

 Lecture Handouts

 CS501

Advance Computer Architecture

Last Modified: 12Jan11 Page 1

Advanced Computer ArchitectureCS501

Table of Contents
Appendix A.. 4

FALSIM... 4
Lecture No. 1 .. 19

Introduction... 19
Lecture No. 2 .. 32

Instruction Set Architecture ... 32
Lecture No. 3 .. 44

Introduction to SRC Processor ... 44
Lecture No. 4 .. 50

ISA and Instruction Formats... 50
Lecture No. 5 .. 64

Description of SRC in RTL .. 64
Lecture No. 6 .. 73

RTL Using Digital Logic Circuits .. 73
Lecture No. 7 .. 87

Design Process for ISA of FALCONA .. 87
Lecture No. 8 .. 91

ISA of the FALCONA.. 91
Lecture No. 9 ...104

Description of FALCONA and EAGLE using RTL ..104
Lecture No. 10 ...124

The FALCONE and ISA Comparison...124
Lecture No. 11 ...148

CISC and RISC ...148
Lecture No. 12 ...149

CPU Design ...149
Lecture No. 13 .. 156

Structural RTL Description of the FALCONA .. 156
Lecture No. 14 ...162

External FALCONA CPU ...162
Lecture No. 15 ..171

Logic Design and Control Signals Generation in SRC......................................171
Lecture No. 16 ..183

Control Unit Design..183
Lecture No. 17 ..193

Machine Reset and Machine Exceptions ...193
Lecture No. 18 ..199

Pipelining ...199
Lecture 19 ...206

Pipelined SRC...206
Lecture No. 20 ..212

Hazards in Pipelining..212
Lecture 21 .. 218

Instruction Level Parallelism ...218
Lecture No. 22 .. .222

Last Modified: 12Jan11 Page 2

Advanced Computer Architecture-CS501

Microprogramming..222
Lecture No. 23...232

I/O Subsystems...232
Lecture No. 24..243

Designing Parallel Input and Output Ports...243
Lecture No. 25..252

Input Output Interface...252
Lecture No. 26..262

Programmed I/O..262
Lecture No. 27..273

Interrupt Driven I/O..273
Lecture No. 28..282

Interrupt Hardware and Software..282
Lecture No. 29..295

FALSIM..295
Lecture No. 30..310

Interrupt Priority and Nested Interrupts..310
Lecture No. 31..316

Direct Memory Access (DMA)..316
Lecture No. 32..323

Magnetic Disk Drives...323
Lecture No. 33..328

Error Control...328
Lecture No. 34..333

Number Systems and Radix Conversion..333
Lecture No. 35..340

Multiplication and Division of Integers..340
Lecture No. 36..346

Floating-Point Arithmetic...346
Lecture No. 37..350

Components of memory Systems...350
Lecture No. 38..355

Memory Modules..355
Lecture No. 39..358

The Cache...358
Lecture No. 40..364

Virtual Memory..364
Lecture No. 41..371

Numerical Examples of DRAM and Cache...371
Lecture No. 42...380

Performance of I/O Subsystems...380
Lecture No. 43.. 386

Networks..386
Lecture No. 44...391

Communication Medium and Network Topologies..391

Last Modified: 24-Nov-11

Page 3

Advanced Computer ArchitectureCS501

Appendix A

Reading Material
Handouts

Summary

1. Introduction to FALSIM
2. Preparing source files for FALSIM
3. Using FALSIM
4. FALCONA assembly language techniques

FALSIM

1. Introduction to FALSIM:

FALSIM is the name of the software application which consists of the
FALCONA assembler and the FALCONA simulator. It runs under
Windows XP.

FALCON(A Assembler:

Figure 1 shows a snapshot of the FALCONA Assembler. This tool loads a
FALCONA assembly file with a (.asmfa) extension and parses it. It shows
the parse results in an error log, lets the user view the assembled file�s
contents in the file listing and also provides the features of printing the
machine code, an Instruction Table and a Symbol Table to a FALCONA
listing file. It also allows the user to run the FALCONA Simulator.

The FALCONA Assembler has two main modules, the 1stpass and the
2ndpass. The 1stpass module takes an assembly file with a (.asmfa)
extension and processes the file contents. It then creates a Symbol Table
which corresponds to the storage of all program variables, labels and data
values in a data structure at the implementation level. If the 1stpass
completes successfully a Symbol Table is produced as an output, which is
used by the 2ndpass module. Failures of the 1stpass are handled by the
assembler using its exception handling mechanism.

Last Modified: 12Jan11 Page 4

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

The 2ndpass module sequentially processes the .asmfa file to interpret the
instruction opcodes, register opcodes and constants using the symbol table.
It then produces a list file with a .lstfa extension independent of successful
or failed pass. If the pass is successful a binary file with a .binfa extension is
produced which contains the machine code for the program in the assembly
file.

FALCON(A Simulator:

Figure 6 shows a snapshot of the FALCONA Simulator. This tool loads a
FALCONA binary file with a (.binfa) extension and presents its contents
into different areas of the simulator. It allows the user to execute the
program to a specific point within a time frame or just executes it, line by
line. It also allows the user to view the registers, I/O port values and memory
contents as the instructions execute.

FALSIM Features:

The FALCONA Assembler provides its user with the following features:

Select Assembly File: Labeled as �1� in Figure 1, this feature enables the
user to choose a FALCONA assembly file and open it for processing by the
assembler.

Assembler Options: Labeled as �2� in Figure 1.

�� Print Symbol Table
This feature if selected writes the Symbol Table (produced after the
execution of the 1stpass of the assembler) to a FALCONA list file with an
extension of (.lstfa). The Symbol Table includes data members, data
addresses and labels with their respective values.
�� Print Instruction Table

This feature if selected writes the Instruction Table to a FALCONA list file
with an extension of (.lstfa).

List File: Labeled as �3�, in Figure 1, the List File feature gives a detailed
insight of the FALCONA listing file, which is produced as a result of the
execution of the 1st and 2ndpass. It shows the Program Counter value in
hexadecimal and decimal formats along with the machine code generated for
every line of assembly code. These values are printed when the 2ndpass is
completed.

Last Modified: 12Jan11 Page 5

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Error Log: The Error Log is labeled as �4� in Figure 1. It informs the user
about the errors and their respective details, which occurs in any of the
passes of the assembler.

Search: Search is labeled as �5� in Figure 1 and helps the user to search for
a certain input with the options of searching with �match whole� and
�match any� parts of the string. The search also has the option of checking
with/without considering �case(sensitivity�. It searches the List File area
and highlights the search results using the yellow color. It also indicates the
total number of matches found.

Start Simulator: This feature is labeled as �6� in Figure 1. The FALCONA
Simulator is run using the FALCONA Assembler�s Start Simulator option.
The FALCONA Simulator is invoked by the user from the FALCONA
Assembler. Its features are detailed as follows:

Load Binary File: The button labeled as �11� in Figure 6, allows the user to
choose and open a FALCONA binary file with a (.binfa) extension. When a
file is being loaded into the simulator all the register, constants (if any) and
memory values are set.

Registers: The area labeled as �12� in Figure 6. enables, the user to see
values present in different registers before during and after execution.

Instruction: This area is labeled as �13� in Figure 6 and contains the value of
PC, address of an instruction, its representation in Assembly, the Register
Transfer Language, the opcode and the instruction type.

I/O Ports: I/O ports are labeled as �14� in Figure 6. These ports are available
for the user to enter input operation values and visualize output operation
values whenever an I/O operation takes place in the program. The input
value for an input operation is given by the user before an instruction
executes. The output values are visible in the I/O port area once the
instruction has successfully executed.

Memory: The memory is divided into 2 areas and is labeled as �15� in
Figure 6, to facilitate the view of data stored at different memory locations
before, during and after program execution.

Processor’s State: Labeled as �16� in Figure 6, this area shows the current

Last Modified: 12Jan11 Page 6

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

values of the Instruction register and the Program Counter while the program
executes.

Search: The search option for the FALCONA simulator is labeled as �17�
in Figure 6. This feature is similar to the way the search feature of the
FALCONA Assembler works. It offers to highlight the search string which
goes as an input, with the �All � and � Part � option. The results of the search
are highlighted in the color yellow. It also indicates the total number of
matches.

The following is a description of the options available on the button panel
labeled as �18� in Figure 6.

Single Step: �Single Step� lets the user execute the program, one instruction
at a time. The next instruction is not executed unless the user does a �single
step� again. By default, the instruction to be executed will be the one next in
the sequence. It changes if the user specifies a different PC value using the
Change PC option (explained below).

Change PC: This option lets the user change the value of PC
(Program Counter). By changing the PC the user can execute the
instruction to which the specified PC points.

Execute: By choosing this button the user is able to execute the
instructions with the options of execution with/without breakpoint
insertion (refer to Fig. 5). In case of breakpoint insertion, the user has
the option to choose from a list of valid breakpoint values. It also has
the option to set a limit on the time for execution. This �Max
Execution Time� option restricts the program execution to a time
frame specified by the user, and helps the simulator in exception
handling.

Change Register: Using the Change Register feature, the user can
change the value present in a particular register.

Change Memory Word: This feature enables the user to change values
present at a particular memory location.

Display Memory: Display Memory shows an updated memory area,
after a particular memory location other than the preexisting ones is
specified by the user.

Last Modified: 12Jan11 Page 7

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Change I/O: Allows the user to give an I/O port value if the
instruction to be executed requires an I/O operation. Giving in the
input in any one of the I/O ports areas before instruction execution,
indicates that a particular I/O operation will be a part of the program
and it will have an input from some source. The value given by the
user indicates the input type and source.

Display I/O: Display I/O works in a manner similar to Display
Memory. Here the user specifies the starting index of an I/O port. This
features displays the I/O ports stating from the index specified.

2. Preparing source files for FALSIM:

In order to use the FALCONA assembler and simulator, FALSIM,
the source file containing assembly language statements and directives
should be prepared according to the following guidelines:

�� The source file should contain ASCII text only. Each line should be
terminated by a carriage return. The extension .asmfa should be used
with each file name. After assembly, a list file with the original
filename and an extension .lstfa, and a binary file with an extension
.binfa will be generated by FALSIM.

�� Comments are indicated by a semicolon (;) and can be placed anywhere
in the source file. The FALSIM assembler ignores any text after the
semicolon.

�� Names in the source file can be of one of the following types:
�� Variables: These are defined using the .equ directive. A value must

also be assigned to variables when they are defined.
�� Addresses in the �data and pointer area� within the memory: These

can be defined using the .dw or the .sw directive. The difference
between these two directives is that when .dw is used, it is not
possible to store any value in the memory. The integer after .dw
identifies the number of memory words to be reserved starting at the
current address. (The directive .db can be used to reserve bytes in
memory.) Using the .sw directive, it is possible to store a constant or
the value of a name in the memory. It is also possible to use pointers
with this directive to specify addresses larger than 127. Data tables
and jump tables can also be set up in the memory using this directive.

Last Modified: 12Jan11 Page 8

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

�� Labels: An assembly language statement can have a unique label
associated with it. Two assembly language statements cannot have the
same name. Every label should have a colon (:) after it.

�� Use the .org 0 directive as the first line in the program. Although the use
of this line is optional, its use will make sure that FALSIM will start
simulation by picking up the first instruction stored at address 0 of the
memory. (Address 0 is called the reset address of the processor). A jump
[first] instruction can be placed at address 0, so that control is transferred
to the first executable statement of the main program. Thus, the label
first serves as the identifier of the �entry point� in the source file. The
.org directive can also be used anywhere in the source file to force code
at a particular address in the memory.

�� Address 2 in the memory is reserved for the pointer to the Interrupt
Service Routine (ISR). The .sw directive can be used to store the address
of the first instruction in the ISR at this location.

�� Address 4 to 125 can be used for addresses of data and pointers1.
However, the main program must start at address 126 or less2, otherwise
FALSIM will generate an error at the jump [first] instruction.

�� The main program should be followed by any subprograms or
procedures. Each procedure should be terminated with a ret instruction.
The ISR, if any, should be placed after the procedures and should be
terminated with the iret instruction.

�� The last line in the source file should be the .end directive.
�� The .equ directive can be used anywhere in the source file to assign

values to variables.
�� It is the responsibility of the programmer to make sure that code does not

overwrite data when the assembly process is performed, or vice versa. As
an example, this can happen if care is not exercised during the use of the
.org directive in the source file.

3. Using FALSIM:

�� To start FALSIM (the FALCONA assembler and simulator), double
click on the FALSIM icon. This will display the assembler window,
as shown in the Figure 1.

1 Any address between 4 and 14 can be used in place of the displacement field in load or
store instructions. Recall that the displacement field is just 5 bits in the instruction word.
2 This restriction is because of the face that the immediate operand in the movi
instruction must fit an 8bit field in the instruction word.
Last Modified: 12Jan11 Page 9

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

�� Select one or both assembler options shown on the top right corner of
the assembler window labeled as �2�. If no option is selected, the
symbol table and the instruction table will not be generated in the list
(.lstfa) file.

�� Click on the select assembly file button labeled as �1�. This will open
the dialog box as shown in the Figure 2.

�� Select the path and file containing the source program that is to be
assembled.

�� Click on the open button. FALSIM will assemble the program and
generate two files with the same filename, but with different
extensions. A list file will be generated with an extension .lstfa, and a
binary (executable) file will be generated with an extension .binfa.
FALSIM will also display the list file and any error messages in two
separate panes, as shown in Figure 3.

�� Double clicking on any error message highlights and displays the
corresponding erroneous line in the program listing window pane for
the user. This is shown in Figure 4. The highlight feature can also be
used to display any text string, including statements with errors in
them. If the assembler reported any errors in the source file, then these
errors should be corrected and the program should be assembled again
before simulation can be done. Additionally, if the source file had
been assembled correctly at an earlier occasion, and a correct binary
(.binfa) file exists, the simulator can be started directly without
performing the assembly process.

�� To start the simulator, click on the start simulation button labeled as
�6�. This will open the dialog box shown in Figure 6.

�� Select the binary file to be simulated, and click open as shown in
Figure 7.

�� This will open the simulation window with the executable program
loaded in it as shown in Figure 8. The details of the different panes in
this window were given in section 1 earlier. Notice that the first
instruction at address 0 is ready for execution. All registers are
initialized to 0. The memory contains the address of the ISR (i.e., 64h
which is 100 decimal) at location 2 and the address of the printer

Last Modified: 12Jan11 Page 10

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

driver at location 4. These two addresses are determined at assembly
time in our case. In a real situation, these addresses will be
determined at execution time by the operating system, and thus the
ISR and the printer driver will be located in the memory by the
operating system (called relocatable code). Subsequent memory
locations contain constants defined in the program.

��Click single step button labeled as �19�. FALSIM will execute the
jump [main] instruction at address 0 and the PC will change to 20h
(32 decimal), which is the address of the first instruction in the main
program (i.e., the value of main).

�� Although in a real situation, there will be many instructions in the
main program, those instructions are not present in the dummy calling
program. The first useful instruction is shown next. It loads the
address of the printer driver in r6 from the pointer area in the memory.
The registers r5 and r7 are also set up for passing the starting address
of the print buffer and the number of bytes to be printed. In our
dummy program, we bring these values in to these registers from the
data area in the memory, and then pass these values to the printer
driver using these two registers. Clicking on the single step button twice,
executes these two instructions.

�� The execution of the call instruction simulates the event of a print
request by the user. This transfers control to the printer driver. Thus,
when the call r4, r6 instruction is single stepped, the PC changes to
32h (50 decimal) for executing the first instruction in the printer
driver.

��Double click on memory location 000A, which is being used for
holding the PB (printer busy) flag. Enter a 1 and click the change
memory button. This will store a 0001 in this location, indicating that
a previous print job is in progress. Now click single step and note that
this value is brought from memory location 000E into register r1.
Clicking single step again will cause the jnz r1, [message] instruction
to execute, and control will transfer to the message routine at address
0046h. The nop instruction is used here as a place holder.

��Click again on the single step button. Note that when the ret r4
instruction executes, the value in r4 (i.e., 28h) is brought into the PC.
The blue highlight bar is placed on the next instruction after the call

Last Modified: 12Jan11 Page 11

Advanced Computer ArchitectureCS501

r4, r6 instruction in the main program. In case of the dummy calling
program, this is the halt instruction.

�� Double click on the value of the PC labeled as �20�. This will open a
dialog box shown below. Enter a
value of the PC (i.e., 26h)
corresponding to the call r4, r6
instruction, so that it can be
executed again. A �list� of possible
PC values can also be pulled down
using, and 0026h can be selected
from there as well.

��Click single step again to enter the printer driver again.

�� Change memory location 000A to a 0, and then single step the first
instruction in the printer driver. This will bring a 0 in r1, so that when
the next jnz r1, [message] instruction is executed, the branch will not
be taken and control will transfer to the next instruction after this
instruction. This is mivi r1, 1 at address 0036h.

�� Continue single stepping.

�� Notice that a 1 has been stored in memory location 000A, and r1
contains 11h, which is then transferred to the output port at address
3Ch (60 decimal) when the out r1, controlp instruction executes.
This can be verified by double clicking on the top left corner of the
I/O port pane, and changing the address to 3Ch. Another way to
display the value of an I/O port is to scroll the I/O window pane to
the desired position.

�� Continue single stepping till the int instruction and note the changes
in different panes of the simulation window at each step.

�� When the int instruction executes, the PC changes to 64h, which is the
address of the first instruction in the ISR. Clicking single step executes
this instruction, and loads the address of temp (i.e., 0010h) which is a
temporary memory area for storing the environment. The five store
instructions in the ISR save the CPU environment (working registers)
before the ISR change them.

Last Modified: 12Jan11 Page 12

Advanced Computer ArchitectureCS501

�� Single step through the ISR while noting the effects on various registers,
memory locations, and I/O ports till the iret instruction executes. This will
pass control back to the printer driver by changing the PC to the address of
the jump [finish] instruction, which is the next instruction after the int
instruction.

�� Double click on the value of the PC. Change it to point to the int
instruction and click single step to execute it again. Continue to single step
till the in r1, statusp instruction is ready for execution.

�� Change the I/O port at address 3Ah (which represents the status port at
address 58) to 80 and then single step the in r1, statusp instruction. The
value in r1 should be 0080.

�� Single step twice and notice that control is transferred to the movi r7,
FFFF3 instruction, which stores an error code of �1 in r1.

Figure 1

3 The instruction was originally movi r7, (1. Since it was converted to machine language
by the assembler, and then reverse assembled by the simulator, it became movi r7,
FFFF. This is because the machine code stores the number in 16bits after sign
extension. The result will be the same in both cases.
Last Modified: 12Jan11 Page 13

Advanced Computer ArchitectureCS501

Figure 2

 Figure 3

Last Modified: 12Jan11 Page 14

Advanced Computer ArchitectureCS501

 Figure 4

Last Modified: 12Jan11 Page 15

Advanced Computer ArchitectureCS501

Figure 5
Figure 6

Figure 7

Last Modified: 12Jan11 Page 16

Advanced Computer ArchitectureCS501

Figure 8

4. FALCON(A assembly language programming techniques:

�� If a signed value, x, cannot fit in 5 bits (i.e., it is outside the range 16 to
+15), FALSIM will report an error with a load r1, [x] or a store r1, [x]
instruction. To overcome this problem, use movi r2, x followed by load
r1, [r2].

�� If a signed value, x, cannot fit in 8 bits (i.e., it is outside the range
128 to +127), even the previous scheme will not work. FALSIM will
report an error with the movi r2, x instruction. The following instruction
sequence should be used to overcome this limitation of the FALCONA.
First store the 16bit address in the memory using the .sw directive. Then
use two load instructions as shown below:

a: .sw x
load r2, [a]
load r1, [r2]

This is essentially a �memoryregisterindirect� addressing. It has been
made possible by the .sw directive. The value of a should be less than 15.

Last Modified: 12Jan11 Page 17

Advanced Computer ArchitectureCS501

�� A similar technique can be used with immediate ALU instructions for
large values of the immediate data, and with the transfer of control (call
and jump) instructions for large values of the target address.

�� Large values (16bit values) can also be stored in registers using the mul
instruction combined with the addi instruction. The following
instructions bring a 201 in register r1.

movi r2, 10
movi r3, 20
mul r1, r2, r3
addi r1, r1, 1

; r1 contains 200 after this instruction
; r1 now contains 201

�� Moving from one register to another can be done by using the instruction
addi r2, r1, 0.

�� Bit setting and clearing can be done using the logical (and, or, not, etc)
instructions.

�� Using shift instructions (shiftl, asr, etc.) is faster that mul and div, if the
multiplier or divisor is a power of 2.

Last Modified: 12Jan11 Page 18

Advanced Computer ArchitectureCS501

Lecture No. 1
Introduction

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 1
Computer Systems Design and Architecture 1.1, 1.2, 1.3, 1.4, 1.5

Summary
1) Distinction between computer architecture, organization and design
2) Levels of abstraction in digital design
3) Introduction to the course topics
4) Perspectives of different people about computers
5) General operation of a stored program digital computer
6) The FetchExecute process
7) Concept of an ISA(Instruction Set Architecture)

Introduction
This course is about Computer Architecture. We start by explaining a few key terms.
The General Purpose Digital Computer
How can we define a �computer�? There are several kinds of devices that can be termed
�computers�: from desktop machines to the microcontrollers used in appliances such as a
microwave oven, from the Abacus to the cluster of tiny chips used in parallel processors,
etc. For the purpose of this course, we will use the following definition of a computer:
“an electronic device, operating
under the control of instructions
stored in its own memory unit, that
can accept data (input), process data
arithmetically and logically, produce
output from the processing, and store
the results for future use.” [1]
Thus, when we use the term computer,
we actually mean a digital computer.
There are many digital computers,
which have dedicated purposes, for
example, a computer used in an
automobile that controls the spark

timing for the engine. This means that when we use the term computer, we actually mean
a generalpurpose digital computer that can perform a variety of arithmetic and logic
tasks.
The Computer as a System

Last Modified: 12Jan11 Page 19

akbar
Highlight

Advanced Computer ArchitectureCS501

Now we examine the notion of a system, and the place of digital computers in the general
universal set of systems. A �system� is a collection of elements, or components, working
together on one or more inputs to produce one or more desired outputs.
There are many types of systems in the world. Examples include:

� Chemical systems
� Optical systems
� Biological systems
� Electrical systems
� Mechanical systems, etc.

These are all subsets of the general universal set of �systems�. One particular subset of
interest is an �electrical system�. In case of electrical systems, the inputs as well as the
outputs are electrical quantities, namely voltage and current. �Digital systems� are a
subset of electrical systems. The inputs and outputs are digital quantities in this case.
Generalpurpose digital computers are a subset of digital systems. We will focus on
generalpurpose digital computers in this course.
Essential Elements of a General Purpose Digital Computer
The figure shows the block diagram of
a modern generalpurpose digital
computer.
We observe from the diagram that a
generalpurpose computer has three
main components: a memory
subsystem, an input/ output subsystem,
and a central processing unit.
Programs are stored in the memory,
the execution of the program
instructions takes place in the CPU,
and the communication with the
external world is achieved through the
I/O subsystem (including the
peripherals).
Architecture
Now that we understand the term �computer� in our context, let us focus on the term
architecture. The word architecture, as defined in standard dictionaries, is “the art or
science of building”, or “a method or style of building”. [2]
Computer Architecture
This term was first used in 1964 by Amdahl, Blaauw, and Brooks at IBM [3]. They
defined it as
“the structure of a computer that a machine language programmer must understand to
write a correct (time independent) program for that machine.”
By architecture, they meant the programmer visible portion of the instruction set. Thus, a

family of machines of the same architecture should be able to run the same software
(instructions). This concept is now so common that it is taken for granted. The x86
architecture is a wellknown example.
The study of computer architecture includes

�� a study of the structure of a computer
�� a study of the instruction set of a computer

Last Modified: 12Jan11 Page 20

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

�� a study of the process of designing a computer
Computer Organization versus Computer Architecture
It is difficult to make a sharp distinction between these two. However, architecture refers
to the attributes of a computer that are visible to a programmer, including

�� The instruction set
�� The number of bits used to represent various data types
�� I/O mechanisms
�� Memory addressing modes, etc.

On the other hand, organization refers to the operational units of a computer and their
interconnections that realize the architectural specifications. These include

�� The control signals
�� Interfaces between the computer and its peripherals
�� Memory technology used, etc.

It is an architectural issue whether a computer will have a specific instruction or not,
while it is an organizational issue how that instruction will be implemented.
Computer Architect
We can conclude from the discussion above that a computer architect is a person who
designs computers.
Design
Design is defined as
“the process of devising a system, component, or process to meet desired needs.”
Most people think of design as a �sketch�. This is the usage of the term as a noun.
However, the standard engineering usage of the term, as is quite evident from the above
definition, is as a verb, i.e., �design is a process�. A designer works with a set of stated
requirements under a number of constraints to produce the best solution for a given
problem. Best may mean a �costeffective� solution, but not always. Additional or
alternate requirements, like efficiency, the client or the designer may impose robustness,
etc.. Therefore, design is a decisionmaking process (often iterative in nature), in which
the basic sciences, mathematical concepts and engineering sciences are applied to convert
a given set of resources optimally to meet a stated objective.
Knowledge base of a computer architect
There are many people in the world who know how to drive a car; these are the �users� of
cars who are familiar with the behavior of a car and how to operate it. In the same way,
there are people who can use computers. There are also a number of people in the world
who know how to repair a car; these are �automobile technicians�. In the same way, we
have computer technicians. However, there are a very few people who know how to
design a car; these are �automobile designers�. In the same way, there are only very few
experts in the world who can design computers. In this course, you will learn how to
design computers!

These computer design experts are familiar with
�� the structure of a computer
�� the instruction set of a computer
�� the process of designing a computer

as well as few other related things.
At this point, we need to realize that it is not the job of a single person to design a
computer from scratch. There are a number of levels of computer design. Domain experts

Last Modified: 12Jan11 Page 21

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

of that particular level carry out the design activity for each level. These levels of
abstraction of a digital computer�s design are explained below.
Digital Design: Levels of Abstraction
ProcessorMemorySwitch level (PMS level)
The highest is the processormemoryswitch level. This is the level at which an architect
views the system. It is simply a description of the system components and their
interconnections. The components are specified in the form of a block diagram.
Instruction Set Level
The next level is instruction set level. It defines the function of each instruction. The
emphasis is on the behavior of the system rather than the hardware structure of the
system.
Register Transfer Level
Next to the ISA (instruction set architecture) level is the register transfer level. Hardware
structure is visible at this level. In addition to registers, the basic elements at this level are
multiplexers, decoders, buses, buffers etc.
The above three levels relate to “system design”.
Logic Design Level
The logic design level is also called the gate level. The basic elements at this level are
gates and flipflops. The behavior is less visible, while the hardware structure
predominates.
The above level relates to �logic design�.
Circuit Level
The key elements at this level are resistors, transistors, capacitors, diodes etc.

Mask Level
The lowest level is mask level dealing with the silicon structures and their layout that
implement the system as an integrated circuit.
The above two levels relate to “circuit design”.

The focus of this course will be the register transfer level and the instruction set level,
although we will also deal with the PMS level and the Logic Design Level.
Objectives of the course

This course will provide the students with an understanding of the various levels of
studying computer architecture, with emphasis on instruction set level and register
transfer level. They will be able to use basic combinational and sequential building
blocks to design larger structures like ALUs (Arithmetic Logic Units), memory
subsystems, I/O subsystems etc. It will help them understand the various approaches used
to design computer CPUs (Central Processing Units) of the RISC (Reduced Instruction
Set Computers) and the CISC (Complex Instruction Set Computers) type, as well as the

principles of cache memories.
Important topics to be covered

� Review of computer organization
� Classification of computers and their instructions
� Machine characteristics and performance
� Design of a Simple RISC Computer: the SRC
� Advanced topics in processor design
� Inputoutput (I/O) subsystems
� Arithmetic Logic Unit implementation

Last Modified: 12Jan11 Page 22

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

� Memory subsystems

Course Outline
Introduction:
��Distinction between Computer Architecture, Organization and design
��Levels of abstraction in digital design
��Introduction to the course topics

Brief review of computer organization:
�� Perspectives of different people about computers
�� General operation of a stored program digital computer
�� The Fetch � Execute process
�� Concept of an ISA

Foundations of Computer Architecture:
��A taxonomy of computers and their instructions
��Instruction set features
��Addressing Modes
��RISC and CISC architectures
��Measures of performance

An example processor: The SRC:
��Introduction to the ISA and instruction formats
��Coding examples and Hand assembly
��Using Behavioral RTL to describe the SRC
��Implementing Register Transfers using Digital Logic Circuits

ISA: Design and Development
��Outline of the thinking process for ISA design
��Introduction to the ISA of the FALCON � A
��Solved examples for FALCONA
��Learning Aids for the FALCONA

Other example processors:
�� FALCONE
�� EAGLE and Modified EAGLE
�� Comparison of the four ISAs
CPU Design:
�� The Design Process
�� A UniBus implementation for the SRC
�� Structural RTL for the SRC instructions
�� Logic Design for the 1Bus SRC
�� The Control Unit
�� The 2and 3Bus Processor Designs
�� The Machine Reset
�� Machine Exceptions
Term Exam � I
Advanced topics in processor design:
�� Pipelining
�� InstructionLevel Parallelism
�� Microprogramming

Last Modified: 12Jan11 Page 23

Advanced Computer ArchitectureCS501

Input(output (I/O):
�� I/O interface design
�� Programmed I/O
�� Interrupt driven I/O
�� Direct memory access (DMA)
Term Exam � II
Arithmetic Logic Shift Unit (ALSU) implementation:
�� Addition, subtraction, multiplication & division for integer unit
�� Floating point unit

Memory subsystems:
�� Memory organization and design
�� Memory hierarchy
�� Cache memories
�� Virtual memory

References
[1] Shelly G.B., Cashman T.J., Waggoner G.A., Waggoner W.C., Complete Computer
Concepts: Microcomputer and Applications. Ferncroft Village Danvers, Massachusetts:
Boyd & Fraser, 1992.
[2] MerriamWebster Online; The Language Centre, May 12, 2003 (http://www.m
w.com/home.htm).
[3] Patterson, D.A. and Hennessy, J.L., Computer Architecture A Quantitative
Approach, 2nd ed., San Francisco, CA: Morgan Kauffman Publishers Inc., 1996.
[4] Heuring V.P. and Jordan H.F., Computer Systems Design and Architecture. Melano
Park, CA: Addison Wesley, 1997.
A brief review of Computer Organization
Perceptions of Different People about Computers
There are various perspectives that a computer can take depending on the person viewing

it. For example, the way a child perceives a computer is quite different from how a
computer programmer or a designer views it. There are a number of perceptions of the
computer, however, for the purpose of understanding the machine, generally the
following four views are considered.
The User�s View
A user is the person for whom the machine is designed, and who employs it to perform
some useful work through application software. This useful work may be composing
some reports in word processing software, maintaining credit history in a spreadsheet, or
even developing some application software using highlevel languages such as C or Java.
The list of �useful work� is not allinclusive. Children playing games on a computer may
argue that playing games is also �useful work�, maybe more so than preparing an internal
office memo.
At the user�s level, one is only concerned with things like speed of the computer, the
storage capacity available, and the behavior of the peripheral devices. Besides
performance, the user is not involved in the implementation details of the computer, as
the internal structure of the machine is made obscure by the operating system interface.

Last Modified: 12Jan11 Page 24

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

The Programmer�s View
By �programmer� we imply machine or assembly language programmer. The machine or
the assembly language programmer is responsible for the implementation of software
required to execute various commands or sequences of commands (programs) on the
computer. Understanding some key terms first will help us better understand this view,
the associated tasks, responsibilities and tools of the trade.
Machine Language
Machine language consists of all the primitive instructions that a computer understands
and is able to execute. These are strings of 1s and 0s.Machine language is the computer�s
native language. Commands in the machine language are expressed as strings of 1s and
0s. It is the lowest level language of a computer, and requires no further interpretation.
Instruction Set
A collection of all possible machine language commands that a computer can understand
and execute is called its instruction set. Every processor has its own unique instruction
set. Therefore, programs written for one processor will generally not run on another
processor. This is quite unlike programs written in higherlevel languages, which may be
portable. Assembly/machine languages are generally unique to the processors on which
they are run, because of the differences in computer architecture.
Three ways to list instructions in an instruction set of a computer:

� by function categories
� by an alphabetic ordering of mnemonics
� by an ascending order of opcodes

Assembly Language
Since it is extremely tiring as well as errorprone to work with strings of 1s and 0s for
writing entire programs, assembly language is used as a substitute symbolic
representation using �English like� key words called mnemonics. A pure assembly
language is a language in which each statement produces exactly one machine
instruction, i.e. there is a onetoone correspondence between machine instructions and
statements in the assembly language. However, there are a few exceptions to this rule, the

Pentium jump instruction shown in the table below serves as an example.
Example
The table provides us with some assembly statement and the machine language
equivalents of the Intel x 86 processor
families.
Alpha is a label, and its value will be
determined by the position of the jmp
instruction in the program and the position
of the instruction whose address is alpha.
So the second byte in the last instruction
can be different for different programs.
Hence there is a onetomany correspondence of the assembly to machine language in
this instruction.
Users of Assembly Language

�� The machine designer
The designer of a new machine needs to be familiar with the instruction sets of
other machines in order to be able to understand the tradeoffs implicit in the
design of those instruction sets.

Last Modified: 12Jan11 Page 25

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Sticky Note
Unmarked set by akbar

Advanced Computer ArchitectureCS501

�� The compiler writer
A compiler is a program that converts programs written in highlevel languages to
machine language. It is quite evident that a compiler writer must be familiar with
the machine language of the processor for which the compiler is being designed.
This understanding is crucial for the design of a compiler that produces correct
and optimized code.

�� The writer of time or space critical code
A complier may not always produce optimal code. Performance goals may force
programspecific optimizations in the assembly language.

�� Special purpose or embedded processor programmer
Higherlevel languages may not be appropriate for programming special purpose
or embedded processors that are now in common use in various appliances. This
is because the functionality required in such applications is highly specialized. In
such a case, assembly language programming is required to implement the
required functionality.

Useful tools for assembly language programmers
�� The assembler:

Programs written in assembly language require translation to the machine
language, and an assembler performs this translation. This conversion process is
termed as the assembly process. The assembly process can be done manually as
well, but it is very tedious and errorprone.
An �assembler� that runs on one processor and translates an assembly language
program written for another processor into the machine language of the other
processor is called a �cross assembler�.

�� The linker:
When developing large programs, different people working at the same time can
develop separate modules of functionality. These modules can then be �linked� to

form a single module that can be loaded and executed. The modularity of
programs, that the linking step in assembly language makes possible, provides the
same convenience as it does in higherlevel languages; namely abstraction and
separation of concerns. Once the functionality of a module has been verified for
correctness, it can be reused in any number of other modules. The programmer
can focus on other parts of the program. This is the socalled �modular� approach,
or the �topdown� approach.

�� The debugger or monitor:
Assembly language programs are very lengthy and nonintuitive, hence quite
tedious and errorprone. There is also the disadvantage of the absence of an
operating system to handle runtime errors that can often crash a system, as
opposed to the higherlevel language programming, where control is smoothly
returned to the operating system. In addition to runtime errors (such as a divide
byzero error), there are syntax or logical errors.
A �debugger�, also called a �monitor�, is a computer program used to aid in
detecting these errors in a program. Commonly, debuggers provide functionality
such as
o The display and altering of the contents of memory, CPU registers and flags
o Disassembly of machine code (translating the machine code back to assembly

language)
Last Modified: 12Jan11 Page 26

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

o Single stepping and breakpoints that allow the examination of the status of the

program and registers at desired points during execution.
While syntax errors and many logical errors can be detected by using debuggers,
the best debugger in the world can catch not every logical error.

�� The development system
The development system is a complete set of (hardware and software) tools
available to the system developer. It includes

o Assemblers
o Linkers and loaders
o Debuggers
o Compilers
o Emulators
o Hardwarelevel debuggers
o Logic analyzers, etc.

Difference between Higher(Level Languages and Assembly Language
Higherlevel languages are generally used to develop application software. These high
level programs are then converted to assembly language programs using compilers. So it
is the task of a compiler writer to determine the mapping between the highlevel
language constructs and assembly language constructs. Generally, there is a �manyto
many� mapping between highlevel languages and assembly language constructs. This
means that a given HLL construct can generally be represented by many different
equivalent assembly language constructs. Alternately, a given assembly language
construct can be represented by many different equivalent HLL constructs.
Highlevel languages provide various primitive data types, such as integer, Boolean and a
string, that a programmer can use. Type checking provides for the verification of proper

usage of these data types. It allows the compiler to determine memory requirements for
variables and helping in the detection of bad programming practices.
On the other hand, there is generally no provision for type checking at the machine level,
and hence, no provision for type checking in assembly language. The machine only sees
strings of bits. Instructions interpret the strings as a type, and it is usually limited to
signed or unsigned integers and floating point numbers. A given 32bit word might be an
instruction, an integer, a floatingpoint number, or 4 ASCII characters. It is the task of the
compiler writer to determine how highlevel language data types will be implemented
using the data types available at the machine level, and how type checking will be
implemented.
The Stored Program Concept
This concept is fundamental to all the generalpurpose computers today. It states that the
program is stored with data in computer�s memory, and the computer is able to
manipulate it as data. For example, the computer can load the program from disk, move it
around in memory, and store it back to the disk.
Even though all computers have unique machine language instruction sets, the �stored
program� concept and the existence of a �program counter� is common to all machines.
The sequence of instructions to perform some useful task is called a program. All of the
digital computers (the general purpose machine defined above) are able to store these
sequences of instructions as stored programs. Relevant data is also stored on the
computer�s secondary memory. These stored programs are treated as data and the

Last Modified: 12Jan11 Page 27

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

computer is able to manipulate them, for example, these can be loaded into the memory
for execution and then saved back onto the storage.
General Operation of a Stored Program Computer
The machine language programs are brought into the memory and then executed
instruction by instruction. Unless a branch instruction is encountered, the program is
executed in sequence. The instruction that is to be executed is fetched from the memory
and temporarily stored in a CPU register, called the instruction register (IR). The
instruction register holds the instruction while it is decoded and executed by the central
processing unit (CPU) of the computer. However, before loading an instruction into the
instruction register for execution, the computer needs to know which instruction to load.
The program counter (PC), also called the instruction pointer in some texts, is the register
that holds the address of the next instruction in memory that is to be executed.
When the execution of an instruction is completed, the contents of the program counter
(which is the address of the next instruction) are placed on the address bus. The memory
places the instruction on the corresponding address on the data bus. The CPU puts this
instruction onto the IR (instruction register) to decode and execute. While this
instruction is decoded, its length in bytes is determined, and the PC (program counter)
is incremented by the length, so that the PC will point to the next instruction in the
memory. Note that the length of the instruction is not determined in the case of RISC
machines, as the instruction length is fixed in these architectures, and so the program
counter is always incremented by a fixed number. In case of branch instructions, the
contents of the PC are replaced by the address of the next instruction contained in the
present branch instruction, and the current status of the processor is stored in a register
called the Processor Status Word (PSW). Another name for the PSW is the flag register.
It contains the status bits, and control bits corresponding to the state of the processor.
Examples of status bits include the sign bit, overflow bit, etc. Examples of control bits
include interrupt enable flag, etc. When the execution of this instruction is completed, the
contents of the program counter are placed on the address bus, and the entire cycle is
repeated. This entire process of reading memory, incrementing the PC, and decoding the
instruction is known as the Fetch and Execute principle of the stored program computer.
This is actually an oversimplified situation. In case of the advanced processors of this
age, a lot more is going on than just the simple �fetch and execute� operation, such as
pipelining etc. The details of some of these more involved techniques will be studied later
on during the course.
The Concept of Instruction Set Architecture (ISA)
Now that we have an understanding of some of the relevant key terms, we revert to the
assembly language programmer�s perception of the computer. The programmer�s view is
limited to the set of all the assembly instructions or commands that can the particular
computer at hand execute understood/, in addition to the resources that these instructions
may help manage. These resources include the memory space and the entire programmer
accessible registers. Note that we use the term �memory space� instead of memory,
because not all the memory space has to be filled with memory chips for a particular
implementation, but it is still a resource available to the programmer.
This set of instructions or operations and the resources together form the instruction set
architecture (ISA). It is the ISA, which serves as an interface between the program and
the functional units of a computer, i.e., through which, the computer�s resources, are
accessed and controlled.

Last Modified: 12Jan11 Page 28

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

The Computer Architect�s View
The computer architect�s view is concerned with the design of the entire system as well
as ensuring its optimum performance. The optimality is measured against some
quantifiable objectives that are set out before the design process begins. These objectives
are set on the basis of the functionality required from the machine to be designed. The
computer architect

�� Designs the ISA for optimum programming utility as well as for optimum
performance of implementation

�� Designs the hardware for best implementation of instructions that are made
available in the ISA to the programmer

�� Uses performance measurement tools, such as benchmark programs, to verify that
the performance objectives are met by the machine designed

�� Balances performance of building blocks such as CPU, memory, I/O devices, and
interconnections

�� Strives to meet performance goals at the lowest possible cost
Useful tools for the computer architect
 Some of the tools available that facilitate the design process are

�� Software models, simulators and emulators
�� Performance benchmark programs
�� Specialized measurement programs
�� Data flow and bottleneck analysis
�� Subsystem balance analysis
�� Parts, manufacturing, and testing cost analysis

The Logic Designer�s View
The logic designer is responsible for the design of the machine at the logic gate level. It is
the design process at this level that determines whether the computer architect meets cost
and performance goals. The computer architect and the logic designer have to work in
collaboration to meet the cost and performance objectives of a machine. This is the
reason why a single person or a single team may be performing the tasks of system�s
architectural design as well as the logic design.
Useful Tools for the Logic Designer
Some of the tools available that aid the logic designer in the logic design process are

�� CAD tools
Logic design and simulation packages
Printed circuit layout tools
IC (integrated circuit) design and layout tools

�� Logic analyzers and oscilloscopes
�� Hardware development systems

The Concept of the Implementation Domain
The collection of hardware devices, with which the logic designer works for the digital
logic gate implementation and interconnection of the machine, is termed as the
implementation domain. The logic gate implementation domain may be

�� VLSI (very large scale integration) on silicon
�� TTL (transistortransistor logic) or ECL (emittercoupled logic) chips
�� Gallium arsenide chips
�� PLAs (programmablelogic arrays) or seaofgates arrays
�� Fluidic logic or optical switches

Last Modified: 12Jan11 Page 29

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Similarly, the implementation domains used for gate, board and module interconnections
are

�� Polysilicon lines in ICs
�� Conductive traces on a printed

circuit board
�� Electrical cable
�� Optical fiber, etc.

At the lower levels of logic design, the
designer is concerned mainly with the
functional details represented in a
symbolic form. The implementation
details are not considered at these
lower levels. They only become an
issue at higher levels of logic design.
An example of a twotoone
multiplexer in various implementation
domains will illustrate this point.
Figure (a) is the generic logic gate
(abstract domain) representation of a
2to1 multiplexer.
Figure (b) shows the 2to1
multiplexer logic gate implementation

in the domain of TTL (VLSI on Silicon) logic using part number �257, with
interconnections in the domain of printed circuit
board traces.
Figure (c) is the implementation of the 2to1
multiplexer with a fiber optic directional coupler
switch, which has an interconnection domain of
optical fiber.
Classical logic design versus computer logic

IO

design I1
We have already studied the sequential circuit
design concepts in the course on Digital Logic Design, and thus are familiar with the
techniques used. However, these traditional techniques for a finite state machine are not
very practical when it comes to the design of a computer, in spite of the fact that a
computer is a finite state machine. The reason is that employing these techniques is much
too complex as the computer can assume hundreds of states.
Sequential Logic Circuit Design
When designing a sequential logic circuit, the problem is first coded in the form of a state
diagram. The redundant states may be eliminated, and then the state diagram is translated
into the next state table. The minimum number of flipflops needed to implement the
design is calculated by making �state assignments� in terms of the flipflop �states�. A
�transition table� is made using the state assignments and the next state table. The flip
flop control characteristics are used to complete a set of �excitation tables�. The
excitation equations are determined through minimization. The logic circuit can then be
drawn to implement the design. A detailed discussion of these steps can be found in most
books on Logic Design.

Last Modified: 12Jan11 Page 30

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Computer Logic Design
Traditional Finite State Machine (FSM) design techniques are not suitable for the design
of computer logic. Since there is a natural separation between the data path and the
control path in case of a digital computer, a modular approach can be used in this case.
The data path consists of the storage cells, the arithmetic and logic components and their
interconnections. Control path is the circuitry that manages the data path information
flow. So considering the behavior first can carry out the design. Then the structure can be
considered and dealt with. For this purpose, welldefined logic blocks such as
multiplexers, decoders, adders etc. can be used repeatedly.
Two Views of the CPU Program Counter Register
The view of a logic designer is more detailed than that of a programmer. Details of the
mechanism used to control the machine are unimportant to the programmer, but of vital
importance to the logic designer. This can be illustrated through the following two views
of the program counter of a machine.
As shown in figure (a), to a programmer the program counter is just a register, and in this
case, of length 32 bits or 4 bytes.

31 0

PC
(a) Program Counter: Programmer�s view

Figure (b) illustrates the logic designer�s view of a 32bit program counter, implemented

as an array of 32 D flipflops. It shows the contents of the program counter being gated
out on �A bus� (the address bus) by applying a control signal PCout. The contents of the
�B bus� (also the address bus), can be stored in the program counter by asserting the
signal PCin on the leading edge of the clock signal CK, thus storing the address of the
next instruction in the program counter.

A Bus

PCout

32

Q

PC

D

<

32

B Bus

CK PCin

(b) Program Counter: Logic Designer�s View

Last Modified: 12Jan11 Page 31

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Lecture No. 2
Instruction Set Architecture

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3
Computer Systems Design and Architecture 2.1, 2.2, 3.2

Summary

1) A taxonomy of computers and their instructions
2) Instruction set features
3) Addressing modes
4) RISC and CISC architectures

Foundations Of Computer Architecture
Taxonomy of computers and their instructions
Processors can be classified on the basis of their instruction set architectures. The
instruction set architecture, described in the previous module gives us a �programmer�s
view� of the machine. This module discussed a number of topics related to the
classifications of computers and their instructions.
CLASSES OF INSTRUCTION SET ARCHITECTURE:
The mechanism used by the CPU to store instructions and data can be used to classify the
ISA (Instruction Set Architecture). There are three types of machines based on this
classification.

� Accumulator based machines
� Stack based machines
� General purpose register (GPR) machines

ACCUMULATOR BASED MACHINES
Accumulator based machines use special registers called the accumulators to hold one
source operand and also the result of the arithmetic or logic operations performed. Thus
the accumulator registers collect (or �accumulate�) data. Since the accumulator holds one
of the operands, one more register may be required to hold the address of another
operand. The accumulator is not used to hold an address. So accumulator based machines
are also called 1address machines. Accumulator machines employ a very small number
of accumulator registers, generally only one. These machines were useful at the time
when memory was quite expensive; as they used one register to hold the source operand

as well as the result of the operation. However, now that the memory is relatively
inexpensive, these are not considered very useful, and their use is severely limited for the
computation of expressions with many operands.

Last Modified: 12Jan11 Page 32

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

STACK BASED MACHINES
A stack is a group of registers organized as a lastinfirstout (LIFO) structure. In such a
structure, the operands stored first, through the push operation, can only be accessed last,
through a pop operation; the order of access to the operands is reverse of the storage
operation. An analogy of the stack is a �platedispenser� found in several selfservice
cafeterias. Arithmetic and logic operations successively pick operands from the topof
thestack (TOS), and push the results on the TOS at the end of the operation. In stack
based machines, operand addresses need not be specified during the arithmetic or logical
operations. Therefore, these machines are also called 0address machines.
GENERAL(PURPOSE(REGISTER MACHINES
In general purpose register machines, a number of registers are available within the CPU.
These registers do not have dedicated functions, and can be employed for a variety of
purposes. To identify the register within an instruction, a small number of bits are
required in an instruction word. For example, to identify one of the 64 registers of the
CPU, a 6bit field is required in the instruction.
CPU registers are faster than cache memory. Registers are also easily and more
effectively used by the compiler compared to other forms of internal storage. Registers
can also be used to hold variables, thereby reducing memory traffic. This increases the
execution speed and reduces code size (fewer bits required to code register names
compared to memory) .In addition to data, registers can also hold addresses and pointers
(i.e., the address of an address). This increases the flexibility available to the
programmer.
A number of dedicated, or special purpose registers are also available in generalpurpose
machines, but many of them are not available to the programmer. Examples of
transparent registers include the stack pointer, the program counter, memory address
register, memory data register and condition codes (or flags) register, etc.
We should understand that in reality, most machines are a combination of these machine
types. Accumulator machines have the advantage of being more efficient as these can
store intermediate results of an operation within the CPU.
INSTRUCTION SET
An instruction set is a collection of all possible machine language commands that are
understood and can be executed by a processor.
ESSENTIAL ELEMENTS OF COMPUTER INSTRUCTIONS:
There are four essential elements of an instruction; the type of operation to be performed,
the place to find the source operand(s), the place to store the result(s) and the source of
the next instruction to be executed by the processor.
Type of operation
In module 1, we described three ways to list the instruction set of a machine; one way of
enlisting the instruction set is by grouping the instructions in accordance with the
functions they perform. The type of operation that is to be performed can be encoded in
the opcode (or the operation code) field of the machine language instruction. Examples
of operations are mov, jmp, add; these are the assembly mnemonics, and should not be

confused with opcodes. Opcodes are simply bitpatterns in the machine language format
of an instruction.
Place to find source operands

Last Modified: 12Jan11 Page 33

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

An instruction needs to specify the place from where the source operands will be
retrieved and used. Possible locations of the source operands are CPU registers, memory
cells and I/O locations. The source operands can also be part of an instruction itself; such
operands are called immediate operands.
Place to store the results
An instruction also specifies the location in which the result of the operation, specified by
the instruction, is to be stored. Possible locations are CPU registers, memory cells and
I/O locations.
Source of the next instruction
By default, in a program the next instruction in sequence is executed. So in cases where
the nextinsequence instruction execution is desired, the place of next instruction need
not be encoded within the instruction, as it is implicit. However, in case of a branch, this
information needs to be encoded in the instruction. A branch may be conditional or
unconditional, a subroutine call, as well as a call to an interrupt service routine.
Example
The table provides examples of assembly language commands and their machine
language equivalents. In the instruction
add cx, dx, the contents of the location
dx are added to the contents of the
location cx, and the result is stored in
cx. The instruction type is arithmetic,
and the opcode for the add instruction
is 0000, as shown in this example.
CLASSIFICATIONS OF
INSTRUCTIONS:
We can classify instructions according to the format shown below.

� 4address instructions
� 3address instructions
� 2address instructions
� 1address instructions
� 0address instructions

The distinction is based on the fact that some operands are accessed from memory, and
therefore require a memory address, while others may be in the registers within the CPU
or they are specified implicitly.

4(address instructions
The four address instructions specify the addresses of two source operands, the address of
the destination
operand and the next
instruction address.
4address
instructions are not
very common because the next instruction to be executed is sequentially stored next to
the current instruction in the

memory. Therefore, specifying its address is redundant. These instructions are used in
the microcoded control unit, which will be studied later.

3(address instruction

Last Modified: 12Jan11 Page 34

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

A 3address instruction specifies the addresses of two operands and the address of the
destination operand.

2(address instruction
A 2address instruction has three fields; one for the opcode, the second field specifies
the address of one of the source operands as
well as the destination operand, and the last
field is used for holding the address of the
second source operand. So one of the fields serves two purposes; specifying a source
operand address and a destination operand address.

1(address instruction
A 1address instruction has a dedicated CPU register,

called the accumulator, to hold one operand and to store

the result. There is no need of encoding the address of the accumulator register to access

the operand or to store the result, as its usage is implicit. There are two fields in the

instruction, one for specifying a source operand address and a destination operand

address.

0(address instruction

A 0address instruction uses a stack to hold both the operands and the
result. Operations are performed on the operands stored on the top of the
stack and the second value on the stack. The result is stored on the top of
the stack. Just like the use of an accumulator register, the addresses of
the stack registers need not be specified, their usage is implicit. Therefore, only one field
is required in 0address instruction; it specifies the opcode.
COMPARISON OF INSTRUCTION FORMATS:
Basis for comparison
Two parameters are used as the basis for comparison of the instruction sets discussed
above. These are

�� Code size
Code size has an effect on the storage requirements for the instructions; the
greater the code size, the larger the memory required.

�� Number of memory accesses
The number of memory accesses has an effect on the execution time of
instructions; the greater the number of memory accesses, the larger the time
required for the execution cycle, as memory accesses are generally slow.

Assumptions
We make a few assumptions, which are

�� A single byte is used for the op code, so 256 instructions can be encoded using
these 8 bits, as 28 = 256

�� The size of the memory address space is 16 Mbytes
�� A single addressable memory unit is a byte

Last Modified: 12Jan11 Page 35

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer Architecture-CS501

�� Size of operands is 24 bits. As the memory size is 16Mbytes, with byte-
addressable memory, 24 bits are required to encode the address of the operands.

�� The size of the address bus is 24 bits
�� Data bus size is 8 bits

Discussion4-address instruction
� The code size

is 13 bytes
(1+3+3+3+3
= 13 bytes)

� Number of
bytes
accessed from memory is 22 (13 bytes for instruction fetch + 6 bytes for source
operand fetch + 3 bytes for storing destination operand = 22 bytes)

Note that there is no need for an additional memory access for the operand corresponding
to the next instruction, as it has already been brought into the CPU during instruction
fetch.
3-address instruction

� The code size is 10 bytes
(1+3+3+3 = 10 bytes)

� Number of bytes accessed
from memory is 19

(10 bytes for instruction fetch
+ 6 bytes for source operand fetch + 3 bytes for storing destination operand = 19
bytes)

2-address instruction
� The code size is 7 bytes (1+3+3 = 7

bytes)
� Number of bytes accessed from

memory is 16(7 bytes for instruction
fetch + 6 bytes for source operand
fetch + 3 bytes for storing destination operand = 16
bytes)

1-address instruction
� The code size is 4 bytes (1+3= 4 bytes)
� Number of bytes accessed from memory is 7
(4 bytes for instruction fetch + 3 bytes for source
operand fetch + 0 bytes for storing destination operand = 7 bytes)

0-address instruction
� The code size is 1 byte
� Number of bytes accessed from memory is 10
(1 byte for instruction fetch + 6 bytes for source operand fetch + 3
bytes for storing destination operand = 10 bytes)

The following table summarizes this information

Last Modified: 24-Nov-11 Page 36

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

HALF ADDRESSES
In the preceding discussion we have
talked about memory addresses. This
discussion also applies to CPU
registers. However, to specify/ encode
a CPU register, less number of bits is
required as compared to the memory addresses. Therefore, these addresses are also called
�halfaddresses�. An instruction that specifies one memory address and one CPU register
can be called as a 1½address instruction
Example
 mov al, [34h]
THE PRACTICAL SITUATION
Real machines are not as simple as the classifications presented above. In fact, these
machines have a mixture of 3, 2, 1, 0, and 1½address instructions. For example, the
VAX 11 includes instructions from all classes.
CLASSIFICATION OF MACHINES ON THE BASIS OF OPERAND
AND RESULT LOCATION:
A distinction between machines can be made on the basis of the ALU instructions;
whether these instructions use data from the memory or not. If the ALU instructions use
only the CPU registers for the operands and result, the machine type is called �load(
store�. Other machines may have a mixture of registermemory, or memorymemory
instructions.
The number of memory operands supported by a typical ALU instruction may vary from
0 to 3.
Example
The SPARC, MIPS, Power PC, ALPHA: 0 memory addresses, max operands allowed = 3
X86, 68x series: 1 memory address, max operands allowed = 2
LOAD(STORE MACHINES
These machines are also called the registertoregister machines. They typically use the
1½ address instruction format. Only the load and store instructions can access the
memory. The load instruction fetches the required data from the memory and temporarily
stores it in the CPU registers. Other instructions may use this data from the CPU
registers. Then later, the results can be stored back into the memory by the store
instruction. Most RISC computers fall under this category of machines.
Advantages (of register(register instructions)
Registerregister instructions use 0 memory operands out of a total of 3 operands. The
advantages of such a scheme is:

�� The instructions are simple and fixed in length
�� The corresponding code generation model is simple
�� All instructions take similar number of clock cycles for execution

Disadvantages (register(register instructions)
�� The instruction count is higher; the number of instructions required to complete a

particular task is more as separate instructions will be required for load and store
operations of the memory

Last Modified: 12Jan11 Page 37

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

�� Since the instruction size is fixed, the instructions that do not require all fields
waste memory bits

Register(memory machines
In registermemory machines, some operands are in the memory and some are in
registers. These machines typically employ 1 or 1½ address instruction format, in which
one of the operands is an accumulator or a generalpurpose CPU registers.
Advantages
Registermemory operations use one memory operand out of a total of two operands. The
advantages of this instruction format are

�� Operands in the memory can be accessed without having to load these first
through a separate load instruction

�� Encoding is easy due to the elimination of the need of loading operands into
registers first

�� Instruction bit usage is relatively better, as more instructions are provided per
fixed number of bits

Disadvantages
�� Operands are not equivalent since one operand may have two functions (both

source operand and destination operand), and the source operand may be
destroyed

�� Different size encoding for memory and registers may restrict the number of
registers

�� The number of clock cycles per instruction execution vary, depending on the
operand location operand fetch from memory is slow as compared to operands in
CPU registers

Memory(Memory Machines
In memorymemory machines, all three of the operands (2 source operands and a
destination operand) are in the memory. If one of the operands is being used both as a
source and a destination, then the 2address format is used. Otherwise, memorymemory
machines use 3address formats of instructions.
Advantages

�� The memorymemory instructions are the most compact instruction where
encoding wastage is minimal.

�� As operands are fetched from and stored in the memory directly, no CPU registers
are wasted for temporary storage

Disadvantages
�� The instruction size is not fixed; the large variation in instruction sizes makes

decoding complex
�� The cycles per instruction execution also vary from instruction to instruction
�� Memory accesses are generally

slow, so too many references
cause performance degradation

Example 1
The expression a = (b+c)*d � e is
evaluated with the 3, 2, 1, and 0
address machines to provide a

Last Modified: 12Jan11 Page 38

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

comparison of their advantages and disadvantages discussed above. The instructions
shown in the table are the minimal instructions required to evaluate the given expression.
Note that these are not machine language instructions, rather the pseudocode.
Example 2
The instruction z = 4(a +b) � 16(c+58) is with the 3, 2, 1, and 0address machines in the
table.
Functional classification of
instruction sets:
Instructions can be classified into the
following four categories based on
their functionality.

� Data processing
� Data storage (main memory)
� Data movement (I/O)
� Program flow control

These are discussed in detail
� Data processing

Data processing instructions are the ones that perform some mathematical or logical
operation on some operands. The Arithmetic Logic Unit performs these operations,
therefore the data processing instructions can also be called ALU instructions.

� Data storage (main memory)
The primary storage for the operands is the main memory. When an operation needs to be
performed on these operands, these can be temporarily brought into the CPU registers,
and after completion, these can be stored back to the memory. The instructions for data
access and storage between the memory and the CPU can be categorized as the data
storage instructions.

� Data movement (I/O)
The ultimate sources of the data are input devices e.g. keyboard. The destination of the
data is an output device, for example, a monitor, etc. The instructions that enable such
operations are called data movement instructions.

� Program flow control
A CPU executes instructions sequentially, unless a program flowchange instruction is
encountered. This flow change, also called a branch, may be conditional or unconditional.
In case of a conditional branch, if the branch condition is met, the target address is loaded
into the program counter.
ADDRESSING MODES:
Addressing modes are the different ways in which the CPU generates the address of
operands. In other words, they provide access paths to memory locations and CPU
registers.
Effective address
An �effective address� is the address (binary bit pattern) issued by the CPU to the
memory. The CPU may use various ways to compute the effective address. The memory
may interpret the effective address differently under different situations.
COMMONLY USED ADDRESSING MODES
Some commonly used addressing modes are explained below.

Immediate addressing mode

Last Modified: 12Jan11 Page 39

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

In this addressing mode, data is the part of the instruction itself, and so there is no need of
address calculation. However, immediate addressing mode is used to hold source
operands only; cannot be used for storing results. The range of the operands is limited by
the number of bits available for encoding the operands in the instruction; for n bit fields,
the range is 2(n1) to +(2(n1)1).

Example: lda 123
In this example, the immediate
operand, 123, is loaded onto the
accumulator. No address calculation is
required.
Direct Addressing Mode
The address of the operand is specified
as a constant, and this constant is
coded as part of the instruction. The address space that can be accessed is limited address
space by the operand field size (2operand field size locations).
Example: lda [123]
As shown in the figure, the address of
the operand is stored in the instruction.
The operand is then fetched from that
memory address.
Indirect Addressing Mode
The address of the location where the
address of the data is to be found is
stored in the instruction as the operand.
Thus, the operand is the address of a memory location, which holds the address of the
operand. Indirect addressing mode can access a large address space (2memory word size

locations). To fetch the operand in this addressing mode, two memory accesses are
required. Since memory accesses are slow, this is not efficient for frequent memory
accesses. The indirect addressing mode
may be used to implement pointers.
Example: lda [[123]]
As shown in the figure, the address of
the memory location that holds the
address of the data in the memory is
part of the instruction.

Register (Direct) Addressing Mode
The operand is contained in a CPU register, and the address of this register is encoded in
the instruction. As no memory access is needed, operand fetch is efficient. However,
there are only a limited number of CPU registers available, and this imposes a limitation
on the use of this addressing mode.
Example: lda R2
This load instruction specifies the address of the register and the operand is fetched from
this register. As is clear from the diagram, no memory access is involved in this
addressing mode.

Last Modified: 12Jan11 Page 40

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

REGISTER INDIRECT
ADDRESSING MODE
In the register indirect mode, the
address of memory location that
contains the operand is in a CPU
register. The address of this CPU
register is encoded in the instruction. A
large address space can be accessed
using this addressing mode (2register size

locations). It involves fewer memory
accesses compared to indirect addressing.
Example: lda [R1]
The address of the register that
contains the address of memory
location holding the operand is
encoded in the instruction. There is
one memory access involved.
Displacement addressing mode
The displacementaddressing mode is
also called based or indexed
addressing mode. Effective memory address is calculated by adding a constant (which is
usually a part of the instruction) to the value in a CPU register. This addressing mode is
useful for accessing arrays. The addressing mode may be called �indexed� in the situation
when the constant refers to the first element of the array (base) and the register contains
the �index�. Similarly, �based� refers to the situation when the constant refers to the offset
(displacement) of an array element with respect to the first element. The address of the
first element is stored in a register.
Example: lda [R1 + 8]
In this example, R1 is the address of
the register that holds a memory
address, which is to be used to
calculate the effective address of the
operand. The constant (8) is added to
this address held by the register and
this effective address is used to
retrieve the operand.
Relative addressing mode
The relative addressing mode is similar to the indexed addressing mode with the
exception that the PC holds the base address. This allows the storage of memory
operands at a fixed offset from the current instruction and is useful for �short� jumps.
Example: jump 4
The constant offset (4) is a part of the
instruction, and it is added to the
address held by the Program Counter.

RISC and CISC architectures:
Last Modified: 12Jan11 Page 41

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Generally, computers can be classified as being RISC machines or CISC machines. These
concepts are explained in the following discussion.
RISC (Reduced instruction set computers)
RISC is more of a philosophy of computer design than a set of architectural features. The
underlying idea is to reduce the number and complexity of instructions. However, new
RISC machines have some instructions that may be quite complex and the number of
instructions may also be large. The common features of RISC machines are

� One instruction per clock period
This is the most important feature of the RISC machines. Since the program execution
depends on throughput and not on individual execution time, this feature is achievable by
using pipelining and other techniques. In such a case, the goal is issuing an average of
one instruction per cycle without increasing the cycle time.

� Fixed size instructions
Generally, the size of the instructions is 32 bits.

� CPU accesses memory only for Load and Store operations
This means that all the operands are in the CPU registers at the time these are used in an
instruction. For this purpose, they are first brought into the CPU registers from the
memory and later stored back through the load and store operation respectively.

� Simple and few addressing modes
The disadvantage associated with using complex addressing modes is that complex
decoding is required to calculate these addresses, which reduces the processor
performance as it takes significant time. Therefore, in RISC machines, few simple
addressing modes are used.

� Less work per instruction
As the instructions are simple, less work is done per instruction, and hence the clock
period T can be reduced.

� Improved usage of delay slots
A �delay slot� is the waiting time for a load or store operation to access memory or for a
branch instruction to access the target instruction. RISC designs allow the execution of
the next instruction after these instructions are issued. If the program or compiler places
an instruction in the delay slot that does not depend on the result of the previous
instruction, the delay slot can be used efficiently. For the implementation of this feature,
improved compilers are required that can check the dependencies of instructions before
issuing them to utilize the delay slots.

� Efficient usage of Pre(fetching and Speculative Execution Techniques
Prefetching and speculative execution techniques are used with a pipelined architecture.
Instruction pipelining means having multiple instructions in different stages of execution
as instructions are issued before the previous instruction has completed its execution;
pipelining will be studied in detail later. The RISC machines examine the instructions to
check if operand fetches or branch instructions are involved. In such a case, the operands
or the branch target instructions can be �prefetched�. As instructions are issued before
the preceding instructions have completed execution, the processor will not know in case
of a conditional branch instruction, whether the condition will be met and the branch will
be taken or not. But instead of waiting for this information to be available, the branch can
be �speculated� as taken or not taken, and the instructions can be issued. Later if the

speculation is found to be wrong, the results can be discarded and actual target
instructions can be issued. These techniques help improve the performance of processors.

Last Modified: 12Jan11 Page 42

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

CISC (Complex Instruction Set Computers)
The complex instruction set computers does not have an underlying philosophy. The
CISC machines have resulted from the efforts of computer designers to efficiently utilize
memory and minimize execution time, yet add in more instruction formats and
addressing modes. The common attributes of CISC machines are discussed below.

� More work per instruction
This feature was very useful at the time when memory was expensive as well as slow; it
allows the execution of compact programs with more functionality per instruction.

� Wide variety of addressing modes
CISC machines support a number of addressing modes, which helps reduce the program
instruction count. There are 14 addressing modes in MC68000 and 25 in MC68020.

� Variable instruction lengths and execution times per instruction
The instruction size is not fixed and so the execution times vary from instruction to
instruction.
� CISC machines attempt to reduce the �semantic gap�

�Semantic gap� is the gap between machine level instruction sets and highlevel language
constructs. CISC designers believed that narrowing this gap by providing complicated
instructions and complexaddressing modes would improve performance. The concept
did not work because compiler writes did not find these �improvements� useful. The
following are some of the disadvantages of CISC machines.

� Clock period T, cannot be reduced beyond a certain limit
When more capabilities are added to an instruction the CPU circuits required for the
execution of these instructions become complex. This results in more stages of logic
circuitry and adds propagation delays in signal paths.
This in turn places a limit on the smallest possible value of T and hence, the maximum
value of clock frequency.

� Complex addressing modes delay operand fetch from memory
The operand fetch is delayed because more time is required to decode complex
instructions.

� Difficult to make efficient use of speedup techniques
These speedup techniques include

�� Pipelining
�� Prefetching (Intel 8086 has a 6 byte queue)
�� Super scalar operation
�� Speculative execution

Last Modified: 12Jan11 Page 43

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Lecture No. 3
Introduction to SRC Processor

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter2, Chapter 3
Computer Systems Design and Architecture 2.3, 2.4, 3.1

Summary
1) Measures of performance
2) Introduction to an example processor SRC
3) SRC:Notation
4) SRC features and instruction formats

Measures of performance:
Performance testing
To test or compare the performance of machines, programs can be run and their
execution times can be measured. However, the execution speed may depend on the
particular program being run, and matching it exactly to the actual needs of the customer
can be quite complex. To overcome this problem, standard programs called �benchmark
programs� have been devised. These programs are intended to approximate the real
workload that the user will want to run on the machine. Actual execution time can be
measured by running the program on the machines.
Commonly used measures of performance
The basic measure of performance of a machine is time. Some commonly used measures
of this time, used for comparison of the performance of various machines, are

� Execution time
� MIPS
� MFLOPS
� Whetstones
� Dhrystones
� SPEC

Execution time
Execution time is simply the time it takes a processor to execute a given program. The
time it takes for a particular program depends on a number of factors other than the
performance of the CPU, most of which are ignored in this measure. These factors
include waits for I/O, instruction fetch times, pipeline delays, etc.
The execution time of a program with respect to the processor, is defined as

Execution Time = IC x CPI x T
Where, IC = instruction count
 CPI = average number of system clock periods to execute an instruction

T = clock period

Last Modified: 12Jan11 Page 44

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Strictly speaking, (IC�CPI) should be the sum of the clock periods needed to execute
each instruction. The manufacturers for each instruction in the instruction set usually
provide such information. Using the average is a simplification.
MIPS (Millions of Instructions per Second)
Another measure of performance is the millions of instructions that are executed by the
processor per second. It is defined as
MIPS = IC/ (ET x 106)
This measure is not a very accurate basis for comparison of different processors. This is
because of the architectural differences of the machines; some machines will require
more instructions to perform the same job as compared to other machines. For example,
RISC machines have simpler instructions, so the same job will require more instructions.
This measure of performance was popular in the late 70s and early 80s when the VAX
11/780 was treated as a reference.
MFLOPS (Millions of Floating Point Instructions per Second)
For computation intensive applications, the floatingpoint instruction execution is a better
measure than the simple instructions. The measure MFLOPS was devised with this in
mind. This measure has two advantages over MIPS:

�� Floating point operations are complex, and therefore, provide a better picture of
the hardware capabilities on which they are run

�� Overheads (operand fetch from memory, result storage to the memory, etc.) are
effectively lumped with the floating point operations they support

Whetstones
Whetstone is the first benchmark program developed specifically as a benchmark
program for performance measurement. Named after the Whetstone Algol compiler, this
benchmark program was developed by using the statistics collected during the compiler
development. It was originally an Algol program, but it has been ported to FORTRAN,
Pascal and C. This benchmark has been specifically designed to test floating point
instructions. The performance is stated in MWIPS (millions of Whetstone instructions per
second).
Dhrystones
Developed in 1984, this is a small benchmark program to measure the integer instruction
performance of processors, as opposed to the Whetstone�s emphasis on floating point
instructions. It is a very small program, about a hundred highlevellanguage statements,
and compiles to about 1~ 1½ kilobytes of code.
Disadvantages of using Whetstones and Dhrystones
Both Whetstones and Dhrystones are now considered obsolete because of the following
reasons.

�� Small, fit in cache
�� Obsolete instruction mix
�� Prone to compiler tricks
�� Difficult to reproduce results
�� Uncontrolled source code

We should note that both the Whetstone and Dhrystone benchmarks are small programs,
which encourage �overoptimization�, and can be used with optimizing compilers to
distort results.

Last Modified: 12Jan11 Page 45

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

SPEC
SPEC, System Performance Evaluation Cooperative, is an association of a number of
computer companies to define standard benchmarks for fair evaluation and comparison of
different processors. The standard SPEC benchmark suite includes:

�� A compiler
�� A Boolean minimization program
�� A spreadsheet program
�� A number of other programs that stress arithmetic processing speed

The latest version of these benchmarks is SPEC CPU2000.
Advantages

�� It provides for ease of publication.
�� Each benchmark carries the same weight.
�� SPEC ratio is dimensionless.
�� It is not unduly influenced by long running programs.
�� It is relatively immune to performance variation on individual benchmarks.
�� It provides a consistent and fair metric.

An example computer: the SRC: �simple RISC computer�
An example machine is introduced here to facilitate our understanding of various design
steps and concepts in computer architecture. This example machine is quite simple, and
leaves out a lot of details of a real machine, yet it is complex enough to illustrate the
fundamentals.
SRC Introduction
Attributes of the SRC

� The SRC contains 32 General Purpose Registers: R0, R1, �, R31; each register is
of size 32bits.

� Two special purpose registers are included: Program Counter (PC) and Instruction
Register (IR)

� Memory word size is 32 bits
� Memory space size is 232 bytes
� Memory organization is 232 x 8 bits, this means that the memory is byte aligned
� Memory is accessed in 32 bit words (i.e., 4 byte chunks)
� Bigendian byte storage is used

Programmer’s View of the SRC
The figure shows the attributes of the
SRC; the 32 ,32bit registers that are a
part of the CPU, the two additional
CPU registers (PC & IR), and the main
memory which is 232 1byte cells.
SRC Notation
We examine the notation used for the
SRC with the help of some examples.

� R[3] means contents of register
3 (R for register)

� M[8] means contents of memory location 8 (M for memory)
� A memory word at address 8 is

defined as the 32 bits at address

Last Modified: 12Jan11 Page 46

akbar
Highlight

Advanced Computer ArchitectureCS501

8,9,10 and 11 in the memory. This is shown in the figure.

� A special notation for 32bit memory words is
M[8]<31�0>:=M[8]�M[9]�M[10]�M[11]
� is used for concatenation.

Some more SRC Attributes
� All instructions are 32 bits long (i.e., instruction size is 1 word)
� All ALU instructions have three operands
� The only way to access memory is through load and store operations
� Only a few addressing modes are supported

SRC: Instruction Formats
Four types of instructions are
supported by the SRC. Their
representation is given in the figure
shown.
Before discussing these instruction
types in detail, we take a look at the
encoding of general purpose registers
(the ra, rb and rc fields).
Encoding of the General Purpose
Registers
The encoding for the general purpose
registers is shown in the table; it will
be used in place of ra, rb and rc in the
instruction formats shown above. Note
that this is a simple 5 bit encoding. ra,
rb and rc are names of fields used as
�placeholders�, and can represent any
one of these 32 registers. An
exception is rb = 0; it does not mean the register R0, rather it means no operand. This will
be explained in the following discussion.
Type A
Type A is used for only two
instructions:

�� No operation or nop, for which the opcode = 0. This is useful in pipelining
�� Stop operation stop, the opcode is 31 for this instruction.

Both of these instructions do not need an operand (are 0operand instructions).
Type B
Type B format includes three
instructions; all three use relative
addressing mode. These are

�� The ldr instruction, used to load register from memory using a relative address.
(opcode = 2).

o Example:
ldr R3, 56
This instruction will load the register R3 with the contents of the memory
location M [PC+56]

�� The lar instruction, for loading a register with relative address (opcode = 6)

Last Modified: 12Jan11 Page 47

Advanced Computer ArchitectureCS501

o Example:

lar R3, 56
This instruction will load the register R3 with the relative address itself
(PC+56).

�� The str is used to store register to memory using relative address (opcode = 4)
o Example:

str R8, 34
This instruction will store the register R8 contents to the memory location
M [PC+34]

The effective address is computed at runtime by adding a constant to the PC. This makes
the instructions �relocatable�.
Type C
Type C format has three load/store
instructions, plus three ALU
instructions. These load/ store instructions are

�� ld, the load register from memory instruction (opcode = 1)
o Example 1:

ld R3, 56
This instruction will load the register R3 with the contents of the memory
location M [56]; the rb field is 0 in this instruction, i.e., it is not used. This
is an example of direct addressing mode.

o Example 2:
ld R3, 56(R5)
The contents of the memory location M [56+R [5]] are loaded to the
register R3; the rb field � 0. This is an instance of indexed addressing
mode.

�� la is the instruction to load a register with an immediate data value (which can be
an address) (opcode = 5)

o Example1:
la R3, 56
The register R3 is loaded with the immediate value 56. This is an instance
of immediate addressing mode.

o Example 2:
la R3, 56(R5)
The register R3 is loaded with the indexed address 56+R [5]. This is an
example of indexed addressing mode.

�� The st instruction is used to store register contents to memory (opcode = 3)
o Example 1:

st R8, 34
This is the direct addressing mode; the contents of register R8 (R [8]) are
stored to the memory location M [34]

o Example 2:
st R8, 34(R6)
An instance of indexed addressing mode, M [34+R [6]] stores the contents
of R8(R [8])

The ALU instructions are
�� addi, immediate 2�s complement addition (opcode = 13)

o Example:
Last Modified: 12Jan11 Page 48

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

addi R3, R4, 56
R[3] R[4]+56 (rb field = R4)

�� andi, the instruction to obtain immediate logical AND, (opcode = 42)
o Example:

andi R3, R4, 56
R3 is loaded with the immediate logical AND of the contents of register
R4 and 56(constant value)

�� ori, the instruction to obtain immediate logical OR (opcode = 23)
o Example:

ori R3, R4, 56
R3 is loaded with the immediate logical OR of the contents of register R4
and 56(constant value)

 Note:
1. Since the constant c2 field is 17 bits,

For direct addressing mode, only the first 216 bytes of memory can
be accessed (or the last 216 bytes if c2 is negative)
In case of the la instruction, only constants with magnitudes less
than ±216 can be loaded
During address calculation using c2, sign extension to 32 bits must
be performed before the addition

2. Type C instructions, with some modifications, may also be used for
shift instructions. Note
the modification in the
following figure.

The four shift instructions are
�� shr is the instruction used to shift the bits right by using value in (5bit) c3

field(shift count)
�� (opcode = 26)

o Example:
shr R3, R4, 7
shift R4 right 7 times in to R3. Immediate addressing mode is used.

�� shra, arithmetic shift right by using value in c3 field (opcode = 27)
o Example:

shra R3, R4, 7
This instruction has the effect of shift R4 right 7 times in to R3. Immediate
addressing mode is used.

�� The shl instruction is for shift left by using value in (5bit) c3 field (opcode = 28)
o Example:

shl R8, R5, 6
shift R5 left 6 times in to R8. Immediate addressing mode is used.

�� shc, shift left circular by using value in c3 field (opcode = 29)
o Example:

shc R3, R4, 3
shift R4 circular 3 times in to R3. Immediate addressing mode is used.

Last Modified: 12Jan11 Page 49

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Lecture No. 4
ISA and Instruction Formats

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 2
Computer Systems Design and Architecture 2.3, 2.4,slides

Summary
1) Introduction to ISA and instruction formats
2) Coding examples and Hand assembly

An example computer: the SRC: �simple RISC computer�
An example machine is introduced here to facilitate our understanding of various design
steps and concepts in computer architecture. This example machine is quite simple, and
leaves out a lot of details of a real machine, yet it is complex enough to illustrate the
fundamentals.
SRC Introduction
Attributes of the SRC

� The SRC contains 32 General Purpose Registers: R0, R1, �, R31; each register is
of size 32bits.

� Two special purpose registers are included: Program Counter (PC) and Instruction
Register (IR)

� Memory word size is 32 bits
� Memory space size is 232 bytes
� Memory organization is 232 x 8 bits, this means that the memory is byte aligned
� Memory is accessed in 32 bit

words (i.e., 4 byte chunks)
� Bigendian byte storage is used

Programmer�s View of the
SRC
The figure below shows the attributes
of the SRC; the 32 ,32bit registers that
are a part of the CPU, the two
additional CPU registers (PC & IR),
and the main memory which is 232 1

byte cells.
SRC Notation
We examine the notation used for the SRC with the help of some examples.

� R[3] means contents of register 3 (R for register)
� M[8] means contents of memory location 8 (M for memory)

Last Modified: 12Jan11 Page 50

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Advanced Computer ArchitectureCS501

� A memory word at address 8 is

defined as the 32 bits at address
8,9,10 and 11 in the memory.
This is shown in the figure
below.

� A special notation for 32bit
memory words is
M[8]<31�0>:=M[8]�M[9]�M[10]�M[11]
� is used for concatenation.

Some more SRC Attributes
� All instructions are 32 bits long (i.e., instruction size is 1 word)
� All ALU instructions have three operands
� The only way to access memory is through load and store operations
� Only a few addressing modes

are supported
SRC: Instruction Formats
Four types of instructions are
supported by the SRC. Their
representation is given in the following
figure. Before discussing these
instruction types in detail, we take a
look at the encoding of general
purpose registers (the ra, rb and rc
fields).

Encoding of the General Purpose
Registers
The encoding for the general purpose
registers is shown in the following
table; it will be used in place of ra, rb
and rc in the instruction formats shown
above. Note that this is a simple 5 bit
encoding. ra, rb and rc are names of fields used as �placeholders�, and can represent any
one of these 32 registers. An exception is rb = 0; it does not mean the register R0, rather
it means no operand. This will be explained in the following discussion.
Type A
Type A is used for only two instructions:

�� No operation or nop, for which
the opcode = 0. This is useful
in pipelining

�� Stop operation stop, the opcode is 31 for this instruction.
Both of these instructions do not need an operand (are 0operand instructions).
Type B

Last Modified: 12Jan11 Page 51

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Advanced Computer ArchitectureCS501

Type B format includes three
instructions; all three use relative
addressing mode. These are

�� The ldr instruction, used to load register from memory using a relative address.
(opcode = 2).

o Example:
ldr R3, 56
This instruction will load the register R3 with the contents of the memory
location M [PC+56]

�� The lar instruction, for loading a register with relative address (opcode = 6)
o Example:

lar R3, 56
This instruction will load the register R3 with the relative address itself
(PC+56).

�� The str is used to store register to memory using relative address (opcode = 4)
o Example:

str R8, 34
This instruction will store the register R8 contents to the memory location
M [PC+34]

The effective address is computed at runtime by adding a constant to the PC. This makes
the instructions �relocatable�.
Type C
Type C format has three load/store
instructions, plus three ALU
instructions. These load/ store instructions are

�� ld, the load register from memory instruction (opcode = 1)
o Example 1:

ld R3, 56
This instruction will load the register R3 with the contents of the memory
location M [56]; the rb field is 0 in this instruction, i.e., it is not used. This
is an example of direct addressing mode.

o Example 2:
ld R3, 56(R5)
The contents of the memory location M [56+R [5]] are loaded to the
register R3; the rb field � 0. This is an instance of indexed addressing
mode.

�� la is the instruction to load a register with an immediate data value (which can be
an address) (opcode = 5)

o Example1:
la R3, 56
The register R3 is loaded with the immediate value 56. This is an instance
of immediate addressing mode.

o Example 2:
la R3, 56(R5)
The register R3 is loaded with the indexed address 56+R [5]. This is an
example of indexed addressing mode.

�� The st instruction is used to store register contents to memory (opcode = 3)
o Example 1:

Last Modified: 12Jan11 Page 52

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Advanced Computer ArchitectureCS501

st R8, 34
This is the direct addressing mode; the contents of register R8 (R [8]) are
stored to the memory location M [34]

o Example 2:
st R8, 34(R6)
An instance of indexed addressing mode, M [34+R [6]] stores the contents
of R8(R [8])

The ALU instructions are
�� addi, immediate 2�s complement addition (opcode = 13)

o Example:
addi R3, R4, 56
R[3] � R[4]+56 (rb field = R4)

�� andi, the instruction to obtain immediate logical AND, (opcode = 21)
o Example:

andi R3, R4, 56
R3 is loaded with the immediate logical AND of the contents of register
R4 and 56(constant value)

�� ori, the instruction to obtain immediate logical OR (opcode = 23)
o Example:

ori R3, R4, 56
R3 is loaded with the immediate logical OR of the contents of register R4
and 56(constant value)

Note:
1. Since the constant c2 field is 17 bits,

For direct addressing mode, only the first 216 bytes of memory can
be accessed (or the last 216 bytes if c2 is negative)
In case of the la instruction, only constants with magnitudes less
than ±216 can be loaded
During address calculation using c2, sign extension to 32 bits must
be performed before the addition

2. Type C instructions, with some modifications, may also be used for
shift instructions. Note the modification in the following figure.

The four shift instructions are
�� shr is the instruction used to

shift the bits right by using
value in (5bit) c3 field(shift count) (opcode = 26)

o Example:
shr R3, R4, 7
shift R4 right 7 times in to R3 and shifts zeros in from the left as the value
is shifted right. Immediate addressing mode is used.

�� shra, arithmetic shift right by using value in c3 field (opcode = 27)
o Example:

shra R3, R4, 7
This instruction has the effect of shift R4 right 7 times in to R3 and copies
the msb into the word on left as contents are shifted right. Immediate
addressing mode is used.

�� The shl instruction is for shift left by using value in (5bit) c3 field (opcode = 28)
Last Modified: 12Jan11 Page 53

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Advanced Computer ArchitectureCS501

o Example:

shl R8, R5, 6
shift R5 left 6 times in to R8 and shifts zeros in from the right as the value
is shifted left. Immediate addressing mode is used.

�� shc, shift left circular by using value in c3 field (opcode = 29)
o Example:

shc R3, R4, 3
shift R4 circular 3 times in to R3 and copies the value shifted out of the
register on the left is placed back into the register on the right. Immediate
addressing mode is used.

Type D
Type D includes four ALU
instructions, four register based shift
instructions, two logical instructions
and two branch instructions.
The four ALU instructions are given below

�� add, the instruction for 2�s complement register addition (opcode = 12)
o Example:

add R3, R5, R6
result of 2�s complement addition R[5] + R[6] is stored in R3. Register
addressing mode is used.

�� sub , the instruction for 2�s complement register subtraction (opcode = 14)
o Example:

sub R3, R5, R6
R3 will store the 2�s complement subtraction, R[5] R[6]. Register
addressing mode is used.

�� and, the instruction for logical AND operation between registers (opcode = 20)
o Example:

and R8, R3, R4
R8 will store the logical AND of registers R3 and R4. Register addressing

mode is used.
�� or ,the instruction for logical OR operation between registers (opcode = 22)

o Example:
or R8, R3, R4
R8 is loaded with the value R[3] v R[4], the logical OR of registers R3 and
R4. Register addressing mode is used.

The four register based shift instructions use register addressing mode. These use a
modified form of type D, as shown in
figure

�� shr, shift right by using value in
register rc (opcode = 26)

o Example:
shr R3, R4, R5
This instruction will shift R4 right in to R3 using number in R5

�� shra, the arithmetic shift right by using register rc (opcode = 27)
o Example:

shra R3, R4, R5

Last Modified: 12Jan11 Page 54

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Advanced Computer ArchitectureCS501

A shift of R4 right using R5, and the result is stored in R3

�� shl is shift left by using register rc (opcode = 28)
o Example:

shl R8, R5, R6
The instruction shifts R5 left in to R8 using number in R6

�� shc, shifts left circular by using register rc (opcode = 29)
o Example:

shc R3, R4, R6
This instruction will shift R4 circular in to R3 using value in R6

The two logical instructions also use a modified form of the Type D, and are the
following.

o neg stores the 2�s complement
of register rc in ra (opcode =
15)

o Example:
neg R3, R4
Negates (obtains 2�s complement) of R4 and stores in R3. 2address
format and register addressing mode is used.

�� not stores the 1�s complement of register rc in ra (opcode = 24)
o Example:

not R3, R4
Logically inverts R4 and stores in R3. 2address format with register
addressing mode is
used.

Type D has twobranch instruction,
modified forms of type D.

�� br , the instruction to branch to address in rb depending on the condition in rc.
There are five possible conditions, explained through examples. (opcode = 8).
All branch instructions use registeraddressing mode.

o Example 1:
brzr R3, R4
Branch to address in R3 (if R4 == 0)

o Example 2:
brnz R3, R4
Branch to address in R3 (if R4 � 0)

o Example 3:
brpl R3, R4
Branch to address in R3 (if R4 � 0)

o Example 4:
brmi R3, R4

Branch to address in R3 (if R4 < 0)
o Example 5:

br R3, R4
Branch to address in R3 (unconditional)

�� Brl the instruction to branch to address in rb depending on condition in rc.
Additionally, it copies the PC in to ra before branching (opcode = 9)

o Example 1:

Last Modified: 12Jan11 Page 55

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Advanced Computer ArchitectureCS501

brlzr R1,R3, R4
R1 will store the contents of PC, then branch to address in R3 (if R4 == 0)

o Example 2:
brlnz R1,R3, R4
R1 stores the contents of PC, then a branch is taken, to address in R3 (if

R4 � 0)
o Example 3:

brlpl R1,R3, R4
R1 will store PC, then
branch to address in R3
(if R4� 0)

o Example 4:
brlmi R1,R3, R4
R1 will store PC and

then branch to address in
R3 (if R4 < 0)
o Example 5:

brl R1,R3, R4
R1 will store PC, then it will ALWAYS branch to address in R3

o Example 6:
brlnv R1,R3, R4
R1 just stores the contents of PC but a branch is not taken (NEVER
BRANCH)

In the modified type D instructions for branch, the bits <2..0> are used for specifying the
condition; these condition codes are shown in the table.
The SRC Instruction Summary
The instructions implemented by the SRC
are listed, grouped on functionality basis.
Functional Groups of Instructions

Alphabetical Listing based on SRC

Mnemonics
Notice that the op code field for all br instructions is the same. The difference is in the
condition code field, which is in effect, an op code extension.
Examples
Some examples are studied in this section to enhance the student�s understanding of the
SRC.

Last Modified: 12Jan11 Page 56

Ahmad
Highlight

Advanced Computer ArchitectureCS501

Example 1: Expression Evaluation
Write an SRC assembly language program to evaluate the expression:
z = 4(a +b) � 16(c+58)
Your code should not change the source operands.
Solution A: Notice that the SRC does not have a multiply instruction. We will make use
of the fact that multiplication with powers of 2 can be achieved by repeated shift left
operations. A possible solution is give below:
ld R1, c
addi R3, R1, 58
shl R7, R3, 4
ld R4, a
ld R5, b
add R6, R4, R5
shl R8, R6, 2
sub R9, R8, R7
st R9, z
Note:

 ; c is a label used for a memory location
 ; R3 contains (c+58)
 ; R7 contains 16(c+58)

 ; R6 contains (a+b)
 ; R8 contains 4(a+b)
 ; the result is in R9
 ; store the result in memory location z

The memory labels a, b, c and z can be defined by using assembler directives like .dw or
.db, etc. in the source file.
A semicolon �;� is used for comments in assembly language.

Last Modified: 12Jan11 Page 57

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Advanced Computer ArchitectureCS501

Solution B:
We may solve the problem by assuming that a multiply instruction, similar to the add
instruction, exists in the instruction set of the SRC. The shl instruction will be replaced
by the mul instruction as given below.
ld R1, c
addi R3, R1, 58
mul R7, R3, 4
ld R4, a
ld R5, b
add R6, R4, R5
mul R8, R6, 2
sub R9, R8, R7
st R9, z
Note:

 ; c is a label used for a memory location
 ; R3 contains (c+58)
 : R7 contains 16(c+58)

 ; R6 contains (a+b)
 ; R8 contains 4(a+b)
 ; the result is in R9
 ; store the result in memory location z

The memory labels a, b, c and z can be defined by using assembler directives like .dw or
.db, etc. in the source file.
Solution C:
We can perform multiplication with a multiplier that is not a power of 2 by doing
addition in a loop. The number of times the loop will execute will be equal to the
multiplier.

Example 2: Hand Assembly
Convert the given SRC assembly language program in to an equivalent SRC machine
language program.
ld R1, c
addi R3, R1, 58
shl R7, R3, 4
ld R4, a
ld R5, b
add R6, R4, R5
shl R8, R6, 2
sub R9, R8, R7
st R9, z
Note:

 ; c is a label used for a memory location
 ; R3 contains (c+58)
 ; R7 contains 16(c+58)

 ; R6 contains (a+b)
 ; R8 contains 4(a+b)
 ; the result is in R9
 ; store the result in memory location z

This program uses memory labels a,b,c and z. We need to define them for the assembler
by using assembler directives like .dw or .equ etc. in the source file.
Assembler Directives
Assembler directives, also called pseudo opcodes, are commands to the assembler to
direct the assembly process. The directives may be slightly different for different
assemblers. All the necessary directives are available with most assemblers. We explain
the directives as we encounter them. More information on assemblers can be looked up in
the assembler user manuals.
Source program with directives

.ORG 200 ; start the next line at address 200
a: .DW 1 ; reserve one word for the label a in the memory
b: .DW 1 ; reserve a word for b, this will be at address 204
c: .DW 1 ; reserve a word for c, will be at address 208
z: .DW 1 ; reserve one word for the result

Last Modified: 12Jan11 Page 58

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Advanced Computer ArchitectureCS501

 .ORG 400

; start the code at address 400

; all numbers are in decimal unless otherwise stated
ld R1, c ; c is a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)
shl R7, R3, 4
ld R4, a
ld R5, b
add R6, R4, R5
shl R8, R6, 2
sub R9, R8, R7
st R9, z

; R7 contains 16(c+58)

; R6 contains (a+b)
; R8 contains 4(a+b)
; the result is in R9
; store the result in memory location z

This is the way an assembly program will appear in the source file. Most assemblers
require that the file be saved with an .asm extension.
Solution:
Observe the first line of the program

.ORG 200 ; start the next line at address 200
This is a directive to let the following code/ variables �originate� at the specified address
of the memory, 200 in this case.
Variable statements, and another .ORG directive follow the .ORG directive.
a: .DW 1 ; reserve one word for the label a in the memory
b: .DW 1 ; reserve a word for b, this will be at address 204
c: .DW 1 ; reserve a word for c, will be at address 208
z: .DW 1 ; reserve one word for the result
 .ORG 400 ; start the code at address 400
We conclude the following from the above statements:
The code starts at address 400 and each instruction takes 32
bits in the memory. The memory map for the program is
shown in given table.
Memory Map for the SRC example program

Last Modified: 12Jan11 Page 59

Ahmad
Highlight

Ahmad
Highlight

Advanced Computer ArchitectureCS501

We have to convert these instructions to machine language. Let us start with the first
instruction:

ld R1, c
Notice that this is a type C instruction with the rb field missing.

1. We pick the opcode for this load instruction from the SRC instruction tables
given in the SRC instruction summary section. The opcode for the load register
�ld� instruction is 00001.

2. Next we pick the register code corresponding to register R1 from the register table
(given in the section �encoding of general
purpose registers�). The register code for
R1 is 00001.

3. The rb field is missing, so we place zeros
in the field: 00000

4. The value of c is provided by the
assembler, and should be converted to 17
bits. As c has been assigned the memory
address 208, the binary value to be
encoded is 00000 0000 1101 0000.

5. So the instruction ld R1, c is 00001 00001
00000 00000 0000 1101 0000 in the
machine language.

6. The hexadecimal representation of this
instruction is 0 8 4 0 0 0 D 0 h.

We can update the memory map with these
values.
We consider the next instruction,
addi R3, R1, 58.
Notice that this is a type C instruction.

1. We pick the opcode for the instruction addi from
the SRC instruction table. It is 01101

2. We pick the register codes for the registers R3 and
R1, these codes are 00011 and 00001 respectively

3. For the immediate data, 58, we use the binary
value, 00000 0000 0011 1010

4. So the complete instruction becomes: 01101
00011 00001 00000 0000 0011 1010

5. The hexadecimal representation of the instruction
is 6 8 C 2 0 0 3 A h

We update the memory map, as shown in table.
The next instruction is shl R7,R3, 4, at address 408.
Again, this is a type C instruction.

1. The opcode for the instruction shl is picked from
the SRC instruction table. It is 11100

2. The register codes for the registers R7 and R3
from the register table are 00111 and 00011
respectively

Last Modified: 12Jan11 Page 60

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Advanced Computer ArchitectureCS501

3. For the immediate data, 4, the corresponding binary value 00000 0000 0000 0100

is used.
4. We can place these codes in accordance with the type C instruction format to

obtain the complete instruction: 11100 00111 00011 00000 0000 0000 0100
5. The hexadecimal representation of the instruction is E1C60004

The memory map is updated, as shown in table.
The next instruction, ld R4, a, is also a type C instruction.
Rb field is missing in this instruction. To obtain the
machine equivalent, we follow the steps given below.

1. The opcode of the load instruction �ld� is 00001
2. The register code corresponding to the register R4

is obtained from the register table, and it is 00100
3. As the 5 bit rb field is missing, we can encode

zeros in its place: 00000
4. The value of a is provided by the assembler, and

is converted to 17 bits. It has been assigned the
memory address 200, the binary equivalent of
which is: 00000 0000 1100 1000

5. The complete instruction becomes: 00001 00100 00000 00000 0000 1100 1000
6. The hexadecimal equivalent of the instruction is 0 9 0 0 0 0 C 8 h

Memory map can be updated with this value.
The next instruction is also a load type C instruction, with
the rb field missing.
ld R5, b
The machine language conversion steps are

1. The opcode of the load instruction is obtained
from the SRC instruction table; it is 00001

2. The register code for R5, obtained from the
register table, is 00101

3. Again, the 5 bit rb field is missing. We encode
zeros in its place: 00000

4. The value of label b is provided by the assembler,
and should be converted to 17 bits. It has been
assigned the memory address 204, so the binary
value is: 00000 0000 1100 1100

5. The complete instruction is: 00001 00101 00000 00000 0000 1100 1100
6. The hexadecimal value of this instruction is 0 9 4

0 0 0 C C h
Memory map is then updated with this value.
The next instruction is a type Dadd instruction, with the
constant field missing:
add R6,R4,R5
The steps followed to obtain the assembly code for this
instruction are

1. The opcode of the instruction is obtained from
the SRC instruction table; it is 01100

2. The register codes for the registers R6, R4 and R5
are obtained from the register table; these are

Last Modified: 12Jan11 Page 61

Ahmad
Highlight

Ahmad
Highlight

Advanced Computer ArchitectureCS501

00110, 00100 and 00101 respectively.

3. The 12 bit constant field is unused in this instruction, therefore we encode zeros
in its place: 0000 0000 0000

4. The complete instruction becomes: 01100 00110 00100 00101 0000 0000 0000
5. The hexadecimal value of the instruction is 6 1 8 8 5 0 0 0 h

Memory map is then updated with this value.
The instruction shl R8,R6, 2 is a type C instruction with
the rc field missing. The steps taken to obtain the
machine code of the instruction are

1. The opcode of the shift left instruction �shl�,
obtained from the SRC instruction table, is 11100

2. The register codes of R8 and R6 are 01000 and
00110 respectively

3. Binary code is used for the immediate data 2:
00000 0000 0000 0010

4. The complete instruction becomes: 11100 01000
00110 00000 0000 0000 0010

5. The hexadecimal equivalent of the instruction is E
2 0 C 0 0 0 2

Memory map is then updated with this value.
The instruction at the memory address 428 is sub R9, R8, R7. This is a type D
instruction.
We decode it into the machine language, as follows:

1. The opcode of the subtract instruction �sub� is
01110

2. The register codes of R9, R7 and R8, obtained
from the register table, are 01001, 00111 and
01000 respectively

3. The 12 bit immediate data field is not used, zeros
are encoded in its place: 0000 0000 0000

4. The complete instruction becomes: 01110 01001
00111 01000 0000 0000 0000

5. The hexadecimal equivalent is 7 2 4 E 8 0 0 0 h
We again update the memory map
The last instruction is is a type C instruction with the rb
field missing:
st R9, z
The machine equivalent of this instruction is obtained
through the following steps:

1. The opcode of the store instruction �st�, obtained
from the SRC instruction table, is 00011

2. The register code of R9 is 01001
3. Notice that there is no register coded in the 5 bit

rb field, therefore, we encode zeros: 00000

Last Modified: 12Jan11 Page 62

Ahmad
Highlight

Advanced Computer ArchitectureCS501

4. The value of the label z is provided by the assembler, and should be converted to

17 bits. Notice that the memory address assigned to z is 212. The 17 bit binary
equivalent is: 00000 0000 1101 0100

5. The complete instruction becomes: 00011 01001 00000
00000 0000 1101 0100

6. The hexadecimal form of this instruction is 1 A 4 0 0 0 D 4
h

The memory map, after the conversion of all the instructions, is
We have shown the memory map as an array of 4 byte cells in the
above solution. However, since the memory of the SRC is arranged
in 8 bit cells (i.e. memory is byte aligned), the real representation of
the memory map is :

Example 3: SRC instruction analysis
Identify the formats of following SRC instructions and specify the
values in the fields

Solution:

Last Modified: 12Jan11 Page 63

Advanced Computer ArchitectureCS501

Lecture No. 5
Description of SRC in RTL

Reading Material
 Handouts Slides

Summary
1) Reverse Assembly
2) Description of SRC in the form of RTL
3) Behavioral and Structural description in terms of RTL

Reverse Assembly
Typical Problem:
Given a machine language instruction for the SRC, it may be required to find the
equivalent SRC assembly language instruction
Example:
Reverse assemble the following SRC machine language instructions:

68C2003A h
E1C60004 h
61885000 h

724E8000 h
1A4000D4 h
084000D0 h

Solution:
1. Write the given hexadecimal instruction in binary form
68C2003A h � 0110 1000 1100 0010 0000 0000 0011 1010 b
2. Examine the first five bits of the instruction, and pick the corresponding mnemonic
from the SRC instruction set listing arranged according to ascending order of opcodes
01101 b � 13 d � addi � add immediate
3. Now we know that this instruction uses the type C format, the two 5bit fields after the
opcode field represent the destination and the source registers respectively, and that the
remaining 17bits in the instruction represent a constant

 0110 1000 1100 0010 0000 0000 0011 1010 b
opcode ra field rb field 17bit c1 field

�� �� �� ��
 addi R3 R1 3A h=58 d

4. Therefore, the assembly language instruction is

Last Modified: 12Jan11 Page 64

Advanced Computer ArchitectureCS501

addi R3, R1, 58

Summary

We can do it a bit faster now! Step1: Here is step1 for all instructions

Step 2: Pick up the op code for each instruction

Step 3: Determine the instruction type for each instruction

The meaning of the remaining fields will depend on the instruction type (i.e., the
instruction format)
Summary

Last Modified: 12Jan11 Page 65

Advanced Computer ArchitectureCS501

Note: est of the fields of above given tables are left as an exercise for students.
Using RTL to describe the SRC
RTL stands for Register Transfer Language. The Register Transfer Language provides a
formal way for the description of the behavior and structure of a computer. The RTL
facilitates the design process of the computer as it provides a precise, mathematical
representation of its functionality. In this section, a Register Transfer Language is
presented and introduced, for the SRC (Simple �RISC� Computer), described in the
previous discussion.
Behavioral RTL
Behavioral RTL is used to describe the �functionality� of the machine only, i.e. what the
machine does.
Structural RTL
Structural RTL describes the �hardware implementation� of the machine, i.e. how the
functionality made available by the machine is implemented.
Behavioral versus Structural RTL:
In computer design, a topdown approach is adopted. The computer design process
typically starts with defining the behavior of the overall system. This is then broken down
into the behavior of the different modules. The process continues, till we are able to
define, design and implement the structure of the individual modules. Behavioral RTL is
used for describing the behavior of machine whereas structural RTL is used to define the
structure of machine, which brings us to the some more hardware features.
Using RTL to describe the static properties of the SRC
In this section we introduce the RTL by using it to describe the various static properties
of the SRC.
Specifying Registers
The format used to specify registers is
Register Name<register bits>
For example, IR<31..0> means bits numbered 31 to 0 of a 32bit register named �IR�
(Instruction Register).
�Naming� using the := naming operator:
The := operator is used to �name� registers, or part of registers, in the Register Transfer
Language. It does not create a new register; it just generates another name, or �alias� for
an already existing register or part of a register. For example,
Op<4..0>: = IR<31..27> means that the five most significant bits of the register IR will
be called op, with bits 4..0.
Fields in the SRC instruction
In this section, we examine the various fields of an SRC instruction, using the RTL.
op<4..0>: = IR<31..27>; operation code field

Last Modified: 12Jan11 Page 66

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Advanced Computer ArchitectureCS501

The five most significant bits of an SRC instruction, (stored in the instruction register in
this example), are named op, and this field is used for specifying the operation.
ra<4..0>: = IR<26..22>; target register field
The next five bits of the SRC instruction, bits 26 through 22, are used to hold the address
of the target register field, i.e., the result of the operation performed by the instruction is
stored in the register specified by this field.
rb<4..0>: = IR<21..17>; operand, address index, or branch target register
The bits 21 through 17 of the instruction are used for the rb field. rb field is used to hold
an operand, an address index, or a branch target register.
rc<4..0>: = IR<16..12>; second operand, conditional test, or shift count register
The bits 16 through 12, are the rc field. This field may hold the second operand,
conditional test, or a shift count.
c1<21..0>: = IR<21..0>; long displacement field
In some instructions, the bits 21 through 0 may be used as long displacement field.
Notice that there is an overlap of fields. The fields are distinguished in a particular
instruction depending on the operation.
c2<16..0>: = IR<16..0>; short displacement or immediate field
The bits 16 through 0 may be used as short displacement or to specify an immediate
operand.
c3<11..0>: = IR<11..0>; count or modifier field
The bits 11 through 0 of the SRC instruction may be used for count or modifier field.
Describing the processor state using RTL
The Register Transfer Language can be used to describe the processor state. The
following registers and bits together form the processor state set.
PC<31..0>; program counter (it holds the memory address of next
 instruction to be executed)
IR<31..0>;
Run;
Strt;

 instruction register, used to hold the current instruction
 one bit run/halt indicator
 start signal

R [0..31]<31..0>; 32, 32 bit general purpose registers

SRC in a Black Box

Last Modified: 12Jan11 Page 67

Ahmad
Highlight

Advanced Computer ArchitectureCS501

Difference between our notation and notation used by the text (H&J)

Difference between �,� and �;� in RTL
Statements separated by a �,� take place during the same clock pulse. In other words, the
order of execution of statements separated by �,� does not matter.
On the other hand, statements separated by a �;� take place on successive clock pulses. In
other words, if statements are separated by �;� the one on the left must complete before
the one on the right starts. However, some things written with one RTL statement can
take several clocks to complete.
So in the instruction interpretation, fetchexecute cycle, we can see that the first
statement. ! Run & Strt : Run � 1, executes first. After this statement has executed and
set run to 1, the statements IR � M [PC] and PC � PC + 4 are executed concurrently.
Note that in statements separated by �,�, all right hand sides of Register Transfers are
evaluated before any left hand side is modified (generally though assignment).
Using RTL to describe the dynamic properties of the SRC
The RTL can be used to describe the dynamic properties.
Conditional expressions can be specified through the use of RTL. The following example
will illustrate this
(op=14) : R [ra] � R [rb] R[rc];
The � operator is the RTL assignment operator. �;� is the termination operator. This
conditional expression implies that �IF the op field is equal to 14, THEN calculate the
difference of the value in the register specified by the rb field and the value in the register
specified by the rc field, and store the result in the register specified by the ra field.�
Effective address calculations in RTL (performed at runtime)
In some instructions, the address of an operand or the destination register may not be

specified directly. Instead, the effective address may have to be calculated at runtime.

These effective address calculations can be represented in RTL, as illustrated through the

examples below.

Displacement address
disp<31..0> := ((rb=0) : c2<16..0> {sign extend},

Last Modified: 12Jan11 Page 68

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

Ahmad
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

 (rb�0) : R [rb] + c2<16..0> {sign extend}),

The displacement (or the direct) address is being calculated in this example. The �,�
operator separates statements in a single instruction, and indicates that these statements
are to be executed simultaneously. However, since in this example these are two disjoint
conditions, therefore, only one action will be performed at one time.
Note that register R0 cannot be added to displacement. rb = 0 just implies we do not need
to use the R [rb] field.
Relative address
rel<31..0> := PC<31..0> + c1<21..0> {sign extend},
In the above example, a relative address is being calculated by adding the displacement
after sign extension to the contents of the program counter register (that holds the next
instruction to be executed in a program execution sequence).
Range of memory addresses
The range of memory addresses that can be accessed using the displacement (or the
direct) addressing and the relative addressing is given.

�� Direct addressing (displacement with rb=0)
o If c2<16>=0 (positive displacement) absolute addresses range from

00000000h to 0000FFFFh
o If c2<16>=1 (negative displacement) absolute addresses range from

FFFF0000h to FFFFFFFFh
�� Relative addressing

o The largest positive value of C1<21..0> is 2211 and its most negative
value is 221, so addresses up to 2211 forward and 221 backward from the
current PC value can be specified

Instruction Interpretation
(Describing the Fetch operation using RTL)
The action performed for all the instructions before they are decoded is called �instruction
interpretation�. Here, an example is that of starting the machine. If the machine is not
already running (¬Run, or �not� running), AND (&) it the condition start (Strt) becomes
true, then Run bit (of the processor state) is set to 1 (i.e. true).
instruction_Fetch := (
 ! Run & Strt: Run � 1 ; instruction_Fetch

 Run : (IR � M [PC], PC � PC + 4; instruction_Execution));
The := is the naming operator. The ; operator is used to add comments in RTL. The ,
operator, specifies that the statements are to be executed simultaneously, (i.e. in a single
clock pulse). The ; operator is used to separate sequential statements. � is an assignment
operator. & is a logical AND, ~ is a logical OR, and ! is the logical NOT. In the
instruction interpretation phase of the fetchexecute cycle, if the machine is running (Run
is true), the instruction register is loaded with the instruction at the location M [PC] (the
program counter specifies the address of the memory at which the instruction to be
executed is located). Simultaneously, the program counter is incremented by 4, so as to
point to the next instruction, as shown in the example above. This completes the
instruction interpretation.
Instruction Execution
(Describing the Execute operation using RTL)
Once the instruction is fetched and the PC is incremented, execution of the instruction
starts. In the following, we denote instruction Fetch by �iF� and instruction execution by
�iE�.

Last Modified: 12Jan11 Page 69

Ahmad
Highlight

Advanced Computer ArchitectureCS501

iE:= (
 (op<4..0>= 1) : R [ra] � M [disp],
 (op<4..0>= 2) : R [ra] � M [rel],
 . . .
 . . .
 (op<4..0>=31) : Run � 0,); iF);
As shown above, Instruction Execution can be described by using a long list of
conditional operations, which are inherently �disjoint�.
One of these statements is executed, depending on the condition met, and then the
instruction fetch statement (iF) is invoked again at the end of the list of concurrent
statements. Thus, instruction fetch (iF) and instruction execution statements invoke each
other in a loop. This is the fetchexecute cycle of the SRC.
Concurrent Statements
 The long list of concurrent, disjoint instructions of the instruction execution (iE) is
basically the complete instruction set of the processor. A brief overview of these
instructions is given below.
Load(Store Instructions
(op<4..0>= 1) : R [ra] � M [disp], load register (ld)
This instruction is to load a register using a displacement address specified by the
instruction, i.e. the contents of the memory at the address �disp� are placed in the register
R [ra].
(op<4..0>= 2) : R [ra] � M [rel], load register relative (ldr)
If the operation field �op� of the instruction decoded is 2, the instruction that is executed
is loading a register (target address of this register is specified by the field ra) with
memory contents at a relative address, �rel�. The relative address calculation has been
explained in this section earlier.
(op<4..0>= 3) : M [disp] � R [ra], store register (st)
If the opcode is 3, the contents of the register specified by address ra, are stored back to
the memory, at a displacement location �disp�.
(op<4..0>= 4) : M[rel] � R[ra], store register relative (str)
If the opcode is 4, the contents of the register specified by the target register address ra,
are stored back to the memory, at a relative address location �rel�.
(op<4..0>= 5) : R [ra] � disp, load displacement address (la)
For opcode 5, the displacement address disp is loaded to the register R (specified by the
target register address ra).
(op<4..0>= 6) : R [ra] � rel, load relative address (lar)
For opcode 6, the relative address rel is loaded to the register R (specified by the target
register address ra).
Branch Instructions
(op<4..0>= 8) : (cond : PC � R [rb]), conditional branch (br)
If the opcode is 8, a conditional branch is taken, that is, the program counter is set to the
target instruction address specified by rb, if the condition �cond� is true.
(op<4..0>= 9) : (R [ra] � PC,
 cond : (PC � R [rb])), branch and link (brl)
If the op field is 9, branch and link instruction is executed, i.e. the contents of the
program counter are stored in a register specified by ra field, (so control can be returned
to it later), and then the conditional branch is taken to a branch target address specified by

Last Modified: 12Jan11 Page 70

Advanced Computer ArchitectureCS501

rb. The branch and link instruction is useful for returning control to the calling program
after a procedure call returns.
The conditions that these �conditional� branches depend on are specified by the field c3
that has 3 bits. This simply means that when c3<2..0> is equal to one of these six values.
We substitute the expression on the right hand side of the : in place of cond
These conditions are explained here briefly.

cond := (
 c3<2..0>=0 : 0, never

If the c3 field is 0, the branch is never taken.
c3<2..0>=1 : 1, always
If the field is 1, branch is taken

 c3<2..0>=2 : R [rc]=0, if register is zero
 If c3 = 2, a branch is taken if the register rc = 0.
 c3<2..0>=3 : R [rc] � 0, if register is nonzero

If c3 = 3, a branch is taken if the register rc is not equal to 0.
 c3<2..0>=4 : R [rc]<31>=0 if positive or zero

If c3 is 4, a branch is taken if the register value in the register specified
 by rc is greater than or equal to 0.

c3<2..0>=5 : R [rc]<31>=1), if negative
 If c3 = 5, a branch is taken if the value stored in the register specified by
 rc is negative.
Arithmetic and Logical instructions
(op<4..0>=12) : R [ra] � R [rb] + R [rc],
If the opcode is 12, the contents of the registers rb and rc are added and the result is
stored in the register ra.
(op<4..0>=13) : R [ra] � R [rb] + c2<16..0> {sign extend},
If the opcode is 13, the content of the register rb is added with the immediate data in the
field c2, and the result is stored in the register ra.
(op<4..0>=14) : R [ra] � R [rb] � R [rc],
If the opcode is 14, the content of the register rc is subtracted from that of rb, and the
result is stored in ra.
(op<4..0>=15) : R [ra] � (R [rc],
If the opcode is 15, the content of the register rc is negated, and the result is stored in ra.
(op<4..0>=20) : R [ra] � R [rb] & R [rc],
If the op field equals 20, logical AND of the contents of the registers rb and rc is obtained
and the result is stored in register ra.
(op<4..0>=21) : R [ra] � R [rb] & c2<16..0> {sign extend},
If the op field equals 21, logical AND of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.
(op<4..0>=22) : R [ra] � R [rb] ~ R [rc],
If the op field equals 22, logical OR of the contents of the registers rb and rc is obtained
and the result is stored in register ra.
(op<4..0>=23) : R [ra] � R [rb] ~ c2<16..0> {sign extend},
If the op field equals 23, logical OR of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.
(op<4..0>=24) : R [ra] � ¬R [rc],
If the opcode equals 24, the content of the logical NOT of the register rc is obtained, and
the result is stored in ra.

Last Modified: 12Jan11 Page 71

Advanced Computer ArchitectureCS501

Shift instructions
(op<4..0>=26): R [ra]<31..0 > � (n � 0) © R [rb] <31..n>,
If the opcode is 26, the contents of the register rb are shifted right n bits times. The bits
that are shifted out of the register are discarded. 0s are added in their place, i.e. n number
of 0s is added (or concatenated) with the register contents. The result is copied to the
register ra.
(op<4..0>=27) : R [ra]<31..0 > � (n � R [rb] <31>) © R [rb] <31..n>,
For opcode 27, shift arithmetic operation is carried out. In this operation, the contents of
the register rb are shifted right n times, with the most significant bit, bit 31, of the register
rb added in their place. The result is copied to the register ra.
(op<4..0>=28) : R [ra]<31..0 > � R [rb] <31(n..0> © (n � 0),
For opcode 28, the contents of the register rb are shifted left n bits times, similar to the
shift right instruction. The result is copied to the register ra.
(op<4..0>=29) : R [ra]<31..0 > � R [rb] <31(n..0> © R [rb]<31..32(n >,
The instruction corresponding to opcode 29 is the shift circular instruction. The contents
of the register rb are shifted left n times, however, the bits that move out of the register in
the shift process are not discarded; instead, these are shifted in from the other end (a
circular shifting). The result is stored in register ra.
where
n := (

Notation:

(c3<4..0>=0) : R [rc],
(c3<4..0>!=0) : c3 <4..0>),
� means replication
© Means concatenation

Miscellaneous instructions
(op<4..0>= 0) , No operation (nop)
If the opcode is 0, no operation is carried out for that clock period. This instruction is
used as a stall in pipelining.
(op<4..0>= 31) : Run � 0, Halt the processor (Stop)
); iF);
If the opcode is 31, run is set to 0, that is, the processor is halted.
After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out
once again, and so the fetchexecute cycle continues.
Flow diagram
Flow diagram is the symbolic
representation of FetchExecute cycle. Its
top block indicates instruction fetch and
then next block shows the instruction
decode by looking at the first 5bits of the
fetched instruction which would represent
opcode which may be from 0 to
31.Depending upon the contents of this
opcode the appropriate processing would
take place. After the appropriate
processing, we would move back to top
block, next instruction is fetched and the
same process is repeated until the instruction with opcode 31 would reach and halt the
system.
Note:For SRC Assembler and Simulator consult Appendix.

Last Modified: 12Jan11 Page 72

akbar
Highlight

Advanced Computer ArchitectureCS501

Lecture No. 6

RTL Using Digital Logic Circuits

Reading Material

 Handouts Slides

Summary

�� Using Behavioral RTL to Describe the SRC (continued)
�� Implementing Register Transfer using Digital Logic Circuits

Using behavioral RTL to Describe the SRC (continued)

Once the instruction is fetched and the PC is incremented, execution of the instruction
starts. In the following discussion, we denote instruction fetch by �iF� and instruction
execution by �iE�.

iE:= (
 (op<4..0>= 1) : R [ra] � M [disp],
 (op<4..0>= 2) : R [ra] � M [rel],
 . . .
 . . .
 (op<4..0>=31) : Run � 0,); iF);

As shown above, instruction execution can be described by using a long list of
conditional operations, which are inherently �disjoint�. Only one of these statements is
executed, depending on the condition met, and then the instruction fetch statement (iF) is
invoked again at the end of the list of concurrent statements. Thus, instruction fetch (iF)
and instruction execution statements invoke each other in a loop. This is the fetchexecute
cycle of the SRC.

Concurrent Statements
The long list of concurrent, disjoint instructions of the instruction execution (iE) is
basically the complete instruction set of the processor. A brief overview of these
instructions is given below:

Load(Store Instructions
(op<4..0>= 1) : R [ra] � M [disp], load register (ld)
This instruction is to load a register using a displacement address specified by the
instruction, i.e., the contents of the memory at the address �disp� are placed in the register
R [ra].

Last Modified: 12Jan11 Page 73

akbar
Highlight

Advanced Computer ArchitectureCS501

(op<4..0>= 2) : R [ra] � M [rel], load register relative (ldr)
If the operation field �op� of the instruction decoded is 2, the instruction that is executed
is loading a register (target address of this register is specified by the field ra) with
memory contents at a relative address, �rel�. The relative address calculation has been
explained in this section earlier.
(op<4..0>= 3) : M [disp] � R [ra], store register (st)
If the opcode is 3, the contents of the register specified by address ra, are stored back to
the memory, at a displacement location �disp�.
(op<4..0>= 4) : M[rel] � R[ra], store register relative (str)
If the opcode is 4, the contents of the register specified by the target register address ra,
are stored back to the memory, at a relative address location �rel�.
(op<4..0>= 5) : R [ra] � disp, load displacement address (la)
For opcode 5, the displacement address disp is loaded to the register R (specified by the
target register address ra).
(op<4..0>= 6) : R [ra] � rel, load relative address (lar)
For opcode 6, the relative address rel is loaded to the register R (specified by the target
register address ra).

Branch Instructions
(op<4..0>= 8) : (cond : PC � R [rb]), conditional branch (br)
If the opcode is 8, a conditional branch is taken, that is, the program counter is set to the
target instruction address specified by rb, if the condition �cond� is true.
(op<4..0>= 9) : (R [ra] � PC,
 cond : (PC � R [rb])), branch and link (brl)
If the op field is 9, branch and link instruction is executed, i.e. the contents of the
program counter are stored in a register specified by ra field, (so control can be returned
to it later), and then the conditional branch is taken to a branch target address specified by
rb. The branch and link instruction is useful for returning control to the calling program
after a procedure call returns.
The conditions that these �conditional� branches depend on, are specified by the field c3
that has 3 bits. This simply means that when c3<2..0> is equal to one of these six values,
we substitute the expression on the right hand side of the : in place of cond.
These conditions are explained here briefly.

cond := (
 c3<2..0>=0 : 0, never

If the c3 field is 0, the branch is never taken.
c3<2..0>=1 : 1, always
If the field is 1, branch is taken

 c3<2..0>=2 : R [rc]=0, if register is zero
 If c3 = 2, a branch is taken if the register rc = 0.
 c3<2..0>=3 : R [rc] � 0, if register is nonzero

If c3 = 3, a branch is taken if the register rc is not equal to 0.
 c3<2..0>=4 : R [rc]<31>=0 if positive or zero

If c3 is 4, a branch is taken if the register value in the register specified
 by rc is greater than or equal to 0.

c3<2..0>=5 : R [rc]<31>=1), if negative
 If c3 = 5, a branch is taken if the value stored in the register specified by
 rc is negative.

Last Modified: 12Jan11 Page 74

Advanced Computer ArchitectureCS501

Arithmetic and Logical instructions
(op<4..0>=12) : R [ra] � R [rb] + R [rc],
If the opcode is 12, the contents of the registers rb and rc are added and the result is
stored in the register ra.
(op<4..0>=13) : R [ra] � R [rb] + c2<16..0> {sign extended},
If the opcode is 13, the content of the register rb is added with the immediate data in the
field c2, and the result is stored in the register ra.
(op<4..0>=14) : R [ra] � R [rb] � R [rc],
If the opcode is 14, the content of the register rc is subtracted from that of rb, and the
result is stored in ra.
(op<4..0>=15) : R [ra] � (R [rc],
If the opcode is 15, the content of the register rc is negated, and the result is stored in ra.
(op<4..0>=20) : R [ra] � R [rb] & R [rc],
If the op field equals 20, logical AND of the contents of the registers rb and rc is obtained
and the result is stored in register ra.
(op<4..0>=21) : R [ra] � R [rb] & c2<16..0> {sign extended},
If the op field equals 21, logical AND of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.
(op<4..0>=22) : R [ra] � R [rb] ~ R [rc],
If the op field equals 22, logical OR of the contents of the registers rb and rc is obtained
and the result is stored in register ra.
(op<4..0>=23) : R [ra] � R [rb] ~ c2<16..0> {sign extended},
If the op field equals 23, logical OR of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.
(op<4..0>=24) : R [ra] � !R [rc],
If the opcode equals 24, the content of the logical NOT of the register rc is obtained, and
the result is stored in ra.

Shift instructions
(op<4..0>=26): R [ra]<31..0 > � (n � 0) © R [rb] <31..n>,
If the opcode is 26, the contents of the register rb are shifted right n bits times. The bits
that are shifted out of the register are discarded. 0s are added in their place, i.e. n number
of 0s is added (or concatenated) with the register contents. The result is copied to the
register ra.
(op<4..0>=27) : R [ra]<31..0 > � (n � R [rb] <31>) © R [rb] <31..n>,
For opcode 27, shift arithmetic operation is carried out. In this operation, the contents of
the register rb are shifted right n times, with the most significant bit, i.e., bit 31, of the
register rb added in their place. The result is copied to the register ra.
(op<4..0>=28) : R [ra]<31..0 > � R [rb] <31(n..0> © (n � 0),
For opcode 28, the contents of the register rb are shifted left n bits times, similar to the
shift right instruction. The result is copied to the register ra.
(op<4..0>=29) : R [ra]<31..0 > � R [rb] <31(n..0> © R [rb]<31..32(n >,
The instruction corresponding to opcode 29 is the shift circular instruction. The contents
of the register rb are shifted left n times, however, the bits that move out of the register in
the shift process are not discarded; instead, these are shifted in from the other end (a
circular shifting). The result is stored in register ra.
where

Last Modified: 12Jan11 Page 75

Advanced Computer ArchitectureCS501

 n := ((c3<4..0>=0) : R [rc],

(c3<4..0>!=0) : c3 <4..0>),

Notation:
� means replication
© means concatenation

Miscellaneous instructions
(op<4..0>= 0) , No operation (nop)
If the opcode is 0, no operation is carried out for that clock period. This instruction is
used as a stall in pipelining.
(op<4..0>= 31) : Run � 0, Halt the processor (Stop)
); iF);
If the opcode is 31, run is set to 0, that is, the processor stops execution.
After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out
once again, and so the fetchexecute cycle continues.

Implementing Register Transfers using Digital Logic Circuits

We have studied the register transfers in the previous sections, and how they help in
implementing assembly language. In this section we will review how the basic digital
logic circuits are used to implement instructions register transfers. The topics we will
cover in this section include:

1. A brief (and necessary) review of logic circuits
2. Implementing simple register transfers
3. Register file implementation using a bus
4. Implementing register transfers with mathematical operations
5. The Barrel Shifter
6. Implementing shift operations

Review of logic circuits
Before we study the implementation of register transfers using logic circuits, a brief
overview of some of the important logic circuits will prove helpful. The topics we review
in this section include

1. The basic D flip flop
2. The nbit register
3. The nto1 multiplexer
4. Tristate buffers

The basic D flip flop
A flipflop is a bistable device,
capable of storing one bit of
Information. Therefore, flipflops
are used as the building blocks of a
computer�s memory as well as CPU
registers.

Last Modified: 12Jan11 Page 76

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

There are various types of flipflops; most common type, the D flipflop is shown in the
figure given. The given truth table for this positiveedge triggered D flipflop shows that
the flipflop is set (i.e. stores a 1) when the data input is high on the leading (also called
the positive) edge of the clock; it is reset (i.e., the flipflop stores a 0) when the data input
is 0 on the leading edge of the clock. The clear input will reset the flipflop on a low
input.
The n(bit register
A nbit register can be formed by
grouping n flipflops together. So a
register is a device in which a
group of flipflops operate
synchronously.
A register is useful for storing
binary data, as each flipflop can
store one bit. The clock input of
the flipflops is grouped
together, as is the enable input.
As shown in the figure, using
the input lines a binary number
can be stored in the register by
applying the corresponding
logic level to each of the flip
flops simultaneously at the
positive edge of the clock.
The next figure shows the
symbol of a 4bit register used
for an integrated circuit. In0
through In3 are the four input
lines, Out0 through Out3 are the
four output lines, Clk is the
clock input, and En is the enable
line. To get a better
understanding of this register,
consider the situation where we want
to store the binary number 1000 in the
register. We will apply the number to
the input lines, as shown in the figure given.
On the leading edge of the clock, the number will be stored in the register. The enable
input has to be high if the number is to be stored into the register.
.

Last Modified: 12Jan11 Page 77

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Waveform/Timing diagram

The n(to(1 multiplexer
A multiplexer is a device, constructed
through combinational logic, which
takes n inputs and transfers one of
them as the output at a time. The input
that is selected as the output depends
on the selection lines, also called the

Last Modified: 12Jan11 Page 78

akbar
Highlight

Advanced Computer ArchitectureCS501

control input lines. For an nto1 multiplexer, there are n input lines, log2n control lines,
and 1 output line. The given figure shows a 4to1 multiplexer. There are 4 input lines;
we number these lines as line 0 through line 3. Subsequently, there are 2 select lines (as
log24 = 2).
For a better understanding, let us consider a case where we want to transfer the input of
line 3 to the output of the multiplexer. We will need to apply the binary number 11 on the
select lines (as the binary number 11 represents the decimal number 3). By doing so, the
output of the multiplexer will be the input on line 3, as shown in the test circuit given.
Timing waveform

Tri(state buffers
The tristate buffer, also called the three
state buffer, is another important
component in the digital logic domain. It
has a single input, a single output, and
an enable line. The input is concatenated
to the output only if it is enabled through
the enable line, otherwise it gives a high
impedance output, i.e. it is tristated, or
electrically disconnected from the input
These buffers are available both in the
inverting and the noninverting form. The
inverting tristate buffers output the
�inverted� input when they are enabled,
as opposed to their noninverting
counterparts that simply output the input
when enabled. The circuit symbol of the
tristate buffers is shown. The truth table

Last Modified: 12Jan11 Page 79

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

further clarifies the working of a noninverting tristate buffer.
 We can see that when the enable input (or the control input) c is low (0), the output is
high impedance Z. The symbol of a 4bit tristate buffer unit is shown in the figure. There
are four input lines, an equal number of
output lines, and an enable line in this
unit. If we apply a high on the input 3
and 2, and a low on input 1 and 0, we
get the output 1100, only when the
enable input is high, as shown in the
given
figure.

Implementing simple register transfers
We now build on our knowledge of the primitive logic circuits to understand how register
transfers are implemented. In this section we will study the implementation of the
following

�� Simple conditional transfer
�� Concept of control signals
�� Twoway transfers
�� Connecting multiple registers
�� Buses
�� Bus implementations

Simple conditional transfer
In a simple conditional transfer, a condition is checked, and if it is true, the register
transfer takes place. Formally, a conditional transfer is represented as
 Cond: RD � RS
This means that if the condition �Cond� is true, the contents of the register named RS (the
source register) are copied to the register RD (the destination register). The following
figure shows how the registers may be interconnected to achieve a conditional transfer. In

Last Modified: 12Jan11 Page 80

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

this circuit, the output of the source register RS is connected to the input of the
destination registers RD. However, notice that the transfer will not take place unless the
enable input of the destination register is activated. We may say that the �transfer� is
being controlled by the enable line (or the control signal). Now, we are able to control the
transfer by selectively enabling the control signal, through the use of other combinational
logic that may be the equivalent of our condition. The condition is, in general, a Boolean
expression, and in this example, the condition is equivalent to LRD =1.
Two(way transfers
In the above example, only oneway transfer was possible, i.e., we could only copy the
contents of RS to RD if the condition was met. In order to be able to achieve twoway
transfers, we must also provide a path from the output of the register RD to input of
register RS. This will enable us to implement

Cond1: RD � RS
Cond2: RS � RD
Connecting multiple registers
We have seen how two registers can be connected. However, in a computer we need to
connect more than just two registers. In order to connect these registers, one may argue
that a connection between the input and output of each be provided. This solution is
shown for a scenario where there are 5 registers that need to be interconnected.
We can see that in this solution, an mbit register requires two connections of mwires
each. Hence five mbit registers in a �pointtopoint� scheme require 20 connections;
each with m wires. In general, n registers in a point to point scheme require n (n1)
connections. It is quite obvious that this solution is not going to scale well for a large

Last Modified: 12Jan11 Page 81

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

number of registers, as is the case in real machines. The solution to this problem is the
use of a bus architecture, which is explained in the following sections.

Buses
A bus is a device that provides a shared data
path to a number of devices that are connected
to it, via a �set of wires� or a �set of
conductors�. The modern computer systems
extensively employ the bus architecture.
Control signals are needed to decide which two
entities communicate using the shared medium,
i.e. the bus, at any given time. This control
signals can be open collector
gate based, tristate buffer
based, or they can be
implemented
multiplexers.

using

Register file implementation
using the bus architecture
A number of registers can be
interconnected to form a
register file, through the use of a
bus. The given diagram shows
eight 4bit registers (R0, R1, �,
R7) interconnected through a 4
bit bus using 4bit tristate
buffer units (labeled AA_TS4).
The contents of a particular
register can be transferred onto
the bus by applying a logical
high input on the enable of the
corresponding tristate buffer.
For instance, R1out can be used
to enable the tristate buffers of
the register R1, and in turn
transfer the contents of the
register on the bus.
Once the contents of a particular
register are on the bus, the
contents may be transferred, or
read into any other register.
More than one register may be
written in this manner; however,
only one register can write its
value on the bus at a given time.

Last Modified: 12Jan11 Page 82

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Implementing register transfers with mathematical operations
We have studied the implementation of simple register transfers; however, we frequently
encounter register transfers with mathematical operations. An example is
(opc=1): R4� R3 + R2;
These mathematical operations may be achieved by introducing appropriate
combinational logic; the above operation can be implemented in hardware by including a
4bit adder with the register files connected through the bus. There are two more registers
in this configuration, one for holding one of the operands, and the other for holding the
result before it is transferred to the destination register. This is shown in the figure below.

Last Modified: 12Jan11 Page 83

Advanced Computer ArchitectureCS501

We now take a look at
the steps taken for the
(conditional,
mathematical) transfer
(opc=1): R4� R3 + R2.
First of all, if the
condition opc = 1 is met,
the contents of the first
operand register, R3, are
transferred to the
temporary register A
through the bus. This is
done by activating
R3out. It lets the contents of the register R3 to be loaded on the bus. At the same time,
applying a logical high input to LA enables the load for the register A. This lets the
binary number on the bus (the contents of register R3) to be loaded into the register A.
The next step is to enable R2out to load the contents of the register R2 onto the bus. As
can be observed from the figure, the output of the register A is one of the inputs to the 4
bit adder; the other input to the adder is the bus itself. Therefore, as the contents of
register R2 are loaded onto the bus, both the operands are available to the adder. The
output can then be stored to the register RC by enabling its write. So a high input is
applied to LC to store the result in register RC.
The third and final step is to store (transfer) the resultant number in the destination
register R4. This is done by enabling Cout, which writes the number onto the bus, and
then enabling the read of the register R4 by activating the control signal to LR4. These
steps are summarized in the given table.

The barrel shifter
Shift operations are frequently used operations, as shifts can be used for the
implementation of multiplication and division etc. A bidirectional shift register with a
parallel load capability can be used to perform shift operations. However, the delays in
such structures are dependent on the number of shifts that are to be performed, e.g., a 9
bit shift requires nine clock periods, as one shift is performed per clock cycle. This is not
an optimal solution. The barrel shifter is an alternative, with any number of shifts
accomplished during a single clock period. Barrel shifters are constructed by using
multiplexers. An nbit barrel shifter is a combinational circuit implemented using n
multiplexers. The barrel provides a shifted copy of the input data at its output. Control
inputs are provided to specify the number of times the input data is to be shifted. The
shift process can be a simple one with 0s used as fillers, or it can be a rotation of the input
data. The corresponding figure shows a barrel shifter that shifts right the input data; the
number of shifts depends on the bit pattern applied on the control inputs S0, S1.
 The function table for the barrel shifter is given. We see from the table that in order to
apply single shift to the input number, the control signal is 01 on (S1, S0), which is the
binary equivalent of the decimal number 1. Similarly, to apply 2 shifts, control signal 10

Last Modified: 12Jan11 Page 84

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

(on S1, S0) is applied; 10 is the binary
equivalent of the decimal number 2. A
control input of 11 shifts the number 3
places to the right.
Now we take a look at an example of
the shift operation being implemented
through the use of the barrel shifter:
R4� ror R3 (2 times);
The shift functionality can be
incorporated into the register file
circuit with the bus architecture we
have been building, by introducing the
barrel shifter, as shown in the given
figure.
To perform the operation,
R4� ror R3 (2 times),
the first step is to activate R3out, nb1
and LC. Activating R3out will load the
contents of the register R3 onto the bus.
Since the bus is directly connected to
the input of the barrel shifter, this
number is applied to the input side. nb1
and nb0 are the barrel shifter�s control
lines for specifying the number of shifts
to be applied. Applying a high input to
nb1 and a low input to nb0 will shift the
number two places to the right.
Activating LC will load the shifted
output of the barrel shifter into the

Last Modified: 12Jan11 Page 85

akbar
Highlight

Advanced Computer ArchitectureCS501

register C. The second step is to transfer the contents of the register C to the register R4.
This is done by activating the control Cout, which will load the contents of register C
onto the data bus, and by activating the control LR4, which will let the contents of the
bus be written to the register R4. This will complete the conditional shiftandstore
operation. These steps are summarized in the table shown below.

Last Modified: 12Jan11 Page 86

akbar
Highlight

Advanced Computer ArchitectureCS501

Lecture No. 7
Design Process for ISA of FALCON(A

Reading Material
 Hnadouts Slides

Summary
8) Outline of the thinking process for ISA Design
9) Introduction to the ISA of FALCONA

Instruction Set Architecture (ISA) Design: Outline of the thinking
process
In this module we will learn to appreciate, understand and apply the approach adopted in
designing an instruction set architecture. We do this by designing an ISA for a new
processor. We have named our processor FALCONA, which is an acronym for First
Architecture for Learning Computer Organization and Networks (version A). The term
Organization is intended to include Architecture and Design in this acronym.
Elements of the ISA
Before we go onto designing the instruction set architecture for our processor FALCON
A, we need to take a closer look at the defining components of an ISA. The following
three key components define any instruction set architecture.

1. The operations the processor can execute
2. Data access mode for use as operands in the operations defined
3. Representation of the operations in memory

We take a look at all three of the components in more detail, and wherever appropriate,
apply these steps to the design of our sample processor, the FALCONA. This will help
us better understand the approach to be adopted for the ISA design of a processor. A
more detailed introduction to the FALCONA will be presented later.
The operations the processor can execute
All processors need to support at least three categories (or functional groups) of
instructions
� Arithmetic, Logic, Shift
� Data Transfer
� Control
ISA Design Steps � Step 1
We need to think of all the instructions of each type that ought to be supported by our
processor, the FALCONA. The following are the instructions that we will include in the
ISA for our processor.

Arithmetic:
add, addi (and with an immediate operand), subtract, subtractimmediate,

multiply, divide
Logic:

Last Modified: 12Jan11 Page 87

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

and, andimmediate, or, orimmediate, not

Shift:
shift left, shift right, arithmetic shift right

Data Transfer:
Data transfer between registers, moving constants to registers, load operands from

memory to registers, store from registers to memory and the movement of data between
registers and input/output devices
Control:

Jump instructions with various conditions, call and return from subroutines,
instructions for handling interrupts
Miscellaneous instructions:

Instructions to clear all registers, the capability to stop the processor, ability to
�do nothing�, etc.
ISA Design Steps � Step 2
Once we have decided on the instructions that we want to add support for in our
processor, the second step of the ISA design process is to select suitable mnemonics for
these instructions. The following mnemonics have been selected to represent these
operations.
Arithmetic:
add, addi, sub ,subi ,mul ,div
Logic:
and, andi, or, ori, not
Shift:
shiftl, shiftr, asr
Data Transfer:
load, store, in, out, mov, movi
Control:
jpl, jmi, jnz, jz, jump, call, ret, int.iret
Miscellaneous instructions:
nop, reset, halt
ISA Design Steps � Step 3
The next step of the ISA design is to decide upon the number of bits to be reserved for
the opcode part of the instructions. Since we have 32 instructions in the instruction set, 5
bits will suffice (as 25 =32) to encode these opcodes.
ISA Design Steps � Step 4
The fourth step is to assign opcodes to these instructions. The assigned opcodes are
shown below.
Arithmetic:
add (0), addi (1), sub (2), subi (3), mul (4),div (5)
Logic:
and (8), andi (9), or (10), ori (11), not (14)

Shift:
shiftl (12), shiftr (13), asr (15)
Data Transfer:
load (29), store (28), in (24), out (25), mov (6), movi (7)
Control:
jpl (16), jmi (17), jnz (18), jz (19), jump (20), call (22), ret (23), int (26), iret (27)
Last Modified: 12Jan11 Page 88

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Miscellaneous instructions:
nop (21), reset (30), halt (31)
Now we list these instructions with
their opcodes in the binary form, as
they would appear in the machine
instructions of the FALCONA.
Data access mode for
operations
As mentioned earlier, the instruction
set architecture of a processor defines
a number of things besides the
instructions implemented; the
resources each instruction can access,
the number of registers available to the processor, the number of registers each
instruction can access, the instructions that are allowed to access memory, any special
registers, constants and any alternatives to the generalpurpose registers. With this in
mind, we go on to the next steps of our ISA design.
ISA Design Steps � Step 5
We now need to select the number and types of operands for various instructions that we
have selected for the FALCONA ISA.
ALU instructions may have 2 to 3 registers as operands. In case of 2 operands, a constant
(an immediate operand) may be included in the instruction.
For the load/store type instructions, we require a register to hold the data that is to be
loaded from the memory, or stored back to the memory. Another register is required to
hold the base address for the memory access. In addition to these two registers, a field is
required in the instruction to specify the
constant that is the displacement to the base
address.
In jump instructions; we require a field for
specifying the register that holds the value that
is to be compared as the condition for the
branch, as well as a destination address, which
is specified as a constant.
Once we have decided on the number and
types of operands that will be required in each
of the instruction types, we need to address the
issue of assigning specific bitfields in the
instruction for each of these operands. The number of bits required to represent each of
these operands will eventually determine the instruction word size. In our example
processor, the FALCONA, we reserve eight generalpurpose registers. To encode a
register in the instructions, 3 bits are required (as 23 =8). The registers are encoded in the
binary as shown in the given table.
Therefore, the instructions that we will add support for FALCONA processor will have
the given general format. The instructions
in the FALCONA processor are going to
be variations of this format, with four

Last Modified: 12Jan11 Page 89

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

different formats in all. The exact format is dependent on the actual number of operands
in a particular instruction.
ISA Design Steps � Step 6
The next step towards completely defining the instruction set architecture of our
processor is the design of memory and its organization. The number of the memory cells
that we may have in the organization depends on the size of the Program Counter register
(PC), and the size of the address bus. This is because the size of the program counter and
the size of the address bus put a limitation on the number of memory cells that can be
referred to for loading an instruction for execution. Additionally, the size of the data bus
puts a limitation on the size of the memory word that can be referred to in a single clock
cycle.
ISA Design Steps � Step 7
Now we need to specify which instructions will be allowed to access the memory. Since
the FALCONA is intended to be a RISClike machine, only the load/ store instructions
will be allowed to access the memory.
ISA Design Steps � Step 8
Next we need to select the memory
addressing modes. The given table lists
the types of addressing modes that will
be supported for the load/store
instructions.
FALCON(A: Introduction
FALCON stands for First Architecture for Learning Computer Organization and
Networks. It is a �RISClike� generalpurpose processor that will be used as a teaching
aid for this course. Although the FALCONA is a simple machine, it is powerful enough
to explain a variety of fundamental concepts in the field of Computer Architecture .
Programmer�s view of the FALCON(A
FALCONA, an example of a GPR
(General Purpose Register) computer,
is the first version of the FALCON
processor. The programmer�s view of
the FALCONA is given in the figure
shown. As it is clear from the figure,
the CPU contains a register file of 8
registers, named R0 through R7. Each
of these registers is 16 bits in length.
Aside from these registers, there are
two specialpurpose registers, the Program Counter (PC), and the Instruction Register
(IR). The main memory is organized as 216 x 8 bits, i.e. 216 cells of 1 byte each. The
memory word size is 2 bytes (or 16 bits). The input/output space is 256 bytes (8 bit I/O
ports). The storage in these registers and memory is in the bigendian format.

Last Modified: 12Jan11 Page 90

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Lecture No. 8
ISA of the FALCON(A

Reading Material
 Handouts Slides

Summary
Introduction to the ISA of the FALCON(A
Examples for the FALCON(A

Introduction to the ISA of the FALCON(A

We take a look at the notation that we are going to employ when studying the FALCON
A. We will refer to the contents of a register by enclosing in square brackets the name of
the register, for instance, R [3] refers to the contents of the register 3. Memory contents
are to be referred to in a similar fashion; for instance, M [8] refers to the contents of
memory at location 8 (or the 8th
memory cell).
Since memory is organized into cells
of 1 byte, whereas the memory word
size is 2 bytes, two adjacent memory
cells together make up a memory
word. So, memory word at the
memory address 8 would be defined
as 1 byte at address 8 and 1 byte at
address 9. To refer to 16bit memory
words, we make use of a special
notation, the concatenation of two memory locations. Therefore, to refer to the 16bit
memory word at location 8, we would write M[8]©M[9]. As we employ the bigendian
format,
M [8]<15�0>:=M[8]©M[9]
So in our notation © is used to represent concatenation.
Little endian puts the smallest numbered byte at the leastsignificant position in a word,
whereas in big endian, we place the largest numbered byte at the most significant
position. Note that in our case, we use the bigendian convention of ordering bytes.
However, within each byte itself, the ordering of the bits is little endian.
FALCON(A Features
The FALCONA processor has fixedlength instructions, each 16 bits (2 bytes) long.
Addressing modes supported are limited, and memory is accessed through the load/store
instructions only.

Last Modified: 12Jan11 Page 91

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

FALCON(A Instruction Formats
Three categories of instructions are going to be supported by the FALCONA processor;
arithmetic, control, and data transfer instructions. Arithmetic instructions enable
mathematical computations. Control instructions help change the flow of the program as
and when required. Data transfer operations move data between the processor and
memory. The arithmetic category also includes the logical instructions. Four different
types of instruction formats are used to specify these instructions. A brief overview of the
various fields in these instructions formats follows.
Type I instruction format is shown in
the given figure. In it, 5 bits are
reserved for the opcode (bits 11
through 15). The rest of the bits are
unused in this instruction type,
which means they are not
considered.
Type II instruction shown in the
given figure, has a 5bit opcode
field, a 3bit register field, and an 8bit
constant (or immediate operand) field.
Type III instructions contain the 5bit
opcode field, two 3bit register fields
for source and destination registers,
and an immediate operand field of
length 5 bits.
Type IV instructions contain the op
code field, two 3bit register fields, a
constant filed on length 3 bits as well
as two unused bits. This format is shown in
the given figure.
Encoding of registers
We have a register file comprising of
eight generalpurpose registers in the
CPU. To encode these registers in the
binary, so they can be referred to in
various instructions, we require log2(8)
= 3 bits. Therefore, we have already
allocated three bits per register in the
instructions, as seen in the various
instruction formats. The encoding of
registers in the binary format is shown
in the given table.
It is important to note here that the
register R0 has special usage in some
cases. For instance, in load/ store
operations, if register R0 is used as a
second operand, its value is considered to be zero. R0 has special usage in the multiply
and divide (mul & div) instructions as well.

Last Modified: 12Jan11 Page 92

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Instructions and instruction formats
We return to our discussion of instruction formats in this section. We will now classify
which instructions belong to what instruction format types.
Type I
Five of the instructions included in the instruction set of FALCONA belong to type I
instruction format. These are

1. nop (opcode = 21)
This instruction is to instruct the processor to �do nothing�, or, in other words, do
�no operation�. This instruction is generally useful in pipelining. We will study
pipelining later in the course.

2. reset (opcode = 30)
3. halt (opcode=31)
4. int (opcode= 26)
5. iret (opcode= 27)

All of these instructions take no operands, therefore, besides the 5 bits used for the op
code, the rest of the bits are unused.
Type II
There are nine FALCONA instructions that belong to this type. These are listed below.

1. movi (opcode = 7)
The movi instruction loads a register with the constant (or the immediate value)
specified as the second operand. An example is

movi R3, 56 R[3] � 56
This means that the register R3 will have the value 56 stored in it as this instruction
is executed.
2. in (opcode = 24)

This instruction is to load the specified register from input device. An example
and its interpretation in register transfer language are
in R3, 57

3. out (opcode = 25)
R [3] � IO [57]

The �out� instruction will move data from the register to the output device
specified in the instruction, as the example demonstrates:
out R7, 34

4. ret (opcode=23)
IO [34] � R [7]

This instruction is to return control from a subroutine. This is done using a
register, where the return address is stored. As shown in the example, to return
control, the program counter is assigned the contents of the register.
ret R3

5. jz (opcode= 19)
PC � R [3]

When this instruction is executed, the value of the register specified in the field ra
is checked, and if it is equal to zero, the Program Counter is advanced by the
jump(value) specified in the instruction.
jz r3, [4] (R[3]=0): PC� PC+ 4;
In this example, register r3�s value is checked, and if found to be zero, PC is
advanced by 4.

6. jnz (opcode= 18) This instruction is the reverse of the jz instruction, i.e., the
jump (or the branch) is taken, if the contents of the register specified are not equal
to zero.
jnz r4, [variable] (R[4]�0): PC� PC+ variable;

Last Modified: 12Jan11 Page 93

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

7. jpl (opcode= 16) In this instruction, the value contained in the register specified
in the field ra is checked, and if it is positive, the jump is taken.
jpl r3, [label] (R[3]�0): PC � PC+ (labelPC);

8. jmi (opcode= 17) In this case, PC is advanced (jump/branch is taken) if the
register value is negative
jmi r7, [address] (R[7]<0): PC� PC+ address;

Note that, in all the instructions for jump, the jump can be specified by a constant, a
variable, a label or an address (that holds the value by which the PC is to be advanced).
A variable can be defined through the use of the �.equ� directive. An address (of data) can
be specified using the directive �.db� or �.dw�. A label can be specified with any
instruction. In its usage, we follow the label by a colon �:� before the instruction itself.
For example, the following is an instruction that has a label �alfa� attached to it
alfa: movi r3 r4
Labels implement relative jumps, 128 locations backwards or 127 locations forward
(relative to the current position of program control, i.e. the value in the program counter).
The compiler handles the interpretation of the field c2 as a constant/ variable/ label/
address. The machine code just contains an 8bit constant that is added to the program
counter at runtime.

9. jump (opcode= 20)
This instruction instructs the processor to advance the program counter by the
displacement specified, unconditionally (an unconditional jump). The assembler
allows the displacement (or the jump) to be specified in any of the following ways

jump [ra + constant]
jump [ra + variable]
jump [ra + address]
jump [ra + label]

The types of unconditional jumps that are possible are
�� Direct
�� Indirect
�� PC relative (a �near� jump)
�� Register relative (a �far� jump)

The c2 field may be a constant, variable, an address or a label.
A direct jump is specified by a PClabel.
An indirect jump is implemented by using the C2 field as a variable.
In all of the above instructions, if the value of the register ra is zero, then the Program
Counter is incremented (or decremented) by the signextended value of the constant
specified in the instruction. This is called the PCrelative jump, or the �near� jump. It is
denoted in RTL as:
(ra=0):PC� PC+(8�C2<7>)©C2<7..0>;
If the register ra field is nonzero, then the Program Counter is assigned the sum of the
signextended constant and the value of register specified in the field ra. This is known as
the registerrelative, or the �far� jump. In RTL, this is denoted as:
(ra�0):PC� R[ra]+(8�C2<7>)©C2<7..0>;
Note that C2 is computed by sign extending the constant, variable, address, or (label �
PC). Since we have 8 bits available for the C2 field (which can be a constant, variable,

Last Modified: 12Jan11 Page 94

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

address or a PClabel), the range for the field is 128 to + 127. Also note that the compiler
does not allow an instruction with a negative sign before the register name, such as �jump
[r2]�. If the C2 field is being used as an address, it should always be an even value for
the jump instruction. This is because our instruction word size is 16 bits, whereas in
instruction memory, the instruction memory cells are of 8 bits each. Two consecutive
cells together make an instruction.
Type III
There are nine instructions of the FALCONA that belong to Type III. These are:

1. andi (opcode = 9)
The andi instruction bitwise �ands� the constant specified in the instruction with
the value stored in the register specified in the second operand register and stores
the result in the destination register. An example is:
andi r4, r3, 5
This instruction will bitwise and the constant 5 and R[3], and assign the value
thus obtained to the register R[4], as given .

R [4] � R [3] & 5
2. addi (opcode = 1)

This instruction is to add a constant value to a register; the result is stored in a
destination register. An example:

 addi r4, r3,4 R [4] � R [3] + 4
3. subi (opcode = 3)

The subi instruction will subtract the specified constant from the value stored in a
source register, and store to the destination register. An example follows.
subi r5, r7, 9 R [5] � R [7] � 9

4. ori (opcode= 11)
Similar to the andi instruction, the ori instruction bitwise �ors� a constant with a
value stored in the source register, and assigns it to the destination register. The
following instruction is an example.
ori r4, r7, 3 R[4] � R[7] ~ 3

5. shiftl (opcode = 12)
This instruction shifts the value stored in the source register (which is the second
operand), and shifts the bits left as many times as is specified by the third
operand, the constant value. For instance, in the instruction
shiftl r4, r3, 7
The contents of the register are shifted left 7 times, and the resulting number is
assigned to the register r4.

6. shiftr (opcode = 13)
This instruction shifts to the right the value stored in a register. An example is:
shiftr r4, r3,9

7. asr (opcode = 15)
An arithmetic shift right is an operation that shifts a signed binary number

stored in the source register (which is specified by the second operand), to the
right, while leaving the signbit unchanged. A single shift has the effect of
dividing the number by 2. As the number is shifted as many times as is specified
in the instruction through the constant value, the binary number of the source
register gets divided by the constant value times 2. An example is
asr r1, r2, 5

Last Modified: 12Jan11 Page 95

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

This instruction, when executed, will divide the value stored in r2 by 10, and
assign the result to the register r1.

8. load (opcode= 29)
This instruction is to load a register from the memory. For instance, the
instruction
load r1, [r4 +15]
will add the constant 15 to the value stored in the register r4, access the memory
location that corresponds to the number thus resulting, and assign the memory
contents of this location to the register r1; this is denoted in RTL by:

R[1] � M[R[4]+15]
9. store (opcode= 28)

This instruction is to store a value in the register to a particular memory location.
In the example:
store r6, [r7+13]
The contents of the register r6 are being stored to the memory location that
corresponds to the sum of the constant 13 and the value stored in the register r7.

M[R[7]+13] � R[6]
Type III Modified
There are 3 instructions in the modified form of the Type III instructions. In the modified
Type III instructions, the field c1 is unused.

1. mov (opcode = 6)
This instruction will move (copy) data of a source register to a destination
register. For instance, in the following example, the contents of the register r3 are
copied to the register r4.
mov r4, r3

In RTL, this can be represented as
 R[4] � R[3]

2. not (opcode = 14)
This instruction inverts the contents of the source register, and assigns the value
thus obtained to the destination register. In the following example, the contents of
register r2 are inverted and assigned to register r4.
not r4, r2
In RTL:
 R[4] � !R[2]

3. call (opcode = 22)
Procedure calls are often encountered in programming languages. To add support
for procedure (or subroutine) calls, the instruction call is used. This instruction
first stores the return address in a register and then assigns the Program Counter a
new value (that specifies the address of the subroutine). Following is an example
of the call instruction
call r4, r3
This instruction saves the current contents (the return address) of the Program
Counter into the register r4 and assigns the new value to the PC from register r3.
 R[4] � PC, PC � R[3]

Type IV
Six instructions belong to the instruction format Type IV. These are

Last Modified: 12Jan11 Page 96

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

1. add (opcode = 0)

This instruction adds contents of a register to those of another register, and
assigns to the destination register. An example:

and r4, r3, r5
R[4] � R[3] +R[5]

2. sub (opcode = 2)
This instruction subtracts value of a register from another the value stored in
another register, and assigns to the destination register. For example,

sub r4, r3, r5
In RTL, this is denoted by

R[4] � R[3] � R[5]
3. mul (opcode = 4)

The multiply instruction will store the product of two register values, and stores in
the destination register. An example is

mul r5, r7, r1
The RTL notation for this instruction will be

R[0] © R[5] � R[7]*R[1]
 4. div (opcode= 5)
This instruction will divide the value of the register that is the second operand, by the
number in the register specified by the third operand, and assign the result to the
destination register.

div r4, r7, r2 R[4]�R[0] ©R[7]/R[2],R[0]�R[0] ©R[7]%R[2]
 5. and (opcode= 8)
This �and� instruction will obtain a bitwise �and� of the values of two registers and
assigns it to a destination register. For instance, in the following example, contents of
register r4 and r5 are bitwise �anded� and the result is assigned to the register r1.

and r1, r4, r5
In RTL we may write this as

R[1] � R[4] & R[5]
6. or (opcode= 10)

 To bitwise �or� the contents of two registers, this instruction is used. For instance,
or r6, r7,r2

In RTL this is denoted as
R[6] � R[7] ~ R[2]

FALCON(A: Instruction Set Summary
We have looked at the various types of instruction formats for the FALCONA, as well as
the instructions that belong to each of these instruction format types. In this section, we
have simply listed the instructions on the basis of their functional groups; this means that
the instructions that perform similar class of operations have been listed together.

Last Modified: 12Jan11 Page 97

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Last Modified: 12Jan11 Page 98

Advanced Computer ArchitectureCS501

Examples for FALCON(A
In this section we take up a few sample problems related to the FALCONA processor.
This will enhance our understanding of the FALCONA processor, as well as of the
general concepts related to general processors and their instruction set architectures. The
problems we will look at include
1. Identification of the instruction types and operands
2. Addressing modes and RTL description
3. Branch condition and status of the PC
4. Binary encoding for instructions
Example 1:
Identify the types of given FALCONA instructions and specify the values in the fields

Solution
The solution to this problem is quite straightforward. The types of these instructions, as
well as the fields, have already been discussed in the preceding sections.

Last Modified: 12Jan11 Page 99

Advanced Computer ArchitectureCS501

We can also find the machine code for these instructions. The machine code (in the
hexadecimal representation) is given for these instructions in the given table.

Example 2:
Identify the addressing modes and Register Transfer Language (RTL) description
(meaning) for the given FALCONA instructions

Last Modified: 12Jan11 Page 100

Advanced Computer ArchitectureCS501

Solution
Addressing modes relate to the way architectures specify the address of the objects they
access. These objects may be constants and registers, in addition to memory locations.

Example 3: Specify the condition for the branch instruction and the status of the PC after
the branch instruction executes with a true branch condition

Last Modified: 12Jan11 Page 101

Advanced Computer ArchitectureCS501

Solution
We have looked at the various jump instructions in our study of the FALCONA. Using
that knowledge, this problem can be solved easily.

Example 4: Specify the binary encoding of the different fields in the given FALCONA
instructions.

Last Modified: 12Jan11 Page 102

Advanced Computer ArchitectureCS501

Solution
We can solve this problem by referring back to our discussion of the instruction format
types. The opcodes for each of the instructions can also be looked up from the tables. ra,
rb and rc (where applicable) registers� values are obtained from the register encoding
table we looked at. The constants C1 and C2 are there in instruction type III and II
respectively. The immediate constant specified in the instruction can also be simply
converted to binary, as shown.

Last Modified: 12Jan11 Page 103

Advanced Computer ArchitectureCS501

Lecture No. 9

Description of FALCON(A and EAGLE using RTL

Reading Material
 Handouts Slides

Summary
4) Use of Behavioral Register Transfer Language (RTL) to describe the

FALCONA
5) The EAGLE
6) The Modified EAGLE

Use of Behavioral Register Transfer Language (RTL) to describe the
FALCON(A
The use of RTL (an acronym for the Register Transfer Language) to describe the
FALCONA is discussed in this section. FALCONA is the sample machine we are
building in order to enhance our understanding of processors and their architecture.
Behavior vs. Structure
Computer design involves various levels of abstraction. The behavioral description of a
machine is a higher level of abstraction, as compared with the structural description. Top
down approach is adopted in computer design. Designing a computer typically starts with
defining the behavior of the overall system. This is then broken down into the behavior of
the different modules. The process continues, till we are able to define, design and
implement the structure of the individual modules.
As mentioned earlier, we are interested in the behavioral description of our machine, the
FALCONA, in this section.
Register Transfer Language
The RTL is a formal way of expressing the behavior and structure of a computer.
Behavioral RTL
Behavioral Register Transfer Language is used to describe what a machine does, i.e. it is
used to define the functionality the machine provides. Basically, the behavioral
architecture describes the algorithms used in a machine, written as a set of process
statements. These statements may be sequential statements or concurrent statements,
including signal assignment statements and wait statements.
Structural RTL
Structural RTL is used to describe the hardware implementation of the machine. The
structural architecture of a machine is the logic circuit implementation (components and
their interconnections), that facilitates a certain behavior (and hence functionality) for
that machine.
Using RTL to describe the static properties of the FALCON(A
We can employ the RTL for the description of various properties of the FALCONA that
we have already discussed.

Last Modified: 12Jan11 Page 104

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Specifying Registers
In RTL, we will refer to a register by its abbreviated, alphanumeric name, followed by
the number of bits in the register enclosed in angle brackets �< >�. For instance, the
instruction register (IR), of 16 bits (numbered 0 to 15), will be referred to as,
IR<15..0>
Naming of the Fields in a Register
We can name the different fields of a register using the := notation. For example, to name
the most significant bits of the instruction register as the operation code (or simply op),
we may write:
op<4..0> := IR<15..11>
Note that using this notation to name registers or register fields will not create a new copy
of the data or the register fields; it is simply an alias for an already existing register, or
part of a register.
Fields in the FALCON(A Instructions
We now use the RTL naming operator to name the various fields of the RTL instructions.
Naming the fields appropriately helps us make the study of the behavior of a processor
more readable.
op<4..0>:= IR<15..11>: operation code field
ra<2..0> := IR<10..8>:
rb<2..0> := IR<7..5>:
rc<2..0> := IR<4..2>:
c1<4..0> := IR<4..0>:
c2<7..0> := IR<7..0>:

target register field
operand or address index
second operand
short displacement field
long displacement or the immediate field

We are already familiar with these fields, and their usage in the various instruction
formats of the RTL.
Describing the Processor State using RTL
The processor state defines the contents of all the register internal to the CPU at a given
time. Maintaining or restoring the machine or processor state is important to many
operations, especially procedure calls and interrupts; the processor state needs to be
restored after a procedure call or an interrupt so normal operation can continue.
Our processor state consists of the following:

PC<15..0>:

 IR<15..0>:
 Run:
 Strt:

program counter (the PC holds the memory address of the next
instruction)
instruction register (used to hold the current instruction)
one bit run/halt indicator
start signal

 R [0..7]<15..0>: 8 general purpose registers, each consisting of 16 bits

FALCON(A in a black
box
The given figure shows
what a processor appears as
to a user. We see a start
button that is basically used
to start up the processor,
and a run indicator that
turns on when the processor
is in the running state.

Last Modified: 12Jan11 Page 105

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

There may be several other indicators as well. The start button as well as the run indicator
can be observed on many machines.
Using RTL to describe the dynamic properties of the FALCON(A
We have just described some of the static properties of the FALCONA. The RTL can
also be employed to describe the dynamic behavior of the processor in terms of
instruction interpretation and execution.
Conditional expressions can be specified using the RTL. For instance, we may specify a

conditional subtraction operation employing RTL as

 (op=2) : R[ra] � R[rb] R[rc];

This instruction means that �if� the operation code of the instruction equals 2 (00010 in
binary), then subtract the value stored in register rc from that of register rb, and store the
resulting value in register ra.
Effective address calculations in RTL (performed at runtime)
The operand or the destination address may not be specified directly in an instruction,
and it may be required to compute the effective address at runtime. Displacement and
relative addressing modes are instances of such situations. RTL can be used to describe
these effective address calculations.
Displacement address
A displacement address is calculated, as shown:
disp<15..0> := (R[rb]+ (11� c1<4>)© c1<4..0>);
This means that the address is being calculated by adding the constant value specified by
the field c1 (which is first sign extended), to the value specified by the register rb.
Relative address
A relative address is calculated by adding the displacement to the contents of the program
counter register (that holds the instruction to be executed next in a program flow). The
constant is first signextended. In RTL this is represented as,
rel<15..0>:=PC+(8�c2<7>)©c2<7..0>;
Range of memory addresses
Using the displacement or the relative addressing modes, there is a specific range of
memory addresses that can be accessed.

�� Range of addresses when using direct addressing mode (displacement with rb=0)
o If c1<4>=0 (positive displacement) absolute addresses range: 00000b to

01111b (0 to +15)
o If c1<4>=1 (negative displacement) absolute addresses range: 11111b to

10000b (1 to 16)
�� Address range in case of relative addressing

o The largest positive value that can be specified using 8 bits (since we have
only 8 bits available in c2<7..0>), is 271, and the most negative value that
can be represented using the same is 27. Therefore, the range of addresses
or locations that can be referred to using this addressing mode is 127
locations forward or 128 locations backward from the Program Counter
(PC).

Instruction Fetch Operation (using RTL)

Last Modified: 12Jan11 Page 106

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

We will now employ the notation that we have learnt to understand the fetchexecute

cycle of the FALCONA processor.

The RTL notation for the instruction fetch process is
instruction_Fetch := (

!Run&Strt : Run � 1,
Run : (IR � M[PC], PC � PC + 2;

 instruction_Execution));
This is how the instructionfetch phase of the fetchexecute cycle for FALCONA can be
represented using RTL. Recall that �:=� is the naming operator, �!� implies a logical
NOT, �&� implies a logical AND, ��� represents a transfer operation, �;� is used to
separate sequential statements, and concurrent statements are separated by �,�. We can
observe that in the instruction_Fetch phase, if the machine is not in the running state and
the start bit has been set, then the run bit is also set to true. Concurrently, an instruction is
fetched from the instruction memory; the program counter (PC) holds the next instruction
address, so it is used to refer to the memory location from where the instruction is to be
fetched. Simultaneously, the PC is incremented by 2 so it will point to the next
instruction. (Recall that our instruction word is 2 bytes long, and the instruction memory
is organized into 1byte cells). The next step is the instruction execution phase.
Difference between �,� and �;� in RTL

We again highlight the difference between the �,� and �;�. Statements separated by a �,�
take place during the same clock pulse. In other words, the order of execution of
statements separated by �,� does not matter.
On the other hand, statements separated by a �;� take place on successive clock pulses. In
other words, if statements are separated by �;� the one on the left must complete before
the one on the right starts. However, some things written with one RTL statement can
take several clocks to complete.
We return to our discussion of the instructionfetch phase. The statement

!Run&Strt : Run � 1
is executed when �Run� is 0, and �Strt� is 1, that is, Strt has been set. It is used to set the
Run bit. No action takes place when both �Run� and �Strt� are 0.
The following two concurrent register transfers are performed when �Run� is set to 1, (as
�:� is a conditional operator; if the condition is met, the specified action is taken).

IR � M[PC]
PC � PC + 2

Since these instructions appear concurrent, and one of the instructions is using the value
of PC that the other instruction is updating, a question arises; which of the two values of
the PC is used in the memory access? As a rule, all right hand sides of the register
transfers are evaluated before the left hand side is evaluated/updated. In case of
simultaneous register transfers (separated by a �,�), all the right hand side expressions are
evaluated in the same clockcycle, before they are assigned. Therefore, the old, un
incremented value of the PC is used in the memory access, and the incremented value is
assigned to the PC afterwards. This corresponds to �masterslave� flipflop operation in
logic circuits.
This makes the PC point to the next instruction in the instruction memory. Once the
instruction has been fetched, the instruction execution starts. We can also use i.F for

Last Modified: 12Jan11 Page 107

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

instruction_Fetch and i.E for instruction_Execution. This will make the Fetch operation
easy to write.

iF := (!Run&Strt : Run � 1, Run : (IR � M[PC], PC � PC + 2;
iE));

Instruction Execution (Describing the Execute operation using RTL)
Once an instruction has been fetched from the instruction memory, and the program
counter has been incremented to point to the next instruction in the memory, instruction
execution commences. In the instruction fetchexecute cycle we showed in the preceding
discussion, the entire instruction execution code was aliased iE (or
instruction_Execution), through the assignment operator �:=�. Now we look at the
instruction execution in detail.
iE := (

(op<4..0>= 1) : R[ra] � R[rb]+ (11� c1<4>)© c1<4..0>,
(op<4..0>= 2) : R[ra] � R[rb](R[rc],
. . .
. . .
(op<4..0>=31) : Run � 0,); iF);

As we can see, the instruction execution can be described in RTL by using a long list of
concurrent, conditional operators that are inherently �disjoint�. Being inherently
disjointed implies that at any instance, only one of the conditions can be met; hence one
of the statements is executed. The long list of statements is basically all of the
instructions that are a part of the FALCONA instruction set, and the condition for their
execution is related to the operation code of the instruction fetched. We will take a closer
look at the entire list in our subsequent discussion. Notice that in the instruction execute
phase, besides the long list of concurrent,
disjoint instructions, there is also the
instruction fetch or iF sequenced at the
end. This implies that once one of the
instructions from the list is executed, the
instruction fetch is called to fetch the next
instruction. As shown before, the
instruction fetch will call the instruction
execute after fetching a certain instruction,
hence the instruction fetchexecute cycle
continues.
The instruction fetchexecute cycle is shown schematically in the above given figure.
We now see how the various instructions in the execute code of the fetchexecute cycle
of FALCONA, are represented using the RTL. These instructions form the instruction
set of the FALCONA.
jump instructions
Some of the instructions listed for the instruction execution phase are jump instruction, as
shown. (Note �. . .� implies that more instructions may precede or follow, depending on
whether it is placed before the instructions shown, or after).

iE := (
. . .
. . .

If opcode is 20, the branch is taken unconditionally (the jump instruction).
(op<4..0>=20) : (cond � PC � R[ra]+C2(sign extended)),

Last Modified: 12Jan11 Page 108

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

If the opcode is 16, the condition for branching is checked, and if the condition is being
met, the branch is taken; otherwise it remains untaken, and normal program flow will
continue.
(op<4..0>= 16) : cond : (PC � PC+C2 (sign extended))

. . .

. . .
Arithmetic and Logical Instructions
Several instructions provide arithmetic and logical operations functionality. Amongst the
list of concurrent instructions of the iE phase, the instructions belonging to this category
are highlighted:

iE := (
. . .
. . .

If opcode is 0, the instruction is �add�. The values in register rb and rc are added and the

result is stored in register ra
(op<4..0>=0) : R[ra] � R[rb] + R[rc],
Similarly, if opcode is 1, the instruction is addi; the immediate constant specified by the
constant field C1 is sign extended and added to the value in register rb. The result is
stored in the register ra.
(op<4..0>=1) : R[ra] �R[rb] + (11� C1<4>)© C1<4..0>,
For opcode 2, value stored in register rc is subtracted from the value stored in register rb,
and the result is stored in register ra.
(op<4..0>=2) : R[ra] � R[rb] (R[rc],
If opcode is 3, the immediate constant C1 is signextended, and subtracted from the
value stored in rb. Result is stored in ra.
(op<4..0>=3) : R[ra] � R[rb]((11� C1<4>)© C1<4..0>,
For opcode 4, values of rb and rc register are multiplied and result is stored in the
destination register.
(op<4..0>=4) : R[ra] � R[rb] * R[rc],
If the opcode is 5, contents of register rb are divided by the value stored in rc, result is
concatenated with 0s, and stored in ra. The remainder is stored in R0.
 (op<4..0>=5) : R[ra] � R[0] ©R[rb]/R[rc],
 R[0] � R[0] ©R[rb]%R[rc],
If opcode equals 8, bitwise logical AND of rb and rc register contents is assigned to ra.
(op<4..0>=8) : R[ra] � R[rb] & R[rc],
If opcode equals 8, bitwise logical OR of rb and rc register contents is assigned to ra.
(op<4..0>=10) : R[ra] � R[rb] ~ R[c],

For opcode 14, the contents of register specified by field rc are inverted (logical NOT is
taken), and the resulting value is stored in register ra.
(op<4..0>=14) : R[ra] � ! R[rc],

. . .

. . .
Shift Instructions
The shift instructions are also a part of the instruction set for FALCONA, and these are
listed in the instruction execute phase in the RTL as shown.

iE := (
. . .

Last Modified: 12Jan11 Page 109

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

. . .

If the opcode is 12, the contents of the register rb are shifted right N bits. N is the
number specified in the constant field. The space that has been created due to the shift out
of bits is filled with 0s through concatenation. In RTL, this is shown as:
(op<4..0>=12) : R[ra]<15..0> � R [rb]<(15(N)..0>©(N�0),
If opcode is 13, rb value is shifted left, and 0s are inserted in place of shifted out
contents at the right side of the value. The result is stored in ra.
(op<4..0>=13) : R[ra]<15..0> � (N�0)©R [rb]<(15)..N>,
For opcode 15, arithmetic shift right operation is carried out on the value stored in rb.
The arithmetic shift right shifts a signed binary number stored in the source register to the
right, while leaving the signbit unchanged. Note that � means replication, and © means
concatenation.
(op<4..0>=15) : R[ra]<15..0> � N�(R [rb]<15>)© (R [rb]<15..N>),

. . .

. . .
Data transfer instructions
Several of the instructions belong to the data transfer category.

iE := (
. . .
. . .

Opcode 29 specifies the load instruction, i.e. a memory location is referenced and the
value stored in the memory location is copied to the destination register. The effective
address of the memory location to be referenced is calculated by sign extending the
immediate field, and adding it to the value specified by register rb.
(op<4..0>=29) : R[ra]� M[R[rb]+ (11� C1<4>)© C1<4..0>],
A value is stored back to memory from a register using the opcode 28. The effective
address in memory where the value is to be stored is calculated in a similar fashion as the
load instruction.
(op<4..0>=28) : M[R[rb]+ (11� C1<4>)© C1<4..0>] � R [ra],
The move instruction has the opcode 6. The contents of one register are copied to
another register through this instruction.
(op<4..0>=6) : R[ra] � R[rb],
To store an immediate value (specified by the field C2 of the instruction) in a register, the
opcode 7 is employed. The constant is first signextended.
(op<4..0>=7) : R[ra] � (8�C2<7>)©C2<7..0>,

If the opcode is 24, an input is obtained from a certain input device, and the input word

is stored into register ra. The input device is selected by specifying its address through the

constant C2.

(op<4..0>=24) : R[ra] � IO[C2],
Unconditional branch (jump)If the opcode is 25, an output (the register ra value) is sent
to an output device (where the address of the output device is specified by the constant
C2).
(op<4..0>=25) : IO[C2] � R[ra],
 . . .
Last Modified: 12Jan11 Page 110

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

. . .

Last Modified: 12Jan11 Page 111

Advanced Computer ArchitectureCS501

Miscellaneous instructions
Some more instruction included in the FALCON(A are

iE := (
. . .
. . .

The nooperation (nop) instruction, if the opcode is 21. This instructs the processor to do
nothing.
(op<4..0>= 21) : ,
If the opcode is 31, setting the run bit to 0 halts the processor.
(op<4..0>= 31) : Run � 0, Halt the processor (halt)
At the end of this concurrent list of instructions, there is an instruction i.F (the instruction
fetch). Hence when an instruction is executed, the next instruction is fetched, and the
cycle continues, unless the processor is halted.
); iF);

Note: For Assembler and Simulator Consult Appendix.

The EAGLE
(Original version)
Another processor that we are going to study is the EAGLE. We have developed two
versions of it, an original version, and a modified version that takes care of the limitations
in the original version. The study of multiple processors is going to help us get
thoroughly familiar with the processor design, and the various possible designs for the
processor. However, note that these machines are simplified versions of what a real
machine might look like.
Introduction
The EAGLE is an accumulatorbased machine. It is a simple processor that will help us
in our understanding of the processor design process.
EAGLE is characterized by the following:

�� Eight General Purpose Registers of the CPU. These are named R0, R1�R7. Each
register is 16bits in length.

�� Two 16bit system registers transparent to the programmer are the Program
Counter (PC) and the Instruction Register (IR). (Being transparent to the
programmer implies the programmer may not directly manipulate the values to
these registers. Their usage is the same as in any other processor)

�� Memory word size is 16 bits

�� The available memory space size is 216 bytes

�� Memory organization is 216 x 8 bits. This means that there are 216 memory cells,
each one byte long.

�� Memory is accessed in 16 bit words (i.e., 2 byte chunks)
�� Littleendian byte storage is employed.

Last Modified: 12Jan11 Page 112

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Programmer�s View of the EAGLE
The programmer�s view of the
EAGLE processor is shown by
means of the given figure.
EAGLE: Notation
Let us take a look at the
notation that will be employed
for the study of the EAGLE.
Enclosing the register name in
square brackets refers to
register contents; for instance,
R[3] means contents of register
R3.
Enclosing the location address in square brackets, preceded by �M�, lets us refer to
memory contents. Hence M [8] means contents of memory location 8.
As little endian storage is employed, a
memory word at address x is defined
as the 16 bits at address x +1 and x.
For instance, the bits at memory
location 9,8 define the memory word at
location 8. So employing the special
notation for 16bit memory words, we
have
M [8]<15�0>:=M [9]©M [8]
Where © is used to represent concatenation

EAGLE Features
The following features characterize the EAGLE.

�� Instruction length is variable. Instructions are either 8 bits or 16 long, i.e.,
instruction size is either 8bits or 16bits.

�� The instructions may have either one or two operands.
�� The only way to access memory is through load and store instructions.
�� Limited addressing modes are supported

EAGLE: Instruction Formats
There are five instruction formats for the EAGLE. These are
Type Z Instruction Format
The Z format instructions are halfword (1 byte)
instructions, containing just the opcode field of 8 bits,
as shown
Type Y Instruction Format
The type Y instructions are also halfword. There is
an opcode field of 5 bits, and a register operand field
ra.

Type X Instruction Format

Type X instructions are also halfword instructions,
with a 2bit opcode field, and two 3bit operand

Last Modified: 12Jan11 Page 113

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

register fields, as shown.
Type W instruction format
The instructions in this type are 1
word (16bit) in length. 8 bits are
reserved for the opcode, while the remaining 8 bits form the constant (immediate value)
field.

Type V instruction format

Type V instructions are also 1word
instructions, containing an opcode
field of 5 bits, an operand register field
of 3 bits, and 8 bits for a specifying a constant.
Encoding of the General Purpose Registers
The encoding for the eight
GPRs is shown in the table.
These binary codes are to
be used in place of the
�placeholders� ra, rb in the
actual instructions of the
processor EAGLE.

Listing of EAGLE instructions with respect to instruction formats
The following is a brief introduction to the various instructions of the processor EAGLE,
categorized with respect to the instruction formats.

Type Z
There are four type Z instructions,

�� halt(opcode=250)
This instruction halts the processor

�� nop(opcode=249)
nop, or the nooperation instruction stalls the processor for the time of execution
of a single instruction. It is useful in pipelining.

�� init(opcode=251)
This instruction is used to initialize all the registers, by setting them to 0

�� reset(opcode=248)
This instruction is used to initialize the processor to a known state.In this
instruction the control step counter is set to zero so that the operation begins at the
start of the instruction fetch and besides this PC is also set to a known value so
that machine operation begins at a known instruction.

Type Y
Seven instructions of the processor are of type Y. These are

�� add(opcode=11)
The type Y add instruction adds register ra�s contents to register R0. For example,
add r1

Last Modified: 12Jan11 Page 114

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

In the behavioral RTL, we show this
R[0] � R[1]+R[0]

Last Modified: 12Jan11 Page 115

as

Advanced Computer ArchitectureCS501

�� and(opcode=19)
This instruction obtains the logical AND of the value stored in register specified
by field ra and the register R0, and assigns the result to R0, as shown in the
example:
and r5
which is represented in RTL as
R[0] � R[1]&R[0]

�� div(opcode=16)
This instruction divides the contents of register R0 by the value stored in the
register ra, and assigns result to R0. The remainder is stored in the divisor
register, as shown in example,
div r6
In RTL, this is
R[0] � R[0]/R[6]
R[6] � R[0]%R[6]

�� mul (opcode = 15)
This instruction multiplies the values stored in register R0 and the operand
register, and assigns the result to R0). For example,
mul r4
In RTL, we specify this as
R[0] � R[0]*R[4]

�� not (opcode = 23)
The not instruction inverts the operand register�s value and assigns it back to the
same register, as shown in the example
not r6
R[6] � ! R[6]

�� or (opcode=21)
The or instruction obtains the bitwise OR of the operand register�s and R0�s
value, and assigns it back to R0. An example,
or r5
R[0] � R[0] ~ R[5]

�� sub (opcode=12)
The sub instruction subtracts the value of the operand register from R0 value,
assigning it back to register R0. Example:
sub r7
In RTL:
R[0] � R[0] � R[7]

Type X
Only one instruction falls under this type. It is the �mov� instruction that is useful for
register transfers

�� mov (opcode = 0)
The contents of one register are copied to the destination register ra.
Example: mov r5, r1
RTL Notation: R[5]� R[1]

Last Modified: 12Jan11 Page 116

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Type W
Again, only one instruction belongs to this type. It is the branch instruction

�� br (opcode = 252)
This is the unconditional branch instruction, and the branch target is specified by
the 8bit immediate field. The branch is taken by incrementing the PC with the
new value. Hence it is a �near� jump. For instance,
br 14
PC � PC+14

Type V
Most of the instructions of the processor EAGLE are of the format type V. These are

�� addi (opcode = 13)
The addi instruction adds the immediate value to the register ra, by first sign
extending the immediate value. The result is also stored in the register ra. For
example,
addi r4, 31
In behavioral RTL, this is
R[4] � R[4]+(8�c<7>)©c<7�0>;

�� andi (opcode = 20)
Logical �AND� of the immediate value and register ra value is obtained when this
instruction is executed, and the result is assigned back to register ra. An example,
andi r6, 1
R[6] � R[6] &1

�� in (opcode=29)
This instruction is to read in a word from an IO device at the address specified by
the immediate field, and store it in the register ra. For instance,
in r1, 45
In RTL this is
R[1] � IO[45]

�� load (opcode=8)
The load instruction is to load the memory word into the register ra. The
immediate field specifies the location of the memory word to be read. For
instance,
load r3, 6
R[3] � M[6]

�� brn (opcode = 28)
Upon the brn instruction execution, the value stored in register ra is checked, and
if it is negative, branch is taken by incrementing the PC by the immediate field
value. An example is
brn r4, 3
In RTL, this may be written as
if R[4]<0, PC � PC+3

�� brnz (opcode = 25)
For a brnz instruction, the value of register ra is checked, and if found nonzero,
the PCrelative branch is taken, as shown in the example,
brnz r6, 12
Which, in RTL is
if R[6]!=0, PC � PC+12

Last Modified: 12Jan11 Page 117

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

�� brp (opcode=27)
brp is the �branch if positive�. Again, ra value is checked and if found positive, the
PCrelative near jump is taken, as shown in the example:
brp r1, 45
In RTL this is
if R[1]>0, PC � PC+45

�� brz (opcode=8)
In this instruction, the value of register ra is checked, and if it equals zero, PCrelative
branch is taken, as shown,
brz r5, 8
In RTL:
if R[5]=0, PC � PC+8

�� loadi (opcode=9)
The loadi instruction loads the immediate constant into the register ra, for
instance,
loadi r5,54
R[5] � 54

�� ori (opcode=22)
The ori instruction obtains the logical �OR� of the immediate value with the ra
register value, and assigns it back to the register ra, as shown,
ori r7, 11
In RTL,
R[7] � R[7]~11

�� out (opcode=30)
The out instruction is used to write a register word to an IO device, the address of
which is specified by the immediate constant. For instance,
out 32, r5
In RTL, this is represented by
IO[32] � R[5]

�� shiftl (opcode=17)
This instruction shifts left the contents of the register ra, as many times as is
specified through the immediate constant of the instruction. For example:
shiftl r1, 6

�� shiftr(opcode=18)
This instruction shifts right the contents of the register ra, as many times as is
specified through the immediate constant of the instruction. For example:
shiftr r2, 5

�� store (opcode=10)
The store instruction stores the value of the ra register to a memory location
specified by the immediate constant. An example is,
store r4, 34
RTL description of this instruction is
M[34] � R[4]

�� subi (opcode=14)
The subi instruction subtracts the immediate constant from the value of register
ra, assigning back the result to the register ra. For instance,
subi r3, 13

Last Modified: 12Jan11 Page 118

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

RTL description of the instruction
R[3] � R[3]13

(ORIGINAL) ISA for the EAGLE
(16bit registers, 16bit PC and IR, 8bit memory)

opcode operand1operand2constant
mnemonic Format Behavioral RTL

add
addi
and
andi
br
brnv
brnz
brpl
brzr
div
halt
in
init
load
loadi
mov
mul
nop
not
or
ori
out
reset
shiftl
shiftr
store
sub
subi

3 bits
01011 ra
01101 ra
10011 ra
10100 ra
11111100
11100 ra
11001 ra
11011 ra
11010 ra
10000 ra
11111010
11101 ra
11111011
01000 ra
01001 ra
00 ra
01111 ra
11111001
10111 ra
10101 ra
10110 ra
11110 ra
11111000
10001 ra
10010 ra
01010 ra
01100 ra
01110 ra

3 bits

rb

 8 bits

c

c
c
c
c
c
c

c

c
c

c
c

c
c
c

c

Y
V
Y
V
W
V
V
V
V
Y
Z
V
Z
V
V
X
Y
Z
Y
Y
V
V
Z
V
V
V
Y
V

 R [0] � R [ra]+R [0];
 R [ra] � R [ra]+(8�c<7>)©c;
 R[0] � R[ra]&R[0];
 R [ra] � R [ra]& (8�c<7>)©c;
 PC � PC+(8�c<7>)©c;
 (R [ra]<0): PC � PC+(8�c<7>)©c;
 (R [ra]<>0): PC � PC+(8�c<7>)©c;
 (R [ra]>0): PC � PC+(8�c<7>)©c;
 (R [ra]=0): PC � PC+(8�c<7>)©c;
 R [0] � R [0]/R [a], R [ra] �R [0]%R [ra],
 RUN� 0;
 R [ra] �IO[c];
 R [7�0] � 0;
 R [ra] �M[c];
 R [ra] � (8�c<7>)©c;
 R [ra] � R [rb];
 R [ra] © R [r0] � R [ra]*R [0];
 ;
 R [ra] �! (R [ra]);
 R [0] � R [ra]~R [0];
 R [ra] � R [ra]~ (8�c<7>)©c;
 IO[c] �R [ra];
 TBD;
 R [ra] � R [ra]<(7n)..0>©(n�0);
 R [ra] � (n�0)©R [ra]<7...n>;
 M[c]� R [ra];
 R [0] � R [0]R [a];
 R [ra] � R [ra] (8�c<7>)©c;

Symbol Meaning

Symbol Meaning
�
©
:
;
,

Replication
Concatenation
Conditional constructs (IFTHEN)
Sequential constructs
Concurrent constructs

%
&
~
!
�

Remainder after integer division
Logical AND
Logical OR
Logical NOT or complement
LOAD or assignment operator

Last Modified: 12Jan11 Page 119

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Limitations of the ORIGINAL EAGLE ISA
The original 16bit ISA of EAGLE has severe limitations, as outlined below.

1. Use of R0 as accumulator
In most cases, the register R0 is being used as one of the source operands as well as the
destination operand. Thus, R0 has essentially become the accumulator. However, this
will require some additional instructions for use with the accumulator. That should not be
a problem since there are some unused opcodes available in the ISA.
Unequal and inefficient opcode assignment
The designer has apparently tried to extend the number of operations in the ISA by op
code extension. Opcode 11111 combine three additional bits of the instruction for five
instructions: unconditional branch, nop, halt, reset and init.while there is a possibility of
including three more instructions in this scheme, notice that opcode 00 for register to
register mov is causing a �loss� of eight �slots� in the original 5bit opcode assignment.
(The mov instruction is, in effect, using eight opcodes). A better way would be to assign
a 5bit opcode to mov and use the remaining opcodes for other instructions.
Number of the operands
Looking at the mov instruction again, it can be noted that this is the only instruction that
uses two operands, and thus requires a separate format (Format#1) for instruction
enoding. If the job of this instruction is given to two instructions (copy register to
accumulator, and copy accumulator to register), the number of instruction formats can be
reduced thereby, simplifying the assembler and the compiler needed for this ISA.

2. Use of registers for branch conditions
Note that one of the GPRs is being used to hold the branch condition. This would require
that the result from the accumulator be copied to the particular GPR before the branch
instruction. Including flags with the ALSU can eliminate this restriction

The Modified EAGLE
The modified EAGLE is an improved version of the processor EAGLE. As we have
already discussed, there were several limitations in EAGLE, and these have been
remedied in the modified EAGLE processor.
Introduction
The modified EAGLE is also an accumulatorbased processor. It is a simple, yet complex
enough to illustrate the various concepts of a processor design.
The modified EAGLE is characterized by

�� A special purpose register, the 16bit accumulator: ACC
�� 8 General Purpose Registers of the CPU: R0, R1, �, R7; 16bits each
�� Two 16bit system registers transparent to the programmer are the Program

Counter (PC) and the Instruction Register (IR).
�� Memory word size: 16 bits
�� Memory space size: 216 bytes
�� Memory organization: 216 x 8 bits
�� Memory is accessed in 16 bit words (i.e., 2 byte chunks)
�� Littleendian byte storage is employed

Last Modified: 12Jan11 Page 120

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Programmer�s View of the Modified EAGLE
The given figure is the
programmer�s view of the
modified EAGLE processor.
Notation
The notation that is employed for
the study of the modified EAGLE
is the same as the original EAGLE
processor. Recall that we know
that:
Enclosing the register name in
square brackets refers to register
contents; for instance, R [3] means
contents of register R3.
Enclosing the location address in square brackets, preceded by �M�, lets us refer to
memory contents. Hence M [8] means contents of memory location 8.
As little endian storage is employed, a memory word at address x is defined as the 16
bits at address x+1 and x. For instance, the bits at memory location 9,8 define the
memory word at location 8. So employing the special notation for 16bit memory words,
we have
M[8]<15�0>:=M[9]©M[8]
Where © is used to represent
concatenation
The memory word access and copy to a
register is shown in the figure.
Features
The following features characterize the
modified EAGLE processor.

�� Instruction length is variable. Instructions are either 8 bits or 16 long, i.e.,
instruction size is either half a word or 1 word.

�� The instructions may have either one or two operands.
�� The only way to access

memory is through load and
store instructions

�� Limited addressing modes are
supported

Note that these properties are the same
as the original EAGLE processor

Instruction formats

There are four instruction format types
in the modified EAGLE processor as
well. These are

Last Modified: 12Jan11 Page 121

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Encoding of the General Purpose Registers

The encoding for the eight
GPRs is shown in the table.
These are binary codes
assigned to the registers
that will be used in place of
the ra, rb in the actual
instructions of the modified
processor EAGLE.

ISA for the Modified EAGLE

(16bit registers, 16bit ACC, PC and IR, 8bit wide memory, 256 I/O ports)

Mnemonic Op(code Operand Constant

Unused 00111
3bits 8 bits Format Behavioral RTL

addi
subi
shiftl
shiftr
andi
ori
asr
in
ldacc
movir
out
stacc
movia
br
brn
brnz
brp
brz
add
sub

div

mul
and
or
not
a2r
r2a
cla
halt
nop

00100 ra
00101 ra
01010 ra
01011 ra
01100 ra
01101 ra
01110 ra
10001 ra
10010 ra
10100 ra
10101 ra
10111 ra
10011
11000
11001
11010
11011
11100
00000 ra
00001 ra

00010 ra

00011 ra
01000 ra
01001 ra
01111 ra
 10000 ra
10110 ra
00110
11101
11110

C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1

X
X
X
X
X
X
X
X
X
X
X
X
W
W
W
W
W
W
Y
Y

Y

Y
Y
Y
Y
Y
Y
Z
Z
Z

 ACC � R[ra] +(8�C1<7>)©C1;
 ACC � R[ra] (8�C1<7>)©C1;
 R[ra] � R[ra]<(15n)..0>©(n�0);
 R[ra] � (n�0)©R[ra]<15...n>;
 ACC � R[ra] & (8�C1<7>)©C1;
 ACC � R[ra] ~ (8�C1<7>)©C1;
 R[ra] � (n�R[ra}<15>)©R[ra]<15...n>;
 R[ra] �IO[C1];
 ACC �M[R[ra] +(8�C1<7>)©C1];
 R[ra] � (8�C1<7>)©C1;
 IO[C1] �R[ra];
 M[R[ra] +(8�C1<7>)©C1]� ACC;
 ACC � (8�C1<7>)©C1;
 PC � PC + 8�C1<7>)©C1;
 (S=1): PC � PC+(8�C1<7>)©C1;
 (Z=0): PC � PC+(8�C1<7>)©C1;
 (S=0): PC � PC+(8�C1<7>)©C1;
 (Z=1): PC � PC+(8�C1<7>)©C1;
 ACC � ACC + R[ra];
 ACC � ACC R[a];
 ACC � (R[ra] ©ACC)/R[a],

 R[ra] � (R[ra] ©ACC)%R[a];
 R[ra] © ACC � R[ra]*ACC;
 ACC � ACC & R[ra];
 ACC � ACC ~ R[ra];
 ACC � !(R[ra]);
 R[ra] � ACC
 ACC � R[ra]
 ACC � 0;
 RUN� 0;
 ;

Last Modified: 12Jan11 Page 122

reset

Advanced Computer ArchitectureCS501

11111 Z TBD;

Symbol Meaning

Symbol Meaning
�
©
:
;
,

Replication
Concatenation
Conditional constructs (IFTHEN)
Sequential constructs
Concurrent constructs

%
&
~
!
�

Remainder after integer division
Logical AND
Logical OR
Logical NOT or complement
LOAD or assignment operator

Last Modified: 12Jan11 Page 123

Advanced Computer ArchitectureCS501

Lecture No. 10

The FALCON(E and ISA Comparison

Reading Material
 Handouts Slides

Summary
3) The FALCONE
4) Instruction Set Architecture Comparison

THE FALCON(E
Introduction
FALCON stands for First Architecture for Learning Computer Organization and
Networks. We are already familiar with our example processor, the FALCONA, which
was the first version of the FALCON processor. In this section we will develop a new
version of the processor. Like its predecessor, the FALCONE is a GeneralPurpose
Register machine that is simple, yet is able to elucidate the fundamentals of computer
design and architecture.
The FALCONE is characterized by the following

�� Eight General Purpose Registers (GPRs), named R0, R1�R7. Each registers is 4
bytes long (32bit registers).

�� Two special purposes registers, named BP and SP. These registers are also 32bit
in length.

�� Two special registers, the Program Counter (PC) and the Instruction Register
(IR). PC points to the next instruction to be executed, and the IR holds the current
instruction.

�� Memory word size is 32 bits (4
bytes).

�� Memory space is 232 bytes
�� Memory is organized as 1byte

cells, and hence it is 232 x 8
bits.

�� Memory is accessed in 32bit
words (4byte chunks, or 4
consecutive cells)

�� Byte storage format is little
endian.

Programmer�s view of the FALCON(E
The programmer�s view of the FALCONE is shown in the given figure.
FALCON(E Notation
We take a brief look at the notation that we will employ for the FACLONE.
Register contents are referred to in a similar fashion as the FALCONA, i.e. the register
name in square brackets. So R[3] means contents of register R3.

Last Modified: 12Jan11 Page 124

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Memory contents (or the memory
location) can be referred to in a similar
way. Therefore, M[8] means contents
of memory location 8.
A memory word is stored in the
memory in the little endian format.
This means that the least significant
byte is stored first (or the little end comes first!). For instance, a memory word at address
8 is defined as the 32 bits at addresses 11, 10, 9, and 8 (littleendian). So we can employ a
special notation to refer to the memory words. Again, we will employ © as the
concatenation operator. In our notation for the FALCONE, the memory word stored at
address 8 is represented as:
M[8]<31�0>:=M[11]©M[10]©M[9]©M[8]
The shown figure will make this easier to understand.
FALCON(E Features
The following features characterize the FALCONE

�� Fixed instruction size, which is 32 bits. So the instruction size is 1 word.
�� All ALU instructions have three operands
�� Memory access is possible only through the load and store instructions. Also, only

a limited addressing modes are supported by the FALCONE
FALCON(E Instruction Formats
Four different instruction formats are supported by the FALCONE. These are
Type A instructions
The type A instructions have 5 bits reserved for the operation code (abbreviated opcode),
and the rest of the bits are either not used or specify a displacement.

Type B instructions
The type B instructions also have 5 bits (27 through 31) reserved for the opcode. There
is a register operand field, ra, and an immediate or displacement field in addition to the
opcode field.

Type C instructions
Type C instructions have the 5bit opcode field, two 3bit operand registers (rb is the
source register, ra is the destination register), a 17bit immediate or displacement field, as
well as a 3bit function field. The function field is used to differentiate between
instructions that may have the same opcode, but different operations.

Type D instructions
Type D instructions have the 5bit opcode field, three 3bit operand registers, 14 bits are
unused, and a 3bit function field.

Last Modified: 12Jan11 Page 125

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Encoding for the General Purpose Registers (GPRs)
In the instruction formats discussed above, we used register operands ra, rb and rc. It is
important to know that these are merely placeholders, and not the real register names. In
an actual instruction, any one of the 8 registers of our generalpurpose register file may
be used. We need to encode our registers so we can refer to them in an instruction. Note
that we have reserved 3 bits for each of the register field. This is because we have 8
registers to represent, and they can be completely represented by 3 bits, since 23 = 8. The
following table shows the binary encoding of the generalpurpose registers.

There are two more special registers that we need to represent; the SP and the BP. We
will use these registers in place of the operand register rb in the load and store
instructions only, and therefore, we may encode these as

Instructions, Instruction Formats
The following is a brief introduction to the various instructions of the FALCONE,
categorized with respect to the instruction formats.

Type A instructions
Four instructions of the FALCONE belong to type A. These are

Last Modified: 12Jan11 Page 126

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

�� nop (opcode = 0)
This instruction instructs the processor to do nothing. It is generally useful in
pipelining. We will study more on pipelining later in the course.

�� ret (opcode = 15)
The return instruction is used to return control to the normal flow of a program
after an interrupt or a procedure call concludes

�� iret (opcode = 17)
The iret instruction instructs the processor to return control to the address
specified by the immediate field of the instruction. Setting the program counter to
the specified address returns control.

�� near jmp (opcode = 18)
A near jump is a PCrelative jump. The PC value is incremented (or decremented)
by the immediate field value to take the jump.

Type B instructions
Five instructions belong to the type B format of instructions. These are:

�� push (opcode = 8)
This instruction is used to push the contents of a register onto the stack. For
instance, the instruction,
push R4
will push the contents of register R4 on top of the stack

�� pop (opcode = 9)
The pop instruction is used to pop a value from the top of the stack, and the value
is read into a register. For example, the instruction
pop R7
will pop the uppermost element of the stack and store the value in register R7

�� ld (opcode = 10)
This instruction with opcode (10) loads a memory word from the address
specified by the immediate filed value. This word is brought into the operand
register ra. For example, the instruction,
ld R7, 1254h
will load the contents of the memory at the address 1254h into the register R7.

�� st (opcode = 12)
The store instruction of (opcode 12) stores a value contained in the register
operand into the memory location specified by the immediate operand field. For
example, in
st R7, 1254h
the contents of register R7 are saved to the memory location 1254h.

Type C instructions

There are four data transfer instructions, as well as nine ALU instructions that belong to
type C instruction format of the FALCONE.
The data transfer instructions are

�� lds (opcode = 4)
The load instruction with opcode (4)loads a register from the memory, after
calculating the address of the memory location that is to be accessed. The
effective address of the memory location to be read is calculated by adding the
immediate value to the value stored by the register rb. For instance, in the

Last Modified: 12Jan11 Page 127

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

example below, the immediate value 56 is added to the value stored by the
register R4, and the resultant value is the address of the memory location which is
read
lds R3, R4(56)
In RTL, this can be shown as
R [3] � M[R [4]+56]

�� sts (opcode = 5)
This instruction is used to store the register contents to the memory location, by
first calculating the effective memory address. The address calculation is similar
to the lds instruction. An example:
sts R3, R4 (56)
In RTL, this is shown as
M[R [4]+56] � R [3]

�� in (opcode = 6)
This instruction is to load a register from an input/output device. The effective
address of the I/O device has to be calculated before it is accessed to read the
word into the destination register ra, as shown in the example:
in R5, R4(100)

In RTL:
R[5] � IO[R[4]+100]

�� out (opcode = 7)
This instruction is used to write / store the register contents into an input/output
device. Again, the effective address calculation has to be carried out to evaluate
the destination I/O address before the write can take place. For example,
out R8, R6 (36)
RTL representation of this is
IO[R [6]+36] � R [8]

 Three of the ALU instructions that belong to type C format are
�� addi (opcode = 2)

The addi instruction is to add a constant to the value of operand register rb, and
assign the result to the destination register ra. For example, in the following
instruction, 56 is added to the value of register R4, and result is assigned to the
register R3.
addi R3, R4, 56
In RTL this can be shown as
R[3] � R[4]+56
Note that if the immediate constant specified was a negative number, then this
would become a subtract operation.

�� andi (opcode = 2)
This instruction is to calculate the logical AND of the immediate value and the rb
register value. The result is assigned to destination register ra. For instance
andi R3, R4, 56
R[3] � R[4]&56
Note that the logical AND is represented by the symbol �&�

�� ori (opcode = 2)
This instruction calculates the logical OR of the immediate field and the value in

Last Modified: 12Jan11 Page 128

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

operand register rb. The result is assigned to the destination register ra. Following
is an example:
ori R3, R4, 56
The RTL representation of this instruction:
R [3] � R [4]~56
Note that the symbol �~� is used to represent logical OR.

Type D Instructions

Four of the instructions that belong to this instruction format type are the ALU
instructions shown below. There are other instructions of this type as well, listed in the
tables at the end of this section.

�� add (opcode = 1)
This instruction is used to add two numbers. The numbers are stored in the registers
specified by rb and rc. Result is stored into register ra. For instance, the instruction,
add R3, R5, R6

 adds the numbers in register R5, R6, storing the result in R3. In RTL, this is given by
R [3] � R [5] + R [6]
�� sub (opcode = 1)

This instruction is used to carry out 2�s complement subtraction. Again, register
addressing mode is used, as shown in the example instruction
sub R3, R5, R6
RTL representation of this is
R[3] � R[5] R[6]

�� and (opcode = 1)
For carrying out logical AND operation on the values stored in registers, this
instruction is employed. For instance
and R8, R3, R4
In RTL, we can write this as
R [8] � R [3] & R [4]

�� or (opcode = 1)
For evaluating logical OR of values stored in two registers, we use this
instruction. An example is
or R8, R3, R4
In RTL, this is
R [8] � R [3] ~ R [4]

Falcon(E
Instruction Summary
The following are the tables that list the instructions that form the instruction set of the
FALCONE. These instructions have been grouped with respect to the functionality they
provide.

Last Modified: 12Jan11 Page 129

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Last Modified: 12Jan11 Page 130

Advanced Computer ArchitectureCS501

Last Modified: 12Jan11 Page 131

Advanced Computer ArchitectureCS501

Last Modified: 12Jan11 Page 132

Advanced Computer ArchitectureCS501

Instruction Set Architecture Comparison
In this lecture, we compare the instruction set architectures of the various processors we
have described/ designed up till now. These processors are:

�� EAGLE
�� FALCONA
�� FALCONE
�� SRC

Classifying Instruction Set Architectures
In the design of the ISA, the choice of some of the parameters can critically affect the
code density (which is the number of instructions required to complete a given task),
cycles per instruction (as some instructions may take more than one clock cycle, and the
number of cycles per instruction varies from instruction to instruction, architecture to
architecture), and cycle time (the total cycle time to execute a given piece of code).
Classification of different architectures is based on the following parameters.

Last Modified: 12Jan11 Page 133

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer Architecture-CS501

Instruction Length
With reference to the instruction lengths in a particular ISA, there are two decisions to be
made; whether the instruction will be fixed in length or variable, and what will be the
instruction length or the range (in case of variable instruction lengths).

Fixed versus variable
Fixed instruction lengths are desirable when simplicity of design is a goal. It provides
ease of implementation for assembling and pipelining. However, fixed instruction length
can be wasteful in terms of code density. All the RISC machines use fixed instruction
length format

Instruction Length
The required instruction length mainly depends on the number of instruction required to
be in the instruction set of a processor (the greater the number of instructions supported,
the more bits are required to encode the operation code), the size of the register file
(greater the number of registers in the register file, more is the number of bits required to
encode these in an instruction), the number of operands supported in instructions (as
obviously, it will require more bits to encode a greater number of operands in an
instruction), the size of immediate operand field (the greater the size, the more the range
of values that can be specified by the immediate operand) and finally, the code density
(which implies how many instructions can be encoded in a given number of bits).
A summary of the instruction lengths of our processors is given in the table below.

Instruction types and sub-types
The given table summarizes the number of instruction types and sub-types of the
processors we have studied. We have already studied these instruction types, and their
sub-types in detail in the related sections.

Number of operands in the instructions
The number of operands that may be required in an instruction depends on the type of
operation to be performed by that instruction; some instruction may have no operands,
other may have up to 3. But a limit on the maximum number of operands for the
instruction set of a processor needs to be defined explicitly, as it affects the instruction

Last Modified: 24-Nov-11 Page 134

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

length and code density. The maximum number of operands supported by the instruction
set of each processor under study is given in the given table. So FALCONA, FALCON
E and the SRC processors may have 3, 2, 1 or no operands, depending on the instruction.
EAGLE has a maximum number of 2 operands; it may have one operand or no operands
in an instruction.
Explicit operand specification in an instruction gives flexibility in storage. Implicit
operands like an accumulator or a stack reduces the instruction size, as they need not be
coded into the instruction. Instructions of the processor EAGLE have implicit operands,
and we saw that the result is automatically stored in the accumulator, without the
accumulator being specified as a destination operand in the instruction.
Number and Size of General Purpose Registers
While designing a processor, another decision that has to be made is about the number of
registers present in the register file, and the size of the registers.
Increasing the number of registers in the register file of the CPU will decrease the
memory traffic, which is a desirable attribute, as memory accesses take relatively much
longer time than register access. Memory traffic decreases as the number of registers is
increased, as variables are copied into the registers and these do not have to be accessed
from memory over and over again. If there is a small number of registers, the values
stored previously will have to be saved back to memory to bring in the new values; more
registers will solve the problem of swapping in, swapping out. However, a very large
register file is not feasible, as it will require more bits of the instruction to encode these
registers. The size of the registers affects the range of values that can be stored in the
registers.
The number of registers in the register file, along with the size of the registers, for each of
the processors under study, is in the given table.

Memory specifications
Memory design is an integral part of the processor design. We need to decide on the
memory space that will be available to the processor, how the memory will be organized,
memory word size, memory access bus width, and the storage format used to store words
in memory. The memory specifications for the processor under comparison are:

Last Modified: 12Jan11 Page 135

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Data transfer instructions
Data needs to be transferred between storage devices for processing. Data transfers may
include loading, storing back or copying of the data. The different ways in which data
transfers may take place have their related advantages and disadvantages. These are listed
in the given table.

Following are the data transfer instructions included in the instruction sets of our
processors.
Register to register transfers
As we can see from the given table on the next page, in the processor EAGLE, register to
register transfers are of two types only: register to accumulator, or accumulator to
register. Accumulator is a specialpurpose register.
FALCONA has a mov instruction, which can be used to move data of any register to any
other register. FALCONE has the instructions �lds� and �sts� which are used to load/store
a register from/to memory after effective address calculation.
SRC does not provide any instruction for data movement between generalpurpose
registers. However, this can be accomplished indirectly, by adopting either of the
following two approaches:

Last Modified: 12Jan11 Page 136

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

�� A register�s contents can be loaded into another register via memory. First storing
the content of a register to a particular memory location, and then reading the
contents of the memory from that location into the register we want to copy the
value to can achieve this. However, this method is very inefficient, as it requires
memory accesses, which are inherently slow operations.

�� A better method is to use the addi instruction with the constant set to 0.

Register to memory
EAGLE has instructions to load values from memory to the special purpose register,
names the accumulator, as well as saving values from the accumulator to memory. Other
register to memory transfers is not possible in the EAGLE processor. FALCONA,
FALOCNE and the SRC have simple load, store instructions and all registermemory
transfers are supported.
Memory to memory
In any of the processors under study, memorytomemory transfers are not supported.
However, in other processors, these may be a possibility.

Control Flow Instructions
All processors have instructions to control the flow of programs in execution. The general
control flow instructions available in most processors are:

�� Branches (conditional)
�� Jumps (unconditional)
�� Calls (procedure calls)
�� Returns (procedure returns)

Conditional Branches
Whereas jumps, calls and call returns changes the control flow in a specific order,
branches depend on some conditions; if the conditions are met, the branch may be taken,

Last Modified: 12Jan11 Page 137

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

otherwise the program flow may continue linearly. The branch conditions may be
specified by any of the following methods:

�� Condition codes
�� Condition register
�� Comparison and branching

Condition codes
The ALU may contain some special bits (also called flags), which may have been set (or
raised) under some special circumstances. For instance, a flag may be raised if there is an
overflow in the addition results of two register values, or if a number is negative. An
instruction can then be ordered in the program that may change the flow depending on
any of these flag�s values. The EAGLE processor uses these condition codes for branch
condition evaluation.
Condition register
A special register is required to act as a branch register, and any other arbitrary register
(that is specified in the branch instruction), is compared against that register, and the
branching decision is based on the comparison result of these two registers. None of the
processors under our study use this mode of conditional branching.
Compare and branch
In this mode of conditional branching, comparison is made part of the branching
instruction. Therefore, it is somewhat more complex than the other two modes. All the
processors we are studying use this mode of conditional branching.
Size of jumps
Jumps are deviations from the linear program flow by a specified constant. All our
processors, except the SRC, support PCrelative jumps. The displacement (or the jump)
relative to the PC is specified by the constant field in the instruction. If the constant field
is wider (i.e. there are more bits reserved for the constant field in the instruction), the
jump can be of a larger magnitude. Shown table specifies the displacement size for
various processors.

Addressing Modes
All processors support a variety of addressing modes. An addressing mode is the method
by which architectures specify the address of an object they will access. The object may
be a constant, a register or a location in memory.
Common addressing modes are

Last Modified: 12Jan11 Page 138

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

�� Immediate
An immediate field may be provided in instructions, and a constant value may be
given in this immediate field, e.g. 123 is an immediate value.

�� Register
A register may contain the value we refer to in an instruction, for instance,
register R4 may contain the value being referred to.

�� Direct
By direct addressing mode, we mean the constant field may specify the location
of the memory we want to refer to. For instance, [123] will directly refer to the
memory location 123�s contents.

�� Register Indirect
A register may contain the address of memory location to which we want to refer
to, for example, M [R3].

�� Displacement
In this addressing mode, the constant value specified by the immediate field is
added to the register value, and the resultant is the index of memory location that
is referred to, e.g. M [R3+123]

�� Relative
Relative addressing mode implies PCrelative addressing, for example, [PC+123]
will refer to the memory location that is 123 words farther than the memory index
currently stored in the program counter.

�� Indexed or scaled
The values contained in two registers are added and the resultant value is the
index to the memory location we refer to, in the indexed addressing mode. For
example, M [[R1]+[R2]]. In the scaled addressing mode, a register value may be
scaled as it is added to the value of the other register to obtain the index of
memory location to be referred to.

�� Auto increment/ decrement
In the auto increment mode, the value held in a register is used as the index to
memory location that holds the value of operand. After the operand�s value is
retrieved, the register value is automatically increased by 1 (or by any specified
constant). e.g. M [R4]+, or M [R4]+d. In the auto decrement mode, the register
value is first decremented and then used as a reference to the memory location
that referred to in the instruction, e.g. (M [R4].

As may be obvious to the reader, some of these addressing modes are quite simple, others
are relatively complex. The complex addressing modes (such as the indexed) reduce the
instruction count (thus improving code density), at the cost of more complex
implementation.
The given table lists the addressing modes supported by the processors we are studying.
 Note that the registeraddressing mode is a special case of the relative addressing mode,
with the constant equal to 0, and only the PC can be used as a source. Also note that, in
the shown table, relative implies PCrelative.

Last Modified: 12Jan11 Page 139

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Displacement addressing mode
We have already talked about the displacementaddressing mode. We look at this
addressing mode at length now.
The displacementaddressing mode is the most common of the addressing mode used in
general purpose processors. Some other modes such as the indexed based plus index,
scaled and register indirect are all slightly modified forms of the displacementaddressing
mode. The size of displacement plays a key role in efficient address calculation. The
following table specifies the size of the displacement field in different processors under
study.

The given table lists the size of the immediate field in our processors.

Last Modified: 12Jan11 Page 140

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Instructions common to all Instruction Set Architectures
In this section we have listed the instructions that are common to the Instruction Set
Architectures of all the processors under our study.

�� Arithmetic Instructions
add, addi & sub.

�� Logic Instructions
and, andi, or, ori, not.

�� Shift Instructions.
Right shift, left shift & arithmetic right shift.

�� Data movement Instructions.
Load and store instructions.

�� Control Instructions
Conditional and unconditional branches, nop & reset.

The following tables list the assembly language instruction codes of these common
instructions for all the processors under comparison.

Last Modified: 12Jan11 Page 141

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Last Modified: 12Jan11 Page 142

Advanced Computer ArchitectureCS501

Last Modified: 12Jan11 Page 143

Advanced Computer ArchitectureCS501

Instructions unique to each processor
Now we take a look at the instructions that are unique to each of the processors we are
studying.
EAGLE
The EAGLE processor has a minimal instruction set. Following are the instructions that
are unique only to the EAGLE processor. Note that these instructions are unique only
with reference to the processor set under our study; some other processors may have
these instructions.

�� movia
This instruction is for moving the immediate value to the accumulator (the special
purpose register)

�� a2r
This instruction is for moving the contents of the accumulator to a register

�� r2a
For moving register contents to the accumulator

�� cla
For clearing (setting to zero) the value in the accumulator

FALCON(A
There is only one instruction unique to the FALCONA processor;

�� ret
This instruction is used to return control to a calling procedure. The calling
procedure may save the PC value in a register ra, and when this instruction is
called, the PC value is restored. In RTL, we write this as

PC R [ra];

Last Modified: 12Jan11 Page 144

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

FALCON(E
The instructions unique to the FALCONE processor are listed:

�� push
To push the contents of a specified general purpose register to the stack

�� pop
To pop the value that is at the top of the stack

�� ldr
To load a register with memory contents using displacement addressing mode

�� str
To store a register value into memory, using displacement addressing mode

�� bl
To branch if source operand is less than target address

�� bg
To branch if source operand is greater than target address

�� muli
To multiply an immediate value with a value stored in a register

�� divi
To divide a register value by the immediate value

�� xor, xori
To evaluate logical �exclusive or�

�� ror, rori
SRC
Following are the instructions that are unique to the SRC processor, among of the
processors under study

�� ldr
To load register from memory using PCrelative address

�� lar
To load a register with a word from memory using relative address

�� str
To store register value to memory using relative address

�� brlnv
This instruction is to tell the processor to �never branch� at that point in program.
The instruction saves the program counter�s contents to the register specified

�� brlpl
This instruction instructs the processor to branch to the location specified by a
register given in the instruction, if the condition register�s value is positive.
Return address is saved before branching.

�� brlmi
This instruction instructs the processor to branch to the location specified by a
register given in the instruction, if the condition register�s value is negative.
Return address is saved before branching.

�� brlzr
This instruction instructs the processor to branch to the location specified by a
register given in the instruction, if the condition register�s value equals zero.
Return address is saved before branching.

Last Modified: 12Jan11 Page 145

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

�� brlnz
This instruction instructs the processor to branch to the location specified by a
register given in the instruction, if the condition register�s value does not equal
zero. Return address is saved before branching.

Problem Comparison
Given is the code for a simple C statement:
a=(b2)+4c
The given table gives its implementation in all the four processors under comparison.
Note that this table highlights the code density for each of the processors; EAGLE, which
has relatively fewer specialized instructions, and so it takes more instructions to carry out
this operation as compared with the rest of the processors.

Last Modified: 12Jan11 Page 146

akbar
Highlight

Advanced Computer ArchitectureCS501

Last Modified: 12Jan11 Page 147

Advanced Computer ArchitectureCS501

Lecture No. 11
CISC and RISC

Reading Material
Vincent P. Heuring&Harry F. Jordan Chapter 3
Computer Systems Design and Architecture 3.3, 3.4

Summary
5) A CISC microprocessor:The Motorola MC68000
6) A RISC Architecture:The SPARC

Material of this Lecture is included in the abovementioned sections of Chapter 3.

Last Modified: 12Jan11 Page 148

Advanced Computer ArchitectureCS501

Lecture No. 12
CPU Design

Reading Material
Vincent P. Heuring&Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.1, 4.2, 4.3

Summary
7) The design process
8) A UniBus implementation for the SRC
9) Structural RTL for the SRC instructions

Central Processing Unit Design
This module will explore the design of the central processing unit from the logic
designer�s view. A unibus implementation of the SRC is discussed in detail along with
the Data Path Design and the Control Unit Design.
The topics covered in this module are outlined below:

�� The Design Process
�� Unibus Implementation of the SRC
�� Structural RTL for the SRC
�� Logic Design for one bus SRC
�� The Control Unit
�� 2bus and 3bus designs
�� The machine reset
�� The machine exceptions

As we progress through this list of topics, we will learn how to convert the earlier
specified behavioral RTL into a concrete structural RTL. We will also learn how to
interconnect various programmer visible registers to get a complete data path and how to
incorporate various control signals into it. Finally, we will add the machine reset and
exception capability to our processor.
The design process
The design process of a processor starts with the specification of the behavioral RTL for
its instruction set. This abstract description is then converted into structural RTL which
shows the actual implementation details. Since the processor can be divided into two
main subsystems, the data path and the control unit, we can split the design procedure
into two phases.

1. The data path design
2. The control unit design

It is important that the design activity of these
important components of the processor be carried
out with the pros and cons of adopting different
approaches in mind.
As we know, the execution time is dependent on
the following three factors.
ET = IC x CPI x T

Last Modified: 12Jan11 Page 149

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

During the design procedure we specify the implementation details at an advanced level.
These details can affect the clock cycle per instruction and the clock cycle time. Hence
following things should be kept in mind during the design phase.

�� Effect on overall performance
�� Amount of control hardware
�� Development time

Processor Design

Let us take a look at the steps involved in the processor design procedure.
1. ISA Design

The first step in designing a processor is the specification of the instruction set of
the processor. ISA design includes decisions involving number and size of
instructions, formats, addressing modes, memory organization and the
programmer�s view of the CPU i.e. the number and size of general and special
purpose registers.

2. Behavioral RTL Description
In this step, the behavior of processor in response to the specific instructions is
described in register transfer language. This abstract description is not bound to
any specific implementation of the processor. It presents only those static
(registers) and dynamic aspects (operations) of the machine that are necessary to
understand its functionality. The unit of activity here is the instruction execution
unlike the clock cycle in actual case. The functionality of all the instructions is
described here in special register transfer notation.

3. Implementation of the Data Path
The data path design involves decisions like the placement and interconnection of
various registers, the type of flipflops to be used and the number and kind of the
interconnection buses. All these decisions affect the number and speed of register
transfers during an operation. The structure of the ALU and the design of the
memorytoCPU interface also need to be decided at this stage. Then there are the
control signals that form the interface between the data path and the control unit.
These control signals move data onto buses, enable and disable flipflops, specify
the ALU functions and control the buses and memory operations. Hence an
integral part of the data path design is the seamless embedding of the control
signals into it.

4. Structural RTL Description

In accordance with the chosen data path implementation, the structural RTL for every
instruction is described in this step. The structural RTL is formed according to the
proposed microarchitecture which includes many hidden temporary registers
necessary for instruction execution. Since the structural RTL shows the actual
implementation steps, it should satisfy the time and space requirements of the CPU as
specified by the clocking interval and the number of registers and buses in the data
path.

5. Control Unit Design
The control unit design is a rather tricky process as it involves timing and
synchronization issues besides the usual combinational logic used in the data path
design. Additionally, there are two different approaches to the control unit design; it

Last Modified: 12Jan11 Page 150

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

can be either hardwired or microprogrammed. However, the task can be made
simpler by dividing the design procedure into smaller steps as follows.

a. Analyze the structural RTL and prepare a list of control signals to be
activated during the execution of each RTL statement.

b. Develop logic circuits necessary to generate the control signals
c. Tie everything together to complete the design of the control unit.

Processor Design
A Uni(bus Data Path Implementation for the SRC

In this section, we will discuss the unibus implementation of the data path for the SRC.
But before we go onto the design phase, we will discuss what a data path is. After the
discussion of the data path design, we will discuss the timing step generation, which
makes possible the synchronization of the data path functions.

The Data Path
The data path is the arithmetic portion of the Von Neumann architecture. It consists of
registers, internal buses, arithmetic units and shifters. We have already discussed the
decisions involved in designing the data path. Now we shall have an overview of the 1
Bus SRC data path design. As the name suggests, this implementation employs a single
bus for data flow. After that we develop each of its blocks in greater detail and present
the gate level implementation.
Overview of the Unibus SRC Data
Path
The 1bus implementation of the SRC
data path is shown in the figure given.
The control signals are omitted here
for the sake of simplicity. Following
units are present in the SRC data path.

1. The Register File
The generalpurpose register
file includes 32 registers R0 to
R31 each 32 bit wide. These
registers communicate with
other components via the internal processor bus.

2. MAR
The Memory Address Register takes input from the ALSU as the address of the
memory location to be accessed and transfers the memory contents on that
location onto the memory subsystem.

3. MBR
The Memory Buffer Register has a bidirectional connection with both the
memory subsystem and the registers and ALSU. It holds the data during its
transmission to and from memory.

4. PC
The Program Counter holds the address of the next instruction to be executed. Its
value is incremented after loading of each instruction. The value in PC can also be
changed based on a branch decision in ALSU. Therefore, it has a bidirectional
connection with the internal processor bus.

5. IR
Last Modified: 12Jan11 Page 151

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

The Instruction Register holds the instruction that is being executed. The
instruction fields are extracted from the IR and transferred to the appropriate
registers according to the external circuitry (not shown in this diagram).

6. Registers A and C
The registers A and C are required to hold an operand or result value while the
bus is busy transmitting some other value. Both these registers are programmer
invisible.

7. ALSU
There is a 32bit Arithmetic Logic Shift Unit, as shown in the diagram. It takes
input from memory or registers via the bus, computes the result according to the
control signals applied to it, and places it in the register C, from where it is finally
transferred to its destination.

Timing Step Generator
To ensure the correct and
controlled execution of instructions
in a program, and all the related
operations, a timing device is
required. This is to ensure that the
operations of essentially different
instructions do not mix up in time.
There exists a �timing step
generator� that provides mutually
exclusive and sequential timing
intervals. This is analogous to the
clock cycles in the actual processor. A possible implementation of the timing step
generator is shown in the figure.
Each mutually exclusive step is carried out in one timing interval. The timing intervals
can be named T0, T1�T7. The given figure is helpful in understanding the �mutual
exclusiveness in time� of these timing intervals.
Processor design

Structural RTL descriptions of selected
SRC instructions

Structural RTL for the SRC
The structural RTL describes how a
particular operation is performed using a
specific hardware implementation. In
order to present the structural RTL we
assume that there exists a �timing step
generator�, which provides mutually
exclusive and sequential timing intervals, analogous to the clock cycles in actual
processor.

Structural RTL for Instruction Fetch
The instruction fetch procedure takes three time steps as shown in the table. During the
first time step, T0, address of the
instruction is moved to the Memory
Address Register (MAR) and value of

Last Modified: 12Jan11 Page 152

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

PC is incremented. In T1 the instruction is brought from the memory into the Memory
Buffer Register(MBR), and the incremented PC is updated. In the third and final time
step of the instruction fetch phase, the instruction from the memory buffer register is
written into the IR for execution.What follows the instruction fetch phase, is the
instruction execution phase. The number of timing steps taken by the execution phase
generally depends on the type and function of instruction. The more complex the
instruction and its implementation, the more timing steps it will require to complete
execution. In the following discussion, we will take a look at various types of
instructions, related timing steps requirements and data path implementations of these in
terms of the structural RTL.

Structural RTL for Arithmetic/Logic Instructions

The arithmetic/logic instructions come in two formats, one with the immediate operand
and the other with register operand. Examples of both are shown in the following tables.
Register(to(Register sub
Registertoregister subtract (or sub) will take three timing steps to complete execution,
as shown in the table. Here we have assumed
that the instruction given is:

sub ra, rb, rc
Here we assume that the instruction fetch
process has taken up the first three timing
steps. In step T3 the internal register A
receives the contents of the register rb. In the
next timing step, the value of register rc is
subtracted (since the opcode is sub) from A. In the final step, this result is transferred
into the destination register ra. This
concludes the instruction fetchexecute
cycle and at the end of it, the timing
step generator is initialized to T0.
The given figure refreshes our
knowledge of the data path. Notice that
we can visualize how the steps that we
have just outlined can be carried out, if
appropriate control signals are applied
at the appropriate timing.
As will be obvious, control signals
need to be applied to the ALSU, based
on the decoding of the opcode field of
an instruction. The given table lists these control signals:
Note that we have used uppercase
alphabets for naming the ALSU
functions. This is to differentiate these
control signals from the actual
operationcode mnemonics we have
been using for the instructions.
The SHL, SHR, SHC and the SHRA
functions are listed assuming that a
barrel shifter is available to the

Last Modified: 12Jan11 Page 153

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

processor with signals to differentiate between the various types of shifts that are to be
performed.
Structural RTL for Register(to(Register add
To enhance our understanding of the instruction execution phase implementation, we will
now take a look at some more instructions of
the SRC. The structural RTL for a simple add
instruction add ra, rb, rc is given in table.
The first three instruction fetch steps are
common to all instructions. Execution of
instruction starts from step T3 where the first
operand is moved to register A. The second
step involves computation of the sum and
result is transferred to the destination in step T5. Hence the complete execution of the add
instruction takes 6 time steps. Other arithmetic/logic instructions having the similar
structural RTL are �sub�, �and� and �or�. The only difference is in the T4 step where
the sign changes to (), (^), or (~) according to the opcode.
Structural RTL for the not instruction
The first three steps T0 to T2 are used up in fetching the instruction as usual. In step T3,
the value of the operand specified by the register is brought into the ALSU, which will
use the control function NOT, negate the value (i.e. invert it), and the result moves to the
register C. In the time step R4, this result is assigned to the destination register through
the internal bus. Note that we need control signals to coordinate all of this; a control
signal to allow reading of the instructionspecified source register in T3, control signal
for the selection of appropriate function to be carried out at the ALSU, and control signal
to allow only the instructionspecified
destination register to read the result value
from the data bus.
The table shown outlines these steps for the
instruction: not ra, rb
Structural RTL for the addi instruction
Again, the first three time steps are for the
instruction fetch. Next, the first operand is brought into ALSU in step T3 through register
A. The step T4 is of interest here as the second operand c2 is extracted from the
instruction in IR register, sign extended to 32 bits, added to the first operand and written
into the result register C. The execution of instruction completes in step T5 when the
result is written into the destination register. The sign extension is assumed to be carried
out in the ALSU as no separate extension unit is provided.
Sign extension for 17(bit c2 is the same as:(15�IR<16> ©IR<16..0>)
Sign extension for 22(bit c1 is the same as:(10�IR<21> ©IR<21..0>)
The given table outlines the time steps for the instruction addi:
Other instructions that have the same
structural RTL are subi, andi and ori.
RTL for the load (ld) and store (st)
instructions
The syntax of load instructions is:
ld ra, c2(rb)
And the syntax of store instructions is:
st ra, c2(rb)

Last Modified: 12Jan11 Page 154

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

The given table outlines the time steps in fetching and executing a load and a store
instruction. Note that the first 6 time steps (T0 to T5) for both the instructions are the
same.
The first three steps are those of instruction fetch. Next, the register A gets the value of
register rb, in case it is not zero. In time step T4, the constant is signextended, and added
to the value of register A using the ALSU. The result is assigned to register C. Note that
in the RTL outlined above, we are sign extending a field of the Instruction Register(32
bit). It is so because this field is the constant field in the instruction, and the Instruction
Register holds the instruction in execution. In step T5, the value in C is transferred to the
Memory Address Register (MAR). This completes the effective address calculation of the
memory location to be accessed for the load/ store operation.If it is a load instruction in
time step T6, the corresponding memory location is accessed and result is stored in
Memory Buffer Register (MBR). In step T7, the result is transferred to the destination
register ra using the data bus.If the instruction is to store the value of a register, the time
step T6 is used to store the value of the register to the MBR. In the next and final step, the
value stored in MBR is stored in the memory location indexed by the MAR.We can look
at the datapath figure and visualize how all these steps can take place by applying
appropriate control signals. Note that, if more time steps are required, then a counter with
more bits and a larger decoder can be used, e.g., a 4bit counter along with a 4to16
decoder can produce up to 16 time steps.

Last Modified: 12Jan11 Page 155

Advanced Computer ArchitectureCS501

Lecture No. 13

Structural RTL Description of the FALCON(A

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.2.2, slides

Summary

�� Structural RTL Description of the SRC (continued�)
�� Structural RTL Description of the FALCONA

This lecture is a continuation of the previous lecture.

Structural RTL for branch instructions
Let us take a look at the structural RTL for branch instructions. We know that there are
several variations of the branch instructions including unconditional branch and different
conditional branches. We look at the RTL for �branch if zero� (brzr) and �branch and link
if zero� brlzr� conditional branches.
The syntax for the branch if zero (brzr) is:
 brzr rb, rc
As you may recall, this instruction
instructs the processor to branch to the
instruction at the address held in
register rb, if the value stored in
register rc is zero. Time steps for this
instruction are outlined in the table.
The first three steps are of the
instruction fetch phase. Next, the value
of register rc is checked and depending
on the result, the condition flag CON is set. In time step T4, the program counter is set to
the register rb value, depending on the CON bit (the condition flag).
The syntax for the branch and link if zero (brlzr) is:
 brlzr ra, rb, rc
This instruction is the same as the
instruction brzr but additionally the
return address is saved (linking
procedure). The time steps for this
instruction are shown in the table.
Notice that the steps for this
instruction are the same as the
instruction brzr with an additional step
after the condition bit is set; the current
value of the program counter is saved to register ra.

Last Modified: 12Jan11 Page 156

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Structural RTL for shift instructions
Shift instructions are rather
complicated in the sense that they
require extra hardware to hold and
decrement the count. For an ALSU
that can perform only single bit shifts,
the data must be repeatedly cycled
through the ALSU and the count
decremented until it reaches zero. This
approach presents some timing
problems, which can be overcome by
employing multiplebit shifts using a
barrel shifter.
 The structural RTL for shr ra, rb, rc or shr ra, rb, c3 is given in the corresponding
table shown. Here n represents a 5bit register; IR bits 0 to 4 are copied in to it. N is the
decimal value of the number in this register. The actual shifting is being done in step T5.
Other instructions that will have similar tables are: shl, shc, shra
e.g., for shra, T5 will have C� (N�R [rb] <31>) © R[rb] <31...N>;

Structural RTL Description of FALCON(A Instructions

Uni(bus data path implementation

Comparing the uni-bus implementation of FALCON-A with that of SRC results in the
following differences:

�� FALCON-A processor bus has 16 lines or is 16-bits wide while that of SRC is
32-bits wide.

�� All registers of FALCONA are of 16bits while in case of SRC all registers are
32bits.

�� Number of registers in FALCONA are 8 while in SRC the number of registers is
32.

�� Special registers i.e. Program Counter (PC) and Instruction Register (IR) are 16
bit registers while
in SRC these are
32bits.

�� Memory Address
Register (MAR)
and Memory Buffer
Register (MBR) are
also of 16bits
while in SRC these
are of 32bits.

MAR and MBR are dual
port registers. At one side
they are connected to
internal bus and at other
side to external memory in order to point to a particular address for reading or writing
data from or to the memory and MBR would get the data from the memory.
Last Modified: 12Jan11 Page 157

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

ALSU functions needed
ALSU of FALCONA has slightly different functions. These functions are given in the
table.
Note that mul and div
are two significant
instructions in this
instruction set. So
whenever one of these
instructions is activated,
the ALSU unit would
take the operand from
its input and provide the
output immediately, if
we neglect the
propagation delays to
its output. In case of

FALCONA, we have
two registers A and AH
each of 16bits. AH
would contain the
higher 16bits or most significant 16bits of a 32bit operand. This means that the ALSU
provides the facility of using 32bit operand in certain instructions. At the output of
ALSU we could have a 32bit result and that can not be saved in just one register C so we
need to have another one that is CH. CH can store the most significant 16bits of the
result.
Why do we need to add AH and CH?
This is because we have mul and div instructions in the instruction set of the FALCON
A. So for that case, we can implement the div instruction in which, at the input, one of the
operand which is dividend would be 32bits or in case of mul instruction the output
which is the result of multiplication of two 16bit numbers, would be 32bit that could be
placed in C and CH. The data in these 2 registers will be concatenated and so would be
the input operand in two registers AH and A. Conceptually one could consider the A and
AH together to represent 32bit operand.
Structural RTL for subtract
instruction
 sub ra, rb, rc
In sub instruction three registers are
involved. The first three steps will
fetch the sub instruction and in T3,
T4, T5 the steps for execution of
the sub instruction will be
performed.

Structural RTL for addition
instruction

add ra, rb, rc
The table of add instruction is

Last Modified: 12Jan11 Page 158

Advanced Computer ArchitectureCS501

almost same as of sub instruction except in timing step T4 we have + sign for addition
instead of � sign as in sub instruction. Other instructions that belong to the same group
are �and�, �or� and �sub�.
Structural RTL for multiplication instruction
 mul ra, rb, rc
This instruction is only present in this processor and not in SRC. The first three steps are
exactly same as of other instructions and would fetch the mul instruction. In step T3 we
will bring the contents of register R
[rb] in the buffer register A at the
input of ALSU. In step T4 we take
the multiplication of A with the
contents of R[rc] and put it at the
output of the ALSU in two registers
C and CH. CH would contain the
higher 16bits while register C
would contain the lower 16bits.
Now these two registers cannot
transfer the data in one bus cycle to
the registers, since the width is 16bits. So we need to have 2 timing steps, in T5 we
transfer the higher byte to register R[0] and in T6 the lower 16bits are transferred to the
placeholder R[a]. As a result of multiplication instruction we need 3 timing steps for
Instruction Fetch and 4 timing steps for Instruction Execution and 7 steps altogether.
Structural RTL for division instruction
 div ra, rb, rc
In this instruction first three steps
are the same. In step T3 the
contents of register rb are placed in
buffer register A and in step T4 we
take the contents of register R[0] in
to the register AH. We assume
before using the divide instruction
that we will place the higher 16
bits of dividend to register R[0].
Now in T5 the actual division takes
place in two concurrent operations.
We have the dividend at the input
of ALSU unit represented by concatenation of AH and A. Now as a result of division
instruction, the first operation would take the remainder. This means divide AH
concatenated with A with the contents given in register rc and the remainder is placed in
register CH at the output of ALSU. The quotient is placed in C. In T6 we take C to the
register R[ra] and in T7 remainder available in CH is taken to the default register R[0]
through the bus. In divide instruction 5 timing steps are required to execute the
instruction while 3 to fetch the instruction.
Note: Corresponding to mul and div instruction one should be careful about the
additional register R[0] that it should be properly loaded prior to use the instructions e.g.
if in the divide instruction we don�t have the appropriate data available in R[0] the result
of divide instruction would be wrong.

Last Modified: 12Jan11 Page 159

Advanced Computer ArchitectureCS501

Structural RTL for not instruction

not ra, rb
In this instruction first three steps
will fetch the instruction. In T3 we
perform the not operation of
contents in R[rb] and transfer them
in to the buffer register C. It is
simply the one�s complement
changing of 0�s to 1�s and 1�s to
0�s. In timing step T4 we take the
contents of register C and transfer to register R[ra] through the bus as shown in its
corresponding table.
Structural RTL for add immediate instruction

addi ra, rb, c1
In this instruction c1 is a constant as a part of the instrucion. First three steps are for
Instruction Fetch operation. In T3
we take the contents of register R
[rb] in to the buffer register A. In
T4 we add up the contents of A
with the constant c1 after sign
extension and bring it to C.
Sign extension of 5(bit c1 and 8(
bit constant c2
 Sign extension for 5(bit c1 is: (11�IR<4> ©IR<4.. 0>)
We have immediate constant c1 in the form of lower 5bits and bit number 4 indicates the
sign bit. We just copy it to the left most 11 positions to make it a 16bit number.

Sign extension for 8(bit c2 is:

(8�IR<7> ©IR<7.. 0>)
In the same way for constant c2 we need to place the sign bit to the left most 8 position to
make it 16bit number.

Structural RTL for the load
and store instruction
Tables for load and store
instructions are same as
SRC except a slight
difference in the notation.
So when we have square
brackets [R [rb]+c1], it
corresponds to the base
address in R[rb] and an offset taken
from c1.

Structural RTL for conditional jump
instructions

jz ra, [c2]
 In first three steps of this table, the
instruction is fetched. In T3 we set a 1

Last Modified: 12Jan11 Page 160

Advanced Computer ArchitectureCS501

bit register �CON� to true if the condition is met.
How do we test the condition?

This is tested by the contents given by the register ra. So condition within square brackets
is R[ra]. This means test the data given in register ra. There are different possibilities and
so the data could be positive, negative or zero. For this particular instruction it would be
tested if the data were zero. If the data were zero, the �CON� would be 1.
In T4 we just take the contents of the PC into the buffer register A. In T5 we add up the
contents of A to the constant c2 after sign extension. This addition will give us the
effective address to which a jump would be taken. In T6, this value is copied to the PC.
In FALCONA, the number of conditional jumps is more than in SRC. Some of which
are shown below:

�� jz (opcode= 19) jump if zero
 jz r3, [4] (R[3]=0): PC� PC+ 2;

�� jnz (opcode= 18) jump if not zero
 jnz r4, [variable] (R[4]�0): PC� PC+ variable;

�� jpl (opcode= 16) jump if positive
 jpl r3, [label] (R[3]�0): PC � PC+ (labelPC);

�� jmi (opcode= 17) jump if negative
 jmi r7, [address] (R[7]<0): PC� PC+ address;
The unconditional jump instruction will be explained in the next lecture.

Last Modified: 12Jan11 Page 161

Advanced Computer ArchitectureCS501

Lecture No. 14

External FALCON(A CPU

Reading Material

Summary

�� Structural RTL Description of the FALCONA (continued�)
�� External FALCONA CPU Interface

This lecture is a continuation of the previous lecture.

Un(conditional jump instruction
jump (op(code= 20)

In the unconditional jump with opcode 20, the opcode is followed by a 3bit identifier
for register ra and then followed by an 8bit constant c2.
Forms allowed by the assembler to define the jump are as follows:

jump [ra + constant]
 jump [ra + variable]

jump [ra + address]
jump [ra + label]

For all the above instructions:
(ra=0):PC� PC+(8�C2<7>)©C2<7..0>,
(ra�0):PC� R[ra]+(8�C2<7>)©C2<7..0>;4

In the case of a constant, variable, an address or (labelPC) the jump ranges from �128 to
127 because of the restriction on 8bit constant c2. Now, for example if we have jump
[r0+a], it means jump to a. On the other hand if we have jump [� r2] that is not allowed
by the assembler. The target address should be even because we have each instruction
with 2 bytes. So the types available for the unconditional jumps are either direct,
indirect, PCrelative or register relative. In the case of direct jump the constant c2 would
define the target address and in the case of indirect jump constant c2 would define the
indirect location of memory from where we could find out the address to jump. While in
the case of PCrelative if the contents of register ra are zero then we have near jump and
the type of jump for this would be PCrelative. If ra is not be zero then we have a far
jump and the contents of register ra will be added with the constant c2 after sign
extension to determine the jump address.

4 c2 is computed by sign extending the constant,variable,address or (labelPC)

Last Modified: 12Jan11 Page 162

akbar
Highlight

Advanced Computer ArchitectureCS501

Structural RTL description for unconditional jump instruction

 jump [ra+c2]

In first three steps, T0T2, we would fetch the jump instruction, while in T3 we would
either take the contents of PC and place them in a temporary register A if the condition
given in jump instruction is true, that is if the ra field is zero, otherwise we would place
the contents of register ra in
the temporary register A.
Comma �,� indicates that
these two instructions are
concurrent and only one of
them would execute at a
time. If the ra field is zero
then it would be PC
relative jump otherwise it
would be registerrelative jump. In step T4 we would add the constant c2 after sign
extension to the contents of temporary register A. As a result we would have the effective
address in the buffer register C, to which we need to jump. In step T5 we will take the
contents of C and load it in the PC, which would be the required address for the jump.

Structural RTL for the shift instruction

 shiftr ra, rb, c1

First three steps would fetch the shift instruction. c1 is the count field. It is a 5bit
constant and is obtained from the lower 5bits of the instruction register IR. In step T3 we
would load the 5bit register �n� from the count field or the lower 5bits of the IR and
then in T4 depending upon the value of �N� which indicates the decimal value of �n�, we
would take the contents of
register rb and shift right by
Nbits which would
indicate how many shifts
are to be performed. �n�
indicates the register while
�N� indicates the decimal
value of the bits present in
the register �n�. So as a
result we need to copy the zeros to the left most bits, this shows that zeros are replicated
�N� times and are concatenated with the shifted bits that are actually 15�N. In T5, we
take the contents from C through the bus and feed it to the register ra which is the
destination register. Other instructions that would have similar tables are �shiftl� and
�asr�.

In case of asr, when the data is shifted right, instead of copying zeros on the left side, we
would copy the sign bit from the original data to the leftmost position.

Other instructions

Other instructions are mov, call and ret. Note that these instructions were not available

with the SRC processor.

Last Modified: 12Jan11 Page 163

Advanced Computer ArchitectureCS501

Structural RTL for the mov instruction

 mov ra, rb

In mov instruction the data in
register rb, which is the source
register, is to be moved in the
register ra, which is the destination
register. In first three steps, mov
instruction is fetched. In step T3
the contents of register rb are
placed in buffer register C through the ALSU unit while in step T4 the buffer register C
transfers the data to register ra through internal unibus.

Structural RTL for the mov immediate instruction

 movi ra, c2

In this instruction ra is the
destination register and constant c2
is to be moved in the ra. First three
steps would fetch the move
immediate instruction. In step T3 we
would take the constant c2 and place
it into the buffer register C. Buffer
register C is 16bit register and c2 is 8bit constant so we need to concatenate the
remaining leftmost bits with the sign bit which is bit �7� shown within angle brackets.
This sign bit which is the most significant bit would be �1� if the number is negative and
�0� if the number is positive. So depending upon this sign bit the remaining 8bits are
replicated with this sign bit to make a 16bit constant to be placed in the buffer register C.
In step T4 the contents of C are taken to the destination register ra.

In case of FALCONA, �in� and �out� instructions are present which are not present in the
SRC processor. So, for this we assume that there would be interconnection with the input
and output addresses up to 0..255.

Structural RTL for the in instruction

 in ra, c2

First three steps would fetch the
instruction In step T3 we take the
IO [c2] which indicates that go to
IO address indicated by c2 which is
a positive constant in this case and
then data would be taken to the
buffer register C. In step T4 we
would transfer the data from C to
the destination register ra.

Structural RTL for the out
instruction

 out ra, c2

Last Modified: 12Jan11 Page 164

Advanced Computer ArchitectureCS501

This instruction is opposite to the �in� instruction. First three instructions would fetch the
instruction. In step T3 the contents of register ra are placed in to the buffer register C and
then in Step T4 from C the data is placed at the output port indicated by the c2 constant.
So this instruction is just opposite to the �in� instruction.

Structural RTL for the call instruction

 call ra, rb

In this instruction we need to give the control to the procedure, subroutine or to another
address specified in the program. First
three steps would fetch the call
instruction. In step T3 we store the
present contents of PC in to the buffer
register C and then from C we transfer
the data to the register ra in step T4.
As a result register ra would contain
the original contents of PC and this
would be a pointer to come back after
executing the subroutine and it would
be later used by a return instruction. In
step T5 we take the contents of register
rb, which would actually indicate to
the point where we want to go. So in
step T6 the contents of C are placed in
PC and as a result PC would indicate the position in the memory from where new
execution has to begin.

Structural RTL for return
instruction

 ret ra
After instruction fetch in first 3 steps
T0T2, the register data in ra is placed
in the buffer register C through ALSU
unit. PC is loaded with contents of this
buffer register in step T4. Assuming
that bus activity is synchronized,
appropriate control signals are
available to us now.
Control signals required at different
timing steps of FALCON(A
instructions
The following table shows the details of the control signals needed. The first column is
the time step, as before. In the second column the structural RTLs for the particular step
is given, and the
corresponding
control signals are
shown in the third
column. Internal bus
is active in step T0,

Last Modified: 12Jan11 Page 165

Advanced Computer ArchitectureCS501

causing the contents of the PC to be placed in the Memory Address register MAR and
simultaneously the PC is incremented by 2 and placed it in the buffer register C.
Recalling previous lectures, to write data in to a particular register we need to enable the
load signal. In case of fetch instruction in step T0, control signal LMAR is enabled to
cause the data from internal bus to be written in to the address register. To provide data to
the bus through tristate buffers we need to activate the �out� control signal named as
�PCout�, making contents of the PC available to the ALSU and so control unit provides
the increment signal �INC2� to increment the PC. As the ALSU is the combinational
circuit, the PCout signal causes the contents over the 2nd input of ALSU incremented by
2 and so the data is available in buffer register C. Control signal �LC� is required to write
data into the buffer register C form the ALSU output. Now note that �INC2� is one of the
ALSU functions and also it is a control signal. So knowing the control signals, which
need to be activated at a particular step, is very important.
So, at step T0 the control signal �PCout� is activated to provide data to the internal bus.
Now control signal �LMAR� causes the data from the bus to be read into the register
MAR. The ALSU function �INC2� increments the PC to 2 and the output are stored in the
buffer register C by the control signal �LC�. The data from memory location addressed by
MAR is read into Memory Buffer Register MBR in the next timing step T1. In the mean
time there is no activity on the internal bus, the output from the buffer register C (the
incremented value of the PC) is placed in the PC through bus. For this the control signal
�LPC� is activated.
To enable tristate buffer of Memory Address Register MAR, we need control signal
�MARout�. Another control signal is required in step T1 to enable memory read i.e.
�MRead�. In order to enable buffer register C to provide its data to the bus we need
�Cout� control signal and in order to enable the PC to read from C we need to enable its
load signal, which is �LPC�. To read data coming from memory into the Memory Buffer
Register MBR, �LMBR�control signal is enabled. So in T2 we need 5 control signals, as
shown.
In T2, the instruction register IR is loaded with data from the MBR, so we need two
control signals,�MBRout� to enable its tristate buffers and the other signal required is the
load signal for IR register �LIR�. Fetch operation is completed in steps T0T2 and
appropriate control signals are generated. Those control signals, which are not shown,
would remain deactivated. All control signals are activated simultaneously so the order
of these controls signals is immaterial. Recall that in SRC the fetch operation is
implemented in the same way, but �INC4� is used instead of �INC2� because the
instruction length is 4 bytes.
Now we take a look at other examples for control signals required during execution
phase.
For various instructions, we will define other control signals needed in the execution
phase of each instruction but fetch cycle will be the same for all instructions.
Another important fact is the interface of the CPU with an external memory and the I/O
depending upon whether the I/O is memory mapped or nonmemory mapped. The
processor will generate some control signals, used by the memory or I/O to read/write
data to/from the I/O devices or from the memory. Another assumption is that the memory
read is fast enough. Therefore data from memory must be available to the processor in a
fixed time interval, which in this particular example is T2.
For a slow data transfer, the concept of handshaking is used. Some idle states are
introduced and buffer is prepared until the data is available. But for simplicity, we will

Last Modified: 12Jan11 Page 166

Advanced Computer ArchitectureCS501

assume that memory is fast enough and data is available in buffer register MBR to the
CPU.

External FALCON(A CPU Interface

This figure is a symbolic
representation of the
FALCONA in the form of
a chip. The external
interface consists of a 16
bit address bus, a 16bit
data bus and a control bus
on which different control
signals like MRead,
MWrite, IORead, IOWrite
are present.

Example Problem

(a) What will be the
logic levels on the
external FALCONA
buses when each of the
given FALCONA
instruction is executing
on the processor?
Complete the table
given. All numbers are
in the decimal number

Last Modified: 12Jan11 Page 167

Advanced Computer ArchitectureCS501

system, unless noted otherwise.
(b) Specify memoryaddressing modes for each of the FALCONA instructions given.

Assumptions
For this particular example we will assume that all memory contents are properly aligned,
i.e. memory addresses start at address divisible by 2.
PC= C348h

This table contains a partial memory map showing the addresses and the corresponding
data values.

The next table shows the register map showing the contents of all the CPU registers.

Another important thing to note is that memory storage is bigendian.

Solution:

Last Modified: 12Jan11 Page 168

Advanced Computer ArchitectureCS501

In this table the second column contains the RTL descriptions of the instructions. We
have to specify the address bus and data bus contents for each instruction execution. For
load instruction the contents of register r5+12 are placed on the address bus. From
register map shown in the previous table we can see that the contents of r5 are 1234h.
Now contents of r5 are added with displacement value 12 in decimal .In other words the
address bus will carry the hexadecimal value 1234h+ Ch = 1240h.Now for load
instruction, the contents of memory location at address 1240h will be placed on the data
bus. From the memory map shown in the previous table we can see that memory location
1240h contains 785h. Now to read this data from this location, MRead control signal will
be activated shown by 1 in the next column and MWrite would be 0.Similarly RTL
description is given for the 2nd instruction. In this instruction, only registers are involved
so there is no need to activate external bus. So data bus, address bus and control bus
columns will contain �?� or �unknown�. The next instruction is jump. Here PC is
incremented by the jump offset, which is 52 in this case. As before, the external bus will
remain inactive and control signals will be zero. The next instruction is store. Its RTL
description is given. For store instruction, the register contents have to be placed at
memory location addressed by R [3] +17. As this is a memory write operation, the
MWrite will be 1 and MRead will be zero. Now the effective address will be determined
by adding the contents of R [3] with the displacement value 17 after its conversion to the
hexadecimal. The resulting effective address would be C300h. In this way we can
complete the table for other instructions.
Addressing Modes
This table lists the addressing mode for each instruction given in the previous example.

Last Modified: 12Jan11 Page 169

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Last Modified: 12Jan11 Page 170

Advanced Computer ArchitectureCS501

Lecture No. 15

Logic Design and Control Signals Generation in SRC

Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.4

Summary
1) Logic Design for the Unibus SRC
2) Control Signals Generation in SRC

Logic Design for the Uni(bus SRC
In the previous sections, we have looked at both the behavioral and structural RTL for

the SRC. We saw that there is a need for some control circuitry for ensuring the proper
and synchronized functioning of the components of the data path, to enable it to carry out
the instructions that are part of the Instruction Set Architecture of the SRC. The control
unit components and related signals make up the control path. In this section, we will talk
about

�� Identifying the control signals required
�� The external CPU interface
�� Memory Address Register (MAR), and Memory Buffer Register (MBR) circuitry
�� Register Connections

We will also take a look at how sign extension is performed. This study will help us
understand how the entire framework works together to ensure that the operations of a
simple computer like the SRC are carried out in a smooth and consistent fashion.

Identifying control signals
For any of the instructions that are a part of the instruction set of the SRC, there are
certain control signals required; these control signals may be to select the appropriate
function for the ALU to be performed, to select the appropriate registers, or the
appropriate memory location.
Any instruction that is to be executed is first fetched into the CPU. We look at the control
signals that are required for the fetch operation.

Control signals for the fetch operation
Table 1 lists the control signals that are needed to ensure the synchronized register
transfers in the instruction fetch phase. Note that we use uppercase for control signals as
we have been using lowercase for the instruction mnemonics, and we want to distinguish
between the two. Also note that control signals during each time slot are activated
simultaneously, and that the control signals for successive time slots are activated in
sequence. If a particular control signal is not shown, its value is zero.

Last Modified: 12Jan11 Page 171

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

As shown in the Table: 1, some control signals are to let register values to be written onto
buses, or read from the buses. Similarly, some signals are required to read/ write memory
contents onto the bus. The memory is assumed to be fast enough to respond during a
given time slot; if that is not true, wait states have to be inserted. We require four control
signals to be issued in the time step T0:

PCout: This control signal allows the contents of the Program Counter register to be
written onto the internal processor bus.
LMAR: This signal enables write onto the memory address register (MAR), thus the
value of PC that is on the bus, is copied into this register
INC4: It lets the PC value to be incremented by 4 in the ALSU, and result to be
stored in C. Notice that the value of PC has been received by the ALSU as an
operand. This control signal allows the constant 4 to be added to it.
The ALSU is assumed to include an INC4 function
LC: This enables the input to the register C for writing the incremented value of PC
onto it.
During the time step T1, the following control signals are applied:
LMBR: This enables the �write� for the register MBR. When this signal is activated,
whatever value is on the bus, can be written into the MBR.
MRead: Allow memory word to be gated from the external CPU data bus into the
MBR.
MARout: This signal enables the tristate buffers at the output of MAR.
Cout: This will enable writing of the contents of register C onto the processor�s
internal data bus.
LPC: This will enable the input to the PC for receiving a value that is currently on the
internal processor bus. Thus the PC will receive an incremented value.
At the final time step, T2, of the instruction fetch phase, the following control signals
are issued:
MBRout: To enable the tristate buffers with the MBR.
LIR: To allow the IR read the value from the internal bus. Thus the instruction stored
in the MBR is read into the Instruction Register (IR).

Uni(bus SRC implementation
The unibus implementation of the SRC data path is given in the Fig.1. We can now
visualize how the control signals in mutually exclusive time steps will allow the
coordinated working of instruction fetch cycle.

Last Modified: 12Jan11 Page 172

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Similar control signals will allow the instruction execution as well. We have already
mentioned the external CPU buses that read from the memory and write back to it. In the
given figure, we had not shown these external (address and data buses) in detail. Fig.2
will help us understand this external interface.

External CPU bus activity
Let us take up a sample problem to further enhance our understanding of the external
CPU interface. As mentioned earlier, this interface consists of the data bus/ address bus,
and control signals for enabling memory read and write.

Example problem:
(a) What will be the logic levels on the external SRC buses when each of the given SRC
instruction is executing on the processor? Complete Table: 2. all numbers are in the
decimal number system, unless noted otherwise.
(b) Specify memory addressing modes for each of the SRC instructions given in Table: 2.

Last Modified: 12Jan11 Page 173

Advanced Computer ArchitectureCS501

Assumptions:
� All memory content is aligned properly.

In other words, all the memory accesses start at addresses divisible by 4.
Value in the PC = 000DC348h

Memory map with assumed values

Register map with assumed values

Last Modified: 12Jan11 Page 174

Advanced Computer ArchitectureCS501

Solution Part (a):

(Note that the SRC uses the bigendian storage format).

Solution part (b):

Last Modified: 12Jan11 Page 175

Advanced Computer ArchitectureCS501

Notes:
* Relative addressing is always PC relative in the SRC
*** Displacement addressing mode is the same as Based or Indexed in the SRC. It is
also the same as Register Relative addressing mode

Memory address register circuitry
We have already talked about the functionality of the MAR. It provides a temporary
storage for the address of memory location to be accessed. We now take a detailed look
at how it is interconnected with other components. The MAR is connected directly to the
CPU internal bus, from which it is loaded (receives a value). The LMAR signal causes
the contents of the internal CPU bus to be loaded into the MAR. It writes onto the CPU
external address bus. The MARout signal causes the contents of the MAR to be placed on
the address bus. Thus, it provides the addresses for the memory and I/O devices over the
CPU�s address bus. A set of tristate buffers is provided with these connections; the tri
state buffers are controlled by the control signals, which in turn are issued when the
corresponding instruction is decoded. The whole circuitry is shown in Fig.6.

Memory buffer register circuitry
The Memory Buffer Register (MBR) holds the value read from the memory or I/O
device. It is possible to load the MBR from the internal CPU bus or from the external
Last Modified: 12Jan11 Page 176

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

CPU data bus. The MBR also drives the internal CPU bus as well as the external CPU
data bus. Similar to the MAR register, tristate buffers are provided at the connection
points of the MBR, as illustrated in the Fig.7.

Register connections
The register file containing the General Purpose Registers is programmer visible.
Instructions may refer to any of these registers, as source operands in an operation or as
the destination registers. Appropriate circuitry is needed to enable the specified register
for read/ write. Intuitively, we can tell that we require connections of the register to the
CPU internal bus, and we need control signals that will enable specified registers to be
read/ write enabled as a corresponding instruction is decoded. Fig.8 illustrates the register
connections and the control signals generation in the unibus data path of the SRC. We
can see from this figure that the ra, rb and rc fields of the Instruction Register specify the
destination and source registers. The control signals RAE, RBE and RCE can be applied
to select any of the ra, rb or rc field respectively to apply its contents to the input of 5to
32 decoder. Through the decoder, we get the signal for the specific register to be
accessed. The BUS2R control signal is activated if it is desired to write into the register.
On the other hand, if the register contents are to be written to the bus, the control signal
R2BUS is activated.

Last Modified: 12Jan11 Page 177

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Alternate control circuitry for register selection
Fig.9 illustrates an alternate circuitry that implements the register connections with the
internal processor bus, the instruction register fields, and the control signals required to
coordinate the appropriate read/write for these registers. Note that this implementation is
somewhat similar to our earlier implementation with a few differences. It illustrates the
fact that the implementations we have presented are not necessarily the only solutions,
and that there may be other possibilities.

In this alternate circuitry, there is a separate 5to32 decoder for each of the register fields
of the instruction register. The output of these decoders is allowed to be read out and
enables the decoded register, if the control signal (RAE, RBE or RCE) is active.

Last Modified: 12Jan11 Page 178

Advanced Computer ArchitectureCS501

Control signals Generation in SRC
We take a few example instructions to study the control signals that are required in the
instruction execution phase.

Control signals for the add instruction
The add instruction has the following syntax:
add ra, rb, rc
Table: 4 lists the control signals that are applied at each of the time steps. The first three
steps are of the instruction fetch phase, and we have already discussed the control signals
applied at this phase.

Table: 4

 At time step T3, the control RBE is applied, which will enable the register rb to write its
contents onto the internal CPU bus, as it is decoded. The writing from the register onto
the bus is enabled by the control signal R2BUS. Control signal LA allows the bus
contents to be transferred to the register A (which will supply it to the ALSU). At time
step T4, the control signals applied are RCE, R2BUS, ADD, LC, to respectively enable
the register rc, enable the register to write onto the internal CPU bus (which will supply
the second operand to the ALSU from the bus), select the add function of the ALSU
(which will add the values) and enable register C (so the result of the addition operation
is stored in the register C). Similarly in T5, signals Cout, RAE and BUS2R are activated.

Sign extension

When we copy constant values to registers that are 32 bits wide, we need to sign extend
the values first. These values are in the 2�s complement form, and to signextend these
values, we need to copy the most significant bit to all the additional bits in the register.

Last Modified: 12Jan11 Page 179

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

We consider the field c2, which is a 17 bit constant. Sign extension of c2 requires that we
copy c2<16> to all the leftmost bits of the destination register, in addition to copying the
original constant values to the register. This means that bus<31...17> should be the same
as c2<16>. A 15 line tristate buffer can perform this sign extension. So we apply c2<16>
to all the inputs of this tristate buffer as illustrated in the Fig.10.

Structural RTL for the addi instruction
We now return to our study of the control signals required in the instruction execute
phase. We have already looked at the add instruction and the corresponding signals. Now
we take a look at the addi (add immediate) instruction, which has the following syntax:
addi ra, rb, c2
Table: 5 lists the RTL and the control signals for the addi instruction:

The table shows that the control signals for the addi instruction are the same as the add
instruction, except in the time step T4. At this time step, the control signals that are
applied are c2out, ADD and LC, to respectively do the following:
Enable the read of the constant c2 (which is sign extended) onto the internal processor
bus. Add the values using the ALSU and finally assign the result to register C by
enabling write for this register.

To place a 0 on the bus
When the field rb is zero, for instance, in the load and store instructions, we need to
place a zero on the bus. The given circuit in Fig.11 can be used to do this.

Last Modified: 12Jan11 Page 180

akbar
Highlight

Advanced Computer ArchitectureCS501

Note that, by default, the value of register R0 is 0 in some cases. So, when the selected
register turns out to be 0 (as rb field is 0), the line connecting the output of the register R0
is not enabled, and instead a hardwired 0 is output from the tristate buffer onto the CPU
internal bus. An alternate circuitry for achieving the same is shown in the Fig.12.

Control signals for the ld instruction
Now we take a look at the control signals for the load instruction. The syntax of the
instruction is:
ld ra, c2 (rb)
Table: 6 outlines the control signals as well as the RTL for the load instruction in the
SRC.
The first three steps are of the instruction fetch phase. Next, the control signals issued
are:

Last Modified: 12Jan11 Page 181

Advanced Computer ArchitectureCS501

RBE is issued to allow the register rb value to be read
R2BUS to allow the bus to read from the selected register
LA to allow write onto the register A. This will allow the CPU bus contents to be written
to the register A.
At step T4 the control signals are:
c2out to allow the sign extended value of field c2 to be written to the internal CPU bus
ADD to instruct the ALSU to perform the add function.
LC to let the result of the ALSU function be stored in register C by enabling write of
register C.
Control signals issued at step T5:
Cout is to read the register C, this copies the value in C to the internal CPU bus.
LMAR to enable write of the Memory Address Register (which will copy the value
present on the bus to MAR). This is the effective address of memory location that is to be
accessed to read (load) the memory word.
During the time step T6:
MARout to read onto the external CPU bus (the address bus, to be more specific), the
value stored in the MAR. This value is an index to memory location that is to be
accessed.
MRead to enable memory read at the specified location, this loads the memory word at
the specified location onto the CPU external data bus.
LMBR is the control signal to enable write of the MBR (Memory Buffer Register). It
will obtain its value from the CPU external data bus.
Finally, the control signals issued at the time step T7 are:
MBRout is the control signal to allow the contents of the MBR to be read out onto the
CPU internal bus.
RAE is the control signal for the destination register field ra. It will let the actual index of
the ra register be encoded, and
BUS2R will let the appropriate destination register be written to with the value on the
CPU internal bus.

Last Modified: 12Jan11 Page 182

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Lecture No. 16
Control Unit Design

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 4

Summary

�� Control Signals Generation in SRC (continued�)
�� The Control Unit
�� 2Bus Implementation of the SRC Data Path

This section of lecture 16 is a continuation of the previous lecture.

Control signals for the store instruction
st ra, c2(rb)

The store time step operations are similar to the load instruction, with the exception of
steps T6 and T7. However, one can easily interpret these now. These are outlined in the
given table.

Control signals for the branch and branch link instructions
Branch instructions can be either be simple branches or linkandthenbranch type. The
syntax for the branch instructions is

brzr rb, rc

This is the branch and zero instruction we looked at earlier. The control signals for this
instruction are:
As usual, the first three steps are for the instruction fetch phase. Next, the following
control signals are issued:

Last Modified: 12Jan11 Page 183

Advanced Computer ArchitectureCS501

LCON to enable the CON circuitry to operate, and instruct it to check for the appropriate
condition (whether it is branch if zero, or branch if not equal to zero, etc.)
RCE to allow the register rc value to be read.
R2BUS allows the bus to read from the selected register.
At step T4:
RBE to allow the register rb value to be read. rb value is the branch target address.
R2BUS allows the bus to read from the selected register.
LPC (if CON=1): this control signal is issued conditionally, i.e. only if CON is 1, to
enable the write for the program counter. CON is set to 1 only if the specified condition is
met. In this way, if the condition is met, the program counter is set to the branch address.
Branch and link instructions
The branch and link instruction is similar to the branch instruction, with an additional
step, T4. Step T4 of the simple conditional branch instruction becomes the step T5 in this
case.

The syntax of the instruction �branch and link if zero� is
 brlzr ra, rb, rc

Table that lists the RTL and control signals for the store instruction of the SRC is given:
The circuitry that enables the condition checking for the conditional branches in the SRC
is illustrated in the following figure:

Last Modified: 12Jan11 Page 184

Advanced Computer ArchitectureCS501

Control signals for the shift right instruction
The given table illustrates the RTL and the control signals for the shift right �shr�
instruction. This is implemented by applying the five bits of n (nb4, nb3, nb2, nb1, nb0)
to the select inputs of the barrel shifter and activating the control signal SHR as explained
in an earlier lecture.

Last Modified: 12Jan11 Page 185

Advanced Computer ArchitectureCS501

Generating the Test Condition N=0

The Control Unit

The control unit is responsible for generating control signals as well as the timing signals.
Hence the control unit is responsible for the synchronization of internal as well as
external events. By means of the control signals, the control unit instructs the data path
what to do in every clock cycle during the execution of instructions.

Control Unit Design
Since the control unit performs quite complex tasks, its design must be done very
carefully. Most errors in processor design are in the Control Unit design phase. There are
primarily two approaches to design a control unit.

1. Hardwired approach
2. Micro programming

Hardwired approach is relatively faster, however, the final circuit is quite complex. The
microprogrammed implementation is usually slow, but it is much more flexible.

 �Finitestate machine� concepts are usually used to represent the CU. Every state
corresponds to one �clock cycle� i.e., 1 state per clock. In other words each timing step
could be considered as just 1 state and therefore from one timing step to other timing
step, the state would change. Now, if we consider the control unit as a black box, then
there would be four sets of inputs to the control unit. These are as follows:

1. The output of timing step generator (There are 8 disjoint timing steps in our
example T0T7).

2. Opcode (opcode is first given to the decoder and the output of the decoder is
given to the control unit).

3. Data path generated signals, like the �CON� control signal,
4. Signals from external events, like �Interrupt� generated by the Interrupt generator.

The complexity of the control is a function of the
�� Number of states
�� Number of inputs to the CU
�� Number of the outputs generated by the CU

Last Modified: 12Jan11 Page 186

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Hardwired Implementation of the Control Unit

The accompanying block diagram shows the inputs to the control unit. The output control
signals generated from control unit to the various parts of the processor are also shown in
the figure.

Example Control Unit for the FALCON(A

The following figure shows how the operation code (opcode) field of the Instruction
Register is decoded to generate a set of signals for the Control unit.

This is an example for the FALCONA processor where the instruction is 16bit long.
Similar concepts will apply to the SRC, in which case the instruction word is 32 bits and
IR <31...27> contains the opcode. Similar concepts will apply to the SRC, in which case
Last Modified: 12Jan11 Page 187

Advanced Computer ArchitectureCS501

the instruction word is 32 bits and IR<31..27> contains the opcode. The most significant
5 bits represent the opcode. These 5bits from the IR are fed to a 5to32 decoder. These
32 outputs are numbered from 0to31 and named as op0, op1 up to op31. Only one of
these 32 outputs will be active at a given time .The active output will correspond to
instruction executing on the processor.
To design a control unit, the next step is to write the Boolean Equations. For this we need
to browse through the structural descriptions to see which particular control signals occur
in different timing steps. So, for each instruction we have one such table defining
structural RTL and the control signals generated at each timing step. After browsing we
need to check that which control signal is activated under which condition. Finally we
need to write the expression in the form of a logical expression as the logical combination
of �AND� and �OR� of different control signals. The given table shows Boolean
Equations for some example control signals.

For example, PCout would be active in every T0 timing step. Then in timing interval T3
the output of the PC would be activated if the opcode is 20 or 22 which represent jump
and subroutine call. In step T4 if the opcode is 16, 17, 18 or 19, again we need PCout
activated and these 4 instructions correspond to the conditional jumps. We can say that in
other words in step T1, PCout is always activated �OR� in T3 it is activated if the
instruction is either jump or subroutine call �OR� in T4 if there is one of the conditional
jumps. We can write an equation for it as

PCout=T0+T3.(OP20+OP22)+T4.(OP16+OP17+OP18+OP19)

In the form of logic circuit the implementation is shown in the figure. We can see that we
�OR� the opode 20 and 22 and �AND� it with T3, then �OR� all the op16 up to op19
and �AND� it with T4, then T0 and the �AND� outputs of T3 and T4 are �OR� together
to obtain the PCout.

Last Modified: 12Jan11 Page 188

Advanced Computer ArchitectureCS501

In the same way the logic circuit for LPC control signal is as shown and the equation
would be :

LPC=T1+T5.OP20+T6.CON.(OP16+OP17+OP18+OP19)

We can formulate Boolean equations and draw logic circuits for other control signals in
the same way.

Effect of using �real� Gates
We have assumed so far that the gates are ideal and that there is no propagation delay. In
designing the control unit, the propagation delays for the gates can not be neglected. In
particular, if different gates are cascaded, the output of one gate forms the input of other.
The propagation delays would add up. This, in turn would place an upper limit on the

Last Modified: 12Jan11 Page 189

Advanced Computer ArchitectureCS501

frequency of the clock which controls the generation of the timing intervals T0, T1� T7.
So, we can not arbitrarily increase the frequency of this clock. As an example consider
the transfer of the contents of a register R1 to a register R2. The minimum time required

to perform this transfer is given by
tmin = tg + tbp + tcomb + t1

The details are explained in the text with reference to Fig 4.10. Thus, the maximum clock
frequency based on this transfer will be 1/tmin. Students are encouraged to study example
4.1 of the text.

2(Bus Implementation of the SRC Data Path

In the previous sections, we studied the unibus implementation of the data path in the
SRC. Now we present a 2bus implementation of the data path in the SRC. We observe
from this figure that there is a bus provided for data that is to be written to a component.
This bus is named the �in� bus. Another bus is provided for reading out the values from
these components. It is called the �out� bus.

Structural RTL for the �sub� instruction using the 2(bus data path implementation
Next, we look at the structural RTL as well as the control signals that are issued in
sequence for instruction execution in a 2bus implementation of the data path. The given
table illustrates the Register Transfer Language representation of the operations for
carrying out instruction fetch, and execution for the sub instruction.

Last Modified: 12Jan11 Page 190

Advanced Computer ArchitectureCS501

The first three steps belong to the instruction fetch phase; the instruction to be executed is
fetched into the Instruction Register and the PC value is incremented to point to the next
inline instruction. At step T3, the register R[rb] value is written to register A. At the time
step T4, the subtracted result from the ALSU is assigned to the destination register R[ra].
Notice that we did not need to store the result in a temporary register due to the
availability of two buses in place of one. At the end of this sequence, the timing step
generator is initialized to T0.
Control signals for the fetch operation
The control signals for the instruction fetch phase are shown in the table. A brief
explanation is given below:

At time step T0, the following control signals are issued:

�� PCout: This will enable read of the Program Counter, and so its value will be
transferred onto the �out� bus

�� LMAR: To enable the load for MAR
�� C=B: This instruction is used to copy the value on the �out� bus to the �in� bus, so

it can be loaded into the Memory Address Register. We can observe in the data
path implementation figure given earlier that, at any time, the value on the �out�
bus makes up the operand B for the ALSU. The result C of ALSU is connected to
the �in� bus, and therefore, the contents transfer from one bus to the other can
take place.

Last Modified: 12Jan11 Page 191

Advanced Computer ArchitectureCS501

At time step T1:
�� PCout: Again, this will enable read of the Program Counter, and so its value will

be transferred onto the CPU internal �out� bus
�� INC4: To instruct the ALSU to perform the incrementbyfour operation.
�� LPC: This control signal will enable write of the Program Counter, thus the new,

incremented value can be written into the PC if it is made available on the �in�
bus. Note that the ALSU is assumed to include an INC4 function.

�� MRead: To enable memory word read.
�� MARout: To supply the address of memory word to be accessed by allowing the

contents of the MAR (memory address register) to be written onto the CPU
external (address) bus.

�� LMBR: The memory word is stored in the register MBR (memory buffer
register) by applying this control signal to enable the write of the MBR.

At time step T2:
�� MBRout: The contents of the Memory Buffer Register are read out onto the

�out� bus, by means of applying this signal, as it enables the read for the MBR.
�� C=B: Once again, this signal is used to copy the value from the �out� bus to the

�in� bus, so it can be loaded into the Memory Address Register.
�� LIR: This instruction will enable the write of the Instruction Register. Hence the

instruction that is on the �in� bus is loaded into this register.

At time step T3, the execution may begin, and the control signals issued at this stage
depend on the actual instruction encountered. The control signals issued for the
instruction fetch phase are the same for all the instructions.
Note that, we assume the memory to be fast enough to respond during a given time slot.
If that is not true, wait states have to be inserted. Also keep in mind that the control
signals during each time slot are activated simultaneously, while those for successive
time slots are activated in sequence. If a particular control signal is not shown, its value is
zero.

Last Modified: 12Jan11 Page 192

akbar
Highlight

Advanced Computer ArchitectureCS501

Lecture No. 17

Machine Reset and Machine Exceptions

Reading Material
Vincent P. Heuring&Harry F. Jordan Chapter 4

Summary

�� 3bus implementation for the SRC
�� The Machine Reset
�� Machine Exceptions

A 3(bus Implementation for the SRC

Let us now look at a 3
bus implementation of the
datapath for the SRC as
shown in the figure. Two
buses, �A� and �B� bus for
reading, and a bus �C� for
writing, are part of this
implementation. Hence
all the special purpose as
well as the general
purpose registers have
two read ports and one
write port.

Structural RTL for the Subtract Instruction using the 3(bus Data Path
Implementation

We now consider how instructions are fetched and executed in 3bus architecture. For
this purpose, the same �sub� instruction example is followed.

The syntax of the subtract instructions is
sub ra, rb, rc

The structural RTL for implementing this instruction is given in the table. We observe
that in this table, only two time steps are required for the instruction fetch phase. At
time step T0, the Memory Address Register receives the value of the Program Counter.
This is done in the initial phase of the time step T0. Then, the Memory Buffer Register

Last Modified: 12Jan11 Page 193

Advanced Computer ArchitectureCS501

receives the memory word indexed by the MAR, and the PC value is incremented. At
time step T1, the instruction register is assigned the instruction word that was loaded
into the MBR in the previous time step. This concludes the instruction fetch and now
the instruction execution can commence.

In the next time step, T2, the instruction is executed by subtracting the values of
register rc from rb, and assigning the result to the register ra.
At the end of each sequence, the timing step generator is initialized to T0

Control Signals for the Fetch Operation
The given table lists the control signals in the instruction fetch phase. The control
signals for the execute phase can be written in a similar fashion.

The Machine Reset

In this section, we will discuss the following
�� Reset operation
�� Behavioral RTL for SRC reset
�� Structural RTL for SRC reset

The reset operation
Reset operation is required to change the processor�s state to a known, defined value.
The two essential features of a reset instruction are clearing the control step counter and
reloading the PC to a predefined value. The control step counter is set to zero so that
operation is restarted from the instruction fetch phase of the next instruction. The PC is
reloaded with a predefined value usually to execute a specific recovery or initializing
program.
In most implementations the reset instruction also clears the interrupt enable flags so as
to disable interrupts during the initialization operation. If a condition code register is
present, the reset instruction usually clears it, so as to clear any effects of previously
executed instructions. The external flags and processor state registers are usually
cleared too.

Last Modified: 12Jan11 Page 194

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

The reset instruction is mainly used for debugging purposes, as most processors halt
operations immediately or within a few cycles of receiving the reset instruction. The
processors state may then be examined in its halted state.
Some processors have two types of reset operations. Soft reset implies initializing PC
and interrupt flags. Hard reset initializes other processor state registers in addition to
PC and interrupts enable flags. The software reset instruction asserts the external reset
pin of the processor.

Reset operation in SRC

Hard Reset
The SRC should perform a hard reset upon receiving a start (Strt) signal. This initializes
the PC and the general registers.
Soft Reset
The SRC should perform a soft reset upon receiving a reset (rst) signal. The soft reset
results in initialization of PC only.
The reset signal in SRC is assumed to be external and asynchronous.
PC Initialization
There are basically two approaches to initialize a PC.
1. Direct Approach
The PC is loaded with the address of the startup routine upon resetting.
2. Indirect Approach
The PC is initialized with the address where the address of the startup routine is
located. The reset instruction loads the PC with the address of a jump instruction. The
jump instruction in turn contains the address of the required routine.
An example of a reset operation is found in the 8086 processor. Upon receiving the
reset instruction the 8086 initializes its PC with the address FFFF0H. This memory
location contains a jump instruction to the bootstrap loader program. This program
provides the system initialization

Behavioral RTL for SRC Reset
The original behavioral RTL for SRC without any reset operation is:
Instruction_Fetch :=(! Run&Strt: (Run � 1; instruction_Fetch,
 Run : (IR � M [PC]; PC � PC+4;instruction_execution)),
instruction_execution:= (ld (:=op=1�) ;
This recursive definition implies that each instruction at the address supplied by PC is
executed. The modified RTL after adding the reset capability is
Instruction_Fetch:=(! Run&Strt :(Run � 1,
 PC, R [0...31] � 0),
 Run&!Rst :(IR � M [PC],
 PC � PC+4, instruction_execution);
 Run&Rst:(Rst � 0, PC � 0);
 instruction_Fetch),
The modified definition includes testing the value of the �rst� signal after execution of
each instruction. The processor may not be halted in the midst of an instruction in the
RTL definition
To actually implement these changes in the SRC, the following modification are
required to add the reset operation to the structural RTL for SRC:
Last Modified: 12Jan11 Page 195

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

�� A check for the reset signal on each clock cycle
�� A control signal for clearing the PC
�� A control signal to load zero to control step counter

Example: The sub instruction with RESET processing
To actually reset the processor in the midst of an instruction, the �Rst� condition must
be tested after each clock cycle.

 Let us examine the contents of each phase in the given table. In step T0, if the Rst
signal is not asserted, the address of the new instruction is delivered to memory and the
value of PC is incremented by 4 and stored in another register. If the �Rst� signal is
asserted, the �Rst� signal is immediately cleared, the PC is cleared to zero and T, the
step counter is also set to zero. This behavior (in case of �Rst� assertion) is the same for
all steps. In step T1, if the rst signal is not asserted, the value stored at the delivered
memory word is stored in the memory data register and the PC is set to its incremented
value.
In step T2, the stored memory data is transferred to the instruction register.
In step T3, the register operand values are read.
In step T4, the mathematical operation is executed.
In step T5, the calculated value is written back to register file.
During all these steps if the Rst signal is asserted, the value of PC is set to 0 and the
value of the step counter is also set to zero.

Last Modified: 12Jan11 Page 196

akbar
Highlight

Advanced Computer ArchitectureCS501

Machine Exceptions

� Anything that interrupts the normal flow of execution of instructions in the
processor is called an exception.

� Exceptions may be generated by an external or internal event such as a mouse
click or an attempt to divide by zero etc.

� External exceptions or interrupts are generally asynchronous (do not depend on
the system clock) while internal exceptions are synchronous (paced by internal
clock)

The exception process allows instruction flow to be modified, in response to internal or
external events or anomalies. The normal sequence of execution is interrupted when an
exception is thrown.
Exception Processing
A generalized exception handler should include the following mechanisms:

1. Logic to resolve priority conflicts. In case of nested exceptions or an exception
occurring while another is being handled the processor must be able to decide
which exception bears the higher priority so as to handle it first. For example, an
exception raised by a timer interrupt might have a higher priority than keyboard
input.

2. Identification of interrupting device. The processor must be able to identify the
interrupting device that it can to load the appropriate exception handler routine.
There are two basic approaches for managing this identification: exception
vectors and �information� register. The exception vector contains the address of
the exception handling routine. The interrupting process fills the exception vector
as soon as the interruption is acknowledged. The disadvantage of this approach is
that a lot of space may be taken up by vectors and exception handler codes.
In the information register, only one general purpose exception handler is used.
The PC is saved and the address of the general purpose register is loaded into the
PC. The interrupting process must fill the information register with information to
allow identification of the cause and type of exception.

3. Saving the processor state. As stated earlier the processor state must be saved
before jumping to the exception handler routine. The state includes the current
value of the PC, general purpose registers, condition vector and external flags.

4. Exception disabling during critical operation. The processor must disable
interrupts while it is switching context from the interrupted process to the
interrupting process, so that another exception might not disrupt the transition.

Examples of Exceptions
� Reset Exception

Reset operation is treated as an exception by some machines e.g. SPARC and
MC68000.

� Machine Check
 This is an external exception caused by memory failure
� Data Access Exception

This exception is generated by memory management unit to protect against illegal
accesses.

� Instruction Access Exception

Last Modified: 12Jan11 Page 197

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Similar to data access exception

� Alignment Exception
Generated to block misaligned data access

Types of Exception

� Program Exceptions
These are exceptions raised during the process of decoding and executing the
instruction. Examples are illegal instruction, raised in response to executing an
instruction which does not belong to the instruction set. Another example would
be the privileged instruction exception.

� Hardware Exceptions
There are various kinds of hardware exceptions. An example would be of a timer
which raises an exception when it has counted down to zero.

� Trace and debugging Exceptions
Variable trace and debugging is a tricky task. An easy approach to make it
possible is through the use of traps. The exception handler which would be called
after each instruction execution allows examination of the program variables.

� Nonmaskable Exceptions
These are high priority exceptions reserved for events with catastrophic
consequences such as power loss. These exceptions cannot be suppressed by the
processor under any condition. In case of a power loss the processor might try to
save the system state to the hard drive, or alert an alternate power supply.

� Interrupts (External Exceptions)
Exception handlers may be written for external interrupts, thus allowing programs
to respond to external events such as keyboard or mouse events.

Last Modified: 12Jan11 Page 198

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Lecture No. 18
Pipelining

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.8
Summary

�� SRC Exception Processing Mechanism
�� Introduction to Pipelining
�� Complications Related to Pipelining
�� Pipeline Design Requirements

Correction: Please note that the phrase �instruction fetch� should be used where the
speaker has used �instruction interpretation�.

SRC Exception Processing Mechanism

The following tables on the next few pages summarize the changes needed in the SRC
description for including exceptions:

Last Modified: 12Jan11 Page 199

Advanced Computer ArchitectureCS501

Behavioral RTL for Exception Processing

Instruction_Fetch:=

(!Run&Strt: Run � 1,

Run & !(ireq&IE):(IR �M[PC],

PC � PC + 4;

Instruction_Execution),

Run&(ireq&IE): (IPC � PC<31..0>,

II<15..0> � Isrc_info<15..0>,

IE � 0: PC � Ivect<31..0>,

iack � 1; iack � 0),

Instruction_Fetch);

Additional Instructions to Support Interrupts

 Mnemonic Behavioral RTL

Start

Normal Fetch

Interrupt, PC copied

II is loaded with the info.

PC loaded with new address

 Meaning

svi (op=16)

ri (op=17)

een (op=10)

edi (op=11)

rfi (op=30)

R[ra]<15..0> � II<15..0>,

R[rb] � IPC<31..0>;

II<15..0> � R[ra]<15..0>,

IPC<31..0> � R[rb];

IE � 1;

IE � 0;

PC � IPC, IE � 1;

Save II and IPC

Restore II and IPC

Exception enable

Exception disable

Return from interrupt

Last Modified: 12Jan11 Page 200

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Structural RTL for the Fetch Phase including Exception Processing

Step
T0

T1

T2

T3

Structural RTL for the 1(bus SRC
!(ireq&IE): (MA � PC, C � PC + 4);

(ireq&IE): (IPC � PC,II� Isrc_info,

IE � 0,PC � (22� 0)©(Isrc_vect<7..0>)© 00, iack � 1;
iack � 0, End) ;

MD � M[MA], PC � C;

IR � MD;

Instruction_Execution;

Combining the RTL for Reset and Exception

Instruction_Fetch:=

(Run&!Rst&!(ireq&IE):(IR � M[PC], PC � PC+4;
Instruction_Execution),

Run&Rst: (Rst �0 , IE � 0, PC � 0; Instruction_Fetch),

!Run&Strt: (Run �1, PC � 0, R[0..31] � 0; Instruction_Fetch),

Run&!Rst&(ireq&IE): (IPC � PC<31..0>,

II<15..0> �Isrc_info<15..0>, IE � 0, PC � Ivect<31..0>,

iack � 1; iack � 0; Instruction_Fetch));

Introduction to Pipelining

 Events

Normal

Fetch

Soft Reset

Hard Reset

Interrupt

Last Modified: 12Jan11 Page 201

Advanced Computer ArchitectureCS501

Pipelining is a technique of overlapping multiple instructions in time. A pipelined
processor issues a new instruction before the previous instruction completes. This results
in a larger number of operations performed per unit of time. This approach also results in
a more efficient usage of all the functional units present in the processor, hence leading to
a higher overall throughput. As an example, many shorter integer instructions may be
executed along with a longer floating point multiply instruction, thus employing the
floating point unit simultaneously with the integer unit.

Executing machine instructions with and without pipelining
We start by assuming that a given processor can be split in to five different stages as
shown in the diagram below,
and as explained later in this
section. Each stage receives
its input from the previous
stage and provides its result
to the next stage. It can be
easily seen from the diagram
that in case of a non
pipelined machine there is a
single instruction add r4, r2,
r3 being processed at a given
time, while in a pipelined
machine, five different
instructions are being processed simultaneously. An implied assumption in this case is
that at the end of each stage, we have some sort of a storage place (like temporary
registers) to hold the results of the present stage till they are used by the next stage.

Description of the Pipeline Stages
In the following paragraphs, we discuss the pipeline stages mentioned in the previous
example.

1. Instruction fetch
As the name implies, the instruction is fetched from the
instruction memory in this stage. The fetched instruction bits
are loaded into a temporary pipeline register.

2. Instruction decode/operand fetch
In this stage the operands for the instruction are fetched from
the register file. If the instruction is add r1, r2, r3 the
registers r2 and r3 will be read into the temporary pipeline
registers.

3. ALU5 operation

5 The ALU is also called the ALSU in some cases, in particular, where its �shifting� capabilities need to be
highlighted. ALSU stands for Arithmetic Logic Shift Unit.
Last Modified: 12Jan11 Page 202

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

In this stage, the fetched operand values are fed into the ALU along with the function
which is required such as addition, subtraction, etc. The result is stored into temporary
pipeline registers. In case of a memory access such as a load or a store instruction, the
ALU calculates the effective memory address in this stage.

4. Memory access
For a load instruction, a memory read operation takes place. For a store instruction, a
memory write operation is performed. If there is no memory access involved in the
instruction, this stage is simply bypassed.

5. Register write
The result is stored in the destination register in this stage.

Latency & throughput
Latency is defined as the time required to process a single instruction, while throughput is
defined as the number of instructions processed per second. Pipelining cannot lower the
latency of a single instruction; however, it does increase the throughput. With respect to
the example discussed earlier, in a nonpipelined machine there would be one instruction
processed after an average of 5 cycles, while in a pipelined machine, instructions are
completed after each and every cycle (in the steadystate, of course!!!). Hence, the overall
time required to execute the program is reduced.

Remember that the performance gain in a pipeline is limited by the slowest stage in the
pipeline.

Complications Related to Pipelining
Certain complications may arise from pipelining a processor. They are explained below:
Data dependence
This refers to the situation when an instruction in one stage of the pipeline uses the results
of an instruction in the previous stage. As an example let us consider the following two
instructions
�
S1: add r3, r2, r1
S2: sub r4, r5, r3
�

There is a datadependence among the above two instructions. The register R3 is being
written to in the instruction S1, while it is being read from in the instruction S2. If the
instruction S2 is executed before instruction S1 is completed, it would result in an
incorrect value of R3 being used.

Resolving the dependency
There are two methods to remedy this situation:

1. Pipeline stalls
These are inserted into the pipeline to block instructions from entering the pipeline until
some instructions in the later part of the pipeline have completed execution. Hence our
modified code would become

Last Modified: 12Jan11 Page 203

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

�

Advanced Computer ArchitectureCS501

S1: add r3, r2, r1
stall6
stall
stall
S2: sub r4, r5, r3
�
2. Data forwarding
When using data forwarding, special hardware is added to the processor, which allows
the results of a particular pipeline stage to be transferred directly to another stage in the
pipeline where they are required. Data may be forwarded directly from the execute stage
of one instruction to the decode stage of the next instruction. Considering the above
example, S1 will be in the execute stage when S2 will be decoded. Using a comparator
we can determine that the destination operand of S1 and source operand of S2 are the
same. So, the result of S1 may be directly forwarded to the decode stage.

Other complications include the �branch delay� and the �load delay�. These are
explained below:

Branch delay
Branches can cause problems for pipelined processors. It is difficult to predict whether a
branch will be taken or not before the branch condition is tested. Hence if we treat a
branch instruction like any normal instruction, the instructions following the branch will
be loaded in the stages following the stage which carries the branch instruction. If the
branch is taken, then those instructions would need to be removed from the pipeline and
their effects if any, will have to be undone. An alternate method is to introduce stalls, or
nop instructions, after the branch instruction.

Load delay
Another problem surfaces when a value is loaded into a register and then immediately
used in the next operation. Consider the following example:

�
S1: load r2, 34(r1)
S2: add r5, r2, r3
�

In the above code, the �correct� value of R2 will be available after the memory access
stage in the instruction S1. Hence even with data forwarding a stall will need to be placed
between S1 and S2, so that S2 fetches its operands only after the memory access for S1
has been made.

Pipeline Design Requirements
For a pipelined design, it is important that the overall meaning of the program remains
unchanged, i.e., the program should produce the same results as it would produce on a
nonpipelined machine. It is also preferred that the data and instruction memories are

6 A pipeline stall can be achieved by using the nop instruction.
Last Modified: 12Jan11 Page 204

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

separate so that instructions may be fetched while the register values are being stored
and/or loaded from data memory. There should be a single data path so as not to
complicate the flow of instructions and maintain the order of program execution. There
should be a three port register file so that if the register write and register read stages
overlap, they can be performed in parallel, i.e., the two register operands may be read
while the destination register may be written. The data should be latched in between each
pipeline stage using temporary pipeline registers. Since the clock cycle depends on the
slowest pipeline stage, the ALU operations must be able to complete quickly so that the
cycle time is not increased for the rest of the pipeline.

Designing a pipelined implementation
In this section we will discuss the various steps involved in designing a pipeline. Broadly
speaking they may be categorized into three parts:

1. Adapting the instructions to pipelined execution
The instruction set of a nonpipelined processor is generally different from that of a
pipelined processor. The instructions in a pipelined processor should have clear and
definite phases, e.g., add r1, r2, r3. To execute this instruction, the processor must first
fetch it from memory, after which it would need to read the registers, after which the
actual addition takes place followed by writing the results back to the destination register.
Usually registerregister architecture is adopted in the case of pipelined processors so that
there are no complex instructions involving operands from both memory and registers.
An instruction like add r1, r2, a would need to execute the memory access stage before
the operands may be fed to the ALU. Such flexibility is not available in a pipelined
architecture.

2. Designing the pipelined data path
Once a particular instruction set has been chosen, an appropriate data path needs to be
designed for the processor. The data path is a specification of the steps that need to be
followed to execute an instruction. Consider our two examples above

For the instruction add r1, r2, r3: Instruction Fetch – Register Read – Execute – Register Write,

whereas for the instruction add r1, r2, a (remember a represents a memory address), we
have Instruction Fetch – Register Read – Memory Access – Execute – Register Write

The data path is defined in terms of registers placed in between these stages. It specifies
how the data will flow through these registers during the execution of an instruction. The
data path becomes more complex if forwarding or bypassing mechanism is added to the
processor.

3. Generating control signals
Control signals are required to regulate and direct the flow of data and instruction bits
through the data path. Digital logic is required to generate these control signals.

Last Modified: 12Jan11 Page 205

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Lecture 19

Pipelined SRC

Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 5
Computer Systems Design and Architecture 5.1.3

Summary

�� Pipelined Version of the SRC
�� Adapting SRC instructions for Pipelined Execution
�� Control Signals for Pipelined SRC

Pipelined Version of the SRC

In this lecture, a pipelined version of the SRC is presented. The SRC uses a fivestage
pipeline. Those five stages are given below:

1. Instruction Fetch
2. Instruction decode/operand fetch
3. ALU operation
4. Memory access
5. Register write

As shown in the next diagram, there are several registers between each stage.

After the instruction has been fetched, it is stored in IR2 and the incremented value of the
program counter is held in PC2. When the register values have been read, the first
register value is stored in X3, and the second register value is stored in Y3. IR3 holds the
opcode and ra. If it is a store to memory instruction, MD3 holds the register value to be
stored.

After the instruction has been executed in the ALU, the register Z4 holds the result. The
opcode and ra are passed on to IR4. During the write back stage, the register Z5 holds the
value to be stored back into the register, while the opcode and ra are passed into IR5.
There are also two separate memories and several multiplexers involved in the pipeline
operation. These will be shown at appropriate places in later figures.

The number after a particular register name indicates the stage where the value of this
register is used.

Last Modified: 12Jan11 Page 206

Advanced Computer ArchitectureCS501

Adapting SRC Instructions for Pipelined Execution

As mentioned earlier, the SRC instructions fall into the following three categories:

1. ALU Instructions
2. Load/Store instructions
3. Branch Instructions

We will now discuss how to design a common pipeline for all three categories of
instructions.

1. ALU instructions

ALU instructions are usually of the form:

op(code ra, rb, rc
or
op(code ra, rb, constant.

In the diagram shown, X3 and Y3 are temporary registers to hold the values between
pipeline stages. X3 is loaded with operand value from the register file. Y3 is loaded with
either a register value from the register file or a constant from the instruction. The
operands are then available to the ALU. The ALU function is determined by decoding the
opcode bits. The result of the ALU operation is stored in register Z4, and then stored in
the destination register in the register write back stage. There is no activity in the memory
access stage for ALU instructions. Note that Z5, IR3, IR4, and IR5 are not shown

Last Modified: 12Jan11 Page 207

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

explicitly in the figure. The purpose of not including these registers is to keep the
drawing simple. However, these registers will transfer values as instructions progress
through the pipeline. This comment also applies to some other figures in this discussion.

2. Load/Store instructions

Load/Store instructions are usually of the form:

op(code ra, constant(rb)

The instruction is loaded into IR2 and the incremented value of the PC is loaded in PC2.
In the next stage, X3 is loaded with the value in PC2 if the relative addressing mode is
used, or the value in rb if the displacement addressing mode is used. Similarly, C1 is
transferred to Y3 for the relative addressing mode, and c2 is transferred to Y3 for the
displacement addressing mode. The store instruction is completed once memory access
has been made and the memory location has been written to. The load instruction is
completed once the loaded value is transferred back to the register file. The following
figure shows the schematic for a load instruction. A similar schematic can be drawn for
the store instruction.

Last Modified: 12Jan11 Page 208

Advanced Computer ArchitectureCS501

3. Branch Instructions
Branch Instructions usually involve calculating the target address and evaluating a
condition. The condition is evaluated based on the c2 field of the IR and by using the
value in R[rc]. If the condition is true, the PC is loaded with the value in R[rb], otherwise
it is incremented by 4 as usual. The following figure shows these details.

The complete pipelined data path

The pipelined data path implementation diagrams shown earlier for the three SRC
instruction categories must be combined and refined to get a working system. These
details get complicated very quickly. A detailed combined diagram is shown in Figure
5.7 of the text book.

Last Modified: 12Jan11 Page 209

Advanced Computer ArchitectureCS501

Control Signals for the Pipelined SRC

We define the following signals for the SRC by grouping similar opcodes:

In most cases, the signals defined above are used in the same stage where they are
generated. If that is not the case, a number used after the signal name indicates the stage
where the signal is generated.

Using these definitions, we can develop RTL statements for describing the pipeline
activity as well as the equations for the multiplexer select signals for different stages of
the pipeline. This is shown in the next diagram.

Control Signals for different pipeline Stages

Consider the RTL description of the Mp1 signal, which controls the input to the PC. It
simply means that if the branch and cond signals are not activated, then the PC is
incremented by 4, otherwise if both are activated then the value of R1 is copied in to the
PC.

The multiplexer Mp2 is used to decide which registers are read from the register file. If
the store signal is activated then R[rb] from the instruction bits is read from the register
file so that its value may be stored into memory, otherwise R[rc] is read from the register
file.

The multiplexer Mp3 is used to decide which registers are read from the register file for
operand 2. If either rl or branch is activated then the updated value of PC2 is transferred
to X3, otherwise if dsp or alu is activated, the value of R[ra] from the register file is

Last Modified: 12Jan11 Page 210

Advanced Computer ArchitectureCS501

transferred to the x3. In the same way, multiplexer Mp4 is used to select an input from
Y3.

In the same way, multiplexer Mp4 is used to select an input for Y3.

The multiplexer MP5 is used to decide which value is transferred to be written back to
the register file. If the load signal is activated data from memory is transferred to Z5,
however if the load signal is not activated then data from Z4 (which is the result of ALU)
is transferred to Z5 which is then written back to the register file.

Last Modified: 12Jan11 Page 211

Advanced Computer ArchitectureCS501

Lecture No. 20
Hazards in Pipelining

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 5
Computer Systems Design and Architecture 5.1.5, 5.1.6

Summary

�� Structural RTL for Pipeline Stages
�� Instruction Propagation Through the Pipeline
�� Pipeline Hazards
�� Data Dependence Distance
�� Data Forwarding
�� Compiler Solution to Hazards
�� SRC Hazard Detection and Correction
�� RTL for Hazard Detection and Pipeline Stall

Structural RTL for Pipeline Stages
The Register Transfer Language for each phase is given as follows:

Instruction Fetch

 IR2 � M [PC];
 PC2 � PC+4;

Instruction Decode & Operand fetch
 X3�ls2:(rel2:PC2,disp2:(rb=0):?,(rb!=0):R[rb]),brl2:PC2,alu2:R[rb],
 Y3 � ls2:(rel2:c1,disp2:c2),alu2:(imm2:c2,!imm2:R[rc]),
 MD3 �store2:R[ra],IR3 � IR2,stop2:Run � 0,
 PC � !branch2:PC+4,branch2:(cond(IR2,R[rc]):R[rb],!cond(IR2,R[rc]):PC+4;

ALU operation

Z4 � (Is3: X3+Y3, brl3: X3, Alu3: X3 op Y3,
MD4 � MD3,
IR4 � IR3;

Memory access

Z5 � (load4: M [Z4], ladr4~branch4~alu4:Z4),
store4: (M [Z4] � MD4),
IR5 �IR4;

Last Modified: 12Jan11 Page 212

Advanced Computer ArchitectureCS501

Write back

regwrite5: (R[ra] � Z5);

Instruction Propagation through the Pipeline

Consider the following SRC code segment flowing through the pipeline. The instructions
along with their addresses are

 200: add r1, r2, r3
 204: ld r5, [4(r7)
 208: br r6
 212: str r4, 56
 �
 400

We shall review how this chunk of code is executed.

First Clock Cycle
Add instruction enters the pipeline in the first cycle. The value in PC is
incremented from 200 to 204.

Second Clock Cycle
Add moves to decode stage. Its operands are fetched from the register file and
moved to X3 and Y3 at the end of clock cycle, meanwhile the Instruction ld r5,
[4+r7] is fetched in the first stage and the PC value is incremented from 204 to
208.

Third Clock Cycle

Add instruction moves to the execute stage, the results are written to Z4 on the
trailing edge of the clock. Ld instruction moves to decode stage. The operands
are fetched to calculate the displacement address. Br instruction enters the
pipeline. The value in PC is incremented from 208 to 212.
Fourth Clock Cycle

Add does not access memory. The result is written to Z5 at the trailing edge of
clock. The address is being calculated here for ld. The results are written to Z4.
Br is in the decode stage. Since this branch is always true, the contents of PC are
modified to new address. Str instruction enters the pipeline. The value in PC is
incremented from 212 to 216.

Fifth Clock Cycle

The result of addition is written into register r1. Add instruction completes. Ld
accesses data memory at the address specified in Z4 and result stored in Z5 at
Last Modified: 12Jan11 Page 213

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

falling edge of clock. Br instruction just propagates through this stage without
any calculation. Str is in the decode stage. The operands are being fetched for
address calculation to X3 and Y3. The instruction at address 400 enters the
pipeline. The value in PC is incremented from 400 to 404.

Pipeline Hazards
The instructions in the pipeline at any given time are being executed in parallel. This
parallel execution leads to the problem of instruction dependence. A hazard occurs when
an instruction depends on the result of previous instruction that is not yet complete.

Classification of Hazards
There are three categories of hazards

1. Branch Hazard
2. Structural Hazard
3. Data Hazard

Branch hazards
The instruction following a branch is always executed whether or not the branch is taken.
This is called the branch delay slot. The compiler might issue a nop instruction in the
branch delay slot. Branch delays cannot be avoided by forwarding schemes.

Structural hazards
A structural hazard occurs when attempting to access the same resource in different ways
at the same time. It occurs when the hardware is not enough to implement pipelining
properly e.g. when the machine does not support separate data and instruction memories.

Last Modified: 12Jan11 Page 214

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Data hazards
Data hazard occur when an instruction attempts to access some data value that has not yet
been updated by the previous instruction. An example of this RAW (read after write) data
hazard is;

200: add r2, r3, r4
204: sub r7, r2, r6

The register r2 is written in clock cycle 5 hence the sub instruction cannot proceed
beyond stage 2 until the add instruction leaves the pipeline.

Data Hazard Detection & Correction
Data hazards can be detected easily as they occur when the destination register of an
instruction is the same as the source register of another instruction in close proximity. To
remedy this situation, dependent instructions may be delayed or stalled until the ones
ahead complete. Data can also be forwarded to the next instruction before the current
instruction completes, however this requires forwarding hardware and logic. Data can be
forwarded to the next instruction from the stage where it is available without waiting for
the completion of the instruction. Data is normally required at stage 2 (operand fetch)
however data is earliest available at stage 3 output (ALU result) or stage 4 output
(memory access result). Hence the forwarding logic should be able to transfer data from
stage 3 to stage 2 or from stage 4 to stage 2.

Data Dependence Distance

Designing a data forwarding unit requires the study of dependence distances. Without
forwarding, the minimum spacing required between two data dependent instructions to
avoid hazard is four. The load instruction has a minimum distance of two from all other
instructions except branch. Branch delays cannot be removed even with forwarding.
Table 5.1 of the text shows numbers related to dependence distances with respect to some
important instruction categories.

Compiler Solution to Hazards
Hazards can be detected by the compiler, by analyzing the instruction sequences and
dependencies. The compiler can inserts bubbles (nop instruction) between two
instructions that form a hazard, or it could reorder instructions so as to put sufficient
distance between dependent instructions. The compiler solution to hazards is complex,
expensive and not very efficient as compared to the hardware solution

Last Modified: 12Jan11 Page 215

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

SRC Hazard Detection and Correction
The SRC uses a hazard detection unit. The hazard can be resolved using either pipeline
stalls or by data forwarding.

Pipeline stalls

Consider the following sequence of instructions going
through the SRC pipeline
200: shl r6, r3, 2
204: str r3, 32
208: sub r2, r4,r5
212: add r1,r2,r3
216: ld r7, 48
There is a data hazard between instruction three and four
that can be resolved by using pipeline stalls or bubbles

When using pipeline stalls, nop instructions are placed in between dependent instructions.
The logic behind this scheme is that if opcode in stage 2 and 3 are both alu, and if ra in
stage 3 is the same as rb or rc in stage 2, then a pause signal is issued to insert a bubble
between stage 3 and 2. Similar logic is used for detecting hazards between stage 2 and 4
and stage 4 and 5.

Data Forwarding
By adding data forwarding mechanism to the SRC data path, the stalls can be completely
eliminated at least for the ALU instructions. The hazard detection is required between
stages 3 and 4, and between stages 3 and 5. The testing and forwarding circuits employ
wider IRs to store the data required in later stages. The logic behind this method is that if
the ALU is activated for both 3 and 5 and ra in 5 is the same as rb in 3 then Z5 which
hold the currently loaded or calculated result is directly forwarded to X3. Similarly, if
both are ALU operations and instruction in stage 3 does not employ immediate operands
then value of Z5 is transferred to Y3. Similar logic is used to forward data between stage
3 and 4.

RTL for Hazard Detection and Pipeline Stall

The following RTL expression detects data hazard between stage 2 and 3, then stalls
stage 1 and 2 by inserting a bubble in stage 3

 alu3&alu2&((ra3=rb2)~((ra3=rc2)&!imm2)):
 (pause2, pause1, op3�0)

Meaning:
If opcode in stage 2 and 3 are both ALU, and if ra in stage 3 is same as rb or rc in stage 2,
issue a pause signal to insert a bubble between stage 3 and 2

Last Modified: 12Jan11 Page 216

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Following is the complete RTL for detecting hazards among ALU instructions in
different stages of the pipeline

Data Hazard

between
Stage 2 and 3

Stage 2 and 4

Stage 2 and 5

RTL for detection and stalling

alu3&alu2&((ra3=rb2)~((ra3=rc2)&!imm2)):

 (pause2, pause1, op3�0)
alu4&alu2&((ra4=rb2)~((ra4=rc2)&!imm2)):

 (pause2, pause1, op3�0)
alu5&alu2&((ra5=rb2)~((ra5=rc2)&!imm2)):

 (pause2, pause1, op3�0)

Last Modified: 12Jan11 Page 217

Advanced Computer ArchitectureCS501

Lecture 21
Instruction Level Parallelism

Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 5
Computer Systems Design and Architecture 5.2

Summary

�� Data Forwarding Hardware
�� Instruction Level Parallelism
�� Difference between Pipelining and InstructionLevel Parallelism
�� Superscalar Architecture
�� Superscalar Design
�� VLIW Architecture

Maximum Distance between two instructions
Example
Read page no. 219 of Computer System Design and Architecture (Vincent
P.Heuring, Harry F. Jordan)
Data forwarding Hardware
The concept of data forwarding was introduced in the previous lecture.

RTL for
forwarding in case of ALU instructions

data

Last Modified: 12Jan11 Page 218

Advanced Computer ArchitectureCS501

Dependence

Stage 35

Stage 34

RTL

alu5&alu3:((ra5=rb3):X�Z5,

(ra5=rc3)&!imm3: Y � Z5);
alu4&alu3:((ra4=rb3):X�Z4,

(ra4=rc3)&!imm3: Y � Z4);

Instruction(Level Parallelism

Increasing a processor�s throughput

There are two ways to increase the number of instructions executed in a given time by a
processor

�� By increasing the clock speed
�� By increasing the number of instructions that can execute in parallel

Increasing the clock speed

� Increasing the clock speed is an IC design issue and depends on the advancements in
chip technology.

� The computer architect or logic designer can not thus manipulate clock speeds to
increase the throughput of the processor.

Increasing parallel execution of instructions

The computer architect cannot increase the clock speed of a microprocessor however
he/she can increase the number of instructions processed per unit time. In pipelining we
discussed that a number of instructions are executed in a staggered fashion, i.e. various
instructions are simultaneously executing in different segments of the pipeline. Taking
this concept a step further we have multiple data paths hence multiple pipelines can
execute simultaneously. There are two main categories of these kinds of parallel
instruction processors VLIW (very long instruction word) and superscalar.

The two approaches to achieve instruction(level parallelism are
� Superscalar Architecture

A scalar processor that can issue multiple instructions simultaneously is said to be
superscalar

� VLIW Architecture

Last Modified: 12Jan11 Page 219

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

A VLIW processor is based on a very long instruction word. VLIW relies on

instruction scheduling by the compiler. The compiler forms instruction packets which can
run in parallel without dependencies.

Difference between Pipelining and Instruction(Level Parallelism

 Pipelining

Single functional unit

Instructions are issued sequentially

Throughput increased by overlapping the
instruction execution

Very little extra hardware required to
implement pipelining

Superscalar Architecture

 Instruction(Level Parallelism

Multiple functional units

Instructions are issued in parallel

Instructions are not overlapped but
executed in parallel in multiple functional
units
Multiple functional units within the CPU
are required

A superscalar machine has following typical features
� It has one or more IUs (integer units) , FPUs (floating point units), and BPUs (branch

prediction units)
� It divides instructions into three classes

o Integer
o Floating point
o Branch prediction

The general operation of a superscalar processor is as follows
� Fetch multiple instructions
� Decode some of their portion to determine the class
� Dispatch them to the corresponding functional unit

As stated earlier the superscalar design uses multiple pipelines to implement instruction
level parallelism.

Operation of Branch Prediction Unit

� BPU calculates the branch target address ahead of time to save CPU cycles
� Branch instructions are routed from the queue to the BPU where target address is

calculated and supplied when required without any stalls
� BPU also starts executing branch instructions by speculating and discards the results

if the prediction turns out to be wrong
Last Modified: 12Jan11 Page 220

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Superscalar Design

The philosophy behind a superscalar design is
� to prefetch and decode as many instructions as possible before execution
� and to start several branch instruction streams speculatively on the basis of this

decoding
� and finally, discarding all but the correct stream of execution

The superscalar architecture uses multiple instruction issues and uses techniques such as
branch prediction and speculative instruction execution, i.e. it speculates on whether a
particular branch will be taken or not and then continues to execute it and the following
instructions. The results are not written back to the registers until the branch decision is
confirmed. Most superscalar architectures contain a reorder buffer. The reorder buffer
acts like an intermediary between the processor and the register file. All results are
written onto the reorder buffer and when the speculated course of action is confirmed, the
reorder buffer is committed to the register file.

Superscalar Processors

Examples of superscalar processors

o PowerPC 601
o Intel P6
o DEC Alpha 21164

VLIW Architecture

VLIW stands for �Very Long Instruction Word� typically 64 or 128 bits wide. The longer
instruction word carries information to route data to register files and execution units.
The executionorder decisions are made at the compile time unlike the superscalar design
where decisions are made at run time. Branch instructions are not handled very efficiently
in this architecture. VLIW compiler makes use of techniques such as loop unrolling and
code reordering to minimize dependencies and the occurrence of branch instructions.

Last Modified: 12Jan11 Page 221

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Lecture No. 22
Microprogramming

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 5
Computer Systems Design and Architecture 5.3

Summary
�� Microprogramming
�� Working of a General Microcoded Controller
�� Microprogram Memory
�� Generating Microcode for Some Sample Instructions
�� Horizontal and Vertical Microcode Schemes
�� Microcoded 1bus SRC Design
�� The SRC Microcontroller

Microprogramming

In the previous lectures, we have discussed how to implement logic circuitry for a control
unit based on logic gates. Such an implementation is called a hardwired control unit. In a
micro programmed control unit, control signals which need to be generated at a certain
time are stored together in a control word. This control word is called a microinstruction.
A collection of microinstructions is called a microprogram. These microprograms
generate the sequence of necessary control signals required to process an instruction.
These microprograms are stored in a memory called the control store.
As described above microprogramming or microcoding is an alternative way to design
the control unit. The microcoded control unit is itself a small stored program computer
consisting of

MicroPC
Microprogram memory
Microinstruction word

Comparison of hardwired and microcoded control unit

Hardwired Control Unit

Microcoded Control Unit

The relationship between control The control signals here are stored as words
inputs and control outputs is a series in a microcode memory.
of Boolean functions.

Hardwired control units are generally Microcode units simplify the computer logic
faster. but it is comparatively slower.

Last Modified: 12Jan11 Page 222

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

Working of a general microcoded controller

A microcoded controller works in the same way as a small general purpose computer.
1. Fetch a microinstruction and increment microPC.
2. Execute the instruction present in microIR.
3. Fetch the next instruction and so on�

The microcoded control unit is like
a small computer in itself. It
consists of a microprogram
memory, which is read using a
micro program counter. The micro
PC is controlled by the
microprogram controller. Values of
the micro PC depends on a 4 to 1
MUX. The source may be the
incremented micro PC value, or a
calculated branch value, or a value
derived by decoding an opcode for
an instruction. The microprogram
memory writes the control word at
the chosen address into the micro
instruction register. This control word is basically the set of all the control signals needed
to execute the instruction at that particular instant.

Fields in the micro instruction

C Bits
These form the control signal
field

M Bits
These form the branch address
field

B Bits
These form the branch control
field.

Loading the micro(PC
The microPC can be loaded from one of the four possible sources
� Simple increment Steps sequentially from microinstruction to microinstruction
� Lookup table A lookup table maps the opcode field to the starting address of the

microcode routine that generates control signals.
� External source Initializes microPC to begin an operation e.g. interrupts service, reset

etc.

Last Modified: 12Jan11 Page 223

akbar
Highlight

akbar
Highlight

Advanced Computer ArchitectureCS501

� Branch addresses Jumps anywhere in the microprogram memory on the basis of

conditional or unconditional branch.

Microprogram Memory

� This small memory contains microroutines for all the instructions in the ISA
� The microPC supplies the address and it returns the control word stored at that

address
� It is much faster and smaller than a typical main memory

Layout of a typical microprogram memory

Generating Microcode for Some Sample Instructions

� The control word for an instruction is used to generate the equivalent microcode
sequence
� Each step in RTL corresponds to a microinstruction executed to generate the control
signals.

Each bit in the control words in the microprogram memory represents a control signal.
The value of that bit decides whether the signal is to be activated or not.

Example: Control Signals for the sub Instruction

The first three addresses from 100 to 102 represent microcode for instruction fetch and
the last three addresses from 203 to 205 represent microcode for sub instruction. In the
first cycle at address 100, the control signal PCout, LMAR, LC, and INC4 are activated
and all other signals are deactivated. All these control signals are for the SRC processor.
So, if the microPC contains 100, the contents of microprogram memory are copied into
the micro IR. This corresponds to the structural RTL description of the T0 clock during
Last Modified: 12Jan11 Page 224

akbar
Highlight

Advanced Computer ArchitectureCS501

instruction fetch phase. In the same way, the content of address 101 corresponds to T1,
and the content of address 102 corresponds to T2.

Microprogram Controller functions: Branching and looping

� Microprogram controller
controls the sequence of
the flow of
microinstructions.
� The inputs to the
microcontroller are from
the branch control fields
specified in the microcode
word.
� Its output controls the 4
to 1 multiplexer inside the
microcoded control unit.
� It implements
conditional execution and
both conditional and
unconditional branch

If a branch instruction is encountered within the microprogram hardwired logic selects
the branch address as the source of microPC using 4 to 1 mux. This hardwired logic
caters for all branch instructions including branch if zero.

4(1 Multiplexer

Last Modified: 12Jan11 Page 225

akbar
Highlight

Advanced Computer ArchitectureCS501

The multiplexer supplies one of the four possible values to the microPC
The incremented value of the microPC is used when dealing with the normal flow of
microinstructions.
The opcode from the instruction is used to set the microPC when a microroutine is
initially being loaded.

External address is used when it is required to reset the microprogram controller.
Branch address is set into the microPC when a branch microinstruction is encountered.

Last Modified: 12Jan11 Page 226

Advanced Computer Architecture

How to form a branch

Lecture 22

� A branch can be implemented by choosing one alternative from each of the following
two lists.

� This scheme provides flexibility in choosing branches as we can form any combination
of conditions and addresses.

Last Modified: 01Nov06

Page 227

Advanced Computer ArchitectureCS501
__

Microcode Branching Examples

Following is an example of branch instructions in microcode

Branching
Action

Equivalent
C
construct

400 00 0 0 0 0 0 � xxx No branch,goto next {�};
address in sequence401

401 01 1 0 0 0 0 � xxx To the address supplied {�};

goto
by opcode initial address;

402 10 0 0 1 0 0 � xxx To external address if Z {�}; if Z then
flag is set goto Ext. Add.

403 11 0 0 0 0 1 � 200 To 200 if N flag is set, {�}; if N then
else to 404 goto Label1;

404 11 0 0 0 1 0 000 406 To 406 if N is false, else While (N)
to 405

405 11 1 0 0 0 0 � 404 Branch to 404

Similarity between microcode and high level programs

{...};

While contd�

� Any high level construct such as ifelse, while, repeat etc. can be implemented using
microcode

� A variety of microcode compilers similar to the high level compilers are available that
allow easier programming in microcode

� This similarity between high level language and microcode simplifies the task of
controller design.

Horizontal and vertical microcode schemes

In horizontal microcode schemes, there are no intermediate decoders and the control
word bits are directly connected to their destination i.e. each bit in the control word is
directly connected to some control signal and the total number of bits in the control word
is equal to the total number of control signals in the CPU.
Vertical microcode schemes employ an extra level of decoding to reduce the control
word width. From an n bit control word we may have 2n bit signal values.

Last Modified: 17Feb07

Page 228

� A
 �d

 �d
 �re
�s

s

� M
�u

 �x
 � C

 �O
 �n
 �tr
�o

 �l

� B
 �ra
�n

 �c
h

� b
 �rn
�z

�
 b

�rz

�
 b

�rp

�
 b

�rn

�
 C

�o

 �n
 �tr
�o

 �l
�S�

ig
�n

 �a
l�

s
�

 B

�ra
�n

 �c
h

�A
 �d

 �d
 �re
�s

s

akbar
Highlight

Advanced Computer ArchitectureCS501
__

However, a completely vertical scheme is not feasible because of the high degree of fan
out.

Horizontal Microcode Scheme

Vertical Microcode Scheme

Microcoded 1(bus SRC design

In the SRC the bits from the opcode in the instruction register are decoded to fetch the
address of the suitable microroutine from the microprogram memory. The microprogram
controller for the SRC microcoded control unit employs the logic for handling exceptions
and reset process. Since the SRC does not have any condition codes, we use the CON and
n signals instead of N and Z flags to control branches in case of branch if equal to zero or
branch if less than instructions.

The SRC Microprogram Controller

Last Modified: 17Feb07

Page 229

Advanced Computer ArchitectureCS501
__

� The microprogram controller for the SRC microcoded control unit employs the logic
for handling exceptions and reset process
� Since the SRC does not have any condition codes, we use the CON and n signals
instead of N and Z flags to control branches

Last Modified: 17Feb07

Page 230

Advanced Computer ArchitectureCS501
__

Microcode for some SRC instructions

 RTL

300 00 0 0 0 0 0 1 1 � xxx MAR PC: C PC + 4;

301 00 0 0 0 0 0 0 0 � xxx MBR M[MAR]: PC C;

302 01 1 0 0 0 0 0 0 � xxx IR,MicroPC MBR<31�27>;

400 00 0 0 0 0 0 0 0 � xxx A R[rb];

401 00 0 0 0 0 0 0 0 � xxx C A + R[rc];

402 11 1 0 0 0 1 0 0 � 300 R[ra] C; MicroPC 300;

Assume the first control word at address 300. The RTL of this instruction is MAR PC
combined with C PC+4. To facilitate these actions the PCout signal bit and the LMAR
signal bit are set to one, so that the value of the PC may be written to the internal
processor bus and written onto the MAR. The instructions at 300, 301 and 302 form the
microcode for instructions fetch. If we examine the RTL we can see all the functionality
of the fetch instruction. The value of PC is incremented, the old value of PC is sent to
memory, the instruction from the sent address is loaded into memory buffer register.
Then the opcode of the fetched instruction is used to invoke the appropriate microroutine.

Alternative approaches to microcoding

� Bit ORing
� Nanocoding
� Writable Microprogram Memory
� Subroutines in Microprogramming

Last Modified: 17Feb07

Page 231

� A
 �d

 �d
 �re
�s

s

�M
�u

 �x
 �C

 �o
 �n
 �tr
�o

 �l

� B
 �ra
�n

 �c
h

�
 B

�r(
�C

 �O
 �N

=�
0 �

)
�

 B

�r(
�n

 �=
�1

 �)
�

 B

�r(
�n

 �=
�0

 �)
�

 E
n �d

�

 P �C
 �o

 �u
 �t

�
 L

M

�A
 �R

�

 C

�o
 �n
 �tr
�o

 �l
�S�

ig
�n

 �a
l�

s
� B

 �ra
�n

 �c
h

�A
 �d

 �d
 �re
�s

s

