reverse assemble the following SRC machine language instructions:
68C2003A h
E1C60004 h
61885000 h

724E8000 h

1A4000D4 h

084000D0 h
Solution:
1. Write the given hexadecimal instruction in binary form
68C2003A h 10110 1000 1100 0010 0000 0000 0011 1010 b
2. Examine the first five bits of the instruction, and pick the corresponding mnemonic
from the SRC instruction set listing arranged according to ascending order of opcodes
01101 b1 13 d [7 addi (] add immediate
3. Now we know that this instruction uses the type C format, the two 5bit fields after the
opcode field represent the destination and the source registers respectively, and that the
remaining 17bits in the instruction represent a constant

0110 1})00 11{00 OOIF 0000 0000 0011 1010 b
opcode ta field kb field 17bit cl field
[l [ [l 0J
addi R3 Rl 3Ah=58d

4. Therefore, the assembly language instruction is
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addi R3, R1, 58
Summary

Given machine language instraction Equivalent assembly language instraction

68C2003A h addi R3,R1, 58
E1C60004 h
61885000 h
724E8000 h
1A4000D4 h
084000D0 h

We can do it a bit faster now! Step1: Here is stepl for all instructions

Given s inetruction in binary
s truptionin. Equivalent instruction in binary

hexadecimal
E1C60004 h 1110 0001 1100 0110 0000 0000 0000 0100 b

61585000 h 0110 0001 1000 1000 0101 0000 0000 0000 b

T24E2000 h 0111 0010 01001110 1000 0000 QOO0 0000 b

14400004 h 0001 1010 0100 0000 0000 0000 1101 0100 b

02400000 h 0000 1000 0100 0000 0000 D000 1101 0000 b

Step 2: Pick up the op code for each instruction

Step 3: Determine the instruction type for each instruction

The meaning of the remaining fields will depend on the instruction type (i.e., the
instruction format)
Summary
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Given machine language instnaction Equivalent assembly language instraction

68C2003Ah addi R3,R1, 58
E1C60004 h
61885000 h
724E8000 h
1A4000D4 h
084000D0 h

Note: est of the fields of above given tables are left as an exercise for students.
Using RTL to describe the SRC

RTL stands for Register Transfer Language. The Register Transfer Language provides a
formal way for the description of the behavior and structure of a computer. The RTL
facilitates the design process of the computer as it provides a precise, mathematical
representation of its functionality. In this section, a Register Transfer Language is
presented and introduced, for the SRC (Simple ‘RISC’ Computer), described in the
previous discussion.

Behavioral RTL

Behavioral RTL is used to describe the ‘functionality’ of the machine only, i.e. what the
machine does.

Structural RTL

Structural RTL describes the ‘hardware implementation’ of the machine, i.e. how the
functionality made available by the machine is implemented.

Behavioral versus Structural RTL:

In computer design, a topdown approach is adopted. The computer design process
typically starts with defining the behavior of the overall system. This is then broken down
into the behavior of the different modules. The process continues, till we are able to
define, design and implement the structure of the individual modules. Behavioral RTL is
used for describing the behavior of machine whereas structural RTL is used to define the
structure of machine, which brings us to the some more hardware features.

Using RTL to describe the static properties of the SRC

In this section we introduce the RTL by using it to describe the various static properties

of the SRC.

Specifying Registers

The format used to specify registers is

Register Name<register bits>

For example, IR<31..0> means bits numbered 31 to 0 of a 32bit register named “IR”
(Instruction Register).

“Naming” using the := naming operator:

The := operator is used to ‘name’ registers, or part of registers, in the Register Transfer
Language. It does not create a new register; it just generates another name, or “alias” for
an already existing register or part of a register. For example,

Op<4..0>: = IR<31..27> means that the five most significant bits of the register IR will

be called op, with bits 4..0.

Fields in the SRC instruction

In this section, we examine the various fields of an SRC instruction, using the RTL.
op<4..0>:=1R<31..27>;  operation code field
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The five most significant bits of an SRC instruction, (stored in the instruction register in
this example), are named op, and this field is used for specifying the operation.
ra<4..0>: = [R<26..22>;  target register field

The next five bits of the SRC instruction, bits 26 through 22, are used to hold the address

of the target register field, i.e., the result of the operation performed by the instruction is
stored in the register specified by this field.

rb<4..0>: =1R<21..17>;  operand, address index, or branch target register

The bits 21 through 17 of the instruction are used for the b field. rb field is used to hold

an operand, an address index, or a branch target register.

rc<4..0>: =IR<16..12>;  second operand, conditional test, or shift count register
The bits 16 through 12, are the rc field. This field may hold the second operand,
conditional test, or a shift count.

cl<21..0>: =1R<21..0>; long displacement field

In some instructions, the bits 21 through 0 may be used as long displacement field.
Notice that there is an overlap of fields. The fields are distinguished in a particular
instruction depending on the operation.

€2<16..0>: = IR<16..0>;  short displacement or immediate field

The bits 16 through 0 may be used as short displacement or to specify an immediate
operand.

c¢3<11..0>: =1R<11..0>; count or modifier field

The bits 11 through 0 of the SRC instruction may be used for count or modifier field.
Describing the processor state using RTL

The Register Transfer Language can be used to describe the processor state. The
following registers and bits together form the processor state set.

PC<31..0>; program counter (it holds the memory address of next
instruction to be executed)

IR<31..0>; instruction register, used to hold the current instruction

Run; one bit run/halt indicator

Strt; start signal

R [0..31]<31..0>; 32, 32 bit general purpose registers

SRC in a Black Box

Connectors at
the back (o be
added later on)

Indicators
{include the RUN
indicatar)

Other switches
may be added
later on
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Difference between our notation and notation used by the text (H&J)

Our Meaning Symbols || Ciyr Syrchol or Meaning Symbol used
Symbols In text terminology by Héd
: conddionalizndfar Ed RETL Register Transfer Language RTH
Sequential statements ; Behavioral RTL Lhbstract RTH
Conourert statements : Struetural RTL Concrete BTH
= Naming operator e implementation azclltftl:;.tgu:e
| = MAF. Memory Address Ragister MA
&  [Logcal AND 8 MBR. IMemory Buffer Register MD
=" Logical OR v
| Logical HOT -
@ Concatenation #
o Replication @
L Remainder after division (mochilo) none

Difference between “,” and “;” in RTL

Statements separated by a “,” take place during the same clock pulse. In other words, the
order of execution of statements separated by “,” does not matter.

On the other hand, statements separated by a “;” take place on successive clock pulses. In
other words, if statements are separated by ““;” the one on the left must complete before
the one on the right starts. However, some things written with one RTL statement can
take several clocks to complete.

So in the instruction interpretation, fetchexecute cycle, we can see that the first

statement. ! Run & Strt : Run < 1, executes first. After this statement has executed and

set run to 1, the statements IR «— M [PC] and PC «— PC + 4 are executed concurrently.
Note that in statements separated by “,”, all right hand sides of Register Transfers are
evaluated before any left hand side is modified (generally though assignment).

Using RTL to describe the dynamic properties of the SRC

The RTL can be used to describe the dynamic properties.

Conditional expressions can be specified through the use of RTL. The following example
will illustrate this

(op=14) : R [ra] « R [rb] R[rc];

The « operator is the RTL assignment operator. ¢;’ is the termination operator. This
conditional expression implies that “IF the op field is equal to 14, THEN calculate the
difference of the value in the register specified by the rb field and the value in the register
specified by the rc field, and store the result in the register specified by the ra field.”
Effective address calculations in RTL (performed at runtime)

In some instructions, the address of an operand or the destination register may not be

b

specified directly. Instead, the effective address may have to be calculated at runtime.

These effective address calculations can be represented in RTL, as illustrated through the

examples below.

Displacement address
disp<31..0> := ((rb=0) : ¢2<16..0> {sign extend},
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(rb#£0) : R [rb] + ¢2<16..0> {sign extend}),
The displacement (or the direct) address is being calculated in this example. The “,”
operator separates statements in a single instruction, and indicates that these statements
are to be executed simultaneously. However, since in this example these are two disjoint
conditions, therefore, only one action will be performed at one time.
Note that register RO cannot be added to displacement. rb = 0 just implies we do not need
to use the R [rb] field.
Relative address
rel<31..0> :=PC<31..0> + c1<21..0> {sign extend},
In the above example, a relative address is being calculated by adding the displacement
after sign extension to the contents of the program counter register (that holds the next
instruction to be executed in a program execution sequence).
Range of memory addresses
The range of memory addresses that can be accessed using the displacement (or the
direct) addressing and the relative addressing is given.
e Direct addressing (displacement with rb=0)
o If c2<16>=0 (positive displacement) absolute addresses range from
00000000h to 0000FFFFh
o If c2<16>=1 (negative displacement) absolute addresses range from
FFFF0000h to FFFFFFFFh
e Relative addressing
o The largest positive value of C1<21..0> is 2”1 and its most negative
value is 2”', so addresses up to 2°'1 forward and 2*' backward from the
current PC value can be specified
Instruction Interpretation
(Describing the Fetch operation using RTL)
The action performed for all the instructions before they are decoded is called ‘instruction
interpretation’. Here, an example is that of starting the machine. If the machine is not
already running (—Run, or ‘not’ running), AND (&) it the condition start (Strt) becomes
true, then Run bit (of the processor state) is set to 1 (i.e. true).
instruction_Fetch := (
! Run & Strt: Run « 1 ; instruction_Fetch
Run : (IR «— M [PC], PC — PC +4; instruction_Execution ) );
The := is the naming operator. The ; operator is used to add comments in RTL. The ,
operator, specifies that the statements are to be executed simultaneously, (i.e. in a single
clock pulse). The ; operator is used to separate sequential statements. «— 1is an assignment
operator. & is a logical AND, ~is a logical OR, and ! is the logical NOT. In the
instruction interpretation phase of the fetchexecute cycle, if the machine is running (Run
is true), the instruction register is loaded with the instruction at the location M [PC] (the
program counter specifies the address of the memory at which the instruction to be
executed is located). Simultaneously, the program counter is incremented by 4, so as to
point to the next instruction, as shown in the example above. This completes the
instruction interpretation.
Instruction Execution
(Describing the Execute operation using RTL)
Once the instruction is fetched and the PC is incremented, execution of the instruction
starts. In the following, we denote instruction Fetch by “iF” and instruction execution by
“1E”.
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iE:=(
(op<4..0>=1) : R [ra] «<— M [disp],
(op<4..0>=2) : R [ra] < M [rel],

(op<4..0>=31) : Run < 0,); iF);
As shown above, Instruction Execution can be described by using a long list of
conditional operations, which are inherently “disjoint™.
One of these statements is executed, depending on the condition met, and then the
instruction fetch statement (iF) is invoked again at the end of the list of concurrent
statements. Thus, instruction fetch (iF) and instruction execution statements invoke each
other in a loop. This is the fetchexecute cycle of the SRC.
Concurrent Statements
The long list of concurrent, disjoint instructions of the instruction execution (iE) is

basically the complete instruction set of the processor. A brief overview of these
instructions is given below.
Load(Store Instructions
(op<4..0>=1) : R [ra] < M [disp], load register (1d)
This instruction is to load a register using a displacement address specified by the
instruction, i.e. the contents of the memory at the address ‘disp’ are placed in the register
R [ra].
(op<4..0>=2) : R [ra] < M |[rel], load register relative (Idr)
If the operation field ‘op’ of the instruction decoded is 2, the instruction that is executed
is loading a register (target address of this register is specified by the field ra) with
memory contents at a relative address, ‘rel’. The relative address calculation has been
explained in this section earlier.
(op<4..0>=3) : M [disp] <— R [ra], store register (st)
If the opcode is 3, the contents of the register specified by address ra, are stored back to
the memory, at a displacement location ‘disp’.
(op<4..0>=4) : M|rel] < R[ra], store register relative (str)
If the opcode is 4, the contents of the register specified by the target register address ra,
are stored back to the memory, at a relative address location ‘rel’.
(op<4..0>=5) : R [ra] < disp, load displacement address (1a)
For opcode 5, the displacement address disp is loaded to the register R (specified by the
target register address ra).
(op<4..0>=6) : R [ra] < rel, load relative address (lar)
For opcode 6, the relative address rel is loaded to the register R (specified by the target
register address ra).
Branch Instructions
(op<4..0>=8) : (cond : PC — R [rb]), conditional branch (br)
If the opcode is 8, a conditional branch is taken, that is, the program counter is set to the
target instruction address specified by rb, if the condition ‘cond’ is true.
(op<4..0>=9) : (R [ra] < PC,

cond : (PC — R [rb])), branch and link (brl)
If the op field is 9, branch and link instruction is executed, i.e. the contents of the
program counter are stored in a register specified by ra field, (so control can be returned
to it later), and then the conditional branch is taken to a branch target address specified by
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rb. The branch and link instruction is useful for returning control to the calling program
after a procedure call returns.

The conditions that these ‘conditional’ branches depend on are specified by the field ¢3

that has 3 bits. This simply means that when ¢3<2..0> is equal to one of these six values.
We substitute the expression on the right hand side of the : in place of cond

These conditions are explained here briefly.

cond :=(
c3<2..0>=0:0, never
If the c3 field is 0, the branch is never taken.
c3<2..0>=1:1, always
If the field is 1, branch is taken
¢3<2..0>=2 : R [rc]=0, if register is zero
If c3 =2, a branch is taken if the register rc = 0.
¢3<2..0>=3 : R [rc] #0, if register is nonzero

If ¢3 =3, a branch is taken if the register rc is not equal to 0.
€3<2..0>=4 : R [rc]<31>=0 if positive or zero
If ¢3 is 4, a branch is taken if the register value in the register specified
by rc is greater than or equal to 0.
€3<2..0>=5 : R [rc]<31>=1), if negative
If ¢3 =5, a branch is taken if the value stored in the register specified by
rc 1s negative.
Arithmetic and Logical instructions
(op<4..0>=12) : R [ra] <— R [rb] + R [rc],
If the opcode is 12, the contents of the registers tb and rc are added and the result is
stored in the register ra.
(op<4..0>=13) : R [ra] < R [rb] + ¢2<16..0> {sign extend},
If the opcode is 13, the content of the register rb is added with the immediate data in the
field c2, and the result is stored in the register ra.
(op<4..0>=14) : R [ra] <— R [rb] - R [rc],
If the opcode is 14, the content of the register rc is subtracted from that of b, and the
result is stored in ra.
(op<4..0>=15) : R [ra] < (R [rec],
If the opcode is 15, the content of the register rc is negated, and the result is stored in ra.
(op<4..0>=20) : R [ra] <— R [rb] & R [rc],
If the op field equals 20, logical AND of the contents of the registers rb and rc is obtained
and the result is stored in register ra.
(op<4..0>=21) : R [ra] < R [rb] & ¢2<16..0> {sign extend},
If the op field equals 21, logical AND of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.
(op<4..0>=22) : R [ra] <— R [rb] ~R [rc],
If the op field equals 22, logical OR of the contents of the registers rb and rc is obtained
and the result is stored in register ra.
(0p<4..0>=23) : R [ra] < R [rb] ~ ¢2<16..0> {sign extend},
If the op field equals 23, logical OR of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.
(op<4..0>=24) : R [ra] < —R[rc],
If the opcode equals 24, the content of the logical NOT of the register rc is obtained, and
the result is stored in ra.
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Shift instructions

(op<4..0>=26): R [ra]<31..0 > «— (n a 0) © R [rb] <31..n>,

If the opcode is 26, the contents of the register rb are shifted right n bits times. The bits
that are shifted out of the register are discarded. Os are added in their place, i.e. n number

of Os is added (or concatenated) with the register contents. The result is copied to the
register ra.

(op<4..0>=27) : R [ra]<31..0 > «— (n a R [rb] <31>) © R [rb] <31..n>,

For opcode 27, shift arithmetic operation is carried out. In this operation, the contents of

the register rb are shifted right n times, with the most significant bit, bit 31, of the register

rb added in their place. The result is copied to the register ra.

(op<4..0>=28) : R [ra]<31..0 > «— R [rb] <31(n..0> © (n a 0),

For opcode 28, the contents of the register rb are shifted left n bits times, similar to the

shift right instruction. The result is copied to the register ra.

(op<4..0>=29) : R [ra]<31..0 > «— R [rb] <31(n..0> © R [rb]<31..32(n >,

The instruction corresponding to opcode 29 is the shift circular instruction. The contents

of the register rb are shifted left n times, however, the bits that move out of the register in

the shift process are not discarded; instead, these are shifted in from the other end (a
circular shifting). The result is stored in register ra.

where

n:=( (¢3<4..0>=0) : R [rc],
(c3<4..0>!=0) : ¢3 <4..0>),

Notation: o means replication

© Means concatenation

Miscellaneous instructions
(op<4..0>=0), No operation (nop)
If the opcode is 0, no operation is carried out for that clock period. This instruction is
used as a stall in pipelining.
(op<4..0>=31) : Run < 0, Halt the processor (Stop)

); iF );
If the opcode is 31, run is set to 0, that is, the processor is halted.
After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out
once again, and so the fetchexecute cycle continues.

Flow diagram

Flow diagram is the symbolic
representation of FetchExecute cycle. Its
top block indicates instruction fetch and
then next block shows the instruction
decode by looking at the first Sbits of the
fetched instruction which would represent
opcode which may be from 0 to
31.Depending upon the contents of this
opcode the appropriate processing would
take place. After the appropriate
processing, we would move back to top
block, next instruction is fetched and the
same process is repeated until the instruction with opcode 31 would reach and halt the
system.

Note:For SRC Assembler and Simulator consult Appendix.

Last Modified: 12Jan11 Page 72


akbar
Highlight


Advanced Computer ArchitectureCS501

Lecture No. 6
RTL Using Digital Logic Circuits

Reading Material

Handouts Slides
Summary

e Using Behavioral RTL to Describe the SRC (continued)
e Implementing Register Transfer using Digital Logic Circuits

Using behavioral RTL to Describe the SRC (continued)

Once the instruction is fetched and the PC is incremented, execution of the instruction
starts. In the following discussion, we denote instruction fetch by “iF” and instruction
execution by “iE”.

iE:=(
(op<4..0>=1) : R [ra] «— M [disp],
(op<4..0>=2) : R [ra] < M [rel],

(op<4..0>=31) : Run «— 0,); iF);

As shown above, instruction execution can be described by using a long list of
conditional operations, which are inherently “disjoint”. Only one of these statements is
executed, depending on the condition met, and then the instruction fetch statement (iF) is
invoked again at the end of the list of concurrent statements. Thus, instruction fetch (iF)

and instruction execution statements invoke each other in a loop. This is the fetchexecute
cycle of the SRC.

Concurrent Statements

The long list of concurrent, disjoint instructions of the instruction execution (iE) is
basically the complete instruction set of the processor. A brief overview of these
instructions is given below:

Load(Store Instructions
(op<4..0>=1) : R [ra] <— M [disp], load register (1d)
This instruction is to load a register using a displacement address specified by the

instruction, i.e., the contents of the memory at the address ‘disp’ are placed in the register
R [ra].
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(op<4..0>=2) : R [ra] < M |[rel], load register relative (Idr)

If the operation field ‘op’ of the instruction decoded is 2, the instruction that is executed
is loading a register (target address of this register is specified by the field ra) with
memory contents at a relative address, ‘rel’. The relative address calculation has been
explained in this section earlier.

(op<4..0>=3) : M [disp] <— R [ra], store register (st)

If the opcode is 3, the contents of the register specified by address ra, are stored back to

the memory, at a displacement location ‘disp’.

(op<4..0>=4) : M|rel] < RJra], store register relative (str)

If the opcode is 4, the contents of the register specified by the target register address ra,
are stored back to the memory, at a relative address location ‘rel’.

(op<4..0>=5) : R [ra] < disp, load displacement address (1a)

For opcode 5, the displacement address disp is loaded to the register R (specified by the
target register address ra).

(op<4..0>=6) : R [ra] < rel, load relative address (lar)

For opcode 6, the relative address rel is loaded to the register R (specified by the target
register address ra).

Branch Instructions
(op<4..0>=8) : (cond : PC — R [rb]), conditional branch (br)
If the opcode is 8, a conditional branch is taken, that is, the program counter is set to the
target instruction address specified by rb, if the condition ‘cond’ is true.
(op<4..0>=9) : (R [ra] < PC,

cond : (PC < R [rb])), branch and link (brl)
If the op field is 9, branch and link instruction is executed, i.e. the contents of the
program counter are stored in a register specified by ra field, (so control can be returned
to it later), and then the conditional branch is taken to a branch target address specified by
rb. The branch and link instruction is useful for returning control to the calling program
after a procedure call returns.
The conditions that these ‘conditional’ branches depend on, are specified by the field c3
that has 3 bits. This simply means that when ¢3<2..0> is equal to one of these six values,
we substitute the expression on the right hand side of the : in place of cond.
These conditions are explained here briefly.

cond :=(
¢3<2..0>=0: 0, never
If the c3 field is 0, the branch is never taken.
c3<2..0>=1:1, always
If the field is 1, branch is taken
¢3<2..0>=2 : R [rc]=0, if register is zero
If ¢3 = 2, a branch is taken if the register rc = 0.
¢3<2..0>=3 : R [rc] #0, if register is nonzero

If ¢3 = 3, a branch is taken if the register rc is not equal to 0.
¢3<2..0>=4 : R [rc]<31>=0 if positive or zero

If ¢3 is 4, a branch is taken if the register value in the register specified
by rc is greater than or equal to 0.

¢3<2..0>=5 : R [rc]<31>=1), if negative

If ¢3 =5, a branch is taken if the value stored in the register specified by
rc is negative.
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Arithmetic and Logical instructions

(op<4..0>=12) : R [ra] <— R [rb] + R [rc],

If the opcode is 12, the contents of the registers tb and rc are added and the result is
stored in the register ra.

(op<4..0>=13) : R [ra] < R [rb] + ¢2<16..0> {sign extended},

If the opcode is 13, the content of the register rb is added with the immediate data in the

field c2, and the result is stored in the register ra.

(op<4..0>=14) : R [ra] — R [rb] - R [rc],

If the opcode is 14, the content of the register rc is subtracted from that of rb, and the

result is stored in ra.

(op<4..0>=15) : R [ra] — (R [rc],

If the opcode is 15, the content of the register rc is negated, and the result is stored in ra.
(op<4..0>=20) : R [ra] < R [rb] & R [r¢],

If the op field equals 20, logical AND of the contents of the registers rb and rc is obtained
and the result is stored in register ra.

(op<4..0>=21) : R [ra] < R [rb] & ¢2<16..0> {sign extended},

If the op field equals 21, logical AND of the content of the registers rb and the immediate

data in the field c2 is obtained and the result is stored in register ra.

(op<4..0>=22) : R [ra] < R [rb] ~R [rc],

If the op field equals 22, logical OR of the contents of the registers rb and rc is obtained

and the result is stored in register ra.

(op<4..0>=23) : R [ra] < R [rb] ~ ¢2<16..0> {sign extended},

If the op field equals 23, logical OR of the content of the registers rb and the immediate

data in the field c2 is obtained and the result is stored in register ra.

(op<4..0>=24) : R [ra] — !R [r¢],

If the opcode equals 24, the content of the logical NOT of the register rc is obtained, and
the result is stored in ra.

Shift instructions

(op<4..0>=26): R [ra]<31..0 > «— (n a 0) © R [rb] <31..n>,

If the opcode is 26, the contents of the register rb are shifted right n bits times. The bits

that are shifted out of the register are discarded. Os are added in their place, i.e. n number

of Os is added (or concatenated) with the register contents. The result is copied to the
register ra.

(op<4..0>=27) : R [ra]<31..0 > «— (n a R [rb] <31>) © R [rb] <31..n>,

For opcode 27, shift arithmetic operation is carried out. In this operation, the contents of

the register rb are shifted right n times, with the most significant bit, i.e., bit 31, of the
register rb added in their place. The result is copied to the register ra.

(op<4..0>=28) : R [ra]<31..0 > — R [rb] <31(n..0> © (n a 0),

For opcode 28, the contents of the register rb are shifted left n bits times, similar to the

shift right instruction. The result is copied to the register ra.

(op<4..0>=29) : R [ra]<31..0 > «— R [rb] <31(n..0> © R [rb]<31..32(n >,

The instruction corresponding to opcode 29 is the shift circular instruction. The contents

of the register rb are shifted left n times, however, the bits that move out of the register in

the shift process are not discarded; instead, these are shifted in from the other end (a
circular shifting). The result is stored in register ra.

where
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n :=((c3<4..0>=0) : R [rc],
(c3<4..0>!=0) : ¢3 <4..0>),

Notation:
o means replication
© means concatenation

Miscellaneous instructions
(op<4..0>=0), No operation (nop)
If the opcode is 0, no operation is carried out for that clock period. This instruction is
used as a stall in pipelining.
(op<4..0>=31) : Run <« 0, Halt the processor (Stop)
);  iF )5
If the opcode is 31, run is set to 0, that is, the processor stops execution.
After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out
once again, and so the fetchexecute cycle continues.

Implementing Register Transfers using Digital Logic Circuits

We have studied the register transfers in the previous sections, and how they help in
implementing assembly language. In this section we will review how the basic digital
logic circuits are used to implement instructions register transfers. The topics we will
cover in this section include:

1. A brief (and necessary) review of logic circuits
Implementing simple register transfers
Register file implementation using a bus
Implementing register transfers with mathematical operations
The Barrel Shifter
Implementing shift operations

SNk W

Review of logic circuits
Before we study the implementation of register transfers using logic circuits, a brief
overview of some of the important logic circuits will prove helpful. The topics we review
in this section include

1. The basic D flip flop

2. The nbit register

3. The ntol multiplexer

4. Tristate buffers

The basic D flip flop Data Input Q Output
A flipflop is a bistable device, —D Q—
capable of storing one bit of Enable Input
Information. Therefore, flipflops

are used as the building blocks ofa  Clock Input
computer’s memory as well as CPU —C R
registers.
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There are various types of flipflops; most common type, the D flipflop is shown in the
figure given. The given truth table for this positiveedge triggered D flipflop shows that

the flipflop is set (i.e. stores a 1) when the data input is high on the leading (also called

the positive) edge of the clock; it is reset (i.e., the flipflop stores a 0) when the data input
is 0 on the leading edge of the clock. The clear input will reset the flipflop on a low
input.

The n(bit register

A nbit register can be formed by
grouping n flipflops together. So a

register is a device in which a
group of flipflops operate E N D Q
synchronously. N v A4

A register is useful for storing
binary data, as each flipflop can

oo

store one bit. The clock input of Inl O fO0u0
the flipflops is  grouped ENR

together, as is the enable input. i

As shown in the figure, using o

the input lines a binary number " D G Outd
can be stored in the register by el

applying the corresponding
logic level to each of the flip
flops simultaneously at the
positive edge of the clock.

The next figure shows the
symbol of a 4bit register used I
for an integrated circuit. In0

through In3 are the four input .
lines, OutO through Out3 are the C lnk 4-bit
four output lines, Clk is the
clock input, and En is the enable
linee. To get a  better
understanding of this register,
consider the situation where we want 4-bit Register Symbol

to store the binary number 1000 in the

register. We will apply the number to

the input lines, as shown in the figure given.

On the leading edge of the clock, the number will be stored in the register. The enable
input has to be high if the number is to be stored into the register.

Ind 5z Bz
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Waveform/Timing diagram
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The n(to(1 multiplexer i

A multiplexer is a device, constructed ] Iz g
through combinational logic, which L
takes n inputs and transfers one of

: . 1- I3
them as the output at a time. The input o —‘m ”
that is selected as the output depends S&LF—/&N Ly 4
=0
ut

on the selection lines, also called the S
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control input lines. For an ntol multiplexer, there are n input lines, log,n control lines,
and 1 output line. The given figure shows a 4tol multiplexer. There are 4 input lines;

we number these lines as line 0 through line 3. Subsequently, there are 2 select lines (as

log,4 =2).

For a better understanding, let us consider a case where we want to transfer the input of

line 3 to the output of the multiplexer. We will need to apply the binary number 11 on the
select lines (as the binary number 11 represents the decimal number 3). By doing so, the

output of the multiplexer will be the input on line 3, as shown in the test circuit given.
Timing waveform

q 1
-,J ) L L " |
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il I [ [l 1
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Timing Waveform for MUX
Tri(state buffers
The tristate buffer, also called the three C (COI‘ltI’O|)
state buffer, is another important
component in the digital logic domain. It ENB N y(OUtpUt)

has a single input, a single output, and -
an enable line. The input is concatenated a(mPUt) ‘
to the output only if it is enabled through
the enable line, otherwise it gives a high
impedance output, i.e. it is tristated, or
electrically disconnected from the input
These buffers are available both in the
inverting and the noninverting form. The
inverting tristate buffers output the
‘inverted’ input when they are enabled,
as opposed to their noninverting
counterparts that simply output the input
when enabled. The circuit symbol of the
tristate buffers is shown. The truth table

- == O Ol 0
— O = Ol
- O N N|=<
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further clarifies the working of a noninverting tristate buffer.

We can see that when the enable input (or the control input) ¢ is low (0), the output is
high impedance Z. The symbol of a 4bit tristate buffer unit is shown in the figure. There

are four input lines, an equal number of
output lines, and an enable line in this
unit. If we apply a high on the input 3

and 2, and a low on input 1 and 0, we S— ||"||:| |:||_|‘t|:| =
get the output 1100, only when the
enable input is high, as shown in the —_— ||"|1 [:| |_|'H S

. — In2 Qut? |—
i — |3 CDuta —

0— I —-
L- LLI
e W[4 |
e |1

’_ s Tri-state buffer symbol
1—, &
“ L) [ Lo e

j B

0—

Test circuit for Tri-state buffer

Implementing simple register transfers
We now build on our knowledge of the primitive logic circuits to understand how register
transfers are implemented. In this section we will study the implementation of the
following

e Simple conditional transfer
Concept of control signals
Twoway transfers
Connecting multiple registers
Buses
Bus implementations
Simple conditional transfer
In a simple conditional transfer, a condition is checked, and if it is true, the register
transfer takes place. Formally, a conditional transfer is represented as

Cond: RD « RS

This means that if the condition ‘Cond’ is true, the contents of the register named RS (the

source register) are copied to the register RD (the destination register). The following
figure shows how the registers may be interconnected to achieve a conditional transfer. In
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this circuit, the output of the source register RS is connected to the input of the
destination registers RD. However, notice that the transfer will not take place unless the

enable input of the destination register is activated. We may say that the ‘transfer’ is
being controlled by the enable line (or the control signal). Now, we are able to control the
transfer by selectively enabling the control signal, through the use of other combinational

logic that may be the equivalent of our condition. The condition is, in general, a Boolean
expression, and in this example, the condition is equivalent to LRD =1.

Two(way transfers

In the above example, only oneway transfer was possible, i.e., we could only copy the

contents of RSto RD if the condition was met.In order to be able to achieve twoway
transfers, we must also provide a path from the output of the register RD to input of
register RS. This will enable us to implement

Inpul valuee to RS

Y

clock + _,—,_
0-" |RE
[~
1= LRD
D e

Conditional Trasnfer

Condl: RD « RS

Cond2: RS <+ RD

Connecting multiple registers

We have seen how two registers can be connected. However, in a computer we need to
connect more than just two registers. In order to connect these registers, one may argue

that a connection between the input and output of each be provided. This solution is
shown for a scenario where there are 5 registers that need to be interconnected.

We can see that in this solution, an mbit register requires two connections of mwires
each. Hence five mbit registers in a “pointtopoint” scheme require 20 connections;
each with m wires. In general, n registers in a point to point scheme require n (nl)
connections. It is quite obvious that this solution is not going to scale well for a large
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number of registers, as is the case in real machines. The solution to this problem is the
use of a bus architecture, which is explained in the following sections.

Buses

A bus is a device that provides a shared data R

path to a number of devices that are connected @l

to it, via a ‘set of wires’ or a ‘set of =/

conductors’. The modern computer systems _

extensively employ the bus architecture. R iﬁ' 3 R
Control signals are needed to decide which two ' P .

entities communicate using the shared medium,

1.e. the bus, at any given time. This control ,

signals can be open collector | A

gate based,  tristate buffer R R
based, or they can be : ; :
implemented using Multiple register connections
multiplexers.

Register file implementation i

using the bus architecture L o0 THS

A number of registers can be s “Itﬁinf Ir b cu
interconnected to form a L, Er SR bty
register file, through the use of a 4 'T "i HJ“ &

bus. The given diagram shows ,_.J
eight 4bit registers (RO, R1, ..., '~ P
R7) interconnected through a 4 I FEETT
bit bus using 4bit tristate Zusz T
buffer units (labeled AA_TS4). TR B o d-hl’tn!g DM
The contents of a particular z b

register can be transferred onto
the bus by applying a logical

high input on the enable of the e
corresponding tristate buffer.

For instance, R1out can be used

to enable the tristate buffers of

the register R1, and in turn

transfer the contents of the | | FTET
register on the bus. suzz T
Once the contents of a particular 1o jEr ditreg Fir o s
register are on the bus, the R -"E.?i §J| e 2“'“ B

contents may be transferred, or
read into any other register. -
More than one register may be '~ R
written in this manner; however, Register Filz
only one register can write its

value on the bus at a given time.
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Implementing register transfers with mathematical operations

We have studied the implementation of simple register transfers; however, we frequently
encounter register transfers with mathematical operations. An example is

(opc=1): R4« R3 + R2;

These mathematical operations may be achieved by introducing appropriate

combinational logic; the above operation can be implemented in hardware by including a
4bit adder with the register files connected through the bus. There are two more registers

in this configuration, one for holding one of the operands, and the other for holding the

result before it is transferred to the destination register. This is shown in the figure below.

e

| | 00 THE

e Cu
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We now take a look at

the steps taken for the

(conditional,

mathematical)  transfer

(opc=1): R4« R3 + R2.

First of all, if the

condition opc = 1 is met,

the contents of the first

operand register, R3, are

transferred to the

temporary register A

through the bus. This is

done by activating

R3out. It lets the contents of the register R3 to be loaded on the bus. At the same time,
applying a logical high input to LA enables the load for the register A. This lets the
binary number on the bus (the contents of register R3) to be loaded into the register A.

The next step is to enable R2out to load the contents of the register R2 onto the bus. As

can be observed from the figure, the output of the register A is one of the inputs to the 4
bit adder; the other input to the adder is the bus itself. Therefore, as the contents of
register R2 are loaded onto the bus, both the operands are available to the adder. The
output can then be stored to the register RC by enabling its write. So a high input is
applied to LC to store the result in register RC.

The third and final step is to store (transfer) the resultant number in the destination
register R4, This is done by enabling Cout, which writes the number onto the bus, and
then enabling the read of the register R4 by activating the control signal to LR4. These

steps are summarized in the given table.

The barrel shifter

Shift operations are frequently used operations, as shifts can be used for the
implementation of multiplication and division etc. A bidirectional shift register with a
parallel load capability can be used to perform shift operations. However, the delays in
such structures are dependent on the number of shifts that are to be performed, e.g., 2 9

bit shift requires nine clock periods, as one shift is performed per clock cycle. This is not

an optimal solution. The barrel shifter is an alternative, with any number of shifts
accomplished during a single clock period. Barrel shifters are constructed by using
multiplexers. An nbit barrel shifter is a combinational circuit implemented using n
multiplexers. The barrel provides a shifted copy of the input data at its output. Control
inputs are provided to specify the number of times the input data is to be shifted. The
shift process can be a simple one with Os used as fillers, or it can be a rotation of the input
data. The corresponding figure shows a barrel shifter that shifts right the input data; the
number of shifts depends on the bit pattern applied on the control inputs SO, S1.

The function table for the barrel shifter is given. We see from the table that in order to

apply single shift to the input number, the control signal is 01 on (S1, SO), which is the
binary equivalent of the decimal number 1. Similarly, to apply 2 shifts, control signal 10

Last Modified: 12Jan11 Page &4
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Barrel Shifter

(on S1, SO) is applied; 10 is the binary

equivalent of the decimal number 2. A

control input of 11 shifts the number 3

places to the right.

Now we take a look at an example of —]51 I

the shift operation being implemented E Shiﬁﬁrd.

through the use of the barrel shifter: e

R4« ror R3 (2 times); —_— S =

o

|

The shift functionality can be
incorporated into the register file
circuit with the bus architecture we
have been building, by introducing the .

barrel shifter, as %hozvn in the ggiven Barrel Shifter S}fﬂ'lbﬂ'
figure.

To perform the operation,

R4« ror R3 (2 times), 51 50 | OQuiputin terms of the
the first step is to activate R3out, nbl inputs

and LC. Activating R3out will load the
contents of the register R3 onto the bus.
Since the bus is directly connected to
the input of the barrel shifter, this 0 1 Il I3 In2 Ind
number is applied to the input side. nb1
and nb0 are the barrel shifter’s control
lines for specifying the number of shifts
to be applied. Applying a high input to
nbl and a low input to nb0 will shift the 1 1 T2 Tnd Tnd T3
number two places to the right.
Activating LC will load the shifted

1] 0 In3 Ind Inl Ind

1 0 Inl In0In3 Ind
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Shift operation using Barrel Shifter

register C. The second step is to transfer the contents of the register C to the register R4.

This is done by activating the control Cout, which will load the contents of register C
onto the data bus, and by activating the control LR4, which will let the contents of the

bus be written to the register R4. This will complete the conditional shiftandstore

operation. These steps are summarized in the table shown below.
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Lecture No. 7

Design Process for ISA of FALCON(A

Reading Material
Hnadouts Slides

Summary
8) Outline of the thinking process for ISA Design
9) Introduction to the ISA of FALCONA
Instruction Set Architecture (ISA) Design: Outline of the thinking

process

In this module we will learn to appreciate, understand and apply the approach adopted in
designing an instruction set architecture. We do this by designing an ISA for a new
processor. We have named our processor FALCONA, which is an acronym for First
Architecture for Learning Computer Organization and Networks (version A). The term
Organization is intended to include Architecture and Design in this acronym.

Elements of the ISA
Before we go onto designing the instruction set architecture for our processor FALCON
A, we need to take a closer look at the defining components of an ISA. The following
three key components define any instruction set architecture.

1. The operations the processor can execute

2. Data access mode for use as operands in the operations defined

3. Representation of the operations in memory
We take a look at all three of the components in more detail, and wherever appropriate,
apply these steps to the design of our sample processor, the FALCONA. This will help
us better understand the approach to be adopted for the ISA design of a processor. A
more detailed introduction to the FALCONA will be presented later.
The operations the processor can execute
All processors need to support at least three categories (or functional groups) of
instructions
— Arithmetic, Logic, Shift
— Data Transfer
— Control

ISA Design Steps — Step 1

We need to think of all the instructions of each type that ought to be supported by our
processor, the FALCONA. The following are the instructions that we will include in the
ISA for our processor.

Arithmetic:

add, addi (and with an immediate operand), subtract, subtractimmediate,
multiply, divide
Logic:
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and, andimmediate, or, orimmediate, not
Shift:

shift left, shift right, arithmetic shift right
Data Transfer:

Data transfer between registers, moving constants to registers, load operands from
memory to registers, store from registers to memory and the movement of data between
registers and input/output devices
Control:

Jump instructions with various conditions, call and return from subroutines,
instructions for handling interrupts
Miscellaneous instructions:

Instructions to clear all registers, the capability to stop the processor, ability to
“do nothing”, etc.

ISA Design Steps — Step 2

Once we have decided on the instructions that we want to add support for in our
processor, the second step of the ISA design process is to select suitable mnemonics for
these instructions. The following mnemonics have been selected to represent these
operations.

Arithmetic:

add, addi, sub ,subi ,mul ,div

Logic:

and, andi, or, ori, not

Shift:

shiftl, shiftr, asr

Data Transfer:

load, store, in, out, mov, movi

Control:

jpl, jmi, jnz, jz, jump, call, ret, int.iret

Miscellaneous instructions:

nop, reset, halt

ISA Design Steps — Step 3

The next step of the ISA design is to decide upon the number of bits to be reserved for
the opcode part of the instructions. Since we have 32 instructions in the instruction set, 5
bits will suffice (as 2° =32) to encode these opcodes.

ISA Design Steps — Step 4

The fourth step is to assign opcodes to these instructions. The assigned opcodes are
shown below.

Arithmetic:

add (0), addi (1), sub (2), subi (3), mul (4),div (5)

Logic:

and (8), andi (9), or (10), ori (11), not (14)

Shift:

shiftl (12), shiftr (13), asr (15)

Data Transfer:

load (29), store (28), in (24), out (25), mov (6), movi (7)

Control:

jpl (16), jmi (17), jnz (18), jz (19), jump (20), call (22), ret (23), int (26), iret (27)
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Miscellaneous instructions:

nop (21), reset (30), halt (31) 00000 add 01000 | and 0000 | jpl 1000 | in

Now we list these instructions with wiwt | oap ||| b || oo | ae || | e

their opcodes in the binary form, as
they would appear in the machine oono1n sub 01010 or 10010 jnz 11010 itit

instructions of the FALCONA.
Data access mode for

oono1l subi 01011 ot 10011 iz 11011 iret

. 00100 ul 01100 shiftl 10100 i 11100 st
operations N o
As mentioned earlier, the instruction 00101 div D101 | shifte || 10101 | nep 1101 | load
set architecture of a processor defines

00110 oy 01110 fuot 10110 call 11110 teset

a number of things besides the

instructions implemented; the 0011 | movi || ot1t | asr || 10001 | st || 11001 | hat

resources each instruction can access,
the number of registers available to the processor, the number of registers each
instruction can access, the instructions that are allowed to access memory, any special
registers, constants and any alternatives to the generalpurpose registers. With this in
mind, we go on to the next steps of our ISA design.

ISA Design Steps — Step 5

We now need to select the number and types of operands for various instructions that we
have selected for the FALCONA ISA.

ALU instructions may have 2 to 3 registers as operands. In case of 2 operands, a constant
(an immediate operand) may be included in the instruction.

For the load/store type instructions, we require a register to hold the data that is to be
loaded from the memory, or stored back to the memory. Another register is required to
hold the base address for the memory access. In addition to these two registers, a field is

required in the instruction to specify the
constant that is the displacement to the base
address.

In jump instructions; we require a field for
specifying the register that holds the value that
is to be compared as the condition for the
branch, as well as a destination address, which
is specified as a constant.

Once we have decided on the number and
types of operands that will be required in each
of the instruction types, we need to address the
issue of assigning specific bitfields in the
instruction for each of these operands. The number of bits required to represent each of
these operands will eventually determine the instruction word size. In our example
processor, the FALCONA, we reserve eight generalpurpose registers. To encode a
register in the instructions, 3 bits are required (as 2° =8). The registers are encoded in the
binary as shown in the given table.

Therefore, the instructions that we will add support for FALCONA processor will have

the given general format. The instructions
in the FALCONA processor are going to
be variations of this format, with four
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different formats in all. The exact format is dependent on the actual number of operands
in a particular instruction.

ISA Design Steps — Step 6

The next step towards completely defining the instruction set architecture of our
processor is the design of memory and its organization. The number of the memory cells
that we may have in the organization depends on the size of the Program Counter register
(PC), and the size of the address bus. This is because the size of the program counter and
the size of the address bus put a limitation on the number of memory cells that can be
referred to for loading an instruction for execution. Additionally, the size of the data bus
puts a limitation on the size of the memory word that can be referred to in a single clock
cycle.

ISA Design Steps — Step 7

Now we need to specify which instructions will be allowed to access the memory. Since
the FALCONA is intended to be a RISClike machine, only the load/ store instructions

will be allowed to access the memory. Addressing Mode Format Example

ISA Design Steps — Step 8
Next we need to select the memory
addressing modes. The given table lists | islacement gt + A [Rio+E] o8
the types of addressing modes that will wl
be supported for the load/store
instructions.

FALCON(A: Introduction
FALCON stands for First Architecture for Learning Computer Organization and
Networks. It is a ‘RISClike’ generalpurpose processor that will be used as a teaching
aid for this course. Although the FALCONA is a simple machine, it is powerful enough
to explain a variety of fundamental concepts in the field of Computer Architecture .

Programmer’s view of the FALCON(A

direct [constant or label] [10] o [a]

register indirect [tegister] [R3]

FALCONA, an example of a GPR i ~Yanianian-fand
(General Purpose Register) computer, | ro [ 0 7 0
is the first version of the FALCON : Rl El : 2' (1]
processor. The programmer’s view of | re[———] | 2 %
the FALCONA is given in the figure | Registerfile | L
shown. As it is clear from the figure, : :
the CPU contains a register file of 8 L . Inputioutput

. | | 16 _
registers, na_med RO thrqugh R7. Each i —
of these registers is 16 bits in length. S a
Aside from these registers, there are eRY Ml mamery

two specialpurpose registers, the Program Counter (PC), and the Instruction Register
(IR). The main memory is organized as 2'"° x 8 bits, i.e. 2'° cells of 1 byte each. The
memory word size is 2 bytes (or 16 bits). The input/output space is 256 bytes (8 bit I/O
ports). The storage in these registers and memory is in the bigendian format.
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Lecture No. 8
ISA of the FALCON(A

Reading Material
Handouts Slides

Summary
Introduction to the ISA of the FALCON(A
Examples for the FALCON(A

Introduction to the ISA of the FALCON(A

We take a look at the notation that we are going to employ when studying the FALCON
A. We will refer to the contents of a register by enclosing in square brackets the name of
the register, for instance, R [3] refers to the contents of the register 3. Memory contents

are to be referred to in a similar fashion; for instance, M [8] refers to the contents of
memory at location 8 (or the 8"
memory cell).

Since memory is organized into cells
of 1 byte, whereas the memory word
size is 2 bytes, two adjacent memory
cells together make up a memory
word. So, memory word at the

ME] | x+1 18 B 7 0

[ MEl [ ME] |
memory address 8 would be defined

\ /‘ M3 Byte LS Byte
as 1 byte at address 8 and 1 byte at

address 9. To refer to 16bit memory Fig. Big- Endiian Notation
words, we make use of a special '

notation, the concatenation of two memory locations. Therefore, to refer to the 16bit
memory word at location 8, we would write M[8]OM[9]. As we employ the bigendian
format,

M [8]<15...0>:=M[8]OM[9]

So in our notation © is used to represent concatenation.

Little endian puts the smallest numbered byte at the leastsignificant position in a word,
whereas in big endian, we place the largest numbered byte at the most significant
position. Note that in our case, we use the bigendian convention of ordering bytes.
However, within each byte itself, the ordering of the bits is little endian.
FALCON(A Features

The FALCONA processor has fixedlength instructions, each 16 bits (2 bytes) long.
Addressing modes supported are limited, and memory is accessed through the load/store
instructions only.

€ Memory addresses
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FALCON(A Instruction Formats
Three categories of instructions are going to be supported by the FALCONA processor;
arithmetic, control, and data transfer instructions. Arithmetic instructions enable
mathematical computations. Control instructions help change the flow of the program as

and when required. Data transfer operations move data between the processor and
memory. The arithmetic category also includes the logical instructions. Four different
types of instruction formats are used to specify these instructions. A brief overview of the
various fields in these instructions formats follows.

Type I instruction format is shown in

the given figure. In it, 5 bits are
reserved for the opcode (bits 11
through 15). The rest of the bits are
unused in this instruction type,
which means they are not
considered.

Type II instruction shown in the
given figure, has a 5bit opcode
field, a 3bit register field, and an 8bit

constant (or immediate operand) field.

Type III instructions contain the 5bit
opcode field, two 3bit register fields

for source and destination registers,
and an immediate operand field of

length 5 bits.

Type IV instructions contain the op
code field, two 3bit register fields, a
constant filed on length 3 bits as well
as two unused bits. This format is shown in
the given figure.

Encoding of registers

We have a register file comprising of
eight generalpurpose registers in the
CPU. To encode these registers in the
binary, so they can be referred to in
various instructions, we require log,(8)

= 3 bits. Therefore, we have already
allocated three bits per register in the
instructions, as seen in the various
instruction formats. The encoding of
registers in the binary format is shown

in the given table.

It is important to note here that the
register RO has special usage in some
cases. For instance, in load/ store
operations, if register RO is used as a
second operand, its value is considered to be zero. R0 has special usage in the multiply
and divide (mul & div) instructions as well.
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Instructions and instruction formats
We return to our discussion of instruction formats in this section. We will now classify
which instructions belong to what instruction format types.
Typel
Five of the instructions included in the instruction set of FALCONA belong to type |
instruction format. These are
. nop (opcode=21)
This instruction is to instruct the processor to ‘do nothing’, or, in other words, do
‘no operation’. This instruction is generally useful in pipelining. We will study
pipelining later in the course.
reset (opcode = 30)
halt  (opcode=31)
int (opcode=26)
5. iret  (opcode=27)
All of these instructions take no operands, therefore, besides the 5 bits used for the op
code, the rest of the bits are unused.
Type 11
There are nine FALCONA instructions that belong to this type. These are listed below.
1. movi (opcode =7)
The movi instruction loads a register with the constant (or the immediate value)
specified as the second operand. An example is
movi R3, 56 R[3] « 56
This means that the register R3 will have the value 56 stored in it as this instruction
is executed.
2. in (opcode = 24)
This instruction is to load the specified register from input device. An example
and its interpretation in register transfer language are
inR3, 57 R [3] < 10 [57]
3. out (opcode = 25)
The ‘out’ instruction will move data from the register to the output device
specified in the instruction, as the example demonstrates:
out R7, 34 10 [34] — R [7]
4. ret (opcode=23)
This instruction is to return control from a subroutine. This is done using a
register, where the return address is stored. As shown in the example, to return
control, the program counter is assigned the contents of the register.
ret R3 PC «— R [3]
5. jz (opcode=19)
When this instruction is executed, the value of the register specified in the field ra
is checked, and if it is equal to zero, the Program Counter is advanced by the
jump(value) specified in the instruction.

el

jz 13, [4] (R[3]=0): PC«— PC+ 4;
In this example, register r3’s value is checked, and if found to be zero, PC is
advanced by 4.

6. jnz (opcode= 18) This instruction is the reverse of the jz instruction, i.e., the
Jump (or the branch) is taken, if the contents of the register specified are not equal

to zero.
jnz r4, [variable] (R[4]#0): PC«— PC+ variable;
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7. jpl (opcode= 16) In this instruction, the value contained in the register specified

in the field ra is checked, and if it is positive, the jump is taken.
jpl 13, [label] (R[3]20): PC « PC+ (labelPC);

8. jmi (opcode= 17) In this case, PC is advanced (jump/branch is taken) if the

register value is negative
jmi r7, [address] (R[7]<0): PC— PC+ address;

Note that, in all the instructions for jump, the jump can be specified by a constant, a
variable, a label or an address (that holds the value by which the PC is to be advanced).
A variable can be defined through the use of the ‘.equ’ directive. An address (of data) can
be specified using the directive ‘.db’ or ‘.dw’. A label can be specified with any
instruction. In its usage, we follow the label by a colon ‘:’ before the instruction itself.
For example, the following is an instruction that has a label ‘alfa’ attached to it
alfa: movi 13 r4
Labels implement relative jumps, 128 locations backwards or 127 locations forward
(relative to the current position of program control, i.e. the value in the program counter).
The compiler handles the interpretation of the field ¢2 as a constant/ variable/ label/
address. The machine code just contains an 8bit constant that is added to the program
counter at runtime.
9. jump (opcode= 20)
This instruction instructs the processor to advance the program counter by the
displacement specified, unconditionally (an unconditional jump). The assembler
allows the displacement (or the jump) to be specified in any of the following ways
jump [ra + constant]
jump [ra + variable]
jump [ra + address]
jump [ra + label]
The types of unconditional jumps that are possible are
Direct
Indirect
PC relative (a ‘near’ jump)
Register relative (a ‘far’ jump)
The c2 field may be a constant, variable, an address or a label.
A direct jump is specified by a PClabel.
An indirect jump is implemented by using the C2 field as a variable.
In all of the above instructions, if the value of the register ra is zero, then the Program
Counter is incremented (or decremented) by the signextended value of the constant
specified in the instruction. This is called the PCrelative jump, or the ‘near’ jump. It is
denoted in RTL as:
(ra=0):PC— PC+(8aC2<7>)©C2<7..0>;
If the register ra field is nonzero, then the Program Counter is assigned the sum of the
signextended constant and the value of register specified in the field ra. This is known as
the registerrelative, or the ‘far’ jump. In RTL, this is denoted as:
(ra#0):PC— R[ra]+(8aC2<7>)©C2<7..0>;
Note that C2 is computed by sign extending the constant, variable, address, or (label —
PC). Since we have 8 bits available for the C2 field (which can be a constant, variable,
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address or a PClabel), the range for the field is 128 to + 127. Also note that the compiler
does not allow an instruction with a negative sign before the register name, such as ‘jump
[r2]’. If the C2 field is being used as an address, it should always be an even value for
the jump instruction. This is because our instruction word size is 16 bits, whereas in
instruction memory, the instruction memory cells are of 8 bits each. Two consecutive
cells together make an instruction.
Type 11T
There are nine instructions of the FALCONA that belong to Type III. These are:
I. andi (opcode=9)
The andi instruction bitwise ‘ands’ the constant specified in the instruction with
the value stored in the register specified in the second operand register and stores
the result in the destination register. An example is:
andir4, 13, 5
This instruction will bitwise and the constant 5 and R[3], and assign the value
thus obtained to the register R[4], as given .
R[4] <« R[3]&5
2. addi (opcode=1)
This instruction is to add a constant value to a register; the result is stored in a
destination register. An example:
addi r4,13,4 R[4] «— R[3]+4
3. subi (opcode = 3)
The subi instruction will subtract the specified constant from the value stored in a
source register, and store to the destination register. An example follows.
subir5,r7,9 R[5] <« R[7]-9
4. ori (opcode=11)
Similar to the andi instruction, the ori instruction bitwise ‘ors’ a constant with a
value stored in the source register, and assigns it to the destination register. The
following instruction is an example.
orir4, 17,3 R[4] « R[7]~3
5. shiftl (opcode = 12)
This instruction shifts the value stored in the source register (which is the second
operand), and shifts the bits left as many times as is specified by the third
operand, the constant value. For instance, in the instruction
shiftl r4, 13, 7
The contents of the register are shifted left 7 times, and the resulting number is
assigned to the register r4.
6. shiftr (opcode = 13)
This instruction shifts to the right the value stored in a register. An example is:
shiftr r4, r3,9
7. asr (opcode = 15)
An arithmetic shift right is an operation that shifts a signed binary number
stored in the source register (which is specified by the second operand), to the
right, while leaving the signbit unchanged. A single shift has the effect of
dividing the number by 2. As the number is shifted as many times as is specified
in the instruction through the constant value, the binary number of the source
register gets divided by the constant value times 2. An example is
asrrl, 12,5
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This instruction, when executed, will divide the value stored in r2 by 10, and
assign the result to the register r1.
8. load (opcode=29)
This instruction is to load a register from the memory. For instance, the
instruction
load r1, [r4 +15]
will add the constant 15 to the value stored in the register r4, access the memory
location that corresponds to the number thus resulting, and assign the memory
contents of this location to the register r1; this is denoted in RTL by:
R[1] « MJ[R[4]+15]
9. store (opcode= 28)
This instruction is to store a value in the register to a particular memory location.
In the example:
store 16, [r7+13]
The contents of the register r6 are being stored to the memory location that
corresponds to the sum of the constant 13 and the value stored in the register r7.
M[R[7]+13] <« R[6]
Type III Modified
There are 3 instructions in the modified form of the Type III instructions. In the modified
Type III instructions, the field c1 is unused.
1. mov (opcode=6)
This instruction will move (copy) data of a source register to a destination
register. For instance, in the following example, the contents of the register 13 are
copied to the register r4.
mov r4, 13
In RTL, this can be represented as
R[4] < R[3]
2. not (opcode=14)
This instruction inverts the contents of the source register, and assigns the value
thus obtained to the destination register. In the following example, the contents of
register r2 are inverted and assigned to register r4.
not r4, 12
In RTL:
R[4] < !'R[2]
3. call (opcode=122)
Procedure calls are often encountered in programming languages. To add support
for procedure (or subroutine) calls, the instruction call is used. This instruction
first stores the return address in a register and then assigns the Program Counter a
new value (that specifies the address of the subroutine). Following is an example
of the call instruction
call r4, r3
This instruction saves the current contents (the return address) of the Program
Counter into the register r4 and assigns the new value to the PC from register r3.
R[4] <« PC, PC <« R]3]
Type IV
Six instructions belong to the instruction format Type IV. These are
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1. add (opcode=0)
This instruction adds contents of a register to those of another register, and
assigns to the destination register. An example:
and r4, 13, r5
R[4] <« R[3] +R][5]
2. sub (opcode=2)
This instruction subtracts value of a register from another the value stored in
another register, and assigns to the destination register. For example,
sub r4, 13, r5
In RTL, this is denoted by
R[4] <« R[3]-R][5]
3. mul (opcode=4)
The multiply instruction will store the product of two register values, and stores in
the destination register. An example is
mul 15, r7, rl
The RTL notation for this instruction will be
R[0] © R[5] < R[7]*R[1]
4. div  (opcode=5)
This instruction will divide the value of the register that is the second operand, by the
number in the register specified by the third operand, and assign the result to the
destination register.
divr4, r7, 12 R[4]<R[0] ©R[7]/R[2],R[0]<—R[0] ©R[7]%R[2]
5. and  (opcode= 8)
This ‘and’ instruction will obtain a bitwise ‘and’ of the values of two registers and
assigns it to a destination register. For instance, in the following example, contents of
register r4 and r5 are bitwise ‘anded’ and the result is assigned to the register r1.
andrl, r4, r5
In RTL we may write this as
R[1] « R[4] & R[5]
6. or (opcode= 10)
To bitwise ‘or’ the contents of two registers, this instruction is used. For instance,
orro6, r7,r2
In RTL this is denoted as
R[6] < R[7] ~R[2]

FALCON(A: Instruction Set Summary

We have looked at the various types of instruction formats for the FALCONA, as well as
the instructions that belong to each of these instruction format types. In this section, we
have simply listed the instructions on the basis of their functional groups; this means that

the instructions that perform similar class of operations have been listed together.
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Examples for FALCON(A

In this section we take up a few sample problems related to the FALCONA processor.
This will enhance our understanding of the FALCONA processor, as well as of the
general concepts related to general processors and their instruction set architectures. The
problems we will look at include

1. Identification of the instruction types and operands

2. Addressing modes and RTL description

3. Branch condition and status of the PC

4. Binary encoding for instructions

Example 1:

Identify the types of given FALCONA instructions and specify the values in the fields

Solution
The solution to this problem is quite straightforward. The types of these instructions, as

well as the fields, have already been discussed in the preceding sections.
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We can also find the machine code for these instructions. The machine code (in the
hexadecimal representation) is given for these instructions in the given table.

Example 2:
Identify the addressing modes and Register Transfer Language (RTL) description
(meaning) for the given FALCONA instructions
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Solution

Addressing modes relate to the way architectures specify the address of the objects they
access. These objects may be constants and registers, in addition to memory locations.

Example 3: Specify the condition for the branch instruction and the status of the PC after
the branch instruction executes with a true branch condition
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Solution
We have looked at the various jump instructions in our study of the FALCONA. Using
that knowledge, this problem can be solved easily.

Example 4: Specify the binary encoding of the different fields in the given FALCONA
instructions.
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Solution

We can solve this problem by referring back to our discussion of the instruction format
types. The opcodes for each of the instructions can also be looked up from the tables. ra,
rb and rc (where applicable) registers’ values are obtained from the register encoding
table we looked at. The constants C1 and C2 are there in instruction type III and II
respectively. The immediate constant specified in the instruction can also be simply
converted to binary, as shown.
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Lecture No. 9
Description of FALCON(A and EAGLE using RTL

Reading Material
Handouts Slides
Summary
4) Use of Behavioral Register Transfer Language (RTL) to describe the
FALCONA

5) The EAGLE
6) The Modified EAGLE

Use of Behavioral Register Transfer Language (RTL) to describe the

FALCON(A

The use of RTL (an acronym for the Register Transfer Language) to describe the
FALCONA is discussed in this section. FALCONA is the sample machine we are
building in order to enhance our understanding of processors and their architecture.
Behavior vs. Structure

Computer design involves various levels of abstraction. The behavioral description of a
machine is a higher level of abstraction, as compared with the structural description. Top
down approach is adopted in computer design. Designing a computer typically starts with
defining the behavior of the overall system. This is then broken down into the behavior of
the different modules. The process continues, till we are able to define, design and
implement the structure of the individual modules.

As mentioned earlier, we are interested in the behavioral description of our machine, the
FALCONA, in this section.

Register Transfer Language

The RTL is a formal way of expressing the behavior and structure of a computer.
Behavioral RTL

Behavioral Register Transfer Language is used to describe what a machine does, i.e. it is

used to define the functionality the machine provides: Basically, the behavioral
architecture describes the algorithms used in a machine, written as a set of process
statements. These statements may be sequential statements or concurrent statements,
including signal assignment statements and wait statements.

Structural RTL

Structural RTL is used to describe the hardware implementation of the machine. The
structural architecture of a machine is the logic circuit implementation (components and

their interconnections), that facilitates a certain behavior (and hence functionality) for

that machine.

Using RTL to describe the static properties of the FALCON(A

We can employ the RTL for the description of various properties of the FALCONA that

we have already discussed.
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Specifying Registers

In RTL, we will refer to a register by its abbreviated, alphanumeric name, followed by
the number of bits in the register enclosed in angle brackets ‘< >’. For instance, the
instruction register (IR), of 16 bits (numbered 0 to 15), will be referred to as,

IR<15..0>

Naming of the Fields in a Register

We can name the different fields of a register using the := notation. For example, to name
the most significant bits of the instruction register as theloperation code (or simply op),

we may write:

op<4..0> =IR<15..11>

Note that using this notation to name registers or register fields will not create a new copy

of the data or the register fields; it is simply an alias for an already existing register, or

part of a register.

Fields in the FALCON(A Instructions

We now use the RTL naming operator to name the various fields of the RTL instructions.
Naming the fields appropriately helps us make the study of the behavior of a processor

more readable.

op<4..0>:= IR<15..11>: operation code field

ra<2..0> := [R<10..8>: target register field

rb<2..0> :=IR<7..5>: operand or address index

re<2..0> :=1R<4..2>: second operand

c1<4..0> := [R<4..0>: short displacement field

€2<7..0> := IR<7..0>: long displacement or the immediate field

We are already familiar with these fields, and their usage in the various instruction
formats of the RTL.

Describing the Processor State using RTL

The processor state defines the contents of all the register internal to the CPU at a given

time. Maintaining or restoring the machine or processor state is important to many
operations, especially procedure calls and interrupts; the processor state needs to be
restored after a procedure call or an interrupt so normal operation can continue.

Our processor state consists of the following:

PC<15..0>: program counter (the PC holds the memory address of the next
instruction)

IR<15..0>: instruction register (used to hold the current instruction)

Run: one bit run/halt indicator

Strt: start signal

R [0..7]<15..0>: 8 general purpose registers, each consisting of 16 bits

Connectors at
the back (o be
added later on)

Indicatars
{include the RUN
indicatar)

FALCON(A in a black
box

The given figure shows
what a processor appears as
to a user. We see a start
button that is basically used
to start up the processor,
and a run indicator that
turns on when the processor
is in the running state.

Other switches
may be added
later on
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There may be several other indicators as well. The start button as well as the run indicator

can be observed on many machines.

Using RTL to describe the dynamic properties of the FALCON(A

We have just described some of the static properties of the FALCONA. The RTL can
also be employed to describe the dynamic behavior of the processor in terms of

instruction interpretation and execution.

Conditional expressions can be specified using the RTL. For instance, we may specify a

conditional subtraction operation employing RTL as

(op=2) : R[ra] «— R[rb] RJrc];
This instruction means that “if”” the operation code of the instruction equals 2 (00010 in
binary), then subtract the value stored in register rc from that of register rb, and store the
resulting value in register ra.
Effective address calculations in RTL (performed at runtime)
The operand or the destination address may not be specified directly in an instruction,
and it may be required to compute the effective address at runtime. Displacement and
relative addressing modes are instances of such situations. RTL can be used to describe
these effective address calculations.
Displacement address
A displacement address is calculated, as shown:
disp<15..0> := (R[rb]+ (11a c1<4>)O c1<4..0>);
This means that the address is being calculated by adding the constant value specified by
the field cl (which is first sign extended), to the value specified by the register rb.
Relative address
A relative address is calculated by adding the displacement to the contents of the program
counter register (that holds the instruction to be executed next in a program flow). The
constant is first signextended. In RTL this is represented as,
rel<15..0>:=PC+(8ac2<7>)Oc2<7..0>;
Range of memory addresses
Using the displacement or the relative addressing modes, there is a specific range of
memory addresses that can be accessed.
e Range of addresses when using direct addressing mode (displacement with rb=0)
o [(If cl<4>=0 (positive displacement) absolute addresses range: 00000b to
01111b (0 to +15)
o [(If cl<4>=1 (negative displacement) absolute addresses range: 11111b to
10000b (1 to 16)
e Address range in case of relative addressing
o The largest positive value that can be specified using 8 bits (since we have
only 8 bits available in ¢2<7..0>), is 21, and the most negative value that
can be represented using the same is 2. Therefore, the range of addresses
or locations that can be referred to using this addressing mode is 127
locations forward or 128 locations backward from the Program Counter
(PO).
Instruction Fetch Operation (using RTL)
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We will now employ the notation that we have learnt to understand the fetchexecute

cycle of the FALCONA processor.

instruction_Fetch := (
'Run&Strt : Run « 1,
Run : (IR «— M[PC], PC «+— PC + 2;
instruction_Execution) );
This is how the instructionfetch phase of the fetchexecute cycle for FALCONA can be
represented using

Simultaneously, the

. The next step is the instruction execution phase.
Difference between “,” and “;” in RTL

We return to our discussion of the instructionfetch phase. The statement
'Run&Strt : Run « 1
is executed when ‘Run’ is 0, and “Strt’ is 1, that is, Strt has been set. It is used to set the
Run bit. No action takes place when both ‘Run’ and “Strt’ are 0.
The following two concurrent register transfers are performed when ‘Run’ is set to 1, (as
‘.’ is a conditional operator; if the condition is met, the specified action is taken).
IR — M[PC]
PC — PC+2

This makes the PC point to the next instruction in the instruction memory. Once the
instruction has been fetched, the instruction execution starts.
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instruction Fetch ‘and i.E for instruction Execution. This will make the Fetch operation
easy to write.
1F := ('Run&Strt : Run < 1, Run : (IR < M[PC], PC « PC + 2;
iE));
Instruction Execution (Describing the Execute operation using RTL)
Once an instruction has been fetched from the instruction memory, and the program
counter has been incremented to point to the next instruction in the memory, instruction
execution commences. In the instruction fetchexecute cycle we showed in the preceding
discussion, the entire  instruction execution code was aliased iE  (or
instruction Execution), through the assignment operator “
instruction execution in detail.
iE :=(
(op<4..0>=1) : R[ra] < R|[rb]+ (11a c1<4>)© c1<4..0>,
(op<4..0>=2) : R[ra] < R[rb](R[rc],

=", Now we look at the

(op<4..0>=31) : Run « 0,); iF);
As we can see, the instruction execution can be described in RTL by using a long list of
concurrent, conditional operators that are inherently ‘disjoint’. Being inherently
disjointed implies that at any instance, only one of the conditions can be met; hence one
of the statements is executed. The long list of statements is basically all of the
instructions that are a part of the FALCONA instruction set, and the condition for their
execution is related to the operation code of the instruction fetched. We will take a closer
look at the entire list in our subsequent discussion. Notice that in the instruction execute
phase, besides the long list of concurrent,
disjoint instructions, there is also the
instruction fetch or iF sequenced at the
end. This implies that once one of the
instructions from the list is executed, the
instruction fetch is called to fetch the next

Instruction Fetch

Instruction Decode

mstruction. As shown before, the Op-cade = 31 )
instruction fetch will call the instruction Op-wde_nappmpriate
execute after fetching a certain instruction, Clieradaz 3 Op'wd
hence the instruction fetchexecute cycle place
continues. L LB | |

The instruction fetchexecute cycle is shown schematically in the above given figure.
We now see how the various instructions in the execute code of the fetchexecute cycle

of FALCONA, are represented using the RTL. These instructions form the instruction
set of the FALCONA.

jump instructions

Some of the instructions listed for the instruction execution phase are jump instruction, as

shown. (Note ‘. . .” implies that more instructions may precede or follow, depending on
whether it is placed before the instructions shown, or after).
iE :==(

If opcode is 20, the branch is taken unconditionally (the jump instruction).
(op<4..0>=20) : (cond (| PC «— R[ra]+C2(sign extended)),
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If the opcode is 16, the condition for branching is checked, and if the condition is being
met, the branch is taken; otherwise it remains untaken, and normal program flow will

continue.
(op<4..0>=16) : cond : (PC < PC+C2 (sign extended ))

Arithmetic and Logical Instructions
Several instructions provide arithmetic and logical operations functionality. Amongst the
list of concurrent instructions of the iE phase, the instructions belonging to this category
are highlighted:

iE :==(

If opcode is 0, the instruction is ‘add’. The values in register rb and rc are added and the

result is stored in register ra
(op<4..0>=0) : R[ra] < R[rb] + R]rc],
Similarly, if opcode is 1, the instruction is addi; the immediate constant specified by the
constant field C1 is sign extended and added to the value in register rb. The result is
stored in the register ra.
(op<4..0>=1) : R[ra] «<—R[rb] + (11a C1<4>)© C1<4..0>,
For opcode 2, value stored in register rc is subtracted from the value stored in register rb,
and the result is stored in register ra.
(op<4..0>=2) : R[ra] < R|[rb] ( R[rc],
If opcode is 3, the immediate constant C1 is signextended, and subtracted from the
value stored in rb. Result is stored in ra.
(op<4..0>=3) : R[ra] < R[rb]( (11a C1<4>)© C1<4..0>,
For opcode 4, values of tb and rc register are multiplied and result is stored in the
destination register.
(op<4..0>=4) : R[ra] < R[rb] * R]rc],
If the opcode is 5, contents of register rb are divided by the value stored in rc, result is
concatenated with Os, and stored in ra. The remainder is stored in RO.
(op<4..0>=5) : R[ra] < R[0] ©R[rb]/R[r¢],

R[0] < R[0] ©R[rb]%R]rc],
If opcode equals 8, bitwise logical AND of b and rc register contents is assigned to ra.
(op<4..0>=8) : R[ra] < R|[rb] & Rjrc],
If opcode equals 8, bitwise logical OR of b and rc register contents is assigned to ra.
(op<4..0>=10) : R[ra] < R[rb] ~R]c],

For opcode 14, the contents of register specified by field rc are inverted (logical NOT is
taken), and the resulting value is stored in register ra.
(op<4..0>=14) : R[ra] <! R|[rc],

Shift Instructions
The shift instructions are also a part of the instruction set for FALCONA, and these are
listed in the instruction execute phase in the RTL as shown.

iE :=(
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The space that has been created due to the shift out
of bits is filled with Os through concatenation. In RTL, this is shown as:
(0p<4..0>=12) : R[ra]<15..0> < R [rb]<(15(N)..0>©O(Na0),

op<4..0>=13) : R|[ra]<15..0> «— (Na0)OR [rb]<(15)..N>

The arithmetic shift right shifts a signed binary number stored in the source register to the
right, while leaving the signbit unchanged. Note that a means replication, and © means

concatenation.
(op<4..0>=15) : R[ra]<15..0> < Na(R [rb]<15>)© (R [rb]<15..N>),

Data transfer instructions
Several of the instructions belong to the data transfer category.
iE :=(

The effective
address of the memory location to be referenced is calculated by sign extending the
immediate field, and adding it to the value specified by register rb.

(op<4..0>=29) : R[ra]«— M|R[rb]+ (11a C1<4>)O C1<4..0>],

(0p<4..0>=28) : M[R[rb]+ (110 C1<4>)© C1<4..0>] < R [ra],

(op<4..0>=6) : R[ra] < R]rb],

(0p<4..0>=7) : R[ra] — (8aC2<7>)OC2<7..0>,

(op'<4..0>=25) : 10[C2] < R]ra],
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Miscellaneous instructions
Some more instruction included in the FALCON(A are
iE :=(

(op<4..0>=21): ,

If the opcode is 31, setting the run bit to 0 halts the processor.

(op<4..0>=31) : Run < 0, Halt the processor (halt)

At the end of this concurrent list of instructions, there is an instruction i.F (the instruction
fetch). Hence when an instruction is executed, the next instruction is fetched, and the
cycle continues, unless the processor is halted.

); iF );

Note: For Assembler and Simulator Consult Appendix.

The EAGLE

(Original version)

‘We have developed two
(in the original version) The study of multiple processors is going to help us get

thoroughly familiar with the processor design, and the various possible designs for the
processor. However, note that these machines are simplified versions of what a real
machine might look like.

Introduction

The EAGLE is an accumulatorbased machine. It is a simple processor that will help us

in our understanding of the processor design process.

EAGLE is characterized by the following:

e Eight General Purpose Registers of the CPU. These are named RO, R1...R7. Each
register is 16bits in length.

e Two 16bit system registers transparent to the programmer are the Program
Counter (PC) and the Instruction Register (IR). (Being transparent to the
programmer implies the programmer may not directly manipulate the values to
these registers. Their usage is the same as in any other processor)

e Memory word size is 16 bits

e The available memory space size is 216 bytes

Littleendian byte storage is employed.
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Programmer’s View of the EAGLE

The programmer’s view of the [ — o pianianie ¥ —i
EAGLE processor is shown by | ge | 7 0 7 0
means of the given figure. | Ri | 0
EAGLE: Notation : - : | i
L ]
tation it will b erplovE®| " |
for the study of the EAGLE. | |
Enclosing the register name in | |5 ] : ,
square  brackets refers to | | 2181
register contents; for instance, I_ _ 1 ]
CPU Main memory Input/Outpyt

Enclosing the location address in square brackets, preceded by ‘M’, lets us refer to
memory contents. Hence

As little endian storage is employed, a
memory word at address x is defined
as the 16 bits at address x +1 and x.
For instance, the bits at memory
location 9,8 define the memory word at
location 8. So

1] M [E] One instruction
1 M) 15 8 7 0
CME [ w@E |

WS Byte LS Byte

L VI

€ Memory addresses

Where © is used to represent concatenation

EAGLE Features
The following features characterize the EAGLE.
e Instruction length is variable. Instructions are either 8 bits or 16 long, i.e.,
instruction size is either 8bits or 16bits.
e The instructions may have either one or two operands.
e The only way to access memory is through load and store instructions.
e Limited addressing modes are supported
EAGLE: Instruction Formats
There are five instruction formats for the EAGLE. These are

The Z format instructions are (halfiword (1" byte)"

as shown

The type Y instructions are also (halfword) There is
an

Type X instructions are also (halfiword instructions)
with a 2bit opcode field, and two 3bit operand
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(fegister fields, as shown.
The instructions in this type are
(reserved for the'opcode! while the femaining 8'bifs form the constand (immediate value)

field.

Type V instructions are also (Iword")

(instructions! containing an (Gpeode’

an

OFTI3TbIS, and

Encoding of the General Purpose Registers

The encoding for the eight Register Code Registex Code

GPRs is shown in the table.

These binary codes are to RO 0oo R4 100

be used in place of the

‘placeholders’ ra, rb in the R 001 R& 10

actual instructions of the

processor EAGLE. R2 10 RE 110
R3 011 R 111

Listing of EAGLE instructions with respect to instruction formats
The following is a brief introduction to the various instructions of the processor EAGLE,
categorized with respect to the instruction formats.

Type Z
There are four type Z instructions,
* halt(opcode=250)
This instruction(halts the processor)
* nop(opcode=249)
(nop, or the nooperation instruction)stalls the processor for the time of execution

of a single instruction. It is useful in pipelining.
* init(opcode=251)

This instruction is used to initialize all the registers, by setting them to 0
e reset(opcode=248)

This instruction is used to (inifialize" the ‘processor to a known state)In this

instruction the control step counter is set to zero so that the operation begins at the

start of the instruction fetch and besides this(PClis'also'set to"a known value so)

Type Y
Seven instructions of the processor are of type Y. These are
o add(opcode=11)
The type Y add instruction adds register ra’s contents to register R0. [Eor example,)

Last Modified: 12Jan11 Page 114



akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight


Advanced Computer ArchitectureCS501

In the behavioral RTL, we show this as
R[0] « R[1]+R[0]
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This instruction obtains the{logicallAND) of the value stored in register specified
by field ra and the register R0, and assigns the result to R0, as shown in the
‘example:
and r5
which is represented in RTL as
R[0] « R[1]&R][0]

This instruction divides the contents of register RO by the value stored in the -
(tegister ta, and assigns result to RO} The remainder is stored in the divisor
register, as shown in(example)

div r6

In RTL, this is
R[0] < R[O}/R[6]
R[6] < R[0]%R]6]

This instruction Mulfiplies the Values stored in register RO and fhe operand’)
register, and assigns the result to R0). For example.

mul r4
In RTL, we specify this as
R[0] <« RJ[O]*R[4]

The not instruction

(Sameregister as shown in the

not r6
R[6] < ! R[6]

The or instruction obtains the(®itwise OR)of the operand register’s and R0’s
value, and assigns it back to R0. An(example)

orr5

R[0] « R[0] ~R[5]

The sub instruction §ubifacts the Value of the operand register from ROValue.)

sub r7

In RTL:

R[0] «— R[0] —R[7]
Type X
Only one instruction falls under this type. It is the ‘mov’ instruction that is useful for
register transfers

* mov (opcode = 0)
The contents of one register are copied to the destination register ra.
(Example: mov 15, r1

RTL Notation: R[5]« R[1]
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Type W
Again, only one instruction belongs to this type. It is the branch instruction
[ ]
‘br (opeode = 252)
This is the unconditional branch instruction, and the branch target is specified by
the 8bit immediate field. The branch is taken by incrementing the PC with the
new value. Hence it is a fhear’ jump! For instance,
br 14
PC — PC+14

(extending the immediate value) The result is also stored in the register ra. For

example,

addi r4, 31

In behavioral RTL, this is

R[4] < R[4]+(8ac<7>)Oc<7...0>;

andi (opcode =20 )

(Logical “AND? of the immediate value and register ra value is obtained when this
instruction is executed, and the result is assigned back to register ra. An example,
andi r6, 1

R[6] « R[6] &1

This instruction isfo'read in'a word from an 10 device at the address specified by

the immediate field, and store it in the register ra. For instance,
inrl, 45

In RTL this is
R[1] « IO[45]

The load instruction is to(loadhe memory word info the registerta The

immediate field specifies the location of the memory word to be read. For
instance,
load r3, 6
R[3] « M[6]

Upon the brn instruction execution, fheiValiie storedin registerais checked. and ™)
Walue) An example is

brnr4, 3
In RTL, this may be written as
if R[4]<0, PC « PC+3

For a brnz instruction, the Vallic/of registerra is checked, and if found nonzero,)
(the'PCrelative branchiisitaken! as shown in the example,

brnz r6, 12
Which, in RTL is
if R[6]!=0, PC « PC+12
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‘brp (opcode=27)
brp is the “branch if positive’. Again, Faivaluielis'checked and if found positive, the
PCrelative near jump is taken,

as shown in the example:

brp rl, 45
In RTL this is

if R[1]>0, PC « PC+45

In this instruction. the value of register ra is checked, and ifit equals zero, PCrelative
branch is taken, as shown.

brz r5, 8
In RTL:
if R[5]=0, PC « PC+8

* loadi (opcode=9)
The loadi instruction loads the immediate constant into the register ra, for

instance,
loadi r5,54
R[5] < 54

ori (opcode=22)

The ori instruction obtains the logical ‘OR’” of the immediate value with the ra
(register value) and assigns it back to the register ra, as shown,

orir7, 11

In RTL,

R[7] « R[7]~11

The out instruction s used to write a register word to an IO device, the address of
‘which is specified by the immediate constant. For instance.
out 32, r5

In RTL, this is represented by
I0[32] « R[5]

This instruction shifts left the contents of the register ra, as many times as is -

specified through the immediate constant of the instruction. For cxample:
shiftl r1, 6

This instruction shifts right the contents of the register ra, as many times as is -

specified through the immediate constant of the instruction. For example’
shiftrr2, 5

The store instruction §tores the Value of the'ra register to'amemory Iocation’)
Specified by the immediate constant) An example s,

store r4, 34
RTL description of this instruction is
M[34] <« R[4]

The subi instruction subtracts the immediate constant from the value of register -
ra, assigning back the result to the register ra. For instance,
subir3, 13

Last Modified: 12Jan11 Page 118


akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight


Advanced Computer ArchitectureCS501

RTL description of the instruction
R[3] < R[3]13

(ORIGINAL) ISA for the EAGLE
(16bit registers, 16bit PC and IR, 8bit memory)

opcode [|operand]operand 2c0nsta';t
[mnemonic ormat Behavioral RTL
3 bits B bits 8 bits
add 01011 Jra Y R [0] < R [ra]+R [0];
addi 01101 |ra C R [ra] < R [ra]t(8ac<7>)Cc;
and 10011  fra R[0] <« R[ra]&R][0];
andi 10100 fra C R [ra] < R [ra]& (30c<7>)Ckc;
br I1111100 C W PC «— PC+(8ac<7>)Cc;
brnv 11100  fra Cc (R Tra]<0): PC < PC+(80c<7>)COc;
brnz 11001  fra C (R [ra]<>0): PC « PC+(8ac<7>)Cc;
brpl 11011 fra Cc (R [ra]>0): PC «— PC+(8ac<7>)Cc;
brzr 11010 fra C (R [ra]=0): PC «— PC+(8ac<7>)Oc;
div 10000 fra R [0] <R [0]/R [a], R [ra] <R [0]%R [
alt 11111010 /. RUN« 0;
in 11101  fra C V R [ra] <IO]c];
init 11111011 / R[7...0] < 0;
[load 01000 Jra Q: R Tra] —M][c[;
loadi 01001  fra R [ra] « (8ac<7>)Cc;
mov 00 ra rb X R [ra] < R [1b];
mul 01111  Jra RTra] © Rr0] < R [ra]*R [0];
nop 11111001 /. ;
not 10111 fra R [ra] <! (R [ra]);
o1 10101  fra R [0] «— R [ra]~R [0O];
011 10110  |ra C R [ra] < R [ra]~ (8ac<7>)©Oc;
out 1110 |ra C 10[c]| <R |ra];
reset 11111000 V4 TBD;
Shiftl 10001 fra R [ra] < R [ra]<(/n)..0>O(na0);
Shiftr 10010 |fra c \ R [ra] < (na0)OR [ra]<7...n>;
store 01010  Jra C V Mc|<— R |ra];
Sub 01100 fra R0« R]0]R a];
Subi OI110  fra C R [ra] < R [ra] (8ac</>)Cc;
Symbol | Meaning Symbol | Meaning
o Replication % Remainder after integer division
© Concatenation & Logical AND
: Conditional constructs (IFTHEN) | ~ Logical OR
; Sequential constructs ! Logical NOT or complement
y Concurrent constructs «— LOAD or assignment operator
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Limitations of the ORIGINAL EAGLE ISA
The original 16bit ISA of EAGLE has severe limitations, as outlined below.

1. Use of R0 as accumulator
In most cases, the register RO is being used as one of the source operands as well as the
destination operand. Thus, R0 has essentially become the accumulator. However, this
will require some additional instructions for use with the accumulator. That should not be
a problem since there are some unused opcodes available in the ISA.
Unequal and inefficient opcode assignment
The designer has apparently tried to extend the number of operations in the ISA by op
code extension. Opcode 11111 combine three additional bits of the instruction for five
instructions: unconditional branch, nop, halt, reset and init.while there is a possibility of
including three more instructions in this scheme, notice that opcode 00 for register to
register mov is causing a “loss” of eight “slots” in the original 5bit opcode assignment.
(The mov instruction is, in effect, using eight opcodes). A better way would be to assign
a 5bit opcode to mov and use the remaining opcodes for other instructions.
Number of the operands
Looking at the mov instruction again, it can be noted that this is the only instruction that
uses two operands, and thus requires a separate format (Format#1) for instruction
enoding. If the job of this instruction is given to two instructions (copy register to
accumulator, and copy accumulator to register), the number of instruction formats can be
reduced thereby, simplifying the assembler and the compiler needed for this ISA.

2. Use of registers for branch conditions
Note that one of the GPRs is being used to hold the branch condition. This would require
that the result from the accumulator be copied to the particular GPR before the branch
instruction. Including flags with the ALSU can eliminate this restriction

The Modified EAGLE

The modified EAGLE is an improved version of the processor EAGLE. As we have
already_discussed, fhere Were several limitations in EAGLE, and these have been’)
remedied in the modified EAGLE processor.

Introduction

(The'modificd EAGLE is also an accumulaforbased processon It is a simple, yet complex

enough to illustrate the various concepts of a processor design.
The modified EAGLE is characterized by
e A special purpose register, the 16bit accumulator: ACC
e 8 General Purpose Registers of the CPU: RO, R1, ..., R7; 16bits each
e Two 16bit system registers transparent to the programmer are the Program
Counter (PC) and the Instruction Register (IR).
Memory word size: 16 bits
Memory space size: 2'"° bytes
Memory organization: 2'° x 8 bits
Memory is accessed in 16 bit words (i.e., 2 byte chunks)
Littleendian byte storage is employed
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Programmer’s View of the Modified EAGLE
The given figure is  the

programmer’s  view of the [~ 15— "o 7
modified EAGLE processor. | Ro | & 0 ! 0
. | R 0
Notation : | 1
= — 2
Register file :
— |
that: | | 2164
. . . PC
Enclosing the register name in e Jl
square brackets refers to register cPU Main memory Input/Output

contents; for instance, RI[3] means

Enclosing the location address in square brackets, preceded by ‘M’, lets us refer to
memory contents. Hence

(memory word at location's) So employing the special notation for 16bit memory words,

we have

M[8]<15...0>:=M[9]OM[8§]

Where © i1s used to represent
concatenation

The memory word access and copy to a
register is shown in the figure.

Features

7 i
0 MI[E] One instruction

1 ] 15 g7 0
[ mE | w8

MS Byte LS Byte
p/T

e Instruction length is variable. Instructions are either (8 bits or 16 long) i.c.,

&« Nemony addresses

supported

Instruction formats

There are four instruction format types
in the modified EAGLE processor as
well. These are
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Encoding of the General Purpose Registers

The encoding for the eight
GPRs is shown in the table.

These are binary codes
assigned to the registers
that will be used in place of
the ra, rb in the actual
instructions of the modified
processor EAGLE.

ISA for the Modified EAGLE

Register Code Register Code
RO 0on R4 100
R1 001 R4 101
R2 010 RB 110
R3 011 R 111

(16bit registers, 16bit ACC, PC and IR, 8bit wide memory, 256 1/O ports)

Mnemonic |Op(c0de IOperant-(;)‘:ft-t_r
Unused OOTT1 Bhits ormat pehavioral RIL
addi 00100  Jra C1 X ACC < R[ra] +(8aCI1<7>)OCl,
subi 00101  fra C1 X ACC < R[ra] (8aCI1<7>)©OCl,
shiftl 01010 |ra C1 X R[ra] «— R[ra]<(15n)..0>O(na0);
shiftr 01011  Jra C1 X R[ra] «— (na0)OR[ra]<15...n>;
and1 01100 fra C1 X ACC <« R[ra] & (8aC1<7>)OCI;
or1 01101  fra C1 X ACC < R]ra] ~ (8aCI<7>)OCI,;
asr 01110 |ra C1 X R[ra] < (naR[ra}<15>)©OR[ra]<15...n>;
in 10001  Jra C1 X R[ra] <IO[C1];
ldacc 10010 Jra C1 X ACC «—M][R]ra] +(8aC1<7>)OCI];
movir 10100  Ja C1 X R[ra] < (8aC1<7>)OCI;
out 10101 ra C1 X IO[C1] «—R]ra];
stacc 10111 ra C1 M|[R[ra] +(8aCI<7>)OCI |«— ACC;
movia 10011 C1 ACC «— (8aCI<7>)OCI;

T 11000 C1 PC «— PC + 8aC1<7>)OC1;

m 11001 C1 (S=1): PC — PCH+(8aCI1<7>)OCl;

nz 11010 C1 (£=0): PC «— PC+(BaCI<7>)OCI;
brp 11011 C1 (S=0): PC «— PC+(8aC1<7>)OClI;
brz 11100 C1 (Z=1): PC « PC+(BaC1<7>)OCI;
add 00000  Ja ACC «— ACC + R]ra|;
Sub 0001  Jra ACC «— ACC Rla];

ACC « (R[ra] ©ACC)/R]a],
div 00010  Jra Y
R[ra] < (R[ra] ©ACC)%R][a];

mul 00011 fra Y RJra] © ACC < R[ra[FACC,
and 01000  fa ACC «+— ACC & Rjra];
or 01001 ra ACC — ACC ~ R|ra];
not OI11T  Ja ACC « I(R[ra]);
a1 10000  fa Rlra] — ACC
r2a 10110 ra ACC «— R]ra|
cla 00110 /. ACC «0;

alt ITI01 /. RUN«—0;
nop 1110 /. ;
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[reset L1111 | | iz | TBD;

Symbol| Meaning Symbol | Meaning

o Replication % Remainder after integer division
© Concatenation & Logical AND

: Conditional constructs (IFTHEN) [ ~ Logical OR

; Sequential constructs ! Logical NOT or complement

, Concurrent constructs «— LOAD or assignment operator
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Lecture No. 10
The FALCON(E and ISA Comparison

Reading Material
Handouts Slides

Summary
3) The FALCONE
4) Instruction Set Architecture Comparison

THE FALCON(E
Introduction

(Networks) We are already familiar with our example processor, the [EALCONA} which
In this section we will develop a new

version of the processor. Like its predecessor, the FALCONE is a GeneralPurpose
Register machine that is simple, yet is able to elucidate the fundamentals of computer
design and architecture.
‘The FALCONE is characterized by the following
o Eight General Purpose Registers (GPRs), named RO, R1...R7. Each registers is 4
bytes long (32bit registers).

(Two'special purposes registers. named BPand SP) These registers are also@26ith

Two special registers, the Program Counter (PC) and the Instruction Register

(IR). PC points to the next instruction to be executed, and the IR holds the current -
instruction.

=y

] —

Register file

w |

s, 1]
R[]

2921

Main memory Input/Qutp ut

Fig. Programmer’s View

Programmer’s view of the FALCON(E

The programmer’s view of the FALCONE is shown in the given figure.
FALCON(E Notation

We take a brief look at the notation that we will employ for the FACLONE.
Register contents are referred to in a similar fashion as the FALCONA, i.e. the register
name in square brackets. So R[3] means contents of register R3.
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w

[11]

55 7 0 i, "
Memory contents (or the memory 25 [ wm One memory “word
location) can be referred to in a similar %2 | WA 3 2423 1p15 87 0

Theref: g i I O L T

way. Therefore, £ 11 [_Mrm

2 MS Byte LS Byte

4

e

Fig. FALCON-E Notation

. For instance, a memory word at address
8 1s defined as the 32 bits at addresses 11, 10, 9, and 8 (littleendian). So we can employ a
special notation to refer to the memory words. Again, we will employ © as the
concatenation operator. In our notation for the FALCONE, the memory word stored at

address 8 is represented as:

M[8]<31...0>:=M[11]|OM[10]OM[9]OM]8]

The shown figure will make this easier to understand.

FALCON(E Features

» (Fixedinstruction'size, which is@2bifs) So the instruction size is (Word

e All ALU instructions have three operands
e Memory access is possible only through the load and store instructions. Also, only
a limited addressing modes are supported by the FALCONE
FALCON(E Instruction Formats
Four different instruction formats are supported by the FALCONE. These are
Type A instructions

“

and the rest of the bits are either not used or specify a displacement.

3l a7 26 0
Tjrp e h Cpeode Displacemert Mot Used

Type B instructions
The type B instructions also have 5 bits (27 through 31) reserved for the opcode. There
is a register operand field, ra, and an immediate or displacement field in addition to the

opcode field.
31 2726 2423 0

Typ eB Cpoode ra Displacement [ Inuned 1ate

Type C instructions

source register, ra is the destination register). a 17bit immediate or displacement field, as -
(wellhasha 3bit function field) The function field is used to differentiate between

instructions that may have the same opcode, but different operations.

24 aid A L] i L

TypeC Crpeode ra th Displacement / Inm

Type D instructions
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3l

AT 2423 2120

18 17

43

Type D

Opeode ra h re

Umised

Encoding for the General Purpose Registers (GPRs)

In the instruction formats discussed above, e used register operands ra, tb and ro) It'is

(e used We need to encode our registers so we can refer to them in an instruction. Note

that we have reserved 3 bits for each of the register field. This is because we have 8

registers to represent, and they can be completely represented by 3 bits, since 2° = 8. The
following table shows the binary encoding of the generalpurpose registers.

Register Code Register Code
RO 000 R4 100
R1 001 R5 101
R2 010 RE 110
R3 011 R7 111

Fig. Encoding of the GPRs

There are two more special registers that we need to represent; the SP and the BP. We

will use these registers in place of the operand register rb in the load and store
instructions only, and therefore, we may encode these as

BRagisier Code
5P 000
EP 0ol

Fig. Special Registers Encoding

Instructions, Instruction Formats

The following is a brief introduction to the various instructions of the FALCONE,
categorized with respect to the instruction formats.

Type A instructions

Four instructions of the FALCONE belong to type A. These are
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This instruction iRSEFUCES the processor to donothing It is(@enerally usefullin®
(pipelining We will study more on pipelining later in the course.

« ret (opeode = 15)
The return instruction is used to(feturn control to'the normal flow of a program )

o iret (opcode = 17)
The iret instruction instructs the processor to—
(specified by the immediate field of the instruction) Sectting the program counter to
the specified address returns control.

e near jmp (opcode = 18)

A near jump is a PCrelative jump. TheCValue'is incremented (or decremented)

Type B instructions
Five instructions belong to the type B format of instructions. These are:
* push (opcode = 8)
‘This instruction is used to push the contents of a register onto the stack. For

instance, the instruction,
push R4
will push the contents of register R4 on top of the stack

[ ]
pop (opcode = 9)
"The pop instruction is used to pop a value from the top of the stack, and the value
is read into a register. For example, the instruction
pop R7
will pop the uppermost element of the stack and store the value in register R7

This_instruction with opcode (10) loads a memory word from the address -
(specified by the immediate filed value) This word is brought into the operand

register ra. For example, the instruction,
1d R7, 1254h
will load the contents of the memory at the address 1254h into the register R7.

* st (opcode = 12)
‘operand into the memory location specified by the immediate operand field. For

example, in
st R7, 1254h
the contents of register R7 are saved to the memory location 1254h.

Type C instructions

There are four data transfer instructions, as well as nine ALU instructions that belong to
type C instruction format of the FALCONE.
The data transfer instructions are
«  1ds (opeode = 4)
calculating the address of the memory location that is to be accessed. The

effective address of the memory location to be read is calculated by adding the
immediate value to the value stored by the register rb. For instance, in the
Last Modified: 12Jan11 Page 127
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example below, the immediate value 56 is added to the value stored by the
register R4, and the resultant value is the address of the memory location which is
read

1ds R3, R4(56)

In RTL, this can be shown as

R[3] [ M[R [4]+56]

This instruction is used toSioré the Tegister contents o the memory ocation, by
(first'calculating the cffective memory address) The address calculation is similar

to the 1ds instruction. An example:
sts R3, R4 (56)

In RTL, this is shown as

MI[R [4]+56] (IR [3]

This instruction is to (loada register from ‘an input/output device) The effective

address of the I/O device has to be calculated before it is accessed to read the
word into the destination register ra, as shown in the example:
in R5, R4(100)
In RTL:
R[5] [ IO[R[4]+100]

[
‘out (opcode = 7)
This instruction is used to§iite/store the register contents info an input/output™)
(device Again, the effective address calculation has to be carried out to evaluate
the destination I/O address before the write can take place. For example,
out R8, R6 (36)
RTL representation of this is
IO[R [6]+36] (1R [8]
Three of the ALU instructions that belong to type C format are

[ ]
addi (opcode = 2)
The addi instruction is to(@dd'aconstant fo the valuic'of operand register b, and )
(assign theresultto the destination registerta) For example, in the following
instruction, 56 is added to the value of register R4, and result is assigned to the
register R3.
addi R3, R4, 56
In RTL this can be shown as
R[3] [1 R[4]+56
Note that if the immediate constant specified was a negative number, then this
would become a subtract operation.

[
andi (opeode =2)
This instruction is to(Calculatethelogical AND of the immediate Valic and the'tb )
register value. The result is assigned to destination register ra. For instance

andi R3, R4, 56
R[3] [ R[4]&56
Note that the logical AND is represented by the symbol ‘&’
e ori (opcode =2)
“This instruction calculates the logical OR of the immediate field and the value in
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(operand register tb) The result is assigned to the destination register ra. Following
is an example:

ori R3, R4, 56

The RTL representation of this instruction:

R [3] [1R [4]~56

Note that the symbol ‘~’ is used to represent logical OR.

Type D Instructions

Four of the instructions that belong to this instruction format type are the ALU

instructions shown below. There are other instructions of this type as well, listed in the

tables at the end of this section.
[ ]
This instruction is used to(add two numbers) The numbers are stored in the registers
specified by rb and rc. Result is stored into register ra. For instance, the instruction,
add R3, R5, R6
adds the numbers in register RS, R6, storing the result in R3. In RTL, this is given by
R[3] [IR[5]+ R [6]

This instruction is used to(carry out 2’s complement subtraction) Again, register

addressing mode is used, as shown in the example instruction
sub R3, R5, R6

RTL representation of this is

R[3] [JR[5] R[6]

For carrying out (0gical"AND) operation on the values stored in registers, this
instruction is employed. For instance

and R8, R3, R4

In RTL, we can write this as

R [8] TR [3] & R [4]

For evaluating(logical OR) of values stored in two registers, we use this
instruction. An example is

or R&, R3, R4

In RTL, this is

R[8] (1R [3]~R [4]

Falcon(E
Instruction Summary

The following are the tables that list the instructions that form the instruction set of the
FALCONE. These instructions have been grouped with respect to the functionality they
provide.
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Opcode Function
Control Instructions | Mnemonic

Dec Bin Dec | Bin
Mo Operation nop 0 Qo000 .

Fig. Control Instructions

Arithmetic - Opcode Function
Instructions O Dee | m (oo | Bn
Add add 1 ooom 0 oooo
Add Immediate addi 2 Qo010 0 gooo
Subtract sub 1 ooom 1 oom
Subtract Immediate subi . ooo1o 1 ooo
Multiply rmul 1 ooom 2 o010
Multiply Immediate muli 2 00010 2 0010
Divide div 1 ooom 3 0011
Divide Immediate divi 2 00010 3 o011

Fig. Arithmetic Instructions

Last Modified: 12Janl1
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Opcode Function
Logic Instructions | Mnemonic
Dec Bin Dec Bin
And and s 00001 4 0100
And Imme diate andi 2 00010 4 0100
Or or 1 00001 5 0101
Or Immediate ahian 2 00010 5 0101
Xor ®Or 1 00001 S 0110
Xor Immediate xori 2 00010 & 0110
Fig. Logic Instructions
; Opcode Function
Shift and Rotate — p
Shift Left shi 1 ooom 2 1000
Shitt Left Immediate -
Count shili 2 Qo010 8 1000
Rotate Left ral 1 ooom 9 1001
Rotate Left Immediate ol 2 00010 g 1001
Count
Shift Right shr 1 goom 10 1010
Shift Right Immediate ;
Count shri 2 ooo10 10 1010
Shift Right Arithmetic sra 1 goom 11 1011
Shift Right Arithmetic -
imriaciate Count sral 2 ooo10 11 1011

Last Modified: 12Janl1

Fig. Shift Instructions
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Opcode Function
Mnemonic -

Data Transfer Instructions Dec Bin Dec Bin

Move Immediate to GPR rrovi 3 0001 -

Load Special Purpose

Register from GPR e 4 0oy

Store Special Purpose

Register to GPR o8 ¥ ao¥e]

Load Register from 10 in 5 ao110

Store Register to 10 out T omm

Push GPR 1o Stack push g 01000

Pop GPR from Stack pop 9 010M

Load GPR from Memaory

(Direct Addressing) Id 10 01010

Load GPR from Mermaory

(Displacement Addressing) Id 11 01011 )

Store GPR to Memory (Direct

Addressing) st 12 01100

Store GPR to Memory

(Displacement Addressing) st 13 01101 g

Fig. Data Transfer Instructions
Opcode Function
Procedure .
Callsinterrupts Mnemonic
Dec Bin Dec Bin

Call call 14 01110 -
Return ret 15 01111 -
Interrupt int 16 10000 -
Interrupt Retum iret 17 100M -

Last Modified: 12Janl1

Fig. Procedure Calls/Interrupts
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Opcode Function

Branch Instructions Mnemonic Dec Bin Dec Bin
MNear Jump (Relative) jmp 18 10010 &
FarJurmp (Direct) jmp 19 10011 -
Branch If Equal (Relative) bre 20 10100 0 0o0o
Branch If Equal {Direct) bre 21 101M 0 oooo
Branch If Not Equal (Relative) hne 20 10100 1 0001
Branch If Mot Equal (Direct) bne 21 1010 1 0001
Branch If Less (Relative) ]| 20 10100 2 o010
Branch If Less (Direct) bl 21 1010 2 o010
Branch If Greater (Relative) (D] 20 10100 3 o1
Branch If Greater (Direct) bog 21 101 3 0011

Fig. Branch Instructions

Instruction Set Architecture Comparison
In this lecture, we compare the instruction set architectures of the various processors we
have described/ designed up till now. These processors are:

e FEAGLE

e FALCONA
e FALCONE
e SRC

Classifying Instruction Set Architectures

In the design of the ISA, the choice of some of the parameters can critically affect the
«code density (which is the number of instructions required to complete a given task),
(Cyclesperiinstruction (as some instructions may take more than one clock cycle, and the
number of cycles per instruction Vaties from instruction’fo instruction, architecture o)
architecture). and cycle time (the total cycle time to execute a given piece of code).

Classification of different architectures is based on the following parameters.

Operand storage in CPU | Where are they stored other than memory?

Mumber of explicit One, two or three operands?

operands in an

instruction

Addressing Modes How the effective address for operands 1s
calculated?

Operations What operation are possible and what are the
choices for the opcodes?

Type and size of How the size is specified for operands?

operatds,

Fig. ISA Comparison Parameters
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Instruction Length
With reference to the instruction lengths in a particular ISA, there are two decisions to be

made; whether the instruction will be fixed in length or variable, and what will be the
instruction length or the range (in case of variable instruction lengths).

Fixed versus variable

(ease of implementation for assembling and pipelining) However, fixed instruction length
can be wasteful in terms of code density.(Allthe RISC'machines use fixed instruction)

Instruction Length

The required instruction length mainly depends on the number of instruction required to
(b¢in the instruction set of a processor)(the greater the number of instructions supported,

the more bits are required to encode the operation code), the size of the register file

(éncode these in an instruction), the number of operands supported in instructions (as

obviously, it will require more bits to encode a greater number of operands in an
instruction), the size of immediate operand field (the greater the size, the more the range
of values that can be specified by the immediate operand) and finally, the(code density)
(which implies
A summary of the instruction lengths of our processors is given in the table below.

EAGLE FALCON-A |FALCON-E |SRC
Variable Fixed Fixed Fixed
8 bits or 16 bits [ 16 bits 32 bits 32 bits

Fig. Instruction Length
Instruction types and sub-types
The given table summarizes the number of instruction types and sub-types of the
processors we have studied. We have already studied these instruction types, and their
sub-types in detail in the related sections.

EAGLE | FALCON-A FALCON-E SRC
Types 4 4 4 4
Sub-types w 2 4 3

Number of operands in the instructions

The number of operands that may be required in an instruction depends on the type of
operation to be performed by that instruction; some instruction may have no operands,
other may have up to 3. But a limit on the maximum number of operands for the
instruction set of a processor needs to be defined explicitly, as it affects the instruction
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EAGLE

FALCON-A

FALCON-E

SRC

2

3

3

3

Fig. Number of Operands per instructions

length and code density. The maximum number of operands supported by the instruction
set of each processor under study is given in the given table. So FALCONA, FALCON

E and the SRC processors may have 3, 2, 1 or no operands, {dépending on the instruction.’
it may have one operand or no operands -

Explicit operand specification in an instruction gives flexibility in storage. Implicit
operands like an accumulator or a stack reduces the instruction size, as they need not be

coded into the instruction. Instructions of the processor EAGLE have implicit operands,
and we saw that the result is automatically stored in the accumulator, without the
accumulator being specified as a destination operand in the instruction.

Number and Size of General Purpose Registers

While designing a processor, another decision that has to be made is about the number of
registers present in the register file, and the size of the registers.

(memory fraffic) which is a desirable attribute, as memory accesses take relatively much

longer time than register access. (Memory fraffic decreases as the number of registersist

(increased, as variables are copied into the registers and these do not have to be accessed

from memory over and over again. [fifherelis a Small number of Fegisters. the Values’
registers will solve the problem of swapping in, swapping out. However. a very large

The number of registers in the register file, along with the size of the registers, for each of
the processors under study, is in the given table.

EAGLE FALCON-A |FALCON-E |SRC

Eight Eight Eight Thirty-two
registers, |registers, |registers, [registers
16 bit wide |16 bit wide |32 bit wide |32 bit wide

Fig. Number and size of GPRS
Memory specifications
(Memory"design is an integral part of ‘the processor design' We need to decide on the
memory space that will be available to the processor, how the memory will be organized,
memory word size, memory access bus width, and the storage format used to store words
in memory. The memory specifications for the processor under comparison are:
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Memory EAGLE FALCON-A | FALCON-E SRC
Specs.

Memory 216 216 232 232
Space

Memory 216* 8 216 * 0 232 * 9 232 * g
Organization

Msiory 16 bit | 16 bit | 32 bit | 32 bit

Word Size

Mumory 16 bits | 16 bits | 32 bits | 32 bits
Access

Memory Little-Endian | Big Endian |Little-Endian | Big Endian
Storage

Fig. Memory Specifications
Data transfer instructions
Data needs to be transferred between storage devices for processing. (Data transfers may
include loading, storing back or copying of the data. The different ways in which data
transfers may take place have their related advantages and disadvantages. These are listed -

Data Transfer |Advantage Disadvantage

Register to Simple, faster, constant CPI, | Higher instruction

Register Easier to pipeline. count, longer program
codes

Regisler to Separate load instruction Variable CPI| due to

Memory eliminated, good code different operand

density locations

Memory to Most compact, small number | Variable CPI, variahle

Me mory of registers required instruction size,
memory bottleneck.

Fig. Data Transfer Modes
Following are the data transfer instructions included in the instruction sets of our
processors.
Register to register transfers
As we can see from the given table on the next page, in the processor EAGLE, register to
register transfers are of two types only: register to accumulator, or accumulator to
register. Accumulator is a specialpurpose register.
FALCONA has a mov instruction, which can be used to move data of any register to any

other registcr, FALCONE has the instructions Ids’ and ‘sts” which are used to load/store

SRC does not provide any instruction for data movement between generalpurpose
registers. However, this can be accomplished indirectly, by adopting either of the
following two approaches:
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e A register’s contents can be loaded into another register via memory. First storing
the content of a register to a particular memory location, and then reading the
contents of the memory from that location into the register we want to copy the
value to can achieve this. However, this method is very inefficient, as it requires
memory accesses, which are inherently slow operations.

e A better method is to use the addi instruction with the constant set to 0.

Data Transfer Instructions

Instructions EAGLE FALCON-A FALCON-E SRC

Register to azr, r2a mov Ids, sts lar

Register (only from PC)
Register to Idacc, stacc |load, store Id, st Id, st

Memory

Memory to - - - -

Memory

Register to memory

‘names the accumulator, as well as saving values from the accumulator to memory. Other
register to memory transfers is not possible in the EAGLE processor. (EAECONAD

Memory to memory

However, in other processors, these may be a possibility.

Control Flow Instructions
All processors have instructions to control the flow of programs in execution. The(general™

(control flow instructions)available in most processors are:

. Branches (conditional)
. Jumps (unconditional)
Calls (procedure calls)
. Returns (procedure returns)
Conditional Branches
Whereas jumps, calls and call returns changes the control flow in a specific order,
branches depend on some conditions; if the conditions are met, the branch may be taken,
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otherwise the program flow may continue linearly. The branch conditions may be
specified by any of the following methods:

e Condition codes

e Condition register

e Comparison and branching
Condition codes
The ALU may contain some special bits (also called flags), which may have been set (or
raised) under some special circumstances. For instance, a flag may be raised if there is an
overflow in the addition results of two register values, or if a number is negative. An
instruction can then be ordered in the program that may change the flow depending on
any of these flag’s values. The EAGLE processor uses these condition codes for branch
condition evaluation.
Condition register
A special register is required to act as a branch register, and any other arbitrary register
(that is specified in the branch instruction), is compared against that register, and the
branching decision is based on the comparison result of these two registers. None of the
processors under our study use this mode of conditional branching.
Compare and branch
In this mode of conditional branching, comparison is made part of the branching
instruction. Therefore, it is somewhat more complex than the other two modes. All the
processors we are studying use this mode of conditional branching.
Size of jumps
Jumps are deviations from the linear program flow by a specified constant. All our
processors, except the SRC, support PCrelative jumps. The displacement (or the jump)
relative to the PC is specified by the constant field in the instruction. If the constant field
is wider (i.e. there are more bits reserved for the constant field in the instruction), the
jump can be of a larger magnitude. Shown table specifies the displacement size for
various processors.

Processor Displacement size

EAGLE 8 bits for both conditional and unconditional,

FALCON-A 8 bits for both conditional and unconditional.

FALCON-E 27 bits (unconditional jump),

21 or 32 hits (conditional jumps)
SRC 32 bits for both conditional and unconditional jumps.

Fig. Size of Jumps
Addressing Modes

All processors support a variety of addressing modes. (An'addressing mode is the method
by which architectures specify the address of an object they will access. The object may

be a constant, a register or a location in memory.
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¢ Immediate

‘An immediate field may be provided in instructions, and a constant value may be
(given in this immediate field) c.g. 123 is an immediate value.

Register

A register may contain the value we refer o in an instruction, for instancc.

register R4 may contain the value being referred to.
Direct

By direct addressing mode, we mean {hé'constant field'may Specify the'location™)

For instance, [123] will directly refer to the

memory location 123’s contents.

Register Indirect

A register may contain the address of memory location to which we want to refer

({0 for example, M [R3].

e Displacement
In this addressing mode, the constant value specified by the immediate field is
added to the register value, and the resultant is the index of memory location that
is referred to, e.g. M [R3+123]

e Relative
Relative addressing mode implies PCrelative addressing, for example, [PC+123])
will refer to the memory location that is 123 words farther than the memory index
currently stored in the program counter.

e Indexed or scaled
The values contained in two registers are added and the resultant value is the
index to the memory location we refer to, in the indexed addressing mode. For
example, M [[R1]+[R2]]. In the scaled addressing mode, a register value may be
scaled as it is added to the value of the other register to obtain the index of
memory location to be referred to.

e Auto increment/ decrement
In the @uto’increment mode, the value held in a register is used as the index to
memory location that holds the value of operand. After the operand’s value is
retrieved, the register value is automatically increased by 1 (or by any specified
constant). e.g. (M [R4]+ or (M [R4]+d In the(auto decrement)mode, the register
value is first decremented and then used as a reference to the memory location
that referred to in the instruction, e.g. (M [R4].

As may be obvious to the reader, some of these addressing modes are quite simple, others

are relatively complex. The complex addressing modes (such as the indexed) reduce the
instruction count (thus improving code density), at the cost of more complex
implementation.

The given table lists the addressing modes supported by the processors we are studying.
Note that the registeraddressing mode is a special case of the relative addressing mode,

with the constant equal to 0, and only the PC can be used as a source. Also note that, in

the shown table, relative implies PCrelative.
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EAGLE FALCON-A | FALCON-E SRC
Immediate Immediate Immediate Immediate
- Direct Direct
Register Register Register Register ™

Register Indirect

Register Indirect

Register Indirect

Register Indirect

Relative*™

Displacement

Displacement

Displacement

Displacement

Fig. Addressing Modes Comparison
Displacement addressing mode
We have already talked about the displacementaddressing mode. We look at this
addressing mode at length now.
The displacementaddressing mode is the most common of the addressing mode used in
general purpose processors. Some other modes such as the indexed based plus index,
scaled and register indirect are all slightly modified forms of the displacementaddressing
mode. The size of displacement plays a key role in efficient address calculation. (Fhe

Size of displacement field

Processor Number of bits in displacement field

SRC 17 or 22 bits depending on the instruction type.
FALCON-E 21 or 24 bits depending on the instruction type.
FALCON-A 5 bits for load and store instruction

EAGLE 8 bits for Idacc and stacc instructions

The given table lists the size of the immediate field in our processors.
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Processor Number of bits in the immediate field

EAGLE 8 bits

FALCON-A |5 or 8 bits

FALCON-E 17 or 24 bits depending on the
instruction

SRC 17 or 22 bits

Fig. Immediate Field Bits Comparison
Instructions common to all Instruction Set Architectures
In this section we have listed the instructions that are common to the Instruction Set
Architectures of all the processors under our study.
e Arithmetic Instructions
add, addi & sub.
e Logic Instructions
and, andi, or, ori, not.
o Shift Instructions.
Right shift, left shift & arithmetic right shift.
e Data movement Instructions.
Load and store instructions.
e Control Instructions
Conditional and unconditional branches, nop & reset.
‘The following tables list the assembly language instruction codes of these common -
instructions for all the processors under comparison.

Common Arithmetic Instructions

Instruction |EAGLE |FALCON-A |[FALCON-E |SRC
Add add add add acd
Add addi addi addi addi
Immediate

Subtract sub sub sub sub
Subtract subi subi subi -
Immediate

Multiply il rnul rmul -
Divide div div div -
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Common data movement Instructions

Instruction EAGLE FALCON-A FALCON-E SRC
Load Idacc load Id Id
Store stacc store st st
Move mov mov
Move immediate movi movi movi la
In in in in
Out out out out
Common Logical Instructions
Instruction | EAGLE [FALCON-A |FALCON-E |SRC
And and and and and
And andi andi andi andi
Immediate
Or or or ar ar
Or o ori ori orl
Immediate
Mot not not not not
Meg neg neg -
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Common Shift Instructions

Instruction |EAGLE |FALCON-A |FALCON-E [SRC
Shift right shiftr shiftr - shr
Shift right - - srai shr
immediate
Circular ” e rol she
shift
Shift left shiftl shiftl - shi
Shift right asr asr sra shra
arithmetic

iivviidinviiai [*]} Julll

branch

Branch if zero brz j2

Branch if non brnz jnz

zero

Branch if brp il

positive

Branch if brn jmi

negative
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Common Call and Interrupt Instructions

Instruction |EAGLE [FALCON-A |[FALCON-E |SRC
Procedure - call call brl
call
Interrupt - int int ?
Interrupt - iret iret 7
return

Common Control Instructions
Instruction |EAGLE |[FALCON-A |[FALCON-E |[SRC
No nop nop nop nop
operation
Halt halt halt - stop
Reset reset reset - -

Instructions unique to each processor
Now we take a look at the instructions that are unique to each of the processors we are

studying.

EAGLE

The EAGLE processor has a minimal instruction set. [Following are the instructions that )
(are unique only to the EAGLE processor) Note that these instructions are unique only

with reference to the processor set under our study; some other processors may have
these instructions.
* movia
This instruction is for moving the immediate value to the accumulator (the special
purpose register)

This instruction is for moving the contents of the accumulator to a register

For moving register contents to the accumulator

For clearing (setting to zero) the value in the accumulator
FALCON(A
o ret
This instruction is used to return control to a calling procedure. The calling
procedure may save the PC value in a register ra, and when this instruction is
called, the PC value is restored. In RTL, we write this as
PC R[ra];
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FALCON(E

To push the contents of a specified general purpose register to the stack

* pop
To pop the value that is at the top of the stack
o (@
To load a register with memory contents using displacement addressing mode

To store a register value into memory, using displacement addressing mode

o ©&
To branch if source operand is less than target address

To branch if source operand is greater than target address

To multiply an immediate value with a value stored in a register

To divide a register value by the immediate value

To evaluate logical ‘exclusive or’
e ror, rori
SRC
Following are the instructions that are unique to the SRC processor. among of the
processors under study
[ ]

To load register from memory using PCrelative address

To load a register with a word from memory using relative address

To store register value to memory using relative address

e brinv
This instruction is to tell the processor to ‘never branch’ at that point in program.
The instruction saves the program counter’s contents to the register specified

e bripl
This instruction instructs the processor to (branch to"the location Specified by a
register given in the instruction, if the condition register’s value is positive.
Return address is saved before branching.

o brlmi
This instruction instructs the processor to (Bfanch o the location Specified by a
register given in the instruction, if the condition register’s value is negative.
Return address is saved before branching.

o brlzr
This instruction instructs the processor to (branch to"the location Specified by a
register given in the instruction, if the condition register’s value equals zero.

Return address is saved before branching.
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e brinz
This instruction instructs the processor to branch to the location specified by a
register given in the instruction, if the condition register’s value does not equal
zero. Return address is saved before branching.
Problem Comparison
Given is the code for a simple C statement:
a=(b2)+4c
The given table gives its implementation in all the four processors under comparison.
Note that this table highlights the code density for each of the processors; EAGLE, which
has relatively fewer specialized instructions, and so it takes more instructions to carry out
this operation as compared with the rest of the processors.
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Last Modified: 12Janl1

Fig. Problem Comparison

EAGLE | FALCON-A | FALCON-E | SRC
org 100 0rg 100 org 100 org 100
a a e 1 a w1 3 w1
0rg 200 0rg 200 0rg 200 0rg 200
dace b
aur load 1, b ldr1,b dr1,b
subir 2 subir2,r1,2 supin2,r 2 addir2f1-2
Az l0ad 3, ¢ ldr3,c a3, c
dacc ¢ shiftl 13,3 2 mulird, 3, 4 $hird, 13,2
alr? addrd 23 addrd, r3r2 addrdr2r3
shir2,2 storerd, 3 storerd a strd, a
232
add
stace a

Page 147




Advanced Computer ArchitectureCS501

Lecture No. 11
CISC and RISC

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 3
Computer Systems Design and Architecture 33,34
Summary

5) A CISC microprocessor:The Motorola MC68000
6) A RISC Architecture:The SPARC

Material of this Lecture is included in the abovementioned sections of Chapter 3.
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Lecture No. 12
CPU Design

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.1,42,43
Summary

7) The design process
8) A UniBus implementation for the SRC
9) Structural RTL for the SRC instructions

Central Processing Unit Design

This module will explore the design of the central processing unit from the logic
designer’s view. A unibus implementation of the SRC is discussed in detail along with
the Data Path Design and the Control Unit Design.

The topics covered in this module are outlined below:

The Design Process

Unibus Implementation of the SRC

Structural RTL for the SRC

Logic Design for one bus SRC

The Control Unit

2bus and 3bus designs

The machine reset

e The machine exceptions
As we progress through this list of topics, we will learn how to convert the earlier
specified behavioral RTL into a concrete structural RTL. We will also learn how to
interconnect various programmer visible registers to get a complete data path and how to
incorporate various control signals into it. Finally, we will add the machine reset and
exception capability to our processor.
The design process

(its'instruction'se) This abstract description is then converted into structural RTL which

shows the actual implementation details.(Since the processor can be divided info o™

(1) The data path design
@) The control unit design &4
It is important that the design activity of these ﬂ‘
important components of the processor be carried A pmmqp N
out with the pros and cons of adopting different | Subsytem E—\> NT Y] @P)

£

approaches in mind.

S el
ET=ICxCPIxT ety )
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During the design procedure we specify the implementation details at an advanced level.
These details can affect the clock cycle per instruction and the clock cycle time. Hence
following things should be kept in mind during the design phase.

e Effect on overall performance

e Amount of control hardware

e Development time

Processor Design

Let us take a look at the steps involved in the processor design procedure.
1. ISA Design
‘The first step in designing a processor s the specification of the instruction set of -

(the processor ISA design includes decisions involving number and size of
instructions,  formats, addressing modes, memory organization and the

(programmer’s view of the CPU) i.c. the number and size of general and special

purpose registers.
2.

In this step, the behavior of processor in response to the specific instructions is
described in register transfer language. This abstract description is not bound to

any specific implementation of the processor.((Ifipresents only those static)

(Understand its functionality) The unit of activity here is the instruction execution

unlike the clock cycle in actual case. The functionality of all the instructions is
described here in special register transfer notation.

3. Implementation of the Data Path

All these decisions affect the number and speed of register
transfers during an operation. The structure of the ALU and the design of the
memorytoCPU interface also need to be decided at this stage. Then there are the

control signals that form the interface between the data path and the control unit.
These control signals move data onto buses, enable and disable flipflops, specify

the ALU functions and control the buses and memory operations. Hence an
integral part of the data path design is the seamless embedding of the control
signals into it.

4. Structural RTL Description

In accordance with the chosen data path implementation, the structural RTL for every

instruction is described in this step. (Fhelstructural RTLS formed according {0 the’)
(necessary for instruction’ execution) Since the structural RTL shows the actual

implementation steps, it should satisfy the time and space requirements of the CPU as
specified by the clocking interval and the number of registers and buses in the data
path.

5. Control Unit Design
The control unit design is a rather tricky process as it involves timing and -
synchronization issues besides the usual combinational logic used in the data path -

(design) Additionally, there are two different approaches to the control unit design; it
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can be either hardwired or microprogrammed. However, the task can be made
simpler by dividing the design procedure into smaller steps as follows.

a. Analyze the structural RTL and prepare a list of control signals to be
activated during the execution of each RTL statement.
b. Develop logic circuits necessary to generate the control signals
c. Tie everything together to complete the design of the control unit.
Processor Design
A Uni(bus Data Path Implementation for the SRC

In this section, we will discuss the unibus implementation of the data path for the SRC.
But before we go onto the design phase, we will discuss what a data path is. After the

discussion of the data path design, we will discuss the timing step generation, which
makes possible the synchronization of the data path functions.

The Data Path

(registers. internal buses. arithmetic units'and shiffers) We have already discussed the

decisions involved in designing the data path. Now we shall have an overview of the 1
Bus SRC data path design. As the name suggests, this implementation employs a single
bus for data flow. After that we develop each of its blocks in greater detail and present
the gate level implementation.

31 0 <31.0>

Overview of the Unibus SRC Data RO A
Path BLL - s o 32 lines
The 1bus implementation of the SRC B e N
data path is shown in the figure given. [ (32-bits each) ™ |—f—|
The control signals are omitted here

R31

for the sake of simplicity. Following
units are present in the SRC data path. P
1. The Register File

MER

— €se CPU bus Internal processor bus
registers communicate with
other components via the internal processor bus.

2. MAR

3. MBR
The
It holds the data during its
4. PC
Th Its

value is incremented after loading of each instruction. The value in PC can also be
changed based on a branch decision in ALSU. Therefore, it has'a bidirectional

5. IR
Last Modified: 12Jan11 Page 151
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The Instruction Register holds the instruction that is being executed. The

instruction fields are extracted from the IR and transferred to the appropriate
registers according to the external circuitry (not shown in this diagram).
6. Registers A and C
The registers A and C are required to hold an operand or result value while the
bus is busy transmitting some other value. Both these registers are programmer
invisible.
7. ALSU
There is a 32bit{Arithmetic Logic Shift Unit, as shown in the diagram. It takes
input from memory or registers via the bus, computes the result according to the
control signals applied to it, and places it in the register C, from where it is finally
transferred to its destination.
Timing Step Generator
To ensure the correct and

controlled execution of instructions A3toBdecoder | o
in a program, and all the related |
operations, a timing device is -
required. This is to ensure that the e 0 -
operations of essentially different {7p| binary courter |
instructions do not mix up in time. 4 I
——TE
—T7
clear

A possible implementation of the timing step

generator is shown in the figure.
Each mutually exclusive step is carried out in one timing interval. The timing intervals
can be named TO, T1...T7. The given figure is helpful in understanding the ‘mutual

exclusiveness in time’ of these timing intervals.
Processor design

LS N I e e N s I I O
Structural RTL descriptions of selected w_ ] ’_E. m
SRC instructions T 1 f muElalIIy
Structural RTL for the SRC L 1 | Exfilrunsewe
The structural RTL describes how a e — tepe
particular operation is performed using a i
specific hardware implementation. In = —
order to present the structural RTL we i —

assume that there exists a “timing step
generator”, which provides mutually
exclusive and sequential timing intervals, analogous to the clock cycles in actual
processor.

Structural RTL for Instruction Fetch

The instruction fetch procedure takes three time steps as shown in the table. During the
first time step, TO, address of the

instruction is moved to the Memory Step RTL

Address Register (MAR) and value of T [MAR « PC, C+<PC+4

Last Modified: 12Jan11 |nSFtreUtEThiDn T MBR < MIVAR], FC< G, Page 152
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PC is incremented. In T1 the instruction is brought from the memory into the Memory
Buffer Register(MBR), and the incremented PC is updated. In the third and final time
step of the instruction fetch phase, the instruction from the memory buffer register is
written into the IR for execution.What follows the instruction fetch phase, is the
instruction execution phase. The number of timing steps taken by the execution phase
generally depends on the type and function of instruction. The more complex the
instruction and its implementation, the more timing steps it will require to complete
execution. In the following discussion, we will take a look at various types of
instructions, related timing steps requirements and data path implementations of these in
terms of the structural RTL.

Structural RTL for Arithmetic/Logic Instructions

The arithmetic/logic instructions come in two formats, one with the immediate operand
and the other with register operand. Examples of both are shown in the following tables.
Register(to(Register sub

Registertoregister subtract (or sub) will take three timing steps to complete execution,
as shown in the table.

Step RTL

sub ra, rb, rc TO-T2 | Instruction fetch

T3 A« R[rb]

T4 C o« A- Rrc);

receives the contents of the register rb. @n'the) B |Rle] &

(next timing step) the value of register rc is

=t
=
o
_
=
-t
(€]
=
=
)
=
-
(¢]
(je}
.
w2
—
a
-
2>

subtracted (since the opcode is sub) from A.({In'the final'step) this result is transferred
into the destination register ra.(This )

3 0 <31.0>

‘conclides the nsiruction fefchexceuted)  w " '
. - i . . -

The given figure refreshes our (32-bits each) .
knowledge of the data path.(Notice that f ’
‘we can visualize how the steps that we =~ ™"

31 0
‘have just outlined can be carried out, if -
appropriae control signals are applid
at the appropriate timing.

MER
As will be obvious, control signals o
. Totaaforng

need to be applied to the ALSU, based o AT —

on the decoding of the opcode field of
an instruction. The given table lists these control signals:

Note that we have used uppercase

alphabets for naming the ALSU ALSU Needed for the following
. fod : . assuming| Function instructions/operations
functions. This is to differentiate these T . e
t 1 . 1 fr th tu l R ADD add, addi, address calculation for disp and rel
control signals from the actua e e
operationcode mnemonics we have fe. o NEG neq, applies to the B input of the ALSU
. . . signals 3
been using for the instructions. available %NRD it ]
as well ar, an
The SHL, SHR, SHC and the SHRA MOT ~__| not; applies tothe B input of the ALSU
functions are listed assuming that a [ SHL h_l““*mfa o ot
. . . Se Uppercase 1or contro
barrel shifter is available to the = he signhals, because lowercase
] SHC she | ~was used for mnemanics
Last Modified: 12Jan11 (SHRA L ——— & 3
Cc=B to load from the bus directly into C
INC4 to incrernent the PC by 4; applies to the B input;
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processor with signals to differentiate between the various types of shifts that are to be
performed.

Structural RTL for Register(to(Register add

To enhance our understanding of the instruction execution phase implementation, e will)

now take a look at some more instructions of e

(the SRC The structural RTL for a simple add

. . . . -T2 Instruction fetch
instruction(@dd’ra, rb, ré)is given in table.

T3 A R[rb];

(common to allinstructions’ Execution of T [CoATRI
instruction starts from step(@3)where {he first

15 Rra] < C;

(step)involves computation of the sum and

result is transferred to the destination in step T5.({Fence the complete execution of the add ™
instruction takes 6 time steps. Other arithmetic/logic instructions having the similar -
structural RTL are “sub”, “and” and “or”. The only difference is in the T4 step where
the sign changes to (), (%), or (~) according to the opcode.

Structural RTL for the not instruction

(The first three steps T0 to T2 are used up in fetching the instruction as usual. (fn'step T3}
the value of the operand specified by the register is brought into the ALSU, which will
use the control function NOT, negate the value (i.e. invert it), and the result moves to the
register C.(In'the time step R4\ this result is assigned to the destination register through
the internal bus. Note that we need control signals to coordinate all of this; a control
signal to allow reading of the instructionspecified source register in T3, control signal
for the selection of appropriate function to be carried out at the ALSU, and control signal
to allow only the instructionspecified
destination register to read the result value Step |RTL

from the data bus. TO-T2 | Instruction fetch
The table shown outlines these steps for the
instruction: not ra, rb

Structural RTL for the addi instruction
Again, the(first'three fime steps)are for the
instruction fetch.@Nex# the first operand is brought into ALSU in step T3 through register
A. The(stép T@is of interest here as the second operand c2 is extracted from the
instruction in IR register, sign extended to 32 bits, added to the first operand and written
into the result register C.(The execution of instruction completes in step T5) when the
result is written into the destination register. The sign extension is assumed to be carried
out in the ALSU as no separate extension unit is provided.

Sign extension for 17(bit c2 is the same as:(150IR<16> ©IR<16..0>)

Sign extension for 22(bit c1 is the same as:(10alR<21> ©IR<21..0>)

The given table outlines the time steps for the instruction addi:

Other instructions that have the same Step RTL

structural RTL are subi, andi and ori.
RTL for the load (Id) and store (st)

T3 |C < (R[],

T4 Rlra] « C;

T0-T2 Instruction fetch

. . T3 A Rrb];
instructions Rl
The syntax of load instructions is: T4 |C < Acalign edend)
Step |RTLforid RTL for st
Id ra, c2(rb)
. . . TO-TZ | Instruction fetch Instruction fetch
And the syntax of store instructions is: T3 A e (Ub=0y: 00 200 RUB) | A< (b= 00 0, (b # 00 RIo]:
st ra, C2(l‘b) T4 [Cen+ (150{IR<15>IR?6 05); [C & A+ (1500R<16- @IR<16.0;
) T8 MAR ¢ C; MAR € C, b 154
Last Modified: 12Janl11 T A v ey Dage 154
T7 | Rlal« MBR, WIMAR] « MER,
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The given table outlines the time steps in fetching and executing a load and a store
instruction. Note that the first 6 time steps (TO to T5) for both the instructions are the
same.

The first three steps are those of instruction fetch. Next, the register A gets the value of
register rb, in case it is not zero. In time step T4, the constant is signextended, and added
to the value of register A using the ALSU. The result is assigned to register C. Note that
in the RTL outlined above, we are sign extending a field of the Instruction Register(32
bit). It is so because this field is the constant field in the instruction, and the Instruction
Register holds the instruction in execution. In step T5, the value in C is transferred to the
Memory Address Register (MAR). This completes the effective address calculation of the
memory location to be accessed for the load/ store operation.If it is a load instruction in
time step T6, the corresponding memory location is accessed and result is stored in
Memory Buffer Register (MBR). In step T7, the result is transferred to the destination
register ra using the data bus.If the instruction is to store the value of a register, the time
step T6 is used to store the value of the register to the MBR. In the next and final step, the

value stored in MBR is stored in the memory location indexed by the MAR.We can look
at the datapath figure and visualize how all these steps can take place by applying
appropriate control signals. Note that, if more time steps are required, then a counter with
more bits and a larger decoder can be used, e.g., a 4bit counter along with a 4t016
decoder can produce up to 16 time steps.
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Lecture No. 13
Structural RTL Description of the FALCON(A

Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.2.2, slides

Summary

e Structural RTL Description of the SRC (continued...)
e Structural RTL Description of the FALCONA

This lecture is a continuation of the previous lecture.

Structural RTL for branch instructions
Let us take a look at the structural RTL for branch instructions. We know that there are )

(conditional branches. We look at the RTL for ‘branch if zero’ (brzr) and ‘branch and link
if zero’ brlzr’ conditional branches.

The syntax for the(branch'if zero (brzr) is:

brzr rb, rc

As you may recall, fisTinstruction’
instructs the processor to branch to the -

Step RTL

T0-T2 Instruction Fetch
(register rc is zeto) Time steps for this

instruction are outlined in the table. T3 CON<— cond(R[rc]);
The first three steps are of the
instruction fetch Ifhase. Next, the value T4 CON: PC<— R[rb];
of register rc is checked and depending
on the result, the condition flag CON is set. In time step T4, the program counter is set to
the register rb value, depending on the CON bit (the condition flag).

The syntax for the(branch and link'if zero (brlzr) is:

brlzr ra, rb, rc

Step RTL

(return address is saved (linking TO-T2 Instruction Fetch

procedure). The time steps for this

instruction are shown in the table. = SN +—condiiirels
Notice that the steps for this T4 CON: R[ra] — PC;
instruction are the same as the

instruction brzr with an additional step T5 CON: PC «— R[rb];

after the condition bit is set; the current
value of the program counter is saved to register ra.
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Structural RTL for shift instructions
Shift instructions are rather

complicated in the sense that they Step RTL

require extra hardware to hold and TO:-T2 | Instruction fetch

decrement the count. For an ALSU

that can perform only single bit shifts, T2 n<4..0><«—|R<4..0>:

the data must be repeatedly cycled

through the ALSU and the count T4 | (N=0):(n<4..0>+— RIrc]<4..0>);

decremented until it reaches zero. This
approach presents some timing
problems, which can be overcome by T6 R[ra] «— C;
employing multiplebit shifts using a
barrel shifter.

The structural RTL for shr ra, rb, rc or shr ra,rb, ¢3 is given in the corresponding
table shown. Here n represents a 5bit register; IR bits 0 to 4 are copied in to it. N is the
decimal value of the number in this register. The actual shifting is being done in step T5.
Other instructions that will have similar tables are: shl, she, shra
e.g., for shra, TS5 will have C«+— (NaR [rb] <31>) © R[rb] <31...N>;

T5 |C «(Na0) © R[rb]<31..N>;

Structural RTL Description of FALCON(A Instructions

Uni(bus data path implementation

e FALCON-A(processor bus has(16 lines)or is 16-bits wide while that of SRC is

Allfregisters)of FALCONA are of{l6bits)while in case of SRC all registers are

32bits.
(Number of registers in FALCONA are@while in SRC the number of registers is

@2
are(l6

1 0
Bibeger while W
in SRC these are i . of dividend ALSU
- - Ceneral — 16 lines functions
I pupose |
i = I : | l

15 0

are
also  of (16bits
while @ SRO these
are of32bits)

MAR and MBR are dual
port registers. At one side Lo _lL¢ |
they are connected to To external v m
internal bus and at other CPT bus Internal processor bus results
side to external memory in order to point to a particular address for reading or writing
data from or to the memory and MBR would get the data from the memory.
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ALSU functions needed

ALSU of FALCONA has slightly different functions. These functions are given in the
table.

Note that mul and div

are two significant ALSU Needed for the following
?nStht?OnS in this —. Function instructionsloperations
instruction set. So assuming y
whenever one of these 35?1?1{2?' ADD add, addi
instructions is activated, | with five 5UB sub, subi
the ALSU unit would g‘i‘g“n-é'jlg MUL il
take the operand from il oy div
its input and provide the _as wel AND and, andi
output immediately, if i or or, ori
we neglect the X\\ MOT not; applies to the B input of the ALSU
propagation delays to lr SHIFTL shift
its output. In case of < SHIFTR shiftr
L ASR asr
FALCONA, we have Z=B to load from the bus directly into ©
two registers A and AH INC2 toincrementthe PC by 2; applies to the B input;

each of 16bits. AH
would contain the
higher 16bits or most significant 16bits of a 32bit operand. This means that the ALSU
provides the facility of using 32bit operand in certain instructions. At the output of
ALSU we could have a 32bit result and that can not be saved in just one register C so we
need to have another one that is CH. CH can store the most significant 16bits of the
result.

Why do we need to add AH and CH?

This is because we have mul and div instructions in the instruction set of the FALCON

A. So for that case, we can implement the div instruction in which, at the input, one of the
operand which is dividend would be 32bits or in case of mul instruction the output

which is the result of multiplication of two 16bit numbers, would be 32bit that could be
placed in C and CH. The data in these 2 registers will be concatenated and so would be
the input operand in two registers AH and A. Conceptually one could consider the A and
AH together to represent 32bit operand.

Structural RTL for subtract Step |RTL

Instruction TB-T2 | Instruction fetch
sub ra, rb, rc

In sub instruction three registers are T3 A — R[],

involved. The first three steps will

fetch the sub instruction and in T3, T4 C « A- RJrc]

T4, TS the steps for execution of
the sub instruction will be

TG R[ra] « C;

performed.
Structural RTL for addition Step RTL
instruction TO-T2 | Instruction fetch
add ra, rb, rc -
The table of add instruction is T3 A e R[]
Last Modified: 12Jan11 T4 C« A +R[rc); Page 158
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almost same as of sub instruction except in timing step T4 we have + sign for addition
instead of — sign as in sub instruction. Other instructions that belong to the same group
are ‘and’, ‘or’ and ‘sub’.
Structural RTL for multiplication instruction

mul ra, rb, rc
This instruction is only present in this processor and not in SRC. The first three steps are
exactly same as of other instructions and would fetch the mul instruction. In step T3 we

will bring the contents of register R Step |RTL
[rb] in the buffer register A at the

input of ALSU. In step T4 we take TO-TZ | Instruction fetch

the multiplication of A with the

contents of R[rc] and put it at the e AceBIE)

output of the ALSU in two registers T4 CHEIC « A * Rrc],
C and CH. CH would contain the
higher 16bits while register C TS F[0] «— CH,;

would contain the lower 16bits.

Now these two registers cannot T8 il

transfer the data in one bus cycle to
the registers, since the width is 16bits. So we need to have 2 timing steps, in TS we
transfer the higher byte to register R[0] and in T6 the lower 16bits are transferred to the
placeholder R[a]. As a result of multiplication instruction we need 3 timing steps for
Instruction Fetch and 4 timing steps for Instruction Execution and 7 steps altogether.
Structural RTL for division instruction

div ra, rb, rc Step |RTL
In this instruction first three steps
are the same. In step T3 the TO-TZ - |Instruction fetch

contents of register rb are placed in

buffer register A and in step T4 we T3 A < Rl

take the contents of register R[0] in T4 AH — R[0]
to the register AH. We assume

before using the divide instruction z —
that we will place the higher 16 T2 gEC]' (AHGA % RIrc), C — (AHBA) /

bits of dividend to register R[0].

Now in T35 the actual division takes T8 Rlra] ==L

place in two concurrent operations. T7 R[0] — CH;
We have the dividend at the input

of ALSU unit represented by concatenation of AH and A. Now as a result of division
instruction, the first operation would take the remainder. This means divide AH
concatenated with A with the contents given in register rc and the remainder is placed in
register CH at the output of ALSU. The quotient is placed in C. In T6 we take C to the
register R[ra] and in T7 remainder available in CH is taken to the default register R[0]
through the bus. In divide instruction 5 timing steps are required to execute the
instruction while 3 to fetch the instruction.

Note: Corresponding to mul and div instruction one should be careful about the
additional register R[0] that it should be properly loaded prior to use the instructions e.g.

if in the divide instruction we don’t have the appropriate data available in R[0] the result

of divide instruction would be wrong.
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Structural RTL for not instruction
not ra, rb
In this instruction first three steps
will fetch the instruction. In T3 we Step |RTL
perform the not operation of
contents in R[rb] and transfer them TO-T2 | Instruction fetch
iljl to the buffef register C. It is T3 C — (R[]
simply the one’s complement
changing of 0’s to 1’s and 1’s to T4 R[ra] < C;
0’s. In timing step T4 we take the
contents of register C and transfer to register R[ra] through the bus as shown in its
corresponding table.
Structural RTL for add immediate instruction
addi ra, rb, cl
In this instruction ¢l is a constant as a part of the instrucion. First three steps are for
Instruction Fetch operation. In T3 Step RTL
we take the contents of register R
[tb] in to the buffer register A.In [ 1072 [Instruction fetch
T4 we add up the contents of A

with the constant cl after sign 13 Aus R
extension and bring it to C. T4 C e A +c1(sign extend),
Sign extension of 5(bit c¢1 and 8( T5 R[ra] « C;
bit constant c2
Sign extension for 5(bit c1 is: (11aIR<4> ©IR<4.. 0>)

We have immediate constant c1 in the form of lower 5bits and bit number 4 indicates the
sign bit. We just copy it to the left most 11 positions to make it a 16bit number.

Sign extension for 8(bit c2 is: (8aIR<7> ©OIR<7.. 0>)
In the same way for constant c2 we need to place the sign bit to the left most 8 position to
make it 16bit number.

Step RTL for Id RTL for st
Structural RTL for the load : _
and store instruction TO-T2 | Instruction fetch Instruction fetch
T3 |A < R[m) A R[rh);

Tables for load and store
instructions are same as T4 |C—=A+{11TalR=4:= C+— A+(110lR<d> @IR<4. 0=,
SRC except a slight ORed D7)
difference in the notation. T2 [Hakeb it

So when we have square Té |MBR « M[MAR]; MBR « R [ra];
brackets [R [rb]+cl], it
corresponds to the base
address in R[rb] and an offset taken

T7 |RIra] « MBR; M[MAR] — MBR;

from cl. Step RTL
Structural RTL for conditional jump -
instructions TO-T2 Instruction Fetch
jz ra, [c2] T3 CON « cond(R[ra]);
In first three steps of this table, the :
instruction is fetched. In T3 we seta 1 T4 A < PC;
Last Modified: 12Jan11 T5 C «— A+ c2(sign exiagh;160
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bit register “CON” to true if the condition is met.
How do we test the condition?

This is tested by the contents given by the register ra. So condition within square brackets
is R[ra]. This means test the data given in register ra. There are different possibilities and
so the data could be positive, negative or zero. For this particular instruction it would be
tested if the data were zero. If the data were zero, the “CON” would be 1.
In T4 we just take the contents of the PC into the buffer register A. In T5 we add up the
contents of A to the constant c¢2 after sign extension. This addition will give us the
effective address to which a jump would be taken. In T6, this value is copied to the PC.
In FALCONA, the number of conditional jumps is more than in SRC. Some of which
are shown below:
e jz (opcode=19) jump if zero
jz 13, [4] (R[3]=0): PC— PC+ 2;
e jnz (opcode= 18) jump if not zero
jnz r4, [variable] (R[4]#0): PC«— PC+ variable;
e jpl (opcode= 16) jump if positive
jpl r3, [label] (R[3]>0): PC « PC+ (labelPC);
e jmi (opcode= 17) jump if negative
jmi r7, [address] (R[7]<0): PC«— PC+ address;
The unconditional jump instruction will be explained in the next lecture.
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Lecture No. 14
External FALCON(A CPU

Reading Material

Summary

e Structural RTL Description of the FALCONA (continued...)
e External FALCONA CPU Interface

This lecture is a continuation of the previous lecture.

Un(conditional jump instruction
jump  (op(code=20)

Forms allowed by the assembler to define the jump are as follows:
jump [ra + constant]
jump [ra + variable]
jump [ra + address]
jump [ra + label]

For all the above instructions:
(ra=0):PC— PCH(8aC2<7>)OC2<7..0>,
(ra#0):PC« R[ra]+(8aC2<7>)©C2<7..0>;"

In the case of a constant, variable, an address or (IabelPC) the jump ranges from —128 to

127 because of the restriction on 8bit constant c2. Now, for example if we have jump
[rO+a], it means jump to a. On the other hand if we have jump [— r2] that is not allowed

by the assembler. The target address should be even because we have each instruction
with 2 bytes. So the types available for the unconditional jumps are either direct,

indirect, PCrelative or register relative. In the case of direct jump the constant ¢2 would

define the target address and in the case of indirect jump constant c2 would define the
indirect location of memory from where we could find out the address to jump. While in

the case of PCrelative if the contents of register ra are zero then we have near jump and

the type of jump for this would be PCrelative. If ra is not be zero then we have a far
jump and the contents of register ra will be added with the constant c¢2 after sign
extension to determine the jump address.

4 c2 is computed by sign extending the constant,variable,address or (labelPC)
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Structural RTL description for unconditional jump instruction
jump [ra+c2]

In first three steps, TOT2, we would fetch the jump instruction, while in T3 we would
either take the contents of PC and place them in a temporary register A if the condition

given in jump instruction is true, that is if the ra field is zero, otherwise we would place

the contents of register ra in
the temporary register A.

Comma °,” indicates that Step RTL
these two instructions are TO-T2 Instruction Fetch
concurrent and only one of T3 (ra=0): A— PC, (ra#0): A — R[ra];
them would execute .at a T4 C — A+ c2(sign extend).
time. If the ra field is zero
TS PC — C;

then it would be PC
relative jump otherwise it
would be registerrelative jump. In step T4 we would add the constant c2 after sign
extension to the contents of temporary register A. As a result we would have the effective
address in the buffer register C, to which we need to jump. In step T5 we will take the

contents of C and load it in the PC, which would be the required address for the jump.

Structural RTL for the shift instruction

shiftr ra, rb, cl

First three steps would fetch the shift instruction. cl is the count field. It is a Sbit
constant and is obtained from the lower Sbits of the instruction register IR. In step T3 we
would load the 5bit register ‘n’ from the count field or the lower 5bits of the IR and
then in T4 depending upon the value of ‘N’ which indicates the decimal value of ‘n’, we
would take the contents of
register tb and shift right by
Nbits which would
indicate how many shifts
are to be performed. ‘n’
indicates the register while
‘N’ indicates the decimal
value of the bits present in
the register ‘n’. So as a
result we need to copy the zeros to the left most bits, this shows that zeros are replicated

‘N’ times and are concatenated with the shifted bits that are actually 15...N.In T5, we
take the contents from C through the bus and feed it to the register ra which is the
destination register. Other instructions that would have similar tables are ‘shiftl’ and

< b

asr-.

In case of asr, when the data is shifted right, instead of copying zeros on the left side, we
would copy the sign bit from the original data to the leftmost position.

Other instructions

Other instructions are mov, call and ret. Note that these instructions were not available
with the SRC processor.
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Structural RTL for the mov instruction

mov ra, rb

In mov instruction the data in

register rb, which is the source

register, is to be moved in the

register ra, which is the destination

register. In first three steps, mov

instruction is fetched. In step T3

the contents of register b are

placed in buffer register C through the ALSU unit while in step T4 the buffer register C
transfers the data to register ra through internal unibus.

Structural RTL for the mov immediate instruction

movi ra, c2

In this instruction ra is the

destination register and constant c2

is to be moved in the ra. First three

steps  would fetch the move

immediate instruction. In step T3 we

would take the constant c¢2 and place

it into the buffer register C. Buffer

register C is 16bit register and c2 is 8bit constant so we need to concatenate the
remaining leftmost bits with the sign bit which is bit ‘7’ shown within angle brackets.
This sign bit which is the most significant bit would be ‘1 if the number is negative and

‘0’ if the number is positive. So depending upon this sign bit the remaining 8bits are
replicated with this sign bit to make a 16bit constant to be placed in the buffer register C.
In step T4 the contents of C are taken to the destination register ra.

In case of FALCONA, ‘in’ and ‘out’ instructions are present which are not present in the
SRC processor. So, for this we assume that there would be interconnection with the input

and output addresses up to 0..255.
Structural RTL for the in instruction
inra, c2

First three steps would fetch the
instruction In step T3 we take the
IO [c2] which indicates that go to
10 address indicated by c2 which is
a positive constant in this case and

then data would be taken to the

buffer register C. In step T4 we
would transfer the data from C to
the destination register ra.

Structural RTL for the out
instruction

out ra, c2
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This instruction is opposite to the ‘in’ instruction. First three instructions would fetch the
instruction. In step T3 the contents of register ra are placed in to the buffer register C and

then in Step T4 from C the data is placed at the output port indicated by the c2 constant.
So this instruction is just opposite to the ‘in’ instruction.

Structural RTL for the call instruction
call ra, rb

In this instruction we need to give the control to the procedure, subroutine or to another
address specified in the program. First

three steps would fetch the call ey BT
instruction. In step T3 we store the i

present contents of PC in to the buffer

register C and then from C we transfer T0-T2 Instruction Fetch
the data to the register ra in step T4.

As a result register ra would contain T3 G P

the original contents of PC and this

would be a pointer to come back after T4 Rlra]s+—C;
executing the subroutine and it would

be later used by a return instruction. In 5 C < RIrb]

step TS5 we take the contents of register

tb, which would actually indicate to T6 PC —C;

the point where we want to go. So in

step T6 the contents of C are placed in
PC and as a result PC would indicate the position in the memory from where new
execution has to begin.

Structural RTL for return

instruction

retra
After instruction fetch in first 3 steps
TOT2, the register data in ra is placed
in the buffer register C through ALSU
unit. PC is loaded with contents of this
buffer register in step T4. Assuming T3 C « Rlra];
that bus activity is synchronized,
appropriate  control  signals  are
available to us now.
Control signals required at different
timing steps of FALCON(A
instructions
The following table shows the details of the control signals needed. The first column is
the time step, as before. In the second column the structural RTLs for the particular step

Step RTL

TO-T2 Instruction Fetch

T4 PC — C;

is given, and the
corresponding
control signals are
shown in the third
column. Internal bus
is active in step TO,
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causing the contents of the PC to be placed in the Memory Address register MAR and
simultaneously the PC is incremented by 2 and placed it in the buffer register C.
Recalling previous lectures, to write data in to a particular register we need to enable the

load signal. In case of fetch instruction in step TO, control signal LMAR is enabled to
cause the data from internal bus to be written in to the address register. To provide data to

the bus through tristate buffers we need to activate the ‘out’ control signal named as
‘PCout’, making contents of the PC available to the ALSU and so control unit provides

the increment signal ‘INC2’ to increment the PC. As the ALSU is the combinational
circuit, the PCout signal causes the contents over the 2nd input of ALSU incremented by

2 and so the data is available in buffer register C. Control signal “LC” is required to write

data into the buffer register C form the ALSU output. Now note that ‘INC2’ is one of the
ALSU functions and also it is a control signal. So knowing the control signals, which
need to be activated at a particular step, is very important.

So, at step TO the control signal ‘PCout’ is activated to provide data to the internal bus.

Now control signal ‘LMAR’ causes the data from the bus to be read into the register
MAR. The ALSU function ‘INC2’ increments the PC to 2 and the output are stored in the
buffer register C by the control signal ‘L.C’. The data from memory location addressed by
MAR is read into Memory Buffer Register MBR in the next timing step T1. In the mean

time there is no activity on the internal bus, the output from the buffer register C (the
incremented value of the PC) is placed in the PC through bus. For this the control signal

‘LPC’ is activated.

To enable tristate buffer of Memory Address Register MAR, we need control signal
‘MARout’. Another control signal is required in step T1 to enable memory read i.e.
‘MRead’. In order to enable buffer register C to provide its data to the bus we need
‘Cout’ control signal and in order to enable the PC to read from C we need to enable its

load signal, which is ‘LPC’. To read data coming from memory into the Memory Buffer
Register MBR, ‘LMBR’control signal is enabled. So in T2 we need 5 control signals, as
shown.

In T2, the instruction register IR is loaded with data from the MBR, so we need two
control signals,”MBRout’ to enable its tristate buffers and the other signal required is the

load signal for IR register ‘LIR’. Fetch operation is completed in steps TOT2 and
appropriate control signals are generated. Those control signals, which are not shown,
would remain deactivated. All control signals are activated simultaneously so the order

of these controls signals is immaterial. Recall that in SRC the fetch operation is
implemented in the same way, but ‘INC4’ is used instead of ‘INC2’ because the
instruction length is 4 bytes.

Now we take a look at other examples for control signals required during execution
phase.

For various instructions, we will define other control signals needed in the execution
phase of each instruction but fetch cycle will be the same for all instructions.

Another important fact is the interface of the CPU with an external memory and the I/O
depending upon whether the I/O is memory mapped or nonmemory mapped. The
processor will generate some control signals, used by the memory or I/O to read/write
data to/from the I/O devices or from the memory. Another assumption is that the memory

read is fast enough. Therefore data from memory must be available to the processor in a

fixed time interval, which in this particular example is T2.

For a slow data transfer, the concept of handshaking is used. Some idle states are
introduced and buffer is prepared until the data is available. But for simplicity, we will
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assume that memory is fast enough and data is available in buffer register MBR to the

CPU.

External FALCON(A CPU

This figure is a symbolic
representation of the
FALCONA in the form of
a chip. The external
interface consists of a 16
bit address bus, a 16bit
data bus and a control bus
on which different control
signals like MRead,
MWrite, IORead, IOWrite
are present.

Example Problem

Interface

54

16-hit data bus

FOUR Control
hus signals:
MRead
hfrite
I0Read
1D0Vrite

16-hit
address hus

Instruction RTL equivalent Address Bus Data Bus |MRead MAfrite
<15..0> <15..0=

load r7, [12+r5]

addir2, r4, 31

jump [52]

store r1,[ r3+17]

subra, rf, ré

shiftr r2, r6, 4

movr3, r2

izrd, [-32]
(a) What will be the Memory | Memory
logic levels on the Address | Content
external FALCONA 0020k D2h G340 3h
buses when each of the 324 1h Cah
given FALCONA 0021k 460 - -
instruction is executing 0022h 4%h
on the processor? 0023h 5Fh C344h Ezh
Complete the table
given. All numbersare | - | e T T
in the decimal number 200k 44h 1240h 07h

301k 23 1241h &5h
Last Modified: 12Jan11 C3020 E3n 124 I’%g:ﬁllol
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system, unless noted otherwise.

(b) Specify memoryaddressing modes for each of the FALCONA instructions given.
Assumptions

For this particular example we will assume that all memory contents are properly aligned,
i.e. memory addresses start at address divisible by 2.

PC= C348h

This table contains a partial memory map showing the addresses and the corresponding
data values.

The next table shows the register map showing the contents of all the CPU registers.

Another important thing to note is that memory storage is bigendian.

Solution:
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FALCON-A RTL equivalent Address Bus* DataBus | M [M

Instruction <15.0> <15.0> R |W
load r7, [r5+12] | R[7] «— M[12+R][5]] 1240h 0785h 1 0
addir2, r4, 31 R[2] «— R[4]+31 Unknown ?7?? ? | ?
jump [52] PC «— PC +52 Unknown ???? 7 | 2
store r1, [r3+17] | M[R[3]+17] «— R[1] C300h 4423h 0|1
sub rh, r7, ré R[5] «—— R[7]-R[6] Unknown ???7 ? 07
shiftrr2, r6, 4 R[2] «— Unknown ???? ? ?

(440)SR[6]<15...4>

mov r3, r2 R[3] «— R[2] Unknown ???? ? ?
jz r4, [-32] R[4]=0:PC«—PC-32 Unknown ?7?? ? | ?

In this table the second column contains the RTL descriptions of the instructions. We

have to specify the address bus and data bus contents for each instruction execution. For
load instruction the contents of register r5+12 are placed on the address bus. From

register map shown in the previous table we can see that the (contents of rS are 1234h:

Now contents of r5 are added with displacement value 12 in decimal .In other words the
address bus will carry the hexadecimal value (1234h+ Ch = 1240h/Now for load
instruction, the contents of memory location at address 1240h will be placed on the data

bus. From the memory map shown in the previous table we can see that memory location

1240h contains(Z85h! Now to read this data from this location, MRead control signal will

be activated shown by 1 in the next column and MWrite would be 0.Similarly RTL
description is given for the 2nd instruction. In this instruction, only registers are involved

so there is no need to activate external bus. So data bus, address bus and control bus
columns will contain ‘?” or ‘unknown’. The next instruction is jump. Here PC is
incremented by the jump offset, which is 52 in this case. As before, the external bus will

remain inactive and control signals will be zero. The next instruction is store. Its RTL
description is given. For store instruction, the register contents have to be placed at
memory location addressed by R [3] +17. As this is a memory write operation, the
MWrite will be 1 and MRead will be zero. Now the effective address will be determined

by adding the contents of R [3] with the displacement value 17 after its conversion to the
hexadecimal. The resulting effective address would be C300h. In this way we can
complete the table for other instructions.

Addressing Modes

This table lists the addressing mode for each instruction given in the previous example.
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Lecture No. 15

Logic Design and Control Signals Generation in SRC

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.4
Summary

1) Logic Design for the Unibus SRC
2) Control Signals Generation in SRC

Logic Design for the Uni(bus SRC

In the previous sections, we have looked at both the behavioral and structural RTL for
the SRC. We saw that there is a need for some control circuitry for ensuring the proper

and synchronized functioning of the components of the data path, to enable it to carry out

the instructions that are part of the Instruction Set Architecture of the SRC. The control

unit components and related signals make up the control path. In this section, we will talk
about

Identifying the control signals required

e The external CPU interface

* Memory Address Register (MAR). and Memory Buffer Register (MBR) circuitry
e Register Connections

We will also take a look at how sign extension is performed. This study will help us
understand how the entire framework works together to ensure that the operations of a
simple computer like the SRC are carried out in a smooth and consistent fashion.

Identifying control signals

these control signals may be to select the appropriate

function for the ALU to be performed, to select the appropriate registers, or the
appropriate memory location.

Any instruction that is to be executed is first fetched into the CPU. We look at the control
signals that are required for the fetch operation.

Control signals for the fetch operation
Table 1 lists the control signals that are needed to ensure the synchronized register

transfers in the instruction fetch phase. Note that{¥e Uise uppercase for control signals as
between the two. Also note that control signals during each time slot are activated

(Sequence If a particular control signal is not shown, its value is zero.
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Step RTL Control Signals
TO MAR & PC,C< PC+4, PCout, LMAR INC4 LC
T MEE « M[MAER], PC « C, | LMER, MEsad, MAEout,
Cout, LPC
2 IR < MER; MERout, LIE
Table:1

As shown in the Table: 1, some control signals are to let register values to be written onto
buses, or read from the buses. Similarly, some signals are required to read/ write memory
contents onto the bus. The memory is assumed to be fast enough to respond during a
given time slot; if that is not true, wait states have to be inserted. We require four control
signals to be issued in the time step TO:

PCout: This control signal @llows the contents of the Program Counter register to'be™)
LMAR: This signal enables write onto the memory address register (MAR), thus the

value of PC that is on the bus, is copied into this register

INC4: It lets the PC value to be incremented by 4 in the ALSU, and result to be
(stored”in € Notice that the value of PC has been received by the ALSU as an
operand. This control signal allows the constant 4 to be added to it.

The ALSU is assumed to include an INC4 function

LC: This enables the input to the register C for writing the incremented value of PC

onto it.

During the time step T1, the following control signals are applied:

LMBR: (This enables the “write™ for the registerMBR) When this signal is activated,

whatever value is on the bus, can be written into the MBR.

MRead: Allow memory word to be gated from the external CPU data bus into the

LPC: This will enable the input to the PC for receiving a value that is currently on the
internal processor bus. Thus the PC will receive an incremented value.

At the final time step, T2, of the instruction fetch phase, the following control signals
are issued:

MBRout: To enable the tristate buffers with the MBR.
LIR: To allow the IR read the value from the internal bus. Thus the instruction stored

Uni(bus SRC implementation

The unibus implementation of the SRC data path is given in the Fig.1. We can now
visualize how the control signals in mutually exclusive time steps will allow the
coordinated working of instruction fetch cycle.
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3l L]

Rl 31 lines
Ferveral } o g

purpase
regElers : o
(32-bats each)

To external ]
CPTJ bus Internal processor bus S om—

Fig.1

Similar control signals will allow the instruction execution as well. We have already
mentioned the external CPU buses that read from the memory and write back to it. In the

given figure, we had not shown these external (address and data buses) in detail. Fig.2

will help us understand this external interface.

J&-brt
32-bil data bus address bus

Control bus
signals

Fig.2

External CPU bus activity

Let us take up a sample problem to further enhance our understanding of the external
CPU interface. As mentioned earlier, this interface consists of the data bus/ address bus,

and control signals for enabling memory read and write.

Example problem:

(a) What will be the logic levels on the external SRC buses when each of the given SRC
instruction is executing on the processor? Complete Table: 2. all numbers are in the
decimal number system, unless noted otherwise.

(b) Specify memory addressing modes for each of the SRC instructions given in Table: 2.
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SR Instruction

RTL equivalent

Addmess Bus
431,00

[ata Bus
«31.0

MRead

Dirite

Id r7, 12{r5)

Idr232

la 332

Idr ri2,-4

lar r20

st r2ir6)

str r3, 8

strd 32

Assumptions:

Tahle:2

* All memory content is aligned properly.
In other words, all the memory accesses start at addresses divisible by 4.
Value in the PC = 000DC348h

Memory map with assumed values

Memory Memory
Address Content
00000020k D2h
000000210 %6h
000000220 4%h
000000230 ZFh
M0DC300R 44k
M0DC301h Z3h
M00DC302h E3h
(00D C303R D5h

Register map with assumed values

Last Modified: 12Janl1

000DCZE40h 51h
0o0DC34lh CAh
000DC343h Dih
000D C344h Elh
ODABIZ240h 07h
O0DAEIZ4lh 83h
O00AE1242h E5h
ODABIZ43h 3Dh

Fig.3
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Register Name |  Content
R[0] 0012A54Bh
R[1] 10234C B8k
R[2] D296492Fh
E[3] 001400CDh
E[4] B7432301h
R[5] D0AB1234h
R[6] 00000020k
R[7] 01432D7Fh
R[8] 00B94821h
R[?] OOCDATASH
E[10] D031A0FOR
R[11] 0012A246h
R[12) 000FAB17h

Fig.4

Solution Part (a):

SRC Instruction RTL equivaient Address DataBus (M| M
Bus* <310 |R(W
<31_0>

Idr7, 12{r5) |[R[7] « M[12+R5])|00aB1240n | 078565300 [ 1| O

Idr2, 32 RI2] — M[32] 000000200 | D29s452Fh (1 | O

larg, 32 Ri9| ~ 32 LInknown Unkmown |7 ]| ¢

Idrri2, 4 RI12] « MPC-4] |000DC344h| 44233060 (1] 0

larr3, 0 Ri3] «— PC LInknown Unknown N

str2, 0(re) MIR[E]] — F{2] 000000200 | D298452Fh | 0 | 1

strrd, 8 MIPC-B]«< RI3| 000DC340R | 001400CDH | O | 1

strd, 32 M32] = R[] 000000200 | B7432301h |0 | 1

Tahle:3

(Note that the SRC uses the bigendian storage format).

Solution part (b):
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SRC Addressing
Instruction Mode
Id r7, 12(r5) Displacement
Idr2, 32 Direct
lar9, 32 Immediate
Idr r12, -4 PC Relative
larr3, 0 Register
str2, 0(r6) Register Indirect
strr3, 8 PC Relative
strd, 32 Register Direct
Fig:5
Notes:
* Relative addressing is always PC relative in the SRC
skokk

Displacement addressing mode is the same as Based or Indexed in the SRC. It is
also the same as Register Relative addressing mode

Memory address register circuitry
We have already talked about the functionality of the MAR. It provides a temporary
storage for the address of memory location to be accessed. We now take a detailed look

at how it is interconnected with other components. (The MAR'is connected directly to the
‘CPU internal bus, from which it is loaded (receives a value). The LMAR signal causes
the contents of the internal CPU bus to be loaded into the MAR. It writcs onto the CPU
external address bus. (The MARGuE signal cauises the contents of the MAR fo be placed on )
(the address bus) Thus, it provides the addresses for the memory and I/O devices over the
CPU’s address bus. A set of tristate buffers is provided with these connections; the tri

state buffers are controlled by the control signals, which in turn are issued when the
corresponding instruction is decoded. The whole circuitry is shown in Fig.6.

MRead
fram CPU's
data bus = 3 clate buffars 1

LMAR — - MAR

L 3-ctate buffars [=—) 10 intemal bus

]

MAR DUt
Fig:6

Memory buffer register circuitry

The Memory Buffer Register (MBR) holds the value read from the memory or I/O
device. It is possible to load the MBR from the internal CPU bus or from the external
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CPU data bus. The MBR also drives the internal CPU bus as well as the external CPU
data bus. Similar to the MAR register, tristate buffers are provided at the connection
points of the MBR, as illustrated in the Fig.7.

MRead INT2MER
l !

i L ]

fr cPu )
32:3 bus ” _.' 3-state huffers l I.5tate buffars ref—from internal bus

LMBR —— MER

10 CPU'S g 3. ctate buffers i 3-state buffers ==jp» 10 internal bus

data bus

a ¥

| |
M¥¥rite MBRout

Fig:7

Register connections

The register file containing the General Purpose Registers is programmer visible.
Instructions may refer to any of these registers, as source operands in an operation or as
the destination registers. Appropriate circuitry is needed to enable the specified register
for read/ write. Intuitively, we can tell that we require connections of the register to the

CPU internal bus, and we need control signals that will enable specified registers to be
read/ write enabled as a corresponding instruction is decoded. Fig.8 illustrates the register
connections and the control signals generation in the unibus data path of the SRC. We

can see from this figure that the ra, rb and rc fields of the Instruction Register specify the
destination and source registers. The control signals RAE, RBE and RCE can be applied

to select any of the ra, b or rc field respectively to apply its contents to the input of Sto
32 decoder. Through the decoder, we get the signal for the specific register to be

accessed. (The'BUS2R control signal'is activated if it is desired to(ritelinto the register)
On the other hand, iftheregister contents are tobewritten to'thebus) the control signal
R2BUS)is activated.
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IR|opc [ra | b | ;| wwewsse

I %Eﬁfﬁcs
s 5-10-32 decoder

R2BUS i BUSIR
Fig.8

Alternate control circuitry for register selection

Fig.9 illustrates an alternate circuitry that implements the register connections with the
internal processor bus, the instruction register fields, and the control signals required to
coordinate the appropriate read/write for these registers. Note that this implementation is
somewhat similar to our earlier implementation with a few differences. It illustrates the
fact that the implementations we have presented are not necessarily the only solutions,
and that there may be other possibilities.

IF. l opt T rh e [ " naan Repest | [ HRepeat |
| 32times | _ 32 timas

J I 3 e o I

i ROA 7 ;i ROA

L 5 1 P P V4 :

g | oy

# roce R :

L . 3

o . : :

¥ : :

"y - -

R31 0uf

R31A FELE R B
P — . N -

This partwill be repeated for RZBUS | BUSIR Pl RIB1

as shown on the ned slide 1

Fig.9

In this alternate circuitry, there is a separate 5t032 decoder for each of the register fields
of the instruction register. The output of these decoders is allowed to be read out and
enables the decoded register, if the control signal (RAE, RBE or RCE) is active.
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Control signals Generation in SRC
We take a few example instructions to study the control signals that are required in the
instruction execution phase.

Control signals for the add instruction
The add instruction has the following syntax:

Table: 4 lists the control signals that are applied at each of the time steps. The first three
steps are of the instruction fetch phase, and we have already discussed the control signals
applied at this phase.

Step RTL Control Signals
TO — T2 | Instruction Fetch As before
T3 A «— R[rb]; RBE, R2BUS, LA
T4 C «— A+R]rc]; RCE, R2ZBUS, ADD, LC
T5 R[ra] «— C; Cout. RAE, BUS2R
Table: 4

the control®BB)is applied, which will Enable'the register b to writeits™)
contents onto the internal CPU bus, as it is decoded. The writing from the register onto -
‘the bus is enabled by the control signal R2BUS. Control signal LA allows the bus
(contents o be transferred o the register A) (which will supply it to the ALSU). At time
(step'T4) the(control signals applied are RCE;R2ZBUSIADD, LC! to respectively enable
the register rc, enable the register to write onto the internal CPU bus (which will supply

the second operand to the ALSU from the bus), select the add function of the ALSU
(which will add the values) and enable register C (so the result of the addition operation
is stored in the register C). Similarly in TS5, signals Cout, RAE and BUS2R are activated.

Sign extension
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We consider the field c¢2, which is a 17 bit constant.(Sign'extension of ¢2 requires that we
‘copy €2<16> to all the leftmost bits of the destination register, in addition to copying the -
(original constant values to the register) This means that bus<31...17> should be the same

as c2<16>. A 15 line tristate buffer can perform this sign extension. So we apply c2<16>
to all the inputs of this tristate buffer as illustrated in the Fig.10.

| L buffers w

Enatule
M |

15
Tri-slate 15
buffers iy

Sign extension of the 22 bit constant¢!| Enable
will e done In the same way

c2out

Fig:10

Structural RTL for the addi instruction

We now return to our study of the control signals required in the instruction execute
phase. We have already looked at the add instruction and the corresponding signals. Now

we take a look at the addi (add immediate) instruction, which has the following syntax:
addi ra, rb, c2

Table: 5 lists the RTL and the control signals for the addi instruction:

Step RTL for addi Control signals
TO-T2 Instruction fetch As before
T3 A« R[rb]; RBE, R2BUS, LA

T4 o« A+ c2(sign extend); cZout, ADD, LC
TS Rra] « C; Cout RAE, BUS2R

Tabhle:5
The table shows that the control signals for the addi instruction are the same as the add
instruction, except in the time step T4. At this time step, the control signals that are
applied are c2out, ADD and LC, to respectively do the following:
Enable the read of the constant c¢2 (which is sign extended) onto the internal processor
bus. Add the values using the ALSU and finally assign the result to register C by
enabling write for this register.

To place a 0 on the bus
When the field rb is zero, for instance, in the load and store instructions, we need to
place a zero on the bus. The given circuit in Fig.11 can be used to do this.
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ll"pl“l'&‘]l"l L IR %
2 L 13 4
I* Tr—RCcE v
E
Harawired1o | Tri-state | 2
Logle 0 bufers [~ *
Enakle
/ / RO I

[,
T () 5-10-32 decodet _/§ - ZR2BUS
| ReE ‘ R1_7
\, Il F
L

- R31
Don connect b
this line 1o the RI8l
fri-state bufer &t 3 RBE
| the output of RO |
Fig:11

Note that, by default, the value of register RO is 0 in some cases. So, when the selected
register turns out to be 0 (as rb field is 0), the line connecting the output of the register RO
is not enabled, and instead a hardwired 0 is output from the tristate buffer onto the CPU
internal bus. An alternate circuitry for achieving the same is shown in the Fig.12.

w
-
From IR=21.17> Hardwiredto | Tri-state .
Logic 0= ™ buffers ’ E
5 2
t = Enabla =
| s
g »ROB
B [PRIB \ ZRIBUS
A |t A
- 4 . i
& . B
< »R31B ; :
| Instead of connacting this
line to the input of the
EBE gates, connect it to the

enable of the tri-state
buffers as shown heme
s PR et

Fig:12

Control signals for the Id instruction

Now we take a look at the control signals for the load instruction. The syntax of the
instruction is:

Id ra, c2 (rb)

Table: 6 outlines the control signals as well as the RTL for the load instruction in the
SRC.

The first three steps are of the instruction fetch phase. Next, the control signals issued

are:

Last Modified: 12Jan11 Page 181



Advanced Computer ArchitectureCS501

Step |RTLforld Control Signals

TO-T2 |Instruction fetch As befare
T3 A = (rb=0):0, {b#0):R[rb]); | RBE, R2BUS, LA

T4 Ce A+ (16aiR=16= @IR=15.0=); |CZout, ADD, LC

T4 WMAR « C; Cout, LMAR

TG WER « M[MAR]; MARout, MRead, LMBR

T7 Riral « MBR, MBRout, RAE, BUSZR
Tahle:6

RBE is issued to allow the register b value to be read

R2BUS to allow the bus to read from the selected register

LA to allow write onto the register A. This will allow the CPU bus contents to be written
to the register A.

At step T4 the control signals are:

c2out to allow the sign extended value of field c2 to be written to the internal CPU bus
ADD to instruct the ALSU to perform the add function.

LC to let the result of the ALSU function be stored in register C by enabling write of
register C.

Control signals issued at step T5:

(Couitis to read the register C, this copies the value in C to the internal CPU bus.

([CMAR to Enablewrite of the Memory Address Register) (which will copy the value
present on the bus to MAR). This is the effective address of memory location that is to be
accessed to read (load) the memory word.

During the time step T6:

MARout to read onto the external CPU bus (the address bus, to be more specific), the
value stored in the MAR. This value is an index to memory location that is to be
accessed.

MRead to enable memory read at the specified location, this loads the memory word at
the specified location onto the CPU external data bus.

LMBR is the control signal to enable write of the(MBR'(Meémory Buffer Register). It
will obtain its value from the CPU external data bus.

Finally, the control signals issued at the time step T7 are:

MBRout is the control signal to allow the contents of the MBR to be read out onto the
CPU internal bus.

RAE is the control signal for the destination register field ra.Ifwill'let the actual index of
and

BUS2R will let the appropriate destination register be written to with the value on the -
CPU internal bus.
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Lecture No. 16

Control Unit Design
Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 4

Summary

e Control Signals Generation in SRC (continued...)
e The Control Unit
e 2Bus Implementation of the SRC Data Path

This section of lecture 16 is a continuation of the previous lecture.

Control signals for the store instruction
st ra, c2(rb)
The store time step operations are similar to the load instruction, with the exception of
steps T6 and T7. However, one can easily interpret these now. These are outlined in the
given table.

Step |RTL for st Control Signals
TO-T2 |instruction fetch 5 before
T3 |A « ((b=000(m#£0) RBE, RZBUS, BAout, LA
T4 |C e« A +(16aIR<16> C2out, ADD,LC
CIR<15. 02
T8 MAR &= Cout, LMAR
T6é |MBR — R [ra) TRAE, R2BUS, INT2ZMBR, LMER |
T7 |M[MAR]« MBR, MARoUt, MWrite

Control signals for the branch and branch link instructions
Branch instructions can be either be simple branches or linkandthenbranch type. The
syntax for the branch instructions is

brzr rb, rc

This is the branch and zero instruction we looked at earlier. The control signals for this
instruction are:

As usual, the first three steps are for the instruction fetch phase. Next, the following
control signals are issued:
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Step RTL for br Control signals
TO-T2 |Instruction Fetch As before
T3 CON « condR[rc]), | LCON, RCE, R2BUS
T4 |CON PC « R[rb] RBE, R2BUS, LPC (if CON=1)

LCON to enable the CON circuitry to operate, and instruct it to check for the appropriate
condition (whether it is branch if zero, or branch if not equal to zero, etc.)

RCE to allow the register rc value to be read.

R2BUS allows the bus to read from the selected register.

At step T4:

RBE to allow the register rb value to be read. rb value is the branch target address.
R2BUS allows the bus to read from the selected register.

LPC (if CON=1): this control signal is issued conditionally, i.e. only if CONis 1, to
enable the write for the program counter. CON is set to 1 only if the specified condition is

met. In this way, if the condition is met, the program counter is set to the branch address.
Branch and link instructions

The branch and link instruction is similar to the branch instruction, with an additional
step, T4. Step T4 of the simple conditional branch instruction becomes the step T5 in this

case.

Step RTL Control signals
TO-T2 |Instruction Fetch As before

T3 CON « cond(R[rc]), |LCON, RCE, R2BUS

T4 CON: R[ra] « PC, RAE, BUSZR, PCout (i
CON=1)

TS CON: PC « R[rb], RBE, R2BUS, LPC (if CON=1)

The syntax of the instruction ‘branch and link if zero’ is
brlzr ra, rb, rc
Table that lists the RTL and control signals for the store instruction of the SRC is given:
The circuitry that enables the condition checking for the conditional branches in the SRC
is illustrated in the following figure:
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J4o.8 Decoder

1

7 ] L] ] | 1]

BUS=31.08=

i}

[Mever Branch

Ahways Branch
12 = == Branchif
,{)3 [ | zerm
p— .Il'_l
Dc : CON
— K] 1
EBit =31=> onby b "|_1 | \‘l <
I 'fF"-.cn \\ = — Q
,{J'f f—)\ \ LOON
. Branch if ] jE:I.‘aﬁCh if
_posinve not zero

Control signals for the shift right instruction

The given table illustrates the RTL and the control signals for the shift right ‘shr’
instruction. This is implemented by applying the five bits of n (nb4, nb3, nb2, nb1, nb0)
to the select inputs of the barrel shifter and activating the control signal SHR as explained

in an earlier lecture.

Step |RTL for shr Control signals
T0-T2 | Instruction Fetch As before
T3 n<4..0><— |R<4..0>; LN
T4 (N=0):(n<4..0> LN(N=0), RCE, R2BUS
R[rc]<4..0>);
T5 C «— (Na0) ©R[rb]<31..N>; | LC, SHR(N)
T6 R[ra] «— C; Cout, RAE, BUS2R
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Generating the Test Condition N=0

31 4 0
[=] FTiT count

The Control Unit
‘The control unit is responsible for generating control signals as well as the timing signals.

Hence the control unit is responsible for the synchronization of internal as well as
external events. By means of the control signals, the control unit instructs the data path
what to do in every clock cycle during the execution of instructions.

Control Unit Design

Since the control unit performs quite complex tasks, its design must be done very

carefully. Most errors in processor design are in the Control Unit design phase. There are -

I Hardwired approach
2. Micro programming

(Hardwired approach)is relatively faster, however, the final circuit is quite complex. The
microprogrammed implementation is usually slow, but it is much more flexible.

“Finitestate machine” concepts are usually used to represent the CU. Every state
corresponds to one “clock cycle” i.e., 1 state per clock. In other words each timing step
could be considered as just 1 state and therefore from one timing step to other timing
step, the state would change. Now, if we consider the control unit as a black box, then
there would be four sets of inputs to the control unit. These are as follows:
1. The output of timing step generator (There are 8 disjoint timing steps in our
example TOT7).
2. Opcode (opcode is first given to the decoder and the output of the decoder is
given to the control unit).
3. Data path generated signals, like the “CON” control signal,
4. Signals from external events, like “Interrupt” generated by the Interrupt generator.

The complexity of the control is a function of the
e Number of states
e Number of inputs to the CU
e Number of the outputs generated by the CU
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Hardwired Implementation of the Control Unit

The accompanying block diagram shows the inputs to the control unit. The output control
signals generated from control unit to the various parts of the processor are also shown in
the figure.

wn — ——
g =] f"— signals

- m e from the
t; 8 data path
S g . Hardwired Seconed.
% P < — Control  e—— 2P<ode
5= Unit ==
n © -— Signale
":-,' g from

-8 = W external
‘g Q \ —— AR

timing step generator

Example Control Unit for the FALCON(A

The following figure shows how the operation code (opcode) field of the Instruction
Register is decoded to generate a set of signals for the Control unit.

10...8
Op-code| ra "hmmum Register

5 to 32 0 OP foradd
decoder |1 OF] for addi

—i0 2 OP2 forsub

» 1 3 OP3 forsubi

. 2 4 OP4 for mul

& 1 5 OPS for div
4 .

L]

Enable 31 OP31 for halt

|
Logic ‘1’

This is an example for the FALCONA processor where the instruction is 16bit long.
Similar concepts will apply to the SRC, in which case the instruction word is 32 bits and

IR <31...27> contains the opcode. Similar concepts will apply to the SRC, in which case
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the instruction word is 32 bits and IR<31..27> contains the opcode. The most significant
5 bits represent the opcode. These 5bits from the IR are fed to a 5to32 decoder. These

32 outputs are numbered from 0to31 and named as op0, op! up to op31. Only one of
these 32 outputs will be active at a given time .The active output will correspond to
instruction executing on the processor.

To design a control unit, the next step is to write the Boolean Equations. For this we need
to browse through the structural descriptions to see which particular control signals occur

in different timing steps. So, for each instruction we have one such table defining
structural RTL and the control signals generated at each timing step. After browsing we

need to check that which control signal is activated under which condition. Finally we
need to write the expression in the form of a logical expression as the logical combination

of “AND” and “OR” of different control signals. The given table shows Boolean
Equations for some example control signals.

Step RTL Control Signals
TO0 |MAR<«— PC; PCout, LMAR, C=B;
T1 |MBR<~— M[MAR], PCout, INC4, LPC, MRead,
PC+«—PC +4: MARout, LMBR;
T2 |IR+— MBR; MBRout, C=B, LIR;
T3 | Instruction Execution

For example, PCout would be active in every TO timing step. Then in timing interval T3
the output of the PC would be activated if the opcode is 20 or 22 which represent jump

and subroutine call. In step T4 if the opcode is 16, 17, 18 or 19, again we need PCout
activated and these 4 instructions correspond to the conditional jumps. We can say that in
other words in step T1, PCout is always activated “OR” in T3 it is activated if the
instruction is either jump or subroutine call “OR” in T4 if there is one of the conditional
jumps. We can write an equation for it as

PCout=T0+T3.(OP20+0P22)+T4.(OP16+0OP17+0OP18+0P19)

In the form of logic circuit the implementation is shown in the figure. We can see that we
“OR” the opode 20 and 22 and “AND” it with T3, then “OR” all the op16 up to op19

and “AND” it with T4, then TO and the “AND” outputs of T3 and T4 are “OR” together

to obtain the PCout.
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PCout

OP20 —)

r

OF22

T4
Oplg
Op17
Op18
Op19

In the same way the logic circuit for LPC control signal is as shown and the equation
would be :

LPC=T1+T5.0P20+T6.CON.(OP16+OP17+0OP18+0P19)

T

T8 : _ T
oP20 L = N

T8

OP16 —|
oP17 —
QP18 {
oP19

We can formulate Boolean equations and draw logic circuits for other control signals in
the same way.

Effect of using “real” Gates

We have assumed so far that the gates are ideal and that there is no propagation delay. In
designing the control unit, the propagation delays for the gates can not be neglected. In
particular, if different gates are cascaded, the output of one gate forms the input of other.

The propagation delays would add up. This, in turn would place an upper limit on the
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frequency of the clock which controls the generation of the timing intervals TO, T1... T7.
So, we can not arbitrarily increase the frequency of this clock. As an example consider

the transfer of the contents of a register R1 to a register R2. The minimum time required

to perform this transfer is given by

tmi,, = tg + tbp + teomb + tl

The details are explained in the text with reference to Fig 4.10. Thus, the maximum clock

frequency based on this transfer will be 1/t,,,. Students are encouraged to study example
4.1 of the text.

2(Bus Implementation of the SRC Data Path

In the previous sections, we studied the unibus implementation of the data path in the
SRC. Now we present a 2bus implementation of the data path in the SRC. We observe

from this figure that there is a bus provided for data that is to be written to a component.
This bus is named the ‘in’ bus. Another bus is provided for reading out the values from

these components. It is called the ‘out’ bus.

Abus 31 0 Bhw
(“inbus™) [ 37 ll RO i Ot bus™)
4 2 L3
o _ General ___| K ¥,
| Purpose
—  Regkters —
R31
Both I IR b
buses are T
“Intemal "k PC ]I
processor m
" : 3
buses o ] }
] ] | AN
L

\\., ’f ,.f To External
vV {;‘ CPU Bus
\ ALSU ~———
Y\ C {
\ / "

Structural RTL for the ‘sub’ instruction using the 2(bus data path implementation
Next, we look at the structural RTL as well as the control signals that are issued in
sequence for instruction execution in a 2bus implementation of the data path. The given

table illustrates the Register Transfer Language representation of the operations for
carrying out instruction fetch, and execution for the sub instruction.
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Step RTL
T0 |MAR « PC
'”'fL:E:'F-'f.- Tt |MER & M[MAR], PC « PC + 4
etch ™

T2 I~ «— MBR,

4 A« R[rh];
Instruction

Execute T4 R[ra] « A- R[rc],

The first three steps belong to the instruction fetch phase; the instruction to be executed is
fetched into the Instruction Register and the PC value is incremented to point to the next
inline instruction. At step T3, the register R[rb] value is written to register A. At the time

step T4, the subtracted result from the ALSU is assigned to the destination register R[ra].
Notice that we did not need to store the result in a temporary register due to the
availability of two buses in place of one. At the end of this sequence, the timing step
generator is initialized to TO.

Control signals for the fetch operation

The control signals for the instruction fetch phase are shown in the table. A brief
explanation is given below:

Step RTL Control Signals
TO0 |MAR<«— PC; PCout, LMAR, C=B;
T1 |MBR<«— M[MAR], PCout, INC4, LPC, MRead,
PC+«—PC +4: MARout, LMBR;
T2 |IR+— MBR; MBRout, C=B, LIR;
T3 | Instruction Execution

At time step TO, the following control signals are issued:

e PCout: This will enable read of the Program Counter, and so its value will be
transferred onto the ‘out’ bus

e LMAR: To enable the load for MAR

e (C=B: This instruction is used to copy the value on the ‘out’ bus to the ‘in’ bus, so
it can be loaded into the Memory Address Register. We can observe in the data
path implementation figure given earlier that, at any time, the value on the ‘out’
bus makes up the operand B for the ALSU. The result C of ALSU is connected to
the “in” bus, and therefore, the contents transfer from one bus to the other can
take place.
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At time step T1:

PCout: Again, this will enable read of the Program Counter, and so its value will
be transferred onto the CPU internal ‘out’ bus

INC4: To instruct the ALSU to perform the incrementbyfour operation.

LPC: This control signal will enable write of the Program Counter, thus the new,
incremented value can be written into the PC ifitis made available on the “in”
bus. Note that the ALSU is assumed to include an INC4 function.

MRead: To enable memory word read.

MARout: To supply the address of memory word to be accessed by allowing the
contents of the MAR (memory address register) to be written onto the CPU
external (address) bus.

LMBR: The memory word is stored in the register MBR (memory buffer
register) by applying this control signal to enable the write of the MBR.

At time step T2:

MBRout: The contents of the Memory Buffer Register are read out onto the
‘out’ bus, by means of applying this signal, as it enables the read for the MBR.
C=B: Once again, this signal is used to copy the value from the ‘out’ bus to the

‘in’ bus, so it can be loaded into the Memory Address Register.

LIR: This instruction will enable the write of the Instruction Register. Hence the
instruction that is on the ‘in’ bus is loaded into this register.

At time step T3, the execution may begin, and the control signals issued at this stage
depend on the actual instruction encountered. The control signals issued for the
instruction fetch phase are the same for all the instructions.

Note that, we assume the memory to be fast enough to respond during a given time slot.

If that is not true, wait states have to be inserted. Also keep in mind that the control
signals during each time slot are activated simultaneously, while those for successive
time slots are activated in sequence.(If a particular control signal is not shown, its value is

Z€r0.
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Lecture No. 17

Machine Reset and Machine Exceptions

Reading Material
Vincent P. Heuring&Harry F. Jordan Chapter 4

Summary

e 3bus implementation for the SRC
e The Machine Reset
e Machine Exceptions

A 3(bus Implementation for the SRC

31 0

C bus gy Abus Bhus
Let us now look at a 3 . U e Y Y
bus implementation of the 3 — PG;‘;’?J‘::
datapath for the SRC as —  Registers —]|
shown in the figure. Two
buses, ‘A’ and ‘B’ bus for
reading, and a bus ‘C’ for / : e
writing, are part of this g : R

e e L L

implementation.  Hence : NE:;
all the special purpose as K |
well as the general MER

purpose registers have
two read ports and one
write port.

The
register
file must
hawve 2
read ports C To External
and one CPU Bus

write port l

Structural RTL for the Subtract Instruction using the 3(bus Data Path
Implementation

We now consider how instructions are fetched and executed in 3bus architecture. For
this purpose, the same ‘sub’ instruction example is followed.

The syntax of the subtract instructions is

sub ra, rb, rc
The structural RTL for implementing this instruction is given in the table. We observe
that in this table, only two time steps are required for the instruction fetch phase. At
time step TO, the Memory Address Register receives the value of the Program Counter.
This is done in the initial phase of the time step T0O. Then, the Memory Buffer Register
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receives the memory word indexed by the MAR, and the PC value is incremented. At
time step T1, the instruction register is assigned the instruction word that was loaded
into the MBR in the previous time step. This concludes the instruction fetch and now

the instruction execution can commence.

Step RTL
T0 |MAR—PC: MBR — M[MAR], PC — PC + 4:
Instruction
Fetch T1 |IR = MBR:

Execute

Instmctinn{ T2 |R[ra] «— R[rb] - R[rc];

In the next time step, T2, the instruction is executed by subtracting the values of
register rc from rb, and assigning the result to the register ra.
At the end of each sequence, the timing step generator is initialized to TO

Control Signals for the Fetch Operation
The given table lists the control signals in the instruction fetch phase. The control
signals for the execute phase can be written in a similar fashion.

Step |RTL Control Signals
T0 |MAR—PC; MER — M[MAR)], PCout, INC4, LPC, LbMAR, MRead,
PC —PC +4;
T IR—MBR, MBRout, C=B, LIR,
T2 |Instruction_ Execution

The Machine Reset

In this section, we will discuss the following
e Reset operation

e Behavioral RTL for SRC reset

e Structural RTL for SRC reset

The reset operation

(teloading the PC fo'a predefined value) The control step counter is set to zero so that

operation is restarted from the instruction fetch phase of the next instruction. The PC is
reloaded with a predefined value usually to execute a specific recovery or initializing
program.

(fordisableinterrupts during theinifialization operation! If a condition code register is
present, the reset instruction usually clears it,so as to clear any effects of previously
executed instructions. (Phelexternal flags and processor state registers are usually
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operations immediately or within a few cycles of receiving the reset instruction. The

processors state may then be examined in its halted state.
(PCand interrupts enable flags) The software reset instruction asserts the external reset

pin of the processor.

Reset operation in SRC

Hard Reset

‘The SRC should perform a hard reset upon receiving a start (Strt) signal. This initializes
the PC and the general registers.

Soft Reset

"The SRC should perform a soft reset upon receiving a reset (rst) signal. The soft reset
results in initialization of PC only.

The reset signal in SRC is assumed to be external and asynchronous.
PC Initialization

There are basically two approaches to initialize a PC.
1. Direct Approach

2. Indirect Approach

The PC is initialized with the address where the address of the startup routine is
([6cated The reset instruction loads the PC with the address of a jump instruction. The
jump instruction in turn contains the address of the required routine.

An example of a reset operation is found in the 8086 processor. Upon receiving the
reset instruction the 8086 initializes its PC with the address FFFFOH. This memory
location contains a jump instruction to the bootstrap loader program. This program
provides the system initialization

Behavioral RTL for SRC Reset
The original behavioral RTL for SRC without any reset operation is:
Instruction_Fetch :=(! Run&Strt: (Run [ 1; instruction_Fetch,

Run : (IR 7 M [PC]; PC [ PC+4;instruction_execution)),
instruction_execution:= (Id (:=op=1...) ;
This recursive definition implies that each instruction at the address supplied by PC is
executed. The modified RTL after adding the reset capability is
Instruction Fetch:=(! Run&Strt :( Run [ 1,

PC,R [0..31][10),

Run&!Rst :( IR [1 M [PC],

PC (1 PC+4, instruction_execution);

Run&Rst:( Rst[10, PC [10);

instruction_Fetch),
The modified definition includes testing the value of the “rst” signal after execution of
each instruction. The processor may not be halted in the midst of an instruction in the
RTL definition
To actually implement these changes in the SRC, the following modification are
required to add the reset operation to the structural RTL for SRC:
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e A check for the reset signal on each clock cycle
e A control signal for clearing the PC
e A control signal to load zero to control step counter

Example: The sub instruction with RESET processing

Step RTN Control Sequence
TO IRst:(MA « PC C « PC+d), | IRst:(PC, LMAR, INC4, LC
Rst(Rst =0 PC 0T+« |MRead), Rst.(CIfPC, Gotol);
0)
1 IRst:(MD « M[MAJFPC « | IRst:(C,q LPC Wait),
C), Rst (CIfPC, Gotal),
Rst(Rst —0OPC 0T«
0)
T2 IRst(IR « MD), IRst:(MBR, - LIR),
Ret(Rst &0 PC «0.T « |Rst: (CIPC, Gotol),
0)
T3 IRst (A « R[b]), IRst:(RBE, R2BUS, LA},
RatiRst <0 PC «0: T« |Rst: (ChPC, Gotol),
0)
T4 IRst:(C « A - R|rc]), IRst:(RCE, R2ZBUS, SUB, LC),
Rst(Rst « 0 PC «0.T « |Rst ([CIfPC, Gotol),
0)
15 IRst.(R[ra] « C), IRst:(LC: RAE, BUS2R: End),
| Rst.(Rst &= 0.PC «0. T« |Rst: (CiPC, Gotol),
. 0

Let us examine the contents of each phase in the given table. In step TO, if the Rst
signal is not asserted, the address of the new instruction is delivered to memory and the
value of PC is incremented by 4 and stored in another register. If the “Rst” signal is
asserted, the “Rst” signal is immediately cleared, the PC is cleared to zero and T, the

step counter is also set to zero. This behavior (in case of ‘Rst’ assertion) is the same for

all steps. In step T1, if the rst signal is not asserted, the value stored at the delivered
memory word is stored in the memory data register and the PC is set to its incremented
value.

In step T2, the stored memory data is transferred to the instruction register.

In step T3, the register operand values are read.

In step T4, the mathematical operation is executed.

In step T5, the calculated value is written back to register file.

During all these steps if the Rst signal is asserted, the value of PC is set to 0 and the

value of the step counter is also set to zero.
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Machine Exceptions

* External exceptions or interrupts are generally asynchronous (do not depend on
the system clock) while internal exceptions are synchronous (paced by internal
clock)

The exception process allows instruction flow to be modified, in response to internal or
external events or anomalies. The normal sequence of execution is interrupted when an
exception is thrown.

Exception Processing

1. (Logic to resolve priority conflicts) In case of nested exceptions or an exception
occurring while another is being handled #he processor must be able fo decide™
‘which exception bears the higher priority so as to handle it first. For example, an

exception raised by a timer interrupt might have a higher priority than keyboard
input.

2. Identification of interrupting device. The processor must be able to identify the

There are two basic approaches for managing this identification: exception
vectors and “information” register. The exception vector contains the address of
the exception handling routine. The interrupting process fills the exception vector

as soon as the interruption is acknowledged. The disadvantage of this approach is
that a lot of space may be taken up by vectors and exception handler codes.

In the information register, only one general purpose exception handler is used.
The PC is saved and the address of the general purpose register is loaded into the

PC. The interrupting process must fill the information register with information to
allow identification of the cause and type of exception.

3. Saving the processor state. As stated earlier the processor state must be saved
before jumping to the exception handler routine. The state includes the current -

Examples of Exceptions

Reset operation is treated as an exception by some machines e.g. SPARC and
MC68000.

This is an external exception caused by memory failure

This exception is generated by memory management unit to protect against illegal
accesses.
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Similar to data access exception

Generated to block misaligned data access

Types of Exception

Examples are illegal instruction, raised in response to executing an
instruction which does not belong to the instruction set. Another example would
be the privileged instruction exception.

There are various kinds of hardware exceptions. An example would be of a timer
which raises an exception when it has counted down to zero.

Variable trace and debugging is a tricky task. An easy approach to make it
possible is through the use of traps. The exception handler which would be called
after each instruction execution allows examination of the program variables.

In case of a power loss the processor might try to
save the system state to the hard drive, or alert an alternate power supply.
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Lecture No. 18
Pipelining

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.8
Summary

SRC Exception Processing Mechanism
Introduction to Pipelining
Complications Related to Pipelining
Pipeline Design Requirements

Correction: Please note that the phrase “instruction fetch” should be used where the
speaker has used “instruction interpretation”.

SRC Exception Processing Mechanism

Interrupt Request Interrupt Disable

Acknowledge ——
ireq: g Interrupt
iack: Flag IE:
Load PC with Get et 2
Exception Vector o il;fo Save PC
5 T InIPC<31...0>
Ivect<31...0> i s

The following tables on the next few pages summarize the changes needed in the SRC
description for including exceptions:
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Behavioral RTL for Exception Processing

Instruction_Fetch:=

('Runé&Strt: Run [1 1, Start
Run & !(ireq&IE):(IR [IM[PC], Normal Fetch
PC U PC +4;

Instruction_Execution),

Run&(ireq&IE): (IPC [1 PC<31..0>, Interrupt, PC copied
[1<15..0> [ Isrc info<15..0> II is loaded with the info.
IE [ 0: PC [ Tvect<31..0> PC loaded with new address

iack [ 1; iack [10),
Instruction_Fetch);

Additional Instructions to Support Interrupts

Mnemonic Behavioral RTL Meaning

SAEP=I6)  Riral<15.0>11<15.0>, (SIVEIIGRAIPO
R[rb] [1TPC<31..0>;

@EFD  11<15.0> I R[ral<15.0>,  (RESOIIGHIIPO
IPC<31..0> [ R[rb];

@G0  1E ‘Exception cnable

@HEED  1E 0. ‘Exception disable

1fi (0p=30) PC O IPC,IE [ 1; ‘Return from interrupt
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Structural RTL for the Fetch Phase including Exception Processing

Step Structural RTL for the 1(bus SRC
TO I(ireq&IE): (MA [ PC, C 1 PC + 4);

(ireq&IE): (IPC [ PC,II[] Isrc_info,

IE 1 0,PC [ (220 0)©(Isrc_vect<7..0>)© 00, iack [ 1;
iack (10, End) ;

T1 MD [ M[MA], PC I C;
T2 IR [ MD;
T3 Instruction Execution;

Combining the RTL for Reset and Exception

Instruction_Fetch:= Events
Normal
(Run&!Rst&!(ireq&IE):(IR [ M[PC], PC [] PC+4;
Instruction_Execution), Fetch
Soft Reset

Run&Rst: (Rst [0, IE [7 0, PC (7 0; Instruction_Fetch),
Hard Reset

'Run&Strt: (Run [11, PC [1 0, R[0..31] [] 0; Instruction_Fetch),
Interrupt

Run&!Rst&(ireq&IE): (IPC [ PC<31..0>,

[1<15..0> [sre_info<15..0>, IE [1 0, PC [ Ivect<31..0>,

iack [ 1; iack [1 0; Instruction Fetch) );

Introduction to Pipelining
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(in'alarger number of operations performed perunit Of fime) This approach also results in

a more efficient usage of all the functional units present in the processor, hence leading to

a higher overall throughput. As an example, many shorter integer instructions may be
executed along with a longer floating point multiply instruction, thus employing the
floating point unit simultaneously with the integer unit.

Executing machine instructions with and without pipelining

We start by assuming that a given processor can be split in to five different stages as
shown in the diagram below,

and as explained later in this A7 A
section. Each stage receives P N
its input from the previous - ’
stage and provides its result
to the next stage. It can be

easily seen from the diagram

that in case of a non
pipelined machine there is a
single instruction add r4, r2, el

addrd, r2,r3 sub rG, r7, S zhirl, r2, 4

AR A
hemory Register
Access Write

add rd, r2 r3
Only one

functional

: Without Pipelining
unit busy

o

r3 being processed at a given al

time, while (iVaNpIBelinEd)

With Pipelining

In the following paragraphs, we discuss the pipeline stages mentioned in the previous
example.

1. Instruction fetch

As the name implies, the instruction is fetched from the
instruction memory in this stage. The fetched instruction bits ldr, &
are loaded into a temporary pipeline register.

2. Instruction decode/operand fetch

In this stage the operands for the instruction are fetched from
the register file. If the instruction is add rl, r2,r3 the
registers r2 and r3 will be read into the temporary pipeline
registers. add rd, r2, 3

3. ALU’ operation

gtri b

=ub g, ¢7, 15
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(which'is required 'Sichas addition, Subffaction, €fe) The result is stored into temporary

pipeline registers. In case of a memory access such as a load or a store instruction, the
ALU calculates the effective memory address in this stage.

4. Memory access
(Memory Write 'operation is performed If there is no memory access involved in the

instruction, this stage is simply bypassed.

5. Register write

Latency & throughput

while fhEoughputis
defined as the number of instructions processed per second. Pipelining cannot lower the -
latency of a single instruction; however, it does increase the throughput. With respect to

the example discussed earlier, in a nonpipelined machine there would be one instruction
processed after an average of 5 cycles, while in a pipelined machine, instructions are
completed after each and every cycle (in the steadystate, of course!!!). Hence, the overall
time required to execute the program is reduced.

Complications Related to Pipelining

As an example let us consider the following two

instructions

written to in the instruction SI, while it is being read from in the instruction S2.1f the

instruction S2 is executed before instruction S1 is completed, it would result in an
incorrect value of R3 being used.

Resolving the dependency

1. Pipeline stalls
These are inserted into the pipeline to(blockinstructions from entering the pipeline until’)
some instructions in the later part of the pipeline have completed execution. Hence our

modified code would become
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S1:add r3,r2,r1
stall’
stall
stall
S2: sub r4, r5, r3

2. Data forwarding

(pipeline’where they'are tequired Data may be forwarded directly from the execute stage

of one instruction to the decode stage of the next instruction. Considering the above
example, S1 will be in the execute stage when S2 will be decoded. Using a comparator

we can determine that the destination operand of S1 and source operand of S2 are the
same. So, the result of S1 may be directly forwarded to the decode stage.

Branches can cause problems for pipelined processors. It is difficult to predict whether a
branch will be taken or not before the branch condition is tested. Hence

An alternate method is to introduce stalls, or
nop instructions, after the branch instruction.

'Load delay
(used in the next operation) Consider the following example:

S1: load r2, 34(r1)
S2: add r5,r2, r3

In the above code, the “correct” value of R2 will be available after the memory access
stage in the instruction S1. Hence even with data forwarding a stall will need to be placed
between S1 and S2, so that S2 fetches its operands only after the memory access for S1

has been made.

Pipeline Design Requirements
For a pipelined design, it is important that the overall meaning of the program remains

unchanged, i.e.,

6 A pipeline stall can be achieved by using the nop instruction.
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(and/or"loaded from data’memory) There should be a single data path so as not to
complicate the flow of instructions and maintain the order of program execution. (Fhete™
(While the destination register may be written) The data should be latched in between each

pipeline stage using temporary pipeline registers. Since the clock cycle depends on the
slowest pipeline stage, the ALU operations must be able to complete quickly so that the
cycle time is not increased for the rest of the pipeline.

Designing a pipelined implementation

In this section we will discuss the(¥arious steps involved in designing a pipeline: Broadly

speaking they may be categorized into three parts:

1. Adapting the instructions to pipelined execution

The instruction set of a nonpipelined processor is generally different from that of a

pipelined processor. (Phelinstructions in"a pipelined processor should have clear and")
definite phases, e.g., add r1, 2, r3. To execute this instruction, the processor must first
fetch it from memory, after which it would need to read the registers, after which the

An instruction like add r1, r2, a would need to execute the memory access stage before
the operands may be fed to the ALU. Such flexibility is not available in a pipelined
architecture.

2. Designing the pipelined data path
Once a particular instruction set has been chosen, an appropriate data path needs to be
designed for the processor.

(followed to'execute an instruction) Consider our two examples above
For the instruction @elelFlL 2, K3 nstriction Feich = Regisier Read = Execute = Register Irite)

whereas for the instruction @ddiFl;¥2,a  (remember a fepresents a memory address), we
have Instruction Fetch — Register Read — Memory Access — Execute — Register Write

3. Generating control signals

Control signals are required to regulate and direct the flow of data and instruction bits
through the data path. Digital logic is required to generate these control signals.
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Lecture 19

Pipelined SRC
Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 5
Computer Systems Design and Architecture 5.1.3
Summary

e Pipelined Version of the SRC
e Adapting SRC instructions for Pipelined Execution
e Control Signals for Pipelined SRC

Pipelined Version of the SRC

In this lecture, a pipelined version of the SRC is presented. The SRC uses a fivestage
pipeline. Those five stages are given below:

1. Instruction Fetch

2. Instruction decode/operand fetch
3. ALU operation

4. Memory access

5. Register write

As shown in the next diagram, there are several registers between each stage.

After the instruction has been fetched, it is stored in IR2 and the incremented value of the
program counter is held in PC2. When the register values have been read, the first
register value is stored in X3, and the second register value is stored in Y3. IR3 holds the
opcode and ra. If it is a store to memory instruction, MD3 holds the register value to be
stored.

After the instruction has been executed in the ALU, the register Z4 holds the result. The
opcode and ra are passed on to IR4. During the write back stage, the register Z5 holds the
value to be stored back into the register, while the opcode and ra are passed into IRS.
There are also two separate memories and several multiplexers involved in the pipeline
operation. These will be shown at appropriate places in later figures.

The number after a particular register name indicates the stage where the value of this
register is used.
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Pipeline Stages "—“‘—\ﬁ\__. Instruction
\

ey — B

Decode and
Cperand

Read
— .. — oy =y v
Pipeline Reyisters ALL
\ Operation
* . 3
.. 7 e . rl'l_-l'li

— =k — 07} —
lermary
4 Access
——G%ﬂ— il TR, —
Register
WWritehack

Adapting SRC Instructions for Pipelined Execution

As mentioned earlier, the SRC instructions fall into the following three categories:

1. ALU Instructions
2. Load/Store instructions
3. Branch Instructions

We will now discuss how to design a common pipeline for all three categories of
instructions.

1. ALU instructions
ALU instructions are usually of the form:

op(code ra, rb, rc
or
op(code ra, rb, constant.

In the diagram shown, X3 and Y3 are temporary registers to hold the values between
pipeline stages. X3 is loaded with operand value from the register file. Y3 is loaded with

either a register value from the register file or a constant from the instruction. The

operands are then available to the ALU. The ALU function is determined by decoding the

opcode bits. The result of the ALU operation is stored in register Z4, and then stored in

the destination register in the register write back stage. There is no activity in the memory

access stage for ALU instructions. Note that Z5, IR3, IR4, and IR5 are not shown
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explicitly in the figure. The purpose of not including these registers is to keep the
drawing simple. However, these registers will transfer values as instructions progress
through the pipeline. This comment also applies to some other figures in this discussion.

ALU Instruction [ Instruction

Memory :|
= Instruction

Fetch
Register File |« regwrite
Hpcogel T €2 || Rrb] Rlre] Rira] e
:_L | Decode and
iR Operand Read
Mpa— MUX/ .
F fms ALU
g _' ALU Operation
24|
Memory
Access
Register
Writeback

2. Load/Store instructions
Load/Store instructions are usually of the form:
op(code ra, constant(rb)

The instruction is loaded into IR2 and the incremented value of the PC is loaded in PC2.
In the next stage, X3 is loaded with the value in PC2 if the relative addressing mode is
used, or the value in rb if the displacement addressing mode is used. Similarly, C1 is
transferred to Y3 for the relative addressing mode, and ¢2 is transferred to Y3 for the
displacement addressing mode. The store instruction is completed once memory access
has been made and the memory location has been written to. The load instruction is
completed once the loaded value is transferred back to the register file. The following
figure shows the schematic for a load instruction. A similar schematic can be drawn for
the store instruction.
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Instruction
Fetch

v
Op codefra |c1 - Register File  |«— regwrite
‘ . | | | R[rb] R[re] R[ra] |e=—

| I_ll ‘_l Decode and
e Operand Read

Load Instruction
Instruction @ '_‘_

(Id, Idr, la, lar)

ALU
Operation

Memory
Access

Register
Writeback

3. Branch Instructions

Branch Instructions usually involve calculating the target address and evaluating a
condition. The condition is evaluated based on the c2 field of the IR and by using the
value in R[rc]. If the condition is true, the PC is loaded with the value in R[rb], otherwise
it is incremented by 4 as usual. The following figure shows these details.

Branch Instruction | Instruction = 4_;‘51
Memory E]"
(Inc4 J——>| Instruction
1— Fetch
Register File regwrite
‘OP °°de‘ ra ‘ ‘ c ‘ PC2 )| Rirb] Rirc] Rra] +— Y
—t Decode and
Braertogle | condition Operand Read
ALU
Operation
Memory
Access
Register
Writeback

The complete pipelined data path

The pipelined data path implementation diagrams shown earlier for the three SRC
instruction categories must be combined and refined to get a working system. These
details get complicated very quickly. A detailed combined diagram is shown in Figure
5.7 of the text book.
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Control Signals for the Pipelined SRC

We define the following signals for the SRC by grouping similar opcodes:

Control signals for pipeline stages

* branch = br ~brl

* cond = (IR2=2.0==1)~{IR2=2 1==11&(R2=0=R[rc]=07~
# MR2=2.1==0E&(R2=0= & R[rc]=31=))

* shi=shr~shra~shl-~she

* alu=add~addi~sub~neqg~and~andi~ar-ori~not-~sh
5 irmm:=addi~andi~ari~{sh &R =4. 0=1=0})

* load:=d~Idr

% ladr=la~lar

. store=st~str

¥ I-=:=load ~ladr~store

3 recmrite =load-ladr~arl-alu

. dsp=ld-~st-a

# H:=Idr~str~lar

In most cases, the signals defined above are used in the same stage where they are
generated. If that is not the case, a number used after the signal name indicates the stage
where the signal is generated.

Using these definitions, we can develop RTL statements for describing the pipeline
activity as well as the equations for the multiplexer select signals for different stages of
the pipeline. This is shown in the next diagram.

Control Signals for different pipeline Stages

Consider the RTL description of the Mp1 signal, which controls the input to the PC. It
simply means that if the branch and cond signals are not activated, then the PC is

incremented by 4, otherwise if both are activated then the value of R1 is copied in to the
PC.

The multiplexer Mp?2 is used to decide which registers are read from the register file. If
the store signal is activated then R[rb] from the instruction bits is read from the register
file so that its value may be stored into memory, otherwise R[rc] is read from the register
file.

The multiplexer Mp3 is used to decide which registers are read from the register file for
operand 2. If either rl or branch is activated then the updated value of PC2 is transferred

to X3, otherwise if dsp or alu is activated, the value of R[ra] from the register file is
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transferred to the x3. In the same way, multiplexer Mp4 is used to select an input from
Y3.

In the same way, multiplexer Mp4 is used to select an input for Y3.

Control signals for pipeline stages

PP 1 +— (I{branchZ&cond):incd), Inztruction
((branch2&cond):R1) Fetch

Wps +— [lstorenc)[starera)

mMP3  *— (rI~hranchPC2), Decode and
[dspr-aluR) Cperand Read

MP4 +— o) fasp~immc2) aluslimmR2)

AL
Operation

(load:mem data) Access

Fegizter
Wiiteback

The multiplexer MPS5 is used to decide which value is transferred to be written back to

the register file. If the load signal is activated data from memory is transferred to Z5,
however if the load signal is not activated then data from Z4 (which is the result of ALU)
is transferred to Z5 which is then written back to the register file.
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Lecture No. 20
Hazards in Pipelining
Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 5
Computer Systems Design and Architecture 5.1.5,5.1.6

Summary

Structural RTL for Pipeline Stages
Instruction Propagation Through the Pipeline
Pipeline Hazards

Data Dependence Distance

Data Forwarding

Compiler Solution to Hazards

SRC Hazard Detection and Correction

RTL for Hazard Detection and Pipeline Stall

Structural RTL for Pipeline Stages

The Register Transfer Language for each phase is given as follows:

Instruction Fetch

IR2 7 M [PC];
PC2 ] PC+4;

Instruction Decode & Operand fetch
X31s2:(rel2:PC2,disp2:(rb=0):?,(rb!=0):R[rb]),brl2:PC2,alu2:R[rb],
Y3 [11s2:(rel2:cl,disp2:c2),alu2:(imm2:c2,!imm?2:R[rc]),
MD3 [store2:R[ra],IR3 [ IR2,stop2:Run [ ] 0,
PC [ Ibranch2:PC+4,branch2:(cond(IR2,R[rc]):R[rb],!cond(IR2,R[rc]):PC+4;

ALU operation

Z4 17 (Is3: X3+Y3, brl3: X3, Alu3: X3 op Y3,
MD4 [0 MD3,
IR4 [0 IR3;

Memory access

75 [ (load4: M [Z4], ladr4~branch4~alu4:74),
stored: (M [Z4] [1 MD4),
IR5 [IR4;
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Write back

regwrite5: (R[ra] [J Z5);

Consider the following SRC code segment flowing through the pipeline. The instructions
along with their addresses are

200: add r1,r2, r3
204: 1d r5, [4(x7)
208: br r6

212: str r4, 56

400
We shall review how this chunk of code is executed.

First Clock Cycle

‘Add instruction enters the pipeline in the first cycle. The value in PC is |
incremented from 200 to 204.

Second Clock Cycle

Add moves to decode stage. Its operands are fetched from the register file and
moved to X3 and Y3 at the end of clock cycle, meanwhile(the Instruction 1d't5;)
[4+17] is fetched in the first stage and the PC value is incremented from 204 to -
208.

Third Clock Cycle

(Add instruction moves to the execute stage) the results are written to Z4 on the
trailing edge of the clock.(d instruction moves to decode stage) The operands

are fetched to calculate the displacement address. Br instruction enters the
pipeline. The value in
Fourth Clock Cycle

Add does not access memory. The result is written to Z5 at the trailing edge of
clock. The address is being calculated here for 1d. The results are written to Z4.
Br is in the decode stage. Since this branch is always true, the contents of PC are

modified to new address. (Stflinistruction enters the pipeline) The value in PCisH
‘incremented from 212 to 216.

Fifth Clock Cycle

The result of addition is written into register r1. Add instruction completes. Ld

accesses data memory at the address specified in Z4 and result stored in Z5 at
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falling edge of clock. Br instruction just propagates through this stage without
any calculation. Str is in the decode stage. The operands are being fetched for
address calculation to X3 and Y3. The instruction at address 400 enters the
pipeline. The value in PC is incremented from 400 to 404.

Instruction  Instruction ALU Memory Reqister
Fetch decode  Operation  Access Writehack

- A
CC1 | Ldr7.48 | |add rir2rd[sunr2rard| strr3az | [shirera2]

SUERTTET
CC2 | Ldr748 |jadd i r2rg [Bub r2rard | Strraaz |
A G s
CC3 | Lr748 |jadd rir2rd

CC4 | Lor748 | |[Addr 23
ccs | new ][ Ldr748 ||addrtr23]

The instructions in the pipeline at any given time are being executed in parallel. This
A hazard occurs when
an instruction depends on the result of previous instruction that is not yet complete.

There are three categories of hazards
1. Branch Hazard
2. Structural Hazard
3. Data Hazard

(This"is"called the branch delay slof The compiler might issue a nop instruction in the

branch delay slot. Branch delays cannot be avoided by forwarding schemes.

A structural hazard occurs when attempting to access the same resource in different ways -
(@t the"same fime) It occurs when the hardware is not enough to implement pipelining
properly e.g. when the machine does not support separate data and instruction memories.
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An example of this RAW!(read afterwrite) data’)

1s;

200: addr2,r3, 14
204: subr7, 12, 16

Data hazards can be detected easily as they occur when the destination register of an
instruction is the same as the source register of another instruction in close proximity.(To™

(ahead complete) Data can also be forwarded to the next instruction before the current
instruction completes, however this requires forwarding hardware and logic. Data can be
forwarded to the next instruction from the stage where it is available without waiting for

the completion of the instruction. Data is normally required at stage 2 (operand fetch)
however data is earliest available at stage 3 output (ALU result) or stage 4 output
(memory access result). Hence the forwarding logic should be able to transfer data from
stage 3 to stage 2 or from stage 4 to stage 2.

Designing a data forwarding unit requires the study of dependence distances. Without
forwarding, the minimum spacing required between two data dependent instructions to

avoid hazard is four (e Ioad insifuction has & minimum distance oF 6O Tromall oHhcr)

Table 5.1 of the text shows numbers related to dependence distances with respect to some
important instruction categories.

Compiler Solution to Hazards
Hazards can be detected by the compiler, by analyzing the instruction sequences and

dependencics. The compiler can inserts bubbles (nop instruction) between two -
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SRC Hazard Detection and Correction
The SRC uses a hazard detection unit. The hazard can be resolved using either pipeline
stalls or by data forwarding.

Pipeline stalls

Consider the following sequence of instructions going
through the SRC pipeline

200: shl r6, 13, 2

204: strr3, 32

208: subr2, r4,r5

212: add rl,r2,r3

216: 1d 17, 48

There is a data hazard between instruction three and four
that can be resolved by using pipeline stalls or bubbles

The logic behind this scheme is that if opcode in stage 2 and 3 are both alu, and if ra in
stage 3 is the same as rb or rc in stage 2, then a pause signal is issued to insert a bubble
between stage 3 and 2. Similar logic is used for detecting hazards between stage 2 and 4
and stage 4 and 5.

Data Forwarding

Eliminated at least for the "ALUTinstructions) The hazard detection is required between

stages 3 and 4, and between stages 3 and 5. The testing and forwarding circuits employ
wider IRs to store the data required in later stages. The logic behind this method is that if
the ALU is activated for both 3 and 5 and ra in 5 is the same as rb in 3 then Z5 which

hold the currently loaded or calculated result is directly forwarded to X3. Similarly, if
both are ALU operations and instruction in stage 3 does not employ immediate operands
then value of Z5 is transferred to Y3. Similar logic is used to forward data between stage

3 and 4.

RTL for Hazard Detection and Pipeline Stall

The following RTL expression detects data hazard between stage 2 and 3, then stalls
stage 1 and 2 by inserting a bubble in stage 3

alu3&alu2&((ra3=rb2)~((ra3=rc2)&!imm?2)):
(pause2, pausel, op3110)

Meaning:

If opcode in stage 2 and 3 are both ALU, and if ra in stage 3 is same as rb or rc in stage 2,
issue a pause signal to insert a bubble between stage 3 and 2
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Following is the complete RTL for detecting hazards among ALU instructions in
different stages of the pipeline

Data Hazard RTL for detection and stalling
between
Stage 2 and 3 alu3&alu2&((ra3=rb2)~((ra3=rc2)&!imm?2)):

(pause2, pausel, op3110)
Stage 2 and 4 alu4&alu2&((rad=rb2)~((rad4=rc2)&!imm2)):

(pause2, pausel, op3[10)
Stage 2 and 5 alu5&alu2&((ra5=rb2)~((ra5=rc2)&!imm?2)):

(pause2, pausel, op3110)
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Lecture 21

Instruction Level Parallelism
Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 5
Computer Systems Design and Architecture 5.2
Summary

Data Forwarding Hardware

Instruction Level Parallelism

Difference between Pipelining and InstructionLevel Parallelism
Superscalar Architecture

Superscalar Design

VLIW Architecture

Maximum Distance between two instructions

Example

Read page no. 219 of Computer System Design and Architecture (Vincent
P.Heuring, Harry F. Jordan)

Data forwarding Hardware

The concept of data forwarding was introduced in the previous lecture.

Instruction
Fetch
Decode and
Operand
Rezd
IR3 X3 LY3) | MD3]
T XY oL
Mp7SMUX/ \MUXA Mps AL
Operation
RE)| (24}
™ Hazard MEmory
Detforward ACCess
unit
R, Hazard s Register
Ly Detforward :
RTL for data

forwarding in case of ALU instructions
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Dependence RTL

Stage 35 alu5&alu3:((rad5=rb3):X1Z5,

(raS=rc3)&!imm3: Y [1Z5);
Stage 34 alu4&alu3:((rad=rb3): X174,

(rad=rc3)&!imm3: Y [ Z4);

Instruction(Level Parallelism

Increasing a processor’s throughput

Increasing the clock speed

* Increasing the clock speed is an IC design issue and depends on the advancements in
chip technology.

* The computer architect or logic designer can not thus manipulate clock speeds to
increase the throughput of the processor.

Increasing parallel execution of instructions

‘The computer architect cannot increase the clock speed of a microprocessor however -
‘he/she can increase the number of instructions processed per unit time. In pipelining we
discussed that a number of instructions are executed in a staggered fashion, i.e. various
instructions are simultaneously executing in different segments of the pipeline. Taking
this concept a step further we have multiple data paths hence multiple pipelines can
execute simultaneously.

(instruction processorsIVEIW (very long instruction word) and superscalar.

The two approaches to achieve instruction(level parallelism are
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A VLIW processor is based on a very long instruction word, VLIW relics on

instruction scheduling by the compiler. The compiler forms instruction packets which can
run in parallel without dependencies.

Pipelining Instruction(Level Parallelism
Single functional unit Multiple functional units
Instructions are issued sequentially Instructions are issued in parallel

Throughput increased by overlapping the Instructions are not overlapped but

instruction execution executed in parallel in multiple functional
units

Very little extra hardware required to Multiple functional units within the CPU

implement pipelining are required

Superscalar Architecture

A superscalar machine has following typical features
s one o more 1Us (integer units) . FPUS (floating point unit), and BPUs (branch

» It divides instructions into three classes
o Integer
o Floating point
o Branch prediction

As stated earlier the superscalar design uses multiple pipelines to implement instruction
level parallelism.
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* and finally,

-
o

The results are not written back to the registers until the branch decision is
confirmed. Most superscalar architectures contain a reorder buffer. The reorder buffer
acts like an intermediary between the processor and the register file. (All'tesults'are )

Superscalar Processors
o PowerPC 601
o Intel P6
o DEC Alpha 21164

VLIW Architecture
'VLIW stands for “Very Long Instruction Word” typically 64 or 128 bits wide.

The longer
instruction word carries information to route data to register files and execution units.
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Lecture No. 22

Microprogramming
Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 5
Computer Systems Design and Architecture 53
Summary

e Microprogramming

Working of a General Microcoded Controller
Microprogram Memory

Generating Microcode for Some Sample Instructions
Horizontal and Vertical Microcode Schemes
Microcoded 1bus SRC Design

The SRC Microcontroller

Microprogramming

In the previous lectures, Welhave discussed How o implement logic Cireuitry for a control)
unit based on logic gates. Such an implementation is called a hardwired control unit. Ina -

A collection of microinstructions is called a microprogram, These microprograns

generate the sequence of necessary control signals required to process an instruction.
These

As described above microprogramming or microcoding is an alternative way to design

the control unit. The microcoded control unit is itself a small stored program computer

Comparison of hardwired and microcoded control unit

Hardwired Control Unit Microcoded Control Unit

The relationship between (Control Th} (Control signals here are (Sfored @s words |

is a seri¢s in a microcode memory.

Hardwired control units are generally Microcode units simplify the computer logic

- fbut it is comparatively
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Working of a general microcoded controller

A microcoded controller works in the same way as a small general purpose computer.
1. Fetch a microinstruction and increment microPC.

2. Execute the instruction present in microlR.

3. Fetch the next instruction and so on...

The microcoded control unit is like

a small computer in itself. It Starting
ist f . address from Clk Othar
consists 0 a  microprogram R i
memory, which is read using a — | 1 o
micro program counter. (The micro | Migridprﬂl?ﬁm
. . antroller
PC is controlled by the : M'i“ 4
i Cine
microprogram controller; Values of WY —
the micro PC depends on a 4 to 1 B :b—) |

MUX. The source may be the
incremented micro PC value, or a
calculated branch value, or a value
derived by decoding an opcode for
an instruction. The microprogram
memory writes the control word at

Microprogram
e rory

Contral
Signals

hdicro-Branch
Cantrol

the chosen address into the micro
instruction register. This control word is basically the set of all the control signals needed
to execute the instruction at that particular instant.

Fields in the micro instruction

[ Micro-IR ]

C Bits
These form the control signal
field

M Bits
These form the branch address

field ¢ bits control

signal field

1

m bits branch b bits branch |
address field control field
B Bits ! |

These form the branch control
field.

Loading the micro(PC

The microPC can be loaded from one of the four possible sources

 Simple increment Steps sequentially from microinstruction to microinstruction

* Lookup table A lookup table maps the opcode field to the starting address of the
microcode routine that generates control signals.

» External source Initializes microPC to begin an operation e.g. interrupts service, reset
etc.
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* Branch addresses Jumps anywhere in the microprogram memory on the basis of
conditional or unconditional branch.

Microprogram Memory
» This small memory contains microroutines for all the instructions in the ISA
* The microPC supplies the address and it returns the control word stored at that
address

+ It is much faster and smaller than a typical main memory

Layout of a typical microprogram memory

Micro- Mlemory
Address Contents
] Microcode for instruction fetch

Microcode for load instruction

Microcode for add instruction

Microcode for brinstruction

20 Microcode for resetinstruction

Generating Microcode for Some Sample Instructions

* The control word for an instruction is used to generate the equivalent microcode
sequence

* Each step in RTL corresponds to a microinstruction executed to generate the control
signals.

Each bit in the control words in the microprogram memory represents a control signal.
The value of that bit decides whether the signal is to be activated or not.

Example: Control Signals for the sub Instruction

The first three addresses from 100 to 102 represent microcode for instruction fetch and
the last three addresses from 203 to 205 represent microcode for sub instruction. In the

first cycle at address 100, the control signal PCout, LMAR, LC, and INC4 are activated

and all other signals are deactivated. All these control signals are for the SRC processor.

So, if the microPC contains 100, the contents of microprogram memory are copied into

the micro IR. This corresponds to the structural RTL description of the TO clock during
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instruction fetch phase. In the same way, the content of address 101 corresponds to T1,
and the content of address 102 corresponds to T2.

100 1 |0 o1 {(1({ojo(ojoj1 |0 |0 (o (0o |0 (O (0O
101 o |1 oo (af{rjo(ojojoj1r |1 (1 (oo |0 (O (0O
102 .. 0o |0 oo (oo (o000 |0 (o (oo |0 (O (0
203 .. 0o |0 1|0 (0|00 (1 (Qjofo (o (0o (0 |1 |0 |0
204 | .. 0o |0 1|0 (1 |0)|0(O(Qjofo(a (01 (0 |0 |1 |0
205 .. o |1 oo (afojo (o1 oo (0o (o (o1 o (O |1

*The inputs to the
microcontroller are from

the branch control fields
specified in the microcode
word.

* Its output controls the 4
to 1 multiplexer inside the
microcoded control unit.

o It implements
conditional execution and
both conditional and

unconditional branch

| External Branch

_fiD_g,; AddresT FTm IR Address

_1372/‘\ : MUX

Micro-PC

T Microprogram l
Controller

Microprogram
Memory

’0|0| 0|0’0|0 |0|ControISignaIsl BR \

If a branch instruction is encountered within the microprogram hardwired logic selects

the branch address as the source of microPC using 4 to 1 mux. This hardwired logic
caters for all branch instructions including branch if zero.

4(1 Multiplexer
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The multiplexer supplies one of the four possible values to the microPC
The incremented value of the microPC is used when dealing with the normal flow of

microinstructions.
The opcode from the instruction is used to set the microPC when a microroutine is

initially being loaded.

External address is used when it is required to reset the microprogram controller.
Branch address is set into the microPC when a branch microinstruction is encountered.

Mux Control Select
aa Increment micro-PC
01 Opcode from IR
10 External address
11 Branch address
External Branch
ﬂddresi From IR Address
hiuz Contral —:_if— - M'—';'il*i
" Do ]
Micm-FC s

|
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How to form a branch

* A branch can be implemented by choosing one alternative from each of the following
two lists.

* This scheme provides flexibility in choosing branches as we can form any combination
of conditions and addresses.

Condition
unconditional Address
not Zero From IR
AETH External Address
positive
. Branch Address
negative
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Microcode Branching Examples

Following is an example of branch instructions in microcode

Qo
. g _ IBranching quivalent
g o I8 2215 ZlAction
3 §§ENC&§,§§D§—S onstruct
< I Im|5F 7 Bl 2
400 90 OJO P @ O |... xxx No branch,goto  nexf{{...};
|address in sequence401
401 L1 pgqop .. xxx Yo the address supplied {...[; goto
1by opcode finitial address;
G2 foofofr dof.. xxx Jo external address if Z|...}; if Z then
ag is set Jeoto Ext. Add.
f03 [T olop d1[.. P00 To 200 if N flag is set, §§..}; if N then
clse to 404 goto Labell;
404 §1 OJO P § O POQ 496 To]406 }f N is false, else While (N)
0 405 {...};
105 1L JOP dOT.. 104 Branch to 404 [While contd...

Similarity between microcode and high level programs

* Any high level construct such as ifelse, while, repeat etc. can be implemented using
microcode

* A variety of microcode compilers similar to the high level compilers are available that
allow easier programming in microcode

* This similarity between high level language and microcode simplifies the task of
controller design.

Horizontal and vertical microcode schemes

In horizontal microcode schemes, there are no intermediate decoders and the control
word bits are directly connected to their destination i.e. each bit in the control word is
directly connected to some control signal and the total number of bits in the control word

is equal to the total number of control signals in the CPU.

Vertical microcode schemes employ an extra level of decoding to reduce the control
word width. From an n bit control word we may have 2"bit signal values.
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However, a completely vertical scheme is not feasible because of the high degree of fan
out.

Horizontal Microcode Scheme

[wiomre 1 pioprogra
|
Micropragram
Memory
¥YY¥y ¥
el
0 i
&
Vertical Microcode Scheme
Micm-PC Il"."IIE‘- rt | ca l
Microprogram
hemory
I EEERER Data Path
nto 2r decoder

FCaut

INC4

G

Microcoded 1(bus SRC design

In the SRC the bits from the opcode in the instruction register are decoded to fetch the

address of the suitable microroutine from the microprogram memory. The microprogram
controller for the SRC microcoded control unit employs the logic for handling exceptions

and reset process. Since the SRC does not have any condition codes, we use the CON and
n signals instead of N and Z flags to control branches in case of branch if equal to zero or
branch if less than instructions.

The SRC Microprogram Controller
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* The microprogram controller for the SRC microcoded control unit employs the logic
for handling exceptions and reset process

» Since the SRC does not have any condition codes, we use the CON and n signals
instead of N and Z flags to control branches

Starting addre s irom
dpcode Cik Other
Extermadl source l |
+ l 1 ‘ (
el SRC Mcro-controlies
“w, MUK e
Branch Address
Microprogr am “C;‘;E::ﬁ'
Kermory -
L_ i o- IR '
Comrol Signals
CON n=0
: Externd Branch
= )%-‘ :Addresls Fram IR Address
i
i
: l "f
}g | i 2 !
i
o= A
i b L%
i
)2 : [ine |
Microprogram
JORL 1 | | O, Controller _ __ |
¥
Micno-FPC [
huxControl
Branch l
BrCON=0)
Brn=1
Brn=07
END
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Microcode for some SRC instructions

s >
300 10 o qofop 11T kxx MAT PC: C PC+4;
301 0 o ¢ ofo p ofo |.. kxx|[MBR M[MAR]: PC  C;
302 (1 1 §olop ofo].. kxx|IR,Micro}fC MBR<31...27>;
400 clo 0 oo pojol.. kxx[A R[rb];
40T 0 0 ¢ ofo P o0 I.. kxx|[C A + R[rc);
@02 11 T §0[0F of0[.. BOO[R[rq) C; MicroPC 300;

Assume the first control word at address 300. The RTL of this instruction is MAR PC
combined with C ~ PC+4. To facilitate these actions the PCout signal bit and the LMAR
signal bit are set to one, so that the value of the PC may be written to the internal
processor bus and written onto the MAR. The instructions at 300, 301 and 302 form the
microcode for instructions fetch. If we examine the RTL we can see all the functionality

of the fetch instruction. The value of PC is incremented, the old value of PC is sent to
memory, the instruction from the sent address is loaded into memory buffer register.

Then the opcode of the fetched instruction is used to invoke the appropriate microroutine.

Alternative approaches to microcoding

Bit ORing

Nanocoding

Writable Microprogram Memory
Subroutines in Microprogramming
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