Design and Analysis of Algorithms

Sohail Aslam

January 2004

Contents

1

Introduction

1.1 Origin of word:Algorithm

1.2 Algorithm: Informal Definition

1.3 Algorithms, Programming e

1.4 Implementation ISSUES e e e

15 CourseinReVIEW e e

1.6 Analyzing Algorithms e e

1.7 Modelof Computation

1.8 Example: 2-dimensionmaxima e e

1.9 Brute-Force Algorithm e e

1.10 Running Time Analysis e e
1.10.1 Analysis of the brute-force maxima algorithm.

1.11 Analysis: AHarderExample e
1.11.1 2-dimension Maxima Revisited
1.11.2 Plane-sweep Algorithm e
1.11.3 Analysis of Plane-sweep Algorithm,
1.11.4 Comparison of Brute-force and Plane sweep algorithms.

Asymptotic Notation

Divide and Conquer Strategy

3.1 Merge Sort e e e e e e e e
3.1.1 AnalysisofMerge Sort
3.1.2 The Iteration Method for Solving Recurrence Relations.
3.1.3 Visualizing Recurrences Using the Recursion Tree

3

3.1.4 AMessierExample.
3.2 SelectionProblem 0.
3.2.1 SieveTechnique
3.2.2 Applying the Sieve to Selection
3.2.3 Selection Algorithm
3.2.4 AnalysisofSelection
Sorting
4.1 Slow Sorting Algorithms
4.2 SortinginO(nlogn)time
421 Heaps e
4.2.2 Heapsort Algorithm
4.2.3 HeapifyProcedure
4.2.4 AnalysisofHeapify
425 BuildHeap
4.2.6 AnalysisofBuildHeap
427 AnalysisofHeapsort
4.3 Quicksort
4.3.1 Partition Algorithm
4.3.2 QuickSortExample
4.3.3 Analysisof Quicksort

4.3.4 Worst Case Analysis of Quick Sort
4.3.5 Average-case Analysis of Quicksort

4.4 In-place, Stable Sorting oL
45 LowerBoundsforSorting

Linear Time Sorting

51 CountingSort
5.2 BucketorBinSort
5.3 RadixSort.

Dynamic Programming

6.1 FibonacciSequence

CONTENTS

............... 43

CONTENTS 5

6.2 Dynamic Programming e e e 75
6.3 EditDistance e e 75
6.3.1 Edit Distance: Applications e 76
6.3.2 Edit Distance Algorithm e 77
6.3.3 Edit Distance: Dynamic Programming Algorithm 77
6.3.4 Analysisof DP EditDistancec..... 84
6.4 Chain Matrix Multiply e 84
6.4.1 Chain Matrix Multiplication-Dynamic Programming Raulation 85
6.5 0/1Knapsack Problem e 91
6.5.1 0/1 Knapsack Problem: Dynamic Programming Approach. 93
7 Greedy Algorithms 97
7.1 Example: CountingMoney e e 97
7.1.1 Making Change: Dynamic Programming Solution 98
7.1.2 Complexity of Coin Change Algorithm 99
7.2 Greedy Algorithm: Huffman Encoding 99
7.2.1 Huffman Encoding Algorithm 100
7.2.2 Huffman Encoding: Correctness e 102
7.3 Activity Selection e 105
7.3.1 Correctness of Greedy Activity Selection 107
7.4 Fractional Knapsack Problem 109
8 Graphs 113
8.1 GraphTraversal e e 116
8.1.1 Breadth-firstSearch e 117
8.1.2 Depth-firstSearch e 119
8.1.3 Generic Graph Traversal Algorithm 119
8.1.4 DFS-Timestamp Structure e 125
8.15 DFS-Cycles e e 130
8.2 Precedence ConstraintGraph 131
8.3 Topological Sort. e e 133
8.4 Strong COmponNents e e e e e 135

8.4.1 Strong ComponentsandDFS 137

CONTENTS

8.5 Minimum Spanning Trees e e e e 142
8.5.1 Computing MST: Generic Approach 143
8.5.2 Greedy MST 144
8.5.3 Kruskal's Algorithm e 147
8.5.4 Prim'sAlgorithm e 149

8.6 ShortestPaths e 153
8.6.1 Dijkstra’s Algorithm e 154
8.6.2 Correctness of Dijkstra’s Algorithm 158
8.6.3 Bellman-Ford Algorithm e 159
8.6.4 CorrectnessofBellman-Ford 160
8.6.5 Floyd-Warshall Algorithm L 161

Complexity Theory 169

9.1 DecisionProblems e 170

9.2 Complexity Classes e e 170

9.3 Polynomial Time Verification e 171

9.4 TheClassNP e 172

9.5 Reductions 173

9.6 Polynomial Time Reduction e 177

9.7 NP-Completeness e e 177

9.8 Boolean Satisfiability Problem: Cook’'s Theorem 178

9.9 Coping with NP-Completeness i i e 184

Chapter 1

Introduction

1.1 Origin of word: Algorithm

The wordAlgorithmcomes from the name of the muslim autidiu Ja’far Mohammad ibn Musa
al-Khowarizmi He was born in the eighth century at Khwarizm (Kheva), a teauth of river Oxus in
present Uzbekistan. Uzbekistan, a Muslim country for ovimoaisand years, was taken over by the
Russians in 1873.

His year of birth is not known exactly. Al-Khwarizmi paremsgrated to a place south of Baghdad wher
he was a child. It has been established from his contribstibat he flourished under Khalifah
Al-Mamun at Baghdad during 813 to 833 C.E. Al-Khwarizmi dieduard 840 C.E.

Much of al-Khwarizmi's work was written in a book titleal Kitab al-mukhatasar fi hisab al-jabr
wa’l-mugabalah(The Compendious Book on Calculation by Completion and Balahclhgg from the
titles of these writings and his name that the waaligebraandalgorithmare derived. As a result of his
work, al-Khwarizmi is regarded as the most outstanding eratktician of his time

1.2 Algorithm: Informal Definition

An algorithm is any well-defined computational procedua takes some values, or set of values, as
input and produces some value, or set of values, as outpudlgmithm is thus a sequence of
computational steps that transform the input into output.

1.3 Algorithms, Programming

A good understanding of algorithms is essential for a goatewstanding of the most basic element of
computer science: programming. Unlike a program, an dlgoris a mathematical entity, which is
independent of a specific programming language, machiregrapiler. Thus, in some sense, algorithm

7

musharaf
Highlight

musharaf
Highlight

8 CHAPTER 1. INTRODUCTION

design is all about the mathematical theory behind the desfigood programs.

Why study algorithm design? There are many facets to goodanmodesign. Good algorithm design is
one of them (and an important one). To be really completerétgo designer, it is important to be aware
of programming and machine issues as well. In any importasgramming project there are two major
types of issues, macro issues and micro issues.

Macro issues involve elements such as how does one coadimaefforts of many programmers
working on a single piece of software, and how does one eslatblat a complex programming system
satisfies its various requirements. These macro issueb@apitmary subject of courses on software
engineering.

A great deal of the programming effort on most complex soféngystems consists of elements whose
programming is fairly mundane (input and output, data cosiee, error checking, report generation).
However, there is often a small critical portion of the safte;, which may involve only tens to hundreds
of lines of code, but where the great majority of computadldime is spent. (Or as the old adage goes:
80% of the execution time takes place in 20% of the code.) Tieeonssues in programming involve
how best to deal with these small critical sections.

It may be very important for the success of the overall pitdjeat these sections of code be written in the
most efficient manner possible. An unfortunately commorr@ggh to this problem is to first design an
inefficient algorithm and data structure to solve the probhland then take this poor design and attempt
to fine-tune its performance by applying clever coding siok by implementing it on the most expensive
and fastest machines around to boost performance as mucdissiblp. The problem is that if the
underlying design is bad, then often no amount of fine-tursrgping to make a substantial difference.

Before you implement, first be sure you have a good design.chhisse is all about how to design good
algorithms. Because the lesson cannot be taught in just aneesdhere are a number of companion
courses that are important as well. CS301 deals with how tigrnlgeod data structures. This is not
really an independent issue, because most of the fastesithigs are fast because they use fast data
structures, and vice versa. In fact, many of the coursesicdmputer science program deal with
efficient algorithms and data structures, but just as theyyap various applications: compilers,
operating systems, databases, artificial intelligenceypeter graphics and vision, etc. Thus, a good
understanding of algorithm design is a central element tocal ginderstanding of computer science and
good programming.

1.4 Implementation Issues

One of the elements that we will focus on in this course isytadrstudy algorithms as pure mathematical
objects, and so ignore issues such as programming languagéjne, and operating system. This has
the advantage of clearing away the messy details that affgdementation. But these details may be
very important.

For example, an important fact of current processor tedgyois that of locality of reference. Frequently
accessed data can be stored in registers or cache memomathematical analysis will usually ignore
these issues. But a good algorithm designer can work witl@mehlm of mathematics, but still keep an

1.5. COURSE IN REVIEW 9

open eye to implementation issues down the line that wilhiygartant for final implementation. For
example, we will study three fast sorting algorithms thisisster, heap-sort, merge-sort, and quick-sort.
From our mathematical analysis, all have equal runninggiri®wever, among the three (barring any
extra considerations) quick sort is the fastest on virjualll modern machines. Why? It is the best from
the perspective of locality of reference. However, thesddhce is typically small (perhaps 10-20%
difference in running time).

Thus this course is not the last word in good program desigphjrafact it is perhaps more accurately just
the first word in good program design. The overall strategy klvould suggest to any programming
would be to first come up with a few good designs from a matheadatnd algorithmic perspective.

Next prune this selection by consideration of practicalterat(like locality of reference). Finally
prototype (that is, do test implementations) a few of the designs and run them on data sets that will
arise in your application for the final fine-tuning. Also, heeto use whatever development tools that
you have, such as profilers (programs which pin-point theé@es of the code that are responsible for
most of the running time).

1.5 Course in Review

This course will consist of four major sections. The firstimstbe mathematical tools necessary for the
analysis of algorithms. This will focus on asymptotics, seations, recurrences. The second element
will deal with one particularly important algorithmic prigon: sorting a list of numbers. We will show a
number of different strategies for sorting, and use thiblenm as a case-study in different techniques for
designing and analyzing algorithms.

The final third of the course will deal with a collection of w@us algorithmic problems and solution
techniques. Finally we will close this last third with a vdmyef introduction to the theory of
NP-completeness. NP-complete problem are those for whudffitient algorithms are known, but no
one knows for sure whether efficient solutions might exist.

1.6 Analyzing Algorithms

In order to design good algorithms, we must first agree ther@ifor measuring algorithms. The
emphasis in this course will be on the design of efficient@llgan, and hence we will measure
algorithms in terms of the amount of computational resaaitbat the algorithm requires. These
resources include mostly running time and memory. Depenolimthe application, there may be other
elements that are taken into account, such as the numbeactskses in a database program or the
communication bandwidth in a networking application.

In practice there are many issues that need to be considetlkd design algorithms. These include
issues such as the ease of debugging and maintaining thediitahre through its life-cycle. Also, one

of the luxuries we will have in this course is to be able to assthat we are given a clean, fully-specified
mathematical description of the computational problenprhctice, this is often not the case, and the
algorithm must be designed subject to only partial knowtedithe final specifications. Thus, in practice

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

10 CHAPTER 1. INTRODUCTION

it is often necessary to design algorithms that are simpleé easily modified if problem parameters and
specifications are slightly modified. Fortunately, mosthaf &lgorithms that we will discuss in this class
are quite simple, and are easy to modify subject to smalllprolvariations.

1.7 Model of Computation

Another goal that we will have in this course is that our as@lye as independent as possible of the
variations in machine, operating system, compiler, or @ogning language. Unlike programs,
algorithms to be understood primarily by people (i.e. pangmers) and not machines. Thus gives us
quite a bit of flexibility in how we present our algorithms,camany low-level details may be omitted
(since it will be the job of the programmer who implementsalgorithm to fill them in).

But, in order to say anything meaningful about our algorithingill be important for us to settle on a
mathematical model of computation. Ideally this model $tidne a reasonable abstraction of a standard
generic single-processor machine. We call this modehdom access machime RAM.

A RAM is an idealized machine with an infinitely large randoot@ss memory. Instructions are
executed one-by-one (there is no parallelism). Each iostmuinvolves performing some basic operation
on two values in the machines memory (which might be characteintegers; let’'s avoid floating point
for now). Basic operations include things like assigning lae@o a variable, computing any basic
arithmetic operation (+, - x , integer division) on integer values of any size, perforgramy comparison
(e.g.x < 5) or boolean operations, accessing an element of an argyA#.0]). We assume that each
basic operation takes the same constant time to execute.

This model seems to go a good job of describing the computatiwower of most modern (nonparallel)
machines. It does not model some elements, such as efficierecto locality of reference, as described
in the previous lecture. There are some “loop-holes” (odbrdways of subverting the rules) to beware
of. For example, the model would allow you to add two numbleas tontain a billion digits in constant
time. Thus, it is theoretically possible to derive nonsealsiesults in the form of efficient RAM

programs that cannot be implemented efficiently on any nmechilonetheless, the RAM model seems tc
be fairly sound, and has done a good job of modelling typicatinime technology since the early 60’s.

1.8 Example: 2-dimension maxima

Let us do an example that illustrates how we analyze algosttfSuppose you want to buy a car. You
want the pick the fastest car. But fast cars are expensiveyaoi the cheapest. You cannot decide whict
is more important: speed or price. Definitely do not want afddwere is another that is both faster and
cheaper. We say that the fast, cheapdmmninateghe slow, expensive car relative to your selection
criteria. So, given a collection of cars, we want to list #ngars that are not dominated by any other.

Here is how we might model this as a formal problem.

e Let a pointp in 2-dimensional space be given by its integer coordinates,(p.x, p.y).

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

1.9. BRUTE-FORCE ALGORITHM 11

e A pointp is said to be dominated by poigtif p.x < g.x andp.y < q.y.

e Given a set ofr points,P = {p1,p2,...,pn} IN 2-space a point is said to be maximal if it is not
dominated by any other point i

The car selection problem can be modelled this way: For eactve associatéx, y) pair wherex is the
speed of the car anglis the negation of the price. Highvalue means a cheap car and lgwneans
expensive car. Think af as the money left in your pocket after you have paid for the Maximal
points correspond to the fastest and cheapest cars.

The2-dimensional Maxim&s thus defined as

e Given a set of point® = {p1,p2,...,pn}in 2-space, output the set of maximal pointdof.e.,
those point®; such that; is not dominated by any other point Bf

Here is set of maximal points for a given set of points in 2-d.

2 4 6 8 10 1214 16 18

Figure 1.1: Maximal points in 2-d

Our description of the problem is at a fairly mathematicaéle We have intentionally not discussed how
the points are represented. We have not discussed any inputput formats. We have avoided
programming and other software issues.

1.9 Brute-Force Algorithm

To get the ball rolling, let’s just consider a simple bruteele algorithm, with no thought to efficiency.
LetP = {p1,p2,...,pn} be the initial set of points. For each point test it against all other points. If
pi IS not dominated by any other point, then output it.

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

12 CHAPTER 1. INTRODUCTION

This English description is clear enough that any (compemngrammer should be able to implement
it. However, if you want to be a bit more formal, it could be t#ten in pseudocode as follows:

MAXIMA (int n,Point P[1...n])
1 fori—Tton
2 domaximal + true
forj«— 1ton
do
if (i #j) and(P[i].x < P[jl.x) and(P[il.y < P[jl.y)
then maximal « false; break

if (maximal = true)

then output P[i]

O~NO Ol b W

There are no formal rules to the syntax of this pseudo codeaiticular, do not assume that more detail
is better. For example, | omitted type specifications forgrecedure Maxima and the variable maximal,
and | never defined what a Point data type is, since | felt trege are pretty clear from context or just
unimportant details. Of course, the appropriate level thitles a judgement call. Remember, algorithms
are to be read by people, and so the level of detail dependswrintended audience. When writing
pseudo code, you should omit details that detract from thia idaas of the algorithm, and just go with
the essentials.

You might also notice that I did not insert any checking fongistency. For example, | assumed that the
points inP are all distinct. If there is a duplicate point then the aiifion may fail to output even a single
point. (Can you see why?) Again, these are important coredides for implementation, but we will
often omit error checking because we want to see the algoiithts simplest form.

Here are a series of figures that illustrate point domination

(7,13) (7,13)
® []
8(12,12) ®(12,12)

©(9,10) ®(14,10) ®(4,11) o010 #(14.10)

®4,11)

o(7.7) s ®(15,7) o(7.7) s ®(15,7)
o(25) A5 o(25) 52

4,4 4.4
® (4,4) (12,3) ® (4,4) (12,3)

®(5,1) ®(5,1)
2 4 6 8 101214 16 18 2 4 6 8 101214 16 18

Figure 1.2: Points that dominaté, 11) Figure 1.3: Points that dominate, 10)

1.10. RUNNING TIME ANALYSIS 13

2 4 6 8 101214 16 18 2 4 6 8 101214 16 18

Figure 1.4: Points that dominatg, 7) Figure 1.5: The maximal points

1.10 Running Time Analysis

The main purpose of our mathematical analysis will be méagtine execution time. We will also be
concerned about the space (memory) required by the algurith

The running time of an implementation of the algorithm wodépend upon the speed of the computer,
programming language, optimization by the compiler et¢héligh important, we will ignore these
technological issues in our analysis.

To measure the running time of the brute-force 2-d maximaralgn, we could count the number of
steps of the pseudo code that are executed or, count the noifrtvees an element df is accessed or,
the number of comparisons that are performed.

The running time depends upon the input size, &.@ifferent inputs of the same size may result in
different running time. For example, breaking out of theainioop in the brute-force algorithm depends
not only on the input size d? but also the structure of the input.

Two criteria for measuring running time an®rst-case tim@andaverage-case time

Worst-case time is the maximum running time over all (legal) inputs of sizelLet I denote an input
instance, letl| denote its length, and I8t 1) denote the running time of the algorithm on infjut
Then

Tworst(n) = max T(I)

[T]=n

Average-case timeis the average running time over all inputs of sizeLet p(I) denote the probability
of seeing this input. The average-case time is the weightedas running times with weights

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

14 CHAPTER 1. INTRODUCTION

being the probabilities:
Tavg(n) = Z p(I)T(U

I]=n

We will almost always work with worst-case time. Averagase&éme is more difficult to compute; it is

difficult to specify probability distribution on inputs. Wst-case time will specify an upper limit on the
running time.

1.10.1 Analysis of the brute-force maxima algorithm.

Assume that the input size1s and for the running time we will count the number of time taay
element ofP is accessed. Clearly we go through the outer loop n times,@rebth time through this
loop, we go through the inner loaptimes as well. The condition in the if-statement makes fageases
to P. The output statement makes two accesses for each poimng thaput. In the worst case every point
is maximal (can you see how to generate such an example?¢s® tivo access are made for each time
through the outer loop.

MAXIMA (int n,Point P[1...n])

1 forie—1ton [HENeS

2 domaximal « true

3 forj1ton [ENES
do
if (i#j)&(Pil.x < P{l.x)&(Plil.y < Plly) [

4
5
6 then maximal « false break
7 if maximal

8

then outputPfil.x,Plil.y [ERGCCoSes

Thus we might express the worst-case running time as a pagstéd summations, one for théoop
and the other for thgloop:

T(n) = Z(z+i4)

n
i=1

=> (4n+2)
i=1

= (4n+2n=4n’+2n

For small values ofi, any algorithm is fast enough. What happens whegets large? Running time
does become an issue. Wheris large,n? term will be much larger than the term and willdominate
the running time.

We will say that the worst-case running timed$n?). This is called the asymptotic growth rate of the
function. We will discuss thi§-notation more formally later.

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

1.10. RUNNING TIME ANALYSIS 15

The analysis involved computing a summation. Summationlshize familiar but let us review a bit
here. Given a finite sequence of valugsa,, ..., a,, their suma; + a, + ... + a, is expressed in
summation notation as N

D_a

i=1

If n =0, then the sum is additive identit),
Some facts about summatidific is a constant

n n
E ca;=¢ E a;
i=1 i=1

and

n

Z(ai‘|’bi) = Zai—i—zbi
i1 i=1

i=1

Some important summations that should be committed to mgmor

Arithmetic series
n
Zi:1+2+...—|—n
i=1

- nn+1)
=—7 =6

Quadratic series

Zizz1—|—4+9—|—...—|—n2

i=1

3 2
_2n +36n +n:®(n3)

Geometric series

in: T4+x+x>4+... +x"
i=1
(m+1)
2l em
x—1
If 0 < x < 1thenthisis®(1), andifx > 1, then this i (x™).

Harmonic series Forn > 0

~Inn

16 CHAPTER 1. INTRODUCTION
1.11 Analysis: A Harder Example
Let us consider a harder example.

NESTED-LOOPY)

1 fori<Tton

2 do

forj «— 1to2i

dok=j ...
while (k > 0)
dok=k—1 ...

o 01k~ W

How do we analyze the running time of an algorithm that haspternested loop? The answer is we
write out the loops as summations and then solve the summsafi@ convert loops into summations, we
work from inside-out.

Consider thenner most whildoop.

NESTED-LOOPY)
1 fori—Tton
2 doforj« 1to2i

3 dok=—=j
4 while (k > 0)
5 dok=k—1

It is executed fok =j,j — 1,7 — 2,...,0. Time spent inside the while loop is constant. Letbe the
time spent in the while loop. Thus

)

)= 1=j+1

k=0

Consider themiddle forloop.

NESTED-LOOPY)

1 fori<Tton

2 doforj« 1to2i [l
3 dok=j

4 while (k > 0)

5 dok=k—1

1.11. ANALYSIS: AHARDER EXAMPLE 17

Its running time is determined ky Let M () be the time spent in the for loop:
2i
=> 1(j)
j=1
2i
=> (G+1)
j=1

2421+ 1)
=5 °
=2{*+3i

Finally theouter-most foloop.

NESTED-LOOPY)
1 fori—Tton
2 doforj« 1to2i

3 dok=j
4 while (k > 0)
5 dok=k—1

Let T() be running time of the entire algorithm:
= Z M(i)
Z (242 + 3i)

n

Z i —|—Z31

Zn +3n2+n nmn+1)

=2 c +3 >
A4+ 15m2 4 11n

N 6

= 0(n?

1.11.1 2-dimension Maxima Revisited

Recall the 2-d maxima problem: Let a pointn 2-dimensional space be given by its integer coordinate:
P = (p.x,p.y). A pointp is said todominatedby pointq if p.x < g.x andp.y < q.y. Given a set ofv

18 CHAPTER 1. INTRODUCTION

points,P = {p1,p2,...,pn}in 2-space a point is said to lbeaximalif it is not dominated by any other
point in P. The problem is to output all the maximal pointsfofWe introduced a brute-force algorithm
that ran in@(n?) time. It operated by comparirajl pairs of points. Is there an approach that is
significantly better?

The problem with the brute-force algorithm is that it usesmelligence inpruningout decisions. For
example, once we know that a pojntis dominated by another poip, we do not need to uge for
eliminating other points. This follows from the fact thatimance relation isransitive If p; dominates
pi andp; dominate®, thenp; also dominategy,; p; is not needed.

1.11.2 Plane-sweep Algorithm

The question is whether we can make an significant improvemehe running time? Here is an idea for
how we might do it. We will sweep a vertical line across thenpl&rom left to right. As we sweep this
line, we will build a structure holding the maximal pointsryg to the left of the sweep line. When the
sweep line reaches the rightmost poinPafthen we will have constructed the complete set of maxima.
This approach of solving geometric problems by sweepingedicross the plane is callpthne sweep

Although we would like to think of this as a continuous prag;ese need some way to perform the plane
sweep in discrete steps. To do this, we will begin by sortireggdoints in increasing order of their
x-coordinates. For simplicity, let us assume that no twamtsohave the same y-coordinate. (This limiting
assumption is actually easy to overcome, but it is good tkwath the simpler version, and save the
messy details for the actual implementation.) Then we wilMaace the sweep-line from point to point in
n discrete steps. As we encounter each new point, we will eptth@t current list of maximal points.

We will sweep a vertical line across the 2-d plane from lefight. As we sweep, we will build a
structure holding the maximal points lying to the left of 8weeep line. When the sweep line reaches the
rightmost point ofP, we will have the complete set of maximal points. We will sttine existing

maximal points in a list The points that dominates will appear at the end of the list because poiets ar
sorted byx-coordinate. We will scan the list left to right. Every maxahpoint withy-coordinate less
thanp; will be eliminated from computation. We will add maximal pts onto the end of a list and
delete from the end of the list. We can thus use a stack to gtenmaximal points. The point at the top
of the stack will have the highestcoordinate.

Here are a series of figures that illustrate the plane sweapfigure also show the content of the stack.

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

1.11. ANALYSIS: AHARDER EXAMPLE 19

sweep line sweep line

>

sweep line

—»

]
]
]
]
]
]
]
]
0)
|

Figure 1.10: Sweep line &7, 7) Figure 1.11: Sweep line &%, 10)

20

sweep line

s

0 (12,12)

CHAPTER 1. INTRODUCTION

sweep line

N

D (12,12)

0 (14,10)

o (15,7)

0(13,3)

2 4 6 8 101214 16 18

Figure 1.12: Sweep line &10,5) Figure 1.13: Sweep line &12,12)

2 4 6 8 101214 16 18

Figure 1.14: The final maximal set

Here is the algorithm.

PLANE-SWEEPMAXIMA (1, P[1..n])

1 sortPinincreasing order by;

2 stacks;

fori— 1ton

do

5 while (s.notEmpty() & s.top().y < Plil.y)
6 do s.pop();

7 s.push(P[i]);

8 output the contents of stasgk

AW

1.11. ANALYSIS: AHARDER EXAMPLE 21

1.11.3 Analysis of Plane-sweep Algorithm

Sorting take®(n logn); we will show this later when we discuss sorting. The for lexpcutes

times. The inner loop (seemingly) could be iteratad- 1) times. It seems we still have arin — 1) or
©(n?) algorithm. Got fooled by simple minded loop-counting. Thiile/loop will not execute more
times over the entire course of the algorithm. Why is this?eDlesthat the total number of elements that
can be pushed on the stackisince we execute exactly one push each time during the artérdp.

We pop an element off the stack each time we go through the wniée-loop. It is impossible to pop
more elements than are ever pushed on the stack. Therdfer@ner while-loop cannot execute more
thann times over the entire course of the algorithiiake sure that you understand this

The for-loop iterates times and the inner while-loop also iteratesime for a total of®(n). Combined
with the sorting, the runtime of entire plane-sweep alponiis©@(nlogn).

1.11.4 Comparison of Brute-force and Plane sweep algorithms

How much of an improvement is plane-sweep over brute-fo@arsider the ratio of running times:

n? n

nlogn - logn

n logn ﬁi
100 7 15
1000 10 100

10000 13 752
100000 17| 6021
1000000 20| 50171

Forn = 1,000, 000, if plane-sweep takes 1 second, the brute-force will takeutib4 hours!. From this
we get an idea about the importance of asymptotic analytdislld us which algorithm is better for large
values ofn. As we mentioned before, if is not very large, then almost any algorithm will be fast. But
efficient algorithm design is most important for large irggutnd the general rule of computing is that
input sizes continue to grow until people can no longer &ikethe running times. Thus, by designing
algorithms efficiently, you make it possible for the userun farge inputs in a reasonable amount of time

22

CHAPTER 1.

INTRODUCTION

Chapter 2

Asymptotic Notation

You may be asking that we continue to use the notatiin but have never defined it. Let’'s remedy this
now. Given any functiorg(n), we define®(g(n)) to be a set of functions thaasymptotically equivalent
to g(n). Formally:

O(g(n)) = {f(n) | there exist positive
constantg, ¢, andngy such that
0 <cig(n) < f(n) < cag(n)
forall n > ng}

This is written as f(n) € O(g(n))” That is, f(n) andg(n) areasymptotically equivaleniThis means
that they have essentially the same growth rates for largeor example, functions like

o 4T12,
o (8n?+2n—3),
e (n?/5+ /1 —10logn)

e n(n—23)

are all asymptotically equivalent. Asbecomes large, thdominant(fastest growing) term is some
constant times.2.

Consider the function
f(n) =8n*+2n—3

Our informal rule of keeping the largest term and ignoring ¢onstant suggests théh) € ©(n?). Let’s
see why this bears out formally. We need to show two things for

fn) =8n’+2n—3
Lower bound f(n) = 8n? + 2n — 3 grows asymptotically at least as fastrels

23

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

24 CHAPTER 2. ASYMPTOTIC NOTATION

Upper bound f(n) grows no faster asymptotically thart,

Lower bound: f(n) grows asymptotically at least as fastrels For this, need to show that there exist
positive constants; andn,, such thatf(n) > c;n? for all n > n,. Consider the reasoning

f(n) = 8n?+2n—3 > 8n?—3 =7n?+ (n?—3) > 7n?

Thusc; = 7. We implicitly assumed than > 0 andn? — 3 > 0 These are not true for ali but if
n > /3, then both are true. So selecg > /3. We then havé(n) > c¢yn? for all n > n,.

Upper bound: f(n) grows asymptotically no faster thart. For this, we need to show that there exist
positive constants, andn,, such thatf(n) < c,n? for all n > n,. Consider the reasoning

f(n) =8n?+2n—3 < 8n?+2n < 8n?+2n* = 10n?

Thusc, = 10. We implicitly made the assumption that < 2n?2. This is not true for ath but it is true
for allm > 1 So selech, > 1. We thus haveé(n) < c,n?for alln > n,.

From lower bound we have, > v/3 From upper bound we hawe, > 1. Combining the two, we let,
be the larger of the twon, > V/3. In conclusion, if we let; = 7, ¢, = 10 andn, > /3, we have

n?<8n?+2n—-3<10n? foralln > V3
We have thus established

0<cig(n) <f(n) <cpg(n) foralln >mny

Here are plots of the three functions. Notice the bounds.

Asymptotic Notation

8n"2+2n-3 ——
n"2 —

40000 60000 80000 100000

Figure 2.1: Asymptotic Notation Example

We have established th&tn) € n?. Let's show whyf(n) is not in some other asymptotic class. First,
let's show thatf(n) ¢ ©(n). Show thatf(n) ¢ ©(n). If this were true, we would have had to satisfy

musharaf
Highlight

25

both the upper and lower bounds. The lower bound is satiséieduse (n) = 8n? + 2n — 3 does grow
at least as fast asymptotically as But the upper bound is false. Upper bounds requires thas #rast
positive constants, andn, such thatf(n) < c,n for all n > n,.

Informally we know thatf(n) = 8n? + 2n — 3 will eventually exceed,n no matter how large we make
c,. To see this, suppose we assume that constarasdn, did exist such tha§n? + 2n — 3 < c,n for

all n > n, Since this is true for all sufficiently large then it must be true in the limit as tends to
infinity. If we divide both sides by, we have

lim <8n+2 — i) < ¢y.
n

n—oo

It is easy to see that in the limit, the left side tendsdo So, no matter how large, is, the statement is
violated. Thusf(n) € ©(n).

Let's show thatf(n) ¢ @(n3). The idea would be to show that the lower bodifd) > ¢;n? for all
n > nois violated. ¢; andn, are positive constants). Informally we know this to be treeduse any
cubic function will overtake a quadratic.

If we divide both sides by
i 8 2 3
Wle\n T) 2

The left side tends t0. The only way to satisfy this is to sef = 0. But by hypothesis;; is positive.
This means thaf(n) ¢ O(n?3).

The definition of®-notation relies on proving both a lower and upper asymptmiund. Sometimes we
only interested in proving one bound or the other. TBenotation is used to state only the asymptotic
upperbounds.

O(g(n)) = {f(n) | there exist positive
constantg andn, such that
0 < f(n) <cgn)
forall n > ng}

The Q-notation allows us to state only the asymptddwer bounds.

Q(g(n)) ={f(n) | there exist positive
constantg andn, such that
0 <cg(n) <f(n)
foralln > ng}

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

26 CHAPTER 2. ASYMPTOTIC NOTATION

The three notations:

These definitions suggest an alternative way of showingsimptotic behavior. We can use limits for
define the asymptotic behavior. Limit rule férnotation:

lim m =c,

n—oo g(mn)
for some constant > 0 (strictly positive but not infinity) theri(n) € @(g(n)). Similarly, the limit rule

for O-notation is
f(n)

n—oog(n)

b

for some constant > 0 (nonnegative but not infinite) thefin) € O(g(n)) and limit rule for

Q-notation: ()
n
lim —— #0,
n—00 g(n) 7

(either a strictly positive constant or infinity) thém) € Q(g(n)).
Here is a list of common asymptotic running times:
e O(1): Constant time; can’t beat it!

e O(logn): Inserting into a balanced binary tree; time to find an itera sorted array of length
using binary search.

e O(n): About the fastest that an algorithm can run.
e O(nlogn): Best sorting algorithms.

e O(n?), ®(n3): Polynomial time. These running times are acceptable wherxtponent of. is
small orn is not to large, e.gn < 1000.

e O(2™), ©(3™): Exponential time. Acceptable only1i is small, e.g.n < 50.

e O(n!), O(n"): Acceptable only for really smaii, e.g.n < 20.

Chapter 3

Divide and Conquer Strategy

The ancient Roman politicians understood an important jpli@of good algorithm design (although
they were probably not thinking about algorithms at the jinYeu divide your enemies (by getting them
to distrust each other) and then conquer them piece by plétgis calleddivide-and-conquerin
algorithm design, the idea is to take a problem on a largetjippaak the input into smaller pieces, solve
the problem on each of the small pieces, and then combinaghewise solutions into a global solution.
But once you have broken the problem into pieces, how do yoe sbese pieces? The answer is to
apply divide-and-conquer to them, thus further breakirgrtldown. The process ends when you are left
with such tiny pieces remaining (e.g. one or two items) thittrivial to solve them. Summarizing, the
main elements to a divide-and-conquer solution are

Divide: the problem into a small number of pieces
Conquer: solve each piece by applying divide and conquer tegtrsively

Combine: the pieces together into a global solution.

3.1 Merge Sort

Divide and conquer strategy is applicable in a huge numbeowiputational problems. The first
example of divide and conquer algorithm we will discuss igw@p¢e and efficient sorting procedure
called We are given a sequencerofumbersA, which we will assume are stored in an arvaji..n|.
The objective is to output a permutation of this sequencedan increasing order. This is normally
done by permuting the elements within the arPayHere is how the merge sort algorithm works:

¢ (Divide:) split A down the middle into two subsequences, each of size roughly
e (Conquer:) sort each subsequence by calling merge sorsregelyron each.

e (Combine:) merge the two sorted subsequences into a singézlSist.

27

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

28 CHAPTER 3. DIVIDE AND CONQUER STRATEGY

Let’s design the algorithm top-down. We’ll assume that trecpdure that merges two sorted list is
available to us. We’ll implement it later. Because the aldponi is called recursively on sublists, in
addition to passing in the array itself, we will pass in twdiges, which indicate the first and last indices
of the sub-array that we are to sort. The ddlérgeSort(A, p, r) will sort the sub-arrayA[p : r] and

return the sorted result in the same sub-array.Here is theview. Ifr = p, then this means that there is
only one element to sort, and we may return immediately. @tise if (p # r) there are at least two
elements, and we will invoke the divide-and-conquer. We fivedindexq, midway betweem andr,
namelyq = (p + r)/2 (rounded down to the nearest integer). Then we split they amta sub-arrays

Alp : ql andA[q + 1 : r]. Call MergeSort recursively to sort each sub-array. Finalsinvoke a
procedure (which we have yet to write) which merges thesestwarrays into a single sorted array.

Here is the MergeSort algorithm.
MERGE-SORT(array A, int p, int 1)

1 if(p<r)

2 then

3 q« (p+r1)/2

4 MERGE-SORT(A, p, q) // sort Alp..q]

5 MERGE-SORT(A,q + 1,7) //sort A[q + 1..7]
6 MERGE(A,p,q,r) // merge the two pieces

The following figure illustrates the dividing (splittingyqcedure.

752416 30

Figure 3.1: Merge sort divide phase

Merging: All that is left is to describe the procedure that merges tartesl lists.Merge(A,p, q, 1)
assumes that the left sub-arréyp : ql, and the right sub-arra\[q + 1 : r], have already been sorted.
We merge these two sub-arrays by copying the elements tootany working array called&. For
convenience, we will assume that the arBalgas the same index rande that is,B[p : r]. (One nice

thing about pseudo-code, is that we can make these assmsgind leave them up to the programmer tc
figure out how to implement it.) We have to indiceandj, that point to the current elements of each

musharaf
Highlight

3.1. MERGE SORT 29

sub-array. We move the smaller element into the next positi® (indicated by index) and then
increment the corresponding index (eithear j). When we run out of elements in one array, then we jus
copy the rest of the other array inBo Finally, we copy the entire contents Bfback intoA. (The use of
the temporary array is a bit unpleasant, but this is impdessibovercome entirely. It is one of the
shortcomings of MergeSort, compared to some of the otheiexiti sorting algorithms.)

Here is the merge algorithm:

MERGE(array A, int p, int qint r)
1 intBp.rjintie—kemp;intje—q+1
2 while (i < q)and(j <)
3 doif (Afi] < A[j])
4 then Blk#+] « Alir+]
5 else Blk++] « Alj+]
6 while (i <q)
7 doBlk++] « Alir+]
8 while (j <)
9 doBlk++] « Afj++]
O fori<ptor
1 doAli] « BJi]

o

123 456 7

\

\I

Figure 3.2: Merge sort: combine phase

3.1.1 Analysis of Merge Sort

First let us consider the running time of the proceduterge(A,p, q,r). Letn = r —p + 1 denote the
total length of both the left and right sub-arrays. What isrtining time of Merge as a function af?
The algorithm contains four loops (none nested in the otlieily easy to see that each loop can be
executed at most times. (If you are a bit more careful you can actually see dldhe while-loops

30 CHAPTER 3. DIVIDE AND CONQUER STRATEGY

together can only be executed n times in total, because eachteon copies one new element to the
arrayB, andB only has space for elements.) Thus the running time to Mengétems is©(n). Let us
write this without the asymptotic notation, simplyas(We'll see later why we do this.)

Now, how do we describe the running time of the entire Merge&gorithm? We will do this through

the use of a recurrence, that is, a function that is definag'se@ly in terms of itself. To avoid

circularity, the recurrence for a given valuerofs defined in terms of values that are strictly smaller thar
n. Finally, a recurrence has some basis values (e.gn ferl), which are defined explicitly.

Let T(n) denote the worst case running time of MergeSort on an arregngthn. If we call MergeSort
with an array containing a single item & 1) then the running time is constant. We can just write
T(n) =1, ignoring all constants. Fot > 1, MergeSort splits into two halves, sorts the two and then
merges them together. The left half is of sjze/2] and the right half ign/2|. How long does it take to
sort elements in sub array of size/2|? We do not know this but becaupe/2] < nforn > 1, we can
express this a§([n/2]). Similarly the time taken to sort right sub array is expréss&l (|n/2]). In
conclusion we have

Tm) = 1 ifn=1,
e T([n/2]) + T(|n/2]) + n otherwise

This is calledrecurrence relationi.e., a recursively defined function. Divide-and-congsean
important design technique, and it naturally gives riseetaursive algorithms. It is thus important to
develop mathematical techniques for solving recurreradser exactly or asymptotically.

Let's expand the terms.

T(1) =1
TRQ)=TM+TN+2=14+1+2=4
TB)=TQ2)+T(1)+3=44+1+3=38
T(4)=T(2)+T(2) +4=4+4+4 =12
T5)=T(3)+T(2)+5=8+4+4+5=17

T8) =T(4)+T4)+8=12+12+8=32
T(16) = T(8) + T(8) + 16 =32+ 32+ 16 = 80

T(32) =T(16) + T(16) +32 =80+ 80 + 32 = 192

What is the pattern here? Let's consider the rafios) /n for powers of2:

T(1)/1 =1 T(8)/8 = 4
T(2)/2=2 T(16)/16 =5
T(4)/4=3 T(32)/32=6

This suggest3(n)/n =logn + 1 Or, T(n) = nlogn + n which is®(n logn) (using the limit rule).

3.1. MERGE SORT 31

3.1.2 The Iteration Method for Solving Recurrence Relations

Floor and ceilings are a pain to deal withnlfis assumed to be a power of Z¢(= n), this will simplify
the recurrence to

1 ifn=1,
T(n) = .
2T(n/2) +n otherwise
The iteration method turns the recurrence into a summaitiet’s see how it works. Let’s expand the
recurrence:

T(n)=2T(n/2)+n
=22T(n/4) +n/2) +n
=4T(n/4)+n+n
=4(2T(n/8) +n/4)+n+n
=8Tn/8) +n+n+n
=8(2T(n/16)+n/8)+n+n+n
=16T(n/16)+n+n+n+n

If nis a power of2 then letn = 2* ork = logn.

T(m) =2T(n/(25) + (n+n+n+~~+n)j
kt%;es

= 2¢T(n/(29)) + kn

= 2009MT (1 /(2009M))) 4 (logn)n
=2009"T (1 /n) + (logn)n
=nT(1)+nlogn=n+nlogn

3.1.3 Visualizing Recurrences Using the Recursion Tree

Iteration is a very powerful technique for solving recures. But, it is easy to get lost in all the symbolic
manipulations and lose sight of what is going on. Here is a wiay to visualize what is going on in
iteration. We can describe any recurrence in terms of awkere each expansion of the recurrence take
us one level deeper in the tree.

Recall that the recurrence for MergeSort (which we simplibg@ssuming that n is a power of 2, and
hence could drop the floors and ceilings)

1 ifn=1,
T(n) = .
2T(n/2) +n otherwise

Suppose that we draw the recursion tree for MergeSort, lulit tg@ae we merge two lists, we label that
node of the tree with the time it takes to perform the assedi@tonrecursive) merge. Recall that to

musharaf
Highlight

32 CHAPTER 3. DIVIDE AND CONQUER STRATEGY

merge two lists of sizen/2 to a list of sizem takes®(m) time, which we will just write asn. Below is
an illustration of the resulting recursion tree.

time to merge

L log(n)+1

levels

Figure 3.3: Merge sort Recurrence Tree

3.1.4 A Messier Example

The merge sort recurrence was too easy. Let’s try a messigmreace.

1 ifn=1,
T(n) = :
3T(n/4) +n otherwise
Assumen to be a power of 4, i.en = 4* andk = log, n

T(n)=3T(n/4)+n
=3(3T(n/16) + (n/4) +n
=9T(n/16)+3(n/4)+n
=27T(n/64) + 9(n/16) + 3(n/4) +n

%) 435 T (/4

+---+92(n/16) +3(n/4) +n

= 3"T(

i

n 3
__ 2k~ -
=3 T(4k)+;o4in

3.1. MERGE SORT 33

Withn =4%andT(1) =1

We used the formula'®% ™ = n'°% ¢, n remains constant throughout the sum ah@t = (3/4)%; we
thus have

(logy m)—

T(n) =n'%3 yn Z ()l

The sum is a geometric series; recall that¥c# 1
m+1 -1

le_ x—1

In this casex = 3/4 andm = log,n — 1. We get

(3/4)I0g4 n+1 __ 1

_ ., log, 3
T(n) =n"%>+4+n 374

Applying the log identity once more

(3/4)|og4 n__ TLIog4 (3/4) — TLIog4 3—log, 4

log, 3
nlog4 3-1 _ n
n

If we plug this back, we get

Iog4 3

log, 3
T(n) =n'"" +n(3/4)_]

TLIOg4 —-n
—1/4
TIIOg“ 3 + 4(T‘L . nIog4 3)

=4n — 3n/o% 3

— nIog4 3 +

With log, 3 ~ 0.79, we finally have the result!

T(n) =4n —3n"%3 ~ 4n — 3n%"7 € O(n)

34 CHAPTER 3. DIVIDE AND CONQUER STRATEGY

3.2 Selection Problem

Suppose we are given a setrohumbers. Define theank of an element to be one plus the number of
elements that are smaller. Thus, the rank of an elementfigdtisposition if the set is sorted. The
minimum is of rank 1 and the maximum is of rank

Consider the set5, 7, 2, 10, 8, 15, 21, 37, 41 The rank of each number is its position in the sorted
order.

positon| 1| 2| 3| 4| 5|, 6| 7| 8] 9
Number| 2 | 5|7 (8 |10|15|21 37|41

For example, rank of 8 is 4, one plus the number of elementfiemtiaan 8 which is 3.
The selection problem is stated as follows:

Given a sefA of n distinct numbers and an integer1 < k < n, output the element ok of rank
k.

Of particular interest in statistics is thraedian If n is odd then the median is defined to be element of
rank (n + 1)/2. Whenn is even, there are two choices/2 and(n + 1)/2. In statistics, it is common to
return the average of the two elements.

Medians are useful as a measures ofdéetral tendencyf a set especially when the distribution of
values is highly skewed. For example, the median income onantunity is a more meaningful measure
than average. Suppose 7 households have monthly incomésAmiD, 2000, 10000, 8000, 15000 and
16000. In sorted order, the incomes are 2000, 5000, 7000, 30000, 15000, 16000. The median
income is 8000; median is element with rank 4+ 1)/2 = 4. The average income is 9000. Suppose th
income 16000 goes up to 450,000. The median is still 8000Heuaverage goes up to 71,000. Clearly,
the average is not a good representative of the majoritynecievels.

The selection problem can be easily solved by simply sottieghumbers oA and returningA [k].

Sorting, however, requiréd(n logn) time. The question is: can we do better than that? In paaicid

it possible to solve the selections problentifn) time? The answer is yes. However, the solution is fat
from obvious.

3.2.1 Sieve Technique

The reason for introducing this algorithm is that it ille&s a very important special case of
divide-and-conquer, which | call treeve techniquéWe think of divide-and-conquer as breaking the
problem into a small number of smaller subproblems, whiehtlagn solved recursively. The sieve
technique is a special case, where the number of subproldgost 1.

The sieve technique works in phases as follows. It appligsdblems where we are interested in finding
a single item from a larger set of n items. We do not know whiemiis of interest, however after doing
some amount of analysis of the data, taking @y k) time, for some constarkt, we find that we do not

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

3.2. SELECTION PROBLEM 35

know what the desired the item is, but we can identify a larggugh number of elements that cannot be
the desired value, and can be eliminated from further cenattn. In particular “large enough” means
that the number of items is at least some fixed constantéactin (e.g.n/2, n/3). Then we solve the
problem recursively on whatever items remain. Each of thaltieg recursive solutions then do the same
thing, eliminating a constant fraction of the remaining set

3.2.2 Applying the Sieve to Selection

To see more concretely how the sieve technique works, lgppiy & to the selection problem. We will
begin with the given arraA[1..n]. We will pick an item from the array, called thgivot elementvhich
we will denote byx. We will talk about how an item is chosen as the pivot laterniw just think of it as
a random element ok.

We then partition A into three parts.

1. A[q] contains the pivot elemert
2. A[l..q — 1] will contain all the elements that are less thaand

3. Alg + 1..n] will contains all elements that are greater than

Within each sub array, the items may appear in any order. dll@ning figure shows a partitioned array:

pivot

p r
5/926/4/1/3/7 Before partitioning

B
3/1]2/4 6/9/5|7| After partitioning

Figure 3.4:A[p..r] partitioned about the pivot

3.2.3 Selection Algorithm

It is easy to see that the rank of the The rank of the ptvistq — p + 1in Alp..r]. Let

rank_x = q —p + 1. If k = rank_x then the pivot i&™ smallest. Ifk < rank_x then search

Alp..q — 1] recursively. Ifk > rank_x then searciA[q + 1..7] recursively. Find element of rarfk — q)
because we eliminatagismaller elements iA.

SELECT{ array A, int p, int r, int k)

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

w
»

CHAPTER 3. DIVIDE AND CONQUER STRATEGY

if (p=r)
then return Alp]
else x « CHOOSEPIVOT(A,p, 1)
g <+ PARTITION(A,p,T,X)
rankx «—q—p+1
if k =rank_x
then return x
if k <rank-x
then return SELECT(A,p,q — 1,k)
else returnseLecTA,q+1,7,k—q)

QWO NO UL WNEPE

H

Example: select the"Bsmallest element of the €5, 9, 2, 6,4, 1,3,V

rankx= 2

3
pivo |‘E‘
RN

partition recurse partition recurse partition
pivot=4 k=(6-4)=2 pivot=7 k=2 pivot=6

DONE!

Figure 3.5: Sieve example: seledt émallest element

3.2.4 Analysis of Selection

We will discuss how to choose a pivot and the partitioningraEor the moment, we will assume that
they both take&(n) time. How many elements do we eliminate in each timeRi#fthe largest or the
smallest then we may only succeed in eliminating one element

5,9,2,6,4,(1,3,7 pivotis]
,5,9,2,6,4,3,7 after partition

Ideally, x should have a rank that is neither too large or too small.
Suppose we are able to choose a pivot that causes exacthyf iadf array to be eliminated in each phase

3.2. SELECTION PROBLEM 37

This means that we recurse on the remainiig elements. This leads to the following recurrence:

1 ifn=1,
T(n) = :
T(n/2) +n otherwise

If we expand this recurrence, we get

n o n
T(n) = =+ -+
(m) n+2+4+

8

n
<y =
<) 5
1=

0
=

Recall the formula for infinite geometric series; for aoy< 1,

1

[e¢]

c'=
Z 1—c
i=0

Using this we have
Tm) <2n € O(n)

Let’s think about how we ended up with&(n) algorithm for selection. Normally, &(n) time
algorithm would make a single or perhaps a constant numbeassges of the data set. In this algorithm,
we make a number of passes. In fact it could be as many as log

However, because we eliminate a constant fraction of tregyavith each phase, we get the convergent
geometric series in the analysis. This shows that the toteding time is indeedinear in n. This lesson
is well worth remembering. It is often possible to achiewedr running times in ways that you would
not expect.

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

38

CHAPTER 3. DIVIDE AND CONQUER STRATEGY

Chapter 4

Sorting

For the next series of lectures, we will focus on sorting.réleenumber of reasons for sorting. Here are :
few important ones. Procedures for sorting are parts of negg software systems. Design of efficient
sorting algorithms is necessary to achieve overall effoyesf these systems.

Sorting is well studied problem from the analysis point awi Sorting is one of the few problems where
provable lower bounds exist on how fast we can sort. In sgrie are given an arraf[1..n] of n
numbers We are to reorder these elements into increasimp¢oeasing) order.

More generallyA is an array of objects and we sort them based on one of thbwds - thekey value
The key value need not be a number. It can be any object frimtally ordered domainTotally ordered
domain means that for any two elements of the domaamdy, eitherx <y, x =y orx > y.

4.1 Slow Sorting Algorithms

There are a number of well-known sla(n?) sorting algorithms. These include the following:

Bubble sort: Scan the array. Whenever two consecutive items are founaiteatut of order, swap
them. Repeat until all consecutive items are in order.

Insertion sort: Assume thaf\[1..i — 1] have already been sorted. Insafi] into its proper position in
this sub array. Create this position by shifting all largemne¢nts to the right.

Selection sort: Assume thafA[1..1 — 1] contain thelt — 1 smallest elements in sorted order. Find the

smallest element iA[i..n] Swap it with A [i]

These algorithms are easy to implement. But they ru(in?) time in the worst case.

39

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

40 CHAPTER 4. SORTING
4.2 Sorting inO(nlogn) time

We have already seen that Mergesort sorts an array of nunmo@fs logn) time. We will study two
others:HeapsortandQuicksort

4.2.1 Heaps

A heapis a left-complete binary tree that conforms to beap order The heap order property: in a

(min) heap, for every nod¥, the key in the parent is smaller than or equal to the key.im other

words, the parent node has key smaller than or equal to bath cfildren nodes. Similarly, in a max
heap, the parent has a key larger than or equal both of itdrehilThus the smallest key is in the root in a
min heap; in the max heap, the largest is in the root.

3 10 11 12 13 14

NS X\
| |13]21]16]2a 01| 19]es 65|28 32| | | | |
0 1 wv

Figure 4.1: A min-heap
The number of nodes in a complete binary tree of heligist
h
Tl:20+21+22+"'+2hzzzi:2h+1—1
i=0

hin terms ofn is
h=(logln+1))—1~logn € ©(logn)

One of the clever aspects of heaps is that they can be stoesthiys without using any pointers. This is
due to the left-complete nature of the binary tree. We stoedree nodes in level-order traversal. Access

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

4.2. SORTING INO(NLOGN) TIME 41

to nodes involves simple arithmetic operations:

left(i) : returns2i, index of left child of node.
right(i) : returns2i + 1, the right child.
parent(i) : returns|i/2], the parent of.

The root is at positionl of the array.

4.2.2 Heapsort Algorithm

We build a max heap out of the given array of numbg&is..n]. We repeatedly extract the the maximum
item from the heap. Once the max item is removed, we are |d#ftahole at the root. To fix this, we will
replace it with the last leaf in tree. But now the heap ordefrweity likely be destroyed. We will apply a
heapify procedure to the root to restore the heap. Figurelb@s an array being sorted.

HEAPSORT array A, int n)
1 BUILD-HEAP(A,n)

2 men

3 while (m > 2)

4 doswaP(A[l],A[m])

5 mem-—1

6 HEAPIFY(A, 1, m)

musharaf
Highlight

42

CHAPTER 4

i

A
\
H
I
i
i

/

Figure 4.2: Example of heap sort

. SORTING

4.2. SORTING INO(NLOGN) TIME 43

4.2.3 Heapify Procedure

There is one principal operation for maintaining the heap property. It is called Heapify. (In other book
is sometimes called sifting down.) The idea is that we are given an element of the heap which we su:
may not be in valid heap order, but we assume that all of other the elements in the subtree rooted at
element are in heap order. In particular this root element may be too small. To fix this we “sift” it dow
the tree by swapping it with one of its children. Which child? We should take the larger of the two
children to satisfy the heap ordering property. This continues recursively until the element is either la
than both its children or until its falls all the way to the leaf level. Here is the algorithm. It is given the
heap in the arrayA, and the index of the suspected element, amdthe current active size of the heap.
The elemenA [max] is set to the maximum oA [i] and it two children. Ifmax # i then we swap\ [i]
andA[max] and then recurse ofi[max].

HEAPIFY(array A, int i, int m)
1 1« LEFT({)
2 T RIGHT(i)
3 max 1
4 if (1 <m)and(A[l] > Almax])
5 then max « 1
6 if (r<m)and(A[r] > Almax])
7 then max « r
8 if (max #1)
9 then swaP(Ali], A[max])
10 HEAPIFY(A, max, m)

4.2.4 Analysis of Heapify

We call heapify on the root of the tree. The maximum levels an element could mov@upin) levels.
At each level, we do simple comparison whioli1). The total time for heapify is thud(logn). Notice
that it is not®(logn) since, for example, if we call heapify on a leaf, it will terminatedfil) time.

4.2.5 BuildHeap

We can use Heapify to build a heap as follows. First we start with a heap in which the elements are r
heap order. They are just in the same order that they were given to us in the array A. We build the he
starting at the leaf level and then invoke Heapify on each node. (Note: We cannot start at the top of t
tree. Why not? Because the precondition which Heapify assumes is that the entire tree rooted & not
already in heap order, except foy Actually, we can be a bit more efficient. Since we know that each
leaf is already in heap order, we may as well skip the leaves and start with the first non-leaf node. Tt
will be in positionn/2. (Can you see why?)

musharaf
Highlight

musharaf
Underline

musharaf
Highlight

44 CHAPTER 4. SORTING

Here is the code. Since we will work with the entire array, pheameteim for Heapify, which indicates
the current heap size will be equahtothe size of array, in all the calls.

BUILDHEAP(array A, int n)
1 fori« n/2downto 1

2 do

3 HEAPIFY(A,1i,1)

4.2.6 Analysis of BuildHeap

For convenience, we will assunme= 2" — 1 whereh is the height of tree. The heap is a left-complete
binary tree. Thus at each levielj < h, there ar&’ nodes in the tree. At levél, there will be2™ or less
nodes. How much work does buildHeap carry out? Consider tap imeFigure 4.3:

Figure 4.3: Total work performed in buildheap

At the bottom most level, there a2& nodes but we do not heapify these. At the next level up, there a

2T nodes and each might shift down 1. In general, at Igviblere ar™7 nodes and each may shift
downj levels.

So, if count from bottom to top, level-by-level, the totahs is

We can factor out the" term:

4.2. SORTING INO(NLOGN) TIME 45

How do we solve this sum? Recall the geometric series, for angtantx < 1

o
Ex’:

j=0

Take the derivative with respect toand multiply byx
Z T 71 i ix) = X
(1—x)2 P (1—x)2

We plugx = 1/2 and we have the desired formula:

- _ 12 12
;oz_ A (/22 14" °

In our case, we have a bounded sum, but since we the infiniesssetbounded, we can use it as an easy
approximation:

=
2
|
N
=
.M:
NI

-
|
)

IA

N

=
':3|_a.

2h+1

IA
N

=
'r&

Recall thath = 2" — 1. Therefore
Tn)<n+1€e0(n)

The algorithm takes at lea§t(n) time since it must access every element at once. So theitaafdr
BuildHeap is©(n).

BuildHeap is a relatively complex algorithm. Yet, the anadygeld that it take®®(n) time. An intuitive
way to describe why it is so is to observe an important facubmary trees The fact is that the vast
majority of the nodes are at the lowest level of the tree. kan®le, in a complete binary tree of height
h, there is a total oft ~ 2"*! nodes.

The number of nodes at the bottom three levels alone is

h | 9h-1 h2_T N N 7T1_
2"+ 2742 —2—|—4+8—8 0.875n

Almost 90% of the nodes of a complete binary tree reside ir3tlogvest levels. Thus, algorithms that
operate on trees should be efficient (as BuildHeap is) on ttterhemost levels since that is where most
of the weight of the tree resides.

46 CHAPTER 4. SORTING

4.2.7 Analysis of Heapsort

Heapsort calls BuildHeap once. This take). Heapsort then extracts roughtymaximum elements
from the heap. Each extract requires a constant amount & (sarap) andO (logn) heapify. Heapsort
is thusO(nlogn).

Is HeapSor®(nlogn)? The answer is yes. In fact, later we will show that comparisased sorting
algorithms can not run faster th&nn logn). Heapsort is such an algorithm and so is Mergesort that w
saw ealier.

4.3 Quicksort

Our next sorting algorithm is Quicksort. It is one of the é&sttsorting algorithms known and is the
method of choice in most sorting libraries. Quicksort isdzhen the divide and conquer strategy. Here is
the algorithm:

QUICKSORT(array A, int p, int)

1 if(r>p)

2 then

3 i« arandom index fronip..r]
4 swapAli] with Alp]

5 g « PARTITION(A,p,T)

6 QUICKSORT(A,p,q — 1)

7 QUICKSORT(A,q+ 1,7)

4.3.1 Partition Algorithm

Recall that the partition algorithm partitions the ar/gjp..r] into three sub arrays about a pivot element
x. Alp..q — 1] whose elements are less than or equal,tA[q] = x, A[q + 1..r] whose elements are
greater than

We will choose the first element of the array as the pivotx.e. Alp]. If a different rule is used for
selecting the pivot, we can swap the chosen element withrfteefement. We will choose the pivot
randomly.

The algorithm works by maintaining the followinigvariant condition A[p] = x is the pivot value.
Alp..q — 1] contains elements that are less tlhai [q + 1..s — 1] contains elements that are greater that

musharaf
Highlight

musharaf
Highlight

4.3. QUICKSORT

or equal tox Afs..r] contains elements whose values are currently unknown.

PARTITION(array A, int p, int r)

O~NO O A~ WN PR

x — Alp]
q<p

fors«—p+1tor

doif (A[s] < x)

thenqg « q + 1
swapA[q] with Als]
swapA[p] with A[q]

return g

Figure 4.4 shows the execution trace partition algorithm.

/\ r r
ﬁ3864731 éﬂﬂﬂﬂ731
qg s q s

r

r /\
GHs64731 | HEOCD@AS 1
q

qg s s

ﬁ r ﬁ S \r
EIE16 47 3 1 1314/3/8/7/6H
g s q s

ﬁ Z r é r
KB4 7 3 1 13/4/3/1/7/6]8]
q s

r
34 3K47 68
S

q

Figure 4.4: Trace of partitioning algorithm

4.3.2 Quick Sort Example

a7

The Figure 4.5 trace out the quick sort algorithm. The firstif)@an is done using the last elemed, of

the array. The left portion are then partitioned alouthile the right portion is partitioned abols.
Notice thatl0 is now at its final position in the eventual sorted order. Trexpss repeats as the

algorithm recursively partitions the array eventuallytsay it.

48

CHAPTER 4. SORTING

| 7]6[12]3[11]8[7|1]15[13[17]5 |16]14] 9] 4 |10
U

(7)6]12[3]11/8|7|1(15/13]17| 5 |16[14] 9 | 4 |10,

(7]6]4|3[9|8]2]1]5][10]17[15]16]14]11]12]13

U
(706]12{3|11/8|7|1(15/13]17| 5 |16[14] 9 | 4 |10,
(7]6]4|3[9o|8]2]1]5]10]17[15]16]14]11]12]13

7]6[12/3[11)8]7]1]15/13[17) 5 [16/14| 9 | 4 |10
(7]6]4]3]9]8|2]1]5 10[17/15[16|14]11]12]13
[1]2]af3]s[8]6]7][0]t0]r]11]13]14]15]17

5| 13]14
ﬂﬂﬂﬂﬂﬂﬂlﬂlﬂlﬂﬂlﬂmﬂlﬂ
ﬂﬂﬂﬂﬂﬂ.ﬂﬂlﬂﬂlﬂlﬂmﬂlﬂ

ﬂﬂﬂﬂﬂﬂ-ﬂﬂlﬂlﬂlﬂlﬂmﬂlﬂ

Figure 4.5: Example of quick sort

4.3. QUICKSORT 49

It is interesting to note (but not surprising) that the ps/fiirm a binary search tree. This is illustrated in
Figure 4.6.

pivot
elements

Figure 4.6: Quicksort BST

4.3.3 Analysis of Quicksort

The running time of quicksort depends heavily on the sedaatf the pivot. If the rank of the pivot is
very large or very small then the partition (BST) will be urdraded. Since the pivot is chosen randomly
in our algorithm, the expected running timed¢n logn). The worst case time, however,(§n?).

Luckily, this happens rarely.

4.3.4 Worst Case Analysis of Quick Sort

Let’'s begin by considering the worst-case performancealreeit is easier than the average case. Since
this is a recursive program, it is natural to use a recurrémdescribe its running time. But unlike
MergeSort, where we had control over the sizes of the raucsills, here we do not. It depends on how
the pivot is chosen. Suppose that we are sorting an arrag@fsiA[1 : n], and further suppose that the
pivot that we select is of rang, for someq in the rangel to n. It takes®(n) time to do the partitioning
and other overhead, and we make two recursive calls. Thésfitsthe subarray\[1 : g — 1] which has

g — 1 elements, and the other is to the subady + 1 : n] which hasn — q elements. So if we ignore
the®(n) (as usual) we get the recurrence:

Tm)=T(q-1)+Tn—-q)+n

musharaf
Highlight

50 CHAPTER 4. SORTING

This depends on the value of q. To get the worst case, we maxiover all possible values gt Putting
is together, we get the recurrence

1 ifn <1

T(n) = .

max (T(gq—1)+T(n—q)+n) otherwise
sq=n

Recurrences that have max’s and min’s embedded in them arenassy to solve. The key is

determining which value of g gives the maximum. (A rule ofrttluof algorithm analysis is that the

worst cases tends to happen either at the extremes or in ttdan5o | would plug in the valug = 1,

g =n, andq = n/2 and work each out.) In this case, the worst case happen$at eitthe extremes. If

we expand the recurrence for= 1, we get:

T(n) §T(0)+T(n—1)+n

=1+ Tn =1+
T(n 1)+(n+1)
Tm—=2)+n+n+1)
Tmh=3)+m—T)+n+Mn+1)
Tmh-—4)+Mm-2)+(n—T)+n+n+1)

For the basig (1) = 1 we setk = n — 1 and get

n—3
+ Z(n—

=T

:1+(3+4+5+~~~+(n—1)+n+(n+1))
n+1

4.3.5 Average-case Analysis of Quicksort

We will now show that in the average case, quicksort rure3(inlogn) time. Recall that when we talked
about average case at the beginning of the semester, wénaaitidepends on some assumption about
the distribution of inputs. However, in the case of quicksibre analysis does not depend on the
distribution of input at all. It only depends upon the randcdmoices of pivots that the algorithm makes.
This is good, because it means that the analysis of the #igus performance is the same for all inputs.
In this case the average is computed over all possible ramthomes that the algorithm might make for
the choice of the pivot index in the second step of the Quid®ocedure above.

To analyze the average running time, wellét) denote the average running time of QuickSort on a list
of sizen. It will simplify the analysis to assume that all of the elertgeare distinct. The algorithm has n

4.3. QUICKSORT 51

random choices for the pivot element, and each choice hagual probability ofl /n of occuring. So
we can modify the above recurrence to compute an averager tain a max, giving:

Tin) = 1 ifn <1
nj)= 1y (M@= +T(n—q)+n) otherwise

The timeT(n) is the weighted sum of the times taken for various choiceas dfe.,

ﬂMz[%ﬂm+Tm—H+n)

+ n(T(]) +T(n—2)+n)
+ %(T(Z) +T(n—3)+n)
+~~Hhﬂn—ﬂ+ﬂm+nﬂ
n

We have not seen such a recurrence before. To solve it, @rpaspossible but it is rather tricky. We
will attempt a constructive induction to solve it. We knovathve want @(nlogn). Let us assume that
T(n) < cnlogn for n > 2 wherec is a constant.

For the base case = 2 we have

2
T)=5) (Tla—1)+T2—a)+2)

1

N —

o
Il

N oo N —

(T(0) +T(1) +2) + (T(1) + T(0) +2)|

1

I
b

We want this to be at mos2 log2, i.e.,
T(2) <c2log2

or
4 <c2log2

therefore
c>4/(2log2) ~ 2.88.

For the induction step, we assume that 3 and The induction hypothesis is that for any< n, we
haveT(n’) < cn’logn’. We want to prove that it is true fdr(n). By expandingl' (n) and moving the

musharaf
Highlight

musharaf
Highlight

52 CHAPTER 4. SORTING

factor ofn outside the sum we have

T =3 (T(a—1)+T(n—q) + 1)
q=1

Il
|
E

E
e

|
|
=
=

|
=2
+
3

q=1 q=1
1 n

Tm)==) T@-1D+=-) Tn—q)+n
q=1 " q=

+---+T(n—1). One counts up and

1
Observe that the two sums add up the same val(es+ T(1
(q). We will extractT(0) andT(1) and treat

other counts down. Thus we can replace them WFE;‘;(‘) T
them specially. These two do not follow the formula.

o —
—

We will apply the induction hypothesis far < n we have

n—I1
T(n) = %(T(O) ST+ ZT(q)) +n
q=2

2 n—1
<Z(1+1+) (cqlogq)) +n
211+ 5 cabna)

n—1

= Zn—C<Z(chn q)) +n+%

q=2

We have never seen this sum before:

n—1

S(n) =) (cqlnq)

q=2
Recall from calculus that for any monotonically increasingdtionf(x)

b—1 b

Y (i) < J f(x)dx

i=a a

4.3. QUICKSORT 53

The functionf(x) = xIn x is monotonically increasing, and so

n—1 n

S(n) =) (cqlnq) gJ xInx dx (4.1)

2
q:
We can integrate this by parts:

n 2 2
X X< |n
J xInxdx = =—Inx — —

2 2 4 x=2
n X2 XZ“
I = —Inx — —
anxdx > nx 1l
n? n?
_(Tmn—f)—(zmz—n
< 2In n’
2Ty
We thus have
n—1 TLZ TLZ
= I < —=—Inn——
S(n) qZ_Z(cqnq)_ Sl — =
Plug this back into the expression fbfn) to get
2c /m? n? 4
T(n)_—<7|nn—7)+n+—
2c /m? n?
Ty = 5(Fn= 5) e o
cn 4
=cnlnn— —+n+ —
2 n
c 4
= cnl 1—2)+—
cninmn + n(2)+n
c 4
T(n)=cnl 1—2)+—
(n) =cninn +n(2)—I—TL

To finish the proof,we want all of this to be at mastln n. For this to happen, we will need to select

such that

n(1—%)+%§0

If we selectc = 3, and use the fact that > 3 we get

c 4 3 n
(-3 =073
3 1
<1-2=_--<0.
<1 > 2_O

From the basis case we had> 2.88. Choosingec = 3 satisfies all the constraints. Thus
T(n) =3nlnn € O(nlogn).

54 CHAPTER 4. SORTING

4.4 In-place, Stable Sorting

An in-placesorting algorithm is one that uses no additional array foragje. A sorting algorithm is
stableif duplicate elements remain in the same relative posititer dorting.

91313"|5]6]5"|2]1]3" unsorted

1/2|3]3"]3"|5]5"|6|9| stable sort

1|2|3"[3]3"|5"|5]6]9 unstable

Bubble sort, insertion sort and selection sort are in-placerg algorithms. Bubble sort and insertion
sort can be implemented as stable algorithms but seleaibieannot (without significant modifications).
Mergesort is a stable algorithm but not an in-place algori*** “equires extra array storage. Quicksort is
not stable but is an in-place algorithm. Heapsort is an &t <.lgorithm but is not stable.

4.5 Lower Bounds for Sorting

The best we have seen so faki$n logn) algorithms for sorting. Is it possible to do better than
O(nlogn)? If a sorting algorithm is solely based on comparison of keyke array then it ismpossible
to sort more efficiently thaf (nlogn) time. All algorithms we have seen so far are comparisonébase
sorting algorithms.

Consider sorting three numbets, a;, az. There are8! = 6 possible combinations:

(a7, az, a3, (a,a3,a2) ,(az, az, aq)

(a3, as,ay), (az, ai,a3) , (az az as)

One of these permutations leads to the numbers in sorted orde
The comparison based algorithm defineteaision tree Here is the tree for the three numbers.

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight
imp

musharaf
Sticky Note

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

4.5. LOWER BOUNDS FOR SORTING 55

Figure 4.7: Decision Tree

Forn elements, there will be! possible permutations. The height of the tree is exacthakigul (n),
the running time of the algorithm. The heighflisn) because any path from the root to a leaf
corresponds to a sequence of comparisons made by the afgorit

Any binary tree of heighT(n) has at mos2™™ leaves. Thus a comparison based sorting algorithm car
distinguish between at moat™ different final outcomes. So we have

2T >) and therefore

T(n) > log(n!)
We can uséstirling’s approximatiorfor n!:
n!l > \/27tn<2>n
e

Thereofore
T(n) > Iog<\/27m<%>n>
= log(v2mmn) + nlogn —nloge
€ Q(nlogn)
We thus have the following theorem.

Theorem 1
Any comparison-based sorting algorithm has worst-caseingrtimeQ (nlogn).

56

CHAPTER 4. SORTING

Chapter 5

Linear Time Sorting

The lower bound implies that if we hope to sort numbers fasi@nO (n logn), we cannot do it by
making comparisons alone. Is it possible to sort withoutimgkomparisons? The answer is yes, but
only under very restrictive circumstances. Many applaaiinvolve sorting small integers (e.g. sorting
characters, exam scores, etc.). We present three algsriibsed on the theme of speeding up sorting in
special cases, by not making comparisons.

5.1 Counting Sort

We will consider three algorithms that are faster and workbtmaking comparisons. Counting sort
assumes that the numbers to be sorted are in the fatege wherek is small. The basic idea is to
determine the rank of each number in final sorted array.

Recall that the rank of an item is the number of elements tlegleas than or equal to it. Once we know
the ranks, we simply copy numbers to their final position iroatput array.

The question is how to find the rank of an element without caingat to the other elements of the
array?. The algorithm uses three arrays. As usAidl,.n] holds the initial inputB[1..n] holds the sorted
output andC[1..k] is an array of integer<C[x] is the rank ofx in A, wherex € [1..k]. The algorithm is
remarkably simple, but deceptively clever. The algoritipemrates by first constructing. This is done in
two steps. First we sét[x] to be the number of elements Afj] that are equal ta. We can do this
initializing C to zero, and then for eaghfrom 1 to n, we incrementC[A[j]] by 1. Thus, ifA[j] = 5, then
the 5th element of is incremented, indicating that we have seen one more 5. fBordime the number
of elements that are less than or equat.tave replaceC[x] with the sum of elements in the sub array
R[1: x]. This is done by just keeping a running total of the elemefts.o

C[x] now contains the rank of. This means that it = A[j] then the final position oA [j] should be at
positionC[x] in the final sorted array. Thus, we SC[x]] = A[j]. Notice We need to be careful if there
are duplicates, since we do not want them to overwrite theedaoation ofB. To do this, we decrement

57

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

58 CHAPTER 5. LINEAR TIME SORTING

C[i] after copying.

COUNTING-SORT{ array A, array B, int k)
1 fori—1to k
2 doCli] «0
3 forj« 1 to lengthlA]
4 do CIA[]] « CIA[]] +1
5 /I C[i] now contains the number of elemests
6 fori— 2 to k
7 doCH] « C[i]+ Cli—1]
8 /I C[i] now contains the number of elements
9 for j « length[A] downto 1
10 do B[C[A[j]l] « A[j]
11 CIAL « CIAf] -1

There are four (unnested) loops, executdmes,n times,k — 1 times, anch times, respectively, so the
total running time iY(n + k) time. If k = O(n), then the total running time B(n).

Figure 5.1 through 5.19 shows an example of the algorithna. sfwuld trace through the example to
convince yourself how it works.

1 2 3 4 5 6 7
ctia 00 0 00 0 0

Figure 5.1: InitialA andC arrays.

musharaf
Highlight

5.1. COUNTING SORT

awﬂﬂﬂﬂﬂﬂl

Figure 5.2:A[1] = 7 processed

Figure 5.3:A[2] = 1 processed

awlﬂlﬂﬂﬂl

Figure 5.4:A[3] = 3 processed

59

60

CHAPTER 5. LINEAR TIME SORTING

awlﬂlﬂﬂﬂl

Input

All..n]

Figure 5.5:A[4] = 1 processed

amlllﬂnﬂl

finally

1 2 3 4 5 6 7
g 22 2210 2

Figure 5.7:C now contains count of elements Af

Figure 5.6:A[5] = 2 processed

5.1. COUNTING SORT

1 2 3 4 5 6 7
g 2 222 1o 2

fori=2to7
do Cfi] = C[l] i C[i-1]

aEnnnnon

§) elements <=3

Figure 5.8:C set to rank each number af

Input

All..n]

Output
B[1..n]

C[A[11]] = C[A[11]] - 1

2lelsfelsfoln

Figure 5.9:A[11] placed in output arra

61

62

Output
B[1..n]

Input

All..n]

Output
B[1..n]

CHAPTER 5. LINEAR TIME SORTING

C[A[10]] = C[A[10]] - 1

c [N R e

Figure 5.10:A[10] placed in output arrai

ClA[9]] = ClA[9]] - 1

JENEIEI I ED

Figure 5.11:A[9] placed in output arrai

5.1. COUNTING SORT

Input

All..n]

Output
B[1..n]

B[11] = B[C[7]] = B[C[A[8]]] =

CIA[8]] = C[A[8]] - 1

BEAERBBE

Figure 5.12:A[8] placed in output arra

Input

All..n]

Output
B[1..n]

B[9] = B[C[5]] = BIC[A[7]]] = 4

ClA[5]] = CIA[5]] - 1

c EEIEEIEIEIE)

Figure 5.13:A[7] placed in output arra

64

Output
B[1..n]

Input

All..n]

Output

CHAPTER 5. LINEAR TIME SORTING

ClA[6]] = CIA[6]] - 1

Aclolslelolofn

Figure 5.14:A6] placed in output arra

CIA[5]] = CIA[5]] - 1

2lsolafofm

Figure 5.15:A[5] placed in output arra

5.1. COUNTING SORT

Input

All..n]

Output

ClA[4]] = C[A[4]] - 1

JEEI EIEI)

Figure 5.16:A[4] placed in output arrai

CA[3]1=CIA[3]] - 1

2lelefolafoln

Figure 5.17:A[3] placed in output arrai

65

66 CHAPTER 5. LINEAR TIME SORTING

Input

All..n]

Output
B[1..n]

ClA[3]1=CIA[3]]- 1

Figure 5.18:A[2] placed in output arra

CIA[1]] = CIA[1]] - 1

olelefslefole

Figure 5.19:B now contains the final sorted data.

Counting sort is not an in-place sorting algorithm but it ede¢. Stability is important because data are
often carried with the keys being sorted. radix sort (whisBsucounting sort as a subroutine) relies on it
to work correctly. Stability achieved by running the loopnaiofromn to 1 and not the other way around:

5.1. COUNTING SORT 67

COUNTING-SORT{ array A, array B, int k)

1;or j « length[A] downto 1
do B[CIA[jl]] + Alj]
CIA[] « CIAGN —1

A WNPEF

Figure 5.20 illustrates the stability. The numbers 1, 2, & 7, each appear twice. The two 4’s have
been given the superscript™ Numbers are placed in the outpitarray starting from the right. The two
4’s maintain their relative position in tHgarray. If the sorting algorithm had causé&d to end up on the
left of 4*, the algorithm would be termed unstable.

68 CHAPTER 5. LINEAR TIME SORTING

o 7|32 e]s]7]2 s
All..n] 7 S 7
1 2 3 4 5 (§) 7 8 9 10 11
Output
B[1..n]

C[A[10]] = C[A[10]] - 1

B[7] = B[C[4]] =

ClA[6]] = C[A[6]] - 1

Output N A M 4 " s g »
B[1..n] 1 1 28|27 33 R K 7

Figure 5.20: Stability of counting sort

5.2. BUCKET OR BIN SORT 69

5.2 Bucket or Bin Sort

Assume that the keys of the items that we wish to sort lie in allsdimed range and that there is only one
item with each value of the key. Then we can sort with the Witk procedure:

1. Set up an array of “bins” - one for each value of the key - in grde

2. Examine each item and use the value of the key to place it iappeopriate bin.

Now our collection is sorted and it only tookoperations, so this is &(n) operation. However, note
that it will only work under very restricted conditions. Taderstand these restrictions, let’s be a little
more precise about the specification of the problem and as#ushthere aren values of the key. To
recover our sorted collection, we need to examine each Iis. &dds a third step to the algorithm above,

3. Examine each bin to see whether there’s an itemin it.
which requiresm operations. So the algorithm’s time becomes:

T(n) =cim+cym

and it is strictlyO(n + m). If m < n, thisis clearlyO(n). However ifm >> n, then itisO(m). An
implementation of bin sort might look like:

BUCEKTSORT(array A, int n, int M)

1 /I Pre-condition: fol <i<n,0<afil <M
2 /I Mark all the bins empty

3 fori<—1to M

4 dobin[i] « Empty

5 fori—1ton

6 dobin[A[i]] «+ A[i]

If there areduplicates then each bin can be replaced blynked list The third step then becomes:

3. Link all the lists into one list.

We can add an item to a linked list@(1) time. There are items requiringD(n) time. Linking a list to
another list simply involves making the tail of one list pioia the other, so it i©(1). Linking m such

lists obviously take® (m) time, so the algorithm is stilD(n + m). Figures 5.21 through 5.23 show the
algorithm in action using linked lists.

70

CHAPTER 5. LINEAR TIME SORTING

Step 1: insertion sort

within each list

O 00 d O Ui h W N —~= O

Figure 5.21: Bucket sort: step 1, placing keys in bins in sbot@ler

Step 2: concatenate the

lists

Figure 5.22: Bucket sort: step 2, concatenate the lists

5.3. RADIX SORT 71

Figure 5.23: Bucket sort: the final sorted sequence

5.3 Radix Sort

The main shortcoming of counting sort is that it is usefuldorall integers, i.el..k wherek is small. If
k were a million or more, the size of the rank array would alsa bellion. Radix sort provides a nice
work around this limitation by sorting numbers one digit dihae.

576 49[4] 9[5]4 [1]76 176
494 19[4] 5[7]6 [1]94 194
194 95[4] 1[7]6 [2]78 278
206 = 57[6] = 2[7]8 = [2]96 = 296
278 29[6] 4[9]4 [4]94 494
176 17[6] 1[9]4 [5]76 576
954 27[8] 2[9]6 [9]54 954

Here is the algorithm that sorfs[1..n] where each number digits long.

RADIX-SORT{ array A, int n, int d)
1 fori—1to d
2 do stably sortA w.r.ti" lowest order digit

72

CHAPTER 5. LINEAR TIME SORTING

Chapter 6

Dynamic Programming

6.1 Fibonacci Sequence

Suppose we put a pair of rabbits in a place surrounded ordalé &1y a wall. How many pairs of rabbits
can be produced from that pair in a year if it is supposed tetyanonth each pair begets a new pair
which from the second month on becomes productive? Res@éqgence is
1,1,2,3,5,8,13,21,34,55, ... where each number is the sum of the two preceding numbers.

This problem was posed by Leonardo Pisano, better knowndogitikname Fibonacci (son of Bonacci,
born 1170, died 1250). This problem and many others weresegm his bookl.iber abaci published

in 1202. The book was based on the arithmetic and algebr&ihanacci had accumulated during his
travels. The book, which went on to be widely copied and itadaintroduced the Hindu-Arabic
place-valued decimal system and the use of Arabic numer@<iurope. The rabbits problem in the
third section of Liber abaci led to the introduction of thé®macci numbers and the Fibonacci sequence
for which Fibonacci is best remembered today.

This sequence, in which each number is the sum of the two gireg@umbers, has proved extremely
fruitful and appears in many different areas of mathematncbscience. ThEibonacci Quarterlyis a
modern journal devoted to studying mathematics relatelisossequence. The Fibonacci numbersare
defined as follows:

Fo=0
Fr=1
Fn - Fn—] + Fn—Z

73

74 CHAPTER 6. DYNAMIC PROGRAMMING

The recursive definition of Fibonacci numbers gives us arsaeelalgorithm for computing them:

FIB(n)

1 if(n<2)

2 then return n

3 else returnFiIB(n — 1) + FIB(n — 2)

Figure?? shows four levels of recursion for the céib(8):

e

fib(6) fib(5) fib(5)

/\
fib(5) fib(3) fib(3) fib(3) fib(2)
2 NN NN

fib(3) fib(3) fib(2) fib(3) fib(2) fib(2) fib(1) fib(3) fib(2) fib(2) fib(1) fib(2) fib(1) fib(1) fib(0)
Figure 6.1: Recursive calls during computation of Fibonacenber

A single recursive call to fifn) results in one recursive call to filb(— 1), two recursive calls to
fib(n — 2), three recursive calls to fi(— 3), five recursive calls to fib(— 4) and, in generalf;_;
recursive calls to fib{ — k) For each call, we're recomputing the same fibonacci nunmoen Ecratch.

We can avoid this unnecessary repetitions by writing doverrésults of recursive calls and looking them
up again if we need them later. This process is caietnoizationHere is the algorithm with
memoization.

MEMOFIB(n)

1 if(n<2)

2 then return n

3 if (F[n]isundefined)

4 thenFn] < MEMOFIB(n— 1) + MEMOFIB(n — 2)
5 return Fn]

If we trace through the recursive calls toeMoOFiB, we find that array[] gets filled from bottom up. l.e.,

first F[2], thenF[3], and so on, up té[n]. We can replace recursion with a simple for-loop that julst fil
up the arrayF[] in that order.

musharaf
Highlight

musharaf
Highlight

6.2. DYNAMIC PROGRAMMING 75

This gives us our first explicdlynamic programminglgorithm.

ITERFIB(n)
F[O] « 0
F[1] « 1
fori—2ton
do
FAi] <~ FA— 1]+ Fi— 2]
return F[n]

OO0k WN PR

This algorithm clearly takes oni® (n) time to computé-,,. By contrast, the original recursive algorithm

takesO(¢™), b = ”—2\/5 ~ 1.618. ITERFIB achieves an exponential speedup over the original reeursiv
algorithm.

6.2 Dynamic Programming

Dynamic programming is essentially recursion without tejo@®. Developing a dynamic programming
algorithm generally involves two separate steps:

e Formulate problem recursively. Write down a formula for the whole problem as a simple
combination of answers to smaller subproblems.

e Build solution to recurrence from bottom up. Write an algorithm that starts with base cases anc
works its way up to the final solution.

Dynamic programming algorithms need to store the resuliistefmediate subproblems. This is often
but not alwaysione with some kind of table. We will now cover a number of egbes of problems in
which the solution is based on dynamic programming strategy

6.3 Edit Distance

The words “computer” and “commuter” are very similar, ancharage of just one letter, p-¢m, will
change the first word into the second. The word “sport” caniamged into “sort” by the deletion of the
‘p’, or equivalently, ‘sort’ can be changed into ‘sport’ byetinsertion of ‘p’. The edit distance of two
strings, s1 and s2, is defined as the minimum number of poitatons required to change sl into s2,
where a point mutation is one of:

e change a letter,

e insert a letter or

musharaf
Highlight

76 CHAPTER 6. DYNAMIC PROGRAMMING
e delete a letter

For example, the edit distance betwdegdOD andMONEYis at most four:

FOOD — MOOD — MON, D
— MONED — MONEY

6.3.1 Edit Distance: Applications

There are numerous applications of the Edit Distance alguriHere are some examples:
Spelling Correction

If a text contains a word that is not in the dictionary, a ‘édoword, i.e. one with a small edit distance,
may be suggested as a correction. Most word processingcapphis, such as Microsoft Word, have
spelling checking and correction facility. When Word, foaexple, finds an incorrectly spelled word, it
makes suggestions of possible replacements.

Plagiarism Detection

If someone copies, say, a C program and makes a few changearitethere, for example, change
variable names, add a comment of two, the edit distance et source and copy may be small. The
edit distance provides an indication of similarity that htige too close in some situations.

Computational Molecular Biology DNA is a polymer. The monomer units of DNA are nucleotides| an
the polymer is known as a “polynucleotide.” Each nucleotidasists of a 5-carbon sugar (deoxyribose),
a nitrogen containing base attached to the sugar, and alpdtesgroup. There are four different types of
nucleotides found in DNA, differing only in the nitrogenodoase. The four nucleotides are given one
letter abbreviations as shorthand for the four bases.

e A-adenine
e G-guanine
e C-cytosine

e T-thymine

Double-helix of DNA molecule with nucleotides Figure of Die-helix of DNA molecule with
nucleotides goes here

The edit distance like algorithms are used to compute ardisthetween DNA sequences (strings over
A,C,G,T, or protein sequences (over an alphabet of 20 amiids)ac¢or various purposes, e.g.:

¢ to find genes or proteins that may have shared functions qepties

¢ to infer family relationships and evolutionary trees ovigiedent organisms.

6.3. EDIT DISTANCE 77

Speech Recognition

Algorithms similar to those for the edit-distance problema ased in some speech recognition systems.
Find a close match between a new utterance and one in a libfatgssified utterances.

6.3.2 Edit Distance Algorithm
A better way to display this editing process is to place theds@bove the other:

S DI M D M
M A _ T H S
A _ R T _ S

The first word has a gap for every insertion (1) and the secomd\Wwas a gap for every deletion (D).
Columns with two different characters correspond to suligits (S). Matches (M) do not count. The
Edit transcriptis defined as a string over the alphabet M, S, I, D that dessaldeansformation of one
string into another. For example

S DI M D M
1+ 1+ 1+ O+ 1+ O+ =4

In general, it is not easy to determine the optimal edit dista For example, the distance between
ALGORITHMandALTRUISTICis at most 6.

A L G OR I

- T H M
AL - T RUIGST I C

Is this optimal?

6.3.3 Edit Distance: Dynamic Programming Algorithm

Suppose we have an-character string\ and ann-character strin@. DefineE(1,j) to be the edit
distance between the firstharacters oA and the firsfj characters oB. For example,

>)
—
e

u.<|

O I T H M
T uiIT s T

\ A< X

I C

The edit distance between entire strilgandB is E(m, n). The gap representation for the edit
sequences has a crucialptimal substructureproperty. If we remove the last column, the remaining
columns must represent the shortest edit sequence forrttammg substrings. The edit distance is 6 for
the following two words.

78 CHAPTER 6. DYNAMIC PROGRAMMING

A L G OR I
A L T R

_ _ T H M
_ ul s T 1 C
If we remove the last column, the edit distance reduces to 5.

G O R _ |
T R

A L - _ T H
A L _ uil s T I

We can use the optimal substructure property to devise agigedformulation of the edit distance
problem. There are a couple of obvious base cases:
e The only way to convert an empty string into a string aharacters is by doinginsertions. Thus
E(0,j) =]
e The only way to convert a string dfcharacters into the empty string is witlleletions:
E(1,0) =1
There are four possibilities for the last column in the sbstirpossible edit sequence:

Deletion: Last entry in bottom row is empty.

i=3
A LG OU RITHM
AAL_TRUISTIC
]:
In this case
Insertion: The last entry in the top row is empty.
iiS
A LG OW R _ITITHM
AL T RUTISTTIZC

-
j=5

In this case

6.3. EDIT DISTANCE 79

Substitution: Both rows have characters in the last column.

i=4
A LG O RTITHM
AL _ T RUTISTTIZC
j=3
If the characters are different, then
Ei,j)=E{1—-1,7—1)+1
11:\5
A LG O RTITHM
AL _ T RUTISTTIZC
g

If characters are same, no substitution is needed:

Thus the edit distancg(i, j) is the smallest of the four possibilities:

E(i—1,j)+1
E(1,j—1)+1
E(i—1,j—1)+1 if Afi] # BJj]
Ei—1,7—1) if A[i] = BJ[j]

E(i,j) = min

Consider the example of edit between the words “ARTS” and “MAT:

E(3,5) + 1

E(4,4) + 1
B4S)=min | ¢ 3" 11 it Al & B[S]

E(3,4) if Al4] = B3]

Recursion clearly leads to the same repetitive call patteathwe saw in Fibonnaci sequence. To avoid
this, we will use the DP approach. We will build the solutiattbm-up. We will use the base case
E(0,j) tofill first row and the base cadd1i, 0) to fill first column. We will fill the remaininge matrix

row by row.

80 CHAPTER 6. DYNAMIC PROGRAMMING

A | R | T S A | R | T S

0| =1 | 22| =3 —4 0| =1 | 22| 23| -4
M M %
A A ﬁ
T T
H H i
S S é

Table 6.1: First row and first column entries using the basesa

We can now fill the second row. The table not only shows theesbf the cell€[i, j] but also arrows
that indicate how it was computed using value& in— 1,j], E[i,j — 1] andE[i — 1,j — 1]. Thus, if a cell
E[i,j] has a down arrow frori[i — 1, j] then the minimum was found usiridi — 1, j]. For a right arrow,
the minimum was found using[i, j — 1]. For a diagonal down right arrow, the minimum was found
usingE[i — 1,j — 1]. There are certain cells that have two arrows pointed tmisuich a case, the
minimum could be obtained from the diagomdl — 1,j — 1] and either oE[i — 1,j] andE[i,j — 1]. We
will use these arrows later to determine the edit script.

6.3. EDIT DISTANCE 81

1| =2

_|

G| DWW | N = —|o
_|

G| R W= |

Table 6.2: Computin@[1, 1] andE[1, 2]

1] 22| -3 1|—22] 23| —4

_|

G| D[N = —|o
_|

G| R W[N] = |

Table 6.3: Computing [T, 3] andE[1,4]

An edit script can be extracted by following a unique patmfie(0, 0] to E[4, 5]. There are three possible
paths in the current example. Let us follow these paths angpate the edit script. In an actual
implementation of the dynamic programming version of thi¢ didtance algorithm, the arrows would be
recorded using an appropriate data structure. For exargdd, cell in the matrix could be a record with
fields for the value (numeric) and flags for the three inconairrgws.

CHAPTER 6. DYNAMIC PROGRAMMING

>
Py,

T S

1
)

—3 | —4

NN N

—3 | —4

NN

—3 | —4

1
)

1
)

\é NN
\zlt NN

relwelrme L
e

_|
G| DWW | N = |

Table 6.4: The final table with all[i, j] entries computed

>

—

—3 | —4

—— | O
—_—

—3 | >4 Solution path 1:

—

NN 1+ 0+ 1+ =3

N M

1+
—3 | —4 b M S S

A T H
2| =3 - A R T

0
M
S
S

G| B | W | N —

6.3. EDIT DISTANCE 83

>
Py,
—
wn

1
N
&
1
~

1
N
&
1
~

1
N
&
1l
~

\é\l\
\% NN

N S IR
v
Ve
Ve

_|
G| DWW | N = |

Table 6.5: Possible edit scripts. The red arrows fitdt 0] to E[4, 5] show the paths that can be followed
to extract edit scripts.

A R | T]| S

0|—=1] =2 =3|—4
v LIS TS IS TS .

1 1] 52| 53| =4 Solution path 2:

1+ 1+ 0+ 1+ 0 =3

Al LIS TSN TS

20 1| =2 =3 | —4 S S M D M
Tll\\ M A T H S

30 2 2| 2|3 A R T _ S
M IRV VA B

41 3 31 3] 3
s L] LN

5| 4 41 41 3

84 CHAPTER 6. DYNAMIC PROGRAMMING

AR | T]|S

0| —=1] 22|23 —4
TS IS S TS |

1 11 521 53| =4 Solution path 3:

1+ 0+ 1+ 0+ 1+ 0 =3

A LTS IS TS

21 1|22 23] -4 D M I M D M
Tll\\ M A _ T H S
30 2 20 2|3 A R T _ S
M RAVARVE RS

41 3 30 3| 3
s |11 T NI

5 4 41 4| 3

6.3.4 Analysis of DP Edit Distance

There areé®(n?) entries in the matrix. Each enti(i, j) takesd(1) time to compute. The total running
time is®(n?).

6.4 Chain Matrix Multiply

Suppose we wish to multiply a series of matrices:
AlAL. LA,

In what order should the multiplication be done A« g matrix A can be multiplied with aj x r matrix
B. The result will be @ x r matrix C. In particular, forl <i<pandl <j <,

q
Cli,jl =) AR KBk, j]
k=1

There ardp - r) total entries inC and each take®(q) to compute.

q
Cli,jl =) Al KBk, j]

k=1

Thus the total number of multiplicationsys q - r. Consider the case of 3 matrice®; is5 x 4, A, is
4 x 6 andAjz is 6 x 2 The multiplication can be carried out either(@8.1A,)A3) or (A;(AA3)). The
cost of the two is

(A1A2)A3) = (5-4-6) + (5-6-2)=180
(A1(AA3) = (4-6-2) +(5-4-2) =88

musharaf
Highlight

6.4. CHAIN MATRIX MULTIPLY 85

There is considerable savings achieved even for this sieyample. In general, however, in what order
should we multiply a series of matricds A, ... A,,. Matrix multiplication is an associative but not
commutative operation. We are free to add parenthesis theeahultiplication but the order of matrices
can not be changed. Tl@hain Matrix Multiplication Problemis stated as follows:

Given a sequenc&;, A, ..., A, and dimensiongy, p1, . .., pn WhereA; is of dimension
Pi1 X pi, determine the order of multiplication that minimizes themnber of operations.

We could write a procedure that tries all possible parefga@ens. Unfortunately, the number of ways
of parenthesizing an expression is very large. If therenatems, there are — 1 ways in which outer
most pair of parentheses can placed.
(A1) (A2A3A4... Ay)
or (A1A2)(A3A4...AL)
or (A1A2A3)(A4...AL)

or (A1A2A3A4... An)(AL)

Once we split just after thi'" matrix, we create two sublists to be parethesized, oneléthd other
with n — k matrices.
(AtAL . AY) (A Ad)

We could consider all the ways of parenthesizing these twaeShese are independent choices, if there
areL ways of parenthesizing the left sublist aRadvays to parenthesize the right sublist, then the total is
L - R. This suggests the following recurrence Rim), the number of different ways of parenthesizing

items:
1 fn=1,
P(TL) - n—1 .
kg P(K)P(n—Kk) ifn>2

This is related to a famous function in combinatorics calleslCatalan numbersCatalan numbers are
related the number of different binary treesionodes. Catalan number is given by the formula:

e (%)

In particular,P(n) = C(n — 1) C(n) € Q(4™/n3/?) The dominating term is the exponentdl thus
P(n) will grow large very quickly. So this approach is not praatic

6.4.1 Chain Matrix Multiplication-Dynamic Programming Formulation

The dynamic programming solution involves breaking up ttabjfem into subproblems whose solutions
can be combined to solve the global problem. Agt; be the result of multiplying matricésthroughy. It
is easy to see that; ; is ap;_; x p; matrix.

Az Ay As Ag=A3zs
4x5 5x2 2x8 8x7 4x7

86 CHAPTER 6. DYNAMIC PROGRAMMING

At the highest level of parenthesization, we multiply twotrntes
Aln=A1x Aitn 1<k<n—1

The question now is: what is the optimum valuedbr the split and how do we parenthesis the
sub-chainsA; ; andA,.;. .. We can not use divide and conquer because we do not know svtie i
optimumk. We will have to consider all possible valueskond take the best of them. We will apply
this strategy to solve the subproblems optimally.

We will store the solutions to the subproblem in a table antdiltbhe table bottom-up (why)? For
1 <1i<j <n,letml[i,j] denote the minimum number of multiplications needed to aamp; ;. The
optimum can be described by the following recursive forrmaoia

e If 1 =j, there is only one matrix and thus|i, i] = O (the diagonal entries).
e If i < j, the we are asking for the produdt ;.

e This can be split by considering eakhi < k < j, asA;_x timesAy ;.

The optimum time to computd;_ is m[i, k] and optimum time foA,; ; isinm[k + 1,j]. SinceA;
IS api_1 X px matrix andA,;_j is px x p; matrix, the time to multiply them ig;_; x pi x p;. This
suggests the following recursive rule:

mli,i] =0
ml[i,jl = min (m[i, k] + m[k 4+ 1,51 + pi_1pxp;)
i<k<j

We do not want to calculate. entries recursively. So how should we proceed? We wilhiilalong the

diagonals. Here is how. Set ali[i, i] = 0 using the base condition. Compute cost for multiplicatioa of

sequence ol matrices. These ama[1,2], m[2,3], m[3,4],..., m[n — 1,n]. m[1, 2], for example is
m[1,2] =m[1, 1]+ m[2,2] + po- p1 - P2

For example, fom for product of 5 matrices at this stage would be:

ml, 1] H“[l*z]
mi2,2] “m%’g]
mi3,3 | T
m[4, 4] “m[‘l"ﬂ
™, 5]

musharaf
Highlight

musharaf
Highlight

6.4. CHAIN MATRIX MULTIPLY 87

Next, we compute cost of muItipIication for sequences aé¢hmatrices. These are
m[1,3], m[2,4], m[3,5],..., m[n — 2,n]. m[1, 3], for example is

m[1,2] +m[3,3] +po-P2-P3
We repeat the process for sequences of four, five and higingberuof matrices. The final result will end
up inmll, nj.
Example: Let us go through an example. We want to find the optimal nmlidagon order for

Ay - Ay - Az - Ay - As
(5x4) (4x6) (6%2) (2x7) (7%x3)

We will compute the entries of th@ matrix starting with the base condition. We first fill that mai
diagonal:

0

Next, we compute the entries in the first super diagona) the.diagonal above the main diagonal:

m(1,2] =m[1,1]+m[2,2] +po-p1-p2=0+0+5-4-6=120
m[2,3] =m[2,2] + m[3,3] +p1-p2-p3=0+0+4-6-2=148
m[3,4] = m[3,3] + m[4,4] +p2-p3-pa=0+0+6-2-7=84
m[4,5] = m[4,4] +m[5,5] +p3-ps-p5s=0+0+2-7-3=42

The matrixm now looks as follows:

0120

0 |42
0

We now proceed to the second super diagonal. This time, rewwere will need to try two possible
values fork. For example, there are two possible splits for computitid, 3]; we will choose the split
that yields the minimum:
m([1,3] =m[1,1]+m[2,3] +po-p1-p3==0+48+5-4-2=388
m[1,3] =m[1,2] + m[3,3] + po-p2-p3=120+0+5-6-2=180
the minimumm/[1, 3] = 88 occurs withk = 1

88 CHAPTER 6. DYNAMIC PROGRAMMING

Similarly, for m[2,4] andm/[3, 5]:

m2,4 =m[2,2] + m[3,4] +p1-p2-ps=0+84+4-6-7=252
m(2,4] =m[2,3] +m[4,4] +p1-p3-pa=48+0+4-2-7=104
minimumm/[2,4] = 104 atk = 3

m[3,5] =m[3,3] + m[4,5] +pr-p3-ps=0+42+6-2-3=78
m[3,5] =m[3,4] +m[5,5] +p2-pa-p5=84+0+6-7-3 =210
minimumm/[3,5] =78 atk = 3

With the second super diagonal computed,ithenatrix looks as follow:

0| 120 88
0 | 48] 104
0| 84 |78
0 |42
0

We repeat the process for the remaining diagonals. Howihenumber of possible splits (valueskgf
increases:

m(1,4] =m[1, 1]+ m[2,4] +po-P1-Pa=0+104+5-4.7 = 244

m[1,4] =m[1,2] + m[3,4] +po-Pp2-pa=120+84+5-6-7 =414

m[1,4] =m[1,3]+ m[4, 4]+ po-p3-ps=88+0+5-2-7=158
minimumm/[1,4] = 158 atk = 3

m[2,5] =m[2,2] + m[3,5] +p1-p2-p5=0+78+4-6-3 =150
+m

m[2,5] = m[2,3] [4,5] +p1-p3-ps=48+42+4-2-3=114
m[2,5] = m[2,4] + m[5,5] +p1-ps-p5=104+0+4-7-3 =188
minimumm/[2,5] = 114 atk =3

The matrixm at this stage is:

6.4. CHAIN MATRIX MULTIPLY

0|120| 88| 158
0O | 48] 104| 114
0| 84 | 78
0 | 42
0

That leaves then[1, 5] which can now be computed:

m[1,5] = m[1,1] + m[2
m/[1,5] = m[1,2] + m[3
m[1,5] = m[1,3] + m[4
m[1,5] = m[1,4] + m[5,

P
"P2
“P3

ps=0+4+114+5-4-3=174
ps=120+78+5-6-3 =288
-p5 =88+424+5-2-3 =160
“Ps-p5=1584+0+4+5-7-3 =263

minimumm/[1,5] = 160 atk = 3

We thus have the final cost matrix.

88

158

160

48

104

114

0

84

78

0

o

42

elleolleolie]e]

OO oIN

0

Here is the order in whicim entries are calculated

[ERN
o

ecllellielie]le)

ellellellely

Ol O| O N Ul

O O| W O

ol h~|Nj©

and the splik values that led to a minimumm[i, j] value

[

[EEN

N

Ol W Wl w

Ol W Ww

90 CHAPTER 6. DYNAMIC PROGRAMMING

Based on the computation, the minimum cost for multiplying fike matrices is 160 and the optimal
order for multiplication is

((A1(A2A3))(A4A5))

This can be represented as a binary tree

A
A A
A /;»\/\4/\5

Az Az

Figure 6.2: Optimum matrix multiplication order for the fiugatrices example

Here is the dynamic programming based algorithm for comgutie minimum cost of chain matrix
multiplication.

MATRIX -CHAIN (p, N)
fori=1N
doml[i,i] « 0O
for L=2,N
do
fori=1n—-L+1
doj—i+L—-1
mli,j] « oo
fork=1,7—1
dot « m[i, k] + mk +1,jl +pi1 - P - P;
if (t<mli,j])
thenml[i,j] « t; s[i,j] « k

P OOWO~NOOULEA,WNEPE

P

Analysis: There are three nested loops. Each loop executes a maxintumes. Total time is thus
A(n3).

Thes matrix stores the valuds Thes matrix can be used to extracting the order in which matricesa
be multiplied. Here is the algorithm that caries out the mawiltiplication to computeA; ;:

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

6.5. 0/1 KNAPSACK PROBLEM 91

MULTIPLY (1,7)

1 if (i=3j)

2 thenreturn A[i]

3 else k « sli,j]

4 X ¢ MULTIPLY (i,k)

5 Y < MULTIPLY (k + 1,j)
6 return X-Y

6.5 0/1 Knapsack Problem

A thief goes into a jewelry store to steal jewelry items. He h&napsack (a bag) that he would like to
fill up. The bag has a limit on the total weight of the objectsgeld in it. If the total weight exceeds the
limit, the bag would tear open. The value of of the jewelryritevaries for cheap to expensive. The
thief’s goal is to put items in the bag such that the value efittms is maximized and the weight of the
items does not exceed the weight limit of the bag. Anotheitdition is that an item can either be put in
the bag or not - fractional items are not allowed. The prokdkernwhat jewelry should the thief choose
that satisfy the constraints?

Formally, the problem can be stated as follows: Given a kagpwith maximum capacityV, and a sef
consisting o items Each item has some weight; and value value; (all w; , vi andW are integer
values) How to pack the knapsack to achieve maximum totakval packed items? For example,
consider the following scenario:

ltemi | Weightw; | Valuev;
1 2 3
2 3 4
3 4 5
4 5 8
5 9 10

Figure 6.3: Knapsack can hoW' = 20
The knapsack problem belongs to the domain of optimizatroblpms. Mathematically, the problem is

maximize Z Vi
ieT
subject toZ wi < W

ieT

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

92 CHAPTER 6. DYNAMIC PROGRAMMING

The problem is called &@-1" problem, because each item must be entirely accepted otedjeHow do
we solve the problem. We could try the brute-force solution:

e Since there are items, there ar@™ possible combinations of the items (an item either chosen or
not).

e We go through all combinations and find the one with the mdat t@lue and with total weight
less or equal t&V

Clearly, the running time of such a brute-force algorithm O(2™). Can we do better? The answer is
“yes”, with an algorithm based on dynamic programming Letacap the steps in the dynamic
programming strategy:

1. Simple Subproblems We should be able to break the original problem to smallbpsablems
that have the same structure

2. Principle of Optimality : Recursively define the value of an optimal solution. Expthessolution
of the original problem in terms of optimal solutions for dlaaproblems.

3. Bottom-up computation: Compute the value of an optimal solution in a bottom-up fasHhuy
using a table structure.

4. Construction of optimal solution: Construct an optimal solution from computed information.

Let us try this: If items are labellet 2, ..., n, then a subproblem would be to find an optimal solution
for

S = items labelled, 2, ...,k

This is a valid subproblem definition. The question is: cardescribe the final solutio§,, in terms of
subproblems,? Unfortunately, we cannot do that. Here is why. Consider gfigmal solution if we can
choose items 1 through 4 only.

Solution S4 ltem | w; | vy
1 2|3
e Items chosen arg, 2,3,4 2 314
: 3 4 | 5
Total weight:2+3+4+5=14
. gttty 4 |58
e Totalvalue:3 +4+5+8 =20 5 9 | 10

Now consider the optimal solution when items 1 through 5 sedable.

musharaf
Highlight

6.5. 0/1 KNAPSACK PROBLEM 93

Solution S5
Item | w; | v;
e Iltems chosen arg 3,4,5 1 2|3
. 2 3|4
e Total weight:2+4 45+ 9 =20 3 4| 5
o Total value:3 +5 + 8 + 10 = 26 4 158
5 9 | 10

S4 is not part ofSs!!

The solution for S, isnot part of the solution for Ss. So our definition of a subproblem is flawed and we
need another one.

6.5.1 0/1 Knapsack Problem: Dynamic Programming Approach

For eachi < n and eachw < W, solve the knapsack problem for the fitsibjects when the capacity is
w. Why will this work? Because solutions to larger subproblearslze built up easily from solutions to
smaller ones. We constructa maté¥0...n,0...W]. For1 <1i < n, and0 <j < W, V[i,j] will store
the maximum value of any set of obje¢is2, ..., 1} that can fit into a knapsack of weightV[n, W]

will contain the maximum value of all objects that can fit into the entire knapsack of weight W.

To compute entries of we will imply an inductive approach. As a basig/0,j] =0for0 <j <W
since if we have no items then we have no value. We considecases:

Leave objecti: If we choose to not take objettthen the optimal value will come about by considering
how to fill a knapsack of sizewith the remaining objectd, 2,...,1 — 1}. Thisis justV[i — 1,]].

Take objecti: If we take object, then we gain a value of,. But we use upv; of our capacity. With the
remainingj — w; capacity in the knapsack, we can fill it in the best possiblg wih objects
{1,2,...,i— 1} Thisisvi + V[i—1,j — wy]. This is only possible ifv; < j.

This leads to the following recursive formulation:

VIi,jl = —c0 ifj<0
V[0,jl =0 ifj >0
{Vﬁ—]J] if wy > j

VLT - i
= mad V= 1,71, v+ V=1, —wi} ifwi <

A naive evaluation of this recursive definition is exponahtSo, as usual, we avoid re-computation by
making a table.

Example: The maximum weight the knapsack can holdWss 11. There are five items to choose from.
Their weights and values are presented in the followinggtabl

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

94 CHAPTER 6. DYNAMIC PROGRAMMING

Weight limit j): [0]1|2|3]4|5|6|7|8|9]10|11
W1:1V1:1
W2:2V2:6
W3:5V3:]8
W4:6V4:22
W5:7V5:28

Thel[i, j] entry here will beV[i, j], the best value obtainable using the firsbws of items if the
maximum capacity werg We begin by initializating and first row.

Weight limit: || 0] 1]2|3|4|5|6[7|8]|9]10]11
wi=1lvw=1 j0/1{1(1|j1}1/1}1(1|1]1 |1
W2:2V2:6
W3:5V3:18
W4:6V4:22
W5:7\15:28

o O OO

Recall that we tak&/[i, j] to be0 if eitheri orj is < 0. We then proceed to fill in top-down, left-to-right
always using
V[la]] - maX{V[l—]vl]) Vi + V[l—])] _Wl]}

Weightlimit: | 0]|1[2[3[4|5[6[7[8[9[10]|11

w=1lvw=1 (0212|1111 |1/1]1|1, 1|1
wy=2v,=6 (021|677 |7|7\7|7|7| 7|7
W3:5V3=]8 0
W4:6V4=22 0
W5:7V5:28 0

Weight limit: ||0|1]2[3]4|5|6|7]8]9][10]11
wi=lvi=1 |O[L[L]1[1[1[1[1[1[1][1]1
w,=2v,=6 |0|1|6|7|7|7 |7 |7 |7|7|7]|7
w3 =5v3=18|0|1|6|7|7|18|19|24|25|25|25]|25
0
0

W4:6V4:22
W5:7V5:28

As an illustration, the value df 3, 7] was computed as follows:

V3,71 =max{V[3 —1,7], v3+V[3—1,7—ws]}
=max{V[2,7], 18+ V[2,7 —5]}
=max{7, 18+6}

—24

6.5. 0/1 KNAPSACK PROBLEM 95

Weightlimit: | 0[1[2[3|4[5|6|7[8]|9]|10[11

w=1lvww=1 (01|21 {2/21 |11 1|1 1|1
wy=2v,=6 (|0|2|6|7 7|7 |7 |7 |7 |7|7]|7
w3=5v;=18||0|1|6|7|7|18|19|24|25|25|25]|25
wyg=6v4=22(0|1|6|7|7|18|22|24|28|29|29|40
W5:7V5:28 0
Finally, we have

Weight limit: | 0]1|2|3|4| 5|6 |7 |8|9]10|/11
wy=1lvy=1 (0|22 (1/1|{1|1|1|1|1]1] 1
wy=2v,=6 (|0|2|6|7 7|7 |7 |7 |7 |7|7]|7
w3=5v;=18||0|1|6|7|7|18|19|24|25|25|25]|25
wys=6v,=22|10|1|6|7|7|18|22|24|28|29]|29] 40
ws=7vs=280|1|6|7|7|18|22|28|29|34|35]|40

The maximum value of items in the knapsack is 40, the bottgm:-entry). The dynamic programming
approach can now be coded as the following algorithm:

KNAPSACK(n, W)

1 forw=0W

2 doVI[0,w] « 0

3 fori=0,n

4 doV[i, 0]« 0

5 forw=0,W

6 doif wi<w&vi+Vi—T,w—wi>Vi-—1w])
7 then Vi,w] « v+ Vi—1,w —wy]

8 else V[i,w] « V[i—1,w]

The time complexity is clearlp) (n - W). It must be cautioned that asandW get large, both time and
space complexity become significant.

Constructing the Optimal Solution

The algorithm for computind/[i, j] does not keep record of which subset of items gives the optima
solution. To compute the actual subset, we can add an ayXil@lean arragkeepli, j] which is1 if we
decide to take thé&'™ item and0 otherwise. We will use all the valuégepli, j] to determine the optimal
subsefl of items to put in the knapsack as follows:

e If keep[n,W]is 1, thenn € T. We can now repeat this argument farep[n — 1, W — w, .

e If kee[n, W]is 0, then ¢ T and we repeat the argument forep[n — 1, W1.

96 CHAPTER 6. DYNAMIC PROGRAMMING

We will add this to the knapsack algorithm:

KNAPSACK(1, W)
1 forw=0,W
2 doVI[0,w] « 0
3 fori=0,n

4 doV[i, 0]« 0

5 forw=0,W

6 doif wi<w&vi+Vi—1T,w—wi >Vi-1w])

7 then Vli,w] « v; + Vli — 1,w — wy]; keep[i,w] « 1

8 else V[i,w] « V[i—1,w]; keep[i,w] « 0

9 // output the selected items

10 kW

11 for i=n downto 1

12 doif (keep[i, k] =1)

13 then output i

14 k — k—w;

Here is the keep matrix for the example problem.

Weight limit: |0 |1|2|3|4| 5[6]7]8]9]10]11

wi=1lv, =1 [[Oo]1[21][1]2] 1]1fa]1|1][1]1
wy=2v,=6 ([0]|0[1|1|21|1|1|2|1|1]1|1
wis=5vs=18|l0|0|o|o|o|[1]{1|2|2]2|1 1
wy=6v,=22|0|0|0|0|0|O0|1|0[1]21]|1
ws=7vs=280|0|0[0|0| 0|0|1[1|1/1]0

When the item selection algorithm is applied, the selecedstarel and3. This is indicated by the
boxed entries in the table above.

Chapter 7

Greedy Algorithms

An optimization problents one in which you want to find, not just a solution, but thettsedution.
Search techniques look at many possible solutions. E.cardimprogramming or backtrack search. A “
greedy algorithm” sometimes works well for optimizatiomplems

A greedy algorithm works in phases. At each phase:

¢ You take the best you can get right now, without regard fanreiconsequences.

e You hope that by choosing a local optimum at each step, ydiewd up at a global optimum.

For some problems, greedy approach always gets optimunutRers, greedy finds good, but not always
best. If so, itis called a greedy heuristic, or approxintatiéor still others, greedy approach can do very
poorly.

7.1 Example: Counting Money

Suppose you want to count out a certain amount of money, tisenfpwest possible bills (notes) and
coins. A greedy algorithm to do this would be: at each stéqg the largest possible note or coin that
does not overshoot.

while (N > 0){
give largest denomination com N
reduceN by value of that coin

}

Consider the currency in U.S.A. There are paper notes for olt@rdfive dollars, ten dollars, twenty
dollars, fifty dollars and hundred dollars. The notes are addled “bills”. The coins are one cent, five
cents (called a “nickle”), ten cents (called a “dime”) anektwy five cents (a “quarter”). In Pakistan, the
currency notes are five rupees, ten rupees, fifty rupeesybdimdpees, five hundred rupees and thousan

97

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

98 CHAPTER 7. GREEDY ALGORITHMS

rupees. The coins are one rupee and two rupees. Supposecyaskad to give change of $6.39 (six
dollars and thirty nine cents), you can choose:

e a $5 note

a $1 note to make $6

a 25 cents coin (quarter), to make $6.25

a 10 cents coin (dime), to make $6.35

e four 1 cents coins, to make $6.39

Notice how we started with the highest note, $5, before ntarthe next lower denomination.

Formally, the Coin Change problem is: Givierdenominationsl;, d,, ..., dix and givenN, find a way of
writing
N =1i;dy +1i2dy + -+ + 1di
such that
11+ 1+ -+ + 1k IS minimized.
The “size” of problem is.

The greedy strategy works for the coin change problem butimatys. Here is an example where it fails.
Suppose, in some (fictional) monetary system, “ krons” camiekron, 7 kron, and 10 kron coins Using
a greedy algorithm to count out 15 krons, you would get A 1(hkreece Five 1 kron pieces, for a total of
15 krons This requires six coins. A better solution, howeweuld be to use two 7 kron pieces and one 1
kron piece This only requires three coins The greedy algoritesults in a solution, but not in an optimal
solution

The greedy approach gives us an optimal solution when thmes @ all powers of a fixed denomination.
N =1,D°+ ;D' +1,D* + - - + {;, D¥

Note that this i\ represented in baséd. U.S.A coins are multiples of 5: 5 cents, 10 cents and 25 cent

7.1.1 Making Change: Dynamic Programming Solution

The general coin change problem can be solved using Dynamggdmming. Set up a Table,
C[1..k,0..N] in which the rows denote available denominatials(1 < i < k) and columns denote the
amount from0... N units, 0 <j < N). C[i,j] denotes the minimum number of coins, required to pay
an amounj using only coins of denominatioristo i. C[k, N] is the solution required.

To pay an amounjtunits, using coins of denominatiomgo i, we have two choices:

1. either chose NOT to use any coins of denominatjon

2. or chose at least one coin of denominatipand also pay the amoufit— d;).

7.2. GREEDY ALGORITHM: HUFFMAN ENCODING 99

To pay(j — d;) units it takesC[i,j — d;] coins. Thus,
Cli,jl =14+ C[,j —di
Since we want to minimize the number of coins used,
Cli,jl = min(C[i —1,j],1+ C[i,j — d{l)

Here is the dynamic programming based algorithm for the cbange problem.

COINS(N)
1 d[1.m] ={1,4,6} [/ (coinage, for example)
2 fori=11to k

3 docli,0] « 0

4 fori=1 10 k

5 doforj=1to N

6 doif (i=1&j < dlil)

7 thencli,j] « oo

8 else if(i=1)

9 thencli,jl « 1+ c[1,j — d[1]]

10 else if(j < dfi])
11 thencfi,j] « cli—1,]j]
12 else c[i,j] « min (ci—1,j],1+c[i,j — d[i]])

13 return c[k,N]

7.1.2 Complexity of Coin Change Algorithm

Greedy algorithm (non-optimal) tak€¥k) time. Dynamic Programming tak€¥ kN) time. Note that
N can be as large & so the dynamic programming algorithm is really exponeririad.

7.2 Greedy Algorithm: Huffman Encoding

The Huffman codes provide a method of encoding data effigiedormally, when characters are coded
using standard codes like ASCII. Each character is repreddyt a fixed-length codeword of bits, e.g., 8
bits per character. Fixed-length codes are popular becdaigseery easy to break up a string into its
individual characters, and to access individual chara@ed substrings by direct indexing. However,
fixed-length codes may not be he most efficient from the petsfgeof minimizing the total quantity of
data.

Consider the string “ abacdaacac”. if the string is coded WHICII codes, the message length would be
10 x 8 = 80 bits. We will see shortly that the same string encoded withraable length Huffman
encoding scheme will produce a shorter message.

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

100 CHAPTER 7. GREEDY ALGORITHMS

7.2.1 Huffman Encoding Algorithm

Here is how the Huffman encoding algorithm works. Given asage string, determine the frequency of
occurrence (relative probability) of each character inrttesssage. This can be done by parsing the
message and counting how many time each character (or syagp®ars. The probability is the number
of occurrence of a character divided by the total charaatetfee message. The frequencies and
probabilities for the example string “ abacdaacac” are

character | a | b | ¢ | d
frequency
probability | 0.5 0.1/ 0.3] 0.1

o
[EnN
w
[N

Next, create binary tree (leaf) node for each symbol (charathat occurs with nonzero frequency Set
node weight equal to the frequency of the symbol. Now comegtbedy part: Find two nodes with
smallest frequency. Create a new node with these two noddsldsea, and with weight equal to the
sum of the weights of the two children. Continue until we hagéngle tree.

Finding two nodes with the smallest frequency can be doneeftly by placing the nodes in a
heap-based priority queue. The min-heap is maintainedjusanfrequencies. When a new node is
created by combining two nodes, the new node is placed inrtbetp queue. Here is the Huffman tree
building algorithm.

HUFFMAN(N, symbol[1..N], freq[1..N])
fori=11t0 N
dot « TreeNode(symbolli], freqli])
pqg.insert(t, freq[i]) // priority queue
fori=11t0 N—1
dox = pg.remove(); y = pq.remove()
z +— new TreeNode
z.left «+ x; z.right « vy
z.freq « x.freq +y.freq
pqg.insert(z, z.freq);
return pq.remove(); // root

=
QWO ~NOUODMWDNEPE

Figure 7.1 shows the tree built for the example message taaaac”

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

7.2. GREEDY ALGORITHM: HUFFMAN ENCODING 101

Figure 7.1: Huffman binary tree for the string “abacdaacac”

Prefix Property:

The codewords assigned to characters by the Huffman digohiave the property that no codeword is a
prefix of any other:

character | a b C d
frequency | 5 1 3 1
probability | 0.5| 0.1 | 0.3| 0.1
codeword | O | 110| 10 | 111

The prefix property is evident by the fact that codewords eagds of the binary tree. Decoding a prefix
code is simple. We traverse the root to the leaf letting tpati® or 1 tell us which branch to take.

Expected encoding length:

If a string ofn characters over the alphaliét={a, b, ¢, d} is encoded using 8-bit ASCII, the length of
encoded string i8n. For example, the string “abacdaacac” will requrg 10 = 80 bits. The same
string encoded with Huffman codes will yield

al b |a| c d |lajlal| c |al| c
0|110|{0|10|1112|0|/0|10|0] 10

This is just 17 bits, a significant saving!. For a stringhofharacters over this alphabet, the expected
encoded string length is
n(0.5-1+0.1-34+03-240.1-3)=1.7n

In general, lep(x) be the probability of occurrence of a character, andl{¢k) denote the length of the
codeword relative to some prefix trée The expected number of bits needed to encode a textrwith
characters is given by

musharaf
Highlight

102 CHAPTER 7. GREEDY ALGORITHMS

7.2.2 Huffman Encoding: Correctness

Huffman algorithm uses a greedy approach to generate a pafe that minimizes the expected
lengthB(T) of the encoded string. In other words, Huffman algorithmegates an optimum prefix code.
The question that remains is thahy is the algorithm correct?

Recall that the cost of any encoding trees

B(T)=n) p(x)dr(x)

Our approach to prove the correctness of Huffman Encodifigpevito show that any tree that differs
from the one constructed by Huffman algorithm can be coedarito one that is equal to Huffman'’s tree
without increasing its costs. Note that the binary tree taoted by Huffman algorithm is a full binary
tree.

Claim:

Consider two charactessandy with the smallest probabilities. Then there is optimal ctvde in which
these two characters are siblings at the maximum depth imebe

Proof:
Let T be any optimal prefix code tree with two siblinggndc at the maximum depth of the tree. Such a
tree is shown in Figure 7.2Assume without loss of gener#igy

p(b) <pl(c) and p(x) <p(y)

Figure 7.2: Optimal prefix code trde

Sincex andy have the two smallest probabilities (we claimed this), liokes that

p(x) <p(b) and ply) <plc)

musharaf
Highlight

musharaf
Highlight

7.2. GREEDY ALGORITHM: HUFFMAN ENCODING 103

Sinceb andc are at the deepest level of the tree, we know that

d(b) > d(x) and d(c) > d(y) (d is the depth)

Thus we have

and

Hence their product is non-negative. That is,

(p(b) —p(x)) - (d(b) —d(x)) =0

Now swap the positions of andb in the tree

Figure 7.3: Swap andb in tree prefix tred’

This results in a new treg’

104 CHAPTER 7. GREEDY ALGORITHMS

Figure 7.4: Prefix tre@’ afterx andb are swapped

Let's see how the cost changes. The cost’ab

B(T') = B(T) —p(x)d(x) + p(x)d(b) — p(b)d(b) + p(b)d(x)
=B(T) + p(x)[d(b) — d(x)] —p(b)[d(b) — d(x)]
=B(T) — (p(b) —p(x))(d(b) — d(x))
< B(T) because(p(b) —p(x))(d(b) —d(x)) =0

Thus the cost does not increase, implying tiats an optimal tree.

By switchingy with ¢ we get the tred”. Using a similar argument, we can show thdtis also optimal.

The final treel” satisfies the claim we made earlier, i.e., consider two cbarsx andy with the

7.3. ACTIVITY SELECTION 105

smallest probabilities. Then there is optimal code treehicivthese two characters are siblings at the
maximum depth in the tree.

The claim we just proved asserts that the first step of Huffalgarithm is the proper one to perform (the
greedy step). The complete proof of correctness for Huffalgarithm follows by induction om.

Claim: Huffman algorithm produces the optimal prefix code tree.

Proof: The proof is by induction om, the number of characters. For the basis case,1, the tree
consists of a single leaf node, which is obviously optimag Wéant to show it is true with exactly
characters.

Suppose we have exactiycharacters. The previous claim states that two charactansly with the
lowest probability will be siblings at the lowest level oktiree. Remove andy and replace them with a
new charactet whose probability i9(z) = p(x) + p(y). Thusn — 1 characters remain.

Consider any prefix code trdemade with this new set of — 1 characters. We can convérinto prefix
code tre€l’ for the original set oh characters by replacingwith nodesx andy. This is essentially
undoing the operation wheseandy were removed an replaced by The cost of the new tre¥’ is

B(T') = B(T) —p(z)d(z) +p(x)ld(z) + 1] +p(y)ld(z) + 1]
=B(T) — (p(x) + p(y))d(z) + (p(x) + p(y))[d(z) + 1]
=B(T) + (p(x) + p(y))ld(z) + 1 —d(z)]
=B(T) +p(x) +p(y)

The cost changes but the change depends in no way on theustro€the tred (T is forn — 1
characters). Therefore, to minimize the cost of the fina Tre we need to build the treeonn — 1
characters optimally. By induction, this is exactly what fhdn algorithm does. Thus the final tree is
optimal.

7.3 Activity Selection

The activity scheduling is a simple scheduling problem faick the greedy algorithm approach provides
an optimal solution. We are given a $et {a;, a,, ..., a,} of n activities that are to be scheduled to use
some resource. Each activily must be started at a given start tisyeand ends at a given finish tinfe

An example is that a number of lectures are to be given in deslagture hall. The start and end times
have be set up in advance. The lectures are to be schedulect i§lonly one resource (e.g., lecture hall)
Some start and finish times may overlap. Therefore, not @llests can be honored. We say that two
activitiesa; anda; are non-interfering if their start-finish intervals do noedap. I.e,

(si, fi) N (s;,f;) = @. The activity selection problem is to select a maximum-sizieof mutually
non-interfering activities for use of the resource.

So how do we schedule the largest number of activities oneb@urce? Intuitively, we do not like long

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

106 CHAPTER 7. GREEDY ALGORITHMS

activities Because they occupy the resource and keep us foooring other requests. This suggests the
greedy strategy: Repeatedly select the activity with thdlsstaduration(f; — s;) and schedule it,
provided that it does not interfere with any previously sthied activities. Unfortunately, this turns out
to be non-optimal

Here is a simple greedy algorithm that works: Sort the aetiby their finish times. Select the activity
that finishes first and schedule it. Then, among all actwiteat do not interfere with this first job,
schedule the one that finishes first, and so on.

SCHEDULEa[1..N])
1 sortall..N] by finish times

2 A «{al[ll}; /I schedule activity 1 first
3 prev « 1; /I mostrecently scheduled
4 fori=2to N

5 doif (ali]l.start > a[prev].finish)

6 then A «+— A Uali]; prev «1i

Figure 7.5 shows an example of the activity scheduling @lgor. There are eight activities to be
scheduled. Each is represented by a rectangle. The widtheat@ngle indicates the duration of an
activity. The eight activities are sorted by their finish &isn The eight rectangles are arranged to show tt
sorted order. Activitya is scheduled first. Activitiea, andajs interfere witha; so they ar not selected.
The next to be selected is,. Activities as andag interfere witha4 so are not chosen. The last one to be
chosen isa;. Eventually, only three out of the eight are scheduled.

Timing analysis: Time is dominated by sorting of the activities by finish tim&hus the complexity is
O(NlogN).

7.3. ACTIVITY SELECTION 107

Figure 7.5: Example of greedy activity scheduling algarith

7.3.1 Correctness of Greedy Activity Selection

Our proof of correctness is based on showing that the firstehmade by the algorithm is the best
possible. And then using induction to show that the algorith globally optimal. The proof structure is
noteworthy because many greedy correctness proofs aréd batke same idea: Show that any other
solution can be converted into the greedy solution withnateasing the cost.

Claim:

LetS ={ay,ay,...,ay} of n activities, sorted by increasing finish times, that are tedieeduled to use
some resource. Then there is an optimal schedule in whightgat; is scheduled first.

Proof:

Let A be an optimal schedule. Letbe the activity inA with the smallest finish time. ¥ = a; then we
are done. Otherwise, we form a new schedldy replacingx with activity a;.

108 CHAPTER 7. GREEDY ALGORITHMS

Figure 7.6: ActivityX = a,

We claim thatA’ = A — {x} U{a;} is a feasible schedule, i.e., it has no interfering acasitiThis
because\ — {x} cannot have any other activities that start befofmishes, since otherwise, these
activities will interfere withx.

Figure 7.7: New schedul&’ by replacingx with ctivity a;.

Sincea, is by definition the first activity to finish, it has an earlierifh time tharx. Thusa; cannot
interfere with any of the activities iA — {x}. Thus,A’ is a feasible schedule. Clear’yandA’ contain
the same number of activities implying that is also optimal.

Claim:

7.4. FRACTIONAL KNAPSACK PROBLEM 109

The greedy algorithm gives an optimal solution to the aigtischeduling problem.

Proof:

The proof is by induction on the number of activities. For lasis case, if there are no activities, then the
greedy algorithm is trivially optimal. For the inductiorept let us assume that the greedy algorithm is
optimal on any set of activities of size strictly smallernh& and we prove the result f&. LetS’ be the
set of activities that do not interfere with activity, That is

S ={ai € Slsi > f1}

Any solution forS’ can be made into a solution f6rby simply adding activitya;, and vice versa.
Activity a; is in the optimal schedule (by the above previous claim)llbfvs that to produce an optimal
schedule for the overall problem, we should first schedyland then append the optimal schedule for
S’. But by induction (sincéS’| < |S]), this exactly what the greedy algorithm does.

7.4 Fractional Knapsack Problem

Earlier we saw the 0-1 knapsack problem. A knapsack can amty ¥V total weight. There are items;
thei™ item is worthv; and weighsv;. Items can either be put in the knapsack or not. The goal was to
maximize the value of items without exceeding the total Wweignit of W. In contrast, in the fractional
knapsack problem, the setup is exactly the same. But, onlevgeal to takefraction of an item for a
fraction of the weight and fraction of value. The 0-1 knapgamblem is hard to solve. However, there is
a simple and efficient greedy algorithm for the fractionahjsack problem.

Let p; = vi/w; denote thevalue per unit weightatio for itemi. Sort the items in decreasing ordergf
Add items in decreasing order pf. If the item fits, we take it all. At some point there is an itdmatt
does not fit in the remaining space. We take as much of thisagpossible thus filling the knapsack

completely.

110 CHAPTER 7. GREEDY ALGORITHMS

$140

l | I I$00

knapsack $30 $20 $100 $90 $160
6 2 5 3 4

$270

Greedy solution

Figure 7.8: Greedy solution to the fractional knapsack @b

It is easy to see that the greedy algorithm is optimal for thetfonal knapsack problem. Given a room
with sacks of gold, silver and bronze, one (thief?) wouldoatay take as much gold as possible. Then
take as much silver as possible and finally as much bronzesssp®. It would never benefit to take a
little less gold so that one could replace it with an equallveof bronze.

We can also observe that the greedy algorithm is not optiarahe 0-1 knapsack problem. Consider
the example shown in the Figure 7.9. If you were to sort thasteyp; , then you would first take the
items of weight 5, then 20, and then (since the item of wei@hddes not fit) you would settle for the
item of weight 30, for a total value of $30 + $100 + $90 = $220.tmother hand, if you had been less
greedy, and ignored the item of weight 5, then you could thkatems of weights 20 and 40 for a total
value of $100+$160 = $260. This is shown in Figure 7.10.

7.4. FRACTIONAL KNAPSACK PROBLEM 111

' | I I$oo

knapsack $30 $20 $100 $90 $160 $220

6 2 5 3 4 Greedy solution
to 0-1 knapsack

Figure 7.9: Greedy solution for the 0-1 knapsack problenm{optimal)

30
20 OBl $100
10

knapsack $30 $20 $100 $90 $260

6 2 5 3 Optimal solution
to 0-1 knapsack

Figure 7.10: Optimal solution for the 0-1 knapsack problem

112 CHAPTER 7. GREEDY ALGORITHMS

Chapter 8

Graphs

We begin a major new topic: Graphs. Graphs are importantetesstructures because they are a flexibls
mathematical model for many application problems. Any tihmere is a set of objects and there is some
sort of “connection” or “relationship” or “interaction” Ib&een pairs of objects, a graph is a good way to
model this. Examples of this can be found in computer and conication networks transportation
networks, e.g., roads VLSI, logic circuits surface meshbesiiape description in computer-aided design
and GIS precedence constraints in scheduling systems.

A graphG = (V, E) consists of a finite set ofertices V' (or nodes) andE, a binary relation ofV called
edgest is a set of pairs fronV. If a pair is ordered we have adirectedgraph. Forunorderedpair, we
have anundirectedgraph.

directed graph
__graph _(digraph)

-)self-loop

/ \

(
\

[

/
|)
\ /

digraphk ‘vﬁﬂulti grapﬁ/

Figure 8.1: Types of graphs

A vertexw is adjacentto vertexv if there is an edge from to w.

113

114 CHAPTER 8. GRAPHS

adjacent vertices

1&2
1&3
1&4
2&4

Figure 8.2: Adjacent vertices

In an undirected graph, we say that an edgaisdenton a vertex if the vertex is an endpoint of the
edge. of the edge

el incident on vertices 1 & 2
e2 incident on vertices 1 & 3

e3 incident on vertices 1 & 4

e4 incident on vertices 2 & 4

Figure 8.3: Incidence of edges on vertices

In a digraph, the number of edges coming out of a vertex ieddhe out-degreeof that vertex. Number
of edges coming in is thén-degree In an undirected graph, we just talk of degree of a verteis. thie
number of edges incident on the vertex.

Figure 8.4: In and out degrees of vertices of a graph

For a digraphG = (V, E),

) in-degree(v) =) out-degree(v) =g

veVv vev

where|E| means the cardinality of the sgti.e., the number of edges.
For an undirected grapG = (V, E),

Y degree(v) = 2[f|

vev

where|E| means the cardinality of the sgti.e., the number of edges.

115

A pathin a directed graphs is a sequence of vertiggsvy, . . ., vi) such thatfv;_;,v;) is an edge for
i=1,2,...,k. The lengthof the paths is the number of edg&sA vertexw is reachablefrom vertex

u is there is a path from tow. A path is simple if all vertices (except possibly the fist dast) are

distinct.

A cyclein a digraph is a path containing at least one edge and forhwhie- vi.. A Hamiltoniancycle
is a cycle that visits every vertex in a graph exactly onceEéleriancycle is a cycle that visits every
edge of the graph exactly once. There are also “path” vessiowhich you do not need return to the

starting vertex.

116 CHAPTER 8. GRAPHS

Figure 8.5: Cycles in a directed graph

A graph is said to beacyclicif it contains no cycles. A graph isonnectedf every vertex can reach
every other vertex. A directed graph that is acyclic is chledirected acyclic graph (DAG)

There are two ways of representing graphs: using an adjgpeeatix and using an adjacency list. Let
G = (V,E) be a digraph witm = |V| and lete = |E|. We will assume that the vertices Gfare indexed
{1,2,...,nhL

An adjacency matrixs an x n matrix defined forl <v,w <n.

{1 if (v,w)€E

Alv,w] = .
0 otherwise

An adjacency lisis an arrayA dj[1..n] of pointers where fot < v <n, Adj[v] points to a linked list
containing the vertices which are adjacentto

Adjacency matrix require®(n?) storage and adjacency list requi@én + e) storage.

Adjacency Matrix Adjacency List

Figure 8.6: Graph Representations

8.1 Graph Traversal

To motivate our first algorithm on graphs, consider the feiig problem. We are given an undirected
graphG = (V, E) and asource vertex € V. Thelengthof a path in a graph is the number of edges on

8.1. GRAPH TRAVERSAL 117

the path. We would like to find the shortest path fremo each other vertex in the graph. The final result
will be represented in the following way. For each ventex V, we will stored[v] which is thedistance
(length of the shortest path) frosto v. Note thatd[s] = 0. We will also store a predecessor (or parent)
pointer7t[v] which is the first vertex along the shortest path if we walkrfrobackwards ta. We will set
7t[s] = Nil.

There is a simple brute-force strategy for computing sisbpiaths. We could simply start enumerating
all simple paths starting at and keep track of the shortest path arriving at each veHewever, there
can be as many asl simple paths in a graph. To see this, consider a fully comaegtaph shown in
Figure 8.7

Figure 8.7: Fully connected graph

Theren choices for source node (n — 1) choices for destination nodey — 2) for first hop (edge) in
the path(n — 3) for second{n — 4) for third down to(n — (n — 1)) for last leg. This leads ta! simple
paths. Clearly this is not feasible.

8.1.1 Breadth-first Search

Here is a more efficient algorithm called theeadth-first searciBFS) Start withs and visit its adjacent
nodes. Label them with distance 1. Now consider the neightioneighbors of. These would be at
distance 2. Now consider the neighbors of neighbors of m&ighofs. These would be at distance 3.
Repeat this until no more unvisited neighbors left to visheglgorithm can be visualized asvave
front propagating outwards fromvisiting the vertices in bands at ever increasing distafroes s.

118 CHAPTER 8. GRAPHS

Figure 8.8: Source vertex for breadth-first-search (BFS)

Figure 8.10: Wave reaching distance 2 vertices during BFS

8.1. GRAPH TRAVERSAL 119

Figure 8.11: Wave reaching distance 3 vertices during BFS

8.1.2 Depth-first Search

Breadth-first search is one instance of a general famityraph traversal algorithmsTraversing a graph
means visiting every node in the graph. Another traversatesyy is depth-first searciDFS). DFS
procedure can be written recursively or non-recursivelythBersions are passadnitially.

RECURSIVEDFS(v)

1 if (v isunmarked

2 then mark v

3 for each edge(v, w)
4 do RECURSIVEDFS(w)

ITERATIVEDFS(s)

1 PUSHs)

2 while stack not empty
3 dov« POH)

4 if v is unmarked

5 then mark v

6 for each edge(v, w)
7 do PUSHW)

8.1.3 Generic Graph Traversal Algorithm

Thegeneric graph traversatlgorithm stores a set of candidate edges in some datawseaate’ll call a
“bag’. The only important properties of the “bag” are that we canhgtuff into it and then later take stuff

120 CHAPTER 8. GRAPHS

back out. Here is the generic traversal algorithm.

TRAVERSE(S)

1 put (2,s) inbag

2 while bag not empty

3 do take(p,v) from bag

4 if (v isunmarked

5 then mark v

6 parentv) « p

7 for each edge(v,w)
8 do put (v, w) in bag

Notice that we are keeping edges in the bag instead of verfidas is because we want to remember,
whenever we visit for the first time, which previously-visited vertgxputv into the bag. The vertex
is call theparent ofv.

The running time of the traversal algorithm depends on hagtlaph is represented and what data
structure is used for the bag. But we can make a few generahaihsms.

e Since each vertex is visited at most once, the for loop inTimeexecuted at mo3f times.

e Each edge is put into the bag exactly twice; oncélgs) and once asv, u), so line 8 is executed
at most2E times.

e Finally, since we can’t take out more things out of the bag tlva put in, line 3 is executed at most
2E + 1 times.

e Assume that the graph is represented by an adjacency lisesaverhead of the for loop in line 7 is
constant per edge.

If we implement the bag by using stack we havedepth-firstsearch (DFS) or traversal.

TRAVERSKE(s)

1 pusho,s)

2 while stack not empty

3 do pop(p,V)

4 if (v isunmarked

5 then mark v

6 parentv) « p

7 for each edge(v, w)
8 do pusHv, w)

Figures 8.12 to 8.20 show a trace of the DFS algorithm appdiedgraph. The figures show the content
of the stack during the execution of the algorithm.

8.1. GRAPH TRAVERSAL 121

Figure 8.14: Trace of DFS algorithm: vertex ‘c’ popped

122 CHAPTER 8. GRAPHS

Figure 8.15: Trace of DFS algorithm: vertex ‘f’ popped

A~ N~~~
S Q@
® OO0 o
——— —

(c,a)
((eXe))
(c,b)

Q
O

Figure 8.16: Trace of DFS algorithm: vertex ‘g’ popped

8.1. GRAPH TRAVERSAL

Q CDfoD:c-D\
> Qe o

g S
® QO
N N N N

(
(
(
(
(
(
(

—

oo
TOow

QO
O

Figure 8.17: Trace of DFS algorithm: vertex ‘e’ popped

o Q@

—_— T~
D D

—h
~— N N N Y O ~—

«Q O
—h

D® O O

(
(
(

—

550
cop

Figure 8.18: Trace of DFS algorithm: vertex ‘b’ popped

123

124 CHAPTER 8. GRAPHS

Figure 8.19: Trace of DFS algorithm: vertex ‘d’ popped

BFS Tree

Figure 8.20: Trace of DFS algorithm: the final DFS tree

Each execution of line 3 or line 8 in theRRVERSE-DFS algorithm takes constant time. So the overall
running time isO(V + E). Since the graph is connectéd < E + 1, thisisO(E).

If we implement the bag by using queue we havebreadth-firstsearch (BFS). Each execution of line 3

8.1. GRAPH TRAVERSAL 125

or line 8 still takes constant time. So overall running timatill O(E).

TRAVERSE(S)

1 enqueugs,s)

2 while queue not empty

3 do dequeuép,v)

4 if (v isunmarked

5 then mark v

6 parentv) « p

7 for each edge(v,w)
8 do enqueuév, w)

If the graph is represented using atijacency matrixthe finding of all the neighbors of vertex in line 7
takesO(V) time. Thus depth-first and breadth-first taR€V?) time overall.

Either DFS or BFS yields a spanning tree of the graph. The is#s every vertex in the graph. This fact
is established by the following lemma:

Lemma:

The generic RAVERSE(S) marks every vertex in any connected graph exactly oncelanddt of edges
(v, parent(v)) with parent(v) # @ form a spanning tree of the graph.

Proof:

First, it should be obvious that no vertex is marked more thrage. Clearly, the algorithm marks Let
v #sbeavertexandlet — --- — u — v be a path frons to v with the minimum number of edges.

Since the graph is connected, such a path always exist® #itforithm markst, then it must putu, v)
into the bag, so it must taket, v) out of the bag at which point must be marked. Thus, by induction on
the shortest-path distance framthe algorithm marks every vertex in the graph.

Call an edgdv, parent(v)) with parent(v) # @, aparent edgeFor any node, the path of parent
edgesy — parent(v) — parent(parent(v)) — ... eventually leads back ta So the set of parent
edges form a connected graph.

Clearly, both end points of every parent edge are marked,jeendumber of edges is exactly one less
than the number of vertices. Thus, the parent edges fapaaning tree

8.1.4 DFS - Timestamp Structure

As we traverse the graph in DFS order, we will associate twobars with each vertex. When we first
discover a vertext, store a counter id[u]. When we are finished processing a vertex, we store a count
in flu]. These two numbers atine stamps

Consider theecursiveversion of depth-first traversal

126

CHAPTER 8. GRAPHS

D

1 for (eachu € V)

2 docolor[u] « white

3 predfu] « nil

4 time«+ 0

5 for eachueV

6 doif (color[u] = white)
7 then DFSVISIT(u)

The DFS/iSIT routine is as follows:

DFSVISIT(u)
color[u] «+ gray; // marku visited
dlu] «++time
for (each v € Adj[ul])
do if (color[v] = white)

thenpred[v] <« u

DFSvISIT(V)

color[u] « black; // we are done witht
flu] «++time;

[EEN

O~NO O~ WN

Figures 8.21 through 8.25 present a trace of the executitredfme stamping algorithm. Terms like
“2/5” indicate the value of the counter (time). The numbefiobethe “/” is the time when a vertex was
discovered (colored gray) and the number after the “/” istittne when the processing of the vertex

finished (colored black).

Figure 8.21: DFS with time stamps: recursive calls initiae vertex ‘a’

8.1. GRAPH TRAVERSAL 127

return c
return b
—

Figure 8.22: DFS with time stamps: processing of ‘b’ and @mpleted

DFS(f)
DFS(9g)

Figure 8.23: DFS with time stamps: recursive processing aid ‘g’

128 CHAPTER 8. GRAPHS

return g
return f

return a
—

DFS(d)
DFS(e)
return e

return f
—

Figure 8.25: DFS with time stamps: processing of ‘d’ and ‘e’

Notice that the DFS tree structure (actually a collectiotr@és, or a forest) on the structure of the graph
is just the recursion tree, where the edgev) arises when processing vertex u we call DRSIV(v) for
some neighbov. Fordirected graphghe edges that are not part of the tree (indicated as daslged ed
Figures 8.21 through 8.25) edges of the graph can be clakagi®llows:

Back edge: (u,v) wherev is an ancestor ofl in the tree.

8.1. GRAPH TRAVERSAL 129

Forward edge: (u,v) wherev is a proper descendent ufin the tree.

Cross edge: (u, v) whereu andv are not ancestor or descendent of one another. In fact, teerady
go between different trees of the forest.

The ancestor and descendent relation can be nicely infeyréteparenthesidemma.u is a descendent
of vif and only if [d[u], f[u]] C [d[v], f[v]]. uis a ancestor of if and only if [d[u], flu]] D [d[V], f[V]]. u

is unrelated tov if and only if [d[u], f[u]] and[d[v], f[v]] are disjoint. The is shown in Figure 8.26. The
width of the rectangle associated with a vertex is equaledithe the vertex was discovered till the time
the vertex was completely processed (colored black). Ineagn opening parenthesis ‘(" at the start of
the rectangle and and closing parenthesis ‘)’ at the endeofdbtangle. The rectangle (parentheses) for
vertex ‘b’ is completely enclosed by the rectangle for ‘a’ cRagle for ‘c’ is completely enclosed by

vertex ‘b’ rectangle.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 8.26: Parenthesis lemma

Figure 8.27 shows the classification of the non-tree edgssdoan the parenthesis lemma. Edges are
labelled ‘F’, ‘B’ and ‘C’ for forward, back and cross edge respeely.

musharaf
Highlight

musharaf
Highlight

130 CHAPTER 8. GRAPHS

Figure 8.27: Classfication of non-tree edges in the DFS tnea fpaph

Forundirectedgraphs, there is no distinction between forward and back&dgy convention they are
all called back edges. Furthermore, there are no cross ¢cgeyou see why not?)

8.1.5 DFS - Cycles

The time stamps given by DFS allow us to determine a numbdriog$ about a graph or digraph. For
example, we can determine whether the graph containsyaigs We do this with the help of the
following two lemmas.

Lemma: Given a digraplG = (V, E), consider any DFS forest & and consider any edde., v) € E.
If this edge is a tree, forward or cross edge, tfiend > f[v]. If this edge is a back edge, then
flu] < fvl.

Proof: For the non-tree forward and back edges the proof follonesctly from the parenthesis lemma.
For example, for a forward edde, v), v is a descendent af and sov’s start-finish interval is
contained withinu's implying thatv has an earlier finish time. For a cross edgev) we know
that the two time intervals are disjoint. When we were praogss, v was not white (otherwise
(u,v) would be a tree edge), implying thatvas started before. Because the intervals are
disjoint,v must have also finished befoune

8.2. PRECEDENCE CONSTRAINT GRAPH 131

Lemma: Consider a digrapls = (V, E) and any DFS forest fo6. G has a cycle if and only if the DFS
forest has dackedge.

Proof: If there is a back edggt, v) thenv is an ancestor oft and by following tree edge fromto u,
we get a cycle.

We show the contrapositive: suppose there are no back efgdise lemma above, each of the
remaining types of edges, tree, forward, and cross all Hesproperty that they go from vertices
with higher finishing time to vertices with lower finishingrte. Thus along any path, finish times
decrease monotonically, implying there can be no cycle.

The DFS forest in Figure 8.27 has a back edge from vertex ‘géttex ‘a’. The cycle is ‘a-g-f'.

Beware: No back edges means no cycles. But you should not infer tbed i some simple relationship
between the number of back edges and the number of cyclesx&omle, a DFS tree may only have a
single back edge, and there may anywhere from one up to amerpal number of simple cycles in the
graph.

A similar theorem applies to undirected graphs, and is nat taprove.

8.2 Precedence Constraint Graph

A directed acyclic grapi{DAG) arise in many applications where there are precedenoedering
constraints. There are a series of tasks to be performedeatadrctasks must precede other tasks. For
example, in construction, you have to build the first floordoefthe second floor but you can do electrical
work while doors and windows are being installed. In generptecedence constraint grapha DAG in
which vertices are tasks and the edgev) means that task must be completed before taskegins.

For example, consider the sequence followed when one wandtes$s up in a suit. One possible order
and its DAG are shown in Figure 8.28. Figure 8.29 shows the WiiStime stamps of the DAG.

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

132 CHAPTER 8. GRAPHS

underwear

Figure 8.28: Order of dressing up in a suit

Figure 8.29: DFS of dressing up DAG with time stamps

Another example of precedence constraint graph is the pte@quisites for CS courses in a typical
undergraduate program.

8.3. TOPOLOGICAL SORT

C1 | Introduction to Computers

C2 | Introduction to Computer Programming

C3 | Discrete Mathematics

C4 | Data Structures C2

C5 | Digital Logic Design C2

C6 | Automata Theory C3

C7 | Analysis of Algorithms C3,C4

C8 | Computer Organization and Assembly C2

C9 | Data Base Systems C4,C7

C10| Computer Architecture C4, C5,C8

C11 | Computer Graphics C4,C7

C12 | Software Engineering c7,C11

C13| Operating System C4,C7,C11

C14 | Compiler Construction C4,C6,C8

C15 | Computer Networks C4,C7,C10
Table 8.1: Prerequisites for CS courses

133

The prerequisites can be represented with a precedenceainnhgraph which is shown in Figure 8.30

Figure 8.30: Precedence constraint graph for CS courses

8.3 Topological Sort

A topological sort of a DAG is a linear ordering of the versagf the DAG such that for each edfe, v),
u appears before in the ordering.

Computing a topological ordering is actually quite easyegia DFS of the DAG. For every ed@e, v)
in a DAG, the finish time of. is greater than the finish time of(by the lemma). Thus, it suffices to
output the vertices in the reverse order of finish times.

134 CHAPTER 8. GRAPHS

We run DFS on the DAG and when each vertex is finished, we addliet front of a linked. Note that in
general, there may be many legal topological orders for agivAG.

TOPOLOGICALSORT(G)

for (eachu € V)

do color[u] « white

L « new LinkedList()

for eachu eV

do if (color[u] = white)
then TopPVISIT(u)

return L

~NOo ok WN PP

TOPVISIT(u)
color[u] « gray; // marku visited
for (each v € Adj[ul)
do if (color[v] = white)
then TOPVISIT(V)
Append u to the front of L

b~ wWNPEF

Figure 8.31 shows the linear order obtained by the topotdgiort of the sequence of putting on a suit.
The DAG is still the same; it is only that the order in which tregtices of the graph have been laid out is
special. As a result, all directed edges go from left to right

underwear

Figure 8.31: Topological sort of the dressing up sequence

This is a typical example of how DFS used in applications. mning time iSO(V + E).

8.4. STRONG COMPONENTS 135

8.4 Strong Components

We consider an important connectivity problem with digyp¥When diagraphs are used in
communication and transportation networks, people wakihtov that their networks areomplete
Complete in the sense that that it is possible from any logatidhe network to reach any other location
in the digraph.

A digraph isstrongly connected for every pair of verticest,v € V, u can reacltv and vice versa. We
would like to write an algorithm that determines whethergraph is strongly connected. In fact, we will
solve a generalization of this problem, of computingstrengly connected componeiatsa digraph.

We partition the vertices of the digraph into subsets suahttte induced subgraph of each subset is
strongly connected. We say that two verticeandv aremutually reachabléf u can reachy and vice
versa. Consider the directed graph in Figure 8.32. The stwongponents are illustrated in Figure 8.33.

Figure 8.32: A directed graph

musharaf
Highlight

136 CHAPTER 8. GRAPHS

Digraph and Strong Components

Figure 8.33: Digraph with strong components

It is easy to see that mutual reachability isesquivalence relationThis equivalence relation partitions
the vertices into equivalence classes of mutually reaehadattices and these are the strong components

If we merge the vertices in each strong component into aesswgder vertexand join two super vertices
(A, B) if and only if there are vertices € A andv € B such thafu,v) € E, then the resulting digraph is
called thecomponent digraphThe component digraph is necessarily acyclic. The istihied in Figure

8.34.

Component DAG

Figure 8.34: Component DAG of super vertices

8.4. STRONG COMPONENTS 137

8.4.1 Strong Components and DFS
Consider DFS of a digraph given in FiguP& Once you enter a strong component, every vertex in the

component is reachable. So the DFS does not terminate linkieavertices in the component have been
visited. Thus all vertices in a strong component must apipetiie same tree of the DFS forest.

Depth-first search of digraph

Figure 8.35: DFS of a digraph

fig:dfsofdigraph

Observe that each strong component is a subtree in the DES fts it always true for any DFS? The
answer is “no”. In general, many strong components may appehe same DFS tree as illustrated in
Figure 8.36

Figure 8.36: Another DFS tree of the digraph

138 CHAPTER 8. GRAPHS

Is there a way to order the DFS such that it true? Fortundtedyanswer is “yes”. Suppose that you knew
the component DAG in advance. (This is ridiculous, becawsewould need to know the strong
components and this is the problem we are trying to solverthEy suppose that you computed a
reversed topological ordesn the component DAG. That is, for edge, v) in the component DAG, then

v comes beforet. This is presented in Figure 8.37. Recall that the compon&@ Bonsists of super
vertices.

Topological order of component DAG

Reversed topological order

Figure 8.37: Reversed topological sort of component DAG

Now, run DFS, but every time you need a new vertex to startéhect from, select the next available
vertex according to this reverse topological order of th@gonent digraph. Here is an informal
justification. Clearly once the DFS starts within a givenistygomponent, it must visit every vertex
within the component (and possibly some others) beforehiimgs If we do not start in reverse
topological, then the search may “leak out” into other sroomponents, and put them in the same DFS
tree. For example, in the Figure 8.36, when the search iedtat vertex ‘a’, not only does it visit its
component with ‘b’ and ‘c’, but it also visits the other cormemts as well. However, by visiting
components in reverse topological order of the componegt #ach search cannot “leak out” into other
components, because other components would have alreaglypban visited earlier in the search.

This leaves us with the intuition that if we could somehoweasrthe DFS, so that it hits the strong
components according to a reverse topological order, treewould have an easy algorithm for
computing strong components. However, we do not know wheattimponent DAG looks like. (After
all, we are trying to solve the strong component problem @fitst place). The trick behind the strong
component algorithm is that we can find an ordering of theaestthat has essentially the necessary
property, without actually computing the component DAG.

We will discuss the algorithm without proof. Defiii®' to be the digraph with the same vertex seGat
but in which all edges have been reversed in direction. Bséhown in Figure 8.38. Given an adjacency
list for G, it is possible to comput&T in @(V + E) time.

musharaf
Highlight

musharaf
Highlight

8.4. STRONG COMPONENTS 139

Digraph G’

Figure 8.38: The digrap

Observe that the strongly connected components are notedfey reversal of all edges.wfandv are
mutually reachable i, then this is certainly true iG'. All that changes is that the component DAG is
completely reversed. The ordering trick is to order theigestof G according to their finish times in a
DFS. Then visit the nodes @' in decreasing order of finish times. All the steps of the atbor are
quite easy to implement, and all operat&ifiv + E) time. Here is the algorithm:

STRONGCOMPONENTYG)

Run DFSG) computing finish times$[u]
ComputeG '

Sort vertices ofs " in decreasing[u]
Run DFSGT) using this order

Each DFS tree is a strong component

a b~ Wbk

The execution of the algorithm is illustrated in Figures®8.8.40 and 8.41.

140 CHAPTER 8. GRAPHS

i Note that maximum finish,
i times of components are in
¢ valid topological order
/18,17,12

vertices ordered by decreasing flu]

COCDCEOCEDCTEDCOTC OO

Figure 8.39: DFS of digraph with vertices in descending phyefinish times

OO CEOCECECEOCOEC

Run DFS on G Tin this vertex order

Figure 8.40: DigraplG " and the vertex order for DFS

8.4. STRONG COMPONENTS 141

-

-
-

- -

-

\
\
!
i

'S

L e m——————---—

Final DFS with Components

Figure 8.41: Final DFS with strong componentsf

The complete proof for why this algorithm works is in CLR. Welwdilscuss the intuition behind why the
algorithm visits vertices in decreasing order of finish na@d why the graph is revered. Recall that the
main intent is to visit the strong components in a reverseltapcal order. The problem is how to order
the vertices so that this is true. Recall from the topologscating algorithm, that in a DAG, finish times
occur in reverse topological order (i.e., the first vertethia topological order is the one with the highest
finish time). So, if we wanted to visit the components in reegopological order, this suggests that we
should visit the vertices in increasing order of finish tirsi&rting with the lowest finishing time.

This is a good starting idea, but it turns out that it doesmwthky The reason is that there are many vertice:
in each strong component, and they all have different finmk4. For example, in Figure 8.36, observe
that in the first DFS, the lowest finish time (of 4) is achievgd/brtex ‘c’, and its strong component is
first, not last, in topological order.

However, there is something to notice about the finish tirffage consider theanaximum finish timan
each component, then these are related to the topologibat of the component graph. In fact it is
possible to prove the following (but we won't).

Lemma: Consider a digraph G on which DFS has been run. Label each cenpwith the maximum
finish time of all the vertices in the component, and sortehieglecreasing order. Then this order
is a topological order for the component digraph.

For example, in Figure 8.36, the maximum finish times for eaarhponent are 18 (fofa, b, ¢}), 17 (for
{d,e}), and 12 (for{f,g,h,i}). The order (18, 17, 12) is a valid topological order for tbenponent
digraph. The problem is that this is not what we wanted. Weteaa reverse topological order for the
component digraph. So, the final trick is to reverse the gigra his does not change the component
graph, but it reverses the topological order, as desired.

142 CHAPTER 8. GRAPHS

8.5 Minimum Spanning Trees

A common problem is communications networks and circuitgiess that of connecting together a set of
nodes by a network of total minimum length. The length is i &f lengths of connecting wires.
Consider, for example, laying cable in a city for cable t.v.

The computational problem is called thenimum spanning tre@MST) problem. Formally, we are given
a connected, undirected grah= (V, E) Each edgéu, v) has numeric weight of cost. We define the
cost of a spanning treeto be the sum of the costs of edges in the spanning tree

A minimum spanning tree is a tree of minimum weight.

Figures??, ??and?? show three spanning trees for the same graph. The first ismisyggtree but is not
a MST; the other two are.

Cost = 22 Cost = 22

Figure 8.42: A spanning tree Figure 8.43: A minimum Figure 8.44: Another mini-
that isnot MST spanning tree mum spanning tree

We will present twagreedyalgorithms (Kruskal's and Prim’'s) for computing MST. Redakt a greedy
algorithm is one that builds a solution by repeatedly seigdhe cheapest among all options at each
stage. Once the choice is made, it is never undone.

Before presenting the two algorithms, let us review factaafyee trees A free tree is a tree with no
vertex designated as the root vertex. A free tree witlertices has exacthg — 1 edges. There exists a
unique path between any two vertices of a free tree. Addiggedge to a free tree creates a unique cycle
Breaking any edge on this cycle restores the free tree. THigstrated in Figure 8.45. When the edges
(b, e) or (b, d) are added to the free tree, the result is a cycle.

musharaf
Highlight

8.5. MINIMUM SPANNING TREES 143

Free tree

Figure 8.45: Free tree facts

8.5.1 Computing MST: Generic Approach

Let G = (V, E) be an undirected, connected graph whose edges have nuneggittsv The intuition
behind greedy MST algorithm is simple: we maintain a subketigesE of the graph . Call this subset
A. Initially, A is empty. We will add edges one at a time urtiequals the MST.

A subsetA C E isviableif A is a subset of edges ebmeMST. An edge(u,v) € E — A is safeif
A U{(u,v)}is viable. In other words, the choic¢e, v) is a safe choice to add so thatcan still be
extended to form a MST.

Note that ifA is viable, it cannot contain a cycle. A generic greedy athonioperates by repeatedly
adding anysafeedge to the current spanning tree.

When is an edge safe? Consider the theoretical issues beharthateng whether an edge is safe or not.
Let S be a subset of verticésC V. A cut(S,V — S) is just a partition of vertices into two disjoint
subsets. An edget, v) crosseghe cut if one endpoint is il and the otheris itv — S.

Given a subset of edgés, a cut respectsA if no edge inA crosses the cut. Itis not hard to see why
respecting cuts are important to this problem. If we havemaed a partial MST and we wish to know
which edges can be added tldatnotinduce a cycle in the current MST, any edge that crosses a
respecting cut is a possible candidate.

144 CHAPTER 8. GRAPHS

8.5.2 Greedy MST

An edge oft is a light edgecrossing a cut if among all edges crossing the cut, it has themmam
weight. Intuition says that since all the edges that crogspacting cut do not induce a cycle, then the
lightest edge crossing a cut is a natural choice. The maoréie which drives both algorithms is the
following:

MST Lemma: LetG = (V, E) be a connected, undirected graph with real-valued weighte®edges.
Let A be a viable subset df (i.e., a subset of some MST). LES, V — S) be any cut that respects
A and let(u,v) be a light edge crossing the cut. Then the edge’) is safefor A. This is
illustrated in Figure 8.46.

Figure 8.46: Subset with a cut (wavy line) that respects

MST Proof: It would simplify the proof if we assume that all edge weighis distinct. Lefl be any
MST for G. If T contains(u, v) then we are done. This is shown in Figure 8.47 where the kghte
edge(u, v) with cost 4 has been chosen.

145

8.5. MINIMUM SPANNING TREES

\
]
]
]
]
]
]
]
X !

~

)V
—~
KE/\
oo
—-—~o

(j

4”
-

Figure 8.47: MSTT which contains light edgéu, v)

Suppose no MST contairts,, v). Such a tree is shown in Figure 8.48. We will derive a

contradiction.

Figure 8.48: MSTT which does notontains light edgéu, v)

Add (u,v) to T thus creating a cycle as illustrated in Figure 8.49.

CHAPTER 8. GRAPHS

146

Figure 8.49: Cycle created dueTot+ (u,v)

Sinceu andv are on opposite sides of the cut, and any cycle must crossitf@ceven number of

times, there must be at least one other gdge) in T that crosses the cut. The edgey) is not in
A because the cut resped@s By removing(x,y) we restore a spanning tree, callit This is

shown in Figure 8.50

P

IN
~

e

\
]
]
]
]
]
]
[}
[
[
)
]
]
]
]
]
]
\
)
\
\
\
\ N

C.
-
-
-

Figure 8.50: Tred’ =T — (x,y) + (u,v)

We havew(T’) = w(T) —w(x,y) + w(u, v). Since(u, v) is the lightest edge crossing the cut we
havew(u,v) < w(x,y). Thusw(T’) < w(T) which contradicts the assumption tAaivas an

MST.

8.5. MINIMUM SPANNING TREES 147

8.5.3 Kruskal's Algorithm

Kruskal’s algorithm works by adding edges in increasingeoif weight (lightest edge first). If the next
edge does not induce a cycle among the current set of edgest th added td\. If it does, we skip it
and consider the next in order. As the algorithm runs, thegduA induce aforeston the vertices. The
trees of this forest are eventually merged until a single toems containing all vertices.

The tricky part of the algorithm is how to detect whether tddiaon of an edge will create a cycle A.
Suppose the edge being considered has verticas. We want a fast test that tells us whetheandv
are in the same tree &. This can be done using thénion-Find data structure which supports the
following O(logn) operations:

Create-set(u): Create a set containing a single item
Find-set(u): Find the set that contains

Union(u,v): merge the set containingand set containing into a common set.

In Kruskal’s algorithm, the vertices will be stored in s€lfe vertices in each tree éf will be a set. The
edges inA can be stored as a simple list. Here is the algorithm: Fig8u®k througH?? demonstrate the
algorithm applied to a graph.

KRUSKAL(G = (V,E))
A—{}
for (eachu € V)
docreate_set(u)
sortE in increasing order by weight
for (each(u,v) in sorted edge list)
doif (find(u) # find(v))
then add(u,v) to A
union(u,v)
return A

oo ~NOUThWwWNPRE

148 CHAPTER 8. GRAPHS

O,

unsafe 8 .°

7
7

Figure 8.53: Kruskal algorithm: unsafe edges

8.5. MINIMUM SPANNING TREES 149

Figure 8.55: Kruskal algorithm: more unsafe edges and firal M

Analysis:

Since the graph is connected, we may assumetthaty — 1. Sorting edgesl{ne 4) takesO(E logE).
The for loop (ine 5) performsO(E) find andO(V) union operations. Total time founion — find is
O(Ex(V)) wherex(V) is the inverse Ackerman function.(V) < 4 for V less the number of atoms in
the entire universe. Thus the time is dominated by sortinger@l time for Kruskal is

O(ElogE) = ©(ElogV) if the graph is sparse.

8.5.4 Prim’s Algorithm

Kruskal’s algorithm worked by ordering the edges, and itnsgthem one by one into the spanning tree,
taking care never to introduce a cycle. Intuitively Kruskatorks by merging or splicing two trees
together, until all the vertices are in the same tree.

In contrast, Prim’s algorithm builds the MST by adding leaeae at a time to the current tree. We start
with a root vertexr; it can be any vertex. At any time, the subset of eddderms a single tree (in
Kruskal’s, it formed a forest). We look to add a single verdsxa leaf to the tree.

150 CHAPTER 8. GRAPHS

-1

4

\
1]
N,
)
(]
]
]
]
13
]

Figure 8.56: Prim’s algorithm: aut of the graph

Consider the set of verticéscurrently part of the tree and its complemé¥t— S) as shown in Figure
8.56. We haveut of the graph. Which edge should be added next? The greedggtrabuld be to add
the lightest edge which in the figure is edged 'Onceu is added, Some edges that crossed the cut ar
no longer crossing it and others that were not crossing thareuas shown in Figure 8.57

Figure 8.57: Prim’s algorithmut selected

We need an efficient way to update the cut and determine thedapge quickly. To do this, we will make
use of apriority queue The question is what do we store in the priority queue? It se®m logical that

edges that cross the cut should be stored since we choosedigés from these. Although possible, there
is more elegant solution which leads to a simpler algorithm.

8.5. MINIMUM SPANNING TREES 151

For each vertex. € (V — S) (not part of the current spanning tree), we associate &kgju]. The
key[u] is the weight of the lightest edge going franto any vertex irS. If there is no edge from to a
vertex inS, we set the key value teo. We also store ipred[u] the end vertex of this edge b We will
also need to know which vertices areSrand which are not. To do this, we will assign a color to each
vertex. If the color of a vertex is black then it is $notherwise not. Here is the algorithm:

PRIM((G,w,T1))

1 for (eachue V)

2 do key[u] « oo; pg.insert(u, key[u])

3 color[u] « white

4 keylr] « 0; pred[r] < nil; pg.decreas&ey (v, key [r]);
5 while (pg.notempty())

6 dou « pg.extractmin ()

7 for (eachu € adj[ul])

8 do if (color [v] == white Jand(w (u,v) < key[v])
9 then key [v] = w (u,v)
10 pg.decreaskey (v, key [v])
11 prediv] =u
12 color[u] = black

Figures 8.58 through 8.60 illustrate the algorithm appled graph. The contents of the priority queue
are shown as the algorithm progresses. The arrows inditaggrédecessor pointers and the numeric
labels in each vertex is its key value.

PQ: 4,8,7,7,7,? PQ: 8,8,10,7,?

Figure 8.58: Prim’s algorithm: edge with weight 4 selected

152 CHAPTER 8. GRAPHS

PQ:1,2,10,?

Figure 8.60: Prim’s algorithm: the final MST

Analysis:

It takesO(log V) to extract a vertex from the priority queue. For each incigglge, we spend potentially
O(log V) time decreasing the key of the neighboring vertex. Thusdte time is
O(logV + dedu)log V). The other steps of update are constant time.

So the overall running time is

T(V,E) = > (logV +degu)logV)

uev

= logV) (1+degu))

ueVv

= (logV)(V+2E)=0O((V+E)logV)

musharaf
Highlight

musharaf
Highlight

8.6. SHORTEST PATHS 153

SinceG is connectedY is asymptotically no greater thdnso this is®(Elog V), same as Kruskal's
algorithm.

8.6 Shortest Paths

A motorist wishes to find the shortest possible route betviResshawar and Karachi. Given a road map o
Pakistan on which the distance between each pair of adjatters is marked Can the motorist determine
the shortest route?

In the shortest-paths probleM/e are given a weighted, directed graph= (V, E) The weight of path
P =< Vo, V1,...,Vk > is the sum of the constituent edges:

k

w(p) =) wlvig,vi)

i=1

We define theshortest-path weighftom u tov by

min{w(p) : u ~> v} if there is a path froms tov

5(u,v) = .
00 otherwise

Problems such as shortest route between cities can be sffi@ently by modelling the road map as a

graph. The nodes or vertices represent cities and edgessespiroads. Edge weights can be interpreted

as distances. Other metrics can also be used, e.g., timtepeasities and loss.

Similar scenarios occur in computer networks like the im&where data packets have to be routed. Th
vertices areouters Edges are communication links which may be be wire or wael&dge weights can
be distance, link speed, link capacity link delays, and lilkzation.

The breadth-first-search algorithm we discussed earlestsortest-path algorithm that works on
un-weighted graphs. An un-weighted graph can be considesadyraph in which every edge has weight
one unit.

There are a few variants of the shortest path problem. Wecawiér their definitions and then discuss
algorithms for some.

Single-source shortest-path problem:Find shortest paths from a given (singéurcevertexs € V to
every other vertex € V in the graphG.

Single-destination shortest-paths problem:Find a shortest path to a given destination vettéom
each vertex. We can reduce the this problem to a single-source probleraugysing the direction
of each edge in the graph.

Single-pair shortest-path problem: Find a shortest path from to v for given verticear andv. If we
solve the single-source problem with source vettewe solve this problem also. No algorithms
for this problem are known to run asymptotically faster th@nbest single-source algorithms in
the worst case.

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

154 CHAPTER 8. GRAPHS

All-pairs shortest-paths problem: Find a shortest path from to v for every pairof verticesu andv.
Although this problem can be solved by running a single-se@atgorithm once from each vertex,
it can usually be solved faster.

8.6.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is a simplgreedyalgorithm for computing theingle-source shortest-pathso all
other vertices. Dijkstra’s algorithm works on a weightecedted graptc = (V, E) in which all edge
weights are non-negative, i.ev(u,v) > 0 for each edgéu,v) € E.

Negative edges weights maybe counter to intuition but tarsaccur in real life problems. However, we
will not allow negative cyclesecause then there is no shortest path. If there is a negatile between,
say,s andt, then we can always find a shorter path by going around the oya more time.

Figure 8.61: Negative weight cycle

The basic structure of Dijkstra’s algorithm is to maintamesstimateof the shortest path from the source
vertex to each vertex in the graph. Call this estim#te. Intuitively, d[v] will the length of the shortest
paththat the algorithm knows dirom s to v. This value will always be greater than or equal to the true
shortest path distance frogrto v. l.e.,d[v] > &(u,v). Initially, we know of no paths, sd[v] = oc.
Moreover,d[s] = 0 for the source vertex.

As the algorithm goes on and sees more and more verticeempils to updatéd[v] for each vertex in
the graph. The process of updating estimates is catiaikation Here is how relaxation works.

Intuitively, if you can see that your solution is not yet read an optimum value, then push it a little
closer to the optimum. In particular, if you discover a patini s to v shorter thani[v], then you need to
updated[v]. This notion is common to many optimization algorithms.

Consider an edge from a vertexto v whose weight isv(u, v). Suppose that we have already computec
current estimates odu] andd[v]. We know that there is a path frosrto u of weightd[u]. By taking

8.6. SHORTEST PATHS 155

this path and following it with the eddet, v) we get a path te of lengthd[u] + w(u,v). If this path is
better than the existing path of lengtfv] to v, we should take it. The relaxation process is illustrated in
the following figure. We should also remember that the ssbriay back to the source is througtby
updating the predecessor pointer.

0 dlv]=d[u]+w(u,v)=6

Figure 8.62: Vertex. relaxed Figure 8.63: Vertex relaxed

RELAX((u,V))

1 if (dlu] +w(u,v) < d])

2 then d[v] « d[u] +w(u,v)
3 predv] =u

Observe that whenever we sHb] to a finite value, there is always evidence of a path of thajtlen
Therefored[v] > 6(s,v). If d[v] = &(s, V), then further relaxations cannot change its value.

It is not hard to see that if we performeRAX (U,V) repeatedly over all edges of the graph, tthe]
values will eventually converge to the final true distande&droms. The cleverness of any shortest path
algorithm is to perform the updates in a judicious mannetheaonvergence is as fast as possible.

Dijkstra’s algorithm is based on the notion of performingeated relaxations. The algorithm operates b
maintaining a subset of verticeés C V, for which we claim weknowthe true distance][v] = 6(s, V).

Initially S = (), the empty set. We seéffu] = 0 and all others teo. One by one we select vertices from
V — S to add toS.

How do we select which vertex among the vertice¥of S to add next t&6? Here isgreedinesgomes
in. For each vertex. € (V — S), we have computed a distance estimdite].

The greedy thing to do is to take the vertex for whitlu] is minimum, i.e., take the unprocessed vertex
that is closest by our estimate ¢oLater, we justify why this is the proper choice. In order &fprm

musharaf
Highlight

156 CHAPTER 8. GRAPHS

this selection efficiently, we store the vertices\of- S in apriority queue

DIJKSTRA((G,w, s))
for (eachu € V)
dod[u] « o
pg.insertu, d[u])
d[s] « 0; pred[s] «+ nil; pqg.decreasé&ey (s, d[s]);
while (pg.notempty/())
dou « pg.extractmin ()
for (eachv € adjul)
doif (d[u] + w(u,v) < dv])
then d[v] = d[u] + w(u,v)
pg.decreaskey (v, d[v])
prediv] =u

RPOWOWoOO~NOUILRWNLE

I

Note the similarity with Prim’s algorithm, although a diféat key is used here. Therefore the running
time is the same, i.eQ(E log V).

Figures 8.64 througRA? demonstrate the algorithm applied to a directed graph vathegative weight
edges.

select 0

Figure 8.64: Dijkstra’s algorithm: select 0

musharaf
Highlight

musharaf
Highlight

8.6. SHORTEST PATHS 157

select 2

Figure 8.67: Dijkstra’s algorithm: select 6

158 CHAPTER 8. GRAPHS

Figure 8.68: Dijkstra’s algorithm: select 7

fig:dijlast

8.6.2 Correctness of Dijkstra’s Algorithm

We will prove the correctness of Dijkstr’s algorithm by Irddion. We will use the definition thai(s, v)
denotes the minimal distance frasmo v.

For the base case

1. S ={s}

2. d(s) =0, whichisb(s,s)

Assume thatl(v) = (s, v) for everyv € S and all neighbors of have been relaxed. (u) < d(u’)
for everyu’ € Vthend(u) = §(s,u), and we can transfar from V to S, after whichd(v) = (s, v) for
everyv € S.

We do this as a proof by contradiction. Suppose ttat) > 5(s,u). The shortest path fromto v,
p(s,u), must pass through one or more vertices exteridr. toet x be the last vertex insidg andy be
the first vertex outsid§ on this path tat. Thenp(s,u) = p(s,x) U{(x,y)} Up(y,u).

8.6. SHORTEST PATHS 159

Figure 8.69: Correctness of Dijkstra’s algorithm

The length ofp(s,u) is d(s,u) = d(s,y) + d(y, u). Becausey was relaxed wher was put intcS,
d(y) = 6(s,y) by the convergence property. Thdigy) < 6(s,u) < d(u). But, becausd(u) is the
smallest among vertices noté d(u) < d(y) . The only possibility isd(u) = d(y), which requires
d(u) = &(s,u) contradicting the assumption.

By the upper bound propertgt(u) > 6(s,u). Sinced(u) > 6(s,u) is false,d(u) = &(s,u), which is
what we wanted to prove. Thus, if we follow the algorithm’sgedure, transferring fro to S, the
vertex inV with the smallest value af(u) then all vertices irb haved(v) = 6(s,v)

8.6.3 Bellman-Ford Algorithm

Dijkstra’s single-source shortest path algorithm workalliiedges weights are non-negative and there ar
no negative cost cycles. Bellman-Falibws negative weights edges and no negative cost cycles. The
algorithm is slower than Dijkstra’s, running é(VE) time.

Like Dijkstra’s algorithm, Bellman-Ford is based on perfangirepeated relaxations. Bellman-Ford
applies relaxation tevery edgef the graph and repeats this— 1 times. Here is the algorithm; its is

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

musharaf
Highlight

160 CHAPTER 8. GRAPHS

illustrated in Figure 8.70.

BELLMAN-FORD(G,w, s)

for (eachu e V)

dod[u] « oo
pred[u] = nil

d[s] « 0;
fori=1toV-—-1
do for (each(u,v)inE)

1
2
3
4
5
6
7
8 do RELAX(u,V)

Figure 8.70: The Bellman-Ford algorithm

8.6.4 Correctness of Bellman-Ford

Think of Bellman-Ford as a sort of bubble-sort analog for s#sirpath. The shortest path information is
propagated sequentially along each shortest path in tipdg@onsider any shortest path frano some
other vertexu: (vo, vy, ..., Vvk) Wherevy = s andvy = u.

Since a shortest path will never visit the same vertex twieeknow thatk <V — 1. Hence the path
consists of at most — 1 edges. Since this a shortest path, i(is, v;), the true shortest path cost fram

8.6. SHORTEST PATHS 161

to v; that satisfies the equation:

8(s,vi) = 0(s,viu1) + W(vi_1,vi)

Claim: We assert that after th& pass of the for-i” loop, d[vi] = (s, v;).

Proof: The proof is by induction o. Observe that after the initialization (pass)] = d[s] = 0.

In general, prior to thé" pass through the loop, the induction hypothesis tells us tha
dlvi_1] = 8(s,vi_1). After thei" pass, we have done relaxation on the edge;, v;) (since we do
relaxation along all edges). Thus after iHepass we have

divil < dviai]l +w(vieg,vi)
=08(s,vi1) + w(vi_1, i)
= 8(s, i)

Recall from Dijkstra’s algorithm thad[v;] is never less thaf(s, v;). Thus,d[vi] is in fact equal to
d(s,vi). This completes the induction proof.

In summary, aftet passes through thfer loop, all vertices that areedges away along the shortest path
tree from the source have the correct values storethih Thus, after théV — 1)Stiteration of the for
loop, all verticeat have correct distance values storedlin].

8.6.5 Floyd-Warshall Algorithm

We consider the generalization of the shortest path prablewompute the shortest paths between all
pairs of vertices. This is called the all-pairs shorteshpgtroblem.

Let G = (V, E) be a directed graph with edge weights(uf, v) € E is an edge themw(u,v) denotes its
weight. 5(u, v) is the distance of the minimum cost path betweesmdv. We will allow G to have
negative edges weights but will not alld#to have negative cost cycles. We will present@(m?)
algorithm for the all pairs shortest path. The algorithmaBex the Floyd-Warshall algorithmand is
based ordynamic programming

We will use an adjacency matrix to represent the digraph. Bsethe algorithm is matrix based, we will
employ the common matrix notation, usifyg andk to denote vertices rather thanv andw.

The input is am x n matrix of edge weights:

0 ifi=j
wy =< wi(i,j) ifi#£jand(ij)€E
0 ifi£jand(i,j) € E

The output will be am x n distance matriXD = d;;, wheredy; = (1, j), the shortest path cost from
vertexitoj.

musharaf
Highlight

musharaf
Highlight

162 CHAPTER 8. GRAPHS

The algorithm dates back to the early 60’s. As with other dyiecgorogramming algorithms, the genius
of the algorithm is in the clever recursive formulation o tshortest path problem. For a path
p = (v1,Vv2,..., v, We say that the vertices, vs, ..., v, are theintermediate verticesf this path.

Formulation: Definedg‘) to be the shortest path froirto j such that any intermediate vertices on the
path are chosen from the 4é{2, ..., k}. The path is free to visit any subset of these vertices andyn a
order. How do we computeg‘) assuming we already have the previous maifix ''? There are two
basic cases:

1. Don't go through vertek at all.

2. Do go through vertek.

Figure 8.71: Two cases for all-pairs shortest path

Don’t go through k at all

Then the shortest path froiro j uses only intermediate verticék 2, ...,k — 1}. Hence the length of
the shortest iﬂﬂ"”

Do go throughk

First observe that a shortest path does not go through the gartex twice, so we can assume that we
pass through exactly once. That is, we go froirto k and then fronk to j. In order for the overall path
to be as short as possible, we should take the shortest path fo k and the shortest path frokto j.
Since each of these paths uses intermediate vefti¢2s. . ., k — 1}, the length of the path is
a4 gl

ik Koo

The following illustrate the process in which the valuedgf2 is updated a& goes from O to 4.

musharaf
Highlight

musharaf
Highlight

8.6. SHORTEST PATHS 163

Figure 8.72k = 0, dy) = oo (no path) Figure 8.73k =1, dj, =12 (3 =1 - 2)

Figure 8.74k =2, d) =12 (3 =1 2) Figure 8.75k =3, d5) =12 (3 =1 - 2)

164 CHAPTER 8. GRAPHS

Figure 8.76k =4, d5y =7 (3 =1 -4 — 2)

This suggests the following recursive (DP) formulation:

0
di(,j) = Wij
(k) . (k=1) ;(k=1) (k—1)
dy’ = mln(di)- vy dyg)

The final answer igl|}"’ because this allows all possible vertices as intermedtices.

As is the case with DP algorithms, we will avoid recursiveleation by generating a table fdt{f). The
algorithm also includes mid-vertex pointers storeaniid|i, j| for extracting the final path.

FLOYD-WARSHALL(n,w[l..n,1..n])

1 for(i=1,n)

2 dofor (j=1,n)

3 dod[i,j] « w[i,jl; mid[i,j] « null
4 for (k=1,n)

5 dofor (i=1,n)

6 dofor (j =1,n)

7 doif (d[i, k| + dlk,j] < dli,jl)

8 then d[i,j] = d[i, k] + d[k, j]
9 mid[i,j] =k

Clearly, the running time i®(n3). The space used by the algorithm@én?).

Figure 8.77 through 8.81 demonstrate the algorithm whehexpip a graph. The matrix to left of the
graph contains the matrix entries. A circle around an enttdy , indicates that it was updated in the
currentk iteration.

8.6. SHORTEST PATHS 165

Figure 8.77: Floyd-Warshall Algorithm examplét0)

Figure 8.78: Floyd-Warshall Algorithm examplét1)

166 CHAPTER 8. GRAPHS

Figure 8.79: Floyd-Warshall Algorithm examplé2)

Figure 8.80: Floyd-Warshall Algorithm examplét3)

8.6. SHORTEST PATHS 167

Figure 8.81: Floyd-Warshall Algorithm examplé‘4)

Extracting Shortest Path:

The matrixd holds the final shortest distance between pairs of vertioesder to compute the shortest
path, the mid-vertex pointeraid|i,j] can be used to extract the final path. Whenever we discoveagd tt
the shortest path frormto j passed through vertéx we setmidli, j] = k. If the shortest path did not
pass through thenmid[i, j] = null.

To find the shortest path frointo j, we consultmidl[i, j]. If it is null, then the shortest path is just the
edge(i,j). Otherwise we recursively compute the shortest path frtanmid[i, j] and the shortest path
from mid[i,j] toj.

PATH(1,))

1 if (mid[i,j] == null)

2 then output(i,j)

3 else PATH (i, mid[i,j])
4 PATH (mid[i, j],j)

168 CHAPTER 8. GRAPHS

Chapter 9

Complexity Theory

So far in the course, we have been building up a “bag of triéks%olving algorithmic problems.
Hopefully you have a better idea of how to go about solvindiquoblems. What sort of design
paradigm should be used: divide-and-conquer, greedy,ndigrnarogramming.

What sort of data structures might be relevant: trees, hgapghs. What is the running time of the
algorithm. All of this is fine if it helps you discover an actabply efficient algorithm to solve your
problem.

The question that often arises in practice is that you haee &very trick in the book and nothing seems
to work. Although your algorithm can solve small problemasenably efficiently (e.gn < 20), for the
really large problems you want to solve, your algorithm megeminates. When you analyze its running
time, you realize that it is running in exponential time, lggysnv™, or 2™, or 22", orn! or worsel.

By the end of 60’s, there was great success in finding effic@ntiens to many combinatorial problems.
But there was also a growing list of problems for which theensed to be no known efficient
algorithmic solutions.

People began to wonder whether there was some unknown gar#aat would lead to a solution to
there problems. Or perhaps some proof that these problaemistaarently hard to solve and no
algorithmic solutions exist that run under exponentiaktim

Near the end of the 1960’s, a remarkable discovery was maday Mf these hard problems were
interrelated in the sense that if you could solve any oneertin polynomial time, then you could solve
all of them in polynomial time. this discovery gave rise te tiotion of NP-completeness.

This area is a radical departure from what we have been de@oguse the emphasis will change. The
goal is no longer to prove that a problecanbe solved efficiently by presenting an algorithm for it.
Instead we will be trying to show that a problecannotbe solved efficiently.

Up until now all algorithms we have seen had the propertyttieit worst-case running time are bounded
above by somepolynomialin n. A polynomial time algorithnis any algorithm that runs i®(n*) time.
A problem is solvable in polynomial time if there is a polyniairtime algorithm for it.

Some functions that do not look like polynomials (suctOds logn) are bounded above by polynomials
(such a0 (n?)). Some functions that do look like polynomials are not. Faraple, suppose you have

169

170 CHAPTER 9. COMPLEXITY THEORY

an algorithm that takes as input a graph of sizand an integek and run inO(n*) time.

Is this a polynomial time algorithm? No, becaudsis an input to the problem so the user is allowed to
choosek = n, implying that the running time would b@(n™). O(n") is surely not a polynomial im.
The important aspect is that the exponent must be a constdgpéndent of.

9.1 Decision Problems

Most of the problems we have discussed involve optimizadioone form of another. Find the shortest
path, find the minimum cost spanning tree, maximize the kaapsalue. For rather technical reasons,
the NP-complete problems we will discuss will be phrasedeassion problems

A problem is called adecision problenif its output is a simple “yes” or “no” (or you may this of thisa
true/false, 0/1, accept/reject.) We will phrase may optation problems as decision problems. For
example, the MST decision problem would be: Given a weighgteaphG and an integek, doesG have
a spanning tree whose weight is at mb3t

This may seem like a less interesting formulation of the fgnob It does not ask for the weight of the
minimum spanning tree, and it does not even ask for the edghs gpanning tree that achieves this
weight. However, our job will be to show that certain probtecannot be solved efficiently. If we show
that the simple decision problem cannot be solved ejcicthiyr the more general optimization problem
certainly cannot be solved efficiently either.

9.2 Complexity Classes

Before giving all the technical definitions, let us say a bibatbwhat the general classes look like at an
intuitive level.

Class P: This is the set of all decision problems that candmdvedin polynomial time. We will
generally refer to these problems as being “easy” or “effityesolvable”.

Class NP: This is the set of all decision problems that canJsifiedin polynomial time. This class
contains P as a subset. It also contains a number of problehare believed to be very “ hard” to
solve.

Class NP: The term “NP” does not mean “not polynomial”. Originallyetterm meant *
non-deterministic polynomial” but it is a bit more intuiévto explain the concept from the
perspective of verification.

Class NP-hard: In spite of its name, to say that a problem is NP-hard does eainthat it is hard to
solve. Rather, it means that if we could solve this problemoiympomial time, then we could solve
all NP problems in polynomial time. Note that for a problem to hdtd, it does not have to be in
the class NP.

9.3. POLYNOMIAL TIME VERIFICATION 171

Class NP-complete:A problem is NP-complete if (1) it is in NP and (2) it is NP-hard

The Figure 9.1 illustrates one way that the sets P, NP, NB:laad NP-complete (NPC) might look. We
say might because we do not know whether all of these completasses are distinct or whether they
are all solvable in polynomial time. The Graph Isomorphigrhich asks whether two graphs are
identical up to a renaming of their vertices. It is known tti$ problem is in NP, but it is not known to
be in P. The other is QBF, which stands for Quantified BooleamE@s. In this problem you are given a
boolean formula and you want to know whether the formulaus tr false.

Quantified Boolean
Formulas

No Hamiltonian cycle

0/1 knapsack
Hamiltonian cycle

Satisfiability

Graph Isomorphism

MST
Strong connectivity

Figure 9.1: Complexity Classes

9.3 Polynomial Time Verification

Before talking about the class of NP-complete problems,imhortant to introduce the notion of a
verification algorithm Many problems are hard to solve but they have the propeatyitteasy to verify
the solution if one is provided. Consider the Hamiltonianleywroblem.

Given an undirected graph, doesG have a cycle that visits every vertex exactly once? Thereis n
known polynomial time algorithm for this problem.

172 CHAPTER 9. COMPLEXITY THEORY

Non-Hamiltonian Hamiltonian

Figure 9.2: Hamiltonian Cycle

However, suppose that a graph did have a Hamiltonian cyioleoudld be easy for someone to convince
of this. They would simply say: “the cycle {$3,v7,v1,...,v13) We could then inspect the graph and
check that this is indeed a legal cycle and that it visits fhe vertices of the graph exactly once. Thus,
even though we know of no efficient way sblvethe Hamiltonian cycle problem, there is a very efficient
way to verify that a a given cycle is indeed a Hamiltonian cycle.

The piece of information that allows verification is calleatartificate Note that not all problems have
the property that they are easy to verify. For example, canghe following two:

1. UHC ={(G)|G has a unique Hamiltonian cygle
2. HC = {(G)|G has no Hamiltonian cyclje

Suppose that a graghis in UHC. What information would someone give us that would allow us to
verify this? They could give us an example of the unique Hemmi&n cycle and we could verify that it is
a Hamiltonian cycle. But what sort of certificate could theyegils to convince us that this is thaly
one?

They could give another cycle that ot Hamiltonian. But this does not mean that there is not another
cycle somewhere that is Hamiltonian. They could try to listrg other cycle of lengtin, but this is not
efficient at all since there are! possible cycles in general. Thus it is hard to imagine thatesme could
give us some information that would allow us to efficientlyifyethat the graph is intlHC.

9.4 The Class NP

The class NP is a set of all problems that can be verified byynpatial time algorithm. Why is the set
called “NP” and not “VP"? The original term NP stood faon-deterministic polynomial timd his

9.5. REDUCTIONS 173

referred to a program running on a non-deterministic comptliat can make guesses. Such a computer
could non-deterministically guess the value of the cediéic and then verify it in polynomial time. We
have avoided introducing non-determinism here; it is cedén other courses such as automata or
complexity theory.

Observe thaP C NP. In other words, if we can solve a problem in polynomial tinve, can certainly
verify the solution in polynomial time. More formally, we amt need to see a certificate to solve the
problem; we can solve it in polynomial time anyway.

However, it is not known whethdt = NP. It seems unreasonable to think that this should be so. Being
able to verify that you have a correct solution does not helpiy finding the actual solution. The belief
is thatP # NP but no one has a proof for this.

9.5 Reductions

The class NP-complete (NPC) problems consists of a set adidagiroblems (a subset of class NP) that
no one knows how to solve efficiently. But if there were a polyinad solution for even a single
NP-complete problem, then ever problem in NPC will be sdivai polynomial time. For this, we need
the concept ofeductions

Consider the question: Suppose there are two probldnasidB. You know (or you strongly believe at
least) that it is impossible to solve problefnin polynomial time. You want to prove th&t cannot be
solved in polynomial time. We want to show that

(AZP)= (B¢gP)

How would you do this? Consider an example to illustrate rédaoc The following problem is
well-known to be NPC:

3-color: Given a graphG, can each of its vertices be labelled with one of 3 differeibis such that two
adjacent vertices have the same label (color).

Coloring arises in various partitioning problems whereghiera constraint that two objects cannot be
assigned to the same set of partitions. The term “colorimgfies from the original application which
was in map drawing. Two countries that share a common bolaerd be colored with different colors.

It is well known that planar graphs can be colored (maps) dtlr colors There exists a polynomial
time algorithm for this. But determining whether this can loae with 3 colors is hard and there is no
polynomial time algorithm for it. In Figure 9.3, the graph thre left can be colored with 3 colors while
the graph on the right cannot be colored.

musharaf
Highlight

174 CHAPTER 9. COMPLEXITY THEORY

3-Colorable Not 3-colorable

Figure 9.3: Examples of 3-colorable and non-3-colorabdgplhs

Examplel: Fish tank problem

Consider the following problem than can be solved with the@lgreoloring approach. A tropical fish
hobbyist has six different types of fish designated by A, B, CEPand F, respectively. Because of
predator-prey relationships, water conditions and siamesfish can be kept in the same tank. The
following table shows which fish cannot be together:

Type | Cannot be with
A B, C
B AC E
C A B D, E
D CF
E B,C, F
F D, E

These constraints can be displayed as a graph where an gdgehdwo vertices exists if the two
species cannot be together. This is shown in Figure 9.4.¥&mple, A cannot be with B and C; there is
an edge between A and B and between A and C.

Given these constraints, What is tlsenallesinumber of tanks needed to keep all the fish? The answer

can be found by coloring the vertices in the graph such th&voadjacent vertices have the same color.
This particular graph is 3-colorable and therefore, 3 fistksaare enough. This is depicted in Figure 9.5.
The 3 fish tanks will hold fish as follows:

Tank 1 Tank 3
A, D B, E

9.5. REDUCTIONS 175

Figure 9.4: Graph representing constraints be- Figure 9.5: Fish tank graph colored with 3 colors
tween fish species

The 3-color (3Col) problem will the play the role &f, which we strongly suspect to not be solvable in
polynomial time. For our proble, consider the following problem: Given a gragh= (V, E), we say
that a subset of verticeg’ C V forms a cliqueif for every pair of verticesar,v € V’, the edge

(u,v) € V' That is, the subgraph induced by is a complete graph.

Clique Cover: Given a graplG and an integek, can we findk subsets of vertice¥;, V,, ..., Vi, such
that(J; Vi =V, and that eacl; is a clique ofG.

The following figure shows a graph that has a clique coverz# 8i There are three subgraphs that are
complete.

Clique cover (size=3)

Figure 9.6: Graph with clique cover of size 3

176 CHAPTER 9. COMPLEXITY THEORY

The clique cover problem arises in applications of cluatgriWe put an edge between two nodes if they
are similar enough to be clustered in the same group. We wa&micw whether it is possible to cluster all
the vertices intck groups.

Suppose that you want to solve the CCov problem. But after a whilelitless effort, you still cannot
find a polynomial time algorithm for the CCov problem. How camywove that CCov is likely to not
have a polynomial time solution?

You know that 3Col is NP-complete and hence, experts bellete3ColZ P. You feel that there is some
connection between the CCov problem and the 3Col problem. Jbusyant to show that

(3Col ¢ P) = (CCov¢ P)

Both problems involve partitioning the vertices into groulpsthe clique cover problem, for two vertices
to be in the same group, they must be adjacent to each othie Brcoloring problem, for two vertices
to be in the same color group, they must not be adjacent. e s@mse, the problems are almost the
same but the adjacency requirements are exactly reversed.

We claim that we can reduce the 3-coloring problem into tiigiel cover problem as follows: Given a
graphG for which we want to determine its 3-colorability, outpuétpair(G, 3) whereG denotes the
complement ofs. Feed the paifG, 3) into a routine for clique cover.

For example, the grap@ in Figure 9.7 is 3-colorable and its complemé@t 3) is coverable by 3
cliques. The grapks in Figure 9.8 is not 3-colorable; it is also not coverable hgues.

3-Colorable Coverable by 3
cliques

Figure 9.7: 3-colorabl& and clique coverableG, 3)

musharaf
Highlight

musharaf
Highlight

9.6. POLYNOMIAL TIME REDUCTION 177

Not 3-colorable Not coverable

Figure 9.8:G is not 3-colorable an€iG, 3) is not clique coverable

9.6 Polynomial Time Reduction

Definition: We say that a decision probldmis polynomial-time reducible to decision probldm
(writtenL; <, L,) if there is polynomial time computable functiérsuch that for alk, x € L, if and
only if f(x) € Ls.

In the previous example we showed that
3Col <p CCov

In particular, we havé(G) = (G, 3). Itis easy to complement a graph@(n?) (i.e., polynomial time).
For example, flip the O’s and 1’s in the adjacency matrix.

The way this is used in NP-completeness is that we have sawdgnce thal; is not solvable in
polynomial time. Hence, the reduction is effectively e@l@nt to saying that “sinck; is not likely to be
solvable in polynomial time, theh, is also not likely to be solvable in polynomial time.

9.7 NP-Completeness

The set of NP-complete problems is all problems in the corifyielass NP for which it is known that if
any one is solvable in polynomial time, then they all are. @osely, if any one is not solvable in
polynomial time, then none are.

Definition: A decision probleni is NP-Hard if
L’ <p L forallL’ € NP.

178 CHAPTER 9. COMPLEXITY THEORY

Definition: L is NP-complete if

1. L e NP and
2. L' <p L for some known NP-complete probleim

Given this formal definition, the complexity classes are:

P: is the set of decision problems that are solvable in polyabtime.
NP: is the set of decision problems that can be verified in polyiabtime.

NP-Hard: L is NP-hard if for allL’ € NP,L’ <p L. Thus if we could solvé in polynomial time, we
could solve all NP problems in polynomial time.

NP-Complete L is NP-complete if

1. L € NP and
2. Lis NP-hard.

The importance of NP-complete problems should now be cleany NP-complete problem is solvable
in polynomial time, then every NP-complete problem is al@@able in polynomial time. Conversely, if
we can prove that any NP-complete problem cannot be solvpdlymomial time, the every
NP-complete problem cannot be solvable in polynomial time.

9.8 Boolean Satisfiability Problem: Cook’s Theorem

We need to have at least one NP-complete problem to starathelling. Stephen Cook showed that
such a problem existed. He proved that theolean satisfiability problens NP-complete. A boolean
formula is a logical formulation which consists of variablge. These variables appear in a logical
expression using logical operations

1. negation ok: x
2. boolean or{x V y)

3. boolean and{x A y)

For a problem to be in NP, it must have an efficient verificapamcedure. Thus virtually all NP

problems can be stated in the form, “does there eXistach tha®(X)”, whereX is some structure (e.qg.

a set, a path, a partition, an assignment, etc.)PAXd is some property thaX must satisfy (e.g. the set

of objects must fill the knapsack, or the path must visit evenyex, or you may use at mastcolors and
no two adjacent vertices can have the same color). In shatvatguch a problem is in NP, the certificate
consists of givingX, and the verification involves testing tHatX) holds.

musharaf
Highlight

9.8. BOOLEAN SATISFIABILITY PROBLEM: COOK’S THEOREM 179

In general, any seX can be described by choosing a set of objects, which in turbealescribed as
choosing the values of some boolean variables. SimildryptropertyP(X) that you need to satisfy, can
be described as a boolean formula. Stephen Cook was lookiniggfanost general possible property he
could, since this should represent the hardest problem itoNBlve. He reasoned that computers (whick
represent the most general type of computational devicewinhcould be described entirely in terms of
boolean circuits, and hence in terms of boolean formulaanyfproblem were hard to solve, it would be
one in whichX is an assignment of boolean values (true/false, 0/1)P4Xd could be any boolean
formula. This suggests the following problem, called lo®lean satisfiability problem

SAT: Given a boolean formula, is there some way to assign truthega(0/1, true/false) to the variables
of the formula, so that the formula evaluates to true?

A boolean formula is a logical formula which consists of ahlesx; , and the logical operations
meaning thaegationof x, boolean-or(x V y) andboolean-and x A y). Given a boolean formula, we
say that it is satisfiable if there is a way to assign truthesl{® or 1) to the variables such that the final
resultis 1. (As opposed to the case where no matter how yagnatssth values the result is always 0.)
For example

(x1 A2 VX)) A (2 AX3) V X7)

is satisfiable, by the assignment= 1, x, = 0 andx; = 0. On the other hand,
TV (x2AX3))A (1 V (2 AXG)) A (%2 V x3) A (%2 V X3)

is not satisfiable. Such a boolean formula can be represegtadogical circuit made up of OR, AND
and NOT gates. For example, Figure 9.9 shows the circuiti®bbolean formula

((x1 Axa) Vx2) A ((x3 A Xg) V X2) AX5

Figure 9.9: Logical circuit for a boolean formula

180 CHAPTER 9. COMPLEXITY THEORY

Cook’s Theorem: SAT is NP-complete

We will not prove the theorem; it is quite complicated. Intfatturns out that a even more restricted
version of the satisfiability problem is NP-complete.

A literal is a variablex or its negatiorx. A boolean formula is in3-Conjunctive Normal Forni3-CNF)
if it is the boolean-and of clauses where each clause is tbiean-or of exactly three literals. For
example,

(X1 Vx2VX3) A (G Vx3Vxg) A (x2 VX3V Xg)

is in 3-CNF form. 3SAT is the problem of determining whetheoarfula is 3-CNF is satisfiable. 3SAT
is NP-complete. We can use this fact to prove that other problare NP-complete. We will do this with
the independent set problem

Independent Set Problem: Given an undirected graph = (V, E) and an integek, doesG contain a
subsetd/’ of k vertices such that no two vertices¥i are adjacent to each other.

Independent set of size 4

Figure 9.10:

The independent set problem arises when there is some s®isation problem where there are mutual
restrictions pairs that cannot both be selected. For ex@ragtompany dinner where an employee and
his or her immediate supervisor cannot both be invited.

Claim: IS is NP-complete

The proof involves two parts. First, we need to show that ISP. The certificate consists kfvertices
of V. We simply verify that for each pair of verticesv € V’, there is no edge between them. Clearly,
this can be done in polynomial time, by an inspection of tha@hcy matrix.

Second, we need to establish that IS is NP-hard This can beldoshowing that some known
NP-compete (3SAT) is polynomial-time reducible to IS. TisaBSAT <p IS.

9.8. BOOLEAN SATISFIABILITY PROBLEM: COOK’S THEOREM 181

An important aspect to reductions is that we do not attemgpoblee the satisfiability problem. Remember:
It is NP-complete, and there is not likely to be any polyndrtime solution. The idea is to translate the
similar elements of the satisfiable problem to correspandiements of the independent set problem.

What is to be selected?

3SAT: Which variables are to be assigned the value true, or equiyglevhich literals will be true and
which will be false.

IS: Which vertices will be placed iv”’.
Requirements:

3SAT: Each clause must contain at least one true valued literal.

IS: V' must contain at least vertices.
Restrictions:

3SAT: If x; is assigned true, theqg must be false and vice versa.

IS: If wis selected to be i’ andv is a neighbor oft thenv cannot be ifv’.

We want a function which given any 3-CNF boolean formiulaconverts it into a paifG, k) such that

the above elements are translated properly. Our stratdglgenio turn each literal into a vertex. The
vertices will be in clause clusters of three, one for eachsda Selecting a true literal from some clause
will correspond to selecting a vertex to addvta We will setk equal to the number of clauses, to force
the independent set subroutine to select one true liteyal &ach clause. To keep the IS subroutine from
selecting two literals from one clause and none from somerptte will connect all the vertices in each
clause cluster with edges. To keep the IS subroutine froetseg a literal and its complement to be
true, we will put an edge between each literal and its comptem

A formal description of the reduction is given below. Theuhs a boolean formul& in 3-CNF, and the
output is a grapl and integek.

3SAT-TO-IS(F)
1 k « number of clauses ik
2 for (eachclaus€ inF)
3 do create a clause cluster of
4 3 vertices from literals of
5 for (each clause clustékq, x>, x3))
6 do create an edgexy, x;) between
7 all pairs of vertices in the cluster
8 for (each vertex;)
9 do create an edge betweepand
10 all its complement verticeg

182 CHAPTER 9. COMPLEXITY THEORY

11 return (G,k) //outputis graphG and integerk

If F hask clauses, thek has exacth3k vertices. Given any reasonable encodings ¢ft is an easy
programming exercise to credfe(say as an adjacency matrix) in polynomial time. We clain tha
satisfiable if and only ifs has an independent set of size

Example: Suppose that we are given the 3-CNF formula:

(x1 VX2 VX3) A (X1 Vx2Vx3) AT Vx VX3) A (1 VX2V xs)

The following series of figures show the reduction which ik the graph and sets k = 4. First, each o
the four literals is converted into a three-vertices graftis is shown in Figure 9.11

Figure 9.11: Four graphs, one for each of the 3-terms literal

Next, each term is connected to its complement. This is showigure 9.12.

9.8. BOOLEAN SATISFIABILITY PROBLEM: COOK’S THEOREM 183

Figure 9.12: Each term is connected to its complement

The boolean formula is satisfied by the assignmgnt 1, x; = 1 x3 = 0. This implies that the first
literal of the first and last clauses are 1, the second litd#rdile second clause is 1, and the third literal of
the third clause is 1. By selecting vertices correspondinguliterals in each clause, we get an
independent set of side= 4. This is shown in Figure 9.13.

Figure 9.13: Independent set correspondingite=1, x, =1 x3 =0

Correctness Proof:

We claim thatf is satisfiable if and only is has an independent set of sizelf F is satisfiable, then each
of thek clauses of must have at least one true literal. NMétdenote the corresponding vertices from
each of the clause clusters (one from each cluster). Becarisgke vertices from each cluster, there are

184 CHAPTER 9. COMPLEXITY THEORY

no inter-cluster edges between them, and because we catr@otariable and its complement to both be
true, there can be no edge of the fofxg, x;) between the vertices &f’ . Thus,V’ is an independent set
of sizek.

ConverselyG has an independent sét of sizek. First observe that we must select a vertex from each
clause cluster, because there la@usters, and we cannot take two vertices from the sameeclust
(because they are all interconnected). Consider the assigrimwhich we set all of these literals to 1.
This assignment is logically consistent, because we caraa two vertices labellext andx; in the

same cluster.

Finally the transformation clearly runs in polynomial tinhis completes the NP-completeness proof.

Also observe that the the reduction had no knowledge of theiso to either problem. Computing the
solution to either will require exponential time. Inste#itk reduction simple translated the input from
one problem into an equivalent input to the other problem.

9.9 Coping with NP-Completeness

With NP-completeness we have seen that there are many ampoyptimization problems that are likely
to be quite hard to solve exactly. Since these are importatigms, we cannot simply give up at this
point, since people do need solutions to these problem® &tersome strategies that are used to cope
with NP-completeness:

Use brute-force search: Even on the fastest parallel computers this approach isevatly for the
smallest instance of these problems.

Heuristics: A heuristic is a strategy for producing a valid solution thére are no guarantees how close
it to optimal. This is worthwhile if all else fails.

General search methods:Powerful techniques for solving general combinatorialroation
problems. Branch-and-bound, A*-search, simulated anmgadind genetic algorithms

Approximation algorithm: This is an algorithm that runs in polynomial time (ideally)dgproduces a
solution that is within a guaranteed factor of the optimaddison.

