Web Design and Development (CS506)

Web Design and Development

CS506

© Copyright Virtual University of Pakistan

Web Design and Development (CS506)

Lecture 1: Java FEATUIESccue et 22
1.1 DeSigN GOaIS OF JAVA......cuiiiiiiiiiiiiiieiieieee et 22
1.1.1 Right Language, RIGNT TIME......cciiiiiiiiieieere e 22
1.1.2 Java - Buzzwords (VOCaDUIAY) ... 22
1.1.3 Java-- Language + LIDFaries ... s 22
114 SIMPIE e et b et e nres 23
1.1.5 ODJECt-OrBNTEA.ccueeieiiiiie ittt sttt sreenae s 23
1.1.6 Distributed / Network Orientedccoooeiiiiiiieiiie e 23
1.1.7 RODUSE/ SECUIE [SATE ...t 23
118 POMADIE ...t nre s 24
1.1.9 Support for Web and Enterprise Web Applicationscccccoveveiiieiiivccieceenne 24
1.1.10 High-performanCe.........cccoiieiieiiiiic ettt ra e nnes 24
1111 MUI-TRREAAEM ...ttt bbb nre s 24
IO O 7 B)Y/ 0 4 (oSSR RROSPRR 24
1.1.13 Java Compiler STrUCTUIE.......ccuiiei e 24
1.1.14 Java: Programmer EFfICIENCYccoiiiiiiiiie e 25
1.1.15 MICIOSOTE VS, JAVA ...cuiiiiiiieiiiieiie sttt bbb 25
1.1.16 JAVA IS FOIr REAL......oiiiiiiiiiccee e 25
L.1.17 RETEIEINCES.eiiiieitt ettt bbbttt ettt ettt nbe et 25
Lecture 2: Java Virtual Machine & Runtime Environmentccccoevenenn. 26
2.1 BaSIC CONCEPL... ittt bbbttt bbb bttt n e 26
2.1 1 BYIE COUR ..ttt bbbt 26
2.1.2 Java Virtual Maching (JVM) ... 27
2.1.3 Java Runtime Environment (JRE)ccooiiiiiiniiiieieiesesc s 27
2.1 4 RETEIBNCES ..ctieiie ettt ettt ne e re et nreennan 28
2.2 Java Program Development and EXECULION SEEPS.........ccvrveiverieririninieieniesie e 28
2.2.1 PRaSE L EQIT ..ot et 30
2.2.2 Phase 2: COMPIIE .ot nneas 30
2.2.3 Phase 3: LOAGING......ciiiiieieiieiieie ettt et 30
2.24 PRaSE 4 VEIITY ..ottt 30
2.2.5 Phase 5: EXBCULEcueiiiiiieiiecie ettt 31

© Copyright Virtual University of Pakistan 2

Web Design and Development (CS506)

2.2.6 RETEIBNCES: .. ittt re e nnes 31
2.3 Installation and ENVIroNMENt SEtHING........ccoveiiiiiirieii s 31
pZ TSt R | 4151 11 LA o] o SRR OSPRRRRO 31
2.3.2 ENVIFONMENT SEHING ..oovviiiieiiiiieseeee e 31
2.3.2.1 Temporary Path SEEHINGcoooveiiiiiie ettt 31
2.3.2.2 Permanent Path SEtINGccocoveiiiiie e 32
2.3.3 RETEIBNCES ...ttt bbb 34
2.4 FIrSt PrOgram iN JAVA.......cccooeieeiieiieiienie st siee e siee st sttt ae s sbeestesneesbesnnesneas 34
2.4.1 HelOWOTTAADD. ... ettt sttt nne s 34
2.4.2 HelloWorldApp DeSCrDEdcccccvviiiiiiiece e 35
2.4.3 Compiling and Running HellOWOTrTAAPPcoviieiieiececeee e 35
2.4.4 POINtS 10 REMEMDETiiiiiiiiie s 36
2.5 AN TAIOM EXPIAINEocvveiieie et nre s 36
2.0 RETBIBNCES ...ttt et nneas 37
Lecture 3: Learning BaSICScccccvieiiiiiiie et 38
T Y 14 1SRRI 38
311 String CONCAENALION......c.veiieeieiie e e eee e te et ae e s e et e ereesreeneaneesneeneas 38
3.1.2 COMPAIING SIIINGS c.vveiveeiieie e sieesie e seeste e e e teeae e steesaesseesaeeeesseesaeensesneesseeneas 38
3.2 Taking in Command Line ArQUMENTS........cccveueiieriieiereesieeeesieesieseesseeseesseessnessesseessens 39
3.3 Primitives VS. ODJECIS....uuiiuieieiieie ettt e e e eesneennes 40
34 SEACK VS, HEAP ...t 41
3.5 WWIAPPEE CHASSES ...ttt bbbttt bbbt 41
351 WWIAPPET USE ..ottt n et nne s 42
3.5.2 Converting Strings to Numeric Primitive Data TYPEeS........cccvvrvrininieienenenienn 42
3.6 Selection & CoNtrol STrUCTUIEcoviiiiiiiiicee e 44
T 0 (=] (=10 (o0 TSR OP TR RTOPPPRRPRS 44
Lecture 4: Object Oriented Programming........cccoccevieeiieiieeneesieesie e eeeeneeenees 45
4.1 OOP VOCADUIAIY REVIBWccuiiiiiiiiieiestie sttt sre e 45
I R O F- 1S3 LTSRS 45
Ot ©] o] [To! TSRS 45
A.1.3 CONSIIUCKOL ...ttt ettt ettt et e be e e bt e sbe e e be e ebneebeesnneennee e 45

© Copyright Virtual University of Pakistan 3

Web Design and Development (CS506)

Ot N 11 €] 01U (=TT OSSPSR 45
T |V 1 T Lo PSSP 45
4.2 DEFINING @ ClASSiiuiiiiiiiteitesie ettt 45
4.3 ComPariSON WIth Crr ...t 46
4.4 Task - Defining @ STUAENt ClaSS........ccveiiiiiiieice e 47
R €1 1 (] (AT £ USRS 47
4.6 USING @ CIASS....ceiiiiiiie ittt bbb r e e 48
4.6.1 Task - USING StUAENT ClaSSciiiiiiieiieiicie e 49
A |V (o] o I O F- LTSRS 50
N RS v |1 oSSR 50
4.7.2 Garbage Collection & FINAlIZecccoeiviiiiiiiiece e 50
47210 FINANIZE. ..ottt bt ettt e e e 51

R N] (=] =] 1o -SSR 54
LeCture 5: INNEITTANCEooi i e 55
51 ComparisOn WIth Cr ..ot sreas 55
5.2 ODJeCt - ThE ROOL CIASSeiiviiiiiieitieiii ettt sttt st nreas 58
5.3 POIYMOIPRISIM L.ttt nb e nreas 58
T Y/ o T OF: 1] T USSP URTROPRORRPRN 60
T Ot L O o o7 1 £ 1T [TSRO P SRRSO 60
5.4.2 DOWN-CASTING ..vvitieriiaiiesieeiestie st et ste et e sbeebe e sbeeseesbeesbeeneesreesbeaneesseesbeeneenneas 60
5.5 REIBIBNCES: ..ottt 60
Lecture 6: COIECTIONScceeiiee e 60
6.1 COllECHIONS DESIGN ..vecuvieiieieicite ettt e s ta e e e s reeeeereesteenteaneennes 61
6.2 COllECHION MESSAPESvvevveiieeireeie et et ettt ste ettt et e s te et e s s e s beeteeneesteeeeanaesneeeas 61
CTC T N 1 - Y I 1) S OS SR SOSORSPRI 61
6.3.1 USETUI IMEINOUSc.viiiiecic e 61
6.4 HASNIMADoceieiee e a e nre s 63
6.4.1 USETUI IMEINOUSc.viiiieie e 63
8.5 RETEIBNCES: ...ttt bbbt 65
6.6 ACAIESS BOOK......cuiitiiiiiiieiieieiete ettt b bbbt 65
B.6.1 PrODIEM .o 65

© Copyright Virtual University of Pakistan 4

Web Design and Development (CS506)

6.6.2 Approach for Solving Problem ... 66
6.6.2.1 Stepl - Make PersonInfo CIassS.........ccccouiiiiiiiiiiicee s 66
6.6.2.2 Step2 - Make Address BOOK CIaSS.........ccviiieiieiiiiiiiic et 66
6.6.2.3 Step3 - Make Test class (driver Program)........ccoccoeoerrereeeeienenenesesresee s 68

B.7 RETEIBNCE. ..t bbb 69
Lecture 7: INtro to EXCEPLIONSccveiviciiiiie e 69
% A Y/ o T- T o) B (] RS USORSSPRI 70
711 SYNAX EITOTS oot n 70
0 O o T | Tol = 1 (0] S SSSR 70
7.1.3 RUNTIME EFTOIS...ciuieiiiieciesie ettt sttt et esneesteeneesneenteeneenneeneas 70
7.2 What IS an EXCEPIIONT....cuiiiiiiiee e 70
7.3 Why handle EXCEPLIONS?cuiiiiiiiiiesiesie sttt 70
7.4 EXCEPLIONS 1N JAVA....ctiiiiiiieiieieieite ettt bbbttt 70
7.5 EXCEPLION HIBTAICNYccuiiiiiiiiiiieiee e 71
7.6 TYPES OF EXCEPLIONSeeuvieiieiteeieeiee sttt sttt sttt sttt sbe et esbeeneenneas 71

7.6.1 UNCheCKed EXCEPLIONS. .. .ccuiiiiiiiii ettt 71

7.6.2 CheCKed EXCEPLIONS.......cuiiiiiiiie ittt sttt 72
7.7 How Java handles EXCEPLIONSciieiiiiiiiieiesie sttt 72

TTL Y DIOCK e 72

T7.7.2 CACR BDIOCK ..o bbbt 72

7.7.3 fINAIY DIOCK ... 72

LA A 1 11 0 YOS PP URUROPRPITTR 73

TT.5 TEOWS.c.eiiiiicecee e ettt bbbttt 73

7.8 REIEIBNCES: ... ettt bttt et 73
7.9 Code Examples of Exception Handlingc.ccceoieiieiiiic i 73

7.9.1 UNCheCKed EXCEPLIONS.cuiiieiieie e ettt ae e nne s 73

T.9.2 WY bbb bbbt 74

7.9.3 MOdify UCEXCEPLION.JAVAcviiieiieeieeiiesieeiesiesteeste e steeste e sraesae e steeee e sneeneas 74

0 T O 4 1= o) o (=T o) T PSR 75
711 The fINAIY DIOCKc.ooieee et 76
7.12 Multiple catCh DIOCKSooiiiiiiiiie e 77

© Copyright Virtual University of Pakistan 5

Web Design and Development (CS506)

713 THE tNIOWS CIAUSEcovieiieieie ettt teeneenre s 79
7.14 printStackTrace MEtNOMcoviiiiiiiie e 80
N T L (=] (T 0o SO USTORROSPR 81
LECTUIE 82 STIBAIMSeeiiiie et 82
8.1 The CONCEPL OF "SIIBAMS" ... i ieeieiee sttt bbbt sb e neenreas 82
8.2 Stream classification based on Functionalityccccoociiiiiiiiiinin i 83
8.3 Stream classification Dased 0N data..............coovriiieiiiiiei e 84
B4 RETBIBNCE....i ettt bttt nneas 86
8.5 Modification of Address BOOK COUEccovieiiiieiieiiiie e 87
8.5.1 Adding Persistence FUNCLIONANILYccceovieiiiiiciecc e 87
o O A ot P T o i s v U A SRS 87
8.5.1.2 Scenario 2 - ENA/FINISN UP ..o 90

8.0 RETBIBNCES ...ttt nneas 92
Lecture 9: Abstract Classes and INterfaces........cccocvvviiiiieninvin s 93
9.1 Problem and REQUITEMENTScoveiiieieiiciie ettt re e sne s 93
0.2 ADSIFACT CIASSES ...ttt bbb bbbt 93
0.3 INTEITACES ...ttt bbbttt e 95
9.3.1 Defining an INErfaCec.cccveiueiiieiiee e 95
9.3.2 Implementing (USING) INTEITACE........cceeveiieieee e 95
9.4 Interface CharaCleriStICS.......cciiiiiiiiiiiisieie et 96
0.5 RETEIBNCES ..ttt ettt r et ne e re et et teentenres 98
Lecture 10: Graphical User INterfacescccoocvevveiiieie i 98
10.1 SUpPOrt TOr GUI TN JAVAoveiiiiiiiiiieseee et 99
10.2 GUI classes vs. NON-GUI SUPPOIT CIASSESeiviiiriiieieiieniesie st 99
10.3 JAVA.AWLE PACKAGEeiveeeieieetetete ettt 99
10.4 JAVAX.SWING PACKAGE. ... ecueiiieieieiteite ittt ettt bbbt 99
10.5 A part of the Framework ... e 100
10.6 GUI CreatiOn STEPS ...ccueeiieeieiiieiteeiesieesiee ettt sae e sreesbe et e sbeesbeeneesreeeesnes 100
10.6.1 impOrt reqUIred PACKAGESceveiieriirie et 100
10.6.2 Setup the top eVl CONTAINETScveeuieiieiiee e s 100
10.6.3 Get the component area of the top level container ... 101

© Copyright Virtual University of Pakistan 6

Web Design and Development (CS506)

10.6.4 Apply layout t0 COMPONENT AIEA........eiieieiiieiie e 101
10.6.5 Create and Add COMPONENTSc.eeieiierieriiriisieeie et 102
10.6.6 Set size of frame and make it VISIDIEcccoevviiiiiiiice e 102
10.7 Important POINES 0 CONSIAB.........oiiiiiiiieieie e 103
10.8 RETEIBNCES: . .iiie ettt ettt b et b e et e b e sb et ne e nre et nnes 104
10.9 Graphical USer INTErfaCeS = 2.......couiiiiiieiesieriee et s 104
10.9.1 LAYOUL IMIBNAGETSeeteeiieieteeatee sttt ettt ettt ettt e bt e sbe e b e e sin e e beesneeenee e 104
10.9.1.1 FIOW LAYOULeoeiiieie ettt ettt sttt te et et e sne e e e saeeneeseeeneenaesneeneenee e 105

0K R € o N - 1o TV SR 106

O I = T o 1= gl I 0T | PSSR 108
10.10 MaKing ComPIEX GUISoiiiiiiiiiiieieee e 109
10.10.1 JPANEH .ttt sttt nreeneenes 110
000 0T 1o 111 [o S PR 110
0TS0 o (C =T (=7 o0 OSSPSR 112
Lecture 11: Event HaNAIINGcooviieiie e 113
11.1 Event Handling MOelcoooiiiiee e e 114
11.2 Event Handling SEPScoiiiiiiieiiee ettt 114
11.3 Event Handling PrOCESSccuoiiiiiiiiiieie ettt 114
11.3.1 Step 1: EVENE GENEIALOISooveeieeiiieitieeiee sttt sttt sene e e 114
11.3.2 Step 2: Event Handlers/ Event LiStener..........cccccevveieiieiiiic e 114
11.3.3 Step 3: Registering Handler with Generator............ccccoevviveiieve e 116
11.4 How Event Handling Participants Interact Behind the Scenes?cccccvevevvevieennnne. 118
11.4.1 EVENt GENEIALOr / SOUICEc.viieieiesie ittt sttt 118
A Y 1=) @] o =Tt SRS 118
11.4.3 Event LiStener/NandIer ..o 118
L1144 VM ettt r et et r et e e 118
Lecture 12: More Examples of Handling Events............ccccocoviiviciiccic e, 122
12,1 Handling MOUSE EVENL.........ccuiiieiieie et 122
12.1.1 MouseMotionNLiStener INTErTACE.........ccoiiiriiieiee e 122
12.1.2 MOUSELIStENEr INTEITACE.cviiiieiie i 122
Lecture 13: Adapter ClaSsSeScuciiviiiiieiii e cee et ee et 127

© Copyright Virtual University of Pakistan 7

Web Design and Development (CS506)

131 ACAPLET CIASSES ...ttt bbb 127
13.2 Available AJapter CIASSESooiiiiiiieiee e 128
13.2.1 How t0 USe AJapLer CIASSEScciiiiieieieieriesie st 128

I TR T 11 0 =T O P TSy 1 OSSR 129
13.4 ANONYMOUS INNEE CIASSESeiiuiiiiitieiiieie sttt e snes 135
13.5 Named vSs. ANONYMOUS ODJECTScuviiiiiiiiieiiee e 135
13.5.1 INAIMEA ..ot ettt ettt be s re et e b e sneesbeeneeenes 135
13.5.2 ANONYMOUS ...uvieieietie ettt ettt et e et e bt e be e sae e e ebe e e sbeeebeeanb e e aneeanbeeaneeennee e 135
13.6 Summary of Approaches for Handling EVENLScccccoviiiiiiiiiiiesee e 136
13,7 RETEIBNCES ...ttt bbbttt 136
Lecture 14: Java Database CONNECLIVILY........cccovuviiiiiiniii e 137
o R] {0 o [FTox 1 o] SRR PR R RPR 137
14.2 The Java.SOl PACKAGEccieeiiiie e 137
14.3 Connecting With IMICrOSOft ACCESSccviivieieiieie e 137
14.3.1 Create DatahaSsecccoueieiiriiie e e 137
14.3.2 Setup SYSIEM DSN....coiiiiiiiiiiiiie et 138
14.4 Basic Steps iN USING JDBCccviiiiieiieic ettt ene 139
14.4.1 Import ReQUITEd PACKAGE........cciveiieieeiesiesie et ste ettt nee e 140
14.4.2 L0 DIIVET ..ottt bbbttt 140
14.4.3 Define ConNECtION URLccoiiiiiiiiiiiiieiee e 140
14.4.4 Establish Connection With DataBaseccccovviieiieiiiie e 140
1445 Create StateMENT.....c.oiiiieie e 140
14.4.6 EXECULE 8 QUETY ...ooiiiiiiiieiiiee ettt 141
14.4.7 Process Results Of the QUENYccoiiiiiiiiiieie st 141
14.4.8 Cl0Se the CONNECTIONeciiiieiiieie ettt nns 141
145 RETEIBNCES: ... ittt sttt e bttt et e e e b b e re e enes 143
Lecture 15: More ONJDBC ... 144
15.1 Useful Statement MEtNOAS:cooviiiiiiiieiieeee e e e 144
15.1.1 eXECULBUPUALE() ..vveeeereeiiieieeie sttt sttt sre et enes 144
15.1.2 getMaxROWS / SEEMAXROWS(INT)ccveiieiiiiiiiiesieeie et 146
15.1.3 getQueryTimeOut / setQUeryTImeOUL (INt)ccceeeereeriiie e 146

© Copyright Virtual University of Pakistan 8

Web Design and Development (CS506)

15.2 Different TYpes Of STAtEMENTScciiiiieieieiereese e 146
1521 SEAEBMENT ... 146
15.2.2 PreparedStateMentcoiiiiieieie e 147
15.2.3 CallableStatemeNntcveiiieieese e 147
15.2.4 Prepared STAtEMENTS......c.uiiiiie ettt bbb e e 147

15,3 REIBIBNCES: ... ittt 149

LeCture 16: RESUIT SEL.......ccoviiieiie et 150

16. 1 RESUILSEL ...ttt 150
16.1.1 Default RESUITSELooieeee e 150
16.1.2 Useful ResultSet’s MethodSccoiiiiiiiiiieie e, 150

16.1.2.1 NEXE() cervereveeeeeeeeseeeseeeseee e es e es e s eeeseesee e ee et ee s ee s ee s ee s es e s eee et ee e ee s s e 150
16.1.2.2 GOIEIS ettt E et e bR r bR r e 151
T 7 o o1 () TSRS 151
16.1.2.4 Updatable and/or Scrollable RESUITSELc.coviiiiiiiiieieicee e 151
16.1.2.5 Creating Updatable & Scrollable RESUItSEL..........cccocveiiiiicciee e 151
TN I I] =) o1 () TSR 152
TN A o110 (1) (T (141 IO SRT 153
16.1.2.8 updaters (for primitives, String and ODJECE)eovviieriiieeree e 153
16.1.2.9 UPAAIEROW() 1.vevieiieieieieeieie sttt ettt bbb 154
16.1.2.10 MOVETOINSEITROW(INT) ...eeveeiie e st et e e snee e ae e reenreens 155
16.1.2. 11 INSEITROW() cvveeiteteieiee ettt ettt b ene s 156
16.1.2. 12 1aSH() & TIFST() vvevveeieeiiee i st este ettt e e et e e s ee e te e s reesreesnaesneeeneeereenreeas 158
16.1.2.13 GELROWI() cuvveteitiitirtete ettt bbb ettt b et b 158

TN I o [T 12 (=Y (0 1Y (PSP 158
16.2 REIEIBNCES ittt b bbbt 161
Lecture 17: Meta Data..........ccve i 162

17.1 ReSUILSEt IMELA ALA.........cveeeeiiriiieii e 162
17.1.1 Creating ResultSetMetaData ODJECt..........ccoviiiiiiiie e 162
17.1.2 Useful ResultSetMetaData Methodscccevvriiiieninisieiee e, 163

17.1.2.1 getCOIUMNCOUNT () cveeiveeiieeiie st e sttt e e e e et e e s e e ae e sreesreesnaesneeenaeereenrnens 163
17.1.2.2 getColumnDisplaySizZe (INT)cccuririieiiieieiee e 163
17.1.2.3 getColumnName(int) / getColumnLabel (inNt)cccccevviiiiiii i 163

© Copyright Virtual University of Pakistan 9

Web Design and Development (CS506)

17.1.2.4 getColumNTYPE (INL) ...eeeeieieiiiiite ittt 163
17.2 DatabaSEMETaADALAcveieiiiieitiiiesii e 165
17.2.1 Creating DatabaseMetaData ODJECEccocvveiieiiciccicce e 165
17.2.2 Useful ResultSetMetaData Methodscovvriiriiiriiinieee e, 166
17.2.2.1 getDatabaseProdUCINAME()ccviiieieiiiiece sttt e 166
17.2.2.2 getDatabaseProdUCIVEISION() ...cviieieeieiieee ettt 166
17.2.2.3 QEIDIIVEINAME() teveeieiieciiecie sttt ettt e te s e saesbeenaesreeneere e 166
O [~ (=T o (@ 1 V7 () PSP 166
17.3 IDBC DIIVEE TYPES ..ieeuiiuieieiteste sttt ettt bttt bbb bbbt ne e 167
17.3.1 Type-1: JDBC - ODBC BIAQEcceiiriieiieieiesie sttt 168
17.3.2 Type - 2: Native - API/partly Java driVercccoooiiiiiiiiieiecnese e, 168
17.3.3 Type - 3: Net - protocol/all-Java driverd ..., 168
17.3.4 Type - 4: Native - protocol / all - java driver ..., 169
174 ONIING RESOUICESveiveeiieitiiiie ittt sttt ettt sre et et esbeebeeneesre et enes 169
17.5 RETEIBNCES: ... ettt b et b et b et b et nnes 169
Lecture 18: Java GraphiCS.......ccciiiiieiieiie et 170
TS o 1101 1] 3o TR URTR 170
18.1.1 HOW PAINTING WOIKS? ...ttt e 170
18.1.2 Painting a SWiNg COMPONENT........cooiiiieiieie et 172
18.1.2.1 PAINtCOMPONENT() veeuveeieeiieeieeiiie e rie e seesee st et e e e e e e ste e s e e s e e ae e sreesraesnaesnaeeneeenreenrnens 173
18.1.2.2 PAINTBOIUEI().vevieeteieieieei ettt ettt bttt 173
ST I T - 11 1 (4 T [0 =10 G PP 173
Lecture 19: HOW t0 ANIMALE?oiviiieiicereee e e 176
19.1 Problem & SOIULION.......coieiiiieii et aeenes 176
19,2 RETEIBNCES . ..ueiitie ittt b et b et b et et r e aennes 181
LeCtUNE 20: APPIETS...c.iieiiieiie ettt nne e 182
20.1 BaSIC DEFINITIONveiuiiiiieitieie ettt nee e 182
20.2 APPIELS SUPPOIT.... ettt sttt b e bt et sr e be e neenre e 182
20.3 WhHat @n APPIET IS? ...ttt e e re e 182
20.4 The genealogy OF APPIELooii e 182
20.5 Applet Life Cycle Methodscccooiiiieiiei e 184

© Copyright Virtual University of Pakistan 10

Web Design and Development (CS506)

20.5. 1 INEE() crririieieisei ettt ettt b b rer e bt e re st nneneens 185
20.5.2 SEAML() +euveveeeereeteee e ettt bbbt e e 185
20.5.3 PAINT() cveveieieiieiiei ettt 185
20.5.4 SEOP() weuvetertieiiete ettt bbbt 185
P40 T ST (=151 0V () TSROSO 186
20.6 RETBIBNCES: ...ttt ettt ettt b e Rt bt een e be e neenre e 193
Lecture 21: Socket Programmingcccoccveiieiieiieeieesee e siesnieesiaesiee e eeeensees 194
21,1 BaSIC DEFINITIONveiiiiiiiiiieic ettt nre e 194
21.2 SOCKEL DYNAMICS....eiutiitietieieeiie et siee sttt sttt st et ae b e sbe et e bt e sbe et e sreenbeeneeaneenee e 194
21.3 WAL IS POM? ...ttt 194
21.4 How Client - Server COMMUNICALEciviieieiirie et 194
21.5 Steps - To Make a SIMple CHENt..........ccoveiiiiiiecce e, 195
21.5.1 Import required PACKAGEecveiieieeie et 195
21.5.2 Connect/ Open a SOCKEt With SEIVENcccvcveiiiieeie e 195
Create a client socket (communication SOCKEL)ccveveiieiiiieiiee e 195
21.5.3 Get 1/O Streams OF SOCKEL.........ccuiiiiiiiiirese e 196
21.5.4 SeNd / RECEIVE MESSAGL.....ccueerreieesieeiestiesteeiesseesteeeesseesseessesseesseesesseesseessesseesseens 196
21.5.5 ClOSE SOCKELeeiiiieiee et 197
21.6 Steps - ToO Make @ SIMPIE SEIVENccveiveie e 197
21.6.1 Import required PACKAGEcvveveeierieeie et 197
21.6.2 Create @ SEIVEr SOCKELciieieiieieeie sttt re e neenne e 197
21.6.3 Wait for INCOmINg CONNECTIONSc.veviieiiiiiie st 197
21.6.4 Get 1/O Streams OF SOCKEL.........oiiveiieie e 197
21.6.5 Send/ RECEIVE MESSAQE........eiuiiuiiieeiieieie sttt sttt sb et 198
21.6.6 ClOSE SOCKELviivieiiesiesiiesie ettt s ee sttt ettt e st sae s e sae et e nreesreeneeaneenneens 198
217 RETEIBNCES. ..ttt sttt b et b et et e bt e bt et e ene e be e e neenre e 202
Lecture 22: SEraliZatiONc.oooveiieiie et 203
A R o (0]] 1< o SRRSO 203
2211 WRAL? ettt b et ne bt ens 203

pa 2 N \V (o 1Y U1 o] o OSSR 203
22.1.3 ReViSiting AdAreSSBOOKccciiiiiiiiiieee e 203

© Copyright Virtual University of Pakistan 11

Web Design and Development (CS506)

22.2 SErialiZAtION IN JAVA ...ocvveivieieieie et sttt et ntesneenreeneeaneenneens 204
22.2.1 Serializable INErfacecocvoiiiiieiiee e e 204
22.2.2 AUIOMALIC WITEING ..ottt 204
22.2.3 AUIOMALIC REAMINGveveeiiiiitiiie e 204
22.2.4 Serialization: HOW It WOTKS?........cciiiiiiiie e 204

22.3 Object Serialization & NETWOIKcceeiiiiiiieiieesie e 207

22.4 Preventing SerialiZationcooeiuiiieiieie e 208

22.5 RETBIBNCES. ..ottt b ettt b bt ere b e ne e re e 209

Lecture 23: MUItItNreadingcooveiieiiieiiecie e 210

P2 T80 1110 To (1 Tox (o] o FO ST RPR USSR 210

23.2 Sequential Execution vs. Multithreadingccccceeveiieii i, 210

23.3 JAVA TRFRAUS. .. .e.viie ittt ettt bbbt b e e e 212
23.3.1 Creating Threads iN JAVA.........cccvveiieiieiieie ettt 212

23.3.1.1 Threads Creation Steps Using INterface.........cccevvvriiriiiiie i 212
23.3.1.2 Threads Creation Steps Using INNEITANCEccveiiiieiiieee e 213

23.4 Three Loops: Multi-Threaded EXECULION..........ccvevuiiiieiieie e 213

23.5 THIEAU PrIONITIESeviiiiiiieiieiieie ettt bbbt 215
23.5.1 Thread Priority SCedUIINGcceiiieiiee e 216
23.5.2 Problems with Thread Prioritiesccooeieiiiiiiiiiiseee e, 218

23.6 RETEIBNCES: ...ttt ettt bbb 218

Lecture 24: More on Multithreading........ccccooveviieiie i 219

24.1 Useful Thread MEthOUScoeiiiieiiiiesiee et sre e 221
24.1.1 sleep(int time) METNOAcoiiiiiiiiiee e 221
24.1.2 YIld() METNOG.o 224

24.2 Thread States: Life Cycle of @ Threadccooveieiiiiiiiiiicceee e, 226
24.2.1 INEW STALE ...ttt ettt ettt b e e bt e e b e nne e ann e re e 226
24.2.2 REAAY STALE.....eeiuieitieitieie ettt sttt b e nr et nae e 226
24.2.3 RUNNING SEALEeetieieieie ettt sttt nb e esre e sbeeneesreenne e 226
24.2.4 DRAU SEALE ..ee.veeieeitie ittt bt nr b e ae e 227

24.3 THread’s JOINING. ... ccuiieeitieie ettt sttt sttt e b e b et e sre e beeneesneenre e 227

24,4 RETBIBNCES: ..ttt sttt b e bbbt R bt et n e be e ne e re e 228

© Copyright Virtual University of Pakistan 12

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

Lecture 25: Web Application Development..........cccceevvevieiieiieeseesie e 229
4= 300 R 111 oo [o o] USRS 229
25.2 WED APPHICALIONS.ottt 229
PG T o I I I = T T [P STP 229

25.3.1 Parts Of an HTTP FEQUESEeouiiiieitieie et 230
25.3.2 Parts Of HTTP FESPONSEcoiveeuiiiiieiieiiesiee st eie sttt sbe et te e sae e 230
25.3.3 HTTP RESPONSE COUESeoviiiiiiieiieiiesiie sttt siee sttt sttt nae e 231
25.4 Server Side ProgrammiNng........cooeaueieeieaiesiesieesieseesieeeessesstesaesseesseesessesseesnsessesssenns 233
25.4.1 Why build Pages Dynamically? ..o 234
25.4.2 Dynamic Web Content Technologies EVolution............cccoceveviiii e, 236
25.5 Layers & Web ApPlCALION..........cccouiiiiiece e 236
25.5.1 Presentation LAYEK:c.coveiieieieeie e see ettt sae et st nne e 237
25.5.2 BUSINESS LAYETeiiuieeieiieeiie e steesie et ettt et e st ste et e b e sae e e e sraesreennesneenneens 237
25.5.3 DALA LAYEEiiiiiiiie ittt 237
25.6 Java - Web Application TEChNOIOGIEScc.ccveiieeiiiiieiece e, 237
25.7 RETEIBNCES: ...ttt bbbttt bbb bbbt 237

Lecture 26: Java SEIVIETS ..o e 238
26.1 What SErvIets Can 007couiiiiiiiieiiieeeee e 238
26.2 Servlets vs. other SSP teChNOIOGIESc.ecveiieieeiecie e 238

26.2.1 CONVENIBNMT. ..ttt bbbttt bbb bbbt et e s 238

p A A = o] | SRR SS 239
26.2.3 POWEITUL ...ttt nne e 239
26.2.4 POMADIE. ... nre e 239
26.2.5 INEXPENSIVE ...ttt bttt e bbbt 239
26.3 SOTtWAre REQUITEMENTS ..ottt bbb 239
26.4 Jakarta Servlet ENgine (TOMCAL)coveieiirieiiiieieiee e 239
26.4.1 ENVIFONMENT SETUP....ccuviiiieiieiiesiesieete ettt sttt sre et enee s 239
26.4.2 Environment Setup UsiNg .ZIP FIle ... 240
26.4.2.1 Download the Apache TOMCAL SEIVETccccoviiiriiieieiseee e 240
26.4.2.2 Installing Tomcat using .Zip file.......ccooiiiiii i 240
26.4.2.3 Set the JAVA HOME Variable.........cccoiiiiiic ettt ne e 241

© Copyright Virtual University of Pakistan 13

Web Design and Development (CS506)

26.4.2.4 Setthe CATALINA_HOME variable..........ccoocooiiiiiiiiii e 242
26.4.2.5 Setthe CLASSPATH Variable.........ccooiiiiiiie et 243
26.4.2.6 TESEENE SEIVEI ..ouiciieiti sttt sttt e bt e e sbeesa e beste e e e sbesneeseestaenaenreas 244
26.4.3 Environment Setup Using .eXe Filecoviieiieiiie e 244
26.4.3.1 Download the Apache TOMCAL SEIVENcccviviiiiiiie e 245
26.4.3.2 Installing Tomcat USing .eXe Filecc.ooiiiiiii e 245
26.4.3.3 Setthe JAVA HOME Variable...........cooviiiiiiiiiee e 247
26.4.3.4 Setthe CATALINA HOME variable..........cccoviiiiiiii e 247
26.4.3.5 Setthe CLASSPATH VAriabIec.cocviiiiii et 247
26.4.3.6 TESEINE SEIVET ...ttt ettt ettt bbb bt et sre e e e 247
26.5 RETEIBNCES: ... i iieiieeie ettt ettt ettt ne ettt e ene e re e ne e re e 248
Lecture 27: Creating a Simple Web Application in Tomcatccccevennee. 249
27.1 Standard Directory Structure of a J2EE Web Application..............ccocvvniiiiincnnnnn, 249
27.2 WIIHING SEIVIBLS ...ttt ettt sb e et e sreeteanee s 251
27.2.1 SEIVIEE TYPBS cveiitieitieie ettt sttt sttt ettt ettt e sbeenbeennesneenbeenae s 251
27.2.1.1 GENEIICSEIVIET CIASSeeiteieieee ittt et neeseeereenaenneas 252
27.2.1.2 HPSEIVIEL CIASS ... vicvviiiii ettt st be s sresreenaenre s 252
27.3 Servlet Class HIBIarChYcoo oot 252
27.4 TYPES OF HT TP FBQUESES.vviitiiiieeciie ettt ettt eabeesnne s 253
27.5 GET & POST, HTTP reqUEST LYPESvvviiiiieiiiiie ettt 253
27.6 Steps for making a Hello World Serviet ..o 254
27.7 Compiling and INVOKING SEIVIELS........cccocii i 256
27.8 RETBIBINCES: ...ttt ettt et b et b e e e re e 257
Lecture 28: Servlets LIfECYCIe........coovviiiiiiccec e 258
28.1 Stages Of ServIet LITECYCIE.......ocviiieece et 258
28.1.1 INITIANIZE ..o e 258
28.1.2 SBIVICE....uiiiiitiiteeiiete ettt bbbt bbb bbbttt 259
28.1.3 DESIIOY ...uteiiiiiie ettt tn e res 260
28.2 SUIMMAIY ...eeiiiiiie ettt ettt ettt et et e s bb e e e be e e e bb e e e kb e e e bb e e abb e e e beeesnbeeennnreennbeeean 260
28.3 Reading HTML Form Data USINg SErVIEtSccooiiiiiiiniiieieese e, 261
28.3.1 HTIML & SEIVIELS ..ottt st anee s 261

© Copyright Virtual University of Pakistan 14

Web Design and Development (CS506)

28.3.2 Types of Data send t0 WED SEIVEToooiiiiiiiiiieceee e, 261
28.3.2.1 Reading HTML Form Data from Serviet..........c.coeoiiiiiiiiiiniieiceesse e 262
28.4 RETEIBINCES: ... ittt bbbt ettt bbbt b n e re e 266
Lecture 29: MOre 0N SEIVIETS......ccoiiiiecce e 267
29.1 INitialization Parameters........cocoiiiieiiiisisie et 267
pA B R 1= V7 1= (@ o]) o USSP 267
29.1.2 Reading Initialization Parameters.........cccooveuerieereereseecieeeseesieesee e e ee e 268
29.1.3 ReSPONSE REUITECLION.......eeiiieiieiiesieeie ettt sre e e e 270
29.1.4 Sending a standard REAITECT.........cccveviiieie e 270
29.1.5 Sending a redireCt t0 an EITOr PAGEccververririereeieieerie sttt 270
PAS A 1= Y [(O] 0]) SRS 273
29.3 ReQUESE DISPAICNETccuiiiiiiieiiiiee e 274
29.4 RequestDISPALCNEr: TOMWAIToiiiiiiriiiiieie e 274
29.5 RequestDiSpatCher: INCIUTE. ... 275
29.6 RETBIBINCES: ... ittt bttt b ettt n et e e neenre e 275
Lecture 30: Dispatching REQUESTScccveiiriiiiiieiee et 276
I R (=T o T o BT U PO U R UP P OURTUPRURTPPROTS 276
30.1.1 Sending a Standard FEQUESL:coeeieiiereeie ettt 276
30.1.2 Redirection t0 @n BrTOr PAGE:cueiuereerieerteereesiee e eeesteeseesee st e sbe e e e saesneesreenee e 276
30.1.3 FOMWAIT: ..ttt et b et et b e b et re e b e neenreenne e 276
30.1.4 INCIUAE: ...veeiieee bbbttt bbb nre s 276
30.2 HttpServletRequest MEthOUS.........c.ccviiiiiieie e 283
30.2.1 setAttribute(String, ODJECE)......cccveiiii e 283
30.2.2 QetALIDULE(SIIING) ...eovi i 283
0 7 T o =111/ 1= 4o To) SRRSO 283
30.2.4 QEtREQUESIURL() c.eeiveeieiieiieeie ettt ne e nne e 284
{08 ST o T=1 1 o (0] (01T]) SRS 284
30.2.6 getHEAAEINAMES() .vveiveeieeieeieesieeie st e et e e ee et sae e e re e sneenneens 284
30.2.7 getHEArderNAME().....ecveeeerieeieseesieeiesee et ste e sre e e sae e e sraesreeneeeneenneens 284
30.3 HttpServIetResponse MEethOUSccvviieiieriiiieseese st 284
30.3.1 SEtCONENITYPE() . vverrerrerreerieeriesiesieeiesee e eseesreeste e e sreesteeseesseesaeaneesraesreeseesseenseens 284

© Copyright Virtual University of Pakistan 15

Web Design and Development (CS506)

30.3.2 SetContentLENGLN() . ovovveeeiiieiieceee e 284
30.3.3 AAACOOKIE(). .. eveeveerrenieieste sttt nb bbb 284
30.3.4 SENUREITECL() ..vveuvereeeeriirii sttt bbbt sbe e nre s 284
30.4 SESSION TTACKING ...ttt bbbttt bbbt ne s 285
30.4.1 Continuity problem- user’s point Of VIEWcccoiiiiiiiiinie e 285
30.4.2 Continuity problem- Server’s point Of VIEWcccccoiiiiiinii i 286
30.5 RETBIBNCES: ... ittt ettt ettt b ettt n et neenre e 286
Lecture 31: SESSION TraCKINGccveiieeeeiie et 287
31.1 Store State SOMEWNEIE......c.ei et e e 287
31.2 POSEENOLES ...ttt ettt ettt n e b r e e n e nnee s 287
31.3 Three Typical SOIULIONScooiiiiiiiic e, 287
3131 COOKIES .utetitietiesiesie ettt sttt bbb bbbttt bbbt e e e 288
31.3.1.1 WhAL 8 COOKIE IS?eieuiiiiiie ittt sttt sttt sbe e e enes 288
31.3.1.2 COOKIE™S WOYAGE......eeiitieiteieieii ettt sttt bbbttt 288
31.3.2 Potential Uses 0f COOKIESccoiiiiiiiieiieicre s 288
31.3.3 Sending COOKIES 10 BIOWSEN........ccviveiierieeriesieesieeiesieesee e see e esee e sse e sneenne e 289
31.3.4 Reading Cookies from the CleNt..........cccoceieieiiiesi e 289
3L RETEIBNCES: ...ttt bbbttt bbb 298
Lecture 32: SeSSION TraCKING 2ccc.eocvveiieiieiie et 299
2 R | 4 I (- o OSSO 299
32.1.1 Disadvantages 0f URL reWIItiNGccccoviririiininieiciese e 299
32.2 Hidden FOrmM FIelAS.......ccviiiiieiece ettt 304
32.3 Java Solution for SesSion TraCKiNG........ccccuuerieieiierene e 304
32.4 Working With HEPSESSIONocuviiiiiiiiierie e 305
32.5 HttpSession — Behind the SCENES.........ooiiiiiiiiieee e 308
32.6 Encoding URLS SENET0 CHENL.......eoiiiiiiieiieiie e 309
32.7 Difference between encodeURL() and encodeRedireCtURL()ccovvvveverieniieiinnnnnns 309
32.8 Some Methods Of HEEPSESSIONoiuiiiiieiiiie et 312
32,9 RETEIBNCES: ... ittt ettt bttt b e bbbt b et ene e re e ne e re e 313
Lecture 33: Address Book Case Study Using Servlets........ccccocevvevieiieiinennnn, 314
33,1 DESIGN PIOCESSveeueeitieiiesiistiesteeseesteesteaste st e steaseesbeenbeaseesbeebesseesbeesbesseesbeeneeereesbeenee e 314

© Copyright Virtual University of Pakistan 16

Web Design and Development (CS506)

33.2 Layers & Webh APPIICALIONc..oviiiiiiie e 314
33.2.1 SEBP L i 315
33.2.2 SEBP 2 ittt et aenre e e e e e e 315
33.2.3 SHBP B ittt enr e renre e e e e e eens 316
33.2.4 STEP 4 ettt b et e e be e ane e e e 317
T T oI TSRS 318

33.3 PACKAGE. ... ittt e ae e e e 321
33.3. 1 What IS @ PACKAGE?.....c.eiiieiieeieeee ettt 321
33.3.2 HOW tO Create @ PACKAGEveeuverieeitieiesiee ettt 322
33.3.3 HOW 10 USE PACKAGEveveeveerieiiiesie ettt ettt ettt sae e sra e s te e e nne e 323

33.4 JAVASEIVEr PAgES (JSP) ...viiiiieiiiie ettt ettt re e 323
33.4.1 The NEEU TOF ISP ...ttt bbb 323
33.4.2 The JSP FramMeWOIKccoiiiiiiiiisiieieie ettt st 323
33.4.3 Advantages of JSP over Competing Technologies..........ccccvvvevviieiieieerieseenee, 324
33.4.4 Setting Up Your ENVIFONMENTccviiieiecie e 324

335 RETEIBNCES: ...ttt bbbt bbbt 324

Lecture 34: Java SEIVEN PAJEScooiiiiieiiiie it siree e snaee e snne e 325

341 FIrst rUN OF @ ISP ... e 325
34.1.1 BeNETITS OF JSP ... 325
34.1.2 ISP VS, SEIVIEL......oieiiieee s 326

34.2 ISP INGIEUIENTS. ...c.viiiiiieieeiee ettt 327

34.3 SCrPLING EIBMENTS ..ot 328
34.3.1 COMIMENLS ..ttt ettt sttt b e st e bt et s ab e e be e s be e s sbeesabeenbeesbeeeneee e 328
34.3.2 EXPIESSIONScveiieiienieteste sttt sttt b etttk e bbbttt 328
34.3.3 SCHIPLIELS ..ttt 328
34.3.4 DECIArALIONS ..ottt ae e 329

34.4 Writing JSP scripting Elements in XML........cccooviiiiiiieiieceeeee e 330

K I] (=] (T[0TSO PSPPI 331

Lecture 35: JAVASEIVEN PAJEScooiiiiiiiiiiee ettt 332

35.1 IMPLICIE ODJECESveieeiiiieciee ettt nbe e 332

35.2 ISP DIFECLIVES ...ttt ettt sttt ettt be e bt et e st e sbeeneesneenne e 335

© Copyright Virtual University of Pakistan 17

Web Design and Development (CS506)

35.2. 1 FOMMAL ...ttt b bbb ra e e e 336
35.2.2 ISP PAGE DIFBCTIVE ...ttt 336
35.2.3 ISP INCIUAE DIFECLIVE........eeieeiiecieeie ettt 337
35.3 JSP Life CyCle MEthOUS........oovieiiiiieriisieee et 339
35,4 RETEIBINCES: ... ittt b ettt et b bt enne e be e ne b e 339
LLBCTUIE 30 ...ttt ettt e e et e e e s be e e e anrn e e e 340
36.1 JAVABEEANSottt nbe e 345
36.1.1 JavaBeans Design CONVENTIONSccciuiiieriiiieiiesie et 345
36.2 RETEIBINCES: ... ittt ettt ettt b ettt n e b a e neenre e 352
Lecture 37: JSP Action Elements and SCOPE........coovevervieiieiiieniee e 353
37.1 JSP ACHON EIBMENLSoiiiiiiiiciieieiee e 353
37.2 Working with JavaBeans using JSP Action EIementscccccccvvevveieiieve e, 354
37.2.1 JSP useBean Action EIEMENT.......c.cooiiiiiiii i 354
37.2.2 JSP setProperty Action EIEMeNt...........cccooveiiii i 355
37.2.3 ISP getProperty Action EIEMENt..........cccvviii i 355
37.3 Sharing Beans & ODJECt SCOPEScuviivvrrurerieiiesieeiteseesieenae e sreesressee e eaessee e eseesneesseens 359
I 1 R o - o [TP PPRTOUPRO 359
I A (=T (U= TP PP OUPRO 360
37.3.3 SBSSION .ttt bbbttt bbbt 361
R T S Y o o] o= U1 o] o TSR SSSPRRN 362
37.4 SUMMAry Of ODJECE’S SCOPESveuviieiiiiieieeie e 363
37.5 More JSP ACLION EIEMENTSccooiiiieiiee e 365
37.5.1 ISP include action EIEMENL........ccoviieiiee e 365
37.5.2 ISP forward action EIEMENTt...........ccouviiiiiiiiiec e 365

R I L (=] (][00 PP STP 365
Lecture 38: JSP CUSTOM TaQS ...iivviiiiiiiiiriiiie ettt 366
o R |V [0 1= L1 o] o [PPSR 366
38.2 What IS @ CUSLOM TAG? ...eeeiiiiieiiieiieiie sttt ettt sbe et e e st e sbeenee s 366
38.3 Why BUIld CUSTOM TAG?...c.uiieiiiieiieieiie sttt sttt st sneenne s 367
38.4 Advantages Of USING CUSIOM TagS.....cciuiiuriieriieieseenie e siee e 367

© Copyright Virtual University of Pakistan 18

Web Design and Development (CS506)

38.5 TYPES OF TAGS ...ttt ettt bbbt 367
38.5.1 SIMPIE TAG ittt bt 367
38.5.2 Tag WIth ALITDULESccveiiiiiiieic e 368
38.5.3 Tag WIth BOUY......cciiiiiiiiiiiisiiesee e 368

38.6 BUIlAING CUSLIOM TaGS . eittiriiirieiieieiiie ettt sttt sttt b e be e sneenne e 368
38.6.1 Steps for BUilding CUSTOM TGSceiveeuirerriieieniesiee e siee e 368
38.6.2 Develop the Tag Handler Classcoivereiieiieieiie e 369
38.6.3 Write Tag Library Discriptor (.tld) file.........coooiiiii e 369
o I S B 1= o] [0) V4411 o | ST PR RT ORI 369

38.7 USING CUSIOM TAGS ..veveeveerieitieiteeiestiesteete st e steetestaesteeaessaesteesseaseessaessesneesreeeesneesseens 370

38.8 Building tags With attribDULEScooiiiiiicceccee e 372

38.9 REIBIBNCES: ...ttt ettt nre e 380

Lecture 39: MVC + Case StUAYoouviiiiiieiie e 381

K1 T = (o gl o o [P UPR PR 381
39.1.1 Defining and UsING Error PAgESccoveiieiieiieie et 381

39.2 Case Study — AdAress BOOKccuiiieiiiiieiie st 382
39.2.1 Ingredients OFf AdAress BOOKccccveieiieieiie e ee e sie e 382

39.3 Model View Controller (MVC).......ooiiiieii e 394
39.3.1 Participants and ReSPONSIDIITIESccevviieiieiicie e 395
39.3.2 Evolution of MVC AIChITECIUIEccveiiieieiece e 395

39.3.2.1 MVC MOEI L ...ttt et be e s be e sae e saeesaaesneas 395

3.4 REIBIBNCES: ...ttt b et ettt bbb re e 396

Lecture 40: MVC Model 2 ArchiteCtUre..........ocoivevviiii i, 397

40.1 Page-CentriC APPrOACKcvciuieiiiieceese sttt te e e e re e 397
40.1.1 Page-with-Bean Approach (MVC Modell).........ccccooviiiiiiiiiiiiiiece e 397

40.2 MVC MOdel 2 ArCRITECTUIEocveieiiieierie e 398

40.3 Case Study: Address Book using MVC Model 2...........ccccovveviiiiiie i 399
40.3.1 Introducing a JSP as Controllercccveeiieii i 399
40.3.2 How controller differentiates between requestS?.........cocvvvereereiienieeieseeseenens 399

A0.4 RETEIBINCES: ..ottt bbb bbbttt bbbttt 417

Lecture 41: Layers and TIEFS......cccuiiiiieiee ettt 418

© Copyright Virtual University of Pakistan 19

Web Design and Development (CS506)

411 LAYEIS VS, THEIS ootttk ettt b e bbbt bt 418
I 0 I T PSR UROTTPPPPRPTRS 418
41.1.1.1 PreSentation LAYEE ..ottt 419
O = TN] 1T I - SRS 419
Ot I T B L L B - T PP P PRSP 419
O T TSRS 420
41.2 Layers SUPPOIT IN JAVA ...cc.eiveiiieieiiesieesiesiee e ie e eeae e e et este e ssaesaeeneesreenseaneens 421
41.3 J2EE Multi-Tiered APPHCALIONScccveiiiieiiee et nre e 421
41.4 Case Study: Matrix Multiplication uSINg LAYErScccoceriiiiiniiiieeereie e 422
415 RETEIEINCES: ..oviiieieitieie ettt e st e e et et e e se e e beenteeneesreebeeneeareenreaneenreas 432
Lecture 42: EXPression LanNQUAQJEccccveiueerieiieeieeseesieesaeesieestee e sne e ennees 433
A R @Y= V- SRR STPSRSR 433
42.2 JSP Before and ATIEr ELccovoiiiiiiiee e 433
42.3 EXpression Language NUGOETSccueiiriirereriisieieieee ettt 435
T = IS - T 435
42.3.2 EL IAENTITIEIS (CONL.).eiuiiiiiiiiiie ettt 439
42.3.3 EL ACCESSOIS ...ttt ettt ettt ettt ettt be et et e e s ie e e ebeesab e e beesaneenaeeanneas 440
42.3.4 EL — RODUSE FEALUIES.....ccueiiiiie ettt 441
42.3.5 UsIiNg EXPression LANQUAGEccveieeuerierieeieseesieeiesieesieesiesessteessesneesseesaesneesnens 442
A2.4 RETEIEINCES: ...ttt ettt b e bt et et b et e nneas 448
Lecture 43: JavaServer Pages Standard Tag Library (JSTL)ccceevevivennen, 449
e 0 R 1011 0o 1 £ [0 TSRS 449
A3.2 JSTL & EL oottt 449
43.3 FUNCLIONAI OVEIVIBWiiiiiiiieiieieie ettt st nneas 449
43.4 TWIN TaQ LIDIAIES.....ccveciieeie ettt sre e ae e ne e nreas 449
435 USING JSTL .ouiiiiiieieieiesieie ettt sttt sttt st ne et e ne e 450
43.6 Working with Core ACtIONS (TAGS) ..vvvververreerrerieeiesieesiesieseeseeseeseesreseesreeseesreesseaneens 451
43.7 NetBeans 4.1 and JSTL ... 456
Lecture 44: Client Side Validation & JavaServer Faces (JSF)cccocuvenen. 459
44,1 Client Side Validationcoociiiiiiiiiiieie e 459
44.1.1 Why is Client Side Validation GOOA?...........cccvveiiiiiiiiieie e 459

© Copyright Virtual University of Pakistan 20

Web Design and Development (CS506)

44.2 JAVASEIVEN FACES (JSF) ..ottt 461
44.2.1 Different existing frameWOrKSccciiiiiiiiiiicse e 461
A4.2.2 JAVASEIVEL FACESeiiiie ittt ettt ettt sttt et sttt b b e et e sae e beenbne s 461
44.2.3 JSF Ul COMPONENTES ...cvviiieiiiiieiiiesie ettt 462
44.2.4 JSF EVENtS HANAIINGcciiiiiieiiee e e 463
A4.2.5 JSF VaAlUALOrS.....ccuieiiiiiiiiieiceie ettt ne s 464
44.2.6 JSF — Managed Bean-INtroccoooeeiiiiiniiiisie e 465
44.2.7 JSF —Value BINAINGocviiiiiiiieieeie et 465
44.2.8 JSF — Method BiNAINGcooiiiiiiiiieiesie e 465
44.2.9 JSF NAVIQALION.....ciiiiiiiiieie ettt e ta e re e e sneesteennenneas 465

AA4.3 RETEIEINCES: ...ttt b e bt e bbb e nreas 466

Lecture 45: JaVaSEIVEr FACEScoiiiiiii ittt e 467

A5.1 WD SEIVICES....cuiiuieiiiieiteite sttt ettt st b bbbt et et b et st e b e e bt e s e eee e 467
45,11 INEFOTUCTIONiiiiiiitieie ettt bbb r et neas 467
45.1.2 Web service, Definition by W3C.........cocv i 467
45.1.3 Distributed Computing EVOIULION.........ccccoiiiiiieiicc e 467
45.1.4 CharacteristiCs Of WED SEIVICEScccuiiiiiiiieiee e 468
45.1.5 WhY WED SEIVICES?....ccueeiiieie ettt raesre e 468
45.1.6 Types OF WED SEIVICE.......ccciiiiiiieiicie sttt sttt nra e 469

45.2 Web service Architectural COMPONENTS........c.ccviierierieieiiese e 469

A5.3 RETEIEINCES: ..o.viiiietieie ettt e st teeteese e s beesteeneesreebeeneeene e neeneenreas 470

A5.4 RESOUICES: .. .eeeittieetteeeteee sttt e st e e st e e st e e e ss bt e sab et e aa bt e e ab bt e e ekt e e e eab e e e steeabbeeanbeeeannneeannneens 471

© Copyright Virtual University of Pakistan 21

Web Design and Development (CS506)

Lecture 1: Java Features

This handout is a traditional introduction to any language features. You might not be able to
comprehend some of the features fully at this stage but don’t worry, you’ll get to know about these
as we move on with the course.

1.1 Design Goals of Java

The massive growth of the Internet and the World-Wide Web leads us to a completely new way
of looking at development of software that can run on different platforms like Windows, Linux

and Solaris etc.

1.1.1 Right Language, Right Time
e Java came on the scene in 1995 to immediate popularity.
o Before that, C and C++ dominated the software development

o compiled, no robust memory model, no garbage collector causes memory leakages,
not great support of built in libraries

e Java brings together a great set of "programmer efficient” features
o Putting more work on the CPU to make things easier for the programmer.

1.1.2 Java - Buzzwords (\Vocabulary)

e From the original Sun Java whitepaper: "Java is a simple, object-oriented, distributed,
interpreted, robust, secure, architecture-neutral, portable, high-performance, multi-
threaded, and dynamic language."

e Here are some original java buzzwords.

1.1.3 Java-- Language + Libraries
e Java has two parts.
0 The core language -- variables, arrays, objects

The Java Virtual Machine (JVM) runs the core language
The core language is simple enough to run on small devices phones, smart
cards, PDAs.

0 The libraries

Java includes a large collection of standard library classes to provide "off the
shelf" code. (Useful built-in classes that comes with the language to perform
basic tasks)

Example of these classes is String, ArrayList, HashMap,
StringTokenizer (to break string into substrings), Date ...

Java programmers are more productive in part because they have access to a
large set of standard, well documented library classes.

© Copyright Virtual University of Pakistan 22

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

1.1.4 Simple

Very similar C/C++ syntax, operators, etc.

e The core language is simpler than C++ -- no operator overloading, no pointers, no
multiple inheritance

e The way a java program deals with memory is much simpler than C or C++.

1.1.5 Object-Oriented
e Java is fundamentally based on the OOP notions of classes and objects.
e Java uses a formal OOP type system that must be obeyed at compile-time and run-time.

e This is helpful for larger projects, where the structure helps keep the various parts
consistent. Contrast to Perl, which has a more anything-goes feel.

1.1.6 Distributed / Network Oriented

e Java is network friendly -- both in its portable, threaded nature, and because Common
networking operations are built-in to the Java libraries.

1.1.7 Robust/ Secure / Safe

Java is very robust
o0 Both, vs. unintentional errors and vs. malicious code such as viruses.
o Java has slightly worse performance since it does all this checking. (Or put the
other way, C can be faster since it doesn't check anything.)

e The JVM "verifier" checks the code when it is loaded to verify that it has the correct
Structure -- that it does not use an uninitialized pointer, or mix int and pointer types.
This is one-time “static" analysis -- checking that the code has the correct structure
without running it.

e The JVM also does "dynamic" checking at runtime for certain operations, such as
pointer and array access, to make sure they are touching only the memory they should.
You will write code that runs into

e As a result, many common bugs and security problems (e.g. "buffer overflow™) are not
possible in java. The checks also make it easier to find many common bugs easy, since
they are caught by the runtime checker.

e You will generally never write code that fails the verifier, since your compiler is smart
enough to only generate correct code. You will write code that runs into the runtime
checks all the time as you debug -- array out of bounds, null pointer.

e Java also has a runtime Security Manager can check which operations a particular piece
of code is allowed to do. As a result, java can run untrusted code in a "sandbox" where,
for example, it can draw to the screen but cannot access the local file system.

© Copyright Virtual University of Pakistan 23

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

1.1.8 Portable

e "Write Once Run Anywhere", and for the most part this works.
e Not even a recompile is required -- a Java executable can work, without change, on any
Java enabled platform.

1.1.9 Support for Web and Enterprise Web Applications

e Java provides an extensive support for the development of web and enterprise
applications

e Servlets, JSP, Applets, JDBC, RMI, EJBs and JSF etc. are some of the Java
technologies that can be used for the above mentioned purposes.

1.1.10High-performance

e The first versions of java were pretty slow.

e Java performance has gotten a lot better with aggressive just-in-time-compiler (JIT)
techniques.

e Java performance is now similar to C -- a little slower in some cases, faster in a few
cases. However memory use and startup time are both worse than C.

e Java performance gets better each year as the JVM gets smarter. This works,
because making the JVM smarter does not require any great change to the java
language, source code, etc.

1.1.11 Multi-Threaded

e Java has a notion of concurrency wired right in to the language itself.
e This works out more cleanly than languages where concurrency is bolted on after the
fact.

1.1.12Dynamic

e Class and type information is kept around at runtime. This enables runtime loading
and inspection of code in a very flexible way.

1.1.13Java Compiler Structure

e The source code for each class is in a .java file. Compile each class to produce
“.class” file.

e Sometimes, multiple .class files are packaged together into a .zip or .jar "archive" file.
On UNIX or windows, the java compiler is called “javac"”. To compile all the .java files
in a directory use "javac *.java".

© Copyright Virtual University of Pakistan 24

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

1.1.14Java: Programmer Efficiency

e Faster Development
o Building an application in Java takes about 50% less time than in C or C++. So,
Faster time to market
o Javais said to be “Programmer Efficient”.
e OOP
o Java is thoroughly OOP language with robust memory system
o Memory errors largely disappear because of the safe pointers and garbage collector.
The lack of memory errors accounts for much of the increased programmer
productivity.
e Libraries
0 Code re-uses at last -- String, ArrayList, Date, available and documented in a
standard way

1.1.15 Microsoft vs. Java

e Microsoft hates Java, since a Java program (portable) is not tied to any particular
operating system. If Java is popular, then programs written in Java might promote
non-Microsoft operating systems. For basically the same reason, all the non-
Microsoft vendors think Java is a great idea.

e Microsoft's C# is very similar to Java, but with some improvements, and some
questionable features added in, and it is not portable in the way Java is. Generally it
is considered that C# will be successful in the way that Visual Basic is: a nice tool
to build Microsoft only software.

e Microsoft has used its power to try to derail Java somewhat, but Java remains very
popular on its merits.

1.1.16Java Is For Real

e Java has a lot of hype, but much of it is deserved. Java is very well matched for
many modern problem

e Using more memory and CPU time but less programmer time is an increasingly
appealing tradeoff.
Robustness and portability can be very useful features

o A general belief is that Java is going to stay here for the next 10-20 years

1.1.17 References

e Majority of the material in this handout is taken from the first handout of course
cs193j at Stanford.
e The Java™ Language Environment, White Paper, by James Gosling & Henry
McGilton
e Java’s Sun site: http://java.sun.com
e Java World : www.javaworld.com

© Copyright Virtual University of Pakistan 25

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

Lecture 2: Java Virtual Machine & Runtime Environment

2.1 Basic Concept

When you write a program in C++ it is known as source code. The C++ compiler converts
this source code into the machine code of underlying system (e.g. Windows) If you want to run that
code on Linux you need to recompile it with a Linux based compiler. Due to the difference in
compilers, sometimes you need to modify your code.

Java has introduced the concept of WORA (write once run anywhere). When you write a java
program it is known as the source code of java. The java compiler does not compile this source
code for any underlying hardware system, rather it compiles it for a software system known as
JVM (This compiled code is known as byte code). We have different JVMs for different systems
(such as JVM for Windows, JVM for Linux etc). When we run our program the JVM interprets
(translates) the compiled program into the language understood by the underlying system. So we
write our code once and the JVM runs it everywhere according to the underlying system.

This concept is discussed in detail below

JAVA
Source
Code

Java Compiler javac

¥
Java Bvte
Code

Java Interpreter

Machine

Code

2.1.1 Byte code

Java programs (Source code) are compiled into a form called Java bytecodes.
The Java compiler reads Java language source (.java) files, translates the source into
Java bytecodes, and places the bytecodes into class (.class) files.

e The compiler generates one class file for each class contained in java source file.

© Copyright Virtual University of Pakistan 26

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

Java Java Java
Source Compiler Evytecodes

2.1.2 Java Virtual Machine (JVM)

The central part of java platform is java virtual machine.

Java bytecode executes by special software known as a "virtual machine".

Most programming languages compile source code directly into machine code,
suitable for execution

The difference with Java is that it uses bytecode - a special type of machine code.

The JVM executes Java bytecodes, so Java bytecodes can be thought of as the
machine language of the JVM.

App1 App2 App3 ‘ App4 App5
‘ Java Virtual Machine
Windows Linux OsS X Solaris Linux
Intel PowerPC SPARC

JVM are available for almost all operating systems.
Java byte code is executed by using any operating system’s JVM. Thus achieve
portability.

Java Runtime Environment (JRE)

The Java Virtual Machine is a part of a large system i.e. Java Runtime Environment
(JRE).

Each operating system and CPU architecture requires different JRE.

The JRE consists of set of built-in classes, as well as a JVM.

Without an available JRE for a given environment, it is impossible to run Java
software.

© Copyright Virtual University of Pakistan 27

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

Java Runtime Environment (JRE)

Java API classes
Java Virtual Machine

Operating Systems (Windows, Ui, etc)

Hardware (Intel, Alpha, Motorola, etc)

2.1.4 References

e Java World: http://www.javaworld.com
e Inside Java: http://www.javacoffeebreak.com/articles/inside java

2.2 Java Program Development and Execution Steps

Java program normally go through five phases. These are

Edit,
Compile,
Load,
Verify and
Execute

We look over all the above mentioned phases in a bit detail. First consider the following figure that
summarizes the all phases of a java program.

© Copyright Virtual University of Pakistan 28

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

s [—
e

Prima

Primary

© Copyright Virtual University of Pakistan

Program is coested in
thl: nd:.tn'l: ard stored

Coopiler crastes
bytacodes ard stoTes
them or dizk.

Clagg lpmdar puts
bytecodss in memory.

Byterode ~mrifiar
corfimms that all

byvtacodaz mre -mlid
ard do mot iolate

dma's semirity
Destrictions.

Lilespeeie:r. wools
bytacodas and
tranclatar them into =
lanquage that the

COEpUter Coan
urderstard, passibly
storing data ~alues as
th= progrem ex=cutes.

Web Design and Development (CS506)

2.2.1 Phase 1: Edit

Phase 1 consists of editing a file. This is accomplished with an editor program. The
programmer types a java program using the editor like notepad, and make corrections if
necessary.

When the programmer specifies that the file in the editor should be saved, the program is stored
on a secondary storage device such as a disk. Java program file name ends with a . java
extension.

On Windows platform, notepad is a simple and commonly used editor for the beginners. However
java integrated development environments (IDES) such as NetBeans, Borland JBuilder, JCreator
and IBM’s Eclipse Java built-in editors that are smoothly integrated into the programming
environment.

2.2.2 Phase 2: Compile

In Phase 2, the programmer gives the command javac to compile the program. The java compiler
translates the java program into byte codes, which is the language understood by the java interpreter.

To compile a program called Welcome.java type javac Welcome.java at the command window
of your system. If the program compiles correctly, a file called Welcome. Class is produced. This
is the file containing the byte codes that will be interpreted during the execution phase.

2.2.3 Phase 3: Loading

In phase 3, the program must first be placed in memory before it can be executed. This is
done by the class loader, which takes the .class file (or files) containing the byte codes
and transfers it to memory. The .class file can be loaded from a disk on your system or
over a network (such as your local university or company network or even the internet).

Applications (Programs) are loaded into memory and executed using the java interpreter
via the command java. When executing a Java application called Welcome, the command

Java Welcome

Invokes the interpreter for the Welcome application and causes the class loader to load
information used in the Welcome program.

2.2.4 Phase 4: Verify

Before the byte codes in an application are executed by the java interpreter, they are verified by the
byte code verifier in Phase 4. This ensures that the byte codes for class that are loaded form the
internet (referred to as downloaded classes) are valid and that they do not violate Java’s security
restrictions. Java enforces strong security because java programs arriving over the network should

© Copyright Virtual University of Pakistan 30

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

not be able to cause damage to your files and your system (as computer viruses might).

2.2.5 Phase 5: Execute

Finally in phase 5, the computer, under the control of its CPU, interprets the program one byte code
at a time. Thus performing the actions specified by the program.Programs may not work on the first
try. Each of the preceding phases can fail because of various errors. This would cause the java
program to print an error message. The programmer would return to the edit phase, make the
necessary corrections and proceed through the remaining phases again to determine if the
corrections work properly.

2.2.6 References:

e Java™ How to Program 5th edition by Deitel & Deitel
e SunJava online tutorial: http://java.sun.com/docs/books/tutorial/java/index.html

2.3 Installation and Environment Setting

2.3.1 Installation

e Download the latest version j2se5.0 (java 2 standard edition) from http://java.sun.com
or get it from any other source like CD.

e Note: j2se also called jdk (java development Kit). You can also use the previous
versions like jdk 1.4 or 1.3 etc. but it is recommended that you use either jdk1.4 or
jdk5.0

e Install j2se5.0 on your system

Note: For the rest of this handout, assume that j2se is installed in C:\Program Files\Java\jdk1.5.0

2.3.2 Environment Setting

Once you successfully installed the j2se, the next step is environment or path setting. You can
accomplish this in either of two ways.

2.3.2.1 Temporary Path Setting

e Open the command prompt from Start & Programs & Accessories & Command Prompt.
The command prompt screen would be opened in front of you.
e Write the command on the command prompt according to the following format
path = < java installation directory\bin >
e S0, according to handout, the command will look like this
path = C:\Program Files\Java\jdk1.5.0\bin
e To Test whether path has been set or not, write javac and press ENTER. If the
list of options displayed as shown in the below figure means that you have
successfully completed the steps of path setting.

© Copyright Virtual University of Pakistan 31

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

The above procedure is illustrates in the given below picture.

e CAWINDOWS\system32\cmd.exe

C:\>path=C:\Program Files\Java\jdkl.5.8\bin]
C:\> javac
Usage: javac {options?> <{source files>
where possible options include:
-g Generate all debugging info
-g:none Generate no debugging info
-g:{lines,vars,source} Generate only some debugging
-nowarn Generate no warnings
-verbose Qutput messages about what t
adeprecation Qutput source locations wher
se
-classpath <{path> Specify where to find user c
-cp {path> Specify where to find user ¢
-sourcepath (Eath> Specify where to find input
-bootclasspath <{path> Qverride location of bootstr
l—extdirs {dirs> Override lﬂcation of insta{jﬂ
4 3

Note: The issue with the temporary path setting is you have to repeat the above explained
procedure again and again each time you open a new command prompt window. To avoid this
overhead, it is better to set your path permanently

2.3.2.2 Permanent Path Setting

e In Windows NT (XP, 2000), you can set the permanent environment variable.
¢ Right click on my computer icon click on properties as shown below

v Docurnents

Open
Explore
Search...
Manage

Map MNetwork Drive. ..
Disconneck Mektwork Drive. ..

Create Shorkcut
Rename

Properties

© Copyright Virtual University of Pakistan 32

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

A System Properties frame would appear as shown in the picture.

System Properties e |

General I Metwork, [dentification I Hardware I User Profiles Advanced I

— Perfarmance

::: = Performance optionz contral how applications use memory,

— which affects the zpeed of pour computer.

Perfarmance Optiohz. . I

— Environment v ariables
@ E hvironment wariables tell your computer where bo find certain

tppes of information.
Ervironment W ariables... >
— Startup and Recaovery

E[Startup and recoverny options tell your computer how to start
— and what to do if an error cauzes your computer to stop.

Startup and Recoveny... I

(] I Cancel I Apply I

Select the advanced tab followed by clicking the Environment Variable
button. The Environment variables frame would be displayed in front of you

Locate the Path variable in the System or user variables, if it is present there,
select it by single click. Press Edit button. The following dialog box would be
appeared.

New System Variable

Yariable name: PATH

Yariable value:

[Ok H Cancel]

Write; C:\Program Files\Java\jdk1.5.0\bin at the end of the value field.
Press OK button. Remember to write semicolon (;) before writing the path for
java installation directory as illustrated in the above figure.

If Path variable does not exist, click the New button. Write variable name
“PATH?”, variable value C:\Program Files\Java\jdk1.5.0\bin and press OK button.
Now open the command prompt and write javac, press enter button. You see the list of
options would be displayed.

After setting the path permanently, you have no need to set the path for each new
opened command prompt.

© Copyright Virtual University of Pakistan 33

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

2.3.3 References

Entire material for this handout is taken from the book JAVA A Lab Course by Umair
Javed. This material is available just for the use of VU students of the course Web Design
and Development and not for any other commercial purpose without the consent of
author.

2.4 First Program in Java
Like any other programming language, the java programming language is used to create

applications. So, we start from building a classical “Hello World” application, which is generally
used as the first program for learning any new language.

2.4.1 HelloWorldApp

e Open notepad editor from Start ¢ ProgarmFiles & Accessoriess> Notepad.
e Write the following code into it.

Note: Don’t copy paste the given below code. Probably it gives errors and you can’t able to remove
them at the beginning stage.

./* The HelloWorldApp class implements an application that
.simply displays "Hello World!" to the standard output.

eV 4

public class HelloWorldApp {

-.public static void main(String[] args) {

.//Display the string. No global main
.System.out.printIn(*“Hello World);

-}

-}

OCoO~NOUITD,WNE

e To save your program, move to File menu and choose save as option.

e Save your program as “HelloWorldApp.java” in some directory. Make sure to
add double quotes around class name while saving your program. For this example
create a folder known as “examples” in D: drive

Note: Name of file must match the name of the public class in the file (at line 4).
Moreover, it is case sensitive. For example, if your class name is MyClasS, than file
name must be MyClasS. Otherwise the Java compiler will refuse to compile the
program.

For the rest of this handout, we assume that program is saved in D:\examples directory.

© Copyright Virtual University of Pakistan 34

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

2.4.2

2.4.3

HelloWorldApp Described

Lines 1-3
0 Like in C++, You can add multiple line comments that are ignored by the compiler.

Lines 4
0 Line 4 declares the class name as Hel loWor 1dApp. In java, every line of code

must reside inside class. This is also the name of our program
(HelloWorldApp.java).The compiler creates the Hel loWor ldApp.-class if
this program successfully gets compiled.

Lines 5
0 Line 5 is where the program execution starts. The java interpreter must find this

defined exactly as given or it will refuse to run the program. (However you can
change the name of parameter that is passed to main. i.e. you can write String[]
argv or String[] someParam instead of String[] args)

o Other programming languages, notably C++ also use the main() declaration as the
starting point for execution. However the main function in C++ is global and
resides outside of all classes where as in Java the main function must reside inside a
class. In java there are no global variables or functions. The various parts of this main
function declaration will be covered at the end of this handout.

Lines 6
0 Again like C++, you can also add single line comment

Lines 7
o0 Line 7 illustrates the method call. The printIn() method is used to print

something on the console. In this example printIn() method takes a string
argument and writes it to the standard output i.e. console.

Lines 8-9
0 Line 8-9 of the program, the two braces, close the method main() and the

classHe l loWor IdApp respectively.

Compiling and Running HelloWorldApp
Open the command prompt from Start & Program Files & Accessories. OR
alternatively you can write cmd in the run command window.
Write cd.. to came out from any folder, and cd [folder name] to move inside the specified
directory. To move from one drive to another, use [Drive Letter]: See figure given below
After reaching to the folder or directory that contains your source code, in our case

HelloWorldApp.java.
Use “javac” on the command line to compile the source file (“.java” file).

e D:\examples> javac HelloWorld.java

© Copyright Virtual University of Pakistan 35

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

e |If program gets successfully compiled, it will create a new file in the same directory named
HelloWorldApp.class that contains the byte-code.
e Use “java” on the command line to run the compiled .class file. Note “.class” would be
added with the file name.
e D:\examples> java HelloWorld
e You can see the Hello World would be printed on the console. Hurrah! You are
successful in writing, compiling and executing your first program in java

e CAWINDOWS\system3 2'cmd.exe x

:“\Documents and Settings>cd.. —
:S\NoD:
:Noed examples

:\examples? javac HellolorldApp. java

DDD(’)(’)

:\examples> java Hel loHorldaipp
Hello World

D:Nexamples>_

-
4 | >

2.4.4 Points to Remember

Recompile the class after making any changes

e Save your program before compilation

e Only run that class using java command that contains the main method, because program
executions always starts form main

2.5 An Idiom Explained

e You will see the following line of code often:
0 public static void main(String args[]) { ...}

e About main()
0 “main” is the function from which your program starts

o Why public?

o0 Since main method is called by the JVM that is why it is kept public so that it is
accessible from outside. Remember private methods are only accessible from
within the class

e Why static?
o Every Java program starts when the JRE (Java Run Time Environment) calls the

© Copyright Virtual University of Pakistan 36

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

2.6

main method of that program. If main is not static then the JRE have to create an

object of the class in which main method is present and call the main method on that

object (In OOP based languages method are called using the name of object if they

are not static). It is made static so that the JRE can call it without creating an object.
0 Also to ensure that there is only one copy of the main method per class

Why void?
0 Indicates that main () does not return anything.

What is String args[] ?
o0 Way of specifying input (often called command-line arguments) at startup of
application. More on it latter

References

Entire material for this handout is taken from the book JAVA A Lab Course by Umair
Javed. This material is available just for the use of VU students of the course Web Design
and Development and not for any other commercial purpose without the consent of
author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 37

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

Lecture 3: Learning Basics
3.1 Strings

A string is commonly considered to be a sequence of characters stored in memory and accessible
as a unit. Strings in java are represented as objects.

3.1.1 String Concatenation
e “+” operator is used to concatenate strings

o System.out.printin(“Hello” + “World”) will print Hello World on console

e String concatenated with any other data type such as int will also convert that
datatype to String and the result will be a concatenated String displayed on console.

For example,
o inti=4;
O intj=5;

= System.out.printin (“Hello” + i);// will print Hello 4 on screen
o However

= System.out.printIn(i+j);//will print 9 on the console because both i and j
are of type int.

3.1.2 Comparing Strings

For comparing Strings never use == operator, use equals method of String class.

e == operator compares addresses (shallow comparison) while equals compares values (deep
comparison)

o E.g. stringl.equals(string2)

Example Code: String concatenation and comparison

public class StringTest {

public static void main(String[] args) {
int i = 4;

int j = 5;
System.out.printIn('Hello™ + i1); // will print Hello4
System.out.printin(i + j); // will print 9

String sl = new String (“pakistan™);

© Copyright Virtual University of Pakistan 38

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

String s2 = “pakistan’;

iIf (sl == s2) {

System.out.printin(*“comparing string using == operator’™);
}

iIT (sl.equals(s2)) {

System.out.printIn(**comparing string using equal method™);

}
+

On execution of the above program, following output will produce
e+ Co\WINDOWS\system32\emd.exe

D:N\examples? javac Stringlest. java

D:Nexamples? java Stringlest
Hel lo4d

comparing string using equal method

3.2 Taking in Command Line Arguments

In Java, the program can be written to accept command-line-arguments.

Example Code: command-line arguments

arguments. */

public class CmdLineArgsApp {

public static void main(String[] args){ //main method
System.out.printIn(C’First argument ”’ + args[0]D):;
System.out.printIn(C’Second argument ” + args[1]);
}//end main

}//End class.

/* This Java application illustrates the use of Java command-line

To execute this program, we pass two arguments as shown below:

public void someMethod() {
int x; //local variable
System.out.printIn(x); // compile time error

e These parameters should be separated by space.

e The parameters that we pass from the command line are stored as Strings inside the “args”

array. You can see that the type of “args” array is String.

© Copyright Virtual University of Pakistan

39

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

Example Code: Passing any number of arguments

In java, array knows their size by using the length property. By using, length property we can
determine how many arguments were passed. The following code example can accept any
number of arguments.

/* This Java application illustrates the use of Java
command-line arguments. */

public class AnyArgsApp {

public static void main(String[] args){ //main method
for(int 1=0; 1 < args.length; i++)
System.out.printIn(**Argument:” + 1 + *“ value ” +args[i]);
}//end main

}//End class.

Output

C:\java AnyArgsApp 1 can pass any number of arguments
Argument:0 value 1

Argument:1 value can

Argument:2 value pass

Argument:3 value any

Argument:4 value number

Argument:5 value of

Argument:6 value arguments

3.3 Primitives vs. Objects

Everything in Java is an “Object”, as every class by default inherits from class “Object”,
except a few primitive data types, which are there for efficiency reasons.

e Primitive Data Types

o Primitive Data types of java

= boolean, byte @ 1 byte

= char, short @ 2 bytes
= int, float @ 4 bytes
= |ong, double @ 8 bytes

e Primitive data types are generally used for local variables, parameters and instance variables
(properties of an object)

e Primitive data types are located on the stack and we can only access their value,
while objects are located on heap and we have a reference to these objects

© Copyright Virtual University of Pakistan 40

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

e Also primitive data types are always passed by value while objects are always
passed by reference in java. There is no C++ like methods

0 void someMethod(int &a, int & b)) // not available in java

3.4 Stack vs. Heap

Stack and heap are two important memory areas. Primitives are created on the stack while
objects are created on heap. This will be further clarified by looking at the following diagram
that is taken from Java Lab Course.

) . Stack Heapl|
intnum =3;
Stmdents =new Student();
L
5
0F59
ot /“" namg ali
.--""""rr'
OF59

3.5 Wrapper Classes

Each primitive data type has a corresponding object (wrapper class). These wrapper
classes provides additional functionality (conversion, size checking etc.), which a primitive
data type cannot provide.

Primitive Corresponding
Data Type Object Class
byte Byte
short short
int Integer
long Long
float Float
double Double
char Character
boolean Boolean

© Copyright Virtual University of Pakistan 41

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

3.5.1 Wrapper Use

You can create an object of Wrapper class using a String or a primitive data type

e Integer num = new Integer(4); or
e Integer num = new Integer(“4”);

Note: num is an object over here not a primitive data type

You can get a primitive data type from a Wrapper using the corresponding value function

e int primNum = num.intValue();

3.5.2 Converting Strings to Numeric Primitive Data Types

To convert a string containing digits to a primitive data type, wrapper classes can help.
parseXxx method can be used to convert a String to the corresponding primitive data

type.

e String value = “5327;

int d = Integer.parselnt(value);

e String value = “3.14e6”;

double d = Double.parseDouble(value);

The following table summarizes the parser methods available to a java programmer.

Data Type Convert String using either ...
byte Bvte.parzeByte (string)
new Byte (string) .byteValue ()
short Short.parsesShort (string)
new Short(string) .3hortValue()
int Integer.parselnteger (string)
new Integer(string) .intValue()
long Long .parseLong (string)
new Long (string) . longValue ()
float Float.parseFloat (string)
new Floati{string)} .floatValue()
double Double.parseDouble (string)
new Double(string) .doubleValue ()

Example Code: Taking Input / Output

So far, we learned how to print something on console. Now the time has come to learn how to
print on the GUI. Taking input from console is not as straightforward as in C++. Initially we’ll

study how to take input through GUI (by using JOPtionPane class).

© Copyright Virtual University of Pakistan

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

The following program will take input (a number) through GUI and prints its square on the
console as well on GUI.

import javax.swing.*;

. public class InputOutputTest {

public static void main(String[] args) {

. //takes input through GUI

. String input = JOptionPane.showlnputDialog("'Enter number™);
. Int number = Integer.parselnt(input);

. Int square = number * number;

. //Display square on console

. System.out.printIn(*'square:" + square);

10 //Display square on GUI

11. JOptionPane.showMessageDialog(null, ''square:''+ square);
12. System.exit(0);

13. }

14. }

@OO\JCDU‘I#OOI\)I—‘

On line 1, swing package was imported because it contains the JOptionPane class that will be

used for taking input from GUI and displaying output to GUI. It is similar to header classes of
CHi,

On line 5, showlnputDialog method is called of JOptionPane class by passing string
argument that will be displayed on GUI (dialog box). This method always returns back a
String regardless of whatever you entered (int, float, double, char) in the input filed.

Our task is to print square of a number on console, so we first convert a string into a
number by calling parselnt method of Integer wrapper class. This is what we done on line
number 6.

Line 11 will display square on GUI (dialog box) by using showMessageDialog method of
JOptionPane class. The first argument passed to this method is null and the second argument
must be a String. Here we use string concatenation.

Line 12 is needed to return the control back to command prompt whenever we use
JoptionPane class.

Compile & Execute
e+ C:\WINDOWS\system32\cmd.exe

D:\examples? javac InputQutputTest. java 3

D:\examples? java InputQutputTest
square: 144

[3|:\examples b | ﬁj

© Copyright Virtual University of Pakistan 43

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

By

Input
L] Enter the number
12
OK Cancel
Message]

@ souare: 144

OK

3.6 Selection & Control Structure

The if-else and switch selection structures are exactly similar to we have in C++. All
relational operators that we use in C++ to perform comparisons are also available in java
with same behavior. Likewise for, while and do-while control structures are alike to C++.

3.7 Reference:

e Java tutorial: http://www.dickbaldwin.com/java

e Example code, their explanations and corresponding figures for this handout are taken from
the book JAVA A Lab Course by Umair Javed. This material is available just for the use of
VU students of the course Web Design and Development and not for any other commercial

purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on“Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 44

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

Lecture 4: Object Oriented Programming

Java is fundamentally object oriented. Every line of code you write in java must be inside a class
(not counting import directives).OOP fundamental stones Encapsulation, Inheritance and
Polymorphism etc. are all fully supported by java.

4.1 OOP Vocabulary Review

4.1.1 Classes
e Definition or a blueprint of a user defined data type
e Prototypes for objects
e Think of it as a map of the building on a paper

4.1.2 Objects
e Nouns, things in the world
Anything we can put a thumb on
e Objects are instantiated or created from class

4.1.3 Constructor
e A special method that is implicitly invoked. Used to create an Object (that is,
an Instance of the Class) and to initialize it.

4.1.4 Attributes
e Properties an object has

4.1.5 Methods
e Actions that an object can do

4.2 Defining a Class

class Point {

private int xCord; "—| inastance vanables andsyvmbolic constants
private int yCord;

ublic Point (Y [: constructor - how to create and initialize
P () £ ' - objects

{ methods - how to mamnipulate those objects
<= (may or may not include its ovn “diver”,
Le. main{ M

} //end of class

© Copyright Virtual University of Pakistan 45

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

4.3

Comparison with C++

Some important points to consider when defining a class in java as you probably noticed from the
above given skeleton are

Note:

There are no global variables or functions. Everything resides inside a class. Remember
we wrote our main method inside a class.(For example, in HelloWorldApp
program)

Specify access modifiers (public, private or protected) for each member method or data
members at every line.

O public: accessible anywhere by anyone

o private: Only accessible within this class

O protect: accessible only to the class itself and to its subclasses or other classes in
the same package.

o default: default access if no access modifier is provided. Accessible to all classes in
the same package.

There is no semicolon (;) at the end of class.

All methods (functions) are written inline. There are no separate header and
implementation files.

Automatic initialization of class level data members if you do not initialize them

o Primitives

= Numeric (int, float etc) with zero.
= Char with null
= Boolean with false

0 Object References

= With null

Remember, the same rule is not applied to local variables (defined inside

method body). Using a local variable without initialization is a compile time error

3

Public void someMethod() {
int x; //local variable
System.out.printin(x); // compile time error

Constructor

0 Same name as class name
o Does not have a return type
o No initialization list

© Copyright Virtual University of Pakistan 46

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

o JVM provides a zero argument (default) constructor only if a class doesn’t
define its own constructor
e Destructors

o Are not required in java class because memory management is the
responsibility of JVM.

4.4 Task - Defining a Student class
The following example will illustrate how to write a class. We want to write a “Student” class that

e Should be able to store the following characteristics of student

o Roll No
o Name
e Provide default, parameterized and copy constructors

o Provide standard getters/setters (discuss shortly) for instance variables

= Make sure, roll no has never assigned a negative value i.e. ensuring the
correct state of the object
= Provide print method capable of printing student object on console

45 Getters / Setters

The attributes of a class are generally taken as private or protected. So to access them outside of
a class, a convention is followed knows as getters & setters. These are generally public
methods. The words set and get are used prior to the name of an attribute. Another
important purpose for writing getter & setters to control the values assigned to an attribute.

Student Class Code

// File Student.java

public class Student {

private String name;

private int rollINo;

// Standard Setters

public void setName (String name) {
this.name = name;

¥

// Note the masking of class level variable rollINo
public void setRolINo (int rolINo) {

iT (rollNo > 0) {

this.rolINo = rollINo; }else {

this.rolINo = 100;

© Copyright Virtual University of Pakistan 47

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

+

// Standard Getters

public String getName () {
return name;

by

public int getRolINo () {
return rollINo;
¥

// Default Constructor
public Student() {
name = “not set’’;
rolINo = 100;
¥
// parameterized Constructor for a new student
public Student(String name, int rolINo) {
setName(name);//call to setter of name
setRolINo(rolINo); //call to setter of rollINo
¥
// Copy Constructor for a new student
public Student(Student s) {
name = s.name;
rolINo = s.rollINo;
¥
// method used to display method on console
public void print O {
System.out.print(*'Student name: " +name);
System.out.printin(’’, roll no: " +rolINo); }
} 7/ end of class

4.6 Using a Class
Objects of a class are always created on heap using the “new” operator followed by
constructor
e Student s = new Student (); // no pointer operator “*” between Student and s
e Only String constant is an exception
o String greet = “Hello” ; // No new operator
0 However you can also use
e String greet2 = new String(“Hello”);
Members of a class (member variables and methods also known as instance
variables/methods) are accessed using “.” operator. There is no “—>" operator in java
e s.setName(*Ali”);
e s—setName(*Ali”) is incorrect and will not compile in java

Note: Objects are always passed by reference and primitives are always passed by value
in java.

© Copyright Virtual University of Pakistan 48

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

4.6.1 Task - Using Student Class

o Create objects of student class by calling default parameterize and copy constructor
e Call student class various methods on these objects.

Student client code

// File Test.java

/* This class create Student class objects and demonstrates
how to call various methods on objects

*/

public class Test{
public static void main (String args[]){
// Make two student obejcts

Student sl = new Student(ali™, 15);

Student s2 = new Student(); //call to default costructor
sl.print(); // display ali and 15

s2.print(); // display not set and 100
s2._setName("'usman');

s2.setRolINo(20);

System.out.print(*'Student name:" + s2.getName());
System.out.printIn(’* rolINo:" + s2.getRolINo());

System.out.printIn(calling copy constructor');
Student s3 = new Student(s2); //call to copy constructor

s2.print();

s3.print();

s3.setRolINo(-10); //Roll No of s3 would be set to 100
s3.print();

/*NOTE: public vs. private

the Student class when rollINo is declared
protected or private

*/

} //end of main

} //end of class

A statement like "b.rolINo = 10;" will not compile 1n a client of

© Copyright Virtual University of Pakistan

49

Web Design and Development (CS506)

Compile & Execute

Compile both classes using javac commad. Run Test class using java command.

cv CAWINDOWS\system32\cmd.exe

D:\examples> javac Student. java :J
D:\examples? javac Test. java

D:\examples> java Test

Student name:ali, roll no:15
Student name:Not Set, roll no:léd
Student name:usman rollNo:28
calling copy constructor

Student name:usman, roll no:ZB
Student name:usman, reoll no:28
Student name:usman, roll no:l16Q

?f\examples>_ | ;jﬂ

4.7 More on Classes

4.7.1 Static

A class can have static variables and methods. Static variables and methods are
associated with the class itself and are not tied to any particular object. Therefore statics can be
accessed without instantiating an object. Static methods and variables are generally
accessed by class name.

The most important aspect of statics is that they occur as a single copy in the class
regardless of the number of objects. Statics are shared by all objects of a class. Non static methods
and instance variables are not accessible inside a static method because no this reference is
available inside a static method.

We have already used some static variables and methods. Examples are

. System.out.printIn(““some text’); ---outis a static variable

. JOptionPane.showMessageDialog(null, “sometext’) ;-----
showMessageDialog is a static method

4.7.2 Garbage Collection & Finalize

Java performs garbage collection and eliminates the need to free objects explicitly. When an
object has no references to it anywhere except in other objects that are also
unreferenced, its space can be reclaimed. Before an object is destroyed, it might be necessary for
the object to perform some action. For example: to close an opened file. In such a case, define a
finalize() method with the actions to be performed before the object is destroyed.

© Copyright Virtual University of Pakistan 50

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

4.7.2.1 Finalize

When a finalize method is defined in a class, Java run time calls finalize() whenever it is about to
recycle an object of that class. It is noteworthy that a garbage collector reclaims objects in any order
or never reclaims them. We cannot predict and assure when garbage collector will get back the
memory of unreferenced objects.

The garbage collector can be requested to run by calling System.gc() method. It is not necessary
that it accepts the request and run.

Example Code: using static & finalize ()

We want to count exact number of objects in memory of a Student class the one defined earlier. For
this purpose, we’ll modify Student class.

e Add a static variable countStudents that helps in maintaining the count of student objects.

e Write a getter for this static variable. (Remember, the getter also must be static one. Hoping
s0, you know the grounds).

¢ Inall constructors, write a code that will increment the countStudents by one.

e Override finalize() method and decrement the countStudents variable by one.

e Override toString() method.

Class Object is a superclass (base or parent) class of all the classes in java by
default. This class has already finalize() and toString() method (used to convert
an object state into string). Therefore we are actually overriding these methods
over here. (We’ll talk more about these in the handout on inheritance).

By making all above modifications, student class will look like

// File Student.java

public class Student {

private String name;

private int rollINo;

private static int countStudents = O;

// Standard Setters

public void setName (String name) {
this.name = name;

by

// Note the masking of class level variable rollINo
public void setRolINo (int rolINo) {

if (rollNo > 0) {

this.rolINo = rollINo; }else {

this.rolINo = 100;

+
+

© Copyright Virtual University of Pakistan 51

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

// Standard Getters

public String getName () {
return name;

¥

public int getRolINo () {
return rolINo;
¥

// gettter of static countStudents variable

public static int getCountStudents(){
return countStudents;

¥

// Default Constructor
public Student() {

name = ‘“not set’;
rolINo = 100;
countStudents += 1;

}

// parameterized Constructor for a new student
public Student(String name, int rolINo) {
setName(name);//call to setter of name
setRolINo(rolINo); //call to setter of rollINo
countStudents += 1;

}

// Copy Constructor for a new student
public Student(Student s) {

name = s.name;

rolINo = s.rollINo;

countStudents += 1;

by

// method used to display method on console

public void print () {

System.out.print(*'Student name: +name) ;
System.out._printin(’’, roll no: "™ +rolINo); }

// overriding toString method of java.lang.Object class

public String toString(){

return “name: ” + name + “ RolINo: ” + rollINo;

ks

// overriding finalize method of Object class

public void finalize(){

countStudents -= 1;

}
} // end of class

© Copyright Virtual University of Pakistan

52

Web Design and Development (CS506)

Next, we’ll write driver class. After creating two objects of student class, we deliberately
loose object’s reference and requests the JVM to run garbage collector to reclaim the
memory. By printing countStudents value, we can confirm that. Coming up code is of the
Test class.

// File Test.java

public class Test{

public static void main (String args[]){ int numObjs;
// printing current number of objects 1.e O

numObjs = Student.getCountStudents();
System.out.printIn(*Students Objects” + numObjs);

// Creating first student object & printing its values
Student sl = new Student(ali™, 15);
System.out._printIn(*Student: ” + sl.toString());

// printing current number of objects i.e. 1

numObjs = Student.getCountStudents();
System.out.printIn(“Students Objects” + numObjs);

// Creating second student object & printing i1ts values
Student s2 = new Student(*'usman'', 49);

// implicit call to toString() method
System.out.printIn(*Student: ” + s2);

// printing current number of objects 1.e. 2
numObjs = Student.getCountStudents();
System.out.printIn(*Students Objects” + numObjs);

// loosing object reference
sl = null;

// requesting JVM to run Garbage collector but there is
// no guarantee that 1t will run

System.gcQ);

// printing current number of objects i.e. unpredictable
numObjs = Student.getCountStudents();
System.out.printIn(“Students Objects” + numObjs);

} //end of main

} //end of class

The compilation and execution of the above program is given below. Note that output may be
different one given here because it all depends whether garbage collector reclaims the
memory or not. Luckily, in my case it does.

© Copyright Virtual University of Pakistan 53

Web Design and Development (CS506)

cr CAWINDOWS\system32\cmd.exe

D:\examplessstatic_finalize> javac Student. java :J
D:\examplessstatic_finalize> javac Test. java

D:~examplessstatic_finalize?»java Test
Students Objects:

Student:name: aliRollNo: 15

Students Objects:1

Student :name: usmanRollNo: 49
Students Objects:2

Students Objects:1

D:N\exampleshstatic_finalize>_

-
4| | »

4.8 Reference:

Sun java tutorial: http:/java.sun.com/docs/books/tutorial/java

Thinking in java by Bruce Eckle

Beginning Java2 by Ivor Hortan

Example code, their explanations and corresponding execution figures for this
handout are taken from the book JAVA A Lab Course by Umair Javed. This material is
available just for the use of VU students of the course Web Design and Development and
not for any other commercial purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 54

Web Design and Development (CS506)

Lecture 5: Inheritance

In general, inheritance is used to implement a “is-a” relationship. Inheritance saves code rewriting
for a client thus promotes reusability.

In java parent or base class is referred as super class while child or derived class is known as sub class.

5.1 Comparison with C++

e Java only supports single inheritance. As a result a class can only inherit from one
class at one time.

Keyword extends is used instead of “:” for inheritance.

All functions are virtual by default

All java classes inherit from Object class (more on it later).

To explicitly call the super class constructor, use super keyword. It’s important to
remember that call to super class constructor must be first line.

e Keyword super is also used to call overridden methods.

Example Code: using inheritance

We’ll use three classes to get familiar you with inheritance. First one is Employee class. This will act
as super class. Teacher class will inherit from Employee class and Test class is driver class that
contains main method. Let’s look at them one by one

class Employee{

protected int id;

protected String name;

//parameterized constructor

public Employee(int i1d, String name){
this.id = id;

this.name = name;

//default constructor
public Employee(){
// calling parameterized constructor of same (Employee)
// class by using keyword this
this (10, “not set™);
¥
//setters
public void setld (int 1d) {
this.id = id;

public void setName (String name) {
this.name = name;

3

© Copyright Virtual University of Pakistan 55

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

//getters

public int getld O {
return id;

¥

public String getName () {
return name;
¥

// displaying employee object on console

public void display(){

System.out.printIn(*in employee display method”);
System.out.printIn(C'Employee id:" + id + ™ name:"™ + name);
¥

//overriding object’s class toString method

public String toString() {

System.out.printIn(*in employee toString method™);

return "id:" + id + "name:" + name;

}
}¥//end class

The Teacher class extends from Employee class. Therefore Teacher class is a subclass of
Employee. The teacher class has an additional attribute i.e. qualification.

class Teacher extends Employee{

private String qual;

//default constructor

public Teacher () {

//implicit call to superclass default construct
qual = ""';

¥

//parameterized constructor

public Teacher(int i, String n, String q){
//call to superclass param const must be first line
super(i,n);

qual = q;
}
//setter

public void setQual (String qual){
this.qual = qual;
¥

//getter

public String getQual(){
return qual;

}

//overriding display method of Employee class
public void display(){
System.out.printIn(’'in teacher®s display method™);

© Copyright Virtual University of Pakistan 56

Web Design and Development (CS506)

super.display(); //call to superclass display method

System.out.printIn("'Teacher qualification:" + qual);

¥

//overriding toString method of Employee class
public String toString() {

System.out.printIn(’'in teacher®s toString method™);

String emp = super.toString();

return emp +" qualification:™ + qual;

}
}//end class

Objects of Employee & Teacher class are created inside main method in Test class
made to display and toString method using these objects.

. Later calls are

class Test{

public static void main (String args[]){
System.out.printIn("'making object of employee™);
Employee e = new Employee(89, "khurram ahmad');
System.out.printIn(’'making object of teacher');
Teacher t = new Teacher (91, "ali raza', "phd™);
e.display(); //call to Employee class display method
t.display(); //call to Teacher class display method
// calling employee class toString method explicitly
System.out.printin("'Employee: " +e.toString());

// calling teacher class toString implicitly
System.out.printIn('Teacher: " + t);

} //end of main

}//end class

Output

=+ CAWINDOW S\system3 2\cmd.exe

twexamplesspolymorphism?» javac Employee. java

:nexamplesspolymorphism?> javac Teacher. java

:Nexamplesspolymorphism> javac Test. java

O 0O 0 O

tvexamplesNpolymorphism?» java Test
in emplovyee display metho

Employee id:89 name:khurram ahmad
in teacher’s display method

in employee display method
Employee id:91 name:ali raza
Teacher qualification:phd

in employee toString method
Employee: id:8%name: khurram ahmad
in teacher’s toString metho

in employee toString method
Teacher: id:91lname:ali raza qualification:phd

D:v~examples\polymorphism>

-
< >

© Copyright Virtual University of Pakistan

57

Web Design and Development (CS506)

5.2 Object - The Root Class

The Object class in Java is a superclass for all other classes defined in Java's class
libraries, as well as for user-defined Java classes. For user defined classes, its not
necessary to mention the Object class as a super class, java does it automatically for you.

The class Hierarchy of Employee class is shown below. Object is the super class of Employee
class and Teacher is a subclass of Employee class. We can make another class Manager that can also
extends from Employee class.

Object

I

Employe

A

Teacher Manager

5.3 Polymorphism

“Polymorphic” literally means “of multiple shapes” and in the context of OOP,
Polymorphic means “having multiple behaviors”.
e A parent class reference can point to the subclass objects because of is-a relationship.
For example a Employee reference can point to:

o Employee Object
0 Teacher Object
0 Manager Object

e A polymorphic method results in different actions depending on the object being
referenced

0 Also known as late binding or run-time binding
Example Code: using polymorphism

This Test class is the modification of last example code. Same Employee & Teacher classes are
used. Objects of Employee & Teacher class are created inside main methods and calls are made to

© Copyright Virtual University of Pakistan 58

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

display and toString method using these objects.
Example Code: using polymorphism

This Test class is the modification of last example code. Same Employee & Teacher classes
are used. Objects of Employee & Teacher class are created inside main methods and calls are
made to display and toString method using these objects.

class Test{

public static void main (String args[]){

// Nake employee references

Employee refl, ref2;

// assign employee object to first employee reference
refl = new Employee(89, "khurram ahmad™);

// is-a relationship, polymorphism

ref2 = new Teacher (91, "ali raza™, 'phd™);

//call to Employee class display method

refl.display(Q);

//call to Teacher class display method

ref2_display();

// call to Employee class toString method

System.out.printin(C'Employee: ™ +refl.toString());

// call to Teacher class toString method

System.out.printIn(C'Teacher: " + ref2.toString());

} //end of main

}//end class

Output

e CAWINDOWS\system3 2\cmd. exe X

D: \examples\old\polymorﬁhlsm)Java Test —
in employee display met

Employee id:89 name:khurram ahmad

in teacher’s display method

in employee display method

Employee id:91 name:ali raza

Teacher qualification:phd

in employee toString method

Emplcyee 1d &8%name: khurram ahmad

in teacher’s toString method

in employee toString method

Teacher: id:9lname:ali raza qualification:phd

1 | | ’

© Copyright Virtual University of Pakistan 59

Crystal Academy
Highlight

Web Design and Development (CS506)

5.4 Type Casting

In computer science, type conversion or typecasting refers to changing an entity of one data type
into another. Type casting can be categorized into two types

5.4.1 Up-casting

converting a smaller data type into bigger one
Implicit - we don’t have to do something special
No loss of information

Examples of

o Primitives
int a = 10;
double b = a;

o Classes
Employee e = new Teacher();

5.4.2 Down-casting

converting a bigger data type into smaller one
Explicit - need to mention

Possible loss of information

Examples of

o Primitives

double a = 7.65;
int b = (int) a;
o Classes

Employee e = new Teacher();// up-casting
Teacher t= (Teacher) e;// down-casting

5.5 References:

e Java tutorial: http://java.sun.com/docs/books/tutorial/java/javaOO/

e Stanford university

e Example code, their explanations and corresponding figures for handout 5-1,5-2
are taken from the book JAVA A Lab Course by Umair Javed. This material is
available just for the use of VU students of the course Web Design and
Development and not for any other commercial purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

Lecture 6: Collections

© Copyright Virtual University of Pakistan 60

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

A collection represents group of objects know as its elements. Java has a built-in support for
collections. Collection classes are similar to STL in C++. An advantage of a collection over
an array is that you don’t need to know the eventual size of the collection in order to add objects to
it. The java.util package provides a set of collection classes that helps a programmer in number of
ways.

6.1 Collections Design

All classes almost provides same methods like get (), size (), iSEmpty() etc. These methods will
return the object stored in it, number of objects stored and whether collection contains an
object or not respectively.

Java collections are capable of storing any kind of objects. Collections store references to
objects. This is similar to using a void* in C. therefore down casting is required to get the
actual type. For example, if string in stored in a collection then to get it back, we write

String element = (String)arraylist.get(i);
6.2 Collection messages

Some basic messages (methods) are:

e Constructor
0 creates a collection with no elements.
e intsize()
0 returns the number of elements in a collection.
e Dboolean add(Object)
O adds a new element in the collection.
0 returns true if the element is added successfully false otherwise.
e Dboolean isEmpty()
o returns true if this collection contains no element false otherwise.
e Dboolean contains(Object)
o returns true if this collection contains the specified element by using iterative
search.
e Dboolean remove(Object)
0 removes a single instance of the specified element from this collection, if it is
present .

6.3 Array List

It’s like a resizable array. Array List actually comes as a replacement the old “Vector”
collection. As we add or remove elements into or from it, it grows or shrinks over time.

6.3.1 Useful Methods

e add (Object)

© Copyright Virtual University of Pakistan 61

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

0 With the help of this method, any object can be added into Array List because
Obiject is the superclass of all classes.
0 Objects going to add will implicitly up cast.
e Object get(int index)

0 Returns the element at the specified position in the list
0 Index ranges from O to size()-1
0 Must cast to appropriate type

e remove (int index)

0 Removes the element at the specified position in this list.
o0 Shifts any subsequent elements to the left (subtracts one from their indices).
e intsize()

Example Code: Using Array List class

We’ll store Student objects in the Array List. We are using the same student class which we built in
previous lectures/handouts.

We’ll add three student objects and later prints all the student objects after retrieving them from
Avrray List. Let’s look at the code:

import java.util.>;
public class ArrayListTest {
public static void main(String[] args) {

// creating arrayList object by calling constructor
ArrayList<Student> al= new ArrayList<Student>();

// creating three Student objects

Student sl = new Student (“ali” , 1);
Student s2 = new Student (““saad” , 2);
Student s3 = new Student (“raza” , 3);

// adding elements (Student objects) into arralylist

al.add(sl);

al .add(s2);

al .add(s3);

// checking whether arraylist is empty or not Boolean
b = al.isempty ;

iIT (b == true) {

System.out.printIn(*arraylist is empty”);

} else {

Iint size = al.size();

System.out._printIn(“arraylist size: ” + size);

© Copyright Virtual University of Pakistan 62

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

by

// using loop to iterate. Loops starts from O to one
// less than size
for (int i=0; i<al.size(); i++){

// retrieving object from arraylist
Student s = (Student) al.get(i);

// calling student class print method
s.print();

} 7/ end for loop
} 7/ end main
} 7/ end class

Output

o C:AWINDOWShsystem32\cmd.exe X

F

D:\exampleshcollections> javac TestArraylList. java

D:“examples\collections? java TestArraylList
arraylist size:

Student name:ali, roll no:l

Student name:saad, roll no:2

Student name:raza, roll no:3

w
4| | 3

6.4 HashMap

Store elements in the form of key- value pair form. A key is associated with each object that is stored.
This allows fast retrieval of that object. Keys are unique.

6.4.1 Useful Methods
e put(Object key, Object Value)

o0 Keys & Values are stored in the form of objects (implicit up casting is
performed).
0 Associates the specified value with the specified key in this map.
o If the map previously contained a mapping for this key, the old value is
replaced.
e Object get(Object key)

© Copyright Virtual University of Pakistan 63

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

0 Returns the value to which the specified key is mapped in this identity hash
map, or nul I if the map contains no mapping for this key.
0 Must downcast to appropriate type when used
e intsize()

Example Code: using HashMap class

In this example code, we’ll store Student objects as values and their rollnos in the form of strings as
keys. Same Student class is used. The code is:

import java.util._*;

public class HashMapTest {

public static void main(String[] args) {

// creating HashMap object

HashMap h= new HashMap<String, Student> h=new
HashMap<String, Student>();

// creating Student objects

Student sl = new Student (ali™ , 1);
Student s2 = new Student (“'saad™ , 2);
Student s3 = new Student (“'raza™ , 6);

// adding elements (Student objects) where roll nos
// are stored as keys and student objects as values
h.put(one. sl);
h_put("'two™. S2);
h.put(*"three. S3);
// checking whether hashmap is empty or not
boolean b = h.isEmpty ();
iIT (b == true) {
System.out.printIn(**hashmap is empty”); } else {
int size = h.size();
System.out.printIn(**hashmap size: ” + size);

}

// retrieving student object against rollno two and
// performing downcasting

Student s = (Student) h.get(“two™);

// calling student’s class print method

s.print();

} 7/ end main
} 7/ end class

Output

© Copyright Virtual University of Pakistan 64

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

o C:\WINDOWS\system32\cmd.exe X

D:\examples\collections? javac TestHashMap. java —

D:\examples\collections? java TestHashMap
hashmap size:3
Student name:saad, roll no:2

D:\examples\collections>_ | _jj
k

1

6.5 References:

J2SE 5.0 new features: http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html
Technical Article:_http://java.sun.com/developer/technicalArticles/releases/j2se15/
Beginning Java2 by Ivor Horton

Example code, their explainations and corresponding figures for this handout are taken
from the book JAVA A Lab Course by Umair Javed. This material is available just for
the use of VU students of the course Web Design and Development and not for any other
commercial purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

6.6 Address Book

Warning: It is strongly advised that you have to type the code given in this example by yourself.
Do not copy/paste it; most probably you will get unexpected errors that you have never
seen. Some bugs are deliberately introduced as well to avoid copy-pasting. TAs will not
cooperate with you in debugging such errors.

6.6.1 Problem

e We want to build an address book that is capable of storing name, address & phone
number of a person.

e Address book provides functionality in the form of a JOptionPane based menu. The
feature list includes

Add - to add a new person record
Delete - to delete an existing person record by name
Search - to search a person record by name

o]
o]
o]
o0 Exit - to exit from application

© Copyright Virtual University of Pakistan 65

Crystal Academy
Highlight

Web Design and Development (CS506)

e The Address book should also support persistence for person records

6.6.2 Approach for Solving Problem

Building a small address book generally involves 3 steps. Let us briefly discuss each step and write
a solution code for each step

6.6.2.1 Stepl - Make Personinfo class

e First of all you need to store your desired information for each person. For this you
can create a user-defined data type (i.e. a class). Make a class PersonlInfo with name,
address and phone number as its attributes.

e Write a parameterized constructor for this class.

e Write print method in Person class that displays one person record on a message
dialog box.

The code for Personinfo class is given below.

import javax.swing.*;
class Personinfo {

String name;
String address;
String phoneNum;

//parameterized constructor

public Personlnfo(String n, String a, String p) {
name = n;

address = a;

phoneNum = p;

}

//method for displaying person record on GUI

public void print() {
JOptionPane.showMessageDialog(null, “name: ” + name +
“address:” +address + “phone no:” + phoneNum);

+
}

Note: Not declaring attributes as private is a bad approach but we have done it to
keep things simple here.

6.6.2.2 Step2 - Make Address Book class

© Copyright Virtual University of Pakistan 66

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

Take the example of daily life; generally address book is used to store more than one
person records and we don’t know in advance how many records are going to be added
into it.

So, we need some data structure that can help us in storing more than one
PersonInfo objects without concerning about its size.

Array List can be used to achieve the above functionality

Create a class Address Book with an ArrayList as its attribute. This arraylist will be used to
store the information of different persons in the form of Personinfo Objects.
This class will also provide addPerson, deletePerson & searchPerson methods.
These methods are used for adding new person records, deleting an existing person
record by name and searching among existing person records by name respectively.
Input/Output will be performed through JOptionPane.

The code for AddressBook class is

by

}

}

import javax.swing.>;
import java.util._*;

class AddressBook {
ArrayList<Personlnfo> persons;

//constructor
public AddressBook () {
persons = new ArrayList()<Personinfo>();

//add new person record to arraylist after taking input
public void addPerson() {

String name = JOptionPane.showlnputDialog(“Enter name”);

String add = JOptionPane.showlnputDialog(“Enter address™);

String pNum = JOptionPane.showlnputDialog(“Enter phone no™);

//construct new person object

PersonInfo p = new Personlnfo(name, add, pNum);

//add the above Personinfo object to arraylist
persons.add(p);

//search person record by name by iterating over arraylist
public void searchPerson (String n) {

for (int i=0; i< persons.size(); i++) {
Personinfo p = (Personlnfo)persons.get(i);
iIT (n.equals(p-name)) {

p-printQ);

} // end for

© Copyright Virtual University of Pakistan 67

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

} // end searchPerson

//delete person record by name by iterating over arraylist
public void deletePerson (String n) {

for (int i=0; i< persons.size(); i++) {

PersonInfo p = (Personinfo)persons.get(i);

iIT (n.equals(p-name))

persons.remove(i);

}
}

}
} 7/ end class

The addperson method first takes input for name, address and phone number and than
construct a PersonInfo object by using the recently taken input values. Then the newly
constructed object is added to the arraylist - persons.

The searchPerson & deletePerson methods are using the same methodology i.e. first they search
the required record by name and then prints his/her detail or delete the record permanently
from the ArrayList.

Both the methods are taking string argument, by using this they can perform their search or
delete operation. We used for loop for iterating the whole ArrayList. By using the size
method of ArrayList, we can control our loop as ArrayL ist indexes range starts from 0
to one less than size.

Notice that, inside loop we retrieve each Personlnfo object by using down casting
operation. After that we compare each Personlnfo object’s name by the one passed to
these methods using equal method since Strings are always being compared using
equal method.

Inside §F block of searchPerson, print method is called using Personlnfo object that will
display person information on GUI. On the other hand, inside i ¥ block of deletePerson
method, remove method of ArrayList class is called that is used to delete record from
persons i.e. ArrayList.

6.6.2.3 Step3 - Make Test class (driver program)

e This class will contain a main method and an object of AddressBook class.
e Build GUI based menu by using switch selection structure
e Call appropriate methods of AddressBook class

The code for Test class is

Iimport javax.swing.*;
class Test {

© Copyright Virtual University of Pakistan 68

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

public static void main (String args[]) {

AddressBook ab = new AddressBook();

String input, s;

int ch;

while (true) {

input = JOptionPane.showlnputDialog(*““Enter 1 to add ” +
“\n Enter 2 to Search \n Enter 3 to Delete* +
“\n Enter 4 to Exit”);

ch = Integer.parselnt(input);

switch (ch) {

case 1:

ab.addPerson();

break;

case 2:

s = JOptionPane.showlnputDialog(

“Enter name to search ”);

ab.searchPerson(s);

break;

case 3:

s = JOptionPane.showlnputDialog(

“Enter name to delete 7);

ab.deletePerson(s);

break;

case 4:

System.exit(0);

}
}//end while
}//end main

3

Note that we use infinite while loop that would never end or stop given that our program should
only exit when user enters 4 i.e. exit option.

Compile & Execute
Compile all three classes and run Test class. Bravo, you successfully completed the all basic
three steps. Enjoy!

6.7 Reference

Entire content for this handout are taken from the book JAVA A Lab Course by Umair Javed.
This material is available just for the use of VU students of the course Web Design and
Development and not for any other commercial purpose.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

Lecture 7: Intro to Exceptions

© Copyright Virtual University of Pakistan 69

Web Design and Development (CS506)

7.1 Typesof Errors

Generally, you can come across three types of errors while developing software. These are
Syntax, Logic & Runtime errors.

7.1.1 Syntax Errors

e Arise because the rules of the language are not followed.

7.1.2 Logic Errors

e Indicates that logic used for coding doesn’t produce expected output.

7.1.3 Runtime Errors

e Occur because the program tries to perform an operation that is impossible to
complete.

e Cause exceptions and may be handled at runtime (while you are running the
program)

e For example divide by zero

7.2 What is an Exception?

e An exception is an event that usually signals an erroneous situation at run time
e Exceptions are wrapped up as objects
e A program can deal with an exception in one of three ways:

O ignore it
o handle it where it occurs
o handle it an another place in the program

7.3 Why handle Exceptions?

e Helps to separate error handling code from main logic (the normal code you write) of
the program.

e As different sort/type of exceptions can arise, by handling exceptions we can
distinguish between them and write appropriate handling code for each type for
example we can differently handle exceptions that occur due to division by Zero and
exceptions that occur due to non-availability of a file.

e If not handled properly, program might terminate.

7.4 Exceptions in Java

e An exception in java is represented as an object that’s created when an abnormal

© Copyright Virtual University of Pakistan 70

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

7.5

situation arises in the program. Note that an error is also represented as an object in
Java, but usually represents an unrecoverable situation and should not be caught

The exception object stores information about the nature of the problem. For
example, due to network problem or class not found etc.

All exceptions in java are inherited from a class know as Throwable.

Exception Hierarchy

Following diagram is an abridged version of Exception class hierarchy

—| ClazzNotF oundExcaption
}— AWTException
—| Famtms=Excsption H—

—|.—hriﬂﬂueti:E:x':eq}ticn

—|"_‘*-'u]JPc mte-rE.x:fptlmI

—| IndexOut0BoundsException

| Object H—‘i—hrcwzblﬂ— L SZsverzlmors clzzzes

7.6

—— Severzl more claszes

—{ ‘-.'i.t‘rl.'.i'.fzthl_ueEm~r|

AWTError

L Severslmore claszes

B2

Types of Exceptions

Exceptions can be broadly categorized into two types, Unchecked & Checked Exceptions.

7.6.1

Unchecked Exceptions

Subclasses of Runtime Exception and Error.

Does not require explicit handling

Run-time errors are internal to your program, so you can get rid of them by
debugging your code

For example, null pointer exception; index out of bounds exception; division by
zero exception.

© Copyright Virtual University of Pakistan 71

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

7.6.2 Checked Exceptions

Must be caught or declared in a throws clause

Compile will issue an error if not handled appropriately

Subclasses of Exception other than subclasses of Runtime Exception.
Other arrives from external factors, and cannot be solved by debugging
Communication from an external resource - e.g. a file server or database

7.7 How Java handles Exceptions

Java handles exceptions via 5 keywords. Try, catch, finally, throw & throws.

7.7.1 try block

e Write code inside this block which could generate errors

7.7.2 Catch block
e Code inside this block is used for exception handling

When the exception is raised from try block, only than catch block would
execute.

7.7.3 finally block

e This block always executes whether exception occurs or not.
e Write clean up code here, like resources (connection with file or database) that
are opened may need to be closed.

The basic structure of using try - catch - finally block is shown in the picture below:

try ftry block
I
L

Iwrite code that could generate exceptions

1 catch (=exception to be caught=) fieatch block

I
L

Ifwrite code for exception handling
1
J

catch (=exception to be caught=) ffeatch block
:
L
licode for exception handling
1 finally fifinally block
/

L
fany clean-up code, release the acquired resources

1

© Copyright Virtual University of Pakistan 72

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

7.7.4 throw

e To manually throw an exception, keyword throw is used. Note: we are not covering throw
clause in this handout

7.7.5 throws

e If method is not interested in handling the exception than it can throw back the
exception to the caller method using throws keyword.

e Any exception that is thrown out of a method must be specified as such by a
throws clause.

7.8 References:

Java tutorial by Sun: http://java.sun.com/docs/books/turorial
Beginning Java2 by Ivor Hortan

Thinking in Java by Bruce Eckle

CS193j Stanford University

7.9 Code Examples of Exception Handling

7.9.1 Unchecked Exceptions
Example Code: UcException.java

The following program takes one command line argument and prints it on the console

// File UcException.java

public class UcException {

public static void main (String args[]) {
System.out.printin(args[0]);

+

3

Compile & Execute

If we compile & execute the above program without passing any command line
argument, an Array IndexOutOfBoundsException would be thrown. This is shown in
the following picture

e C:\WINDOWS\system32\cmd.exe

D:N\examples\Exceptions? javac UcException. java 3ﬂ

D:\examples\Exceptions> java UcException

Exception in thread "main" 8ava.lang.ArrayIndexOutOFBoundsException: %]
at UcException.main(UcException. java:7)

D:N\examples\Exceptions> _jj
3

«

© Copyright Virtual University of Pakistan 73

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

7.9.2 Why?

Since we have passed no argument, therefore the size of String args|[] is zero, and we
have tried to access the first element (first element has index zero) of this array.

From the output window, you can find out, which code line causes the exception to be raised. In
the above example, it is
System.out.println (args[0]);

7.9.3 Modify UcException.java

Though it is not mandatory to handle unchecked exceptions we can still handle
Unchecked Exceptions if we want to. These modifications are shown in bold.

// File UcException.java

public class UcException {

public static void main (String args[1) {

try {

System.out.printin(args[0]);

catch (IndexOutOfBoundsException ex) {

System.out.printIn(*You forget to pass command line argument’);

}
}

The possible exception that can be thrown is IndexOutOfBoundsException, so we
handle it in the catch block.

When an exception occurs, such as IndexOutOfBoundsException in this case, then an
object of type IndexOutOfBoundesException is created and it is passed to the
corresponding catch block (i.e. the catch block which is capable of handling this
exception). The catch block receives the exception object inside a variable which is ex in
this case. It can be any name; it is similar to the parameter declared in the method
signature. It receives the object of exception type (IndexOutOfBoundsExceptoin) it is
declared.

Compile & Execute

If we execute the modified program by passing command line argument, the program would
display on console the provided argument. After that if we execute this program again without
passing command line argument, this time information message would be displayed which is
written inside catch block.

e COAOWVINDOW S\system 3 2wcmd.exe

D:~wexamples~Exceptions> javac UcException. java Lo

D:~examples“Exceptions> java UcException
You forget to pass command line argument

D:~wexamples~Exceptions> java UcException hello
hello

Dz~ 1 ~E ti p - =
2 examples xceptions JIJ

© Copyright Virtual University of Pakistan 74

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

7.10 Checked Exceptions
Example Code: CException.java
The following program reads a line (hello world) from a file and prints it on the console. The File

reading code is probably new for you. We’ll explain it in the coming handouts (Streams). For now,
assumed that the code written inside the main read one line from a file and prints that to console.

// File CException.java

import java.io.* ;

public class CException {

public static void main (String args[1) {
FileReader fr = new FileReader (“input.txt™);
BufferedReader br = new BufferedReader (fr);

//read the line form file
String line = br.readLine();

System.out.printin(line); }
s

Compile & Execute

If you try to compile this program, the program will not compile successfully and displays the
message of unreported exception. This happens when there is code that can generate a checked
exception but you have not handled that exception. Remember checked exceptions are detected
by compiler. As we early discussed, without handling Checked exception, out program won’t
compile.

e C:\WINDOWS\system32\cmd.exe

D:\examples\Excegtions)javac CException. java 3ﬂ
CException. java:7: unreported exception java.io.FileNotFoundException; must
be caught or declared to be thrown

FileReader fr = new FileReader ("input.txt");

CException. java:1l: unreported exception java.io.IOException; must be caught
or declared to be thrown
String s = br.readLine&);

2 errors

D:\examples\Exceptions>_ =

Modify CException.java

As we have discussed earlier, it is mandatory to handle checked exceptions. In order to
compile the code above, we modify the above program so that file reading code is placed
inside a try block. The expected exception (IOException) that can be raised is caught in
catch block.

© Copyright Virtual University of Pakistan 75

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

// File CException.java

import java.io.* ;

public class CException {

public static void main (String args[]) {
try{

FileReader fr = new FileReader (“input.txt™);
BufferedReader br = new BufferedReader (fr);

//read the line form file
String line = br.readLine();
System.out.printin(line); }
catch(10Exception ex) {
System.out.printin(ex);

s

s

ks

The code line written inside the catch block will print the exception name on the console if
exception occurs

Compile & Execute

After making changes to your program, it would compile successfully. On executing this program,
hello world would be displayed on the console

Note: Before executing, make sure that a text file named input.txt must be placed in the

same directory where the program is saved. Also write hello world in that file before

saving it

e CAWINDOWSh\system3 2\cmd. exe

D:“~examples\Exceptions» javac CException. java :J

D:\examples\Exceptions»> java CException
hello world

Df\examples\Exceptions>_ | _jj
J 3

7.11 The finally block

The finally block always executes regardless of exception is raised or not while as you
remembered the catch block only executes when an exception is raised.

Example Code: FBlockDemo.java

// File FBlockDemo. java

import java.io.* ;

public class FBlockDemo {

public static void main (String args[])

© Copyright Virtual University of Pakistan 76

Web Design and Development (CS506)

{

try{
FileReader fr = new FileReader (“strings.txt™);

BufferedReader br = new BufferedReader (fr);

//read the line form file

String line = br.readLine();
System.out.printin(line); }catch(I0Exception ex) {
System.out.printin(ex);

by

finally {

System.out.printin(**finally block always execute’);

}

}
+

Compile & Execute

The program above, will read one line from string.txt file. If string.tx is not present in the same
directory the Fi leNotFoundException would be raised and catch block would execute
as well as the finally block.

D:\examples\Exceptions? javac FBlockDemo. java :ﬁ

D:\examples\Exceptions? java FBlockDemo

java.io.FileNotFoundException: string.txt (The system cannot find the
ile specified)

finally block always execute

D:\examples\Exceptions>_
4] |L|J

If string.txt is present there, no such exception would be raised but still finally block executes.
This is shown in the following output diagram

oo CAWINDOWS\system32\cmd.exe

D:\examples\Exceptions? javac FBlockDemo. java
D:\examples\Exceptions? java FBlockDemo

hello world

finally block always execute

Dr\examples\Exceptions)_ |_jj
1 »

7.12 Multiple catch blocks
e Possible to have multiple catch clauses for a single try statement
o Essentially checking for different types of exceptions that may happen
e Evaluated in the order of the code
o0 Bear in mind the Exception hierarchy when writing multiple catch clauses!
o If you catch Exception first and then IOException, the IOException will never be
caught!

© Copyright Virtual University of Pakistan 77

Web Design and Development (CS506)

Example code: MCatchDemo.java

The following program would read a number form a file numbers.txt and than prints its square on
the console

// File MCatchDemo.java

import java.io.* ;

public class MCatchDemo {

public static void main (String args[]) {
try{

// can throw FileNotFound or 10Exception
FileReader fr = new FileReader (““numbers.txt”);
BufferedReader br = new BufferedReader (fr);

//read the number form file

String s = br.readLine();

//may throws NumberFormatException, 1f s Is not a no.

int number = Integer.parselnt(s);

System.out.printIin(number * number); }

catch(NumberFormatException nfEx) {
System.out.printIn(nfEx);

¥

catch(FileNotFoundException fnfEx) {
System.out.printin(fnfEx);

¥

catch(10Exception i10Ex) {
System.out.printIin(ioEx);
}

+

by

We read everything from a file (numbers, floating values or text) as a String. That’s why we first
convert it to number and then print its square on console.

Compile & Execute

If file numbers.txt is not present in the same directory, the Fi leNotFoundException would
be thrown during execution.

© Copyright Virtual University of Pakistan 78

Web Design and Development (CS506)

e CAWINDOWS\system32\cmd.exe

%:S\exarnples\old\Except ions»> java MCatchDemo il

D:\examplesNold\Exceptions>_

-
4| | b

If numbers.txt present in the same directory and contains a number, than hopefully no exception
would be thrown.

e CAWINDOWS\system32\cmd.exe

D:\examples\old\Exceptions) javac MCatchDemo, java s

D:\examples \och\ExceEt ions? java MCatchDemo
java.io.FileNotFoundException: numbers.txt (The system cannot find the
file specified)

D:\examples\old\Exceptions) v
7.13 The throws clause

The following code examples will introduce you with writing & using throws clause.
Example Code: ThrowsDemo.java

The ThrowsDemo . Java contains two methods namely methodl & method2 and one main
method. The main method will make call to method1 and than methodl will call nethod?2.
The method2 contains the file reading code. The program looks like one given below

// File ThrowsDemo.java
import java.io.* ;
public class ThrowsDemo {

// contains file reading code

public static void method2() {

try{

FileReader fr = new FileReader (“strings.txt”);
BufferedReader br = new BufferedReader (fr);

//read the line form file
String s = br.readLine();
System.out.printin(s);

catch(10Exception 10Ex) {
10Ex.printStackTrace(); }

}// end method 2

//only calling method2

© Copyright Virtual University of Pakistan 79

Web Design and Development (CS506)

public static void methodl()

method2();

¥
public static void main (String args[1) {

ThrowsDemo.methodl1();

7.14 printStackTrace method

e Defined in the Throwabl e class - superclass of Exception & Error classes
e Shows you the full method calling history with line numbers.
extremely useful in debugging

Modify: ThrowsDemo.java

e Let method2 doesn’t want to handle exception by itself, so it throws the exception
to the caller of method?2 i.e. mnethodl

e So methodl either have to handle the incoming exception or it can re-throw it to its
caller i.e. main.

e Let methodl is handling the exception, so methodl& method2 would be
modified as:

// File ThrowsDemo. java
import java.io.* ;
public class ThrowsDemo {

// contains Tile reading code

public static void method2() throws I10Exception{
FileReader fr = new FileReader (“strings.txt™);
BufferedReader br = new BufferedReader (fr);

//read the line form file
String s = br.readLine();
System.out.printin(s);
}// end method 2

// calling method2 & handling incoming exception

public static void methodl() {

try {

method2();}

catch (10Exception 10Ex) {
10Ex.printStackTrace(); }

by

© Copyright Virtual University of Pakistan 80

Web Design and Development (CS506)

public static void main (String args[]) {
ThrowsDemo.method1();
}

}
Compile & Execute

If file strings.txt is not present in the same directory, method2 will throw an exception that
would be caught by methodl and the printStackTrace method will print the full calling
history on console. The above scenario is shown in the output below:

o C:\WINDOWS\system32\cmd.exe

D:\examples\Exceptions) javac ThrowsExceptionDemo. java :J

D:\examples\Exceptions> java ThrowsExcept ionDemo
gava.io.FileNotFoundException: string.txt (The system cannot find the
ile specified)
at java.io.FilelnputStream.open(Native Method)
at java.io.FilelnputStream.{init)(Unknown Source)
at java.io.FilelnputStream.<{init>{(Unknown Source)
at fava.io.FileReader.(init)(Unknown Source)
hrowsExcept ionDemo.methodZ(ThrowsExcept ionDemo. java:9)
ThrowsExcept ionDemo.method1(ThrowsExcept ionDemo. java:
at ThrowsExceptionDemo.main{ThrowsExceptionDemo. java:3@)

-

< | »

If file strings.txt exist there, than hopefully line would be displayed on the console.

7.15 Reference

e Example code, their explanations and corresponding figures for this handout are taken
from the book JAVA A Lab Course by Umair Javed. This material is available just for
the use of VU students of the course Web Design and Development and not for any other
commercial purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 81

Web Design and Development (CS506)

Lecture 8: Streams

I/0 libraries often use the abstraction of a stream, which represents any data source or sink as an
object capable of producing or receiving pieces of data.

The Java library classes for 1/O are divided by input and output. You need to import
java.io package to use streams. There is no need to learn all the streams just do it on the need basis.

8.1 The concept of 'streams

e Itis an abstraction of a data source/sink

e We need abstraction because there are lots of different devices (files, consoles, network,
memory, etc.). We need to talk to the devices in different ways (sequential, random
access, by lines, etc.) Streams make the task easy by acting in the same way for every
device. Though inside handling of devices may be quite different, yet on the surface
everything is similar. You might read from a file, the keyboard, memory or network
connection, different devices may require specialization of the basic stream, but you can
treat them all as just "streams". When you read from a network, you do nothing different
than when you read from a local file or from users typing

//Reading from console

BufferedReader stdin = new BufferedReader(new InputStreamReader(
System.in));

———————— (your console)

// Reading from file

BufferedReader br=new BufferedReader(new
FileReader(“input.txt’™));

//Reading from network
BufferedReader br = new BufferedReader(new InputStreamReader
(s.getlnputStream()));
--—— “s” 1s the socket

e S0 you can consider stream as a data path. Data can flow through this path in one
direction between specified terminal points (your program and file, console, Socket etc.)

124 Diytpast Strearn Jowa Program Inpad Streawn °
e 0—0—0—0— - 0—0—0—0— &—
e iy
Data Sauces
stz Dastinstior

© Copyright Virtual University of Pakistan 82

Web Design and Development (CS506)

8.2 Stream classification based on Functionality

Based on functionality streams can be categorized as Node Stream and Filter Stream. Node
Streams are those which connect directly with the data source/sick and provide basic
functionality to read/write data from that source/sink

FileReader fr = new FileReader(“input.txt™);

You can see that FileReader is taking a data/source “input.txt” as its argument and hence it is a node
stream.

FilterStreams sit on top of a node stream or chain with other filter stream and provide some
additional functionality e.g. compression, security etc. FilterStreams take other stream as their
input.

BufferedReader bt = new BufferedReader(fr);

BufferedReader makes the 10 efficient (enhances the functionality) by buffering the input before
delivering. And as you can see that BufferedReader is sitting on top of a node stream which is
FileReader.

© Copyright Virtual University of Pakistan 83

Web Design and Development (CS506)

8.3 Stream classification based on data
Two types of classes exist:

Classes which contain the word stream in their name are byte oriented and are here since JDK1.0.
These streams can be used to read/write data in the form of bytes. Hence classes with the word
stream in their name are byte-oriented in nature. Examples of byte oriented streams are
FilelnputStream, ObjectOutputStream etc.

Classes which contain the word Reader/Writer are character oriented and read and write data in the
form of characters. Readers and Writers came with JDK1.1. Examples of Reader/Writers are
FileReader, PrintWriter etc

Jm Program

Jowe, Pregram

© Copyright Virtual University of Pakistan 84

Web Design and Development (CS506)

Example Code 8.1: Reading from File

The ReadF1 1eEx. java reads text file line by line and prints them on console. Before we move
on to the code, first create a text file (input.txt) using notepad and write following text lines
inside it.

Text File: input.txt

Hello World
Pakistan is our homeland
Web Design and Development

// File ReadFileEx.java

import java.io.™;

public class ReadFileEx {

public static void main (String args[]) {
FileReader fr = null;

BufferedReader br = null;

try {

// attaching node stream with data source
fr = new FileReader(“input.txt™);

// attatching filter stream over node stream
br = new BufferedReader(fr);

// reading Tirst line from file
String line = br.readLine();

// printing and reading remaining lines
while (line = null){
System.out.printin(line);

line = br.readLine();

}

// closing streams br.close();
fr.close();

}catch(10Exception 1oex){
System.out.printin(ioex);
+

} /7 end main

} // end class

© Copyright Virtual University of Pakistan 85

Web Design and Development (CS506)

Example Code 8.2: Writing to File

The WriteFi1leEx. Java writes the strings into the text file named “output.txt”. If “output.txt”
file does not exist, the java will create it for you.

// File WriteFileEx.java

import java.io.™;

public class WriteFileEx {

public static void main (String args[1) {
FileWriter fw = null;

PrintWriter pw = null;

try {
// attaching node stream with data source

// it Tile does not exist, i1t automatically creates it
fw = new FileWriter (“output.txt™);

// attatching filter stream over node stream
pw = new PrintWriter(fw);

String s1 = “Hello World”;

String s2 = “Web Design and Development”;

// writing first string to file
pw.println(sl);

// writing second string to file
pw.printIn(s2);

// Tlushing stream

pw.flush(Q;

// closing streams

pw.close();

fw.close();

}catch(10Exception ioex){
System.out.printin(ioex);
}

} 7/ end main

} // end class

After executing the program, check the output.txt file. Two lines will be written there.
8.4 Reference

e Example code, their explanations and corresponding figures for this handout are taken
from the book JAVA A Lab Course by Umair Javed. This material is available just for
the use of VU students of the course Web Design and Development and not for any other
commercial purpose without the consent of author.

© Copyright Virtual University of Pakistan 86

Web Design and Development (CS506)

8.5 Modification of Address Book Code

8.5.1 Adding Persistence Functionality

Hopefully, your address book you built previously is giving you the required results except
one i.e. persistence. You might have noticed that after adding some person records in the address
book; if you exit from the program next time on re-executing address book all the previous records
are no more available.

To overcome the above problem, we will modify our program so that on exiting/starting of
address book, all the previously added records are available each time. To achieve this, we have to
provide the persistence functionality. Currently, we will accomplish this task by saving person
records in some text file.

Supporting simple persistence by any application requires handling of two scenarios. These are

e On start up of application - data (person records) must be read from file
e On end/finish up of application - data (person records) must be saved in file

To support persistence, we have to handle the above mentioned scenarios

8.5.1.1 Scenario 1 - Start Up

Establish a data channel with a file by using streams

Start reading data (person records) from file line by line
Construct PersonlInfo objects from each line you have read
Add those PersonInfo objects in arraylist persons.
Close the stream with the file

Perform these steps while application is loading up

We will read records from a text file named persons. txt. The person records will be present in
the file in the following format.

Alil, defence, 9201211
Usman, gulberg, 5173940
Salman, LUMS, 5272670

persons.txt

As you have seen, each person record is on a separate line. Person’s name, address & phone
number is separated using comma ().

We will modify our AddressBook . java by adding a new method loadPersons into it.
This method will provide the implementation of all the steps. The method is shown below:

© Copyright Virtual University of Pakistan 87

Web Design and Development (CS506)

public void loadPersons (){

String tokens[] = null;
String name, add, ph;

try {

FileReader fr = new FileReader(*'persons.txt™);
BufferedReader br = new BufferedReader(fr);

String line = br.readLine();

while (line = null) {

tokens = line.split(",™);

name = tokens[0];

add = tokens|[1];

ph = tokens[2];

Personinfo p = new Personlnfo(name, add, ph);
persons.add(p);

line = br.readLine();

}

br.close();
fr.close();

}catch(10Exception i10Ex){
System.out.printIn(ioEx);
}
by

e First, we have to connect with the text file in order to read line by line person records
from it. This task is accomplished with the following lines of code:

FileReader fr = new FileReader(“persons.txt’);

BufferedReader br = new BufferedReader(fr);

FileReader is a character based (node) stream that helps us in reading data in the form of
characters. As we are using streams, so we have to import the java. 10 package in the
AddressBook class.

e We passed the file name persons. txt to the constructor of the Fi leReader.

Next we add BufferedReader (filter stream) on top of the Fi leReader because
BufferedReader facilitates reading data line by line. (As you can recall
from the lecture that filter streams are attached on top of node streams). That’s why
the constructor of BufferedReader is receiving the fr - the FileReader
object.

e The next line of code will read line from file by using readLine() method of

© Copyright Virtual University of Pakistan 88

Web Design and Development (CS506)

BufferedReader and save it in a string variable called 'ine.

String line = br.readLine();

e After that while loop starts. The condition of while loop is used to check whether the file is
reached to end (returns null) or not. This loop is used to read whole file till the end. When
end comes (null), this loop will finish.

while (line != null)

e Inside loop, the first step we performed is tokenizing the string. For this purpose, we have
used split method of String class. This method returns substrings (tokens) according to the
regular expression or delimiter passed to it.

tokens = line.split(*“,”);

The return type of this method is array of strings that’s why we have declared tokens as a String
array in the beginning of this method as
String tokens[];

For example, the line contains the following string
Al ,defence, 9201211

Now by calling split(*,”) method on this string, this method will return back three substrings
ali defence and 9201211 because the delimiter we have passed to it is comma. The delimiter
itself is not included in the substrings or tokens.

e The next three lines of code are simple assignments statements. The tokens[0]contains
the name of the person because the name is always in the beginning of the line,
tokens[1] contains address of the person and tokens[2] contains the phone
number of the person.

name = tokens[0];
add= tokens[1];
ph= tokens[2];

The name, add and ph are of type String and are declared in the beginning of this
method.

e After that we have constructed the object of Personinfo class by using parameterized
constructor and passed all these strings to it.

PersonInfo p = new Personlnfo(name, add, ph);

e Afterward the Personinfo object’s p is added to the arraylist i.e. persons.
persons.add(p);

e The last step we have done inside loop is that we have again read a line from the file by

© Copyright Virtual University of Pakistan 89

Web Design and Development (CS506)

using the readL1ne () method.

e By summarizing the task of while loop we can conclude that it reads the line from a

file,tokenize that line into three substrings followed by constructing the
PersonlInfo object by using these tokens. And adding these objects to the arraylist. This
process continues till the file reaches its end.
The last step for reading information from the file is ordinary one - closing the
streams, because files are external resources, so it’s better to close them as soon as possible.
Also observe that we used try/catch block because using streams can result in raising
exceptions that falls under the checked exceptions category - that needs mandatory
handling.

e The last important step you have to perform is to call this method while loading up.

The most appropriate place to call this method is from inside the constructor of
AddressBook. java. So the constructor will now look like similar to the one given
below:

public AddressBook () {
Persons = new ArrayList();
loadPersons();

AddressBook.java

8.5.1.2 Scenario 2 - End/Finish Up

e Establish a datachanel(stream) with a file by using streams

e Take out PersonInfo objects from ArrayList (persons)

e Build a string for each Personlnfo object by inserting commas (,) between name
& address and address & phone number.
Write the constructed string to the file

e Close the connection with file

e Perform these steps while exiting from address book.

Add another method savePersons into AddressBook.java. This method will
provide the implementation of all the above mentioned steps. The method is shown
below:

public void savePersons (){

try {

Personinfo p;

String line;

FileWriter fw = new FileWriter(*'persons.txt');
PrintWriter pw = new PrintWriter(fw);

for(int i=0; i<persons.size(); i++)

{

© Copyright Virtual University of Pakistan 90

Web Design and Development (CS506)

(PersonlInfo)persons.get(i);

p:

line = p.name +","+ p.address +","+ p.phoneNum;

// writes line to file (persons.txt)
pw.printin(line);

by

pw.flush(Q);

pw.close();

fw.close();

}catch(10Exception 10Ex){

System.out.printIn(ioEx);

+
+

e Asyou can see, that we have opened the same file (persons.txt) again by using a set
of streams.

e After that we have started for loop to iterate over arraylist as we did in
searchPerson and deletePerson methods.

e Inside For loop body, we have taken out Personnfo object and after type casting it we
have assigned its reference to a PersonlInfo type local variable p. This is achieved by
the help of following line of code

p = (Personinfo)persons.get(i);

e Next we build a string and insert commas between the Person Info attributes and assign
the newly constructed string to string’s local variable I 1ne as shown in the following line
of code.

line = p.name +","+ p.address +","+ p.phoneNum;

Note: Since, we haven’t declare PersonlInfo attributes private, therefore we are
able to directly access them inside AddressBook . java.

e The next step is to write the line representing one Personinfo object’s information, to
the file. This is done by using println method of PrintWriter as shown below

pw.printin(line);

After writing line to the file, the println method will move the cursor/control to the next
line. That’s why each line is going to be written on separate line.

e The last step for saving information to the file is ordinary one - closing the streams but
before that notice the code line that you have not seen/performed while loading persons
records from file. That is

pw.Fflush();

The above line immediately flushes data by writing any buffered output/data to file. This step

© Copyright Virtual University of Pakistan 91

Web Design and Development (CS506)

is necessary to perform or otherwise you will most probably lose some data for the reason that
PrintWriter is a Buffered Stream and they have their own internal memory/storage
capacity for efficiency reasons. Buffered Streams do not send the data until their memory is
full.

e Also we have written this code inside try-catch block.

e The last important step you have to perform is to call this method before exiting from
the address book. The most appropriate place to call this method is under case4(exit
scenario) in Test. java. So the case 4 will now look like similar to the one given
below:

case 4:
ab.savePersons();
System.exit(0);

Test.java

Compile & Execute

Now again after compiling all the classes, run the Test class. Initially we are assuming
that out persons.txt file is empty, so our arraylist persons will be empty on the
first start up of address book. Now add some records into it, perform search or delete
operations. Exit from the address book by choosing option 4. Check out the persons. txt
file. Don’t get surprised by seeing that it contains all the person records in the format exactly we have
seen above.

Next time you will run the address book; all the records will be available to you. Perform the search or
delete operation to verify that. Finally you have done it!!!

8.6 References

e Example code, their explanations and corresponding figures for this handout are taken
from the book JAVA A Lab Course by Umair Javed. This material is available just for
the use of VU students of the course Web Design and Development and not for any other
commercial purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 92

Web Design and Development (CS506)

Lecture 9: Abstract Classes and Interfaces
9.1 Problem and Requirements

Before moving on to abstract classes, first examine the following class hierarchy shown
below:

Shape

Circle Square

e Suppose that in order to exploit polymorphism, we specify that 2-D objects must be able to
compute their area.

o0 All 2-D classes must respond to area() message.
e How do we ensure that?

o0 Define area method in class Shape
0 Force the subclasses of Shape to respond area() message

e Java’s provides us two solutions to handle such problem

0 Abstract Classes
o Interfaces

9.2 Abstract Classes

Abstract classes are used to define only part of an implementation. Because, information is not
complete therefore an abstract class cannot be instantiate. However, like regular classes, they can
also contain instance variables and methods that are fully implemented. The class that inherits
from abstract class is responsible to provide details.

Any class with an abstract method (a method has no implementation similar to pure virtual
function in C++) must be declared abstract, yet you can declare a class abstract that has no
abstract method.

If subclass overrides all abstract methods of the superclass, than it becomes a concrete (a class
whose object can be instantiate) class otherwise we have to declare it as abstract or we cannot
compile it.

© Copyright Virtual University of Pakistan 93

Web Design and Development (CS506)

The most important aspect of abstract class is that reference of an abstract class can point to the
object of concrete classes.

Code Example of Abstract Classes

The Shape class contains an abstract method calculateArea() with no definition.

public abstract class Shape{
public abstract void
calculateArea();

}

Class Circle extends from abstract Shape class, therefore to become concrete class it must
provides the definition of calculateArea() method.

public class Circle extends Shape {
private int x, y;

private int radius;

public Circle() {
X = 5;

y = 5;

radius = 10;

}

// providing definition of abstract method
public void calculateArea () {

double area = 3.14 * (radius * radius);
System.out.printIn(**Area: ” + area);

}
}//end of class

The Test class contains main method. Inside main, a reference s of abstract Shape class is created.
This reference can point to Circle (subclass of abstract class Shape) class object as it is a concrete
class. With the help of reference, method calculateArea() can be invoked of Circle class. This
is all shown in the form of code below:

public class Test {

public static void main(String args[]){
//can only create references of A.C.
Shape s = null;

//Shape s1 = new Shape(); //cannot instantiate
//abstract class reference can point to concrete subclass
s = new Circle();

© Copyright Virtual University of Pakistan 94

Web Design and Development (CS506)

s.calculateArea();

}
}//end of class

The compilation and execution of the above program is shown below:

et C:AWINDOWS\system 3 2\cmd.exe

D:\examples\abstract?> javac Shape. java :J
D:\examples\abstract? javac Circle. java
D:\examples\abstract? javac Test. java

D:\examples~abstract> java Test
Area:314.0

D:\examples“\abstract>

-
4 | | b

9.3 Interfaces

As we seen one possible java’s solution to problem discussed in start of the tutorial. The second
possible java’s solution is Interfaces.

Interfaces are special java type which contains only a set of method prototypes, but does not provide
the implementation for these prototypes. All the methods inside an interface are abstract by default
thus an interface is tantamount to a pure abstract class - a class with zero implementation. Interface
can also contains static final constants

9.3.1 Defining an Interface

Keyword interface is used instead of class as shown below:

public interface Speaker{
public void speak();

3

9.3.2 Implementing (using) Interface

Classes implement interfaces. Implementing an interface is like signing a contract. A
class that implements an interface will have to provide the definition of all the methods
that are present inside an interface. If the class does not provide definitions of all
methods, the class would not compile. We have to declare it as an abstract class in order
to get it compiled.

© Copyright Virtual University of Pakistan 95

Web Design and Development (CS506)

Relationship between a class and interface is equivalent to ““responds to”” while ““is a’ relationship
exists in inheritance.

Code Example of Defining & Implementing an Interface The interface Printable contains print()
method.

public interface Printable{
public void print();
¥

Class Student is implementing the interface Printable. Note the use of keyword
implements after the class name. Student class has to provide the definition of print method or
we are unable to compile.

The code snippet of student class is given below:

public class Student implements Printable {
private String name;
private String address;

public String toString () {

return name:‘'+name +" address:''+address;

¥

//providing definition of interface’s print method
public void print() {

System.out.printIn(’'Name:" +name+" address''+address);

+
}//end of class

9.4 Interface Characteristics

Similar to abstract class, interfaces imposes a design structure on any class that uses the
interface. Contrary to inheritance, a class can implement more than one interfaces. To do
this separate the interface names with comma. This is java’s way of multiple inheritance.

class Circle implements Drawable , Printable { ... - }

Objects of interfaces also cannot be instantiated.

Speaker s = new Speaker(); // not compile

However, a reference of interface can be created to point any of its implementation class. This is
interface based polymorphism.

© Copyright Virtual University of Pakistan 96

Web Design and Development (CS506)

Code Example: Interface based polymorphism

Interface Speaker is implemented by three classes Politician, Coach and Lecturer. Code snippets of
all these three classes are show below:

public class Politician implements Speaker{
public void speak(){

System.out.printIin(**Politics Talks™);

}

by

public class Coach implements Speaker{
public void speak(){
System.out.printIn(**Sports Talks™);

public class Lecturer implements Speaker{

public void speak(){

System.out.printIn(*Web Design and Development Talks™);
}

by

As usual, Test class contains main method. Inside main, a reference sp is created of Speaker
class. Later, this reference is used to point to the objects of Politician, Coach and Lecturer class.
On calling speak method with the help of sp, will invoke the method of a class to which sp is
pointing.

public class Test{

public static void main (String args[]) {
Speaker sp = null;

System.out.printIn(’'sp pointing to Politician™);
sp = new Politician();

sp.speak();

System.out.printIn(’'sp pointing to Coach™);

sp = new Coach();

sp.speak();

System.out.printIn(’'sp pointing to Lecturer™);
sp = new Lecturer();

sp.speak();

}

3

The compilation and execution of the above program is shown below:

© Copyright Virtual University of Pakistan 97

Web Design and Development (CS506)

o CAWINDOWS\system32\cmd.exe

:N\examplesNinterface\polymorphism?» javac Speaker. java fj
:N\examplesNinterfaceNpolymorphism» javac Pelitician. java
:N\examplesNinterfaceNpolymorphism» javac Ceach. java
:N\examplesNinterfaceNpolymorphism?» javac Lecturer. java

:nexamplesNinterfaceNpolymorphism?» javac Test. java

o o o o o o

:nexamplesNinterfaceNpolymorphism?» java Test
sp pointing to Politician

Politiecs Tal

sp pointing to Coach

Sports Tal

sp pointing to Lecturer

Web design and Development Talks

-
1| 3

9.5 References

e Example code, their explanations and corresponding figures for this handout are taken
from the book JAVA A Lab Course by Umair Javed. This material is available just for
the use of VU students of the course Web Design and Development and not for any other
commercial purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

Lecture 10: Graphical User Interfaces

© Copyright Virtual University of Pakistan 98

Web Design and Development (CS506)

A graphical user interface is a visual interface to a program. GUIs are built from GUI
components (buttons, menus, labels etc). A GUI component is an object with which the user
interacts via the mouse or keyboard.

Together, the appearance and how user interacts with the program are known as the program
look and feel.

10.1 Support for GUI in Java

The classes that are used to create GUI components are part of the “java.awt” or
“javax.swing” package. Both these packages provide rich set of user interface components.

10.2 GUI classes vs. Non-GUI Support Classes

The classes present in the awt and swing packages can be classified into two broad categories.
GUI classes & Non-GUI Support classes.

The GUI classes as the name indicates are visible and user can interact with them. Examples
of these are JButton, JFrame & JRadioButton etc

The Non-GUI support classes provide services and perform necessary functions for GUI classes.
They do not produce any visual output. Examples of these classes are Layout managers (discussed
latter) & Event handling (see handout on it) classes etc.

10.3 java.awt package

AWT stands for “Abstract Windowing Toolkit“ contains original GUI components that
came with the first release of JDK. These components are tied directly to the local
platform’s (Windows, Linux, MAC etc) graphical user interface capabilities. Thus results
in a java program executing on different java platforms (windows, linux, solaris etc) has a
different appearance and sometimes even different user interaction on each platform.

AWT components are often called Heavy Weight Components (HWC) as they rely on the local
platform’s windowing system to determine their functionality and their look and feel. Every time
you create an AWT component it creates a corresponding process on the operating system. As
compared to this SWING components are managed through threads and are known as Light Weight
Components.

This package also provides the classes for robust event handling (see handout on it) and layout
managers.

10.4 javax.swing package

© Copyright Virtual University of Pakistan 99

Crystal Academy
Highlight

Crystal Academy
Highlight

Web Design and Development (CS506)

These are the newest GUI components. Swing components are written, manipulated and
displayed completely in java, therefore also called pure java components. The swing
components allow the programmer to specify a uniform look and feel across all

platforms.

Swing components are often referred to as Light Weight Components as they are

completely written in java. Several swing components are still HWC e.g. JFrame etc.

10.5 A part of the Framework

Object
Component
Container
A
| |
JComponent Window
| : |)
Frame
AbstractButton JPanel f
JButton JErame

10.6 GUI Creation Steps

10.6.1import required packages

e import java.awt.* and/or javax.swing.* package.

10.6.2 Setup the top level containers

e A container is a collection of related components, which allows other components
to be nested inside it. In application with JFrame, we attach components to the content

pane - a container.

e Two important methods the container class has add and setLayout.
e The add method is used for adding components to the content pane while setLayout

method is used to specify the layout manager.

© Copyright Virtual University of Pakistan

Web Design and Development (CS506)

Container are classified into two broad categories that are Top Level

Containers and General Purpose Containers

Top level containers can contain (add) other containers as well as basic

Components (buttons, labels etc) while general purpose containers are Typically used to
collect basic components and are added to top level containers.

General purpose containers cannot exist alone they must be added to top level containers
Examples of top level container are JFrame, Dialog and Applet etc. Our application
uses one of these.

Examples of general purpose container are JPanel, Toolbar and ScrollPane etc.

So, take a top level container and create its instance. Consider the following code of line if
JFrame is selected as a top level container

JFrame frame = new JFrame();

10.6.3 Get the component area of the top level container

Review the hierarchy given above, and observe that JFrame is a frame is a
window. So, it can be interpreted as JFrame is a window.
Every window has two areas. System Area & Component Area
The programmer cannot add/remove components to the System Area.
The Component Area often known as Client area is a workable place for the
programmer. Components can be added/removed in this area.
So, to add components, as you guessed right component area of the JFrame is required. It
can be accomplished by the following code of line

Container con = frame.getContentPane();
frame is an instance of JFrame and by calling getContentPane() method on it, it returns the
component area. This component area is of type container and that is why it is stored in a
variable of a Container class. As already discussed, container allows other components to
be added / removed.

10.6.4 Apply layout to component area

The layout (size & position etc. How they appear) of components in a container is
usually governed by Layout Managers.

The layout manager is responsible for deciding the layout policy and size of
its components added to the container.

Layout managers are represented in java as classes. (Layout Managers are
going to be discussed in detail later in this handout)

To set the layout, as already discussed use setLayout method and pass object
of layout manager as an argument.

con.setLayout(new FlowLayout());

We passed an object of FlowLayout to the setLayout method here.
We can also use the following lines of code instead of above.

© Copyright Virtual University of Pakistan 101

Web Design and Development (CS506)

FlowLayout layout = new FlowLayout();
con.setLayout(layout);
10.6.5Create and Add components
e Create required components by calling their constructor.
JButton button = new JButton ();
e After creating all components you are interested in, the next task is to add these
components into the component area of your JFrame (i.e ContentPane, the reference to
which is in variable con of type Container)

e Use add method of the Container to accomplish this and pass it the component to be added.

con.add(button);

10.6.6 Set size of frame and make it visible

e A frame must be made visible via a call to setVisible(true) and its size defined via a call
setSize(rows in pixel, columns in pixel) to be displayed on the screen.

frame.setSize(200,300) ;
frame.setVisible(true) ;

Note: By default, all JFrame’s are invisible. To make visible frame visible we have passed true
to the setVisible method.

frame.setVisible(false) ;

Example: Making a Simple GUI

The above figured GUI contains one text field and a button.
Let’s code it by following the six GUI creation steps we discussed.
Code for Simple GUI:

© Copyright Virtual University of Pakistan 102

Web Design and Development (CS506)

// File GUITest.java

//Step 1: import packages
import java.awt.*;
import javax.swing.>;

public class GUITest {
JFrame myFrame ;

//method used for setting layout of GUI
public void initGUl () {

//Step 2: setup the top level container
myFrame = new JFrame();

//Step 3: Get the component area of top-level
container Container c = myFrame.getContentPane();

//Step 4: Apply layouts
c.setLayout(new FlowLayout());

//Step 5: create & add components
JTextField tf = new JTextField(10);
JButton bl = new JButton(‘'My Button™);

c.add(tf);
c.add(bl);

//Step 6: set size of frame and make i1t visible
myFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
myFrame.setSize(200,150);

myFrame.setVisible(true);

} //end initGUl method

public GUITest () {// default constructor
initGul QO;
by

public static void main (String args[1) {
GUITest gul = new GUITest();

}
} 7/ end of class

10.7 Important Points to Consider

© Copyright Virtual University of Pakistan 103

Web Design and Development (CS506)

e main method (from where program execution starts) is written in the same class. The
main method can be in a separate class instead of writing in the same class its your
choice.

e Inside main, an object of GUI test class is created that results in calling of constructor
of the class and from the constructor, initGUI method is called that is responsible for setting
up the GUI.

e The following line of code is used to exit the program when you close the window

myFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

If you delete this line and run your program, the desired GUI would be displayed. However if
you close the window by using (X) button on top left corner of your window, you’ll notice that
the control doesn’t return back to command prompt. The reason for this is that the java process is
still running. However if you put this line in your code, when you exit your prompt will return.

10.8 References:

Sun java tutorial: http://java.sun.com/docs/books/tutorial/java

Thinking in java by Bruce Eckle

Beginning Java2 by Ivor Hortan

GUI creation steps are taken from the book Java A Lab Course by Umair Javed

10.9 Graphical User Interfaces - 2

10.9.1 Layout Managers

Layout Managers are used to form the appearance of your GUI. They are concerned with the
arrangement of components of GUI. A general question is “why we cannot place components at
our desired location (may be using the x,y coordinate position?”

The answer is that you can create your GUI without using Layout Managers and you can
also do VB style positioning of components at some X,y co-ordinate in Java, but that is
generally not advisable if you desire to run the same program on different platforms

The appearance of the GUI also depends on the underlying platform and to keep that same the
responsibility of arranging layout is given to the LayoutManagers so they can provide the same
look and feel across different platforms

Commonly used layout managers are

Flow Layout

Grid Layout

Border Layout

Box Layout

Card Layout

GridBag Layout and so on

© Copyright Virtual University of Pakistan 104

Web Design and Development (CS506)

Let us discuss the top three in detail one by one with code examples. These top three will meet most
of your basic needs

10.9.1.1 Flow Layout

e Position components on line by line basis. Each time a line is filled, a new line is
started.

e The size of the line depends upon the size of your frame. If you stretch your frame while
your program is running, your GUI will be disturbed.

Example Code

// File FlowLayoutTest. java
import java.awt.*;
import javax.swing.*;

public class FlowLayoutTest {
JFrame myFrame ;
JButton bl, b2, b3, b4, b5;

//method used for setting layout of GUI
public void initGUl () {

myFrame = new JFrame(“Flow Layout™);

Container c = myFrame.getContentPane();
c.setLayout(new FlowLayout());

bl new JButton(“Next Slide™);

b2 new JButton(“Previous Slide”);

b3 new JButton(“Back to Start™);

b4 new JButton(“Last Slide™);

b5 new JButton(“EXit”);

c.add(bl);

.add(b2);

-add(b3);

-add(b4d);

.add(bb5);
myFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
myFrame.setSi1ze(300,150);

myFrame.setVisible(true);

} //end initGUl method

public FlowLayoutTest () { // default constructor
initGul QO;

¥

public static void main (String args[]) {
FlowLayoutTest flTest = new FlowLayoutTest();

OO0 00

© Copyright Virtual University of Pakistan 105

Web Design and Development (CS506)

}
} 7/ end of class

Output
£ Flow Layout
Next Slide Previous Slide
Back to Start Last Slide Exit
10.9.1.2 Grid Layout

e Splits the panel/window into a grid(cells) with given number of rows and columns.
Forces the size of each component to occupy the whole cell. Size of each
component is same .

e Components are added row wise. When all the columns of the first row are get filled the
components are then added to the next row.

e Only one component can be added into each cell.

Example Code

// File CGridLayoutTest. java

import java.awt.*;

import javax.swing.™;

public class GridLayoutTest {

JFrame myFrame ;

JButton bl, b2, b3, b4, b5;

//method used for setting layout of GUI
public void nitGUl () {

myFrame = new JFrame(“Grid Layout™);
Container c¢c = myFrame.getContentPane();
// rows , cols

c.setLayout(new GridLayout(3 » 2))

bl = new JButton(“Next Slide”);

b2 = new JButton(“Previous Slide”);
b3 = new JButton(“Back to Start™);
b4 = new JButton(“Last Slide™);

b5 = new JButton(“Exit”);
c.add(bl);

c.add(b2);

c.add(b3);

© Copyright Virtual University of Pakistan 106

Web Design and Development (CS506)

c.add(b4);

c.add(bb5);
myFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
myFrame.setSize(300,150);

myFrame.setVisible(true);

} //end InitGUI method

public GridLayoutTest () { // default constructor
initGUl Q;

¥

public static void main (String args[]) {
GridLayoutTest glTest = new GridLayoutTest();

}
} 7/ end of class

Output
£ Grid Layout [= |[@)X]
MHext Slide Previous ...
Back to ... Last Slide
Ex=it
Modification

The grid layout also allows the spacing between cells. To achieve spacing between cells, modify the
above program.

Pass additional parameters to the constructor of GridLayout, spaces between rows & spaces between
columns as shown below

c.setLayout(new GridLayout(3, 2,10, 20));

The output is look similar to one given below.

© Copyright Virtual University of Pakistan 107

Web Design and Development (CS506)

£ Grid Layout g@g|

Hext Slide Previou...
Back to ... Last Slide
Exit
_—

10.9.1.3 Border Layout

e Divides the area into five regions. North, South, East, West and Center
Components are added to the specified region

e If any region not filled, the filled regions will occupy the space but the center region
will still appear as background if it contains no component.

e Only one component can be added into each region.

NORTH

WEST CENTER EAST

SOUTH

Example Code:

// File BorderLayoutTest. java

import java.awt.*;

import javax.swing.*;

public class BorderLayoutTest {

JFrame myFrame ;

JButton bl, b2, b3, b4, b5;

//method used for setting layout of GUI
public void initGUl () {

myFrame = new JFrame(“‘Border Layout™);

Container c = myFrame.getContentPane();

c.setLayout(new BorderLayout());

bl = new JButton(“Next Slide™);

b2 = new JButton(“Previous Slide”);
b3 = new JButton(*“Back to Start™);
b4 = new JButton(“Last Slide™);

b5 = new JButton(“Exit”);

© Copyright Virtual University of Pakistan 108

Web Design and Development (CS506)

.add(bl , BorderLayout.NORTH);

.add(b2 , BorderLayout.SOUTH);

.add(b3 , BorderLayout.EAST);

.add(b4 , BorderLayout.WEST);

.add(b5 , BorderLayout.CENTER);
myFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
myFrame.setSize(300,150);

myFrame.setVisible(true);

} //end initGUl method

public BorderLayoutTest () { // default constructor
initGul QO;

¥

public static void main (String args[]) {
BorderLayoutTest glTest = new BorderLayoutTest();

+
} // end of class

OO0 000

Points to Remember

e Revisit the code of adding components, we specify the region in which we want
to add component or otherwise they will not be visible.

e Consider the following segment of code: BorderLayout.NORTH, as you
guessed correctly NORTH is a constant (final) defined in BorderLayout class
public access modifier. Similarly the other ones are defined. Now you understand
why so much emphasis has been made on following the naming conventions.

Output:
1 2 3 C
4 5 i}
F B]
1} . + =

10.10 Making Complex GUIs

From the discussion above it seems that the basic Layout Managers may not help us in
constructing complex GUIs, but generally a combination of these basic layouts can do the job. So
let’s try to create the calculator GUI given below

© Copyright Virtual University of Pakistan 109

Web Design and Development (CS506)

£ Border Layout

Hext Slide

Last Slide Exit Back to Start

Previous Slide

This GUI has 16 different buttons each of same size and text field on the top and a label ‘my
calculator’ on the bottom.

So, how we can make this GUI? If Border Layout is selected, it has five regions (each region can
have at most one component) but here we have more than five components to add. Lets try Grid
Layout, but all the components in a Grid have same size and the text field at the top and label at
the bottom has different size. Flow Layout cannot be selected because if we stretch our GUI it will
destroy its shape.

Can we make this GUI? Yes, we can. Making of such GUI is a bit tricky business but General
Purpose Containers are there to provide the solution.

10.10.1 JPanel
e It is general purpose container (can’t exist alone, it has to be in some toplevel container)

in which we can put in different components (JButton , JTextField etc even other JPanels)
e JPanel has its own layout that can be set while creating JPanel instance

JPanel myPanel = new JPanel (new FlowLayout());

e Add components by using add method like shown below.

myPanel .add (button);

e Must be added to a top level container (like JFrame etc) in order to be visible as
they (general purpose containers) can’t exist alone.

10.10.2 Solution

To make the calculator GUI shown above, take JFrame (top level container) and set its layout to
border. Then take JPanel (general purpose container) and set its layout to Grid with 4 rows and 4
columns.

Add buttons to JPanel as they all have equal size and JPanel layout has been set to

© Copyright Virtual University of Pakistan 110

Web Design and Development (CS506)

GridLayout. Afterthat, add text field to the north region, label to the south region and
panel to the center region of the JFrame’s container. The east and west regions are left
blank and the center region will be stretched to cover up these. So, that’s how we can build our
calculator GUI.

Code for Calculator GUI

// File CalculatorGUIl. java

import java.awt.*;

import javax.swing.™>;

public class CalculatorGUl {

JFrame fCalc;

JButton bl, b2, b3, b4, b5, b6, b7, b8, b9, bO;
JButton bPlus, bMinus, bMul, bPoint, bEqual, bClear;
JPanel pButtons;

JTextField tfAnswer; JLabel IMyCalc;

//method used for setting layout of GUI
public void initGUl () {

fCalc = new JFrame();

bO= new JButton(*'0™);
bl = new JButton(*'1");
b2 = new JButton(*'2");
b3 = new JButton(*'3");
b4 = new JButton(*'4');
b5 = new JButton(*'5");
b6 = new JButton(''6™);
b7 = new JButton(*'7'");
b8 = new JButton(*'8™);
b9 = new JButton(''9™);

bPlus = new JButton(*'+");
bMinus = new JButton(*"-"");
bMul = new JButton(*");
bPoint = new JButton(*".");
bEqual = new JButton(''="");
bClear = new JButton(''C");
tfAnswer = new JTextField();

IMyCalc = new JLabel (""My Clacualator™);
//creating panel object and setting i1ts layout
pButtons = new JPanel (new GridLayout(4,4));
//adding components (buttons) to panel
pButtons.add(bl);

pButtons.add(b2);

pButtons.add(b3);

© Copyright Virtual University of Pakistan 111

Web Design and Development (CS506)

pButtons.add(bClear);

pButtons.add(b4);

pButtons.add(b5);

pButtons.add(b6);

pButtons.add(bMull);

pButtons.add(b7);

pButtons.add(b8);

pButtons.add(b9);

pButtons.add(bMinus);

pButtons.add(b0);

pButtons.add(bPoint);

pButtons.add(bPlus);

pButtons.add(bEqual);

// getting componenet area of JFrame

Container con = fCalc.getContentPane();
con.setLayout(new BorderLayout());

//adding components to container

con.add(tfAnswer, BorderLayout.NORTH);

con.add(IMyCalc, BorderLayout.SOUTH);

con.add(pButtons, BorderLayout.CENTER);

fCalc.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

fCalc.setSize(300, 300);

fCalc.setVisible(true);

} //end initGUl method

public CalculatorGUl (O { // default constructor
initGUl Q;

}

public static void main (String args[1) {

CalculatorGUl calGUl = new CalculatorGUl ();

by
} 7/ end of class

10.11 Reference:

Sun java tutorial: http://java.sun.com/docs/books/tutorial/java
Thinking in java by Bruce Eckle

Beginning Java2 by Ivor Hortan

Java A Lab Course by Umair Javed

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 112

Web Design and Development (CS506)

Lecture 11: Event Handling

One of the most important aspects of most non-trivial applications (especially Ul type-apps) is
the ability to respond to events that are generated by the various components of the application,
both in response to user interactions and other system components such as client-server
processing. In this handout we will look at how Java supports event generation and handling and
how to create (and process) custom events.

GUIs generate events when the user interacts with GUI. For example,
e Clicking a button
e Moving the mouse
e Closing Window etc

Both AWT and swing components (not all) generate events

e java.awt.event.*,
e javax.swing.event.*;

In java, events are represented by Objects
These objects tell us about event and its source. Examples are:

e ActionEvent (Clicking a button)
e WindowEvent (Doing something with window e.g. closing , minimizing)

Some event classes of java.awt.event are shown in diagram below

(‘] ava. lanq.ﬂ:ﬁect) -—(: ActionEwvent) -—C ContainerEvent)
{ EHE EiEE } {AdﬁushnﬂﬁtEvmt) ﬂ—c FocusEvent)
java.util . Evenktlbject
C—C TtemEwent) C—C PaintEwvent :)
Gava. awt AWTEwvert)-—
-—(ComponentEvent }—-—C WindowEwent)

Key 'l—(: InputEvent }
D cussrans P

(:} Interffacename { EevEwvent) (MouseEvent)

© Copyright Virtual University of Pakistan 113

Web Design and Development (CS506)

11.1 Event Handling Model

In Java both AWT and Swing components use Event Delegation Model.

e In this model processing of an event is delegated to a particular object (handlers) in the
program

e It’s a Publish-Subscribe model. That is, event generating component publish an event and
event handling components subscribe for that event. The publisher sends these events to
subscribers. Similar to the way that you subscribe for newspaper and you get the
newspaper at your home from the publisher.

e This model separates Ul code from program logic, it means that we can create separate
classes for Ul components and event handlers and hence business/program
logic is separated from GUI components.

11.2 Event Handling Steps

For a programmer the event Handling is a three step process in terms of code

e Step 1: Create components which can generate events (Event Generators)
e Step 2: Build component (objects) that can handle events (Event Handlers)
e Step 3: Register handlers with generators

11.3 Event Handling Process

11.3.1Step 1: Event Generators

The first step is that you create an event generator. You have already seen a lot of event generators
like:

Buttons

Mouse

Key

Window etc

Most of GUI components can be created by calling their constructors. For example
JButton bl = new JButton(““Hello™);

Now b1 can generate events

Note: We do not create Mouse/Keys etc as they are system components

11.3.2 Step 2: Event Handlers/ Event Listener
The second step is that you build components that can handle events

e First Technique - By Implementing Listener Interfaces

© Copyright Virtual University of Pakistan 114

Web Design and Development (CS506)

o0 Java defines interfaces for every event type

o If a class needs to handle an event. It needs to implement the corresponding
listener interface

o0 To handle “ActionEvent” a class needs to implement “ActionListener”

0 To handle “KeyEvent” a class needs to implement “KeyL.istener”

o To handle “MouseEvent” a class needs to implement “MouseL.istener” and so on

o Package java.awt.event contains different event Listener Interfaces which

are shown in the following figure

'_{: hctionli stener)
‘—{ RdjustmentLis tenerj)
"_(omponentListener D
'_(_: ontainerListene)
"_{ FocwListener j)
"_{: Itenlistener }
-_(Eeydistener }
'_{: MouseListener)
"_{}:busel-htiDnL istem:D

Ky __('] }
{ }Cla £=Na me e slextbastener
{ ¥ Inte face name '—{: Windowlistener)

\/;ewa. util.EventListener /!

Some Example Listeners, the way they are defined in JDK by Sun

public interface ActionListener {
public void actionPerformed(ActionEvent e);

}

public interface ltemListener {
public void itemStateChanged(ltemEvent e);

by

© Copyright Virtual University of Pakistan 115

Web Design and Development (CS506)

public interface ComponentListener {

public void componentHidden(ComponentEvent e);
public void componentMoved(ComponentEvent e);
public void componentResized(ComponentEvent e);
public void componentShown(ComponentEvent e);

3

0 By implementing an interface the class agrees to implement all the methods that
are present in that interface. Implementing an interface is like signing a contract.

o Inside the method the class can do whatever it wants to do with that event

Event Generator and Event Handler can be the same or different classes

0 To handle events generated by Button. A class needs to implement
ActionListener interface and thus needs to provide the definition of

actionPerformed() method which is present in this interface.

o

public class Test implements ActionListener{
public void actionPerformed(ActionEvent ae) {
// do something

}
}

11.3.3 Step 3: Registering Handler with Generator

e The event generator is told about the object which can handle its events
e Event Generators have a method

o0 addXXXListener(_reference to the object of Handler class_)
e For example, if bl is JButton then

o0 bl.addActionListener(this);//if listener and generator are same class

Event Handling Example
Clicking the “Hello” button will open up a message dialog shown below.

) p—

| Hello | =
I) Hellois pressed

OK

© Copyright Virtual University of Pakistan 116

Web Design and Development (CS506)

We will take the simplest approach of creating handler and generator in a single class. Button is
our event generator and to handle that event our class needs to implement ActionListener
Interface and to override its actionPerformed method and in last to do the registration.

import java.awt.*;

import javax.swing.*;

. Import java.awt.event.*;

/* Implementing the interface according to the type of the event,
i.e. creating event handler (first part of step 2 of our process)
*/

WN P

4. public class ActionEventTest implements ActionListener{

5. JFrame frame;

6. JButton hello;

// setting layout components

7. public void initGUl () {

8. frame = new JFrame();

9. Container cont = frame.getContentPane();

10. cont.setLayout(new FlowLayout());

//Creating event generator step-1 of our process

11. hello = new JButton("Hello™);

/* Registering event handler with event generator.

Since event handler is In same object that contains

button, we have used this to pass the reference. (step

3 of the process) */

12. hello.addActionListener(this);

13. cont.add(hello);

14. frame.setDefaultCloseOperation(JFrame.EXIT_ON CLOSE);

15. frame.setSize(150, 150);

16. frame.setVisible(true);

17. }

//constructor

18. public ActionEventTest () {

19. initGuUIQ;

20. }

/* Override actionPerformed method of ActionListener’s
interfacemethod of which will be called when event
takes place (second part of step 2 of our process) */

21. public void actionPerformed(ActionEvent event) {

22. JOptionPane.showMessageDialog(null,"Hello is pressed™);

23. }

24_. public static void main(String args[]) {

25. ActionEventTest aeTest = new ActionEventTest();

26. }

27.% // end class

© Copyright Virtual University of Pakistan 117

Web Design and Development (CS506)

11.4 How Event Handling Participants Interact Behind the Scenes?

We have already seen that what a programmer needs to do handle events. Let’s see what takes place
behind the scenes, i.e How JVM handles event. Before doing that lets revisit different participants of
Event Handling Process and briefly what they do.

11.4.1Event Generator / Source

Swing and awt components

For example, JButton, JTextField, JFrame etc
Generates an event object

Registers listeners with itself

11.4.2Event Object

e Encapsulate information about event that occurred and the source of that event
e For example, if you click a button, ActionEvent object is created

avant Tistener
event object / :
. \:~ avent Tistener

evant listener

11.4.3Event Listener/handler

e Receives event objects when notified, then responds
e Each event source can have multiple listeners registered on it
e Conversely, a single listener can register with multiple event sources

11.4.43VM

Receives an event whenever one is generated
Looks for the listener/handler of that event

If exist, delegate it for processing

If not, discard it (event).

When button generates an ActionEvent it is sent to JVM which puts it in an event queue.
After that when JVM find it appropriate it de-queue the event object and send it to all the
listeners that are registered with that button. This is all what we shown in the pictorial
form below:

© Copyright Virtual University of Pakistan 118

Web Design and Development (CS506)

Ewent Queue

{managed by TV

Add event in queue

DeCueue Event

; Passz ActionEvent T'o Handler
Fenerate ActionBEvent

button .

Eegister With ActionHandler Action Ketion Meuse
Handler Handler Handler

(Figure from JAVA A Lab Course)

Making Small Calculator

o User enters numbers in the provided fields
e On pressing “+” button, sum would be displayed in the answer field
e On pressing “*” button, product would be displayed in the answer field

First Operand First Operand
4 | 3 |
Second Operand Second Operand
E | B |
+ 2 + 2
Answer Answer
g 18

© Copyright Virtual University of Pakistan 119

Web Design and Development (CS506)

Example Code: Making Small Calculator

. Import java.awt.™;

import javax.swing.*;

import java.awt.event.™;

- public class SmallCalcApp implements ActionListener{
. JFrame frame;

. JLabel firstOperand, secondOperand, answer;

. JTextField opl, op2, ans;

. JButton plus, mul;

. // setting layout

10. public void mnitGUl () {

11. frame = new JFrame();

12. firstOperand = new JLabel("'First Operand™);
13. secondOperand = new JLabel (*'Second Operand');
14. answer = new JLabel ("*Answer™);

15. opl = new JTextField (15);

16. op2 new JTextField (15);

17. ans = new JTextField (15);

18. plus = new JButton('+");

19. plus.setPreferredSize(new Dimension(70,25));
20. mul = new JButton('*");

21. mul _setPreferredSize(new Dimension(70,25));
22. Container cont = frame.getContentPane();
23. cont.setLayout(new FlowLayout());

24. cont.add(firstOperand);

25. cont.add(opl);

26. cont.add(secondOperand);

27. cont.add(op2);

28. cont.add(plus);

29. cont.add(mul);

30. cont.add(answer);

31. cont.add(ans);

32. plus.addActionListener(this);

33. mul .addActionListener(this);

OCO~NOUITAWNE

34. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
35. frame.setSize(200, 220);

36. frame.setVisible(true);

37. }

38. //constructor

39. public SmallCalcApp () {

40. InitGUIQ;

41. }

42 . public void actionPerformed(ActionEvent event) {
43. String oper, result;

© Copyright Virtual University of Pakistan

120

Web Design and Development (CS506)

44_ int numl, num2, res;

/* All the information regarding an event is contained
inside the event object. Here we are calling the
getSource() method on the event object to figure out
the button that has generated that event. */

45. 1T (event.getSource() == plus) {

46. oper = opl.getText();

47. numl = Integer.parselnt(oper);
48. oper = op2.getText();

49. num2 = Integer.parselnt (oper);

50. res = numl+num2;

51. result = res+"";

52. ans.setText(result);
53. }

54. else 1T (event.getSource() == mul) {

55. oper = opl.getText();

56. numl = Integer.parselnt(oper);
57. oper = op2.getText();

58. num2 = Integer.parselnt (oper);

59. res = numl*num2;

60. result = res+'""’;

61. ans.setText(result);

62. }

63.

64. public static void main(String args[]) {
65. SmallCalcApp scApp = new SmallCalcApp(Q);
66. }

67. }// end class

Note: Coding exercises in working condition for this lecture are also available on “Downloads”

section of LMS.

© Copyright Virtual University of Pakistan

121

Web Design and Development (CS506)

Lecture 12: More Examples of Handling Events

12.1 Handling Mouse Event

Mouse events can be trapped for any GUI component that inherits from Component class. For
example, JPanel, JFrame & JButton etc.

To handle Mouse events, two types of listener interfaces are available.

e MouseMotionListener
e MouseListener

The class that wants to handle mouse event needs to implement the corresponding interface
and needs to provide the definition of all the methods in that interface.

12.1.1 MouseMotionListener interface

e Used for processing mouse motion events
e Mouse motion event is generated when mouse is moved or dragged

A MouseMotionListener interface 1is definedinJDK as follows:

public interface MouseMotionListener {
public void mouseDragged (MouseEvent me);
public void mouseMoved (MouseEvent me); }

12.1.2MouseL.istener interface
e Used for processing “interesting” mouse events like when mouse is:

Pressed

Released

Clicked (pressed & released without moving the cursor)
Enter (mouse cursor enters the bounds of component)
Exit (mouse cursor leaves the bounds of component)

O O O o O

MouseL istener interfaces are defined in JDK as follows:

public interface MouseListener {

public void mousePressed (MouseEvent me);
public void mouseClicked (MouseEvent me);
public void mouseReleased (MouseEvent me);
public void mouseEntered (MouseEvent me);
public void mouseExited (MouseEvent me); }

© Copyright Virtual University of Pakistan 122

Web Design and Development (CS506)

Example Code: Handling Mouse Events

Example to show Mouse Event Handling .Every time mouse is moved, the coordinates for a new
place is shown in a label.

import java.awt.*;

import javax.swing.*;

import java.awt.event.™;

public class EventsEx implements MouseMotionListener{
. JFrame frame;

. JLabel coordinates;

. // setting layout

. public void initGUl () {

. // creating event generator

10. frame = new JFrame();

11. Container cont = frame.getContentPane();

12. cont.setLayout(new BorderLayout());

13. coordinates = new JLabel ();

14. cont.add(coordinates, BorderLayout.NORTH);

15. // registring mouse event handler with generator
16. frame.addMouseMotionListener(this);

17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
18. frame.setSize(350, 350);

19. frame.setVisible(true);

20. } // end initGUl method

21. //default constructor

22. public Eventsex () {

23. InitGUI();

24_ }

// MouseMotionListener event hadler handling dragging
25. public void mouseDragged (MouseEvent me) {

26. Int X = me.getX();

27. int y = me.getY();

OCO~NOUITAWNE

28. coordinates.setText("'Dragged at ["" + X + "," +y + "]');
29. }

// MouseMotionListener event handler handling motion

30. public void mouseMoved (MouseEvent me) {

31. int x = me.getX();

32. int y = me.getY();

33. coordinates.setText(""Moved at [+ x + "," + y + "]');
34. }

35. public static void main(String args[]) {

36. EventskEx ex = new EventsEx();

37. }

38. } // end class

© Copyright Virtual University of Pakistan 123

Web Design and Development (CS506)

Another Example: Handling Window Events

Task
We want to handle Window Exit event only
Why?

e When window is closed, control should return back to command prompt.
e But we have already achieved this functionality through following line of code

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

e But, what if we want to display some message (Good Bye) before exiting?

e - [E %]

hu-.r.r||:|-.'-|1|

When user closes _
the window. Message 1) Goodiye
would be displayed

After pressing Ok button |
program will exit

How?

e To handle window events, we need to implement “WindowL istner” interface.

e WindowListner” interface contains 7 methods We require only one i.e.
windowClosing

e But, We have to provide definitions of all methods to make our class a concrete class

e WindowListener interface is defined in the JDK as follows

public interface WindowListener {

public void windowActivated(WindowEvent we);
public void windowClosed(WindowEvent we);
public void windowClosing(WindowEvent we);
public void windowDeactivated(WindowEvent we);
public void windowDeiconified(WindowEvent we);
public void windowlconified(WindowEvent we);
public void windowOpened(WindowEvent we);

>

e public void windowClosing(WindowEvent we) is our required method

© Copyright Virtual University of Pakistan 124

Web Design and Development (CS506)

Example Code: WindowExitHandler

This example code is modification of the last code example i.e. EventsEx.java

1. import java.awt.*;

2. 1mport javax.swing.>;

3. Import java.awt.event.*;

4. public class Eventsex implements MouseMotionListener ,
WindowListener {

5. JFrame frame;

6. JLabel coordinates;

// setting layout

7. public void initGUI () {

// creating event generator

8. frame = new JFrame();

9. Container cont = frame.getContentPane();
10. cont.setLayout(new BorderLayout());

11. coordinates = new JLabel ();

12. cont.add(coordinates, BorderLayout.NORTH);
// registring mouse event handler with generator
13. frame.addMouseMotionListener(this);

// registering window handler with generator
14. frame.addWindowListener(this);

15. frame.setSize(350, 350);

16. frame.setVisible(true);

17. } // end initGUl method

//default constructor

18. public Eventsex () {

19. InitGUIQ);

20. }

// MouseMotionListener event hadler handling dragging

21. public void mouseDragged (MouseEvent me) {

22. Iint X = me.getX();

23. Int y = me.getY();

24 . coordinates.setText("'Dragged at [+ x + "," +y + "]');
25. }

// MouseMotionListener event handler handling motion

26. public void mouseMoved (MouseEvent me) {

27. Int x = me.getX();

28. Int y = me.getY();

29.

30. coordinates.setText("'Moved at [" + x + "," + y + "]');
31. }

// window listener event handler

© Copyright Virtual University of Pakistan 125

Web Design and Development (CS506)

32. public void windowActivated (WindowEvent we) { }
33. public void windowClosed (WindowEvent we) { }
34. public void windowClosing (WindowEvent we) {

35. JOptionPane.showMessageDialog(null, “Good Bye”);
36. System.exit(0);

37. }

38. public void windowDeactivated (WindowEvent we) {
39. public void windowDeiconified (WindowEvent we) {
40. public void windowlconified (WindowkEvent we) {
41. public void windowOpened (WindowkEvent we) { }

e o

42 . public static void main(String args[]) {
43. EventskEx ex = new Eventstx();

44 }

45. } // end class

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 126

Web Design and Development (CS506)

Lecture 13: Adapter Classes
Problem in Last Code Example

Problem

e We were interested in windowClosing() method only

e But have to provide definitions of all the methods, Why?

e Because a class implementing an interface has to provide definitions of all methods
present in that interface.

Solution

e To avoid giving implementations of all methods of an interface when we are not
using these methods we use Event Adapter classes

13.1 Adapter Classes

e For listener interfaces containing more than one event handling methods, jdk defines
adapter classes. Examples are
o For WindowListener & WindowAdapter
o For MouseMotionListener & MouseMotionAdapter
0 and many more
e Adapter classes provide definitions for all the methods (empty bodies) of their
corresponding Listener interface
e It means that WindowAdapter class implements WindowListener interface and
provide the definition of all methods inside that Listener interface
e Consider the following example of MouseMotionAdapter and its corresponding
MouseMotionListener interface

public interface MouseMotionListener {
public void mouseDragged (MouseEvent me);
public void mouseMoved (MouseEvent me); }

public class MouseMotionAdapter implements
MouseMotionListener{
public void mouseDragged (MouseEvent me) { }
public void mouseMoved (MouseEvent me) { }

3

© Copyright Virtual University of Pakistan 127

Web Design and Development (CS506)

13.2 Available Adapter classes

Adapter Class

Listener (If Any) Registration Method
ActionListener addActionListene r
Adjusime nil.iste ner addAdjusimentliste ne v
ComponentListener ComponentAdapter addComponentListe ne r
ContainerListener ContainerAdapter addContaine 1Liste ne r
FocusListe ne r FocusAdapter addFocusListe ne r
Ite mListene r addlite mListe ner
KeyListener KevAdapter addKe yListe ner
AMouselistener AouseAdapter addMouse Liste ne r
AMouseMotionListener MMousedlotionAdapter addMouse MotionListe ne v
Te xtListene r addTe xiliste ner
WindowListene r WindowAdapter addWindowListe ne r

13.2.1 How to use Adapter Classes

e previously handler class need to implement interface
public class Eventsex implements MouseMotionListener{...}
e Therefore it has to provide definitions of all the methods inside that interface now our
handler class will inherit from adapter class
public class EventsEx extends MouseMotionAdapter{...}
e Due to inheritance, all the methods of the adapter class will be available inside our
handler class since adapter classes has already provided definitions with empty bodies.
e we do not have to provide implementations of all the methods again
e We only need to override our method of interest.

Example Code 13.1: Handling Window Events using Adapter Classes

Here we are modifying the window event code in the last example to show
the use of WindowAdapter instead of WindowListener. Code related to
MouseMotionListener is deleted to avoid cluttering of code.

1. import java.awt.*;

2. 1mport javax.swing.*;

3. Import java.awt.event.*;

4. public class Eventsex extends WindowAdapter {
5. JFrame frame;

6. JLabel coordinates;

// setting layout

7. public void initGUI () {

// creating event generator

8. frame = new JFrame();

9. Container cont = frame.getContentPane();
10. cont.setlLayout(new BorderLayout());

© Copyright Virtual University of Pakistan 128

Web Design and Development (CS506)

11. coordinates = new JLabel ();

12. cont.add(coordinates, BorderLayout.NORTH);
// registering window handler with generator
13. frame.addWindowListener(this);

14. frame.setSize(350, 350);
15. frame.setVisible(true);
16. } // end initGUI method
//default constructor

17. public Eventsex () {
18. initGUIQ);

19. }

// As you can see that we have only implemented

// our required method

20. public void windowClosing (WindowkEvent we) {
21. JOptionPane.showMessageDialog(null, “Good Bye”);
22. System.exit(0);

23. }

24._ public static void main(String args[]) {
25. EventskEx ex = new Eventsex();

26. }

27. } // end class

Problem in Last Code Example

e We have inherited from WindowAdapter
e What if we want to use MouseMotionAdpater as well? Or what if our class already
inherited from some other class?

Problem
e Java allows single inheritance
Solution

e Use Inner classes

13.3 Inner Classes

e A class defined inside another class
e Inner class can access the instance variables and members of outer class
e |t can have constructors, instance variables and methods, just like a regular class

© Copyright Virtual University of Pakistan 129

Web Design and Development (CS506)

e Generally used as a private utility class which does not need to be seen by others

classes
: . Quter
Ul class (contains GU| creation code)

Class
*ifis a JTextField

Handler class

7/,,, * contains event
handling code

— - L
Inner
class |

*fis accessible here

Example Codel3.2: Handling Window Event with Inner Class

Here we are modifying the window event code in the last example to show the use of
WindowAdapter as an inner class.

import java.awt.*™;
import javax.swing.*;
import java.awt.event.*™;
public class EventEx {

P WNPF

. JFrame frame;

. JLabel coordinates;

. // setting layout

- public void initGUl () {

. frame = new JFrame();

10. Container cont = frame.getContentPane();

11. cont.setLayout(new BorderLayout());

12. coordinates = new JLabel ();

13. cont.add(coordinates, BorderLayout.NORTH);

/* Creating an object of the class which is handling our
window events and registering it with generator */
14. WindowHandler handler = new WindowHandler ();
15. frame.addWindowListener(handler);

16. frame.setSize(350, 350);

17. frame.setVisible(true);

18. } // end initGUI

//default constructor

19. public EventeEx () {

© 00 ~NO Ol

© Copyright Virtual University of Pakistan 130

Web Design and Development (CS506)

20. initGUIQ);

21. }

/* Inner class implementation of window adapter. Outer
class 1s free to inherit from any other class. */

22. private class WindowHandler extends WindowAdapter {
// Event Handler for WindowListener

23. public void windowClosing (WindowkEvent we) {

24 . JOptionPane.showMessageDialog(null, “Good Bye™);
25. System.exit(0);

26. }

27. } // end of WindowHandler class

28. public static void main(String args[]) {

29. EventEx e = new EventEx();

30. }

31. } // end class

(E:>I<ample Code 13.3: Handling Window and Mouse Events with Inner
ass

Here we are modifying the window event code of the last example to handle window and
mouse events using inner classes. The diagram given below summarizes the approach.

Inner class L’”f‘

Handling QOuterclass
Mouse Events for GUl and
other code

L]
Inner class —

Handling
Window

1 import java.awt.*;
2 import javax.swing.*;
3 import java.awt.event.™;
4. public class EventEx {
5. JFrame frame;

6. JLabel coordinates;
7. // setting layout
8. public void initGUl ()
{
9
1

. frame = new JFrame();
0. Container cont = frame.getContentPane();

© Copyright Virtual University of Pakistan 131

Web Design and Development (CS506)

11. cont.setlLayout(new BorderLayout());

12. coordinates = new JLabel ();

13. cont.add(coordinates, BorderLayout.NORTH);

/* Creating an object of the class which is handling our
window events and registering it with generator */

14. WindowHandler whandler = new WindowHandler ();

15. frame.addWindowListener(whandler);

/* Creating an object of the class which is handling our
MouseMotion events & registering it with generator */
16. MouseHandler mhandler = new MouseHandler ();

17. frame.addMouseMotionListener(mhandler);

18. frame.setSize(350, 350);

19. frame.setVisible(true);

20. }

//default constructor

21. public EventEx () {

22 initGUI();

23. }

/* Inner class implementation of WindowAdapter. Outer class
iIs free to inherit from any other class. */

24 . private class WindowHandler extends WindowAdapter {
// Event Handler for WindowListener

25. public void windowClosing (WindowkEvent we) {

26. JOptionPane.showMessageDialog(null, “Good Bye”);

27. System.exit(0);

28. }

29. } // end of WindowHandler

//1Inner class implementation of MouseMotionAdapter

30. private class MouseHandler extends MouseMotionAdapter {
// Event Handler for mouse motion events

31. public void mouseMoved (MouseEvent me) {

32. Iint x = me.getX();

33. Int y = me.getY();

34. coordinates.setText(“Moved at ["" + X + ","" + y + "]”);
35. }

36. } // end of MouseHandler

37. public static void main(String args[]) {

38. EventEx e = new EventEx();

39. }

40. } // end class

© Copyright Virtual University of Pakistan 132

Web Design and Development (CS506)

Example Code: Making Small Calculator using Inner classes

e User enters numbers in the provided fields
e On pressing “+” button, sum would be displayed in the answer field
e On pressing “*” button, product would be displayed in the answer field

EBX

First Operand First Operand

Second Operand Second Operand

Answer
Answer

. import java.awt.*;

. Import javax.swing.*;

. import java.awt.event.*;

- public class SmallCalcApp{

. JFrame frame;

. JLabel firstOperand, secondOperand, answer;

. JTextField opl, op2, ans;

. JButton plus, mul;

. // setting layout

10. public void initGUl () {

11. frame = new JFrame();

12. firstOperand = new JLabel("'First Operand™);
13. secondOperand = new JLabel (**'Second Operand™);
14. answer = new JLabel ("'Answer™);

15. opl = new JTextField (15);

16. op2 new JTextField (15);

17. ans = new JTextField (15);

18. plus = new JButton('+");

19. plus.setPreferredSize(new Dimension(70,25));
20. mul = new JButton('*"");

21. mul .setPreferredSize(new Dimension(70,25));
22. Container cont = frame.getContentPane();
23. cont.setLayout(new FlowLayout());

24_ cont.add(firstOperand);

25. cont.add(opl);

26. cont.add(secondOperand);

27. cont.add(op2);

©CoOoO~NOOUIT,,WNE

© Copyright Virtual University of Pakistan 133

Web Design and Development (CS506)

28. cont.add(plus);

29. cont.add(mul);

30. cont.add(answer);

31. cont.add(ans);

/* Creating an object of the class which is handling
button events & registering it with generators */
32. ButtonHandler bHandler = new ButtonHandler();
33. plus.addActionListener(bHandler);

34. mul _.addActionListener(bHandler);

35. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
36. frame.setSize(200, 220);

37. frame.setVisible(true);

38. }

39. //constructor

40. public SmallCalcApp () {

41. initGUIQ;

42. }

//Inner class implementation of ActionListener

43. private class ButtonHandler implements ActionListener{
44 _ public void actionPerformed(ActionEvent event) {
45. String oper, result;

46. int numl, num2, res;

47. 1T (event.getSource() == plus) {

48. oper = opl.getText();

49. numl = Integer.parselnt(oper);
50. oper = op2.getText();

51. num2 = Integer.parselnt (oper);

52. res = numl+num2;

53. result = res+'"";

54. ans.setText(result);

55}

56. else 1T (event.getSource() == mul) {

57. oper = opl.getText();

58. numl = Integer.parselnt(oper);
59. oper = op2.getText();

60. num2 = Integer.parselnt (oper);

61. res = numl*num2;

62. result = res+""";

63. ans.setText(result);

64 }

65. } // end actionPerformed method

66. } // end i1nner class ButtonHandler

67. public static void main(String args[]) {
68. SmallCalcApp scApp = new SmallCalcApp(Q);
69. }

70. }// end class

© Copyright Virtual University of Pakistan 134

Web Design and Development (CS506)

13.4 Anonymous Inner Classes

has no name

same as inner class in capabilities
much shorter

Difficult to understand

13.5 Named vs. Anonymous Objects

13.5.1Named

e String s = “hello”;
System.out.printin(s);
e “hello” has a named reference s.

13.5.2 Anonymous

e System.out.printin(**hello™);

We generally use anonymous object when there is just a onetime use of a particular object but
in case of a repeated use we generally used named objects and use that named reference to use that
objects again and again.

CE:>I<ample Code 13.4 Handling Window Event with Anonymous Inner
ass

Here we are modifying the window event code of 13.3 to show the use of anonymous inner
class.

28. import java.awt.*;

29. import javax.swing.*;

30. import java.awt.event.*;

31. public class EventsEx extends WindowAdapter {

32. JFrame frame;

33. JLabel coordinates;

// setting layout

34. public void initGUI () {

// creating event generator

35. frame = new JFrame();

36. Container cont = frame.getContentPane();

37. cont.setLayout(new BorderLayout());

38. coordinates = new JLabel ();

39. cont.add(coordinates, BorderLayout.NORTH);

// registering event handler (anonymous inner class)

© Copyright Virtual University of Pakistan 135

Web Design and Development (CS506)

// with generator by using

40. frame.addWindowListener (

41. new WindowAdapter () {

42 . public void windowClosing (WindowEvent we) {
43. JOptionPane.showMessageDialog(null, “Good Bye™);
44 _ System.exit(0);

45. } // end window closing

46. } // end WindowAdapter

47.); // end of addWindowListener

48. frame.setSize(350, 350);

49. frame.setVisible(true);

50. } // end initGUl method

//default constructor

51. public Eventsex () {

52_ initGUI();

53. }

54_. public static void main(String args[]) {
55. EventskEx ex = new EventsEx();

56. }

57. } // end class

13.6 Summary of Approaches for Handling Events

e By implementing Interfaces
e By extending from Adapter classes

To implement the above two techniques we can use
e Same class
0 putting event handler & generator in one class

e Separate class
o Outer class

= Putting event handlers & generator in two different classes
O Inner classes
0 Anonymous Inner classes

13.7 References

Java A Lab Course by Umair Javed

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 136

Web Design and Development (CS506)

Lecture 14: Java Database Connectivity
14.1 Introduction

Java Database Connectivity (JDBC) provides a standard library for accessing databases. The
JDBC API contains number of interfaces and classes that are extensively helpful while
communicating with a database.

14.2 The java.sgl package

The java.sql package contains basic & most of the interfaces and classes. You automatically get
this package when you download the J2SE™. You have to import this package whenever you
want to interact with a relational database.

14.3 Connecting With Microsoft Access

In this handout, we will learn how to connect & communicate with Microsoft Access Database.
We chooses Access because most of you are familiar with it and if not than it is very easy to
learn.

14.3.1 Create Database

In start create a database “Personinfo” using Microsoft Access. Create one table named
“Person”. The schema of the table is shown in the picture.

EE Personinfo : Database (Access 2000 file format) [Z| [E| [‘S__<|

(e open 1€ pesion mmew | X | 25 - [EE]EE

Chjects Create table in Design view
Tables Create table by using wizard
e F| Create table by entering data
oo

Groups

B Person : Table

Field IMame | Data Type |
W id AutoMumber
name Text
address Text
phoneMum Text

© Copyright Virtual University of Pakistan 137

Web Design and Development (CS506)

Add the following records into Person table as shown below:

E Peroson : Table

icl address

=13

phanefum

i ali maodel town

2 usman gulberg
3 raza defence
0

Record: Hl | i k| M |HIE of 3

9203256
8219065
5173946

Save the data base in some folder. (Your database will be saved as an .mdb file)

14.3.2 Setup System DSN

e After creating database, you have to setup a system Data Source Name (DSN). DSN is a
name through which your system recognizes the underlying data source.
e Select Start © Settings # Control Panel # Administrative Tools & Data Sources

(ODBC).

e The ODBC Data Source Administrator window would be opened as shown below:
Select System DSN tab. (If you are unable to use System DSN tab due to security
restrictions on your machine, you can use the User DSN tab)

#" ODBC Data Source Administrator

Sy=tem Dlata Sources:

User DSM System DSN l File DSN] Drivers] Tracing] Connection Pooling] About]

| A

on this machine, including MT services.

Mame Diriver
boizy e A =Y Microsoft Access Diiver (".mdb)

An ODBC System data source stores information about how to connect to
the indicated data provider. A System data source is visible to all users

Remove

ik

Configure...

oK ‘ Cancel |

| Help |

e Press Add... button and choose Microsoft Access Driver (*.mdb) from Create New Data
Source window and press Finish button as shown in diagram:

© Copyright Virtual University of Pakistan

138

Web Design and Development (CS506)

Create New Data Source El

Select a driver for which you want to set up a data source.

>

Mame

Driver do Microsaft Access (" mdb)
Driver do Microsoft dBase (*.dbf)
Driver do Microsoft Bxcel(™xs)
Driver do Microsoft Paradox (*.db)
Driver para o Microsoft Visual FoxPro
Microsoft Access-Treiber (*.mdb)
Microsoft dBase Driver {.dbf)
Microsoft dBase WFP Driver {".dbf)
Elimemmmft ADmmm Temibme = AlE0

<

£

P S S N

| Finish | Cancel |

e After thatt ODBC Microsoft Access Setup window would be opened as shown in
following diagram:

ODBC Microsoft Access Setup

Diata Source Mame: |perscnnDSN K
Description: |
Cancel
Databasze
Database: D:LumgVUMec 13%Personinfo.mdb Help

Select. . | Create. .. | Repair... Cu:nmpact...|
Advanced...

System Database

[EkE]

*" Mone

" Databasze:

Options:==

[

e Enter the Data Source Name personDSN and select the database by pressing
Select button. The browsing window would be opened, select the desired folder
that contains the database (The database .mdb file you have created in the first
step) Press Ok button.

14.4 Basic Steps in Using JDBC

There are eight (8) basic steps that must be followed in order to successfully
communicate with a database. Let’s take a detail overview of all these one by one.

© Copyright Virtual University of Pakistan 139

Web Design and Development (CS506)

14.4.1 Import Required Package

e Import the package java.sqgl.* that contains useful classes and interfaces to
access & work with database.

import java.sql.*;
14.4.2Load Driver

Need to load suitable driver for underlying database.

Different drivers & types for different databases are available.

For MS Access, load following driver available with j2se.
Class.forName(*“sun.jdbc.odbc.JdbcOdbcDriver™);

For Oracle, load the following driver. You have to download it explicitly.
Class.forName(“oracle.jdbc.driver.OracleDriver”);

14.4.3Define Connection URL

e To get a connection, we need to specify the URL of a database (Actually we need
to specify the address of the database which is in the form of URL)

e As we are using Microsoft Access database and we have loaded a JDBC-ODBC
driver. Using JDBC-ODBC driver requires a DSN which we have created earlier
and named it personDSN. So the URL of the database will be

String conURL = “jdbc:odbc:personDSN”;

14.4 4 Establish Connection With DataBase

Use DriverManager to get the connection object.
The URL of the database is passed to the getConnection method.
Connection con = DriverManager.getConnection(conURL);
If DataBase requires username & password, you can use the overloaded version of
getConnection method as shown below:

String usr = “umair”;

String pwd = “vu’;

Connection con = null;

con = DriverManager.getConnection(conURL, usr, pwd);

14.4.5Create Statement

e A Statement object is obtained from a Connection object.
Statement stmt = con.createStatement();
e Once you have a statement, you can use it for various kinds of SQL queries.

© Copyright Virtual University of Pakistan 140

Web Design and Development (CS506)

14.4.6 Execute a Query

e The next step is to pass the SQL statements & to execute them.
e Two methods are generally used for executing SQL queries. These are:
o executeQuery(sgl) method
= Used for SQL SELECT queries.
» Returns the ResultSET object that contains the results of the query and
can be used to access the query results.
String sql = “SELECT * from sometable”;
ResultSet rs = stmt.executeQuery(sql);
0 executeUpdate(sgl) method
= This method is used for executing an update statement like INSERT,
UPDATE or DELETE
= Returns an Integer value representing the number of rows updated
String sql = “INSERT INTO tablename ” +
“(columnNames) Values (values)” ;
int count = stmt.executeUpdate(sql);

14.4.7Process Results of the Query

e The ResultSet provides various getXXX methods that takes a column index
or name and returns the data
e The ResultSet maintains the data in the form tables (rows & columns)
First row has index 1, not 0.
e The next method of ResultSet returns true or false depending upon
whether the next row is available (exist) or not and moves the cursor
e Always remember to call next() method at-least once
e To retrieve the data of the column of the current row you need to use the various getters
provided by the ResultSet.
e For example, the following code snippet will iterate over the whole
ResultSet and illustrates the usage of getters methods
while (rs.next() {
String name = rs.getString(*“columnName”); //by using column name
String name = rs.getString(1); // or by using column index }

14.4.8 Close the Connection

e An opening connection is expensive, postpone this step if additional database operations
are expected

con.close();

© Copyright Virtual University of Pakistan 141

Web Design and Development (CS506)

Example Code 14.1: Retrieving Data from ResultSet

The JdbcEx. java demonstrates the usage of all above explained steps. In this code
example, we connect with the Personinfo database, the one we have created earlier, and
then execute the simple SQL SELECT query on Person table, and then process the query
results.

// File JdbcEx.java

//Step 1: Import package

import java.sql.*;

public class JdbcEx {

public static void main (String args[]) {
try {

//Step 2: load driver

Class.forName(““sun. jdbc.odbc.JdbcOdbcDriver’);
//Step 3: define the connection URL

String url = “jdbc:odbc:personDSN’;

//Step 4: establish the connection

Connection con = DriverManager.getConnection(url);
//Step 5: create Statement

Statement st = con.createStatement();

//Step 6: preapare & execute the query

String sql = “SELECT * FROM Person’;

ResultSet rs = st.executeQuery(sqgl);

//Step 7: process the results
while(rs.next()){

// The row name is ‘“name” in database “Personinfo,
// hence specified iIn the getString() method.
String name = rs.getString(“name”);

String add = rs.getString(“address™);

String pNum = rs.getString(“phoneNum’™);
System.out.printIn(name + “ > + add + >~ > + pNum);

by

//Step 8: close the connection
con.close();
}catch(Exception sqlEx){

System.out.printIn(sqlEx);
3
} 7/ end main

} 7/ end class

The important thing you must notice that we have put all code inside try block and then handle
(in the above example, only printing the name of the exception raised) exception inside catch
block.

Why? Because we are dealing with an external resource (database). If you can recall all 10
related operations involving external resources in java throw exceptions. These exceptions

© Copyright Virtual University of Pakistan 142

Web Design and Development (CS506)

are checked exceptions and we must need to handle these exceptions.
Compile & Execute

Since the Person table contains only three records, so the following output would be
produced on executing the above program.

= C:\WINDOWS\system32\cmd.exe oS

D:\examples\jdbec? javac JdbcEx. java

D:\examples\jdbc) java JdbcEx
ali model town 92003256
usman gulberg 8219065

raza defence 5173946

-
4| | 3

14.5 References:

e Java- A Lab Course by Umair Javed
e Java tutorial by Sun: http://java.sun.com/docs/books/turorial
e Beginning Java2 by lvor Hortan

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 143

Web Design and Development (CS506)

Lecture 15: More On JDBC

In the previous handout, we have discussed how to execute SQL statements. In this handout,
we’ll learn how to execute DML (insert, update, delete) statements as well some useful methods
provided by the JDBC API.

Before jumping on to example, let’s take a brief overview of executeUpdate()
method that is used for executing DML statements.

15.1 Useful Statement Methods:

15.1.1executeUpdate()

e Used to execute for INSERT, UPDATE, or DELETE SQL statements.

e This method returns the number of rows that were affected in the database.

e Also supports DDL (Data Definition Language) statements CREATE TABLE, DROP
TABLE, and ALERT TABLE etc.

e [For example,

int num = stmt.executeUpdate(““DELETE from Person WHERE id
= 211);

Example Code 15.1 : Executing SQL DML Statements

This program will take two command line arguments that are used to update records in the
database. executeUpdate() method will be used to achieve the purpose stated above.

// File JdbcDmIEX. java

//step 1:

import package import java.sql.*;

public class JdbcDmIEx {

public static void main (String args[1) {
try {

//Step 2: load driver

Class.forName(““sun. jdbc.odbc.JdbcOdbcDriver’™);

//Step 3: define the connection URL

String url = “jdbc:odbc:personDSN™’;

//Step 4: establish the connection

Connection con = DriverManager.getConnection(url);
//Step 5: create Statement

Statement st = con.createStatement();

// assigning first command line argument value
String addvar = args[O0];

// assigning second command line argument value

© Copyright Virtual University of Pakistan 144

Web Design and Development (CS506)

String nameVar = args[1];
// preparing query - nameVar & addVar strings are embedded
// into query within “” + string + “~
String sql = “UPDATE Person SET address = “”+addvar+””” +“ WHERE
name = “”’+nameVar+”” ”7;
// executing query
int num = st.executeUpdate(sql);
// Step 7: process the results of the query
// printing number of records affected
System.out.printIin(num + “ records updated™);
//Step 8: close the connection
con.close();
}catch(Exception sqlEx){
System.out.printin(sqlEx);
}

} // end main
} 7/ end class

Compile & Execute

The Person table is shown in the following diagram before execution of the program. We want to
update first row i.e. address of the person ali.

B Person : Table |Z E| E|
' address phoneMum
1 ali Cmodsl town> 9203256

Z2/usman qulberg 6219065
J raza defence 5173946
0

The next diagram shows how we have executed our program. We
passed it two arguments. The first one is the address (defence) and later one
is the name (ali) of the person against whom we want to update the address
value.

e CAWINDOWS\system3 2\cmd. exe

D:N\examples\jdbec? javac JdbeDmlEx. java EJ

?: \examples \jdbg)java JdbeDm1Ex

record update

w
4| | »

© Copyright Virtual University of Pakistan 145

Web Design and Development (CS506)

The Person table is shown in the following diagram after the execution of the
program. Notice that address of the ali is now changed to defence.

B Person : Table

name address phonelum

1| ali Cdefence> 8203256

Z usman gulberg 6219065
3| raza defence 5173946
0

Record: Hl || 1 kM |HE of 3

Note

When we execute DML statements (insert, update, delete) we have to commit it in the
database explicitly to make the changes permanent or otherwise we can rollback the
previously executed statements.

But in the above code, you have never seen such a statement. This is due to the fact that java will
implicitly commit the changes. However, we can change this java behavior to manual commit.
We will cover these in some later handout.

15.1.2getMaxRows / setMaxRows(int)

e Used for determines the number of rows a Resul tSet may contain
e By default, the number of rows are unlimited (return value is 0), or by using
setMaxRows(int), the number of rows can be specified.

15.1.3getQueryTimeOut / setQueryTimeOut (int)

e Retrieves the number of seconds the driver will wait for a Statement object to
execute.
The current query time out limit in seconds, zero means there is no limit

e If the limit is exceeded, a SQLEXxception is thrown

15.2 Different Types of Statements

e As we have discussed in the previous handout that through Statement objects,
SQL queries are sent to the databases.
e Three types of Statement objects are available. These are:

15.2.1Statement

e The Statement objects are used for executing simple SQL statements.

© Copyright Virtual University of Pakistan 146

Web Design and Development (CS506)

We have already seen its usage in the code examples.

15.2.2 PreparedStatement

The PreparedStatement are used for executing precompiled SQL statements and passing in
different parameters to it.
We will talk about it in detail shortly.

15.2.3CallableStatement

These are used for executing stored procedures.
We are not covering this topic; See the Java tutorial on it if you are interested in learning it.

15.2.4 Prepared Statements

What if we want to execute same query multiple times by only changing parameters.
PreparedStatement object differs from Statement object as that it is used to
create a statement in standard form that is sent to database for compilation, before
actually being used.

Each time you use it, you simply replace some of the marked parameters (?) using
some setter methods.

We can create PreparedStatement object by using prepareStatement
method of the connection class. The SQL query is passed to this method as an

argument as shown below.
PreparedStatement pStmt = con.prepareStatement
“UPDATE tableName SET columnName =
? 7 + “WHERE columnName = ? 7);

Notices that we used marked parameters (?) in query. We will replace them later on
by using various setter methods.

If we want to replace first ? with String value, we use setString method and to
replace second ? with int value, we use setlnt method. This is shown in the
following code snippet:

pStmt.setString (1 , stringValue);
pStmt_setiInt (2 , 1Intvalue)

Note: The first market parameter has index 1.

Next, we can call executeUpdate (for INSERT, UPDATE or DELETE queries) or
executeQuery (for simple SELECT query) method.

pStmt.executeUpdate();

© Copyright Virtual University of Pakistan 147

Web Design and Development (CS506)

Modify Example Code: Executing SQL DML using Prepared
Statements

This example code is modification to the last example code (JdbcDmIEXx.java).The
modifications are highlighted as bold face.

// File JdbcDmIEX. java

//step 1: import package

import java.sql.*;

public class JdbcDmIEx {

public static void main (String args[] {

try {

//Step 2: load driver
Class.forName(**sun. jdbc.odbc.JdbcOdbcDriver’);

//Step 3: define the connection URL
String url = “jdbc:odbc:personDSN’;

//Step 4: establish the connection
Connection con = DriverManager.getConnection(url, 7, 7);

// make query and place ? where values are to
//be inserted later
String sql = “UPDATE Person SET address = ? “ +

“ WHERE name = ? ”’;
// creating statement using Connection object and passing
// sqgl statement as parameter
PreparedStatement pStmt = con.prepareStatement(sql);
// assigning first command line argument value
String addvar = args|[0];
// assigning second command line argument value
String nameVar = args[1];

// setting fTirst marked parameter (?) by using setString()
// method to address.
pStmt.setString(l , addvar);

// setting second marked parameter(?) by using setString()
// method to name
pStmt.setString(2 , nameVar);

// suppose address is “defence” & name i1s “ali”
// by setting both marked parameters, the query will look

// like:
// sgl = “UPDATE Person SET address = “defence”
// WHERE name = “ali1” ”

© Copyright Virtual University of Pakistan

148

Web Design and Development (CS506)

// executing update statemnt
int num = pStmt.executeUpdate();

// Step 7: process the results of the query
// printing number of records affected
System.out.printIin(num + “ records updated™);

//Step 8: close the connection
con.close();

}catch(Exception sqlEx){
System.out.printin(sqlEx);

+

} // end main

} // end class

Compile & Execute

Execute this code in a similar way as we showed you in execution of the last program. Don’t
forget to pass the address & name values as the command line arguments.

15.3 References:

e Entire material for this handout is taken from the book JAVA A Lab Course by Umair
Javed. This material is available just for the use of VU students of the course Web
Design and Development and not for any other commercial purpose without the consent
of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 149

Web Design and Development (CS506)

Lecture 16: Result Set

This handout will familiarize you with another technique of inserting, updating & deleting
rows. Before moving on, first we look at ResultSet.

16.1 ResultSet

e A ResultSet contains the results of the SQL query
o]
o]
o]
o]

Row
Numbers

Represented by a table with rows and columns
Maintains a cursor pointing to its current row of data.
Initially the cursor positioned before the row (0).
First row has index 1

Cursoris on zerott row

3 0 id Name Address phoneNum
1 1 Ali model town 9203 25? - P
7 2 usman Gulberg 8219065
3 3 Raza Defence 5173946

16.1.1 Default ResultSet

e A default ResultSet object is not updatable and has a cursor that moves
forward only.

e You can iterate over through it only once and only from the first row to last row.
e Until now, we have worked & used it in various examples.

e For a quick overview, here how we create a default ResultSet object.
String sgl = “SELECT * FROM Person’;

PreparedStatement pStmt = con.prepareStatement(sql);
ResultSet rs = pStmt.executeQuery();

16.1.2 Useful ResultSet’s Methods

Following methods are used often to work with default ResultSet object. We already seen and
used some of them in code examples.

16.1.2.1 next()

e Attempts to move to the next row in the ResultSet, if available

e The next() method returns true or false depending upon whether the next
row is available (exist) or not.

© Copyright Virtual University of Pakistan 150

Web Design and Development (CS506)

Before retrieving any data from ResultSet, always remember to call next()at
least once because initially cursor is positioned before first row.

16.1.2.2 getters

To retrieve the data of the column of the current row you need to use the various getters
provided by the ResultSet

These getters return the value from the column by specifying column name or column index.
For example, if the column name is “Name” and this column has index 3 in the ResultSet
object, then we can retrieve the values by using one of the following methods:

String name = rs.getString(“Name”);

String name = rs.getString(3);

These getter methods are also available for other types like getint(), getDouble() etc.
Consult the Java API documentation for more references.

Note: Remember that first column has an index 1, NOT zero (0).

16.1.2.3 close()

Used to release the JDBC and database resources
The ResultSet is implicitly closed when the associated Statement object executes a new
query or closed by method call.

16.1.2.4 Updatable and/or Scrollable ResultSet

It is possible to produce ResultSet objects that are scrollable and/or updatable (since JDK
1.2)

With the help of such ResultSet, it is possible to move forward as well as backward with in
ResultSet object.

Another advantage is, rows can be inserted, updated or deleted by using updatable
ResultSet object.

16.1.2.5 Creating Updatable & Scrollable ResultSet

The following code fragment, illustrates how to make a ResultSet object that is scrollable and
updatable.

String sql = “SELECT * FROM Person’’;
PreparedStatement pStmt = con.prepareStatement(sql,
ResultSet.TYPE _SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE);

ResultSet rs = pStmt.executeQuery();

Two constants have been used of ResultSet class for producing a ResultSet rs that is
scrollable, will not show changes made by others and will be updatable

© Copyright Virtual University of Pakistan 151

Web Design and Development (CS506)

16.1.2.6 previous()

e Moves the cursor to the previous row in the ResultSet object, if available
e Returns true if cursor is on a valid row, false it is off the result set.
e Throws exception if result type is TYPE_FORWARD_ONLY.

Example Code 16.1: Use of previous (), next() & various getters
methods

The ResultSetEXx. java shows the use of previous, next and getters methods. We are using
the same Person table of Personinfo database, the one we had created earlier in this example
and later on.

1. // File ResultSetEx. java

2. 1mport java.sgl.*;

3. public class ResultSetEx {

4. public static void main (String args[) {

5. try {

6. //Step 2: load driver

7. Class.forName(““sun. jdbc.odbc.JdbcOdbcDriver™);
8. //Step 3: define the connection URL

9. String url = “jdbc:odbc:personDSN”’;

10. //Step 4: establish the connection
11. Connection con = DriverManager.getConnection(url);

12.//Step 5: creating PrepareStatement by passing sql and

13.//ResultSet’s constants so that the ResultSet that will

14_//produce as a result of executing query will be
15.//scrollable & updatable

16.String sqgl = “SELECT * FROM Person’’;

17 .PreparedStatement pStmt = con.prepareStatement(sql,
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE) ;

20 //Step 6: execute the query

21 ResultSet rs = pStmt.executeQuery();

22 // moving cursor forward i.e. First row
23 rs.next();

24 // printing column “name” value of current row (first)
25 System.out.printIn(*‘moving cursor forward™);

26 String name = rs.getString(““Name™);

27 System.out.printIn(name);

© Copyright Virtual University of Pakistan 152

Web Design and Development (CS506)

28 // moving cursor forward i.e. on to second row
29 rs.next();

30 // moving cursor backward i.e to first row
31 rs.previous();

32.// printing column “name” value of current row (First)
33.System.out.printIn(*moving cursor forward”);
34_name = rs.getString(“Name™);
35.System.out.printin(name);

36.//S5tep 8: close the connection
37.con.close();

38.}catch(Exception sqlEx){
39.System.out.printin(sqlEx);

40.}

41.%} // end main

42_.%} // end class

Compile & Execute:

The sample output is given below:

e CAWINDOWS\system3 2\emd. exe

D:\examples\jdbc> javac ResultSetEx. java £J

D:N\examples\jdbe> java ResultSetEx
m?ying cursor forward

ali

m?ying cursor backward

ali

-
1| | b

16.1.2.7 absolute(int)

e Moves the cursor to the given row number in the ResultSet object.

e If given row number is positive, moves the cursor forward with respect to beginning of the
result set.

e If the given row number is negative, the cursor moves to the absolute row position with
respect to the end of the result set.

e For example, calling absolute(-1) positions the cursor on the last row; calling absolute(-2)
moves the cursor to next-to-last row, and so on.

e Throws Exception if ResultSet type is TYPE_FORWARD_ONLY

16.1.2.8 updaters (for primitives, String and Object)

e Used to update the column values in the current row or in insert row (discuss later)
¢ Do not update the underlying database

© Copyright Virtual University of Pakistan 153

Web Design and Development (CS506)

e Each update method is overloaded; one that takes column name while other takes column
index. For example String updater are available as:

updateString(String columnName, String value)
updateString(String columnlndex, String value)

16.1.2.9 updateRow()

e Updates the underlying database with new contents of the current row of this ResultSet
object

Example Code 16.2: Updating values in existing rows

The following code example updates the Name column in the second row of the
ResultSet object rs and then uses the method updateRow to update the Person table in
database.

This code is the modification of the last one. Changes made are shown in bold face.

// File ResultSetEx.java

import java.sql.*;

public class ResultSetEx {

public static void main (String args[]) {

try {

. //Step 2: load driver

. Class.forName(*“sun. jdbc.odbc.JdbcOdbcDriver™);

. //Step 3: define the connection URL

9. String url = “jdbc:odbc:personDSN”’;

10.//Step 4: establish the connection

11.Connection con = DriverManager.getConnection(url);
12.//Step 5: create PrepareStatement by passing sql and
13.// ResultSet appropriate fields

14_String sql = “SELECT * FROM Person’;

15. PreparedStatement pStmt = con.prepareStatement(sqgl,
16. ResultSet.TYPE_SCROLL_ INSENSITIVE,

17 . ResultSet.CONCUR_UPDATABLE);

18.//Step 6: execute the query

19.ResultSet rs = pStmt.executeQuery();

20.// moving cursor to second row

21.rs.absolute(2);

22.// update address column of 2" row in rs

23. rs.updateString(““Address”, “model town’);

24_// update the row iIn database

25. rs.updateRow();

26.//Step 8: close the connection

27.con.close();

28. }catch(Exception sqlEx){
29-System-out.println?sqlEx);

30-%
31.} // end main
32.} // end class

O~NOOUITRARWNE

© Copyright Virtual University of Pakistan 154

Web Design and Development (CS506)

Compile & Execute
Given below are two states of Person table. Notice that address of 2™ row is updated.

Person table: Before execution

B Person : Table

address phoneMurm
1 ali model town 9203256

2lusman defence 8219065
3| raza defence 5173946

Record: 14] 4 | [HlHiE of 3

Person table: After execution

E Person : Table |z| |E| [z|

address phonelMum
1) ali model town 9203256
2l usman model town 8219065
3raza defence 5173944

Record: 14 [4 | 3k |H F¥| of 3

16.1.2.10moveTolnsertRow(int)

An updatable resultset object has a special row associate with it i.e. insert row

Insert row - a buffer, where a new row may be constructed by calling updater methods.
Doesn’t insert the row into a result set or into a database.

For example, initially cursor is positioned on the first row as shown in the diagram:

Fow
Numbers
id Name Address phoneNum
1 1 Ali model town 9203256 L'pdatable
2 2 usman gulberg B219065 ResultSet
3 3 raza defence 5173548

| | I | } Insert row

e By calling moveTolnsertRow(), the cursor is moved to insert row as shown below:

© Copyright Virtual University of Pakistan 155

Web Design and Development (CS506)

Fow
Numbers
&
id Name Address phoneNum
1 1 ali model town 92':'325'? - I:pdﬂ.fﬂ.blE
2 2 usman gulberg 8212065 ResuliSet
3 3 raza defence 3173946
-
=D [| | | E— Insert row

e Now, by calling various updaters, we can insert values into the columns of insert row as
shown below.

=D 4 | imitiaz | cantt I 9201211 }Insertrmﬁ

16.1.2.11 insertRow()

e Inserts the contents of the current row into this ResultSet object and into the database too.
Moves the cursor back to the position where it was before calling
moveTolnsertRow()

e This is shown in the given below diagram

Fow
Numbers
-
id Name Address phoneNum
T[T [AF | moddown | 9205256 |+ tpdatabl
=h, |2 2 | usman gulberg 8219065 ResuliSet
..... 3| 3 |Razm defence 5173946
4 4 imitiaz cantt 9201211 ¥

| | i | E— Insert row

Note: The cursor must be on the insert row before calling this method or exception
would be raised.

Example Code 16. 3: Inserting new row

The following code example illustrates how to add/insert new row into the
ResultSet aswell into the database.

This code is the modification of the last one. Changes made are shown in bold face.

© Copyright Virtual University of Pakistan 156

Web Design and Development (CS506)

1. // File ResultSetEx. java

2. import java.sql.™;

3. public class ResultSetEx {

4_ public static void main (String args[]) {

5. try {

6. //Step 2: load driver

7. Class.forName(“sun. jdbc.odbc.JdbcOdbcDriver™);

8. //Step 3: define the connection URL
9. String url = “jdbc:odbc:personDSN’;

10.//Step 4: establish the connection
11 .Connection con = DriverManager .getConnection(url);

12.//Step 5: create PrepareStatement by passing sql and

13.// ResultSet appropriate fields

14 _String sql = “SELECT * FROM Person’;

15.PreparedStatement pStmt = con.prepareStatement(sqgl,
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE) ;

18.//Step 6: execute the query

19.ResultSet rs = pStmt.executeQuery();
20.// moving cursor to insert row
21.rs.moveTolnsertRow();

22_// updating values in insert row

23. rs.updateString(“Name” , “imitiaz”);
24 _rs.updateString(“Address” , “cantt”);
25._rs.updateString(“phoneNum” , 9201211);

26.// inserting row iIn resultset & Into database
27.rs._insertRow();

28.//Step 8: close the connection
29.con.close();

30. }catch(Exception sqlEx){
31.System.out.printin(sqlEx);

32.}

33.} // end main

34.} // end class

© Copyright Virtual University of Pakistan 157

Web Design and Development (CS506)

Compile & Execute

Given below are two states of Person table. Note that after executing program, a newly added row

IS present.

Person table: Before execution

EH Person : Table

address phaneMum

1 al
2 usman

3\ raza
0

Record: 14 | || il | [|H |HE| of 3

model town 9203256
qulberg 8219065
defence 5173946

Person table: After execution

H Person : Table

- BX]

id address phoneMum
1 ah model town 9203256
2 muanwar gqulberg 8219085
3 raza defence 5173946
b — A Tmtiaz_ cantt 920121 —
|"lumber)

Record: 14 | 4 || g |H |H‘Fr of 4

16.1.2.12 last() & first()

e Moves the cursor to the last & first row of the ResultSet object respectively.
e Throws exception if the ResultSet is TYPE_FORWARD_ONLY

16.1.2.13 getRow()

e Returns the current row number

e As mentioned earlier, the first row has index 1 and so on.

16.1.2.14 deleteRow()

o Deletes the current row from this ResultSet object and from the underlying database.

e Throws exception if the cursor is on the insert row.

© Copyright Virtual University of Pakistan

Web Design and Development (CS506)

Example Code 16.4: Deleting existing row

The given below example code shows the usage of last(), getRow()and
deleteRow() method.

This code is also the modification of the last one. Changes made are shown in bold face.

. // File ResultSetEx.java

import java.sgl.*;

. public class ResultSetEx {

. public static void main (String args[]) {

try {

//Step 2: load driver
Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver™);

ahrwWNBE

~N O

8. //Step 3: define the connection URL
9. String url = “jdbc:odbc:personDSN™’;

10. //Step 4: establish the connection
11. Connection con = DriverManager.getConnection(url);

12. //Step 5: create PrepareStatement by passing sqgl and

13. // ResultSet appropriate fTields
14. String sql = “SELECT * FROM Person’’;

15. PreparedStatement pStmt = con.prepareStatement(sqgl,

16. ResultSet.TYPE_SCROLL_INSENSITIVE,
17. ResultSet.CONCUR_UPDATABLE);

18. //Step 6: execute the query
19. ResultSet rs = pStmt.executeQuery();

20. // moves to last row of the resultset
21. rs.last();

22. // retrieving the current row number
23. iInt rNo = rs.getRow();

24. System.out.printIn(*“current row number” + rNo);

25. // delete current row from rs & db 1.e. 4 because
26. // previously we have called last() method

27. rs.deleteRow();

28. //Step 8: close the connection

© Copyright Virtual University of Pakistan 159

Web Design and Development (CS506)

29. con.close();

30. J}catch(Exception sqlEx){
31. System.out.printin(sqlEx);
32. }

33. } // end main

34. } // end class

Compile & Execute

The first diagram shows the Person table before execution.

B Person : Table Z E| le

address phoneMum

1] ali model town 8203256

2 usman gulberg 8219065
Jraza defence 5173946
0

Record: 14 | | | [|H |HE off 3

Person table: Before execution

Execution program from command prompt will result in displaying current row number on
console. This can be confirmed from following diagram.

e CAWINDOWS\system32\cmd. exe

D:Nexamples\ jdbc? javac ResultSetEx. java EJ

D:\examples\jdbe» java ResultSetEx
curr row no: 4

-
4| | 3

Executing Program from Command Prompt

After execution, the last row (4) is deleted from ResultSet as well as from
database. The Person table is shown after execution

© Copyright Virtual University of Pakistan 160

Web Design and Development (CS506)

B Person : Table E]|E| le

address phonefum
1 ah model town 9203256

2lusman gulberg a2149065
3 raza defence 5173946
4 imitiaz cantt 9201211

“umber)

Record: 14 | 4 || 4 Pk |H |H+E of 4

Person table: After execution

16.2 References:

e Entire material for this handout is taken from the book JAVA A Lab Course by Umair
Javed. This material is available just for the use of VU students of the course Web
Design and Development and not for any other commercial purpose without the consent
of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 161

Web Design and Development (CS506)

Lecture 17: Meta Data

In simple terms, Meta Data is data (information) about data. The actual data has no meaning
without existence of Meta data. To clarify this, let’s look at an example. Given below are listed
some numeric values

1000

2000
4000

What this information about? We cannot state accurately. These values might be
representing some one’s salaries, price, tax payable & utility bill etc. But if we specify Meta data
about this data like shown below:

Salary
1000
2000
4000

Now, just casting a glance on these values, you can conclude that it’s all about some ones
salaries.

17.1 ResultSet Meta data

ResultSet Meta Data will help you in answering such questions

How many columns are in the ResultSet?

What is the name of given column?

Are the column name case sensitive?

What is the data type of a specific column?

What is the maximum character size of a column?
Can you search on a given column?

17.1.1Creating ResultSetMetaData object

From a ResultSet (the return type of executeQuery()), derive a
ResultSetMetaData object by calling getMetaData() method as shown in the given code
snippet (here rs is a valid Resul tSet object):

ResultSetMetaData rsmd = rs.getMetaData();

Now, rsmd can be used to look up number, names & types of columns,

© Copyright Virtual University of Pakistan 162

Web Design and Development (CS506)

17.1.2 Useful ResultSetMetaData methods

17.1.2.1 getColumnCount ()

e Returns the number of columns in the result set

17.1.2.2 getColumnDisplaySize (int)

e Returns the maximum width of the specified column in characters

17.1.2.3 getColumnName(int) / getColumnLabel (int)

e The getColumnName() method returns the database name of the column
e The getColumnLabel() method returns the suggested column label for printouts

17.1.2.4 getColumnType (int)

e Returns the SQL type for the column to compare against types in java.sgl. Types

Example Code 17.1: Using ResultSetMetaData

The MetaDataEx.java will print the column names by using ResultSetMetaData
object and column values on console. This is an excellent example of the scenario where we
have no idea about the column names in advance.

Note: For this example code and for the coming ones, we are using the same database
(Personinfo) the one we created earlier and repeatedly used. Changes are shown in bold
face

44. // File MetaDataEx. java

45. import java.sql.*;

46. public class MetaDataEx {

47. public static void main (String args[) {

48. try {

49. //Step 2: load driver

50. Class.forName(“sun. jdbc.odbc.JdbcOdbcDriver™);
51. //Step 3: define the connection URL

52. String url = “jdbc:odbc:personDSN”;

53. //Step 4: establish the connection

54. Connection con = null;

55. con = DriverManager. getConnectlon(url 7,)
56. //Step 5: create PrepareStatement by passing sgql and
57. // ResultSet appropriate fields

58. String sqgl = “SELECT * FROM Person’;

© Copyright Virtual University of Pakistan 163

Web Design and Development (CS506)

59. PreparedStatement pStmt = con.prepareStatement(sql,

61. ResultSet.CONCUR_UPDATABLE);
62. //Step 6: execute the query

63. ResultSet rs = pStmt.executeQuery();

64. // get ResultSetMetaData object from rs

65. ResultSetMetaData rsmd = rs.getMetaData();

66. // printing no. of column contained by rs

67. Int numColumns = rsmd.getColumnCount();

68. System.out.printIn(““Number of Columns:” + numColumns);
69. // printing all column names by using for loop

70. String cName;

71. for(int i=1; i<= numColumns; i++) {

72. cName = rsmd.getColumnName(1);

73. System.out.printin(cName);

74. System.out.printIn(*\t”);

75. }

76. // changing line or printing an empty string

77. System.out.printin(*);

79. String id, name, add, ph;
80. while(rs.next())

81. {

82. id = rs.getString(1);
83. name = rs.getString(2);
84. add = rs.getString(3);
85. ph = rs.getString(4);

86. System.out.printin(id);

87. System.out.printIn(*\t”);
88. System.out.printin(name);
89. System.out.printIn(*\t”);
90. System.out.printin(add);

91. System.out.printiIn(*\t”);
92. System.out.printin(ph);

93. System.out.printin(*“);

94. }

95. //Step 8: close the connection
96. con.close();

97 . }catch(Exception sqlEx){

98. System.out.printin(sqlEx); }
99. } // end main

100.} // end class

78. // printing all values of ResultSet by i1terating over it

60. ResultSet.TYPE_SCROLL_INSENSITIVE,

© Copyright Virtual University of Pakistan

164

Web Design and Development (CS506)

Compile & Execute:

The database contains the following values at the time of execution of this program. The database
and the output are shown below:

B Person : Table El El El

id name address phonefMum
1 ali new 9203256
2 usman gulberg 8219065
d raza defence 5173946
4 4 imitiaz cantt 5201211
#* [umber)
Record: 14 | 4 ||—4 k |H |H+E| of 4

e CoAWINDOWShsystem 3 2\cmd. exe

D:wexamples~\ jdbec?>» javac MetaDataEx. java :J

D: \examples\ dbc?> java MetaDat aEx
Mumber of fumns

id name address honeMum
1 ali new 23256
=z usman gulberg 8219065
> raza efence 5173946
L imitiaz cantt 9201211

-
< | | 9

17.2 DatabaseMetaData

Database Meta Data will help you in answering such questions

What SQL types are supported by DBMS to create table?
What is the name of a database product?

What is the version number of this database product?
What is the name of the JDBC driver that is used?

Is the database in a read-only mode?

17.2.1Creating DatabaseMetaData object

From a Connection object, a DataBaseMetaData object can be derived. The
following code snippet demonstrates how to get DataBaseMetaData object.

Connection con= DriverManager .getConnection(url, usr, pwd);
DatabaseMetaData dbMetaData = con.getMeataData();

© Copyright Virtual University of Pakistan 165

Web Design and Development (CS506)

Now, you can use the dbMetaData to gain information about the database.

17.2.2 Useful ResultSetMetaData methods
17.2.2.1 getDatabaseProductName()

e Returns the name of the database’s product name
17.2.2.2 getDatabaseProductVersion()

e Returns the version number of this database product
17.2.2.3 getDriverName()

e Returns the name of the JDBC driver used to established the connection
17.2.2.4 isReadOnly()

e Retrieves whether this database is in read-only mode
e Returns true if so, false otherwise

Example Code 17.2: using DatabaseMetaData

This code is modification of the example code 17.1. Changes made are shown in bold

face.
102. // File MetaDataEx.java
103. import java.sql.*;
104. public class MetaDataEx {
105. public static void main (String args[1) {
106. try {
107. //Step 2: load driver
108. Class.forName(**sun. jdbc.odbc.JdbcOdbcDriver™);
109. //Step 3: define the connection URL
110. String url = “jdbc:odbc:personDSN’;
111. //Step 4: establish the connection
112. Connection con = null;
113. con = DriverManager.getConnection(url, *“7, “7);
114. // getting DatabaseMetaDat object
115. DatabaseMetaData dbMetaData = con.getMetaData();
116. // printing database product name
117. String pName = dbMetaData.getDatabaseProductName();
118. System.out.printIn(“DataBase: ” + pName);
119. // printing database product version
120. String pVer = dbMetaData.getDatabaseProductVersion();
121. System.out.printIn(*Version: ” + pVer);
122. // printing driver name used to establish connection &
123. // to retrieve data
124. String dName = dbMetaData.getDriverName();

© Copyright Virtual University of Pakistan

166

Web Design and Development (CS506)

125. System.out.printIn(**Driver: >~ + dName);

126. // printing whether database i1s read-only or not
127. boolean rOnly = dbMetaData. i1sReadOnly();

128. System.out.printIn(*‘Read-Only: ” + rOnly);
129. // you can create & execute statements and can
130. // process results over here i1If needed

131. //Step 8: close the connection

132. con.close();

133. }catch(Exception sqlEx){

134. System.out.printIn(sqlEx);

135. }

136. } // end main

137.%} // end class

Compile & Execute

On executing the above program, the following output will produce:

e CAWINDOWS\system 3 2\cmd. exe

D:xexamples\jdbe> javac MetaDataEx. java

D: Rexamples\édbc>Java Met aDat aEx
Database:

Version: 84,00, 0000

Driver: JDBC-ODBC Bridge (odbcjt3Z2.dll)
Read-0nly: false

| |

17.3 JDBC Driver Types

JDBC Driver Types are divided into four types or levels.

e Each type defines a JDBC driver implementation with increasingly higher level of

platform independence, performance, deployment and administration.
e The four types are:
o Type-1:JDBC - ODBC Bridge
o Type 2: Native - APl/partly Java driver
0 Type 3: Net - protocol/all-Java driver
0 Type 4: Native - protocol/all-Java driver

Now, let’s look at each type in more detail

© Copyright Virtual University of Pakistan

sfs

Web Design and Development (CS506)

17.3.1Type - 1: IDBC - ODBC Bridge

Translates all JDBC calls into ODBC (Open Database Connectivity) calls and
send them to the ODBC Driver

Generally used for Microsoft database.

Performance is degraded

Zlie nt machine Server machine

| TDEC-ODES bridze |

!

| ODE C driver |

b

| VWendeor DE hbrasy I

Diatabase Seprer

17.3.2Type - 2: Native - API/partly Java driver

Converts JDBC calls into database-specific calls such as SQL Server, Informix,
Oracle or Sybase.

Partly-Java drivers communicate with database-specific APl (which may be in
C/C++) using the Java Native Interface.

Significantly better Performance than the JDBC-ODBC bridge.

Client machine Server raachine

Mahbve LT - partlsy
Java Driver

Database S erer

Werdor DE libray

17.3.3Type - 3: Net - protocol/all-Java driver4

Follows a three-tiered approach whereby the JDBC database requests () are passed
through the network to the middle-tier server

Pure Java client to server drivers which send requests that are not database-
specific to a server that translates them into a database-specific protocol.

If the middle-tier server is written in java, it can use a type lor type 2JDBC driver to do

this

Clie nt roachine Server machine

ret-protoccl pare-Java
dnver

Database seryer

™ BTiddlesrae 5erver 1

© Copyright Virtual University of Pakistan

168

Web Design and Development (CS506)

17.3.4Type - 4: Native - protocol / all - java driver

e Converts JDBC calls into the vendor-specific DBMS protocol so that client
application can communicate directly with the database server

e Completely implemented in Java to achieve platform independence and eliminate
deployment issues.

e Performance is typically very good

Chie nt roachine Server machine

Hative protoccl pae
Java Dniver

l Database Sermer

17.4 Online Resources

e Sun’s JDBC Site
http://java.sun.com/products/jdbc/

e JDBC Tutorial
http://java.sun.com/docs/books/tutorial/jdbc/

e List of available JDBC Drivers
http://industry.java.sun.com/products/jdbc/drivers/

e RowSet Tutorial
http://java.sun.com/developer/Books/JDBCTutorial/chapter5.html

e JDBC RowsSets Implementation Tutorial

http://java.sun.com/developer/onlineTraining/ Database/jdbcrowsets.pdf

17.5 References:

Java API documentation 5.0

Java - A Lab Course by Umair Javed

JDBC drivers in the wild
http://www.javaworld.com/javaworld/jw-07-2000/jw-0707-jdbc_p.html

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 169

Web Design and Development (CS506)

Lecture 18: Java Graphics
18.1 Painting

Window is like a painter’s canvas. All window paints on the same surface. More
importantly, windows don’t remember what is under them. There is a need to repaint when
portions are newly exposed.

Java components are also able to paint themselves. Most of time, painting is done
automatically. However sometimes you need to do drawing by yourself.

wrom l0ix

Anvthing elseis

programmet responsibility
NN

Java components

paint themselves \
Comenard]

18.1.1How painting works?

Let’s take windows example. Consider the following diagram in which the blue area is
representing the desktop. The one frame (myApp) is opened in front of desktop with some
custom painting as shown below.

myApp consist of a JPanel. The JPanel contains a JButton. Two rectangles, a circle & a lines are
also drawn on the JPanel.

© Copyright Virtual University of Pakistan 170

Web Design and Development (CS506)

After opening notepad and windows explorer window, diagram will look like this:

Lets shuts off the windows explorer, the repaint event is sent to desktop first and then to myApp.
The figure shown below describes the situation after desktop repaint event get executed. Here
you can clearly see that only desktop repaints itself and window explorer remaining part is still
opened in front of myApp.

s 8 Teh] Teadk” 3

ainTing, and this sachanips 14

X E: T T Py gk

el Vigmestgrn comporiets. Thi s e e e R R

The following figure shows the situation when myApp’s JPanel calls its repaint method. Notice
that some portion of window explorer is still remains in front of JButton because yet not repaint event

is sent to it.

© Copyright Virtual University of Pakistan 171

Web Design and Development (CS506)

¥
gans That a progras shoubs
lace the comporart s rendering

ode Arifde b pirtBoular
= e b s

el why psalkte w17 irvste
il5-mirhed whas 1175 Time O
aimr. The mezhod To°be
wridden 5 In
i ot Cmpongng

Next, JPanel forwards repaint event to JButton that causes the button to be displayed in its
original form.

This is all done automatically and we cannot feel this process cause of stunning speed of modern
computers that performs all these steps in flash of eye.

18.1.2Painting a Swing Component

Three methods are at the heart of painting a swing component like JPanel etc. For
instance, paint() gets called when it's time to render -- then Swing further factors the paint()
call into three separate methods, which are invoked in the following order:

© Copyright Virtual University of Pakistan 172

Web Design and Development (CS506)

protected void paintComponent(Graphics g)
protected void paintBorder(Graphics g)
protected void paintChildren(Graphics g)

Let’s look at these methods in order in which they get executed

18.1.2.1 paintComponent()
e Itisamain method for painting

e By default, it first paints the background
e After that, it performs custom painting (drawing circle, rectangles etc.)

18.1.2.2 paintBorder()

e Tells the components border (if any) to paint.
e Itissuggested that you do not override or invoke this method

18.1.2.3 paintChildren()

e Tells any components contained by this component to paint themselves
e Itis suggested that you do not override or invoke this method too.

Example: Understanding methods calls

Consider the following figure

1. background 2, custom 3. border 4. children
{if opagque) painfing {if an¥) {if any)
(if anv)

* > ¢

The figure above illustrates the order in which each component that inherits from
JComponent paint itself.

Figure 1 to 2 -painting the background and performing custom painting is performed by the
paintComponent method

In Figure 3 - paintBorder is get called

© Copyright Virtual University of Pakistan 173

Web Design and Development (CS506)

And finally in figure 4 - paintChildern is called that causes the JButton to render itself.

Note: The important thing to note here is for JButton (since it is a JComponent), all these methods
are also called in the same order.

Your Painting Strategy
. You must follow the three steps in order to perform painting.
Subclass JPanel

e class MyPanel extends JPanel
e Doing so MyPanel also becomes a JPanle due to inheritance

Override the paintComponent(Graphics g) method
e Inside method using graphics object, do whatever drawing you want to do
Install that JPanel inside a JFrame
. WhE? frame becomes visible through the paintChildren() method your panel become
visible

e To become visible your panel will call paintComponent() method which will do your
custom drawing

Example Code 18.1:

Suppose we want to draw one circle & rectangle and a string “Hello World”.

Hello ¥Waorld

// importing required packages

import javax.swing.*;

import java.awt.*;

// extending class from JPanel

public class MyPanel extends JPanel {

// overriding paintComponent method

public void paintComponent(Graphics g){

// erasing behaviour - this will clear all the
// previous painting

super.paintComponent(Qg);

© Copyright Virtual University of Pakistan 174

Web Design and Development (CS506)

// Down casting Graphics object to Graphics2D
Graphics2D g2 = (Graphics2D)g;

// drawing rectanle
g2.drawRect(20,20,20,20);

// changing the color to blue
g2.setColor(Color.blue);

// drawing filled oval with color i1.e. blue
g2.filloval (50,50,20,20);

// drawing string

g2.drawString("'Hello World™, 120, 50);

}// end paintComponent

} 7/ end Test class

The Test class that contains the main method as well uses MyPanel (previously built) class is given
below:

// importing required packages
import javax.swing.*;
import java.awt.*;
public class Test {

JFrame T;
// declaring Reference of MyPanel class
MyPanel p;
// parameter less constructor public Test(){
T = new JFrame();
Container c = f.getContentPane();
c.setLayout(new BorderLayout());
// instantiating reference
p = new MyPanel();
// adding MyPanel into container
c.add(p);
f.setSize(400,400);
f.setVisible(true);
T.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
} // end constructor
// main method
public static void main(String args[]{
Test t = new Test();

}
} // end Test class

Note: Here we have used only some methods (drawRect() & fillOval() etc.) of Graphics class.
For a complete list, see the Java APl documentation.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 175

Web Design and Development (CS506)

Lecture 19: How to Animate?

If we want to animate something like ball, moving from one place to another, we
constantly need to call paintComponent() method and to draw the shape (ball etc.) at new place
means at new coordinates.

Painting is managed by system, so calling paintComponent() directly is not recommended at all.
Similarly calling paint() method is also not recommended. Why? Because such code may be
invoked at times when it is not appropriate to paint -- for instance, before the component is
visible or has access to a valid Graphics object.

Java gives us a solution in the form of repaint() method. Whenever we need to repaint, we call
this method that in fact makes a call to paint() method at appropriate time.

19.1 Problem & Solution

e What to do to move the shapes present in example code 18.1 (last example) when a mouse
is dragged
e First time painting is what we already have done
e When a mouse is clicked find the co-ordinates of that place and paint Rectangle at that
place by requesting, using repaint() call
e Here instead of Hard-coding the position of co-ordinates uses some variables. For example
mx , my
o In the last example code, we draw a rectangle by passing hard-coded values like
20
g.drawRect(20,20,20,20);
o Now, we’ll use variables so that change in a variable value causes to display a
rectangle at a new location
g-drawRect(mx,my,20,20);

e Similarly, you have seen a tennis game (during lecture). Now, what to do code the paddle

movement.
e Inthe coming up example. We are doing it using mouse, try it using mouse.

Example Code 19.1

The following outputs were produced when mouse is dragged from one location to anther

]

= =1 E3 = =1 E3

]

© Copyright Virtual University of Pakistan 176

Crystal Academy
Highlight

Web Design and Development (CS506)

First we examine the MyPanel.java class that is drawing a filled rectangle.

import javax.swing.>;
import java.awt.*;

// extending class from JPanel
public class MyPanel extends JPanel {

// variables used to draw rectangles at different locations
int mx = 20;

int my = 20;

// overriding paintComponent method

public void paintComponent(Graphics g){

// erasing behaviour - this will clear all the previous painting
super .paintComponent(Qg);

// Down casting Graphics object to Graphics2D

Graphics2D g2 = (Graphics2D)g;

// changing the color to blue

g2.setColor(Color.blue);

// drawing filled oval with color 1.e. blue

// using iInstance variables

g2.fillRect(mX,mY,20,20);

}// end paintComponent

} 7/ end MyPanel class

The Test class is given below. Additionally this class also contains the code for handling mouse
events.

// importing required packages
import javax.swing.>;
import java.awt.*;
import java.awt.event.™;
public class Test {

JFrame T;
// declaring Reference of MyPanel class
MyPanel p;
// parameter less constructor
public Test(){
T = new JFrame();
Container c = f.getContentPane();
c.setLayout(new BorderLayout());
// instantiating reference
p = new MyPanel();
// adding MyPanel into container
c.add(p);
f.setSize(400,400);
f.setVisible(true);

© Copyright Virtual University of Pakistan 177

Web Design and Development (CS506)

T.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// creating inner class object

Handler h = new Handler();

// registering MyPanel to handle events
p.addMouseMotionListener(h);

} // end constructor

// inner class used for handling events

public class Handler extends MouseMotionAdapter{
// capturing mouse dagged events

public void mouseDragged(MouseEvent me){

// getting the X-Position of mouse and assigning
// value to instance variable mX of MyPanel class
p-mX = me.getX();

// getting the Y-Position of mouse and assigning
// value to instance variable mX of MyPanel class
p-mY = me.getY();

// call to repaint causes rectangle to be drawn on
// new location

p-repaint() ;

} 7/ end mouseDragged

} 7/ end Handler class

// main method

public static void main(String args[]{

Test t = new Test();

}
} 7/ end MyPanel class

On executing this program, when you drag mouse from one location to another, rectangle
is also in sync with the movement of mouse. Notice that previously drawn rectangle is
erased first.
If we exclude or comment out the following line from MyPanel class

super .paintComponent(Qg);
Dragging a mouse will produce a similar kind of output shown next

=1 E3

Ty

© Copyright Virtual University of Pakistan 178

Web Design and Development (CS506)

Example Code 19.2: Ball Animation

The ball is continuously moving freely inside the corner of the frames. The sample outputs

are shown below:
- ________ m=Ej) g« Mk

First we examine the MyPanel.java class that is drawing a filled oval.

import javax.swing.>;

import java.awt.*;

// extending class from JPanel

public class MyPanel extends JPanel {

// variables used to draw oval at different locations
int mx = 200;

int my = 0O;

// overriding paintComponent method

public void paintComponent(Graphics g){

// erasing behaviour - this will clear all the
// previous painting

super.paintComponent(Qg);

// Down casting Graphics object to Graphics2D
Graphics2D g2 = (Graphics2D)g;

// changing the color to blue
g2.setColor(Color.blue);

// drawing filled oval with blue color

// using instance variables
g2.fillOoval(mX,mY,20,20);

}// end paintComponent

} 7/ end MyPanel class

The Test class is given below. Additionally this class also contains the code for handling mouse
events.

// importing required packages

import javax.swing.>;

import java.awt.*;

import java.awt.event.™;

public class AnimTest implements ActionListener {
JFrame T;

© Copyright Virtual University of Pakistan 179

Web Design and Development (CS506)

MyPanel p;

// used to control the direction of ball

int x, y;

public AnimTest(){

f = new JFrame();

Container c = f.getContentPane();

.setLayout(new BorderLayout());

53

3;

new MyPanel(); c.add(p);

.setSi1ze(400,400);

.setVisible(true);
.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// creating a Timer class object, used for firing
// one or more action events after a specified delay
// Timer class constructor requires time in

// milliseconds and object of class that handles
// action events

Timer t = new Timer (5, this);

// starts the timer, causing It to start sending
// action events to listeners

t.start();

} // end constructor

// event handler method

public void actionPerformed(ActionEvent ae){

// it ball reached to maximum width of frame minus
// 40 since diameter of ball is 40 then change the
// X-direction of ball

it (f.getWidth()-40 == p.mX)

X = -5;

// 1t ball reached to maximum height of frame

// minus 40 then change the Y-direction of ball
it (f.getHeight()-40 == p.mY)

y = -3;

// if ball reached to min. of width of frame,

// change the X-direction of ball

iIf (p-mX == 0)

X = 5;

// it ball reached to min. of height of frame,
// change the Y-direction of ball

it (p-my == 0)

y = 3;

// Assign X,y direction to MyPanel’s mX & mY
p-mX += X;

p.-mY +=y;

=H==HT< X0

// call to repaint() method so that ball is drawn on

© Copyright Virtual University of Pakistan 180

Web Design and Development (CS506)

// new locations

p-repaint();

} // end actionPerformed() method

// main method

public static void main(String args[]){
AnimTest at = new AnimTest();

}
} 7/ end AnimTest class

19.2 References
e Java, A Lab Course by Umair Javed

e Painting in AWT & Swing
http://java.sun.com/products/jfc/tsc/articles/painting/index.html

e Performing Custom Painting
http://java.sun.com/docs/books/tutorial/uiswing/14painting/index.html

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 181

Web Design and Development (CS506)

Lecture 20: Applets
20.1 Basic Definition

A small program written in Java and included in a HTML page.

It is independent of the operating system on which it runs

An applet is a Panel that allows interaction with a Java program

A applet is typically embedded in a Web page and can be run from a browser

You need special HTML in the Web page to tell the browser about the applet

For security reasons, applets run in a sandbox: they have no access to the client’s file
system

20.2 Applets Support

e Most modern browsers support Java 1.4 if they have the appropriate plugin
Sun provides an application appletviewer to view applets without using browser.
In general you should try to write applets that can be run with any browser

20.3 What an Applet is?

You write an applet by extending the class Applet or JApplet

Applet is just a class like any other; you can even use it in applications if you want
When you write an applet, you are only writing part of a program

The browser supplies the main method

20.4 The genealogy of Applet

The following figure shows the inheritance hierarchy of the JApplet class. This hierarchy
determines much of what an applet can do and how, as you'll see on the next few pages.

java.lang.Cbject
I

+---—java.awt .Component
I
+-———Jjava.awt.Container
|
+-—---java.awt.Panel
|
+---—java.applet.Applet
[
+---—Jjavax.swing.JApplet

© Copyright Virtual University of Pakistan 182

Web Design and Development (CS506)

Example Code 20.1: Writing a Simple Applet

Below is the source code for an applet called Hel loApplet. This displays a “Hello World”

string. Note that no main method has been provided.

// File HelloApplet.java

//step 1: importing required packages

import java.awt.*;

import javax.swing.*;

// extending class from JApplet so that our class also becomes an
//applet

public class HelloApplet extends JApplet {

// overriding paint method

public void paint(Graphics g) {

// write code here u want to display & draw by using
// Graphics object

g.drawString(““Hello World”, 30 , 30);

}
} 7/ end class

After defining the HelloApplet.java, the next step is to write .html file. Below is
the source code of Test.html file. The Test.html contains the ordinary html code except
one.

<html>
<head>
<title> Simple Applet </title> </head>

<body>

<I-- providing the class name of applet with width &
height

-

<applet code=""HelloApplet.class”
width=150 height=100>

</applet>

</body>

</html>

© Copyright Virtual University of Pakistan 183

Web Design and Development (CS506)

Compile & Execute
By simply double clicking on Test.html file, you can view the applet in your browser.

However, you can also use the appletviewer java program for executing or running
applets.

The applet viewer is invoked from the command Iline by the command
appletviewer htmlfile

where htmlfile is the name of the file that contains the html document. For our example, the
command looks like this:

appletviewer Test.html

As a result, you will see the following output

E%%hpplet Vie... [W[=] E3

Applet

Hello Woarldl

Applet started.

20.5 Applet Life Cycle Methods

When an applet is loaded, an instance of the applet's controlling class (an Applet
subclass) is created. After that an applet passes through some stages or methods, each of them are
build for specific purpose.

An applet can react to major events in the following ways:

e Itcan initialize itself.

e |t can start running.

e It can stop running.

e |t can perform a final cleanup, in preparation for being unloaded

The applet’s life cycle methods are called in the specific order shown below. Not every applet
needs to override every one of these methods.

© Copyright Virtual University of Pakistan 184

Web Design and Development (CS506)

stop() |

v

destroy() ‘

v

Let’s take a look on each method in detail and find out what they do:

20.5.1init()

e s called only once.
e The purpose of init() is to initialize the applet each time it's loaded (or reloaded).
e You can think of it as a constructor

20.5.2start()

e To start the applet's execution

e For example, when the applet's loaded or when the user revisits a page that contains the
applet

e start() is also called whenever the browser is maximized

20.5.3paint()

e paint() is called for the first time when the applet becomes visible
e Whenever applet needs to be repainted, paint() is called again
e Do all your painting in paint(), or in a method that is called from paint()

20.5.4stop()

e To stop the applet's execution, such as when the user leaves the applet's page or quits the
browser.
e stop() is also called whenever the browser is minimized

© Copyright Virtual University of Pakistan 185

Web Design and Development (CS506)

20.5.5destroy()

e Iscalled only once.
e To perform a final cleanup in preparation for unloading

Example Code 20.2: Understanding Applet Life Cycle Methods

The following code example helps you in understanding the calling sequence of applet’s
life cycle methods. These methods are only displaying debugging statements on the
console.

// File AppletDemo. java

//step 1: importing required packages
import java.awt.*;

import javax.swing.*;

// extending class from JApplet so that our class also becomes an
//applet

public class AppletDemo extends JApplet {
// overriding init method

public void nit () {
System.out.printIn(C'init() called™);

¥

// overriding start method

public void start (){
System.out.printin('start() called™);

¥

// overriding paint method

public void paint(Graphics g){
System.out.printIin('paint() called™);

by

// overriding stop method

public void stop(){
System.out.printin('stop() called™);

¥

// overriding destroy method

public void destroy(){
System.out.printIn("'destroy() called™);

}
} 7/ end class

The DemoTest.html file is using this applet. The code snippet of it given below:

<html>
<head>
<title> Applet Life Cycle Methods </title> </head>

<body>

© Copyright Virtual University of Pakistan 186

Web Design and Development (CS506)

<I-- providing the class name of applet with width &
height

—-—>

<applet code="AppletDemo.class”
width=150 height=100>

</applet>

</body>

</html>

Compile & Execute

To understand the calling sequence of applet life cycle methods, you have to execute it by using
appletviewer command. Do experiments like maximizing, minimizing the applet,

bringing another window in front of applet and keep an eye on console output.

Example Code 20.3: Animated Java Word
Sample Output

The browser output of the program is given below:

java java

Jawer

v Java®

Design Process
e The Program in a single call of paint method
o0 Draws string “java” on 40 random locations

o0 For every drawing, it selects random font out of 4 different fonts
o For every drawing, it selects random color out of 256 * 256 * 256 RGB colors

© Copyright Virtual University of Pakistan 187

Web Design and Development (CS506)

e Repaint is called after every 1000 ms.
e After 10 calls to repaint, screen is cleared

Generating Random Numbers
e Use static method random of Math class

o Math.random() ;

e Returns positive double value greater than or equal to 0.0 or less than 1.0.

Multiply the number with appropriate scaling factor to increase the range and type cast it,
if needed.

o inti=(int)(Math.random() * 5); // will generate random numbers between 0 & 4.

Program’s Modules

The program is build using many custom methods. Let’s discuss each of them one
by one that will help in understanding the overall logic of the program.

e drawJava()

As name indicates, this method will be used to write String “java” on random
locations. The code is given below:

// method drawJava
public void drawJava(Graphics2D g2) {

// generate first number randomly. The panel width 1s 1000
int x = (int) (Math.random() * 1000);

// generate second number randomly. The panel height i1s 700
int y = (int) (Math.random() * 700);

// draw String on these randomly selected numbers
g2.drawString('java', X, Y);

3

e chooseColor()

This method will choose color randomly out of 256 * 256 * 256 possible colors. The code
snippet is given below:

// method chooseColor
public Color chooseColor() {

© Copyright Virtual University of Pakistan 188

Web Design and Development (CS506)

// choosing red color value randomly
int r = (int) (Math.random() * 255);

// choosing green color value randomly
int g = (int) (Math.random() * 255);

// choosing blue color value randomly
int b = (int) (Math.random() * 255);

// constructing a color by providing R-G-B values
Color ¢ = new Color(r, g, b);

// returning color
return c;

3

e chooseFont()

This method will choose a Font for text (java) to be displayed out of 4 available fonts. The code
snippet is given below:

// method chooseFont
public Font chooseFont() {

// generating a random value that helps in choosing a font
int fontChoice = (int) (Math.random() * 4) + 1;

// declaring font reference
Font f = null;

// using switch based logic for selecting font
switch (fontChoice) {

case 1:
f = new Font("'Serif"’, Font.BOLD + Font.ITALIC, 20);
break;
case 2:

f = new Font("'SansSerif", Font.PLAIN, 17);
break;

case 3:

T = new Font("'Monospaced™, Font.ITALIC, 23);
break;

case 4:
T = new Font('Dialog™, Font.ITALIC, 30);

© Copyright Virtual University of Pakistan 189

Web Design and Development (CS506)

break;
} // end switch

// returns Font object
return T;

} //end chooseFont

e paint()

The last method to be discussed here is paint(). By overriding this method, we will print string
“java” on 40 random locations. For every drawing, it selects random font out of 4 different
fonts & random color out of 256 * 256 * 256 RGB colors.

Let’s see, how it happens

// overriding method paint
public void paint(Graphics g) {

// incrementing clear counter variable.
clearCounter++;
// printing 40 “java” strings on different locations by
// selcting random font & color
for (int i = 1; i <= 40; i++) {
// choosing random color by calling chooseColor() method
Color c = chooseColor();
// setting color
g2.setColor(c);
// choosing random Font by calling chooseColor() method
Font T = chooseFont();
g2.setFont(f);
// drawing string “java” by calling drawJava() method
drawJava(g2);
¥
// end for loop
Graphics2D g2 = (Graphics2D) g;
// checking if paint is called 10 times then clears the
// screen and set counter again to zero
1T (clearCounter == 10) {
g2.clearRect(0, 0, 1000, 700);
clearCounter = 0;

}
} // end paint method

© Copyright Virtual University of Pakistan 190

Web Design and Development (CS506)

Merging Pieces

By inserting all method inside JavaAnim.java class, the program will look like one given below.
Notice that it contains methods discussed above with some extra code with which you are already
familiar.

// File JavaAnim. java

//step 1: 1mporting required packages

import java.awt.*;

import java.awt.event.™;

import javax.swing.*;

public class JavaAnim extends JApplet implements ActionListener {
// used to count how many times paint is called

int clearCounter;

// declaring Timer reference
Timer t;

// overriding init method, used to initialize variables
public void 1nit() {

setBackground(Color.black);

clearCounter = 0;

Timer t = new Timer(1000, this);

t.start();

¥

// overriding paint method - discussed above

public void paint(Graphics g) {

clearCounter++;

Graphics2D g2 = (Graphics2D) g;

iIT (clearCounter == 10) {

g2.clearRect(0, 0, 1000, 700); clearCounter = O;

bs

for (int 1 = 1; 1 <= 40; i++) {

Color c = chooseColor(); g2.setColor(c);
Font ¥ = chooseFont(); g2.setFont(f);

drawJava(g2);

}
}

// overriding actionPerformed()of ActionListener interface
// called by Timer object
public void actionPerformed(ActionEvent ae) {

© Copyright Virtual University of Pakistan 191

Web Design and Development (CS506)

repaint();

// chooseColor method - discussed above
public Color chooseColor() {

int r = (int) (Math.random() * 255);
int g = (int) (Math.random() * 255);
int b = (int) (Math.random() * 255);

Color ¢ = new Color(r, g, b);

return c;

} 7/ chooseFont method - discussed above

public Font chooseFont() {

int fontChoice = (int) (Math.random() * 4) + 1;
Font ¥ = null;

switch (fontChoice) {

case 1:

T = new Font('Serif", Font.BOLD + Font.ITALIC, 20);
break;

case 2:

f = new Font("'SansSerif", Font.PLAIN, 17);
break;

case 3:

f = new Font(“'Monospaced™, Font.ITALIC, 23);
break;

case 4:

f = new Font("'Dialog™, Font.ITALIC, 30);
break;

by

return T;

by

// drawJava() method - discussed above
public void drawJava(Graphics2D g2) {
int x = (int) (Math.random() * 1000);
int y = (int) (Math.random() * 700);
g2.drawString(java™, X, Vy);

}
} // end class

The AnimTest.html file is using this applet. The code snippet of it given below:

<html>
<head>
<title> Animated Java Word </title> </head>

© Copyright Virtual University of Pakistan 192

Web Design and Development (CS506)

<body>
<applet code="JavaAnim.class"™ width=1000 height=700> </applet>
</body>
</html>

Compile & Execute

You can execute it directly using browser or by using appletviewer application. For
having fun, you can use “your name” instead of “java” and watch it in different colors.

20.6 References:

e Java, A Lab Course by Umair Javed
e Writing Applets
O http://java.sun.com/docs/books/tutorial/applet/

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 193

Web Design and Development (CS506)

21.1

21.2

21.3

21.4

Lecture 21: Socket Programming

Basic Definition

A socket is one endpoint of a two-way communication link between two programs
running generally on a network.

A socket is a bi-directional communication channel between hosts. A computer on a
network often termed as host.

Socket Dynamics

As you have already worked with files, you know that file is an abstraction of your
hard drive. Similarly you can think of a socket as an abstraction of the network.

Each end has input stream (to send data) and output stream (to receive data) wired up
to the other host.

You store and retrieve data through files from hard drive, without knowing the actual
dynamics of the hard drive. Similarly you send and receive data to and from network
through socket, without actually going into underlying mechanics.

You read and write data from/to a file using streams. To read and write data to socket,
you will also use streams.

What is Port?

It is a transport address to which processes can listen for connections request.
There are different protocols available to communicate such as TCP and UDP. We
will use TCP for programming in this handout
There are 64k ports available for TCP sockets and 64k ports available for UDP, so at
least theoretically we can open 128k simultaneous connections.
There are well-known ports which are

O below 1024

O provides standard services
o0 Some well-known ports are:
= FTP works on port 21
= HTTP works on port 80
= TELNET works on port 23 etc.

How Client - Server Communicate

Normally, a server runs on a specific computer and has a socket that is bound to a
specific port number.

The server just waits, listening to the socket for a client to make a connection request.

On the client side: The client knows the hostname of the machine on which the server
is running and the port number to which the server is connected.

© Copyright Virtual University of Pakistan 194

Web Design and Development (CS506)

21.5

cannection

sener
regquest

client

As soon as client creates a socket that socket attempts to connect to the specified
server.

The server listens through a special kind of socket, which is named as server socket.

The sole purpose of the server socket is to listen for incoming request; it is not used
for communication.

If everything goes well, the server accepts the connection. Upon acceptance, the
server gets a new socket, a communication socket, bound to a different port number.

The server needs a new socket (and consequently a different port number) so that it
can continue to listen through the original server socket for connection requests while
tending to the needs of the connected client. This scheme is helpful when two or more
clients try to connect to a server simultaneously (a very common scenario).

Semver

On the server side, if the connection is accepted, a socket is successfully created and
the client can use the socket to communicate with the server.

Note that the socket on the client side is not bound to the port number used to make
contact with the server. Rather, the client is assigned a port number local to the
machine on which the client is running.

The client and server can now communicate by writing to or reading from their
sockets.

e Y R

client

i =R =)

Steps - To Make a Simple Client

To make a client, process can be split into 5 steps. These are:

21.5.11mport required package

You have to import two packages

Jjava.net.*;
java.io.*;

21.5.2Connect / Open a Socket with Server
Create a client socket (communication socket)

Socket s = new Socket(*“serverName”, serverPort) ;

© Copyright Virtual University of Pakistan 195

Web Design and Development (CS506)

e serverName: Name or address of the server you wanted to connect such as
http://www.google.com or 172.2.4.98 etc. For testing if you are running client and server
on the same machine then you can specify “localhost” as the name of server

e serverPort : Port number you want to connect to

The scheme is very similar to our home address and then phone number.

21.5.3Get I/0O Streams of Socket

Get input & output streams connected to your socket
e For reading data from socket

As stated above, a socket has input stream attached to it.
InputStream is = s.getlnputStream();

/I now to convert byte oriented stream into character oriented buffered reader

/I we use intermediary stream that helps in achieving above stated purpose
InputStreamReader isr= new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);

e For writing data to socket

A socket has also output stream attached to it. Therefore,
OutputStream os = s.getOutputStream();
/I now to convert byte oriented stream into character oriented print writer
/I here we will not use any intermediary stream because PrintWriter constructor
// directly accepts an object of OutputStream
PrintWriter pw = new PrintWriter(os, true);

Here notice that true is also passed to so that output buffer will flush.

21.5.4Send / Receive Message

Once you have the streams, sending or receiving messages isn’t a big task. It’s very much similar to
the way you did with files

e To send messages
pw.printIn(**hello world™);
e To read messages

String recMsg = br.readLine();

© Copyright Virtual University of Pakistan 196

Web Design and Development (CS506)

21.5.5 Close Socket

Don’t forget to close the socket, when you finished your work
s.close();

21.6 Steps - To Make a Simple Server

To make a server, process can be split into 7 steps. Most of these are similar to
steps used in making a client. These are:

21.6.1Import required package

You need the similar set of packages you have used in making of client

e java.net.*;
e java.io.*,

21.6.2Create a Server Socket

In order to create a server socket, you will need to specify port no eventually on which server will
listen for client requests.

ServerSocket ss = new ServerSocket(serverPort) ;

e serverPort: port local to the server i.e. a free port on the server machine. This is the same
port number that is given in the client socket constructor

21.6.3Wait for Incoming Connections

The job of the server socket is to listen for the incoming connections. This listening part is done
through the accept method.

Socket s = ss.accept();
The server program blocks (stops) at the accept method and waits for the incoming client

connection when a request for connection comes it opens a new communication socket (s) and use
this socket to communicate with the client.

21.6.4Get 1/0O Streams of Socket

Once you have the communication socket, getting 1/0 streams from communication socket is
similar to the way did in making a client

© Copyright Virtual University of Pakistan 197

Web Design and Development (CS506)

e For reading data from socket

InputStream is = s.getlnputStream();

InputStreamReader isr= new
InputStreamReader(is); BufferedReader
br = new BufferedReader(isr);

e For writing data to socket

OutputStream os = s.getOutputStream();

PrintWriter pw = new PrintWriter(os, true);
21.6.5Send / Receive Message

Sending and receiving messages is very similar as discussed in making of client

e To send messages:

pw.printIn(*‘hello world™);

e To read messages

String recMsg = br.readLine();

21.6.6Close Socket
s.close();

Example Code 21.1: Echo Server & Echo Client

The client will send its name to the server and server will append “hello” with the name send by
the client. After that, server will send back the name with appended “hello”.

EchoServer.java

Let’s first see the code for the server

// step 1: importing required package
import java.net.*;

import java.io.™;

import javax.swing.™;

public class EchoServer{

public static void main(String args[]){

try {

© Copyright Virtual University of Pakistan 198

Web Design and Development (CS506)

//step 2: create a server socket
ServerSocket ss = new ServerSocket(2222);
System.out._printIn(’'Server started...");

/* Loop back to the accept method of the server
socket and wait for a new connection request. So
server will continuously listen for requests

*/
while(true) {

// step 3: wait for incoming connection
Socket s = ss.accept();
System.out.printIn(’'connection request recieved);

// step 4: Get 1/0 streams

InputStream i1s = s.getlnputStream();
InputStreamReader isr= new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);

OutputStream os = s.getOutputStream();
PrintWriter pw = new PrintWriter(os,true);
// step 5: Send / Receive message

// reading name sent by client

String name = br.readLine();

// appending “hello” with the received name
String msg = "Hello " + name + " from Server";
// sending back to client

pw.println(msg);

// closing communication sockey

s.close();

} // end while

}catch(Exception ex){
System.out.printin(ex);

}

}
} 7/ end class

EchoClient.java

The code of the client is given below

// step 1: importing required package
import java.net.*;

import java.io.™;

import javax.swing.*;

public class EchoClient{

© Copyright Virtual University of Pakistan 199

Web Design and Development (CS506)

public static void main(String args[]){
try {

//step 2: create a communication socket

/* it your server will run on the same machine then you can pass
“localhost” as server address.Notice that port no is similar to
one passed while creating server socket */

Socket s = new Socket(““localhost”, 2222);

// step 3: Get 1/0 streams

InputStream is = s.getlnputStream();
InputStreamReader isr= new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);

OutputStream os = s.getOutputStream();
PrintWriter pw = new PrintWriter(os,true);

// step 4: Send / Recelve message

// asking user to enter his/her name

String msg = JOptionPane.showlnputDialog("Enter your name'™);
// sending name to server

pw.println(msg);

// reading message (nhame appended with hello) from
// server

msg = br.readLine();

// displaying received message
JOptionPane.showMessageDialog(null , msg);

// closing communication socket

s.close();

}catch(Exception ex){

System.out.printin(ex);

+
}
} // end class

Compile & Execute

After compiling both files, run EchoServer.java first, from the command prompt window. You’ll see
a message of “server started” as shown in the figure below. Also notice that cursor is continuously
blinking since server is waiting for client request

© Copyright Virtual University of Pakistan 200

Web Design and Development (CS506)

e CAWINDOWS\system3 2'ecmd.exe - java EchoServer

D:\examples\socketprog»> java EchoServer
Server started

— -
A | ;l_l

Now, open another command prompt window and run EchoClientjava from it. Look at
EchoServer window; you’ll see the message of “request received”. Sooner, the

EchoClient program will ask you to enter name in input dialog box. After entering name
press ok button, with in no time, a message dialog box will pop up containing your name
with appended “hello” from server. This whole process is illustrated below in pictorial

form:

e CAWINDOWS\system3 2\cmd.exe - java EchoClient

e CAWINDOWS\system3 2cmd.exe - java EchoServer x
D:\examples:~socketprog> java EchoServer —
Server started

connection request recieved

<] I 4

X

Input

] Enter your name
|umair1 |

OK Cancel

Sending name to server

© Copyright Virtual University of Pakistan 201

Web Design and Development (CS506)

Far
'd) Hello umair from Server

OK

Response from server

Notice that server is still running, you can run again EchoClient.java as many times untill server is
running.

To have more fun, run the server on a different computer and client on a different. But
before doing that find the IP of the computer machine on which your EchoServer will
eventually run. Replace “localhost” with the new IP and start conversion over network

21.7 References

e Entire material for this handout is taken from the book JAVA A Lab Course by Umair
Javed. This material is available just for the use of VU students of the course Web
Design and Development and not for any other commercial purpose without the consent
of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 202

Web Design and Development (CS506)

Lecture 22: Serialization
22.1 Problem

22.1.1What?

e You want to send an object to a stream.

22.1.2 Motivation
e Aot of code involves boring conversion from a file to memory
o0 As you might recall that AddressBook program reads data from file and then parses

It
e This is a common problem

22.1.3Revisiting AddressBook

We read record from a text file named persons.txt. The person record was present in the file in the
following format:

Al ,defence, 9201211
Usman,gulberg,5173940
Salman,LUMS,5272670

persons.txt

The code that was used to construct Person objects after reading information from the file is given
below. Here only the part of code is shown, for complete listing, see AddressBook code in your
earlier handout.

FileReader fr = new FileReader('persons.txt');
BufferedReader br = new BufferedReader(fr);

String line = br.readLine();

while (line = null) {

tokens = line.split(",™);

name = tokens[0];

add tokens[1];

ph tokens[2];

PersonInfo p = new Personinfo(name, add, ph);
// you can add p Into arraylist, i1f needed

line = br.readLine();

3

© Copyright Virtual University of Pakistan 203

Web Design and Development (CS506)

As you have seen a lot of parsing code is required for converting a line into Personinfo
objects. Serialization mechanism eases developer’s life by achieving all above in a very
simple way.

22.2 Serialization in Java

e Java provides an extensive support for serialization
Object knows how to read or write themselves to streams
e Problem:

o As you know, objects get created on heap and have some values therefore
Objects have some state in memory

0 You need to save and restore that state.

0 The good news is that java serialization takes care of it automatically

22.2.1Serializable Interface

e By implementing this interface a class declares that it is willing to be read/written by
automatic serialization machinery

e Found in java.io package

e Tagging interface - has no methods and serves only to identify the semantics of being
serializable

22.2.2 Automatic Writing

e System knows how to recursively write out the state of an object to stream
e If an object has the reference of another object, the java serialization mechanism takes
care of it and writes it too.

22.2.3Automatic Reading

e System knows how to read the data from Stream and re-create object in memory
e The recreated object is of type “Object” therefore Down-casting is required to convert
it into actual type.

22.2.4Serialization: How it works?

e To write an object of Personinfo, ObejctOutputStream and its method writeObject() will

be used
PersonInfo p = new Personinfo();
ObejctOutputStream out;
// writing PersonInfo’s object p
out.writeObject(p);

e To read that object back, ObejctinputStream and its method readObject()
will be used

© Copyright Virtual University of Pakistan 204

Web Design and Development (CS506)

ObejctlnputStream in;

// reading PersonInfo’s object. Remember type
casting // is required

PersonInfo obj = (Personinfo)in.readObject();

Example Code 22.1: Reading / Writing Personlnfo objects

We want to send Personinfo object to stream. You have already seen this class number of times
before. Here it will also implement serializable interface.

Personlnfo.java

import javax.swing.>;
import java.io.*™ ;
class Personinfo implements Serializable{

String name;

String address;

String phoneNum;

//parameterized constructor

public Personlnfo(String n, String a, String p) {
name = n;

address = a;

phoneNum = p;

//method for displaying person record on GUI

public void printPersoninfo() {
JOptionPane.showMessageDialog(null ,

“name: 7 + name + ‘“address:” +address + ‘“phone no:” +
phoneNum) ;

}
} // end class

WriteEx.java

The following class will serialize Personinfo object to a file

import java.io.*;

public class WriteEx{

public static void main(String args[]{

PersonInfo pWrite = new Personlnfo(ali', "defence",
"9201211');

try {

// attaching FileOutput stream with “ali.dat”
FileOutputStream fos = new FileOutputStream('ali.dat');
// attaching ObjectOutput stream over FileOutput stream
ObjectOutputStream out = new ObjectOutputStream(fos);
//serialization

© Copyright Virtual University of Pakistan 205

Web Design and Development (CS506)

// writing object to “ali.dat’
out.writeObject(pWrite);

// closing streams
out.close();

fos.close();

} catch (Exception ex){
System.out.printin(ex);

+

}
} // end class

ReadEx.java

The following class will read serialized object of Personinfo from
file 1.e “ali.data”

import java.io.*;

public class ReadEx{

public static void main(String args[]{

try {

// attaching Filelnput stream with “ali._dat”
FilelnputStream fis = new FilelnputStream('ali.dat™);
// attaching Filelnput stream over Objectlnput stream
ObjectlnputStream in = new ObjectlnputStream(fis);
//de-serialization

// reading object from “ali.dat”

PersonInfo pRead = (Personinfo)in.readObject();
// calling printPersoninfo method to confirm that
// object contains same set of values before

// serializatoion

pRead.printPersoninfo();

// closing streams

in.close();

fis.close();

} catch (Exception ex){

System.out.printin(ex); }

}//end main function

} 7/ end class

Compile & Execute

After compilation, first run the WriteEx.java file and visit the “ali.dat” file. Then run

ReadEx . Java from different command or same command prompt.

© Copyright Virtual University of Pakistan 206

Web Design and Development (CS506)

22.3 Object Serialization & Network

e You can read / write to a network using sockets.
e All you need to do is attach your stream with socket rather than file.

e The class version should be same on both sides (client & network) of the network .

Example Code 22.2: Sending/Reading Objects to/from Network

We are going to use same Personlnfo class listed in example code 22.1. An object of
PersonlInfo class will be sent by client on network using sockets and then be read by server

from network.
Sending Objects over Network

The following class ClientWr 1 teNetEXx . Java will send an object on network

import java.net.*;

import java.io.*;

import javax.swing.*;

public class ClientWriteNetEx{

public static void main(String args[]){

try {

Personinfo p = new Personlnfo(*ali”, “defence”, 9201211");
// create a communication socket

Socket s = new Socket(*“localhost”, 2222);

// Get 1/0 streams

OutputStream is = s.getOutputStream();

// attaching ObjectOutput stream over Input stream
ObjectOutputStream oos= new ObjectOutputStream(is);
// writing object to network

oos.writeObject(p);

// closing communication socket

s.close();

}catch(Exception ex){

System.out.printin(ex); }

}} 7/ end class

Reading Objects over Network

The following class ServerReadNetEXx . Java will read an object of PersonInfo sent by client.

import java.net.*;

import java.io.*;

import javax.swing.*;

public class ServerReadNetEx{

© Copyright Virtual University of Pakistan 207

Web Design and Development (CS506)

public static void main(String args[]){
try {
// create a server socket
ServerSocket ss = new ServerSocket(2222);
System.out.printIn(’'Server started...™);
/* Loop back to the accept method of the server
socket and wait for a new connection request. So
server will continuously listen for requests
*/
while(true) {
// wait for incoming connection
Socket s = ss.accept();
System.out.printIn(*'connection request recieved);
// Get 1/0 streams
InputStream is = s.getlnputStream();
// attaching ObjectOutput stream over Input stream
ObjectlnputStream ois = new ObjectlnputStream(is);
// read PersonInfo object from network
Personinfo p = (Personinfo)ois.readObject();
p-printPersoninfo();
// closing communication socket
s.close();
} // end while
}catch(Exception ex){
System.out.printin(ex); }
}} // end class

Compile & Execute

After compiling both files, run ServerReadNetEX. java first, from the command prompt
window. Open another command prompt window and run ClientWriteNetEx. java
from it. The ClientWriteNetEx. java will send an Object of Personlnfo to
ServerReadNetEXx. java that displays that object values in dialog box after reading it from
network.

22.4 Preventing Serialization
e Often there is no need to serialize sockets, streams & DB connections etc because they do
not represent the state of object, rather connections to external resources
e Todo so, transient keyword is used to mark a field that should not be serialized
e So we can mark them as,
o transient Socket s;
o0 transient OutputStream os;
0 transient Connection con;
e Transient fields are returned as null on reading

© Copyright Virtual University of Pakistan 208

Web Design and Development (CS506)

Example Code 22. 3: transient

Assume that we do not want to serialize phoneNum attribute of Personinfo class, this can be
done as shown below

Personinfo.java

import javax.swing.>;

import java.io.*

class Personinfo implements Serializable{

String name;

String address;

transient String phoneNum;

public PresonInfo(String n, String a, String p) {

name = n;
address = a;
phoneNm = p;
}

public void printPersoninfo() {
JOptionPane.showMessageDialog(null ,

“name: 7 + name + “address:” +address + ‘“phone no:” +
phoneNum); }

} 7/ end class

22.5 References

Entire material for this handout is taken from the book JAVA A Lab Course by Umair Javed.
This material is available just for the use of VU students of the course Web Design and
Development and not for any other commercial purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 209

Web Design and Development (CS506)

Lecture 23: Multithreading
23.1 Introduction

Multithreading is the ability to do multiple things at once within the same application. It provides
finer granularity of concurrency. A thread — sometimes called an execution context or a
lightweight process — is a single sequential flow of control within a program.

Threads are light weight as compared to processes because they take fewer resources then a process.
A thread is easy to create and destroy. Threads share the same address space i.e. multiple threads
can share the memory variables directly, and therefore may require more complex synchronization
logic to avoid deadlocks and starvation.

23.2 Sequential Execution vs. Multithreading

Every program has atleast one thread. Programs without multithreading executes
sequentially. That is, after executing one instruction the next instruction in sequence is executed.
If a function is called then until the completion of the function the next instruction is not
executed. Similarly if there is a loop then instructions after loop only gets executed when the loop
gets completed. Consider the following java program having three loops in it.

// File ThreelLoopTest. java

public class ThreeLoopTest {

public static void main (String args[]) {
//first loop

for (int i=1; i<= 5; i++)
System.out.printIn(**first 7 +i);

// second loop

for (int j=1; j<= 5; j++)
System.out.printIn(*second ” + j);
// third loop

for (int k=1; k<= 5; k++)
System.out.printin(*third 7 + k);

} 7/ end main
} // end class

When the program executes, the loops are executed sequentially, one after the other. It generates the
following output.

© Copyright Virtual University of Pakistan 210

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

e CAWINDOWS\system 3 2\cmd. exe

D:Nexamplessmult ithreading? javac ThreelLoopTest. java fJ

D:~examples~nmultithreading?> java ThreelLoopTest
first job
first Jjob
first job 32
first job 4
first job 5
second job

second job

1
2
second Job 2
5

M=

second job

second job

third job 1
third job 2
third job 3
third job 4
third job 5

-
| | vl 2

Note: Each loop has 5 iterations in the ThreeLoopTest program.

However, if we use multithreading — with one thread per loop — the program may generate
the following output.

< AC2WWINDOWS sy stemd 2vemd. exe

aqpées\multithreading}jaua ThreadTest

WL W
e dededadededad]
L &1
0
i

w
Q
o
000

0 Jie e e By e e e B B 4

0
o
J
o
[
4]
o
I

o Jjob =

U A WNF RENBUIRDNE

6N AWNRE

(1]
F [y}
) 0
LoJ3
o
| SR PN S
0000000
oUoooQQUQUr
U'U'U'"U'
mwﬂ""” 1]
B B
Ewm@q

g

v -

o Al 00 R0 A0 0 D A0 D AF D SRR RRRRD
]
0
0
20
o
[T
L.
Q
o
I
I
O

Note: Each loop has 10 iterations in the ThreadTest program. Your output can be different from the
one given above.

Notice the difference between the outputs of the two programs. In ThreeLoopTest each loop
generated a sequential output while in ThreadTest the output of the loops got intermingled
i.e. concurrency took place and loops executed simultaneously.

© Copyright Virtual University of Pakistan 211

Web Design and Development (CS506)

Let us code our first multithreaded program and try to learn how Java supports
multithreading.

23.3 Java Threads

Java includes built-in support for threading. While other languages have threads bolted on to an
existing structure i.e. threads were not the part of the original language but latter came into existence
as the need arose.

All well known operating systems these days support multithreading. JVM transparently maps Java
Threads to their counter-parts in the operating system i.e. OS Threads. JVM allows threads in
Java to take advantage of hardware and operating system level advancements. It keeps track
of threads and schedules them to get CPU time. Scheduling may be pre-emptive or cooperative. So
it is the job of JVM to manage different tasks of thread. Let’s see how we can create threads?

23.3.1Creating Threads in Java

There are two approaches to create threads in Java.

e Using Interface
e Using Inheritance

Following are the steps to create threads by using Interface:

e Create a class where you want to put some code that can run in parallel with some other
code and let that class implement the Runnable interface.

e Runnable interface has the run() method therefore provide the implementation for the
run() method and put your code that you want to run in parallel here.

e Instantiate Thread class object by passing Runnable object in constructor
Start thread by calling start() method

Following are the steps to create threads by using Inheritance:

Inherit a class from java.lang.Thread class
Override the run() method in the subclass
Instantiate the object of the subclass
Start thread by calling start() method

23.3.1.1 Threads Creation Steps Using Interface

To write a multithreaded program using Runnable interface, follow these steps:

e Step 1 - Implement the Runnable Interface
class Worker implements Runnable

© Copyright Virtual University of Pakistan 212

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

e Step 2 - Provide an Implementation of run() method
public void run(){

// write thread behavior
// code that will be executed by the thread

e Step 3 - |Instantiate Thread class object by passing Runnable object in the
constructor

Worker w
Thread t

new Worker (“first”);

new Thread (w);

e Step 4 - Start thread by calling start() method
t.start();

23.3.1.2 Threads Creation Steps Using Inheritance

To write a multithreaded program using inheritance from Thread class, follow these steps:

e Step 1 - Inherit from Thread Class
class Worker extends Thread

e Step 2 - Override run() method
public void run(){

// write thread behavior
// code that will execute by thread

e Step 3 - Instantiate subclass object
Worker w = new Worker(““first”);

e Step 4 - Start thread by calling start() method
w.start(Q);

23.4 Three Loops: Multi-Threaded Execution

So far we have explored:

e What is multithreading?
e What are Java Threads?
e Two ways to write multithreaded Java programs

Now we will re-write the ThreeLoopTest program by using Java Threads. At first we will use the
Interface approach and then we will use Inheritance.

© Copyright Virtual University of Pakistan 213

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

Code Example using Interface

// File Worker.java

public class Worker implements Runnable {
private String job ;

//Constructor of Worker class

public Worker (String j){
Job = j;

¥

//1Implement run() method of Runnable interface

public void run () {

for(int 1=1; i<= 10; i++)

System.out.printin(Job + ™ = " + 1);

}

} 7/ end class

// File ThreadTest. java

public class ThreadTest{

public static void main (String args[]){
//instantiate three objects

Worker first = new Worker (“first job™);

Worker second = new Worker (‘“‘second job™);

Worker third = new Worker (““third job);

//create three objects of Thread class & passing worker

//(runnable) to them

Thread t1 = new Thread (first);

Thread t2 new Thread (second);

Thread t3 = new Thread (third);

//start threads to execute

tl.start();

t2.start();

t3.start();

}//end main

} // end class

Code Example using Inheritance

Following code is similar to the code given above, but uses Inheritance instead of
interface:

// File Worker.java

public class Worker extends Thread{
private String job ;

//Constructor of Worker class

public Worker (String j){

© Copyright Virtual University of Pakistan 214

Web Design and Development (CS506)

job = j;
}

//0verride run() method of Thread class
public void run () {

for(int 1=1; i<= 10; i++)
System.out.printin(job + ™ =" + 1);

ks
} 7/ end class

// File ThreadTest. java
public class ThreadTest{
public static void main (String args[]) {

//instantiate three objects of Worker (Worker class i1s now
//becomes a Thread because i1t is inheriting from it)class

Worker first = new Worker (““first job™);
Worker second = new Worker (*‘second job™);
Worker third = new Worker (““third job);

//start threads to execute
first.start();
second.start();
third.start();

}//end main

} 7/ end class

23.5 Thread Priorities

Threads provide a way to write concurrent programs. But on a single CPU, all the threads do not run
simultaneously. JVM assigns threads to the CPU based on thread priorities. Threads with higher
priority are executed in preference to threads with lower priority. A thread’s default priority is same
as that of the creating thread i.e. parent thread.

A Thread’s priority can be any integer between 1 and 10. We can also use the following predefined
constants to assign priorities.

Thread .MAX_PRIORITY (typically 10)

Thread .NORM_PRIORITY (typically 5)

Thread .MIN_PRIORITY (typically 1)

© Copyright Virtual University of Pakistan 215

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

To change the priority of a thread, we can use the following method
setPriority(int priority)

It changes the priority of this thread to integer value that is passed. It throws an
111egalArgumentException if the priority is not in the range MIN_PRIORITY to
MAX_PRIORITY i.e. (1-10).

For example, we can write the following code to change a thread’s priority.

Thread t = new Thread (RunnableObject);
// by using predefined constant
t.setPriority (Thread.MAX PRIORITY);
// by using integer constant
t.setPriority (7);

23.5.1Thread Priority Scheduling

The Java runtime environment supports a very simple, deterministic scheduling algorithm called
fixed-priority scheduling. This algorithm schedules threads on the basis of their priority relative to
other Runnable threads.

At any given time, when multiple threads are ready to be executed, the runtime system chooses
for execution the Runnable thread that has the highest priority. Only when that thread stops,
yields (will be explained later), or becomes Not Runnable will a lowerpriority thread start
executing. If two threads of the same priority are waiting for the CPU, the scheduler arbitrarily
chooses one of them to run. The chosen thread runs until one of the following conditions becomes
true:

e A higher priority thread becomes Runnable.
e ltyields, orits run(Q) method exits.
e On systems that support time-slicing, its time allotment has expired.

Then the second thread is given a chance to run, and so on, until the interpreter exits.

Consider the following figure in which threads of various priorities are represented by capital
alphabets A, B, ..., K. A and B have same priority (highest in this case). J and K have same
priority (lowest in this case). JVM start executing with A and B, and divides CPU time between
these two threads arbitrarily. When both A and B comes to an end, it chooses the next thread C to
execute.

© Copyright Virtual University of Pakistan 216

Web Design and Development (CS506)

Ready threads
Thread MAX_PRIORITY [Prhorivi0 |
Friority 9 Iﬁl

Pricrity &

E

ud
]

Priarity ¥

Pricrity &

Thread NORM_PRIORITY L_Erigrity S

Pricrity 4

Pricrity 3

Cob

AL

Thread.MIN_PRIORITY

Code Example: Thread Priorities

Try following example to understand how JVM executes threads based on their priorities.

// File PriorityEx.java

public class PriorityEx{

public static void main (String args[]){
//instantiate two objects

Worker first = new Worker (“first job™);
Worker second = new Worker (““second job’);
//create two objects

Thread t1 = new Thread (first);

Thread t2 = new Thread (second);

//set thread priorities

tl.setPriority (Thread.MIN_PRIORITY);
t2._setPriority (Thread.MAX_PRIORITY);
//start threads to execute

tl.start();

t2.start();

}//end main

} 7/ end class

© Copyright Virtual University of Pakistan 217

Web Design and Development (CS506)

Output

o COAWINDOWS \system3 2\emd.exe

D:Nexamples\multithreading? java PriorityEx
second job
second job
second jo
second job
second jo
second job
second job
second job
second job
second job
first job
first job
first job
first job
first jo
first job
first job
first job
first job
first job

4 | *

Il
D00 N A N =

=00 hUT-A I =

23.5.2Problems with Thread Priorities
However, when using priorities with Java Threads, remember the following two issues:

First a Java thread priority may map differently to the thread priorities of the underlying
OS. It is because of difference in priority levels of JVM and underlying OS.
For example

e Solaris has 231 priority levels
e Windows NT has only 7 user priority levels

Second, starvation can occur for lower-priority threads if the higher-priority threads
never terminate, sleep, or wait for 1/O indefinitely.

23.6 References:

e Java, A Practical Guide by Umair Javed.
e Java How to Program by Deitel and Deitel.
e (CS193j handouts on Stanford.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 218

Web Design and Development (CS506)

Lecture 24: More on Multithreading

In this handout, we’ll cover different aspects of multithreading. Some examples are given to make
you understand the topic of multithreading. First we will start with an example that reads data

from two text files simultaneously.

Example Code: Reading Two Files Simultaneously

The task is to read data from file “first.txt” & “second.txt” simultaneously. Suppose that files

contain the following data as shown below:

first 1
first 2
first 3
first4
first 5
first 6
first 7
first 8
first 9
first 10

first.txt

second 1
second 2
second 3
second 4
second 5
second 6
second 7
second 8
second 9
second 10

second.txt

Following is the code of ReadFile.java that implements Runnable interface. The file reading

code will be written inside run () method

// File ReadFile_java

import java.io.*;

public class ReadFile implements Runnable{
//attribute used for name of fTile

String fileName;

// param constructor

public ReadFile(String tn){

fileName = fn;

© Copyright Virtual University of Pakistan

219

Web Design and Development (CS506)

}

// overriding run method

// this method contains the code for file reading
public void run (){

try

{

// connecting FileReader with attribute fileName
FileReader fr = new FileReader(fileName);
BufferedReader br = new BufferedReader(fr);

String line = "";
// reading line by line data from file
// and displaying it on console
line = br.readLine();
while(line = null) {
System.out.printin(line);
line = br.readLine();
¥
fr_.close();
br.close();

}catch (Exception e){
System.out.printin(e);

}
} 7/ end run() method
by

Next, look at the Test. java class that contains the main() method.

// File Test.java
public class Test {
public static void main (String args[]){

// creating ReadFile objects by passing file names to them
ReadFile first = new ReadFile("first.txt");

ReadFile second = new ReadFile(''second.txt');

// Instantiating thread objects and passing

// runnable (ReadFile) objects to them

Thread t1 = new Thread(first);

Thread t2 = new Thread(second);

// starting threads that cause threads to read data from
// two different files simultaneously

tl.start();

t2_.start();

+
+

© Copyright Virtual University of Pakistan

220

Web Design and Development (CS506)

Output

On executing Test class, following kind output would be generated:

e CAWINDOWShsystem3 2\cmd.exe

D:\ReadFilesSimul> java Test :j
first
first 2
first 3
first 4
first S
second
second
second
second
second
second
second
second
second
second
first 6
first 7
8
9

OO~ |UTRWNE

first
first

first 18

-
| | ,

24.1 Useful Thread Methods

Now let’s discuss some useful thread class methods.

24.1.1sleep(int time) method

Causes the currently executing thread to wait for the time (milliseconds) specified

Waiting is efficient equivalent to non-busy. The waiting thread will not occupy
the processor

Threads come out of the sleep when the specified time interval expires or when
interrupted by some other thread

Thread coming out of sleep may go to the running or ready state depending upon
the availability of the processor. The different states of threads will be discussed
later

High priority threads should execute sleep method after some time to give low
priority threads a chance to run otherwise starvation may occur

sleep() method can be used for delay purpose i.e. anyone can call
Thread.sleep()method

Note that sleep() method can throw InterruptedException. So, you
need try-catch block

© Copyright Virtual University of Pakistan 221

Web Design and Development (CS506)

Example Code: Demonstrating sleep () usage

Below the modified code of Worker . java is given that we used in the
previous handout.

// File Worker.java

public class Worker implements Runnable {
private String job ;

//Constructor of Worker class

public Worker (String j){
job = j;

¥

//1Implement run() method of Runnable interface

public void run () {

for(int 1=1; i<= 10; i++) {

try {

Thread.sleep(100);

// go to sleep for 100 ms

}catch (Exception ex){

System.out.printin(ex);

¥

System.out.println(Job + " =" + 1); } // end for

} /7 end run

} /7 end class

Below is the code of SleepEx.java that contains the main() method. It will use the
Worker class created above.

// File SleepEx.java

public class SleepEx {

public static void main (String args[]){
// Creating Worker objects

Worker first = new Worker (““first job™);
Worker second = new Worker (‘“‘second job™);
// Instantiating thread class objects
Thread t1 = new Thread (first);

Thread t2 = new Thread (second);

// starting thread

tl.start();

t2.start();

}
} // end class

© Copyright Virtual University of Pakistan 222

Web Design and Development (CS506)

Output

On executing SleepEXx. java, the output will be produced with exact alternations between first
thread & second thread. On starting threads, first thread will go to sleep for 100 ms. It gives a
chance to second thread to execute. Later this thread will also go to sleep for 100 ms. In the
mean time the first thread will come out of sleep and got a chance on processor. It will print job
on console and again enters into sleep state and this cycle goes on until both threads finished the
run() method.

=0 COAWINDOWS\system 3 2\cmd.exe

D:~examples“multithreading? java SleepEx
first job =

second job = 1
first job = 2
second job = 2

first job = 3
s econd JOb =
first jo
s econd JOb
first o
second jo
first job =

]
]
b

|
u

HEW O < 0 U1 A

1]
-
0
0
3
™
0
|

first job =
second job

first job =
second jo

first job =
second job
first job =
second job

=
< | »

Example Code: Using sleep () for delay purpose

Before jumping on to example code, lets reveal another aspect about main() method. When
you run a Java program, the VM creates a new thread and then sends the
main(String[] args) message to the class to be run! Therefore, there is always at least one
running thread in existence. However, we can create more threads which can run concurrently
with the existing default thread.

|
O ®m Oy

=

sleep(Qmethod can be used for delay purpose. This is demonstrated in the
DelayEx. java given below:

// File DelayEx. java

public class DelayEx {

public static void main (String args[]){
System.out.printIn(*main thread going to sleep”);
try {

// the main thread will go to sleep causing delay
Thread.sleep(100);

}catch (Exception ex){

System.out.printin(ex);

by

System.out.printIn(*main thread coming out of sleep™); }

© Copyright Virtual University of Pakistan 223

Web Design and Development (CS506)

// end main()
} // end class

Output

On executing DelayEx class, you will experience a delay after the first statement
displayed. The second statement will print when the time interval expired. This has been show
below in the following two diagrams:

e CAWINDOWS\system3 2\cmd.exe - java DelayEx !EE

D:\DelavEx> java DelayEx EJ
main thread going to sleep

w
<| | b

e CAWINDOWS\system3 2\cmd.exe

D:\DelavEx, java DelavyEx EJ
main thread going to sleep
main thread coming out of sleep

D:\DelayvEx> =
t elayEx | »l

24.1.2yield() method

e Allows any other threads of the same priority to execute (moves itself to the end
of the priority queue)

e |If all waiting threads have a lower priority, then the vyielding thread resumes
execution on the CPU

e Generally used in cooperative scheduling schemes

Example Code: Demonstrating yield () usage

Below the modified code of Worker . Java is given

// File Worker.java
public class Worker implements Runnable {
private String job ;
//Constructor of Worker class
public Worker (String j){
Jjob = j;
¥
//1mplement run() method of Runnable interface
public void run ()
{
for(int i=1; i<= 10; i++) {
// giving chance to a thread to execute of same priority

© Copyright Virtual University of Pakistan 224

Web Design and Development (CS506)

Thread.yield();
System.out.printin(jJob + ™ = " + 1);
} 7/ end for

} // end run

} // end class

Below is the code of YieldEX. java that contains the main () method. It will use the
Worker class created above.

// File YieldEx. java

public class YieldEx {

public static void main (String args[]){
// Creating Worker objects

Worker first = new Worker (““first job™);
Worker second = new Worker (*‘second job™);
// Instantiating thread class objects
Thread t1 = new Thread (first);

Thread t2 = new Thread (second);

// starting thread

tl.start();

t2.start();

}
} // end class

Output

Since both threads have the same priority (until we change the priority of some thread explicitly).
Therefore both threads will execute on alternate basis. This can be confirmed from the

output given below:

cv C:A\WINDOWS\system3 2\cmd.exe

D:Nexamples\multithreading? java YieldEx
first job =1 | ||

3
second job =
first job = 4
second job =
first job =5
second job =
first job = 6
second job =
first job = 7
second job =
first job = 8
second job =
first job = 9
second job =
first job =1
second job = 1@

=
< ol

© Copyright Virtual University of Pakistan

Web Design and Development (CS506)

24.2 Thread States: Life Cycle of a Thread

A thread can be in different states during its lifecycle as shown in the figure.

start ()

notify ()

/O completed

times expires
or interrupted blocked
yield()

sleep ()

Block on /D

wait ()

dead
run completes

Some Important states are:

24.2.1 New state

e When athread is just created

24.2.2 Ready state
e Thread’s start() method invoked

e Thread can now execute
e Put it into the Ready Queue of the scheduler

24.2.3Running state

e Thread is assigned a processor and now is running

© Copyright Virtual University of Pakistan 226

Web Design and Development (CS506)

24.2 .4 Dead state

e Thread has completed or exited
e Eventually disposed of by system

24.3 Thread’s Joining

e Used when a thread wants to wait for another thread to complete its run() method
For example, if thread2 sent the thread2.join() message, it causes the currently executing
thread to block efficiently until thread2 finishes its run() method

e Calling join method can throw InterruptedException, so you must use try-catch block to
handle it

Example Code: Demonstrating join() usage
Below the modified code of Worker . java is given. It only prints the job of the worker

// File Worker.java
public class Worker implements Runnable {
private String job ;
public Worker (String j){
Jjob = j;
by
public void run () {
for(int i=1; i<= 10; i++) {
System.out.printin(job + ™ =" + 1); } // end for
} // end run
} // end class

The class JoinEx will demonstrate how current running (main) blocks until the remaining
threads finished their run)

// File JoinEx.java

public class JoinkEx {

public static void main (String args[]){
Worker first = new Worker ('first job™);
Worker second = new Worker ('second job™);
Thread t1 = new Thread (first);

Thread t2 = new Thread (second);
System.out.printIn(’'Starting...");

// starting threads

tl.start();

t2.start();

// The current running thread (main) blocks until both
//workers have finished

© Copyright Virtual University of Pakistan 227

Web Design and Development (CS506)

try {

+

}

3

tl.join();
t2.join();

catch (Exception ex) {
System.out.printin(ex);

System.out.printin("'All done ');
} 7/ end main

Output

On executing Jo1nEX, notice that “Starting™ is printed first followed by printing workers
jobs. Since main thread does not finish until both threads have finished their run (). Therefore
“All done”” will be print on last.

oo CAWINDOWS\system32\emd.exe

D:“examplesmultithreading? java JoinEx
Starting...

first
first
first
first
first
first
first
first
second
second
second
second
second
second
second
second
second
second
first
first

jiob
job
job
job
job
job
job
job
job
job
job
job
job
job
job
job
job
job
job
job

All done

ull

w~IhUTRWNE

EOO~-IMUTRWNE

]

24.4 References:

e Java, A Practical Guide by Umair Javed
e Java tutorial by Sun: http://java.sun.com/docs/books/tutorial/
e (S193j handouts on Stanford

Note: Coding exercises in working condition for this lecture are also available on “Downloads”

section of LMS.

© Copyright Virtual University of Pakistan

228

Web Design and Development (CS506)

Lecture 25: Web Application Development
25.1 Introduction

Because of the wide spread use of internet, web based applications are becoming vital part of
IT infrastructure of large organizations. For example web based employee performance
management systems are used by organizations for weekly or monthly reviews of
employees. On the other hand online course registration and examination systems can allow
students to study while staying at their homes.

25.2 Web Applications

In general a web application is a piece of code running at the server which facilitates a
remote user connected to web server through HTTP protocol. HTTP protocol follows
stateless Request-Response communication model. Client (usually a web-browser) sends a request
to Server, which sends back appropriate response or error message.

Server

Application

T

HTTP

A Typical Web Application

A web server is software which provides users, access to the services that are present on
the internet. These servers can provide support for many protocols used over internet or
intranet like HTTP, FTP, telnet etc

25.3 HTTP Basics

A protocol defines the method and way of communication between two parties. For example
when we talk to our teacher we use a certain way which is different from the way that we adopt
with our friends or parents. Similarly there are many different protocols used by computers to
communicate with each other depending on applications.

For example an Echo Server only listens to incoming name messages and sends back hello
message, while HTTP protocol uses various types of request-response messages.

© Copyright Virtual University of Pakistan 229

Web Design and Development (CS506)

Request Web Server
Response ® QQ

HTTP Communication Model

25.3.1Parts of an HTTP request

Request Method: It tells the server the type of action that a client wants to perform

URI: Uniform Resource Indicator specifies the address of required document or resource
Header Fields: Optional headers can be used by client to tell server extra
information about request e.g. client software and content type that it understands.

GET /index.html HTTP/1.1 request line

Host: java.sun.com reqguest headers
User-Agent: Mozilla/4.5 [en]

Accept: image/gif, image/dpeg, image/pipeg, */*
Accept-Language: en

Accept-Charset: iso-8855-1,*,utf-8

optional request body
Request parameters ete

HTTP Request Example

e Body: Contains data sent by client to the server
e Other request headers like FROM (email of the person responsible for request) and VIA
(used by gateways and proxies to show intermediate sites the request passes) can also be
used.
e Request Parameters
0 Request can also contain addition information in form of request parameters
= In URL as query string e.g.
= http://www.gmail.com/register?name=ali&state=punjab
= As part of request body (see Figure 3)

25.3.2Parts of HTTP response

e Result Code: A numeric status code and its description.
e Header Fields: Servers use these fields to tell client about server information like
configurations and software etc.

© Copyright Virtual University of Pakistan 230

Web Design and Development (CS506)

e Body: Data sent by server as part of response that is finally seen by the user.

HTTP/1.1 200 CK status line

Last-Modified: Mon, Aug 4 2003 22:10:40 GMT
Date: Wed, Aug 8 2003 14:23:35 GMT

Status: 200

Content-Type: text/html

Content-Length: 59 response headers

<html> optional response body
<body>
<hl>Hello World!</hl>
</body>
</html>

Figure 4: HTTP Response Example

25.3.3HTTP Response Codes

e An HTTP Response code tell the client about the state of the response i.e. whether it’s a
valid response or some error has occurred etc. HTTP Response codes fall into five general

categories
o 100-199
= Codes in the 100s are informational, indicating that the client should
respond with some other action.
= 100: Continue with partial request.
o 200-299
= Values in the 200s signify that the request was successful.
= 200: Means everything is fine.
o 300-399
= Values in the 300s are used for files that have moved and usually include
a Location header indicating the new address.
= 300: Document requested can be found several places; they'll be listed in
the returned document.
0 400-499

= Values in the 400s indicate an error by the client.

= 404: Indicates that the requested resource is not available.

= 401: Indicates that the request requires HT TP authentication.

= 403: Indicates that access to the requested resource has been denied.

© Copyright Virtual University of Pakistan 231

Web Design and Development (CS506)

o 500-599
= Codes in the 500s signify an error by the server.
= 503: Indicates that the HTTP server is temporarily overloaded and unable
to handle the request.

‘2 Apache Tomcat/5.5.9 - Error report - Microsoft Internet Explorer |:||§|[g|
. File Edit View Favorites Tools Help ."'

@Back - _/J \ﬂ @ _h /"__\J Search \;,':‘?Fauorites @ E:r_qz* :,\; _J ﬁ

: Address |@ http:/flocalhost: 8080 abc/himl i | Go |} Links

HTTP Status 404 - /abc/html

3

AT Status report
imessagefFled e

il=mwg i) The requested resource ({abc/html) is not available.

apache Tomcat/5.5.9
@ Daone ‘:J Local intranet

404: Indicates That The Requested Resource Is Not Available

{= Not Authorized - Windows Internet Explorer [:”E”z|
@_\:—_’-‘. L !E‘ http:f fdsearchinside h v| B || e | 2 |.."' Google | o~
File Edit View Faworites Tools Help
<7 Favarites :-88:- I;‘é_N X | EHDmI“.E = | - B8 (=] g=b - Page - Safety - =
Not Authorized

HTTP Error 401. The requested resource requires user authentication

fpone %.J Local intranst fg v Hioow -

401: Indicates That Request Requires HTTP Authentication

© Copyright Virtual University of Pakistan 232

Web Design and Development (CS506)

25.4 Server Side Programming

Web server pages can be either static pages or dynamic pages. A static web page is a simple
HTML (Hyper Text Transfer Language) file. When a client requests an HTML page the server
simple sends back response with the required page.

? Request file

Retrieve file

b

Send file

Static Web Page Request And Response

An example of static web page is given below

3 Web Design and Development - Microsoft Internet Explorer

i File Edit View Favorites Tools Help :,’
: - — i 5 £
: y . N) 2 Favori s . -
<, > \ﬂ \ELI | &~ Search . Favarites {} = __J
: Address http: ffwww. wdd.ac V| Go flinks

Web Design and Development
by

Umair Javed

&1 none wd My Commiter

While in case of dynamic web page s server executes an application which generates HTML
web pages according to specific requests coming from client. These dynamically generated web
pages are sent back to client with the response.

© Copyright Virtual University of Pakistan 233

Web Design and Development (CS506)

= Request service
- Do Computation
=

Generate HTML
page with results
of computation

Return dynamically
generated HTML file

25.4.1Why build Pages Dynamically?

We need to create dynamic web pages when the content of site changes frequently and client specific
response is required. Some of the scenarios are listed below

e The web page is based on data submitted by the user e.g. results page from search engines
and order confirmation pages at on line stores.

2 web development - Google Search - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help

@Back - _/I |ﬂ @ _:] /._\J Search “;' Favorites {3 - ; i - _J i

: Address

@ http:/fwwew . google. com. pkfsearch?hl=en&g=web+development&meta=

Web |lmages Groups [MNews more »

GO ngle |web development

Search: (® the web (O pages from Pakistan

Web Results 1 - 10 of about 1,240,000,000 fc

Web Developer's Virtual Library: Web Development Tutorials and ...
Mews, tutorials. and reference material focusing on technical web development topics.
www wdvl_.com/ - 58k - 21 Jan 2006 - Cached - Similar pages

WebDeveloper.com

resources for daily news, how-to articles, product reviews, and downloads of special interest to
Web designers, programmers, developers. and YWebmasters.

www.webdeveloper.com/ - 63k - 21 Jan 2006 - Cached - Similar pages

Webmonkey: The Web Developer's Resource

The Web Developer's Resource. ... Join the Webmonkey staff as we serve up fresh, piping
hot stacks of web development news and commentary on a daily basis. ...

www . webmonkey com/ - 25k - 21 Jan 2006 - Cached - Similar pages

Web Development

This web summarizes the complete life cycle methodology for web development: planning,
analysis, design, implementation, promaotion, and innovation.

www.december comfweb/develop html - 8k - Cached - Similar pages

© Copyright Virtual University of Pakistan 234

Web Design and Development (CS506)

e The Web page is derived from data that changes frequently e.g. a weather report or news
headlines page.

23 CNN.com - Science and Space - Microsoft Internet Explorer

i File Edit WView Favorites Tools Help

@Back - & \ﬂ @ _;\J /..-\JSearch ‘gi?Favorites {‘) - .,,_,’_ - _] “f‘

: Address |@ http: .cnn.comTECH/space/ ~
m International Edition | Q Ne
.com Member Center: Sign In | Register " MAKE CNM.com YOUR HOME P

SEARCH () THEWEB (O) CNN.com | | SEARCH Powered by YAHOOL:

Home Page
Woria SCIENCE & SPACE
U.s. Up 5:35 a.m. EST (14:35 GMT), D 2005
Weather
Business at CNNMoney MORE NEWS
Sports at Sleam * Climate study predicts big thaw
Politics * Mexican volcano spews glowing rock
e » Hubble finds new moons, rings around Uranus
Technology * Researcher quits over fake stem cell work | | watcH
i & e * Watch: Zookeepers beq for return of baby penguin
Health
: WATCH FREE VIDEO Browsel
Entertainment
inavel Text message Croal |
Special Reports ~ N (:54) R g
L Ly St
Video - =
el Wait a sec for leap into 2006 . iviaeo | vecares v

e The Web page uses information from databases or other server-side resources e.g. an e-
commerce site could use a servlet to build a Web page that lists the current price and
availability of each item that is for sale.

! Seach Shemap Conlact
g GovinsT COLLIGE
[etail gl HAVERSITY FALLALABAD —r

GCUF MewsABwnls Prospective Stodests Studens Almn Evagutive Education Facuty & Resaarh

' o |
-

Kakails G = Cait Dalats
Delils AL b L Edil Delete
Dokails in 4nd - Edit Delete
Datalls mputer Enginesnng Edit Dalate

add

LRETAAIE O ThE CUFPENTY S&|80ned Tiekd

Minar Units Min GPaA Min Units Palicy URL

ASEETS , Edit Dl et
}. hike 2 [Edil Dralete |

© Copyright Virtual University of Pakistan 235

Web Design and Development (CS506)

Server side programming involves

e Using technologies for developing web pages that include dynamic content.
e Developing web based applications which can produce web pages that contain
information that is connection-dependent or time-dependent.

25.4.2Dynamic Web Content Technologies Evolution

Dynamic web content development technologies have evolved through time in speed, security,
ease of use and complexity. Initially C based CGI programs were on the server. Then template
based technologies like ASP and PHP were then introduced which allowed ease of use for
designing complex web pages. Sun Java introduced Servlets and JSP that provided more speed and
security as well as better tools for web page creation.

CaGl . CGI ., Template
(in C) (java, C++) \\\ (ASP,

complexity

JSP

Speed, Security

Servlet
(Java)

Dynamic Web Content Technologies Evolution

25.5 Layers & Web Application

Normally web applications are partitioned into logical layers. Each layer performs a specific
functionality which should not be mixed with other layers. Layers are isolated from each other to
reduce coupling between them but they provide interfaces to communicate with each other.

- oY
Users [Calllng Servlces]

T v

Presentation Layers

Business Layers - --
Data Layers
Data Sources |[Services }
L I

Simplified View Of A Web Application And Its Layers

© Copyright Virtual University of Pakistan 236

Web Design and Development (CS506)

25.5.1Presentation Layer:

e Provides a user interface for client to interact with application. This is the only part of
application visible to client.

25.5.2Business Layer

e The business or service layer implements the actual business logic or functionality of the
application. For example in case of online shopping systems this layer handles transaction
management.

25.5.3Data Layer

e This layer consists of objects that represent real-world business objects such as an Order,
OrderLineltem, Product, and so on.

25.6 Java - Web Application Technologies

There are several Java technologies available for web application development which includes Java
Servlets, JavaServer Pages, and JavaServer Faces etc.

JavaServer Pages
Standard Tag Library

,.—‘_ J

JavaServer Faces

JavaServer Pages

Java Servlet

Java Web Application Technologies (Presentation/Web Tier)

25.7 References:

e Java, A Practical Guide by Umair Javed.
e Java tutorial by Sun: http://java.sun.com/docs/books/tutorial/ .

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 237

Web Design and Development (CS506)

Lecture 26: Java Servlets

Servlets are java technology’s answer to CGI programming. CGI was widely used for generating
dynamic content before Servlets arrived. They were programs written mostly in C, C++ that run on
a web server and used to build web pages.

As you can see in the figure below, a client sends a request to web server, server forwards that
request to a servlet, servlet generates dynamic content, mostly in the form of HTML pages, and
returns it back to the server, which sends it back to the client. Hence we can say that servlet is
extending the functionality of the webserver (The job of the earlier servers was to respond only
to request, by may be sending the required html file back to the client, and generally no processing
was performed on the server)

T IVM \
Request Reguest
Client/ — > Seryver — > Servlet
@ Response R
esponse
LS 7

4

Extendsthe functionality of the
server by generating HTML |
pages dvnamically

26.1 What Servlets can do?

e Servlets can do anything that a java class can do. For example, connecting with
database, reading/writing data to/from file etc.

e Handles requests sent by the user (clients) and generates response dynamically
(normally HTML pages).

e The dynamically generated content is send back to the user through a webserver
(client)

26.2 Servlets vs. other SSP technologies

The java’s servlet technology has following advantage over their counter parts:

26.2.1Convenient

Servlets can use the whole java API e.g. JDBC. So if you already know java, why learn
Perl or C. Servlets have an extensive infrastructure for automatically parsing and decoding HTML
form data, reading and sending HTTP headers, handling cookies and tracking session etc and many
more utilities.

© Copyright Virtual University of Pakistan 238

Web Design and Development (CS506)

26.2.2 Efficient

With traditional CGI, a new process is started for each request while with servlets each request is
handled by a lightweight java thread, not a heavy weight operating system process. (more on this
later)

26.2.3Powerful

Java servlets let you easily do several things that are difficult or impossible with regular CGI. For
example, servlets can also share data among each other

26.2.4Portable

Since java is portable and servlets is a java based technology therefore they are generally portable
across web servers

26.2.5 Inexpensive

There are numbers of free or inexpensive web servers available that are good for personal use or low
volume web sites. For example Apache is a commercial grade webserver that is absolutely free.
However some very high end web and application servers are quite expensive e.g. BEA weblogic.
We’ll also use Apache in this course

26.3 Software Requirements

To use java servlets will be needed

e J2SE

e Additional J2EE based libraries for servlets such as servlet-api.jar and jsp-
api.jar. Since these libraries are not part of J2SE, you can download these APIs
separately. However these APIs are also available with the web server you’ll be using.

e A capable servlet web engine (webserver)

26.4 Jakarta Servlet Engine (Tomcat) /4%\

Jakarta is an Apache project and tomcat is one of its subprojects. Apache Tomcat is an open
source web server, which is used as an official reference implementation of Java Servlets and
Java Server Pages technologies.

Tomcat is developed in an open and participatory environment and released under the Apache
software license

26.4.1Environment Setup

To work with servlets and JSP technologies, you first need to set up the environment. Tomcat

© Copyright Virtual University of Pakistan 239

Web Design and Development (CS506)

installation can be performed in two different ways (a) using -zip file (b) using .exe file.
This setup process is broken down into the following steps:

Download the Apache Tomcat Server
Install Tomcat

Set the JAVA_HOME variable

Set the CATALINA_HOME variable
Set the CLASSPATH variable

Test the Server

U~ wd P

26.4.2Environment Setup Using .zip File

Let’s take a detail look on each step and get some hands on experience of environment
setup.

26.4.2.1 Download the Apache Tomcat Server

From the http://tomcat.apache.org, download the zip file for the current release (e.g.
jakarta-tomcat-5.5.9.zip or any latest version) on your C:\ drive. There are different
releases available on site. Select to download .zip file from the Binary Distributions ¢
core section.

Note: J2SE 5.0 must be installed prior to use the 5.5.9 version of tomcat.

26.4.2.2 Installing Tomcat using .zip file

e Unzip the file into a location (e.g. C-\). (Rightclick on the zip file and select
unziphere option)
e When the zip file will unzipped a directory structure will be created on your computer
such as:
= =s® |ocal Disk (C:)
) Documents and Settings
I downloads
) izss
) Inetpub
=l) jakarta-tomcat-5.5.9

b |

e The C:\jJakarta-tomcat-5.5.9 folder is generally referred as root directory or
CATALINA_HOME

Note: After extraction, make sure C:\jakarta-tomcat-5.5.9 contains a bin
subdirectory. Sometimes students create their own directory and unzip the file there such as
C:\jakarta-tomcat-5.5.9\jakarta-tomcat-5.5.9.This causes problems while giving path information

© Copyright Virtual University of Pakistan 240

Web Design and Development (CS506)

26.4.2.3 Set the JAVA_HOME variable

e JAVA HOME indicates the root directory of your jdk. Set the JAVA_ HOME
environment variable to tell Tomcat, where to find java

e This variable should list the base JDK installation directory, not the bin
subdirectory

e To set it, right click on My Computer icon. Select the advanced tab, a System
Properties window will appear in front of you like shown below. Select the
Environment Variables button to proceed.

System Properties 21x
Eenerall Netwurkldentificatinnl Hardwarel User Profiles | Advanced I

— Perfarmance

FPerformance optionz contral how applications use memory,
which affects the speed of your compriter.

Perfarmance Ophions. ..

— Environment ariables
@ E nvirahmert wariables kell vour camputer where ta find certain

tppesz af information,

=

f Ervvironment Y ariables...

L ™

— Startup and Recovery
E[Startup and recovery options tell your computer howe ba start
— and what to do if an eror cauzes vour computer bo ztop.

Startup and Recowvery... |

] I Cancel | Lpply |

e On clicking Environment Variable button, the Environment Variables window
will open as shown next

© Copyright Virtual University of Pakistan 241

Web Design and Development (CS506)

—User wariables Far Adminiskrakar

YWariable | Yalue |:|

lib C:\Program Files\Microsoft Visual Studio. ..

M3y Dir CProgram FilesiMicrosaft Wisual Skudia., ..

path C:Program Filest Javaljdkl 5.006in;Ci5...

TEMP CDocuments and Settings)Administrat, .,

THP C:\Documents and Settings\Administrat, .. -
e, ., Edit... | Delete |

—System variables

Yariable | Yalue |*

Com3pec C INMT Y swstem32iomd exe

MUMEER_OF_PR... 2 -

03 indowws_MT

Qsz2LibPath W IRNT system32os 2y dll;

Path C MM T sysbemn 32 VT T O WM, j
M, ., | Edit... | Delete |

(] 4 I Cancel |

e Create a new User variable by clicking New button as shown above, the New
User Variable window will appear

e Set name of variable JAVA HOME

e The value is the installation directory of JDK (for example C:\Program
Files\J2sdk _nb\j2sdkl1.4.2). This is shown below in the picture. Please note
that bin folder is not included in the path.

Yariable Name: | Java_HOME

Variable Yalue: I C:AProgram Files) Javatjdkl 5.0

(0] 4 I Cancel

e Press Ok button to finish

26.4.2.4 Setthe CATALINA_HOME variable

CATALINA _HOME is used to tell the system about the root directory of the TOMCAT.
There are various files (classes, exe etc) needed by the system to run.

© Copyright Virtual University of Pakistan 242

Web Design and Development (CS506)

CATALINA_HOME is used to tell your system (in this case your web server Tomcat) where
the required files are.

e To Set the CATALINA HOME environment variable, create another User Variable.

e Type CATALINA_HOME as the name of the environment variable.

e Its value should be the path till your top-level Tomcat directory. If you have
unzipped the Tomcat in C drive. It should be C:\jakarta-tomcat-5.5.9.
This is shown below:

Wariable Mame: I CATALIMNA_HOME

Yariable Walue: I c:\jakarta-tomeat-5.5.9]

Ik I Cancel

e Press Ok button to finish

Note: To run Tomcat (web server) you need to set only the two environment variables
and these are JAVA_HOME & CATALINA _HOME

26.4.2.5 Set the CLASSPATH variable

Since servlets and JSP are not part of the Java 2 platform, standard edition, you have to identify
the servlet classes to the compiler. The server already knows about the servlet classes, but the
compiler (i.e., Javac) you use for compiling source files of servlet does not. So if you don't
set your CLASSPATH, any attempt to compile servlets, tag libraries, or other classes that
use the servlet API will fail with error messages about unknown classes.

e To Setthe CLASSPATH environment variable, create another User Variable.

e Type CLASSPATH as the name of the environment variable.
Its value should be the path for servlet-api.jar and jsp-api.jar.
These file can be found on following path:

Yariable Mame: | CLASSPATH

Yariable value: I tomcat-5.5, 9commontliblservlet-api.jar;.;

(nls I Cancel

e Press OK button to finish the setting of CLASSPATH variable

© Copyright Virtual University of Pakistan 243

Web Design and Development (CS506)

26.4.2.6 Test the server

Before making your own servlets and JSP, verify that the server is working
properly. Follow these steps in order to do that:

e Open the C:\jakarta-tomcat-5.5.9\bin folder and locate the startup . batfile.

e Double clicking on this file will open up a DOS window, which will disappear, and
another DOS window will appear, the second window will stay there. If it does not your
paths are not correctly set.

e Now to check whether your server is workig or not, open up a browser window and type
http://localhost:8080. This should open the default page of omcat as shown in next
diagram:

Note: If default page doesn’t displayed, open up an internet explorer window, move on to Tools
@ Internet Options ¢ Connections # LAN Settings. Make sure that option of “Bypass proxy server
for local addresses” is unchecked.

3 Apache Tomcat,/5.5.9 - Microsoft Internet Explorer - |E||5|

J File Edit “iew Favorites Tools Help ﬁ

J dmBack - = - @) | @Search [Ze] Favarites @Media @ | %v =] -

]nddress ’43'] http:fflocalhost: 8080 j @GO

| v

Apache)
% Tomeat/5.5.9 Wpache Jakarta Project
/& < http:// jakarta.apache.org/

___[The Mighty Tomeat - MEGW! | .)))
Administration If you're seeing this page via a web browser, it means you've setup
Tomecat successfully. Congratulations!

Status
Tomcat Administration As you may have guessed by now, this is the default Tomcat home page.
Torncat Manager It can be found on the local filesystem at
SCATALINA HOME/webapps/ROOT/index. jsp
LD] where "$CATALINA_HOME" is the root of the Tomcat installation
Release Motes directory. If you're seeing this page, and you don't think you should be,
Change Log then eitheryou're either a user who has arrived at new installation of
Tomcat Documentation Tomcat, or you're an administrator who hasn't got hisfher setup quite right.
Providing the latter is the case, please refer to the Tomcat Docurmentation
for maore detailed setup and administration information than is found in the
i 1 INSTAL filo [
|:I§| http:ffjakarta.apache. orgftomcatfindex. html l_l_l_ Local intranet 4

There is another easier way to carry out the environment setup using .exe file. However, it is

strongly recommended that you must complete the environment setup using .zip file to know the
essential fundamentals.

26.4.3Environment Setup Using .exe File

Let’s look at the steps involved to accomplish the environment setup using - exe file.

© Copyright Virtual University of Pakistan 244

Web Design and Development (CS506)

26.4.3.1 Download the Apache Tomcat Server

From the http://tomcat.apache.org, download the .exe file for the current release (e.g.
jakarta-tomcat-5.5.9.zip) on your C:\ drive. There are different releases available on site.
Select to download Windows executable (.exe) file from Binary Distributions @ Core
section.

Note: J2SE 5.0 must be installed to use the 5.5.9 version of tomcat.

26.4.3.2 Installing Tomcat using .exe file

e Run the .exe file by double clicking on it.
e Moving forward in setup, you will reach to the following window

ES Apache Tomcat Setup

Choose Components ¥ -
Choose which features of Apache Tomcat you want to install.

Check the components you want to install and uncheck the components you don't want to
install. Click Mext to continue,

Select the type of install: = 2 _
[ir; ecleck e optional | [V] Tomcat E?es;:ap:usllart Menw
;:I_IDST;EHEHE TIoELT Start Menu Items program group for
' Documentation Tomcat.
Examples
Webapps

Space required: 11.7MB

[< Back ” Mext =] [Cancel

e Select install type “Full” and press Next button to proceed.

e Choose the folder in which you want to install Apache Tomcat and press Next to proceed.

e The configuration window will be opened. Leave the port unchanged (since by default web
servers run on port 8080, you can change it if you really want
to). Specify the user name & password in the specified fields and press Next
button to move forward. This is also shown in the diagram coming next:

© Copyright Virtual University of Pakistan 245

Web Design and Development (CS506)

&=t Apache Tomcat Setup: Configuration Options

Configuration
Tomcat basic configuration,

HTTF/1.1 Connector Port 2030

Administrator Login
User Mame | P |
Password | — |

[< Back ” Mext = l [Cancel]

e The setup will automatically select the Java Virtual Machine path. Click
Install button to move ahead.
Finish the setup with the Run Apache Tomcat option selected. It will cause the tomcat
server to run in quick launch bar as shown in diagram below. The Apache Tomcat
shortcuts will also added to Programs menu.

&0 % e 2:58AM

e Double clicking on this button will open up Apache Tomcat Properties window. From here

you can start or stop your web server. You can also
configure many options if you want to. This properties window is shown
below:

© Copyright Virtual University of Pakistan 246

Web Design and Development (CS506)

5 Apache Tomcat Properties b_<

General |L|:|g On | Logging || Java || Startup | Shutdown

Service Name: Tomcath

Display name:

Description: Apache Tomcat 5.5.9 Server - hitp:/jakarta. apache.

Path to executable:

Startup type: Automatic hd

Service Status: Started

[OK l ’ Cancel

26.4.3.3 Set the JAVA HOME variable

Choosing .exe mode does not require completing this step.

26.4.3.4 Setthe CATALINA_HOME variable

Choosing .exe mode does not require completing this step.

26.4.3.5 Setthe CLASSPATH variable

Same as step 5 of .zip installation mode

26.4.3.6 Test the server
If tomcat installation is made using .exe file, follow these steps

e Open the Apache Tomcat properties window by clicking on the Apache Tomcat button
from Quick Launch.
e Start the tomcat server if it is not running by clicking on Start button.

© Copyright Virtual University of Pakistan 247

Web Design and Development (CS506)

e Open up a browser window and type http://localhost:8080. This should open the default

page of Tomcat as shown in the next diagram:

/4 Apache Tomcat, 5.5.9 - Microsoft Internet Explorer =10l x|
J File Edit ‘iew Faworites Tools Help ﬁ
J $=Eack ~ = v £} iat | Qhsearch [Favorites Media &% | By S -

| Address [&] http:/flocalhost: 080 | e

|»

Apache _
% Tomcat/5.5.9 Wpache Jakarta Project
/&\ % http:// jakarta.apache.org/

___[The Mighty Tomeat - MEGW! |
Administration If you're seeing this page via a web browser, it means you've setup
Tomcat successfully. Congratulations!

Status

Tomcat Administration A you may have guessed by now, this is the default Tomcat home page.
Tomcat Manager It can be found on the local filesystern at

SCATALINA HOME/webapps/ROOT/index. j=sp

OB O where "$CATALINA_HOME" is the root of the Tomeat installation
Eelease Motes directory. If yvou're seeing this page, and you don't think you should be,
Change Log then either you're either a userwho has arrived at new installation of
Tomcat Documentation Tomcat, or you're an administrator who hasn't got his/her setup quite right.
Providing the latter is the case, please refer to the Tomcat Documentation
for more detailed setup and administration information than is found in the
| 1 INSTALL fila =l
|@ http:j/jakarta.apache. orgjtomeatfindex. hkml l_l_l_ Local intranet 4

Note: If default page doesn’t displayed, open up an internet explorer window, move on to Tools
¢ Internet Options # Connections ¢ LAN Settings. Make sure that option of “Bypass proxy
server for local addresses™ is unchecked.

26.5 References:

e Java, A Lab Course by Umair Javed.
e Java Servlet & JSP tutotrial http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/ .

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 248

Web Design and Development (CS506)

Lecture 27: Creating a Simple Web Application in Tomcat

In this handout, we’ll discuss the standard tomcat directory structure, a pre-requisite for
building any web application. Different nuts and bolts of Servlets will also be discussed.
In the later part of this handout, we’ll also learn how to make a simple web application
using servlet.

27.1 Standard Directory Structure of a J2EE Web Application

A web application is defined as a hierarchy of directories and files in a standard layout. Such
hierarchies can be used in two forms

e Unpack

0 Where each directory & file exists in the file system separately
0 Used mostly during development

e Pack

o Known as Web Archive (WAR) file
0 Mostly used to deploy web applications

The webapps folder is the top-level Tomcat directory that contains all the web
applications deployed on the server. Each application is deployed in a separate folder often
referred as ““context”.

=l [) jgkarta-tomcat-5.5.9
|2 bin
[Ty common
) conf
I logs

+ |) server
% () shared Folder for

) temp Web Applications
SR} webapps

4) balancer
1 () jsp-examples
[ROOT
* () servlets-examples
&) tomcat-docs
&) webdav
& I3 work

To make a new application e.g myapp in tomcat you need a specific folder hierarchy.

e Create a folder named myapp in C:\jakarta-tomcat-5.5.9\webapps
folder. This name will also appear in the URL for your application. For example
http://localhost:8080/myapp/index.html

© Copyright Virtual University of Pakistan 249

Web Design and Development (CS506)

e All JSP and html files will be kept in main application folder (C:\jakarta-
tomcat-5.5.9\webapps\myapp)

e Create another folder inside myapp folder and change its name to WEB-INF.
Remember WEB- INF is case sensitive and it is not WEB_INF

e Configuration files such as web.xml will go in WEB-INF folder
(C-\jakarta-tomcat-5.5.9\webapps\myapp\WEB-INF)

e Create another folder inside WEB-INF folder and change its name to classes.
Remember classes name is also case sensitive.

e Servlets and Java Beans will go in classes folder (C-\ jakarta-tomcat-
5.5.9\webapps\myapp\WEB- INF\classes)

That’s the minimum directory structure required in order to get started. This is also shown in
the figure below:

=l [} jakarta-tomcat-5.5.9
I bin
&) common
|3 conf
= loas
() server
) shared
[temp
= webapps
&l) balancer
[T} isp-examples
=
=l |3 WEB-IMF
|J) classes
H I3 ROOT
+) serviets-examples
) tomcat-docs
H | webdav
H I work

e To test application hierarchy, make a simple html file e.g. index.html file.
Write some basic HTML code into it and save it in main application directory i.e.
C:\jakarta-tomcat-5.5.9\webapps\myapp\

e Restartthe server and access it by using the URL
http://localhost:8080/myapp/index.html

e A more detailed view of the Tomcat standard directory structure is given below.

-- name of web application
-- folder of HTML and JSP

© Copyright Virtual University of Pakistan 250

Web Design and Development (CS506)

I

JSP pages,
static HTML pages,
applet classes, etc.

Library All server-side All .tag files
archive files .class files for this for this
Web module Web madule

e Here you can see some other folders like I1b & tags under the WEB-INF.

e The lib folder is required if you want to use some achieve files (jar). For
example an API in jar format that can help generating .pdT files.

e Similarly tags folder is helpful for building custom tags or for using .tag
files.

Note: Restart Tomcat every time you create a new directory structure, a servlet or a java bean so
that it can recognize it. For JSP and html files you don’t have to restart the server.

27.2 Writing Servlets

27.2.1Servlet Types

e Servlet related classes are included in two main packages javax.servilet
and Javax.servilet._http.

e Every servlet must implement the javax.servlet.Servlet interface, it
contains the servlet’s life cycle methods etc. (Life cycle methods will be discussed in
next handout)

e In order to write your own servlet, you can subclass from GernericServilet
or HttpServlet

© Copyright Virtual University of Pakistan 251

Web Design and Development (CS506)

27.2.1.1 GenericServlet class

Available in Javax.servlet package

e Implements javax.servlet.Servlet
Extend your class from this class if you are interested in writing protocol independent
servlets

27.2.1.2 HttpServlet class

Available in Javax.servlet._http package
Extends from GenericServlet class

e Adds functionality for writing HTTP specific servlets as compared to
GernericServlet

e Extend your class from HttpServlet, if you want to write HTTP based servlets

27.3 Servlet Class Hierarchy

The Servlet class hierarchy is given below. Like all java classes GenericServlet also
inherits from Object class. Apart from GenericServlet and HttpServilet classes,
ServletRequest, HttpServiletRequest, ServeltResponse and
HttpServletResponse are also helpful in writing a servlet.

As you can guess ServletRequest & ServletResponse are used in conjunction
with GenericServilet. These classes are used for processing protocol independent requests
and generating protocol independent responses respectively.

Object
| |
GenericServlet ServletRequest ServletResponse
jat'ax.sen'letT T T
HttpServlet HitpS ervlétReque st HttpServletResponse

javax.servlet.htip

© Copyright Virtual University of Pakistan 252

Web Design and Development (CS506)

HttpServletRequest & HttpServletRespose are used for processing HTTP protocol
specific requests and generating HTTP specific response. Obviously these classes will be
used in conjunction with HttpServet class, which means you are making a HTTP protocol
specific servlet.

27.4 Types of HTTP requests

HTTP supports different types of request to be sent over to server. Each request has some
specific purpose. The most important ones are get & post. Given below a brief overview
of each request type is given. You can refer to RFC of HTTP for further details.

e GET: Requests a page from the server. This is the normal request used when
browsing web pages.

e POST: This request is used to pass information to the server. Its most common

use is with HTML forms.

PUT: Used to put a new web page on a server.

DELETE: Used to delete a web page from the server.

OPTIONS: Intended for use with the web server, listing the supported options.

TRACE: Used to trace servers

27.5 GET & POST, HTTP request types

Some details on GET and POST HTTP request types are given below.
o GET

o0 Aittribute-Value pair is attached with requested URL after *?”.

o For example if attribute is “‘name’ and value is ‘ali’ then the request will be
http://www.gmail.com/register?name=ali

0 For HTTP based servlet, override doGet () methods of HttpServlet class
to handle these type of requests.

e POST

o0 Aittribute-Value pair attached within the request body. For your reference HTTP
request diagram is given below again:

© Copyright Virtual University of Pakistan 253

Web Design and Development (CS506)

GET /index.html HTTP/1.1 request l1ine

Host: java.sun.com request headers
User-Agent: Mozilla/4.5 [en]

Accept: image/gif, image/jpeg, image/pipeg, */*
Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

optional request body
Req uest parameters etc

o Override doPost()method of HttpServlet class to handle POST type requests.

27.6 Steps for making a Hello World Servlet

To get started we will make a customary ““HelloWorldServlet™. Let’s see what
are the steps involved in writing a servlet that will produce ““Hello World™

1. Create a directory structure for your application (i.e. helloapp). This is a one time process

for any application

2. Create a HelloWorldServlet source file by extending this class from
HttpServlet and overriding your desired method. For example doGet() or

doPost().
Compile it (If get error of not having required packages, check your class path)

w

4. Place the class file of HelloWorldServlet in the classes folder of your

web application (i.e. myapp).

a. Note: If you are using packages then create a complete structure under classes

folder
Create a deployment descriptor (web . xml) and put it inside WEB- INF folder
Restart your server if already running
7. Access it using Web browser

ISRl

Example Code: HelloWorldServlet.java

//File HelloWorldServlet. java
// importing required packages
import java.io.*;

import javax.servlet.*;

© Copyright Virtual University of Pakistan

Web Design and Development (CS506)

import javax.servlet_http.*;

// extending class from HttpServelt

public class HelloWorldServlet extends HttpServlet {

/* overriding doGet() method because writing a URL in the browser
by default generate request of GET type As you can see,
HttpServletRequest and HttpServletResponse are passed to this
method. These objects will help in processing of HTTP request and
generating response for HTTP This method can throw
ServletException or 10Exception, so we mention these exception
types after method signature

*/

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, I0Exception

{

/* getting output stream i.e PrintWriter from response object by
calling getWriter method on it As mentioned, for generating
response, we will use HttpServletResponse object

*/

PrintWriter out = response.getWriter();

/* printing Hello World in the browser using PrintWriter
object. You can also write HTML like

out.printIn(“<hl> Hello World </h1>")

*/

out._printin(**Hello World!);

} // end doGet()
} 7/ end HelloWorldServilet

Example Code: web.xml

eXtensible Markup Language (xml) contains custom defined tags which convey
information about the content. To learn more about XML visit http://ww.w3schools.com

Inside web .xml, the <web-app> is the root tag representing the web application. All other
tags come inside of it.

<?xml version="1.0" encoding=""1S0-8859-1"?>

<web-app>

<servlet>

<servlet-name> HelloWorldServlet </servlet-name>
<servlet-class> HelloWorldServlet </servlet-class> </servlet>

© Copyright Virtual University of Pakistan 255

Web Design and Development (CS506)

<servlet-mapping>

<servlet-name> HelloWorldServlet </servlet-name> <url-pattern>
/myfirstservlet </url-pattern>

</servlet-mapping>

</web-app>

The <servlet> tag represents one’s servlet name and its class. To specify the name of
servlet, <servlet-name> tag is used. Similarly to specify the class name of servlet (it
is the same name you used for making a servlet), <servlet-class> tag is used.

Note: It is important to note here that you can specify any name for a servlet inside
<servlet-name> tag. This name is used for referring to servlet in later part of
web.xml. You can think of it as your id assigned to you by your university while you have
actually different name (like <servlet-class>).

Next we will define the servlet mapping. By defining servlet mapping we are specifying URL to
access a servlet. <servlet-mapping> tag is used for this purpose.

Inside <servlet-mapping> tag, first you will write the name of the servlet for which
you want to specify the URL mapping using <servlet-name> tag and then you will define the
URL pattern using <ur I-pattern> tag. Notice the forward slash (/) is used before specifying
the url. You can specify any name of URL. The forward slash indicates the root of your
application.

<url-pattern> /myfirstservlet </url-pattern>

Now you can access Hel loWor ldServelt (if it is placed in myapp application) by giving
the following url in the browser

http://localhost:8080/myapp/myfirstserviet

Note: Save thisweb.xml file by placing double quotes(“web.xml) around it as you did to save
Java files.

27.7 Compiling and Invoking Servlets

e Compile HelloWorldServlet. java using Jjavac command.

e Put HelloWorldServlet.class in C:\jJakarta-tomcat-
5.5.9/webapps/myapp/WEB-INF/classes folder

e Put web.xml file in C:\jJakarta-tomcat-
5.5.9/webapps/myapp/WEB-INF folder

e Invoke your servlet by writing following URL in web browser. Don’t forget to
restart your tomcat server if already running

http://localhost:8080/myapp/myfirstservlet

© Copyright Virtual University of Pakistan 256

Web Design and Development (CS506)

Note: By using IDEs like netBeans® 4.1, you don’t have to write web .xml by
yourself or even to worry about creating directory structure and to copy files inappropriate
locations. However manually undergoing this process will strengthen your concepts and will help
you to understand the underlying mechanics.

27.8 References:

e Entire material for this handout is taken from the book JAVA A Lab Course by Umair
Javed. This material is available just for the use of VU students of the course Web
Design and Development and not for any other commercial purpose without the consent
of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 257

Web Design and Development (CS506)

Lecture 28: Servlets Lifecycle

In the last handout, we have seen how to write a simple servlet. In this handout we will look
more specifically on how servlets get created and destroyed. What different set of method are
invoked during the lifecycle of a typical servlet.

The second part consists on reading HTML form data through servlet technology. This will be
explored in detail using code example

28.1 Stages of Servlet Lifecycle

A servlet passes through the following stages in its life.

e [|nitialize
e Service
e Destroy

As you can conclude from the diagram below, that with the passage of time a
servlet passes through these stages one after another.

Servlet

Initialization
{Load Resources)

A
Request Service
Response+ (Accept Requests)

Y

Destruction
(Unload Resources)

k4

28.1.1Initialize

When the servlet is first created, it is in the initialization stage. The webserver invokes he
init() method of the servlet in this stage. It should be noted here that init() is only called
once and is not called for each request. Since there is no constructor available in Servlet so this
urges its use for one time initialization (loading of resources, setting of parameters etc) just as
the 1n1t () method of applet.

Initialize stage has the following characteristics and usage

e Executed once, when the servlet gets loaded for the first time

e Not called for each client request

e The above two points make it an ideal place to perform the startup tasks which are
done in constructor in a normal class.

© Copyright Virtual University of Pakistan 258

Web Design and Development (CS506)

28.1.2Service

The service() method is the engine of the servlet, which actually processes the client’s request.
On every request from the client, the server spawns a new thread and calls the service()
method as shown in the figure below. This makes it more efficient as compared to the
technologies that use single thread to respond to requests.

Java Servlet-based Web Server
Main Process
Request for Servlet] ——————__ Thread v
T Servlet]
e
Request for Servlet? ———». " Thend

,,,,,

Request for Servlet] =

The figure below show both versions of the implementation of service cycle. In the upper
part of diagram, we assume that servlet is made by sub-classing from GenericServilet.
(Remember, GenericServlet is used for constructing protocol independent servlets.).
To provide the desired functionality, service() method is overridden. The client sends a
request to the web server; a new thread is created to serve this request followed by calling the
service() method. Finally a response is prepared and sent back to the user according to
the request.

LETETICHErVIET SUNCInss
A —e _H_!_ i
had] | Ly =]
] T | Service |
_— _[_I 0
response
Server
HttnServiet subclass
1
m— [- | |
eT reaUe ‘-_E-_:'__ ™ —-§ .-:-.5 Pt] i |
e 1.-_-..— — |-—-I SeIrvIoN Iw—i— § - . 0]
request —————3 = “ > dopost
| | implemanted by subclass

© Copyright Virtual University of Pakistan 259

Web Design and Development (CS506)

The second part of the figure illustrates a situation in which servlet is made using
HttpServilet class. Now, this servlet can only serves the HTTP type requests. In these
servlets doGet() and doPost() are overridden to provide desired behaviors. When a
request is sent to the web server, the web server after creating a thread, passes on this request
to service() method. The service() method checks the HTTP requests type (GET,
POST etc) and calls the doGet() or doPost() method depending on how the request is
originally sent. After forming the response by doGet() or doPost() method, the
response is sent back to the service() method that is finally sent to the user by the web
server.

28.1.3Destroy

The web server may decide to remove a previously loaded servlet instance, perhaps because it is
explicitly asked to do so by the server administrator, or perhaps servlet container shuts down or
the servlet is idle for a long time, or may be the server is overloaded. Before it does, however it
calls the servlets destroy() method. This makes it a perfect spot for releasing the acquired
resources.

28.2 Summary

e A Servlet is constructed and initialized. The initialization can be performed inside of
init() method.

e Servlet services zero or more requests by calling service() method that may
decide to call further methods depending upon the Servlet type (Generic or HTTP
specific)

e Server shuts down, Servlet is destroyed and garbage is collected

The following figure can help to summarize the life cycle of the Servlet

Create

v

failure
?s::mess

| Initialize |
+ failure
(Y}

Success

Available
(Servicing Requests)

\

destroy request

+ Y

| Destroy I Unload

© Copyright Virtual University of Pakistan 260

Web Design and Development (CS506)

The web sever creates a servlet instance. After successful creation, the servlet enters into
initialization phase. Here, init() method is invoked for once. In case web server fails in
previous two stages, the servlet instance is unloaded from the server.

After initialization stage, the Servlet becomes available to serve the clients requests and to
generate response accordingly. Finally, the servlet is destroyed and unloaded from web
server.

28.3 Reading HTML Form Data Using Servlets

In the second part, the required concepts and servlet technology is explored in order to read
HTML form data. To begin with, let’s first identify in how many ways a client can send data

28.3.1HTML & Servlets

Generally HTML is used as a Graphics User Interface for a Servlet. In the figure below,
HTML form is being used as a GUI interface for MyServlet. The data entered by the user in
HTML form is transmitted to the MyServlet that can process this data once it read out.
Response may be generated to fulfil the application requirements.

ciient Server
=
LA L. ﬁ
= Tomcat Serviet Container
- o - (MyServiet)

HTML FORM

28.3.2 Types of Data send to Web Server

When a user submits a browser request to a web server, it sends two categories of data:

e [orm Data

Data that the user explicitly type into an HTML form. For example: registration
information provided for creating a new email account.

© Copyright Virtual University of Pakistan 261

Web Design and Development (CS506)

e HTTP Request Header Data

Data, which is automatically, appended to the HTTP Request from the client for
example, cookies, browser type, and browser IP address.

Based on our understanding of HTML, we now know how to create user forms. We also
know how to gather user data via all the form controls: text, password, select, checkbox,
radio buttons, etc. Now, the question arises: if | submit form data to a Servlet, how do |
extract this form data from servlet? Figuring this out, provides the basis for creating
interactive web applications that respond to user requests.

28.3.2.1 Reading HTML Form Data from Servlet

Now let see how we can read data from “HTML form” using Servlet. The
HttpServletRequest object contains three main methods for extractingform data submitted by
the user:

e getParameter(String name)

0 Used to retrieve a single form parameter and returns String corresponding to name
specified.

o0 Empty String is returned in the case when user does not enter any thing in the
specified form field.

o0 If the name specified to retrieve the value does not exist, it returns nul I.

Note: You should only use this method when you are sure that the parameter has only one
value. If the parameter might have more than one value, use getParamterValues().

e getParameterValues(String name)

0 Returns an array of Strings objects containing all of the given values of the given
request parameter.
0 If the name specified does not exist, nul I is returned

e getParameterNames()

o If you are unsure about the parameter names, this method will be helpful

o It returns Enumeration of String objects containing the names of the parameters
that
come with the request.

o If the request has no parameters, the method returns an empty Enumeration.

Note: All these methods discussed above work the same way regardless of the request
type(GET or POST). Also remember that form elements are case sensitive for example,
“userName” is not the same as the “username.”

© Copyright Virtual University of Pakistan 262

Web Design and Development (CS506)

Example Code: Reading Form Data using Servlet

This example consists of one HTML page (index.html), one servlet (MyServlet.java) and one
xml file (web.xml) file. The HTML page contains two form parameters: firstName and
surName. The Servlet extracts these specific parameters and echoes them back to the browser
after appending ““Hello”.

Note: The example given below and examples later in coming handouts are built using
netBeans®4.1. It’s important to note that tomcat server bundled with netBeans® runs on 8084
port by default.

index.html
e | Reading Two Parameters - Microsoft Internet Explorer
Ele Edit WView Favorites Tooks Help i
=2 |48 | C:\Documents and Settngsumarn LIMATR \Desktop jndex,him » ﬁ o =

Please fill out this form:

Firsmame-

Sumame:

|- Subrmit Fam |‘Fi'ese-f]

-i_ﬂ Done j My Compuber

Let’s have a look on the HTML code used to construct the above page.

<html>

<head>

<title> Reading Two Parameters </title> </head>
<body>

<H2> Please fTill out this form: </H2>

<FORM METHOD=""GET""
ACTION="http://localhost:8084/paramapp/formserviet”
NAME=""myform" >

 Firstname:

<INPUT TYPE = “text” NAME="firstName">

 Surname:

<INPUT TYPE = ““text” NAME="'surName''>

© Copyright Virtual University of Pakistan 263

Web Design and Development (CS506)

<INPUT TYPE="submit" value=""Submit Form'>
<INPUT TYPE="'reset" value=""Reset''>

</FORM>
</body>
</html>

Let’s discuss the code of above HTML form. As you can see in the <FORM> tag, the attribute
METHOD is set to “GET”". The possible values for this attribute can be GET and POST. Now what
do these values mean?

e Setting the method attribite to “GET”” means that we want to send the HTTP request
using the GET method which will evantually activate the doGet() method of the
servlet. In the GET method the information in the input fields entered by the user, merges
with the URL as the query string and are visible to the user.

e Setting METHOD value to “POST” hides the entered information from the user as this
information becomes the part of request body and activates doPost() method of the
servlet.

Attribute ACTION of<FROM>tag is setto http://localhost:8084/paramapp/formservlet.
The form data will be transmitted to this URL. paramapp is the name of web application
created using netBeans. formservlet

is the value of <url-pattern> defined in the web.xml . The code of web.xml is
given at the end.

The NAME attribute is set to “myform” that helps when the same page has more than one forms.
However, here it is used only for demonstration purpose.

To create the text fields where user can enter data, following lines of code come into play

<INPUT TYPE “text” NAME="firstName'>

<INPUT TYPE = “text” NAME="'surName''>

Each text field is distinguished on the basis of name assigned to them. Later these
names also help in extracting the values entered into these text fields.

MyServlet.java

Now let’s take a look at the servlet code to which HTML form data is submitted.

import java.io.™;

import javax.servlet.*;

import javax.servlet._http.*;

public class MyServlet extends HttpServilet

{

© Copyright Virtual University of Pakistan 264

Web Design and Development (CS506)

public void doGet(HttpServletRequest req,
HttpServletResponse res) throws ServletException, I0Exception
{

// reading first name parameter/textfield

String fName = req.getParameter(“firstName™);

// reading surname parameter/textfield

String sName = req.getParameter(“‘surName™);

// gettting stream from HttpServletResponse object
PrintWriter out = res.getWriter();
out.printin(C'Hello: ™ + fName + ™ " + sName);
out.close();

}
}// end FormServlet

We started the code with importing three packages.

import java.io.*,
import javax.servlet.*;
import javax.servlet._http.*;

These packages are imported to have the access on PrintWriter, HttpServlet,
HttpServletRequest, HttpServiletResponse, ServletException and
I0Exception classes.

The class MySevlet extends from HttpServlet to inherit the HTTP specific
functionality. If you recall HTML code (index.html) discussed above, the value of
mehtod attribute was set to “GET”. So in this case, we only need to override doGet()
Method.

Entering inside doGet () method brings the crux of the code. These are:

String fName req.getParameter(““firstName™);

String sName req.getParameter(“‘surName™);

Two String variables fName and sName are declared that receive String values returned by
getParameter() method. As discussed earlier, this method returns String
corresponds to the form parameter. Note that the values of name attributes of input tags used in
index.html have same case with the ones passed to getParameter() methods as
parameters. The part of HTML code is reproduced over here again:

<INPUT TYPE
<INPUT TYPE

“text” NAME="'firstName''>

“text” NAME="'surName''>

In the last part of the code, we get the object of PrintWriter stream from the object of

© Copyright Virtual University of Pakistan 265

Web Design and Development (CS506)

HttpServletResponse. This object will be used to send data back the response. Using
PrintWriter object (out), the names are printed with appended ““Hello’” that becomes visible
in the browser.

web.xml

<?xml version="1.0" encoding=""1S0-8859-1"?> <web-app>
<servlet>
<servlet-name> FormServlet </servlet-name>

<servlet-class> MyServlet </servlet-class> </servlet>
<servlet-mapping>
<servlet-name> FormServlet </servlet-name>

<url-pattern> /formservlet </url-pattern> </servlet-mapping>
</web-app>

The <servlet-mapping> tag contains two tags <servlet-name> and
<urlpatteren> containing name and pattern of the URL respectively. Recall the value of
action attribute of the <form> element in the HTML page. You can see it is exactly the same
as mentioned in <url-pattern> tag.

http://1ocalhost:8084/paramapp/formserviet

28.4 References:

e JAVA aLab Course by Umair Javed
e Java API documentation
e Core Servlets and JSP by Marty Hall

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 266

Web Design and Development (CS506)

Lecture 29: More on Servlets

The objective of this handout is to learn about the use and implementation of initialization
parameters for a Servlet. Moreover different ways of redirecting response and forwarding or
including requests also discussed in detail.

29.1 Initialization Parameters

Some times at the time of starting up the application we need to provide some initial
information e,g, name of the file where server can store logging information, DSN for
database etc. Initial configuration can be defined for a Servlet by defining some string
parameters in web.xml. This allows a Servlet to have initial parameters from outside. This
is similar to providing command line parameters to a standard console based application.

Example: setting init parameters in web.xml

Let’s have a look on the way of defining these parameters in web.xml

<init-param> //defining param 1

<param-name> paraml </param-name>

<param-value> valuel </param-value>

</init-param>

<init-param> //defining param 2

<param-name> param2 </param-name>

<param-value> value2 </param-value> </init-param>

In the above code, it is shown that for each parameter we need to define separate
<initparam> tag that have two sub tags <param-name> and <param-value>, which
contain the name and values of the parameter respectively.

29.1.1ServletConfig

Every Servlet has an object called ServletConfig associated with it as shown in the fig.
below. It contains relevant information about the Servlet like initialization parameters
defined in web . xml

Serviet

ServletConfig

Init
Parameters

© Copyright Virtual University of Pakistan 267

Web Design and Development (CS506)

29.1.2Reading Initialization Parameters

Now let’s see, how we can access init parameters inside the Servlet. The method
getlnitParameter()of ServletConfig is usually used to access init parameters. It
takes a String as parameter, matches it with <param-name> tag under all
<init-param> tags and returns <param-value> from the web.xml

One way is to override 1nit() method as shown in the code below. The
ServletConfig object can then be used to read initialization parameter.

public void init(ServletConfig config) throws ServletException {
String name = config.getlnitParameter(“paramName’);

>

Another way to read initialization parameters out side the init () method is

e Call getServletConfig() toobtainthe ServlietConfig object
e Use getInitParameter() of ServletConfig to read initialization

parameters

public void anyMethod() // defined inside servilet

{

ServiletConfig config = getServiletContig();

String name = config.getlnitParameter(“param_name');

3

Example Code: Reading init parameters

MyServilet. java will read the init parameter (log file name) defined inside web.xml. The
code is given below:

import java.io.™;
import java.net.*;
import javax.servlet.™;
import javax.servlet._http.*;
public class MyServlet extends HttpServilet {
// attribute used to store init-parameter value
String fileName;
// overriding init() method
public void init(ServletConfig config) throws ServletException{
super.init(config);
// reading init-parameter “logfilename” stored in web.xml
fileName = config.getinitParameter("'logfilename™);

© Copyright Virtual University of Pakistan 268

Web Design and Development (CS506)

by

/*

Both doGet() & doPost() methods are override over here.
processRequest() is called from both these methods. This makes
possible for a servlet to handle both POST and GET requests
identically.

*/

// Handles the HTTP GET request type

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

¥

// Handles the HTTP POST request type

protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

¥

// called from doGet() & doPost()

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

PrintWriter out = response.getWriter();

// writing init-parameter value that is store in fileName
out.printin(fileName);
out.close();

by
} 7/ end MyServlet

web.xml

<?xml version="1.0" encoding=""UTF-8"?> <web-app>
<servlet>

<servlet-name> MyServlet </servlet-name>

<servlet-class> MyServlet </servlet-class>

<init-param>

<param-name> logfilename </param-name>

<param-value> logoutput.txt </param-value> </init-param>
</servlet>

© Copyright Virtual University of Pakistan 269

Web Design and Development (CS506)

<servlet-mapping>
<servlet-name> MyServlet </servlet-name>

<url-pattern> /myservlet </url-pattern> </servlet-mapping>
</web-app>

29.1.3Response Redirection

We can redirect the response of the Servlet to another application resource (another Servlet, an
HTML page or a JSP) but the resource (URL) must be available to the calling Servlet, in the same
Servlet context (discussed later).

There are two forms of response redirection that can be possible:

e Sending a standard redirect
e Sending a redirect to an error page

29.1.4Sending a standard Redirect

e Using response.sendRedirect(“myHtml_html”) method, a new request
is generated which redirects the user to the specified URL.

e |If the URL is of another Servlet, that second Servlet will not have access to the
original request object. For example, if the request is redirected from servletl to
servlet2, then servlet2 would not be able to access the request object of servletl.

e To have access to the original request object, you must use the request dispatching
technique (discussed later) instead of redirect.

29.1.5Sending a redirect to an error page

Instead of using response.sendRedirect (), wecan useresponse.sendEorror () to show user an error
page. This method takes two parameters, first the error number that is a predefined constant of the
response class (listed below) and seconds the appropriate error message. The steps to redirect the
user to an error page are:

e An error code is sent as a parameter of response.sendError (int, msQ)
method

e The error page is displayed with the msg passed to method

e The error numbers are predefined constants of the HttpServletResponse class.
For example:

0 SC_NOT_FOUND (404)
0 SC_NO_CONTENT (204)
0 SC_REQUEST_TIMEOUT (408)

© Copyright Virtual University of Pakistan 270

Web Design and Development (CS506)

Example Code: Response Redirection

The example given below demonstrates a typical sign on example in which a user is asked to
provide login/password, providing correct information leads to welcome page or otherwise to a
registration page. This example consists of login.html, welcome.html, register.html and
MyServlet.java files. Let’s examine these one after another.

login.html

This page contains two text fields; one for entering username and another for password. The data
from this page is submitted to MyServlet.java.

<html>

<body>

<h2> Please provide login details</h2>
<FORM METHOD="'POST"*
ACTION="http://localhost:8084/redirectionex/myserviet"
NAME=""myForm" >

 User Id:

<INPUT TYPE="text" name="userid'/>

 Password:

<INPUT TYPE="‘password"™ name="'pwd"/>

<input type="'submit” value="Submit Form"/>
</form>

</body>

</html>

welcome.html

The user is directed to this page only if user provides correct login / password. This page only
displays a successfully logged-in message to the user.

<html>
<body>
<h2> You have successfully logged in </h2> </body>
</html>

register.html

The user is redirected to this page in case of providing incorrect login/password information.
The user can enter user id, address and phone number here to register.

Note: The code given below will only show fields to the user. It does not register user as no
such functionality is added into this small example.

© Copyright Virtual University of Pakistan 271

Web Design and Development (CS506)

<html>

<body>

<h2>Your login is incorrect. Please register yourself</h2>
<FORM METHOD="POST" ACTION=""*" NAME="'myForm">

 Name:

<INPUT TYPE="text" NAME="‘userid"/>

 Address:

<INPUT TYPE=""text" NAME="'address'/>

 Phone No:

<INPUT TYPE=""text' NAME="‘phoneno'/>

<input type="'submit" value="Register'/>
</FORM>

</body>

</html>

MyServlet.java

MyServlet.java accepts requests from login.html and redirects the user to welcome.html or
register.html based on the verification of username & password provided. Username &
password are compared with fix values in this example, however you can verify these from
database or from a text file etc.

import java.io.*;

import java.net.*;

import javax.servlet.*;

import javax.servlet_http.*;

public class MyServlet extends HttpServiet {

// Handles the HTTP GET request type

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

¥

// Handles the HTTP POST request type

protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

}

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, I0Exception

{

© Copyright Virtual University of Pakistan 272

Web Design and Development (CS506)

String id = request.getParameter(“'userid™);

String pwd = request.getParameter('pwd™);

// comparing id & password with fix values

if(id.equals('ali™) && pwd.equals('vu™)) {

// redirectign user to welcome.html

response.sendRedirect('welcome.html™);

} else {

// redirecting user to register.html

response.sendRedirect('register.html');

/* if you want to display an error message to the
user, you can use the following method

response.sendError(

response.SC_PROXY_AUTHENTICATION_REQUIRED, "Send Error Demo™);

*/

} // end else

by

29.2 ServletContext

ServletContext belongs to one web application. Therefore it can be used for sharing
resources among servlets in the same web application.

As initialization parameters, for a single servlet are stored in ServletConfig,
ServetContext can store initialization parameters for the entire web application. These
parameters are also called context attributes and exist for the lifetime of the application.
The following figure illustrates the sharing of context attributes among all the servlets
of a web application.

Servlet Context
Servlet1 Servlet2 Servlet3
N\ <uses> /
<Uses> <uses>
V
\ Context %
Attributes

Note:

e There is a single ServletContext per web application
e Different Sevlets will get the same ServletContext object, when calling
getServletContext() during different sessions

© Copyright Virtual University of Pakistan 273

Web Design and Development (CS506)

29.3 Request Dispatcher

RequestDispatcher provides a way to forward or include data from another source. The method
getRequestDispatcher(String path) of ServletContext returns a RequestDispatcher object
associated with the resource at the given path passed as a parameter.

Two important methods of RequestDispatcher are:

e TfTorward(ServletRequest req, ServletResponse resp)
e include(ServletRequest req, ServletResponse resp)

29.4 RequestDispatcher: forward

Characteristics of forward methods are:

e ltallowsaServlet to forward the request to another resource (Servlet, JSP or
HTML file) in the same Servlet context.

e Forwarding remains transparent to the client unlike
res.sendRedirect(String location). You can not see the changes in the URL.

e Request Object is available to the called resource. In other words, it remains in

scope.
e Before forwarding request to another source, headers or status codes can be set, but

output content cannot be added.

To clarify the concepts, lets take the help from following figure. User initates the request to
servletl. servletl forwards the request to servlet2 by calling forward(request,
response). Finally a response is returned back to the user by servlet2.

HTTPResponse

Serviet2

Person Serviet1

forward(request,
response)

HTTPRequest

© Copyright Virtual University of Pakistan 274

Web Design and Development (CS506)

29.5 RequestDispatcher: include

It allows a Servlet to include the results of another resource in its response. The two major
differences from forward are:

e Data can be written to the response before an include
e The first Servlet which receive the request, is the one which finishes the response

It will be more cleared from the following figure. User sends a HTTPRequest to Servletl.
Serlet2 is called by Servletl by using include(request, response) method. The response
generated by Servlet2 sends back to Servletl. Servletl can also add its own response content and
finally send it back to user.

HTTPResponse re.turn from
include

Servilet2

Serviet1 K

include(request,
response)

Person

HTTPRequest

29.6 References:

e Java A Lab Course by Umair Javed
e Core Servlets and JSP by Marty Hall
e Java API documentation

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 275

Web Design and Development (CS506)

Lecture 30: Dispatching Requests

In this handout we will start with request dispatching techniques and give some examples related
to that. Further more some methods of HttpResponse and HttpRequest will also be discussed.
Finally, this handout will be concluded by discussing the importance of session racking. Before
starting, let’s take a look at the summery of the previous lecture.

30.1 Recap

In the previous lecture we had some discussion about Response Redirection and Request
Dispatcher. We said that Response Redirection was used to redirect response of the Servlet to
another application resource. This resource might be another Servlet or any JSP page.

Two forms of Response redirection were discussed. These were:
30.1.1Sending a standard request:

Using response.sendRedirect(“path of resource”) method, a new request is generated which
redirects the user to the given URL. If the URL is of another servlet, that second servlet will not
be able to access the original request object.

30.1.2Redirection to an error page:

An error_code is passed as a parameter along with message to response.sendError(int, msg)
method. This method redirects the user to the particular error page in case of occurrence of
specified error.

Similarly request dispatching provides us the facility to forward the request processing to another
servlet, or to include the output of another resource (servlet, JSP or HTML etc) in the response.
Unlike Response Redirection, request object of calling resource is available to called resource.
The two ways of Request Dispatching are:

30.1.3Forward:
Forwards the responsibility of request processing to another resource.

30.1.41Include:

Allows a servlet to include the results of another resource in its response. So unlike forward, the
first servlet to receive the request is the one which finishes the response.

Example Code: Request Dispatching - include

Lets start with the example of include. We will see how a Servlet includes the output of another
resource in its response. The following example includes a calling Servlet MyServilet and
Servlet IncludeServlet, who’s output will be included in the calling Servlet.

© Copyright Virtual University of Pakistan 276

Web Design and Development (CS506)

The code of MyServlet. java servletis given below.

MyServlet.java

import java.io.*;

import java.net.*;

import javax.servlet.*;
import javax.servlet_http.*;

public class MyServlet extends HttpServiet {

/* this method is being called by both doGet() and doPost() .We
usually follow this practice, when we are not sure about the
type of iIncoming request to the servlet. So the actual
processing is being done in the processRequest().

*/

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {

response.setContentType("text/html™);
PrintWriter out = response.getWriter();

out.printin(’'<html>");

out.printin('<body>"");

out.printIn(’<hl1>Start of include request </hl1>");
out.flush();

// getting the object of ServletContext, that will be used to
// obtain the object of RequestDispacther
ServiletContext context = getServletContext();

// getting the object of RequestDispatcher by passing the path
// of included resource as a parameter

RequestDispatcher rd =
context.getRequestDispatcher(*'/includeserviet’);

// calling include method of RequestDispatcher by passing

// request and response objects as parameters. This will execute
//the second servlet and include its output in the first servilet
rd. include(request, response);

/* the statements below will be executed after including the
output of the /includeservlet */

out.printIn(C’<h1>End of include request </hl1>");
out.printin('</body>");
out.printin('</html>");

© Copyright Virtual University of Pakistan 277

Web Design and Development (CS506)

// closing PrintWriter stream
out.close();

by

// This method only calls processRequest()
protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
processRequest(request, response);

}

// This method only calls processRequest()
protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
processRequest(request, response);

¥
} 7/ end MyServlet

Include Servlet
Now let’s take a look at the code of IncludeServilet. java

import java.io.™;

import java.net.*;

import javax.servlet.*;
import javax.servlet_http.*;

public class IncludeServlet extends HttpServlet {

// this method is being called by both doGet() and doPost()
protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {

// Obtaining the object of PrintWriter, this will return the
// same PrintWriter object we have in MyServilet
PrintWriter out = response.getWriter();

// Including a HTML tag using PrintWriter
out.printIn(’'<hl> <marquee>l am included </marquee></hl1>");

by
protected void doGet(HttpServletRequest request,

© Copyright Virtual University of Pakistan 278

Web Design and Development (CS506)

HttpServletResponse response)
throws ServletException, I0Exception {
processRequest(request, response);

by

protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
processRequest(request, response);

}

} 7/ end IncludeServlet

In the processRequest(), firstly we get the PrintWriter stream from the
HttpServletResponse object. Then we include an HTML tag to the output of the calling
servlet. One thing that must be considered is that PrintWriter stream is not closed in the
end, because it is the same stream that is being used in the calling servlet and this stream may
also be used in the calling servlet again. So, if it is closed over here, it can not be used again in
the calling servlet.

web.xml

<?xml version="1.0" encoding=""UTF-8"?>
<web-app>

<servlet>
<servlet-name>MyServlet</servlet-name>
<servlet-class>MyServlet</servlet-class>
</servlet>

<servlet>
<servlet-name>IncludeServilet</servilet-name>
<servlet-class>IncludeServilet</servlet-class>
</servilet>

<servlet-mapping>
<servlet-name>MyServlet</servilet-name>
<url-pattern>/myservilet</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>IncludeServlet</servlet-name>
<url-pattern>/includeservilet</url-pattern>
</servlet-mapping>

</web-app>

© Copyright Virtual University of Pakistan 279

Web Design and Development (CS506)

Code Example: Request Dispatcher — forward

As discussed earlier, we can forward the request processing to another resource using forward
method of request dispatcher. In this example, the user enters his/her name and salary on the
index.html and submits the form to FirstServlet, which calculates the tax on salary
and forwards the request to another servlet for further processing i.e. SecondServlet.

index.html
<html>
<body>

<form method=""POST" ACTION = “firstservilet” NAME="myForm">

<h2> Enter your name</h2>
<INPUT TYPE="text'" name="name'/>

<h2> Salary</h2>
<INPUT TYPE="text" name="salary"/>

<INPUT type="'submit' value="Submit"/>
</form>

</body>
</html>

FirstServlet.java

import java.io.™;

import java.net.*;

import javax.servlet.*;
import javax.servlet_http.*;

public class FirstServlet extends HttpServilet {

// this method is being called by both doGet() and doPost()
protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {

// getting value of salary text filed of the HTML form
String salary = request.getParameter(*'salary');

// converting 1t to the iInteger.
int sal = Integer.parselnt(salary);

// calculating 15% tax

© Copyright Virtual University of Pakistan 280

Web Design and Development (CS506)

int tax = (int)(sal * 0.15);
// converting tax into string
String taxValue = tax + "';

// request object can store values in key-value form, later it
// can be retrieved by using getAttribute() method
request.setAttribute('tax’, taxValue);

// getting object of servletContext
ServiletContext sContext = getServletContext();
// getting object of request dispatcher
RequestDispatcher rd =
sContext.getRequestDispatcher(*'/secondserviet'™);

// calling forward method of request dispatcher
rd.forward(request, response);

by

// This method is calling processRequest()
protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
processRequest(request, response);

}

// This method is calling processRequest()
protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
processRequest(request, response);

+
+

Note: It the case of Forward, it is illegal to make the reference of PrintWriter streamin
the calling Servlet. Only the called resource can use PrintWriter stream to generate
response

SecondServlet.java

import java.io.™;

import java.net.*;

import javax.servlet.*;
import javax.servlet._http.*;

public class SecondServlet extends HttpServilet {

© Copyright Virtual University of Pakistan 281

Web Design and Development (CS506)

// this method i1s being called by both doGet() and doPost()
protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {

response.setContentType("text/html™);
PrintWriter out = response.getWriter();

// obtaining values of name and salary text fields of index.html
String name = request.getParameter(‘'name™);
String salary = request.getParameter(*'salary');

/* getting attribute value that has been set by the calling
servlet 1.e. FirstServlet */
String tax = (String)request.getAttribute("tax');

// generating HTML tags using PrintWriter
out.printIn('<html>");

out.printin('<head>");
out.printin('<title>SecondServilet</title>");
out.printin(’'</head>");
out.printin('<body>");

out.printIn('<hl> Welcome " + name+ ''</h1>");

out.printIn(<h3> Salary " + salary+ "</h3>");
out.printIn(’'<h3> Tax " + tax+ "'</h3>");

out.printin('</body>");

out.printin('</html>");

out.close();

¥

// This method is calling processRequest()
protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
processRequest(request, response);

¥

// This method is calling processRequest()
protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
processRequest(request, response);

+
+

© Copyright Virtual University of Pakistan 282

Web Design and Development (CS506)

web.xml

<?xml version="1.0" encoding=""UTF-8"?>
<web-app>

<servlet>
<servlet-name>FirstServilet</servlet-name>
<servlet-class>FirstServlet</servlet-class>
</servlet>

<servlet>
<servlet-name>SecondServlet</servlet-name>
<servlet-class>SecondServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>FirstServilet</servlet-name>
<url-pattern>/firstservlet</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>SecondServilet</servilet-name>
<url-pattern>/secondservilet</url-pattern>
</servlet-mapping>

</web-app>

30.2 HttpServietRequest Methods

Let’s discuss some methods of HttpServletRequest class

30.2.1setAttribute(String, Object)

We can put any object to the context using setAttribute() method in the key-value pair form..
These attributes are also set or reset between requests. These are often used in conjunction with
Request Dispatcher. This has also been illustrated in the above example. These attributes are
available every where in the same web application so that any other Servlet or JSP resource can
access them by using getAttribute() method.

30.2.2getAttribute(String)

The objects set by the setAttribute() method can be accessed using getAttribute() method.
Passing the key in the form of string as a parameter to this method will return the object
associated with that particular key in the context. Cast the object into its appropriate type.

30.2.3getMethod()

This method returns the name of HT TP method which was used to send the request. The
two possible returning values could be, get or post.

© Copyright Virtual University of Pakistan 283

Web Design and Development (CS506)

30.2.4getRequestURL()

It can be used to track the source of Request. It returns the part of the request’s URL with
out query string.

30.2.5getProtocol()
It returns the name and version of the protocol used.

30.2.6getHeaderNames()
It returns the enumeration of all available header names that are contained in the request.

30.2.7getHearderName()
It takes a String parameter that represents the header name and returns that appropriate header.

Null value is returned if there is no header exists with the specified name.

30.3 HttpServietResponse Methods

Let’s discuss some methods of HttpServletResponse class

30.3.1setContentType()

Almost every Servlet uses this header. It is used before getting the PrintWriter Stream. It is used
to set the Content Type that the PrintWriter is going to use. Usually we set “text/html”, when we

want to send text output or generate HTML tags on the client’s browser.

30.3.2setContentLength()
This method is used to set the content length. It takes length as an integer parameter.

30.3.3addCookie()

This method is used to add a value to the Set-Cookie header. It takes a Cookie object as a
parameter and adds it to the Cookie-header. We will talk more about Cookies in the session
tracking part.

30.3.4sendRedirect()
This method redirects the user to the specific URL. This method also accepts the relative URL. It
takes URL string as parameter and redirects the user to that resource.

© Copyright Virtual University of Pakistan 284

Web Design and Development (CS506)

30.4 Session Tracking

Many applications require a series of requests from the same client to be associated withone
another. For example, any online shopping application saves the state of a user's shopping cart
across multiple requests. Web-based applications are responsible for maintaining such state,
because HTTP protocol is stateless. To support applications that need to maintain state, Java
Servlet technology provides an API for managing sessions and allows several mechanisms for
implementing sessions.

Before looking inside the session tracking mechanism lets see the limitation of HTTP protocol to
get the real picture of problems that can happen with out maintaining thesession.

30.4.1Continuity problem- user’s point of view

. Server State
T
=a-—m—8 Added bookto
: ===
e
Page1 :::‘:;Irlr:i:i ﬁ Added book to
cart
—_—— === -
o~ <FEZEH m H=X
-— —=__ =M Rilling address
=== -
Page 2 === -
_ Order submitted
—— SEE i
e
Page 3
- e

Page 4 _,-fj

Suppose a user logs on to the online bookshop, selects some books and adds them to his cart. He
enters his billing address and finally submits the order. HTTP cannot track session as it is
stateless in nature and user thinks that the choices made on pagel are remembered on page3.

© Copyright Virtual University of Pakistan 285

Web Design and Development (CS506)

30.4.2Continuity problem- Server’s point of view

Request2

—»

T —
i — —
T — —
e — —
|
e — S—
T ——T
e —
T — f—
T — —
T — —
e e —
e
T i i
T — —
e |
-
N — —
i — —
—

The server has a very different point of view. It considers each request independent from other
even if the requests are made by the same client.

30.5 References:

e Java A Lab Course by Umair Javed
e Core Servlet and JSP by Marty Hall

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 286

Web Design and Development (CS506)

Lecture 31: Session Tracking

We have discussed the importance of session tracking in the previous handout. Now, we’ll
discover the basic techniques used for session tracking. Cookies are one of these techniques and
remain our focus in this handout. Cookies can be used to put small information on the client’s
machine and can be used for various other purposes besides session tracking. An example of
simple “Online Book Store”, using cookies, will also be surveyed.

As mentioned elsewhere, HTTP is a stateless protocol. Every request is considered
independent of every other request. But many applications need to maintain a conversational
state with the client. A shopping cart is a classical example of such conversational state.

31.1 Store State Somewhere

To maintain the conversational state, the straightforward approach is to store the state. But
where? These states either can be stored on server or on client. However, both options have their
merits and demerits. Let’s cast a glance on these options:

Storing state on server side makes server really complicated as states needed to be stored for
each client. Some one can imagine how much space and processing is required in this
scenario as some web servers are hit more than hundred times in a second. E.g. Google,
Yahoo etc.

What if states are stored on client side in order to maintain a conversation? Do all the clients permit
you doing that? What if client (user) wiped out these states from the machine?

Concluding this discussion, state is stored neither completely on server side nor on client.
States are maintained by the mutual cooperation of both client & server. Generally modern
servers give the capability to store state on the server side and some information (e.g. client
ID/state ID) passed from the client will relate each client with its corresponding state.

31.2 Post-Notes

In order to maintain the conversational state, server puts little notes (some text, values etc) on the
client slide. When client submits the next form, it also unknowingly submits these little notes.
Server reads these notes and able to recall who the client is.

31.3 Three Typical Solutions
Three typical solutions come across to accomplish session tracking. These are:

1. Cookies

2. URL Rewriting
3. Hidden Fields

© Copyright Virtual University of Pakistan 287

Web Design and Development (CS506)

31.3.1Cookies

31.3.1.1 What a cookie is?

Don’t be tempted? These are not, what you might be thinking off. In fact, in computer
terminology, ““‘a cookie is a piece of text that a web server can store on a client’s(user)hard disk™.

Cookies allow the web sites to store information on a client machine and later retrieve it. The pieces
of information are stored as name-value pair on the client. Later while reconnecting to the same site
(or same domain depending upon the cookie settings), client returns the same name-value pair to
the server.

31.3.1.2 Cookie’s Voyage

To reveal the mechanism of cookies, let’s take an example. We are assuming here
that the web application we are using will set some cookies
e If you type URL of a Web site into your browser, your browser sends a request for that web

page
o For example, when you type www.amazon.com a request is send to the Amazon’s

server

e Before sending a request, browser looks for cookie files that amazon has set
o If browser finds one or more cookie files related to amazon, it will send it along

with the request
o If not, no cookie data will be sent with the request

e Amazaon web server receives the request and examines the request for cookies
If cookies are received, amazon can use them
o If no cookie is received, amazon knows that you have not visited before or the

cookies that were previously set got expired.
0 Server creates a new cookie and send to your browser in the header of HTTP
Response so that it can be saved on the client machine.

31.3.2Potential Uses of Cookies

Whether cookies have more pros or cons is arguable. However, cookies are helpful in the following
situations

e identifying a user during an e-commerce session. For example, this book is added into
shopping cart by this client.

e Avoiding username and password as cookies are saved on your machine

e customizing a site. For example, you might like email-inbox in a different look form
others. This sort of information can be stored in the form of cookies on your machine and
latter can be used to format inbox according to your choice.

e Focused Advertising. For example, a web site can store information in the form of
cookies about the kinds of books, you mostly hunt for.

© Copyright Virtual University of Pakistan 288

Web Design and Development (CS506)

31.3.3Sending Cookies to Browser
Following are some basic steps to send a cookie to a browser (client).

1. Create a Cookie Object

A cookie object can be created by calling the Cookie constructor, which takes two strings: the
cookie name and the cookie value.

Cookie ¢ = new Cookie (“name”, “value”);

2. Setting Cookie Attributes

Before adding the cookie to outgoing headers (response), various characteristics of the cookie
can be set. For example, whether a cookie persists on the disk or not. If yes then how long.

A cookies by default, lasts only for the current user session (i.e. until the user quits the session)
and will not be stored on the disk.

Using setMaxAge(int lifetime) method indicates how much time (in seconds) should
elapse before the cookie expires.

c.setMaxAge(60); // expired after one hour

3. Place the Cookie into HTTP response

After making changes to cookie attributes, the most important and unforgettable step is to add this
currently created cookie into response. If you forget this step, no cookie will be sent to the browser.

response.addCookie(c);

31.3.4Reading Cookies from the Client
To read the cookies that come back from the client, following steps are generally followed.

1. Reading incoming cookies

To read incoming cookies, get them from the request object of the
HttpServeltRequest by calling following method

Cookie cookies[] = request.getCookies();

This call returns an array of Cookies object corresponding to the name & values that came in
the HTT P request header.

© Copyright Virtual University of Pakistan 289

Web Design and Development (CS506)

2. Looping down Cookies Array

Once you have an array of cookies, you can iterate over it. Two important methods of Cookie
class are getName() & getValue(). These are used to retrieve cookie name and value

respectively.

// looping down the whole cookies array
for(int 1=0; i<cookies.length; i++) {
// getting each cookie from the array
Cookie c = cookies[i];

// in search for particular cookie

1T(c.getName() -equals(““someName™) {

/* it found, you can do something with cookie
or with the help of cookie.
IT don”t want to process further, loop can also be stopped using
break statement
*/
}
} // end for

Example Codel: Repeat Visitor

In the example below, servlet checks for a unique cookie, named “repeat”. If the cookie is present,
servlet displays “Welcome Back™. Absence of cookie indicates that the user is visiting this site
for the first time thus servlet displays a message ““Welcome Aboard”.

This example contains only one servlet ““RepeatVisitorServlet.java” and its code is
given below. A code snippet of web . xml is also accompanied.

Note: As a reminder, all these examples are built using netBeans4.1. This IDE will write
web.xml for you. However, here it is given for your reference purpose only, or for those which
are not using any IDE to strengthen their concepts

RepeatVisitorServlet.java

import java.io.™;

import java.net.*;

import javax.servlet.™;
import javax.servlet._http.*;

public class RepeatVisitorServlet extends HttpServilet {
// Handles the HTTP <code>GET</code> method.

protected void doGet(HttpServletRequest request,

© Copyright Virtual University of Pakistan 290

Web Design and Development (CS506)

HttpServletResponse response)
throws ServletException, I0Exception

{

processRequest(request, response);

}

// Handles the HTTP <code>P0OST</code> method.
protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

ks

// called from both doGet() & doPost()
protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

response.setContentType("text/html*");
PrintWriter out = response.getWriter();

// writing html

out.printIn(C'<html>");
out.printin('<body>");
out.printIn(’<h2>Cookie Example </h2>");
String msg = "';

boolean repeatVisitor = false;

// reading cookies

Cookie[] cookies = request.getCookies();
// it cookies are returned from request object
iIT (cookies = null) {

//search for cookie -- repeat

for (int 1 = 0; 1 < cookies.length; 1++) {

// retrieving one cookie out of array
Cookie c = cookies[i];

// retrieving name & value of the cookie
String name = c.getName();
String val = c.getValue();

// confirming if cookie name equals “repeat” and
// value equals “yes”

1T(name.equals('repeat’™) && val.equals('yes™))
{

msg= ""Welcome Back'';

repeatVisitor = true;

break;

© Copyright Virtual University of Pakistan 291

Web Design and Development (CS506)

}
} // end for

} 7/ end if

// it no cookie with name “repeat” is found
iIT (repeatVisitor == false)

{

// create a new cookie

Cookie cl1 = new Cookie("'repeat’, "'yes™);

// setting time after which cookies expires
cl.setMaxAge(60);

// adding cookie to the response
response.addCookie(cl);

msg = ""Welcome Aboard";

ks

// displaying message value
out.printIn(’'<h2>" + msg + "'</h2>");
out.printin('</body>");
out.printin('</html>");

out.close();

}
}// end RepeatVisitorServilet

web.xml

<?xml version="1.0" encoding=""UTF-8"?> <web-app>

<servlet>

<servlet-name> RepeatVisitorServlet </servlet-name>
<servlet-class> RepeatVisitorServlet </servlet-class> </servlet>

<servlet-mapping>

<servlet-name> RepeatVisitorServlet </servlet-name>
<url-pattern> /repeatexample </url-pattern>

</servlet-mapping>

</web-app>

Output

On first time visiting this URL, an output similar to the one given below would be displayed

-l x|

o e Edt Yew G0 Bockmarks ook Window Help

i QQ O O O | S tetpfflocabostjserviatfcorsserdsts Repeatvistor 0 | [Go) @

Welcome Aboard

© Copyright Virtual University of Pakistan 292

Web Design and Development (CS506)

On refreshing this page or revisiting it within an hour (since the age of cookie was set to 60 mins),
following output should be expected.

& Welcome Back - Netscape = = =10 x|
- Fia Edt Yew Go Bookmarks Took Window Help

- 0{: Q 0 Q [% betp:fflocahost fserviet fooreserviets. Repeatvistor 1 | [Go | @

Welcome Back

Example Code2: Online Book Store using cookies

A scale down version of online book store is going to be built using cookies. For the first time,
cookies will be used to maintain the session.

Three books will be displayed to the user along with check boxes. User can select any check box
to add the book in the shopping cart. The heart of the application is, it remembers the books
previously selected by the user.

The following figure will help you understand the theme of this example. Books displayed
under the heading of “You have selected the following books” were added to cart one after
another. The important thing is server that remembers the previously added books by the
same user and thus maintains the session. Session management is accomplished using
cookies.

Online Book Store

[java core servlts
[java how to program

[java complete reference

Add to Cart

You have selected followig books

java core servlets

java complete reference

&] Done &4 Local intranet

© Copyright Virtual University of Pakistan 293

Web Design and Development (CS506)

Online Book Store example revolves around one ShoppingCartServlet. java. This
Servlet has one global HashMap (globalMap) in which HashMap of individual user
(sessionInfo) are going to be stored. This (sessioninfo) HashMap stores the books selected by
the user.

What’s the part of cookies? Cookie (named JSESSIONID, with unique value) is used to keep
the unique sessionID associated with each user. This sessionlD is passed back and forth
between user and the server and is used to retrieve the HashMap (sessionInfo) of the user
from the global HashMap at the server. It should be noted here that, HashMaps of individual
users are stored in a global HashMap against a sessionID.

ShoppingCartServlet.java

import java.io.™;

import java.net.*;

import javax.servlet.™;

import javax.servlet._http.*;

import java.util._*;

public class ShoppingCartServlet extends HttpServlet {

// used to generate a unique value which 1is

// used as a cookie value

public static int S ID = 1;

// used to store HashMaps of indiviual users

public static HashMap<String, HashMap> globalMap =
<String, HashMap> new HashMap();

// Handles the HTTP GET method.

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

}

// Handles the HTTP <code>P0OST</code> method.
protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

}

// called from both doGet() & doPost()

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
response.setContentType("text/html ;charset=UTF-8"");

© Copyright Virtual University of Pakistan 294

Web Design and Development (CS506)

// declaring user®s HashMap
HashMap<String, String> sessionlnfo = null;
String siID = "';

// method findCookie is used to determine whether browser
// has send any cookie named ""JSESSIONID"
Cookie c = findCookie(request);

// 1T no cookies named ""JSESSIONID" is recieved, means that
// user is visiting the site for the first time.
iIT (c == null) {

// make a unique string
sID = makeUniqueString();

// creating a HashMap where books selected by the
// user will be stored
sessionInfo = new HashMap<String, String>();

// add the user®"s HashMap (sessioninfo) into the
// globalMap against unique string i.e. slID
globalMap.put(slID, sessioninfo);

// create a cookie named "JSESSIONID"™ alongwith
// value of slID i1.e. unique string
Cookie sessionCookie = new Cookie(*'JSESSIONID™, slID);

// add the cookie to the response
response.addCookie(sessionCookie);

} else {

// 1T cookie is found named ""JSESSIONID",

// retrieve a HashMap from the globalMap against

// cookie value i.e. unique string which is your
//sessionlD

sessionInfo = (HashMap<String, String>) globalMap.get(
c.getvalue());

by

PrintWriter out = response.getWriter();

out.printin('<html>");
out.printin('<head>");
out.printin('<title>Shooping Cart Example</title>");
out.printIn(*'</head>"");

© Copyright Virtual University of Pakistan 295

Web Design and Development (CS506)

out.printin(*'<body>");
out.printIn(’’<h1>0Online Book Store</h1>');

String url =
"http://1ocalhost:8084/cookiesessionex/shoppingcartex’;

// user will submit the from to the same servlet

out.printIn(’<form action=" + url +">" +

"<h3><input type=checkbox name=firstCB value=firstCB />" +
' java core servlts</h3>" +

""
""+

“<h3><input type=checkbox name=secondCB value=secondCB />" +
' java how to program</h3>" +
"<pbr>"+

"<h3><i1nput type=checkbox name=thirdCB value=thirdCB />" +
' java complete reference</h3>" +
"
""+

"<input type=submit value=\"Add to Cart\" />" +
"</from>"

);

out.printin("'
");
out.printIn(C’<hl1>You have selected followig books</h1>");
out.printin('
");

//reteriving params of check boxes

String fBook = request.getParameter("'firstCB");

String sBook = request.getParameter(*'secondCB™);
String tBook = request.getParameter("'thirdCB");

// it Tirst book is selected then add it to

// user®s HashMap i1.e. sessionlnfo

iIT (fBook '= null && fBook.equals(C'firstCB™)) {
sessionInfo.put("'firstCB', "java core servlets');

by

// it second book is selected then add i1t to

// user®s HashMap i1.e. sessionlnfo

iIT (sBook != null && sBook.equals('secondCB'™)){
sessionInfo.put('secondCB", "java how to program');

}
// if third book is selected then add it to

© Copyright Virtual University of Pakistan 296

Web Design and Development (CS506)

// user®s HashMap i1.e. sessionlnfo

it (tBook = null && tBook.equals('thirdCB™)){
sessionInfo.put("'thirdCB", "java complete reference);
¥

// used to display the books currently stored in
// the user®s HashMap 1.e. sessionlnfo
printSessionInfo(out, sessioninfo);
out.printin(’'</body>"");

out.printIn('</html>"");

out.close();

} // end processRequest()

// method used to generate a unique string
public String makeUniqueString({
return "ABC" + S_ID++;

}

// returns a reference global HashMap.

public static HashMap findTableStoringSessions(){
return globalMap;

¥

// method used to find a cookie named *"JSESSIONID™
public Cookie findCookie(HttpServletRequest request){

Cookie[] cookies = request.getCookies();
iIT (cookies = null) {

for(int 1=0; i<cookies.length; i1++) {
Cookie c = cookies[i];

iIT (c.getName() .equals(**'ISESSIONID')){
// doSomethingWith cookie
return c;

}

}

by

return null;

¥

// used to print the books currently stored in
// user®s HashMap. i1.e. sessionlnfo

public void printSessioninfo(PrintWriter out,
HashMap sessionlnfo)

{

String title = "";

title= (String)sessioninfo.get(""firstCB™);

it (title = null){

© Copyright Virtual University of Pakistan 297

Web Design and Development (CS506)

out.printIn(’'<h3> "+ title +"</h3>");

+

title= (String)sessioninfo.get(''secondCB™);
it (title = null){

out.printIn(’<h3> "+ title +'</h3>");

bs

title= (String)sessioninfo.get(""thirdCB™);
it (title = null){
out.printIn(’'<h3> "+ title +"</h3>");

}
}
} // end ShoppingCartServilet
web.xml
<?xml version="1.0" encoding=""UTF-8"?> <web-app>
<servlet>

<servlet-name> ShoppingCart </servlet-name>
<servlet-class> ShoppingCartServlet </servlet-class> </servlet>
<servlet-mapping>
<servlet-name> ShoppingCart </servlet-name>

<url-pattern> /shoppingcartex </url-pattern> </servlet-
mapping>
</web-app>

31.4 References:

Java A Lab Course by Umair Javed
Core Servlets and JSP by Marty Hall
Stanford Course - Internet Technologies
Java APl documentation

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 298

Web Design and Development (CS506)

Lecture 32: Session Tracking 2

In the last handout we have discussed the solutions for session tracking and talked about
one important mechanism cookies in detail. We said cookies allow the server to store
information on a client machine and later retrieve it. Now we will see two more
mechanisms that provide us facility to maintain a session between user’s requests. These
are URL Rewriting and Hidden Form Fields. After that we will discuss a session tracking
API provided by java.

32.1 URL Rewriting

URL rewriting provides another way for session tracking. With URL rewriting, the parameter
that we want to pass back and forth between the server and client is appended to the URL. This
appended information can be retrieve by parsing the URL. This information can be in the form
of:

e Extra path information,
e Added parameters, or
e Some custom, server-specific URL change

Note: Due to limited space available in rewriting a URL, the extra information is usually limited to a
unique session ID.

The following URLSs have been rewritten to pass the session ID 123

Original -http://server: port/servlet /rewrite

Extra path information -http://server: port/serviet/rewrite/123
Added parameters -http://server: port/serviet/rewrite?id=123
Custom change -http://server: port/servlet/rewrite;id123

32.1.1Disadvantages of URL rewriting

The following Disadvantages of URL rewriting, are considerable: -

e What if the user bookmarks the page and the problem get worse if server is not
assigning a unique session id.

e Every URL on a page, which needs the session information, must be rewritten
each time page is served, which can cause

o Computationally expensive
o Can increase communication overhead

e unlike cookies, state information stored in the URL is not persistent
e this mechanism limits the client interaction with the server to HTTP GET request.

© Copyright Virtual University of Pakistan 299

Web Design and Development (CS506)

Example Code: Online Bookstore using URL Rewriting

This is the modified version of online book store (selling two books only, however you can add in
on your own) that is built using cookies in the last handout. Another important difference is books
are displayed in the form of hyperlink instead of check boxes. URL rewriting mechanism is used to
maintain session information.

How to make Query String

Before jumping on to example, one important technique is needed to be learned i.e. making
on query string. If you ever noticed the URL of a servlet in a browser that is receiving some
HTML form values, also contains the HTML fields name with values entered/selected by the
user.

Now, if you want to pass some attribute and values along with URL, you can use the
technique of query string. Attribute names and values are written in pair form after the ?.
For example, if you want to send attribute “name” and its value “ali”’, the URL will look
like

= Original URL

http://server:port/servletex /register

= After adding parameters

http://server:port/servletex/register ?name=ali

If you want to add more than one parameter, all subsequent parameters are separated by & sign.
For example

= Adding two parameters -

http://server:port/serviletex/register ?name=ali&address=gulberg

URLRewriteServlet.java :

import java.io.*;

import java.net.*;

import javax.servlet.*;
import javax.servlet._http.*;
import java.util.™;

public class URLRewriteServlet extends HttpServilet {
// used to generate a unique value which is

// used as a cookie value
public static int S_ID = 1;

© Copyright Virtual University of Pakistan 300

Web Design and Development (CS506)

// used to store HashMaps of indiviual users
public static HashMap<String, HashMap> globalMap = new
HashMap<String, HashMap>();

// Handles the HTTP GET method.

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

¥

// Handles the HTTP <code>P0OST</code> method.
protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

}

// called from both doGet() & doPost()

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {

// declaring user®"s HashMap
HashMap<String, String> sessioninfo = null;

// reading sessionld

String sID = request.getParameter(*“JSESSIONID);

/* 1f parameter JSESSIONID i1s received, means that user is
visiting the site for the first time. */

if (sID == null)

{

// make a unique string

sID = makeUniqueString();

// creating a HashMap where books selected by the

// user will be stored

sessionInfo = new HashMap<String, String>();

// add the user®"s HashMap (sessionInfo) into the
// globalMap against unique string i.e. siID
globalMap.put(slID, sessioninfo);

}else {

// if parameter "JSESSIONID™ has some value

© Copyright Virtual University of Pakistan 301

Web Design and Development (CS506)

// retrieve a HashMap from the globalMap against

// sID i1.e. unique string which Is your sessionlD
sessionInfo = (HashMap<String, String>) globalMap.get(siD);
¥

response.setContentType(text/html ;charset=UTF-8"");
PrintWriter out = response.getWriter();
out.printIn(C'<html>");

out.printin('<head>");

out.printin('<title>Shopping Cart Example</title>");
out.printIn(''</head>");

out.printin('<body>");

out.printIn(’'<h1>0Online Book Store</h1>'");

// Making three URLS by using query string mechanism
// The attributes/parameters are JSSESSIONID and book name (like
// TirstCB) along with values sID and book name respectively

String firsturl =
"http://1ocalhost:8084/urlbookstore/urlrewriteservlet?JSESSIONID=
"+ sID + "&FirstCB=FfirstCB";

String secondurl =
"http://1ocalhost:8084/urlbookstore/urlrewriteservlet?JSESSIONID=
" + sID + "&secondCB=secondCB";

out.printIn('<h3>" +
" java core servlts </h3>" +
ll
ll

"<h3>" +

" java how to program </h3>" +

npr>"

)

out.printIn('
");

out.printIn(’'<hl1>You have selected following books</h1>");
out.printin('
");

//retrieving params that are emebded in URLs
String fBook = request.getParameter("'firstCB");
String sBook = request.getParameter(‘'secondCB™);
// it Tirst book i1s selected then add 1t to

// user®s HashMap i.e. sessionlnfo

iIT (fBook = null && TBook.equals('firstCB™)) {

sessionInfo.put("'firstCB', "java core servlets');

}
// 1T second book is selected then add it to

// user®s HashMap i.e. sessionlnfo

© Copyright Virtual University of Pakistan 302

Web Design and Development (CS506)

1T (sBook = null && sBook.equals(‘'secondCB™)){
sessioninfo.put(*'secondCB", "java how to program');

}

// used to display the books currently stored in
// the user®s HashMap i1.e. sessionlnfo
printSessioninfo(out, sessioninfo);

out.printIn('</body>"");
out.printin('</html>");

out.close();
} 7/ end processRequest()
// method used to generate a unique string
public String makeUniqueString(){
return "ABC" + S_ID++;
by

// returns a reference global HashMap.

public static HashMap findTableStoringSessions(){
return globalMap;

¥

// used to print the books currently stored in
// user®s HashMap. i1.e. sessionlnfo

public void printSessioninfo(PrintWriter out,
HashMap sessionlinfo)

{

String title = ""';

title= (String)sessioninfo.get("'firstCB™);

it (title = null){

out.printIn(’’<h3> "+ title +"</h3>");

by

title= (String)sessioninfo.get(''secondCB™);
if (title '= nul){

out.printIn(’'<h3> "+ title +"</h3>");

+

}
} 7/ end URLRewriteServiet

© Copyright Virtual University of Pakistan 303

Web Design and Development (CS506)

web.xml

<?xml version="1.0" encoding=""UTF-8"?> <web-app>

<servlet>

<servlet-name> URLRewriteServlet </servlet-name>
<servlet-class> URLRewriteServlet </servlet-class> </servlet>

<servlet-mapping>

<servlet-name> URLRewriteServlet </servlet-name>

<url-pattern> /urlrewriteservlet </url-pattern>

</servlet-mapping>

</web-app>

32.2 Hidden Form Fields

HTML forms can have an element that looks like the following:

<INPUT TYPE=""HIDDEN"™ NAME="sessionid"™ VALUE="123" />
Hidden Forms Fields do not affect the appearance of HTML page. They actually

contain the information that is needed to send to the server. Thus, hidden fields
can also be used to store information (like sessionid) in order to maintain session.

<form method="POST" actign="/ bidos/handle-buy-box=/
ref=bp_add/103-4591077-2490203">

<input type="hidden" name="colid" value="">

<input type="hidden" name="template-name" value="">
<input type="hidden" name="store-name" value="gateway">
<input type="hidden" name="maw" value="1">

<input type="hidden" name="coliid" value="">

<input type="hidden" name="dropdown-selection”
value="default-address">

<table border="@" width="100%" cellspacing="0"
cellpadding="6">

In the above figure you can see the use of Hidden form fields for storing particular
information.

32.3 Java Solution for Session Tracking
Java provides an excellent solution to all the problems that occurred in tracking a session. The

Servlet API provides several methods and classes specifically designed to handle session
tracking. In other words, servlets have built in session tracking.

© Copyright Virtual University of Pakistan 304

Web Design and Development (CS506)

Sessions are represented by an HttpSession object. HttpSession tacking API
built on top of URL rewriting and cookies. All cookies and URL rewriting mechanism is
hidden and most application server uses cookies but automatically revert to URL
rewriting when cookies are unsupported or explicitly disabled. Using HttpSession
API in servlets is straightforward and involves looking up the session object associated with the
current request, creating new session object when necessary, looking up information
associated with a session, storing information in a session, and discarding completed or
abandoned sessions.

32.4 Working with HttpSession

Let’s have a look on HttpSession working step by step.

1. Getting the user’s session object

To get the user’s session object, we call the getSession() method of
HttpServe ltRequest that returns the object of HttpSession

HttpSession sess = request.getSession(true);

If true is passed to the getSession() method, this method returns the current
session associated with this request, or, if the request does not have a session, it
creates a new one. We can confirm whether this session object (sess) is newly
created or returned by using EsNew() method of HttpSession. In case of passing
false, null is returned if the session doesn’t exist.

2. Storing information in a Session

To store information in Session object (sess), we use setAttribute() method
of HttpSession class. Session object works like a HashMap, so it is able to store
any java object against key. So you can store number of keys and their values in pair form. For
example,

sess.setAttribute(“sessionid”, 71237);

3. Looking up information associated with a Session

To retrieve back the stored information from session object, getAttribute () method of
HttpSession class is used. For example,

String sid=(String)sess.getAttribute(“sessionid™);

Note: - getAttribute() method returns Object type, so typecast is required.

© Copyright Virtual University of Pakistan 305

Web Design and Development (CS506)

4. Terminating a Session

After the amount of time, session gets terminated automatically. We can see its
maximum activation time by using getMaxlnactivelnterval() method of
HttpSession class. However, we can also terminate any existing session
manually. For this, we need to call invalidate () method of HttpSession
class as shown below.

sess.invalidate()

Example Code: Showing Session Information

To understand HttpSession API properly we need to have a look on an example. In
this example, we will get the session object and check whether it is a new user or not. If
the user is visiting for the first time, we will print “Welcome™ and if we find the old one,
we’ll print “Welcome Back”. Moreover, we will print the session information and count
the number of accesses for every user

import java.io.™;

import java.net.*;

import javax.servlet.*;
import javax.servlet_http.*;

public class ShowSessionServlet extends HttpServilet {

// Handles the HTTP <code>GET</code> method.
protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

}

// Handles the HTTP <code>P0OST</code> method.
protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

}

// called from both doGet() & doPost()

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

© Copyright Virtual University of Pakistan 306

Web Design and Development (CS506)

{

// used for displaying message (like Welcomem, Newcomer) to
// user
String heading;

response.setContentType(*"text/html™);

// Getting session object
HttpSession session = request.getSession(true);

/* Getting stored information using getAttribute() method */
Integer accessCount =
(Integer)session.getAttribute('sessionCount');

/* 1T user comes for the first time, accessCount will be
assigned null, so we can guess easily that this a new user */

iIT (accessCount == null)

{

accessCount = new Integer(l);
heading = "Welcome, Newcomer';
} else

{

heading = "Welcome Back';

// Incrementing the value
accessCount = new Integer(accessCount.intValue() + 1);

}

/* Storing the new value of accessCount in the session using
setAttribute() method */

session.setAttribute('sessionCount', accessCount);
// Getting the PrintWriter

PrintWriter out = response.getWriter();

/*Generating HTML tags using PrintWriter to print session info
and no of times this user has accessed this page */
out.printIn("'<HTML>" +

" <BODY>" +

" <hl>Session Tracking Example</h1>" +

" <H2>Information on Your Session:</H2>\n" +

" <H3> Session ID: " + session.getld() + "'</H3>" +

" <H3>Number of Previous Accesses: " + accessCount +

© Copyright Virtual University of Pakistan 307

Web Design and Development (CS506)

" </H3>" +
" </BODY>" +
" </HTML>"

)

//Closing the PrintWriter stream
out.close();

} // end processRequest

} // end ShowSessionServlet class

web.xml

<?xml version="1.0" encoding=""UTF-8"?>

<web-app>
<servlet>
<servlet-name> ShowSession </servlet-name>
<servlet-class> ShowSessionServlet </servlet-class>
</servilet>

<servlet-mapping>

<servlet-name> ShowSession </servlet-name>
<url-pattern> /showsession </url-pattern>
</servlet-mapping>

</web-app>

32.5 HttpSession — Behind the scenes

When we call getSession() method, there is a lot going on behind the scenes. For
every user, a unique session ID is assigned automatically. As the server deals with lot of
users at a time, this ID is used to distinguish one user from another. Now here is the
question, how this ID sends to the user? Answer is, there are two options

Option 1: If the browser supports cookies, the Servlet will automatically creates a
session cookie and store the session ID within that cookie.

Option 2: If the first option fails because of browser that does not support cookies
then the Servlet will try to extract the session ID from the URL

© Copyright Virtual University of Pakistan 308

Web Design and Development (CS506)

32.6 Encoding URLSs sent to Client

Servlet will automatically switch to URL rewriting when cookies are not supported or
disabled by the client. When Session Tracking is based on URL rewriting, it requires
additional help from the Servlets. For a Servlet to support session tracking via URL
rewriting, it has to rewrite (encode) every local URL before sending it to the client. Now see how
this encoding works

HttpServletResponse provides two methods to perform encoding

e String encodeURL(String URL)
e String encodeRedirectURL(String URL)

If Cookies are disabled, both methods encode (rewrite) the specific URL to include the session
ID and returns the new URL. However, if cookies are enabled, the URL is returned
unchanged.

32.7 Difference between encodeURL () and encodeRedirectURL ()

encodeURL() isused for URLs that are embedded in the webpage, that the servlet generates.
For example,

String URL = /servlet/sessiontracker™;

String eURL = response.encodeURL(URL);
out.printin(* ... ");

Whereas encodeRedirectURL() is used for URLs that refers yours site is in
sendRedirect() call. For example,

String URL = /servlet/sessiontracker™;
String eURL = response.encodeRedirectURL(URL);
Response.sendRedirect(eURL);

Example Code: OnlineBookStore using HttpSession

This book store is modified version of last one, which is built using URL rewriting
mechanism. Here, HttpSession will be used to maintain session.

ShoppingCartServlet.java

import java.io.™;

import java.net.*;

import javax.servlet._*;
import javax.servlet._http.*;

public class ShoppingCartServlet extends HttpServlet {

© Copyright Virtual University of Pakistan 309

Web Design and Development (CS506)

// Handles the HTTP GET method.

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

}

// Handles the HTTP <code>P0OST</code> method.
protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

}

// called from both doGet() & doPost()

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
response.setContentType("text/html ;charset=UTF-8"");
HttpSession session = request.getSession(true);

PrintWriter out = response.getWriter();

out.printin(C'<html>");

out.printIn(‘'<head>");

out.printIn('<title>Shopping Cart Example</title>");
out.printIn('</head>");

out.printin(‘'<body>");

out.printIn(’<h1>0Online Book Store</h1>");

// First URL built using query string, representing fTirst book
String firstURL =
"http://1ocalhost:8084/urlrewritebookstore/shoppingcart?book=Firs
t;

// Second URL built using query string, representing second book
// Note that parameter name is still book, so that later we need
// to read only this parameter

String secondURL =
"http://1ocalhost:8084/urlrewritebookstore/shoppingcart?book=seco
nd";

// Encoding URLs
String eURL1 = response.encodeURL(FirstURL);
String eURL2 = response.encodeURL(secondURL);

© Copyright Virtual University of Pakistan 310

Web Design and Development (CS506)

out.printin(

"<h3>" +

' java core servlets </h3>" + "
"+
"<h3>" +

' java How to Program </h3>"

)

out.printin('
");

out.printIn(’'<hl1>You have selected following books</h1>");
out.printIn(’
");

//retrieving params that are emebded in URLs
String fBook = request.getParameter("'firstCB");
String sBook = request.getParameter(*'secondCB™);

out.printin('
");

out.printIn('<hl1>You have selected following books</h1>");
out.printin('
");

//retrieving param that is embedded into URL

String book = request.getParameter("'book™);

iT (book = null){

// it firstURL, value of first hyperlink is clicked

// then storing the book into session object against fBook
1T (book.equals('first™)){

session.setAttribute("'fBook™, "java core servlets™);

}

// it secondURL, value of second hyperlink is clicked

// then storing the book into session object against sBook
else i1f(book.equals('second™)){
session.setAttribute('sBook™, "java how to program™);

}
}//outer 1f ends

// used to display the books currently stored in
// the HttpSession object i.e. session
printSessionInfo(out, session);

out.printin(’'</body>");
out.printIn('</html>"); out.close();
} 7/ end processRequest()

// used to display values stored i1n HttpSession object
public void printSessioninfo(PrintWriter out,
HttpSession session)

{
String title = ""';

© Copyright Virtual University of Pakistan 311

Web Design and Development (CS506)

// reading value against key fBook from session,
// if exist displays it
title= (String)session.getAttribute('fBook™);

it (title = null){
out.printIn(’<h3> "+ title +'</h3>");
by

// reading value against key sBook from session,
// if exist displays it

title= (String)session.getAttribute(*'sBook™);

it (title = null){

out.printIn(’'<h3> "+ title +"</h3>");

ks

} 7/ end printSessionlnfo

} // end ShoppingCartServiet

web.xml

<?xml version="1.0" encoding=""UTF-8"?> <web-app>

<servlet>

<servlet-name> ShoppingCartServilet </servlet-name>
<servlet-class> ShoppingCartServlet </servlet-class>

</servlet>

<servlet-mapping>

<servlet-name> ShoppingCartServlet </servlet-name>
<url-pattern> /shoppingcart </url-pattern>

</servlet-mapping>

</web-app>

32.8 Some Methods of HttpSession
Now let’s explore some methods of HttpSession class
e setAttribute(String, Object)
0 This method associates a value with a name.
e getAttribute(String)

0 Extracts previously stored value from a session object. It returns nul 1 if no value
is associated with the given name

© Copyright Virtual University of Pakistan 312

Web Design and Development (CS506)

e removeAttribute(String)
0 This method removes values associated with the name
e getld()
0 This method returns the unique identifier of this session
e getCreationTime()
0 This method returns time at which session was first created
e getMaxlInactivelnterval() , setMaxInactivelnterval(int)

o0 To get or set the amount of time session should go without access before being
invalidated.

32.9 References:

Java A Lab Course by Umair Javed
Core Servlets and JSP by Marty Hall
Stanford Course - Internet Technologies
Java Tutorial on Servlets
0 http://java.sun.com/j2ee/tutorial/1 3-fcs/doc/Servlets1l1.html

e Java API documentation

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 313

Web Design and Development (CS506)

Lecture 33: Address Book Case Study Using Servlets

33.1 Design Process

In this handout, we will discuss the design process of a simple address book. A step by step
procedure of creating a simple address book is given below.

33.2 Layers & Web Application

As discussed previously, normally web applications are partitioned into logical layers.
Each layer performs a specific functionality which should not be mixed with other layers.
For example data access layer is used to interact with database and we do not make any
direct calls to database from the presentation layer. Layers are isolated from each other to
reduce coupling between them but they provide interfaces to communicate with each

other.
(Users [Calllng Servlces}

T v

Presentation Layers

I
Business Layers . - - -

Data Layers

. t

Data Sources } (Services }
L I

Simplified view of a web application and its layers

e Presentation Layer

o0 Provides a user interface for client to interact with application. This is the only
o Part of application visible to client.

e Business Layer

0 The business or service layer implements the actual business logic or functionality
of the application. For example in case of online shopping systems this layer
Handles transaction management.

e Data Layer

o0 This layer consists of objects that represent real-world business objects such as an

© Copyright Virtual University of Pakistan 314

Web Design and Development (CS506)

Order, OrderLineltem, Product, and so on. It also encapsulates classes which are
used to interact with the data providing services such as databases, other web
services etc.

In our case study of address book, we will also try to make use of the layered
architecture. We will create a separate layer for working with data, and our presentation
and business logic will be merged into servlets. It means that we will not have separate
layers for presentation and business rather one layer (formed by servlets) will do the job
of both presentation and business logic. The extent to which you divide your application
into layers depends upon the size of the application and some other factors such as
scalability, portability etc.

33.2.1Step 1

e Create a database (AddressBook)
e Make a table named Person according to the figure shown below. It has columns name,
address, phomeNum

B Person : Table

name address phonelum
model town 4387546

usman defence 6342211
ali gulberg 9201211

*

Record: 14 | || llf | [|H |H+i-| of 3

33.2.2 Step 2

The next step is to create a class that can hold the information of a single person.
Remember we have stored the information in the database, now when we extract this
information from the database as a result of some search, we will require some object to
store the data for that particular person. The PersonInfo class will be used at that
point to store the retrieved data and transport it to presentation layer. Also we extend this
application and add the functionality of “AddingNewContacts” in the database. The
PersonlInfo class can be used to transport data from front end to the database.

e Make a Personlnfo class with the following consideration
It has three three attributes: name, address, ph. No.

It has a parameterized constructor which takes in the above mentioned parameters Override the
toString() method:

© Copyright Virtual University of Pakistan 315

Web Design and Development (CS506)

//File: Personlnfo.java
public class Personinfo {

String name;
String address;
String phoneNum;

public Personlnfo(String n, String a, String pn) {
name = n;

address = a;

phoneNum = pn;

}
public String toString(){
return ""Name: " + name + " Address: " + address +

' Phone No: " + phoneNum;

}// end class Personinfo

Note: To keep the code simple, attributes (hame, address & phoneNum) are not declared
as private, which is indeed not a good programming approach.

33.2.3Step 3

Now we will create a class that will be used to interact with the database for the search, insert,
update and delete operations. We will call it PersonDAO where DAO stands for the “data access
object”. The PersonDAO along with the Personlnfo class forms the data layer of our
application. As you can see that these two classes do not contain any code related to presentation
or business logic (There is not much of business logic in this application anyway). So
PersonDAO along with PersonlInfo is used to retrieve and store data in this application. If at
some stage we choose to use some other way of storing data (e.g. files) only the PersonDAO
class will change and nothing else, which is a sign of better design as compared to a design in

which we put everything in a single class.

So, Make a PersonDAO class which contains:

A searchPerson(String name) method that first establishes a connection
to the database and returns Personinfo object after searching the information of
the specified person from the database.

//File: PersonDAO. java
import java.sqgl.*;

public class PersonDAO {

// method searchPerson
public Personlnfo searchPerson(String sName){

© Copyright Virtual University of Pakistan

316

Web Design and Development (CS506)

Personlnfo person = null;

try {
Class.forName(*'sun.jdbc.odbc.JdbcOdbcDriver');

String url = "jdbc:odbc:AddressBookDSN™;
Connection con = DriverManager.getConnection(url);

String sql = "SELECT * FROM Person WHERE name = ?';
PreparedStatement pStmt = con.prepareStatement(sql);

pStmt.setString(l, sName);
ResultSet rs = pStmt.executeQuery();

It (rs.next()) {

String name = rs.getString(‘'name'™);
String add = rs.getString('address™);
String pNum = rs.getString(‘phoneNum™™);
person = new Personinfo(name, add, pNum);
con.close();

}catch(Exception ex){
System.out.printin(ex);

by

return person;

}// end method
by

33.2.4Step 4

To find what user wants to search, we need to give user an interface through which he/she can
enter the input. The SearchPesonServilet. java will do this job for us, It will collect the
data from the user and submit that data to another class. The SearchPersonServlet forms
the part of our presentation layer. As you can see that it is being used to present a form to the user
and collect input.

Write SearchPersonServilet. java
Will take input for name to search in address book

Submits the request to ShowPersonServilet

//File: SearchPersonServlet. java
import java.io.™;

© Copyright Virtual University of Pakistan 317

Web Design and Development (CS506)

import java.net.*;

import javax.servlet.*;

import javax.servlet_http.*;

public class SearchPersonServlet extends HttpServlet {
protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
response.setContentType("text/html™);
PrintWriter out = response.getWriter();
out.printin(

“<html>" +

"'<body>"" +

"<hl> Address Book </h1>" +

"<form action=showperson >" +

// showperson i1s alias or

// url pattern of

// ShowPersonServilet

""<h2> Enter name to search </h2>
" +
"<input type=text name=pName />
" +
"<input type=submit value=Search Person />" +
"</form>" +

"</body>" +
"</html>"

)
out.close();
¥

// Handles the HTTP GET method.

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
processRequest(request, response);

¥

// Handles the HTTP POST method.

protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
processRequest(request, response);

}
+

33.2.5Step 5

The data submitted by the SearchPersonServlet will be submitted to another servlet i.e.
ShowPersonServilet, which will interact with the DatalLayer(Business logic processing)
collects the output and show it to the user. The ShowPersonServlet forms the part of our
presentation layer and business layer. As you can see that it is being used to do processing on the

© Copyright Virtual University of Pakistan 318

Web Design and Development (CS506)

incoming data and giving it to data layer (business layer) and present data/output to the user
(presentation layer)
Write ShowPersonServilet. java

Receives request from SearchPersonServiet
Instantiate objects of PersonlInfo and PersonDAO class

Call searchPerson() method of PersonDAO class Show results

//File : ShowPersonServlet.java

import java.io.™;

import java.net.*;

import javax.servlet.™;

import javax.servlet._http.*;

public class ShowPersonServlet extends HttpServilet {
protected void
processRequest(HttpServletRequestrequest,
HttpServletResponse response)

throws ServletException, I0Exception{
response.setContentType("text/html™);

PrintWriter out = response.getWriter();

String name = request.getParameter(“'pName™);
// creating PersonDAO object, and calling searchPerson() method
PersonDAO personDAO = new PersonDAOC(Q);

PersonlInfo person = personDAO.searchPerson(name);
out.printIn(C'<html>");

out.printin(‘'<body>");

out.printIn(’’<hl1>Search Results</h1>");

iIT (person = null){

out.printIn(’'<h3>"+ person.toString() +'"</h3>");
}

else{

out.printIn(’’<h3>Sorry! No records found</h3>");
by

out.printin('</body>");

out.printin(''</html>"");

out.close();

ks
// Handles the HTTP GET method.

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
processRequest(request, response);

} // Handles the HTTP POST method.

protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
processRequest(request, response);}} // end ShowPersonServiet

© Copyright Virtual University of Pakistan 319

Web Design and Development (CS506)

Sequence Diagram: Address Book (search use case)

320

. cHTHML & ShowPersonSeryl et : SearchPerzonServl et
L uzer T
' 1. Acess URL ! ' .
1.1, doetireq, " "
nletifeq. res) -, L1 process Reque streq, res)
] |
1.1.2. autpot '
1120 aput FEE e C
P Py .
1 1
L H i i
| | | |
« 2. press submit butten | ; ;
i i m 2.1, doPostireq, res) e "_ 211, processRequestireq, res)
m e
: 2111, create .| & PerzonDaQ
1
, 2.1.1.2. search Person(String name) ,...._
“ 7] m.__.._.m.._._u_.mm»mf : Perzoninfo
_ 2.1.1.22. call setters]|
! =
i 21123, retum Personinfo obajct f._
! s assasesassssssnannssnonnns !
1 1
! i !
215 oupe ! - : !
M=crrererenninannnn 4sssssssssssssss=ssssssos " '
2.2 output C) !
CEEEEEPEFPEEPEES ! _ i
! m "
i ' i
" " 1
" [:
1 " 1
; ! "
1 ' "
" _ 1

e |
S S S e e |

© Copyright Virtual University of Pakistan

Web Design and Development (CS506)

33.3 Package

Many times when we get a chance to work on a small project, one thing we intend to do is to put
all java files into one single directory (folder). It is quick, easy and harmless. However if our small
project gets bigger, and the number of files is increasing, putting all these files into the same
directory would be a nightmare for us. In java we can avoid this sort of problem by using
Packages.

33.3.1What is a package?

In simple terms, a set of Java classes organized for convenience in the same directory to
avoid the name collisions. Packages are nothing more than the way we organize files into
different directories according to their functionality, usability as well as category they
should belong to. An obvious example of packaging is the JDK package from SUN
(Java.xxx.yyy) as shown below:

Folders x| Mame | Size | Type -]
o =47 java a]] Socket mplFacion java ZEB - JAVA File
D aoplet aﬁuchcﬂnputﬁtr:am.hvn kB JavaFils
I =T] S ocket] plicns java 10KE JavaFil
- B beans %Snckaﬂ]uput&ream.iava IE A File
R =] SocketPemission java 2B JevAFile
- R lang] UnknownHcstE seeption, java KB JANAFil
P G ref aUnknnwnEervicaEHcaptiun.iava 2KE JAWA File
0 et =] URLjava IKE JAVAFile
-3 nath J] URLClassoader. iva 18KE AN File
‘*jm] URLCornection java 4BKB JAMA Fils
:g ;";::wit? %UHLDeccda.iava HE A File
LI - | URLE reoder java 4kB JAVAFile
LR test QLIHLStlea'nHandler.iava FRE Javia File
P 3 wil 1 | =] URLS bieammH andlerFacton. java 2EB JAVA File =
N bl | ,
|38 objscils) JZPKB |Disk free space: 897MB) | =AMy Compuier v

Figure. Basic structure of JDK package

Basically, files in one directory (or package) would have different functionality from
those of another directory. For example, files in java.io package do something related to
1/0, but files in java.net package give us the way to deal with the Network.

Packaging also helps us to avoid class name collision when we use the same class name
as that of others. For example, if we have a class name called "ArrayList", its name
would crash with the ArrayList class from JDK. However, this never happens because
JDK use java.util as a package name for the ArrayL.ist class (Java.util .ArrayList).
So our ArrayList class can be named as "ArrayList" or we can put it into another
package like com.mycompany.ArrayList without fighting with anyone. The benefits of

© Copyright Virtual University of Pakistan 321

Web Design and Development (CS506)

using package reflect the ease of maintenance, organization, and increase collaboration
among developers. Understanding the concept of package will also help us manage and
use files stored in jar files in more efficient ways.

33.3.2How to create a package

Suppose we have a file called Helloworld.java, and we want to put this file in a
package world. First thing we have to do is to specify the keyword package with the
name of the package we want to use (world in our case) on top of our source file, before

the code that defines the real classes in the package, as shown in our HelloWor Id class
below:

// only comment can be here
package world;

public class HelloWorld {

public static void main(String[] args) {
System.out.printin("'Hello World™);

by

One thing you must do after creating a package for the class is to create nested subdirectories to
represent package hierarchy of the class. In our case, we have the worldpackage, which requires
only one directory. So, we create a directory (folder) world and put our Helloworld. java into it.

| Addese I_‘! C:mnild ﬂ

Froide
El-w _:C.]

o
=
B Dizrmond J

Name | Sie] Type
| Hellwodd javs KD JAVAFile

i {1 Found 00D
W] retpub
B-23 Kpons
] YubmedaFie:
{21 My Downioad Fikes
{20 My Music
i [Program Fikes
'3.3}' Fecpoied
M- Tero
{1] meblogic_publich
M -'.-:J ‘winin!

3 roid ol | |

1 ehjecks] 245 beles [Disk: Froe 2pace 2739E) | =1 by Computer

Figure: HelloWorld in world package (C:'world HelloWorld java)

© Copyright Virtual University of Pakistan 322

Web Design and Development (CS506)

33.3.3How to use package

By using "import" keyword, all class files reside only in that package can be imported.
For example,

// we can use any public classes inside world package
import world.*;

// import all public classes from java.util package
import java.util._*;

// import only ArrayList class (not all classes iIn
// java.util package)
import java.util_ArrayList;

Note: While working with IDEs, You don’t have to create folders (packages) and to place
classes at right locations. Many IDEs (like netBeans® 4.1) performs this job on your behalf.

33.4 JavaServer Pages (JSP)

Like Servlets, JSP is also a specification. JSP technology enables Web developers and designers
to rapidly develop and easily maintain, information-rich, dynamic Web pages that leverage
existing business systems. As part of the Java technology family, JSP technology enables rapid
development of Web-based applications that are platform independent. JSP technology separates
the user interface from content generation, enabling designers to change the overall page layout
without altering the underlying dynamic content.

33.4.1The Need for JSP

With servlets, it is easy to

Read form data

Read HTTP request headers

Set HTTP status codes and response headers
Use cookies and session tracking

Share data among servlets

Remember data between requests

Get fun, high-paying jobs

But, it sure is a pain to

e Usethose println() statements to generate HTML
e Maintain that HTML

33.4.2The JSP Framework

e Use regular HTML for most of the pages
e Mark servlet code with special tags
e Entire JSP page gets translated into a servlet (once), and servlet is what actually

© Copyright Virtual University of Pakistan 323

Web Design and Development (CS506)

gets invoked (for each request)
e The Java Server Pages technology combine with Java code and HTML tags in the
same document to produce a JSP file.

Java | T | HTML Jsp

33.4.3 Advantages of JSP over Competing Technologies
e Versus ASP or ColdFusion
0 JSPs offer better language for dynamic part i.e. java

0 JSPs are portable to multiple servers and operating systems

e Versus PHP
0 JSPs offer better language for dynamic part

0 JSPs offer better tool support

e Versus pure servlets
0 JSPs provide more convenient way to create HTML

0 JSPs can use standard front end tools (e.g., UltraDev)
0 JSPsdivide and conquer the problem of presentation and business logic.

33.4.4Setting Up Your Environment

In order to create a web-application that entirely consists of JSP pages and Html based
pages, the setup is fairly simple as compared to a servlet based web application.

e Set your CLASSPATH. No.
e Compile your code. No.
e Use packages to avoid name conflicts. No.
e Put JSP page in special directory, like WEB-INF for servlets No.

o tomcat_install_dir/webapps/ROOT
o0 jrun_install_dir/servers/default/default-app

e Use special URL to invoke JSP page. No
e However
o If you want to use java based classes in an application along with JSPs, Previous

rules about CLASSPATH, install dirs, etc, still apply to regular classes used by JSP

33.5 References:

e Java A Lab Course by Umair Javed
e Java Package Tutorial by Patrick Bouklee http://jarticles.com/package/package_eng.html
e JavaServer Pages Overview http://java.sun.com/products/jsp/overview.htmi

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 324

Web Design and Development (CS506)

Lecture 34: Java Server Pages

As we concluded in our discussion on JSP, JSP is a text based document capable of returning
either static or dynamic content to a client’s browser. Static content and dynamic content can
be intermixed. The examples of static content are HTML, XML & Text etc. Java code, displaying
properties of JavaBeans and invoking business logic defined in custom tags are all examples of
dynamic content.

34.1 First run of a JSP

Figure below shows what phases a JSP passed through before displaying result.

Web Web Server
Browser
JSP JSP Java
Request Source Parser ® Source
Ir E&_h - -: JSP Java
Page
—I bti— serviet -#— compiler
Result I (HTML) I
L]

The web browser makes a request to JSP source code. This code is bifurcated into HTML
and java code by the JSP parser. The java source code is compiled by the Java compiler
resulting in producing a servlet equivalent code of a JSP. The servlet code is intermixed
with HTML and displayed to the user. It is important to note that a JSP only passes
through all these phases when it is invoked for the first time or when the changes have
been made to JSP. Any later call to JSP does not undergo of compilation phase.

34.1.1Benefits of JSP
e Convenient
o we already know java and HTML. So nothing new to be learned to work with
JSP.
o0 Like servlets (as seen, ultimately a JSP gets converted into a servlet), provides an
extensive infrastructure for
= Tracking sessions
= Reading and sending HTML headers
= Parsing and decoding HTML form data
e Efficient
0 Every request for a JSP is handled by a simple JSP java thread as JSP gets

© Copyright Virtual University of Pakistan 325

Web Design and Development (CS506)

converted into a servlet. Hence, the time to execute a JSP document is not
dominated by starting a process.

e Portable
o0 Like Servlets, JSP is also a specification and follows a well standardized AP1.The

JVM which is used to execute a JSP file is supported on many architectures and
operating systems.

e Inexpensive
0 There are number of free or inexpensive Web Servers that are good for

commercial quality websites.

34.1.2JSP vs. Servlet
Let’s compare JSP and Servlet technology by taking an example that simply plays current

date.

First have a look on JSP that is displaying a current date. This page more looks like a
HTML page except of two strangely written lines of codes. Also there are no signs of

doGet(), doPost().

<%@ page import=*“java.util_*” %>

<html>

<body>

<h3>

Current Date i1s:<%= new Date()%>
</h3>

</body>

</html>

Now, compare the JSP code above with the Servlet code given below that is also displaying the
current date.

//File: SearchPersonServlet.java

import java.io.™;

import java.net.*;

import javax.servlet.*;

import javax.servlet_http.*;

import java.util.*;

public class SearchPersonServlet extends HttpServlet {

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
response.setContentType(*"text/html™);

© Copyright Virtual University of Pakistan 326

Web Design and Development (CS506)

PrintWriter out = response.getWriter();

out.printin(

“<html>" +

“<body>" +

“<h3>"" +

“Current Date i1s:“ + new Date() +
“</h3>" +

“</body>" +

“</html>"

)

out.close();

ks

// Handles the HTTP GET method.

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
processRequest(request, response);

}

// Handles the HTTP POST method.

protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception {
processRequest(request, response);

}
+

Clearly, a lot of code is needed to be written in the case of servlet example to perform a
basic job.

34.2 JSP Ingredients

Besides HTML, a JSP may contain the following elements.
e Directive Elements

0 Provides global control of JSP ...l <%@%>
e Scripting Elements
O JSPCOmMMENtSccvviiiiiii i <%----%>
O declarationS.........ccovvvviii i, <%! %>
0 Used to declare instance variables & methods
B RXPIESSIONS. ettt <%=%>
0 A java code fragment which returns String
= SCHIPHIEtS. ... <%%>

o Blocks of java code

© Copyright Virtual University of Pakistan 327

Web Design and Development (CS506)

e Action Elements
O Special JSPtagsocvvvvvveie i e, <jsp:l>

We’ll discuss in detail all the ingredients of JSP. This handout will cover only scripting elements,
remaining ones will be discussed in next handouts.

34.3 Scripting Elements

34.3.1Comments

Comments are ignored by JSP-to-servlet translator. Two types of comments are possibly used in
JSP.

e HTML comment:

These comments are shown in browser, means on taking view source of the web
page; these sorts of comments can be read. Format of HTML comments is like to:

<I-—- comment text-->

e JSP comment:

These comments are not displayed in browser and have format like:
<l-- comment text --%>

34.3.2Expressions

The format of writing a Java expression is:
<%= Java expression %>

These expressions are evaluated, after converted to strings placed into HTML page at the place it
occurred in JSP page

Examples of writing Expressions are:

e <h2> Time: <% new java.util.Date() %> </h2>
will print current data & time after converting it to String

e <h2>Welcome: <% request.getParameter(“name”)%> </h2>
will print the name attribute

34.3.3Scriptlets

The format of writing a scriptlet is: <% Java code %>
After opening up the scriptlet tag, any kind of java code can be written inside it. This code is
inserted verbatim into corresponding servlet.

© Copyright Virtual University of Pakistan 328

Web Design and Development (CS506)

Example of writing a scriptlet is:

e <%String n = request.getParameter(*“name”);
out.printin(*welcome ” + n);
%>

The above scriptlet reads the name attribute and prints it after appending “welcome”

34.3.4Declarations

The format of writing a declaration tag is: <%! Java code %>
This tag is used to declare variables and methods at class level. The code written inside this tag is
inserted verbatim into servlet’s class definition.

Example of declaring a class level (attribute) variable is:

o <%l
private int someField = 5; %>

06>
Example of declaring a class level method is:

o <Ol
public void someMethod (...) {

%>
Code Example: Using scripting elements

The next example code consists of two JSP pages namely TFfirst.jsp and
second. jsp. The user will enter two numbers on the First.jsp and after pressing
the calculate sum button, able to see the sum of entered numbers on second. jsp

first.jsp

This page only displays the two text fields to enter numbers along with a button.

<html>

<body>

<h2>Enter two numbers to see their sum</hl>

<I—the form values will be posted to second.jsp -->
<form name = "myForm"™ action="'second.jsp" >

<h3> First Number </h3>
<input type=""text" name="numl’ />

<h3> Second Number </h3>

© Copyright Virtual University of Pakistan 329

Web Design and Development (CS506)

<input type=""text" name="‘num2' />

<input type="'submit™ value="Calculate Sum" /> </form>
</body>

</html>

second.jsp

This page retrieves the values posted by First. jsp. After converting the numbers into integers,
displays their sum.

<html>

<body>

<l-- JSP to sum two numbers -->

<%-- Declaration--%>

<!

// declaring a variable to store sum iInt res;

// method helps i1n calculating the sum

public int sum(int opl, int op2) {
return opl + op2;

by

%>

<%-- Scripltet--%>

<%

String opl = request.getParameter('numl™);
String op2 = request.getParameter('num2');
int firstNum = Integer.parselnt(opl);

int secondNum = Integer.parselnt(op2);

// calling method sum(), declared above iIn declartion tag
res = sum(FfirstNum, secondNum);

%>

<%-- expression used to display sum --%>
<h3>Sum i1s: <%=res%> </h3>

</body>

</html>

34.4 Writing JSP scripting Elements in XML

Now days, the preferred way for composing a JSP pages is using XML. Although writing JSP
pages in old style is still heavily used as we had shown you in the last example. Equivalent
XML tags for writing scripting elements are given below:

= Comments: No equivalent tag is defined

© Copyright Virtual University of Pakistan 330

Web Design and Development (CS506)

» Declaration:<jsp:declartion> </jsp:declaration>

= EXpression:<jsp:expression> </jsp:expression>

= Scriptlet:<jsp:scriptlet> </jsp:scriptlet>

It’s important to note that every opening tag also have a closing tag too. The second. jsp of last

example is given below in XML style.

<?xml version="1.0" encoding=""UTF-8"?>

<jJsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"">

<I-- to change the content type or response encoding change the
following line

——>
<Jsp:directive.page contentType="text/xml;charset=UTF-8"/>
<I-- any content can be specified here, e.g.: --—>
<jsp:element name=""text'>

<jsp:body>

<jsp:declaration>

int res;

public int sum(int opl, int op2) {
return opl + op2;

</jsp:declaration>

<Jsp:scriptlet>

String opl = request.getParameter('numl™);
String op2 = request.getParameter('num2');
int firstNum = Integer.parselnt(opl);

int secondNum = Integer.parselnt(op2);

res = sum(firstNum, secondNum);
</jsp:scriptlet>

<Jsp:-text> Sum is: </jJsp:text>
<Jsp:expression> res </jsp:expression>
</jsp:body>

</jsp:element> </jsp:root>

34.5 References:

e Java A Lab Course by Umair Javed
e Core Servlets and JSP by Marty Hall

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 331

Web Design and Development (CS506)

Lecture 35: JavaServer Pages

We have started JSP journey in the last handout and thoroughly discussed the JSP
scripting elements. JSP directive elements and implicit objects will be discussed in this
handout. Let’s review JSP journey again to find out what part we have already covered.

s Directive Elements

- Provides global control of ISP <%@ =

* Scripting Elements
- TSP comments o O
— declarations L - 4 -+
+ Used to declare instance variables & methods
Xpressions L (ol [+
* Ajava code fragment which returns String
implicit

objects scriptlets PR SNPRPRRUPR =

* Blocks of java code
» Action Elements

- Special ISP tags ... <jsp: ..o I=

We start our discussion from implicit objects. Let’s find out what these are?

35.1 Implicit Objects

To simplify code in JSP expressions and scriptlets, you are supplied with eight
automatically defined variables, sometimes called implicit objects. The three most
important variables are request, response & out. Details of these are given
below:

e request

This variable is of type HttpServletRequest, associated with the request. It
gives you access to the request parameters, the request type (e.g. GET or POST),
and the incoming HTTP request headers (e.g. cookies etc).

® fesponse

This variable is of type HittpServletResponse, associated with the response
to client. By using it, you can set HTTP status codes, content type and response
headers etc.

© Copyright Virtual University of Pakistan 332

Web Design and Development (CS506)

e oOut

This is the object of JspWriter used to send output to the client.
Code Example: Use of Implicit Objects
The following example constitutes of 4 JSP pages. These are 1ndex.jsp,
controller.jsp, web.jsp and java.jsp. The user will select either the option
of *““java” or “web” from Endex.jsp, displayed in the form of radio buttons and
submits the request to controller.jsp. Based on the selection made by the user,
controller. Jsp will redirect the user to respective pages (web. ysp or java. jsp).

The flow of the example is shown below in the pictorial form.

ifpage==web

index.jsp controller.

Jsp

if page==java

The code of these entire pages is given below.

index.jsp

<html>

<body>

<h2>Select the page you want to visit</h2>

<form name="myForm"” action="‘controller.jsp” >
<h3>

<input type="radio” name = '‘page" value="web"/>

Web Design & Develoment

</h3>

<h3>
<input type="‘radio’ name = '‘page’" value="java'/>
Java
</h3>

© Copyright Virtual University of Pakistan 333

Web Design and Development (CS506)

<input type="'submit' value="Submit" />

</form>
</body>
</html>

controller.jsp

<html>

<body>

<I-- scriptlet -->
<%

// reading parameter “page’”, name of radio button using
// implicit object request
String pageName = request.getParameter(*'page');

// deciding which page to move on based on ‘“page” value
// redirecting user by using response implicit object
it (pageName.equals('web™)) {
response.sendRedirect('web. jsp™);

} else 1t (pageName.equals(“java™)) {
response.sendRedirect("java. jsp');

}

%>

</body>
</html>

web.jsp

<html>

<body>

// use of out implicit object, to generate HTML

<%

out.printin("<h2>" +

"Welcome to Web Design & Development Page™ + '"'</h2>"
)

06>

</body>

</html>

© Copyright Virtual University of Pakistan 334

Web Design and Development (CS506)

java.jsp

<html>

<body>

// use of out implicit object, to generate HTML
<%

out.printin("<h2>" +

"Welcome to Java Page™ + "'</h2>"

)

%>

</body>

</html>

The details of remaining 5 implicit objects are given below:

e session

This variable is of type HttpSession, used to work with session object.

e application

This variable is of type ServiletContext. Allows to store values in key-value pair form that
are shared by all servlets in same web application/

e config

This variable is of type ServletConfig. Represents the JSP configuration options e.g.
init-parameters etc.

e pageContext

This variable is of type Javax.servlet. jsp.PageContext, to give a single point of
access to many of the page attributes. This object is used to stores the object values associated
with this object.

e exception

This variable is of type Java. lang. Throwable. Represents the exception
that is passed to JSP error page.

e page

This variable is of type Java. lang.Object. It is synonym for this.

35.2 JSP Directives

JSP directives are used to convey special processing information about the page to JSP
container. It affects the overall structure of the servlet that results from the JSP page. It enables
programmer to:

© Copyright Virtual University of Pakistan 335

Web Design and Development (CS506)

e Specify page settings
e To include content from other resources
e To specify custom-tag libraries

35.2.1Format
<%@ directive {attribute="val”}* %>

In JSP, there are three types of directives: page, include & taglib. The formats
of using these are:

e page:<h%@ page{attribute=""val’}*%>
e include:<%@ include{attribute=""val”}*%>
e taglib:<%@ taglib{attribute="val”}*%>

35.2.2JSP page Directive

Give high level information about servlet that will result from JSP page. It can be used
anywhere in the document. It can control

Which classes are imported

What class the servlet extends

What MIME type is generated

How multithreading is handled

If the participates in session

Which page handles unexpected errors etc.

The lists of attributes that can be used with page directive are:

language = “java”

extends = “package.class”

import = “package.* package.class”
session = “true | false”

info= “text”

contentType =“mimeType”
isThreadSafe = “true | false”
errorPage= “relativeURL”
isErrorPage = “true | false”

Some example uses are:

e To import package like java.util

<%@page Import=“java.util_.*” info=*“using util package” %>
e To declare this page as an error page

<%@ page isErrorPage = “true” %>
e To generate the excel spread sheet

<%@ page contentType = “application/vnd.ms-excel” %>

© Copyright Virtual University of Pakistan 336

Web Design and Development (CS506)

35.2.3JSP include Directive

Lets you include (reuse) navigation bars, tables and other elements in JSP page. You can include
files at

e Translation Time (by using include directive)
e Request Time (by using Action elements, discussed in next handouts)

Format
<%@include file=*relativeURL”%>

Purpose

To include a file in a JSP document at the time document is translated into a servlet. It
may contain JSP code that affects the main page such as response page header settings
etc.

Example Code: using include directive

This example contains three JSP pages. These are 1ndex. jsp, header.jsp &

footer. jsp. The header. jsp will display the text of “web design and development™ along
with current date. The Footer . jsp will display only “virtual university’”. The outputs of both
these pages will be included in ¥ndex. jsp by using JSP include directive.

header.jsp

<%@page 1mport="java.util_*"%>
<html>
<body>

<marquee>

<h3> Web Desing & Development </h3>
<h3><%=new Date()%></h3>

</marquee>

</body>
</html>

footer.jsp

<html>

<body>

<marquee>

<h3> Virtual University </h3>
</marquee>

</body>

</html>

© Copyright Virtual University of Pakistan 337

Web Design and Development (CS506)

index.jsp

<html>

<body>

// includes the output of header.jsp
<%@include file="header._jsp"” %>

<TABLE BORDER=1>
<TR><TH></TH><TH>Apples<TH>Oranges
<TR><TH>First Quarter<TD>2307<TD>4706
<TR><TH>Second Quarter<TD>2982<TD>5104
<TR><TH>Third Quarter<TD>3011<TD>5220
<TR><TH>Fourth Quarter<TD>3055<TD>5287 </TABLE>
// includes the output of footer.jsp
<%@include file="footer._jsp" %>
</body>

</html>

Example Code: setting content type to generate excel spread sheet

In this example, index. jsp is modified to generate excel spread sheet of the last example.
The change is shown in bold face.

index.jsp

// setting content type to generate excel sheet using page
directive

<%@page contentType="application/vnd.ms-excel" %>
<html>

<body>

// includes the output of header.jsp

<Ww@include file="header.jsp" %>

<TABLE BORDER=1>

<TR><TH></TH><TH>Apples<TH>Oranges

<TR><TH>First Quarter<TD>2307<TD>4706

<TR><TH>Second Quarter<TD>2982<TD>5104
<TR><TH>Third Quarter<TD>3011<TD>5220
<TR><TH>Fourth Quarter<TD>3055<TD>5287 </TABLE>
// includes the output of footer.jsp

<%@include file="footer.jsp" %>

</body>

</html>

© Copyright Virtual University of Pakistan 338

Web Design and Development (CS506)

35.3 JSP Life Cycle Methods

The life cycle methods of JSP are jsplnit(), jspService() and
JspDesroy(). On receiving each request, _jspService() method is invoked that
generates the response as well.

Request
Response «

_jspService()

jspDestroy()

35.4 References:

e Java A Lab Course by Umair Javed
e Core Servlets and JSP by Marty Hall

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 339

Web Design and Development (CS506)

Lecture 36

In the last handout, we learned how to work with JSP directives and the use of implicit objects.
In this handout, we’ll learn about JavaBeans and what affect they produce. Before learning
JavaBeans, let’s start with an example that helps us to understand the impact of using JavaBeans.

Code Example: Displaying Course Outline

This example is actually the modification of the last one we had discussed in previous handout.
User will select either course ““web design and development™ or “java”. On submitting request,
course outline would be displayed of the selected course in tabular format. This course outline
actually loaded from database. The schema of the database used for this example is given below:

L

oourseld
courseMame

detailld
gessionMo

The flow of this example is shown below:

index.jsp

This page is used to display the course options to the user in the radio button form.

<html>

<body>

<h2>Select the page you want to visit</h2>
<form name="myForm" action="‘controller.jsp” >
<h3>

<input type="radio” name = '‘page" value="web"/>
Web Design & Develoment

</h3>

<h3>

<input type="radio’” name = '‘page" value="java'/>
Java

</h3>

© Copyright Virtual University of Pakistan 340

Web Design and Development (CS506)

<input type="'submit' value="Submit" />
</form>
</body>
</html>

controller.jsp

Based upon the selection made by the user, this page will redirect the user to respective
pages. Those are web. jspand java. jsp

<html>

<body>

<l-- scriptlet -->

<%

// reading parameter named page

String pageName = request.getParameter(*'page™);

// redirecting user based on selection made

it (pageName.equals('web™)) {
response.sendRedirect("'web. jsp™);

} else if (pageName.equals(*java™)) {
response.sendRedirect(java.jsp');

b

%>

/body>

</html>

web.jsp

This page is used to display course outline of “web design and development™ in a tabular
format after reading them from database. The code is:

// importing java.sql package using page directive, to work with
// database
<%@page import=""java.sql.*"%>

<html>

<body>

<center>

<h2> Welcome to Web Design & Development Page </h2>
<h3> Course Outline</h3>

<TABLE BORDER=""1" >
<TR>

© Copyright Virtual University of Pakistan 341

Web Design and Development (CS506)

<TH>Session No.</TH>
<TH>Topics</TH>
<TH>Assignments</TH>
</TR>

<%-- start of scriptlet --%>

<%

// establishing conection

Class.forName("'sun. jdbc.odbc.JdbcOdbcDriver™);

String conUrl = "jdbc:odbc:CourseDSN*;
Connection con = DriverManager.getConnection(conurl);

// preparing query using join statements

String sql = " SELECT sessionNo, topic, assignment ' +
" FROM Course, SessionDetail™ +

" WHERE courseName = ? ' +

" AND Course.courseld = SessionDetail.courselD";

PreparedStatement pStmt = con.prepareStatement(sql);

// setting parameter value ’web”.
pStmt.setString(1 , "web'™);

ResultSet rs = pStmt.executeQuery();

String sessionNo;
String topic;
String assignment;

// iterating over resultset
while (rs.next()) {

sessionNo = rs.getString(‘'sessionNo™);
topic = rs.getString('topic™);

assignment = rs.getString("'assignment™);

1T (assignment == null){
assignment = ""'';

}

%>
<%-- end of scriptlet --%>

<%-- The values are displayed in tabular format using
expressions, however it can also be done using

© Copyright Virtual University of Pakistan 342

Web Design and Development (CS506)

out.printin(sessionNo) like statements
——0>

<TR>

<TD> <Y=sessionNo%> </TD>
<TD> <Y%=topic%> </TD>

<TD> <Y=assignment%> </TD>
</TR>

<%
} 7/ end while
%>

</TABLE >
</center>

</body>
</html>

java.jsp

The code of this page is very much alike of “web.jsp”. The only change is in making of
query. Here the value is set “java’ instead of “web”

// importing java.sqgl package using page directive, to work with
// database
<%@page import="java.sql.*"%>

<html>

<body>

<center>

<h2> Welcome to Java Page </h2>
<h3> Course Outline</h3>
<TABLE BORDER=""1" >

<TR>

<TH>Session No.</TH>
<TH>Topics</TH>
<TH>Assignments</TH>
</TR>

<%-- start of scriptlet --%>

<%

// establishing conection

Class.forName(''sun. jdbc.odbc.JdbcOdbcDriver');

String conUrl = "jdbc:odbc:CourseDSN';

© Copyright Virtual University of Pakistan 343

Web Design and Development (CS506)

Connection con = DriverManager.getConnection(conurl);

// preparing query using join statements

String sql = " SELECT sessionNo, topic, assignment ' +
" FROM Course, SessionDetail™ +

" WHERE courseName = ? " +

" AND Course.courseld = SessionDetail.courselD";

PreparedStatement pStmt = con.prepareStatement(sql);

// setting parameter value ’web”.
pStmt.setString(1 , "java'™);

ResultSet rs = pStmt.executeQuery();

String sessionNo;

String topic;

String assignment;

// iterating over resultset

while (rs.next()) {

sessionNo = rs.getString(‘'sessionNo™);
topic = rs.getString(‘'topic™);

assignment = rs.getString('assignment™);
1T (assignment == null){

assignment = "'';

b

%>

<%-- end of scriptlet --%>

<%-- The values are displayed in tabular format using
expressions, however i1t can also be done using
out.printIn(sessionNo) like statements
——0>

<TR>

<TD> <Y=sessionNo%> </TD>

<TD> <%=topic%> </TD>

<TD> <%=assignment%> </TD>

</TR>

<%

} /7 end while

%>

</TABLE >

</center>

</body>

</html>

© Copyright Virtual University of Pakistan 344

Web Design and Development (CS506)

Issues with Last Example

Too much cluttered code in web. jsp and java. jsp. This makes it very
difficult to understand (probably you experienced it by yourself)
and to make changes/enhancements.

A single page is doing everything that is really a bad approach while making
of web applications. The tasks performed by web . jsp or jJava. jsp are:

- Displaying contents (Presentation logic)
- Connecting with database (DB connectivity logic)

- Results Processing (Business Logic)
Can we simplify it? Yes, the answer lies in the use of JavaBeans technology.

36.1 JavaBeans

e A java class that can be easily reused and composed together in an application.
e Any java class that follows certain design conventions can be a JavaBean.

36.1.1JavaBeans Design Conventions

These conventions are:
e A bean class must have a zero argument constructor
e A bean class should not have any public instance variables/attributes (fields)
e Private values should be accessed through setters/getters
o0 For boolean data types, use boolean isXXX() & setXXX(boolean)

e A bean class must be serializable

A Sample JavaBean

The code snippet of very basic JavaBean is given below that satisfies all the conventions
described above. The MyBean.java class has only one instance variable.

public class MyBean implements Serializable {
private String name;

// zero argument constructor
public MyBean(){

name = “7’;

s

// standard setter

public void setName(String n) {

name = n;

© Copyright Virtual University of Pakistan 345

Web Design and Development (CS506)

¥
// standard getter

public String getName() {
return name;

}

// any other method
public void print() {

System.out.printIn(**“Name 1is:

}

} 7/ end Bean class

+ name);

Example Code: Displaying course outline by incorporating
JavaBeans

This example is made by making more enhancements to the last one. Two JavaBeans are
included in this example code. These are CourseOutlineBean & CourseDAO.

The CourseOutlineBean is used to represent one row of the table. It contains the
following attributes:

e sessionNo

e topic
e assignment

The CourseDAO (where DAO stands of Data Acess Object) bean encapsulates database
connectivity and result processing logic.

The web.jsp and java.jsp will use both these JavaBeans. The code of these and the JSPs
used in this example are given below.

CourseOutlineBean.java

package vu;

import java.io.*;

public class CourseOutlineBean implements Serializable{
private int sessionNo;

private String topic;
private String assignment;

© Copyright Virtual University of Pakistan 346

Web Design and Development (CS506)

// no argument constructor
public CourseOutlineBean() {
sessionNo = O;

topic = "";

assignment = ""'';

}

// setters
public void setSessionNo(int s){
sessionNo = s;

by
public void setTopic(String t){
topic = t;

public void setAssignment(String a){
assignment = a;

¥

// getters

public int getSessionNo(){

return sessionNo;

}

public String getTopic(){
return topic;

by

public String getAssignment(){
return assignment;

by
} 7/ end class

CourseDAO.java

package vu;

import java.io.*;
import java.sql.*;
import java.util.>;

public class CourseDAO implements Serializable{
private Connection con;

public CourseDAO() {
establishConnection();

3

© Copyright Virtual University of Pakistan 347

Web Design and Development (CS506)

// method used to make connection with database
private void establishConnection(){

try{
// establishing conection

Class.forName("'sun.jdbc.odbc.JdbcOdbcDriver'™);

String conUrl = "jdbc:odbc:CourseDSN';

con = DriverManager.getConnection(conurl);
}catch(Exception ex){

System.out.printin(ex);

public ArrayList retrieveCourseList(String cName){

ArrayList courseList = new ArrayList();

try{
}

String sql = " SELECT sessionNo, topic, assignment " +
" FROM Course, SessionDetail™ +

" WHERE courseName = ? " +

" AND Course.courseld = SessionDetail.courselD ";

PreparedStatement pStmt = con.prepareStatement(sql);
pStmt.setString(l, cName);

ResultSet rs = pStmt.executeQuery();

int sNo;
String topic;
String assignment;

while (rs.next(Q)) {

sNo = rs.getint(''sessionNo');

topic = rs.getString(*"topic™);

assignment = rs.getString('assignment™);

1T (assignment == null){

assignment = ""'';

ks

// creating a CourseOutlineBean object
CourseOutlineBean cBean = new CourseOutlineBean();

cBean.setSessionNo(sNo);
cBean.setTopic(topic);

© Copyright Virtual University of Pakistan 348

Web Design and Development (CS506)

cBean.setAssignment(assignment);

// adding a bean to arraylist
courseList.add(cBean);

}

}catch(Exception ex){
System.out.printin(ex);

} finally {

// to close connection
releaseResources();

ks

// returning ArraylList object
return courseList;

} // end retrieveCourseOutline
private void releaseResources(){

try{

iT(con = null){
con.close();

}

}catch(Exception ex){
System.out.printin(Q);
}
}

} 7/ end releaseResources

}// end CourseDAO

index.jsp

This page is used to display the course options to the user in the radio button form.

<html>
<body>
<h2>Select the page you want to visit</h2>

<form name=""myForm" action="controller.jsp” >

<h3>

<input type="radio” name = '‘page" value="web"/>
Web Design & Develoment

</h3>

<h3>

© Copyright Virtual University of Pakistan 349

Web Design and Development (CS506)

<input type="‘radio" name = "‘page" value="java'/>
Java
</h3>

<input type="'submit’ value="Submit"” />
</form>
</body>
</html>

controller.jsp

Based on user selection, redirects the user to desired page.

<html>
<body>

<l-- scriptlet -->
<%

String pageName = request.getParameter(*'page');

1T (pageName.equals(web™)) {
response.sendRedirect("'web. jsp™);

} else i1t (pageName.equals(java™)) {
response.sendRedirect(*'jJava. jsp');

}

%>

</body>
</html>

web.jsp

This page is used to display course outline of “web design and development™ in a tabular

format after reading them from database. Moreover, this page also uses the JavaBeans
(CourseQutlineBean & CourseDAO).

<%@page import="java.util.*" %>

<%-- Emporting vu package that contains the JavaBeans--%>
<%@page Import="'vu.*'" %>

<html>

<body>

<center>

<h2> Welcome to Web Design & Development Course </h2>

© Copyright Virtual University of Pakistan 350

Web Design and Development (CS506)

<h3> Course Outline</h3>

<TABLE BORDER="1"" >

<TR>

<TH>Session No.</TH>

<TH>Topics</TH>

<TH>Assignments</TH>

</TR>

<%-- start of scriptlet --%>

<%

// creating CourseDAO object

CourseDAO courseDAO = new CourseDAO(Q);

// calling retrieveCourseList() of CourseDAO class and
// passing “web” as value. This method returns ArrayList
ArrayList courselList = courseDAO.retrieveCourseList("web™);
CourseOutlineBean webBean = null;

// iterating over ArrayList to display course outline
for(int i=0; i<courseList.size(); i++){

webBean = (CourseOutlineBean)courselList.get(i);

06>

<%-- end of scriptlet --%>

<TR>

<TD> <%= webBean.getSessionNo(Q%> </TD>

<TD> <%= webBean.getTopic(Q%> </TD>

<TD> <%= webBean.getAssignment(Q%> </TD>

</TR>

<%

} 7/ end for

%>

</TABLE >

</center>

</body>

</html>

java.jsp

The code contains by this page is almost same of web. jsp. Here, “java” is passed to
retieveCourseL.ist() method. This is shown in boldface.

<%@page Import="java.util.*" %>

<%-- Emporting vu package that contains the JavaBeans--%>
<%@page Import="'vu.*'" %>

<html>

<body>

<center>

<h2> Welcome to Java Course </h2>

<h3> Course Outline</h3>

© Copyright Virtual University of Pakistan 351

Web Design and Development (CS506)

<TABLE BORDER="1"" >

<TR>

<TH>Session No.</TH>

<TH>Topics</TH>

<TH>Assignments</TH>

</TR>

<%-- start of scriptlet --%>

<%

// creating CourseDAO object

CourseDAO courseDAO = new CourseDAO(Q);

// calling retrieveCourseList() of CourseDAO class and
// passing “java” as value. This method returns ArrayList
ArrayList courselList = courseDAO.retrieveCourseList(*'java'™);
CourseOutlineBean javaBean = null;

// iterating over ArraylList to display course outline
for(int i=0; i<courseList.size(); i++){

jJavaBean = (CourseOutlineBean)courselList.get(i);

%>

<%-- end of scriptlet --%>

<TR>

<TD> <¥%= javaBean.getSessionNo()%> </TD>

<TD> <%= javaBean.getTopic(QQ%> </TD>

<TD> <%= javaBean.getAssignment()%> </TD>

</TR>

<%

} // end for

%>

</TABLE >

</center>

</body>

</html>

36.2 References:

e Entire material for this handout is taken from the book JAVA A Lab Course by Umair
Javed. This material is available just for the use of VU students of the course Web
Design and Development and not for any other commercial purpose without the consent of
author

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 352

Web Design and Development (CS506)

Lecture 37: JSP Action Elements and Scope

The journey we had started of JSP is very much covered except of JSP action elements. In this
handout, we’ll study the use of JSP action elements. Further also learn how and where to store
JavaBean objects that can be shared among JSP pages.

Let’s first quickly look on the JSP journey to find out where we have reached.

* Directive Elements
Provides global control of JSP <@ Yo

* Scripting Elements

ISP commietits oo <05 G
. . -
— (declarations .. <0610
+ TJsed to declare instance variables & method
P 510 i : = 2 =i
+ Ajava code fragme 1ich returns String
implicit
objects nptlets LIS
Blocks of java code

» Action Elements

. apeciabIB P Esre . o nnanannnanannnanagans <jsp: coeen =
37.1 JSP Action Elements

JSP action elements allow us to work with JavaBeans, to include pages at request time and to
forward requests to other resources etc.

Format

Expressed using XML syntax
e Opening tag<jsp:actionElement attribute="value” >

e Body body
e Closing tag</jsp:actionElement>

Empty tags (without body) can also be used like

<jJsp:actionElement attribute="value” >

© Copyright Virtual University of Pakistan 353

Web Design and Development (CS506)

Some JSP Action Elements

e To work with JavaBeans
-<jJsp:useBean />
-<Jsp:setProperty />
-<jJsp:getProperty />

e To include resources at request time
-<jJsp:include />

e To forward request to another JSP or Servlet
-<jsp:forward />

e To work with applets
-<jJsp:plugin />

37.2 Working with JavaBeans using JSP Action Elements

The three action elements are used to work with JavaBeans. These are discussed in detail
below:

37.2.1JSP useBean Action Element

It is used to obtain a reference to an existing JavaBean object by specifying id(name of
object) and scope in which bean is stored. If a reference is not found, the bean is
instantiated.

The format of this action element is:

<Jsp:useBean id = “name”
scope = “page]request]|session]application” class=*package.Class ”’
/>

The 1d attribute specifies the name of the JavaBean object that is also used for later
references. The scope attribute can have one possible value out of page, request, session and
application. If this attribute is omitted, the default value of scope attribute is page. We’ll discuss in
detail about scope shortly.

The class attribute specifies the type of object is going to be created.

Jsp:useBean is being equivalent to building an object in scriptlet. For example to build an
object of MyBean using scriptlet is:

<%
MyBean m = new MyBean();
%>

© Copyright Virtual University of Pakistan 354

Web Design and Development (CS506)

Achieving above functionality using jsp:useBean action element will look like
this:

<Jsp:useBean id = “m”

scope = “page”
class=*“vu.MyBean” />

In the above code snippet, we are assuming that MyBean lies in vu package.

37.2.2JSP setProperty Action Element

To set or change the property value of the specified bean. String values are converted to types of
properties by using the related conversion methods.

The format of this action element is:

<Jsp:setProperty name = “beanName or id” property = “name” value
=“value”/>

The name attribute should match the 1d given in jsp:useBean. The property
attribute specifies the name of the property to change and the value attribute specifies the new
value.

Jsp:setProperty is being equivalent to following code of scriptlet. For example to change
the name property of m (instance of MyBean) using scriptlet is:

<%
m.setProperty(“ali”);
%>

Achieving above functionality using jJsp:setProperty action element will look like
this:

<Jsp:setProperty name = “m” property = “name” value = “ali” />
37.2.3JSP getProperty Action Element

Use to retrieves the value of property, converts it to String and writes it to output stream.

The format of this action element is:

<Jsp:getProperty name = “beanName or i1d”’property = “name”/>
Jsp:getProperty is being equivalent to following code of scriptlet. For example to

retrieve the name property of m (instance of MyBean) followed by writing it to output stream,
scriptlet code will look like:

© Copyright Virtual University of Pakistan 355

Web Design and Development (CS506)

<%
String name = m.getName(); out.printlin(name);
%>

Achieving above functionality using jsp:getProperty action element will look like
this:

<Jsp:getProperty name = “m”’property = ‘“‘name” />

Example Code: Calculating sum of two numbers by using action
elements and JavaBean

This example contains index. jsp and result. jsp and one JavaBean i.e.
SumBean. User will enter two numbers on index. jsp and their sum will be
displayed on result. jsp. Let’s examine these one after another

SumBean.java

The SumBean has following attributes

e firstNumber
e secondNumber
e sum

The firstNumber and secondNumbers are “write-only”” properties means for these only
setters would be defined. Whereas sum is a ““read-only’” property as only getter would be
defined for it.

The SumBean also contain one additional method for calculating sum i.e.
calulateSum(). After performing addition of firstNumber with secondNumber, this
method will assign the result to sum attribute.

package vu;
import java.io.*;

public class SumBean implements Serializable{

private int FirstNumber;
private int secondNumber;
private int sum;

// no argument constructor
public SumBean() {
firstNumber = 0;
secondNumber = 0;

sum = O;

© Copyright Virtual University of Pakistan 356

Web Design and Development (CS506)

}

// TirstNumber & secondNumber are writeonly properties
// setters

public void setFirstNumber(int n){

firstNumber = n;

public void setSecondNumber(int n){
secondNumber = n;

ks

// no setter for sum

// sum i1s a read only property
public int getSum(){

return sum;

ks

// method to calculate sum
public void calculateSum() {

sum = FirstNumber + secondNumber;

+
+

index.jsp

This page will display two text fields to enter number into them.

<html>
<body>

<h2>Enter two numbers to calculate their sum</h2>
<form name=""myForm"™ action="result.jsp'>

<h3>

Enter first number

<input type=""text' name="‘numl" />

Enter second number

<input type=""text' name="‘num2" />

<input type="submit"” value="Calculate Sum"™ />
</h3>

</form>

</body>

</html>

result.jsp

This page will calculate the sum of two entered numbers by the user and displays the sum
back to user. The addition is performed using SumBean

<%-- @mporting vu package that contains the SumBean --%>
<%@page Import="'vu.*"%>

© Copyright Virtual University of Pakistan 357

Web Design and Development (CS506)

<html>
<body>
<h2>The sum 1is:
<%-- instantiating bean using action element —-- %>
<Yp—-—
//Servlet equivalent code of useBean
SumBean sBean = new SumBean();
——0>

<jJsp:useBean i1d=""sBean' class="vu.SumBean' scope="'‘page'/>

<%-- setting FirstNumber property of sBean
using action elements
— U>

<%-- implicit conversion from string to int as numl is of type
String and firstNumber is of type iInt
——0p>

<Yp——
//Servlet equivalent code of setProperty for numl

int no = Integer.parselnt(request.getParameter(*'numl’™));
sBean.setFirstNumber(no);
——0>

<jsp:setProperty name=''sBean"
property="firstNumber"™ param="numl’ />
<Yp—-

//Servlet equivalent code of setProperty for num2
int no = Integer.parselnt(request.getParameter("'num2'));
sBean.setSecondNumber(no);

——0>
//Servlet equivalent code of setProperty for num2
int no = Integer.parselnt(request.getParameter("'num2'));

sBean.setSecondNumber(no);
<Jsp:setProperty name="sBean"
property="secondNumber" param=""num2" />

<%
// calling calculateSum() method that will set the value of
// sum attribute

sBean.calculateSum();
%>

<Yp—-
// servlet equivalent code of displaying sum

© Copyright Virtual University of Pakistan 358

Web Design and Development (CS506)

Int res = sBean.getSum();
out.printin(res);
——%>

<Jsp:getProperty name="sBean" property="sum' />
</h2>

</body>
</html>

37.3 Sharing Beans & Object Scopes

So far, we have learned the following techniques to create objects.

e Implicitly through JSP directives
e Explicitly through actions
e Directly using scripting code

Although the beans are indeed bound to local variables, that is not the only behavior. They are
also stored in four different locations, depending on the value of the optional scope attribute of
Jsp:-useBean. The scope attribute has the following possible values: page, request,
sessionand application.

Let’s discover what impact these scopes can produce on JavaBeans objects which are stored in one
of these scopes.

37.3.1page

This is the default value of scope attribute, if omitted. It indicates, in addition to being
bound to local variable, the bean object should be placed in the pageContext
object. The bean’s values are only available and persist on JSP in which bean is
created.

In practice, beans created with page scope are always accessed (their values) by
Jsp:-getProperty, jsp:setProperty, scriptlets or expressions later in the same page. This
will be more cleared with the help of following diagram:

© Copyright Virtual University of Pakistan 359

Web Design and Development (CS506)

(1)requestl (3ireauest 1

or request 2
(23 create {4y Valuesnot
Available
AMyBean m = new My Bean(): MvBean m
m._set™Name(“ali*): Iname = alil

PageContext

In the diagram above, First.jsp generates a request “request 1 that is submitted to
second. jsp. Now, second.jsp creates an object m of MyBean by calling its default
constructor and stores a value ““ali’” for the name property by making a call to appropriate setter
method. Since, the scope specified in this example is “page’ when the object of MyBean
is instantiated using jsp:useBean action element. Therefore, object (m) of MyBean is stored
in PageContext.

Whether, second . jsp forwards the same request (request 1) to third. jsp or generates a
new request (request 2), at third. jsp, values (e.g. ali) stored in MyBean object m, are not
available. Hence, specifying scope “page” results in using the object on the same page where they
are created.

37.3.2request

This value signifies that, in addition to being bound to local variable, the bean object
should be placed in ServletRequest object for the duration of the current
request. In other words, until you continue to forward the request to another
JSP/servlet, the beans values are available. This has been illustrated in the following
diagram.

© Copyright Virtual University of Pakistan 360

Web Design and Development (CS506)

i1 request 1 {3irequest 1 (3

{4yvalues available (6} values not available

MyBean

[name = ali]

ServletRequest |

In the diagram above, MyBean is instantiated by specifying scope =*“‘request”

that results in storing object in ServletRequest. A value “ali” is also stored
in m using setter method.

second . jsp forwards the same request (request 1) to third. jsp, since scope of m (object of
MyBean) is request, as a result third. Jsp can access the values(e.g. ali) stored in
m. According to the figure, third. jsp generates a new request (request 2) and submits it to
fourth._jsp. Since a new request is generated therefore values stored in object m (e.g. ali) are
not available to fourth. jsp.

37.3.3 session

This value means that, in addition to being bound to local variable, the bean object
will be stored in the HttpSession object associated with the current request. As
you already know, object’s value stored in HttpSession persists for whole user’s
session. The figure below helps in understanding this concept.

(1yrequest 1 (4} reguest 1 (6 reauest 2

(})create

(f)values available (Tivalues available

MyBean

[name = ali]

HitpSession

© Copyright Virtual University of Pakistan 361

Web Design and Development (CS506)

In the diagram above, MyBean is instantiated by specifying scope = ‘““session’ that results
in storing object in HttpSession. A value “ali’” is also stored in m using setter method.

Irrespective of request forwarding or new request generation from second.jsp to
other resources, the values stored in HttpSession remains available until user’s
session is ended.

37.3.4 Application

This very useful value means that, in addition to being bound to local variable, the bean object
will be stored in ServletContext. The bean objects stored in ServletContext is
shared by all JSPs/servlets in the same web application. The diagram given below illustrates this
scenario:

(4)reguest 1

(6 reauest 2

(3)create

(Z)values available (Tivalues available

MyBean

[name = ali]

ServietContext

© Copyright Virtual University of Pakistan 362

Web Design and Development (CS506)

37.4 Summary of Object’s Scopes

Within all pages belonging to same
application

e .S
Most visible

Only from pages belonging to same session
as the one in which they were created

Only within pages processing the request
in which they are created

Objects may be accessed only within pages

Least visible where they are created

Let’s take another view of session, request & page scopes in the next figure that helps us to
understand the under beneath things.

Page scope Page scope
(.)

_

reguest scope

Session scope

© Copyright Virtual University of Pakistan 363

Web Design and Development (CS506)

The figure shows four JavaServer Pages. Each page has its own page scope. Therefore
objects stored in page scope are only available to same pages on which they are created.

Suppose pagel forwards the request to page2. Objects stored in request scope remains available
to pagel as well to page 2. Similar case is true for page 3 & page 4.

If user makes a visit to all these pages in one session, object’s values stored in session scope
remains available on all these pages.

To understand the difference between sessions & application scope, consider the
following figure:

Client 1

— Session 1
%Hﬁll
, EL
Client 2 Cersioh ID 2

—+ Session 2

Client 1

SEMver

Client 2

As you can conclude from the figure, for each user (client), objects are stored in different
sessions. However, in the case of application scope, all users stores objects in single
place.

© Copyright Virtual University of Pakistan 364

Web Design and Development (CS506)

37.5 More JSP Action Elements

Let’s talk about two important action elements. These are include & forward.

37.5.1JSP include action Element

It is used to include files at request time. For example, to reuse HTML, JSP or plain text content. It’s
important to note that JSP content cannot affect main page (in which output is included); only output
of included JSP is used. It also allows updating of the included content without changing the main JSP.

The jsp: include action element requires two attributes: page & Flush.

e page: arelative URL of the file to be included.
e flush: must have the value ““true”

<jJsp:include page = “relative URL” Fflush = ““true” />

Jsp:include is being equivalent to following code of scriptlet. For example to include
the output of one.jsp , scriptlet code will look like:
<%
RequestDispatcher rd =request.getRequestDispatcher(“one.jsp”);
rd. include(request, response);
0>
Achieving above functionality using jsp:include action element will look like this:

<jsp:include page = “one.jsp” Tlush = “true” />

37.5.2JSP forward action Element

It is used to forward request to another resource. The format of jsp:forward action
IS:
<jsp:forward page = ““one.jsp” />

Jsp:forward is being equivalent to following code of scriptlet. For example to forward
the request to one.jsp , scriptlet code will look like:
<%
RequestDispatcher rd = request.getRequestDispatcher(“one.jsp™);
rd.forward(request, response);
%>

37.6 References:

e Java A Lab Course by Umair Javed.
e Core Servlets and JavaServer Pages by Marty Hall

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 365

Web Design and Development (CS506)

Lecture 38: JSP Custom Tags

To begin with, let’s review our last code example of lecture 36 i.e. Displaying course
outline. We incorporated JavaBeans to minimize the database logic from the JSP. But
still, we have to write some lines of java code inside java.jsp & web.jsp. As
discussed earlier, JSPs are built for presentation purpose only, so all the other code that
involves business and database logic must be shifted elsewhere like we used JavaBeans
for such purpose.

There is also another problem attached to it. Generally web page designers which have enough
knowledge to work with HTML and some scripting language, faced lot of difficulties in
writing some simple lines of java code. To overcome these issues, java provides us the
mechanism of custom tags.

38.1 Motivation

To give you an inspiration, first have a glance over the code snippet we used in JSP of the course
outline example of last lecture. Of course, not all code is given here; it’s just for your reference to
give you a hint.

<%
CourseDAO courseDAO = new CourseDAOQ); .
// iterating over ArrayList

for (e) {

........................ //displaying courseoutline
by

%>

Can we replace all the above code with one single line? Yes, by using custom tag we can write like
this:

<mytag:coursetag pageName=“java” />

By only specifying the course/page name, this tag will display the course outline in
tabular format. Now, you must have realized how significant changes custom tags can
bring on.

38.2 What is a Custom Tag?

e In simplistic terms, “a user defined component that is used to perform certain action”.
This action could be as simple as displaying ““hello world™” or it can be as complex as
displaying course outline of selected course after reading it from database.

e |t provides mechanism for encapsulating complex functionality for use in JSPs. Thus

© Copyright Virtual University of Pakistan 366

Web Design and Development (CS506)

38.3

38.5

facilitates the non-java coders.
We already seen & used many built in tags like:

O <jsp:useBean />
0 <jspiinclude />
0 <jsp:forward /> etc.

Why Build Custom Tag?

We introduced action <jsp:useBean> and JavaBeans to incorporate complex,
encapsulated functionality in a JSP.

However, JavaBeans cannot manipulate JSP content and Web page designers
must have some knowledge to use JavaBeans in a page

With Custom tags, it is possible for web page designers to use complex
functionality without knowing any java

Advantages of using Custom Tags
Provides cleaner separation of processing logic and presentation, than JavaBeans.

Have access to all JSP implicit objects like out, request etc.
Can be customized by specifying attributes.

Types of Tags

Three types of can be constructed. These are:

1. Simple Tag
2. Tag with Attribute
3. Tag with Body

38.5.1Simple Tag

A simple tag has the following characteristics:

Start and End of tag

No body is specified within tag
No attributes

For example

< mytag:hello />

Tag Library
Prefix Tag Name

© Copyright Virtual University of Pakistan 367

Web Design and Development (CS506)

38.5.2Tag with Attributes

A tag with attributes has the following characteristics:

Start and End of tag
Attributes within tag
No body enclosed
For example

< mytag:hello attribute = *“value” />

38.5.3Tag with Body

A tag with body has the following characteristics:
Start and End of tag
May be attributes

[]
[]
e Body enclosed within tag
e For example

< mytag:hello optional _attributes ... >
some body

</ mytag:hello >

38.6 Building Custom Tags

So far, we have used many built-in tags. Now the time has come to build your own one. Custom
tags can be built either by using JSP 1.2 specification or JSP 2.0 (latest) specification.

To develop custom tags using JSP 1.2 involves lot of cumbersome (too difficult for James
Gossling also&). However, JSP 2.0 brings lots of goodies like

e Simple tag extensions to build custom tags
Integrated Expression Language (will be discussed in coming lecture)
e Also provides an alternate mechanism for building custom tags using tag files

(tag)
e Improved XML syntax etc.

38.6.1Steps for Building Custom Tags
The following steps are used in order to develop your own custom tag. These are:

1. Develop the Tag Handler class
2. Write Tag library Descriptor (.tld) file
3. Deployment

© Copyright Virtual University of Pakistan 368

Web Design and Development (CS506)

38.6.2Develop the Tag Handler class

e Tag Handler is also a java class that is implicitly called when the associated tag is
encountered in the JSP.

e Must implement SimpleTag interface

e Usually extend from SimpleTagSupport class that has already implemented
SimpleTag interface.

e For example,

public class MyTagHandler extends SimpelTagSupport {

e doTag() method
0 By default does nothing

0 Need to implement / override to code/write functionality of tag
o0 Invoked when the end element of the tag encountered.

e JSP implicit objects (e.g. out etc) are available to tag handler class through
pageContext object.
e pageContext object can be obtained using getJspContext() method.
e For example to get the reference of implicit out object, we write.
0 PageContext pc = (PageContext) getJspContext();

0 JspWriter out = pc.getOut();

38.6.3Write Tag Library Discriptor (.tld) file

e Itisa XML based document.
e Specifies information required by the JSP container such as:
o0 Tag library version

o JSP version

0 Tag name

o Tag Handler class name
0 Attribute names etc.

Note: If you are using any IDE (like netBeans® 4.1, in order to build custom tags,
the IDE will write . thd file for you.

38.6.4 Deployment

e Place Tag Handler class in myapp/WEB-INF/classes folder of web
application.
e Place . tld file in myapp/WEB- INF/tlds folder of web application.

Note: Any good IDE will also perform this step on your behalf

© Copyright Virtual University of Pakistan 369

Web Design and Development (CS506)

38.7 Using Custom Tags

Use tagl ib directive in JSP to refer to the tag library. For example

<%@ taglib uri="TLD file name” prefix=“"mytag” %>

The next step is to call the tag by its name as defined in TLD. For example, if tag
name is hello then we write:

< mytag:hello />

where mytag is the name of prefix specified in tagl ib directive.

What actually happened behind the scenes? Container calls the doTag()
method of appropriate tag handler class. After that, Tag Handler will write the
appropriate response back to the page.

Example Code: Building simple tag that displays “Hello World”

Enough we have talked about what are custom tags, their types. Now, it is a time to
build a custom tag that displays ““Hello World™.

Approach

e Extend Tag Handler class from SimpleTagSupport class and override
doTag() method

e Build TLD file

e Deploy

Note: As mentioned earlier, if you are using any IDE (like netBeans® 4.1), the last two steps will
be performed by the IDE.

WelcomeTagHandler.java

package vu;

// importing required packages
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

// inheriting from SimpleTagSupport class
public class WelcomeTagHandler extends SimpleTagSupport {

// overriding doTag() method
public void doTag() throws JspException {

© Copyright Virtual University of Pakistan 370

Web Design and Development (CS506)

// obtaining the reference of out implicit object
PageContext pageContext = (PageContext)getJspContext();
JspWriter out = pageContext.getOut();

try {
out.printin(" Hello World "™);

} catch (Java.i1o0.10Exception ex) {
throw new JspException(ex.getMessage());

by
} 7/ end doTag() method

} 7/ end WelcomeTagHandler class

customtags.tld

If using IDE, this file will be written automatically. In this file you specify the tag name
along with Tag Handler class.

<?xml version="1.0" encoding=""UTF-8"?>

<taglib version="2.0" xmlns="http://java.sun.com/xml/ns/j2ee"
xmIns:xsi="http://ww.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/j2ee web-
Jsptaglibrary 2 0.xsd">

<tlib-version>1.0</tlib-version>

<short-name>mytag</short-name>

<l—the value of uri will be used in JSP to refer to this tld -->

<uri>/WEB-INF/tlds/customtags</uri>

<I—

Specifying the tag name and tag class. Also mentioning that

this tag has no body

-—>

<tag>

<name>we lcome</name>

<tag-class>vu.WelcomeTagHandler</tag-class>

<body-content>empty</body-content>

</tag>

</taglib>

© Copyright Virtual University of Pakistan 371

Web Design and Development (CS506)

index.jsp

<Yp—-—

using taglib directive, specifying the tld file name as well as
prefix. Note that you you use any value for the prefix attribtute
——0>

<W%@taglib uri="/WEB-INF/tlds/customtags.tld” prefix="mytag"” %>

<html>
<body>

<h2>A Simple Tag Example</h2>

<h3>

<%-- calling welcome tag with the help of prefix --%>
<mytag:welcome />

</h3>

</body>
</html>

38.8 Building tags with attributes

If you want to build a tag that can also take attributes, for example
<mytag:hello attribute="value” />

To handle attributes, you need to add
Instance variables and Corresponding setter methods

Behind the scenes, container will call these setter methods implicitly and pass the value
of the custom tag attribute as an argument.

Example Code: Building tag with attribute

In this example, we will modify our course outline example to incorporate tags. Based on
attribute value, the tag will display the respective course outline in tabular format.

Approach

e Extend Tag Handler class from SimpleTagSupport class
0 Add instance variable of type String

o Write setter method for this attribute

© Copyright Virtual University of Pakistan 372

Web Design and Development (CS506)

o0 Override doTag() method

e Build TLD file
e Deploy

CourseOutlineBean.java
This is the same file used in the last example

package vubean;
import java.io.™;
public class CourseOutlineBean implements Serializable{

private int sessionNo;
private String topic;
private String assignment;

// no argument constructor
public CourseOutlineBean() {
sessionNo = 0;

topic = "";

assignment = ""'';

¥

// setters

public void setSessionNo(int s){

sessionNo = s;

public void setTopic(String t){
topic = t;

public void setAssignment(String a){
assignment = a;

by

// getters

public int getSessionNo(){

return sessionNo;

by

public String getTopic(){

return topic;

}

public String getAssignment(){
return assignment;

by
} 7/ end class

© Copyright Virtual University of Pakistan 373

Web Design and Development (CS506)

CourseDAO.java

No changes are made to this file too.

package vu;

import java.io.™;
import java.sgl.*;
import java.util.™;
import vubean.*;

public class CourseDAO implements Serializable{
private Connection con;

public CourseDAO() {

establishConnection();

// method used to make connection with database
private void establishConnection(){

try{
// establishing conection

Class.forName("'sun.jdbc.odbc.JdbcOdbcDriver');

String conUrl = "jdbc:odbc:CourseDSN';
con = DriverManager.getConnection(conurl);

}catch(Exception ex){
System.out.printin(ex);
}

by

public ArrayList retrieveCourseList(String cName){

ArrayList courseList = new ArrayList();

try{

String sql = " SELECT sessionNo, topic, assignment ' +
" FROM Course, SessionDetail™ +

" WHERE courseName = ? ' +

" AND Course.courseld = SessionDetail.courselD ";
PreparedStatement pStmt = con.prepareStatement(sql);
pStmt.setString(l, cName);

© Copyright Virtual University of Pakistan

374

Web Design and Development (CS506)

ResultSet rs = pStmt.executeQuery();

int sNo;
String topic;
String assignment;

while (rs.next(Q)) {

sNo = rs.getInt('sessionNo™);

topic = rs.getString("topic™);

assignment = rs.getString('assignment™);

1T (assignment == null){

assignment = ""'';

ks

// creating a CourseOutlineBean object
CourseOutlineBean cBean = new CourseOutlineBean();

cBean.setSessionNo(sNo);
cBean.setTopic(topic);
cBean.setAssignment(assignment);

// adding a bean to arraylist
courseList.add(cBean);

}

}catch(Exception ex){
System.out.printin(ex);
} finally {

// to close connection
releaseResources();

by
// returning ArraylList object

return courseList;

} 7/ end retrieveCourseOutline

private void releaseResources(){

try{

1T(con = null){
con.close();

}

}catch(Exception ex){
System.out._printIn();

© Copyright Virtual University of Pakistan 375

Web Design and Development (CS506)

by

} 7/ end releaseResources

}// end CourseDAO

MyTagHandler.java

The tag handler class uses JavaBeans (CourseOutlineBean. java &
CourseDAO. java), and includes the logic of displaying course outline in tabular
format.

package vutag;

// importing package that contains the JavaBeans
import vubean.*;

import vu.*;

import javax.servlet.jsp.tagext.*;

import javax.servlet.jsp.*;

import java.util.™;

public class MyTagHandler extends SimpleTagSupport {

/*

Declaration of pageName property.
*/

private String pageName;

public void doTag() throws JspException {

CourseDAO courseDAO = new CourseDAO(Q);
ArrayList courselList = courseDAO.retrieveCourseList(pageName);

// to display course outline in tabular form, this method is
// used — define below
display(courseList);
¥
/*
Setter for the pageName attribute.
*/
public void setPageName(java.lang.String value) {
this.pageName = value;

}

/*
display method used to print courseoutline in tabular form
*/
private void display(ArrayList courseList)throws JspException{

© Copyright Virtual University of Pakistan 376

Web Design and Development (CS506)

PageContext pc = (PageContext)getJspContext();
JspWriter out = pc.getOut();

try{

// displaying table headers

out.print("’<TABLE BORDER=1 >');
out.print("'<TR>");

out.print('<TH> Session No </TH>");
out.print("’<TH> Topic </TH>");
out.print(*'<TH> Assignment </TH>");
out.print("'</TR>");

// loop to iterate over courselList
for (int i=0; i<courseList.size(); i++){

CourseOutlineBean courseBean =
(CourseOutlineBean)courseList.get(1);

// displaying one row

out.print(""'<TR>");

out.print(’<TD>" + courseBean.getSessionNo() + "'</TD>");
out.print('<TD>" + courseBean.getTopic() + "</TD>");
out.print("’<TD>" + courseBean.getAssignment() + "'</TD>");
out.print("</TR>");

}catchava.io. 10Exception ex){

throw new JspException(ex.getMessage());

3

by
} 7/ end clas MyTagHandler.java

mytaglibrary.tld

<?xml version="1.0" encoding=""UTF-8"?>

<taglib version="2.0" xmlns="http://java.sun.com/xml/ns/j2ee"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance™
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee web-
Jsptaglibrary 2 0.xsd">

<tlib-version>1_.0</tlib-version>

<short-name>mytagl ibrary</short-name>

<l—the value of uri will be used in JSP to refer to this tld -->

<uri>/WEB-INF/tlds/mytaglibrary</uri>

<1_

© Copyright Virtual University of Pakistan 377

Web Design and Development (CS506)

Specifying the tag name and tag class. Also mentioning that
this tag has no body

—_—>

<tag>

<name>coursetag</name>
<tag-class>vutag.MyTagHandler</tag-class>
<body-content>empty</body-content>

<1
Specifying the attribute name and its type
—-—>

<attribute>

<name>pageName</name>

<type>java. lang.String</type>

</attribute>

</tag>

</taglib>

out.print("'</TABLE>");

index.jsp

This page is used to display the course options to the user in the radio button form.

<html>
<body>
<h2>Select the page you want to visit</h2>

<form name=""myForm" action="controller.jsp” >
<h3>

<input type="‘radio’ name
Web Design & Development
</h3>

<h3>

<input type="‘radio’ name
Java

</h3>

<input type="'submit" value="Submit" />
</form>

</body>

</html>

"page" value="web"/>

"page" value="java'/>

© Copyright Virtual University of Pakistan

378

Web Design and Development (CS506)

controller.jsp

Based upon the selection made by the user, this page will redirect the user to respective
pages. Those are web.jspand java.jsp

<html>
<body>

<I-- scriptlet -->
<%
String pageName = request.getParameter(*'page™);

1T (pageName.equals(web™)) {
response.sendRedirect("'web. jsp™);

} else i1t (pageName.equals(java™)) {
response.sendRedirect(*'jJava. jsp');

}

%>

</body>
</html>

java.jsp

<%-- using taglib directive, specifying the tld file and prefix -
0>
<w@taglib uri="/WEB-INF/tlds/mytaglibrary.tld” prefix="mytag" %>

<html>

<body>

<center>

<h2> Welcome to Java Learning Center </h2>
<h3> Course Outline</h3>

<Yp—-—

calling coursetag and specifying java as attribute
value

——0p>

<mytag:coursetag pageName="java" />
</center>

</body>

</html>

© Copyright Virtual University of Pakistan 379

Web Design and Development (CS506)

web.jsp

<%-- using taglib directive, specifying the tld file and prefix -
0>

<w@taglib uri="/WEB-INF/tlds/mytaglibrary.tld” prefix="mytag" %>
<htmil>

<body>

<center>

<h2> Welcome to Java Learning Center </h2>

<h3> Course Outline</h3>

<Yp—-—

calling coursetag and specifying java as attribute

value

——0>

<mytag:coursetag pageName=""java'" />

</center>

</body>

</html>

38.9 References:

e Java A Lab Course by Umair Javed.
e Core Servlets and JavaServer Pages by Marty Hall

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 380

Web Design and Development (CS506)

Lecture 39: MVC + Case Study

We have covered an adequate amount of Servlets and JSPs in detail. Now, the time has come to learn
different architectures that are most commonly used for the sake of web development. These architectures
also help us to understand where these components best fit in. In this handout, we’ll cover the most
widely used/popular architecture i.e. Model

View Controller (MVC).

A small case study ““Address Book™ is also part of this handout that is based on MVVCModel 1. Before
moving on to MVC, let’s see what error pages are and how they are
used?

39.1 Error Page

Error Pages enables you to customize error messages. You can even hide them from the user's view
entirely, if you want. This also makes possible to maintain a consistent look and feel throughout an
application, even when those dreaded error messages are thrown.

By means of page directive, a JSP can be given the responsibility of an Error page. An Error JSP is called
by the web server when an uncaught exception gets occurred. This exception is passed as an instance of
jJava.lang.Throwable to Error JSP (also accessible via implicit exception object).

39.1.1Defining and Using Error Pages

isErrorPage attribute of a page directive is used to declare a JSP as an error page.

JSP pages are informed about the error page by setting errorPage attribute of page directive

In the figure below, error.jsp is defined as JSP Error page and index.jsp is informed to call
error.jsp if any uncaught exception rose. This is done by setting attributes errorPage and
isErrorPage of the page directive on these JSPs.

index.jsp error.jsp

<Ml page ... <@ page ...

erroPage="emor.jsp” Y= isEmrePage="trme" 4>
exception

© Copyright Virtual University of Pakistan 381

Web Design and Development (CS506)

39.2 Case Study — Address Book

What we have learned is going to be implemented in this Address Book example. Here MS-Access is being
used as DBMS. This database will have only one table, Person with following attributes

[FCpen b€ Deson glew X | 23 - Fi EE

Objacts B Person : Table ['__|E|E|
= nam addrass phonalumbear
Quzries ali el o 3231256
m mme ||_|m22 cliton 4329871

| P |suffian defence 6753311

B Reports Q
Pages recorc: 14 4 T k|l |r#|of s
E 14

39.2.1Ingredients of Address Book

Java Beans, Java Server Pages and Error Page that are being used in this Address Book Example are: -

Java Beans
e Personlnfo — Has following attributes:
O name
O address
0 phoneNum

e PersonDAO
0 Encapsulates database logic.

o Therefore, it will be used to save and retrieve Personinfo data.

Java Server Pages
e addperson.jsp
0 Used to collect new person info that will be saved in database.

e saveperson.jsp
0 Receives person info from addperson.jsp

o Saves it to database

e searchperson.jsp
0 Used to provide search criteria to search Person’s info by providing name

e showperson.jsp
0 This page receive person’s name from searchperson. jsp to search in
0 database
0 Retrieves and displays person record found against person name

Error Page
e addbookerror.jsp
0 This page is declared as an error page and used to identify the type of exception.

o In addition to that, it also displays the message associated with the received
exception to the user.

© Copyright Virtual University of Pakistan 382

Web Design and Development (CS506)

addperson|

Jsp L{ P'| savepejgon

rL].S'f_‘S

addbookerror
Jsp

JavaBeans

searchperson showperson
Jsp J5p
—

addperson. jsp takes person’s information from the user and sends it to

saveperson. jsp. After receiving request, saveperson. jsp makes an object of
PersonlInfo using received information and saves it into the database using PersonDAO
Java bean.

Similarly, searchperson. jsp takes search criteria (name) from the user and passes it to
showperson. jsp that searches the record in database using PersonDAO and shows the
results to the user.

If any uncaught exception is generated on these JSP, addbookerror. jspis called
implicitly, which displays an appropriate message to the user after identifying the exception type.

Code for the Case Study

Let’s have a look on the code of each component used in the case study; first start from
JavaBeans.

Personinfo
PersonlInfo represents the record of one person and its objects are used to interrupt the

information about persons.

package vu;
import java.io.™;
public class Personinfo implements Serializable{

private String name;
private String address;

© Copyright Virtual University of Pakistan 383

Web Design and Development (CS506)

private int phoneNum;

// no argument constructor
public Personinfo() {

name = "*';

address = :
phoneNum = O;

}

// setters
public void setName(String n){
name = n;

by

public void setAddress(String a){
address = a;

}

public void setPhoneNum(int pNo){
phoneNum = pNo;

¥

// getters

public String getName(){

return name;

}

public String getAddress(){
return address;

}

public int getPhoneNum(){
return phoneNum;

}

} 7/ end class Personlinfo

PersonDAO

This class will help in retrieving and storing person’s records in database. The code is
given below:

package vu;

import java.util_*;
import java.sgl.*;

public class PersonDAO{

private Connection con;

© Copyright Virtual University of Pakistan 384

Web Design and Development (CS506)

// default constructor
public PersonDAO() throws ClassNotFoundException , SQLException

establishConnection();

¥

// method used to establish connection with db

private void establishConnection() throws ClassNotFoundException
, SQLException

{

// establishing conection

Class.forName(*'sun. jdbc.odbc.JdbcOdbcDriver™);

String conUrl = "jdbc:odbc:PersonDSN';
con = DriverManager.getConnection(conurl);
by

// used to search the person records against name and returns
// the ArrayList that contains only those Personinfo objects
// which matches the search criteria i.e. name

public ArrayList retrievePersonList(String pName) throws
SQLException

{

ArrayList personList = new ArrayList();

// preparing query
String sql = " SELECT * FROM Person WHERE name = ?";

PreparedStatement pStmt = con.prepareStatement(sql);
pStmt.setString(1, pName);

// executing query
ResultSet rs = pStmt.executeQuery();

String name;
String add;
int pNo;

while (rs.next()) {
name = rs.getString('name™);

add rs.getString('address™);
pNo rs.getint('phoneNumber™);

// creating a CourseOutlineBean object
Personlnfo personBean = new Personinfo();

© Copyright Virtual University of Pakistan 385

Web Design and Development (CS506)

personBean.setName(name) ;
personBean.setAddress(add) ;
personBean.setPhoneNum(pNo) ;

// adding a bean to arraylist
personList.add(personBean);
} /7 end while

return personList;

} // end retrievePersonList

// this method accepts an object of Personlnfo, and stores it

// 1nto the database

public void addPerson(Personinfo person) throws SQLException{

String sql = " INSERT INTO Person(name, address, phoneNumber)
VALUES (2, 2?2, ?";

PreparedStatement pStmt = con.prepareStatement(sql);

String name = person.getName();
String add = person.getAddress();
int pNo = person.getPhoneNum();

pStmt.setString(1 , name);
pStmt.setString(2 , add);
pStmt.setint(3 , pNo);

pStmt.executeUpdate();
} // end addPerson

// overriding finalize method to release acquired resources
public void finalize() {

try{

if(con 1= null){
con.close();

}
}catch(SQLException sglex){

System.out.printin(sqlex);

}
} 7/ end Tinalize
} 7/ end PersonDAO class

© Copyright Virtual University of Pakistan 386

Web Design and Development (CS506)

Now let’s take a look at the code for JSP pages

addperson.jsp

This JSP page gets person record’s information from the user. It contains three Input Fields for
name, address and phone number as shown in the diagram. This page sends this information to
saveperson. jsp for further processing.

Address Book
Add New Person
Name
Address

Phone Number

save || clear

Search Person

The code that is used to generate the above page is given below:

<Yp—m—
Although there are no chances of exception to arise on this page,
for consistency, error page is defined on top of all JSPs

——0>

<%@page errorPage=""‘addbookerror.jsp"™ %>

<html>

<body>

<center>

<h2> Address Book </h2>
<h3> Add New Person</h3>

<%-- Form that contains Text input fields and sending it to
saveperson. jsp

——0>

<form name ="register' action='"'saveperson.jsp" />

<TABLE BORDER="1"" >

© Copyright Virtual University of Pakistan 387

Web Design and Development (CS506)

<TR>

<TD> <h4 > Name </h4> </TD>

<TD> <input type=""text" name="‘name' /> </TD>
</TR>

<TR>

<TD> <h4> Address </h4> </TD>

<TD> <input type=""text" name="‘address™ /> </TD>
</TR>

<TR>

<TD> <h4>Phone Number</h4> </TD>

<TD> <input type=""text" name="‘phoneNum" /> </TD>
</TR>

<TR>

<TD COLSPAN=""2" ALIGN="'CENTER" >

<input type="'submit" value="'save" />

<input type="‘reset" value="clear" />

</TD>

</TR>

</TABLE>

</form>

<h4>

<%-- A link to searchperson.jsp --%>

 Search Person
</h4>

</center>

</body>

</html>

saveperson.jsp

This JSP page gets data from the addperson. jsp, makes an object of Personlnfo and
saves it to the database using PersonDAO class. Apart from these, it also displays an
informative message to the user if new person record is saved successfully into thedatabase and
two hyperlinks to navigate on to the desired pages as shown in the following diagram:

New Person Record is saved successfully!
Add Person

Search Person

© Copyright Virtual University of Pakistan 388

Web Design and Development (CS506)

The code of this page is given below:

<%-- defining error page --%>
<%@page errorPage="addbookerror._jsp" %>

<%@ page import="java.sql.*" %>

<html>

<body>

<W-- creating PersonDAO object and storing in page scope --%>
<Jsp:useBean 1d="pDA0" class="'vu.PersonDAQO" scope="‘page" />

<%-- creating PersonBean object and storing In page scope --%>
<jJsp:useBean i1d="personBean' class="vu.PersonInfo'” scope = '‘page"
/>

<Yp—-

setting all properties of personBean object with input
parameters using *

——0>

<jsp:setProperty name='personBean" property="*" />

<Wp—-

to save Person record into the database, calling addperson
method of PersonDAO

——0>

<%

pDAO.addPerson(personBean) ;

%>

<center>
<h3> New Person Record is saved successfully!</h3>

<h4>

 Add Person

</h4>

<h4>

 Search Person
</h4>

</center>

</body>

</html>

© Copyright Virtual University of Pakistan 389

Web Design and Development (CS506)

searchperson.jsp

It gets search criteria from the user (i.e. name) and sends itto showperson. jsp to display the
search results. The outlook of the page is given below:

Address Book

Search Person

Name

[search] [clear]

Add Perzon

The code used to generate the above page given page is:

<%-- defining error page --%>
<W@page errorPage=""addbookerror.jsp" %>

<html>

<body>

<center>

<h2> Address Book </h2>
<h3> Search Person</h3>

<VYp——

Form that contains Text input field and sending i1t to
showperson. jsp

——0>

<form name ="search' action="'showperson.jsp" />

<TABLE BORDER="11" >

<TR>

<TD> <h4 >Name</h4> </TD>

<TD> <input type=""text" name="‘name' /> </TD>
</TR>

<TR>

<TD COLSPAN=""2"" ALIGN="'CENTER'"">

© Copyright Virtual University of Pakistan 390

Web Design and Development (CS506)

<input type="'submit' value="search" />
<input type="‘reset" value="clear" />
</TD>

</TR>

</TABLE>
</form>

<h4>
 Add Person
</h4>

</center>
</body>
</html>

showperson.jsp

showperson. jsp receives search criteria (i.e. name) from the searchperson.jsp,
that is entered by the user to find the matching record. This page retrieves the complete list of
matching records from the database using PersonDAO, and shows them to the user.

This following figure gives you the sight, when person named “saad” is searched.

Address Book

Following results meet your search criteria

Name Address PhoneNum
saad |gulberg (9200408

Add Perszon

Search Person

Below, the code of showperson.jsp is given:

<%-- defining error page --%>

<%@page errorPage=""addbookerror.jsp"™ %>
<%-- Emporting required packages --%>
<%@page import="java.util.*" %>

<%@page Import="vu.*" %>

<htmil>

© Copyright Virtual University of Pakistan 391

Web Design and Development (CS506)

<body>

<center>

<h2> Address Book </h2>

<h3> Following results meet your search criteria</h3>

<TABLE BORDER="1"" >

<TR>

<TH> Name </TH>

<TH> Address </TH>

<TH> PhoneNum </TH>

</TR>

<Jsp:useBean 1d="pDA0" class="'vu.PersonDAQO" scope="‘page" />
<%

// getting search criteria sent by searchperson.jsp

String pName = request.getParameter(‘'name');

// retrieving matching records from the Database using

// retrievePersonList() method of PersonDAO

ArrayList personList = personDAO.retrievePersonList(pName);

Personlnfo person = null;

// Showing all matching records by iterating over ArrayList
for(int i=0; i<personList.size(); i++) {
person = (Personlinfo)personList.get(i);

%>

<TR>

<TD> <%= person.getName()%> </TD>
<TD> <%= person.getAddress()%> </TD>
<TD> <%= person.getPhoneNum()%> </TD>
</TR>

<0

} // end for

%>

</TABLE >

 Add Person
 Search Person

</center>
</body>
</html>

addbookerror.jsp

This JSP error page is called implicitly by all other JSP pages whenever any uncaught

© Copyright Virtual University of Pakistan 392

Web Design and Development (CS506)

/unhandled exception occurs. It also finds out the type of the exception that is generated,and
shows an appropriate message to the user:

<%-- indicating that this is an error page --%>
<%@page isErrorPage=""true" %>

<¥%-- importing class --%>
<%@page import = "java.sql.SQLException' %>

<html>

<head>
<title>Error</title>
</head>

<body>
<h2>

Error Page
</h2>

<h3>

<%-- scriptlet to determine exception type --%>
<%

1T (exception instanceof SQLException) {

%>

An SQL Exception

<%

} else 1Tt (exception instanceof ClassNotFoundException){
0>

A Class Not Found Exception

<%

} else {

%>

A Exception

<%

} 7/ end if-else

%>

<%-- end scriptlet to determine exception type --%>
occured while interacting with the database

</h3>

© Copyright Virtual University of Pakistan 393

Web Design and Development (CS506)

<h3>

The Error Message was

<= exception.getMessage() %>

</h3>

<h3 > Please Try Again Later! </h3>

<Yp—-—

hyperlinks to return back to addperson.jsp or
searchperson.sjp

——0>

<h3>

Add Person

Search Person

</h3>

</body>

</html>

39.3 Model View Controller (MVC)

Now, more than ever, enterprise applications need to support multiple types of users with multiple
types of interfaces. For example, an online store may require an HTML front for Web customers,
a WML front for wireless customers, a JavaTM (JFC) / Swing interface for administrators, and an
XML-based Web service for suppliers

Classic Web Wireless el e ﬁuppliar
customer customer B2E agent

Enterprize
information system

Also, several problems can arise when applications contain a mixture of data access code,business
logic code, and presentation code. Such applications are difficult to maintain,because
interdependencies between all of the components cause strong ripple effects whenever a change is

© Copyright Virtual University of Pakistan 394

Web Design and Development (CS506)

made anywhere. High coupling makes classes difficult or impossible to reuse because they
depend on so many other classes. Adding new data views often requires re-implementing or
cutting and pasting business logic code, which then requires maintenance in multiple places. Data
access code suffers from the same problem, being cut and pasted among business logic methods.

The Model-View-Controller architecture solves these problems by decoupling data access,
business logic, and data presentation and user interaction. Such separation allows multiple views
to share the same enterprise data model, which makes supporting multiple clients easier to
implement, test, and maintain.

39.3.1Participants and Responsibilities

The individual’s responsibility of three participants (model, view & controller) is given below:

e Model
The model represents the state of the component (i.e. its data and the methods required to
manipulate it) independent of how the component is viewed or rendered.

e View

The view renders the contents of a model and specifies how that data should be presented.
There can be multiple views for the same model within single applications or model may
have different views in different applications or operating systems.

e Controller

The controller translates interactions with the view into actions to be performed by the
model. In a web application, they appear as GET and POST HTTP requests. The actions
performed by the model include activating business processes or changing the state of the
model. Based on the user interactions and the outcome of the model actions, the controller
responds by selecting an appropriate view.

39.3.2Evolution of MVVC Architecture

In the beginning, we used no MVC. Then we had MVC Model 1 and MVC Model 2 architectures.
And people came up with so called web application frameworks such as Apache Struts based on
Model 2 architecture. And finally we have a standard web based application framework i.e.
JavaServer Faces (JSF).

In this handout, we’ll only talk about MVC Model 1.

39.3.2.1 MVC Model 1

A Model 1 architecture consists of a Web browser directly accessing Web-tier JSP pages.The JSP
pages access JavaBeans that represent the application model. And the next view to display

(JSP page, servlet, HTML page, and so on) is determined either by hyperlinks selected in the
source document or by request parameters.

© Copyright Virtual University of Pakistan 395

Web Design and Development (CS506)

1
—_
Recpicsi ISP
- 1 pages
=) Response S
(] :
ava Bean | =
@
4 - J J
servlet Enterprise
Container Information

Systems (EIS)

In Model 1 architecture, view selection is decentralized, because the current page being displayed
determines the next page to display. In addition, each JSP page or servlet processes its own inputs
(parameters from GET or POST). And this is hard to maintain, for example, if you have to change
the view selection, then several JSP pages need to be changed. In some Model 1 architectures,
choosing the next page to display occurs in scriptlet code, but this usage is considered poor form.

In MVVC Model 1 architecture, the JSP page alone is responsible for processing the incoming
request and replying back to the client. There is still separation of presentation from content,
because all data access is performed using JavaBeans.

Although the Model 1 architecture should be perfectly suitable for simple applications, it may not
be desirable for complex implementations. Random usage of this architecture usually leads to a
significant amount of scriptlets or Java code embedded within the JSP page, especially if there is a
significant amount of request processing to be performed. While this may not seem to be much of
a problem for Java developers, it is certainly an issue if your JSP pages are created and maintained
by designers which are only aware of HTML and some scripting language.

Note: Probably some of you must be thinking about the case study discussed earlier inthis
handout. Indeed, it is based on MVC Model 1 architecture.

39.4 References:

e Java A Lab Course by Umair Javed
e Java BluePrints - J2EE Patterns
http://java.sun.com/blueprints/patterns/MV C-detailed.html
e Exploring the MVC Design Pattern
http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc.html

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 396

Web Design and Development (CS506)

Lecture 40: MVC Model 2 Architecture

We have studied page-centric approach and page-with-bean approach until now. You must be
wondering when we had covered these. Probably these buzz words are new one for you but we
already covered these topics. Let’s review these once again.

40.1 Page-Centric Approach

A web application that is collection of JSPs. Generally this approach is followed to get started with
developing web applications. This approach is represented in the following diagram:

request X
— ——-
~<— A — database

response

The page-centric approach has lot of draw backS such as the code becomes a mixture of
presentation, business and data access logic. The maintenance and up-gradation of the application
becomes a nightmare. Scaling of such kind of application is also difficult and lots of code is also
get duplicated.

40.1.1Page-with-Bean Approach (MVVC Modell)

This approach is different from page-centric approach in a way that all the business logic goes
into JavaBeans. Therefore, the web application is a collection of JSPs and JavaBeans. But still
this approach is insufficient to separate different kind of logics. We have made an address book
example in the last handout using this approach.

req uest

reapamae

© Copyright Virtual University of Pakistan 397

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

40.2 MVC Model 2 Architecture

This architecture introduces a controller. This controller can be implemented using JSP or
servlet. Introducing a controller gives the following advantages:
It centralizes the logic for dispatching requests to the next view based on:

e The Request URL
e Input Parameters
e Application state

It gives the single point of control to perform security checks and to record logging information
It also encapsulates the incoming data into a form that is usable by the back-end MVC model.

We’ll discuss it with the help of an example.

The following figure will help you to understand the architecture and functioning of the
application that is built using MVVC Model 2 architecture.

MVC Design Pattern

|
E
S (Controllen
Servlet
e
=
G -
E Redirect | 3 - —
L '..LE
b=
) P (V 3E“~‘ﬂ| j—' la'!fa”ﬂu’
Rasponse
 —

Servlet Container (Els)

The client (browser) sends all the requests to the controller. Servlet/JSP acts as the Controller and
is in charge of the request processing and creation of any beans or objects(Models) used by the
JSP.

JSP is working as View and there is not much processing logic within the JSP page itself,it is
simply responsible for retrieving objects and/or beans, created by the Servlet,extracting dynamic
content from them and put them into the static templates.

© Copyright Virtual University of Pakistan 398

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

40.3 Case Study: Address Book using MVVC Model 2

The address book example that is built using page-with-bean approach will be modified to
incorporate controller. We’ll show you how to implement controller using JSP as well as with
servlet. Let’s first incorporate controller using JSP.

40.3.1Introducing a JSP as Controller
Add another JSP (control ler . jsp) that

Acts as a controller Recieves requests from addperson. Jsp & searchperson. jsp
Identifies the page which initiates the request

Uses JavaBeans to save or search persons to/from database

Forwards or redirects the request to appropriate (saveperson. jJsp or

showperson. jsp) page.

The program flow of this example is shown in the following diagram:

addperson SE'FE_F.PEI’SDH
Jsp p S5

S

controller . addbookerror
(JSPiserviet) Exception . =) jsp

-

showperson
Jsp

-
-
Fa
ki‘r
searchperson 523

Jsp

PersonDAOQ

JavaBeans

As you can see in the diagram that all the requests are submitted to controller which uses the
JavaBeans and forwards/redirects the user to another view (JSP)? If any exception arises on
controller or JSPs, the control would automatically be transferred to addbookerror . jsp to
display an appropriate message.

40.3.2How controller differentiates between requests?

Most likely, you must be thinking about it. The simplest solution lies in using the consistent
name (e.g. action) of the submit button across all the pages but with different and unique values.

© Copyright Virtual University of Pakistan 399

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

The same rule applies to hyperlinks that send the action parameter along with value by using
query string technique.

This eases the controller’s job to identify which page is actually generated the request and what
to do next. The controller simply retrieves the value of action parameter using
request.getParameter () method. Now, if-else structure can be used to compare the
possible values of action to act upon the requested task.

Now, let’s first see the code of JavaBean that is used in this example.

Personinfo

This JavaBean is used to represent one person record. The code is given below:

package vu;
import java.io.™;
public class Personinfo implements Serializable{

private String name;
private String address;
private int phoneNum;

// no argument constructor
public Personinfo() {

name = ""';

address = ""';

phoneNum = 0O;

}

// setters
public void setName(String n){
name = n;

public void setAddress(String a){
address = a;

public void setPhoneNum(int pNo){
phoneNum = pNo;

}

// getters

public String getName(){
return name;

¥

public String getAddress(){
return address;

© Copyright Virtual University of Pakistan 400

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

}
public int getPhoneNum(){

return phoneNum;

+

} 7/ end class Personlinfo

PersonDAO

This class will help in retrieving and storing person’s records in database. The code is given
below:

package vu;

import java.util.>;
import java.sql.*;

public class PersonDAO{
private Connection con;

// default constructor
public PersonDAO() throws ClassNotFoundException , SQLException

establishConnection();

}

// method used to establish connection with db

private void establishConnection() throws ClassNotFoundException
,SQLExXception

{

// establishing conection

Class.forName("'sun. jdbc.odbc.JdbcOdbcDriver™);

String conUrl = "jdbc:odbc:PersonDSN';
con = DriverManager .getConnection(conurl);
}

// used to search the person records against name and returns
// the ArrayList that contains only those Personlnfo objects
// which matches the search criteria i1.e. name

public ArrayList retrievePersonList(String pName) throws
SQLException

(

ArrayList personList = new ArrayList();

// preparing query
String sql = " SELECT * FROM Person WHERE name = ?";

© Copyright Virtual University of Pakistan 401

Web Design and Development (CS506)

PreparedStatement pStmt = con.prepareStatement(sql);
pStmt.setString(1, pName);

// executing query
ResultSet rs = pStmt.executeQuery();

String name;
String add;
int pNo;

while (rs.next()) {

name = rs.getString('name'™);
add = rs.getString(address™);
pNo = rs.getInt(*'phoneNumber™);

// creating a CourseOutlineBean object
PersonlInfo personBean = new Personinfo();

personBean.setName(name) ;
personBean.setAddress(add) ;
personBean.setPhoneNum(pNo);

// adding a bean to arraylist

personList.add(personBean);

} /7 end while

return personList;

} 7/ end retrievePersonList

// this method accepts an object of Personlnfo, and stores it
// into the database

public void addPerson(Personinfo person) throws SQLException{

String sqgl = " INSERT INTO Person(name, address, phoneNumber)
VALUES (2, 2?2, ?2)";

PreparedStatement pStmt = con.prepareStatement(sql);
String name = person.getName();

String add = person.getAddress();
int pNo = person.getPhoneNum();

pStmt.setString(1 , name);

© Copyright Virtual University of Pakistan 402

Web Design and Development (CS506)

pStmt.setString(2 , add);
pStmt.setint(3 , pNo);

pStmt.executeUpdate();

} 7/ end addPerson
// overriding finalize method to release acquired resources
public void finalize() {

try{

if(con = null){
con.close();

+
}catch(SQLException sqglex){

System.out.printin(sglex);

}
} 7/ end Tinalize

} // end PersonDAO class

addperson.jsp

This page is used for entering a new person record into the database. Note that a hyperlink is also
given at the bottom of the page that takes the user to searchperson. jsp

Note: Since we are following MVC model 2 architecture, so all the hyperlinks will also sends the
request to controller first which redirects the user to requested page.

Address Book
Add New Person
MName
Address
Phone Number

save clear

Search Person

© Copyright Virtual University of Pakistan 403

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

The code of above page is given below:

<Yp—-—
Although there are no chances of exception to arise on this page,

for consistency, error page is defined on top of all JSPs
——0>

<%@page errorPage="addbookerror.jsp" %>

<html>
<body>
<center>

<h2> Address Book </h2>
<h3> Add New Person</h3>

<Yp—-—

As mentioned in MVC2, all the requests are submitted to
controller, that’s why action’s contains the value of
“controller.jsp”

——0>

<form name ="register’™ action="controller.jsp™ />
<TABLE BORDER="1"" >

<TR>

<TD> <h4> Name </h4> </TD>

<TD> <input type=""text" name="‘name" /> </TD>
</TR>

<TR>

<TD> <h4> Address </h4> </TD>

<TD> <input type=""text" name="‘address" /> </TD>
</TR>

<TR>

<TD> <h4>Phone Number</h4> </TD>

<TD> <input type="text" name="‘phoneNum™ /> </TD>
</TR>

<TR>

<TD COLSPAN=""2" ALIGN=""CENTER"">

<Yp—-—

As described above the technique to differentiate
between the requests, the name of the button is
“action” with value “save”.

——0>

<input type="'submit' name ="action" value="save" />
<input type="‘reset” value="clear" />

</TD>

</TR>

© Copyright Virtual University of Pakistan 404

Web Design and Development (CS506)

</TABLE>

</form>

<h4>

<W—-

The hyperlink will also sends the request to controller
Note the action parameter with its value are also part of
hyperlink using the query string technique.

——0>

Search Person

</h4>

</center>

</body>

</html>

searchperson.jsp

This JSP is used to search the person record against name given in the text field. A hyperlink is
also given at the bottom of addperson.jsp.

Address Book

Search Person

Name

search][clear]

Add Person

The code that is used to generate that above page is given below:

<%-- defining error page --%>

<%@page errorPage=""addbookerror.jsp"™ %>

<html>

<body>

<center>

<h2> Address Book </h2>

<h3> Search Person</h3>

<form name ="search' action=""controller._jsp' />
<TABLE BORDER="1"" >

<TR>

© Copyright Virtual University of Pakistan 405

Web Design and Development (CS506)

<TD> <h4> Name </h4></TD>
<TD> <input type=""text" name="‘name" /> </TD>
</TR>

<TR>
<TD COLSPAN=""2"" ALIGN="'CENTER"'>

<Yp——
The name of the button is still “action” but with

different value ‘“‘search”.
——0>

<input type="'submit' name ="action" value='"search” />
<input type="‘reset" value="'clear" />

</TD>

</TR>

</TABLE>

</form>

<h4>

<VYp——

The action parameter with different value “addperson” are
part of hyperlink here as well.

——0>

Add Person

</h4>

</center>

</body>

</html>

controller.jsp

As mentioned earlier that control ler . jsp identifies the page which initiates the request and
use JavaBeans to save/search persons to/from database. Also its job list includes redirecting the
user to appropriate page.

Since this JSP is doing only processing therefore no view available. Let’s check it out its code:

<%-- defining error page --%>
<%@page errorPage="addbookerror.jsp" %>

<%-- Emporting required packages. package vu contains JavaBeans -
0>

<%@page import ="java.util_*" %>

© Copyright Virtual University of Pakistan 406

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

<%@page Import = "‘vu.*" %>

<html>
<body>

<%-- declaring PersonDAO object--%>
<jJsp:useBean 1d="pDA0" class="'vu.PersonDAO" scope="‘page" />

<Yp—-
scriptlet to identify JSP for redirection purpose if request

comes from hyperlinks
——0>

<%

// retrieving action parameter value

// Remember that “action” is the name of buttons as well
// it is used i1n hyperlinks in making of query string
String action = request.getParameter(action');

// it "Add Person™ hyperlink is clicked
it (action.equals(addperson™)){
response.sendRedirect('addperson. jsp');

// it "Search Person™ hyperlink is clicked
} else 1Tt (action.equals('searchperson')){
response.sendRedirect(''searchperson. jsp');

// 1T "save" button is clicked of addperson.jsp
}else it (action.equals(save™)) {

00>

// declaring Personlnfo obeject
<Jsp:useBean i1d="personBean' class="vu.Personlnfo" scope="page'/>

<W—-

setting all properties of personBean object with input
parameters using *

——0>

<jsp:setProperty name='personBean’ property="*" />
<%-- to insert record iInto database--%>

<%

pDAO.addPerson(personBean) ;

// redirecting user to saveperson.jsp
response.sendRedirect(''saveperson. jsp');

%>

© Copyright Virtual University of Pakistan 407

Web Design and Development (CS506)

<W-- 1f ""search' button is clicked on searchperson.jsp --%>
<%

}else it (action.equals('search™)) {

String pName = request.getParameter(''name');

ArrayList personList = pDAO.retrievePersonList(pName);

// storing personList(contains PersonInfo objects) into

// request hashmap

request.setAttribute("'list’, personList);

%>

<Yp—-

forwarding request to showperson.jsp to retrieve stored arraylist
“‘list”)

——0>

<jJsp:forward page="'showperson.jsp” />

<%

} 7/ end if page == search

%>

</body>

</html>

saveperson.jsp

This page displays a successful message indicating that person record is saved. Its also give the
options to the user to move on to addperson. jJsp or searchperson. jsp through
hyperlinks. Note that these hyperlinks also first take the user to control ler . jsp then on to
requested page.

New Person Record is saved successfully!
Add Person

Search Person

The code of saveperson. jsp is given below:

<%-- defining error page --%>

<%@page errorPage="‘addbookerror.jsp" %>
<htmil>

<body>

<center>

© Copyright Virtual University of Pakistan 408

Web Design and Development (CS506)

<h3> New Person Record i1s saved successfully!</h3>

<h4>

Add Person

</h4>

<h4>

Search Person

</h4>

</center>

</body>
</html>

showperson.jsp

This following figure gives you the view when name “saad” is searched.

Address Book

Following results meet your search criteria

Name |Address PhoneNum
saad |gulberg 9200408

Add Person

Search Person

Below, the code of showperson. jsp is given:

<%-- defining error page --%>

<%@page errorPage="addbookerror.jsp" %>
<%-- Emporting required packages --%>
<%@page import="java.util.*" %>

<%@page Import="'vu.*'" %>

<html>

© Copyright Virtual University of Pakistan 409

Web Design and Development (CS506)

<body>

<center>

<h2> Address Book </h2>

<h3> Following results meet your search criteria</h3>

<TABLE BORDER="1"" >
<TR>

<TH> Name </TH>
<TH> Address </TH>
<TH> PhoneNum </TH>
</TR>

<%

// retrieving arraylist stored on controller.jsp to display
// Personlnfo objects

ArrayList personList =
(ArrayList)request.getAttribute("'list™);

Personlnfo person = null;

for(int i=0; i<personList.size(); i++) {

person = (Personlinfo)personList.get(i);
%>

<%-- displaying Personlnfo details--%>

<TR>

<TD> <%= person.getName()%> </TD>

<TD> <%= person.getAddress(Q%> </TD>

<TD> <%= person.getPhoneNum()%> </TD>

</TR>

<%

} // end for

%>

</TABLE >

<h4>

 Add Person
Search Person
</h4>

</center>

</body>

</html>

addbookerror.jsp

User will view this page only when any sort of exception is generated. The code of this page is
given below

© Copyright Virtual University of Pakistan 410

Web Design and Development (CS506)

<%-- 1ndicating that this is an error page --%>
<%@page isErrorPage=""true" %>

<¥%-- importing class --%>
<%@page import = "java.sqgl.SQLException" %>

<html>

<head>
<title>Error</title>
</head>

<body>
<h2>

Error Page
</h2>

<h3>

<%-- scriptlet to determine exception type --%>
<%

1T (exception instanceof SQLException) {

%>

An SQL Exception

<%

} else 1Tt (exception instanceof ClassNotFoundException){
%>

A Class Not Found Exception

<%

} else {

%>

A Exception

<%

} 7/ end if-else

%>

<%-- end scriptlet to determine exception type --%>
occured while interacting with the database

</h3>

<h3>
The Error Message was

© Copyright Virtual University of Pakistan 411

Web Design and Development (CS506)

<%= exception.getMessage() %>

</h3>

<h3 > Please Try Again Later! </h3>

<W—-

hyperlinks to return back to adperson.jsp or
searchperson.sjp

——0>

<h3>

Add Person

Search Person

</h3>

</body>

</html>

JSP is the Right Choice as a Controller?

Since JSP that is performing the job of controller is doing only processing and there is no view
available of it. It includes the logic of selecting JSP and to retrieve/store records from/to dataset
using JavaBeans.

But remember the reason for introducing JSPs? JavaServer Pages are built for presentation (view)
only so JSP is really not a good place for such kind of logic. Concluding, what’s the option we
have? The answer is, use Servlets as controller.

Introducing a Servlet as Controller

Remove the controller. jsp from the previous example code and add
ControllerServlet.java (a servlet) into this example.This
ControllerServilet. java performs the same job that was previously performed by
controller.jsp.

Besides adding ControllerServlet. java, you have to modify all the addresses which
are previously pointing to controller.jsp. For example the value of action attribute of
Torm tag & the address of hyperlink in all concerned pages.

If controller is defined inweb.xmlas an alias of ControllerServlet.java, consider the
following fragment of code which shows the value of action attribute of form tag before and after
introducing change.

When controller.jsp is acting as a controller
<form name ="register" action=""controller.jsp"* />

When ControllerServlet.java is acting as a controller then value of action attribute becomes:

© Copyright Virtual University of Pakistan 412

Web Design and Development (CS506)

<form name ="register" action=""controller™ />

Similarly, the following comparison shows the code of hyperlinks used in the previous example
before and after making changes

When controller.jsp is acting as a controller

Search Person
<fa>

When ControllerServlet.java is acting as a controller

Search Person
<la>

Passing Exceptions to an Error JSP from a Servlet

Servlet can use existing error pages (like addbookerror.jsp) to pass on the exceptions. Set the
request attribute to javax.servlet.jsp.JspExcpetion with the exception object
you want to pass. After that forwards the request to error page.

For example, the following code snippet is taken from ControllerServlet.java to
demonstrate how to pass SQLExceptionto addbookerror.jsp

}catch (SQLException sqlex){

// setting SQLException instance i i
request.setAttribute('jJavax.servlet. jsp.JspException™ , sqlex);

RequestDispatcher rd =
request.getRequestDispatcher("addbookerror.jsp™);

rd.forward(request, response);
} // end catch
ControllerServlet.java

The following code is of servlet that is acting as a controller

package controller;
import vu.*;
import java.io.™;

import java.net.*;
import java.sgl.*;

© Copyright Virtual University of Pakistan 413

Web Design and Development (CS506)

import java.util_*;

import javax.servlet.*;
import javax.servlet_http.*;

public class ControllerServlet extends HttpServilet {

// This method only calls processRequest()
protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

}

// This method only calls processRequest()
protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

}

protected void processRequest(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
I0Exception

{

// retrieving value of action parameter

String userAction = request.getParameter(‘action);

// it request comes to move to addperson.jsp from hyperlink
iIT (userAction.equals(“'addperson™)) {
response.sendRedirect(addperson. jsp');

// if request comes to move to searchperson.jsp from hyperlink
} else 1Tt (userAction.equals(*'searchperson™)) {
response.sendRedirect('searchperson. jsp™);

// it “save” button clicked on addperson.jsp to add new record
} ifT (userAction.equals('save™)) {

// this method defined below

addPerson(request, response) ;

// it “search” button clicked on searchperson.jsp for search

} else 1t (userAction.equals('search'))

{
// this method defined below

© Copyright Virtual University of Pakistan 414

Web Design and Development (CS506)

searchPerson(request, response);

}

} 7/ end processRequest()

// it request comes to add/save person

private void addPerson(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

try

{ _ _

// creating PersonDAO object
PersonDAO pDAO = new PersonDAO(Q);

// creating Personinfo object
Personlnfo person = new Personinfo();

// setting properties of Person object

// setting name property

String pName = request.getParameter(‘'name');
person.setName(pName) ;

// setting address propertyt
String add = request.getParameter(*'address™);
person.setAddress(add);

// setting phoneNumb property

String pNo = request.getParameter(*'phoneNum™);
int phoneNum = Integer.parselnt(pNo);
person.setPhoneNum(phoneNum) ;

// calling PersonDAO method to save data into database
pDAO.addPerson(person);

// redirecting page to saveperson.jsp
response.sendRedirect(''saveperson. jsp');

}catch (SQLException sqlex){

// setting SQLException instance
request.setAttribute('jJavax.servlet. jsp.JspException”™ , sqlex);

RequestDispatcher rd =
request.getRequestDispatcher (*'addbookerror.jsp');

© Copyright Virtual University of Pakistan 415

Web Design and Development (CS506)

rd.forward(request, response);

}catch (ClassNotFoundException cnfe){
// setting ClassNotFoundException instance
request.setAttribute("javax.servlet. jsp.JspException™ , cnfe);

RequestDispatcher rd =
request.getRequestDispatcher (*'addbookerror.jsp'™);
rd. forward(request, response);

}
}// end addperson()

// if request comes to search person record from database
private void searchPerson(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception{

try {

// creating PersonDAO object
PersonDAO pDAO = new PersonDAOC(Q);

String pName = request.getParameter(''name');

// calling DAO method to retrieve personlist from database
// against name

ArrayList personList = pDAO.retrievePersonList(pName);
request.setAttribute("'list’, personList);

// forwarding request to showpeson, so 1t can render personlist
RequestDispatcher rd =
request.getRequestDispatcher (*'showperson. jsp');

rd. forward(request, response);

}catch (SQLException sqlex){
// setting SQLException instance
request.setAttribute(""javax.servlet. jsp.JspException™ , sqglex);

RequestDispatcher rd =

request.getRequestDispatcher (*'addbookerror.jsp'™);

rd. forward(request, response);

}catch (ClassNotFoundException cnfe){

// setting ClassNotFoundException instance
request.setAttribute('jJavax.servlet. jsp.JspException™ , cnfe);
RequestDispatcher rd =

request.getRequestDispatcher (*'addbookerror.jsp');

© Copyright Virtual University of Pakistan 416

Web Design and Development (CS506)

rd.forward(request, response);

}

}// end searchPerson()
} 7/ end ControllerServiet

web.xml

As you already familiar, for accessing a servlet, you need to define a URL pattern in
web . xml. This is shown below:

<?xml version="1.0" encoding=""UTF-8"?>

<web-app>

<servlet>

<servlet-name> ControllerServlet </servlet-name>
<servlet-class> controller.ControllerServlet </servlet-class>
</servlet>

<servlet-mapping>

<servlet-name> ControllerServlet </servlet-name>
<url-pattern> /controller </url-pattern>
</servlet-mapping>

</web-app>

40.4 References:

e Java A Lab Course by Umair Javed.
e Java E-commerce course at Stanford

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 417

Web Design and Development (CS506)

Lecture 41: Layers and Tiers

How do you structure an application to support such operational requirements as maintainability,
reusability, scalability and robustness? The answer lies in using Layers and Tiers? What different
technologies Java provides to support layered or tiered architectures. The answer to these questions
will remain our focus in this handout. A small case study will also be used to comprehend the
concept of layers.

41.1 Layersvs. Tiers

Layers are merely logical grouping of the software components that make up the application or
service, whereas Tiers refer to the physical residence of those layers.

In general,
Layers — represents the logical view of application
Tiers — represents physical view of application

However, both terms are used intractably very often. You must be confused what does logical &
physical view mean? Let’s elaborate layers and tiers further in detail to differentiate between them.

41.1.1Layers

The partitioning of a system into layers such that each layer performs a specific type of
functionality and communicates with the layer that adjoins it.

The separation of concerns minimizes the impact of adding services/features to an application.
The application developed in layers also enables tiered distribution(discussed later). Furthermore
easier maintenance, reuse of code, high cohesion & loose coupling sort of additional benefits are
also enjoyed by the use of tiered architecture.

To begin with, layered architecture based on three layers. These are

e Presentation Layer
e Business Layer
e Data Layer

Note: However, there is no upper limit of number of layers an application can have. Each layer
can also be further break down into several layers depending upon the requirements and size of
the application.

© Copyright Virtual University of Pakistan 418

Web Design and Development (CS506)

The figure given below shows a simplified view of an application and its layers.

. =
Lszrs

)

Pre=ertaton Layears

Business Layvers p
Cata Layers

Dn_l_:u E_nu rees ‘ Services

; 2
FBp |

h = S

As you can see in the figure, users can only interact with the presentation layer. The presentation
layer passes the user request to the business layer, which further passes the request to the data
layer. The data layer communicates with the data sources (like Database etc.) or other external
services in order to accomplish the user request.

Let’s discuss each layer’s responsibility in detail:

41.1.1.1 Presentation Layer
It provides a user interface to the client/user to interact with the application. This is the only part
of the application visible to client.

Its job list includes collecting user’s input, validating user’s input (on client side using JavaScript
like technologies OR on server side), presenting the results of the request made by the user and
controlling the screen flow (which page/view will be visible to the user).

41.1.1.2 Business Layer

Also called application layer, it is only concerned with the application specific functionality. It is
used to implement business rules and to perform business tasks.

For example, in a banking system, this layer will provide the functionality of banking functions
such as opening an account, transferring of balance from one account to another, calculation of
taxes etc.

41.1.1.3 Data Layer

It is concerned with the management of the data & data sources of the system. Data sources can
be database, XML, web services, flat file etc. Encapsulates data retrieval & storage logic For

© Copyright Virtual University of Pakistan 419

Web Design and Development (CS506)

example, the address book application needs to retrieve all person records from a database to
display them to the user.

41.1.2Tiers

As mentioned, layers help in building a tiered architecture. Like layers, there is no restriction on
using number of tiers. An application can be based on Single-tier, Two-tier,Three-tier or N-Tier
(application which have more than three tiers). The choice of using a tiered architecture is
contingent to the business requirements and the size of the application etc.

Tiers are physically separated from each other. Layers are spread across tiers to build up an
application. Two or more layers can reside on one tier. The following figure presents a three-tier
architectural view of an application.

Browser Prezentation ar E Client machine

- e

Web Server { Wek er

o e Server machine
Application SEa—y
______businesslLayer |

Server

DB Server { T EiSLayer | .. DB machine
- L E

The client tier represents the client machine where actually web browser is running and usually
displays HTML. You can think of a Presentation as of two parts; one is on client side, for
example, HTML. There is also a presentation layer that is used to generate the client presentation
often called server presentation. We’ll discuss about it later.

The server machine can consist on a single server machine or more. Therefore, it is possible web
server is running on one server machine while application server on another. Web server is used
to execute web pages like JSPs whereas application server is used to run special business objects
like Enterprise JavaBeans (discussed later). The web layer and applications server can be on two
separate machines or they can be on same tier as shown in the diagram.

The database server is often running on a separate tier, i.e. DB machine often called Enterprise
information tier.

© Copyright Virtual University of Pakistan 420

Web Design and Development (CS506)

41.2 Layers Support in Java

The secret of wide spread use of Java lies in providing specific technology for each layer.This not
only eases the development by freeing the programmer for caring operational features but only
reduces the production time of the software.

In the following figure, Presentation is bifurcated into two layers. These are Client Presentation
layer and Server Presentation Layer. What client sees in a browser forms client presentation layer

while server presentation layer includes the Java technology components (JSP and Servlets etc.)
that are used to generate the client presentation.

Layers JavalJ2EE Technology

ClientPresentation HTML/Applets

S P tati JSP/ Servlets
Frameworks(Struts, JSF etc)

On business layer, JavaBeans (also referred as Plain Old Java Objects (POJO)) can be used.
While moving towards a bigger architecture, the J2EE provides the special class that fits in
business layer i.e. Enterprise JavaBean (EJB).

EJBs are special java classes that are used to encapsulate business logic. They provide additional
benefits in building up an application such as scalability, robustness,scalability etc.

On data layer, Data Access Objects (DAO) can be used. Similarly you can use connectors. There
are other different specialized components provided in java that ease the development of data
layer.

41.3 J2EE Multi-Tiered Applications

In a typical J2EE Multi-Tiered application, a client can either be a swing based application or a
web based. As you can see in the following figure, clients can access the web server from behind
the firewall as well.

© Copyright Virtual University of Pakistan 421

Web Design and Development (CS506)

Suppose, our client is HTML based. Client does some processing on HTML and transports it to
web server. JSP and Servlets are possible technologies that can be used in a web server. However,
there are some Frameworks such as JSF etc that can be used in a web server. The classes which
form the presentation layer reside on web server and of course controllers are also used over here.

Firewall

JZ2EE
Application

Server

Client Middle
Tier Tier

Enterprise
Infermation
Tier

If web server, wants to perform some business process, it usually gets help from some business
layer components. The business layer component can be a simple JavaBean (POJO) but in a
typical J2EE architecture, EJBs are used. Enterprise JavaBeans interacts with the database or
information system to store and retrieve data.

EJBs and JSP/Servlets works in two different servers. As you already know, JSP and Servlets
runs in a web server where as EJBs requires an application server. But, generally application
server contains the web server as well.

Application server including web server generally resides on a single tier (machine),which is
often called middle tier. This tier stores and retrieves data from the Enterprise Information Tier
(EIS) which is a separate tier. The response sends back to the client by the middle tier can be
HTML, XML etc. This response can be seen on the separate tier know as client tier.

41.4 Case Study: Matrix Multiplication using Layers

Problem Statement

Calculate product of two matrices of order 2 * 2
Result of multiplication should be stored in DB as well as shown to the user.

Format
¢ Input format

© Copyright Virtual University of Pakistan 422

Web Design and Development (CS506)

o input will be in 4,2,6,5 format separated by commas where 4,2 represents entries of
the first row

e Display format
o Displays the matrix as a square

e Storage format for DB
o Matrix will be stored as a string in the database along with the order of the matrix

o The following figure shows the table design that will be used to store the results.

abDle L]
Fidld Mame Dzta Type Y
¢ |id AutoMumber
mCrder Text
myalues Text

Layer by Layer View

A picture’s worth than thousand words. Therefore, before jumping on to code, let’s put a glance
over layers that will be used in this small case study. The classes that will be used on each layer
and what functionality each class will perform will also be discussed.

First, look on the following picture that will describe the whole story.

Client side HTML
Presentation layer

& S

i Matrixresult
Server side Matrl_xmput isp
Presentation layer -1sp :
Controller layer [ControllerServlet] f
l =
a
—
&
Business layer [MatrixMultiplier] é
4
l Y
>
-
Data layer [MatrixDAD]

© Copyright Virtual University of Pakistan 423

Web Design and Development (CS506)

The data layer has a class MatrixDAO that is used to save the matrix result into database. As
mentioned in the problem statement, that resultant matrix should be saved in the database. So,
Matr i xXDAO is used to accomplish that.

MatrixDAO called by the MatrixMultiplier, a business layer class. The functionality list
of MatrixMultiplier includes:

[Converting the user input string (e.g. 2,3,4,1) into a proper object i.e. a matrix data structure.
- Helps in calculating product of two matrices.

Controller layer’s class ControllerServlet calls the MatrixMultiplier. This layer
calls the various business methods (like multiplication of two matrices) of business layer class
and got the resultant matrix. Furthermore, ControllerServlet sends the output to the
matrixresult.jsp and receives the input from

matrixinput. jsp.

The MatrixBean representing matrix data structure, as you can see in the figure is used across
several layers. In fact, the object formed by MatrixMultiplier from a user
input string is of MatrixBean type. It is used to transfer data from one layer to another.

First, look on the MatrixBean code given below:

MatrixBean

package bo;
import java.io.*;
public class MatrixBean implements Serializable{

// a 2D array representing matrix
public int matrix[J[] ;

// constructor

public MatrixBean()

{

matrix = new Int[2][2];
matrix[0][0]
matrix[0][1]
matrix[1][0]
matrix[1][1]
}

// setter that takes 4 int values and assigns these to array
public void setMatrix(int w, int x, Iint vy, Int z)

[oNeoNeoNe

{
matrix[0][0] = w;
matrix[0][1] = x;

© Copyright Virtual University of Pakistan 424

Web Design and Development (CS506)

matrix[1][0] = vy;
matrix[1][1] = z;
ks

// getter returning a 2D array
public int[][] getMatrix()

{

return matrix;

}

// used to convert 2D array into string
public String toString()

{

return matrix[O0][O0] + ", + matrix[O][1] + ", +
matrix[1][O0] + *," +matrix[1][1] ;
}

} // end MatrixBean

matrixinput.jsp

This JSP is used to collect the input for two matrices in the form of string such as 2,3,5,8.The data
will be submitted to Control lerServlet from this page.

<html>
<body>

<h2>
Enter Two Matrices of order 2 * 2 to compute Product
</h2>

<h3>

<Yp—-—

“controller” i1s an alias/URL pattern of ControllerServlet
——0>

<form name="matrixlnput”™ action="controller™ >

First Matrix:

<input type=""text' name

Second Matrix:

<input type=""text' name

<input type = "'submit” value = "Calculate Product" />
</form>

</h3>

</body>

</html>

"firstMatrix" /> E.g. 2,3,4,1

"secondMatrix' />

© Copyright Virtual University of Pakistan 425

Web Design and Development (CS506)

ControllerServlet

This servlet acting as a controller receives the input from matrixinput.jsp. Furthermore,it will
interact with the business layer class MatrixMultiplier to convert the string into a MatrixBean
object, and to multiply two matrices.

package controller;

import bl._.*;
import bo.* ;

import java.io.™;
import java.net.*;

import javax.servlet.*;
import javax.servlet_http.*;
public class ControllerServlet extends HttpServlet {

// This method only calls processRequest()
protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

by

// This method only calls processRequest()
protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

}

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

// retrieving values from input fields of matrixinput.jsp
String sMatrixl = request.getParameter('firstMatrix');
String sMatrix2 = request.getParameter(*'secondMatrix’™);

// Creating MatrixMultipler object
MatrixMultiplier mm = new MatrixMultiplier();

// Passing Strings to convertToObject() method of
MatrixMultiplier

© Copyright Virtual University of Pakistan 426

Web Design and Development (CS506)

// convertToObject() is used to convert strings into MatrixBean
MatrixBean fMatrix = mm.convertToObject(sMatrixl);
MatrixBean sMatrix = mm.convertToObject(sMatrix2);

// passing MatrixBean’s objects to multiply() method of

// MatrixMultiplier and receiving the product matrix in the form
// of MatrixBean

MatrixBean rMatrix = mm.multiply(fMatrix, sMatrix);

// saving results in database
mm.saveResult(rMatrix);

// storing the product of matrices into request, so that it can
be

// retrieved on matrixresult.jsp
request.setAttribute("'product’, rMatrix);

// forwarding request to matrixresult.jsp
RequestDispatcher rd =
request.getRequestDispatcher("'matrixresult.jsp’);
rd. forward(request, response);

} 7/ end processRequest()

} 7/ end ControllerServilet

MatrixMultiplier

The business layer class that’s primary job is to calculate product of tow matrices given in the
form of MatrixBean. This class also has a method convertToObject that takes a String and
returns back a MatrixBean object. MatrixMultiplier will also interact with the data layer class
MatrixDAO to store results in the database.

package bl;
import bo.*;
import dal.*;

public class MatrixMultiplier {

//constructor
public MatrixMultiplier() {

¥
// used to convert a String (like 2,3,4,5) into a MatrixBean

object

public MatrixBean convertToObject(String sMatrix){
//splitting received string into tokens by passing “,” as
//delimeter

© Copyright Virtual University of Pakistan 427

Web Design and Development (CS506)

String tokens[] = sMatrix.split(","™);

//creating MatrixBean object
MatrixBean matrixBO = new MatrixBean();

// converting tokens into integers

int w = Integer.parselnt(tokens|[0]);
int X = Integer.parselnt(tokens[1]);
int y = Integer.parselnt(tokens[2]);
int z = Integer.parselnt(tokens|[3]):;

// setting values into MatrixBean object by calling setter
matrixBO.setMatrix(w , X , Yy, Z);

return matrixBO;
} 7/ end convertToObject()

// used to multiply two matrices , receives two MatrixBean
objects

// and returns the product in the form of MatrixBean as well
public MatrixBean multiply(MatrixBean fMatrix , MatrixBean
sMatrix)

{

// creating MatrixBean object where product of the matrices will
// be

// stored

MatrixBean resultMatrix = new MatrixBean();

// retrieving two dimensional arrays from MatrixBeans object to
// perform multipication

int matrixA[1 1 fMatrix.getMatrix();

int matrixB[][] sMatrix.getMatrix();

int matrixC[][1] resultMatrix.getMatrix();

// code to multiply two matrices

for (int 1=0; 1<2; 1++) {

for (int j=0; j<2; j++) {

for (int k=0; k<2; k++) {

matrixC[i][J] += (matrixA[i][Kk] * matrixB[K][J]):
+

ks
// storing the product from 2d array to MatrixBean object by

// calling setter

resultMatrix.setMatrix(matrixC[0][0], matrixC[O][1],
matrixC[1][0], matrixC[1][1]):

return resultMatrix;

© Copyright Virtual University of Pakistan 428

Web Design and Development (CS506)

} 7/ end multiply(Q

// save results (MatrixBean containg product of two matrices)
//into

// database using DAO

public void saveResult(MatrixBean resultMatrix)

{

try{
dao = newMatrixDAOQ);}

catch(ClassNotFoundException e){}
catch(SQLException e){}
dao.saveMatrix(resultMatrix);

}
} 7/ end MatrixMulitplier

MatrixDAO dao = null;

MatrixDAO

As class name depicts, it is used to store product results into database. Let’s look on the
code to see how it is accomplished.

package dal;

import java.util_*;
import java.sgl.*;
import bo.*;

public class MatrixDAO{
private Connection con;

// constructor
public MatrixDAO() throws ClassNotFoundException , SQLException

establishConnection();

¥

// method used to establish connection with db

private void establishConnection() throws ClassNotFoundException
,SQLEXception

{

// establishing conection

class.forName(*'sun. jdbc.odbc.JdbcOdbcDriver™);

String conUrl = "jdbc:odbc:MatrixDSN';
con = DriverManager.getConnection(conurl);

¥

// used to store MatrixBean into database after converting It to
// a String

public void saveMatrix(MatrixBean matrix){

try

{

© Copyright Virtual University of Pakistan 429

Web Design and Development (CS506)

String sql = "INSERT INTO Matrix(mOrder, mValues) VALUES (?,?)";
PreparedStatement pStmt = con.prepareStatement(sql);

// converting MatrixBean into String by calling toString()
String sMatrix = matrix.toString();

// setting order of matrix
pStmt.setString(1 , "2*2");

// setting matrix values in the form of string
pStmt.setString(2 , sMatrix);

pStmt.executeUpdate();
}catch(SQLException sqglex){
System.out.printin(sglex);

}

} // end saveMatrix

// overriding finalize method to release acquired resources
public void finalize() {

try{
if(con = null){
con.close();

}catch(SQLException sex){
System.out.printin(sex);

}
} 7/ end fTinalize

} 7/ end MatrixDAO class

matrixresult.jsp

Used to display resultant product of two matrices. The code is given below:

<%-- Emporting ‘“bo” package that contains MatrixBean --%>
<%@ page import="bo.*"%>

<html>

<body>

<h1>The resultant Matrix is </hl>

© Copyright Virtual University of Pakistan 430

Web Design and Development (CS506)

<W—-
retrieving MatrixBean object from request, that was set on

ControllerServlet
__%>

<%
MatrixBean productMatrix =
(MatrixBean)request.getAttribute(*'product™);

// retrieving values in 2d array so that it can be displayed
int matrix[][] = productMatrix.getMatrix() ;
%>

<%-- displaying MatrixBean’s object values --%>
<TABLE>

<TR>

<TD> <%= matrix[0][O0] %> </TD>
<TD> <%= matrix[O0][1] %> </TD>
</TR>

<TR>

<TD> <%= matrix[1][0] %> </TD>
<TD> <%= matrix[1][1] %> </TD>
</TR>

</TABLE>

</body>

</html>

web.xml

<?xml version="1.0" encoding=""UTF-8"?>

<web-app>

<servlet>

<servlet-name> ControllerServlet </servlet-name>
<servlet-class> controller.ControllerServlet </servlet-class>

</servilet>

© Copyright Virtual University of Pakistan 431

Web Design and Development (CS506)

<servlet-mapping>
<servlet-name> ControllerServlet </servlet-name>
<url-pattern> /controller </url-pattern>

</servlet-mapping>

</web-app>

41.5 References:

e Java A Lab Course by Umair Javed.
e Java Passion by Sang Shin

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 432

Web Design and Development (CS506)

Lecture 42: Expression Language

Sun Microsystems introduced the Servlet API, in the later half of 1997, positioning it as a
powerful alternative for CGI developers who were looking around for an elegant solution that was
more efficient and portable than CGl (Common Gateway Interface)programming. However, it
soon became clear that the Servlet API had its own drawbacks, with developers finding the
solution difficult to implement, from the perspective of code maintainability and extensibility. It
IS in some ways, this drawback that prompted the community to explore a solution that would
allow embedding Java Code in HTML - JavaServer Pages (JSP) emerged as a result of this
exploration.

Java as the scripting language in JSP scares many people particularly web page designers which
have enough knowledge to work with HTML and some scripting language, faced lot of
difficulties in writing some simple lines of java code. Can we simplify this problem to ease the
life of web designer? Yes, by using Expression Language (EL).

JavaServer Pages Standard Tag Library (JSTL) 1.0 introduced the concept of the EL but it was
constrained to only the JSTL tags. With JSP 2.0 you can use the EL with template text.

Note: - JSTL will be discussed in the following Handout.

42.1 Overview

The Expression Language, not a programming or scripting language, provides a way to simplify
expressions in JSP. It is a simple language that is geared towards looking up objects, their
properties and performing simple operations on them. It is inspired form both the ECMAScript
and the XPath expression language.

42.2 JSP Before and After EL

To add in motivational factor so that you start learning EL with renewed zeal and zest, a
comparison is given below that illustrates how EL affects the JSPs.

The following figure depicts the situation of a JSP before EL. We have to declare a variable
before using it, data type must be known in advance and most importantly have to use awkward
syntax and many more. All these problems are highlighted in the following figure:

© Copyright Virtual University of Pakistan 433

Web Design and Development (CS506)

{ 1. Must Declare] 2. ML[St Know Type]

AN L

Person p = (Person) request getAttribute("person’)

Person Name: <%= p.getName() %>

().equals(‘defence”)) [%>

\

4. Knowledge of Scripting
Language required even
for simple manipulations

| 3. Awkward Syntax]

JSP before EL

Contrary to the above figure, have a look on the subsequent figure that gives you a hint how

useful EL can be?

[1. Direct access] F Easier syntax]

/

Person Name: § { p.name }

<c:iftest = “$ [p.address == param.add }" »
${p.name }
</cif>

accessible

[4. Better adapted expression language]

[3. All app data easily]

JSP After EL

© Copyright Virtual University of Pakistan

434

Web Design and Development (CS506)

42.3 Expression Language Nuggets

We’ll discuss the following important pieces of EL. These are:

Syntax of EL

Expressions & identifiers

Arithmetic, logical & relational operators
Automatic type conversion

Access to beans, arrays, lists & maps
Access to set of implicit objects

42.3.1EL Syntax

The format of writing any EL expression is:

$ { validExpression }

The valid expressions can consist on these individuals or combination of these given below:

e Literals

e Operators

e Variables (object references)

e Implicit call to function using property name
e EL Literals

The list of literals that can be used as an EL expression and their possible values are given in the

tabular format below:

Literals Literal Values
Boolean true or false
Integer Similarto Java e.g. 243,-9642

Floating Point | Similarto Javae g 54.67,1.83

String Anv string delimited by single ordouble quotee.g.

“hello™ . ‘hello’

Null Wull

Examples of using EL literals are:
${ false } <%-- evaluates to false --%>
${ 8*3 } <%-- evaluates to 24 --%>

© Copyright Virtual University of Pakistan 435

Web Design and Development (CS506)

e EL Operators
The lists of operators that can be used in EL expression are given below:

Tvpe Operator
Arithmetic +-* /{div) % (mod)
Grouping 0
Logical & &(and) ||(or) linot)
Felational ==(eq) !=(ne) < (It) = (gt) == (le} >=(ge)

_ The empty operator is a prefix operation used to determineif
Empty -

avalue is null or emptv. Itreturns a Boolean value.

Conditional 7

Let us look at some examples that use operators as valid expression:

o ${(6*5)+5} <%--evaluate to 35 --%>
e ${ (x>=min) && (x <= max) }
e ${ empty name }
O Returns true if name is
= Empty string (“7),
= Null etc.
e EL Identifiers

Identifiers in the expression language represent the names of objects stored in one of the JSP
scopes: page, request, session, or application. These types of objects are referred to scoped
variables throughout this handout.

EL has 11 reserved identifiers, corresponding to 11 implicit objects. All other identifiers
assumed to refer to scoped variables.

e EL implicit Objects
The Expression Language defines a set of implicit objects given below in tabular format:

© Copyright Virtual University of Pakistan 436

Web Design and Development (CS506)

Category Implicit Object Operator
The context for the JSP page, used to access the JSP
JSP pageContext
implicit objects such as request, response, session,
pageScope A Map associating names & values of page scoped
attributes
Scopes requestScope A Map associating names & values of request scoped
attributes
sessionScope A Map associating names & values of session scoped
attributes
applicationScope A Map associating names & values of application
scoped attributes
Maps a request parameter name to a single String
Request | Param
parameter value.

Parameters paramValues Maps a request parameter name to an array of values
Request header Maps a request header name to a single header value.
Headers headerValues Maps a request header name to an array of value.
Cookies cookie A Map storing the cookies accompanying the request by

name
Initialization initParam A Map storing the context initialization parameters of
Parameters the web application by name

Examples of using implicit objects are:

e ${ pageContext.response }
0 Evaluatesto response implicit object of JSP

e ${ param.name }
0 This expression is equivalent to calling request.getParameter(“name™) ;

e ${ cookie.name.value }
0 Returns the value of the first cookie with the given name

o] Equivgl1e:nt(to i N O IS¢ 3
i cookie.getName() -equals(““name”
String val = cookie.getValue();

© Copyright Virtual University of Pakistan

437

Web Design and Development (CS506)

Example Code: Summation of Two Numbers using EL

This simple example demonstrates you the capabilities of EL. index. jsp is used to collect
input for two numbers and their sum is displayed on result. jsp using EL.
Let’s first see the code of 1ndex. jsp

index.jsp

<html>

<body>

Enter two numbers to see their sum
<form action="result.jsp" >

First Number :

<input type=""text" name="‘numl' />

Second Number:

<input type=""text" name="‘num2" />

<input type="'submit’” value="Calculate Sum' />

</form>
</body>
</html>
result.jsp
<html>
<body>
<%-- The code to sum two numbers if we used scriptlet
<%
String nol = request .getParameter('numl’™);
String no2 = request .getParameter('num2"™);
int numl = Integer.parselnt(nol);
int num2 = Integer.parselnt(no2);

%>
Result i1s: <%= numl + num2 %>
——0p>

<%-- implicit Object param iIs used to access request parameters
By Using EL summing two numbers

——0>

Result is: ${param.numl + param.num2}

</body>

</html>

© Copyright Virtual University of Pakistan 438

Web Design and Development (CS506)

42.3.2 EL Identifiers (cont.)

We had started our discussion on EL identifiers. Let’s find out how these identifiers (variables)
can be stored/retrieved in/from different scopes.

e Storing Scoped Variables

By using java code, either in pure servlet or in a scriptlet of JSP, we can store variables in a
particular scope. For example,

o0 Storing a variable in session scope using Java code
Assume that we have PersonlInfo class and we want to store its object p in
session scope then we can write the following lines of code to accomplish that:

HttpSession ses = request.getSession(true);

Personlnfo p = new PersonInfo();
p.setName(“al1™);
ses.setAttribute(“person” , p);

o Storing a variable in request scope using Java code
For the following lines of code, assume that request is of HttpServletRequest type. To
store PersonInfo object p in request scope, we’ll write:

PersonInfo p = new PersonInfo();

p.setName(“ali1);
request.setAttribute(“person” , p);

You must be thinking of some another method (with which you are already familiar) to store
a variable in a scope, certainly by using JSP action tags, we learned how to store a variable in
any particular scope.

o Storing a variable in request scope using JSP action tag
If we want to store p of type PersoniInfo in request scope by using JSP action tags,
then we’ll write:

<Jsp:useBean i1d="p” class="Personlnfo”

scope=""request’’/>

Later, you can change the properties of object p by using action tag as well.For example
<Jsp:setProperty name=“p” property=“name” value=“ali1”
/>

e Retrieving Scoped Variables

You are already very much familiar of retrieving any stored scoped variable by using java
code and JSP action tags. Here, we’ll discuss how EL retrieves scoped variables. As already
mentioned, identifiers in the valid expression represent the names of objects stored in one of
the JSP scopes: page, request, session and application.

© Copyright Virtual University of Pakistan 439

Web Design and Development (CS506)

When the expression language encounters an identifier, it searches for a scoped variable with
that name first in page scope,then in request scope,then in session scope,and finally in

application scope
Note: - If no such object is located in four scopes, null is returned.

For example, if we’ve stored Personlnfo object p in session scope by mean of any
mechanism discussed previously and have written the following EL expression to access the name
property of p
${p.name}

Then EL searches for p first in page scope, then in request scope, then in session scope where it
found p. After that it calls p.getName() method. This is also shown in pictorial form below:

, pagepage scope

i it

request scope

Searching Order

F Ty

session scope
L W—J Found,

- Calls getName()

Discoverad

- Undiscoverad

42.3.3 EL Accessors

The dot (.) and bracket ([]) operator let you access identifies and their properties. The dot
operator typically used for accessing the properties of an object and the bracket operator is
generally used to retrieve elements of arrays and collections.

e Dot (.) operator

Assume that JavaBean PersonInfo has name property and its object person is stored in
some scope. Then to access the name property of person object, we’ll write the following

expression using EL:

© Copyright Virtual University of Pakistan 440

Web Design and Development (CS506)

${person.name}

! !

identifier property

The EL accesses the object’s properties using the JavaBeans conventions therefore getName ()
must be defined in PersonlInfo. Moreover, if property being accessed itself an object, the dot
operator can be applied recursively. For example

S{user.address.city}

[I

Object & property of
property address

identifier

e Bracket ([]) operator

This operator can be applied to arrays & collections implementing List interface e.g.
ArrayList etc.
0 Index of the element appears inside brackets

0 Forexample, ${ personList[2] } returns the 3rd element stored in it

Moreover, this operator can also be applied to collections implementing Map interface e.g.
HashMap etc.
o0 Key is specified inside brackets

o Forexample, ${ myMap[““id”] } returns the value associated with the

42.3.4EL — Robust Features

Some powerful characteristics of Expression Language are:

e Multiple expressions can be combined and intermixed with static text. For example
$ { “Hello” ${user.firstName} ${user.lastName} }

e EL also supports automatic type conversion; as a result primitive can implicitly wrap and
unwrap into/from their corresponding java classes. For example

begin = “5{ =tudent.marks }*~
int “ Integer
Behind the scenes

e Most importantly, if object/identifier is null, no NullPointerException would be
thrown&. For example. If the expression written is:

${person.name}

© Copyright Virtual University of Pakistan 441

Web Design and Development (CS506)

Assume that person is null, then no exception would be thrown and the result would also be

null.

42.3.5Using Expression Language

Expression Language can be used in following situations

e As attribute values in standard & custom actions. E.g.
<jsp:setProperty id = “person” value = ${..} />

e Intemplate text — the value of the expression is inserted into the current output. E.g.
<h3> $ { .. } </h3>

e With JSTL (discussed in the next handout)

Example Code: AddressBook using EL

So far, we have shown you implementation of AddressBook example in number of different ways.
This time EL will be incorporated in this example. AddressBook code example consists on
searchperson. jsp, showperson. jsp,ControllerServlet, Personlnfo and
PersonDAO classes. Let’s look on the code of each of these components:

Personinfo.java
The JavaBean used to represent one person record.

package vu;

import java.io.*;

public class Personinfo implements Serializable{
private String name;

private String address;

private int phoneNum;

// no argument constructor

public Personinfo() {

name = "'"*;

address = ""';

phoneNum = O;

¥

// setters

public void setName(String n){
name = n;

by

public void setAddress(String a){
address = a;

© Copyright Virtual University of Pakistan 442

Web Design and Development (CS506)

public void setPhoneNum(int pNo){
phoneNum = pNo;

¥

// getters

public String getName(){
return name;

by

public String getAddress(){
return address;

by

public int getPhoneNum(){
return phoneNum;

}
+

PersonDAO.java
It is used to retrieve/search person records from database.

package vu;
import java.util_*;
import java.sgl.*;

public class PersonDAO{
private Connection con;

// constructor

public PersonDAO() throws ClassNotFoundException , SQLException {
establishConnection();

}//used to establish connection with database

private void establishConnection()

throws ClassNotFoundException , SQLException{

// establishing connection

Class.forName("'sun. jdbc.odbc.JdbcOdbcDriver™);

String conUrl = "jdbc:odbc:PersonDSN';
con = DriverManager.getConnection(conurl);

}

// used to search person records against name
public ArrayList retrievePersonList(String pName)
throws SQLException

{

ArrayList personList = new ArrayList();

© Copyright Virtual University of Pakistan 443

Web Design and Development (CS506)

String sql = " SELECT * FROM Person WHERE name = ?";

PreparedStatement pStmt = con.prepareStatement(sql);
pStmt.setString(1, pName);

System.out.printIn('retrieve person list");
ResultSet rs = pStmt.executeQuery();

String name;

String add;

int pNo;

while (rs.next()) {

name = rs.getString('name™);

add rs.getString(“'address™);
pNo rs.getint("'phoneNumber'™);

// creating a PersonInfo object
Personlnfo personBean = new Personinfo();

personBean.setName(name) ;
personBean.setAddress(add);
personBean.setPhoneNum(pNo) ;
// adding a bean to arraylist
personList.add(personBean);

} 7/ end while

return personList;

} // end retrievePersonList

//overriding finalize method to release resources
public void finalize() {
try{

if(con = null){
con.close();

}

}catch(SQLException sex){
System.out.printin(sex);
}

} 7/ end finalize

} 7/ end class

searchperson.jsp
This JSP is used to gather person’s name from the user and submits this data to the

ControllerServlet.

© Copyright Virtual University of Pakistan 444

Web Design and Development (CS506)

<html>
<body>

<center>
<h2> Address Book </h2>
<h3> Search Person</h3>

<FORM name ="'search" action="‘controllerservilet" />
<TABLE BORDER="1"" >

<TR>

<TD> <h4 >Name</h4> </TD>

<TD> <input type=""text" name="name' /> </TD>
</TR>

<html>
<body>

<center>
<h2> Address Book </h2>
<h3> Search Person</h3>

<FORM name ="search" action="‘controllerservilet'" />
<TABLE BORDER="'1"" >

<TR>

<TD> <h4 >Name</h4> </TD>

<TD> <input type=""text" name="‘name" /> </TD>
</TR>

ControllerServlet.java
The Controller Servlet receives request from searchperson.jsp and after fetching search results

from database, forwards the request to showperson.jsp.
package controller;

import vu.*;

import java.util.™;

import java.io.™;

import java.net.*;

import javax.servlet.™;
import javax.servlet._http.*;

public class ControllerServlet extends HttpServlet {

© Copyright Virtual University of Pakistan 445

Web Design and Development (CS506)

// This method only calls processRequest()

protected void doGet(HttpServletRequest request,
HttpServletResponse response throws ServletException, 10Exception
e)

{

processRequest(request, response);

}

// This method only calls processRequest()
protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

processRequest(request, response);

by

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{

// defined below

searchPerson(request, response);

} 7/ end processRequest()

protected void searchPerson(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, I0Exception

{
try {

// creating PersonDAO object
PersonDAO pDAO = new PersonDAOC(Q);

// retrieving request parameter “name” entered on showperson.jsp
String pName = request.getParameter('name');

// calling DAO method to retrieve personlist from database
// against the name entered by the user
ArrayList personList = pDAO.retrievePersonList(pName);

// storing personlist In request scope, later it iIs retrieved
// back on showperson.jsp
request.setAttribute("plist'”, personList);

// forwarding request to showperson, so i1t renders personlist
RequestDispatcher rd =
request.getRequestDispatcher(*'showperson. jsp™);

rd. forward(request, response);

© Copyright Virtual University of Pakistan 446

Web Design and Development (CS506)

}catch (Exception ex) {
System.out.printIn("'Exception is" + ex);

}

} // end searchPerson

} 7/ end ControllerServiet

showperson.jsp

This page is used to display the search results. To do so, it reclaims the stored ArrayList
(personList) from the request scope. Furthermore, this page also uses the Expression Language
to display records.

<%-- Emporting required packages--%>
<%@page Import="java.util.*" %>
<%@page Import="‘vu.*' %>

<html>
<body>
<center>

<h2> Address Book </h2>

<h3> Following results meet your search criteria</h3>
<TABLE BORDER=""1" >

<TR>

<TH>Name</TH>

<TH>Address</TH>

<TH>PhoneNum</TH>

</TR>

<%-- start of scriptlet --%>

<%

// retrieving ArrayList from request scope
ArrayList personList =(ArrayList)request.getAttribute("'plist’);
PersonInfo person = null;

for(int i=0; i<personList.size(); i++) {
person = (Personinfo)personList.get(i);

// storing PersonInfo object In request scope
/* As mentioned, an object must be stored in
some scope to work with Expression Language*/
request.setAttribute('p", person);

%>

<%-- end of scriptlet --%>

<TR>
<%-- accessing properties of stored Personlnfo
object with name “p” using EL --%>

© Copyright Virtual University of Pakistan 447

Web Design and Development (CS506)

<TD> ${ p-.name } </TD>

<TD> ${ p-address} </TD>

<TD> ${ p-phoneNum} </TD>

<%-- The following expressions are now replaced
by EL statements written above--%>
<%-- <%= person.getName()%> --%>
<%-- <%= person.getAddressQ%> --%>
<%-- <%= person.getPhoneNum(Q%> --%>
</TR>

<%

} 7/ end for

%>

</TABLE >

</center>

</body>

</html>

web.xml

<?xml version="1.0" encoding=""UTF-8"?>

<web-app>

<servlet>

<servlet-name> ControllerServlet </servlet-name>
<servlet-class> controller.ControllerServlet </servlet-class>
</servlet>

<servlet-mapping>

<servlet-name> ControllerServlet </servlet-name>
<url-pattern> /controllerservlet </url-pattern>
</servlet-mapping>

</web-app>

42.4 References:

e Java A Lab Course by Umair Javed.

e Expression Language Tutorial by Sun
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSPIntro7.html

e The JSTL Expression Language by David M. Geary
http://www.informit.com/articles/article.asp?p=30946&rl=1

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 448

Web Design and Development (CS506)

Lecture 43: JavaServer Pages Standard Tag Library (JSTL)
43.1 Introduction

The JSP Standard Tag Library (JSTL) is a collection of custom tag libraries that implement
general-purpose functionality common to Web applications, including iteration and
conditionalization, data management formatting, manipulation of XML, and database access. Like
JSP, JSTL is also a specification not an implementation. The development theme of JSTL is
“scriptlet free JSP”.

These tag libraries provide a wide range of custom action functionality that most JSP authors have
found themselves in need of in the past. Having a defined specification for how the functionality
is implemented means that a page author can learn these custom actions once and then use and
reuse them on all future products on all application containers that support the specification.
Using the JSTL will not only make your JSPs more readable and maintainable, but will allow you
to concentrate on good design and implementation practices in your pages.

43.2 JSTL & EL

JSTL includes supports for Expression Language thus EL can be used to specify dynamic
attribute values for JSTL actions without using full-blown programming language. Prior to JSP
2.0, EL can only be used in attributes of JSTL tags but EL now becomes a standard part of JSP
2.0. This allows the use of EL anywhere in the document.

43.3 Functional Overview

As mentioned, JSTL encapsulates common functionality that a typical JSP author would
encounter. This set of common functionality has come about through the input of the various
members of the expert group. Since this expert group has a good cross-section of JSP authors and
users, the actions provided in the JSTL should suit a wide audience.While the JSTL is commonly
referred to as a single tag library, it is actually composed of four separate tag libraries:

Core—>contains tags for conditions, control flow and to access variables etc.

XML manipulation—>contains tags for XML parsing and processing

SQL—>contains tags for accessing and working with database.

Internationalization and formatting—>contains tags to support locale messages, text, numbers
and date formation

43.4 Twin Tag Libraries

JSTL comes in two flavors to support various skill set personal

e Expression Language (EL) version
0 Dynamic attribute values of JSTL tags are specified using JSTL expression

© Copyright Virtual University of Pakistan 449

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

language (i.e. ${ expression })
0 The EL based JSTL tag libraries along with URIs and preferred prefixes are given
below in tabular format

Library URI Prefix
Core http://java.sun.com/jsp/jstl/core c
SQL http://java.sun.com/jsp/jstl/sql sqgl
Internationalization/ http://java.sun.com/jsp/jstl/fmt fmt
XML http://java.sun.com/jsp/jstl/xml X

e Request Time (RT) version

o Dynamic attribute values of JSTL tags are specified using JSP expression
(i.e. <%= expression %>)

0 The RT based JSTL tag libraries along with URIs and preferred prefixes are given
below in tabular format

Library URI Prefix
Core http://java.sun.com/jsp/jstl/core_rt crt
SQL http://java.sun.com/jsp/jstl/sql_rt sql_rt
Intemationalizatian/ http://java.sun.com/jsp/jstl/fmt_rt fmt_rt
XML http://java.sun.com/jsp/jstl/xml_rt x_rt

43.5 Using JSTL

As we discussed earlier, JSTL includes four standard tag libraries. As is true with any JSP custom
tag library, a tagl ib directive must be included in any page that you want to be able to use this
library's tags.

For example, to use EL based core tag library, the tagl ib directive appears as:
<h@taglib prefix=“c” uri=http://java.sun.com/jsp/jstl/core %>

And to use RT based core tag library, the tagl 1b directive appears as:
<w@taglib prefix=“c_rt” uri=http://java.sun.com/jsp/jstl/core_rt
%>

© Copyright Virtual University of Pakistan 450

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

43.6 Working with Core Actions (tags)

The set of tags that are available in the Core tag library come into play for probably most anything
you will be doing in your JSPs such as:

Manipulation of scoped variables
Output

Conditional logic

loops

URL manipulation

and Handling errors.

Let’s walk through some important core actions:
c:set

Provides a tag based mechanism for creating and setting scope based variables. Its syntax is as
follows:

<c:set var=“name” scope = “scope” value = “expression” />

Where the wvar attribute specifies the name of the scoped variable, the scope attribute indicates
which scope (page | request | session | application) the variable resides in, and the value attribute
specifies the value to be bound to the variable. If the specified variable already exists, it will simply
be assigned the indicated value. If not, a new scoped variable is created and initialized to that value.

The scope attribute is optional and default to page.

Three examples of using c:set are given below. In the first example, a page scoped variable

“timezone™ is set to a value““Asia / Karachi™.
<c:set var=‘“timezone” value=“Asia/Karachi” />

In the second example, a request scoped variable “email’”” email is set to a value
“me@gmail.com”

<c:set var=“email” scope="request” value=“me@gmail.com” />

In the third example, a page scoped variable “email’ is set to value of request parameter*‘email™
by using param implicit object. If email parameter is defined in JSP page as:

<input type="text” value = “email” />

Then c:set tag would be used as:
<c:set var=“email” scope="request” value=“param.email” />

Using c:set with JavaBeans & Map

c:set tag can also be used to change the property of a bean or the value against some key. For
this purpose, the syntax of the c:set tag would look like this:

© Copyright Virtual University of Pakistan 451

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

<c:set target=“bean/map” property="property/key” value=*“value”
/>

If target is a bean, sets the value of the property specified. This process is equivalent to
<Jsp:setProperty .. />JSP action tag.

If target is a Map, sets the value of the key specified

And of course, these beans and maps must be stored in some scope prior to any attempt is made
to change their properties.

For example, consider the following snippet of code that stores Personinfo’s object person into
request scope using <jsp:useBean .. />tag. Thenusing c:settag,
person’s name property is set to “ali”’.

<Jsp:useBean id=“person” class=*“vu.PersonInfo” scope=“request”
/>

<c:set target=“person” property =*“name” value = “ali” />

c:out

A developer will often want to simply display the value of an expression, rather than store it.

This can be done by using c:out core tag, the syntax of which appears below:
<c:out value = “expression” default = “expression” />

This tag evaluates the expression specified by its vallue attribute, and then prints the result. If
the optional default attribute is specified, the c:out action will print its

(default) value if the value attribute's expression evaluates either to null or an empty String.
This tag is equivalent to JSP expression i.e. <%=expression %>.

Consider the following examples in which the usage of c:out tag has shown. In the first
example, string “Hello” would be displayed

<c:out value = “Hello” />

In the second example, if request parameter num evaluates to null or an empty string then default
value “0” would be displayed.

<c:out value = “${param.num}” default = “0” />

The above fragment of code is equivalent to following scriptlet:

<%
String no = request.getParameter(“‘num’);

if (no == null |] no.equals(“™)) {

© Copyright Virtual University of Pakistan 452

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

System.out.printin(0);

Yelse{
Out.printin(no);

%>

If we want to display the property of a bean like name, we’ll write
<c:out value= “${person.name}” default = “Not Set” />

c.remove

As its name suggests, the c:remove action is used to delete a scoped variable, and takes two
attributes. The wvar attribute names the variable to be removed, and the optional scope attribute

indicates the scope from which it should be removed and defaults to page.

For example, to remove a variable named square from page scope, we’ll write:
<c:remove var = *‘‘square” />

And if variable email is required to be removed from request scope, then c:removetag will
look like:

<c:remove var = “email” scope = “request” />
c:forEach

In the context of Web applications, iteration is primarily used to fetch and display collections of
data, typically in the form of a list or sequence of rows in a table. The primary JSTL action for
implementing iterative content is the c:¥orEach core tag. This tag supports two different
styles of iteration:

Iteration over an integer range (like Java language's for statement)

Iteration over a collection (like Java language's Iterator and Enumeration classes).

Iteration over an Integer range
To iterate over a range of integers, the syntax of the c:forEach tag will look like:

<c:forEach var=*“name” begin=“expression” end=*“expression”
step=*‘expression” >
Body Content

</c:forEach>

The begin and end attributes should be either constant integer values or expressions
evaluating to integer values. They specify the initial value of the index for the iteration and the
index value at which iteration should cease, respectively. When iterating over a range of integers
using c:forEach, these two attributes are required and all others are optional.

© Copyright Virtual University of Pakistan 453

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

The step attribute specifies the amount to be added to the index after each iteration. Thus the
index of the iteration starts at the value of the begin attribute, is incremented by the value of
the step attribute, and halts iteration when it exceeds the value of the end attribute. Note that
if the step attribute is omitted, the step size defaults to 1.

If the wvar attribute is specified, then a scoped variable with the indicated name will be created
and assigned the current value of the index for each pass through the iteration. This scoped
variable has nested visibility that is it can only be accessed within the body of the c:forEach
tag.

For example to generate squares corresponding to range of integer values, the c:forEach tag
will be used as:

<c:forEach var=*x"” begin="“0" end=*“10" step=*“2" >
<c:out value=“${x * x}” />
</c:forEach>

By executing the above code, following output would appear:
416 36 64 100

Iteration over a Collection

When iterating over the members of a collection and arrays etc, one additional attribute of the
c:TorEach tag is used: the 1tems attribute. Now the c:forEach tag will look similar to
this:

<c:forEach var=*“name” items=“expression” >

Body Content

</c:forEach>

When you use this form of the c:forEach tag, the 1tems attribute is the only required
attribute. The value of the 1tems attribute should be the collection/array over whose members
the iteration is to occur, and is typically specified using an EL expression. If a variable name is
also specified using var attribute, then the named variable will be bound to successive elements
of the collection for each iteration pass.

For example, to iterate over a String array (messages) using java code, we used to write in JSP:
<%

for(int 1=0; i<messages.length; i++) {

String msg = messages[i];

%>

<%= msg %>

<%
} // end for
%>

© Copyright Virtual University of Pakistan 454

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

This can be done using c:forEach tag in much simpler way as shown below:
<c:forkEach var=“msg” i1tems=“${messages}” >

<c:out value= “${msg}” />

</c:forEach>

Similarly, to iterate over a persons ArrayL ist that contains Personlnfo objects, w used to
write in JSP:
<%
ArrayList persons = (ArrayList)request.getAttribute(*‘pList”);
for(int i=0; i<persons.size(); i++) {

Personlnfo p == (Personlnfo)persons.get(i);
String name = p.getName();

%>

<%= name %>

<%

} 7/ end for

%>

Indeed, the above task can be achieved in much simpler way using c:forEach tag as shown
below:

<c:forEach var=*“p” items=“${persons}”’ >
<c:out value= “${p.name}” />
</c:forkach>

The c:forEach tag processes each element of this list(persons) in turn, assigning it to a
scoped variable named p. Note that typecast is also not required.

Furthermore, you can use the begin, end, and step attributes to restrict which elements of
the collection are included in the iteration.
c:if

Like ordinary Java’s if, used to conditionally process the body content. It simply evaluates a
single test expression and then processes its body content only if that expression evaluates to
true. If not, the tag's body content is ignored. The syntax for writing c: i f tag is:

<c:i1f test= “expression” >
Body Content
</c:i1f>

For example, to display a message “a equals b” if two strings a & b are equal, the c:i1F tagis

used as:

<c:if test= “${a == b}” >
<h2> A equals B </h2>

© Copyright Virtual University of Pakistan 455

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

</c:if>

c:choose

c:choose the second conditionalization tag, used in cases in which mutually exclusively test

are required to determine what content should be displayed. The syntax is shown below:
<c:choose>

<c:when test= “expression” >

Body content
</c:when>

<c:otherwise >

Body content
</c:otherwise>

</c:choose>

Each condition to be tested is represented by a corresponding <c:when> tag, of which there
must be at least one. Only the body content of the first <c:when> tag whose test evaluates to
true will be processed. If none of the <c:when> tests return true, then the body content of the
<c:otherwise> tag will be processed.

Note, though, that the <c:otherwise> tag is optional; a <c:choose> tag can have at most
one nested <c:otherwise> tag. If all <c:when> tests are false and no <c:otherwise>
action is present, then no <c:choose> body content will be processed.

The example code given below illustrates the usage of c:choose tag in which two strings a &
b are compared and appropriates messages are displayed:

<c:choose>

<c:when test= “a == b” >
<h2> a equals b</h2>
</c:when>

<c:when test= “a <= b” >
<h2> a is less than b</h2>
</c:when>

<c:otherwise >

<h2> Don’t know what a equals to </h2>
</c:otherwise>

</c:choose>

43.7 netBeans 4.1 and JSTL

If you are using netBeans 4.1 IDE then you have to add JSTL library to your project manually.
To do so, right click on the libraries folder, you can find it under project’s name and select the
Add Library option. This is also shown in the following figure:

© Copyright Virtual University of Pakistan 456

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

: Projects i x |1F|IE5 ‘Runtime
=i jstl_exz

#-3 web Pages

H-1D Web Services

#-IC3 Configuration Files

>@ Server ResoUrces

@ Source Padages

-5 Test Packages

@ Libraries

E-C3 TestLib AddProject...
add Librars, ..

Add 18R Falder ...

Properties

The Add Library dialog box opens in front of you. Select JSTL 1.1 option and press Add Library
button. Now you can refer to any JSTL library in your JSPs.

Libraries;

= Absolube Layout |

& Unit

[Manage Lbraries, .,]

[Add Library | [Cancel] [Help]

Note: Remember that the JSTL 1.1 library is only added to current project. You have to repeat
this step for each project in which you want to incorporate JSTL.

Example Code: AddressBook using JSTL core tags

This is the modified version of AddressBook that was built using Expression Language in the last
handout. Only showperson. jsp is modified to incorporate JSTL core tags along with
Expression Language in place of scriptlets. The remaining participants searchperson. jsp,
ControllerServilet, Personlnfoand PersonDAO left unchanged. Let’s look on the

© Copyright Virtual University of Pakistan 457

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

code of each of these components:

Personinfo.java
The JavaBean used to represent one person record.

package vu;

import java.io.™;

public class Personinfo implements Serializable{
private String name;

private String address;
private int phoneNum;

// no argument constructor
public Personinfo() {

name = """';

address = ""';

phoneNum = O;

¥

// setters

public void setName(String n){
name = n;

public void setAddress(String a){
address = a;

}

public void setPhoneNum(int pNo){
phoneNum = pNo;

by

// getters

public String getName(){

return name;

}

public String getAddress(){
return address;

}

public int getPhoneNum(){

return phoneNum;

13s

Note: Coding exercises in working condition for this lecture are also available on “Downloads”

section of LMS

© Copyright Virtual University of Pakistan

458

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

Lecture 44: Client Side Validation & JavaServer Faces (JSF)

In this handout, we’ll talk about client side validation and also learn about growing in demand
Java technology i.e. JSF. First start with client side validation

44.1 Client Side Validation

Forms validation on the client-side is essential -- it saves time and bandwidth, and gives you
more options to point out to the user where they've gone wrong in filling out the form.
Furthermore, the browser doesn't have to make a round-trip to the server to perform routine
client-side tasks. For example, you wouldn't want to send the browser to the server to validate
that all of the required fields on a form were filled out.

Any scripting language can be used to achieve the said objective. However, JavaScript and
VBScript are t wo popular options

44.1.1Why is Client Side Validation Good?

There are two good reasons to use client-side validation:

e |It's a fast form of validation: if something's wrong, the alarm is triggered upon submission
of the form.

e You can safely display only one error at a time and focus on the wrong field, to help ensure
that the user correctly fills in all the details you need.

Code Example: Form Validation using JavaScript

For example on the following form, we want to make sure that text filed for name should not be
left empty and age field does not contain any negative value. To accomplish this we’ll use
JavaScript. If user forgets to provide name and/or enters a negative value, a message would be
displayed to the user that indicates what was went wrong? However, if user conforms to
requirements, he/she would be taken to another page that displays a greeting message.

Note: In this example, JavaScript semantics isn’t discussed over here as | am assuming that you
might be familiar with some scripting language. Otherwise, www.w3schools.com is an excellent
resource to learn about scripting languages

Client Side Validation Example

MName:
Age:

Submit

#&] Done ¢ My Computer

© Copyright Virtual University of Pakistan 459

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

The code that is used to generate this page is given below:

<HTML>
<HEAD>

<I— start of scripting code and mentioning type -->
<SCRIPT TYPE = "text/javascript''>

/* defining a function that receives form’s reference, defined
inside the body and returns false 1If any requirement violated
*/

function validateForm(thisform)

{

/* checking the value of the name field, if 1t is left empty
then displaying a message

*/

it (thisform.name.value == null || thisform.name.value == ")
{

alert("'Username is required™);

return false;

¥

// if value of age is negative, displaying a message

it (thisform.age.value < 0)

{

alert("’Age can"t be negative'™);

return false;
} 7/ end of function

</SCRIPT> <l—end of script-- >
</HEAD>
<BODY>

<I— validateForm method i1s called and specified as a value of
onsubmit value, if this method returns false, the user remains
on the same page -->

<FORM method=""post™ onsubmit="return validateForm(this)"
action = “greeting.jsp” >

<h2> Client Side Validation Example </h2>

Name: <INPUT type="text" name="name" size="30" />

Age: <INPUT type="text" name="age' size="30" />

© Copyright Virtual University of Pakistan 460

Web Design and Development (CS506)

<INPUT type="'submit™ value=""Submit'>

</FORM>
</BODY>

</HTML>

44.2 JavaServer Faces (JSF)

JSF technology simplifies building the user interface for web applications. It does this by
providing a higher-level framework for working with your web applications. Some distinct
features will be discussed provided by this technology. To begin with, have a look on some
popular existing frameworks

44.2.1Different existing frameworks

e Struts
A popular open source JSP-based Web application framework helps in defining a structured
programming model (MVC), also validation framework and reduces tedious coding but...
0 Adds complexity and doesn’t provide Ul tags
o Very Java programmer centric
e Tapestry

Another popular framework that is extensively used in the industry is Tapestry. It has almost

similar sort of problems as with Struts.

44.2.2 JavaServer Faces
A framework which provides solutions for:

Representing Ul components

Managing their state

Handling events

Input validation

Data binding

Automatic conversion

Defining page navigation

Supporting internationalization and accessibility.

If you are familiar with Struts and Swing (the standard Java user interface framework for desktop
applications), think of JavaServer Faces as a combination of those two frameworks. Like Swing,
JSF provides a rich component model that eases event handling and component rendering; and
like Struts, JSF provides Web application lifecycle management through a controller servlet

© Copyright Virtual University of Pakistan 461

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

44.2.3JSF Ul Components

Some of the standard JavaServer Faces components are shown below:

Apphcation Field Grovp

® Mew Group O Exigling Group

Mew Group | |

Applicatien Field Type

) Mew Field Type @ Exizting Field Type

Mame | Cell Phonza Mumber ‘"|

Applicaiten Field Dizplay

|Select Checkboxes » Marne [*]one
[Twe

CThres

Some custom JavaServer Faces components are

J3F Meszages:

; S Application Map:
Ay L

Su Mo o We Ih Fr 50 wEnlogl e rdetviel AppC ompons miEE &N

|Caching Stub|Frogy for reycornain Application:
ul_dlit Laeatinn= mys e nen, Ham e=ac res siwieh-

1 dM SUh Taess HTHL_EHE": cof sUnfaces renderkt R ends rlﬂ1lr‘np|@1 o1
234 |i aTE weal] gl SErARt IRt) e A ppRUnE mEM Be
91012 13 1418 v rnaler AR At DnR LRl E= Ty SEvE_ap

Pe 1708 1% 20 212 wpplogic.ga rdalviok A0 orpona iR urdima MBean
23 24 25 246 2T 9

LI_ollT Loeatinn= s e ne f, Ham e= iy Serer_m,
Ul SeretR untien e=rm s er T pe=ivo e ppc or

rrtvd Oin: Loeation=rmysa rar, Mar e= iy ser
= Ui_dlir B B R Pre=rr s rear Te a=ppl il

GOSN, Taea & ARp|Gationss s ociate GO GURE oS, APl cati onsan licafionAs soc ol

C:\beaw ser_projactshdomain simydomai iy

e ui_dir_accessweb-uilpublic

com.sun. faces . dneTimanilizlizalion rom.sun.faces. DneTimelniialzation

Zession Map:

d=a_nolify com.ihe.isga. accessweb.ui dsa. Motific afion kg
javae faces.raguest charsed UTF-E

HAdminApnlication| =p jasE faces.componznt LiviswRoobiEn 19 e00°:

And some open course JavaServer Faces components are also available like:

[= |February 2004 =

Mon Tues Wed Thur Fri Sat Sun @ =8 Me Myself

e |2y ke (B2 |F0 ERE %=1 My Father

E E & ®-@ Grand Fathar
Fl_':'_ 1_5_ &[5 Dads Mather
|1_5_1-_'F_ 2_2_ g | '.-|:, Maother

23 |24 2]

4-6of? 4 B
ID First N\ame Family Hame
Hans Mueller
Amadeu: Mozar
Harry Fotter

© Copyright Virtual University of Pakistan

462

Web Design and Development (CS506)

And some third-party Java Server Faces components are also available:

44.2.4 JSF Events Handling

A JSF application works by processing events triggered by the JSF components on the pages.
These events are caused by user actions. For example, when the user clicks button, the button
triggers an event. You, the JSF programmer, decide what the JSF application will do when a
particular event is fired. You do this by writing event listeners.In other words, a JSF application
is event-driven.

For example, if you write a JSF code to create a button, you will write:

<h:commandButton value="Login*
actionListener="“#{customer.loginActionListener}”
action="#{customer.login}” />

The wvalue attribute specifies the text that appeared on the face of a button, the
actionListener attributes specifies to call the 1oginACEIONEISEENEr method written
somewhere ina Customer class if an event is triggered and on which to go next,is decided by
the login method of Customer class and given as a value of action attribute.

The method specified in action attribute should return a String value as the returned
String value is used in page navigation.

Note: Many IDE provides visual support for JSF so you can drag and drop components instead
of writing tedious coding for defining JSF components as shown above. Sun Studio Creator® is
a free open source IDE that provides visual support for JSF and can be downloaded form Sun
site.

© Copyright Virtual University of Pakistan 463

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

The code examples are also built using this IDE.
class Customer {
public void loginActionListener(ActionEvent e)

{

immmmmm
public String login() {
return “OK”;

3}

Example Code: Hello User
The example code (“hello user 1) is given along with the handout. It is strongly advised that
you must see the lecture video in order to learn how this example is built.

User will provide a name in the text field and his/her name after appending “hello” to it,would
be displayed on the same page.

44.2.5 JSF Validators

Validators make input validation simple and save developers hours of programming. JSF
provides a set of validator classes for validating input values entered into input components.
Alternatively, you can writeyour own validator if none of the standard validators suits your
needs.

Some built-in validators are:

e DoubleRangeValidator
Any numeric type, between specified maximum and minimum values

e LongRangeValidator
Any numeric type convertible to long, between specified maximum and minimum
values

e LengthValidator
Ensures that the length of a component's local value falls into a certain range
(between minimum & maximum). The value must be of String type.

Example Code: Hello User

The example code (“hello user 2°°) is given along with the handout. You can open it using Sun
Studio Creator IDE. It is strongly advised that you must see the lecture video in order to learn
how this example is built.

It is actually a modified version of the last example. This time, we’ll make sure that user couldn’t
left blank the name field and must enter a name between ranges of 2 to 10 characters. If any
condition fails, an appropriate message would be displayed.

© Copyright Virtual University of Pakistan 464

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

44.2.6 JSF — Managed Bean-Intro

These are JavaBeans defined in the configuration file and are used to hold the data from JSF
components. Mana%ed beans represent the data model, and are passed between business logic
and pages. Some other salient features are:

e Use the declarative model
e Entry point into the model and event handlers
e Can have beans with various states

Here is an example of a managed-bean element whose scope is session, meaning that an instance
of this bean is created at the beginning of a user session.

<managed-bean>
<managed-bean-name>myBean</managed-bean-name>
<managed-bean-class>myPackage . MyBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>

44.2.7JSF — Value Binding
Value binding expressions can be used inside of JSF components to:

Automatically instantiate a JavaBean and place it in the request or session scope.
Override the JavaBean's default values through its accessor methods.

Quickly retrieve Map, List, and array contents from a JavaBean.

Synchronize form contents with value objects across a number of requests.

The syntax of binding expressions is based on the JavaServer Pages (JSP) 2.0 Expression
Language. In JSP, expressions are delimited with "${}", but in JSF they are delimited
with "#{}".

44.2.8JSF — Method Binding

Unlike a value binding, a method binding does not represent an accessor method. Instead,
a method binding represents an activation method.

For example, binding an event handler to a method

<h:commandButton ...

actionListener="#{customer.loginActionListener}”
......... />

44.2.9JSF Navigation

Page navigation determines the control flow of a Web application. JSF provides a default
navigational handler and this behavior can be configured in configuration. However, you
can do it visually in most tools like Sun Studio Creator

© Copyright Virtual University of Pakistan 465

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

Note: We have quickly breezed through the JSF technology essentials due to shortage of
time. You must explore it by yourself to excel on it. You can find the resources in

the last handout to acquire further skills.

44.3 References:

e Java A Lab Course by Umair Javed
Intrduction to JavaServer Faces by Sun
http://java.sun.com
e JavaServer Faces Programming by Kumiawan

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 466

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

ecture 45: JavaServer Faces

In the last lecture, we have covered the basic nutshells of JSF. Having a belief on*“learning by
doing™, in this lecture another example is also given to show you the capabilities of JSF.

Example Code: Addition of Two Numbers
The example code (““AddNumbers™) is given along with the handout. It is strongly advised that
you must see the lecture video in order to learn the making plus working of this example.

This example demonstrates the usage of value and method binding expressions, managed beans,
and how to use page navigation technique using IDE etc.

45.1 Web Services

In the remaining handout, we’ll take an overview of web services’ potential, their types and
working model. Resources are given at the end for those who are interested in learning new
technologies.

45.1.1 Introduction

Web services are Web-based enterprise applications that use open, XML-based standards and
transport protocols to exchange data with calling clients.

Web Service is becoming one of those overly overloaded buzzwords these days. Due to their
increasing popularity, Java platform Enterprise Edition (J2EE) provides the APIs and tools you
need to create and deploy interoperable web services and clients.

45.1.2Web service, Definition by W3C

Wa3C recently has come up with a decent definition of web services. According to W3C,“A Web
service is a software application identified by a URI, whose interfaces and binding are capable of
being defined, described and discovered by XML artifacts and supports direct interactions with
other software applications using XML based messages via internet-based protocols”.

45.1.3Distributed Computing Evolution
Let's think a little bit on how distributed computing technology has evolved.

© Copyright Virtual University of Pakistan 467

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

- : 1 i .|;_ R
Client Serrer (5] ‘
Silas
Wiszh I:nased Lamputing

Wk S it P 110 Por

In the beginning, things were built and deployed typically in the form of client and server model
in which clients talk to a single server, for example, remote procedure calls (RPC).

The second phase can be called web-based computing in which many clients talk to many
servers through the net. In this phase, communicating partners still have to go through some pre-
arrangement in terms of what common object model they have to use or what common
communication protocol they have to agree upon.

Finally, the web services model in which service users and service providers can be dynamically
connected. And the pretty much every computing device and application participates as both
service user and service provider.

45.1.4Characteristics of Web services

Web services are XML-based throughout. Pretty much everything in the domain of Web services
is defined in XML. For example, the format of the data being exchanged between service user
and service provider is defined in XML or the description of web service is defined in XML.

Because the only contract that has to be agreed upon between service user and service provider is
syntax and semantics of XML messages, as long as valid messages can be generated and
understood, it does not matter what programming language is used. So a web service is said to be
programming language independent.

Web services can be dynamically located and invoked. And typically they will be accessed and
invoked over both internet and intranet.

45.1.5Why Web services?

Interoperable
Connect across heterogeneous networks using ubiquitous web-based standards

Economical
Recycle components, no installation and tight integration of software

Automatic
No human intervention required even for highly complex transactions

© Copyright Virtual University of Pakistan 468

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

Accessible
Legacy assets & internal apps are exposed and accessible on the web

Available
Services on any device, anywhere, anytime

Scalable
No limits on scope of applications and amount of heterogeneous applications

45.1.6 Types of Web service

Data providers
For example, a service providing stock quotes

Business-to-business process integration
For example, purchase orders

Enterprise application integration
Different applications work together simply by adding a webservice wrapper
Comparison between Web page & Web service
Just to give you a sense on the difference between a web page and a web service,consider
the following table:

Web page Web Service
Has a Ul No GUI
Interacts with user Interacts with application
Works with web browser client Works with any type of client

45.2 Web service Architectural Components
Following are the core building blocks of web service architecture:

e Service Description-How do clients know how it works (which functions, parameters
etc.)?

At the minimum, you need a standard way of describing a web service that is universally
understood by all potential service users and service providers. This is important because
without commonly agreed upon description of service, a service provider might have to
produce individually tailored way of describing its service to all its potential service users.

Web Service Description Language (WSDL pronounced as viz-dal) is industry agreed upon
XML language that can be used to describe web service. It provides XML format for
describing web services in terms of methods, properties, data types and protocols.

© Copyright Virtual University of Pakistan 469

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

e Service Registration (Publication) and Discovery

There has to be registry by which a service can be published and discovered.

Universal Description, Discovery & Integration (UDDI), a way to publish and find web
services. A repository of web services on the internet where a machine or a human can find
different web services. www.uddi.org

e Service Invocation

Then there has to be standard way of invoking a service. Finally, for business transactions in
which secure and reliable message delivery is important, there has to be a standard electronic
business framework.

The following figure represents simplified web service architecture and summarizes the working
of web services:

Regisiry
. . / 2. Client Request
1. Service Registers Service Location
PUELISH FIND

3. Client calls
" Service
Web L BIND Service

Servica Client

45.3 References:
e Java A Lab Course by Umair Javed

e \Web services overview by sang shin

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan 470

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

CRYSTAL ACADEMY
Highlight

Web Design and Development (CS506)

45.4 Resources:
¢ An excellent resource for learning Java related technologies is:

http://www.apl.jhu.edu/~hall/java/

j avi 'roprammung Hesaurces -- Aava, Javn, @md moro Java - Fecrossdt Infornet Exploror

Fla Gdt ‘Wew Fevorbss Toow Hap F 4
Q- @D [B & P lprvenm 82 55 LB

o 1) TR]+ I

ServietiJSP Books: Check ot thoe

JZEE Training Cowrses: Shor courses on [5F, senvers, S, 15F, and Java programuming bestseling books from Sun Press
are svudable from o well-known author md avrard- wiming mstruckar. Pubbc or co-stbe at yowr company: - Core Servdets & ISP
- Moge Serviees & TEP

‘Wrikn anp Bring B ming wnlp Juin GwitPreslaneraem o Calabersie wih peur peers! Esonplisnal Jave Remarding

WML & bokall: tren WRAT deve bid on J2EE proqmcks, Join Fraa, Frem woraikbased suopod Toql POF, HTML. Excal, Sring

Prareneprh #1d mom
i Jerva progridmereng resomwces colecred by gy Hall for comeses 1 the Jobas Hoplins - b e
I T Compuicr Ecicier and for yariow induiry scminars and ahort coursca. Muy arc extrocied from Core Sodety ad W FE
ll\‘*\'.ir.u‘-ll‘.i.T'.n.':H JnunS arvar Pagas and Core Wabs Progroemerang from S Microapdeme Praae and Prentice Hall pALEL -

e http://java.sun.com

e http://www.javaworld.com

e http://www.theserverside.com

e http://www.jsfcentral.com

e http://www.jspolympus.com

e http://www.onjava.com

© Copyright Virtual University of Pakistan 471

	Untitled

