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Chapter 1

Introduction

1.1 Origin of word: Algorithm

The wordAlgorithmcomes from the name of the muslim authorAbu Ja’far Mohammad ibn Musa
al-Khowarizmi. He was born in the eighth century at Khwarizm (Kheva), a townsouth of river Oxus in
present Uzbekistan. Uzbekistan, a Muslim country for over athousand years, was taken over by the
Russians in 1873.

His year of birth is not known exactly. Al-Khwarizmi parentsmigrated to a place south of Baghdad when
he was a child. It has been established from his contributions that he flourished under Khalifah
Al-Mamun at Baghdad during 813 to 833 C.E. Al-Khwarizmi died around 840 C.E.

Much of al-Khwarizmi’s work was written in a book titledal Kitab al-mukhatasar fi hisab al-jabr
wa’l-muqabalah(The Compendious Book on Calculation by Completion and Balancing). It is from the
titles of these writings and his name that the wordsalgebraandalgorithmare derived. As a result of his
work, al-Khwarizmi is regarded as the most outstanding mathematician of his time

1.2 Algorithm: Informal Definition

An algorithm is any well-defined computational procedure that takes some values, or set of values, as
input and produces some value, or set of values, as output. Analgorithm is thus a sequence of
computational steps that transform the input into output.

1.3 Algorithms, Programming

A good understanding of algorithms is essential for a good understanding of the most basic element of
computer science: programming. Unlike a program, an algorithm is a mathematical entity, which is
independent of a specific programming language, machine, orcompiler. Thus, in some sense, algorithm
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8 CHAPTER 1. INTRODUCTION

design is all about the mathematical theory behind the design of good programs.

Why study algorithm design? There are many facets to good program design. Good algorithm design is
one of them (and an important one). To be really complete algorithm designer, it is important to be aware
of programming and machine issues as well. In any important programming project there are two major
types of issues, macro issues and micro issues.

Macro issues involve elements such as how does one coordinate the efforts of many programmers
working on a single piece of software, and how does one establish that a complex programming system
satisfies its various requirements. These macro issues are the primary subject of courses on software
engineering.

A great deal of the programming effort on most complex software systems consists of elements whose
programming is fairly mundane (input and output, data conversion, error checking, report generation).
However, there is often a small critical portion of the software, which may involve only tens to hundreds
of lines of code, but where the great majority of computational time is spent. (Or as the old adage goes:
80% of the execution time takes place in 20% of the code.) The micro issues in programming involve
how best to deal with these small critical sections.

It may be very important for the success of the overall project that these sections of code be written in the
most efficient manner possible. An unfortunately common approach to this problem is to first design an
inefficient algorithm and data structure to solve the problem, and then take this poor design and attempt
to fine-tune its performance by applying clever coding tricks or by implementing it on the most expensive
and fastest machines around to boost performance as much as possible. The problem is that if the
underlying design is bad, then often no amount of fine-tuningis going to make a substantial difference.

Before you implement, first be sure you have a good design. Thiscourse is all about how to design good
algorithms. Because the lesson cannot be taught in just one course, there are a number of companion
courses that are important as well. CS301 deals with how to design good data structures. This is not
really an independent issue, because most of the fastest algorithms are fast because they use fast data
structures, and vice versa. In fact, many of the courses in the computer science program deal with
efficient algorithms and data structures, but just as they apply to various applications: compilers,
operating systems, databases, artificial intelligence, computer graphics and vision, etc. Thus, a good
understanding of algorithm design is a central element to a good understanding of computer science and
good programming.

1.4 Implementation Issues

One of the elements that we will focus on in this course is to try to study algorithms as pure mathematical
objects, and so ignore issues such as programming language,machine, and operating system. This has
the advantage of clearing away the messy details that affectimplementation. But these details may be
very important.

For example, an important fact of current processor technology is that of locality of reference. Frequently
accessed data can be stored in registers or cache memory. Ourmathematical analysis will usually ignore
these issues. But a good algorithm designer can work within the realm of mathematics, but still keep an
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open eye to implementation issues down the line that will be important for final implementation. For
example, we will study three fast sorting algorithms this semester, heap-sort, merge-sort, and quick-sort.
From our mathematical analysis, all have equal running times. However, among the three (barring any
extra considerations) quick sort is the fastest on virtually all modern machines. Why? It is the best from
the perspective of locality of reference. However, the difference is typically small (perhaps 10-20%
difference in running time).

Thus this course is not the last word in good program design, and in fact it is perhaps more accurately just
the first word in good program design. The overall strategy that I would suggest to any programming
would be to first come up with a few good designs from a mathematical and algorithmic perspective.
Next prune this selection by consideration of practical matters (like locality of reference). Finally
prototype (that is, do test implementations) a few of the best designs and run them on data sets that will
arise in your application for the final fine-tuning. Also, be sure to use whatever development tools that
you have, such as profilers (programs which pin-point the sections of the code that are responsible for
most of the running time).

1.5 Course in Review

This course will consist of four major sections. The first is on the mathematical tools necessary for the
analysis of algorithms. This will focus on asymptotics, summations, recurrences. The second element
will deal with one particularly important algorithmic problem: sorting a list of numbers. We will show a
number of different strategies for sorting, and use this problem as a case-study in different techniques for
designing and analyzing algorithms.

The final third of the course will deal with a collection of various algorithmic problems and solution
techniques. Finally we will close this last third with a verybrief introduction to the theory of
NP-completeness. NP-complete problem are those for which no efficient algorithms are known, but no
one knows for sure whether efficient solutions might exist.

1.6 Analyzing Algorithms

In order to design good algorithms, we must first agree the criteria for measuring algorithms. The
emphasis in this course will be on the design of efficient algorithm, and hence we will measure
algorithms in terms of the amount of computational resources that the algorithm requires. These
resources include mostly running time and memory. Depending on the application, there may be other
elements that are taken into account, such as the number diskaccesses in a database program or the
communication bandwidth in a networking application.

In practice there are many issues that need to be considered in the design algorithms. These include
issues such as the ease of debugging and maintaining the finalsoftware through its life-cycle. Also, one
of the luxuries we will have in this course is to be able to assume that we are given a clean, fully-specified
mathematical description of the computational problem. Inpractice, this is often not the case, and the
algorithm must be designed subject to only partial knowledge of the final specifications. Thus, in practice
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it is often necessary to design algorithms that are simple, and easily modified if problem parameters and
specifications are slightly modified. Fortunately, most of the algorithms that we will discuss in this class
are quite simple, and are easy to modify subject to small problem variations.

1.7 Model of Computation

Another goal that we will have in this course is that our analysis be as independent as possible of the
variations in machine, operating system, compiler, or programming language. Unlike programs,
algorithms to be understood primarily by people (i.e. programmers) and not machines. Thus gives us
quite a bit of flexibility in how we present our algorithms, and many low-level details may be omitted
(since it will be the job of the programmer who implements thealgorithm to fill them in).

But, in order to say anything meaningful about our algorithms, it will be important for us to settle on a
mathematical model of computation. Ideally this model should be a reasonable abstraction of a standard
generic single-processor machine. We call this model arandom access machineor RAM.

A RAM is an idealized machine with an infinitely large random-access memory. Instructions are
executed one-by-one (there is no parallelism). Each instruction involves performing some basic operation
on two values in the machines memory (which might be characters or integers; let’s avoid floating point
for now). Basic operations include things like assigning a value to a variable, computing any basic
arithmetic operation (+, - ,× , integer division) on integer values of any size, performing any comparison
(e.g.x ≤ 5) or boolean operations, accessing an element of an array (e.g. A[10]). We assume that each
basic operation takes the same constant time to execute.

This model seems to go a good job of describing the computational power of most modern (nonparallel)
machines. It does not model some elements, such as efficiencydue to locality of reference, as described
in the previous lecture. There are some “loop-holes” (or hidden ways of subverting the rules) to beware
of. For example, the model would allow you to add two numbers that contain a billion digits in constant
time. Thus, it is theoretically possible to derive nonsensical results in the form of efficient RAM
programs that cannot be implemented efficiently on any machine. Nonetheless, the RAM model seems to
be fairly sound, and has done a good job of modelling typical machine technology since the early 60’s.

1.8 Example: 2-dimension maxima

Let us do an example that illustrates how we analyze algorithms. Suppose you want to buy a car. You
want the pick the fastest car. But fast cars are expensive; youwant the cheapest. You cannot decide which
is more important: speed or price. Definitely do not want a carif there is another that is both faster and
cheaper. We say that the fast, cheap cardominatesthe slow, expensive car relative to your selection
criteria. So, given a collection of cars, we want to list those cars that are not dominated by any other.

Here is how we might model this as a formal problem.

• Let a pointp in 2-dimensional space be given by its integer coordinates,p = (p.x, p.y).
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• A point p is said to be dominated by pointq if p.x ≤ q.x andp.y ≤ q.y.

• Given a set ofn points,P = {p1, p2, . . . , pn} in 2-space a point is said to be maximal if it is not
dominated by any other point inP.

The car selection problem can be modelled this way: For each car we associate(x, y) pair wherex is the
speed of the car andy is the negation of the price. Highy value means a cheap car and lowy means
expensive car. Think ofy as the money left in your pocket after you have paid for the car. Maximal
points correspond to the fastest and cheapest cars.

The2-dimensional Maximais thus defined as

• Given a set of pointsP = {p1, p2, . . . , pn} in 2-space, output the set of maximal points ofP, i.e.,
those pointspi such thatpi is not dominated by any other point ofP.

Here is set of maximal points for a given set of points in 2-d.

2
 4
 6
 8
 10
 14
 16
18
12


2


4


6


8


10


14


12


(2,5)

(4,4)


(5,1)


(4,11)


(7,7)


(7,13)


(11,5)


(12,12)

(9,10)


(14,10)


(15,7)


(13,3)


Figure 1.1: Maximal points in 2-d

Our description of the problem is at a fairly mathematical level. We have intentionally not discussed how
the points are represented. We have not discussed any input or output formats. We have avoided
programming and other software issues.

1.9 Brute-Force Algorithm

To get the ball rolling, let’s just consider a simple brute-force algorithm, with no thought to efficiency.
Let P = {p1, p2, . . . , pn} be the initial set of points. For each pointpi, test it against all other pointspj. If
pi is not dominated by any other point, then output it.
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This English description is clear enough that any (competent) programmer should be able to implement
it. However, if you want to be a bit more formal, it could be written in pseudocode as follows:

MAXIMA (int n, Point P[1 . . . n])

1 for i← 1 to n

2 do maximal← true

3 for j← 1 to n

4 do
5 if (i 6= j) and(P[i].x ≤ P[j].x) and(P[i].y ≤ P[j].y)

6 then maximal← false; break
7 if (maximal = true)

8 then output P[i]

There are no formal rules to the syntax of this pseudo code. Inparticular, do not assume that more detail
is better. For example, I omitted type specifications for theprocedure Maxima and the variable maximal,
and I never defined what a Point data type is, since I felt that these are pretty clear from context or just
unimportant details. Of course, the appropriate level of detail is a judgement call. Remember, algorithms
are to be read by people, and so the level of detail depends on your intended audience. When writing
pseudo code, you should omit details that detract from the main ideas of the algorithm, and just go with
the essentials.

You might also notice that I did not insert any checking for consistency. For example, I assumed that the
points inP are all distinct. If there is a duplicate point then the algorithm may fail to output even a single
point. (Can you see why?) Again, these are important considerations for implementation, but we will
often omit error checking because we want to see the algorithm in its simplest form.

Here are a series of figures that illustrate point domination.
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Figure 1.2: Points that dominate(4, 11)
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Figure 1.3: Points that dominate(9, 10)
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Figure 1.4: Points that dominate(7, 7)
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Figure 1.5: The maximal points

1.10 Running Time Analysis

The main purpose of our mathematical analysis will be measuring the execution time. We will also be
concerned about the space (memory) required by the algorithm.

The running time of an implementation of the algorithm woulddepend upon the speed of the computer,
programming language, optimization by the compiler etc. Although important, we will ignore these
technological issues in our analysis.

To measure the running time of the brute-force 2-d maxima algorithm, we could count the number of
steps of the pseudo code that are executed or, count the number of times an element ofP is accessed or,
the number of comparisons that are performed.

The running time depends upon the input size, e.g.n Different inputs of the same size may result in
different running time. For example, breaking out of the inner loop in the brute-force algorithm depends
not only on the input size ofP but also the structure of the input.

Two criteria for measuring running time areworst-case timeandaverage-case time.

Worst-case time is the maximum running time over all (legal) inputs of sizen. Let I denote an input
instance, let|I| denote its length, and letT(I) denote the running time of the algorithm on inputI.
Then

Tworst(n) = max
|I|=n

T(I)

Average-case timeis the average running time over all inputs of sizen. Let p(I) denote the probability
of seeing this input. The average-case time is the weighted sum of running times with weights



14 CHAPTER 1. INTRODUCTION

being the probabilities:
Tavg(n) =

∑

|I|=n

p(I)T(I)

We will almost always work with worst-case time. Average-case time is more difficult to compute; it is
difficult to specify probability distribution on inputs. Worst-case time will specify an upper limit on the
running time.

1.10.1 Analysis of the brute-force maxima algorithm.

Assume that the input size isn, and for the running time we will count the number of time thatany
element ofP is accessed. Clearly we go through the outer loop n times, and for each time through this
loop, we go through the inner loopn times as well. The condition in the if-statement makes four accesses
to P. The output statement makes two accesses for each point thatis output. In the worst case every point
is maximal (can you see how to generate such an example?) so these two access are made for each time
through the outer loop.

MAXIMA (int n, Point P[1 . . . n])

1 for i← 1 to n n times
2 do maximal← true

3 for j← 1 to n n times
4 do
5 if (i 6= j)&(P[i].x ≤ P[j].x)&(P[i].y ≤ P[j].y) 4 accesses
6 then maximal← false break
7 if maximal

8 then outputP[i].x, P[i].y 2 accesses

Thus we might express the worst-case running time as a pair ofnested summations, one for thei-loop
and the other for thej-loop:

T(n) =

n∑

i=1

(

2 +

n∑

j=1

4

)

=

n∑

i=1

(4n + 2)

= (4n + 2)n = 4n2 + 2n

For small values ofn, any algorithm is fast enough. What happens whenn gets large? Running time
does become an issue. Whenn is large,n2 term will be much larger than then term and willdominate
the running time.

We will say that the worst-case running time isΘ(n2). This is called the asymptotic growth rate of the
function. We will discuss thisΘ-notation more formally later.
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The analysis involved computing a summation. Summation should be familiar but let us review a bit
here. Given a finite sequence of valuesa1, a2, . . . , an, their suma1 + a2 + . . . + an is expressed in
summation notation as

n∑

i=1

ai

If n = 0, then the sum is additive identity,0.

Some facts about summation:If c is a constant
n∑

i=1

cai = c

n∑

i=1

ai

and
n∑

i=1

(ai + bi) =

n∑

i=1

ai +

n∑

i=1

bi

Some important summations that should be committed to memory.

Arithmetic series
n∑

i=1

i = 1 + 2 + . . . + n

=
n(n + 1)

2
= Θ(n2)

Quadratic series
n∑

i=1

i2 = 1 + 4 + 9 + . . . + n2

=
2n3 + 3n2 + n

6
= Θ(n3)

Geometric series
n∑

i=1

xi = 1 + x + x2 + . . . + xn

=
x(n+1) − 1

x − 1
= Θ(n2)

If 0 < x < 1 then this isΘ(1), and ifx > 1, then this isΘ(xn).

Harmonic series Forn ≥ 0

Hn =

n∑

i=1

1

i

= 1 +
1

2
+

1

3
+ . . . +

1

n
≈ ln n

= Θ(ln n)
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1.11 Analysis: A Harder Example

Let us consider a harder example.

NESTED-LOOPS()

1 for i← 1 to n

2 do
3 for j← 1 to 2i

4 do k = j . . .

5 while (k ≥ 0)

6 do k = k − 1 . . .

How do we analyze the running time of an algorithm that has complex nested loop? The answer is we
write out the loops as summations and then solve the summations. To convert loops into summations, we
work from inside-out.

Consider theinner most whileloop.

NESTED-LOOPS()

1 for i← 1 to n

2 do for j← 1 to 2i

3 do k = j

4 while (k ≥ 0) J

5 do k = k − 1

It is executed fork = j, j − 1, j − 2, . . . , 0. Time spent inside the while loop is constant. LetI() be the
time spent in the while loop. Thus

I(j) =

j∑

k=0

1 = j + 1

Consider themiddle forloop.

NESTED-LOOPS()

1 for i← 1 to n

2 do for j← 1 to 2i J

3 do k = j

4 while (k ≥ 0)

5 do k = k − 1
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Its running time is determined byi. Let M() be the time spent in the for loop:

M(i) =

2i∑

j=1

I(j)

=

2i∑

j=1

(j + 1)

=

2i∑

j=1

j +

2i∑

j=1

1

=
2i(2i + 1)

2
+ 2i

= 2i2 + 3i

Finally theouter-most forloop.

NESTED-LOOPS()

1 for i← 1 to n J

2 do for j← 1 to 2i

3 do k = j

4 while (k ≥ 0)

5 do k = k − 1

Let T() be running time of the entire algorithm:

T(n) =

n∑

i=1

M(i)

=

n∑

i=1

(2i2 + 3i)

=

n∑

i=1

2i2 +

n∑

i=1

3i

= 2
2n3 + 3n2 + n

6
+ 3

n(n + 1)

2

=
4n3 + 15n2 + 11n

6

= Θ(n3)

1.11.1 2-dimension Maxima Revisited

Recall the 2-d maxima problem: Let a pointp in 2-dimensional space be given by its integer coordinates,
p = (p.x, p.y). A point p is said todominatedby pointq if p.x ≤ q.x andp.y ≤ q.y. Given a set ofn
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points,P = {p1, p2, . . . , pn} in 2-space a point is said to bemaximalif it is not dominated by any other
point inP. The problem is to output all the maximal points ofP. We introduced a brute-force algorithm
that ran inΘ(n2) time. It operated by comparingall pairs of points. Is there an approach that is
significantly better?

The problem with the brute-force algorithm is that it uses nointelligence inpruningout decisions. For
example, once we know that a pointpi is dominated by another pointpj, we do not need to usepi for
eliminating other points. This follows from the fact that dominance relation istransitive. If pj dominates
pi andpi dominatesph thenpj also dominatesph; pi is not needed.

1.11.2 Plane-sweep Algorithm

The question is whether we can make an significant improvement in the running time? Here is an idea for
how we might do it. We will sweep a vertical line across the plane from left to right. As we sweep this
line, we will build a structure holding the maximal points lying to the left of the sweep line. When the
sweep line reaches the rightmost point ofP , then we will have constructed the complete set of maxima.
This approach of solving geometric problems by sweeping a line across the plane is calledplane sweep.

Although we would like to think of this as a continuous process, we need some way to perform the plane
sweep in discrete steps. To do this, we will begin by sorting the points in increasing order of their
x-coordinates. For simplicity, let us assume that no two points have the same y-coordinate. (This limiting
assumption is actually easy to overcome, but it is good to work with the simpler version, and save the
messy details for the actual implementation.) Then we will advance the sweep-line from point to point in
n discrete steps. As we encounter each new point, we will update the current list of maximal points.

We will sweep a vertical line across the 2-d plane from left toright. As we sweep, we will build a
structure holding the maximal points lying to the left of thesweep line. When the sweep line reaches the
rightmost point ofP, we will have the complete set of maximal points. We will store the existing
maximal points in a list The points thatpi dominates will appear at the end of the list because points are
sorted byx-coordinate. We will scan the list left to right. Every maximal point withy-coordinate less
thanpi will be eliminated from computation. We will add maximal points onto the end of a list and
delete from the end of the list. We can thus use a stack to storethe maximal points. The point at the top
of the stack will have the highestx-coordinate.

Here are a series of figures that illustrate the plane sweep. The figure also show the content of the stack.
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Figure 1.6: Sweep line at(2, 5)
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Figure 1.7: Sweep line at(3, 13)
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Figure 1.8: Sweep line at(4, 11)
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Figure 1.9: Sweep line at(5, 1)
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Figure 1.10: Sweep line at(7, 7)
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Figure 1.11: Sweep line at(9, 10)
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Figure 1.12: Sweep line at(10, 5)
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Figure 1.13: Sweep line at(12, 12)
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Figure 1.14: The final maximal set

Here is the algorithm.

PLANE-SWEEP-MAXIMA (n, P[1..n])

1 sortP in increasing order byx;

2 stack s;

3 for i← 1 to n

4 do
5 while (s.notEmpty() & s.top().y ≤ P[i].y)

6 do s.pop();

7 s.push(P[i]);

8 output the contents of stacks;
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1.11.3 Analysis of Plane-sweep Algorithm

Sorting takesΘ(n logn); we will show this later when we discuss sorting. The for loopexecutesn
times. The inner loop (seemingly) could be iterated(n − 1) times. It seems we still have ann(n − 1) or
Θ(n2) algorithm. Got fooled by simple minded loop-counting. The while loop will not execute moren
times over the entire course of the algorithm. Why is this? Observe that the total number of elements that
can be pushed on the stack isn since we execute exactly one push each time during the outer for-loop.

We pop an element off the stack each time we go through the inner while-loop. It is impossible to pop
more elements than are ever pushed on the stack. Therefore, the inner while-loop cannot execute more
thann times over the entire course of the algorithm. (Make sure that you understand this).

The for-loop iteratesn times and the inner while-loop also iteratesn time for a total ofΘ(n). Combined
with the sorting, the runtime of entire plane-sweep algorithm isΘ(n logn).

1.11.4 Comparison of Brute-force and Plane sweep algorithms

How much of an improvement is plane-sweep over brute-force?Consider the ratio of running times:

n2

nlogn
=

n

log n

n logn n
logn

100 7 15
1000 10 100
10000 13 752
100000 17 6021
1000000 20 50171

Forn = 1, 000, 000, if plane-sweep takes 1 second, the brute-force will take about 14 hours!. From this
we get an idea about the importance of asymptotic analysis. It tells us which algorithm is better for large
values ofn. As we mentioned before, ifn is not very large, then almost any algorithm will be fast. But
efficient algorithm design is most important for large inputs, and the general rule of computing is that
input sizes continue to grow until people can no longer tolerate the running times. Thus, by designing
algorithms efficiently, you make it possible for the user to run large inputs in a reasonable amount of time.
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Chapter 2

Asymptotic Notation

You may be asking that we continue to use the notationΘ() but have never defined it. Let’s remedy this
now. Given any functiong(n), we defineΘ(g(n)) to be a set of functions thatasymptotically equivalent
to g(n). Formally:

Θ(g(n)) = {f(n) | there exist positive

constantsc1, c2 andn0 such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

for all n ≥ n0}

This is written as “f(n) ∈ Θ(g(n))” That is,f(n) andg(n) areasymptotically equivalent. This means
that they have essentially the same growth rates for largen. For example, functions like

• 4n2,

• (8n2 + 2n − 3),

• (n2/5 +
√

n − 10 logn)

• n(n − 3)

are all asymptotically equivalent. Asn becomes large, thedominant(fastest growing) term is some
constant timesn2.

Consider the function
f(n) = 8n2 + 2n − 3

Our informal rule of keeping the largest term and ignoring the constant suggests thatf(n) ∈ Θ(n2). Let’s
see why this bears out formally. We need to show two things for

f(n) = 8n2 + 2n − 3

Lower bound f(n) = 8n2 + 2n − 3 grows asymptotically at least as fast asn2,

23
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Upper bound f(n) grows no faster asymptotically thann2,

Lower bound: f(n) grows asymptotically at least as fast asn2. For this, need to show that there exist
positive constantsc1 andn0, such thatf(n) ≥ c1n

2 for all n ≥ n0. Consider the reasoning

f(n) = 8n2 + 2n − 3 ≥ 8n2 − 3 = 7n2 + (n2 − 3) ≥ 7n2

Thusc1 = 7. We implicitly assumed that2n ≥ 0 andn2 − 3 ≥ 0 These are not true for alln but if
n ≥

√
3, then both are true. So selectn0 ≥

√
3. We then havef(n) ≥ c1n

2 for all n ≥ n0.

Upper bound: f(n) grows asymptotically no faster thann2. For this, we need to show that there exist
positive constantsc2 andn0, such thatf(n) ≤ c2n

2 for all n ≥ n0. Consider the reasoning

f(n) = 8n2 + 2n − 3 ≤ 8n2 + 2n ≤ 8n2 + 2n2 = 10n2

Thusc2 = 10. We implicitly made the assumption that2n ≤ 2n2. This is not true for alln but it is true
for all n ≥ 1 So selectn0 ≥ 1. We thus havef(n) ≤ c2n

2 for all n ≥ n0.

From lower bound we haven0 ≥
√

3 From upper bound we haven0 ≥ 1. Combining the two, we letn0

be the larger of the two:n0 ≥
√

3. In conclusion, if we letc1 = 7, c2 = 10 andn0 ≥
√

3, we have

7n2 ≤ 8n2 + 2n − 3 ≤ 10n2 for all n ≥
√

3

We have thus established

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0

Here are plots of the three functions. Notice the bounds.
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Figure 2.1: Asymptotic Notation Example

We have established thatf(n) ∈ n2. Let’s show whyf(n) is not in some other asymptotic class. First,
let’s show thatf(n) 6∈ Θ(n). Show thatf(n) 6∈ Θ(n). If this were true, we would have had to satisfy
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both the upper and lower bounds. The lower bound is satisfied becausef(n) = 8n2 + 2n − 3 does grow
at least as fast asymptotically asn. But the upper bound is false. Upper bounds requires that there exist
positive constantsc2 andn0 such thatf(n) ≤ c2n for all n ≥ n0.

Informally we know thatf(n) = 8n2 + 2n − 3 will eventually exceedc2n no matter how large we make
c2. To see this, suppose we assume that constantsc2 andn0 did exist such that8n2 + 2n − 3 ≤ c2n for
all n ≥ n0 Since this is true for all sufficiently largen then it must be true in the limit asn tends to
infinity. If we divide both sides byn, we have

lim
n→∞

(

8n + 2 −
3

n

)

≤ c2.

It is easy to see that in the limit, the left side tends to∞. So, no matter how largec2 is, the statement is
violated. Thusf(n) 6∈ Θ(n).

Let’s show thatf(n) 6∈ Θ(n3). The idea would be to show that the lower boundf(n) ≥ c1n
3 for all

n ≥ n0 is violated. (c1 andn0 are positive constants). Informally we know this to be true because any
cubic function will overtake a quadratic.

If we divide both sides byn3:

lim
n→∞

(

8

n
+

2

n2
−

3

n3

)

≥ c1

The left side tends to0. The only way to satisfy this is to setc1 = 0. But by hypothesis,c1 is positive.
This means thatf(n) 6∈ Θ(n3).

The definition ofΘ-notation relies on proving both a lower and upper asymptotic bound. Sometimes we
only interested in proving one bound or the other. TheO-notation is used to state only the asymptotic
upperbounds.

O(g(n)) = {f(n) | there exist positive

constantsc andn0 such that

0 ≤ f(n) ≤ cg(n)

for all n ≥ n0}

The Ω-notation allows us to state only the asymptoticlower bounds.

Ω(g(n)) = {f(n) | there exist positive

constantsc andn0 such that

0 ≤ cg(n) ≤ f(n)

for all n ≥ n0}
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The three notations:

Θ(g(n)) : 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

O(g(n)) : 0 ≤ f(n) ≤ cg(n)

Ω(g(n)) : 0 ≤ cg(n) ≤ f(n)

for all n ≥ n0

These definitions suggest an alternative way of showing the asymptotic behavior. We can use limits for
define the asymptotic behavior. Limit rule forΘ-notation:

lim
n→∞

f(n)

g(n)
= c,

for some constantc > 0 (strictly positive but not infinity) thenf(n) ∈ Θ(g(n)). Similarly, the limit rule
for O-notation is

lim
n→∞

f(n)

g(n)
= c,

for some constantc ≥ 0 (nonnegative but not infinite) thenf(n) ∈ O(g(n)) and limit rule for
Ω-notation:

lim
n→∞

f(n)

g(n)
6= 0,

(either a strictly positive constant or infinity) thenf(n) ∈ Ω(g(n)).

Here is a list of common asymptotic running times:

• Θ(1): Constant time; can’t beat it!

• Θ(logn): Inserting into a balanced binary tree; time to find an item ina sorted array of lengthn
using binary search.

• Θ(n): About the fastest that an algorithm can run.

• Θ(n logn): Best sorting algorithms.

• Θ(n2), Θ(n3): Polynomial time. These running times are acceptable when the exponent ofn is
small orn is not to large, e.g.,n ≤ 1000.

• Θ(2n), Θ(3n): Exponential time. Acceptable only ifn is small, e.g.,n ≤ 50.

• Θ(n!), Θ(nn): Acceptable only for really smalln, e.g.n ≤ 20.



Chapter 3

Divide and Conquer Strategy

The ancient Roman politicians understood an important principle of good algorithm design (although
they were probably not thinking about algorithms at the time). You divide your enemies (by getting them
to distrust each other) and then conquer them piece by piece.This is calleddivide-and-conquer. In
algorithm design, the idea is to take a problem on a large input, break the input into smaller pieces, solve
the problem on each of the small pieces, and then combine the piecewise solutions into a global solution.
But once you have broken the problem into pieces, how do you solve these pieces? The answer is to
apply divide-and-conquer to them, thus further breaking them down. The process ends when you are left
with such tiny pieces remaining (e.g. one or two items) that it is trivial to solve them. Summarizing, the
main elements to a divide-and-conquer solution are

Divide: the problem into a small number of pieces

Conquer: solve each piece by applying divide and conquer to itrecursively

Combine: the pieces together into a global solution.

3.1 Merge Sort

Divide and conquer strategy is applicable in a huge number ofcomputational problems. The first
example of divide and conquer algorithm we will discuss is a simple and efficient sorting procedure
called We are given a sequence ofn numbersA, which we will assume are stored in an arrayA[1..n].
The objective is to output a permutation of this sequence sorted in increasing order. This is normally
done by permuting the elements within the arrayA. Here is how the merge sort algorithm works:

• (Divide:) splitA down the middle into two subsequences, each of size roughlyn/2

• (Conquer:) sort each subsequence by calling merge sort recursively on each.

• (Combine:) merge the two sorted subsequences into a single sorted list.

27
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Let’s design the algorithm top-down. We’ll assume that the procedure that merges two sorted list is
available to us. We’ll implement it later. Because the algorithm is called recursively on sublists, in
addition to passing in the array itself, we will pass in two indices, which indicate the first and last indices
of the sub-array that we are to sort. The callMergeSort(A, p, r) will sort the sub-arrayA[p : r] and
return the sorted result in the same sub-array.Here is the overview. If r = p, then this means that there is
only one element to sort, and we may return immediately. Otherwise if (p 6= r) there are at least two
elements, and we will invoke the divide-and-conquer. We findthe indexq, midway betweenp andr,
namelyq = (p + r)/2 (rounded down to the nearest integer). Then we split the array into sub-arrays
A[p : q] andA[q + 1 : r]. Call MergeSort recursively to sort each sub-array. Finally, we invoke a
procedure (which we have yet to write) which merges these twosub-arrays into a single sorted array.

Here is the MergeSort algorithm.

MERGE-SORT( array A, int p, int r)

1 if (p < r)

2 then
3 q← (p + r)/2

4 MERGE-SORT(A, p, q) // sort A[p..q]

5 MERGE-SORT(A, q + 1, r) // sort A[q + 1..r]

6 MERGE(A, p, q, r) // merge the two pieces

The following figure illustrates the dividing (splitting) procedure.

7   5   2   4   1   6   3   0


1   6   3   0
7   5   2   4
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 1
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 3
 0


split


Figure 3.1: Merge sort divide phase

Merging: All that is left is to describe the procedure that merges two sorted lists.Merge(A, p, q, r)

assumes that the left sub-array,A[p : q], and the right sub-array,A[q + 1 : r], have already been sorted.
We merge these two sub-arrays by copying the elements to a temporary working array calledB. For
convenience, we will assume that the arrayB has the same index rangeA, that is,B[p : r]. (One nice
thing about pseudo-code, is that we can make these assumptions, and leave them up to the programmer to
figure out how to implement it.) We have to indicesi andj, that point to the current elements of each
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sub-array. We move the smaller element into the next position of B (indicated by indexk) and then
increment the corresponding index (eitheri or j). When we run out of elements in one array, then we just
copy the rest of the other array intoB. Finally, we copy the entire contents ofB back intoA. (The use of
the temporary array is a bit unpleasant, but this is impossible to overcome entirely. It is one of the
shortcomings of MergeSort, compared to some of the other efficient sorting algorithms.)

Here is the merge algorithm:

MERGE( array A, int p, int q int r)

1 int B[p..r]; int i← k← p; int j← q + 1

2 while (i ≤ q) and(j ≤ r)

3 do if (A[i] ≤ A[j])

4 then B[k++ ]← A[i++ ]

5 else B[k++ ]← A[j++ ]

6 while (i ≤ q)

7 do B[k++ ]← A[i++ ]

8 while (j ≤ r)

9 do B[k++ ]← A[j++ ]

10 for i← p to r

11 do A[i]← B[i]
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Figure 3.2: Merge sort: combine phase

3.1.1 Analysis of Merge Sort

First let us consider the running time of the procedureMerge(A, p, q, r). Let n = r − p + 1 denote the
total length of both the left and right sub-arrays. What is therunning time of Merge as a function ofn?
The algorithm contains four loops (none nested in the other). It is easy to see that each loop can be
executed at mostn times. (If you are a bit more careful you can actually see thatall the while-loops
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together can only be executed n times in total, because each execution copies one new element to the
arrayB, andB only has space forn elements.) Thus the running time to Mergen items isΘ(n). Let us
write this without the asymptotic notation, simply asn. (We’ll see later why we do this.)

Now, how do we describe the running time of the entire MergeSort algorithm? We will do this through
the use of a recurrence, that is, a function that is defined recursively in terms of itself. To avoid
circularity, the recurrence for a given value ofn is defined in terms of values that are strictly smaller than
n. Finally, a recurrence has some basis values (e.g. forn = 1), which are defined explicitly.

Let T(n) denote the worst case running time of MergeSort on an array oflengthn. If we call MergeSort
with an array containing a single item (n = 1) then the running time is constant. We can just write
T(n) = 1, ignoring all constants. Forn > 1, MergeSort splits into two halves, sorts the two and then
merges them together. The left half is of sizedn/2e and the right half isbn/2c. How long does it take to
sort elements in sub array of sizedn/2e? We do not know this but becausedn/2e < n for n > 1, we can
express this asT(dn/2e). Similarly the time taken to sort right sub array is expressed asT(bn/2c). In
conclusion we have

T(n) =

{
1 if n = 1,

T(dn/2e) + T(bn/2c) + n otherwise

This is called recurrence relation, i.e., a recursively defined function. Divide-and-conqueris an
important design technique, and it naturally gives rise to recursive algorithms. It is thus important to
develop mathematical techniques for solving recurrences,either exactly or asymptotically.

Let’s expand the terms.

T(1) = 1

T(2) = T(1) + T(1) + 2 = 1 + 1 + 2 = 4

T(3) = T(2) + T(1) + 3 = 4 + 1 + 3 = 8

T(4) = T(2) + T(2) + 4 =4 +4 +4 =12
T(5) = T(3) + T(2) + 5 = 8 + 4 + 5 = 17

. . .

T(8) = T(4) + T(4) + 8 = 12 + 12 + 8 = 32

. . .

T(16) = T(8) + T(8) + 16 = 32 + 32 + 16 = 80

. . .

T(32) = T(16) + T(16) + 32 = 80 + 80 + 32 = 192

What is the pattern here? Let’s consider the ratiosT(n)/n for powers of2:

T(1)/1 = 1 T(8)/8 = 4

T(2)/2 = 2 T(16)/16 = 5

T(4)/4 = 3 T(32)/32 = 6

This suggestsT(n)/n = logn + 1 Or, T(n) = n logn + n which isΘ(n logn) (using the limit rule).
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3.1.2 The Iteration Method for Solving Recurrence Relations

Floor and ceilings are a pain to deal with. Ifn is assumed to be a power of 2 (2k = n), this will simplify
the recurrence to

T(n) =

{
1 if n = 1,

2T(n/2) + n otherwise

The iteration method turns the recurrence into a summation.Let’s see how it works. Let’s expand the
recurrence:

T(n) = 2T(n/2) + n

= 2(2T(n/4) + n/2) + n

= 4T(n/4) + n + n

= 4(2T(n/8) + n/4) + n + n

= 8T(n/8) + n + n + n

= 8(2T(n/16) + n/8) + n + n + n

= 16T(n/16) + n + n + n + n

If n is a power of2 then letn = 2k or k = logn.

T(n) = 2kT(n/(2k)) + (n + n + n + · · · + n)︸ ︷︷ ︸
k times

= 2kT(n/(2k)) + kn

= 2(logn)T(n/(2(logn))) + (logn)n

= 2(logn)T(n/n) + (logn)n

= nT(1) + n logn = n + n logn

3.1.3 Visualizing Recurrences Using the Recursion Tree

Iteration is a very powerful technique for solving recurrences. But, it is easy to get lost in all the symbolic
manipulations and lose sight of what is going on. Here is a nice way to visualize what is going on in
iteration. We can describe any recurrence in terms of a tree,where each expansion of the recurrence takes
us one level deeper in the tree.

Recall that the recurrence for MergeSort (which we simplifiedby assuming that n is a power of 2, and
hence could drop the floors and ceilings)

T(n) =

{
1 if n = 1,

2T(n/2) + n otherwise

Suppose that we draw the recursion tree for MergeSort, but each time we merge two lists, we label that
node of the tree with the time it takes to perform the associated (nonrecursive) merge. Recall that to
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merge two lists of sizem/2 to a list of sizem takesΘ(m) time, which we will just write asm. Below is
an illustration of the resulting recursion tree.
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Figure 3.3: Merge sort Recurrence Tree

3.1.4 A Messier Example

The merge sort recurrence was too easy. Let’s try a messier recurrence.

T(n) =

{
1 if n = 1,

3T(n/4) + n otherwise

Assumen to be a power of 4, i.e.,n = 4k andk = log4 n

T(n) = 3T(n/4) + n

= 3(3T(n/16) + (n/4) + n

= 9T(n/16) + 3(n/4) + n

= 27T(n/64) + 9(n/16) + 3(n/4) + n

= . . .

= 3kT(
n

4k
) + 3k−1(n/4k−1)

+ · · · + 9(n/16) + 3(n/4) + n

= 3kT(
n

4k
) +

k−1∑

i=0

3i

4i
n
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With n = 4k andT(1) = 1

T(n) = 3kT(
n

4k
) +

k−1∑

i=0

3i

4i
n

= 3log4 nT(1) +

(log4 n)−1∑

i=0

3i

4i
n

= nlog4 3 +

(log4 n)−1∑

i=0

3i

4i
n

We used the formulaalogb n = nlogb a. n remains constant throughout the sum and3i/4i = (3/4)i; we
thus have

T(n) = nlog4 3 + n

(log4 n)−1∑

i=0

(

3

4

)i

The sum is a geometric series; recall that forx 6= 1

m∑

i=0

xi =
xm+1 − 1

x − 1

In this casex = 3/4 andm = log4 n − 1. We get

T(n) = nlog4 3 + n
(3/4)log4 n+1 − 1

(3/4) − 1

Applying the log identity once more

(3/4)log4 n = nlog4(3/4) = nlog4 3−log4 4

= nlog4 3−1 =
nlog4 3

n

If we plug this back, we get

T(n) = nlog4 3 + n
nlog4 3

n
− 1

(3/4) − 1

= nlog4 3 +
nlog4 3 − n

−1/4

= nlog4 3 + 4(n − nlog4 3)

= 4n − 3nlog4 3

With log4 3 ≈ 0.79, we finally have the result!

T(n) = 4n − 3nlog4 3 ≈ 4n − 3n0.79 ∈ Θ(n)
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3.2 Selection Problem

Suppose we are given a set ofn numbers. Define therank of an element to be one plus the number of
elements that are smaller. Thus, the rank of an element is itsfinal position if the set is sorted. The
minimum is of rank 1 and the maximum is of rankn.

Consider the set:{5, 7, 2, 10, 8, 15, 21, 37, 41}. The rank of each number is its position in the sorted
order.

position 1 2 3 4 5 6 7 8 9
Number 2 5 7 8 10 15 21 37 41

For example, rank of 8 is 4, one plus the number of elements smaller than 8 which is 3.

The selection problem is stated as follows:

Given a setA of n distinct numbers and an integerk, 1 ≤ k ≤ n, output the element ofA of rank
k.

Of particular interest in statistics is themedian. If n is odd then the median is defined to be element of
rank(n + 1)/2. Whenn is even, there are two choices:n/2 and(n + 1)/2. In statistics, it is common to
return the average of the two elements.

Medians are useful as a measures of thecentral tendencyof a set especially when the distribution of
values is highly skewed. For example, the median income in a community is a more meaningful measure
than average. Suppose 7 households have monthly incomes 5000, 7000, 2000, 10000, 8000, 15000 and
16000. In sorted order, the incomes are 2000, 5000, 7000, 8000, 10000, 15000, 16000. The median
income is 8000; median is element with rank 4:(7 + 1)/2 = 4. The average income is 9000. Suppose the
income 16000 goes up to 450,000. The median is still 8000 but the average goes up to 71,000. Clearly,
the average is not a good representative of the majority income levels.

The selection problem can be easily solved by simply sortingthe numbers ofA and returningA[k].
Sorting, however, requiresΘ(n logn) time. The question is: can we do better than that? In particular, is
it possible to solve the selections problem inΘ(n) time? The answer is yes. However, the solution is far
from obvious.

3.2.1 Sieve Technique

The reason for introducing this algorithm is that it illustrates a very important special case of
divide-and-conquer, which I call thesieve technique. We think of divide-and-conquer as breaking the
problem into a small number of smaller subproblems, which are then solved recursively. The sieve
technique is a special case, where the number of subproblemsis just 1.

The sieve technique works in phases as follows. It applies toproblems where we are interested in finding
a single item from a larger set of n items. We do not know which item is of interest, however after doing
some amount of analysis of the data, taking sayΘ(nk) time, for some constantk, we find that we do not
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know what the desired the item is, but we can identify a large enough number of elements that cannot be
the desired value, and can be eliminated from further consideration. In particular “large enough” means
that the number of items is at least some fixed constant fraction ofn (e.g.n/2, n/3). Then we solve the
problem recursively on whatever items remain. Each of the resulting recursive solutions then do the same
thing, eliminating a constant fraction of the remaining set.

3.2.2 Applying the Sieve to Selection

To see more concretely how the sieve technique works, let us apply it to the selection problem. We will
begin with the given arrayA[1..n]. We will pick an item from the array, called thepivot elementwhich
we will denote byx. We will talk about how an item is chosen as the pivot later; for now just think of it as
a random element ofA.

We then partition A into three parts.

1. A[q] contains the pivot elementx,

2. A[1..q − 1] will contain all the elements that are less thanx and

3. A[q + 1..n] will contains all elements that are greater thanx.

Within each sub array, the items may appear in any order. The following figure shows a partitioned array:
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After partitioning


q


x
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< x


Figure 3.4:A[p..r] partitioned about the pivotx

3.2.3 Selection Algorithm

It is easy to see that the rank of the The rank of the pivotx is q − p + 1 in A[p..r]. Let
rank x = q − p + 1. If k = rank x then the pivot iskth smallest. Ifk < rank x then search
A[p..q − 1] recursively. Ifk > rank x then searchA[q + 1..r] recursively. Find element of rank(k − q)

because we eliminatedq smaller elements inA.

SELECT( array A, int p, int r, int k)
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1 if (p = r)

2 then return A[p]

3 else x← CHOOSE PIVOT(A, p, r)

4 q← PARTITION(A, p, r, x)

5 rank x← q − p + 1

6 if k = rank x

7 then return x

8 if k < rank x

9 then return SELECT(A, p, q − 1, k)

10 else return SELECT(A, q + 1, r, k − q)

Example: select the 6th smallest element of the set{5, 9, 2, 6, 4, 1, 3, 7}
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Figure 3.5: Sieve example: select 6th smallest element

3.2.4 Analysis of Selection

We will discuss how to choose a pivot and the partitioning later. For the moment, we will assume that
they both takeΘ(n) time. How many elements do we eliminate in each time? Ifx is the largest or the
smallest then we may only succeed in eliminating one element.

5, 9, 2, 6, 4, 1 , 3, 7 pivot is1

1 , 5, 9, 2, 6, 4, 3, 7 after partition

Ideally,x should have a rank that is neither too large or too small.

Suppose we are able to choose a pivot that causes exactly halfof the array to be eliminated in each phase.
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This means that we recurse on the remainingn/2 elements. This leads to the following recurrence:

T(n) =

{
1 if n = 1,

T(n/2) + n otherwise

If we expand this recurrence, we get

T(n) = n +
n

2
+

n

4
+ . . .

≤
∞∑

i=0

n

2i

= n

∞∑

i=0

1

2i

Recall the formula for infinite geometric series; for any|c| < 1,

∞∑

i=0

ci =
1

1 − c

Using this we have
T(n) ≤ 2n ∈ Θ(n)

Let’s think about how we ended up with aΘ(n) algorithm for selection. Normally, aΘ(n) time
algorithm would make a single or perhaps a constant number ofpasses of the data set. In this algorithm,
we make a number of passes. In fact it could be as many as logn.

However, because we eliminate a constant fraction of the array with each phase, we get the convergent
geometric series in the analysis. This shows that the total running time is indeedlinear in n. This lesson
is well worth remembering. It is often possible to achieve linear running times in ways that you would
not expect.
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Chapter 4

Sorting

For the next series of lectures, we will focus on sorting. There a number of reasons for sorting. Here are a
few important ones. Procedures for sorting are parts of manylarge software systems. Design of efficient
sorting algorithms is necessary to achieve overall efficiency of these systems.

Sorting is well studied problem from the analysis point of view. Sorting is one of the few problems where
provable lower bounds exist on how fast we can sort. In sorting, we are given an arrayA[1..n] of n

numbers We are to reorder these elements into increasing (ordecreasing) order.

More generally,A is an array of objects and we sort them based on one of the attributes - thekey value.
The key value need not be a number. It can be any object from atotally ordered domain. Totally ordered
domain means that for any two elements of the domain,x andy, eitherx < y, x = y or x > y.

4.1 Slow Sorting Algorithms

There are a number of well-known slowO(n2) sorting algorithms. These include the following:

Bubble sort: Scan the array. Whenever two consecutive items are found thatare out of order, swap
them. Repeat until all consecutive items are in order.

Insertion sort: Assume thatA[1..i − 1] have already been sorted. InsertA[i] into its proper position in
this sub array. Create this position by shifting all larger elements to the right.

Selection sort: Assume thatA[1..i − 1] contain thei − 1 smallest elements in sorted order. Find the
smallest element inA[i..n] Swap it withA[i].

These algorithms are easy to implement. But they run inΘ(n2) time in the worst case.

39
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4.2 Sorting in O(n logn) time

We have already seen that Mergesort sorts an array of numbersin Θ(n logn) time. We will study two
others:HeapsortandQuicksort.

4.2.1 Heaps

A heapis a left-complete binary tree that conforms to theheap order. The heap order property: in a
(min) heap, for every nodeX, the key in the parent is smaller than or equal to the key inX. In other
words, the parent node has key smaller than or equal to both ofits children nodes. Similarly, in a max
heap, the parent has a key larger than or equal both of its children Thus the smallest key is in the root in a
min heap; in the max heap, the largest is in the root.
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Figure 4.1: A min-heap

The number of nodes in a complete binary tree of heighth is

n = 20 + 21 + 22 + · · · + 2h =

h∑

i=0

2i = 2h+1 − 1

h in terms ofn is

h = (log(n + 1)) − 1 ≈ logn ∈ Θ(logn)

One of the clever aspects of heaps is that they can be stored inarrays without using any pointers. This is
due to the left-complete nature of the binary tree. We store the tree nodes in level-order traversal. Access
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to nodes involves simple arithmetic operations:

left(i) : returns2i, index of left child of nodei.

right(i) : returns2i + 1, the right child.

parent(i) : returnsbi/2c, the parent ofi.

The root is at position1 of the array.

4.2.2 Heapsort Algorithm

We build a max heap out of the given array of numbersA[1..n]. We repeatedly extract the the maximum
item from the heap. Once the max item is removed, we are left with a hole at the root. To fix this, we will
replace it with the last leaf in tree. But now the heap order will very likely be destroyed. We will apply a
heapify procedure to the root to restore the heap. Figure 4.2shows an array being sorted.

HEAPSORT( array A, int n)

1 BUILD -HEAP(A, n)

2 m← n

3 while (m ≥ 2)

4 do SWAP(A[1], A[m])

5 m← m − 1

6 HEAPIFY(A, 1, m)
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Figure 4.2: Example of heap sort
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4.2.3 Heapify Procedure

There is one principal operation for maintaining the heap property. It is called Heapify. (In other books it
is sometimes called sifting down.) The idea is that we are given an element of the heap which we suspect
may not be in valid heap order, but we assume that all of other the elements in the subtree rooted at this
element are in heap order. In particular this root element may be too small. To fix this we “sift” it down
the tree by swapping it with one of its children. Which child? We should take the larger of the two
children to satisfy the heap ordering property. This continues recursively until the element is either larger
than both its children or until its falls all the way to the leaf level. Here is the algorithm. It is given the
heap in the arrayA, and the indexi of the suspected element, andm the current active size of the heap.
The elementA[max] is set to the maximum ofA[i] and it two children. Ifmax 6= i then we swapA[i]

andA[max] and then recurse onA[max].

HEAPIFY( array A, int i, int m)

1 l← LEFT(i)

2 r← RIGHT(i)

3 max← i

4 if (l ≤ m)and(A[l] > A[max])

5 then max← l

6 if (r ≤ m)and(A[r] > A[max])

7 then max← r

8 if (max 6= i)

9 then SWAP(A[i], A[max])

10 HEAPIFY(A, max, m)

4.2.4 Analysis of Heapify

We call heapify on the root of the tree. The maximum levels an element could move up isΘ(logn) levels.
At each level, we do simple comparison whichO(1). The total time for heapify is thusO(logn). Notice
that it is notΘ(logn) since, for example, if we call heapify on a leaf, it will terminate inΘ(1) time.

4.2.5 BuildHeap

We can use Heapify to build a heap as follows. First we start with a heap in which the elements are not in
heap order. They are just in the same order that they were given to us in the array A. We build the heap by
starting at the leaf level and then invoke Heapify on each node. (Note: We cannot start at the top of the
tree. Why not? Because the precondition which Heapify assumesis that the entire tree rooted at nodei is
already in heap order, except fori.) Actually, we can be a bit more efficient. Since we know that each
leaf is already in heap order, we may as well skip the leaves and start with the first non-leaf node. This
will be in positionn/2. (Can you see why?)
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Here is the code. Since we will work with the entire array, theparameterm for Heapify, which indicates
the current heap size will be equal ton, the size of arrayA, in all the calls.

BUILDHEAP( array A, int n)

1 for i← n/2 downto 1

2 do
3 HEAPIFY(A, i, n)

4.2.6 Analysis of BuildHeap

For convenience, we will assumen = 2h+1 − 1 whereh is the height of tree. The heap is a left-complete
binary tree. Thus at each levelj, j < h, there are2j nodes in the tree. At levelh, there will be2h or less
nodes. How much work does buildHeap carry out? Consider the heap in Figure 4.3:
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1


0
 0
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1


0
 0


1


0
 0


3 x 1


1 x 4
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0 x 8


Figure 4.3: Total work performed in buildheap

At the bottom most level, there are2h nodes but we do not heapify these. At the next level up, there are
2h−1 nodes and each might shift down 1. In general, at levelj, there are2h−j nodes and each may shift
downj levels.

So, if count from bottom to top, level-by-level, the total time is

T(n) =

h∑

j=0

j2h−j =

h∑

j=0

j
2h

2j

We can factor out the2h term:

T(n) = 2h

h∑

j=0

j

2j
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How do we solve this sum? Recall the geometric series, for any constantx < 1

∞∑

j=0

xj =
1

1 − x

Take the derivative with respect tox and multiply byx

∞∑

j=0

jxj−1 =
1

(1 − x)2

∞∑

j=0

jxj =
x

(1 − x)2

We plugx = 1/2 and we have the desired formula:

∞∑

j=0

j

2j
=

1/2

(1 − (1/2))2
=

1/2

1/4
= 2

In our case, we have a bounded sum, but since we the infinite series is bounded, we can use it as an easy
approximation:

T(n) = 2h

h∑

j=0

j

2j

≤ 2h

∞∑

j=0

j

2j

≤ 2h · 2 = 2h+1

Recall thatn = 2h+1 − 1. Therefore

T(n) ≤ n + 1 ∈ O(n)

The algorithm takes at leastΩ(n) time since it must access every element at once. So the total time for
BuildHeap isΘ(n).

BuildHeap is a relatively complex algorithm. Yet, the analysis yield that it takesΘ(n) time. An intuitive
way to describe why it is so is to observe an important fact about binary trees The fact is that the vast
majority of the nodes are at the lowest level of the tree. For example, in a complete binary tree of height
h, there is a total ofn ≈ 2h+1 nodes.

The number of nodes at the bottom three levels alone is

2h + 2h−1 + 2h−2 =
n

2
+

n

4
+

n

8
=

7n

8
= 0.875n

Almost 90% of the nodes of a complete binary tree reside in the3 lowest levels. Thus, algorithms that
operate on trees should be efficient (as BuildHeap is) on the bottom-most levels since that is where most
of the weight of the tree resides.
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4.2.7 Analysis of Heapsort

Heapsort calls BuildHeap once. This takesΘ(n). Heapsort then extracts roughlyn maximum elements
from the heap. Each extract requires a constant amount of work (swap) andO(logn) heapify. Heapsort
is thusO(n logn).

Is HeapSortΘ(n logn)? The answer is yes. In fact, later we will show that comparison based sorting
algorithms can not run faster thanΩ(n logn). Heapsort is such an algorithm and so is Mergesort that we
saw ealier.

4.3 Quicksort

Our next sorting algorithm is Quicksort. It is one of the fastest sorting algorithms known and is the
method of choice in most sorting libraries. Quicksort is based on the divide and conquer strategy. Here is
the algorithm:

QUICKSORT( array A, int p, int r)

1 if (r > p)

2 then
3 i← a random index from[p..r]

4 swapA[i] with A[p]

5 q← PARTITION(A, p, r)

6 QUICKSORT(A, p, q − 1)

7 QUICKSORT(A, q + 1, r)

4.3.1 Partition Algorithm

Recall that the partition algorithm partitions the arrayA[p..r] into three sub arrays about a pivot element
x. A[p..q − 1] whose elements are less than or equal tox, A[q] = x, A[q + 1..r] whose elements are
greater thanx

We will choose the first element of the array as the pivot, i.e.x = A[p]. If a different rule is used for
selecting the pivot, we can swap the chosen element with the first element. We will choose the pivot
randomly.

The algorithm works by maintaining the followinginvariant condition. A[p] = x is the pivot value.
A[p..q − 1] contains elements that are less thanx, A[q + 1..s − 1] contains elements that are greater than
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or equal tox A[s..r] contains elements whose values are currently unknown.

PARTITION( array A, int p, int r)

1 x← A[p]

2 q← p

3 for s← p + 1 to r

4 do if (A[s] < x)

5 then q← q + 1

6 swapA[q] with A[s]

7 swapA[p] with A[q]

8 return q

Figure 4.4 shows the execution trace partition algorithm.
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Figure 4.4: Trace of partitioning algorithm

4.3.2 Quick Sort Example

The Figure 4.5 trace out the quick sort algorithm. The first partition is done using the last element,10, of
the array. The left portion are then partitioned about5 while the right portion is partitioned about13.
Notice that10 is now at its final position in the eventual sorted order. The process repeats as the
algorithm recursively partitions the array eventually sorting it.
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Figure 4.5: Example of quick sort
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It is interesting to note (but not surprising) that the pivots form a binary search tree. This is illustrated in
Figure 4.6.
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Figure 4.6: Quicksort BST

4.3.3 Analysis of Quicksort

The running time of quicksort depends heavily on the selection of the pivot. If the rank of the pivot is
very large or very small then the partition (BST) will be unbalanced. Since the pivot is chosen randomly
in our algorithm, the expected running time isO(n logn). The worst case time, however, isO(n2).
Luckily, this happens rarely.

4.3.4 Worst Case Analysis of Quick Sort

Let’s begin by considering the worst-case performance, because it is easier than the average case. Since
this is a recursive program, it is natural to use a recurrenceto describe its running time. But unlike
MergeSort, where we had control over the sizes of the recursive calls, here we do not. It depends on how
the pivot is chosen. Suppose that we are sorting an array of sizen, A[1 : n], and further suppose that the
pivot that we select is of rankq, for someq in the range1 to n. It takesΘ(n) time to do the partitioning
and other overhead, and we make two recursive calls. The firstis to the subarrayA[1 : q − 1] which has
q − 1 elements, and the other is to the subarrayA[q + 1 : n] which hasn − q elements. So if we ignore
theΘ(n) (as usual) we get the recurrence:

T(n) = T(q − 1) + T(n − q) + n
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This depends on the value of q. To get the worst case, we maximize over all possible values ofq. Putting
is together, we get the recurrence

T(n) =





1 if n ≤ 1

max
1≤q≤n

(T(q − 1) + T(n − q) + n) otherwise

Recurrences that have max’s and min’s embedded in them are very messy to solve. The key is
determining which value of q gives the maximum. (A rule of thumb of algorithm analysis is that the
worst cases tends to happen either at the extremes or in the middle. So I would plug in the valueq = 1,
q = n, andq = n/2 and work each out.) In this case, the worst case happens at either of the extremes. If
we expand the recurrence forq = 1, we get:

T(n) ≤ T(0) + T(n − 1) + n

= 1 + T(n − 1) + n

= T(n − 1) + (n + 1)

= T(n − 2) + n + (n + 1)

= T(n − 3) + (n − 1) + n + (n + 1)

= T(n − 4) + (n − 2) + (n − 1) + n + (n + 1)

= T(n − k) +

k−2∑

i=−1

(n − i)

For the basisT(1) = 1 we setk = n − 1 and get

T(n) ≤ T(1) +

n−3∑

i=−1

(n − i)

= 1 + (3 + 4 + 5 + · · · + (n − 1) + n + (n + 1))

≤
n+1∑

i=1

i =
(n + 1)(n + 2)

2
∈ Θ(n2)

4.3.5 Average-case Analysis of Quicksort

We will now show that in the average case, quicksort runs inΘ(n logn) time. Recall that when we talked
about average case at the beginning of the semester, we said that it depends on some assumption about
the distribution of inputs. However, in the case of quicksort, the analysis does not depend on the
distribution of input at all. It only depends upon the randomchoices of pivots that the algorithm makes.
This is good, because it means that the analysis of the algorithm’s performance is the same for all inputs.
In this case the average is computed over all possible randomchoices that the algorithm might make for
the choice of the pivot index in the second step of the QuickSort procedure above.

To analyze the average running time, we letT(n) denote the average running time of QuickSort on a list
of sizen. It will simplify the analysis to assume that all of the elements are distinct. The algorithm has n
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random choices for the pivot element, and each choice has an equal probability of1/n of occuring. So
we can modify the above recurrence to compute an average rather than a max, giving:

T(n) =

{
1 if n ≤ 1
1
n

∑n

q=1(T(q − 1) + T(n − q) + n) otherwise

The timeT(n) is the weighted sum of the times taken for various choices ofq. I.e.,

T(n) =
[ 1

n
(T(0) + T(n − 1) + n)

+
1

n
(T(1) + T(n − 2) + n)

+
1

n
(T(2) + T(n − 3) + n)

+ · · · + 1

n
(T(n − 1) + T(0) + n)

]

We have not seen such a recurrence before. To solve it, expansion is possible but it is rather tricky. We
will attempt a constructive induction to solve it. We know that we want aΘ(n logn). Let us assume that
T(n) ≤ cn logn for n ≥ 2 wherec is a constant.

For the base casen = 2 we have

T(n) =
1

2

2∑

q=1

(T(q − 1) + T(2 − q) + 2)

=
1

2

[

(T(0) + T(1) + 2) + (T(1) + T(0) + 2)
]

=
8

2
= 4.

We want this to be at mostc2 log2, i.e.,

T(2) ≤ c2 log2

or

4 ≤ c2 log2

therefore

c ≥ 4/(2 log2) ≈ 2.88.

For the induction step, we assume thatn ≥ 3 and The induction hypothesis is that for anyn ′ < n, we
haveT(n ′) ≤ cn ′ logn ′. We want to prove that it is true forT(n). By expandingT(n) and moving the
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factor ofn outside the sum we have

T(n) =
1

n

n∑

q=1

(T(q − 1) + T(n − q) + n)

=
1

n

n∑

q=1

(T(q − 1) + T(n − q)) + n

=
1

n

n∑

q=1

T(q − 1) +
1

n

n∑

q=1

T(n − q) + n

T(n) =
1

n

n∑

q=1

T(q − 1) +
1

n

n∑

q=1

T(n − q) + n

Observe that the two sums add up the same valuesT(0) + T(1) + · · · + T(n − 1). One counts up and
other counts down. Thus we can replace them with2

∑n−1

q=0 T(q). We will extractT(0) andT(1) and treat
them specially. These two do not follow the formula.

T(n) =
2

n

(

n−1∑

q=0

T(q)
)

+ n

=
2

n

(

T(0) + T(1) +

n−1∑

q=2

T(q)
)

+ n

We will apply the induction hypothesis forq < n we have

T(n) =
2

n

(

T(0) + T(1) +

n−1∑

q=2

T(q)
)

+ n

≤ 2

n

(

1 + 1 +

n−1∑

q=2

(cq logq)
)

+ n

=
2c

n

(

n−1∑

q=2

(cqln q)
)

+ n +
4

n

We have never seen this sum before:

S(n) =

n−1∑

q=2

(cqln q)

Recall from calculus that for any monotonically increasing functionf(x)

b−1∑

i=a

f(i) ≤
∫b

a

f(x)dx
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The functionf(x) = xln x is monotonically increasing, and so

S(n) =

n−1∑

q=2

(cqln q) ≤
∫n

2

xln xdx (4.1)

We can integrate this by parts: ∫n

2

xln xdx =
x2

2
ln x −

x2

4

∣

∣

∣

n

x=2

∫n

2

xln xdx =
x2

2
ln x −

x2

4

∣

∣

∣

n

x=2

=
(n2

2
ln n −

n2

4

)

− (2ln 2 − 1)

≤ n2

2
ln n −

n2

4

We thus have

S(n) =

n−1∑

q=2

(cqln q) ≤ n2

2
ln n −

n2

4

Plug this back into the expression forT(n) to get

T(n) =
2c

n

(n2

2
ln n −

n2

4

)

+ n +
4

n

T(n) =
2c

n

(n2

2
ln n −

n2

4

)

+ n +
4

n

= cnln n −
cn

2
+ n +

4

n

= cnln n + n
(

1 −
c

2

)

+
4

n

T(n) = cnln n + n
(

1 −
c

2

)

+
4

n
To finish the proof,we want all of this to be at mostcnln n. For this to happen, we will need to selectc

such that

n
(

1 −
c

2

)

+
4

n
≤ 0

If we selectc = 3, and use the fact thatn ≥ 3 we get

n
(

1 −
c

2

)

+
4

n
=

3

n
−

n

2

≤ 1 −
3

2
= −

1

2
≤ 0.

From the basis case we hadc ≥ 2.88. Choosingc = 3 satisfies all the constraints. Thus
T(n) = 3nln n ∈ Θ(n logn).
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4.4 In-place, Stable Sorting

An in-placesorting algorithm is one that uses no additional array for storage. A sorting algorithm is
stableif duplicate elements remain in the same relative position after sorting.
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Bubble sort, insertion sort and selection sort are in-place sorting algorithms. Bubble sort and insertion
sort can be implemented as stable algorithms but selection sort cannot (without significant modifications).
Mergesort is a stable algorithm but not an in-place algorithm. It requires extra array storage. Quicksort is
not stable but is an in-place algorithm. Heapsort is an in-place algorithm but is not stable.

4.5 Lower Bounds for Sorting

The best we have seen so far isO(n logn) algorithms for sorting. Is it possible to do better than
O(n logn)? If a sorting algorithm is solely based on comparison of keysin the array then it isimpossible
to sort more efficiently thanΩ(n logn) time. All algorithms we have seen so far are comparison-based
sorting algorithms.

Consider sorting three numbersa1, a2, a3. There are3! = 6 possible combinations:

(a1, a2, a3), (a1, a3, a2) , (a3, a2, a1)

(a3, a1, a2), (a2, a1, a3) , (a2, a3, a1)

One of these permutations leads to the numbers in sorted order.

The comparison based algorithm defines adecision tree. Here is the tree for the three numbers.
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a1 < a2


a1 < a3


a2 <
a3
 a1 < a3


a2 < a3
2, 1, 3


2, 3, 1
 3, 2, 1
1, 3, 2
 3, 1, 2


1, 2, 3


YES


YES


YES


YES


YES


NO


NO


NO


NO


NO


Figure 4.7: Decision Tree

Forn elements, there will ben! possible permutations. The height of the tree is exactly equal toT(n),
the running time of the algorithm. The height isT(n) because any path from the root to a leaf
corresponds to a sequence of comparisons made by the algorithm.

Any binary tree of heightT(n) has at most2T(n) leaves. Thus a comparison based sorting algorithm can
distinguish between at most2T(n) different final outcomes. So we have

2T(n) ≥ n! and therefore

T(n) ≥ log(n!)

We can useStirling’s approximationfor n!:

n! ≥
√

2πn
(n

e

)n

Thereofore

T(n) ≥ log
(√

2πn
(n

e

)n)

= log(
√

2πn) + n logn − n loge

∈ Ω(n logn)

We thus have the following theorem.

Theorem 1
Any comparison-based sorting algorithm has worst-case running timeΩ(n logn).
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Chapter 5

Linear Time Sorting

The lower bound implies that if we hope to sort numbers fasterthanO(n logn), we cannot do it by
making comparisons alone. Is it possible to sort without making comparisons? The answer is yes, but
only under very restrictive circumstances. Many applications involve sorting small integers (e.g. sorting
characters, exam scores, etc.). We present three algorithms based on the theme of speeding up sorting in
special cases, by not making comparisons.

5.1 Counting Sort

We will consider three algorithms that are faster and work bynot making comparisons. Counting sort
assumes that the numbers to be sorted are in the range1 to k wherek is small. The basic idea is to
determine the rank of each number in final sorted array.

Recall that the rank of an item is the number of elements that are less than or equal to it. Once we know
the ranks, we simply copy numbers to their final position in anoutput array.

The question is how to find the rank of an element without comparing it to the other elements of the
array?. The algorithm uses three arrays. As usual,A[1..n] holds the initial input,B[1..n] holds the sorted
output andC[1..k] is an array of integers.C[x] is the rank ofx in A, wherex ∈ [1..k]. The algorithm is
remarkably simple, but deceptively clever. The algorithm operates by first constructingC. This is done in
two steps. First we setC[x] to be the number of elements ofA[j] that are equal tox. We can do this
initializing C to zero, and then for eachj, from 1 to n, we incrementC[A[j]] by 1. Thus, ifA[j] = 5, then
the 5th element ofC is incremented, indicating that we have seen one more 5. To determine the number
of elements that are less than or equal tox, we replaceC[x] with the sum of elements in the sub array
R[1 : x]. This is done by just keeping a running total of the elements of C.

C[x] now contains the rank ofx. This means that ifx = A[j] then the final position ofA[j] should be at
positionC[x] in the final sorted array. Thus, we setB[C[x]] = A[j]. Notice We need to be careful if there
are duplicates, since we do not want them to overwrite the same location ofB. To do this, we decrement
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C[i] after copying.

COUNTING-SORT( array A, array B, int k)

1 for i← 1 to k

2 do C[i]← 0 k times
3 for j← 1 to length[A]

4 do C[A[j]]← C[A[j]] + 1 n times
5 // C[i] now contains the number of elements= i

6 for i← 2 to k

7 do C[i]← C[i] + C[i − 1] k times
8 // C[i] now contains the number of elements≤ i

9 for j← length[A] downto 1

10 do B[C[A[j]]]← A[j]

11 C[A[j]]← C[A[j]] − 1 n times

There are four (unnested) loops, executedk times,n times,k − 1 times, andn times, respectively, so the
total running time isΘ(n + k) time. If k = O(n), then the total running time isΘ(n).

Figure 5.1 through 5.19 shows an example of the algorithm. You should trace through the example to
convince yourself how it works.

7
 1
 3
 1
 2
 4
 5
 7
 2
 4
 3
A
[1
..
n
]


1          2          3           4          5          6       
 7           8          9         10         11

Input


0
0
 0
 0
 0
 0
 0
C
[1
..k
]


1         2           3          4          5          6        
 7


k = 7


Figure 5.1: InitialA andC arrays.
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7
 1
 3
 1
 2
 4
 5
 7
 2
 4
 3
A
[1
..
n
]


1          2          3           4          5          6
 7           8          9         10         11

Input


1
0
 0
 0
 0
 0
 0
C
[1
..k
]


1         2           3          4          5          6
 7


k


Figure 5.2:A[1] = 7 processed

7
 1
 3
 1
 2
 4
 5
 7
 2
 4
 3
A
[1
..
n
]


1          2          3           4          5          6
 7           8          9         10         11

Input


1
1
 0
 0
 0
 0
 0
C
[1
..k
]


1         2           3          4          5          6
 7


k


Figure 5.3:A[2] = 1 processed

7
 1
 3
 1
 2
 4
 5
 7
 2
 4
 3
A
[1
..
n
]


1          2          3           4          5          6
 7           8          9         10         11

Input


1
1
 0
 1
 0
 0
 0
C
[1
..k
]


1         2           3          4          5          6
 7


k


Figure 5.4:A[3] = 3 processed
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7
 1
 3
 1
 2
 4
 5
 7
 2
 4
 3
A
[1
..
n
]


1          2          3           4          5          6
 7           8          9         10         11

Input


1
2
 0
 1
 0
 0
 0
C
[1
..k
]


1         2           3          4          5          6
 7


k


Figure 5.5:A[4] = 1 processed

7
 1
 3
 1
 2
 4
 5
 7
 2
 4
 3
A
[1
..
n
]


1          2          3           4          5          6
 7           8          9         10         11

Input


1
2
 1
 1
 0
 0
 0
C
[1
..k
]


1         2           3          4          5          6
 7


k


Figure 5.6:A[5] = 2 processed

7
 1
 3
 1
 2
 4
 5
 7
 2
 4
 3
A
[1
..
n
]


1          2          3           4          5          6
 7           8          9         10         11

Input


2
2
 2
 2
 2
 1
 0
C
[1
..k
]


1         2           3          4          5          6
 7


finally


Figure 5.7:C now contains count of elements ofA
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2


7
 1
 3
 1
 2
 4
 5
 7
 2
 4
 3
A
[1
..
n
]


1          2          3           4          5          6
 7           8          9         10         11


2
 11
9
9
8
6
4
C


1          2           3          4          5          6
 7


for
i
= 2 to 7


do
C
[
i
] =
C
[
i
] +
C
[
i
-
1]


Input


2
2
 2
 2
 1
 0
C
[1
..k
]


1         2           3          4          5          6
 7


6 elements
<=
 3


Figure 5.8:C set to rank each number ofA

3


11
2
 4
 6
 8
 9
 9
C


1         2           3          4          5          6
 7


2
 11
9
9
8
5
4
C


C
[
A
[11]] =
C
[
A
[11]]
-
1


1          2         3           4         5          6
 7           8          9         10         11


B
[1
..
n
]


Output


3


7
 1
 3
 1
 2
 4
 5
 7
 2
 4

A
[1
..
n
]


Input


B
[6] =
B
[
C
[3]] =
B
[
C
[
A
[11]]] =
A
[11] = 3


Figure 5.9:A[11] placed in output arrayB
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11
2
 4
 5
 8
 9
 9
C


1         2           3          4          5          6
 7


2
 11
9
9
7
5
4
C


C
[
A
[10]] =
C
[
A
[10]]
-
1


1          2         3           4         5          6
 7           8          9         10         11


B
[1
..
n
]


Output


3


7
 1
 3
 1
 2
 4
 5
 7
 2
 4
 3

A
[1
..
n
]


Input


B
[8] =
B
[
C
[4]] =
B
[
C
[
A
[10]]] =
A
[10] = 4


4


Figure 5.10:A[10] placed in output arrayB

7
 2


11
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 4
 5
 7
 9
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1         2           3          4          5          6
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2
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9
9
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C
[
A
[9]] =
C
[
A
[9]]
-
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1          2         3           4         5          6
 7           8          9         10         11


B
[1
..
n
]


Output


3


7
 1
 3
 1
 2
 4
 5
 4
 3

A
[1
..
n
]


Input


B
[4] =
B
[
C
[2]] =
B
[
C
[
A
[9]]] =
A
[9] = 2


4
2


Figure 5.11:A[9] placed in output arrayB
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11
2
 3
 5
 7
 9
 9
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1         2           3          4          5          6
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2
 10
9
9
7
5
3
C


C
[
A
[8]] =
C
[
A
[8]]
-
1


1          2         3           4         5          6
 7           8          9         10         11


B
[1
..
n
]


Output


3


7
 1
 3
 1
 2
 4
 5
 7
 2
 4
 3

A
[1
..
n
]


Input


B
[11] =
B
[
C
[7]] =
B
[
C
[
A
[8]]] =
A
[8] = 7


4
2
 7


Figure 5.12:A[8] placed in output arrayB
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9
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C
[
A
[5]] =
C
[
A
[5]]
-
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1          2         3           4         5          6
 7           8          9         10         11


B
[1
..
n
]


Output


3


7
 1
 3
 1
 2
 4
 5
 7
 2
 4
 3

A
[1
..
n
]


Input


B
[9] =
B
[
C
[5]] =
B
[
C
[
A
[7]]] =
A
[7] = 5


4
2
 7
5


Figure 5.13:A[7] placed in output arrayB
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10
2
 3
 5
 7
 8
 9
C


1         2           3          4          5          6
 7


2
 10
9
8
6
5
3
C


C
[
A
[6]] =
C
[
A
[6]]
-
1


1          2         3           4         5          6
 7           8          9         10         11


B
[1
..
n
]


Output


3


7
 1
 3
 1
 2
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 5
 7
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 4
 3

A
[1
..
n
]


Input


B
[7] =
B
[
C
[4]] =
B
[
C
[
A
[6]]] =
A
[6] = 4


4
2
 7
5
4


Figure 5.14:A[6] placed in output arrayB

10
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2
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C
[
A
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C
[
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[5]]
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1          2         3           4         5          6
 7           8          9         10         11


B
[1
..
n
]


Output


3


7
 1
 3
 1
 2
 4
 5
 7
 2
 4
 3

A
[1
..
n
]


Input


B
[3] =
B
[
C
[2]] =
B
[
C
[
A
[5]]] =
A
[5] = 2


4
2
 7
5
4
2


Figure 5.15:A[5] placed in output arrayB
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10
2
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 5
 7
 8
 9
C


1         2           3          4          5          6
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1
 10
9
8
6
5
2
C


C
[
A
[4]] =
C
[
A
[4]]
-
1


1          2         3           4         5          6
 7           8          9         10         11


B
[1
..
n
]


Output


3


7
 1
 3
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 2
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 5
 7
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 4
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A
[1
..
n
]


Input


B
[2] =
B
[
C
[1]] =
B
[
C
[
A
[4]]] =
A
[4] = 1


4
2
 7
5
4
2
1


Figure 5.16:A[4] placed in output arrayB

10
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 7
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 9
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1
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9
8
6
4
2
C


C
[
A
[3]] =
C
[
A
[3]]
-
1


1          2         3           4         5          6
 7           8          9         10         11


B
[1
..
n
]


Output


3


7
 1
 3
 1
 2
 4
 5
 7
 2
 4
 3

A
[1
..
n
]


Input


B
[5] =
B
[
C
[3]] =
B
[
C
[
A
[3]]] =
A
[3] = 3


4
2
 7
5
4
2
1
 3


Figure 5.17:A[3] placed in output arrayB
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10
1
 2
 4
 7
 8
 9
C


1         2           3          4          5          6
 7


0
 10
9
8
6
4
2
C


C
[
A
[3]] =
C
[
A
[3]]
-
1


1          2         3           4         5          6
 7           8          9         10         11


B
[1
..
n
]


Output


3


7
 1
 3
 1
 2
 4
 5
 7
 2
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A
[1
..
n
]


Input


B
[1] =
B
[
C
[1]] =
B
[
C
[
A
[2]]] =
A
[2] = 1


4
2
 7
5
4
2
1
 3
1


Figure 5.18:A[2] placed in output arrayB
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9
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[
A
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C
[
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 7           8          9         10         11


B
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..
n
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 1
 3
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 7
 2
 4
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A
[1
..
n
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Input


B
[10] =
B
[
C
[7]] =
B
[
C
[
A
[1]]] =
A
[1] = 7


4
2
 7
5
4
2
1
 3
1
 7


Figure 5.19:B now contains the final sorted data.

Counting sort is not an in-place sorting algorithm but it is stable. Stability is important because data are
often carried with the keys being sorted. radix sort (which uses counting sort as a subroutine) relies on it
to work correctly. Stability achieved by running the loop down fromn to 1 and not the other way around:
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COUNTING-SORT( array A, array B, int k)

1
...

2 for j← length[A] downto 1

3 do B[C[A[j]]]← A[j]

4 C[A[j]]← C[A[j]] − 1

Figure 5.20 illustrates the stability. The numbers 1, 2, 3, 4, and 7, each appear twice. The two 4’s have
been given the superscript “* ”. Numbers are placed in the outputB array starting from the right. The two
4’s maintain their relative position in theB array. If the sorting algorithm had caused4∗∗ to end up on the
left of 4∗, the algorithm would be termed unstable.
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11
2
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1         2           3          4          5          6
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2
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9
9
7
5
4
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C
[
A
[10]] =
C
[
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[10]]
-
1


1          2         3           4         5          6
 7           8          9         10         11


B
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n
]
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A
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Input
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[
C
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B
[
C
[
A
[10]]] =
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4
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A
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..
n
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[7] =
B
[
C
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B
[
C
[
A
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1          2         3           4         5          6
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++
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**
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##


A
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..
n
]


Input


4
**
2
++
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”
5
4
*
2
+
1
^^
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#
1
^
 7’


Figure 5.20: Stability of counting sort
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5.2 Bucket or Bin Sort

Assume that the keys of the items that we wish to sort lie in a small fixed range and that there is only one
item with each value of the key. Then we can sort with the following procedure:

1. Set up an array of “bins” - one for each value of the key - in order,

2. Examine each item and use the value of the key to place it in theappropriate bin.

Now our collection is sorted and it only tookn operations, so this is anO(n) operation. However, note
that it will only work under very restricted conditions. To understand these restrictions, let’s be a little
more precise about the specification of the problem and assume that there arem values of the key. To
recover our sorted collection, we need to examine each bin. This adds a third step to the algorithm above,

3. Examine each bin to see whether there’s an item in it.

which requiresm operations. So the algorithm’s time becomes:

T(n) = c1n + c2m

and it is strictlyO(n + m). If m ≤ n, this is clearlyO(n). However ifm >> n, then it isO(m). An
implementation of bin sort might look like:

BUCEKTSORT( array A, int n, int M)

1 // Pre-condition: for1 ≤ i ≤ n, 0 ≤ a[i] < M

2 // Mark all the bins empty
3 for i← 1 to M

4 do bin[i]← Empty

5 for i← 1 to n

6 do bin[A[i]]← A[i]

If there areduplicates, then each bin can be replaced by alinked list. The third step then becomes:

3. Link all the lists into one list.

We can add an item to a linked list inO(1) time. There aren items requiringO(n) time. Linking a list to
another list simply involves making the tail of one list point to the other, so it isO(1). Linking m such
lists obviously takesO(m) time, so the algorithm is stillO(n + m). Figures 5.21 through 5.23 show the
algorithm in action using linked lists.



70 CHAPTER 5. LINEAR TIME SORTING
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Step 1:
 insertion sort

within each list


Figure 5.21: Bucket sort: step 1, placing keys in bins in sorted order
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Step 2:
 concatenate the

lists


Figure 5.22: Bucket sort: step 2, concatenate the lists
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Figure 5.23: Bucket sort: the final sorted sequence

5.3 Radix Sort

The main shortcoming of counting sort is that it is useful forsmall integers, i.e.,1..k wherek is small. If
k were a million or more, the size of the rank array would also bea million. Radix sort provides a nice
work around this limitation by sorting numbers one digit at atime.

576 49[4] 9[5]4 [1]76 176
494 19[4] 5[7]6 [1]94 194
194 95[4] 1[7]6 [2]78 278
296 ⇒ 57[6] ⇒ 2[7]8 ⇒ [2]96 ⇒ 296
278 29[6] 4[9]4 [4]94 494
176 17[6] 1[9]4 [5]76 576
954 27[8] 2[9]6 [9]54 954

Here is the algorithm that sortsA[1..n] where each number isd digits long.

RADIX -SORT( array A, int n, int d)

1 for i← 1 to d

2 do stably sortA w.r.t ith lowest order digit
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Chapter 6

Dynamic Programming

6.1 Fibonacci Sequence

Suppose we put a pair of rabbits in a place surrounded on all sides by a wall. How many pairs of rabbits
can be produced from that pair in a year if it is supposed that every month each pair begets a new pair
which from the second month on becomes productive? Resultingsequence is
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . where each number is the sum of the two preceding numbers.

This problem was posed by Leonardo Pisano, better known by his nickname Fibonacci (son of Bonacci,
born 1170, died 1250). This problem and many others were in posed in his bookLiber abaci, published
in 1202. The book was based on the arithmetic and algebra thatFibonacci had accumulated during his
travels. The book, which went on to be widely copied and imitated, introduced the Hindu-Arabic
place-valued decimal system and the use of Arabic numerals into Europe. The rabbits problem in the
third section of Liber abaci led to the introduction of the Fibonacci numbers and the Fibonacci sequence
for which Fibonacci is best remembered today.

This sequence, in which each number is the sum of the two preceding numbers, has proved extremely
fruitful and appears in many different areas of mathematicsand science. TheFibonacci Quarterlyis a
modern journal devoted to studying mathematics related to this sequence. The Fibonacci numbersFn are
defined as follows:

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2

73
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The recursive definition of Fibonacci numbers gives us a recursive algorithm for computing them:

FIB(n)

1 if (n < 2)

2 then return n

3 else return FIB(n − 1) + FIB(n − 2)

Figure??shows four levels of recursion for the callfib(8):

fib(4) fib(3)

fib(5)

fib(3) fib(2)

fib(4)

fib(6)

fib(3) fib(2)

fib(4)

fib(2) fib(1)

fib(3)

fib(5)

fib(7)

fib(3) fib(2)

fib(4)

fib(2) fib(1)

fib(3)

fib(5)

fib(2) fib(1)

fib(3)

fib(1) fib(0)

fib(2)

fib(4)

fib(6)

fib(8)

Figure 6.1: Recursive calls during computation of Fibonaccinumber

A single recursive call to fib(n) results in one recursive call to fib(n − 1), two recursive calls to
fib(n − 2), three recursive calls to fib(n − 3), five recursive calls to fib(n − 4) and, in general,Fk−1

recursive calls to fib(n − k) For each call, we’re recomputing the same fibonacci number from scratch.

We can avoid this unnecessary repetitions by writing down the results of recursive calls and looking them
up again if we need them later. This process is calledmemoization. Here is the algorithm with
memoization.

MEMOFIB(n)

1 if (n < 2)

2 then return n

3 if (F[n] is undefined)

4 then F[n]← MEMOFIB(n − 1) + MEMOFIB(n − 2)

5 return F[n]

If we trace through the recursive calls to MEMOFIB, we find that arrayF[] gets filled from bottom up. I.e.,
first F[2], thenF[3], and so on, up toF[n]. We can replace recursion with a simple for-loop that just fills
up the arrayF[] in that order.
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This gives us our first explicitdynamic programmingalgorithm.

ITERFIB(n)

1 F[0]← 0

2 F[1]← 1

3 for i← 2 to n

4 do
5 F[i]← F[i − 1] + F[i − 2]

6 return F[n]

This algorithm clearly takes onlyO(n) time to computeFn. By contrast, the original recursive algorithm
takesΘ(φn), φ = 1+

√
5

2
≈ 1.618. ITERFIB achieves an exponential speedup over the original recursive

algorithm.

6.2 Dynamic Programming

Dynamic programming is essentially recursion without repetition. Developing a dynamic programming
algorithm generally involves two separate steps:

• Formulate problem recursively. Write down a formula for the whole problem as a simple
combination of answers to smaller subproblems.

• Build solution to recurrence from bottom up. Write an algorithm that starts with base cases and
works its way up to the final solution.

Dynamic programming algorithms need to store the results ofintermediate subproblems. This is often
but not alwaysdone with some kind of table. We will now cover a number of examples of problems in
which the solution is based on dynamic programming strategy.

6.3 Edit Distance

The words “computer” and “commuter” are very similar, and a change of just one letter, p-¿m, will
change the first word into the second. The word “sport” can be changed into “sort” by the deletion of the
‘p’, or equivalently, ‘sort’ can be changed into ‘sport’ by the insertion of ‘p’. The edit distance of two
strings, s1 and s2, is defined as the minimum number of point mutations required to change s1 into s2,
where a point mutation is one of:

• change a letter,

• insert a letter or
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• delete a letter

For example, the edit distance betweenFOODandMONEYis at most four:

FOOD −→MOOD −→MON
f

D

−→MONED −→MONEY

6.3.1 Edit Distance: Applications

There are numerous applications of the Edit Distance algorithm. Here are some examples:

Spelling Correction

If a text contains a word that is not in the dictionary, a ‘close’ word, i.e. one with a small edit distance,
may be suggested as a correction. Most word processing applications, such as Microsoft Word, have
spelling checking and correction facility. When Word, for example, finds an incorrectly spelled word, it
makes suggestions of possible replacements.

Plagiarism Detection

If someone copies, say, a C program and makes a few changes here and there, for example, change
variable names, add a comment of two, the edit distance between the source and copy may be small. The
edit distance provides an indication of similarity that might be too close in some situations.

Computational Molecular Biology DNA is a polymer. The monomer units of DNA are nucleotides, and
the polymer is known as a “polynucleotide.” Each nucleotideconsists of a 5-carbon sugar (deoxyribose),
a nitrogen containing base attached to the sugar, and a phosphate group. There are four different types of
nucleotides found in DNA, differing only in the nitrogenousbase. The four nucleotides are given one
letter abbreviations as shorthand for the four bases.

• A-adenine

• G-guanine

• C-cytosine

• T-thymine

Double-helix of DNA molecule with nucleotides Figure of Double-helix of DNA molecule with
nucleotides goes here

The edit distance like algorithms are used to compute a distance between DNA sequences (strings over
A,C,G,T, or protein sequences (over an alphabet of 20 amino acids), for various purposes, e.g.:

• to find genes or proteins that may have shared functions or properties

• to infer family relationships and evolutionary trees over different organisms.
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Speech Recognition

Algorithms similar to those for the edit-distance problem are used in some speech recognition systems.
Find a close match between a new utterance and one in a libraryof classified utterances.

6.3.2 Edit Distance Algorithm

A better way to display this editing process is to place the words above the other:

S D I M D M
M A T H S
A R T S

The first word has a gap for every insertion (I) and the second word has a gap for every deletion (D).
Columns with two different characters correspond to substitutions (S). Matches (M) do not count. The
Edit transcriptis defined as a string over the alphabet M, S, I, D that describes a transformation of one
string into another. For example

S D I M D M
1+ 1+ 1+ 0+ 1+ 0+ = 4

In general, it is not easy to determine the optimal edit distance. For example, the distance between
ALGORITHMandALTRUISTICis at most 6.

A L G O R I T H M
A L T R U I S T I C

Is this optimal?

6.3.3 Edit Distance: Dynamic Programming Algorithm

Suppose we have anm-character stringA and ann-character stringB. DefineE(i, j) to be the edit
distance between the firsti characters ofA and the firstj characters ofB. For example,

i︷ ︸︸ ︷
A L G O R I T H M

A L T R︸ ︷︷ ︸
j

U I S T I C

The edit distance between entire stringsA andB is E(m, n). The gap representation for the edit
sequences has a crucial “optimal substructure” property. If we remove the last column, the remaining
columns must represent the shortest edit sequence for the remaining substrings. The edit distance is 6 for
the following two words.
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A L G O R I T H M
A L T R U I S T I C

If we remove the last column, the edit distance reduces to 5.

A L G O R I T H
A L T R U I S T I

We can use the optimal substructure property to devise a recursive formulation of the edit distance
problem. There are a couple of obvious base cases:

• The only way to convert an empty string into a string ofj characters is by doingj insertions. Thus

E(0, j) = j

• The only way to convert a string ofi characters into the empty string is withi deletions:

E(i, 0) = i

There are four possibilities for the last column in the shortest possible edit sequence:

Deletion: Last entry in bottom row is empty.

i=3︷ ︸︸ ︷
A L G O R I T H M

A L︸ ︷︷ ︸
j=2

T R U I S T I C

In this case
E(i, j) = E(i − 1, j) + 1

Insertion: The last entry in the top row is empty.

i=5︷ ︸︸ ︷
A L G O R I T H M

A L T R U︸ ︷︷ ︸
j=5

I S T I C

In this case
E(i, j) = E(i, j − 1) + 1
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Substitution: Both rows have characters in the last column.

i=4︷ ︸︸ ︷
A L G O R I T H M

A L T︸ ︷︷ ︸
j=3

R U I S T I C

If the characters are different, then

E(i, j) = E(i − 1, j − 1) + 1

i=5︷ ︸︸ ︷
A L G O R I T H M

A L T R︸ ︷︷ ︸
j=4

U I S T I C

If characters are same, no substitution is needed:

E(i, j) = E(i − 1, j − 1)

Thus the edit distanceE(i, j) is the smallest of the four possibilities:

E(i, j) = min









E(i − 1, j) + 1

E(i, j − 1) + 1

E(i − 1, j − 1) + 1 if A[i] 6= B[j]

E(i − 1, j − 1) if A[i] = B[j]









Consider the example of edit between the words “ARTS” and “MATHS”:

A R T S
M A T H S

The edit distance would be inE(4, 5). If we recursion to compute, we will have

E(4, 5) = min









E(3, 5) + 1

E(4, 4) + 1

E(3, 4) + 1 if A[4] 6= B[5]

E(3, 4) if A[4] = B[5]









Recursion clearly leads to the same repetitive call pattern that we saw in Fibonnaci sequence. To avoid
this, we will use the DP approach. We will build the solution bottom-up. We will use the base case
E(0, j) to fill first row and the base caseE(i, 0) to fill first column. We will fill the remainingE matrix
row by row.
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A R T S

0 →1 →2 →3 →4

M

A

T

H

S

A R T S

0 →1 →2 →3 →4

M
↓
1

A
↓
2

T
↓
3

H
↓
4

S
↓
5

Table 6.1: First row and first column entries using the base cases

We can now fill the second row. The table not only shows the values of the cellsE[i, j] but also arrows
that indicate how it was computed using values inE[i − 1, j], E[i, j − 1] andE[i − 1, j − 1]. Thus, if a cell
E[i, j] has a down arrow fromE[i − 1, j] then the minimum was found usingE[i − 1, j]. For a right arrow,
the minimum was found usingE[i, j − 1]. For a diagonal down right arrow, the minimum was found
usingE[i − 1, j − 1]. There are certain cells that have two arrows pointed to it. In such a case, the
minimum could be obtained from the diagonalE[i − 1, j − 1] and either ofE[i − 1, j] andE[i, j − 1]. We
will use these arrows later to determine the edit script.
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A R T S

0 →1 →2 →3 →4

M
↓
1

↘
1

A
↓
2

T
↓
3

H
↓
4

S
↓
5

A R T S

0 →1 →2 →3 →4

M
↓
1

↘
1

↘
→2

A
↓
2

T
↓
3

H
↓
4

S
↓
5

Table 6.2: ComputingE[1, 1] andE[1, 2]

A R T S

0 →1 →2 →3 →4

M
↓
1

↘
1

↘
→2

↘
→3

A
↓
2

T
↓
3

H
↓
4

S
↓
5

A R T S

0 →1 →2 →3 →4

M
↓
1

↘
1

↘
→2

↘
→3

↘
→4

A
↓
2

T
↓
3

H
↓
4

S
↓
5

Table 6.3: ComputingE[1, 3] andE[1, 4]

An edit script can be extracted by following a unique path from E[0, 0] to E[4, 5]. There are three possible
paths in the current example. Let us follow these paths and compute the edit script. In an actual
implementation of the dynamic programming version of the edit distance algorithm, the arrows would be
recorded using an appropriate data structure. For example,each cell in the matrix could be a record with
fields for the value (numeric) and flags for the three incomingarrows.
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A R T S

0 →1 →2 →3 →4

M
↓
1

↘
1

↘
→2

↘
→3

↘
→4

A
↓
2

↘
1

↘
→2

↘
→3

↘
→4

T
↓
3

↓
2

↘
2

↘
2 →3

H
↓
4

↓
3

↘↓
3

↘↓
3

↘
3

S
↓
5

↓
4

↘↓
4

↘↓
4

↘
3

Table 6.4: The final table with allE[i, j] entries computed

A R T S

0 →1 →2 →3 →4

M
↓
1

↘
1

↘
→2

↘
→3

↘
→4

A
↓
2

↘
1

↘
→2

↘
→3

↘
→4

T
↓
3

↓
2

↘
2

↘
2 →3

H
↓
4

↓
3

↘↓
3

↘↓
3

↘
3

S
↓
5

↓
4

↘↓
4

↘↓
4

↘
3

Solution path 1:
1+ 0+ 1+ 1+ 0 = 3
D M S S M
M A T H S

A R T S
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A R T S

0 →1 →2 →3 →4

M
↓
1

↘
1

↘
→2

↘
→3

↘
→4

A
↓
2

↘
1

↘
→2

↘
→3

↘
→4

T
↓
3

↓
2

↘
2

↘
2 →3

H
↓
4

↓
3

↘↓
3

↘↓
3

↘
3

S
↓
5

↓
4

↘↓
4

↘↓
4

↘
3

Table 6.5: Possible edit scripts. The red arrows fromE[0, 0] to E[4, 5] show the paths that can be followed
to extract edit scripts.

A R T S

0 →1 →2 →3 →4

M
↓
1

↘
1

↘
→2

↘
→3

↘
→4

A
↓
2

↘
1

↘
→2

↘
→3

↘
→4

T
↓
3

↓
2

↘
2

↘
2 →3

H
↓
4

↓
3

↘↓
3

↘↓
3

↘
3

S
↓
5

↓
4

↘↓
4

↘↓
4

↘
3

Solution path 2:
1+ 1+ 0+ 1+ 0 = 3
S S M D M
M A T H S
A R T S
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A R T S

0 →1 →2 →3 →4

M
↓
1

↘
1

↘
→2

↘
→3

↘
→4

A
↓
2

↘
1

↘
→2

↘
→3

↘
→4

T
↓
3

↓
2

↘
2

↘
2 →3

H
↓
4

↓
3

↘↓
3

↘↓
3

↘
3

S
↓
5

↓
4

↘↓
4

↘↓
4

↘
3

Solution path 3:
1+ 0+ 1+ 0+ 1+ 0 = 3
D M I M D M
M A T H S

A R T S

6.3.4 Analysis of DP Edit Distance

There areΘ(n2) entries in the matrix. Each entryE(i, j) takesΘ(1) time to compute. The total running
time isΘ(n2).

6.4 Chain Matrix Multiply

Suppose we wish to multiply a series of matrices:

A1A2 . . . An

In what order should the multiplication be done? Ap× q matrixA can be multiplied with aq× r matrix
B. The result will be ap × r matrixC. In particular, for1 ≤ i ≤ p and1 ≤ j ≤ r,

C[i, j] =

q∑

k=1

A[i, k]B[k, j]

There are(p · r) total entries inC and each takesO(q) to compute.

C[i, j] =

q∑

k=1

A[i, k]B[k, j]

Thus the total number of multiplications isp · q · r. Consider the case of 3 matrices:A1 is 5 × 4, A2 is
4 × 6 andA3 is 6 × 2 The multiplication can be carried out either as((A1A2)A3) or (A1(A2A3)). The
cost of the two is

((A1A2)A3) = (5 · 4 · 6) + (5 · 6 · 2)= 180

(A1(A2A3)) = (4 · 6 · 2) + (5 · 4 · 2) = 88
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There is considerable savings achieved even for this simpleexample. In general, however, in what order
should we multiply a series of matricesA1A2 . . . An. Matrix multiplication is an associative but not
commutative operation. We are free to add parenthesis the above multiplication but the order of matrices
can not be changed. TheChain Matrix Multiplication Problemis stated as follows:

Given a sequenceA1, A2, . . . , An and dimensionsp0, p1, . . . , pn whereAi is of dimension
pi−1 × pi, determine the order of multiplication that minimizes the number of operations.

We could write a procedure that tries all possible parenthesizations. Unfortunately, the number of ways
of parenthesizing an expression is very large. If there aren items, there aren − 1 ways in which outer
most pair of parentheses can placed.

(A1)(A2A3A4 . . . An)

or (A1A2)(A3A4 . . . An)

or (A1A2A3)(A4 . . . An)

. . . . . .

or (A1A2A3A4 . . . An−1)(An)

Once we split just after thekth matrix, we create two sublists to be parethesized, one withk and other
with n − k matrices.

(A1A2 . . . Ak) (Ak+1 . . . An)

We could consider all the ways of parenthesizing these two. Since these are independent choices, if there
areL ways of parenthesizing the left sublist andR ways to parenthesize the right sublist, then the total is
L · R. This suggests the following recurrence forP(n), the number of different ways of parenthesizingn

items:

P(n) =

{
1 if n = 1,
∑n−1

k=1 P(k)P(n − k) if n ≥ 2

This is related to a famous function in combinatorics calledtheCatalan numbers. Catalan numbers are
related the number of different binary trees onn nodes. Catalan number is given by the formula:

C(n) =
1

n + 1

(

2n

n

)

In particular,P(n) = C(n − 1) C(n) ∈ Ω(4n/n3/2) The dominating term is the exponential4n thus
P(n) will grow large very quickly. So this approach is not practical.

6.4.1 Chain Matrix Multiplication-Dynamic Programming Formulation

The dynamic programming solution involves breaking up the problem into subproblems whose solutions
can be combined to solve the global problem. LetAi..j be the result of multiplying matricesi throughj. It
is easy to see thatAi..j is api−1 × pj matrix.

A3
4×5

A4
5×2

A5
2×8

A6
8×7

= A3..6
4×7
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At the highest level of parenthesization, we multiply two matrices

A1..n = A1..k · Ak+1..n 1 ≤ k ≤ n − 1.

The question now is: what is the optimum value ofk for the split and how do we parenthesis the
sub-chainsA1..k andAk+1..n. We can not use divide and conquer because we do not know what is the
optimumk. We will have to consider all possible values ofk and take the best of them. We will apply
this strategy to solve the subproblems optimally.

We will store the solutions to the subproblem in a table and build the table bottom-up (why)? For
1 ≤ i ≤ j ≤ n, let m[i, j] denote the minimum number of multiplications needed to computeAi..j. The
optimum can be described by the following recursive formulation.

• If i = j, there is only one matrix and thusm[i, i] = 0 (the diagonal entries).

• If i < j, the we are asking for the productAi..j.

• This can be split by considering eachk, i ≤ k < j, asAi..k timesAk+1..j.

The optimum time to computeAi..k is m[i, k] and optimum time forAk+1..j is in m[k + 1, j]. SinceAi..k

is api−1 × pk matrix andAk+1..j is pk × pj matrix, the time to multiply them ispi−1 × pk × pj. This
suggests the following recursive rule:

m[i, i] = 0

m[i, j] = min
i≤k<j

(m[i, k] + m[k + 1, j] + pi−1pkpj)

We do not want to calculatem entries recursively. So how should we proceed? We will fillm along the
diagonals. Here is how. Set allm[i, i] = 0 using the base condition. Compute cost for multiplication ofa
sequence of2 matrices. These arem[1, 2], m[2, 3], m[3, 4], . . . , m[n − 1, n]. m[1, 2], for example is

m[1, 2] = m[1, 1] + m[2, 2] + p0 · p1 · p2

For example, form for product of 5 matrices at this stage would be:

m[1, 1]
←m[1, 2]

↓

m[2, 2]
←m[2, 3]

↓

m[3, 3]
←m[3, 4]

↓

m[4, 4]
←m[4, 5]

↓
m[5, 5]
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Next, we compute cost of multiplication for sequences of three matrices. These are
m[1, 3], m[2, 4], m[3, 5], . . . , m[n − 2, n]. m[1, 3], for example is

m[1, 3] = min

{
m[1, 1] + m[2, 3] + p0 · p1 · p3

m[1, 2] + m[3, 3] + p0 · p2 · p3

We repeat the process for sequences of four, five and higher number of matrices. The final result will end
up inm[1, n].

Example: Let us go through an example. We want to find the optimal multiplication order for

A1
(5×4)

· A2
(4×6)

· A3
(6×2)

· A4
(2×7)

· A5
(7×3)

We will compute the entries of them matrix starting with the base condition. We first fill that main
diagonal:

0
0

0
0

0

Next, we compute the entries in the first super diagonal, i.e., the diagonal above the main diagonal:

m[1, 2] = m[1, 1] + m[2, 2] + p0 · p1 · p2 = 0 + 0 + 5 · 4 · 6 = 120

m[2, 3] = m[2, 2] + m[3, 3] + p1 · p2 · p3 = 0 + 0 + 4 · 6 · 2 = 48

m[3, 4] = m[3, 3] + m[4, 4] + p2 · p3 · p4 = 0 + 0 + 6 · 2 · 7 = 84

m[4, 5] = m[4, 4] + m[5, 5] + p3 · p4 · p5 = 0 + 0 + 2 · 7 · 3 = 42

The matrixm now looks as follows:

0 120
0 48

0 84
0 42

0

We now proceed to the second super diagonal. This time, however, we will need to try two possible
values fork. For example, there are two possible splits for computingm[1, 3]; we will choose the split
that yields the minimum:

m[1, 3] = m[1, 1] + m[2, 3] + p0 · p1 · p3 == 0 + 48 + 5 · 4 · 2 = 88

m[1, 3] = m[1, 2] + m[3, 3] + p0 · p2 · p3 = 120 + 0 + 5 · 6 · 2 = 180

the minimumm[1, 3] = 88 occurs withk = 1



88 CHAPTER 6. DYNAMIC PROGRAMMING

Similarly, for m[2, 4] andm[3, 5]:

m[2, 4] = m[2, 2] + m[3, 4] + p1 · p2 · p4 = 0 + 84 + 4 · 6 · 7 = 252

m[2, 4] = m[2, 3] + m[4, 4] + p1 · p3 · p4 = 48 + 0 + 4 · 2 · 7 = 104

minimumm[2, 4] = 104 atk = 3

m[3, 5] = m[3, 3] + m[4, 5] + p2 · p3 · p5 = 0 + 42 + 6 · 2 · 3 = 78

m[3, 5] = m[3, 4] + m[5, 5] + p2 · p4 · p5 = 84 + 0 + 6 · 7 · 3 = 210

minimumm[3, 5] = 78 atk = 3

With the second super diagonal computed, them matrix looks as follow:

0 120 88
0 48 104

0 84 78
0 42

0

We repeat the process for the remaining diagonals. However,the number of possible splits (values ofk)
increases:

m[1, 4] = m[1, 1] + m[2, 4] + p0 · p1 · p4 = 0 + 104 + 5 · 4 · 7 = 244

m[1, 4] = m[1, 2] + m[3, 4] + p0 · p2 · p4 = 120 + 84 + 5 · 6 · 7 = 414

m[1, 4] = m[1, 3] + m[4, 4] + p0 · p3 · p4 = 88 + 0 + 5 · 2 · 7 = 158

minimumm[1, 4] = 158 atk = 3

m[2, 5] = m[2, 2] + m[3, 5] + p1 · p2 · p5 = 0 + 78 + 4 · 6 · 3 = 150

m[2, 5] = m[2, 3] + m[4, 5] + p1 · p3 · p5 = 48 + 42 + 4 · 2 · 3 = 114

m[2, 5] = m[2, 4] + m[5, 5] + p1 · p4 · p5 = 104 + 0 + 4 · 7 · 3 = 188

minimumm[2, 5] = 114 atk = 3

The matrixm at this stage is:
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0 120 88 158
0 48 104 114

0 84 78
0 42

0

That leaves them[1, 5] which can now be computed:

m[1, 5] = m[1, 1] + m[2, 5] + p0 · p1 · p5 = 0 + 114 + 5 · 4 · 3 = 174

m[1, 5] = m[1, 2] + m[3, 5] + p0 · p2 · p5 = 120 + 78 + 5 · 6 · 3 = 288

m[1, 5] = m[1, 3] + m[4, 5] + p0 · p3 · p5 = 88 + 42 + 5 · 2 · 3 = 160

m[1, 5] = m[1, 4] + m[5, 5] + p0 · p4 · p5 = 158 + 0 + 5 · 7 · 3 = 263

minimumm[1, 5] = 160 atk = 3

We thus have the final cost matrix.

0 120 88 158 160
0 0 48 104 114
0 0 0 84 78
0 0 0 0 42
0 0 0 0 0

Here is the order in whichm entries are calculated

0 1 5 8 10
0 0 2 6 9
0 0 0 3 7
0 0 0 0 4
0 0 0 0 0

and the splitk values that led to a minimumm[i, j] value

0 1 1 3 3
0 2 3 3

0 3 3
0 4

0
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Based on the computation, the minimum cost for multiplying the five matrices is 160 and the optimal
order for multiplication is

((A1(A2A3))(A4A5))

This can be represented as a binary tree

A1

A2 A3

2

1

A4 A5

4

3

Figure 6.2: Optimum matrix multiplication order for the fivematrices example

Here is the dynamic programming based algorithm for computing the minimum cost of chain matrix
multiplication.

MATRIX -CHAIN(p, N)

1 for i = 1, N

2 do m[i, i]← 0

3 for L = 2, N

4 do
5 for i = 1, n − L + 1

6 do j← i + L − 1

7 m[i, j]←∞
8 for k = 1, j − 1

9 do t← m[i, k] + m[k + 1, j] + pi−1 · pk · pj

10 if (t < m[i, j])

11 then m[i, j]← t; s[i, j]← k

Analysis: There are three nested loops. Each loop executes a maximumn times. Total time is thus
Θ(n3).

Thes matrix stores the valuesk. Thes matrix can be used to extracting the order in which matrices are to
be multiplied. Here is the algorithm that caries out the matrix multiplication to computeAi..j:
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MULTIPLY (i, j)

1 if (i = j)

2 then return A[i]

3 else k← s[i, j]

4 X← MULTIPLY (i, k)

5 Y ← MULTIPLY (k + 1, j)

6 return X · Y

6.5 0/1 Knapsack Problem

A thief goes into a jewelry store to steal jewelry items. He has a knapsack (a bag) that he would like to
fill up. The bag has a limit on the total weight of the objects placed in it. If the total weight exceeds the
limit, the bag would tear open. The value of of the jewelry items varies for cheap to expensive. The
thief’s goal is to put items in the bag such that the value of the items is maximized and the weight of the
items does not exceed the weight limit of the bag. Another limitation is that an item can either be put in
the bag or not - fractional items are not allowed. The problemis: what jewelry should the thief choose
that satisfy the constraints?

Formally, the problem can be stated as follows: Given a knapsack with maximum capacityW, and a setS
consisting ofn items Each itemi has some weightwi and value valuevi (all wi , vi andW are integer
values) How to pack the knapsack to achieve maximum total value of packed items? For example,
consider the following scenario:

Figure 6.3: Knapsack can holdW = 20

Item i Weightwi Valuevi

1 2 3
2 3 4
3 4 5
4 5 8
5 9 10

The knapsack problem belongs to the domain of optimization problems. Mathematically, the problem is

maximize
∑

i∈T

vi

subject to
∑

i∈T

wi ≤ W
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The problem is called a“0-1” problem, because each item must be entirely accepted or rejected. How do
we solve the problem. We could try the brute-force solution:

• Since there aren items, there are2n possible combinations of the items (an item either chosen or
not).

• We go through all combinations and find the one with the most total value and with total weight
less or equal toW

Clearly, the running time of such a brute-force algorithm will beO(2n). Can we do better? The answer is
“yes”, with an algorithm based on dynamic programming Let usrecap the steps in the dynamic
programming strategy:

1. Simple Subproblems: We should be able to break the original problem to smaller subproblems
that have the same structure

2. Principle of Optimality : Recursively define the value of an optimal solution. Expressthe solution
of the original problem in terms of optimal solutions for smaller problems.

3. Bottom-up computation: Compute the value of an optimal solution in a bottom-up fashion by
using a table structure.

4. Construction of optimal solution: Construct an optimal solution from computed information.

Let us try this: If items are labelled1, 2, . . . , n, then a subproblem would be to find an optimal solution
for

Sk = items labelled1, 2, . . . , k

This is a valid subproblem definition. The question is: can wedescribe the final solutionSn in terms of
subproblemsSk? Unfortunately, we cannot do that. Here is why. Consider the optimal solution if we can
choose items 1 through 4 only.

Solution S4

• Items chosen are1, 2, 3, 4

• Total weight:2 + 3 + 4 + 5 = 14

• Total value:3 + 4 + 5 + 8 = 20

Item wi vi

1 2 3
2 3 4
3 4 5
4 5 8
5 9 10

Now consider the optimal solution when items 1 through 5 are available.
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Solution S5

• Items chosen are1, 3, 4, 5

• Total weight:2 + 4 + 5 + 9 = 20

• Total value:3 + 5 + 8 + 10 = 26

S4 is not part ofS5!!

Item wi vi

1 2 3
2 3 4
3 4 5
4 5 8
5 9 10

The solution for S4 is not part of the solution for S5. So our definition of a subproblem is flawed and we
need another one.

6.5.1 0/1 Knapsack Problem: Dynamic Programming Approach

For eachi ≤ n and eachw ≤ W, solve the knapsack problem for the firsti objects when the capacity is
w. Why will this work? Because solutions to larger subproblems can be built up easily from solutions to
smaller ones. We construct a matrixV [0 . . . n, 0 . . . W]. For1 ≤ i ≤ n, and0 ≤ j ≤ W, V [i, j] will store
the maximum value of any set of objects{1, 2, . . . , i} that can fit into a knapsack of weightj. V [n, W]

will contain the maximum value of alln objects that can fit into the entire knapsack of weight W.

To compute entries ofV we will imply an inductive approach. As a basis,V [0, j] = 0 for 0 ≤ j ≤ W

since if we have no items then we have no value. We consider twocases:

Leave objecti: If we choose to not take objecti, then the optimal value will come about by considering
how to fill a knapsack of sizej with the remaining objects{1, 2, . . . , i − 1}. This is justV [i − 1, j].

Take object i: If we take objecti, then we gain a value ofvi. But we use upwi of our capacity. With the
remainingj − wi capacity in the knapsack, we can fill it in the best possible way with objects
{1, 2, . . . , i − 1}. This isvi + V [i − 1, j − wi]. This is only possible ifwi ≤ j.

This leads to the following recursive formulation:

V [i, j] = −∞ if j < 0

V [0, j] = 0 if j ≥ 0

V [i, j] =

{
V [i − 1, j] if wi > j

max
{
V [i − 1, j], vi + V [i − 1, j − wi]

}
if wi ≤ j

A naive evaluation of this recursive definition is exponential. So, as usual, we avoid re-computation by
making a table.

Example: The maximum weight the knapsack can hold isW is 11. There are five items to choose from.
Their weights and values are presented in the following table:
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Weight limit (j): 0 1 2 3 4 5 6 7 8 9 10 11

w1 = 1 v1 = 1

w2 = 2 v2 = 6

w3 = 5 v3 = 18

w4 = 6 v4 = 22

w5 = 7 v5 = 28

The[i, j] entry here will beV [i, j], the best value obtainable using the firsti rows of items if the
maximum capacity werej. We begin by initializating and first row.

Weight limit: 0 1 2 3 4 5 6 7 8 9 10 11

w1 = 1 v1 = 1 0 1 1 1 1 1 1 1 1 1 1 1
w2 = 2 v2 = 6 0
w3 = 5 v3 = 18 0
w4 = 6 v4 = 22 0
w5 = 7 v5 = 28 0

Recall that we takeV [i, j] to be0 if either i or j is ≤ 0. We then proceed to fill in top-down, left-to-right
always using

V [i, j] = max
{
V [i − 1, j], vi + V [i − 1, j − wi]

}

Weight limit: 0 1 2 3 4 5 6 7 8 9 10 11

w1 = 1 v1 = 1 0 1 1 1 1 1 1 1 1 1 1 1
w2 = 2 v2 = 6 0 1 6 7 7 7 7 7 7 7 7 7
w3 = 5 v3 = 18 0
w4 = 6 v4 = 22 0
w5 = 7 v5 = 28 0

Weight limit: 0 1 2 3 4 5 6 7 8 9 10 11

w1 = 1 v1 = 1 0 1 1 1 1 1 1 1 1 1 1 1
w2 = 2 v2 = 6 0 1 6 7 7 7 7 7 7 7 7 7
w3 = 5 v3 = 18 0 1 6 7 7 18 19 24 25 25 25 25
w4 = 6 v4 = 22 0
w5 = 7 v5 = 28 0

As an illustration, the value ofV [3, 7] was computed as follows:

V [3, 7] =max
{
V [3 − 1, 7], v3 + V [3 − 1, 7 − w3]

}

=max
{
V [2, 7], 18 + V [2, 7 − 5]

}

=max
{
7, 18 + 6

}

=24
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Weight limit: 0 1 2 3 4 5 6 7 8 9 10 11

w1 = 1 v1 = 1 0 1 1 1 1 1 1 1 1 1 1 1
w2 = 2 v2 = 6 0 1 6 7 7 7 7 7 7 7 7 7
w3 = 5 v3 = 18 0 1 6 7 7 18 19 24 25 25 25 25
w4 = 6 v4 = 22 0 1 6 7 7 18 22 24 28 29 29 40
w5 = 7 v5 = 28 0

Finally, we have

Weight limit: 0 1 2 3 4 5 6 7 8 9 10 11

w1 = 1 v1 = 1 0 1 1 1 1 1 1 1 1 1 1 1
w2 = 2 v2 = 6 0 1 6 7 7 7 7 7 7 7 7 7
w3 = 5 v3 = 18 0 1 6 7 7 18 19 24 25 25 25 25
w4 = 6 v4 = 22 0 1 6 7 7 18 22 24 28 29 29 40
w5 = 7 v5 = 28 0 1 6 7 7 18 22 28 29 34 35 40

The maximum value of items in the knapsack is 40, the bottom-right entry). The dynamic programming
approach can now be coded as the following algorithm:

KNAPSACK(n, W)

1 for w = 0, W

2 do V [0, w]← 0

3 for i = 0, n

4 do V [i, 0]← 0

5 for w = 0, W

6 do if (wi ≤ w & vi + V [i − 1, w − wi] > V [i − 1, w])

7 then V [i, w]← vi + V [i − 1, w − wi]

8 else V [i, w]← V [i − 1, w]

The time complexity is clearlyO(n · W). It must be cautioned that asn andW get large, both time and
space complexity become significant.

Constructing the Optimal Solution

The algorithm for computingV [i, j] does not keep record of which subset of items gives the optimal
solution. To compute the actual subset, we can add an auxiliary boolean arraykeep[i, j] which is1 if we
decide to take theith item and0 otherwise. We will use all the valueskeep[i, j] to determine the optimal
subsetT of items to put in the knapsack as follows:

• If keep[n, W] is 1, thenn ∈ T . We can now repeat this argument forkeep[n − 1, W − wn].

• If kee[n, W] is 0, then 6∈ T and we repeat the argument forkeep[n − 1, W].



96 CHAPTER 6. DYNAMIC PROGRAMMING

We will add this to the knapsack algorithm:

KNAPSACK(n, W)

1 for w = 0, W

2 do V [0, w]← 0

3 for i = 0, n

4 do V [i, 0]← 0

5 for w = 0, W

6 do if (wi ≤ w & vi + V [i − 1, w − wi] > V [i − 1, w])

7 then V [i, w]← vi + V [i − 1, w − wi]; keep[i, w]← 1

8 else V [i, w]← V [i − 1, w]; keep[i, w]← 0

9 // output the selected items
10 k←W

11 for i = n downto 1

12 do if (keep[i, k] = 1)

13 then output i

14 k← k − wi

Here is the keep matrix for the example problem.

Weight limit: 0 1 2 3 4 5 6 7 8 9 10 11

w1 = 1 v1 = 1 0 1 1 1 1 1 1 1 1 1 1 1
w2 = 2 v2 = 6 0 0 1 1 1 1 1 1 1 1 1 1
w3 = 5 v3 = 18 0 0 0 0 0 1 1 1 1 1 1 1
w4 = 6 v4 = 22 0 0 0 0 0 0 1 0 1 1 1 1

w5 = 7 v5 = 28 0 0 0 0 0 0 0 1 1 1 1 0

When the item selection algorithm is applied, the selected items are4 and3. This is indicated by the
boxed entries in the table above.



Chapter 7

Greedy Algorithms

An optimization problemis one in which you want to find, not just a solution, but the best solution.
Search techniques look at many possible solutions. E.g. dynamic programming or backtrack search. A “
greedy algorithm” sometimes works well for optimization problems

A greedy algorithm works in phases. At each phase:

• You take the best you can get right now, without regard for future consequences.

• You hope that by choosing a local optimum at each step, you will end up at a global optimum.

For some problems, greedy approach always gets optimum. Forothers, greedy finds good, but not always
best. If so, it is called a greedy heuristic, or approximation. For still others, greedy approach can do very
poorly.

7.1 Example: Counting Money

Suppose you want to count out a certain amount of money, usingthe fewest possible bills (notes) and
coins. A greedy algorithm to do this would be: at each step, take the largest possible note or coin that
does not overshoot.

while (N > 0){

give largest denomination coin≤ N

reduceN by value of that coin

}

Consider the currency in U.S.A. There are paper notes for one dollar, five dollars, ten dollars, twenty
dollars, fifty dollars and hundred dollars. The notes are also called “bills”. The coins are one cent, five
cents (called a “nickle”), ten cents (called a “dime”) and twenty five cents (a “quarter”). In Pakistan, the
currency notes are five rupees, ten rupees, fifty rupees, hundred rupees, five hundred rupees and thousand

97
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rupees. The coins are one rupee and two rupees. Suppose you are asked to give change of $6.39 (six
dollars and thirty nine cents), you can choose:

• a $5 note

• a $1 note to make $6

• a 25 cents coin (quarter), to make $6.25

• a 10 cents coin (dime), to make $6.35

• four 1 cents coins, to make $6.39

Notice how we started with the highest note, $5, before moving to the next lower denomination.

Formally, the Coin Change problem is: Givenk denominationsd1, d2, . . . , dk and givenN, find a way of
writing

N = i1d1 + i2d2 + · · · + ikdk

such that
i1 + i2 + · · · + ik is minimized.

The “size” of problem isk.

The greedy strategy works for the coin change problem but notalways. Here is an example where it fails.
Suppose, in some (fictional) monetary system, “ krons” come in 1 kron, 7 kron, and 10 kron coins Using
a greedy algorithm to count out 15 krons, you would get A 10 kron piece Five 1 kron pieces, for a total of
15 krons This requires six coins. A better solution, however, would be to use two 7 kron pieces and one 1
kron piece This only requires three coins The greedy algorithm results in a solution, but not in an optimal
solution

The greedy approach gives us an optimal solution when the coins are all powers of a fixed denomination.

N = i0D
0 + i1D

1 + i2D
2 + · · · + ikD

k

Note that this isN represented in basedD. U.S.A coins are multiples of 5: 5 cents, 10 cents and 25 cents.

7.1.1 Making Change: Dynamic Programming Solution

The general coin change problem can be solved using Dynamic Programming. Set up a Table,
C[1..k, 0..N] in which the rows denote available denominations,di; (1 ≤ i ≤ k) and columns denote the
amount from0 . . . N units, (0 ≤ j ≤ N). C[i, j] denotes the minimum number of coins, required to pay
an amountj using only coins of denominations1 to i. C[k, N] is the solution required.

To pay an amountj units, using coins of denominations1 to i, we have two choices:

1. either chose NOT to use any coins of denominationi,

2. or chose at least one coin of denominationi, and also pay the amount(j − di).
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To pay(j − di) units it takesC[i, j − di] coins. Thus,

C[i, j] = 1 + C[i, j − di]

Since we want to minimize the number of coins used,

C[i, j] = min(C[i − 1, j], 1 + C[i, j − di])

Here is the dynamic programming based algorithm for the coinchange problem.

COINS(N)

1 d[1..n] = {1, 4, 6} // (coinage, for example)
2 for i = 1 to k

3 do c[i, 0]← 0

4 for i = 1 to k

5 do for j = 1 to N

6 do if (i = 1 & j < d[i])

7 then c[i, j]←∞
8 else if(i = 1)

9 then c[i, j]← 1 + c[1, j − d[1]]

10 else if(j < d[i])

11 then c[i, j]← c[i − 1, j]

12 else c[i, j]← min (c[i − 1, j], 1 + c[i, j − d[i]])

13 return c[k, N]

7.1.2 Complexity of Coin Change Algorithm

Greedy algorithm (non-optimal) takesO(k) time. Dynamic Programming takesO(kN) time. Note that
N can be as large as2k so the dynamic programming algorithm is really exponentialin k.

7.2 Greedy Algorithm: Huffman Encoding

The Huffman codes provide a method of encoding data efficiently. Normally, when characters are coded
using standard codes like ASCII. Each character is represented by a fixed-length codeword of bits, e.g., 8
bits per character. Fixed-length codes are popular becauseit is very easy to break up a string into its
individual characters, and to access individual characters and substrings by direct indexing. However,
fixed-length codes may not be he most efficient from the perspective of minimizing the total quantity of
data.

Consider the string “ abacdaacac”. if the string is coded withASCII codes, the message length would be
10 × 8 = 80 bits. We will see shortly that the same string encoded with a variable length Huffman
encoding scheme will produce a shorter message.
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7.2.1 Huffman Encoding Algorithm

Here is how the Huffman encoding algorithm works. Given a message string, determine the frequency of
occurrence (relative probability) of each character in themessage. This can be done by parsing the
message and counting how many time each character (or symbol) appears. The probability is the number
of occurrence of a character divided by the total charactersin the message. The frequencies and
probabilities for the example string “ abacdaacac” are

character a b c d
frequency 5 1 3 1
probability 0.5 0.1 0.3 0.1

Next, create binary tree (leaf) node for each symbol (character) that occurs with nonzero frequency Set
node weight equal to the frequency of the symbol. Now comes the greedy part: Find two nodes with
smallest frequency. Create a new node with these two nodes as children, and with weight equal to the
sum of the weights of the two children. Continue until we have asingle tree.

Finding two nodes with the smallest frequency can be done efficiently by placing the nodes in a
heap-based priority queue. The min-heap is maintained using the frequencies. When a new node is
created by combining two nodes, the new node is placed in the priority queue. Here is the Huffman tree
building algorithm.

HUFFMAN(N, symbol[1..N], freq[1..N])

1 for i = 1 to N

2 do t← TreeNode(symbol[i], freq[i])

3 pq.insert(t, freq[i]) // priority queue
4 for i = 1 to N − 1

5 do x = pq.remove(); y = pq.remove()

6 z← new TreeNode

7 z.left← x; z.right← y

8 z.freq← x.freq + y.freq

9 pq.insert(z, z.freq);

10 return pq.remove(); // root

Figure 7.1 shows the tree built for the example message “abacdaacac”
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Figure 7.1: Huffman binary tree for the string “abacdaacac”

Prefix Property:

The codewords assigned to characters by the Huffman algorithm have the property that no codeword is a
prefix of any other:

character a b c d
frequency 5 1 3 1
probability 0.5 0.1 0.3 0.1
codeword 0 110 10 111

The prefix property is evident by the fact that codewords are leaves of the binary tree. Decoding a prefix
code is simple. We traverse the root to the leaf letting the input 0 or 1 tell us which branch to take.

Expected encoding length:

If a string ofn characters over the alphabetC = {a, b, c, d} is encoded using 8-bit ASCII, the length of
encoded string is8n. For example, the string “abacdaacac” will require8 × 10 = 80 bits. The same
string encoded with Huffman codes will yield

a b a c d a a c a c
0 110 0 10 111 0 0 10 0 10

This is just 17 bits, a significant saving!. For a string ofn characters over this alphabet, the expected
encoded string length is

n(0.5 · 1 + 0.1 · 3 + 0.3 · 2 + 0.1 · 3) = 1.7n

In general, letp(x) be the probability of occurrence of a character, and letdT(x) denote the length of the
codeword relative to some prefix treeT . The expected number of bits needed to encode a text withn

characters is given by
B(T) = n

∑

x∈C

p(x)dT(x)
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7.2.2 Huffman Encoding: Correctness

Huffman algorithm uses a greedy approach to generate a prefixcodeT that minimizes the expected
lengthB(T) of the encoded string. In other words, Huffman algorithm generates an optimum prefix code.
The question that remains is thatwhy is the algorithm correct?

Recall that the cost of any encoding treeT is

B(T) = n
∑

x∈C

p(x)dT(x)

Our approach to prove the correctness of Huffman Encoding will be to show that any tree that differs
from the one constructed by Huffman algorithm can be converted into one that is equal to Huffman’s tree
without increasing its costs. Note that the binary tree constructed by Huffman algorithm is a full binary
tree.

Claim:

Consider two charactersx andy with the smallest probabilities. Then there is optimal codetree in which
these two characters are siblings at the maximum depth in thetree.

Proof:

Let T be any optimal prefix code tree with two siblingsb andc at the maximum depth of the tree. Such a
tree is shown in Figure 7.2Assume without loss of generalitythat

p(b) ≤ p(c) and p(x) ≤ p(y)

x


c


y


b


T


Figure 7.2: Optimal prefix code treeT

Sincex andy have the two smallest probabilities (we claimed this), it follows that

p(x) ≤ p(b) and p(y) ≤ p(c)
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Sinceb andc are at the deepest level of the tree, we know that

d(b) ≥ d(x) and d(c) ≥ d(y) (d is the depth)

Thus we have

p(b) − p(x) ≥ 0

and

d(b) − d(x) ≥ 0

Hence their product is non-negative. That is,

(p(b) − p(x)) · (d(b) − d(x)) ≥ 0

Now swap the positions ofx andb in the tree

x


c


y


b


T


Figure 7.3: Swapx andb in tree prefix treeT

This results in a new treeT ′
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x
c


y


b


T’


Figure 7.4: Prefix treeT ′ afterx andb are swapped

Let’s see how the cost changes. The cost ofT ′ is

B(T ′) = B(T) − p(x)d(x) + p(x)d(b) − p(b)d(b) + p(b)d(x)

= B(T) + p(x)[d(b) − d(x)] − p(b)[d(b) − d(x)]

= B(T) − (p(b) − p(x))(d(b) − d(x))

≤ B(T) because(p(b) − p(x))(d(b) − d(x)) ≥ 0

Thus the cost does not increase, implying thatT ′ is an optimal tree.

By switchingy with c we get the treeT ′′. Using a similar argument, we can show thatT ′′ is also optimal.

x
c


y


b


T’


=⇒

x


c


y


b


T’’


The final treeT ′′ satisfies the claim we made earlier, i.e., consider two charactersx andy with the
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smallest probabilities. Then there is optimal code tree in which these two characters are siblings at the
maximum depth in the tree.

The claim we just proved asserts that the first step of Huffmanalgorithm is the proper one to perform (the
greedy step). The complete proof of correctness for Huffmanalgorithm follows by induction onn.

Claim: Huffman algorithm produces the optimal prefix code tree.

Proof: The proof is by induction onn, the number of characters. For the basis case,n = 1, the tree
consists of a single leaf node, which is obviously optimal. We want to show it is true with exactlyn
characters.

Suppose we have exactlyn characters. The previous claim states that two charactersx andy with the
lowest probability will be siblings at the lowest level of the tree. Removex andy and replace them with a
new characterz whose probability isp(z) = p(x) + p(y). Thusn − 1 characters remain.

Consider any prefix code treeT made with this new set ofn − 1 characters. We can convertT into prefix
code treeT ′ for the original set ofn characters by replacingz with nodesx andy. This is essentially
undoing the operation wherex andy were removed an replaced byz. The cost of the new treeT ′ is

B(T ′) = B(T) − p(z)d(z) + p(x)[d(z) + 1] + p(y)[d(z) + 1]

= B(T) − (p(x) + p(y))d(z) + (p(x) + p(y))[d(z) + 1]

= B(T) + (p(x) + p(y))[d(z) + 1 − d(z)]

= B(T) + p(x) + p(y)

The cost changes but the change depends in no way on the structure of the treeT (T is for n − 1

characters). Therefore, to minimize the cost of the final treeT ′, we need to build the treeT onn − 1

characters optimally. By induction, this is exactly what Huffman algorithm does. Thus the final tree is
optimal.

7.3 Activity Selection

The activity scheduling is a simple scheduling problem for which the greedy algorithm approach provides
an optimal solution. We are given a setS = {a1, a2, . . . , an} of n activities that are to be scheduled to use
some resource. Each activityai must be started at a given start timesi and ends at a given finish timefi.

An example is that a number of lectures are to be given in a single lecture hall. The start and end times
have be set up in advance. The lectures are to be scheduled. There is only one resource (e.g., lecture hall)
Some start and finish times may overlap. Therefore, not all requests can be honored. We say that two
activitiesai andaj are non-interfering if their start-finish intervals do not overlap. I.e,
(si, fi) ∩ (sj, fj) = ∅. The activity selection problem is to select a maximum-sizeset of mutually
non-interfering activities for use of the resource.

So how do we schedule the largest number of activities on the resource? Intuitively, we do not like long
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activities Because they occupy the resource and keep us from honoring other requests. This suggests the
greedy strategy: Repeatedly select the activity with the smallest duration(fi − si) and schedule it,
provided that it does not interfere with any previously scheduled activities. Unfortunately, this turns out
to be non-optimal

Here is a simple greedy algorithm that works: Sort the activities by their finish times. Select the activity
that finishes first and schedule it. Then, among all activities that do not interfere with this first job,
schedule the one that finishes first, and so on.

SCHEDULE(a[1..N])

1 sorta[1..N] by finish times
2 A← {a[1]}; // schedule activity 1 first
3 prev← 1; // most recently scheduled
4 for i = 2 to N

5 do if (a[i].start ≥ a[prev].finish)

6 then A← A ∪ a[i]; prev← i

Figure 7.5 shows an example of the activity scheduling algorithm. There are eight activities to be
scheduled. Each is represented by a rectangle. The width of arectangle indicates the duration of an
activity. The eight activities are sorted by their finish times. The eight rectangles are arranged to show the
sorted order. Activitya1 is scheduled first. Activitiesa2 anda3 interfere witha1 so they ar not selected.
The next to be selected isa4. Activities a5 anda6 interfere witha4 so are not chosen. The last one to be
chosen isa7. Eventually, only three out of the eight are scheduled.

Timing analysis: Time is dominated by sorting of the activities by finish times. Thus the complexity is
O(N logN).
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Figure 7.5: Example of greedy activity scheduling algorithm

7.3.1 Correctness of Greedy Activity Selection

Our proof of correctness is based on showing that the first choice made by the algorithm is the best
possible. And then using induction to show that the algorithm is globally optimal. The proof structure is
noteworthy because many greedy correctness proofs are based on the same idea: Show that any other
solution can be converted into the greedy solution without increasing the cost.

Claim:

Let S = {a1, a2, . . . , an} of n activities, sorted by increasing finish times, that are to bescheduled to use
some resource. Then there is an optimal schedule in which activity a1 is scheduled first.

Proof:

Let A be an optimal schedule. Letx be the activity inA with the smallest finish time. Ifx = a1 then we
are done. Otherwise, we form a new scheduleA ′ by replacingx with activity a1.
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We claim thatA ′ = A − {x} ∪ {a1} is a feasible schedule, i.e., it has no interfering activities. This
becauseA − {x} cannot have any other activities that start beforex finishes, since otherwise, these
activities will interfere withx.
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Figure 7.7: New scheduleA ′ by replacingx with ctivity a1.

Sincea1 is by definition the first activity to finish, it has an earlier finish time thanx. Thusa1 cannot
interfere with any of the activities inA − {x}. Thus,A ′ is a feasible schedule. ClearlyA andA ′ contain
the same number of activities implying thatA ′ is also optimal.

Claim:
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The greedy algorithm gives an optimal solution to the activity scheduling problem.

Proof:

The proof is by induction on the number of activities. For thebasis case, if there are no activities, then the
greedy algorithm is trivially optimal. For the induction step, let us assume that the greedy algorithm is
optimal on any set of activities of size strictly smaller than |S| and we prove the result forS. Let S ′ be the
set of activities that do not interfere with activitya1, That is

S ′ = {ai ∈ S|si ≥ f1}

Any solution forS ′ can be made into a solution forS by simply adding activitya1, and vice versa.
Activity a1 is in the optimal schedule (by the above previous claim). It follows that to produce an optimal
schedule for the overall problem, we should first schedulea1 and then append the optimal schedule for
S ′. But by induction (since|S ′| < |S|), this exactly what the greedy algorithm does.

7.4 Fractional Knapsack Problem

Earlier we saw the 0-1 knapsack problem. A knapsack can only carryW total weight. There aren items;
theith item is worthvi and weighswi. Items can either be put in the knapsack or not. The goal was to
maximize the value of items without exceeding the total weight limit of W. In contrast, in the fractional
knapsack problem, the setup is exactly the same. But, one is allowed to takefractionof an item for a
fraction of the weight and fraction of value. The 0-1 knapsack problem is hard to solve. However, there is
a simple and efficient greedy algorithm for the fractional knapsack problem.

Let ρi = vi/wi denote thevalue per unit weightratio for itemi. Sort the items in decreasing order ofρi.
Add items in decreasing order ofρi. If the item fits, we take it all. At some point there is an item that
does not fit in the remaining space. We take as much of this itemas possible thus filling the knapsack
completely.
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Figure 7.8: Greedy solution to the fractional knapsack problem

It is easy to see that the greedy algorithm is optimal for the fractional knapsack problem. Given a room
with sacks of gold, silver and bronze, one (thief?) would probably take as much gold as possible. Then
take as much silver as possible and finally as much bronze as possible. It would never benefit to take a
little less gold so that one could replace it with an equal weight of bronze.

We can also observe that the greedy algorithm is not optimal for the 0-1 knapsack problem. Consider
the example shown in the Figure 7.9. If you were to sort the items byρi , then you would first take the
items of weight 5, then 20, and then (since the item of weight 40 does not fit) you would settle for the
item of weight 30, for a total value of $30 + $100 + $90 = $220. Onthe other hand, if you had been less
greedy, and ignored the item of weight 5, then you could take the items of weights 20 and 40 for a total
value of $100+$160 = $260. This is shown in Figure 7.10.
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Figure 7.9: Greedy solution for the 0-1 knapsack problem (non-optimal)
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Figure 7.10: Optimal solution for the 0-1 knapsack problem
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Chapter 8

Graphs

We begin a major new topic: Graphs. Graphs are important discrete structures because they are a flexible
mathematical model for many application problems. Any timethere is a set of objects and there is some
sort of “connection” or “relationship” or “interaction” between pairs of objects, a graph is a good way to
model this. Examples of this can be found in computer and communication networks transportation
networks, e.g., roads VLSI, logic circuits surface meshes for shape description in computer-aided design
and GIS precedence constraints in scheduling systems.

A graphG = (V, E) consists of a finite set ofvertices V (or nodes) andE, a binary relation onV called
edges. E is a set of pairs fromV . If a pair is ordered, we have adirectedgraph. Forunorderedpair, we
have anundirectedgraph.
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Figure 8.1: Types of graphs

A vertexw is adjacentto vertexv if there is an edge fromv to w.

113
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Figure 8.2: Adjacent vertices

In an undirected graph, we say that an edge isincidenton a vertex if the vertex is an endpoint of the
edge. of the edge
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e1 incident on vertices 1 & 2


e1
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e4


e2 incident on vertices 1 & 3


e3 incident on vertices 1 & 4


e4 incident on vertices 2 & 4


Figure 8.3: Incidence of edges on vertices

In a digraph, the number of edges coming out of a vertex is called the out-degreeof that vertex. Number
of edges coming in is thein-degree. In an undirected graph, we just talk of degree of a vertex. Itis the
number of edges incident on the vertex.
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Figure 8.4: In and out degrees of vertices of a graph

For a digraphG = (V, E),

∑

v∈V

in-degree(v) =
∑

v∈V

out-degree(v) = |E|

where|E| means the cardinality of the setE, i.e., the number of edges.

For an undirected graphG = (V, E),

∑

v∈V

degree(v) = 2|E|

where|E| means the cardinality of the setE, i.e., the number of edges.

A path in a directed graphs is a sequence of vertices〈v0, v1, . . . , vk〉 such that(vi−1, vi) is an edge for
i = 1, 2, . . . , k. The lengthof the paths is the number of edges,k. A vertexw is reachablefrom vertex
u is there is a path fromu to w. A path is simple if all vertices (except possibly the fist andlast) are
distinct.

A cyclein a digraph is a path containing at least one edge and for which v0 = vk. A Hamiltoniancycle
is a cycle that visits every vertex in a graph exactly once. AEuleriancycle is a cycle that visits every
edge of the graph exactly once. There are also “path” versions in which you do not need return to the
starting vertex.
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Figure 8.5: Cycles in a directed graph

A graph is said to beacyclic if it contains no cycles. A graph isconnectedif every vertex can reach
every other vertex. A directed graph that is acyclic is called a directed acyclic graph (DAG).

There are two ways of representing graphs: using an adjacency matrix and using an adjacency list. Let
G = (V, E) be a digraph withn = |V | and lete = |E|. We will assume that the vertices ofG are indexed
{1, 2, . . . , n}.

An adjacency matrixis an × n matrix defined for1 ≤ v, w ≤ n.

A[v, w] =

{
1 if (v, w) ∈ E

0 otherwise

An adjacency listis an arrayAdj[1..n] of pointers where for1 ≤ v ≤ n, Adj[v] points to a linked list
containing the vertices which are adjacent tov

Adjacency matrix requiresΘ(n2) storage and adjacency list requiresΘ(n + e) storage.
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Figure 8.6: Graph Representations

8.1 Graph Traversal

To motivate our first algorithm on graphs, consider the following problem. We are given an undirected
graphG = (V, E) and asource vertexs ∈ V . Thelengthof a path in a graph is the number of edges on



8.1. GRAPH TRAVERSAL 117

the path. We would like to find the shortest path froms to each other vertex in the graph. The final result
will be represented in the following way. For each vertexv ∈ V , we will stored[v] which is thedistance
(length of the shortest path) froms to v. Note thatd[s] = 0. We will also store a predecessor (or parent)
pointerπ[v] which is the first vertex along the shortest path if we walk from v backwards tos. We will set
π[s] = Nil.

There is a simple brute-force strategy for computing shortest paths. We could simply start enumerating
all simple paths starting ats, and keep track of the shortest path arriving at each vertex.However, there
can be as many asn! simple paths in a graph. To see this, consider a fully connected graph shown in
Figure 8.7

v
s


u
 w

Figure 8.7: Fully connected graph

Theren choices for source nodes, (n − 1) choices for destination node,(n − 2) for first hop (edge) in
the path,(n − 3) for second,(n − 4) for third down to(n − (n − 1)) for last leg. This leads ton! simple
paths. Clearly this is not feasible.

8.1.1 Breadth-first Search

Here is a more efficient algorithm called thebreadth-first search(BFS) Start withs and visit its adjacent
nodes. Label them with distance 1. Now consider the neighbors of neighbors ofs. These would be at
distance 2. Now consider the neighbors of neighbors of neighbors ofs. These would be at distance 3.
Repeat this until no more unvisited neighbors left to visit. The algorithm can be visualized as awave
front propagating outwards froms visiting the vertices in bands at ever increasing distancesfrom s.
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Figure 8.8: Source vertex for breadth-first-search (BFS)
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Figure 8.11: Wave reaching distance 3 vertices during BFS

8.1.2 Depth-first Search

Breadth-first search is one instance of a general family ofgraph traversal algorithms. Traversing a graph
means visiting every node in the graph. Another traversal strategy is depth-first search(DFS). DFS
procedure can be written recursively or non-recursively. Both versions are passeds initially.

RECURSIVEDFS(v)

1 if (v is unmarked)
2 then mark v

3 for each edge(v, w)

4 do RECURSIVEDFS(w)

ITERATIVEDFS(s)

1 PUSH(s)

2 while stack not empty
3 do v← POP()

4 if v is unmarked
5 then mark v

6 for each edge(v, w)

7 do PUSH(w)

8.1.3 Generic Graph Traversal Algorithm

Thegeneric graph traversalalgorithm stores a set of candidate edges in some data structures we’ll call a
“bag”. The only important properties of the “bag” are that we can put stuff into it and then later take stuff
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back out. Here is the generic traversal algorithm.

TRAVERSE(s)

1 put (∅, s) in bag
2 while bag not empty
3 do take(p, v) from bag
4 if (v is unmarked)
5 then mark v

6 parent(v)← p

7 for each edge(v, w)

8 do put (v, w) in bag

Notice that we are keeping edges in the bag instead of vertices. This is because we want to remember,
whenever we visitv for the first time, which previously-visited vertexp putv into the bag. The vertexp
is call theparent ofv.

The running time of the traversal algorithm depends on how the graph is represented and what data
structure is used for the bag. But we can make a few general observations.

• Since each vertex is visited at most once, the for loop in line7 is executed at mostV times.

• Each edge is put into the bag exactly twice; once as(u, v) and once as(v, u), so line 8 is executed
at most2E times.

• Finally, since we can’t take out more things out of the bag than we put in, line 3 is executed at most
2E + 1 times.

• Assume that the graph is represented by an adjacency list so the overhead of the for loop in line 7 is
constant per edge.

If we implement the bag by using astack, we havedepth-firstsearch (DFS) or traversal.

TRAVERSE(s)

1 push(∅, s)

2 while stack not empty
3 do pop(p, v)

4 if (v is unmarked)
5 then mark v

6 parent(v)← p

7 for each edge(v, w)

8 do push(v, w)

Figures 8.12 to 8.20 show a trace of the DFS algorithm appliedto a graph. The figures show the content
of the stack during the execution of the algorithm.
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Figure 8.12: Trace of Depth-first-search algorithm: sourcevertex ‘s’
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Figure 8.13: Trace of DFS algorithm: vertex ‘a’ popped
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Figure 8.14: Trace of DFS algorithm: vertex ‘c’ popped
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Figure 8.15: Trace of DFS algorithm: vertex ‘f’ popped
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Figure 8.16: Trace of DFS algorithm: vertex ‘g’ popped
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Figure 8.17: Trace of DFS algorithm: vertex ‘e’ popped
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Figure 8.18: Trace of DFS algorithm: vertex ‘b’ popped
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Figure 8.19: Trace of DFS algorithm: vertex ‘d’ popped
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Figure 8.20: Trace of DFS algorithm: the final DFS tree

Each execution of line 3 or line 8 in the TRAVERSE-DFS algorithm takes constant time. So the overall
running time isO(V + E). Since the graph is connected,V ≤ E + 1, this isO(E).

If we implement the bag by using aqueue, we havebreadth-firstsearch (BFS). Each execution of line 3
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or line 8 still takes constant time. So overall running time is still O(E).

TRAVERSE(s)

1 enqueue(∅, s)

2 while queue not empty
3 do dequeue(p, v)

4 if (v is unmarked)
5 then mark v

6 parent(v)← p

7 for each edge(v, w)

8 do enqueue(v, w)

If the graph is represented using anadjacency matrix, the finding of all the neighbors of vertex in line 7
takesO(V) time. Thus depth-first and breadth-first takeO(V2) time overall.

Either DFS or BFS yields a spanning tree of the graph. The tree visits every vertex in the graph. This fact
is established by the following lemma:

Lemma:

The generic TRAVERSE(S) marks every vertex in any connected graph exactly once and the set of edges
(v, parent(v)) with parent(v) 6= ∅ form a spanning tree of the graph.

Proof:

First, it should be obvious that no vertex is marked more thanonce. Clearly, the algorithm markss. Let
v 6= s be a vertex and lets→ · · ·→ u→ v be a path froms to v with the minimum number of edges.

Since the graph is connected, such a path always exists. If the algorithm marksu, then it must put(u, v)

into the bag, so it must take(u, v) out of the bag at which pointv must be marked. Thus, by induction on
the shortest-path distance froms, the algorithm marks every vertex in the graph.

Call an edge(v, parent(v)) with parent(v) 6= ∅, aparent edge. For any nodev, the path of parent
edgesv→ parent(v)→ parent(parent(v))→ . . . eventually leads back tos. So the set of parent
edges form a connected graph.

Clearly, both end points of every parent edge are marked, and the number of edges is exactly one less
than the number of vertices. Thus, the parent edges form aspanning tree.

8.1.4 DFS - Timestamp Structure

As we traverse the graph in DFS order, we will associate two numbers with each vertex. When we first
discover a vertexu, store a counter ind[u]. When we are finished processing a vertex, we store a counter
in f[u]. These two numbers aretime stamps.

Consider therecursiveversion of depth-first traversal
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DFS(G)

1 for (each u ∈ V)

2 do color[u]← white

3 pred[u]← nil

4 time← 0

5 for each u ∈ V

6 do if (color[u] = white)

7 then DFSVISIT(u)

The DFSVISIT routine is as follows:

DFSVISIT(u)

1 color[u]← gray; // marku visited
2 d[u]←++ time

3 for (each v ∈ Adj[u])

4 do if (color[v] = white)

5 then pred[v]← u

6 DFSVISIT(v)

7 color[u]← black; // we are done withu
8 f[u]←++ time;

Figures 8.21 through 8.25 present a trace of the execution ofthe time stamping algorithm. Terms like
“2/5” indicate the value of the counter (time). The number before the “/” is the time when a vertex was
discovered (colored gray) and the number after the “/” is thetime when the processing of the vertex
finished (colored black).
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Figure 8.21: DFS with time stamps: recursive calls initiated at vertex ‘a’
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Figure 8.22: DFS with time stamps: processing of ‘b’ and ‘c’ completed
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Figure 8.23: DFS with time stamps: recursive processing of ‘f’ and ‘g’
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Figure 8.24: DFS with time stamps: processing of ‘f’ and ‘g’ completed
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Figure 8.25: DFS with time stamps: processing of ‘d’ and ‘e’

Notice that the DFS tree structure (actually a collection oftrees, or a forest) on the structure of the graph
is just the recursion tree, where the edge(u, v) arises when processing vertex u we call DFSVISIT(V) for
some neighborv. Fordirected graphsthe edges that are not part of the tree (indicated as dashed edges in
Figures 8.21 through 8.25) edges of the graph can be classified as follows:

Back edge: (u, v) wherev is an ancestor ofu in the tree.
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Forward edge: (u, v) wherev is a proper descendent ofu in the tree.

Cross edge:(u, v) whereu andv are not ancestor or descendent of one another. In fact, the edge may
go between different trees of the forest.

The ancestor and descendent relation can be nicely inferredby theparenthesislemma.u is a descendent
of v if and only if [d[u], f[u]] ⊆ [d[v], f[v]]. u is a ancestor ofv if and only if [d[u], f[u]] ⊇ [d[v], f[v]]. u

is unrelated tov if and only if [d[u], f[u]] and[d[v], f[v]] are disjoint. The is shown in Figure 8.26. The
width of the rectangle associated with a vertex is equal to the time the vertex was discovered till the time
the vertex was completely processed (colored black). Imagine an opening parenthesis ‘(’ at the start of
the rectangle and and closing parenthesis ‘)’ at the end of the rectangle. The rectangle (parentheses) for
vertex ‘b’ is completely enclosed by the rectangle for ‘a’. Rectangle for ‘c’ is completely enclosed by
vertex ‘b’ rectangle.
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Figure 8.26: Parenthesis lemma

Figure 8.27 shows the classification of the non-tree edges based on the parenthesis lemma. Edges are
labelled ‘F’, ‘B’ and ‘C’ for forward, back and cross edge respectively.
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Figure 8.27: Classfication of non-tree edges in the DFS tree for a graph

Forundirectedgraphs, there is no distinction between forward and back edges. By convention they are
all called back edges. Furthermore, there are no cross edges(can you see why not?)

8.1.5 DFS - Cycles

The time stamps given by DFS allow us to determine a number of things about a graph or digraph. For
example, we can determine whether the graph contains anycycles. We do this with the help of the
following two lemmas.

Lemma: Given a digraphG = (V, E), consider any DFS forest ofG and consider any edge(u, v) ∈ E.
If this edge is a tree, forward or cross edge, thenf[u] > f[v]. If this edge is a back edge, then
f[u] ≤ f[v].

Proof: For the non-tree forward and back edges the proof follows directly from the parenthesis lemma.
For example, for a forward edge(u, v), v is a descendent ofu and sov’s start-finish interval is
contained withinu’s implying thatv has an earlier finish time. For a cross edge(u, v) we know
that the two time intervals are disjoint. When we were processing u, v was not white (otherwise
(u, v) would be a tree edge), implying thatv was started beforeu. Because the intervals are
disjoint,v must have also finished beforeu.
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Lemma: Consider a digraphG = (V, E) and any DFS forest forG. G has a cycle if and only if the DFS
forest has abackedge.

Proof: If there is a back edge(u, v) thenv is an ancestor ofu and by following tree edge fromv to u,
we get a cycle.

We show the contrapositive: suppose there are no back edges.By the lemma above, each of the
remaining types of edges, tree, forward, and cross all have the property that they go from vertices
with higher finishing time to vertices with lower finishing time. Thus along any path, finish times
decrease monotonically, implying there can be no cycle.

The DFS forest in Figure 8.27 has a back edge from vertex ‘g’ tovertex ‘a’. The cycle is ‘a-g-f’.

Beware: No back edges means no cycles. But you should not infer that there is some simple relationship
between the number of back edges and the number of cycles. Forexample, a DFS tree may only have a
single back edge, and there may anywhere from one up to an exponential number of simple cycles in the
graph.

A similar theorem applies to undirected graphs, and is not hard to prove.

8.2 Precedence Constraint Graph

A directed acyclic graph(DAG) arise in many applications where there are precedenceor ordering
constraints. There are a series of tasks to be performed and certain tasks must precede other tasks. For
example, in construction, you have to build the first floor before the second floor but you can do electrical
work while doors and windows are being installed. In general, aprecedence constraint graphis a DAG in
which vertices are tasks and the edge(u, v) means that tasku must be completed before taskv begins.

For example, consider the sequence followed when one wants to dress up in a suit. One possible order
and its DAG are shown in Figure 8.28. Figure 8.29 shows the DFSwith time stamps of the DAG.
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Figure 8.28: Order of dressing up in a suit
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Figure 8.29: DFS of dressing up DAG with time stamps

Another example of precedence constraint graph is the sets of prerequisites for CS courses in a typical
undergraduate program.
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C1 Introduction to Computers
C2 Introduction to Computer Programming
C3 Discrete Mathematics
C4 Data Structures C2
C5 Digital Logic Design C2
C6 Automata Theory C3
C7 Analysis of Algorithms C3, C4
C8 Computer Organization and Assembly C2
C9 Data Base Systems C4, C7
C10 Computer Architecture C4, C5,C8
C11 Computer Graphics C4,C7
C12 Software Engineering C7,C11
C13 Operating System C4,C7,C11
C14 Compiler Construction C4,C6,C8
C15 Computer Networks C4,C7,C10

Table 8.1: Prerequisites for CS courses

The prerequisites can be represented with a precedence constraint graph which is shown in Figure 8.30
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Figure 8.30: Precedence constraint graph for CS courses

8.3 Topological Sort

A topological sort of a DAG is a linear ordering of the vertices of the DAG such that for each edge(u, v),
u appears beforev in the ordering.

Computing a topological ordering is actually quite easy, given a DFS of the DAG. For every edge(u, v)

in a DAG, the finish time ofu is greater than the finish time ofv (by the lemma). Thus, it suffices to
output the vertices in the reverse order of finish times.



134 CHAPTER 8. GRAPHS

We run DFS on the DAG and when each vertex is finished, we add it to the front of a linked. Note that in
general, there may be many legal topological orders for a given DAG.

TOPOLOGICALSORT(G)

1 for (each u ∈ V)

2 do color[u]← white

3 L← new LinkedList()

4 for each u ∈ V

5 do if (color[u] = white)

6 then TOPV ISIT(u)

7 return L

TOPV ISIT(u)

1 color[u]← gray; // marku visited
2 for (each v ∈ Adj[u])

3 do if (color[v] = white)

4 then TOPV ISIT(v)

5 Append u to the front of L

Figure 8.31 shows the linear order obtained by the topological sort of the sequence of putting on a suit.
The DAG is still the same; it is only that the order in which thevertices of the graph have been laid out is
special. As a result, all directed edges go from left to right.
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Figure 8.31: Topological sort of the dressing up sequence

This is a typical example of how DFS used in applications. Therunning time isΘ(V + E).
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8.4 Strong Components

We consider an important connectivity problem with digraphs. When diagraphs are used in
communication and transportation networks, people want toknow that their networks arecomplete.
Complete in the sense that that it is possible from any location in the network to reach any other location
in the digraph.

A digraph isstrongly connectedif for every pair of verticesu, v ∈ V , u can reachv and vice versa. We
would like to write an algorithm that determines whether a digraph is strongly connected. In fact, we will
solve a generalization of this problem, of computing thestrongly connected componentsof a digraph.

We partition the vertices of the digraph into subsets such that the induced subgraph of each subset is
strongly connected. We say that two verticesu andv aremutually reachableif u can reachv and vice
versa. Consider the directed graph in Figure 8.32. The strongcomponents are illustrated in Figure 8.33.
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Figure 8.32: A directed graph
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Figure 8.33: Digraph with strong components

It is easy to see that mutual reachability is anequivalence relation. This equivalence relation partitions
the vertices into equivalence classes of mutually reachable vertices and these are the strong components.

If we merge the vertices in each strong component into a singlesuper vertex, and join two super vertices
(A, B) if and only if there are verticesu ∈ A andv ∈ B such that(u, v) ∈ E, then the resulting digraph is
called thecomponent digraph. The component digraph is necessarily acyclic. The is illustrated in Figure
8.34.

D,E


A,B,C


Component DAG


F,G,H,I


Figure 8.34: Component DAG of super vertices



8.4. STRONG COMPONENTS 137

8.4.1 Strong Components and DFS

Consider DFS of a digraph given in Figure??. Once you enter a strong component, every vertex in the
component is reachable. So the DFS does not terminate until all the vertices in the component have been
visited. Thus all vertices in a strong component must appearin the same tree of the DFS forest.

Depth-first search of digraph
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Figure 8.35: DFS of a digraph

fig:dfsofdigraph

Observe that each strong component is a subtree in the DFS forest. Is it always true for any DFS? The
answer is “no”. In general, many strong components may appear in the same DFS tree as illustrated in
Figure 8.36
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Figure 8.36: Another DFS tree of the digraph
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Is there a way to order the DFS such that it true? Fortunately,the answer is “yes”. Suppose that you knew
the component DAG in advance. (This is ridiculous, because you would need to know the strong
components and this is the problem we are trying to solve.) Further, suppose that you computed a
reversed topological orderon the component DAG. That is, for edge(u, v) in the component DAG, then
v comes beforeu. This is presented in Figure 8.37. Recall that the component DAG consists of super
vertices.

Reversed topological order


D,E
A,B,C
 F,G,H,I


D,E
 A,B,C
F,G,H,I


Topological order  of component DAG


Figure 8.37: Reversed topological sort of component DAG

Now, run DFS, but every time you need a new vertex to start the search from, select the next available
vertex according to this reverse topological order of the component digraph. Here is an informal
justification. Clearly once the DFS starts within a given strong component, it must visit every vertex
within the component (and possibly some others) before finishing. If we do not start in reverse
topological, then the search may “leak out” into other strong components, and put them in the same DFS
tree. For example, in the Figure 8.36, when the search is started at vertex ‘a’, not only does it visit its
component with ‘b’ and ‘c’, but it also visits the other components as well. However, by visiting
components in reverse topological order of the component tree, each search cannot “leak out” into other
components, because other components would have already have been visited earlier in the search.

This leaves us with the intuition that if we could somehow order the DFS, so that it hits the strong
components according to a reverse topological order, then we would have an easy algorithm for
computing strong components. However, we do not know what the component DAG looks like. (After
all, we are trying to solve the strong component problem in the first place). The trick behind the strong
component algorithm is that we can find an ordering of the vertices that has essentially the necessary
property, without actually computing the component DAG.

We will discuss the algorithm without proof. DefineGT to be the digraph with the same vertex set atG

but in which all edges have been reversed in direction. This is shown in Figure 8.38. Given an adjacency
list for G, it is possible to computeGT in Θ(V + E) time.
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Figure 8.38: The digraphGT

Observe that the strongly connected components are not affected by reversal of all edges. Ifu andv are
mutually reachable inG, then this is certainly true inGT. All that changes is that the component DAG is
completely reversed. The ordering trick is to order the vertices of G according to their finish times in a
DFS. Then visit the nodes ofGT in decreasing order of finish times. All the steps of the algorithm are
quite easy to implement, and all operate inΘ(V + E) time. Here is the algorithm:

STRONGCOMPONENTS(G)

1 Run DFS(G) computing finish timesf[u]

2 ComputeGT

3 Sort vertices ofGT in decreasingf[u]

4 Run DFS(GT) using this order
5 Each DFS tree is a strong component

The execution of the algorithm is illustrated in Figures 8.39, 8.40 and 8.41.
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Figure 8.39: DFS of digraph with vertices in descending order by finish times
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Figure 8.40: DigraphGT and the vertex order for DFS
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Final DFS with Components


A


E


D


I


H


F


G


C


B


Figure 8.41: Final DFS with strong components ofGT

The complete proof for why this algorithm works is in CLR. We will discuss the intuition behind why the
algorithm visits vertices in decreasing order of finish times and why the graph is revered. Recall that the
main intent is to visit the strong components in a reverse topological order. The problem is how to order
the vertices so that this is true. Recall from the topologicalsorting algorithm, that in a DAG, finish times
occur in reverse topological order (i.e., the first vertex inthe topological order is the one with the highest
finish time). So, if we wanted to visit the components in reverse topological order, this suggests that we
should visit the vertices in increasing order of finish time,starting with the lowest finishing time.

This is a good starting idea, but it turns out that it doesn’t work. The reason is that there are many vertices
in each strong component, and they all have different finish times. For example, in Figure 8.36, observe
that in the first DFS, the lowest finish time (of 4) is achieved by vertex ‘c’, and its strong component is
first, not last, in topological order.

However, there is something to notice about the finish times.If we consider themaximum finish timein
each component, then these are related to the topological order of the component graph. In fact it is
possible to prove the following (but we won’t).

Lemma: Consider a digraph G on which DFS has been run. Label each component with the maximum
finish time of all the vertices in the component, and sort these in decreasing order. Then this order
is a topological order for the component digraph.

For example, in Figure 8.36, the maximum finish times for eachcomponent are 18 (for{a, b, c}), 17 (for
{d,e}), and 12 (for{f,g,h,i}). The order (18, 17, 12) is a valid topological order for the component
digraph. The problem is that this is not what we wanted. We wanted a reverse topological order for the
component digraph. So, the final trick is to reverse the digraph. This does not change the component
graph, but it reverses the topological order, as desired.
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8.5 Minimum Spanning Trees

A common problem is communications networks and circuit design is that of connecting together a set of
nodes by a network of total minimum length. The length is the sum of lengths of connecting wires.
Consider, for example, laying cable in a city for cable t.v.

The computational problem is called theminimum spanning tree(MST) problem. Formally, we are given
a connected, undirected graphG = (V, E) Each edge(u, v) has numeric weight of cost. We define the
cost of a spanning treeT to be the sum of the costs of edges in the spanning tree

w(T) =
∑

(u,v)∈T

w(u, v)

A minimum spanning tree is a tree of minimum weight.

Figures??, ??and??show three spanning trees for the same graph. The first is a spanning tree but is not
a MST; the other two are.
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Figure 8.42: A spanning tree
that isnot MST
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Figure 8.43: A minimum
spanning tree
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Figure 8.44: Another mini-
mum spanning tree

We will present twogreedyalgorithms (Kruskal’s and Prim’s) for computing MST. Recallthat a greedy
algorithm is one that builds a solution by repeatedly selecting the cheapest among all options at each
stage. Once the choice is made, it is never undone.

Before presenting the two algorithms, let us review facts about free trees. A free tree is a tree with no
vertex designated as the root vertex. A free tree withn vertices has exactlyn − 1 edges. There exists a
unique path between any two vertices of a free tree. Adding any edge to a free tree creates a unique cycle.
Breaking any edge on this cycle restores the free tree. This isillustrated in Figure 8.45. When the edges
(b, e) or (b, d) are added to the free tree, the result is a cycle.
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Figure 8.45: Free tree facts

8.5.1 Computing MST: Generic Approach

Let G = (V, E) be an undirected, connected graph whose edges have numeric weights. The intuition
behind greedy MST algorithm is simple: we maintain a subset of edgesE of the graph . Call this subset
A. Initially, A is empty. We will add edges one at a time untilA equals the MST.

A subsetA ⊆ E is viable if A is a subset of edges ofsomeMST. An edge(u, v) ∈ E − A is safeif
A ∪ {(u, v)} is viable. In other words, the choice(u, v) is a safe choice to add so thatA can still be
extended to form a MST.

Note that ifA is viable, it cannot contain a cycle. A generic greedy algorithm operates by repeatedly
adding anysafeedge to the current spanning tree.

When is an edge safe? Consider the theoretical issues behind determining whether an edge is safe or not.
Let S be a subset of verticesS ⊆ V . A cut (S, V − S) is just a partition of vertices into two disjoint
subsets. An edge(u, v) crossesthe cut if one endpoint is inS and the other is inV − S.

Given a subset of edgesA, a cut respectsA if no edge inA crosses the cut. It is not hard to see why
respecting cuts are important to this problem. If we have computed a partial MST and we wish to know
which edges can be added thatdo notinduce a cycle in the current MST, any edge that crosses a
respecting cut is a possible candidate.
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8.5.2 Greedy MST

An edge ofE is a light edgecrossing a cut if among all edges crossing the cut, it has the minimum
weight. Intuition says that since all the edges that cross a respecting cut do not induce a cycle, then the
lightest edge crossing a cut is a natural choice. The main theorem which drives both algorithms is the
following:

MST Lemma: Let G = (V, E) be a connected, undirected graph with real-valued weights on the edges.
Let A be a viable subset ofE (i.e., a subset of some MST). Let(S, V − S) be any cut that respects
A and let(u, v) be a light edge crossing the cut. Then the edge(u, v) is safefor A. This is
illustrated in Figure 8.46.

7


8


6


10


u

v


x


A


4


9


y


Figure 8.46: SubsetA with a cut (wavy line) that respectsA

MST Proof: It would simplify the proof if we assume that all edge weightsare distinct. LetT be any
MST for G. If T contains(u, v) then we are done. This is shown in Figure 8.47 where the lightest
edge(u, v) with cost 4 has been chosen.
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Figure 8.47: MSTT which contains light edge(u, v)

Suppose no MST contains(u, v). Such a tree is shown in Figure 8.48. We will derive a
contradiction.
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Figure 8.48: MSTT whichdoes notcontains light edge(u, v)

Add (u, v) to T thus creating a cycle as illustrated in Figure 8.49.
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Figure 8.49: Cycle created due toT + (u, v)

Sinceu andv are on opposite sides of the cut, and any cycle must cross the cut an even number of
times, there must be at least one other edge(x, y) in T that crosses the cut. The edge(x, y) is not in
A because the cut respectsA. By removing(x, y) we restore a spanning tree, call itT ′. This is
shown in Figure 8.50
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Figure 8.50: TreeT ′ = T − (x, y) + (u, v)

We havew(T ′) = w(T) − w(x, y) + w(u, v). Since(u, v) is the lightest edge crossing the cut we
havew(u, v) < w(x, y). Thusw(T ′) < w(T) which contradicts the assumption thatT was an
MST.
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8.5.3 Kruskal’s Algorithm

Kruskal’s algorithm works by adding edges in increasing order of weight (lightest edge first). If the next
edge does not induce a cycle among the current set of edges, then it is added toA. If it does, we skip it
and consider the next in order. As the algorithm runs, the edges inA induce aforeston the vertices. The
trees of this forest are eventually merged until a single tree forms containing all vertices.

The tricky part of the algorithm is how to detect whether the addition of an edge will create a cycle inA.
Suppose the edge being considered has vertices(u, v). We want a fast test that tells us whetheru andv

are in the same tree ofA. This can be done using theUnion-Finddata structure which supports the
following O(logn) operations:

Create-set(u): Create a set containing a single itemu.

Find-set(u): Find the set that containsu

Union(u,v): merge the set containingu and set containingv into a common set.

In Kruskal’s algorithm, the vertices will be stored in sets.The vertices in each tree ofA will be a set. The
edges inA can be stored as a simple list. Here is the algorithm: Figures8.51 through??demonstrate the
algorithm applied to a graph.

KRUSKAL(G = (V, E))

1 A← {}

2 for ( each u ∈ V)

3 do create set(u)

4 sortE in increasing order by weightw
5 for ( each(u, v) in sorted edge list)
6 do if (find(u) 6= find(v))

7 then add(u, v) to A

8 union(u, v)

9 return A
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Figure 8.51: Kruskal algorithm:(b, d) and(d, e) added
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Figure 8.52: Kruskal algorithm:(c, g) and(a, e) added
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Figure 8.53: Kruskal algorithm: unsafe edges
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Figure 8.54: Kruskal algorithm:(e, f)added
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Figure 8.55: Kruskal algorithm: more unsafe edges and final MST

Analysis:

Since the graph is connected, we may assume thatE ≥ V − 1. Sorting edges (line 4) takesΘ(E logE).
The for loop (line 5) performsO(E) find andO(V) union operations. Total time forunion − find is
O(Eα(V)) whereα(V) is the inverse Ackerman function.α(V) < 4 for V less the number of atoms in
the entire universe. Thus the time is dominated by sorting. Overall time for Kruskal is
Θ(E logE) = Θ(E logV) if the graph is sparse.

8.5.4 Prim’s Algorithm

Kruskal’s algorithm worked by ordering the edges, and inserting them one by one into the spanning tree,
taking care never to introduce a cycle. Intuitively Kruskal’s works by merging or splicing two trees
together, until all the vertices are in the same tree.

In contrast, Prim’s algorithm builds the MST by adding leaves one at a time to the current tree. We start
with a root vertexr; it can be any vertex. At any time, the subset of edgesA forms a single tree (in
Kruskal’s, it formed a forest). We look to add a single vertexas a leaf to the tree.
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Figure 8.56: Prim’s algorithm: acut of the graph

Consider the set of verticesS currently part of the tree and its complement(V − S) as shown in Figure
8.56. We havecut of the graph. Which edge should be added next? The greedy strategy would be to add
the lightest edge which in the figure is edge to ’u’. Onceu is added, Some edges that crossed the cut are
no longer crossing it and others that were not crossing the cut are as shown in Figure 8.57
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Figure 8.57: Prim’s algorithm:u selected

We need an efficient way to update the cut and determine the light edge quickly. To do this, we will make
use of apriority queue. The question is what do we store in the priority queue? It mayseem logical that
edges that cross the cut should be stored since we choose light edges from these. Although possible, there
is more elegant solution which leads to a simpler algorithm.
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For each vertexu ∈ (V − S) (not part of the current spanning tree), we associate a keykey[u]. The
key[u] is the weight of the lightest edge going fromu to any vertex inS. If there is no edge fromu to a
vertex inS, we set the key value to∞. We also store inpred[u] the end vertex of this edge inS. We will
also need to know which vertices are inS and which are not. To do this, we will assign a color to each
vertex. If the color of a vertex is black then it is inS otherwise not. Here is the algorithm:

PRIM((G, w, r))

1 for ( each u ∈ V)

2 do key [u]←∞; pq.insert(u, key[u])

3 color[u]← white
4 key[r]← 0; pred[r]← nil; pq.decreasekey (r, key [r]);

5 while ( pq.notempty())

6 do u← pq.extractmin ()

7 for ( each u ∈ adj [u])

8 do if ( color [v] == white )and( w (u, v) < key [v])

9 then key [v] = w (u, v)

10 pq.decreasekey (v, key [v])

11 pred[v] = u

12 color[u] = black

Figures 8.58 through 8.60 illustrate the algorithm appliedto a graph. The contents of the priority queue
are shown as the algorithm progresses. The arrows indicate the predecessor pointers and the numeric
labels in each vertex is its key value.
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Figure 8.58: Prim’s algorithm: edge with weight 4 selected
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Figure 8.59: Prim’s algorithm: edges with weights 8 and 1 selected
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Figure 8.60: Prim’s algorithm: the final MST

Analysis:

It takesO(logV) to extract a vertex from the priority queue. For each incident edge, we spend potentially
O(logV) time decreasing the key of the neighboring vertex. Thus the total time is
O(logV + deg(u) logV). The other steps of update are constant time.

So the overall running time is

T(V, E) =
∑

u∈V

(logV + deg(u) logV)

= logV
∑

u∈V

(1 + deg(u))

= (logV)(V + 2E) = Θ((V + E) logV)
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SinceG is connected,V is asymptotically no greater thanE so this isΘ(E logV), same as Kruskal’s
algorithm.

8.6 Shortest Paths

A motorist wishes to find the shortest possible route betweenPeshawar and Karachi. Given a road map of
Pakistan on which the distance between each pair of adjacentcities is marked Can the motorist determine
the shortest route?

In theshortest-paths problemWe are given a weighted, directed graphG = (V, E) The weight of path
p =< v0, v1, . . . , vk > is the sum of the constituent edges:

w(p) =

k∑

i=1

w(vi−1, vi)

We define theshortest-path weightfrom u to v by

δ(u, v) =

{
min{w(p) : u

p
 v} if there is a path fromu to v

∞ otherwise

Problems such as shortest route between cities can be solvedefficiently by modelling the road map as a
graph. The nodes or vertices represent cities and edges represent roads. Edge weights can be interpreted
as distances. Other metrics can also be used, e.g., time, cost, penalties and loss.

Similar scenarios occur in computer networks like the Internet where data packets have to be routed. The
vertices arerouters. Edges are communication links which may be be wire or wireless. Edge weights can
be distance, link speed, link capacity link delays, and linkutilization.

The breadth-first-search algorithm we discussed earlier isa shortest-path algorithm that works on
un-weighted graphs. An un-weighted graph can be consideredas a graph in which every edge has weight
one unit.

There are a few variants of the shortest path problem. We willcover their definitions and then discuss
algorithms for some.

Single-source shortest-path problem:Find shortest paths from a given (single)sourcevertexs ∈ V to
every other vertexv ∈ V in the graphG.

Single-destination shortest-paths problem:Find a shortest path to a given destination vertext from
each vertexv. We can reduce the this problem to a single-source problem byreversing the direction
of each edge in the graph.

Single-pair shortest-path problem: Find a shortest path fromu to v for given verticesu andv. If we
solve the single-source problem with source vertexu, we solve this problem also. No algorithms
for this problem are known to run asymptotically faster thanthe best single-source algorithms in
the worst case.
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All-pairs shortest-paths problem: Find a shortest path fromu to v for every pairof verticesu andv.
Although this problem can be solved by running a single-source algorithm once from each vertex,
it can usually be solved faster.

8.6.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is a simplegreedyalgorithm for computing thesingle-source shortest-pathsto all
other vertices. Dijkstra’s algorithm works on a weighted directed graphG = (V, E) in which all edge
weights are non-negative, i.e.,w(u, v) ≥ 0 for each edge(u, v) ∈ E.

Negative edges weights maybe counter to intuition but this can occur in real life problems. However, we
will not allow negative cyclesbecause then there is no shortest path. If there is a negativecycle between,
say,s andt, then we can always find a shorter path by going around the cycle one more time.
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Figure 8.61: Negative weight cycle

The basic structure of Dijkstra’s algorithm is to maintain an estimateof the shortest path from the source
vertex to each vertex in the graph. Call this estimated[v]. Intuitively, d[v] will the length of the shortest
paththat the algorithm knows offrom s to v. This value will always be greater than or equal to the true
shortest path distance froms to v. I.e.,d[v] ≥ δ(u, v). Initially, we know of no paths, sod[v] =∞.
Moreover,d[s] = 0 for the source vertex.

As the algorithm goes on and sees more and more vertices, it attempts to updated[v] for each vertex in
the graph. The process of updating estimates is calledrelaxation. Here is how relaxation works.

Intuitively, if you can see that your solution is not yet reached an optimum value, then push it a little
closer to the optimum. In particular, if you discover a path from s to v shorter thand[v], then you need to
updated[v]. This notion is common to many optimization algorithms.

Consider an edge from a vertexu to v whose weight isw(u, v). Suppose that we have already computed
current estimates ond[u] andd[v]. We know that there is a path froms to u of weightd[u]. By taking
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this path and following it with the edge(u, v) we get a path tov of lengthd[u] + w(u, v). If this path is
better than the existing path of lengthd[v] to v, we should take it. The relaxation process is illustrated in
the following figure. We should also remember that the shortest way back to the source is throughu by
updating the predecessor pointer.

2


2
2


10

s


u


v


t


d[u]=4


d[v]=10


Figure 8.62: Vertexu relaxed
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Figure 8.63: Vertexv relaxed

RELAX((u, v))

1 if (d[u] + w(u, v) < d[v])

2 then d[v]← d[u] + w(u, v)

3 pred[v] = u

Observe that whenever we setd[v] to a finite value, there is always evidence of a path of that length.
Therefored[v] ≥ δ(s, v). If d[v] = δ(s, v), then further relaxations cannot change its value.

It is not hard to see that if we perform RELAX (U,V) repeatedly over all edges of the graph, thed[v]

values will eventually converge to the final true distance value froms. The cleverness of any shortest path
algorithm is to perform the updates in a judicious manner, sothe convergence is as fast as possible.

Dijkstra’s algorithm is based on the notion of performing repeated relaxations. The algorithm operates by
maintaining a subset of vertices,S ⊆ V , for which we claim weknowthe true distance,d[v] = δ(s, v).

Initially S = ∅, the empty set. We setd[u] = 0 and all others to∞. One by one we select vertices from
V − S to add toS.

How do we select which vertex among the vertices ofV − S to add next toS? Here isgreedinesscomes
in. For each vertexu ∈ (V − S), we have computed a distance estimated[u].

The greedy thing to do is to take the vertex for whichd[u] is minimum, i.e., take the unprocessed vertex
that is closest by our estimate tos. Later, we justify why this is the proper choice. In order to perform
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this selection efficiently, we store the vertices ofV − S in apriority queue.

DIJKSTRA((G, w, s))

1 for ( each u ∈ V)

2 do d[u]←∞
3 pq.insert(u, d[u])

4 d[s]← 0; pred[s]← nil; pq.decreasekey (s, d[s]);

5 while ( pq.notempty())

6 do u← pq.extractmin ()

7 for ( each v ∈ adj[u])

8 do if (d[u] + w(u, v) < d[v])

9 then d[v] = d[u] + w(u, v)

10 pq.decreasekey (v, d[v])

11 pred[v] = u

Note the similarity with Prim’s algorithm, although a different key is used here. Therefore the running
time is the same, i.e.,Θ(E logV).

Figures 8.64 through??demonstrate the algorithm applied to a directed graph with no negative weight
edges.
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Figure 8.64: Dijkstra’s algorithm: select 0
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Figure 8.65: Dijkstra’s algorithm: select 2
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Figure 8.66: Dijkstra’s algorithm: select 5
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Figure 8.67: Dijkstra’s algorithm: select 6
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Figure 8.68: Dijkstra’s algorithm: select 7

fig:dijlast

8.6.2 Correctness of Dijkstra’s Algorithm

We will prove the correctness of Dijkstr’s algorithm by Induction. We will use the definition thatδ(s, v)

denotes the minimal distance froms to v.

For the base case

1. S = {s}

2. d(s) = 0, which isδ(s, s)

Assume thatd(v) = δ(s, v) for everyv ∈ S and all neighbors ofv have been relaxed. Ifd(u) ≤ d(u ′)

for everyu ′ ∈ V thend(u) = δ(s, u), and we can transferu from V to S, after whichd(v) = δ(s, v) for
everyv ∈ S.

We do this as a proof by contradiction. Suppose thatd(u) > δ(s, u). The shortest path froms to u,
p(s, u), must pass through one or more vertices exterior toS. Let x be the last vertex insideS andy be
the first vertex outsideS on this path tou. Thenp(s, u) = p(s, x) ∪ {(x, y)} ∪ p(y, u).
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Figure 8.69: Correctness of Dijkstra’s algorithm

The length ofp(s, u) is δ(s, u) = δ(s, y) + δ(y, u). Becausey was relaxed whenx was put intoS,
d(y) = δ(s, y) by the convergence property. Thusd(y) ≤ δ(s, u) ≤ d(u). But, becaused(u) is the
smallest among vertices not inS, d(u) ≤ d(y) . The only possibility isd(u) = d(y), which requires
d(u) = δ(s, u) contradicting the assumption.

By the upper bound property,d(u) ≥ δ(s, u). Sinced(u) > δ(s, u) is false,d(u) = δ(s, u), which is
what we wanted to prove. Thus, if we follow the algorithm’s procedure, transferring fromV to S, the
vertex inV with the smallest value ofd(u) then all vertices inS haved(v) = δ(s, v)

8.6.3 Bellman-Ford Algorithm

Dijkstra’s single-source shortest path algorithm works ifall edges weights are non-negative and there are
no negative cost cycles. Bellman-Fordallowsnegative weights edges and no negative cost cycles. The
algorithm is slower than Dijkstra’s, running inΘ(VE) time.

Like Dijkstra’s algorithm, Bellman-Ford is based on performing repeated relaxations. Bellman-Ford
applies relaxation toevery edgeof the graph and repeats thisV − 1 times. Here is the algorithm; its is



160 CHAPTER 8. GRAPHS

illustrated in Figure 8.70.

BELLMAN -FORD(G, w, s)

1 for ( each u ∈ V)

2 do d[u]←∞
3 pred[u] = nil

4
5 d[s]← 0;

6 for i = 1 to V − 1

7 do for ( each(u, v) in E )

8 do RELAX(u, v)
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Figure 8.70: The Bellman-Ford algorithm

8.6.4 Correctness of Bellman-Ford

Think of Bellman-Ford as a sort of bubble-sort analog for shortest path. The shortest path information is
propagated sequentially along each shortest path in the graph. Consider any shortest path froms to some
other vertexu: 〈v0, v1, . . . , vk〉 wherev0 = s andvk = u.

Since a shortest path will never visit the same vertex twice,we know thatk ≤ V − 1. Hence the path
consists of at mostV − 1 edges. Since this a shortest path, it isδ(s, vi), the true shortest path cost froms
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to vi that satisfies the equation:

δ(s, vi) = δ(s, vi−1) + w(vi−1, vi)

Claim: We assert that after theith pass of the “for-i” loop, d[vi] = δ(s, vi).

Proof: The proof is by induction oni. Observe that after the initialization (pass 0),d[v1] = d[s] = 0.

In general, prior to theith pass through the loop, the induction hypothesis tells us that
d[vi−1] = δ(s, vi−1). After theith pass, we have done relaxation on the edge(vi−1, vi) (since we do
relaxation along all edges). Thus after theith pass we have

d[vi] ≤ d[vi−1] + w(vi−1, vi)

= δ(s, vi−1) + w(vi−1, vi)

= δ(s, vi)

Recall from Dijkstra’s algorithm thatd[vi] is never less thanδ(s, vi). Thus,d[vi] is in fact equal to
δ(s, vi). This completes the induction proof.

In summary, afteri passes through thefor loop, all vertices that arei edges away along the shortest path
tree from the source have the correct values stored ind[u]. Thus, after the(V − 1)st iteration of the for
loop, all verticesu have correct distance values stored ind[u].

8.6.5 Floyd-Warshall Algorithm

We consider the generalization of the shortest path problem: to compute the shortest paths between all
pairs of vertices. This is called the all-pairs shortest paths problem.

Let G = (V, E) be a directed graph with edge weights. If(u, v) ∈ E is an edge thenw(u, v) denotes its
weight.δ(u, v) is the distance of the minimum cost path betweenu andv. We will allow G to have
negative edges weights but will not allowG to have negative cost cycles. We will present anΘ(n3)

algorithm for the all pairs shortest path. The algorithm is called the Floyd-Warshall algorithmand is
based ondynamic programming.

We will use an adjacency matrix to represent the digraph. Because the algorithm is matrix based, we will
employ the common matrix notation, usingi, j andk to denote vertices rather thanu, v andw.

The input is ann × n matrix of edge weights:

wij =






0 if i = j

w(i, j) if i 6= j and(i, j) ∈ E

∞ if i 6= j and(i, j) 6∈ E

The output will be ann × n distance matrixD = dij, wheredij = δ(i, j), the shortest path cost from
vertexi to j.
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The algorithm dates back to the early 60’s. As with other dynamic programming algorithms, the genius
of the algorithm is in the clever recursive formulation of the shortest path problem. For a path
p = 〈v1, v2, . . . , vl, we say that the verticesv2, v3, . . . , vl−1 are the intermediate verticesof this path.

Formulation: Defined
(k)

ij to be the shortest path fromi to j such that any intermediate vertices on the
path are chosen from the set{1, 2, . . . , k}. The path is free to visit any subset of these vertices and in any
order. How do we computed(k)

ij assuming we already have the previous matrixd(k−1)? There are two
basic cases:

1. Don’t go through vertexk at all.

2. Do go through vertexk.

i
 j


d

ik


(k-1)


d

ij


(k-1)


d

kj


(k-1)


vertices i to k-1


k


Figure 8.71: Two cases for all-pairs shortest path

Don’t go through k at all

Then the shortest path fromi to j uses only intermediate vertices{1, 2, . . . , k − 1}. Hence the length of
the shortest isd(k−1)

ij

Do go throughk

First observe that a shortest path does not go through the same vertex twice, so we can assume that we
pass throughk exactly once. That is, we go fromi to k and then fromk to j. In order for the overall path
to be as short as possible, we should take the shortest path from i to k and the shortest path fromk to j.
Since each of these paths uses intermediate vertices{1, 2, . . . , k − 1}, the length of the path is
d

(k−1)

ik + d
(k−1)

kj .

The following illustrate the process in which the value ofdk
3,2 is updated ask goes from 0 to 4.
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3,2 =∞ (no path)
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3,2 = 12 (3→ 1→ 2)
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3,2 = 12 (3→ 1→ 2)
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Figure 8.75:k = 3, d
(3)

3,2 = 12 (3→ 1→ 2)
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Figure 8.76:k = 4, d
(4)

3,2 = 7 (3→ 1→ 4→ 2)

This suggests the following recursive (DP) formulation:

d
(0)

ij = wij

d
(k)

ij = min
(

d
(k−1)

ij , d
(k−1)

ik + d
(k−1)

kj

)

The final answer isd(n)

ij because this allows all possible vertices as intermediate vertices.

As is the case with DP algorithms, we will avoid recursive evaluation by generating a table ford(k)

ij . The
algorithm also includes mid-vertex pointers stored inmid[i, j] for extracting the final path.

FLOYD-WARSHALL(n, w[1..n, 1..n])

1 for (i = 1, n)

2 do for (j = 1, n)

3 do d[i, j]← w[i, j]; mid[i, j]← null

4 for (k = 1, n)

5 do for (i = 1, n)

6 do for (j = 1, n)

7 do if (d[i, k] + d[k, j] < d[i, j])

8 then d[i, j] = d[i, k] + d[k, j]

9 mid[i, j] = k

Clearly, the running time isΘ(n3). The space used by the algorithm isΘ(n2).

Figure 8.77 through 8.81 demonstrate the algorithm when applied to a graph. The matrix to left of the
graph contains the matrixd entries. A circle around an entrydi,k indicates that it was updated in the
currentk iteration.
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Figure 8.77: Floyd-Warshall Algorithm example:d(0)
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Figure 8.78: Floyd-Warshall Algorithm example:d(1)
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Figure 8.79: Floyd-Warshall Algorithm example:d(2)
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Figure 8.80: Floyd-Warshall Algorithm example:d(3)
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Figure 8.81: Floyd-Warshall Algorithm example:d(4)

Extracting Shortest Path:

The matrixd holds the final shortest distance between pairs of vertices.In order to compute the shortest
path, the mid-vertex pointersmid[i, j] can be used to extract the final path. Whenever we discovered that
the shortest path fromi to j passed through vertexk, we setmid[i, j] = k. If the shortest path did not
pass throughk thenmid[i, j] = null.

To find the shortest path fromi to j, we consultmid[i, j]. If it is null, then the shortest path is just the
edge(i, j). Otherwise we recursively compute the shortest path fromi to mid[i, j] and the shortest path
from mid[i, j] to j.

PATH(i, j)

1 if (mid[i, j] == null)

2 then output(i, j)

3 else PATH(i, mid[i, j])

4 PATH(mid[i, j], j)
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Chapter 9

Complexity Theory

So far in the course, we have been building up a “bag of tricks”for solving algorithmic problems.
Hopefully you have a better idea of how to go about solving such problems. What sort of design
paradigm should be used: divide-and-conquer, greedy, dynamic programming.

What sort of data structures might be relevant: trees, heaps,graphs. What is the running time of the
algorithm. All of this is fine if it helps you discover an acceptably efficient algorithm to solve your
problem.

The question that often arises in practice is that you have tried every trick in the book and nothing seems
to work. Although your algorithm can solve small problems reasonably efficiently (e.g.,n ≤ 20), for the
really large problems you want to solve, your algorithm never terminates. When you analyze its running
time, you realize that it is running in exponential time, perhapsn

√
n, or 2n, or 22n

, or n! or worse!.

By the end of 60’s, there was great success in finding efficient solutions to many combinatorial problems.
But there was also a growing list of problems for which there seemed to be no known efficient
algorithmic solutions.

People began to wonder whether there was some unknown paradigm that would lead to a solution to
there problems. Or perhaps some proof that these problems are inherently hard to solve and no
algorithmic solutions exist that run under exponential time.

Near the end of the 1960’s, a remarkable discovery was made. Many of these hard problems were
interrelated in the sense that if you could solve any one of them in polynomial time, then you could solve
all of them in polynomial time. this discovery gave rise to the notion of NP-completeness.

This area is a radical departure from what we have been doing because the emphasis will change. The
goal is no longer to prove that a problemcanbe solved efficiently by presenting an algorithm for it.
Instead we will be trying to show that a problemcannotbe solved efficiently.

Up until now all algorithms we have seen had the property thattheir worst-case running time are bounded
above by somepolynomialin n. A polynomial time algorithmis any algorithm that runs inO(nk) time.
A problem is solvable in polynomial time if there is a polynomial time algorithm for it.

Some functions that do not look like polynomials (such asO(n logn) are bounded above by polynomials
(such asO(n2)). Some functions that do look like polynomials are not. For example, suppose you have

169
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an algorithm that takes as input a graph of sizen and an integerk and run inO(nk) time.

Is this a polynomial time algorithm? No, becausek is an input to the problem so the user is allowed to
choosek = n, implying that the running time would beO(nn). O(nn) is surely not a polynomial inn.
The important aspect is that the exponent must be a constant independent ofn.

9.1 Decision Problems

Most of the problems we have discussed involve optimizationof one form of another. Find the shortest
path, find the minimum cost spanning tree, maximize the knapsack value. For rather technical reasons,
the NP-complete problems we will discuss will be phrased asdecision problems.

A problem is called adecision problemif its output is a simple “yes” or “no” (or you may this of this as
true/false, 0/1, accept/reject.) We will phrase may optimization problems as decision problems. For
example, the MST decision problem would be: Given a weightedgraphG and an integerk, doesG have
a spanning tree whose weight is at mostk?

This may seem like a less interesting formulation of the problem. It does not ask for the weight of the
minimum spanning tree, and it does not even ask for the edges of the spanning tree that achieves this
weight. However, our job will be to show that certain problems cannot be solved efficiently. If we show
that the simple decision problem cannot be solved e¡ciently, then the more general optimization problem
certainly cannot be solved efficiently either.

9.2 Complexity Classes

Before giving all the technical definitions, let us say a bit about what the general classes look like at an
intuitive level.

Class P: This is the set of all decision problems that can besolvedin polynomial time. We will
generally refer to these problems as being “easy” or “efficiently solvable”.

Class NP: This is the set of all decision problems that can beverifiedin polynomial time. This class
contains P as a subset. It also contains a number of problems that are believed to be very “ hard” to
solve.

Class NP: The term “NP” does not mean “not polynomial”. Originally, the term meant “
non-deterministic polynomial” but it is a bit more intuitive to explain the concept from the
perspective of verification.

Class NP-hard: In spite of its name, to say that a problem is NP-hard does not mean that it is hard to
solve. Rather, it means that if we could solve this problem in polynomial time, then we could solve
all NP problems in polynomial time. Note that for a problem to NP-hard, it does not have to be in
the class NP.
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Class NP-complete:A problem is NP-complete if (1) it is in NP and (2) it is NP-hard.

The Figure 9.1 illustrates one way that the sets P, NP, NP-hard, and NP-complete (NPC) might look. We
say might because we do not know whether all of these complexity classes are distinct or whether they
are all solvable in polynomial time. The Graph Isomorphism,which asks whether two graphs are
identical up to a renaming of their vertices. It is known thatthis problem is in NP, but it is not known to
be in P. The other is QBF, which stands for Quantified Boolean Formulas. In this problem you are given a
boolean formula and you want to know whether the formula is true or false.

NPC


P


NP


NP-hard


Quantified Boolean

Formulas


No Hamiltonian cycle


0/1 knapsack


Hamiltonian cycle


Satisfiability


Graph Isomorphism


MST

Strong connectivity


Figure 9.1: Complexity Classes

9.3 Polynomial Time Verification

Before talking about the class of NP-complete problems, it isimportant to introduce the notion of a
verification algorithm. Many problems are hard to solve but they have the property that it easy to verify
the solution if one is provided. Consider the Hamiltonian cycle problem.

Given an undirected graphG, doesG have a cycle that visits every vertex exactly once? There is no
known polynomial time algorithm for this problem.
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Non-Hamiltonian
 Hamiltonian


Figure 9.2: Hamiltonian Cycle

However, suppose that a graph did have a Hamiltonian cycle. It would be easy for someone to convince
of this. They would simply say: “the cycle is〈v3, v7, v1, . . . , v13〉 We could then inspect the graph and
check that this is indeed a legal cycle and that it visits all of the vertices of the graph exactly once. Thus,
even though we know of no efficient way tosolvethe Hamiltonian cycle problem, there is a very efficient
way to verify that a a given cycle is indeed a Hamiltonian cycle.

The piece of information that allows verification is called acertificate. Note that not all problems have
the property that they are easy to verify. For example, consider the following two:

1. UHC = {(G)|G has a unique Hamiltonian cycle}

2. HC = {(G)|G has no Hamiltonian cycle}

Suppose that a graphG is in UHC. What information would someone give us that would allow us to
verify this? They could give us an example of the unique Hamiltonian cycle and we could verify that it is
a Hamiltonian cycle. But what sort of certificate could they give us to convince us that this is theonly
one?

They could give another cycle that isnot Hamiltonian. But this does not mean that there is not another
cycle somewhere that is Hamiltonian. They could try to list every other cycle of lengthn, but this is not
efficient at all since there aren! possible cycles in general. Thus it is hard to imagine that someone could
give us some information that would allow us to efficiently verify that the graph is inUHC.

9.4 The Class NP

The class NP is a set of all problems that can be verified by a polynomial time algorithm. Why is the set
called “NP” and not “VP”? The original term NP stood fornon-deterministic polynomial time. This
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referred to a program running on a non-deterministic computer that can make guesses. Such a computer
could non-deterministically guess the value of the certificate. and then verify it in polynomial time. We
have avoided introducing non-determinism here; it is covered in other courses such as automata or
complexity theory.

Observe thatP ⊆ NP. In other words, if we can solve a problem in polynomial time,we can certainly
verify the solution in polynomial time. More formally, we donot need to see a certificate to solve the
problem; we can solve it in polynomial time anyway.

However, it is not known whetherP = NP. It seems unreasonable to think that this should be so. Being
able to verify that you have a correct solution does not help you in finding the actual solution. The belief
is thatP 6= NP but no one has a proof for this.

9.5 Reductions

The class NP-complete (NPC) problems consists of a set of decision problems (a subset of class NP) that
no one knows how to solve efficiently. But if there were a polynomial solution for even a single
NP-complete problem, then ever problem in NPC will be solvable in polynomial time. For this, we need
the concept ofreductions.

Consider the question: Suppose there are two problems,A andB. You know (or you strongly believe at
least) that it is impossible to solve problemA in polynomial time. You want to prove thatB cannot be
solved in polynomial time. We want to show that

(A 6∈ P)⇒ (B 6∈ P)

How would you do this? Consider an example to illustrate reduction: The following problem is
well-known to be NPC:

3-color: Given a graphG, can each of its vertices be labelled with one of 3 different colors such that two
adjacent vertices have the same label (color).

Coloring arises in various partitioning problems where there is a constraint that two objects cannot be
assigned to the same set of partitions. The term “coloring” comes from the original application which
was in map drawing. Two countries that share a common border should be colored with different colors.

It is well known that planar graphs can be colored (maps) withfour colors. There exists a polynomial
time algorithm for this. But determining whether this can be done with 3 colors is hard and there is no
polynomial time algorithm for it. In Figure 9.3, the graph onthe left can be colored with 3 colors while
the graph on the right cannot be colored.
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3-Colorable
 Not 3-colorable


Figure 9.3: Examples of 3-colorable and non-3-colorable graphs

Example1: Fish tank problem

Consider the following problem than can be solved with the graph coloring approach. A tropical fish
hobbyist has six different types of fish designated by A, B, C, D,E, and F, respectively. Because of
predator-prey relationships, water conditions and size, some fish can be kept in the same tank. The
following table shows which fish cannot be together:

Type Cannot be with
A B, C
B A ,C, E
C A, B, D, E
D C, F
E B, C, F
F D, E

These constraints can be displayed as a graph where an edge between two vertices exists if the two
species cannot be together. This is shown in Figure 9.4. For example, A cannot be with B and C; there is
an edge between A and B and between A and C.

Given these constraints, What is thesmallestnumber of tanks needed to keep all the fish? The answer
can be found by coloring the vertices in the graph such that notwo adjacent vertices have the same color.
This particular graph is 3-colorable and therefore, 3 fish tanks are enough. This is depicted in Figure 9.5.
The 3 fish tanks will hold fish as follows:

Tank 1 Tank 2 Tank 3

A, D F, C B, E
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A


B


C


D


F


E


Figure 9.4: Graph representing constraints be-
tween fish species

A


B


C


D


F


E


Figure 9.5: Fish tank graph colored with 3 colors

The 3-color (3Col) problem will the play the role ofA, which we strongly suspect to not be solvable in
polynomial time. For our problemB, consider the following problem: Given a graphG = (V, E), we say
that a subset of verticesV ′ ⊆ V forms a clique if for every pair of verticesu, v ∈ V ′, the edge
(u, v) ∈ V ′ That is, the subgraph induced byV ′ is a complete graph.

Clique Cover: Given a graphG and an integerk, can we findk subsets of verticesV1, V2, . . . , Vk, such
that

⋃

i Vi = V , and that eachVi is a clique ofG.

The following figure shows a graph that has a clique cover of size 3. There are three subgraphs that are
complete.

Clique cover (size=3)


Figure 9.6: Graph with clique cover of size 3
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The clique cover problem arises in applications of clustering. We put an edge between two nodes if they
are similar enough to be clustered in the same group. We want to know whether it is possible to cluster all
the vertices intok groups.

Suppose that you want to solve the CCov problem. But after a whileof fruitless effort, you still cannot
find a polynomial time algorithm for the CCov problem. How can you prove that CCov is likely to not
have a polynomial time solution?

You know that 3Col is NP-complete and hence, experts believe that 3Col6∈ P. You feel that there is some
connection between the CCov problem and the 3Col problem. Thus,you want to show that

(3Col 6∈ P)⇒ (CCov 6∈ P)

Both problems involve partitioning the vertices into groups. In the clique cover problem, for two vertices
to be in the same group, they must be adjacent to each other. Inthe 3-coloring problem, for two vertices
to be in the same color group, they must not be adjacent. In some sense, the problems are almost the
same but the adjacency requirements are exactly reversed.

We claim that we can reduce the 3-coloring problem into the clique cover problem as follows: Given a
graphG for which we want to determine its 3-colorability, output the pair(G, 3) whereG denotes the
complement ofG. Feed the pair(G, 3) into a routine for clique cover.

For example, the graphG in Figure 9.7 is 3-colorable and its complement(G, 3) is coverable by 3
cliques. The graphG in Figure 9.8 is not 3-colorable; it is also not coverable by cliques.

3-Colorable
 Coverable by 3

cliques


G
 G


Figure 9.7: 3-colorableG and clique coverable(G, 3)
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Not 3-colorable
 Not coverable


H
 H


Figure 9.8:G is not 3-colorable and(G, 3) is not clique coverable

9.6 Polynomial Time Reduction

Definition: We say that a decision problemL1 is polynomial-time reducible to decision problemL2

(writtenL1 ≤p L2) if there is polynomial time computable functionf such that for allx, x ∈ L1 if and
only if f(x) ∈ L2.

In the previous example we showed that

3Col≤P CCov

In particular, we havef(G) = (G, 3). It is easy to complement a graph inO(n2) (i.e., polynomial time).
For example, flip the 0’s and 1’s in the adjacency matrix.

The way this is used in NP-completeness is that we have strongevidence thatL1 is not solvable in
polynomial time. Hence, the reduction is effectively equivalent to saying that “sinceL1 is not likely to be
solvable in polynomial time, thenL2 is also not likely to be solvable in polynomial time.

9.7 NP-Completeness

The set of NP-complete problems is all problems in the complexity class NP for which it is known that if
any one is solvable in polynomial time, then they all are. Conversely, if any one is not solvable in
polynomial time, then none are.

Definition: A decision problemL is NP-Hard if

L ′ ≤P L for all L ′ ∈ NP.
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Definition: L is NP-complete if

1. L ∈ NP and

2. L ′ ≤P L for some known NP-complete problemL ′.

Given this formal definition, the complexity classes are:

P: is the set of decision problems that are solvable in polynomial time.

NP: is the set of decision problems that can be verified in polynomial time.

NP-Hard: L is NP-hard if for allL ′ ∈ NP,L ′ ≤P L. Thus if we could solveL in polynomial time, we
could solve all NP problems in polynomial time.

NP-Complete L is NP-complete if

1. L ∈ NP and

2. L is NP-hard.

The importance of NP-complete problems should now be clear.If any NP-complete problem is solvable
in polynomial time, then every NP-complete problem is also solvable in polynomial time. Conversely, if
we can prove that any NP-complete problem cannot be solved inpolynomial time, the every
NP-complete problem cannot be solvable in polynomial time.

9.8 Boolean Satisfiability Problem: Cook’s Theorem

We need to have at least one NP-complete problem to start the ball rolling. Stephen Cook showed that
such a problem existed. He proved that theboolean satisfiability problemis NP-complete. A boolean
formula is a logical formulation which consists of variablesxi. These variables appear in a logical
expression using logical operations

1. negation ofx: x

2. boolean or:(x ∨ y)

3. boolean and:(x ∧ y)

For a problem to be in NP, it must have an efficient verificationprocedure. Thus virtually all NP
problems can be stated in the form, “does there existsX such thatP(X)”, whereX is some structure (e.g.
a set, a path, a partition, an assignment, etc.) andP(X) is some property thatX must satisfy (e.g. the set
of objects must fill the knapsack, or the path must visit everyvertex, or you may use at mostk colors and
no two adjacent vertices can have the same color). In showingthat such a problem is in NP, the certificate
consists of givingX, and the verification involves testing thatP(X) holds.
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In general, any setX can be described by choosing a set of objects, which in turn can be described as
choosing the values of some boolean variables. Similarly, the propertyP(X) that you need to satisfy, can
be described as a boolean formula. Stephen Cook was looking for the most general possible property he
could, since this should represent the hardest problem in NPto solve. He reasoned that computers (which
represent the most general type of computational devices known) could be described entirely in terms of
boolean circuits, and hence in terms of boolean formulas. Ifany problem were hard to solve, it would be
one in whichX is an assignment of boolean values (true/false, 0/1) andP(X) could be any boolean
formula. This suggests the following problem, called theboolean satisfiability problem.

SAT: Given a boolean formula, is there some way to assign truth values (0/1, true/false) to the variables
of the formula, so that the formula evaluates to true?

A boolean formula is a logical formula which consists of variablesxi , and the logical operationsx
meaning thenegationof x, boolean-or(x ∨ y) andboolean-and(x ∧ y). Given a boolean formula, we
say that it is satisfiable if there is a way to assign truth values (0 or 1) to the variables such that the final
result is 1. (As opposed to the case where no matter how you assign truth values the result is always 0.)
For example

(x1 ∧ (x2 ∨ x3)) ∧ ((x2 ∧ x3) ∨ x1)

is satisfiable, by the assignmentx1 = 1, x2 = 0 andx3 = 0. On the other hand,

(x1 ∨ (x2 ∧ x3)) ∧ (x1 ∨ (x2 ∧ x3)) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)

is not satisfiable. Such a boolean formula can be representedby a logical circuit made up of OR, AND
and NOT gates. For example, Figure 9.9 shows the circuit for the boolean formula

((x1 ∧ x4) ∨ x2) ∧ ((x3 ∧ x4) ∨ x2) ∧ x5

x

1


x

2


x

3


x

4


x

5


Figure 9.9: Logical circuit for a boolean formula
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Cook’s Theorem: SAT is NP-complete

We will not prove the theorem; it is quite complicated. In fact, it turns out that a even more restricted
version of the satisfiability problem is NP-complete.

A literal is a variablex or its negationx. A boolean formula is in3-Conjunctive Normal Form(3-CNF)
if it is the boolean-and of clauses where each clause is the boolean-or of exactly three literals. For
example,

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

is in 3-CNF form. 3SAT is the problem of determining whether a formula is 3-CNF is satisfiable. 3SAT
is NP-complete. We can use this fact to prove that other problems are NP-complete. We will do this with
the independent set problem.

Independent Set Problem: Given an undirected graphG = (V, E) and an integerk, doesG contain a
subsetV ′ of k vertices such that no two vertices inV ′ are adjacent to each other.

Independent set of size 4


Figure 9.10:

The independent set problem arises when there is some sort ofselection problem where there are mutual
restrictions pairs that cannot both be selected. For example, a company dinner where an employee and
his or her immediate supervisor cannot both be invited.

Claim: IS is NP-complete

The proof involves two parts. First, we need to show that IS∈ NP. The certificate consists ofk vertices
of V ′. We simply verify that for each pair of verticesu, v ∈ V ′, there is no edge between them. Clearly,
this can be done in polynomial time, by an inspection of the adjacency matrix.

Second, we need to establish that IS is NP-hard This can be done by showing that some known
NP-compete (3SAT) is polynomial-time reducible to IS. Thatis, 3SAT≤P IS.
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An important aspect to reductions is that we do not attempt tosolve the satisfiability problem. Remember:
It is NP-complete, and there is not likely to be any polynomial time solution. The idea is to translate the
similar elements of the satisfiable problem to corresponding elements of the independent set problem.

What is to be selected?

3SAT: Which variables are to be assigned the value true, or equivalently, which literals will be true and
which will be false.

IS: Which vertices will be placed inV ′.

Requirements:

3SAT: Each clause must contain at least one true valued literal.

IS: V ′ must contain at leastk vertices.

Restrictions:

3SAT: If xi is assigned true, thenxi must be false and vice versa.

IS: If u is selected to be inV ′ andv is a neighbor ofu thenv cannot be inV ′.

We want a function which given any 3-CNF boolean formulaF , converts it into a pair(G, k) such that
the above elements are translated properly. Our strategy will be to turn each literal into a vertex. The
vertices will be in clause clusters of three, one for each clause. Selecting a true literal from some clause
will correspond to selecting a vertex to add toV ′. We will setk equal to the number of clauses, to force
the independent set subroutine to select one true literal from each clause. To keep the IS subroutine from
selecting two literals from one clause and none from some other, we will connect all the vertices in each
clause cluster with edges. To keep the IS subroutine from selecting a literal and its complement to be
true, we will put an edge between each literal and its complement.

A formal description of the reduction is given below. The input is a boolean formulaF in 3-CNF, and the
output is a graphG and integerk.

3SAT-TO-IS(F)

1 k← number of clauses inF
2 for ( each clauseC in F )

3 do create a clause cluster of
4 3 vertices from literals ofC
5 for ( each clause cluster(x1, x2, x3) )

6 do create an edge(xi, xj) between
7 all pairs of vertices in the cluster
8 for ( each vertexxi )

9 do create an edge betweenxi and
10 all its complement verticesxi
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11 return (G, k) // output is graphG and integerk

If F hask clauses, thenG has exactly3k vertices. Given any reasonable encoding ofF , it is an easy
programming exercise to createG (say as an adjacency matrix) in polynomial time. We claim that F is
satisfiable if and only ifG has an independent set of sizek.

Example: Suppose that we are given the 3-CNF formula:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

The following series of figures show the reduction which produces the graph and sets k = 4. First, each of
the four literals is converted into a three-vertices graph.This is shown in Figure 9.11
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Figure 9.11: Four graphs, one for each of the 3-terms literal

Next, each term is connected to its complement. This is shownin Figure 9.12.



9.8. BOOLEAN SATISFIABILITY PROBLEM: COOK’S THEOREM 183

x

1
 x


3
x

2


x

1
 x


3
x

2


x

3


x

1


x

2


x

3


x

1


x

2


Figure 9.12: Each term is connected to its complement

The boolean formula is satisfied by the assignmentx1 = 1, x2 = 1 x3 = 0. This implies that the first
literal of the first and last clauses are 1, the second literalof the second clause is 1, and the third literal of
the third clause is 1. By selecting vertices corresponding totrue literals in each clause, we get an
independent set of sizek = 4. This is shown in Figure 9.13.
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Figure 9.13: Independent set corresponding tox1 = 1, x2 = 1 x3 = 0

Correctness Proof:

We claim thatF is satisfiable if and only ifG has an independent set of sizek. If F is satisfiable, then each
of thek clauses ofF must have at least one true literal. LetV ′ denote the corresponding vertices from
each of the clause clusters (one from each cluster). Because we take vertices from each cluster, there are
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no inter-cluster edges between them, and because we cannot set a variable and its complement to both be
true, there can be no edge of the form(xi, xi) between the vertices ofV ′ . Thus,V ′ is an independent set
of sizek.

Conversely,G has an independent setV ′ of sizek. First observe that we must select a vertex from each
clause cluster, because there arek clusters, and we cannot take two vertices from the same cluster
(because they are all interconnected). Consider the assignment in which we set all of these literals to 1.
This assignment is logically consistent, because we cannothave two vertices labelledxi andxi in the
same cluster.

Finally the transformation clearly runs in polynomial time. This completes the NP-completeness proof.

Also observe that the the reduction had no knowledge of the solution to either problem. Computing the
solution to either will require exponential time. Instead,the reduction simple translated the input from
one problem into an equivalent input to the other problem.

9.9 Coping with NP-Completeness

With NP-completeness we have seen that there are many important optimization problems that are likely
to be quite hard to solve exactly. Since these are important problems, we cannot simply give up at this
point, since people do need solutions to these problems. Here are some strategies that are used to cope
with NP-completeness:

Use brute-force search:Even on the fastest parallel computers this approach is viable only for the
smallest instance of these problems.

Heuristics: A heuristic is a strategy for producing a valid solution but there are no guarantees how close
it to optimal. This is worthwhile if all else fails.

General search methods:Powerful techniques for solving general combinatorial optimization
problems. Branch-and-bound, A*-search, simulated annealing, and genetic algorithms

Approximation algorithm: This is an algorithm that runs in polynomial time (ideally) and produces a
solution that is within a guaranteed factor of the optimal solution.


