Web Design and Development (CS506)

Web Design and Development
CS506

© Copyright Virtual University of Pakistan Page 1

Web Design and Development (CS506)

LeCtUre 1: Java FEATUIESviiiiiiiii ittt a e a e s b e s ba s e e e e 4
Lecture 2: Java Virtual Machine & Runtime ENVIroNmMEeNnTtcooviiiiiieriiiieeeeeeceesee e 8
LeCtUre 3: LEarNING BaSiCS cuviiiiiiiiiiiiiiiiiiii e e 19
Lecture 4: Object Oriented Programming.........ccceeeiciiieiiiieeeeiiieeeeciee e eette e e e steee e eetteeessareesesasaeesenteeesensenesennses 28
LECTUIE 5: INNEITANCE ..ottt sttt st ettt ettt et e e s b e e s b e e s bt e s beesmeesmeesne sreenns 38
LECTUIE B6: COIIECTIONS ...ttt b e st she e sat e st s bt et e b e et e e b e e sbeenbn e eeneenne 45
Lecture 7: INTro t0 EXCOPLIONS cociiiii ittt b bt aaaraaa 54
LECTUIE 81 STFEAIMS ittt bbb st e b b e e e s b s e e s sabb e e e saaba s e e e e e ssbaees 68
Lecture 9: Abstract Classes and INTEIfACESoceiiiiiiiiiiiieee ettt st 82
Lecture 10: Graphical User INTEITaCES . ..ccccuiiii ettt et e e et e e e e satee e e e atee e e enbaeeeennees 88
[T 0 = A YT ol =Y o | oY RS UPRR 103
Lecture 12: More Examples of HaNdliNG EVENTSccuuviiieiiiiecciee ettt ettt e et e et e e e eaae e e eearae e e eanaeaean 113
[T 0 =l G Yo oY oL =Y gl O = 1Y =L USSR 118
Lecture 14: Java Database CoONNECHIVITY......cuuiiiiiiii et e e e e e et e e e e e e e saanreneeaee s 129
Lecture 15: MOFEONIDBC......coi ittt e e s st e e e e s st e s e e e s e e s 137
LECTUIE 16: RESUIT SEL.....niiiiiiiiiiie ettt et st sttt e sttt s be e e sar e e saneesabeesmeeesareesn sennnes 143
LectUre 17:IMEtaData....coo i e 156
[Tt U I s T oYY = T T o] ook SRR URRE 165
Lecture 19: HOW tO ANIMALE?eiiiiiiiiiectee ettt ettt st sttt e sat e s b e s be e e smreesmneesbeeeaneeesaneeas 174
[T 0 =0 O Y o o] 1= &SRt 181
Lecture 21:SOCKEt PrOgrammMing.........ceeeiiiieiciiiieee e e e eiitte e e e e eeecrtere e e s e e e bateeeeeesessabaaeeeeeesanseseneesesssassssnnneaeanan 193
(=T o UL =TSPTSRO 202
Lecture 23: MUHITNIEAAING ..occe e e e e e e e e st e e e e e e s abrteeeeeesennsntneneeeeeas 209
Lecture 24: More on MURIERIrEadingooo i e e e et e e e e e e e nnrrreeeaee s 220
Lecture 25: Web Application DeVEIOPMENT.......coii it e e e e e e e rare e e e e s e s nsnaeaeeeas 231

© Copyright Virtual University of Pakistan Page 2

Web Design and Development (CS506)

LECTUIE 26: JAVA SEIVIELS ...ttt ettt b e st s e st st e s bt s bt et e e b e b e e nbeesbeesaee e s 245
Lecture 27: Creating a Simple Web Application in TOMCAt.......ccviiieciiiiiciee e 258
LECtUre 28: SEIVIETS LIfECYCIE c...uvviiiiiieee ettt e e et e e e e rtte e e e e ba e e e sentaeeesbteeessnsaeeesantaeaeanns 267
LECtUre 29: IMIOrE ON SEIVIETS ..cc.viiiiiiieiie ettt ettt ettt e b e b e b e sreesaeesaeesane e 278
Lecture 30: DiSpatChing REQUESESuuiiiiiiiiie ettt ettt e e e e e e tte e e s rate e e e s ebtee e s snbaeeeeestaeeessteeesenseeaasnns 287
(Yo U N B R =Ty o] T I =T (] =SSPt 297
Lecture 32: SeSSION TraCKING 2 ...uviii e ettt e e et e e e et e e e esata e e e sbteeeesabaeeesantaeeessteeeesnseneesanseeaesnns 308
Lecture 33: Address Book Case Study USING SEIVIETSc.uveeieciiiiiiiiiieccitee ettt e evr e e aae e e e saaee s 322
LECTUNE 34:JaVaSerVer PABES .ccciiiiiiiiiiiiiii ettt e e e e sttt bbbt b atataaaaaaa 334
LECtUIE 35 JaVaS VOl Pag S ittt bbbt —— bbb raaaaa 341
(=T o UL = L PO OP PP PPRPO 349
Lecture 37: JSP Action EI€mMeNnts @and SCOPE.....uuiiii it e s e e e rbeare e e e e e e s nnaaaeeee s 361
(Yo (U =R 1 T Y L O 1) o] 0 T I =43 PPNt 375
Lecture 39: IMVC 4 CaS@ STUAYuuiiiiiiii it e ettt e e e e e e st e e e s e e st e e e e e e e sesaastaaeeeeeesanbeseeeeeessnnnsstnnneaeenan 389
Lecture 40: Model 2 Archit@Cture IMVCcooiiiiiieiee ettt s s s s esnee e 404
[T 0ol N R YT T o I T SRR UPRR 427
Lecture 42: EXPresSion LANGUaBe ..ccci it raraaaraaaan 443
Lecture 43: JavaServer Pages Standard Tag Library (JSTL)eeeecueeeeeciiee ettt ettt e e e e 461
Lecture 44: Client Side Validation & JavaServer FAces (JSF) ..ottt e 472
LeCtUre 45: JAVASEIVEI FACESuuiiiiiiiiieeee ettt e st e s st e s e e e e s erae e e s enre e e e nane 481

© Copyright Virtual University of Pakistan Page 3

Web Design and Development (CS506)

Lecture 1: Java Features

This handout is a traditional introduction to any language features. You might not be able to
comprehend some of the features fully at this stage but don’t worry, you’ll get to know about these
as we move on with the course.

1.1 Design Goals of Java

The massive growth of the Internet and the World-Wide Web leads us to a completely new way
of looking at development of software that can run on different platforms like Windows, Linux
and Solaris etc.

1.1.1 Right Language, Right Time

= Java came on the scene in 1995 to immediate popularity.
» Before that, C and C++ dominated the software development
o compiled, no robust memory model, no garbage collector causes memory leakages,
not great support of built in libraries
= Java brings together a great set of "programmer efficient" features
o Putting more work on the CPU to make things easier for the programmer.

1.1.2 Java - Buzzwords (Vocabulary)

* From the original Sun Java whitepaper: "Java is a simple, object-oriented, distributed,
interpreted, robust, secure, architecture-neutral, portable, high-performance, multi-
threaded, and dynamic language."

» Here are some original java buzzwords.

1.1.3 Java-- Language + Libraries

e Java has two parts.
o The core language -- variables, arrays, objects
1 The Java Virtual Machine (JVM) runs the core language
'] The core language is simple enough to run on small devices phones, smart
cards, PDAs.
o The libraries
1 Java includes a large collection of standard library classes to provide "off the
shelf" code. (Useful built-in classes that comes with the language to perform
basic tasks)
'] Example of these «classes 1is String, ArrayList, HashMap,
StringTokenizer (to break string into substrings), Date ...
1 Java programmers are more productive in part because they have access to a
large set of standard, well documented library classes.

© Copyright Virtual University of Pakistan Page 4

Web Design and Development (CS506)

1.1.4 Simple

» Very similar C/C++ syntax, operators, etc.

» The core language is simpler than C++ -- no operator overloading, no pointers, no
multiple inheritance

» The way a java program deals with memory is much simpler than C or C++.

1.1.5 Object-Oriented

» Java is fundamentally based on the OOP notions of classes and objects.

= Java uses a formal OOP type system that must be obeyed at compile-time and run-time.

» This is helpful for larger projects, where the structure helps keep the various parts
consistent. Contrast to Perl, which has a more anything-goes feel.

1.1.6 Distributed / Network Oriented

= Java is network friendly -- both in its portable, threaded nature, and because Common
networking operations are built-in to the Java libraries.

1.1.7 Robust/ Secure / Safe

e Javais very robust
o Both, vs. unintentional errors and vs. malicious code such as viruses.
o Java has slightly worse performance since it does all this checking. (Or put the
other way, C can be faster since it doesn't check anything.)

e The JVM "verifier" checks the code when it is loaded to verify that it has the correct
Structure -- that it does not use an uninitialized pointer, or mix int and pointer types.
This is one-time "static" analysis -- checking that the code has the correct structure
without running it.

e The JVM also does "dynamic" checking at runtime for certain operations, such as
pointer and array access, to make sure they are touching only the memory they should.
You will write code that runs into

* Asaresult, many common bugs and security problems (e.g. "buffer overflow") are not
possible in java. The checks also make it easier to find many common bugs easy, since
they are caught by the runtime checker.

* You will generally never write code that fails the verifier, since your compiler is smart
enough to only generate correct code. You will write code that runs into the runtime
checks all the time as you debug -- array out of bounds, null pointer.

= Java also has a runtime Security Manager can check which operations a particular piece
of code is allowed to do. As a result, java can run untrusted code in a "sandbox" where,
for example, it can draw to the screen but cannot access the local file system.

1.1.8 Portable

» "Write Once Run Anywhere", and for the most part this works.

» Not even a recompile is required -- a Java executable can work, without change, on any
Java enabled platform.

1.1.9 Support for Web and Enterprise Web Applications

» Java provides an extensive support for the development of web and enterprise

© Copyright Virtual University of Pakistan Page 5

Web Design and Development (CS506)

applications
» Servlets, JSP, Applets, JDBC, RMI, EJBs and JSF etc. are some of the Java
technologies that can be used for the above mentioned purposes.

1.1.10 High-performance

» The first versions of java were pretty slow.

= Java performance has gotten a lot better with aggressive just-in-time-compiler (JIT)
techniques.

= Java performance is now similar to C -- a little slower in some cases, faster in a few
cases. However memory use and startup time are both worse than C.

» Java performance gets better each year as the JVM gets smarter. This works,
because making the JVM smarter does not require any great change to the java
language, source code, etc.

1.1.11 Multi-Threaded

= Java has a notion of concurrency wired right in to the language itself.
» This works out more cleanly than languages where concurrency is bolted on after the
fact.

1.1.12 Dynamic

» Class and type information is kept around at runtime. This enables runtime loading
and inspection of code in a very flexible way.

1.1.13 Java Compiler Structure

e The source code for each class is in a .java file. Compile each class to produce
“.class” file.

» Sometimes, multiple .class files are packaged together into a .zip or .jar "archive" file.

* On UNIX or windows, the java compiler is called "javac". To compile all the .java files
in a directory use "javac *.java".

1.1.14 Java: Programmer Efficiency

e Faster Development
o Building an application in Java takes about 50% less time than in C or C++. So,
Faster time to market
o Javais said to be “Programmer Efficient”.
- OOP
o Java is thoroughly OOP language with robust memory system
o Memory errors largely disappear because of the safe pointers and garbage collector.
The lack of memory errors accounts for much of the increased programmer
productivity.
e Libraries
o Code re-uses at last -- String, ArrayList, Date, available and documented in a
standard way

© Copyright Virtual University of Pakistan Page 6

Web Design and Development (CS506)

1.1.15 Microsoft vs. Java

» Microsoft hates Java, since a Java program (portable) is not tied to any particular
operating system. If Java is popular, then programs written in Java might promote
non-Microsoft operating systems. For basically the same reason, all the non-
Microsoft vendors think Java is a great idea.

» Microsoft's C# is very similar to Java, but with some improvements, and some
questionable features added in, and it is not portable in the way Java is. Generally it
is considered that C# will be successful in the way that Visual Basic is: a nice tool
to build Microsoft only software.

» Microsoft has used its power to try to derail Java somewhat, but Java remains very
popular on its merits.

1.1.16 Java Is For Real

e Java has a lot of hype, but much of it is deserved. Java is very well matched for
many modern problem

» Using more memory and CPU time but less programmer time is an increasingly
appealing tradeoft.

» Robustness and portability can be very useful features

» A general belief is that Java is going to stay here for the next 10-20 years

1.1.17 References

e Majority of the material in this handout is taken from the first handout of course
cs193j at Stanford.
» The Java™ Language Environment, White Paper, by James Gosling & Henry
McGilton
= Java’s Sun site: http://java.sun.com
» Java World : www.javaworld.com

© Copyright Virtual University of Pakistan Page 7

Web Design and Development (CS506)

Lecture 2: Java Virtual Machine & Runtime Environment

2.1 Basic Concept

When you write a program in C++ it is known as source code. The C++ compiler converts
this source code into the machine code of underlying system (e.g. Windows) If you want to run that
code on Linux you need to recompile it with a Linux based compiler. Due to the difference in
compilers, sometimes you need to modify your code.

Java has introduced the concept of WORA (write once run anywhere). When you write a java
program it is known as the source code of java. The java compiler does not compile this source
code for any underlying hardware system, rather it compiles it for a software system known as
JVM (This compiled code is known as byte code). We have different JVMs for different systems
(such as JVM for Windows, JVM for Linux etc). When we run our program the JVM interprets
(translates) the compiled program into the language understood by the underlying system. So we
write our code once and the JVM runs it everywhere according to the underlying system.

This concept is discussed in detail below

TAV A
Source
Code

Java Compilerjavac

v

Java Bate
Code

Java Interpreter

Machine
Code

2.1.1 Byte code

= Java programs (Source code) are compiled into a form called Java bytecodes.

e The Java compiler reads Java language source (.java) files, translates the source into
Java bytecodes, and places the bytecodes into class (.class) files.

» The compiler generates one class file for each class contained in java source file.

© Copyright Virtual University of Pakistan Page 8

Web Design and Development (CS506)

Java Java Java
Source Compiler Bytecodes

2.1.2 Java Virtual Machine (JVM)

» The central part of java platform is java virtual machine.

= Java bytecode executes by special software known as a "virtual machine".

* Most programming languages compile source code directly into machine code,
suitable for execution

» The difference with Java is that it uses bytecode - a special type of machine code.

» The JVM executes Java bytecodes, so Java bytecodes can be thought of as the
machine language of the JVM.

App1 App2 App3 ‘ App4 App5
‘ Java Virtual Machine
Windows Linux 0OS X Solaris Linux
Intel PowerPC SPARC

* JVM are available for almost all operating systems.
» Java byte code is executed by using any operating system’s JVM. Thus achieve
portability.

2.1.3 Java Runtime Environment (JRE)

e The Java Virtual Machine is a part of a large system i.e. Java Runtime Environment
(JRE).

= Each operating system and CPU architecture requires different JRE.

e The JRE consists of set of built-in classes, as well as a JVM.

e Without an available JRE for a given environment, it is impossible to run Java
software.

© Copyright Virtual University of Pakistan Page 9

Web Design and Development (CS506)

Java Runtime Environment (JRE)

Java API classes

Java Virtual Machine

Operating Systems (Windows, UNIX, etc)

IS

Hardware (Intel, Alpha, Motorola, etc)

2.1.4 References

e Java World: http://www.javaworld.com
e Inside Java: http://www.javacoffeebreak.com/articles/inside java

2.2 Java Program Development and Execution Steps

Java program normally go through five phases. These are

- Edit,

» Compile,

e Load,

» Verify and

= Execute
We look over all the above mentioned phases in a bit detail. First consider the following figure that
summarizes the all phases of a java program.

© Copyright Virtual University of Pakistan Page 10

Web Design and Development (CS506)

E ditor Program is created in
Phase 1 ditor — Disk the editor and stored

on disk.

, . B — Compiler ereates
Phase 2 Compiler — bytecodes and stores
- them on disk.
Primary

©Memory

Phase 3 Class Loader

-

T Class loader puts

e — bytecodes in memory.

_

Primary
Memory

Bytecode verfier
confuns that all
bytecodes are vahd
and do not violate
Java's security
restrictions.

Pliase 4 Bytecode Verifier ‘ ¢)

i . Primary Interpreter reads
Phase 5 Interprete ¢ N Memory bytecodes and

translates them into a
language that the
computer can
mnderstand and, possibly
storing data values as
the programn executes.

2.2.1 Phase 1: Edit

Phase 1 consists of editing a file. This is accomplished with an editor program. The

programmer types a java program using the editor like notepad, and make corrections if
necessary.

When the programmer specifies that the file in the editor should be saved, the program is stored
on a secondary storage device such as a disk. Java program file name ends with a .java extension.

On Windows platform, notepad is a simple and commonly used editor for the beginners. However
java integrated development environments (IDEs) such as NetBeans, Borland JBuilder, JCreator
and IBM’s Eclipse Java built-in editors that are smoothly integrated into the programming
environment.

© Copyright Virtual University of Pakistan Page 11

Web Design and Development (CS506)

2.2.2 Phase 2: Compile

In Phase 2, the programmer gives the command javac to compile the program. The java compiler
translates the java program into byte codes, which is the language understood by the java interpreter.

To compile a program called Welcome.java type javac Welcome.java at the command window
of your system. If the program compiles correctly, a file called Welcome. Class is produced. This
is the file containing the byte codes that will be interpreted during the execution phase.

2.2.3 Phase 3: Loading

In phase 3, the program must first be placed in memory before it can be executed. This is
done by the class loader, which takes the .class file (or files) containing the byte codes
and transfers it to memory. The .class file can be loaded from a disk on your system or
over a network (such as your local university or company network or even the internet).

Applications (Programs) are loaded into memory and executed using the java interpreter
via the command java. When executing a Java application called Welcome, the command

Java Welcome
Invokes the interpreter for the Welcome application and causes the class loader to load
information used in the Welcome program.

2.2.4 Phase 4: Verify

Before the byte codes in an application are executed by the java interpreter, they are verified by the
byte code verifier in Phase 4. This ensures that the byte codes for class that are loaded form the
internet (referred to as downloaded classes) are valid and that they do not violate Java’s security
restrictions. Java enforces strong security because java programs arriving over the network should
not be able to cause damage to your files and your system (as computer viruses might).

2.2.5 Phase 5: Execute

Finally in phase 5, the computer, under the control of its CPU, interprets the program one byte code
at a time. Thus performing the actions specified by the program.Programs may not work on the first
try. Each of the preceding phases can fail because of various errors. This would cause the java
program to print an error message. The programmer would return to the edit phase, make the
necessary corrections and proceed through the remaining phases again to determine if the
corrections work properly.
2.2.6 References:

= Java™ How to Program 5th edition by Deitel & Deitel

* Sun Java online tutorial: http://java.sun.com/docs/books/tutorial/java/index.html
2.3 Installation and Environment Setting

2.3.1 Installation

e Download the latest version j2se5.0 (java 2 standard edition) from
http://www.oracle.com/technetwork/java/javase/downloads/index.htmls or get it from any
other source like CD.

© Copyright Virtual University of Pakistan Page 12

Web Design and Development (CS506)

* Note: j2se also called jdk (java development kit). You can also use the previous
versions like jdk 1.4 or 1.3 etc. but it is recommended that you use either jdk1.4 or
jdk5.0

» Install j2se5.0 on your system

Note: For the rest of this handout, assume that j2se is installed in C:\Program Files\Java\jdk1.5.0

2.3.2 Environment Setting

Once you successfully installed the j2se, the next step is environment or path setting. You can
accomplish this in either of two ways.

2.3.2.1 Temporary Path Setting

* Open the command prompt from Start -> Programs -> Accessories -> Command Prompt.
The command prompt screen would be opened in front of you.
* Write the command on the command prompt according to the following format
path = < java installation directory\bin >
» So, according to handout, the command will look like this
path = C:\Program Files\Java\jdk1.5.0\bin
e To Test whether path has been set or not, write javac and press ENTER. If the
list of options displayed as shown in the below figure means that you have
successfully completed the steps of path setting.

The above procedure is illustrates in the given below picture.

C:\ WINDOWS\system32\cmd.exe - E
C:\>path=C:\Programs Files\Java\jdk1.5.0\bin
C:\>javac

Usage: javac <options> <source files>
Where possible options include:
-0 Generate all debugging info
-g:none Generate no debugging info
-g:{lines, vars, source} Generate only some debugging
-nowarn Generate no warnings
-verbose Output source messages about
what t
-deprecation Output source locations wher
Sed
-classpath <path> Specify where to finde user ¢
-cp <path> Specify where to find user ¢
-sourcepath <path> Specify where to find input
-bootclasspath<path> Override location of bootstr
-extdirs <dirs> Override location of install

Note: The issue with the temporary path setting is you have to repeat the above explained
procedure again and again each time you open a new command prompt window. To avoid this
overhead, it is better to set your path permanently

© Copyright Virtual University of Pakistan Page 13

Web Design and Development (CS506)

2.3.2.2 Permanent Path Setting

e In Windows NT (XP, 2000), you can set the permanent environment variable.
» Right click on my computer icon click on properties as shown below

My
Documents

r Open
Explore

Search._.
. Manage

Map Network Drive.__.

My He¢ Disconnect Metwork Drive...
Pla

Create Shortcut
Delete
% R
ename

I Propories |
Expl

A System Properties frame would appear as shown in the picture.

System Properties i B |

Generall EnmputerNamel Hardware Hemu:utel

Y'ou mugt be logoed on az an Administrator bo make mosgt of these changes.

r Performance
Vizual effects, proceszor scheduling, memony usage, and virtual memony

Settings

r Uzer Profiles

Desktop zettingz related to your logon

Settings

i

r Startup and Recaover

System ztartup, syztem failure, and debugging information

Settings |

Error Reparting |

(E nvironment VW aniables
.

o

ak. I Cancel | Apply |

© Copyright Virtual University of Pakistan

Page 14

Web Design and Development (CS506)

e Select the advanced tab followed by clicking the Environment Variable
button. The Environment variables frame would be displayed in front of you
e Locate the Path variable in the System or user variables, if it is present there,

select it by single click. Press Edit button. The following dialog box would be
appeared.

flow sorvoriie g

Yariable name: I PaTH

Yariable value: I C:Program Filest Javaljdkl \5.0_Shkin

Ik I Cancel |

e Write; C:\Program Files\Java\jdk1.5.0\bin at the end of the value field.
Press OK button. Remember to write semicolon (;) before writing the path for
java installation directory as illustrated in the above figure.

e If Path variable does not exist, click the New button. Write variable name
“PATH”, variable value C:\Program Files\Java\jdk1.5.0\bin and press OK button.

» Now open the command prompt and write javac, press enter button. You see the list of
options would be displayed.

e After setting the path permanently, you have no need to set the path for each new
opened command prompt.

2.3.3 References
Entire material for this handout is taken from the book JAVA A Lab Course by Umair
Javed. This material is available just for the use of VU students of the course Web Design

and Development and not for any other commercial purpose without the consent of
author.

2.4 First Program in Java

Like any other programming language, the java programming language is used to create
applications. So, we start from building a classical “Hello World” application, which is generally
used as the first program for learning any new language.

2.4.1 HelloworldApp
* Open notepad editor from Start -> ProgarmFiles -> Accessories-> Notepad.
» Write the following code into it.

Note: Don’t copy paste the given below code. Probably it gives errors and you can’t able to remove
them at the beginning stage.

© Copyright Virtual University of Pakistan Page 15

Web Design and Development (CS506)

1./¥The HelloWorldApp class implements an application that
2.simply displays "Hello World!" to the standard output.

3.%/

4. public class HelloWorldApp {

5.public static void main(String[] args) {

6.//Display the string. No global main
7.System.out.println(“Hello World™);

8.}

9.}

» To save your program, move to File menu and choose save as option.

e Save your program as “HelloWorldApp.java” in some directory. Make sure to
add double quotes around class name while saving your program. For this example
create a folder known as “examples” in D: drive

Note: Name of file must match the name of the public class in the file (at line 4).
Moreover, it is case sensitive. For example, if your class name is MyClasS, than file
name must be MyClasS. Otherwise the Java compiler will refuse to compile the
program.

For the rest of this handout, we assume that program is saved in D:\examples directory.

2.4.2 HelloworldApp Described

« Lines1-3
o Like in C++, You can add multiple line comments that are ignored by the compiler.
* Lines4

o Line 4 declares the class name as HelloWorldApp. In java, every line of code must
reside inside class. This is also the name of our program (HelloWorldApp.java).The
compiler creates the HelloWorldApp.class if this program successfully gets
compiled.

* Lines5
o Line 5 is where the program execution starts. The java interpreter must find this

defined exactly as given or it will refuse to run the program. (However you can
change the name of parameter that is passed to main. i.e. you can write String|]
argv or String[] someParam instead of String[] args)

o Other programming languages, notably C++ also use the main()declaration as the
starting point for execution. However the main function in C++ is global and
resides outside of all classes where as in Java the main function must reside inside a
class. In java there are no global variables or functions. The various parts of this main
function declaration will be covered at the end of this handout.

« Lines6
o Again like C++, you can also add single line comment
« Lines7

o Line 7 illustrates the method call. The println() method is used to print
something on the console. In this example println()method takes a string
argument and writes it to the standard output i.e. console.

© Copyright Virtual University of Pakistan Page 16

Web Design and Development (CS506)

« Lines8-9
o Line 8-9 of the program, the two braces, close the method main()and the
classHelloWorldApprespectively.

2.4.3 Compiling and Running HelloWorldApp

* Open the command prompt from Start -> Program Files -> Accessories. OR
alternatively you can write cmd in the run command window.

* Write cd.. to came out from any folder, and cd [folder name] to move inside the specified
directory. To move from one drive to another, use [Drive Letter]: See figure given below

e After reaching to the folder or directory that contains your source code, in our case

HelloWorldApp.java.
» Use “javac” on the command line to compile the source file (““;java” file).
» D:\examples> javac HelloWorld.java

e Ifprogram gets successfully compiled, it will create a new file in the same directory named
HelloWorldApp.class that contains the byte-code.

» Use “java” on the command line to run the compiled .class file. Note “.class” would be
added with the file name.

» D:\examples> java HelloWorld

* You can see the Hello World would be printed on the console. Hurrah! You are

successful in writing, compiling and executing your first program in java

C:\ WINDOWS\system32\cmd.exe

C:\ Documents and Setting> cd..
C:\>D:

D:\> cd examples

D:\examples> javac HelloWorldApp.java
D:\examples> java HelloWorldApp

Hello World
D:\examples> _

2.4.4 Points to Remember

» Recompile the class after making any changes

= Save your program before compilation

* Only run that class using java command that contains the main method, because program
executions always starts form main

2.5 An Idiom Explained

* You will see the following line of code often:
o public static void main(String args[]) { ...}

* About main()
0 “main” is the function from which your program starts
o Why public?

© Copyright Virtual University of Pakistan Page 17

Web Design and Development (CS506)

o Since main method is called by the JVM that is why it is kept public so that it is
accessible from outside. Remember private methods are only accessible from
within the class

» Why static?

o Every Java program starts when the JRE (Java Run Time Environment) calls the

main method of that program. If main is not static then the JRE have to create an object

of the class in which main method is present and call the main method on that object (In

OOP based languages method are called using the name of object if they are not static).

It is made static so that the JRE can call it without creating an object.

o Also to ensure that there is only one copy of the main method per class

e Why void?
o Indicates that main (') does not return anything.
» What is String args[] ?
e Way of specifying input (often called command-line arguments) at startup of
application. More on it latter
2.6 References
= Entire material for this handout is taken from the book JAVA A Lab Course by Umair
Javed. This material is available just for the use of VU students of the course Web Design
and Development and not for any other commercial purpose without the consent of
author.
Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 18

Web Design and Development (CS506)

Lecture 3: Learning Basics

3.1 Strings

A string is commonly considered to be a sequence of characters stored in memory and accessible
as a unit. Strings in java are represented as objects.

3.1.1 String Concatenation

e “4” operator is used to concatenate strings
o System.out.println(“Hello” + “World”) will print Hello World on console
e String concatenated with any other data type such as int will also convert that
datatype to String and the result will be a concatenated String displayed on console.

For example,

o inti=4;
o intj=25;

7] System.out.println (“Hello” + 1);// will print Hello 4 on screen
o However

"1 System.out.println(i+j);//will print 9 on the console because both i and j
are of type int.

3.1.2 Comparing Strings

For comparing Strings never use == operator, use equals method of String class.

e == operator compares addresses (shallow comparison) while equals compares values (deep
comparison)

e E.g. stringl.equals(string2)

© Copyright Virtual University of Pakistan Page 19

Web Design and Development (CS506)

Example Code: String concatenation and comparison

public class StringTest {

public static void main(String[] args) {

inti=4;

intj=>5;

System.out.printin("Hello" + 1); // will print Hello4
System.out.println(i + j); / will print 9

String s1 = new String (“pakistan”);

String s2 = “pakistan”;

if (s1 ==s2) {
System.out.println(“comparing string using == operator”);
b

if (sl.equals(s2)) {

System.out.printIn(“‘comparing string using equal method”);
}
}
}

On execution of the above program, following output will produce

C:\ WINDOWS\system32\cmd.exe

D:\examples> javac StringTest.java
D:\examples> java StringTest

Hello4

9

Comparing string using equal method

3.2 Taking in Command Line Arguments

In Java, the program can be written to accept command-line-arguments.

Example Code: command-line arguments

/* This Java application illustrates the use of Java command-line arguments. */
public class CmdLineArgsApp {

© Copyright Virtual University of Pakistan Page 20

Web Design and Development (CS506)

public static void main(String[] args){ //main method
System.out.println(”First argument ” + args[0]);
System.out.println(’Second argument ” +args[1]);
}//end main

+//End class.

To execute this program, we pass two arguments as shown below:

C:\java CmdLineArgsApp Hello World
First argument Hello
Second argument World

» These parameters should be separated by space.
» The parameters that we pass from the command line are stored as Strings inside the “args”
array. You can see that the type of “args” array is String.

Example Code: Passing any number of arguments

In java, array knows their size by using the length property. By using, length property we can
determine how many arguments were passed. The following code example can accept any
number of arguments.

/* This Java application illustrates the use of Java command-line arguments. */
public class AnyArgsApp {

public static void main(String[] args){ //main method

for(int i=0; 1 < args.length; i++)

System.out.println(““Argument:” + i + “ value ” +args[i]);

}//end main

+//End class.

Output

C:\java AnyArgsApp

1 can pass any number of arguments
Argument:0 value i

Argument:1 value can

Argument:2 value pass

Argument:3 value any

Argument:4 value number
Argument:5 value of

Argument:6 value arguments

3.3 Primitives vs. Objects

Everything in Java is an “Object”, as every class by default inherits from class “Object”,

© Copyright Virtual University of Pakistan Page 21

Web Design and Development (CS506)

except a few primitive data types, which are there for efficiency reasons.
e Primitive Data Types

o Primitive Data types of java

'] boolean, byte 0 1 byte

] char, short 0 2 bytes
] int, float O 4 bytes
"1 long, double 0 8 bytes

+ Primitive data types are generally used for local variables, parameters and instance variables
(properties of an object)

* Primitive data types are located on the stack and we can only access their value,
while objects are located on heap and we have a reference to these objects

e Also primitive data types are always passed by value while objects are always
passed by reference in java. There is no C++ like methods

o void someMethod(int &a, int & b) // not available in java

3.4 Stack vs. Heap

Stack and heap are two important memory areas. Primitives are created on the stack while
objects are created on heap. This will be further clarified by looking at the following diagram
that is taken from Java Lab Course.

. e Stack Heap|
intnum =3;
Students =new Student();
mLim
o
0FS9
i /’* nams ali
.--""'"H“
0F29

3.5 Worapper Classes

© Copyright Virtual University of Pakistan Page 22

Web Design and Development (CS506)

Each primitive data type has a corresponding object (wrapper class). These wrapper
classes provides additional functionality (conversion, size checking etc.), which a primitive
data type cannot provide.

Primitive Data Type | Corresponding
Object Class

byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character

boolean Boolean

3.5.1 Wrapper Use

You can create an object of Wrapper class using a String or a primitive data type

e Integer num = new Integer(4); or
e Integer num = new Integer(“4”);

Note: num is an object over here not a primitive data type

You can get a primitive data type from a Wrapper using the corresponding value function

e int primNum = num.intValue();

3.5.2 Converting Strings to Numeric Primitive Data Types

To convert a string containing digits to a primitive data type, wrapper classes can help.
parseXxx method can be used to convert a String to the corresponding primitive data

type.

» String value = “532”;
int d = Integer.parselnt(value);
» String value = “3.14e6”;
double d = Double.parseDouble(value);

The following table summarizes the parser methods available to a java programmer.

© Copyright Virtual University of Pakistan Page 23

Web Design and Development (CS506)

Data Type

Convert String using either...

byte

Byte.parseByte(string)
new Byte(string).byteValue()

short

Short.parseShort(string)
new Short(string).shortValue()

int

Integer.parselnteger(string)
new Integer(string).intValue()

long

Long.parseLong(String)
new Long(string).longValue()

float

Float.parseFloat(string)
new Float(string).floatValue()

double

Double.parseDouble(string)
new Double(string).doubleValue()

Example Code: Taking Input / Output

So far, we learned how to print something on console. Now the time has come to learn how to
print on the GUI. Taking input from console is not as straightforward as in C++. Initially we’ll
study how to take input through GUI (by using JOPtionPane class).

The following program will take input (a number) through GUI and prints its square on the

console as well on GUI.

. import javax.swing.*;

. public class InputOutputTest {
public static void main(String[] args) {
. //takes input through GUI

. int number = Integer.parselnt(input);

. int square = number * number;

. //Display square on console

9. System.out.println("square:" + square);
10. //Display square on GUI

12. System.exit(0);
13.}
14.}

. String input = JOptionPane.showInputDialog("Enter number");

11. JOptionPane.showMessageDialog(null, "square:"+ square);

On line 1, swing package was imported because it contains the JOptionPane class that will be used
for taking input from GUI and displaying output to GUI. It is similar to header classes of C++.

On line 5, showlnputDialog method is called of JOptionPane class by passing string
argument that will be displayed on GUI (dialog box). This method always returns back a

© Copyright Virtual University of Pakistan

Page 24

Web Design and Development (CS506)

String regardless of whatever you entered (int, float, double, char) in the input filed.

Our task is to print square of a number on console, so we first convert a string into a
number by calling parselnt method of Integer wrapper class. This is what we done on line
number 6.

Line 11 will display square on GUI (dialog box) by using showMessageDialog method of
JOptionPane class. The first argument passed to this method is null and the second argument
must be a String. Here we use string concatenation.

Line 12 is needed to return the control back to command prompt whenever we use
JoptionPane class.

Compile & Execute

© Copyright Virtual University of Pakistan Page 25

Web Design and Development (CS506)

C:\ WINDOWS\system32\cmd.exe

D:\examples> javac InputOutputTest.java
D:\examples> java InputOutputTest
Square:144

D:\examples>_

Input l

Enter the number
12
KN XN

Message 17

@ Square:144
KN =N

3.6 Selection & Control Structure

The if-else and switch selection structures are exactly similar to we have in C++. All
relational operators that we use in C++ to perform comparisons are also available in java
with same behavior. Likewise for, while and do-while control structures are alike to C++.

3.7 Reference:
e Javatutorial: http://www.dickbaldwin.com/java
= Example code, their explanations and corresponding figures for this handout are taken from

© Copyright Virtual University of Pakistan Page 26

Web Design and Development (CS506)

the book JAVA A Lab Course by Umair Javed. This material is available just for the use of
VU students of the course Web Design and Development and not for any other commercial
purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on“Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 27

Web Design and Development (CS506)

Lecture 4: Object Oriented Programming

Java is fundamentally object oriented. Every line of code you write in java must be inside a class
(not counting import directives).OOP fundamental stones Encapsulation, Inheritance and
Polymorphism etc. are all fully supported by java.

4.1 OOP Vocabulary Review

4.1.1 Classes

» Definition or a blueprint of a user defined data type
» Prototypes for objects
e Think of it as a map of the building on a paper

4.1.2 Objects

* Nouns, things in the world
* Anything we can put a thumb on
» Objects are instantiated or created from class

4.1.3 Constructor

A special method that is implicitly invoked. Used to create an Object (that is,
an Instance of the Class) and to initialize it.

4.1.4 Attributes

= Properties an object has

4.1.5 Methods

= Actions that an object can do

© Copyright Virtual University of Pakistan Page 28

Web Design and Development (CS506)

4.2 Defining a Class

class point {

private int xCord; Instance variables and symbolic constants

private int yCord;

public point() {....}

Constructor: how to create and initialize objects

public void display() {

Methods: how to manipulate those objects (may
! or may not include its own “driver” i.e. main())

+// end of class

4.3 Comparison with C++

Some important points to consider when defining a class in java as you probably noticed from the
above given skeleton are
e There are no global variables or functions. Everything resides inside a class. Remember
we wrote our main method inside a class.(For example, in HelloWorldApp
program)
» Specify access modifiers (public, private or protected) for each member method or data
members at every line.
o public: accessible anywhere by anyone
o private: Only accessible within this class
o protect: accessible only to the class itself and to its subclasses or other classes in
the same package.
o default: default access if no access modifier is provided. Accessible to all classes in
the same package.
» There is no semicolon (;) at the end of class.
e All methods (functions) are written inline. There are no separate header and
implementation files.
* Automatic initialization of class level data members if you do not initialize them
o Primitives

[J Numeric (int, float etc) with zero.
7] Char with null

71 Boolean with false
o Object References
1 With null

Note: Remember, the same rule is not applied to local variables (defined inside

© Copyright Virtual University of Pakistan Page 29

Web Design and Development (CS506)

method body). Using a local variable without initialization is a compile time error

public void someMethod() {
int x; //local variable
System.out.println(x); // compile time error

}

e Constructor

o Same name as class name
o Does not have a return type
o No initialization list
o JVM provides a zero argument (default) constructor only if a class doesn’t
define its own constructor
* Destructors

o Are not required in java class because memory management is the
responsibility of JVM.

4.4 Task - Defining a Student class

The following example will illustrate how to write a class. We want to write a “Student” class that
» Should be able to store the following characteristics of student
o Roll No

o Name
» Provide default, parameterized and copy constructors

o Provide standard getters/setters (discuss shortly) for instance variables

(] Make sure, roll no has never assigned a negative value i.e. ensuring the
correct state of the object

'] Provide print method capable of printing student object on console

45 Getters/ Setters

The attributes of a class are generally taken as private or protected. So to access them outside of
a class, a convention is followed knows as getters & setters. These are generally public
methods. The words set and get are used prior to the name of an attribute. Another
important purpose for writing getter & setters to control the values assigned to an attribute.

Student Class Code

// File Student.java
public class Student {
private String name;

© Copyright Virtual University of Pakistan Page 30

Web Design and Development (CS506)

private int rollNo;

// Standard Setters

public void setName (String name) {

this.name = name;

b

// Note the masking of class level variable rollNo
public void setRollNo (int rollNo) {

if (rollNo > 0) {

this.rollNo = rolINo; }else {

this.rollNo = 100;

h

}
// Standard Getters

public String getName () {
return name;

}
public int getRolINo () {
return rollNo;

¥
// Default Constructor
public Student() {
name = “not set”;
rollNo = 100;

}
// parameterized Constructor for a new student
public Student(String name, int rollNo) {
setName(name);//call to setter of name
setRollNo(rollNo); //call to setter of rollNo

¥
// Copy Constructor for a new student public Student(Student s) {
name = s.name;

rolINo = s.rolINo;

¥
// method used to display method on console public void print () {
System.out.print("Student name: " +name);

System.out.println(", roll no: " +rollNo); }

} // end of class

4.6 Using a Class

b

Objects of a class are always created on heap using the “new’
constructor
e Student s = new Student (); // no pointer operator “*” between Student and s
* Only String constant is an exception
o String greet = “Hello” ; // No new operator

operator followed by

© Copyright Virtual University of Pakistan Page 31

Web Design and Development (CS506)

o However you can also use
» String greet2 = new String(“Hello”);

Members of a class (member variables and methods also known as instance

(1324

variables/methods) are accessed using “.”” operator. There is no “—>" operator in java
* s.setName(“Ali”);
» s—>setName(“Ali”) is incorrect and will not compile in java

Note: Objects are always passed by reference and primitives are always passed by value

in java.

4.6.1 Task - Using Student Class

» Create objects of student class by calling default parameterize and copy constructor
» (all student class various methods on these objects.

Student client code

// File Test.java
/* This class create Student class objects and demonstrates how to call various methods on objects
*/

public class Test{
public static void main (String args[]){
// Make two student obejcts

Student s1 = new Student("ali", 15);

Student s2 = new Student(); //call to default costructor
sl.print(); / display ali and 15

s2.print(); // display not set and 100
s2.setName("usman");

s2.setRollNo(20);

System.out.print("Student name:" + s2.getName());
System.out.println(" rollNo:" + s2.getRolINo());

System.out.println("calling copy constructor");
Student s3 = new Student(s2); //call to copy constructor

s2.print();

s3.print();

s3.setRollNo(-10); //Roll No of s3 would be set to 100

s3.print();

/*NOTE: public vs. private

A statement like "b.rollNo = 10;" will not compile in a client of the Student class when rollNo is

© Copyright Virtual University of Pakistan Page 32

Web Design and Development (CS506)

declared

protected or private
*/

} //lend of main

} //end of class

Compile & Execute

Compile both classes using javac command. Run Test class using java
command.

C:\ WINDOWS\system32\cmd.exe

D:\examples> javac Student.java
D:\examples> javac Test.java
D:\examples> java Test

Student name:ali, roll no: 15
Student name:Not Set, roll no: 100
Student name:usman rolINo:20
Calling copy constructor

Student name:usman, roll no:20
Student name:usman, roll no:20
Student name:usman, roll no:100
D:\examples>_

4.7 More on Classes

4.7.1 Static

Aclass can have static variables and methods. Static variables and methods are
associated with the class itself and are not tied to any particular object. Therefore statics can be
accessed without instantiating an object. Static methods andvariables are
generally accessed by class name.

The most important aspect of statics is that they occur as a single copy in the class
regardless of the number of objects. Statics are shared by all objects of a class. Non static methods
and instance variables are not accessible inside a static method because no this reference is
available inside a static method.

We have already used some static variables and methods. Examples are
. System.out.println(*“‘some text”);---out is a static variable

© Copyright Virtual University of Pakistan Page 33

Web Design and Development (CS506)

. JOptionPane.showMessageDialog(null, “sometext’);-----
showMessageDialog is a static method

4.7.2 Garbage Collection & Finalize

Java performs garbage collection and eliminates the need to free objects explicitly. When an
object has no references to it anywhere except in other objects that are also
unreferenced, its space can be reclaimed. Before an object is destroyed, it might be necessary for
the object to perform some action. For example: to close an opened file. In such a case, define a
finalize() method with the actions to be performed before the object is destroyed.

4.7.2.1 Finalize

When a finalize method is defined in a class, Java run time calls finalize() whenever it is about to
recycle an object of that class. It is noteworthy that a garbage collector reclaims objects in any order
or never reclaims them. We cannot predict and assure when garbage collector will get back the
memory of unreferenced objects.

The garbage collector can be requested to run by calling System.gc() method. It is not necessary
that it accepts the request and run.

Example Code: using static & finalize ()

We want to count exact number of objects in memory of a Student class the one defined earlier. For
this purpose, we’ll modify Student class.

» Add a static variable countStudents that helps in maintaining the count of student objects.

= Write a getter for this static variable. (Remember, the getter also must be static one. Hoping
s0, you know the grounds).

» In all constructors, write a code that will increment the countStudents by one.

» Opverride finalize() method and decrement the countStudents variable by one.

» Override toString() method.

Class Object is a superclass (base or parent) class of all the classes in java by
default. This class has already finalize() and toString() method (used to convert
an object state into string). Therefore we are actually overriding these methods
over here. (We’ll talk more about these in the handout on inheritance).

By making all above modifications, student class will look like

// File Student.java

© Copyright Virtual University of Pakistan Page 34

Web Design and Development (CS506)

public class Student {

private String name;

private int rollNo;

private static int countStudents = 0;
// Standard Setters

public void setName (String name) {
this.name = name;

}

public void setRollNo (int rolINo) {
if (rollNo > 0) {

this.rollNo = rolINo; }else {
this.rollNo = 100;

h

}
// Standard Getters

public String getName () {
return name;

}
public int getRolINo () {
return rollNo;

}
// gettter of static countStudents variable
public static int getCountStudents(){
return countStudents;

}
// Default Constructor public Student() {
name = “not set”;

rollNo = 100;
countStudents += 1;
H

// method used to display method on console
public void print () {
System.out.print("Student name: " +name);
System.out.println(", roll no: " +rolINo);

}

public String toString() {

return “name: ” + name + “ RollNo: ” + rollNo;
H
// overriding finalize method of Object class
public void finalize() {

countStudents -= 1;

}
} // end of class

// Note the masking of class level variable rollNo

// overriding toString method of java.lang.Object class

© Copyright Virtual University of Pakistan

Page 35

Web Design and Development (CS506)

Next, we’ll write driver class. After creating two objects of student class, we deliberately
loose object’s reference and requests the JVM to run garbage collector to reclaim the
memory. By printing countStudents value, we can confirm that. Coming up code is of the
Test class.

// File Test.java public class Test{

public static void main (String args[]){

int numObyjs;

// printing current number of objects i.e 0

numObjs = Student.getCountStudents();
System.out.println(“Students Objects” + numObjs);
// Creating first student object & printing its values
Student s1 = new Student("ali", 15);
System.out.println(“Student: ” + s1.toString());

// printing current number of objects i.e. 1

numObjs = Student.getCountStudents();
System.out.println(“Students Objects” + numObyjs);
// Creating second student object & printing its values

Student s2 = new Student("usman", 49);

// implicit call to toString() method

System.out.println(“Student: ” + s2);

// printing current number of objects i.e. 2
numObjs = Student.getCountStudents();

System.out.println(“Students Objects” + numObjs);

//'loosing object reference s1 = null,
// requesting JVM to run Garbage collector but there is

// no guarantee that it will run

© Copyright Virtual University of Pakistan Page 36

Web Design and Development (CS506)

System.gc();

// printing current number of objects i.e. unpredictable
numObjs = Student.getCountStudents();
System.out.println(“Students Objects” + numObjs);

} //lend of main

} //end of class

The compilation and execution of the above program is given below. Note that output may be
different one given here because it all depends whether garbage collector reclaims the
memory or not. Luckily, in my case it does.

C:\ WINDOWS\system32\cmd.exe

D:\examples\static_finalize> javac Student.java
D:\examples\static_finalize> javac Test.java
D:\examples\static_finalize> java Test

Students Objects:0

Student:name:aliRolINo: 15

Students objects:1

Student:name: usmanRolINo: 49

Students Objects:2

Students Objects:1
D:\examples\static_finalize>_

4.8 Reference:

* Sun java tutorial: http://java.sun.com/docs/books/tutorial/java

» Thinking in java by Bruce Eckle

* Beginning Java2 by Ivor Hortan

» Example code, their explanations and corresponding execution figures for this
handout are taken from the book JAVA A Lab Course by Umair Javed. This material is
available just for the use of VU students of the course Web Design and Development and
not for any other commercial purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 37

Web Design and Development (CS506)

Lecture 5: Inheritance

In general, inheritance is used to implement a “is-a” relationship. Inheritance saves code rewriting
for a client thus promotes reusability.

In java parent or base class is referred as super class while child or derived class is known as sub
class.

5.1 Comparisonwith C++

e Java only supports single inheritance. As a result a class can only inherit from
one class at one time.

« Keyword extends is used instead of “:”” for inheritance.

» All functions are virtual by default

» All java classes inherit from Object class (more on it later).

» To explicitly call the super class constructor, use super keyword. It’s important
to remember that call to super class constructor must be first line.

» Keyword super is also used to call overridden methods.

Example Code: using inheritance

We’ll use three classes to get familiar you with inheritance. First one is Employee class. This will
act as super class. Teacher class will inherit from Employee class and Test class is driver class that
contains main method. Let’s look at them one by one

class Employee {

protected int id;

protected String name;
//parameterized constructor

public Employee(int id, String name){
this.id = id;

this.name = name;

b
//default constructor

public Employee(){

// calling parameterized constructor of same (Employee)
// class by using keyword this

this (10, “not set”);

b
//setters

public void setld (int id) {

© Copyright Virtual University of Pakistan Page 38

Web Design and Development (CS506)

this.id = id;
}
public void setName (String name) {
this.name = name;

}

//getters

public int getld () {
return id;

h
public String getName () {
return name;

§
// displaying employee object on console

public void display(){

System.out.println(“in employee display method”);
System.out.println("Employee id:" + id + " name:" + name);
h
/loverriding object’s class toString method

public String toString() {

System.out.println(“in employee toString method”);
return "id:" + id + "name:" + name;

b
}//end class

The Teacher class extends from Employee class. Therefore Teacher class is a subclass of
Employee. The teacher class has an additional attribute i.e. qualification.

class Teacher extends Employee{
private String qual;

//default constructor

public Teacher () {

nmn,

//implicit call to superclass default construct qual ="";
h
//parameterized constructor

public Teacher(int i, String n, String q){

//call to superclass param const must be first line

super(i,n);
qual =q;
}

© Copyright Virtual University of Pakistan Page 39

Web Design and Development (CS506)

//setter

public void setQual (String qual){
this.qual = qual;

}
//getter

public String getQual(){
return qual;

}
/loverriding display method of Employee class
public void display(){

System.out.println("in teacher's display method");

super.display(); //call to superclass display method
System.out.println("Teacher qualification:" + qual);
b
/loverriding toString method of Employee class
public String toString() {

System.out.println("in teacher's toString method");
String emp = super.toString();

return emp +" qualification:" + qual;

h
}/end class

Objects of Employee & Teacher class are created inside main method in Test class. Later calls
are made to display and toString method using these objects.

class Test{

public static void main (String args[]){
System.out.println("making object of employee");
Employee e = new Employee(89, "khurram ahmad");
System.out.println("making object of teacher");
Teacher t = new Teacher (91, "ali raza", "phd");
e.display(); //call to Employee class display method
t.display(); //call to Teacher class display method

© Copyright Virtual University of Pakistan Page 40

Web Design and Development (CS506)

// calling employee class toString method explicitly
System.out.println("Employee: " +e.toString());

// calling teacher class toString implicitly
System.out.println("Teacher: " + t);

} //lend of main

}//end class

Output

C:\ WINDOWS\system32\cmd.exe - E

D:\examples\polymorphism> javac Employee.java
D:\examples\polymorphism> javac Teacher.java
D:\examples\polymorphism> javac Test.java

D:\examples\polymorphism> java Test
in employee display method

Employee id:89 name:khurram ahmad
in teacher’s display method

in employee display method

Employee id:91 name:ali raza
Teacher qualification:phd

in employee toString method
Employee: id:89name:khurram

in teacher’s toString method

in employee toString method

Teacher: id:91name:ali raza qualification:phd
D:\examples\polymorphism> _

5.2 Object - The Root Class

The Object class in Java is a superclass for all other classes defined in Java's class
libraries, as well as for user-defined Java classes. For user defined classes, its not
necessary to mention the Object class as a super class, java does it automatically for you.

The class Hierarchy of Employee class is shown below. Object is the super class of Employee
class and Teacher is a subclass of Employee class. We can make another class Manager that can also
extends from Employee class.

© Copyright Virtual University of Pakistan Page 41

Web Design and Development (CS506)

Object

1

Employe

A

Teacher Manager

5.3 Polymorphism

“Polymorphic” literally means “of multiple shapes” and in the context of OOP,
Polymorphic means “having multiple behaviors”.
A parent class reference can point to the subclass objects because of is-a relationship.
For example a Employee reference can point to:

o Employee Object
o Teacher Object
o Manager Object
e A polymorphic method results in different actions depending on the object being
referenced

o Also known as late binding or run-time binding

Example Code: using polymorphism

This Test class is the modification of last example code. Same Employee & Teacher classes are
used. Objects of Employee & Teacher class are created inside main methods and calls are made to

display and toString method using these objects.

class Test{

public static void main (String args[]){

// Make employee references

Employee refl, ref2;

refl = new Employee(89, "khurram ahmad");

// assign employee object to first employee reference
ref2 = new Teacher (91, "ali raza", "phd");

© Copyright Virtual University of Pakistan Page 42

Web Design and Development (CS506)

// is-a relationship, polymorphism

//call to Employee class display method
refl.display();

//call to Teacher class display method
ref2.display();

} /lend of main
}//end class

System.out.println("Employee: " +refl.toString());// call to Employee class toString method
System.out.println("Teacher: " + ref2.toString());// call to Teacher class toString method

Output

C:\ WINDOWS\system32\cmd.exe

D:\examples\old\polymorphism> java Test
in employee display method

Employee id:89 name:khurram ahmad

in teacher’s display method

in employee display method

Employee id:91 name:ali raza

Teacher qualification:phd

in employee toString method

Employee: id:89name:khurram ahmad

in teacher’s toString method

in employee toString method

Teacher: id:91name:ali raza qualification:phd
D:\examples\polymorphism> _

54 Type Casting

In computer science, type conversion or typecasting refers to changing an entity of one data type

into another. Type casting can be categorized into two types

5.4.1 Up-casting

= converting a smaller data type into bigger one
» Implicit - we don’t have to do something special
* No loss of information
» Examples of
o Primitives
inta=10;
double b=a;
o Classes

Employee e = new Teacher();

© Copyright Virtual University of Pakistan

Page 43

Web Design and Development (CS506)

5.4.2 Down-casting

e converting a bigger data type into smaller one
= Explicit - need to mention
» Possible loss of information
= Examples of
o Primitives
double a = 7.65;
int b= (int) a;
o Classes

Employee e = new Teacher();// up-casting
Teacher t= (Teacher) e;// down-casting

55 References:

e Java tutorial: http://java.sun.com/docs/books/tutorial/java/javaO0O/

» Stanford university

« Example code, their explanations and corresponding figures for handout 5-1,5-2
are taken from the book JAVA A Lab Course by Umair Javed. This material is
available just for the use of VU students of the course Web Design and
Development and not for any other commercial purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 44

Web Design and Development (CS506)

Lecture 6: Collections

A collection represents group of objects know as its elements. Java has a built-in support for
collections. Collection classes are similar to STL in C++. An advantage of a collection over
an array is that you don’t need to know the eventual size of the collection in order to add objects to
it. The java.utilpackage provides a set of collection classes that helps a programmer in number of
ways.

6.1 Collections Design

All classes almost provides same methods like get (), size (), isSEmpty() etc. These methods will
return the object stored in it, number of objects stored and whether collection contains an
object or not respectively.

Java collections are capable of storing any kind of objects. Collections store references to
objects. This is similar to using a void* in C. therefore down casting is required to get the
actual type. For example, if string in stored in a collection then to get it back, we write

String element = (String)arraylist.get(i);

6.2 Collection messages

Some basic messages (methods) are:

e Constructor
o creates a collection with no elements.
e int size()
o returns the number of elements in a collection.
* boolean add(Object)
o adds a new element in the collection.
o returns true if the element is added successfully false otherwise.

* Dboolean isEmpty()
o returns true if this collection contains no element false otherwise.
* boolean contains(Object)
o returns true if this collection contains the specified element by using iterative
search.
* boolean remove(Object)
o removes a single instance of the specified element from this collection, if it is
present .

© Copyright Virtual University of Pakistan Page 45

Web Design and Development (CS506)

6.3 Array List

It’s like a resizable array. Array List actually comes as a replacement the old “Vector”
collection. As we add or remove elements into or from it, it grows or shrinks over time.

6.3.1 Useful Methods

* add (Object)
o With the help of this method, any object can be added into Array List because
Object is the superclass of all classes.
o Objects going to add will implicitly up cast.
» Object get(int index)

o Returns the element at the specified position in the list
o Index ranges from 0 to size()-1
o Must cast to appropriate type

* remove (int index)

o Removes the element at the specified position in this list.
o Shifts any subsequent elements to the left (subtracts one from their indices).
e intsize()

Example Code: Using Array List class

We’ll store Student objects in the Array List. We are using the same student class which we built in
previous lectures/handouts.

We’ll add three student objects and later prints all the student objects after retrieving them from
Array List. Let’s look at the code:

import java.util.*;
public class ArrayListTest {
public static void main(String[] args) {

// creating arrayList object by calling constructor
ArrayList<Student> al= new ArrayList<Student>();

// creating three Student objects

Student s1 = new Student (“ali”, 1);

Student s2 = new Student (“saad” , 2);

Student s3 = new Student (“raza” , 3);

// adding elements (Student objects) into arralylist

© Copyright Virtual University of Pakistan Page 46

Web Design and Development (CS506)

al.add(s1);
al.add(s2);
al.add(s3);

// checking whether arraylist is empty or not Boolean
b = al.isEmpty ();

if (b ==true) {

System.out.println(“arraylist is empty”);

b
else {

int size = al.size();
System.out.println(“‘arraylist size: ” + size);

}

// using loop to iterate. Loops starts from 0 to one
// less than size

for (int i=0; i<al.size(); i++){

// retrieving object from arraylist

Student s = (Student) al.get(i);

// calling student class print method

s.print();

} // end for loop

} // end main

} // end class

Output

C:\ WINDOWS\system32\cmd.exe

D:\examples\collections> javac TestArrayL.ist.java
D:\examples\collections> java TestArrayList
arraylist size: 3

Student name:ali, roll no:1

Student name:saad, roll no:2

Student name:raza. roll no:3

6.4 HashMap

Store elements in the form of key- value pair form. A key is associated with each object that is stored.
This allows fast retrieval of that object. Keys are unique.

© Copyright Virtual University of Pakistan Page 47

Web Design and Development (CS506)

6.4.1 Useful Methods
» put(Object key, Object Value)

o Keys & Values are stored in the form of objects (implicit up casting is
performed).
o Associates the specified value with the specified key in this map.
o If the map previously contained a mapping for this key, the old value is
replaced.
* Object get(Object key)
o Returns the value to which the specified key is mapped in this identity hash
map, or nullif the map contains no mapping for this key.
o Must downcast to appropriate type when used
* int size()

Example Code: using HashMap class

In this example code, we’ll store Student objects as values and their rollnos in the form of strings as
keys. Same Student class is used. The code is:

import java.util.*;

public class HashMapTest {

public static void main(String[] args) {

// creating HashMap object

HashMap <String, Student> h =new HashMap<String, Student>();
// creating Student objects

Student s1 = new Student ("ali", 1);

Student s2 = new Student ("saad" , 2);

Student s3 = new Student ("raza" , 6);

// adding elements (Student objects) where roll nos
// are stored as keys and student objects as values
h.put("one",s1);

h.put("two",S2);

h.put("three", S3);

/I checking whether hashmap is empty or not
boolean b = h.isEmpty ();

if (b == true) {
System.out.println(“hashmap is empty”);
b

else {

int size = h.size();
System.out.println(“hashmap size: ” + size);

}

© Copyright Virtual University of Pakistan Page 48

Web Design and Development (CS506)

// retrieving student object against rollno two and
// performing downcasting

Student s = (Student) h.get(“two”);

// calling student’s class print method s.print();

} // end main
} // end class

Output

C:\ WINDOWS\system32\cmd.exe

D:\examples\collections> javac TestHashMap.java
D:\examples\collections> java TestHashMap
hashmap size: 3

Student name:saad, roll no:2
D:\examples\collections>_

6.5 References:

e J2SE 5.0 new features: http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html

» Technical Article: http://java.sun.com/developer/technical Articles/releases/j2sel5/

» Beginning Java2 by Ivor Horton

» Example code, their explainations and corresponding figures for this handout are taken
from the book JAVA A Lab Course by Umair Javed. This material is available just for
the use of VU students of the course Web Design and Development and not for any other
commercial purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

6.6 Address Book

Warning: It is strongly advised that you have to type the code given in this example by yourself.
Do not copy/paste it; most probably you will get unexpected errors that you have never
seen. Some bugs are deliberately introduced as well to avoid copy-pasting. TAs will not
cooperate with you in debugging such errors.

© Copyright Virtual University of Pakistan Page 49

Web Design and Development (CS506)

6.6.1 Problem

« We want to build an address book that is capable of storing name, address & phone
number of a person.

e Address book provides functionality in the form of a JOptionPane based menu. The
feature list includes

Add - to add a new person record

Delete - to delete an existing person record by name

Search - to search a person record by name

Exit - to exit from application

» The Address book should also support persistence for person records

(0]
(0]
(0]
(0]

6.6.2 Approach for Solving Problem

Building a small address book generally involves 3 steps. Let us briefly discuss each step and write
a solution code for each step

6.6.2.1 Stepl - Make Personlinfo class

» First of all you need to store your desired information for each person. For this you
can create a user-defined data type (i.e. a class). Make a class PersonIlnfowith name,
address and phone number as its attributes.

» Write a parameterized constructor for this class.

» Write print method in Person class that displays one person record on a message
dialog box.

The code for Personinfo class is given below.

import javax.swing.*;
class PersonInfo {

String name;

String address;

String phoneNum,;

//parameterized constructor

public PersonInfo(String n, String a, String p) {
name = n; address = a; phoneNum = p;

}

//method for displaying person record on GUI
public void print() {
JOptionPane.showMessageDialog(null, “name: ” + name + “address:” +address + “phone no:” +

© Copyright Virtual University of Pakistan Page 50

Web Design and Development (CS506)

phoneNum);

h
;

Note: Not declaring attributes as private is a bad approach but we have done it to keep
things simple here.

6.6.2.2 Step2 - Make Address Book class

e Take the example of daily life; generally address book is used to store more than one
person records and we don’t know in advance how many records are going to be added
into it.

* So, we need some data structure that can help us in storing more than one
PersonInfoobjects without concerning about its size.

= Array Listcan be used to achieve the above functionality

» Create a class Address Book with an ArrayList as its attribute. This arraylist will be used to
store the information of different persons in the form of Personlnfo Objects.
This class will also provide addPerson, deletePerson & searchPerson methods.
These methods are used for adding new person records, deleting an existing person
record by name and searching among existing person records by name respectively.

e Input/Output will be performed through JOptionPane.

The code for AddressBookclass is

import javax.swing.*;
import java.util.*;

class AddressBook {
ArrayList<PersonInfo> persons;
//constructor

public AddressBook () {

persons = new ArrayList()<PersonInfo>();

}

//add new person record to arraylist after taking input

public void addPerson() {

String name = JOptionPane.showInputDialog(“Enter name”);

String add = JOptionPane.showInputDialog(“Enter address”); String pNum =
JOptionPane.showInputDialog(“Enter phone no”);

//construct new person object

PersonInfo p = new PersonInfo(name, add, pNum);

//add the above PersonInfo object to arraylist

persons.add(p);

}
/Isearch person record by name by iterating over arraylist
public void searchPerson (String n) {

© Copyright Virtual University of Pakistan Page 51

Web Design and Development (CS506)

for (int i=0; i< persons.size(); it++) {
PersonInfo p = (PersonInfo)persons.get(i);
if (n.equals(p.name)) {

p-print();

}
} // end for

} // end searchPerson

//delete person record by name by iterating over arraylist
public void deletePerson (String n) {

for (int i=0; i< persons.size(); i++) {

PersonInfo p = (PersonInfo)persons.get(i);

if (n.equals(p.name))

{

persons.remove(i);

h
b

b
} // end class

The addperson method first takes input for name, address and phone number and than
construct a Personlnfo object by using the recently taken input values. Then the newly
constructed object is added to the arraylist - persons.

The searchPerson & deletePerson methods are using the same methodology i.e. first they search
the required record by name and then prints his/her detail or delete the record permanently
from the ArrayList.

Both the methods are taking string argument, by using this they can perform their search or
delete operation. We used forloop for iterating the whole ArrayList.By using the size method
of ArrayList, we can control our loop as ArrayListindexes range starts from O to one less than
size.

Notice that, inside loop we retrieve each PersonInfo object by using down casting
operation. After that we compare each Personlnfo object’s name by the one passed to these
methods using equal method since Strings are always being compared using equalmethod.

Inside ifblock of searchPerson, print method is called using Personlnfoobject that will display
person information on GUI. On the other hand, inside ifblock of deletePerson method,
remove method of ArrayList class is called that is used to delete record from personsi.e.
ArrayList.

6.6.2.3 Step3 - Make Test class (driver program)

» This class will contain a mainmethod and an object of AddressBook class.
» Build GUI based menu by using switch selection structure
= Call appropriate methods of AddressBookclass

The code for Testclass is

© Copyright Virtual University of Pakistan Page 52

Web Design and Development (CS506)

import javax.swing.*;

class Test {

public static void main (String args[]) {

AddressBook ab = new AddressBook();

String input, s;

int ch;

while (true) {

input = JOptionPane.showInputDialog(“Enter 1 to add ” + “\n Enter 2 to Search \n Enter 3 to
Delete* +

“A\n Enter 4 to Exit”);

ch = Integer.parselnt(input);

switch (ch) {

case 1:

ab.addPerson();

break;

case 2:

s = JOptionPane.showInputDialog(“Enter name to search ”);

ab.searchPerson(s);

break;

case 3:

s = JOptionPane.showInputDialog(“Enter name to delete);

ab.deletePerson(s);

break;

case 4: System.exit(0);

b
}//end while
}//end main

}

Note that we use infinite while loop that would never end or stop given that our program should
only exit when user enters 4 i.e. exit option.

Compile & Execute
Compile all three classes and run Test class. Bravo, you successfully completed the all basic
three steps. Enjoy!

6.7 Reference

Entire content for this handout are taken from the book JAVA A Lab Course by Umair Javed.
This material is available just for the use of VU students of the course Web Design and
Development and not for any other commercial purpose.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 53

Web Design and Development (CS506)

Lecture 7: Intro to Exceptions

7.1 TypesofErrors

Generally, you can come across three types of errors while developing software. These are
Syntax, Logic & Runtime errors.

7.1.1 SyntaxErrors

» Arise because the rules of the language are not followed.

7.1.2 Logic Errors

» Indicates that logic used for coding doesn’t produce expected output.

7.1.3 Runtime Errors

* Occur because the program tries to perform an operation that is impossible to
complete.

» Cause exceptions and may be handled at runtime (while you are running the
program)

» For example divide by zero

7.2 What is an Exception?

* An exception is an event that usually signals an erroneous situation at run time
= Exceptions are wrapped up as objects
* A program can deal with an exception in one of three ways:

o ignore it
o handle it where it occurs
o handle it an another place in the program

7.3 Why handle Exceptions?

» Helps to separate error handling code from main logic (the normal code you write) of
the program.
» As different sort/type of exceptions can arise, by handling exceptions we can

© Copyright Virtual University of Pakistan Page 54

Web Design and Development (CS506)

distinguish between them and write appropriate handling code for each type for
example we can differently handle exceptions that occur due to division by Zero and
exceptions that occur due to non-availability of a file.

= If not handled properly, program might terminate.

7.4 Exceptions in Java

» An exception in java is represented as an object that’s created when an abnormal
situation arises in the program. Note that an error is also represented as an object in
Java, but usually represents an unrecoverable situation and should not be caught

» The exception object stores information about the nature of the problem. For

example, due to network problem or class not found etc.
» All exceptions in java are inherited from a class know as Throwable.

7.5 Exception Hierarchy

Following diagram is an abridged version of Exception class hierarchy

— ClassNotF cundException
Exception((| AWTException

— RuntimeException [}—
[obiet Kj—{Throwbid L Severd mors classes

—| VirualhdzchineError

AWTError

L Severslmorsclazzss

—|:hriﬂuueti:£:x':e-‘,}ticn

—|f\'u]]PcmterE:\'cer|}tmu|

| mdexOu0BowndException |

—— Sevarsl mors clazzas

SR

7.6 Types of Exceptions

Exceptions can be broadly categorized into two types, Unchecked & Checked Exceptions.

© Copyright Virtual University of Pakistan Page 55

Web Design and Development (CS506)

7.6.1 Unchecked Exceptions

» Subclasses of Runtime Exception and Error.

* Does not require explicit handling

* Run-time errors are internal to your program, so you can get rid of them by
debugging your code

 For example, null pointer exception; index out of bounds exception; division by
Zero exception.

7.6.2 Checked Exceptions

* Must be caught or declared in a throws clause

» Compile will issue an error if not handled appropriately

» Subclasses of Exception other than subclasses of Runtime Exception.

» Other arrives from external factors, and cannot be solved by debugging
e Communication from an external resource - e.g. a file server or database

7.7 How Java handles Exceptions

Java handles exceptions via 5 keywords. Try, catch, finally, throw & throws.

7.7.1 try block

e Write code inside this block which could generate errors

7.7.2 Catch block

» Code inside this block is used for exception handling
e When the exception is raised from try block, only than catch block would
execute.

7.7.3 finally block

» This block always executes whether exception occurs or not.
e Write clean up code here, like resources (connection with file or database) that
are opened may need to be closed.

The basic structure of using try - catch - finally block is shown in the picture below:

© Copyright Virtual University of Pakistan Page 56

Web Design and Development (CS506)

-
L
Iwrite code that could generate exceptions

I
L

ffwrite code for exception handling
1
J

L
ficode for exception handling

r
L

/lany clean-up code, release the acquired resources

}

try {itry block

1 catch (=exception to be caught=) ffcatch block

catch (=exception to be caught=) {featch block
:

1 finally {ifinally block

7.7.4 throw

* To manually throw an exception, keyword throwis used. Note: we are not covering throw

clause in this handout

7.7.5 throws

e If method is not interested in handling the exception than it can throw back the

exception to the caller method using throwskeyword.

* Any exception that is thrown out of a method must be specified as such by a

throws clause.

7.8 References:

e Java tutorial by Sun: http://java.sun.com/docs/books/turorial
» Beginning Java2 by Ivor Hortan

» Thinking in Java by Bruce Eckle

» (S193;j Stanford University

7.9 Code Examples of Exception Handling

7.9.1 Unchecked Exceptions

Example Code: UcException.java

© Copyright Virtual University of Pakistan

Page 57

Web Design and Development (CS506)

The following program takes one command line argument and prints it on the console

// File UcException.java public class UcException {
public static void main (String args|[]) {
System.out.println(args[0]);

h
}

Compile & Execute

If we compile & execute the above program without passing any command line
argument, an ArraylndexOutOfBoundsException would be thrown. This is shown in the
following picture

C:\WINDOWS\system32\cmd.exe

D:\examples\Exceptions> javac UcException.java

D:\examples\Exceptions> java UcException

Exception in thread “main” java.lang.ArraylndexOutOfBoundsException: 0
at UcException.main(UcException.java:7)

D:\examples\Exceptions>

7.9.2 Why?

Since we have passed no argument, therefore the size of String args[]is zero, and we
have tried to access the first element (first element has index zero) of this array.

From the output window, you can find out, which code line causes the exception to be raised. In

the above example, it is
System.out.println (args[0]);

7.9.3 Modify UcException.java

Though it is not mandatory to handle unchecked exceptions we can still handle
Unchecked Exceptions if we want to. These modifications are shown in bold.

// File UcException.java
public class UcException {
public static void main (String args|[]) {

© Copyright Virtual University of Pakistan Page 58

Web Design and Development (CS506)

try {

System.out.println(args[0]);

catch (IndexOutOfBoundsException ex) {
System.out.println(“’You forget to pass command line argument”);

}
h

The possible exception that can be thrown is IndexOutOfBoundsException, so we handle it
in the catch block.

When an exception occurs, such as IndexOutOfBoundsException in this case, then an
object of type IndexOutOfBoundesException is created and it is passed to the
corresponding catch block (i.e. the catch block which is capable of handling this
exception). The catch block receives the exception object inside a variable which is ex in
this case. It can be any name; it is similar to the parameter declared in the method
signature. It receives the object of exception type (IndexOutOfBoundsExceptoin) it is
declared.

Compile & Execute

If we execute the modified program by passing command line argument, the program would
display on console the provided argument. After that if we execute this program again without
passing command line argument, this time information message would be displayed which is
written inside catch block.

C:\WINDOWS\system32\cmd.exe

D:\examples\Exceptions> javac UcException.java
D:\examples\Exceptions> java UcException

You forget to pass command line argument
D:\examples\Exceptions>java UcException hello hello
D:\examples\Exceptions>_

7.10 Checked Exceptions

Example Code: CException.java

The following program reads a line (hello world) from a file and prints it on the console. The File
reading code is probably new for you. We’ll explain it in the coming handouts (Streams). For
now, assumed that the code written inside the main read one line from a file and prints that to
console.

// File CException.java

© Copyright Virtual University of Pakistan Page 59

Web Design and Development (CS506)

import java.io.* ;

public class CException {

public static void main (String args[]) { FileReader fr = new FileReader (“input.txt”);
BufferedReader br = new BufferedReader (fr);

//read the line form file
String line = br.readLine(); System.out.println(line); }

}

Compile & Execute

If you try to compile this program, the program will not compile successfully and displays the
message of unreported exception. This happens when there is code that can generate a checked
exception but you have not handled that exception. Remember checked exceptions are detected
by compiler. As we early discussed, without handling Checked exception, out program won’t
compile.

C:\WINDOWS\system32\cmd.exe

D:\examples\Exceptions> javac CException.java
CException.java:7: unreported exception java.io.FileNotFoundException;
must be caught or declared to be thrown
FileReader fr= new FileReader(“input.txt™);
A
CException.java:11: unreporeted exception java.io.lOException; must be
cauaght or declared to be thrown
String s=br.readLine();
A

2 errors
D:\examples\Exceptions>

Modify CException.java

As we have discussed earlier, it is mandatory to handle checked exceptions. In order to
compile the code above, we modify the above program so that file reading code is
placed inside a try block. The expected exception (IOException) that can be raised is
caught in catch block.

// File CException.java import java.io.* ;

© Copyright Virtual University of Pakistan Page 60

Web Design and Development (CS506)

public class CException {

public static void main (String args[]) {

try{

FileReader fr = new FileReader (“input.txt”);
BufferedReader br = new BufferedReader (fr);

//read the line form file
String line = br.readLine();
System.out.println(line);

}
catch(IOException ex) {
System.out.println(ex);

h
h
;

The code line written inside the catch block will print the exception name on the console if
exception occurs

Compile & Execute

After making changes to your program, it would compile successfully. On executing this program,
hello world would be displayed on the console
Note: Before executing, make sure that a text file named input.txt must be placed in the

same directory where the program is saved. Also write hello world in that file before
saving it.

C:\WINDOWS\system32\cmd.exe - E

D:\examples\Exceptions> javac CException.java
D:\examples\Exceptions> java CException

Hello world
D:\examples\Exceptions>_

7.11 The finally block

The finally block always executes regardless of exception is raised or not while as you
remembered the catch block only executes when an exception is raised.

Example Code: FBlockDemo.java

// File FBlockDemo.java

© Copyright Virtual University of Pakistan Page 61

Web Design and Development (CS506)

import java.io.* ;
public class FBlockDemo {
public static void main (String args|[])

{

try{
FileReader fr = new FileReader (“strings.txt”);

BufferedReader br = new BufferedReader (fr);
//read the line form file

String line = br.readLine();
System.out.println(line);

}catch(IOException ex) {
System.out.println(ex);

}
finally {

System.out.println(“finally block always execute”);

h
h
}

Compile & Execute
The program above, will read one line from string.txt file. If string.tx is not present in the same

directory the FileNotFoundException would be raised and catch block would execute as well
as the finally block.

D:\examples\Exceptions> javac FBlockDemo.java
D:\examples\Exceptions> java FBlockDemo
Java.io.FileNotFoundException: string.tex(The system cannot find the
file specified)

Finally block always execute

D:\examnles\Excentions>

If string.txt is present there, no such exception would be raised but still finally block executes.
This is shown in the following output diagram

C:\WINDOWS\system32\cmd.exe

D:\examples\Exceptions> javac FBlockDemo.java
D:\examples\Exceptions> java FBlockDemo

Hello world

Finally block always execute
D:\examples\Exceptions>_

© Copyright Virtual University of Pakistan Page 62

Web Design and Development (CS506)

7.12 Multiple catch blocks

» Possible to have multiple catch clauses for a single try statement
o Essentially checking for different types of exceptions that may happen
» Evaluated in the order of the code
o Bear in mind the Exception hierarchy when writing multiple catch clauses!
o If you catch Exception first and then IOException, the IOException will never be
caught!
Example code: MCatchDemo.java

The following program would read a number form a file numbers.txt and than prints its square on
the console

// File MCatchDemo.java

import java.io.* ;

public class MCatchDemo {

public static void main (String args|[]) {

try{

// can throw FileNotFound or IOException
FileReader fr = new FileReader (“numbers.txt”);
BufferedReader br = new BufferedReader (fr);

//read the number form file

String s = br.readLine();

//may throws NumberFormatException, if s is not a no.
int number = Integer.parselnt(s);
System.out.println(number * number);

}
catch(NumberFormatException nfEx) {
System.out.println(nfEx);

}
catch(FileNotFoundException fnfEx) {
System.out.println(fnfEx);

}
catch(IOException i0Ex) {
System.out.println(ioEx);

h
h
;

We read everything from a file (numbers, floating values or text) as a String. That’s why we first
convert it to number and then print its square on console.

Compile & Execute

If file numbers.txt is not present in the same directory, the FileNotFoundException would be

© Copyright Virtual University of Pakistan Page 63

Web Design and Development (CS506)

thrown during execution.

C:\WINDOWS\system32\cmd.exe

D:\examples\old\Exceptions> java MCatchDemo
25

D:\examples\old\Exceptions>_

If numbers.txt present in the same directory and contains a number, than hopefully no exception
would be thrown.

C:\WINDOWS\system32\cmd.exe

D:\examples\old\Exceptions> javac MCatchDemo.java
D:\examples\Exceptions> java MCatchDemo
Java.io.FileNotFoundException: numbers.tex(The system cannot find
the file specified)

Finally block always execute

D:\examples\odI\Exceptions>_

7.13 The throws clause

The following code examples will introduce you with writing & using throws clause.
Example Code: ThrowsDemo.java

The ThrowsDemo.javacontains two methods namely method1 & method2and one main method.
The mainmethod will make call to methodland than method1 will call method2. The method2
contains the file reading code. The program looks like one given below

// File ThrowsDemo.java
import java.io.* ;
public class ThrowsDemo {

// contains file reading code
public static void method2() {

© Copyright Virtual University of Pakistan Page 64

Web Design and Development (CS506)

try{
FileReader fr = new FileReader (“strings.txt”);

BufferedReader br = new BufferedReader (fr);

//read the line form file
String s = br.readLine();
System.out.println(s);

b
catch(IOException i0Ex) {
i0Ex.printStackTrace(); }

}// end method 2

//only calling method?2
public static void method1()

{
method?2();

}
public static void main (String args|[]) {
ThrowsDemo.method1();

}
}

7.14 printStackTrace method

* Defined in the Throwableclass - superclass of Exception & Error classes
» Shows you the full method calling history with line numbers.
» extremely useful in debugging

Modify: ThrowsDemo.java

* Let method2doesn’t want to handle exception by itself, so it throws the exception to
the caller of method2i.e. method1

» So methodleither have to handle the incoming exception or it can re-throw it to its
caller i.e. main.

 Let methodl is handling the exception, so methodl& method2 would be
modified as:

/I File ThrowsDemo.

java import java.io.* ;

public class ThrowsDemo {

// contains file reading code

public static void method2() throws IOException{
FileReader fr = new FileReader (“strings.txt”);
BufferedReader br = new BufferedReader (fr);

//read the line form file

© Copyright Virtual University of Pakistan Page 65

Web Design and Development (CS506)

String s = br.readLine();
System.out.println(s);
}// end method 2

// calling method2 & handling incoming exception
public static void method1() {

try {
method2();

b
catch (IOException i0Ex) {

i0Ex.printStackTrace(); }
}

public static void main (String args[]) {
ThrowsDemo.method1();

h
;

Compile & Execute

If file strings.txt is not present in the same directory, method2will throw an exception that
would be caught by methodland the printStackTracemethod will print the full calling history on
console. The above scenario is shown in the output below:

C:\WINDOWS\system32\cmd.exe

D:\examples\Exceptions> javac ThrowsExceptionDemo.java
D:\examples\Exceptions> java ThrowsExceptionDemo
Java.io.FileNotFoundException: string.tex(The system cannot find the file
specified)

at java.io.FilelnputStream.open(Native Method)

at java.io.FileInputStream.<init> (Unknown Source)

at java.io.FilelnputStream.<init>(Unknown Source)

at java.io.FileReader.<init>(Unkonwn Source)

at ThrowsExceptionDemo.metho2(ThrowsExceptionDemo.java:9)

at ThwowsExceptionDemo.method1(ThrowsExceptionDemo.java:21)

at ThrowsExceptionDemo.main(ThrowsExceptionDemo.java:30)

If file strings.txt exist there, than hopefully line would be displayed on the console.

© Copyright Virtual University of Pakistan Page 66

Web Design and Development (CS506)

7.15 Reference

» Example code, their explanations and corresponding figures for this handout are taken
from the book JAVA A Lab Course by Umair Javed. This material is available just for
the use of VU students of the course Web Design and Development and not for any other
commercial purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 67

Web Design and Development (CS506)

Lecture 8: Streams

I/O libraries often use the abstraction of a stream, which represents any data source or sink as an
object capable of producing or receiving pieces of data.

The Java library classes for I/O are divided by input and output. You need to import
java.io package to use streams. There is no need to learn all the streams just do it on the need basis.

8.1 The concept of "'streams""

e It is an abstraction of a data source/sink

» We need abstraction because there are lots of different devices (files, consoles, network,
memory, etc.). We need to talk to the devices in different ways (sequential, random
access, by lines, etc.) Streams make the task easy by acting in the same way for every
device. Though inside handling of devices may be quite different, yet on the surface
everything is similar. You might read from a file, the keyboard, memory or network
connection, different devices may require specialization of the basic stream, but you can
treat them all as just "streams". When you read from a network, you do nothing different
than when you read from a local file or from users typing

//Reading from console

BufferedReader stdin= - new BufferedReader(new InputStreamReader(
System.in));

-------- (your console)

// Reading from file

BufferedReader br=new BufferedReader(new

FileReader(“input.txt™));

//Reading from network

BufferedReader br = new BufferedReader(new InputStreamReader
(s.getInputStream()));

---- “s” is the socket

* So you can consider stream as a data path. Data can flow through this path in one
direction between specified terminal points (your program and file, console, Socket etc.)

© Copyright Virtual University of Pakistan Page 68

Web Design and Development (CS506)

Output Stream Input Stream
A—O-0—0=0 Tava Progranlo¢ (-0

Data Source

Drata Degtination

8.2 Stream classification based on Functionality

Based on functionality streams can be categorized as Node Stream and Filter Stream. Node
Streams are those which connect directly with the data source/sick and provide basic
functionality to read/write data from that source/sink

FileReader fr = new FileReader(“input.txt”);

You can see that FileReader is taking a data/source “input.txt” as its argument and hence it is a node
stream.

FilterStreams sit on top of a node stream or chain with other filter stream and provide some
additional functionality e.g. compression, security etc. FilterStreams take other stream as their
input.

BufferedReader bt = new BufferedReader(fr);

BufferedReader makes the 10 efficient (enhances the functionality) by buffering the input before
delivering. And as you can see that BufferedReader is sitting on top of a node stream which is
FileReader.

© Copyright Virtual University of Pakistan Page 69

Web Design and Development (CS506)

© Copyright Virtual University of Pakistan

Jena Program

Page 70

Web Design and Development (CS506)

Jena Program

8.3 Stream classification based on data

Two types of classes exist:

Classes which contain the word stream in their name are byte oriented and are here since JDK1.0.
These streams can be used to read/write data in the form of bytes. Hence classes with the word
stream in their name are byte-oriented in nature. Examples of byte oriented streams are
FileInputStream, ObjectOutputStream etc.

Classes which contain the word Reader/Writer are character oriented and read and write data in the
form of characters. Readers and Writers came with JDK1.1. Examples of Reader/Writers are
FileReader, PrintWriter etc

© Copyright Virtual University of Pakistan Page 71

Web Design and Development (CS506)

© Copyright Virtual University of Pakistan

Jenva Program

Page 72

Web Design and Development (CS506)

Jenva Program

e —
(@I EopyrlgHE EII'Euaf BanEl"SlE§ Oi FaEISEan Fage ,3

Web Design and Development (CS506)

Example Code 8.1: Reading from File

The ReadFileEx.javareads text file line by line and prints them on console. Before we move on to
the code, first create a text file (input.txt) using notepad and write following text lines inside
it.

Text File: input.txt

Hello World
Pakistan is our homeland
Web Design and Development

// File ReadFileEx.

java import java.io.*;

public class ReadFileEx {

public static void main (String args|[]) {
FileReader fr = null;

BufferedReader br = null;

try {

// attaching node stream with data source
fr = new FileReader(“input.txt”);

// attatching filter stream over node stream
br = new BufferedReader(fr);

// reading first line from file
String line = br.readLine();

// printing and reading remaining lines
while (line != null){
System.out.println(line);

line = br.readLine();

}

// closing streams
br.close();
fr.close();

}catch(IOException ioex){
System.out.println(ioex);

}
} // end main
} // end class

© Copyright Virtual University of Pakistan Page 74

Web Design and Development (CS506)

Example Code 8.2: Writing to File

The WriteFileEx.javawrites the strings into the text file named “output.txt”. If “output.txt”
file does not exist, the java will create it for you.

// File WriteFileEx.java

import java.io.*;

public class WriteFileEx {

public static void main (String args|[]) {
FileWriter fw = null;

PrintWriter pw = null;

try {
// attaching node stream with data source

// if file does not exist, it automatically creates it
fw = new FileWriter (“output.txt”);

// attatching filter stream over node stream
pw = new PrintWriter(fw);

String s1 = “Hello World”;
String s2 = “Web Design and Development”;
// writing first string to file
pw.println(s1);

// writing second string to file
pw.println(s2);

// flushing stream

pw.flush();

// closing streams

pw.close();

fw.close();

}catch(IOException ioex){
System.out.println(ioex);

}

} // end main
} // end class

After executing the program, check the output.txt file. Two lines will be written there.

8.4 Reference

© Copyright Virtual University of Pakistan Page 75

Web Design and Development (CS506)

= Example code, their explanations and corresponding figures for this handout are taken
from the book JAVA A Lab Course by Umair Javed. This material is available just for
the use of VU students of the course Web Design and Development and not for any other
commercial purpose without the consent of author.

8.5 Modification of Address Book Code

8.5.1 Adding Persistence Functionality

Hopefully, your address book you built previously is giving you the required results except
one i.e. persistence. You might have noticed that after adding some person records in the address
book; if you exit from the program next time on re-executing address book all the previous records
are no more available.

To overcome the above problem, we will modify our program so that on exiting/starting of
address book, all the previously added records are available each time. To achieve this, we have to
provide the persistence functionality. Currently, we will accomplish this task by saving person
records in some text file.

Supporting simple persistence by any application requires handling of two scenarios. These are

» On start up of application - data (person records) must be read from file
* On end/finish up of application - data (person records) must be saved in file

To support persistence, we have to handle the above mentioned scenarios

8.5.1.1 Scenario 1 - Start Up

» Establish a data channel with a file by using streams

» Start reading data (person records) from file line by line

» Construct PersonInfoobjects from each line you have read
» Add those PersonInfoobjects in arraylist persons.

» Close the stream with the file

» Perform these steps while application is loading up

We will read records from a text file named persons.txt. The person records will be present in the
file in the following format.

Ali, defence, 9201211
Usman, gulberg, 5173940
Salman, LUMS, 5272670

persons.txt

© Copyright Virtual University of Pakistan Page 76

Web Design and Development (CS506)

As you have seen, each person record is on a separate line. Person’s name, address & phone

number is separated using comma (,).

We will modify our AddressBook.javaby adding a new method loadPersons into it. This
method will provide the implementation of all the steps. The method is shown below:

public void loadPersons (){

String tokens[] = null;
String name, add, ph;

try {

FileReader fr = new FileReader("persons.txt");
BufferedReader br = new BufferedReader(fr);

String line = br.readLine();

while (line !=null) {

tokens = line.split(",");

name = tokens[0];

add = tokens[1];

ph = tokens[2];

PersonInfo p = new Personlnfo(name, add, ph);
persons.add(p);

line = br.readLine();

}

br.close();
fr.close();

catch(IOException i0Ex){
System.out.println(ioEx);

b
}
» First, we have to connect with the text file in order to read line by line person records
from it. This task is accomplished with the following lines of code:
FileReader fr = new FileReader(*“‘persons.txt”);
BufferedReader br = new BufferedReader(fr);
FileReaderis a character based (node) stream that helps us in reading data in the form of
characters. As we are using streams, so we have to import the java.iopackage in the
AddressBookclass.

© Copyright Virtual University of Pakistan

Page 77

Web Design and Development (CS506)

» We passed the file name persons.txtto the constructor of the FileReader.

Next we add BufferedReader (filter stream) on top of the FileReader because
BufferedReader facilitates reading data line by line. (As you can recall
from the lecture that filter streams are attached on top of node streams). That’s why
the constructor of BufferedReader is receiving the fr - the FileReader

object.

* The next line of code will read line from file by using readLine() method of
BufferedReaderand save it in a string variable called line.

String line = br.readLine();

= After that while loop starts. The condition of while loop is used to check whether the file is
reached to end (returns null) or not. This loop is used to read whole file till the end. When
end comes (null), this loop will finish.

while (line != null)

» Inside loop, the first step we performed is tokenizing the string. For this purpose, we have
used split method of String class. This method returns substrings (tokens) according to the
regular expression or delimiter passed to it.

tokens = line.split(*,”);

The return type of this method is array of strings that’s why we have declared tokens as a String
array in the beginning of this method as

String tokens|];
For example, the line contains the following string
Ali,defence, 9201211

(132

Now by calling split(*,”) method on this string, this method will return back three substrings
ali defence and 9201211 because the delimiter we have passed to it is comma. The delimiter
itself is not included in the substrings or tokens.

» The next three lines of code are simple assignments statements. The tokens[0]contains the
name of the person because the name is always in the beginning of the line, tokens[1]
contains address of the person and tokens[2] contains the phone number of the person.

name = tokens[0]; add=
tokens[1]; ph= tokens[2];

The name, addand phare of type Stringand are declared in the beginning of this method.

» After that we have constructed the object of PersonInfo class by using parameterized
constructor and passed all these strings to it.

PersonInfo p = new PersonInfo(name, add, ph);

» Afterward the Personlnfo object’s p is added to the arraylist i.e. persons.

© Copyright Virtual University of Pakistan Page 78

Web Design and Development (CS506)

persons.add(p);

» The last step we have done inside loop is that we have again read a line from the file by
using the readLine()method.

» By summarizing the task of while loop we can conclude that it reads the line from a
file,tokenize that line into three substrings followed by constructing the PersonInfo
object by using these tokens. And adding these objects to the arraylist. This process
continues till the file reaches its end.

The last step for reading information from the file is ordinary one - closing the
streams, because files are external resources, so it’s better to close them as soon as possible.
Also observe that we used try/catch block because using streams can result in raising
exceptions that falls under the checked exceptions category - that needs mandatory
handling.

» The last important step you have to perform is to call this method while loading up.

» The most appropriate place to call this method is from inside the constructor of
AddressBook.java. So the constructor will now look like similar to the one given below:

public AddressBook () { Persons = new
ArrayList(); loadPeirsons();

AddressBook.java

8.5.1.2 Scenario 2 - End/Finish Up

» Establish a datachanel(stream) with a file by using streams

e Take out PersonInfoobjects from ArrayList (persons)

e Build a string for each Personlnfoobject by inserting commas (,) between name
& address and address & phone number.

» Write the constructed string to the file

* Close the connection with file

» Perform these steps while exiting from address book.

Add another method savePersons into AddressBook.java. This method will provide the
implementation of all the above mentioned steps. The method is shown below:

public void savePersons (){

try {
PersonInfo p;

© Copyright Virtual University of Pakistan Page 79

Web Design and Development (CS506)

String line;

FileWriter fw = new FileWriter("persons.txt");
PrintWriter pw = new PrintWriter(fw);

for(int i=0; i<persons.size(); i++)

{

p = (Personlnfo)persons.get(i);

line = p.name +","+ p.address +","+ p.phoneNum;

// writes line to file (persons.txt)
pw.println(line);

} pw.flush();

pw.close();

fw.close();

b
catch(IOException i0Ex){
System.out.println(ioEx);

h
}

= As you can see, that we have opened the same file (persons.txt)again by using a set of
streams.

- After that we have started for loop to iterate over arraylist as we did in
searchPersonand deletePersonmethods.

» Inside forloop body, we have taken out PersonInfoobject and after type casting it we
have assigned its reference to a PersonInfotype local variable p. This is achieved by
the help of following line of code

p = (PersonInfo)persons.get(i);

» Next we build a string and insert commas between the PersonInfoattributes and assign the
newly constructed string to string’s local variable lineas shown in the following line of code.

line = p.name +","+ p.address +","+ p.phoneNum,;

Note: Since, we haven’t declare Personlnfo attributes private, therefore we are able to
directly access them inside AddressBook.java.

» The next step is to write the line representing one PersonInfo object’s information, to
the file. This is done by using printlnmethod of PrintWriteras shown below

pw.println(line);

After writing line to the file, the printinmethod will move the cursor/control to the next line.
That’s why each line is going to be written on separate line.

» The last step for saving information to the file is ordinary one - closing the streams but
before that notice the code line that you have not seen/performed while loading persons
records from file. That is

© Copyright Virtual University of Pakistan Page 80

Web Design and Development (CS506)

pw.flush();

The above line immediately flushes data by writing any buffered output/data to file. This step is
necessary to perform or otherwise you will most probably lose some data for the reason that
PrintWriteris a Buffered Stream and they have their own internal memory/storage capacity
for efficiency reasons. Buffered Streams do not send the data until their memory is full.

» Also we have written this code inside try-catch block.

» The last important step you have to perform is to call this method before exiting from
the address book. The most appropriate place to call this method is under case4(exit
scenario) in Test.java. So the case 4will now look like similar to the one given below:

case 4:
ab.savePersons();
System.exit(0);

Test.java
Compile & Execute

Now again after compiling all the classes, run the Testclass. Initially we are assuming
that out persons.txt file is empty, so our arraylist persons will be empty on the first start
up of address book. Now add some records into it, perform search or delete operations.
Exit from the address book by choosing option 4. Check out the persons.txt file. Don’t get
surprised by seeing that it contains all the person records in the format exactly we have seen above.

Next time you will run the address book; all the records will be available to you. Perform the search or
delete operation to verify that. Finally you have done it!!!

8.6 References

» Example code, their explanations and corresponding figures for this handout are taken
from the book JAVA A Lab Course by Umair Javed. This material is available just for
the use of VU students of the course Web Design and Development and not for any other
commercial purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 81

Web Design and Development (CS506)

Lecture 9: Abstract Classes and Interfaces

9.1 Problem and Requirements

Before moving on to abstract classes, first examine the following class hierarchy shown
below:

Shape

Circle Square

» Suppose that in order to exploit polymorphism, we specify that 2-D objects must be able to
compute their area.

o All 2-D classes must respond to area() message.
» How do we ensure that?

o Define area method in class Shape
o Force the subclasses of Shape to respond area() message

= Java’s provides us two solutions to handle such problem

o Abstract Classes
o Interfaces

9.2 Abstract Classes

Abstract classes are used to define only part of an implementation. Because, information is not
complete therefore an abstract class cannot be instantiate. However, like regular classes, they can
also contain instance variables and methods that are fully implemented. The class that inherits
from abstract class is responsible to provide details.

Any class with an abstract method (a method has no implementation similar to pure virtual
function in C++) must be declared abstract, yet you can declare a class abstract that has no
abstract method.

© Copyright Virtual University of Pakistan Page 82

Web Design and Development (CS506)

If subclass overrides all abstract methods of the superclass, than it becomes a concrete (a class
whose object can be instantiate) class otherwise we have to declare it as abstract or we cannot
compile it.

The most important aspect of abstract class is that reference of an abstract class can point to
the object of concrete classes.

Code Example of Abstract Classes

The Shape class contains an abstract method calculateArea() with no definition.

public abstract class Shape{

public abstract void calculateArea();

}

Class Circle extends from abstract Shape class, therefore to become concrete class it
must provides the definition of calculateArea() method.

public class Circle extends Shape {
private int X, y;
private int radius;

public Circle() {

X =15;
y=5;
radius = 10;
}

// providing definition of abstract method
public void calculateArea () {

double area = 3.14 * (radius * radius);
System.out.println(“Area: ” + area);

b
}//end of class

The Test class contains main method. Inside main, a reference s of abstract Shape class is created.
This reference can point to Circle (subclass of abstract class Shape) class object as it is a
concrete class. With the help of reference, method calculateArea() can be invoked of Circle
class. This is all shown in the form of code below:

public class Test {
public static void main(String args[]){

© Copyright Virtual University of Pakistan Page 83

Web Design and Development (CS506)

//can only create references of A.C.
Shape s = null;

//Shape s1 = new Shape(); //cannot instantiate
//abstract class reference can point to concrete subclass
s = new Circle();

s.calculateArea();

b
}//end of class

The compilation and execution of the above program is shown below:

C:\WINDOWS\system32\cmd.exe - E

D:\examples\abstract> javac Shape.java
D:\examples\abstract> javac Circle.java
D:\examples\abstract> javac Test.java
D:\examples\abstract> java Test
Area:314.0

D:\examples\abstract>

9.3 Interfaces

As we seen one possible java’s solution to problem discussed in start of the tutorial. The second
possible java’s solution is Interfaces.

Interfaces are special java type which contains only a set of method prototypes, but does not provide
the implementation for these prototypes. All the methods inside an interface are abstract by default
thus an interface is tantamount to a pure abstract class - a class with zero implementation. Interface
can also contains static final constants

9.3.1 Defining an Interface

Keyword interface is used instead of class as shown below:

© Copyright Virtual University of Pakistan Page 84

Web Design and Development (CS506)

public interface Speaker {
public void speak();

}

9.3.2 Implementing (using) Interface

Classes implement interfaces. Implementing an interface is like signing a contract. A
class that implements an interface will have to provide the definition of all the methods
that are present inside an interface. If the class does not provide definitions of all
methods, the class would not compile. We have to declare it as an abstract class in order
to get it compiled.

Relationship between a class and interface is equivalent to ““responds to”” while *“is a”
relationship exists in inheritance.

Code Example of Defining & Implementing an Interface The interface Printable contains print()
method.

public interface Printable{
public void print();
}

Class Student is implementing the interface Printable. Note the use of keyword
implements after the class name. Student class has to provide the definition of print method
or we are unable to compile.

The code snippet of student class is given below:

public class Student implements Printable {
private String name;

private String address;

public String toString () {

return "name:"+name +" address:"+address;
H
//providing definition of interface’s print method

public void print() {

System.out.println("Name:" +name+" address"-+address);

}
}//end of class

9.4 Interface Characteristics

Similar to abstract class, interfaces imposes a design structure on any class that uses the

© Copyright Virtual University of Pakistan Page 85

Web Design and Development (CS506)

interface. Contrary to inheritance, a class can implement more than one interfaces. To
do this separate the interface names with comma. This is java’s way of multiple inheritance.

class Circle implements Drawable , Printable { }

Objects of interfaces also cannot be
instantiated.

Speaker s = new Speaker(); // not compile

However, a reference of interface can be created to point any of its implementation class. This
is interface based polymorphism.

Code Example: Interface based polymorphism

Interface Speaker is implemented by three classes Politician, Coach and Lecturer. Code snippets
of all these three classes are show below:

public class Politician implements Speaker {
public void speak(){
System.out.println(“Politics Talks”);

h
}

public class Coach implements Speaker{
public void speak(){
System.out.println(“Sports Talks”);

}
}

public class Lecturer implements Speaker{
public void speak(){
System.out.println(“Web Design and Development Talks”);

h
h

As usual, Test class contains main method. Inside main, a reference spis created of Speaker
class. Later, this reference is used to point to the objects of Politician, Coach and Lecturer class.
On calling speak method with the help of sp, will invoke the method of a class to which sp is
pointing.

public class Test{

public static void main (String args|]) {
Speaker sp = null;

System.out.println("sp pointing to Politician");
sp = new Politician();

© Copyright Virtual University of Pakistan Page 86

Web Design and Development (CS506)

sp.speak();

System.out.println("sp pointing to Coach");
sp = new Coach();

sp.speak();

System.out.println("sp pointing to Lecturer");
sp = new Lecturer();

sp.speak();

b
}

The compilation and execution of the above program is shown below:

C:\WINDOWS\system32\cmd.exe

D:\examples\interface\polymorphism> javac Speaker.java
D:\examples\interface\polymorphism> javac Politician.java
D:\examples\interface\polymorphism> javac Coach.java
D:\examples\interface\polymorphism> javac Lecturer.java
D:\examples\interface\polymorphism> javac Test.java
D:\examples\interface\polymorphism> java Test

sp pointing to Politician

Politics Talk

sp pointing to Coach

Sports Talk

sp pointing to Lecturer

Web design and Development Talks

95 References

» Example code, their explanations and corresponding figures for this handout are taken
from the book JAVA A Lab Course by Umair Javed. This material is available just for
the use of VU students of the course Web Design and Development and not for any other
commercial purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 87

Web Design and Development (CS506)

Lecture 10: Graphical User Interfaces

A graphical user interface is a visual interface to a program. GUIs are built from GUI
components (buttons, menus, labels etc). A GUI component is an object with which the user
interacts via the mouse or keyboard.

Together, the appearance and how user interacts with the program are known as the program
look and feel.

10.1 Support for GUI in Java

The classes that are used to create GUI components are part of the “java.awt” or
“javax.swing” package. Both these packages provide rich set of user interface components.

10.2 GUI classes vs. Non-GUI Support Classes

The classes present in the awt and swing packages can be classified into two broad categories.
GUI classes & Non-GUI Support classes.

The GUI classes as the name indicates are visible and user can interact with them. Examples
of these are JButton, JFrame & JRadioButton etc

The Non-GUI support classes provide services and perform necessary functions for GUI classes.
They do not produce any visual output. Examples of these classes are Layout managers (discussed
latter) & Event handling (see handout on it) classes etc.

10.3 java.awt package

AWT stands for “Abstract Windowing Toolkit“ contains original GUI components that
came with the first release of JDK. These components are tied directly to the local
platform’s (Windows, Linux, MAC etc) graphical user interface capabilities. Thus results
in a java program executing on different java platforms (windows, linux, solaris etc) has a

different appearance and sometimes even different user interaction on each platform.

AWT components are often called Heavy Weight Components (HWC) as they rely on the local
platform’s windowing system to determine their functionality and their look and feel. Every time
you create an AWT component it creates a corresponding process on the operating system. As

© Copyright Virtual University of Pakistan Page 88

Web Design and Development (CS506)

compared to this SWING components are managed through threads and are known as Light Weight
Components.

This package also provides the classes for robust event handling (see handout on it) and layout
managers.

10.4 javax.swing package

These are the newest GUI components. Swing components are written, manipulated and
displayed completely in java, therefore also called pure java components. The swing
components allow the programmer to specify a uniform look and feel across all
platforms.

Swing components are often referred to as Light Weight Components as they are
completely written in java. Several swing components are still HWC e.g. JFrame etc.

10.5 A part of the Framework

Object
Compeonent
Container
A
| |
JComponent Window
| . | 1
Frame
AbstractButton JPanel #
JButton JErame

10.6 GUI Creation Steps

© Copyright Virtual University of Pakistan Page 89

Web Design and Development (CS506)

10.6.1import required packages

e import java.awt.* and/or javax.swing.* package.

10.6.2 Setup the top level containers

= A container is a collection of related components, which allows other components
to be nested inside it. In application with JFrame, we attach components to the content
pane - a container.

» Two important methods the container class has add and setLayout.

e The add method is used for adding components to the content pane while setLayout
method is used to specify the layout manager.

« Container are classified into two broad categories that are Top Level
Containers and General Purpose Containers

e Top level containers can contain (add) other containers as well as basic
Components (buttons, labels etc) while general purpose containers are Typically used to
collect basic components and are added to top level containers.

» General purpose containers cannot exist alone they must be added to top level containers

 Examples of top level container are JFrame, Dialog and Applet etc. Our application
uses one of these.

= Examples of general purpose container are JPanel, Toolbar and ScrollPane etc.

» So, take a top level container and create its instance. Consider the following code of line if
JFrame is selected as a top level container

JFrame frame = new JFrame();

10.6.3 Get the component area of the top level container

 Review the hierarchy given above, and observe that JFrame is a frame is a
window. So, it can be interpreted as JFrame is a window.

» Every window has two areas. System Area & Component Area

» The programmer cannot add/remove components to the System Area.

 The Component Area often known as Client area is a workable place for the
programmer. Components can be added/removed in this area.

* So, to add components, as you guessed right component area of the JFrame is required. It
can be accomplished by the following code of line

Container con = frame.getContentPane();

» frame is an instance of JFrame and by calling getContentPane() method on it, it returns the

component area. This component area is of type container and that is why it is stored in a

variable of a Container class. As already discussed, container allows other components to
be added / removed.

© Copyright Virtual University of Pakistan Page 90

Web Design and Development (CS506)

10.6.4 Apply layout to component area

» The layout (size & position etc. How they appear) of components in a container is
usually governed by Layout Managers.

e The layout manager is responsible for deciding the layout policy and size of
its components added to the container.

e Layout managers are represented in java as classes. (Layout Managers are
going to be discussed in detail later in this handout)

e To set the layout, as already discussed use setLayout method and pass object
of layout manager as an argument.

con.setLayout(new FlowLayout());

* We passed an object of FlowLayout to the setLayout method here.
» We can also use the following lines of code instead of above.

FlowLayout layout = new FlowLayout();

con.setLayout(layout);

10.6.5 Create and Add components

» Create required components by calling their constructor.

JButton button = new JButton ();

e After creating all components you are interested in, the next task is to add these
components into the component area of your JFrame (i.e ContentPane, the reference to
which is in variable con of type Container)

» Use add method of the Container to accomplish this and pass it the component to be added.

con.add(button);

10.6.6 Set size of frame and make it visible

» A frame must be made visible via a call to setVisible(true) and its size defined via a call
setSize(rows in pixel, columns in pixel) to be displayed on the screen.

frame.setSize(200,300) ;
frame.setVisible(true) ;

Note: By default, all JFrame’s are invisible. To make visible frame visible we have passed true
to the setVisible method.

frame.setVisible(false) ;

© Copyright Virtual University of Pakistan Page 91

Web Design and Development (CS506)

Example: Making a Simple GUI

The above figured GUI contains one text field and a button. Let’s code it by following the six

GUI creation steps we discussed.

Code for Simple GUI:

// File GUITest.java
//Step 1: import packages
import java.awt.*;

import javax.swing.*;

public class GUITest {
JFrame myFrame ;

//method used for setting layout of GUI
public void initGUI () {

//Step 2: setup the top level container
myFrame = new JFrame();

//Step 3: Get the component area of top-level container
Container ¢ = myFrame.getContentPane();

//Step 4: Apply layouts
c.setLayout(new FlowLayout());

© Copyright Virtual University of Pakistan

Page 92

Web Design and Development (CS506)

//Step 5: create & add components
JTextField tf = new JTextField(10);
JButton b1 = new JButton("My Button");

c.add(tf);
c.add(bl);

//Step 6: set size of frame and make it visible
myFrame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
myFrame.setSize(200,150);

myFrame.setVisible(true);

} //end initGUI method

public GUITest () {// default constructor
nitGUI ();
b

public static void main (String args[]) {
GUITest gui = new GUITest();

b
} // end of class

10.7 Important Points to Consider

« main method (from where program execution starts) is written in the same class. The
main method can be in a separate class instead of writing in the same class its your
choice.

» Inside main, an object of GUI test class is created that results in calling of constructor
of the class and from the constructor, initGUI method is called that is responsible for setting
up the GUL

» The following line of code is used to exit the program when you close the window

myFrame.setDefaultCloseOperation(JFrame.EXIT ON_ CLOSE);

If you delete this line and run your program, the desired GUI would be displayed. However if
you close the window by using (X) button on top left corner of your window, you’ll notice that
the control doesn’t return back to command prompt. The reason for this is that the java process is
still running. However if you put this line in your code, when you exit your prompt will return.

10.8 References:

» Sun java tutorial: http://java.sun.com/docs/books/tutorial/java

e Thinking in java by Bruce Eckle

» Beginning Java2 by Ivor Hortan

* GUI creation steps are taken from the book Java A Lab Course by Umair Javed

© Copyright Virtual University of Pakistan Page 93

Web Design and Development (CS506)

10.9 Graphical User Interfaces - 2

10.9.1 Layout Managers

Layout Managers are used to form the appearance of your GUI. They are concerned with the
arrangement of components of GUI. A general question is “why we cannot place components at
our desired location (may be using the x,y coordinate position?”

The answer is that you can create your GUI without using Layout Managers and you can
also do VB style positioning of components at some X,y co-ordinate in Java, but that is
generally not advisable if you desire to run the same program on different platforms

The appearance of the GUI also depends on the underlying platform and to keep that same the
responsibility of arranging layout is given to the LayoutManagers so they can provide the same
look and feel across different platforms

Commonly used layout managers are

» Flow Layout

e Grid Layout

» Border Layout

» Box Layout

» Card Layout

» GridBag Layout and so on
Let us discuss the top three in detail one by one with code examples. These top three will meet most
of your basic needs

10.9.1.1 Flow Layout

e Position components on line by line basis. Each time a line is filled, a new line is
started.

» The size of the line depends upon the size of your frame. If you stretch your frame while
your program is running, your GUI will be disturbed.

Example Code

// File FlowLayoutTest.

java import java.awt.*;

import javax.swing.*;

public class FlowLayoutTest {

JFrame myFrame ;

JButton bl, b2, b3, b4, b5;

//method used for setting layout of GUI
public void initGUI () {

© Copyright Virtual University of Pakistan Page 94

Web Design and Development (CS506)

myFrame = new JFrame(“Flow Layout”);

Container ¢ = myFrame.getContentPane();

c.setLayout(new FlowLayout());

bl = new JButton(“Next Slide”);

b2 = new JButton(“Previous Slide”);

b3 = new JButton(“Back to Start”);

b4 = new JButton(“Last Slide”);

b5 = new JButton(“Exit”);

c.add(bl);

c.add(b2);

c.add(b3);

c.add(b4);

c.add(b3);

myFrame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
myFrame.setSize(300,150);

myFrame.setVisible(true);

} //end initGUI method

public FlowLayoutTest () { // default constructor

initGUI ();

b
public static void main (String args[]) {
FlowLayoutTest flTest = new FlowLayoutTest();

b
} // end of class

Output

m Previous Slide

10.9.1.2 Grid Layout

© Copyright Virtual University of Pakistan Page 95

Web Design and Development (CS506)

e Splits the panel/window into a grid(cells) with given number of rows and columns.

 Forces the size of each component to occupy the whole cell. Size of each
component is same .

e Components are added row wise. When all the columns of the first row are get filled the
components are then added to the next row.

* Only one component can be added into each cell.

Example Code

// File GridLayoutTest.java
import java.awt.*;
import javax.swing.*;
public class GridLayoutTest {
JFrame myFrame ;
JButton bl, b2, b3, b4, b5;
//method used for setting layout of GUI
public void initGUI () {
myFrame = new JFrame(“Grid Layout”);
Container ¢ = myFrame.getContentPane();
// rows , cols
c.setLayout(new GridLayout(3 ,2));
bl = new JButton(“Next Slide”);
b2 = new JButton(“Previous Slide”);
b3 = new JButton(“Back to Start”);
b4 = new JButton(“Last Slide”);
b5 = new JButton(“Exit”);
c.add(bl);
c.add(b2);
c.add(b3);
c.add(b4);
c.add(b5);
myFrame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
myFrame.setSize(300,150);
myFrame.setVisible(true);
} //end initGUI method
public GridLayoutTest () { // default constructor
mitGUI ();
}
public static void main (String args[]) {
GridLayoutTest glTest = new GridLayoutTest();

H
} // end of class

© Copyright Virtual University of Pakistan Page 96

Web Design and Development (CS506)

Output
Grid Lavout I E ﬂ
W Previous Slide
Modification

The grid layout also allows the spacing between cells. To achieve spacing between cells, modify the
above program.

Pass additional parameters to the constructor of GridLayout, spaces between rows & spaces between
columns as shown below
c.setLayout(new GridLayout(3, 2,10, 20));

The output is look similar to one given below.

Grid Lavout . E n

Previous Slide

Back to... Last Slide

© Copyright Virtual University of Pakistan Page 97

Web Design and Development (CS506)

10.9.1.3 Border Layout

= Divides the area into five regions. North, South, East, West and Center

» Components are added to the specified region

e If any region not filled, the filled regions will occupy the space but the center region
will still appear as background if it contains no component.

* Only one component can be added into each region.

NORTH

WEST CENTER EAST

SOUTH

Example Code:

// File BorderLayoutTest.

java import java.awt.*;

import javax.swing.*;

public class BorderLayoutTest {

JFrame myFrame ;

JButton b1, b2, b3, b4, b5;

//method used for setting layout of GUI
public void initGUI () {

myFrame = new JFrame(“Border Layout”);
Container ¢ = myFrame.getContentPane();
c.setLayout(new BorderLayout());

bl = new JButton(“Next Slide”);

b2 = new JButton(“Previous Slide”);

b3 = new JButton(“Back to Start”);

b4 = new JButton(“Last Slide”);

b5 = new JButton(“Exit”);

c.add(bl , BorderLayout. NORTH),

c.add(b2 , BorderLayout.SOUTH);

c.add(b3 , BorderLayout.EAST);

c.add(b4 , BorderLayout. WEST);

c.add(b5, BorderLayout. CENTER);
myFrame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
myFrame.setSize(300,150);
myFrame.setVisible(true);

} //end initGUI method

public BorderLayoutTest () { / default constructor
mitGUI ();

© Copyright Virtual University of Pakistan Page 98

Web Design and Development (CS506)

}

public static void main (String args|[]) {
BorderLayoutTest glTest = new BorderLayoutTest();

}
}+ // end of class

Points to Remember

* Revisit the code of adding components, we specify the region in which we want
to add component or otherwise they will not be visible.

* Consider the following segment of code: BorderLayout. NORTH, as you
guessed correctly NORTH is a constant (final) defined in BorderLayout class
public access modifier. Similarly the other ones are defined. Now you understand
why so much emphasis has been made on following the naming conventions.

Output:

My Calculator

10.10 Making Complex GUIs

From the discussion above it seems that the basic Layout Managers may not help us in
constructing complex GUISs, but generally a combination of these basic layouts can do the job. So
let’s try to create the calculator GUI given below

© Copyright Virtual University of Pakistan Page 99

Web Design and Development (CS506)

Border Layout . E u

Last Slide Back to Start

Previous Slide

This GUI has 16 different buttons each of same size and text field on the top and a label ‘my
calculator’ on the bottom.

So, how we can make this GUI? If Border Layout is selected, it has five regions (each region can
have at most one component) but here we have more than five components to add. Lets try Grid
Layout, but all the components in a Grid have same size and the text field at the top and label at
the bottom has different size. Flow Layout cannot be selected because if we stretch our GUI it will
destroy its shape.

Can we make this GUI? Yes, we can. Making of such GUI is a bit tricky business but General
Purpose Containers are there to provide the solution.

10.10.1 JPanel

= It is general purpose container (can’t exist alone, it has to be in some toplevel container)
in which we can put in different components (JButton , JTextField etc even other JPanels)
= JPanel has its own layout that can be set while creating JPanel instance

JPanel myPanel = new JPanel (new FlowLayout());

* Add components by using add method like shown below.

myPanel.add (button);

e Must be added to a top level container (like JFrame etc) in order to be visible as
they (general purpose containers) can’t exist alone.

© Copyright Virtual University of Pakistan Page 100

Web Design and Development (CS506)

10.10.2 Solution

To make the calculator GUI shown above, take JFrame (top level container) and set its layout to
border. Then take JPanel (general purpose container) and set its layout to Grid with 4 rows and 4
columns.

Add buttons to JPanel as they all have equal size and JPanel layout has been set to
GridLayout. Afterthat, add text field to the north region, label to the south region and

panel to the center region of the JFrame’s container. The east and west regions are left

blank and the center region will be stretched to cover up these. So, that’s how we can build our
calculator GUI.

Code for Calculator GUI

// File CalculatorGUI.java
import java.awt.*;
import javax.swing.*;
public class CalculatorGUI {
JFrame fCalc;
JButton bl, b2, b3, b4, b5, b6, b7, b8, b9, b0;
JButton bPlus, bMinus, bMul, bPoint, bEqual, bClear;
JPanel pButtons;
JTextField tfAnswer;
JLabel IMyCalc;
//method used for setting layout of GUI
public void initGUI () {
fCalc = new JFrame();
b0 = new JButton("0");
bl = new JButton("1");
b2 = new JButton("2");
b3 = new JButton("3");
b4 = new JButton("4");
b5 = new JButton("5");
b6 = new JButton("6");
b7 = new JButton("7");
b8 = new JButton("8");
b9 = new JButton("9");
bPlus = new JButton("+");
bMinus = new JButton("-");
bMul = new JButton("*");
bPoint =new JButton(".");
bEqual =new JButton("=");
bClear = new JButton("C");
tfAnswer = new JTextField();
IMyCalc = new JLabel("My Clacualator");
//creating panel object and setting its layout

© Copyright Virtual University of Pakistan Page 101

Web Design and Development (CS506)

pButtons = new JPanel (new GridLayout(4,4));
//adding components (buttons) to panel
pButtons.add(b1);

pButtons.add(b2);

pButtons.add(b3);

pButtons.add(bClear);

pButtons.add(b4);

pButtons.add(b5);

pButtons.add(b6);

pButtons.add(bMul);

pButtons.add(b7);

pButtons.add(b8);

pButtons.add(b9);

pButtons.add(bMinus);

pButtons.add(b0);

pButtons.add(bPoint);

pButtons.add(bPlus);

pButtons.add(bEqual);

// getting componenet area of JFrame

Container con = fCalc.getContentPane();
con.setLayout(new BorderLayout());

//adding components to container

con.add(tfAnswer, BorderLayout. NORTH);
con.add(IMyCalc, BorderLayout.SOUTH);
con.add(pButtons, BorderLayout. CENTER);
fCalc.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
fCalc.setSize(300, 300);

fCalc.setVisible(true);

} //end initGUI method

public CalculatorGUI () { // default constructor
initGUI ();

b
public static void main (String args[]) {
CalculatorGUI calGUI = new CalculatorGUI ();

b
} // end of class

10.11 Reference:

» Sun java tutorial: http://java.sun.com/docs/books/tutorial/java

» Thinking in java by Bruce Eckle

» Beginning Java2 by Ivor Hortan

e Java A Lab Course by Umair Javed
Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 102

Web Design and Development (CS506)

Lecture 11: Event Handling

One of the most important aspects of most non-trivial applications (especially Ul type-apps) is
the ability to respond to events that are generated by the various components of the application,
both in response to user interactions and other system components such as client-server
processing. In this handout we will look at how Java supports event generation and handling and
how to create (and process) custom events.

GUIs generate events when the user interacts with GUI. For example,

» Clicking a button
* Moving the mouse
* Closing Window etc

Both AWT and swing components (not all) generate events

e java.awt.event.*;
e javax.swing.event.*;

In java, events are represented by Objects

These objects tell us about event and its source. Examples are:

» ActionEvent (Clicking a button)
» WindowEvent (Doing something with window e.g. closing , minimizing)

Some event classes of java.awt.event are shown in diagram below

© Copyright Virtual University of Pakistan Page 103

Web Design and Development (CS506)

(j ava.lang .Obj ecID "—< ActionEvent > "—< ContainerEvent >
S, . S, S
1

__(Ad' t tE t -—(’ F SE +
Gava.util.EventObjecD justmen ven) ocuskiven

A

| "—(ItemEvent > "—(PaintEvent

Gava .awt . AWTE ven‘D‘_
S,

< ComponentEvent > "—(V WindowEvent

Key ‘—(InputEvent
L

(::CIassname / \

- hterface name (KeyEvent > (MouseEvent
P,

S

NS N NS N

11.1 Event Handling Model

In Java both AWT and Swing components use Event Delegation Model.

In this model processing of an event is delegated to a particular object (handlers) in the
program

It’s a Publish-Subscribe model. That is, event generating component publish an event and
event handling components subscribe for that event. The publisher sends these events to
subscribers. Similar to the way that you subscribe for newspaper and you get the
newspaper at your home from the publisher.

This model separates Ul code from program logic, it means that we can create separate
classes for Ul components and event handlers and hence business/program
logic is separated from GUI components.

11.2 Event Handling Steps

For a programmer the event Handling is a three step process in terms of code

© Copyright Virtual University of Pakistan

Step 1: Create components which can generate events (Event Generators)
Step 2: Build component (objects) that can handle events (Event Handlers)
Step 3: Register handlers with generators

Page 104

Web Design and Development (CS506)

11.3 Event Handling Process

11.3.1 Step 1: Event Generators

The first step is that you create an event generator. You have already seen a lot of event generators
like:

e Buttons
e Mouse
e Key

e Window etc

Most of GUI components can be created by calling their constructors. For example
JButton b1 = new JButton(“Hello”);

Now bl can generate events

Note: We do not create Mouse/Keys etc as they are system components

11.3.2 Step 2: Event Handlers/ Event Listener

The second step is that you build components that can handle events

« First Technique - By Implementing Listener Interfaces

o Java defines interfaces for every event type

o If a class needs to handle an event. It needs to implement the corresponding
listener interface
To handle “ActionEvent” a class needs to implement “ActionListener”
To handle “KeyEvent” a class needs to implement “KeyListener”
To handle “MouseEvent” a class needs to implement “MouseListener” and so on
Package java.awt.eventcontains different event Listener Interfaces which are
shown in the following figure

© O O O

© Copyright Virtual University of Pakistan Page 105

Web Design and Development (CS506)

ActionListener

N ; N AdjustmentListener
java.util. EventListener
ComponentListener
ContainerListener
FocusListener
ItemListener
KeyListener

MouseListener

MouseMotionListener

ey

- Inte rfa ce name

TextListener

WindowListener

Some Example Listeners, the way they are defined in JDK by Sun

public interface ActionListener {
public void actionPerformed(ActionEvent e);

}

public interface ItemListener {
public void itemStateChanged(ItemEvent ¢);

}

public interface ComponentListener {

public void componentHidden(ComponentEvent e);
public void componentMoved(ComponentEvent e);
public void componentResized(ComponentEvent ¢);
public void componentShown(ComponentEvent e);

}

o By implementing an interface the class agrees to implement all the methods that
are present in that interface. Implementing an interface is like signing a contract.

o Inside the method the class can do whatever it wants to do with that event

o Event Generator and Event Handler can be the same or different classes

o To handle events generated by Button. A class needs to implement
ActionListener interface and thus needs to provide the definition of
actionPerformed()method which is present in this interface.

public class Test implements ActionListener {

© Copyright Virtual University of Pakistan Page 106

Web Design and Development (CS506)

public void actionPerformed(ActionEvent ae) {
// do something

}
}

11.3.3 Step 3: Registering Handler with Generator

» The event generator is told about the object which can handle its events
» Event Generators have a method

o addXXXListener(_reference to the object of Handler class)
» For example, if bl is JButtonthen

o bl.addActionListener(this); // if listener and generator are same class

Event Handling Example

Clicking the “Hello” button will open up a message dialog shown below.

Message ! E n

\) Hello is pressed

© Copyright Virtual University of Pakistan Page 107

Web Design and Development (CS506)

We will take the simplest approach of creating handler and generator in a single class. Button is
our event generator and to handle that event our class needs to implement ActionListener
Interface and to override its actionPerformedmethod and in last to do the registration.

1. import java.awt.*;

2. import javax.swing.*;

3. import java.awt.event.*;

/* Implementing the interface according to the type of the event, i.e. creating event handler (first part

of step 2 of our process)
*/

4. public class ActionEventTest implements ActionListener{

5. JFrame frame;

6. JButton hello;

// setting layout components

7. public void initGUI () {

8. frame = new JFrame();

9. Container cont = frame.getContentPane();

10. cont.setLayout(new FlowLayout());

//Creating event generator step-1 of our process

11. hello = new JButton("Hello");

/* Registering event handler with event generator. Since event handler is in same object that contains
button, we have used this to pass the reference.(step 3 of the process) */
12. hello.addActionListener(this);

13. cont.add(hello);

14. frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

15. frame.setSize(150, 150);

16. frame.setVisible(true);

17.}

//constructor

18. public ActionEventTest () {

19. initGUI();

20. }

/* Override actionPerformed method of ActionListener’s interfacemethod of which will be called
when event takes place (second part of step 2 of our process) */

21. public void actionPerformed(ActionEvent event) {
22. JOptionPane.showMessageDialog(null,"Hello is pressed");
23.}

24. public static void main(String args[]) {

25. ActionEventTest acTest = new ActionEventTest();
26. }

27.} // end class

© Copyright Virtual University of Pakistan Page 108

Web Design and Development (CS506)

11.4 How Event Handling Participants Interact Behind the Scenes?

We have already seen that what a programmer needs to do handle events. Let’s see what takes
place behind the scenes, i.e How JVM handles event. Before doing that lets revisit different
participants of Event Handling Process and briefly what they do.

11.4.1 Event Generator / Source

* Swing and awt components

» For example, JButton, JTextField, JFrame etc
» Generates an event object

» Registers listeners with itself

11.4.2 Event Object

» Encapsulate information about event that occurred and the source of that event
= For example, if you click a button, ActionEvent object is created

event listener

avent event object / .
- P cvent listener
source \

event istener

11.4.3 Event Listener/handler

= Receives event objects when notified, then responds
» Each event source can have multiple listeners registered on it
» Conversely, a single listener can register with multiple event sources

11.4.4 IVM

» Receives an event whenever one is generated
» Looks for the listener/handler of that event

» [Ifexist, delegate it for processing

e Ifnot, discard it (event).

When button generates an ActionEvent it is sent to JVM which puts it in an event
queue. After that when JVM find it appropriate it de-queue the event object and send it to
all the listeners that are registered with that button. This is all what we shown in the
pictorial form below:

© Copyright Virtual University of Pakistan Page 109

Web Design and Development (CS506)

Event Queue
(managed by JVM)

DeQueue Event

Pass ActionEvent to Handler

Register with Action Hanlder
‘—'—\—______\—’

Action Action Mouse
Handler Handler Handler

(Figure from JAVA A Lab Course)

Making Small Calculator

= User enters numbers in the provided fields
* On pressing “+” button, sum would be displayed in the answer field
* On pressing “*” button, product would be displayed in the answer field

© Copyright Virtual University of Pakistan Page 110

Web Design and Development (CS506)

First Operand
Second Operand

C—
[]

Answer

First Operand

[

Second Operand

—
[]

Answer

Example Code: Making Small Calculator

. import java.awt.*;

. import javax.swing.*;

. import java.awt.event.*;

. public class SmallCalcApp implements ActionListener{
. JFrame frame;

. JLabel firstOperand, secondOperand, answer;

. JTextField op1, op2, ans;

. JButton plus, mul;

9. // setting layout

10. public void initGUI () {

11. frame = new JFrame();

12. firstOperand = new JLabel("First Operand");
13. secondOperand = new JLabel("Second Operand");
14. answer =new JLabel("Answer");

15. opl = new JTextField (15);

16. op2 = new JTextField (15);

17. ans = new JTextField (15);

18. plus = new JButton("+");

19. plus.setPreferredSize(new Dimension(70,25));

20. mul = new JButton("*");

21. mul.setPreferredSize(new Dimension(70,25));

22. Container cont = frame.getContentPane();

23. cont.setLayout(new FlowLayout());

24. cont.add(firstOperand);

25. cont.add(opl);

03N DNk~ W~

© Copyright Virtual University of Pakistan

Page 111

Web Design and Development (CS506)

26. cont.add(secondOperand);

27. cont.add(op2);

28. cont.add(plus);

29. cont.add(mul);

30. cont.add(answer);

31. cont.add(ans);

32. plus.addActionListener(this);

33. mul.addActionListener(this);

34. frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
35. frame.setSize(200, 220);

36. frame.setVisible(true);

37.}

38. //constructor

39. public SmallCalcApp () {

40. initGUI();

41. }

42. public void actionPerformed(ActionEvent event) {
43. String oper, result;

44. int numl, num?2, res;

/* All the information regarding an event is contained inside the event object. Here we are calling the
getSource() method on the event object to figure out the button that has generated that event. */
45. if (event.getSource() == plus) {

46. oper = opl.getText();

47. numl = Integer.parselnt(oper);

48. oper = op2.getText();

49. num?2 = Integer.parselnt (oper);

50. res = numl-+num?2;

51. result = res+"";

52. ans.setText(result);

53.}

54. else if (event.getSource() == mul) {

55. oper = opl.getText();

56. numl = Integer.parselnt(oper);

57. oper = op2.getText();

58. num?2 = Integer.parselnt (oper);

59. res = numl *num?2;

60. result = res+"";

61. ans.setText(result);

62. }

63. }

64. public static void main(String args[]) {

65. SmallCalcApp scApp = new SmallCalcApp();
66. }

67. }// end class

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 112

Web Design and Development (CS506)

Lecture 12: More Examples of Handling Events

12.1 Handling Mouse Event

Mouse events can be trapped for any GUI component that inherits from Component class. For
example, JPanel, JFrame & JButton etc.

To handle Mouse events, two types of listener interfaces are available.

e MouseMotionListener
e MouseListener

The class that wants to handle mouse event needs to implement the corresponding interface
and needs to provide the definition of all the methods in that interface.

12.1.1 MouseMotionL.istener interface

» Used for processing mouse motion events
* Mouse motion event is generated when mouse is moved or dragged

A MouseMotionListener interface isdefined in JDK as follows:

public interface MouseMotionListener {
public void mouseDragged (MouseEvent me);
public void mouseMoved (MouseEvent me);

}

12.1.2 MouseListener interface

» Used for processing “interesting” mouse events like when mouse is:

Pressed

Released

Clicked (pressed & released without moving the cursor)
Enter (mouse cursor enters the bounds of component)
Exit (mouse cursor leaves the bounds of component)

© © © © ©

MouseListenerinterfaces are defined in JDK as follows:

public interface MouseListener {
public void mousePressed (MouseEvent me);

© Copyright Virtual University of Pakistan Page 113

Web Design and Development (CS506)

public void mouseClicked (MouseEvent me);
public void mouseReleased (MouseEvent me);
public void mouseEntered (MouseEvent me);
public void mouseExited (MouseEvent me);

}

Example Code: Handling Mouse Events

Example to show Mouse Event Handling .Every time mouse is moved, the coordinates for a new
place is shown in a label.

. import java.awt.*;

. import javax.swing.*;

. import java.awt.event.*;

. public class EventsEx implements MouseMotionListener {
. JFrame frame;

. JLabel coordinates;

. // setting layout

. public void initGUI () {

. // creating event generator

10. frame = new JFrame();

11. Container cont =frame.getContentPane();

12. cont.setLayout(new BorderLayout());

13. coordinates = new JLabel ();

14. cont.add(coordinates, BorderLayout. NORTH);

15. // registring mouse event handler with generator

16. frame.addMouseMotionListener(this);

17. frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
18. frame.setSize(350, 350);

19. frame.setVisible(true);

20. } // end initGUI method

21. //default constructor

22. public EventsEx () {

23. initGUI();

24.}

// MouseMotionListener event hadler handling dragging
25. public void mouseDragged (MouseEvent me) {

26. int x = me.getX();

27.inty = me.getY();

28. coordinates.setText("Dragged at [" +x +"," +y +"]");

O 00 1 N N B W —

29. }
// MouseMotionListener event handler handling motion
30. public void mouseMoved (MouseEvent me) {

31. int x = me.getX();

© Copyright Virtual University of Pakistan Page 114

Web Design and Development (CS506)

32.int y = me.getY();

33. coordinates.setText("Moved at [" +x +"," +y +"]");
34.}

35. public static void main(String args[]) {

36. EventsEx ex = new EventsEx();

37.}

38. } // end class

Another Example: Handling Window Events

Task
We want to handle Window Exit event only
Why?

* When window is closed, control should return back to command prompt.
» But we have already achieved this functionality through following line of code

frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

« But, what if we want to display some message (Good Bye) before exiting?

Message BER

Moved at (192,33) When user close the

window, Message
would be displayed

\) Good Bye

After pressing Ok button program will exit

How?

* To handle window events, we need to implement “WindowListner” interface.
WindowListner” interface contains 7 methods We require only one i.e.

windowClosing

© Copyright Virtual University of Pakistan Page 115

Web Design and Development (CS506)

» But, We have to provide definitions of all methods to make our class a concrete class
» WindowListener interface is defined in the JDK as follows

public interface WindowL.istener {

public void windowActivated(WindowEvent we); public void
windowClosed(WindowEvent we); public void
windowClosing(WindowEvent we); public void
windowDeactivated(WindowEvent we); public void
windowDeiconified(WindowEvent we); public void
windowlIconified(WindowEvent we); public void
windowOpened(WindowEvent we);

}

* public void windowClosing(WindowEvent we)is our required method

Example Code: WindowExitHandler

This example code is modification of the last code example i.e. EventsEx.java

. import java.awt.*;

. import javax.swing.*;

. import java.awt.event.*;

. public class EventsEx implements MouseMotionListener , WindowListener {
. JFrame frame;

. JLabel coordinates;

// setting layout

7. public void initGUI () {

// creating event generator

8. frame = new JFrame();

9. Container cont = frame.getContentPane();
10. cont.setLayout(new BorderLayout());

11. coordinates = new JLabel ();

12. cont.add(coordinates, BorderLayout. NORTH);
// registring mouse event handler with generator
13. frame.addMouseMotionListener(this);

// registering window handler with generator

14. frame.addWindowListener(this);

15. frame.setSize(350, 350);

16. frame.setVisible(true);

17. } // end initGUI method

//default constructor

18. public EventsEx () {

N DN AW —

© Copyright Virtual University of Pakistan Page 116

Web Design and Development (CS506)

19. initGUI():;
20.}

// MouseMotionListener event hadler handling dragging

21. public void mouseDragged (MouseEvent me) {

22. int x = me.getX();

23. inty = me.getY();

24. coordinates.setText("Dragged at [" +x +"," +y +"]");
25.}

// MouseMotionListener event handler handling motion

26. public void mouseMoved (MouseEvent me) {

27. int x = me.getX();

28. inty = me.getY();

29.

30. coordinates.setText("Moved at [" +x +"," +y +"]");
31.}

// window listener event handler

32. public void windowActivated (WindowEvent we) { }
33. public void windowClosed (WindowEvent we) { }
34. public void windowClosing (WindowEvent we) {

35. JOptionPane.showMessageDialog(null, “Good Bye”);
36. System.exit(0);

37.}

38. public void windowDeactivated (WindowEvent we) {
39. public void windowDeiconified (WindowEvent we) {
40. public void windowIconified (WindowEvent we) {
41. public void windowOpened (WindowEvent we) {

42. public static void main(String args[]) {

43. EventsEx ex = new EventsEx();

44. }

45.} // end class

N S A

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 117

Web Design and Development (CS506)

Lecture 13: Adapter Classes

Problem in Last Code Example

Problem

» We were interested in windowClosing() method only

» But have to provide definitions of all the methods, Why?

» Because a class implementing an interface has to provide definitions of all methods
present in that interface.

Solution

* To avoid giving implementations of all methods of an interface when we are not
using these methods we use Event Adapter classes

13.1 Adapter Classes

» For listener interfaces containing more than one event handling methods, jdk defines
adapter classes. Examples are
o For WindowListener [] WindowAdapter
o For MouseMotionListener [] MouseMotionAdapter
o and many more
» Adapter classes provide definitions for all the methods (empty bodies) of their
corresponding Listener interface
« It means that WindowAdapter class implements WindowListener interface and
provide the definition of all methods inside that Listener interface
* Consider the following example of MouseMotionAdapter and its corresponding
MouseMotionListener interface

public interface MouseMotionListener {

public void mouseDragged (MouseEvent me);

public void mouseMoved (MouseEvent me); }

public class MouseMotionAdapter implements MouseMotionListener {

public void mouseDragged (MouseEvent me) { }
public void mouseMoved (MouseEvent me) { }
}

13.2 Available Adapter classes

© Copyright Virtual University of Pakistan Page 118

Web Design and Development (CS506)

Listener Adapter Class Registration Method
(If Any)
ActionListener addActionListener
AdjustmentListener addAdjustmentListener
ComponentListener ComponentAdapter addComponentListener
ContainerListener ContainerAdapter addContainerListener
FocusListener FocusAdapter addFocusListener
ItemListener addItemListener
KeyListener KeyAdapter addKeyListener
MouseListener MouseAdapter addMouseListener
MouseMotionListener | MouseMotionAdapter | addMouseMotionListener
TextListener addTextListener
WindowListener WindowAdapter addWindowListener

13.2.1 How to use Adapter Classes

= previously handler class need to implement interface

public class EventsEx implements MouseMotionL.istener{...}
e Therefore it has to provide definitions of all the methods inside that interface now our
handler class will inherit from adapter class

public class EventsEx extends MouseMotionAdapter{...}
* Due to inheritance, all the methods of the adapter class will be available inside our
handler class since adapter classes has already provided definitions with empty bodies.
» we do not have to provide implementations of all the methods again
* We only need to override our method of interest.

Example Code 13.1: Handling Window Events using Adapter Classes

Here we are modifying the window event code in the last example to show
the use of WindowAdapter instead of WindowListener. Code related to
MouseMotionListener is deleted to avoid cluttering of code.

1. import java.awt.*;

© Copyright Virtual University of Pakistan Page 119

Web Design and Development (CS506)

2. import javax.swing.*;

3. import java.awt.event.*;

4. public class EventsEx extends WindowAdapter {
5. JFrame frame;

6. JLabel coordinates;

// setting layout

7. public void initGUI () {

// creating event generator

8. frame = new JFrame();

9. Container cont = frame.getContentPane();
10. cont.setLayout(new BorderLayout());

11. coordinates = new JLabel ();

12. cont.add(coordinates, BorderLayout. NORTH);
// registering window handler with generator
13. frame.addWindowListener(this);

14. frame.setSize(350, 350);

15. frame.setVisible(true);

16. } // end initGUI method

//default constructor

17. public EventsEx () {

18. initGUI();

19. }
// As you can see that we have only implemented
// our required method

20. public void windowClosing (WindowEvent we) {

21. JOptionPane.showMessageDialog(null, “Good Bye”);
22. System.exit(0);

23.}

24. public static void main(String args[]) {
25. EventsEx ex = new EventsEx();

26. }

27.} // end class

Problem in Last Code Example

» We have inherited from WindowAdapter

» What if we want to use MouseMotionAdpater as well? Or what if our class already

inherited from some other class?
Problem
= Java allows single inheritance

Solution

© Copyright Virtual University of Pakistan

Page 120

Web Design and Development (CS506)

e Use Inner classes

13.3 Inner Classes

e A class defined inside another class
e Inner class can access the instance variables and members of outer class
» It can have constructors, instance variables and methods, just like a regular class

e Generally used as a private utility class which does not need to be seen by others
classes

GUI Class(Contains GUI creation code)

o tfis JTextField

Handler class:

e Contains event handling code

e tfis accessable here

Example Codel3.2: Handling Window Event with Inner Class

Here we are modifying the window event code in the last example to show the use of
WindowAdapter as an inner class.

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;
public class EventEx {

=

5. JFrame frame;

6. JLabel coordinates;

7. // setting layout

8. public void nitGUI () {

9. frame = new JFrame();

10. Container cont =frame.getContentPane();
11. cont.setLayout(new BorderLayout());
12. coordinates = new JLabel ();

© Copyright Virtual University of Pakistan Page 121

Web Design and Development (CS506)

13. cont.add(coordinates, BorderLayout. NORTH);

/* Creating an object of the class which is handling our
window events and registering it with generator */
14. WindowHandler handler = new WindowHandler ();
15. frame.addWindowListener(handler);

16. frame.setSize(350, 350);

17. frame.setVisible(true);

18. } // end initGUI

//default constructor

19. public EventEx () {

20. initGUI();

21.}

/* Inner class implementation of window adapter. Outer
class is free to inherit from any other class. */

22. private class WindowHandler extends WindowAdapter {
// Event Handler for WindowListener

23. public void windowClosing (WindowEvent we) {
24. JOptionPane.showMessageDialog(null, “Good Bye”);
25. System.exit(0);

26. }

27.} // end of WindowHandler class

28. public static void main(String args[]) {

29. EventEx e = new EventEx();

30.}

31. } // end class

Example Code 13.3: Handling Window and Mouse Events with Inner
Class

Here we are modifying the window event code of the last example to handle window and
mouse events using inner classes. The diagram given below summarizes the approach.

© Copyright Virtual University of Pakistan Page 122

Web Design and Development (CS506)

Inner class

handling Mouse
Outer class for

GUI and other
code

Events

Inner class handling
window

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;
. public class EventEx {

. JFrame frame;

. JLabel coordinates;

. // setting layout

. public void initGUI ()

. frame = new JFrame();

10. Container cont =frame.getContentPane();

11. cont.setLayout(new BorderLayout());

12. coordinates = new JLabel ();

13. cont.add(coordinates, BorderLayout. NORTH);

/* Creating an object of the class which is handling our window events and registering it with
generator */

14. WindowHandler whandler = new WindowHandler ();

15. frame.addWindowListener(whandler);

/* Creating an object of the class which is handling our MouseMotion events & registering it with
generator */

16. MouseHandler mhandler = new MouseHandler ();

17. frame.addMouseMotionListener(mhandler);

18. frame.setSize(350, 350);

19. frame.setVisible(true);

© Copyright Virtual University of Pakistan Page 123

Web Design and Development (CS506)

20. }

//default constructor

21. public EventEx () {

22. initGUI();

23.}

/* Inner class implementation of WindowAdapter. Outer class
is free to inherit from any other class. */

24. private class WindowHandler extends WindowAdapter {
// Event Handler for WindowListener

25. public void windowClosing (WindowEvent we) {

26. JOptionPane.showMessageDialog(null, “Good Bye”);
27. System.exit(0);

28. }

29. } // end of WindowHandler

//Tnner class implementation of MouseMotionAdapter

30. private class MouseHandler extends MouseMotionAdapter {
// Event Handler for mouse motion events

31. public void mouseMoved (MouseEvent me) {

32. int x = me.getX();

33.int y = me.getY();

34. coordinates.setText(“Moved at [" +x+","+y +"]");
35.}

36. } // end of MouseHandler

37. public static void main(String args[]) {

38. EventEx e = new EventEx();

39.}

40. } // end clas

Example Code: Making Small Calculator using Inner classes
» User enters numbers in the provided fields
* On pressing “+” button, sum would be displayed in the answer field
* On pressing “*” button, product would be displayed in the answer field

© Copyright Virtual University of Pakistan

Page 124

Web Design and Development (CS506)

First Operand

I

Second Operand

C—
[1]

Answer

N

First Operand

[

Second Operand

C—
|

Answer

. import java.awt.*;

. import javax.swing.*;

. import java.awt.event.*;

. public class SmallCalcApp{
. JFrame frame;

. JTextField op1, op2, ans;
. JButton plus, mul;

. // setting layout

10. public void initGUI () {
11. frame = new JFrame();
12. firstOperand

O 00 1 N N B W —

14. answer = new JLabel("Answer");
15. opl = new JTextField (15);

16. op2 = new JTextField (15);

17. ans = new JTextField (15);

18. plus = new JButton("+");

20. mul = new JButton("*");

23. cont.setLayout(new FlowLayout());

. JLabel firstOperand, secondOperand, answer;

19. plus.setPreferredSize(new Dimension(70,25));

21. mul.setPreferredSize(new Dimension(70,25));
22. Container cont = frame.getContentPane();

=new JLabel("First Operand");
13. secondOperand = new JLabel("Second Operand");

© Copyright Virtual University of Pakistan

Page 125

Web Design and Development (CS506)

24. cont.add(firstOperand);

25. cont.add(op1);

26. cont.add(secondOperand);

27. cont.add(op2);

28. cont.add(plus);

29. cont.add(mul);

30. cont.add(answer);

31. cont.add(ans);

/* Creating an object of the class which is handling
button events & registering it with generators */
32. ButtonHandler bHandler = new ButtonHandler();
33. plus.addActionListener(bHandler);

34. mul.addActionListener(bHandler);

35. frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
36. frame.setSize(200, 220);

37. frame.setVisible(true);

38.}

39. //constructor

40. public SmallCalcApp () {

41. initGUI();

42.}

//Tnner class implementation of ActionListener

43. private class ButtonHandler implements ActionListener{
44. public void actionPerformed(ActionEvent event) {
45. String oper, result;

46. int numl, num?2, res;

47. if (event.getSource() == plus) {

48. oper = opl.getText();

49. num1 = Integer.parselnt(oper);

50. oper = op2.getText();

51. num?2 = Integer.parselnt (oper);

52. res = numl+num?2;

53. result = res+"";

54. ans.setText(result);

55}

56. else if (event.getSource() == mul) {

57. oper = opl.getText();

58. numl = Integer.parselnt(oper);

59. oper = op2.getText();

60. num?2 = Integer.parselnt (oper);

61. res = num1*num2;

62. result = res+"";

63. ans.setText(result);

64 }

65. } // end actionPerformed method

66. } // end inner class ButtonHandler

© Copyright Virtual University of Pakistan Page 126

Web Design and Development (CS506)

67. public static void main(String args[]) {

68. SmallCalcApp scApp = new SmallCalcApp();
69. }

70. }// end class

13.4 Anonymous Inner Classes

e has no name

* same as inner class in capabilities
e much shorter

e Difficult to understand

13.5 Named vs. Anonymous Objects

13.5.1Named
» String s = “hello”;
System.out.println(s);
* “hello” has a named reference .
13.5.2 Anonymous
» System.out.println(*“hello”);

We generally use anonymous object when there is just a onetime use of a particular object but
in case of a repeated use we generally used named objects and use that named reference to use that
objects again and again.

Example Code 13.4 Handling Window Event with Anonymous Inner
Class

Here we are modifying the window event code of 13.3 to show the use of anonymous inner
class.

28.import java.awt.*;

29.import javax.swing.*;

30.import java.awt.event.*;

31.public class EventsEx extends WindowAdapter {
32. JFrame frame;

33. JLabel coordinates;

// setting layout

34.public void initGUI () {

// creating event generator

35. frame = new JFrame();

36. Container cont =frame.getContentPane();

37. cont.setLayout(new BorderLayout());

38. coordinates = new JLabel ();

39. cont.add(coordinates, BorderLayout. NORTH);
// registering event handler (anonymous inner class)
// with generator by using

40. frame.addWindowListener (

41. new WindowAdapter () {

© Copyright Virtual University of Pakistan Page 127

Web Design and Development (CS506)

42. public void windowClosing (WindowEvent we) {
43. JOptionPane.showMessageDialog(null, “Good Bye”);
44. System.exit(0);

45. } // end window closing

46. } // end WindowAdapter

47.); // end of addWindowListener

48. frame.setSize(350, 350);

49. frame.setVisible(true);

50. } // end initGUI method

//default constructor

51. public EventsEx () {

52. initGUI();

53.}

54. public static void main(String args[]) {

55. EventsEx ex = new EventsEx();

56.}

57. } // end class

13.6 Summary of Approaches for Handling Events

* By implementing Interfaces
» By extending from Adapter classes
To implement the above two techniques we can use
» Same class
o putting event handler & generator in one class
» Separate class
o Outer class
T Putting event handlers & generator in two different classes
o Inner classes
o Anonymous Inner classes

13.7 References

Java A Lab Course by Umair Javed

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 128

Web Design and Development (CS506)

Lecture 14: Java Database Connectivity

14.1 Introduction

Java Database Connectivity (JDBC) provides a standard library for accessing databases. The
JDBC API contains number of interfaces and classes that are extensively helpful while
communicating with a database.

14.2 The java.sql package

The java.sql package contains basic & most of the interfaces and classes. You automatically get
this package when you download the J2SE™. You have to import this package whenever you
want to interact with a relational database.

14.3 Connecting With Microsoft Access

In this handout, we will learn how to connect & communicate with Microsoft Access Database.
We chooses Access because most of you are familiar with it and if not than it is very easy to
learn.

14.3.1 Create Database

In start create a database ‘“PersonInfo” using Microsoft Access. Create one table named
“Person”. The schema of the table is shown in the picture.

Ohjects @ Create table in Design view
Tahles @ Create table by using wizard
[#] . v i
Queries Create table by entering data
£ I Ferson
FEl Creems . F
Groups

© Copyright Virtual University of Pakistan Page 129

Web Design and Development (CS506)

Field Mame Data Type
FHid AutoMumber
name Text
address Text
phonetum Text

Add the following records into Person table as shown below:

FPerzon: Ta

hle

HEE

narne address chonellum
ali moclel tovin 92032506
usman fulbier 8219065
raza defence 2173946

| 1 b vl p#]of 3

Record: 14 |

Save the data base in some folder. (Your database will be saved as an .mdb file)

14.3.2 Setup System DSN

= After creating database, you have to setup a system Data Source Name (DSN). DSN is a
name through which your system recognizes the underlying data source.
e Select Start -> Settings -> Control Panel -> Administrative Tools -> Data Sources
(ODBO).
« The ODBC Data Source Administrator window would be opened as shown below:
Select System DSN tab. (If you are unable to use System DSN tab due to security
restrictions on your machine, you can use the User DSN tab)

© Copyright Virtual University of Pakistan Page 130

Web Design and Development (CS506)

M 0DBC Data Source Adminiztrator

Uzer D5N | Syztern DSH I File DSM I Dri'-.fersl Tran:ingl Connection F'u:n:nlingl Aot I

zer Data Sources:

M ame | Diriver Add...
Microsoft Excel Driver [*.xlz, * xlex, " ulzm, *.»
k5 Access Databaze Microzoft Access Driver [*.mdb, *. accdb] Remove

flie

Configure...

<] [

An ODBC User data source stores information about how to connect o
the indicated data prowider. & User data source iz only vizible o pou,
and can only be uged an the curent machine.

] I Cancel Apply Help

e Press Add... button and choose Microsoft Access Driver (*.mdb) from Create New Data
Source window and press Finish button as shown in diagram:

Create New Data Source |

Select a driver far which pou want to zet up a data zounce.

bk

M arne |
Diriver da Microzaoft para arquivios testo [% et © cav]
Drriver do Microzoft Access [*.mdb]

Diriver do Microsoft dBase [*.dbif]

Diriver do Microsoft Excel(” «ls)

Drriver do Microzoft Faradox [F.db]

Diriver para o Microzaft Wizual FoxPro

Microsoft Access dBASE Driver [*.dbf, *.nds, *.mdx)
Microzoft Access Dinver [*.mdb)
Micrazaft Access Driver [*.mdb, *. accdb]

kdimrmmmFE fmmmmn Do = Ao Diein g 1% AR
J

re e 1= J

| O i y U

-
4

< Back I Finizh I Cancel

© Copyright Virtual University of Pakistan Page 131

Web Design and Development (CS506)

e After that, ODBC Microsoft Access Setup window would be opened as shown in
following diagram:

0ODBC Microsoft Access Setup n |

Drata Source Mame: IpersanDSN

E

Dezcription: I
Caricel |
— D atabaze
Database: DA Lumst W Tlec 13\Personlnfo mdb Help

Select... I Create. . | Repair... Enmpact...l

i

Advanced. ..

— Syztem Databaze

& MNone
™ Databaze;

Syzhern Databaze. .

Optiongs»

e Enter the Data Source Name personDSN and select the database by pressing
Select button. The browsing window would be opened, select the desired folder
that contains the database (The database .mdb file you have created in the first
step) Press Ok button.

14.4 Basic Steps in Using JDBC

There are eight (8) basic steps that must be followed in order to successfully
communicate with a database. Let’s take a detail overview of all these one by one.

14.4.1Import Required Package

e Import the package java.sql.* that contains useful classes and interfaces to access
& work with database.

14.4.2Load Driver

import java.sql.*;

* Need to load suitable driver for underlying database.

© Copyright Virtual University of Pakistan Page 132

Web Design and Development (CS506)

» Different drivers & types for different databases are available.

* For MS Access, load following driver available with j2se.

» C(lass.forName(“sun.jdbc.odbc.JdbcOdbcDriver™);

» For Oracle, load the following driver. You have to download it explicitly.
» C(lass.forName(“oracle.jdbc.driver.OracleDriver”);

14.4.3 Define Connection URL

» To get a connection, we need to specify the URL of a database (Actually we need
to specify the address of the database which is in the form of URL)
= As we are using Microsoft Access database and we have loaded a JDBC-ODBC
driver. Using JDBC-ODBC driver requires a DSN which we have created earlier
and named it personDSN. So the URL of the database will be
String conURL = “jdbc:odbc:personDSN”’;

14.4 .4 Establish Connection With DataBase

» Use DriverManager to get the connection object.

» The URL of the database is passed to the getConnection method.

. Connection con = DriverManager.getConnection(conURL);

e If DataBase requires username & password, you can use the overloaded version of
getConnection method as shown below:

String usr = “umair”;

String pwd = “vu”;

Connection con = null;

con = DriverManager.getConnection(conURL, usr, pwd);

14.4.5 Create Statement

= A Statement object is obtained from a Connection object.
Statement stmt = con.createStatement();
» Once you have a statement, you can use it for various kinds of SQL queries.

14.4.6 Execute a Query

» The next step is to pass the SQL statements & to execute them.
* Two methods are generally used for executing SQL queries. These are:

© Copyright Virtual University of Pakistan Page 133

Web Design and Development (CS506)

o executeQuery(sgl) method
'] Used for SQL SELECT queries.
'] Returns the ResultSET object that contains the results of the query and
can be used to access the query results.
String sql =“SELECT * from sometable”;
ResultSet rs = stmt.executeQuery(sql);
o executeUpdate(sgl) method
[] This method is used for executing an update statement like INSERT,
UPDATE or DELETE
[] Returns an Integer value representing the number of rows updated
String sql = “INSERT INTO tablename ” +
“(columnNames) Values (values)” ;
int count = stmt.executeUpdate(sql);

14.4.7 Process Results of the Query

» The ResultSet provides various getXXX methods that takes a column index
or name and returns the data
» The ResultSet maintains the data in the form tables (rows & columns)
e First row has index 1, not 0.
e The next method of ResultSet returns true or false depending upon
whether the next row is available (exist) or not and moves the cursor
» Always remember to call next()method at-least once
» To retrieve the data of the column of the current row you need to use the various getters
provided by the ResultSet.
« For example, the following code snippet will iterate over the whole
ResultSetand illustrates the usage of getters methods
while (rs.next()){
String name = rs.getString(“columnName”); //by using column name
String name = rs.getString(1); // or by using column index }

14.4.8 Close the Connection

» An opening connection is expensive, postpone this step if additional database operations
are expected

con.close();

© Copyright Virtual University of Pakistan Page 134

Web Design and Development (CS506)

Example Code 14.1: Retrieving Data from ResultSet

The JdbcEx.java demonstrates the usage of all above explained steps. In this code
example, we connect with the Personinfo database, the one we have created earlier, and
then execute the simple SQL SELECT query on Person table, and then process the query

results.

// File JdbcEx.java

//Step 1: Import package

import java.sql.*;

public class JdbcEx {

public static void main (String args[]) {

try {

//Step 2: load driver
Class.forName(“‘sun.jdbc.odbc.JdbcOdbceDriver”™);
//Step 3: define the connection URL

String url = “jdbc:odbc:personDSN”;

//Step 4: establish the connection

Connection con = DriverManager.getConnection(url);
//Step 5: create Statement

Statement st = con.createStatement();

//Step 6: preapare & execute the query

String sql = “SELECT * FROM Person”;

ResultSet rs = st.executeQuery(sql);

//Step 7: process the results

while(rs.next()){

// The row name is “name” in database “Personlnfo,
// hence specified in the getString() method.

String name = rs.getString(“name”);

String add = rs.getString(“address”);

String pNum = rs.getString(‘“phoneNum”);
System.out.println(name + “” + add + ” ” + pNum);

H
//Step 8: close the connection
con.close();
}catch(Exception sqlEx){
System.out.println(sqlEx);

}
} // end main
} // end class

The important thing you must notice that we have put all code inside tryblock and then handle
(in the above example, only printing the name of the exception raised) exception inside catch

block.

© Copyright Virtual University of Pakistan

Page 135

Web Design and Development (CS506)

Why? Because we are dealing with an external resource (database). If you can recall all 10
related operations involving external resources in java throw exceptions. These exceptions

are checked exceptions and we must need to handle these exceptions.
Compile & Execute

Since the Person table contains only three records, so the following output would be
produced on executing the above program.

C:\WINDOWS\system32\cmd.exe

D:\examples\jdbc> javac JdbcEx.java
D:\examples\jdbc> java JdbcEXx

Ali model town 9203256

usman gulberg 8219065

raza defence 5173946

14.5 References:

e Java- A Lab Course by Umair Javed
e Java tutorial by Sun: http://java.sun.com/docs/books/turorial
* Beginning Java2 by Ivor Hortan

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 136

Web Design and Development (CS506)

Lecture 15: More On JDBC

In the previous handout, we have discussed how to execute SQL statements. In this handout,
we’ll learn how to execute DML (insert, update, delete) statements as well some useful methods
provided by the JDBC APL

Before jumping on to example, let’s take a brief overview of executeUpdate()
method that is used for executing DML statements.

15.1 Useful Statement Methods:

15.1.1executeUpdate()

» Used to execute for INSERT, UPDATE, or DELETE SQL statements.

e This method returns the number of rows that were affected in the database.

» Also supports DDL (Data Definition Language) statements CREATE TABLE, DROP
TABLE, and ALERT TABLE etc.

» For example,

int num = stmt.executeUpdate(“DELETE from Person WHERE id
— 2’));

Example Code 15.1 : Executing SQL DML Statements

This program will take two command line arguments that are used to update records in the
database. executeUpdate() method will be used to achieve the purpose stated above.

// File JdbcDmIEx.java

//step 1:

import package import java.sql.*;

public class JdbcDmIEx {

public static void main (String args[]) {

try {

//Step 2: load driver
Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

//Step 3: define the connection URL

© Copyright Virtual University of Pakistan Page 137

Web Design and Development (CS506)

String url = “jdbc:odbc:personDSN”;

//Step 4: establish the connection

Connection con = DriverManager.getConnection(url);
//Step 5: create Statement

Statement st = con.createStatement();

// assigning first command line argument value

String addVar = args[0];

// assigning second command line argument value

String nameVar = args[1];

// preparing query - nameVar & addVar strings are embedded
// into query within ” + string +

String sql = “UPDATE Person SET address = “"+addVar+”’” +“ WHERE
name = “’+tnameVart+”’ ”’;

// executing query

int num = st.executeUpdate(sql);

// Step 7: process the results of the query

// printing number of records affected
System.out.println(num + “ records updated”);

//Step 8: close the connection

con.close();

}catch(Exception sqlEx){

System.out.println(sqlEx);

} // end main

}+ // end class

Compile & Execute

The Person table is shown in the following diagram before execution of the program. We want to
update first row i.e. address of the person ali.

Ferson: Takle

address honekJum

naie

ali Kodel ton 9203240
Lsman julber g219065
3fraza dlefence a1739406
* i

Record: 14| | 1 k| |k of 2

The next diagram shows how we have executed our program. We
passed it two arguments. The first one is the address (defence) and later one
is the name (ali) of the person against whom we want to update the address
value.

© Copyright Virtual University of Pakistan Page 138

Web Design and Development (CS506)

C:\WINDOWS\system32\cmd.exe

D:\examples\jdbc> javac JdbcEXx.java
D:\examples\jdbc> java JdbcEx defence ali
1 record updated

The Person table is shown in the following diagram after the execution of the
program. Notice that address of the ali is now changed to defence.

Ferson: Table
id name address phonelum
» 1 ali defence > | 9203256
. 2/ usman gulberg 8213065
. Jiraza defence 5173946

Record: |4 I]| 1 b r|pE|of 2

Note

When we execute DML statements (insert, update, delete) we have to commit it in the
database explicitly to make the changes permanent or otherwise we can rollback the
previously executed statements.

But in the above code, you have never seen such a statement. This is due to the fact that java will
implicitly commit the changes. However, we can change this java behavior to manual commit.
We will cover these in some later handout.

15.1.2getMaxRows / setMaxRows(int)

» Used for determines the number of rows a ResultSetmay contain
* By default, the number of rows are unlimited (return value is 0), or by using
setMaxRows(int), the number of rows can be specified.

15.1.3 getQueryTimeOut / setQueryTimeOut (int)

» Retrieves the number of seconds the driver will wait for a Statement object to
execute.
» The current query time out limit in seconds, zero means there is no limit

© Copyright Virtual University of Pakistan Page 139

Web Design and Development (CS506)

e Ifthe limit is exceeded, a SQLException is thrown

15.2 Different Types of Statements

» As we have discussed in the previous handout that through Statement objects, SQL
queries are sent to the databases.
= Three types of Statementobjects are available. These are:

15.2.1Statement

» The Statementobjects are used for executing simple SQL statements.

» We have already seen its usage in the code examples.

15.2.2PreparedStatement

» The PreparedStatement are used for executing precompiled SQL statements and passing in
different parameters to it.
» We will talk about it in detail shortly.

15.2.3CallableStatement

» These are used for executing stored procedures.
» We are not covering this topic; See the Java tutorial on it if you are interested in learning it.

15.2.4 Prepared Statements

» What if we want to execute same query multiple times by only changing parameters.

» PreparedStatement object differs from Statement object as that it is used to create a
statement in standard form that is sent to database for compilation, before actually
being used.

» Each time you use it, you simply replace some of the marked parameters (?) using
some setter methods.

» We can create PreparedStatement object by using prepareStatement method of the
connection class. The SQL query is passed to this method as an argument as
shown below.

PreparedStatement pStmt = con.prepareStatement (

“UPDATE tableName SET columnName =
7”4+ “WHERE columnName =?"");

* Notices that we used marked parameters (?) in query. We will replace them later on

© Copyright Virtual University of Pakistan Page 140

Web Design and Development (CS506)

by using various setter methods.

» If we want to replace first ? with Stringvalue, we use setStringmethod and to replace
second ? with intvalue, we use setInt method. This is shown in the following code
snippet:

pStmt.setString (1 , stringValue);
pStmt.setint (2, intValue)

Note: The first market parameter has index 1.

» Next, we can call executeUpdate (for INSERT, UPDATE or DELETE queries) or
executeQuery (for simple SELECT query) method.

pStmt.executeUpdate();

Modify Example Code: Executing SQL DML using Prepared

Statements

This example code is modification to the last example code (JdbcDmlEx.java).The
modifications are highlighted as bold face.

// File JdbcDmlIEx.java

//step 1: import package

import java.sql.*;

public class JdbcDmIEx {

public static void main (String args[]) {

try {

//Step 2: load driver
Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

//Step 3: define the connection URL
String url = “jdbc:odbc:personDSN”;

//Step 4: establish the connection
Connection con = DriverManager.getConnection(url, ””,),

// make query and place ? where values are to

//be inserted later

String sql = “UPDATE Person SET address = ? “ +

“ WHERE name = ? ”;

// creating statement using Connection object and passing
// sql statement as parameter

PreparedStatement pStmt = con.prepareStatement(sql);

// assigning first command line argument value

String addVar = args[0];

© Copyright Virtual University of Pakistan Page 141

Web Design and Development (CS506)

// assigning second command line argument value
String nameVar = args[1];

// setting first marked parameter (?) by using setString()
// method to address.
pStmt.setString(1 , addVar);

// setting second marked parameter(?) by using setString()
// method to name
pStmt.setString(2 , nameVar);

// suppose address is “defence” & name is “ali”

// by setting both marked parameters, the query will look
// like:

// sql = “UPDATE Person SET address = “defence”
// WHERE name = “ali” ”

// executing update statemnt
int num = pStmt.executeUpdate();

// Step 7: process the results of the query
// printing number of records affected
System.out.println(num + “ records updated”);

//Step 8: close the connection
con.close();
}catch(Exception sqlEx){
System.out.println(sqlEx);

b
} // end main
} // end class

Compile & Execute
Execute this code in a similar way as we showed you in execution of the last program. Don’t
forget to pass the address & name values as the command line arguments.

15.3 References:

» Entire material for this handout is taken from the book JAVA A Lab Course by Umair
Javed. This material is available just for the use of VU students of the course Web
Design and Development and not for any other commercial purpose without the consent
of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 142

Web Design and Development (CS506)

Lecture 16: Result Set

This handout will familiarize you with another technique of inserting, updating & deleting
rows. Before moving on, first we look at ResultSet.

16.1 ResultSet

» A ResultSet contains the results of the SQL query

o Represented by a table with rows and columns
o Maintains a cursor pointing to its current row of data.

o Initially the cursor positioned before the row (0).
o First row has index 1

Row
Numbers

Cursor is on zeroth row

\
id Name Address phoneNum
1 1 Ali model town 0203256
= ResultSet
2 2 usman Gulberg 8219065
3 3 Raza Defence 5173946
E)

16.1.1Default ResultSet

A default ResultSet object is not updatable and has a cursor that moves
forward only.

You can iterate over through it only once and only from the first row to last row.
Until now, we have worked & used it in various examples.

For a quick overview, here how we create a default ResultSet
String sql = “SELECT * FROM Person”; PreparedStatement pStmt =
con.prepareStatement(sql); ResultSet rs = pStmt.executeQuery();

object.

16.1.2Useful ResultSet’s Methods

Following methods are used often to work with default ResultSetobject. We already seen and
used some of them in code examples.

© Copyright Virtual University of Pakistan Page 143

Web Design and Development (CS506)

16.1.2.1

16.1.2.2

next()

Attempts to move to the next row in the ResultSet, if available

The next() method returns true or false depending upon whether the nextrow is
available (exist) or not.

Before retrieving any data from ResultSet, always remember to call next()at
least once because initially cursor is positioned before first row.

getters

To retrieve the data of the column of the current row you need to use the various getters
provided by the ResultSet

These getters return the value from the column by specifying column name or column index.
For example, if the column name is “Name” and this column has index 3 in the ResultSet
object, then we can retrieve the values by using one of the following methods:

String name = rs.getString(‘“Name”);

String name = rs.getString(3);

These getter methods are also available for other types like getInt(), getDouble() etc.
Consult the Java API documentation for more references.

Note: Remember that first column has an index 1, NOT zero (0).

16.1.2.3

16.1.2.4

16.1.2.5

close()

Used to release the JDBC and database resources
The ResultSet is implicitly closed when the associated Statement object executes a new
query or closed by method call.

Updatable and/or Scrollable ResultSet

It is possible to produce ResultSet objects that are scrollable and/or updatable (since JDK
1.2)

With the help of such ResultSet, it is possible to move forward as well as backward with in
ResultSet object.

Another advantage is, rows can be inserted, updated or deleted by using updatable
ResultSet object.

Creating Updatable & Scrollable ResultSet

The following code fragment, illustrates how to make a ResultSet object that is scrollable and
updatable.

© Copyright Virtual University of Pakistan Page 144

Web Design and Development (CS506)

String sql = “SELECT * FROM Person”; PreparedStatement pStmt =
con.prepareStatement(sql, ResultSet. TYPE_SCROLL_INSENSITIVE,
ResultSet. CONCUR_UPDATABLE);

ResultSet rs = pStmt.executeQuery();

Two constants have been used of ResultSet class for producing a ResultSet rs that is
scrollable, will not show changes made by others and will be updatable

16.1.2.6 previous()

* Moves the cursor to the previous row in the ResultSet object, if available
e Returns true if cursor is on a valid row, false it is off the result set.
» Throws exception if result type is TYPE FORWARD ONLY.

Example Code 16.1: Use of previous (), next() & various getters methods

The ResultSetEx.javashows the use of previous, next and getters methods. We are using the
same Persontable of Personinfo database, the one we had created earlier in this example and
later on.

1. // File ResultSetEx.java

2. import java.sql.*;

3. public class ResultSetEx {

4. public static void main (String args[]) {

5.1y {

6. //Step 2: load driver

7. Class.forName(“‘sun.jdbc.odbe.JdbcOdbeDriver”);

8. //Step 3: define the connection URL

9. String url = “jdbc:odbe:personDSN”’;

10. //Step 4: establish the connection

11. Connection con = DriverManager.getConnection(url);
12.//Step 5: creating PrepareStatement by passing sql and
13.//ResultSet’s constants so that the ResultSet that will
14.//produce as a result of executing query will be
15.//scrollable & updatable

16.String sql = “SELECT * FROM Person”;
17.PreparedStatement pStmt = con.prepareStatement(sql, ResultSet. TYPE_ SCROLL INSENSITIVE,
ResultSet. CONCUR _UPDATABLE);

20 //Step 6: execute the query

21 ResultSet rs = pStmt.executeQuery();

22 // moving cursor forward i.e. first row

23 rs.next();

24 // printing column “name” value of current row (first)

© Copyright Virtual University of Pakistan Page 145

Web Design and Development (CS506)

25 System.out.println(“‘moving cursor forward”);
26 String name = rs.getString(“Name”);
27 System.out.println(name);
28 // moving cursor forward i.e. on to second row
29 rs.next();

30 // moving cursor backward i.e to first row
31 rs.previous();
32.// printing column “name” value of current row (first)
33.System.out.println(“moving cursor forward”);
34.name = rs.getString(‘“Name”);
35.System.out.println(name);
36.//Step 8: close the connection
37.con.close();
38.}catch(Exception sqlEx){
39.System.out.println(sqlEx);
40.}
41.} // end main
42.} // end class

Compile & Execute:

The sample output is given below:

C:\WINDOWS\system32\cmd.exe . E

D:\examples\jdbc> javac ResultSetEx.java
D:\examples\jdbc> java ResultSetEx
moving curson forward

ali

moving cursor backward

ali

16.1.2.7 absolute(int)

* Moves the cursor to the given row number in the ResultSet object.

» If given row number is positive, moves the cursor forward with respect to beginning of the
result set.

= If the given row number is negative, the cursor moves to the absolute row position with
respect to the end of the result set.

» For example, calling absolute(-1) positions the cursor on the last row; calling absolute(-2)
moves the cursor to next-to-last row, and so on.

» Throws Exception if ResultSet type is TYPE FORWARD ONLY

© Copyright Virtual University of Pakistan Page 146

Web Design and Development (CS506)

16.1.2.8 updaters (for primitives, String and Object)

» Used to update the column values in the current row or in insert row (discuss later)

» Do not update the underlying database

» Each update method is overloaded; one that takes column name while other takes column

index. For example String updater are available as:

updateString(String columnName, String value)
updateString(String columnlndex, String value)

16.1.2.9 updateRow()

» Updates the underlying database with new contents of the current row of this ResultSet

object

Example Code 16.2: Updating values in existing rows

The following code example updates the Name column in the second row of the
ResultSet object rs and then uses the method updateRow to update the Person table in

database.

This code is the modification of the last one. Changes made are shown in bold face.

1. // File ResultSetEx.java

2. import java.sql.*;

3. public class ResultSetEx {

4. public static void main (String args[]) {

5.try {

6. //Step 2: load driver

7. Class.forName(“sun.jdbc.odbc.JdbcOdbeDriver”);
8. //Step 3: define the connection URL

9. String url = “jdbc:odbc:personDSN”’;

10.//Step 4: establish the connection

11.Connection con = DriverManager.getConnection(url);
12.//Step 5: create PrepareStatement by passing sql and
13.// ResultSet appropriate fields

14.String sql = “SELECT * FROM Person”;
15.PreparedStatement pStmt = con.prepareStatement(sql,
16.ResultSet. TYPE_SCROLL _INSENSITIVE,
17.ResultSet. CONCUR _UPDATABLE);

18.//Step 6: execute the query

19.ResultSet rs = pStmt.executeQuery();

20.// moving cursor to second row

21.rs.absolute(2);

© Copyright Virtual University of Pakistan

Page 147

Web Design and Development (CS506)

22.// update address column of 2nd row in rs
23.rs.updateString(“Address”, “model town”);
24.// update the row in database
25.rs.updateRow();

26.//Step 8: close the connection
27.con.close();

28.} catch(Exception sqlEx){
29.System.out.println(sqlEx);

30.}

31.} // end main

32.} // end class

Compile & Execute

Given below are two states of Person table. Notice that address of 204 row is updated.
Person table: Before execution

Fersomn: Tahle

name address phonelMum
1 ali model town 9203256

2 usman defence 8219065
3raza defence 5173946

“lumhber)
Record: 14 | 1 2 k| M| eE|of 3

Person table: After execution

Person: Tahle

name address phoneMum
1 ali model town 9203256
2 usman model town 8219064
3 raza defence 5173946

Record: 14] 4 2k | Mk of 3

16.1.2.10moveTolnsertRow(int)

© Copyright Virtual University of Pakistan Page 148

Web Design and Development (CS506)

Cursor is on zeroth row

An updatable resultset object has a special row associate with it i.e. insert row

Insert row - a buffer, where a new row may be constructed by calling updater methods.
Doesn’t insert the row into a result set or into a database.

For example, initially cursor is positioned on the first row as shown in the diagram:

id Name Address phoneXNum
1 Ali model town 0203256
Updatable
ResultSet
5 2 usman Gulberg 8219065
3 3 Raza Defence 5173946
&

}, Insert row

Row
Numbers

Cursor is on zeroth row

By calling moveTolnsertRow(), the cursor is moved to insert row as shown below:

Name Address phoneNum
1 1 Ali model town 9203256
2 2 usman Gulberg 8210065
3 3 Raza Defence 5173046
4

1
J

Updatable
ResultSet

Insert row

© Copyright Virtual University of Pakistan

Page 149

Web Design and Development (CS506)

* Now, by calling various updaters, we can insert values into the columns of insert row as

shown below.

- J

imtiaz

cantt

9201112

16.1.2.11 insertRow()

}, Insert row

= Inserts the contents of the current row into this ResultSet object and into the database too.

* Moves the cursor back to the position where it was before calling
moveTolnsertRow()
e This is shown in the given below diagram
Cursor is on zeroth row
\
0 id Name Address phoneNum
1 1 Ali model town 0203256
Updatable
ResultSet
‘ 2 2 usman Gulberg 8210065 }
3 3 Raza Defence 5173946
4 imtiaz cantt 9201112 :

}, Insert row

Note: The cursor must be on the insert row before calling this method or exception

would be raised.

Example Code 16.3: Inserting new row

The following code example illustrates how to add/insert new row into the

ResultSet as well into the database.

This code is the modification of the last one. Changes made are shown in bold face.

1. // File ResultSetEx.java

© Copyright Virtual University of Pakistan

Page 150

Web Design and Development (CS506)

2. import java.sql.*;

3. public class ResultSetEx {

4. public static void main (String args[]) {

5.1y {

6. //Step 2: load driver

7. Class.forName(“sun.jdbc.odbc.JdbcOdbceDriver”);

8. //Step 3: define the connection URL
9. String url = “jdbc:odbc:personDSN”’;

10.//Step 4: establish the connection
11.Connection con = DriverManager.getConnection(url);

12.//Step 5: create PrepareStatement by passing sql and

13.// ResultSet appropriate fields

14.String sql = “SELECT * FROM Person”;

15.PreparedStatement pStmt = con.prepareStatement(sql, ResultSet. TYPE _SCROLL INSENSITIVE,
ResultSet. CONCUR _UPDATABLE);

18.//Step 6: execute the query

19.ResultSet rs = pStmt.executeQuery();
20.// moving cursor to insert row
21.rs.moveTolnsertRow();

22.// updating values in insert row

23.rs.updateString(“Name” “Iimitiaz”);
24 rs.updateString(“Address”, “cantt”);
25.rs.updateString(“phoneNum”, “9201211”);
26.// inserting row in resultset & into database
27.rs.insertRow();

28.//Step 8: close the connection
29.con.close();

30.} catch(Exception sqlEx){
31.System.out.println(sqlEx);
32.}

33.} // end main

34.} // end class

Compile & Execute

Given below are two states of Person table. Note that after executing program, a newly added row
is present.

© Copyright Virtual University of Pakistan Page 151

Web Design and Development (CS506)

Person: Takle . E

name address chonellum
ali rmodel towm 9203236
LSmarn ulberi g219063
raza defence a173946

Recard: 14 |

] 1 b | M[p#|of 2

Person table: Before execution

Ferson: Tahle

name address | phoneMNum |
1 ali model town 9203256
2/ muanwar gulberg 5213065

3lraza defence 5173946
4 imtiaz cantt 201211
“lumhber)

Record: 14

Person table: After execution

16.1.2.12 last() & first()

* Moves the cursor to the last & first row of the ResultSet object respectively.
» Throws exception if the ResultSet is TYPE_ FORWARD ONLY

16.1.2.13 getRow()

e Returns the current row number
e As mentioned earlier, the first row has index 1 and so on.

16.1.2.14 deleteRow()

» Deletes the current row from this ResultSet object and from the underlying database.
» Throws exception if the cursor is on the insert row.

Example Code 16.4: Deleting existing row

The given below example code shows the usage of last(), getRow()and

© Copyright Virtual University of Pakistan Page 152

Web Design and Development (CS506)

deleteRow()method.

This code is also the modification of the last one. Changes made are shown in bold face.

1. // File ResultSetEx.java

2. import java.sql.*;

3. public class ResultSetEx {

4. public static void main (String args|]) {

5. try {

6. //Step 2: load driver

7. Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

8. //Step 3: define the connection URL
9. String url = “jdbc:odbc:personDSN”;

10. //Step 4: establish the connection

11. Connection con = DriverManager.getConnection(url);

12. //Step 5: create PrepareStatement by passing sql and

13. // ResultSet appropriate fields
14. String sql= “SELECT * FROM Person”;

15. PreparedStatement pStmt = con.prepareStatement(sq],

16. ResultSet. TYPE SCROLL INSENSITIVE,
17. ResultSet. CONCUR_UPDATABLE);

18. //Step 6: execute the query
19. ResultSet rs = pStmt.executeQuery();

20. // moves to last row of the resultset
21. rs.last();
22. // retrieving the current row number

23. int rNo = rs.getRow();

24. System.out.printin(*current row number” + rNo);

25. // delete current row from rs & db i.e. 4 because

26. // previously we have called last() method
217. rs.deleteRow();

28. //Step 8: close the connection

29. con.close();

30. }catch(Exception sqlEx){

31. System.out.println(sqlEx);

© Copyright Virtual University of Pakistan

Page 153

Web Design and Development (CS506)

32,)

33. } // end main
34. } // end class

Compile & Execute
The first diagram shows the Person table before execution.

Ferson: Tahle

name address chonellum
ali rmodel towm 9203236
LSmarn ulberi g219063
raza defence a173946

Recard: 14 |

] 1 b | M[p#|of 2

Person table: Before execution
Execution program from command prompt will result in displaying current row number on
console. This can be confirmed from following diagram.

C:\WINDOWS\system32\cmd.exe

D:\examples\jdbc> javac JdbcEx.java

D:\examples\jdbc> java JdbcEx
currrono: 4

Executing Program from Command Prompt

After execution, the last row (4) is deleted from ResultSet as well as from
database. The Person table is shown after execution

Ferson: Tahle
name address | phoneMum |
1 ali rmodel town 9203256
2 muanwar gulberg 8219065
3 raza defence 5173946
4 imtiaz cantt 9201211
“umber)

Person table: After execution

© Copyright Virtual University of Pakistan Page 154

Web Design and Development (CS506)

16.2 References:

Entire material for this handout is taken from the book JAVA A Lab Course by Umair
Javed. This material is available just for the use of VU students of the course Web

Design and Development and not for any other commercial purpose without the consent
of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 155

Web Design and Development (CS506)

Lecture 17: Meta Data

In simple terms, Meta Data is data (information) about data. The actual data has no meaning
without existence of Meta data. To clarify this, let’s look at an example. Given below are listed
some numeric values

1000

2000
4000

What this information about? We cannot state accurately. These values might be
representing some one’s salaries, price, tax payable & utility bill etc. But if we specify Meta data
about this data like shown below:

Salary
1000
2000
4000

Now, just casting a glance on these values, you can conclude that it’s all about some ones
salaries.

17.1 ResultSet Meta data

ResultSet Meta Data will help you in answering such questions

* How many columns are in the ResultSet?

* What is the name of given column?

* Are the column name case sensitive?

» What is the data type of a specific column?

» What is the maximum character size of a column?
» Can you search on a given column?

17.1.1Creating ResultSetMetaData object

From a ResultSet (the return type of executeQuery()), derive a
ResultSetMetaDataobject by calling getMetaData()method as shown in the given code snippet
(here rsis a valid ResultSetobject):

ResultSetMetaData rsmd = rs.getMetaData();
© Copyright Virtual University of Pakistan Page 156

Web Design and Development (CS506)

Now, rsmd can be used to look up number, names & types of columns.

17.1.2Useful ResultSetMetaData methods

17.1.2.1 getColumnCount ()

e Returns the number of columns in the result set

17.1.2.2 getColumnDisplaySize (int)

» Returns the maximum width of the specified column in characters

17.1.2.3 getColumnName(int) / getColumnLabel (int)

* The getColumnName() method returns the database name of the column
* The getColumnLabel() method returns the suggested column label for printouts

17.1.2.4 getColumnType (int)

* Returns the SQL type for the column to compare against types in java.sql. Types

Example Code 17.1: Using ResultSetMetaData

The MetaDataEx.java will print the column names by using ResultSetMetaData
object and column values on console. This is an excellent example of the scenario where we
have no idea about the column names in advance.

Note: For this example code and for the coming ones, we are using the same database
(Personinfo) the one we created earlier and repeatedly used. Changes are shown in bold
face

44. // File MetaDataEx.java

45. import java.sql.*;

46. public class MetaDataEx {

47. public static void main (String args|]) {

© Copyright Virtual University of Pakistan Page 157

Web

Design and Development (CS506)

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83
84.
85.
86.
87.
88.
&9.
90.
9l1.
92.
93.

try {
//Step 2: load driver

Class.forName(“sun.jdbc.odbc.JdbcOdbceDriver”);
//Step 3: define the connection URL

String url = “jdbc:odbc:personDSN”;

//Step 4: establish the connection

Connection con = null;

con = DriverManager.getConnection(url, “”, *’);
//Step 5: create PrepareStatement by passing sql and
/1 ResultSet appropriate fields

String sql= “SELECT * FROM Person”;
PreparedStatement pStmt = con.prepareStatement(sql,
ResultSet. TYPE_SCROLL_INSENSITIVE,
ResultSet. CONCUR_UPDATABLE);

//Step 6: execute the query

ResultSet rs = pStmt.executeQuery();

// get ResultSetMetaData object from rs
ResultSetMetaData rsmd = rs.getMetaData();

// printing no. of column contained by rs

int numColumns = rsmd.getColumnCount();
System.out.printin(*Number of Columns:” + numColumns);
I printing all column names by using for loop
String cName;

for(int i=1; i<= numColumns; i++) {

cName = rsmd.getColumnName(i);
System.out.printin(cName);
System.out.printin(“\t”);

}

// changing line or printing an empty string
System.out.println(* ’);

// printing all values of ResultSet by iterating over it
String id, name, add, ph;

while(rs.next())

{
id= rs.getString(1);

. name = rs.getString(2);

add= rs.getString(3);

ph= rs.getString(4);
System.out.println(id);
System.out.println(*\t”);
System.out.println(name);
System.out.println(*\t”);
System.out.println(add);
System.out.println(*\t”);
System.out.println(ph);
System.out.println(*);

© Copyright Virtual University of Pakistan

Page 158

Web Design and Development (CS506)

94.}

95. //Step 8: close the connection
96. con.close();

97. }catch(Exception sqlEx){

98. System.out.println(sqlEx); }
99. } // end main

100.} // end class

Compile & Execute:

The database contains the following values at the time of execution of this program. The database
and the output are shown below:

C:\WINDOWS\system32\cmd.exe I E

D:\examples\jdbc> javac MetaDataEx.java
D:\examples\jdbc> java MetaDatEx
Number of columns:4

id name address phoneNum
1 ali new 9203256
2 usman gulberg 8219065
3 raza defence 5173946
4 imtiaz cantt 9201211

Person: Tahle
name | address | phoneMum |
1 ali madel town 9203256
2 muanwar gulberg 5213065
3 raza defence 51735946
4/imtiaz cantt 820121
“lumber)

Record: 14

7.2 DatabaseMetaData

Database Meta Data will help you in answering such questions

» What SQL types are supported by DBMS to create table?
» What is the name of a database product?

» What is the version number of this database product?

* What is the name of the JDBC driver that is used?

» Is the database in a read-only mode?

© Copyright Virtual University of Pakistan Page 159

Web Design and Development (CS506)

17.2.1Creating DatabaseMetaData object

From a Connection object, a DatabaseMetaData object can be derived. The
following code snippet demonstrates how to get DataBaseMetaDataobject.

Connectioncon= DriverManager.getConnection(url, usr, pwd);
DatabaseMetaData dbMetaData = con.getMeataData();

Now, you can use the dbMetaData to gain information about the database.

17.2.2Useful ResultSetMetaData methods

17.2.2.1 getDatabaseProductName()

» Returns the name of the database’s product name

17.2.2.2 getDatabaseProductVersion()

» Returns the version number of this database product

17.2.2.3 getDriverName()

e Returns the name of the JDBC driver used to established the connection

17.2.2.4 isReadOnly()

» Retrieves whether this database is in read-only mode
e Returns true if so, false otherwise

Example Code 17.2: using DatabaseMetaData

This code is modification of the example code 17.1. Changes made are shown in bold

face.

102. // File MetaDataEx java
103. import java.sql.*;
104. public class MetaDataEx {

105. public static void main (String args|]) {
106. try {
107. //Step 2: load driver

© Copyright Virtual University of Pakistan

Web Design and Development (CS506)

108. Class.forName(“sun.jdbc.odbc.JdbcOdbceDriver”);
109. //Step 3: define the connection URL

110. String url = “jdbc:odbe:personDSN”;

111. //Step 4: establish the connection

112. Connection con = null;

113. con = DriverManager.getConnection(url, “”, “);

114. // getting DatabaseMetaDat object

115. DatabaseMetaData dbMetaData = con.getMetaData();
116. // printing database product name

117. String pName = dbMetaData.getDatabaseProductName();
118. System.out.println(“DataBase: ” + pName);

119. // printing database product version

120. String pVer = dbMetaData.getDatabaseProductVersion();
121. System.out.println(“Version: ” + pVer);

122. // printing driver name used to establish connection &
123. // to retrieve data

124. String dName = dbMetaData.getDriverName();

125. System.out.printIn(“Driver: ” + dName);

126. // printing whether database is read-only or not

127. boolean rOnly = dbMetaData.isReadOnly();

128. System.out.printIn(“Read-Only: ” + rOnly);

129. //'you can create & execute statements and can

130. // process results over here if needed

131. //Step 8: close the connection

132. con.close();

133. }catch(Exception sqlEx){

134. System.out.println(sqlEx);

135. }

136. } // end main

137.} // end class

Compile & Execute
On executing the above program, the following output will produce:

D:\examples\jdbc> javac MetaDataEx.java
D:\examples\jdbc> java MetaDataEx
Database: ACCESS

Version: 04.00.0000

Driver: JDBC-ODBC Bridge (odbcjt32.dll)
Read-only: false

© Copyright Virtual University of Pakistan

Web Design and Development (CS506)

17.3 JDBC Driver Types

» JDBC Driver Types are divided into four types or levels.

» FEach type defines a JDBC driver implementation with increasingly higher level of
platform independence, performance, deployment and administration.

» The four types are:

Type - 1: JDBC - ODBC Bridge

Type 2: Native - API/partly Java driver

Type 3: Net - protocol/all-Java driver

Type 4: Native - protocol/all-Java driver

© © © ©

Now, let’s look at each type in more detail

17.3.1Type - 1: JDBC - ODBC Bridge

» Translates all JDBC calls into ODBC (Open Database Connectivity) calls and
send them to the ODBC Driver

» Generally used for Microsoft database.

e Performance is degraded

Client machine
Server machine
JDBC-ODBC bridge
’Jf Database
ODEC driver Server
Vender DB library

17.3.2Type - 2: Native - APl/partly Java driver

e Converts JDBC calls into database-specific calls such as SQL Server, Informix,
Oracle or Sybase.

e Partly-Java drivers communicate with database-specific API (which may be in
C/C++) using the Java Native Interface.

» Significantly better Performance than the JDBC-ODBC bridge.

© Copyright Virtual University of Pakistan Page 162

Web Design and Development (CS506)

Client machine

Server machine
Native API- partly
Java Driver
Database
Server
i
Vender DB library

17.3.3Type - 3: Net - protocol/all-Java driver4

» Follows a three-tiered approach whereby the JDBC database requests () are passed
through the network to the middle-tier server

e Pure Java client to server drivers which send requests that are not database-
specific to a server that translates them into a database-specific protocol.

e If the middle-tier server is written in java, it can use a type lor type 2JDBC driver to do
this

Client machine Server machine

net-protocol pure : :>' l:b'

java driver Middleware Server Database Server

17.3.4Type - 4: Native - protocol / all - java driver

e Converts JDBC calls into the vendor-specific DBMS protocol so that client
application can communicate directly with the database server

e Completely implemented in Java to achieve platform independence and eliminate
deployment issues.

e Performance is typically very good

© Copyright Virtual University of Pakistan Page 163

Web Design and Development (CS506)

Client machine Server machine

Native Protocol Pure :>' Datahase Server
Java Driver

17.4 Online Resources

* Sun’s JDBC Site
http://java.sun.com/products/jdbc/
e JDBC Tutorial
http://java.sun.com/docs/books/tutorial/jdbc/
e List of available JDBC Drivers
http://industry.java.sun.com/products/jdbc/drivers/
e RowSet Tutorial
http://java.sun.com/developer/Books/JDBCTutorial/chapter5.html
» JDBC RowSets Implementation Tutorial

http://java.sun.com/developer/onlineTraining/

Database/jdbcrowsets.pdf

17.5 References:

e Java API documentation 5.0

e Java - A Lab Course by Umair Javed

e JDBC drivers in the wild

e http://www.javaworld.com/javaworld/jw-07-2000/jw-0707-jdbc_p.html

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 164

Web Design and Development (CS506)

Lecture 18: Java Graphics

18.1 Painting
Window 1is like a painter’s canvas. All window paints on the same surface. More
importantly, windows don’t remember what is under them. There is a need to repaint when

portions are newly exposed.
Java components are also able to paint themselves. Most of time, painting is done

automatically. However sometimes you need to do drawing by yourself.

Anything else is programmer Form 1 - E n
responsibility \

Java components paint

themselves \

e
18.1.1How painting works?

Let’s take windows example. Consider the following diagram in which the blue area is
representing the desktop. The one frame (myApp) is opened in front of desktop with some

custom painting as shown below.

B

© Copyright Virtual University of Pakistan Page 165

Web Design and Development (CS506)

myApp consist of a JPanel. The JPanel contains a JButton. Two rectangles, a circle & a lines are

also drawn on the JPanel.fter opening notepad and windows explorer window, diagram will look
like this:

lectures

]
Mecr o

AWt

Bttasen (ol

Lets shuts off the windows explorer, the repaint event is sent to desktop first and then to myApp.
The figure shown below describes the situation after desktop repaint event get executed. Here
you can clearly see that only desktop repaints itself and window explorer remaining part is still
opened in front of myApp.

© Copyright Virtual University of Pakistan Page 166

Web Design and Development (CS506)

lectures

b ture d gt
M st Promnat

The following figure shows the situation when myApp’s JPanel calls its repaint method. Notice
that some portion of window explorer is still remains in front of JButton because yet not repaint event
is sent to it.

© Copyright Virtual University of Pakistan Page 167

Web Design and Development (CS506)

=10| x|

Cormmagr;

Next, JPanel forwards repaint event to JButton that causes the button to be displayed in its
original form. This is all done automatically and we cannot feel this process cause of
stunning speed of modern computers that performs all these steps in flash of eye.

© Copyright Virtual University of Pakistan Page 168

Web Design and Development (CS506)
glsrom =T

[Command] ‘

18.1.2Painting a Swing Component

Three methods are at the heart of painting a swing component like JPanel etc. For
instance, paint()gets called when it's time to render -- then Swing further factors the paint() call
into three separate methods, which are invoked in the following order:

protected void paintComponent(Graphics g) protected void
paintBorder(Graphics g) protected void
paintChildren(Graphics g)

Let’s look at these methods in order in which they get executed

© Copyright Virtual University of Pakistan Page 169

Web Design and Development (CS506)

18.1.2.1 paintComponent()

e It is a main method for painting
e By default, it first paints the background
e After that, it performs custom painting (drawing circle, rectangles etc.)

18.1.2.2 paintBorder()

e Tells the components border (if any) to paint.
» It is suggested that you do not override or invoke this method

18.1.2.3 paintChildren()

e Tells any components contained by this component to paint themselves
» Itis suggested that you do not override or invoke this method too.

Example: Understanding methods calls

Consider the following figure

1. background 2. custom 3. border 4. children
(if opaque) painting (if anv) (if anv)
(if any)

* * *

The figure above illustrates the order in which each component that inherits from
JComponent paint itself.

Figure 1 to 2 -painting the background and performing custom painting is performed by the
paintComponent method

In Figure 3 - paintBorder is get called
And finally in figure 4 - paintChildern is called that causes the JButton to render itself.

Note: The important thing to note here is for JButton (since it is a JComponent), all these methods
are also called in the same order.

Your Painting Strategy

. You must follow the three steps in order to perform painting.

© Copyright Virtual University of Pakistan Page 170

Web Design and Development (CS506)

Subclass JPanel

» class MyPanel extends JPanel
» Doing so MyPanel also becomes a JPanle due to inheritance

Override the paintComponent(Graphics g) method
» Inside method using graphics object, do whatever drawing you want to do
Install that JPanel inside a JFrame
* When frame becomes visible through the paintChildren() method your panel become
visible

* To become visible your panel will call paintComponent() method which will do your
custom drawing

Example Code 18.1:

Suppose we want to draw one circle & rectangle and a string “Hello World”.

HER

- Hello World

// importing required packages

import javax.swing.*;

import java.awt.*;

// extending class from JPanel

public class MyPanel extends JPanel {

// overriding paintComponent method
public void paintComponent(Graphics g){
// erasing behaviour - this will clear all the

© Copyright Virtual University of Pakistan Page 171

Web Design and Development (CS506)

// previous painting
super.paintComponent(g);

/I Down casting Graphics object to Graphics2D
Graphics2D g2 = (Graphics2D)g;

// drawing rectanle
g2.drawRect(20,20,20,20);

// changing the color to blue
g2.setColor(Color.blue);

// drawing filled oval with color i.e. blue
g2.fillOval(50,50,20,20);

// drawing string

g2.drawString("Hello World", 120, 50);
}+// end paintComponent

}+ // end Test class

The Test class that contains the main method as well uses MyPanel (previously built) class is given
below:

// importing required packages

import javax.swing.*;

import java.awt.*;

public class Test {

JFrame f;

// declaring Reference of MyPanel class
MyPanel p;

// parameter less constructor public Test(){
f=new JFrame();

Container ¢ = f.getContentPane();
c.setLayout(new BorderLayout());

// instantiating reference

p = new MyPanel();

// adding MyPanel into container

c.add(p);

f.setSize(400,400);

f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT ON_ CLOSE);
} // end constructor

// main method

© Copyright Virtual University of Pakistan Page 172

Web Design and Development (CS506)

public static void main(String args[]){
Test t = new Test();

}
}+ // end Test class

Note: Here we have used only some methods (drawRect() & fillOval() etc.) of Graphics class.
For a complete list, see the Java API documentation.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 173

Web Design and Development (CS506)

Lecture 19: How to Animate?

If we want to animate something like ball, moving from one place to another, we
constantly need to call paintComponent() method and to draw the shape (ball etc.) at new place
means at new coordinates.

Painting is managed by system, so calling paintComponent() directly is not recommended at all.
Similarly calling paint() method is also not recommended. Why? Because such code may be
invoked at times when it is not appropriate to paint -- for instance, before the component is
visible or has access to a valid Graphicsobject.

Java gives us a solution in the form of repaint() method. Whenever we need to repaint, we call
this method that in fact makes a call to paint() method at appropriate time.

19.1 Problem & Solution

What to do to move the shapes present in example code 18.1 (last example) when a mouse
is dragged
First time painting is what we already have done
When a mouse is clicked find the co-ordinates of that place and paint Rectangle at that
place by requesting, using repaint() call
Here instead of Hard-coding the position of co-ordinates uses some variables. For example
mx, m
0 yIn the last example code, we draw a rectangle by passing hard-coded values like
20
g.drawRect(20,20,20,20);
o Now, we’ll use variables so that change in a variable value causes to display a
rectangle at a new location
g.drawRect(mx,my,20,20);
Similarly, you have seen a tennis game (during lecture). Now, what to do code the paddle
movement.
In the coming up example. We are doing it using mouse, try it using mouse.

Example Code 19.1

The following outputs were produced when mouse is dragged from one location to anther

© Copyright Virtual University of Pakistan

Page 174

Web Design and Development (CS506)

H = N H = B

First we examine the MyPanel.java class that is drawing a filled rectangle.

import javax.swing.*;

import java.awt.*;

// extending class from JPanel

public class MyPanel extends JPanel {

// variables used to draw rectangles at different locations
int mX = 20;

it mY = 20;

// overriding paintComponent method

public void paintComponent(Graphics g){

// erasing behaviour - this will clear all the previous painting
super.paintComponent(g);

// Down casting Graphics object to Graphics2D
Graphics2D g2 = (Graphics2D)g;

// changing the color to blue

g2.setColor(Color.blue);

/I drawing filled oval with color i.e. blue

// using instance variables

g2 fillRect(mX,mY,20,20);

}+// end paintComponent

© Copyright Virtual University of Pakistan Page 175

Web Design and Development (CS506)

‘ } // end MyPanel class

The Test class is given below. Additionally this class also contains the code for handling mouse
events.

// importing required packages

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class Test {

JFrame f;

// declaring Reference of MyPanel class

MyPanel p;

// parameter less constructor

public Test(){

f=new JFrame();

Container ¢ = f.getContentPane();
c.setLayout(new BorderLayout());

// instantiating reference

p = new MyPanel();

// adding MyPanel into container

c.add(p);

f.setSize(400,400);

f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
// creating inner class object

Handler h = new Handler();

// registering MyPanel to handle events
p.addMouseMotionListener(h);

} // end constructor

// inner class used for handling events

public class Handler extends MouseMotionAdapter {
// capturing mouse dagged events

public void mouseDragged(MouseEvent me){

// getting the X-Position of mouse and assigning
// value to instance variable mX of MyPanel class
p.mX =me.getX();

// getting the Y-Position of mouse and assigning
// value to instance variable mX of MyPanel class
p-mY =me.getY();

// call to repaint causes rectangle to be drawn on

// new location

© Copyright Virtual University of Pakistan Page 176

Web Design and Development (CS506)

p.repaint() ;

} // end mouseDragged

}+ // end Handler class

// main method

public static void main(String args[]){
Test t = new Test();

}
} // end MyPanel class

On executing this program, when you drag mouse from one location to another, rectangle
is also in sync with the movement of mouse. Notice that previously drawn rectangle is
erased first.

If we exclude or comment out the following line from MyPanel class

super.paintComponent(g);
Dragging a mouse will produce a similar kind of output shown next

HE R

Example Code 19.2: Ball Animation
The ball is continuously moving freely inside the corner of the frames. The sample outputs
are shown below:

Web Design and Development (CS506)

First we examine the MyPanel.java class that is drawing a filled oval.

import javax.swing.*;

import java.awt.*;

// extending class from JPanel

public class MyPanel extends JPanel {

// variables used to draw oval at different locations
int mX = 200;

intmY =0;

// overriding paintComponent method

public void paintComponent(Graphics g){
// erasing behaviour - this will clear all the

// previous painting
super.paintComponent(g);

// Down casting Graphics object to Graphics2D
Graphics2D g2 = (Graphics2D)g;

// changing the color to blue
g2.setColor(Color.blue);

// drawing filled oval with blue color

// using instance variables
g2.fillOval(mX,mY,20,20);

Y/ end paintComponent

} // end MyPanel class

The Test class is given below. Additionally this class also contains the code for handling mouse
events.

// importing required packages
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class AnimTest implements ActionListener {

© Copyright Virtual University of Pakistan Page 178

Web Design and Development (CS506)

JFrame f;

MyPanel p;

// used to control the direction of ball int x, y;
public AnimTest(){

f=new JFrame();

Container ¢ = f.getContentPane();
c.setLayout(new BorderLayout());

x=15;

y=3;

p = new MyPanel();

c.add(p);

f.setSize(400,400);

f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT ON_ CLOSE);
// creating a Timer class object, used for firing
// one or more action events after a specified delay
// Timer class constructor requires time in

// milliseconds and object of class that handles
// action events

Timer t = new Timer (5, this);

// starts the timer, causing it to start sending

// action events to listeners

t.start();

} // end constructor

// event handler method

public void actionPerformed(ActionEvent ae){
// if ball reached to maximum width of frame minus
// 40 since diameter of ball is 40 then change the
// X-direction of ball

if (f.getWidth()-40 == p.mX)

x=-5;

// if ball reached to maximum height of frame
// minus 40 then change the Y-direction of ball
if (f.getHeight()-40 == p.mY)

y=-3;

// if ball reached to min. of width of frame,

// change the X-direction of ball

if (pmX==0)

x=15;

// if ball reached to min. of height of frame,

// change the Y-direction of ball

if (p.mY ==0)

y=3;

/I Assign x,y direction to MyPanel’s mX & mY
p-mX +=X;

© Copyright Virtual University of Pakistan Page 179

Web Design and Development (CS506)

p-mY +=y;

// call to repaint() method so that ball is drawn on
// new locations

p.repaint();

} // end actionPerformed() method

// main method

public static void main(String args|]){
AnimTest at = new AnimTest();

}
} // end AnimTest class

19.2 References

Java, A Lab Course by Umair Javed
Painting in AWT & Swing
http://java.sun.com/products/jfc/tsc/articles/painting/index.html
Performing Custom Painting
http://java.sun.com/docs/books/tutorial/uiswing/14painting/index.html
Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 180

Web Design and Development (CS506)

Lecture 20: Applets

20.1 Basic Definition

» A small program written in Java and included in a HTML page.

» It is independent of the operating system on which it runs

» An applet is a Panel that allows interaction with a Java program

» A applet is typically embedded in a Web page and can be run from a browser

* You need special HTML in the Web page to tell the browser about the applet

» For security reasons, applets run in a sandbox: they have no access to the client’s file
system

20.2 Applets Support

* Most modern browsers support Java 1.4 if they have the appropriate plugin
» Sun provides an application appletviewer to view applets without using browser.
» In general you should try to write applets that can be run with any browser

20.3 What an Applet is?

* You write an applet by extending the class Applet or JApplet

» Applet is just a class like any other; you can even use it in applications if you want
* When you write an applet, you are only writing part of a program

» The browser supplies the main method

20.4 The genealogy of Applet

The following figure shows the inheritance hierarchy of the JApplet class. This hierarchy
determines much of what an applet can do and how, as you'll see on the next few pages.

java.lang.Chject
I

+----java.awt .Component
l_ -——Jjava.awt .Container
-!u————java.awt Pan=l
l_ -—-—java.applet.Applet
-J————javax.swmg.Japplet

© Copyright Virtual University of Pakistan Page 181

Web Design and Development (CS506)

Example Code 20.1: Writing a Simple Applet

Below is the source code for an applet called HelloApplet. This displays a “Hello World”

string. Note that no main method has been provided.

// File HelloApplet.java

//step 1: importing required packages

import java.awt.*;

import javax.swing.*;

// extending class from JApplet so that our class also becomes an
//applet

public class HelloApplet extends JApplet {

// overriding paint method

public void paint(Graphics g) {

// write code here u want to display & draw by using
// Graphics object

g.drawString(“Hello World”, 30 , 30);

b
} // end class

After defining the HelloApplet.java, the next step is to write .html file. Below is the
source code of Test.html file. The Test.html contains the ordinary html code except one.

<html>
<head>
<title> Simple Applet </title> </head>

<body>

<!-- providing the class name of applet with width &
height

>

<applet code="HelloApplet.class”

width=150 height=100>

</applet>

</body>

</htmI>

Compile & Execute

By simply double clicking on Test.html file, you can view the applet in your browser.
However, you can also use the appletviewer java program for executing or running
applets.

© Copyright Virtual University of Pakistan Page 182

Web Design and Development (CS506)

The applet viewer is invoked from the command line by the command
appletviewer htmlfile

where htmlfile is the name of the file that contains the html document. For our example, the
command looks like this:

appletviewer Test.html

As a result, you will see the following output

Applet Vie...

Applet

Hello World!

Applet Started

20.5 Applet Life Cycle Methods

When an applet is loaded, an instance of the applet's controlling class (an Applet
subclass) is created. After that an applet passes through some stages or methods, each of them are
build for specific purpose.

An applet can react to major events in the following ways:

e It can initialize itself.

e It can start running.

e It can stop running.

» It can perform a final cleanup, in preparation for being unloaded

The applet’s life cycle methods are called in the specific order shown below. Not every applet
needs to override every one of these methods.

© Copyright Virtual University of Pakistan Page 183

Web Design and Development (CS506)

stop() |

v

destroy() ‘

v

Let’s take a look on each method in detail and find out what they do:

0

20.5.1init()

e Iscalled only once.

» The purpose of init() is to initialize the applet each time it's loaded (or reloaded).
* You can think of it as a constructor

20.5.2 start()

» To start the applet's execution

» For example, when the applet's loaded or when the user revisits a page that contains the
applet

» start() is also called whenever the browser is maximized

20.5.3 paint()

= paint() is called for the first time when the applet becomes visible
= Whenever applet needs to be repainted, paint() is called again
» Do all your painting in paint(), or in a method that is called from paint()

© Copyright Virtual University of Pakistan Page 184

Web Design and Development (CS506)

20.5.4 stop()

» To stop the applet's execution, such as when the user leaves the applet's page or quits the
browser.
» stop() is also called whenever the browser is minimized

20.5.5 destroy()

» Is called only once.
* To perform a final cleanup in preparation for unloading

Example Code 20.2: Understanding Applet Life Cycle Methods
The following code example helps you in understanding the calling sequence of applet’s

life cycle methods. These methods are only displaying debugging statements on the
console.

// File AppletDemo.java

//step 1: importing required packages

import java.awt.*;

import javax.swing.*;

// extending class from JApplet so that our class also becomes an
/lapplet

public class AppletDemo extends JApplet {

// overriding init method

public void init () {

System.out.println("init() called");

}
// overriding start method

public void start (){
System.out.println("start() called");
}
// overriding paint method

public void paint(Graphics g){
System.out.println("paint() called");
}
// overriding stop method

public void stop(){
System.out.println("stop() called");
}
// overriding destroy method

public void destroy() {
System.out.println("destroy() called");

h
} // end class

© Copyright Virtual University of Pakistan Page 185

Web Design and Development (CS506)

The DemoTest.html file is using this applet. The code snippet of it given below:

<htmI>

<head>

<title> Applet Life Cycle Methods </title> </head>
<body>

<!-- providing the class name of applet with width &
height

>

<applet code="AppletDemo.class”

width=150 height=100>

</applet>

</body>

</htm]>

Compile & Execute

To understand the calling sequence of applet life cycle methods, you have to execute it by using
appletviewer command. Do experiments like maximizing, minimizing the applet, bringing

another window in front of applet and keep an eye on console output.

Example Code 20.3: Animated Java Word

Sample Output

The browser output of the program is given below:

© Copyright Virtual University of Pakistan Page 186

Web Design and Development (CS506)

Java Java java java java java java
java java java java java java java java
java java java java java java java java

java java_ java java java java java
java java java java java java

java java java java java java java java

java java java java java java java java
java java java java java java java

java java java java java java java

java java java java java java java

java java java java java java java

java java java java java java java
java java java java java java java

java java java java java java java

java java java java java iava iava

Design Process
» The Program in a single call of paint method
o Draws string “java” on 40 random locations
o For every drawing, it selects random font out of 4 different fonts
o For every drawing, it selects random color out of 256 * 256 * 256 RGB colors
» Repaint is called after every 1000 ms.
= After 10 calls to repaint, screen is cleared

Generating Random Numbers

e Use static method random of Math class

o Math.random() ;

Returns positive double value greater than or equal to 0.0 or less than 1.0.

Multiply the number with appropriate scaling factor to increase the range and type cast it,
if needed.

o inti= (int)(Math.random() * 5); // will generate random numbers between 0 & 4.

Program’s Modules

The program is build using many custom methods. Let’s discuss each of them one
by one that will help in understanding the overall logic of the program.

© Copyright Virtual University of Pakistan Page 187

Web Design and Development (CS506)

. drawJava()

As name indicates, this method will be used to write String “java” on random
locations. The code is given below:

// method drawJava
public void drawJava(Graphics2D g2) {

// generate first number randomly. The panel width is 1000
int x = (int) (Math.random() * 1000);

// generate second number randomly. The panel height is 700
int y = (int) (Math.random() * 700);

// draw String on these randomly selected numbers
g2.drawString("java", x, y);

}

« chooseColor()

This method will choose color randomly out of 256 * 256 * 256 possible colors. The code
snippet is given below:

// method chooseColor

public Color chooseColor() {

// choosing red color value randomly
int r = (int) (Math.random() * 255);

// choosing green color value randomly
int g = (int) (Math.random() * 255);

// choosing blue color value randomly
int b = (int) (Math.random() * 255);

// constructing a color by providing R-G-B values
Color ¢ =new Color(r, g, b);

// returning color

return c;

}

« chooseFont()

This method will choose a Font for text (java) to be displayed out of 4 available fonts. The code
snippet is given below:

// method chooseFont
public Font chooseFont() {

// generating a random value that helps in choosing a font

© Copyright Virtual University of Pakistan Page 188

Web Design and Development (CS506)

int fontChoice = (int) (Math.random() * 4) + 1;
// declaring font reference
Font f=null;

// using switch based logic for selecting font
switch (fontChoice) {

case 1:

f=new Font("Serif", Font. BOLD + Font.ITALIC, 20);
break;

case 2:

f=new Font("SansSerif", Font.PLAIN, 17);
break;

case 3:

f=new Font("Monospaced", Font.ITALIC, 23);
break;

case 4:

f=new Font("Dialog", Font.ITALIC, 30);
break;

} // end switch

// returns Font object

return f}

} //end chooseFont

e paint()

The last method to be discussed here is paint(). By overriding this method, we will print string
“java” on 40 random locations. For every drawing, it selects random font out of 4 different
fonts & random color out of 256 * 256 * 256 RGB colors.

Let’s see, how it happens:

// overriding method paint

public void paint(Graphics g) {

// incrementing clear counter variable.

clearCounter++;

// printing 40 “java” strings on different locations by

// selcting random font & color

for (inti=1;1<=40; i++) {

// choosing random color by calling chooseColor() method
Color ¢ = chooseColor();

// setting color

g2.setColor(c);

// choosing random Font by calling chooseColor() method

© Copyright Virtual University of Pakistan Page 189

Web Design and Development (CS506)

Font f= chooseFont();

g2.setFont(f);

// drawing string “java” by calling drawJava() method
drawJava(g2);

b
// end for loop

Graphics2D g2 = (Graphics2D) g;

// checking if paint is called 10 times then clears the
// screen and set counter again to zero

if (clearCounter == 10) {

g2.clearRect(0, 0, 1000, 700);

clearCounter = 0;

b
} // end paint method

Merging Pieces

By inserting all method inside JavaAnim.java class, the program will look like one given below.
Notice that it contains methods discussed above with some extra code with which you are already
familiar.

// File JavaAnim.java

//step 1: importing required packages import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class JavaAnim extends JApplet implements ActionListener {
// used to count how many times paint is called int clearCounter;

// declaring Timer reference

Timer t;

// overriding init method, used to initialize variables

public void init() {

setBackground(Color.black);

clearCounter = 0;

Timer t = new Timer(1000, this);

t.start();

b
// overriding paint method - discussed above
public void paint(Graphics g) {
clearCounter++;

Graphics2D g2 = (Graphics2D) g;

if (clearCounter == 10) {

g2.clearRect(0, 0, 1000, 700);

clearCounter = 0;

}

© Copyright Virtual University of Pakistan Page 190

Web Design and Development (CS506)

for (inti=1;1<=40;i++) {
Color ¢ = chooseColor();
g2.setColor(c);

Font f = chooseFont();
g2.setFont(f);
drawJava(g2);

h
j

// overriding actionPerformed()of ActionListener interface
// called by Timer object

public void actionPerformed(ActionEvent ae) {

repaint();

}
// chooseColor method - discussed above

public Color chooseColor() {

int r = (int) (Math.random() * 255);

int g = (int) (Math.random() * 255);

int b = (int) (Math.random() * 255);

Color ¢ =new Color(r, g, b);

return c;

} // chooseFont method - discussed above

public Font chooseFont() {

int fontChoice = (int) (Math.random() * 4) + 1;

Font f=null;

switch (fontChoice) {

case 1:

f=new Font("Serif", Font. BOLD + Font.ITALIC, 20);,
break;

case 2:

f=new Font("SansSerif", Font.PLAIN, 17);

break;

case 3:

f=new Font("Monospaced", Font.ITALIC, 23);
break;

case 4:

f=new Font("Dialog", Font.ITALIC, 30);

break;

}

return f}
}
// drawJava() method - discussed above
public void drawJava(Graphics2D g2) {
int x = (int) (Math.random() * 1000);
int y = (int) (Math.random() * 700);
g2.drawString("java", x, y);

© Copyright Virtual University of Pakistan Page 191

Web Design and Development (CS506)

b
} // end class

The AnimTest.html file is using this applet. The code snippet of it given below:

<html>

<head>

<title> Animated Java Word </title> </head>

<body>

<applet code="JavaAnim.class" width=1000 height=700> </applet>
</body>

</htmI>

Compile & Execute
You can execute it directly using browser or by using appletviewerapplication. For

having fun, you can use “your name” instead of “java” and watch it in different colors.

20.6 References:
» Java, A Lab Course by Umair Javed
» Writing Applets
o http://java.sun.com/docs/books/tutorial/applet/

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 192

Web Design and Development (CS506)

Lecture 21: Socket Programming

21.1 Basic Definition

» A socket is one endpoint of a two-way communication link between two programs
running generally on a network.

* A socket is a bi-directional communication channel between hosts. A computer on a
network often termed as host.

21.2 Socket Dynamics

= As you have already worked with files, you know that file is an abstraction of your
hard drive. Similarly you can think of a socket as an abstraction of the network.

e Each end has input stream (to send data) and output stream (to receive data) wired up
to the other host.

* You store and retrieve data through files from hard drive, without knowing the actual
dynamics of the hard drive. Similarly you send and receive data to and from network
through socket, without actually going into underlying mechanics.

* You read and write data from/to a file using streams. To read and write data to socket,
you will also use streams.

21.3 What is Port?

= Itis atransport address to which processes can listen for connections request.
» There are different protocols available to communicate such as TCP and UDP. We
will use TCP for programming in this handout
» There are 64k ports available for TCP sockets and 64k ports available for UDP, so at
least theoretically we can open 128k simultaneous connections.
e There are well-known ports which are
o below 1024
o provides standard services
o Some well-known ports are:
'] FTP works on port 21
] HTTP works on port 80

[l TELNET works on port 23 etc.

21.4 How Client - Server Communicate

* Normally, a server runs on a specific computer and has a socket that is bound to a
specific port number.
e The server just waits, listening to the socket for a client to make a connection request.

© Copyright Virtual University of Pakistan Page 193

Web Design and Development (CS506)

e On the client side: The client knows the hostname of the machine on which the server
is running and the port number to which the server is connected.

Connection

request
Clent

SErver

o

= As soon as client creates a socket that socket attempts to connect to the specified
server.

« The server listens through a special kind of socket, which is named as server socket.

» The sole purpose of the server socket is to listen for incoming request; it is not used
for communication.

» If everything goes well, the server accepts the connection. Upon acceptance, the
server gets a new socket, a communication socket, bound to a different port number.

» The server needs a new socket (and consequently a different port number) so that it
can continue to listen through the original server socket for connection requests while
tending to the needs of the connected client. This scheme is helpful when two or more
clients try to connect to a server simultaneously (a very common scenario).

SEIVEr

v Connecticon

* On the server side, if the connection is accepted, a socket is successfully created and
the client can use the socket to communicate with the server.

» Note that the socket on the client side is not bound to the port number used to make
contact with the server. Rather, the client is assigned a port number local to the
machine on which the client is running.

e The client and server can now communicate by writing to or reading from their
sockets.

T

Clent

oy

21.5 Steps - To Make a Simple Client

To make a client, process can be split into 5 steps. These are:

21.5.1Import required package

You have to import two packages

e java.net.*;

© Copyright Virtual University of Pakistan Page 194

Web Design and Development (CS506)

e java.io.*;

21.5.2 Connect / Open a Socket with Server

Create a client socket (communication socket)

Socket s =new Socket(“serverName”, serverPort) ;

= serverName: Name or address of the server you wanted to connect such as
http://www.google.com or 172.2.4.98 etc. For testing if you are running client and server
on the same machine then you can specify “localhost” as the name of server

= serverPort : Port number you want to connect to

The scheme is very similar to our home address and then phone number.

21.5.3 Get I/O Streams of Socket

Get input & output streams connected to your socket
« For reading data from socket

As stated above, a socket has input stream attached to it.
InputStream is = s.getInputStream();

// now to convert byte oriented stream into character oriented buffered reader
// we use intermediary stream that helps in achieving above stated purpose

InputStreamReader isr= new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);

» For writing data to socket

A socket has also output stream attached to it. Therefore,

OutputStream os = s.getOutputStream();

// now to convert byte oriented stream into character oriented print writer

// here we will not use any intermediary stream because PrintWriter constructor
// directly accepts an object of OutputStream

PrintWriter pw = new PrintWriter(os, true);

Here notice that true is also passed to so that output buffer will flush.

21.5.4 Send / Receive Message

Once you have the streams, sending or receiving messages isn’t a big task. It’s very much similar to

© Copyright Virtual University of Pakistan Page 195

Web Design and Development (CS506)

the way you did with files

« To send messages

pw.println(“hello world”);

« To read messages

String recMsg = br.readLine();

21.5.5 Close Socket
Don’t forget to close the socket, when you finished your work

s.close();

21.6 Steps - To Make a Simple Server

To make a server, process can be split into 7 steps. Most of these are similar to
steps used in making a client. These are:

21.6.1Import required package

You need the similar set of packages you have used in making of client

* java.net.*;
e java.io.*;

21.6.2Create a Server Socket

In order to create a server socket, you will need to specify port no eventually on which server will
listen for client requests.

ServerSocket ss = new ServerSocket(serverPort) ;

= serverPort: port local to the server i.e. a free port on the server machine. This is the same
port number that is given in the client socket constructor

21.6.3 Wait for Incoming Connections

The job of the server socket is to listen for the incoming connections. This listening part is done

© Copyright Virtual University of Pakistan Page 196

Web Design and Development (CS506)

through the accept method.

Socket s = ss.accept();

The server program blocks (stops) at the accept method and waits for the incoming client
connection when a request for connection comes it opens a new communication socket (s) and use
this socket to communicate with the client.

21.6.4Get /O Streams of Socket

Once you have the communication socket, getting I/O streams from communication socket is
similar to the way did in making a client

« For reading data from socket
InputStream is = s.getInputStream();

InputStreamReader isr=new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);

« For writing data to socket
OutputStream os = s.getOutputStream();

PrintWriter pw = new PrintWriter(os, true);

21.6.5Send / Receive Message

Sending and receiving messages is very similar as discussed in making of client
« To send messages:
pw.println(‘“hello world”);
« To read messages
String recMsg = br.readLine();

21.6.6 Close Socket

s.close();

Example Code 21.1: Echo Server & Echo Client

The client will send its name to the server and server will append “hello” with the name send by
the client. After that, server will send back the name with appended “hello”.

EchoServer.java
Let’s first see the code for the server

// step 1: importing required package
import java.net.*;
import java.io.*;

© Copyright Virtual University of Pakistan Page 197

Web Design and Development (CS506)

import javax.swing.*;

public class EchoServer{

public static void main(String args[]){

try {

//step 2: create a server socket

ServerSocket ss = new ServerSocket(2222);
System.out.println("Server started...");

/* Loop back to the accept method of the server socket and wait for a new connection request. So
server will continuously listen for requests

*/

while(true) {

// step 3: wait for incoming connection

Socket s = ss.accept();
System.out.printIn("connection request recieved");

// step 4: Get I/O streams

InputStream is = s.getInputStream();
InputStreamReader isr= new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);

OutputStream os = s.getOutputStream();
PrintWriter pw = new PrintWriter(os,true);
// step 5: Send / Receive message

// reading name sent by client

String name = br.readLine();

// appending “hello” with the received name
String msg = "Hello " + name + " from Server";
// sending back to client

pw.println(msg);

// closing communication sockey

s.close();

}+ // end while

}catch(Exception ex){
System.out.println(ex);

}

}
} // end class

EchoClient.java
The code of the client is given below

// step 1: importing required package
import java.net.*;

import java.io.*;

import javax.swing.*;

public class EchoClient{

© Copyright Virtual University of Pakistan Page 198

Web Design and Development (CS506)

public static void main(String args[]){
try {

//step 2: create a communication socket

/* if your server will run on the same machine then you can pass “localhost” as server address.Notice
that port no is similar to one passed while creating server socket */

Socket s = new Socket(“localhost”, 2222);

// step 3: Get I/O streams

InputStream is = s.getInputStream();

InputStreamReader isr= new InputStreamReader(is);

BufferedReader br = new BufferedReader(isr);

OutputStream os = s.getOutputStream();

PrintWriter pw = new PrintWriter(os,true);

// step 4: Send / Receive message

// asking user to enter his/her name

String msg = JOptionPane.showInputDialog("Enter your name");
// sending name to server

pw.println(msg);

// reading message (name appended with hello) from
// server

msg = br.readLine();

// displaying received message
JOptionPane.showMessageDialog(null , msg);

// closing communication socket

s.close();

}catch(Exception ex){

System.out.println(ex);

h
h

}+ // end class

Compile & Execute

After compiling both files, run EchoServer.java first, from the command prompt window. You’ll see
a message of “server started” as shown in the figure below. Also notice that cursor is continuously
blinking since server is waiting for client request

C:\WINDOWS\system32\cmd.exe - E

D:\examples\socketprog> java EchoServer

Server started

© Copyright Virtual University of Pakistan Page 199

Web Design and Development (CS506)

Now, open another command prompt window and run EchoClientjava from it. Look at
EchoServer window; you’ll see the message of “request received”. Sooner, the

EchoClient program will ask you to enter name in input dialog box. After entering name
press ok button, with in no time, a message dialog box will pop up containing your name

with appended “hello” from server. This whole process is illustrated below in pictorial
form:

C:\WINDOWS\system32\cmd.exe - E

D:\examples\socketprog> java EchoClient

C:\WINDOWS\system32\cmd.exe . E

D:\examples\socketprog> javaEchoServer
Server started
Connection request recieved

inout =M

Enter vour Name

.
- -

Sending name to server

Inout H = 1

@ Hello umair from Server

© Copyright Virtual University of Pakistan Page 200

Web Design and Development (CS506)

Response from server

Notice that server is still running, you can run again EchoClient.java as many times untill server is
running.

To have more fun, run the server on a different computer and client on a different. But
before doing that find the IP of the computer machine on which your EchoServer will
eventually run. Replace “localhost” with the new IP and start conversion over network

21.7 References

» Entire material for this handout is taken from the book JAVA A Lab Course by Umair
Javed. This material is available just for the use of VU students of the course Web

Design and Development and not for any other commercial purpose without the consent
of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 201

Web Design and Development (CS506)

Lecture 22:

22.1 Problem

22.1.1 What?

* You want to send an object to a stream.

22.1.2 Motivation

* A lot of code involves boring conversion from a file to memory
o As you might recall that AddressBook program reads data from file and then parses
it

e This is a common problem

22.1.3 Revisiting AddressBook

We read record from a text file named persons.txt. The person record was present in the file in the
following format:

Ali,defence, 9201211
Usman,gulberg,5173940
Salman,LUMS,5272670

persons.txt

The code that was used to construct Person objects after reading information from the file is given
below. Here only the part of code is shown, for complete listing, see AddressBook code in your
earlier handout.

FileReader fr = new FileReader("persons.txt");
BufferedReader br = new BufferedReader(fr);
String line = br.readLine();

while (line !=null) {

tokens = line.split(",");

name = tokens[0];

add = tokens[1];

ph =tokens[2];

PersonInfo p =new PersonInfo(name, add, ph);
// you can add p into arraylist, if needed

© Copyright Virtual University of Pakistan Page 202

Web Design and Development (CS506)

line = br.readLine();

}

As you have seen a lot of parsing code is required for converting a line into Personlnfo
objects. Serialization mechanism eases developer’s life by achieving all above in a very
simple way.

22.2 Serialization in Java

= Java provides an extensive support for serialization
* Object knows how to read or write themselves to streams
« Problem:

o As you know, objects get created on heap and have some values therefore
Objects have some state in memory

o You need to save and restore that state.

o The good news is that java serialization takes care of it automatically

22.2.1 Serializable Interface

» By implementing this interface a class declares that it is willing to be read/written by
automatic serialization machinery

» Found in java.io package

» Tagging interface - has no methods and serves only to identify the semantics of being
serializable

22.2.2 Automatic Writing

» System knows how to recursively write out the state of an object to stream
» If an object has the reference of another object, the java serialization mechanism takes
care of it and writes it too.

22.2.3 Automatic Reading

» System knows how to read the data from Stream and re-create object in memory
» The recreated object is of type “Object” therefore Down-casting is required to convert
it into actual type.

© Copyright Virtual University of Pakistan Page 203

Web Design and Development (CS506)

22.2.4 Serialization: How it works?

» To write an object of PersonInfo, ObejctOutputStream and its method writeObject() will
be used
PersonInfo p = new PersonInfo();
ObejctOutputStream out;
// writing PersonInfo’s object p
out.writeObject(p);

e To read that object back, ObejctinputStream and its method readObject()
will be used

ObejctInputStream in;

// reading PersonInfo’s object. Remember type
casting // is required

PersonInfo obj = (PersonInfo)in.readObject();

Example Code 22.1: Reading / Writing Personinfo objects

We want to send PersonInfo object to stream. You have already seen this class number of times
before. Here it will also implement serializable interface.

PersonInfo.java

import javax.swing.*;

import java.io.* ;

class PersonInfo implements Serializable {
String name;

String address;

String phoneNum;

//parameterized constructor

public PersonInfo(String n, String a, String p) {
name = n;

address = a;

phoneNum = p;

h
//method for displaying person record on GUI

public void printPersonInfo() {

JOptionPane.showMessageDialog(null ,“name: ”” + name + “address:” +address + “phone no:” +
phoneNum);

}
}+ // end class

WriteEx.java

The following class will serialize PersonInfo object to a file

 E—

© Copyright Virtual University of Pakistan Page 204

Web Design and Development (CS506)

import java.io.*;

public class WriteEx {

public static void main(String args[]){

PersonInfo pWrite = new PersonInfo("ali", "defence", "9201211");
try {

// attaching FileOutput stream with “ali.dat”
FileOutputStream fos = new FileOutputStream("ali.dat");
// attaching ObjectOutput stream over FileOutput stream
ObjectOutputStream out = new ObjectOutputStream(fos);
//serialization

// writing object to ‘ali.dat’

out.writeObject(pWrite);

// closing streams out.close();

fos.close();

} catch (Exception ex){ System.out.println(ex);

}

}
} //end class

ReadEx.java

The following class will read serialized object of PersonInfo from file i.e “ali.dat”

import java.io.*;

public class ReadEx{

public static void main(String args[]){

try {

// attaching FileInput stream with “ali.dat”
FileInputStream fis = new FileInputStream("ali.dat");
// attaching FileInput stream over Objectlnput stream
ObjectInputStream in = new ObjectlnputStream(fis);
//de-serialization

// reading object from ‘ali.dat’

PersonInfo pRead = (PersonInfo)in.readObject();

// calling printPersonInfo method to confirm that

// object contains same set of values before

// serializatoion

pRead.printPersonInfo();

// closing streams

in.close();

fis.close();

} catch (Exception ex){

System.out.println(ex);

h
}//end main function
} // end class

© Copyright Virtual University of Pakistan Page 205

Web Design and Development (CS506)

Compile & Execute

After compilation, first run the WriteEx.java file and visit the “ali.dat” file. Then run

ReadEx javafrom different command or same command prompt.

22.3 Object Serialization & Network

* You can read / write to a network using sockets.
» All you need to do is attach your stream with socket rather than file.

» The class version should be same on both sides (client & network) of the network .

Example Code 22.2: Sending/Reading Objects to/from Network

We are going to use same Personlnfoclass listed in example code 22.1. An object of
PersonInfo class will be sent by client on network using sockets and then be read by server from
network.

Sending Objects over Network

The following class ClientWriteNetEx.javawill send an object on network

import java.net.*;

import java.io.*;

import javax.swing.*;

public class ClientWriteNetEx {

public static void main(String args[]){

try {

PersonInfo p = new PersonInfo(‘““ali”, “defence”, “9201211);
// create a communication socket

Socket s = new Socket(“localhost”, 2222);

/I Get I/O streams

OutputStream is = s.getOutputStream();

// attaching ObjectOutput stream over Input stream
ObjectOutputStream oos= new ObjectOutputStream(is);
// writing object to network

oos.writeObject(p);

// closing communication socket

s.close();

} catch(Exception ex){

System.out.println(ex);

}

© Copyright Virtual University of Pakistan Page 206

Web Design and Development (CS506)

}
} // end class

Reading Objects over Network

The following class ServerReadNetEx.javawill read an object of PersonInfo sent by client.

import java.net.*;

import java.io.*;

import javax.swing.*;

public class ServerReadNetEx {

public static void main(String args[]){

try {

// create a server socket

ServerSocket ss = new ServerSocket(2222);
System.out.printIn("Server started...");

/* Loop back to the accept method of the server socket and wait for a new connection request. So
server will continuously listen for requests

*/

while(true) {

// wait for incoming connection

Socket s = ss.accept();
System.out.printIn("'connection request recieved");
/I Get I/O streams

InputStream is = s.getInputStream();

// attaching ObjectOutput stream over Input stream
ObjectInputStream ois = new ObjectInputStream(is);
// read PersonInfo object from network

PersonInfo p = (PersonlInfo)ois.readObject();
p.printPersonInfo();

// closing communication socket

s.close();

} // end while

+catch(Exception ex){

System.out.println(ex); }

h
} // end class

Compile & Execute

After compiling both files, run ServerReadNetEx javafirst, from the command prompt
window. Open another command prompt window and run ClientWriteNetEx java from it.
The ClientWriteNetEx.java will send an Object of PersonInfo to ServerReadNetEx.java
that displays that object values in dialog box after reading it from network.

© Copyright Virtual University of Pakistan Page 207

Web Design and Development (CS506)

22.4 Preventing Serialization

= Often there is no need to serialize sockets, streams & DB connections etc because they do
not represent the state of object, rather connections to external resources
» To do so, transient keyword is used to mark a field that should not be serialized
e So we can mark them as,
o transient Socket s;
o transient OutputStream os;
o transient Connection con;
e Transient fields are returned as null on reading

Example Code 22. 3: transient

Assume that we do not want to serialize phoneNumattribute of Personlnfo class, this can be
done as shown below

Personlnfo.java

import javax.swing.*;

import java.io.*

class PersonInfo implements Serializable {
String name;

String address;

transient String phoneNum;

public PresonInfo(String n, String a, String p) {
name = n;

address = a;

phoneNm = p;

h
public void printPersonInfo() {

JOptionPane.showMessageDialog(null , “name: ” + name + “address:” +address + “phone no:” +
phoneNum);

}
} // end class

22.5 References

Entire material for this handout is taken from the book JAVA A Lab Course by Umair Javed.
This material is available just for the use of VU students of the course Web Design and
Development and not for any other commercial purpose without the consent of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 208

Web Design and Development (CS506)

Lecture 23: Multithreading

23.1 Introduction

Multithreading is the ability to do multiple things at once within the same application. It provides
finer granularity of concurrency. A thread — sometimes called an execution context or a
lightweight process — is a single sequential flow of control within a program.

Threads are light weight as compared to processes because they take fewer resources then a process.
A thread is easy to create and destroy. Threads share the same address space i.e. multiple threads
can share the memory variables directly, and therefore may require more complex synchronization
logic to avoid deadlocks and starvation.

23.2 Sequential Execution vs. Multithreading

Every program has atleast one thread. Programs without multithreading executes
sequentially. That is, after executing one instruction the next instruction in sequence is executed.
If a function is called then until the completion of the function the next instruction is not
executed. Similarly if there is a loop then instructions after loop only gets executed when the loop
gets completed. Consider the following java program having three loops in it.

// File ThreeLoopTest.java
public class ThreeLoopTest {
public static void main (String args|]) {
//first loop

for (int i=1; i<= 5; i++)
System.out.println(“first ”* +i);

// second loop

for (int j=1; j<=5; j++)
System.out.println(“second ™ + j);
// third loop

for (int k=1; k<= 5; k++)
System.out.printIn(“third ” + k);

} // end main

}+ // end class

When the program executes, the loops are executed sequentially, one after the other. It generates the
following output.

© Copyright Virtual University of Pakistan Page 209

Web Design and Development (CS506)

C:\ WINDOWS\svstem32\cmd.exe

D:\examples\multithreading> javac ThreeLoopTest.java

D:\examples\multithreading> java ThreeLoopTest
first job 1
first job 2
first job 3
first job 4
first job 5
second job 1
second job 2
second job 3
second job 4
second job 5
third job 1
third job 2
third job 3
third job 4
third job 5

© Copyright Virtual University of Pakistan Page 210

Web Design and Development (CS506)

C:\WINDOWS\svstem32\cmd.e

D:\examples\multithreading> java ThreeLoopTest
first job =1
first job =2
first job =3
first job =4
first job =5
first job=6
first job=7
first Job=8
second job =1
third job=1
second job =2
third job=2
second job =3
third job=3
second job =4
third job=4
second job =5
third job=5
second job=6
third job=6
first job=9
second job=7
first job=10
second job=8
second Job=9
second Job=10
third job=7
third Job=8
third Job=9
third job=10

Note: Each loop has 5 iterations in the ThreeLoopTest program.

However, if we use multithreading — with one thread per loop — the program may generate
the following output.

Note: Each loop has 10 iterations in the ThreadTest program. Your output can be different from the
one given above.

© Copyright Virtual University of Pakistan Page 211

Web Design and Development (CS506)

Notice the difference between the outputs of the two programs. In ThreeLoopTest each loop
generated a sequential output while in ThreadTest the output of the loops got intermingled
1.e. concurrency took place and loops executed simultaneously.

Let us code our first multithreaded program and try to learn how Java supports
multithreading.

23.3 Java Threads

Java includes built-in support for threading. While other languages have threads bolted on to an
existing structure i.e. threads were not the part of the original language but latter came into existence
as the need arose.

All well known operating systems these days support multithreading. JVM transparently maps Java
Threads to their counter-parts in the operating system i.e. OS Threads. JVM allows threads in
Java to take advantage of hardware and operating system level advancements. It keeps track
of threads and schedules them to get CPU time. Scheduling may be pre-emptive or cooperative. So
it is the job of JVM to manage different tasks of thread. Let’s see how we can create threads?

23.3.1Creating Threads in Java

There are two approaches to create threads in Java.

e Using Interface
» Using Inheritance

Following are the steps to create threads by using Interface:

» Create a class where you want to put some code that can run in parallel with some other
code and let that class implement the Runnable interface.

* Runnable interface has the run() method therefore provide the implementation for the
run() method and put your code that you want to run in parallel here.

» Instantiate Thread class object by passing Runnable object in constructor

» Start thread by calling start() method

Following are the steps to create threads by using Inheritance:

» Inherit a class from java.lang.Thread class
e Override the run() method in the subclass
» Instantiate the object of the subclass
= Start thread by calling start() method

© Copyright Virtual University of Pakistan Page 212

Web Design and Development (CS506)

23.3.1.1 Threads Creation Steps Using Interface

To write a multithreaded program using Runnable interface, follow these steps:

Step 1 - Implement the Runnable Interface
class Worker implements Runnable

» Step 2 - Provide an Implementation of run() method
public void run(){

// write thread behavior
// code that will be executed by the thread

- Step 3 - Instantiate Thread class object by passing Runnable object in the
constructor
Worker w = new Worker (“first”); Thread t =

new Thread (w);

e Step 4 - Start thread by calling start() method
t.start();

23.3.1.2 Threads Creation Steps Using Inheritance

To write a multithreaded program using inheritance from Thread class, follow these steps:

Step 1 - Inherit from Thread Class
class Worker extends Thread

Step 2 - Override run() method
public void run(){

// write thread behavior
// code that will execute by thread

Step 3 - Instantiate subclass object
Worker w = new Worker(“first”);

Step 4 - Start thread by calling start() method
w.start();

© Copyright Virtual University of Pakistan Page 213

Web Design and Development (CS506)

23.4 Three Loops: Multi-Threaded Execution

So far we have explored:
* What is multithreading?
* What are Java Threads?

» Two ways to write multithreaded Java programs

Now we will re-write the ThreeLoopTest program by using Java Threads. At first we will use the
Interface approach and then we will use Inheritance.

Code Example using Interface

// File Worker.java
public class Worker implements Runnable {
private String job ;
//Constructor of Worker class
public Worker (String j){
job=j;
}
//Tmplement run() method of Runnable interface
public void run () {
for(int i=1; i<= 10; i++)
System.out.println(job + " =" + 1);

H
} // end class

// File ThreadTest.java

public class ThreadTest{

public static void main (String args|]){
//instantiate three objects

Worker first = new Worker (“first job™);
Worker second = new Worker (“second job™);
Worker third = new Worker (“third job™);
/Icreate three objects of Thread class & passing worker
//(runnable) to them

Thread t1 = new Thread (first);

Thread t2 = new Thread (second);

Thread t3 = new Thread (third);

//start threads to execute

t1.start();

t2.start();

t3.start();

}//end main

© Copyright Virtual University of Pakistan Page 214

Web Design and Development (CS506)

} // end class

Code Example using Inheritance

Following code is similar to the code given above, but uses Inheritance instead of
interface:

// File Worker.java

public class Worker extends Thread {
private String job ;

//Constructor of Worker class

public Worker (String j){
job=3;

}
//Override run() method of Thread class
public void run () {

for(int i=1; i<= 10; i++)
System.out.println(job + " =" + 1);

H
} // end class

/I File ThreadTest.java

public class ThreadTest{

public static void main (String args|]) {

//instantiate three objects of Worker (Worker class is now
//becomes a Thread because it is inheriting from it)class

Worker first = new Worker (“first job™);
Worker second = new Worker (“second job™);
Worker third = new Worker (“third job”);
//start threads to execute

first.start();

second.start();

third.start();

}//end main

} // end class

23.5 Thread Priorities

Threads provide a way to write concurrent programs. But on a single CPU, all the threads do not run
simultaneously. JVM assigns threads to the CPU based on thread priorities. Threads with higher
priority are executed in preference to threads with lower priority. A thread’s default priority is same

© Copyright Virtual University of Pakistan Page 215

Web Design and Development (CS506)

as that of the creating thread i.e. parent thread.

A Thread’s priority can be any integer between 1 and 10. We can also use the following predefined
constants to assign priorities.

Thread. MAX PRIORITY (typically 10)

Thread NORM_PRIORITY (typically 5)

Thread. MIN_PRIORITY (typically 1)

To change the priority of a thread, we can use the following method
setPriority(int priority)

It changes the priority of this thread to integer value that is passed. It throws an
Illegal ArgumentExceptionif the priority is not in the range MIN PRIORITY to
MAX PRIORITY i.e. (1-10).

For example, we can write the following code to change a thread’s priority.

Thread t = new Thread (RunnableObject);
// by using predefined constant

t.setPriority (Thread. MAX PRIORITY);
// by using integer constant

t.setPriority (7);

23.5.1 Thread Priority Scheduling

The Java runtime environment supports a very simple, deterministic scheduling algorithm called
fixed-priority scheduling. This algorithm schedules threads on the basis of their priority relative to
other Runnable threads.

At any given time, when multiple threads are ready to be executed, the runtime system chooses
for execution the Runnable thread that has the highest priority. Only when that thread stops,
yields (will be explained later), or becomes Not Runnable will a lowerpriority thread start
executing. If two threads of the same priority are waiting for the CPU, the scheduler arbitrarily
chooses one of them to run. The chosen thread runs until one of the following conditions becomes
true:

* A higher priority thread becomes Runnable.

e Ityields, orits run()method exits.
* On systems that support time-slicing, its time allotment has expired.

Then the second thread is given a chance to run, and so on, until the interpreter exits.

Consider the following figure in which threads of various priorities are represented by capital

© Copyright Virtual University of Pakistan Page 216

Web Design and Development (CS506)

alphabets A, B, ..., K. A and B have same priority (highest in this case). J and K have same
priority (lowest in this case). JVM start executing with A and B, and divides CPU time between
these two threads arbitrarily. When both A and B comes to an end, it chooses the next thread C to

execute.

thread WA PEIORITY

thread NORM PEIORITY

thread MMin PRIOETTY

Code Example: Thread Priorities

Priority 10

Priotity 9

Priority 8

Priotity 7

Priotity 6

Priotity 5

Priotity 4

Priority 3

Priotity 2

Priority 1

M4 B [
I

=

L

Try following example to understand how JVM executes threads based on their priorities.

// File PriorityEx.java

public class PriorityEx{

public static void main (String args|]){
//instantiate two objects

Worker first = new Worker (“first job™);

/lcreate two objects

Thread t1 = new Thread (first);
Thread t2 = new Thread (second);
//set thread priorities

Worker second = new Worker (“second job™);

© Copyright Virtual University of Pakistan

Page 217

Web Design and Development (CS506)

tl.setPriority (Thread. MIN PRIORITY);
t2.setPriority (Thread MAX PRIORITY);
//start threads to execute

t1.start();

t2.start();

}//end main

}+ // end class

Output

C:\ WINDOWS\system32\cmd.exe . E n

D:\examples\multithreading> java priorityEx
second job =1
second job =2
second job =3
second job =4
second job =5
second job=6
second job=7
second job=8
second job=9
second Job=10
first job =1
first job =2
first job =3
first job =4
first job =5
first job=6
first job=7
first job=8
first job=9
first job=10

23.5.2 Problems with Thread Priorities

However, when using priorities with Java Threads, remember the following two issues:

First a Java thread priority may map differently to the thread priorities of the underlying
OS. It is because of difference in priority levels of JVM and underlying OS.
For example

- Solaris has 232-1 priority levels
» Windows NT has only 7 user priority levels

Second, starvation can occur for lower-priority threads if the higher-priority threads
never terminate, sleep, or wait for I/O indefinitely.

© Copyright Virtual University of Pakistan Page 218

Web Design and Development (CS506)

23.6 References:

Java, A Practical Guide by Umair Javed.
Java How to Program by Deitel and Deitel.
(CS193j handouts on Stanford.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 219

Web Design and Development (CS506)

Lecture 24: More on Multithreading

In this handout, we’ll cover different aspects of multithreading. Some examples are given to make
you understand the topic of multithreading. First we will start with an example that reads data
from two text files simultaneously.

Example Code: Reading Two Files Simultaneously

The task is to read data from file “first.txt” & “second.txt” simultaneously. Suppose that files
contain the following data as shown below:

first 1
first 2
first 3
first 4
first 5
first 6
first 7
first 8
first 9
first 10

first.txt

second 1
second 2
second 3
second 4
second 5
second 6
second 7
second 8
second 9
second 10

second.txt

© Copyright Virtual University of Pakistan Page 220

Web Design and Development (CS506)

Following is the code of ReadFile.java that implements Runnable interface. The file reading code
will be written inside run ()method

// File ReadFile.java

import java.io.*;

public class ReadFile implements Runnable{
//attribute used for name of file

String fileName;

// param constructor

public ReadFile(String fn){

fileName = fn;

}

// overriding run method

// this method contains the code for file reading
public void run (){

try

{

// connecting FileReader with attribute fileName
FileReader fr = new FileReader(fileName);
BufferedReader br = new BufferedReader(fr);
String line ="";

// reading line by line data from file
// and displaying it on console

line = br.readLine();

while(line !=null) {
System.out.println(line);

line = br.readLine();

}
fr.close();
br.close();
h
catch (Exception e){
System.out.println(e);

H
}+ // end run() method

}

Next, look at the Test.javaclass that contains the main() method.

// File Test.java
public class Test {
public static void main (String args[]){

// creating ReadFile objects by passing file names to them
ReadFile first = new ReadFile("first.txt");

© Copyright Virtual University of Pakistan Page 221

Web Design and Development (CS506)

ReadFile second = new ReadFile("second.txt");

// Instantiating thread objects and passing

// runnable (ReadFile) objects to them

Thread t1 = new Thread(first);

Thread t2 = new Thread(second);

// starting threads that cause threads to read data from
// two different files simultaneously

tl.start();

t2.start();

h
}

Output
On executing Test class, following kind output would be generated:

C:\ WINDOWS\system32\cmd.exe

D:\ReadFileSimul> java Test
first 1
first 2
first 3
first 4
first5
second 1
second 2
second 3
second 4
second 5
second 6
second 7
second 8
second 9
second 10
first 6
first 7
first 8
first 9
first 10

HE R

24.1 Useful Thread Methods

Now let’s discuss some useful thread class methods.

© Copyright Virtual University of Pakistan

Page 222

Web Design and Development (CS506)

24.1.1sleep(int time) method

= Causes the currently executing thread to wait for the time (milliseconds) specified

» Waiting is efficient equivalent to non-busy. The waiting thread will not occupy the
processor

e Threads come out of the sleep when the specified time interval expires or when
interrupted by some other thread

e Thread coming out of sleep may go to the running or ready state depending upon the
availability of the processor. The different states of threads will be discussed later

» High priority threads should execute sleep method after some time to give low
priority threads a chance to run otherwise starvation may occur

» sleep() method can be wused for delay purpose i.e. anyone can call
Thread.sleep()method

* Note that sleep() method can throw InterruptedException. So, you
need try-catch block

Example Code: Demonstrating sleep () usage

Below the modified code of Worker.javais given that we used in the
previous handout.

// File Worker.java

public class Worker implements Runnable {
private String job ;

//Constructor of Worker class

public Worker (String j){

job=j;

h

//Tmplement run() method of Runnable interface
public void run () {

for(int i=1; i<= 10; i++) {

try {

Thread.sleep(100);

// go to sleep for 100 ms

tcatch (Exception ex){

System.out.println(ex);

}
System.out.println(job + " =" +1);
} // end for

}+ // end run

} // end class

Below is the code of SleepEx.java that contains the main() method. It will use the
Worker class created above.

‘ // File SleepEx.java

© Copyright Virtual University of Pakistan Page 223

Web Design and Development (CS506)

public class SleepEx {

public static void main (String args|]){
// Creating Worker objects

Worker first=new Worker (“first job”);
Worker second = new Worker (“second job™);
// Instantiating thread class objects
Thread t1 = new Thread (first);

Thread t2 = new Thread (second);

// starting thread

t1.start();

t2.start();

h
}+ // end class

Output

On executing SleepEx.java, the output will be produced with exact alternations between first thread
& second thread. On starting threads, first thread will go to sleep for 100 ms. It gives a chance to
second thread to execute. Later this thread will also go to sleep for 100 ms. In the mean time
the first thread will come out of sleep and got a chance on processor. It will print job on console and
again enters into sleep state and this cycle goes on until both threads finished the run()method.

D:\examples\multithreading> java SleepEx
first job=1
second job=1
first job=2
second job=2
first job=3
second job=3
first job=4
second job=4
first job=5
second job=5
first job=6
second job=6
first job=7
second job=7
first job=8
second job=8
first job=9
second job=9
first job=10
second job=10

Example Code: Using sleep () for delay purpose

Before jumping on to example code, lets reveal another aspect about main()method. When you
run a Java program, the VM creates a new thread and then sends the
main(String[] args)message to the class to be run! Therefore, there is always at least one running

© Copyright Virtual University of Pakistan Page 224

Web Design and Development (CS506)

thread in existence. However, we can create more threads which can run concurrently with the
existing default thread.

sleep()method can be used for delay purpose. This is demonstrated in the
DelayEx.java given below:

// File DelayEx.java

public class DelayEx {

public static void main (String args|[]){
System.out.printIn(“main thread going to sleep”);
try {

// the main thread will go to sleep causing delay
Thread.sleep(100);

}catch (Exception ex){

System.out.println(ex);

}

System.out.println(“main thread coming out of sleep™);

}

// end main()
}+ // end class

Output

On executing DelayEx class, you will experience a delay after the first statement
displayed. The second statement will print when the time interval expired. This has been show below
in the following two diagrams:

C:\ WINDOWS\system32\cmd.exe

D:\examples\multithreading> java DelayEx
main thread going to sleep

C:\ WINDOWS\system32\cmd.exe

D:\examples\multithreading> java DelayEx
main thread going to sleep
main thread coming out of sleep

24.1.2yield() method

* Allows any other threads of the same priority to execute (moves itself to the end of
the priority queue)

e If all waiting threads have a lower priority, then the yielding thread resumes
execution on the CPU

» Generally used in cooperative scheduling schemes

© Copyright Virtual University of Pakistan Page 225

Web Design and Development (CS506)

Example Code: Demonstrating yield () usage

Below the modified code of Worker.javais given

// File Worker.java

public class Worker implements Runnable {
private String job ;

//Constructor of Worker class

public Worker (String j){

job=j;

h
//Tmplement run() method of Runnable interface
public void run ()

{

for(int i=1; i<= 10; i++) {

// giving chance to a thread to execute of same priority

Thread.yield();
System.out.println(job + " =" + 1);
}+ // end for

} // end run

}+ // end class

Below is the code of YieldEx.java that contains the main ()method.It will use the
Worker class created above.

// File YieldEx.java public class YieldEx {
public static void main (String args|[]){

// Creating Worker objects

Worker first = new Worker (“first job™);
Worker second = new Worker (“second job”);
// Instantiating thread class objects

Thread t1 = new Thread (first);

Thread t2 = new Thread (second);

// starting thread

t1.start();

t2.start();

}
}+ // end class

Output

Since both threads have the same priority (until we change the priority of some thread explicitly).
© Copyright Virtual University of Pakistan Page 226

Web Design and Development (CS506)

Therefore both threads will execute on alternate basis. This can be confirmed from the
output given below:

C:\ WINDOWS\system32\cmd.exe

D:\examples\multithreading> java YieldEx
first job=1
second job=1
first job=2
second job=2
first job=3
second job=3
first job=4
second job=4
first job=5
second job=5
first job=6
second job=6
first job=7
second job=7
first job=8
second job=8
first job=9
second job=9
first job=10
second job=10

24.2 Thread States: Life Cycle ofa Thread

A thread can be in different states during its lifecycle as shown in the figure.

© Copyright Virtual University of Pakistan Page 227

Web Design and Development (CS506)

start ()

11O completed

notify ()

times expires
or
interrupted

waiting sleeping

dispatch

Block on I/O
(Valallgle

run completes

Some Important states are:

24.2.1New state
* When a thread is just created
24.2.2 Ready state

» Thread’s start() method invoked
» Thread can now execute
e Put it into the Ready Queue of the scheduler

24.2.3 Running state

e Thread is assigned a processor and now is running

© Copyright Virtual University of Pakistan Page 228

Web Design and Development (CS506)

24.2 .4 Dead state

e Thread has completed or exited
» Eventually disposed of by system

24.3 Thread’s Joining

e Used when a thread wants to wait for another thread to complete its run() method
* For example, if thread2 sent the thread2.join() message, it causes the currently executing
thread to block efficiently until thread2 finishes its run() method

* Calling join method can throw InterruptedException, so you must use try-catch block to
handle it

Example Code: Demonstrating join() usage
Below the modified code of Worker.javais given. It only prints the job of the worker

// File Worker.java

public class Worker implements Runnable {
private String job ;

public Worker (String j){

job=j;

}
public void run () {

for(int i=1; i<= 10; i++) {
System.out.println(job + " =" +1); } // end for
} // end run

}+ // end class

The class JoinExwill demonstrate how current running (main) blocks until the remaining
threads finished their run ()

// File JoinEx.java

public class JoinEx {

public static void main (String args[]){
Worker first = new Worker ("first job");
Worker second = new Worker ("second job");
Thread t1 = new Thread (first);

Thread t2 = new Thread (second);
System.out.println("Starting...");

// starting threads

t1.start();

t2.start();

// The current running thread (main) blocks until both
//workers have finished

© Copyright Virtual University of Pakistan Page 229

Web Design and Development (CS506)

try {
t1.join();
t2.join();
}
catch (Exception ex) {
System.out.println(ex);
}
System.out.printIn("All done ");
} // end main

}

Output

On executing JoinEx, notice that ““Starting™ is printed first followed by printing workers jobs.
Since main thread does not finish until both threads have finished their run (). Therefore “All
done” will be print on last.

D:\examples\multithreading> java joinEx
starting....
first job=1
first job=2
first job=3
first job=4
first job=5
first job=6
first job=7
first job=8
second job=1
second job=2
second job=3
second job=4
second job=5
second job=6
second job=7
second job=8
second job=9
second Job=10
first job=9
first job=10
All done

24.4 References:

» Java, A Practical Guide by Umair Javed

» Java tutorial by Sun: http://java.sun.com/docs/books/tutorial/

e (S193j handouts on Stanford
Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 230

Web Design and Development (CS506)

Lecture 25: Web Application Development

25.1 Introduction

Because of the wide spread use of internet, web based applications are becoming vital part of
IT infrastructure of large organizations. For example web based employee performance

management systems are used by organizations for weekly or monthly reviews of
employees. On the other hand online course registration and examination systems can allow

students to study while staying at their homes.

25.2 Web Applications

In general a web application is a piece of code running at the server which facilitates a
remote user connected to web server through HTTP protocol. HTTP protocol follows
stateless Request-Response communication model. Client (usually a web-browser) sends a request
to Server, which sends back appropriate response or error message.

Server

The WEB Application

"7
N

HTTP

Typical Web
Application

A web server is software which provides users, access to the services that are present on
the internet. These servers can provide support for many protocols used over internet or
intranet like HTTP, FTP, telnet etc

© Copyright Virtual University of Pakistan Page 231

Web Design and Development (CS506)

25.3 HTTP Basics

A protocol defines the method and way of communication between two parties. For example
when we talk to our teacher we use a certain way which is different from the way that we adopt
with our friends or parents. Similarly there are many different protocols used by computers to
communicate with each other depending on applications.

For example an Echo Server only listens to incoming name messages and sends back hello
message, while HTTP protocol uses various types of request-response messages.

HTTP Communication
Model

-~ By

Request Web Server

N e ——- | -
, F=

ResEonse

5.

i .

25.3.1Parts of an HTTP request

« Request Method: It tells the server the type of action that a client wants to perform

» URI: Uniform Resource Indicator specifies the address of required document or resource

e Header Fields: Optional headers can be used by client to tell server extra
information about request e.g. client software and content type that it understands.

© Copyright Virtual University of Pakistan Page 232

Web Design and Development (CS506)

GET /index.htm HTTP /1.1 request line

: request headers
Host: java.sum.com

User-Agent: Mozlla/4.5 [en]

Accept: ipage/gif, image/jpeg, umage/pjpeg, */*
Accept-Language: en

Accept-Charset: 120-8859-1.%, utf-§

Request Parameter etc optional request body

HTTP Request
Example

» Body: Contains data sent by client to the server
» Other request headers like FROM (email of the person responsible for request) and VIA
(used by gateways and proxies to show intermediate sites the request passes) can also be
used.
» Request Parameters
o Request can also contain addition information in form of request parameters
'] In URL as query string e.g.
[http://www.gmail.com/register?name=ali&state=punjab

'] As part of request body (see Figure 3)

25.3.2 Parts of HTTP response

» Result Code: A numeric status code and its description.
» Header Fields: Servers use these fields to tell client about server information like
configurations and software etc.

« Body: Data sent by server as part of response that is finally seen by the user.

© Copyright Virtual University of Pakistan Page 233

Web Design and Development (CS506)

HTTP/ 1.1 200 OK status line

Last-Modified: Mon, Aug 4 2003 22:10:40 GMT

Date: Wed, Aug § 2003 14:23:35 GMT

status: 200

Content-Type: text/thml

Content-Length: 59 response header

“html> optional response body
<body=
<hl> Hello World! </hl=
4:1:_.-']_].13(1}.'::::-
</html~

Figure 4: HTTP Response
Example
25.3.3 HTTP Response Codes

* An HTTP Response code tell the client about the state of the response i.e. whether it’s a
valid response or some error has occurred etc. HTTP Response codes fall into five general

categories

o 100-199

[] Codes in the 100s are informational, indicating that the client should
respond with some other action.

T1 100: Continue with partial request.

o 200-299
(1 Values in the 200s signify that the request was successful.
[] 200: Means everything is fine.

o 300-399

T] Values in the 300s are used for files that have moved and usually include
a Location header indicating the new address.

T1 300: Document requested can be found several places; they'll be listed in
the returned document.

© Copyright Virtual University of Pakistan Page 234

Web Design and Development (CS506)

o 400-499
'] Values in the 400s indicate an error by the client.
'] 404: Indicates that the requested resource is not available.
'] 401: Indicates that the request requires HTTP authentication.
(] 403: Indicates that access to the requested resource has been denied.

-

"~ Apache Tomcat/7.0.41 - Error report - Windows Internet Explorer

°°v I hittp: j localhost 2080/ abe fhikml ﬂ |Z| I:' Live Search

File Edit ‘iew Favorites Tools Help

5. Favorites | = €| Selection Sahir Ludhyanvi [P... Suggested Sites ~ @ | Web Slice Gallery -

Apache Torcat/7.0.41 - Errar repart | | "-’|\ - I'_-J = [@ + Page~ Safety + Tools

HTTP Status 404 - /abc/html

[status report

imessagel el |

=iy The requested resource is not availsble.

Apache Tomeat/7.0.41

Done

l_l_l_l_’_’_|‘j Lacal intranet ”:i—' 1
o 500-599

TJ Codes in the 500s signify an error by the server.

T] 503: Indicates that the HTTP server is temporarily overloaded and unable
to handle the request.

404: Indicates That The Requested Resource Is Not Available

© Copyright Virtual University of Pakistan Page 235

Web Design and Development (CS506)

ff Mot Authorized - Windows Internet Explorer

— —

G- e e] &[4 [%] [2- i

File Edit ‘Wiew Favorites Tools Help

X

- . 1 >
L. Favarites ':.:::vlém ;_éHn:nm... » ’:i’* = [« [s - Page - Safety -+

Not Authorized

HTTP Error 401. The requested resource requires user authentication.

[one & Local intranet Faow | HI0D% v

401: Indicates That Request Requires HTTP Authentication

25.4 Server Side Programming

Web server pages can be either static pages or dynamic pages. A static web page is a simple
HTML (Hyper Text Transfer Language) file. When a client requests an HTML page the server
simple sends back response with the required page.

Request file

Retrieve file

Send file

© Copyright Virtual University of Pakistan Page 236

Web Design and Development (CS506)

Static Web Page Request And Response

An example of static web page is given below

7= Web Design and Development - Microsoft Internet Explorer

—- —

@\ =R httpddac W | bl e || -i' 20
File Edit ‘“iew Fawarites Toals Help

¢ Favorites 20 .| @8N, X EHom,., | » .?-?i* = L - [@ - Page - Safety - ”

Web Design and Development
by

Umair Javed

Cione & Local intranet I I

While in case of dynamic web page s server executes an application which generates HTML
web pages according to specific requests coming from client. These dynamically generated web
pages are sent back to client with the response.

Requestservice
Do Computation

Generate HTML
page with results

. of computation
Return dynamically

generated HTML file

© Copyright Virtual University of Pakistan Page 237

Web Design and Development (CS506)

25.4.1 Why build Pages Dynamically?

We need to create dynamic web pages when the content of site changes frequently and client specific
response is required. Some of the scenarios are listed below

» The web page is based on data submitted by the user e.g. results page from search engines
and order confirmation pages at on line stores.

© Copyright Virtual University of Pakistan Page 238

Web Design and Development (CS506)

web development - Google Search - Microsoft Internet Explorer E| @|B]
- — e : ——
r, 3 T . o = L | & T
@ A - Ei'] htUi.- f-..gnngle.ccum.pk: b | e | | 2 l-' = J o)
File Edit ‘Wiew Fawvorites Tools Help
i ' ool. |G - ' e | o Z
i Favarites oa ™ &N x _ "_,éH.:.m,,, | = i~ Bl - | @ - Page~- Safety -

Web Images Groups MNews mores

GO ngle web development ﬁ

Search: & the web O pages from Pakistan

Web Results 1 - 10 of about 1,240,000,000 fc

Web Developer's Virtual Library: Web Development Tutorials and ...

Mews, tutorials, and reference material focusing on technical web development topics
www . widvl.com/ - 58k - 21 Jan 2006 - Cached - Similar pages

WebDeveloper.com . .

resources for daily news. how-to'articles: product ‘réviews. @nd downloads of special interest to
Web designers. programmers, developers. and VWebmasters

www webdeveloper.com/ - B9k - 21 Jan 2006 - Cached - Similar pages

Webmonkey: The Web Developer's Resource

The Web Developer's Resource. ... Join the Webmonkey staff as we serve up fresh, piping
haot stacks of web development news and commentary on a daily basis. ...

www. webmonkey.com/ - 25k - 21 Jan 2006 - Cached - Similar pages

Web Development

This web summarizes the complete life cycle methodology for web development: planning
analysis, design, implementation, promotion, and innovation
www.december.com/web/develop html - 8k - Cached - Similar pages

[one &4 Local intranet faow| Hloome -

= The Web page is derived from data that changes frequently e.g. a weather report or news
headlines page.

© Copyright Virtual University of Pakistan Page 239

Web Design and Development (CS506)

‘2 CNN.com - Science and Space - Microsoft Internet Explorer

File Edit View Favorites Tools Help

’ n — n
- - \) Y e .
G Back > |£| |§| | Search . ¢ Favorites Q?

. Address :Ej http: /fwwin. cnn. com TECH space/

C\N.com.

SEARCH

Home Page
World

() THEWEB () CNM.com

Member Center: Sign In | Register

Powered by WAHOO!

U.5.
Weather
Business at CNNMoney

NCE &

Sports at Sl.com
Paolitics
Law

Technology
Science & Space
Health
Entertainment

Travel

Education

Special Reporisz
Video

Aurtos with Edmunds.com

Wait a sec for lea

S

D=r 20, 2\

PACE

TN

p into 2006

MORE NEWS:

* Climate study predicts big thaw
* [Mexican volcano spews glowing rock

+ Hubble finds new moons. rings around Uranus
* Researcher quits over fake stem cell work | | wATcH
*VWatch: Zookeepers beq for return of baby penguin

WATCH FREE VIDEO

Text message
Great melon

saves man e 4
LAY mystery (1:1%) o
L) oL]

Featured Video

» The Web page uses information from databases or other server-side resources e.g. an e-
commerce site could use a servlet to build a Web page that lists the current price and
availability of each item that is for sale.

© Copyright Virtual University of Pakistan

Page 240

Web Design and Development (CS506)

GOVERRSIST COLLIGE

e | AVERRLTY FATSALABAD :
EEE | T Eal Rl Bintadn [T BEnE Pl [t ldine Ta 3T SRR
3
.]
+
OO Cptinm:
Please select & field to view itz detail
[Flzk i [l s Fhoki (Boxko
Fratails puts b - Cait Dalats
ool Businass A Tk A Edil DElele
[etails A i Edit Delete
________ Iatails puter Enginesnng Edit Delete
A
| wETasls of The currenty selected fisid
Fmprem Type] fkoe Urme | GEror Uaie | 620w B Urfa | FodggLInL |
dasters i P Ediit Dialatn
Edit Dhelete
Add

Server side programming involves

» Using technologies for developing web pages that include dynamic content.
* Developing web based applications which can produce web pages
information that is connection-dependent or time-dependent.

25.4.2 Dynamic Web Content Technologies Evolution

that contain

Dynamic web content development technologies have evolved through time in speed, security,

ease of use and complexity. Initially C based CGI programs were on the server. Then template

based technologies like ASP and PHP were then introduced which allowed ease of use for

designing complex web pages. Sun Java introduced Servlets and JSP that provided more speed and

security as well as better tools for web page creation.

© Copyright Virtual University of Pakistan

Page 241

Web Design and Development (CS506)

CGl . C3Gl ., Template
(in C) (java, C++) R“H (ASP,
\—RHP.CFML)

_ [complexity
Speed. Secm‘ltﬂ

S efrvlet ' -+ JSP

(Java)

Dynamic Web Content Technologies
Evolution

25.5 Layers & Web Application

Normally web applications are partitioned into logical layers. Each layer performs a specific
functionality which should not be mixed with other layers. Layers are isolated from each other to
reduce coupling between them but they provide interfaces to communicate with each other.

© Copyright Virtual University of Pakistan Page 242

Web Design and Development (CS506)

Users

3

T v

Presentation Layers

Business Layers

Cata Layers

: v v

~\ Ir,, -

Data Sources \ Services

e b i

Simplified View Of A Web Application And
Its Layers

25.5.1 Presentation Layer:

» Provides a user interface for client to interact with application. This is the only part of
application visible to client.

25.5.2 Business Layer

= The business or service layer implements the actual business logic or functionality of the
application. For example in case of online shopping systems this layer handles transaction
management.

25.5.3 Data Layer

« This layer consists of objects that represent real-world business objects such as an Order,
OrderLineltem, Product, and so on.

© Copyright Virtual University of Pakistan Page 243

Web Design and Development (CS506)

25.6 Java - Web Application Technologies

There are several Java technologies available for web application development which includes Java
Servlets, JavaServer Pages, and JavaServer Faces etc.

JavaServer Pages JavaServer

Standard Tag Library Faces

Java Servlet

Java Web Application Technologies
(Presentation/Web Tier)

25.7 References:

e Java, A Practical Guide by Umair Javed.
= Java tutorial by Sun: http://java.sun.com/docs/books/tutorial/ .

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 244

Web Design and Development (CS506)

Lecture 26: Java Servlets

Servlets are java technology’s answer to CGI programming. CGI was widely used for generating
dynamic content before Servlets arrived. They were programs written mostly in C, C++ that run on
a web server and used to build web pages.

As you can see in the figure below, a client sends a request to web server, server forwards that
request to a servlet, servlet generates dynamic content, mostly in the form of HTML pages, and
returns it back to the server, which sends it back to the client. Hence we can say that servlet is
extending the functionality of the webserver (The job of the earlier servers was to respond only
to request, by may be sending the required html file back to the client, and generally no processing
was performed on the server)

4 N

JVM

Request
—

: Server
Client / Browser Response

Extends the functionality of the
server by

Generating HTML pages
dynamically

26.1 What Servlets can do?

* Servlets can do anything that a java class can do. For example, connecting with
database, reading/writing data to/from file etc.

» Handles requests sent by the user (clients) and generates response dynamically
(normally HTML pages).

e The dynamically generated content is send back to the user through a webserver
(client)

26.2 Servlets vs. other SSP technologies

The java’s servlet technology has following advantage over their counter parts:

© Copyright Virtual University of Pakistan Page 245

Web Design and Development (CS506)

26.2.1Convenient

Servlets can use the whole java API e.g. JDBC. So if you already know java, why learn
Perl or C. Servlets have an extensive infrastructure for automatically parsing and decoding HTML
form data, reading and sending HTTP headers, handling cookies and tracking session etc and many
more utilities.

26.2.2 Efficient
With traditional CGI, a new process is started for each request while with servlets each request is

handled by a lightweight java thread, not a heavy weight operating system process. (more on this
later)

26.2.3 Powerful

Java servlets let you easily do several things that are difficult or impossible with regular CGI. For
example, servlets can also share data among each other

26.2.4 Portable

Since java is portable and servlets is a java based technology therefore they are generally portable
across web servers

26.2.5 Inexpensive

There are numbers of free or inexpensive web servers available that are good for personal use or low
volume web sites. For example Apache is a commercial grade webserver that is absolutely free.
However some very high end web and application servers are quite expensive e.g. BEA weblogic.
We’ll also use Apache in this course

26.3 Software Requirements

To use java servlets will be needed

-« J2SE

e Additional J2EE based libraries for servlets such as servlet-api.jarand jsp- api.jar.
Since these libraries are not part of J2SE, you can download these APIs separately.
However these APIs are also available with the web server you’ll be using.

© Copyright Virtual University of Pakistan Page 246

Web Design and Development (CS506)

* A capable servlet web engine (webserver)

26.4 Jakarta Servlet Engine (Tomcat) /‘K

Jakarta is an Apache project and tomcat is one of its subprojects. Apache Tomcat is an open
source web server, which is used as an official reference implementation of Java Servlets and
Java Server Pages technologies.

Tomcat is developed in an open and participatory environment and released under the Apache
software license

26.4.1 Environment Setup

To work with servlets and JSP technologies, you first need to set up the environment. Tomcat

installation can be performed in two different ways (@) using .zip file (b) using .exe file. This
setup process is broken down into the following steps:

Download the Apache Tomcat Server
Install Tomcat

Set the JAVA _HOME variable

Set the CATALINA HOME variable
Set the CLASSPATH variable

Test the Server

SNk W=

26.4.2Environment Setup Using .zip File

Let’s take a detail look on each step and get some hands on experience of environment
setup.

26.4.2.1 Download the Apache Tomcat Server

From the http://tomcat.apache.org, download the zip file for the current release (e.g.
jakarta-tomcat-5.5.9.zip or any latest version) on your C:\ drive. There are different
releases available on site. Select to download .zip file from the Binary Distributions [

core section.

Note: J2SE 5.0 must be installed prior to use the 5.5.9 version of tomcat.

26.4.2.2 Installing Tomcat using .zip file

» Unzip the file into a location (e.g. C:\). (Rightclick on the zip file and select
unziphere option)

© Copyright Virtual University of Pakistan Page 247

Web Design and Development (CS506)

* When the zip file will unzipped a directory structure will be created on your computer
such as:

B e Local Disk (C7)
A Documents and Settings
downloads
1381
2 Inetpub
B Y jakarta-tomeat-5.5.9
C[Bm]

e The C:\jakarta-tomcat-5.5.9 folder is generally referred as root directory or
CATALINA HOME

Note: After extraction, make sure C:\jakarta-tomcat-5.5.9 contains a bin subdirectory.
Sometimes students create their own directory and unzip the file there such as C:\jakarta-
tomcat-5.5.9\jakarta-tomcat-5.5.9.This causes problems while giving path information

26.4.2.3 Set the JAVA HOME variable

« JAVA HOME indicates the root directory of your jdk. Set the JAVA HOME
environment variable to tell Tomcat, where to find java

e This wvariable should list the base JDK installation directory, not the bin
subdirectory

 To set it, right click on My Computer icon. Select the advanced tab, a System
Properties window will appear in front of you like shown below. Select the
Environment Variables button to proceed.

© Copyright Virtual University of Pakistan Page 248

Web Design and Development (CS506)

.Cnmputer Mame I Hardware = Advanced I System Protection I Remote I

You must be logged on as an Administrator to make most of these changes.

- Performance
Wisual effects, processor scheduling, memony usage, and vitual memony

r User Profiles
Desltop settings related to your logon

Settings...

r Startup and Recovery
System startup, system failure, and debugging information

Settings...

EEn'u'in:unment ‘-Iarial::les..J]

QK | Cancel | Apply |

Mn

e On clicking Environment Variable button, the Environment Variables window
will open as shown next

© Copyright Virtual University of Pakistan Page 249

Web Design and Development (CS506)

e > |

rUser variables

Variahle | Value |d
TEMP %ol JSERPROFILE %2 \AppDataLocal Temp
TMP %ol JSERPROFILES2\AppDataiLocalTemp

-

~System variables

Variable Value -

ComSpec

FP_MNO_HOST_C... NO

MUMBER_OF_P... 2

05 Windows_NT j

Mew... | Edit... | Delete |

e Create a new User variable by clicking New button as shown above, the New
User Variable window will appear

» Set name of variable JAVA HOME

e The value is the installation directory of JDK (for example C:\Program
Files\j2sdk nb\j2sdk1.4.2). This is shown below in the picture. Please note
that bin folder is not included in the path.

Variable name: | Java_HomE

Variable value: I C:\Program FilesYJavatjdk1.5.0

oK I Cancel

e Press Ok button to finish

26.4.2.4 Setthe CATALINA_HOME variable

© Copyright Virtual University of Pakistan Page 250

Web Design and Development (CS506)

CATALINA HOME is used to tell the system about the root directory of the TOMCAT.
There are various files (classes, exe etc) needed by the system to run.

CATALINA HOME is used to tell your system (in this case your web server Tomcat) where
the required files are.

» To Set the CATALINA HOME environment variable, create another User Variable.

» Type CATALINA HOME as the name of the environment variable.

e Its value should be the path till your top-level Tomcat directory. If you have
unzipped the Tomcat in C drive. It should be C:\jakarta-tomcat-5.5.9. This is
shown below:

e |

Variable name: I CATALIMA_HOME

Variable value: I C:\jakart-tomeat-5. 5.9

QK I Cancel

e Press Ok button to finish

Note: To run Tomcat (web server) you need to set only the two environment variables
and these are JAVA HOME & CATALINA HOME

26.4.2.5 Setthe CLASSPATH variable

Since servlets and JSP are not part of the Java 2 platform, standard edition, you have to identify
the servlet classes to the compiler. The server already knows about the servlet classes, but the
compiler (i.e., javac) you use for compiling source files of servlet does not. So if you don't
set your CLASSPATH, any attempt to compile servlets, tag libraries, or other classes that
use the servlet API will fail with error messages about unknown classes.

» To Set the CLASSPATH environment variable, create another User Variable.

» Type CLASSPATHas the name of the environment variable.

e Its value should be the path for servlet-apijar and jsp-api.jar.
These file can be found on following path:

© Copyright Virtual University of Pakistan Page 251

Web Design and Development (CS506)

Variable name:

Variable value:

e |

| CLAsSPATH

I +C:\tomecat-5. 5.9 commonibYjsp-api.jar;.;

K I Cancel

» Press OK button to finish the setting of CLASSPATH variable

26.4.2.6 Test the server

Before making your own servlets and JSP, verify that the server is working

properly. Follow these steps in order to do that:

« Open the C:\jakarta-tomcat-5.5.9\bin folder and locate the startup.batfile.

» Double clicking on this file will open up a DOS window, which will disappear, and
another DOS window will appear, the second window will stay there. If it does not your

paths are not correctly set.

» Now to check whether your server is workig or not, open up a browser window and type

http://localhost:8080. This should open the default page of omcat as shown in next

diagram:

Note: If default page doesn’t displayed, open up an internet explorer window, move on to Tools
"] Internet Options [] Connections [ILAN Settings. Make sure that option of “Bypass proxy server

for local addresses™ is unchecked.

© Copyright Virtual University of Pakistan

Page 252

Web Design and Development (CS506)

'E Apache Tomcat/5.5.9 - Microsoft Internet Explorer

File Edit View Favaorites Tools Help n

2 8 A Qoearch Lk Favorites FMeda 14 54 _§ - =

j .ﬁ.ddresslg] httpe) flocalhosk: 8080 LI v

Y

___[The Mighty Tomcat - MECHW! |
Administration If you're seeing this page via a web browser, it means you've setup
Tomcat successfully. Congratulations!

Apache
Tomcat/ls.5.9

The _ﬂpache Jakarta Project

http://f jakarta. apache.arg/

Status
Tomeat Administration As you may have guessed by now, this is the default Tomcat home page.
Tomcat Manager It can be found on the local filesystem at
SCATALINA HOME/webapps/R0O0T/index. jsp
Documentation where "SCATALINA_HOME" is the root of the Tomeat installation
Release Motes directory. If you're seeing this page, and you don't think you should be,
Change Log then either you're either a user who has arrived at new installation of
Tomcat Documentation Tomcat, oryou're an administrator who hasn't got his/her setup quite right.
FProviding the latter is the case, please refer to the Tomcat Documentation
for more detailed setup and administration information than is found in the
| 1 INSTALL file =l
&] http:Il'p'jakarta.apache.c-rg,l'tomcatll'index.html Local inkranet

There is another easier way to carry out the environment setup using .exefile. However, it is

strongly recommended that you must complete the environment setup using .zip file to know the
essential fundamentals.

26.4.3 Environment Setup Using .exe File

Let’s look at the steps involved to accomplish the environment setup using .exefile.

26.4.3.1 Download the Apache Tomcat Server

From the http://tomcat.apache.org, download the .exe file for the current release (e.g.
jakarta-tomcat-5.5.9.zip) on your C:\ drive. There are different releases available on site.

Select to download Windows executable (.exe) file from Binary Distributions [Core
section.

Note: J2SE 5.0 must be installed to use the 5.5.9 version of tomcat.

26.4.3.2 Installing Tomcat using .exe file

* Run the .exefile by double clicking on it.

© Copyright Virtual University of Pakistan Page 253

Web Design and Development (CS506)

Moving forward in setup, you will reach to the following window

Apache Tomcat Setup BE'

Choose Components
Choose v hich features of Apache Tomcat vou v.ant ta install, L

Check the components you want to install and uncheck the components you don't v:ant to
install, Chck Mext to continue,

select e tpeof el oY S ©
. i Description
Or, select the Dpt!ql‘ial * Tomcat Createpa Start Menu
ﬁ-ﬁ;mtdm- ents yvou vish to Start Menu Ttems B Ao o
' Documentation Tomcat,
Examples
[¥] \ ebapps
Space reguired: 11, 7B
Hullsoft Install System v 2
[-« Back][Hext »] [Zancel

Select install type “Full” and press Next button to proceed.

Choose the folder in which you want to install Apache Tomcat and press Next to proceed.
The configuration window will be opened. Leave the port unchanged (since by default web
servers run on port 8080, you can change it if you really want
to). Specify the user name & password in the specified fields and press Next
button to move forward. This is also shown in the diagram coming next:

© Copyright Virtual University of Pakistan

Page 254

Web Design and Development (CS506)

Bl Apache Tomcat Setup: Configuration Options

Corfiguration
Tomcat basic configuration.

HTTPFA 1 Conhector Port 2020

& dministrator Login

T zer natne i

Password
*EEES

HullZoft System V.2

[< Back][Hext =][Cancel]

e The setup will automatically select the Java Virtual Machine path. Click

» Install button to move ahead.

» Finish the setup with the Run Apache Tomcat option selected. It will cause the tomcat
server to run in quick launch bar as shown in diagram below. The Apache Tomcat
shortcuts will also added to Programs menu.

@) Bba 2:58 AM

» Double clicking on this button will open up Apache Tomcat Properties window. From here

you can start or stop your web server. You can also
configure many options if you want to. This properties window is shown
below:

© Copyright Virtual University of Pakistan Page 255

Web Design and Development (CS506)

o Apache Tomcat Properties

{ereral

Deseription:

Log @i | Logging | Java | Startup | Shutdavn
Hervice Mame: Tomeath
Dizplay name: |Apache Tomeat

&pache Tomeat 559 Server hittpakatta apachy

Path to executahle:

ChProgram Files\A pache Software Foundation'\ T omeat 5 5Wbint

Starup type:

Automatic

Service Status: Started

Start

J|

Stop

l Pause Festart

[

Ok

[=n

26.4.3.3 Set the JAVA HOME variable

Choosing .exe mode does not require completing this step.

26.4.3.4 Set the CATALINA HOME variable

Choosing .exe mode does not require completing this step.

26.4.3.5 Set the CLASSPATH variable

Same as step 5 of .zip installation mode

26.4.3.6 Test the server

If tomcat installation is made using .exe file, follow these steps

» Open the Apache Tomcat properties window by clicking on the Apache Tomcat button

from Quick Launch.

= Start the tomcat server if it is not running by clicking on Start button.

© Copyright Virtual University of Pakistan

Page 256

Web Design and Development (CS506)

Open up a browser window and type http://localhost:8080. This should open the default
page of Tomcat as shown in the next diagram:

'; Apache Tomcat/5.5.9 - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help

J 2] 2 fsearch _d|Favorites {PMedia {4

j Address "__&_[http:/flocalhost: 8080

AN B

Apache

/ i Tomcati5.5.9

__[The Mighty Tomcat - MEOW!|]]]]

Administration If you're seeing this page via a web browser, it means you've setup
Tomcat successfully. Congratulations! -

Status

Tomcat Administration
Tomcat Manager

The __Apache Jakarta Project

http://f jakarta. apache.orgq/

As you may have guessed by now, this is the default Tomcat home page.
It can be found on the local filesystem at:

SCATALINA HOME/webapps/ROOT/index. jsp

Documentation where "$CATALINA_HOME" is the root of the Tomcat installation
Eelease Motes directory If you're seeing this page, and you dan't think you should be,
Change Log

then either you're either a user who has arrived at new installation of

Tomcat, or you're an administrator who hasn't got hisfher setup quite right.
Froviding the latter is the case, please refer to the Tomceat Documentation
for more detailed setup and administration information than is found in the
METALL fils]

AN .
- Local intranet

Tomecat Documentation

[1
l &] http:Ijjakarta.apache.l:-rgll'tomcatll'index.html

Note: If default page doesn’t displayed, open up an internet explorer window, move on to Tools

"] Internet Options [] Connections [ILAN Settings. Make sure that option of “Bypass proxy
server for local addresses™ is unchecked.

26.5 References:

e Java, A Lab Course by Umair Javed.
e Java Servlet & JSP tutotrial http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/ .

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 257

Web Design and Development (CS506)

Lecture 27: Creating a Simple Web Application in Tomcat

In this handout, we’ll discuss the standard tomcat directory structure, a pre-requisite for
building any web application. Different nuts and bolts of Servlets will also be discussed.
In the later part of this handout, we’ll also learn how to make a simple web application
using servlet.

27.1 Standard Directory Structure of a J2EE Web Application

A web application is defined as a hierarchy of directories and files in a standard layout. Such
hierarchies can be used in two forms

» Unpack

o Where each directory & file exists in the file system separately
o Used mostly during development

e Pack

o Known as Web Archive (WAR) file
0 Mostly used to deploy web applications

The webapps folder is the top-level Tomcat directory that contains all the web
applications deployed on the server. Each application is deployed in a separate folder often
referred as ““context”.

B [jakatta-tomcat-5.5.9
3 bin

[C ¢ otrmon

Chconfs
Ch logs

[Ch server

[CT shared Folder for
3 tetrn / Web Applications

B Cafwebapps |
2 balancer
[Chisp-examples
CARCOT
servlets-examples
tomcat-docs
webdav

[Ch work

To make a new application e.g myapp in tomcat you need a specific folder hierarchy.

© Copyright Virtual University of Pakistan Page 258

Web Design and Development (CS506)

» Create a folder named myapp in C:\jakarta-tomcat-5.5.9\webapps folder. This
name will also appear in the URL for your application. For example
http://localhost:8080/myapp/index.html

e All JSP and html files will be kept in main application folder (C:\jakarta-
tomcat-5.5.9\webapps\myapp)

e Create another folder inside myapp folder and change its name to WEB-INF.
Remember WEB-INFis case sensitive and it is not WEB_INF

* Configuration files such as web.xml will go in WEB-INF folder
(C:\jakarta-tomcat-5.5.9\webapps\myapp\WEB-INF)

e Create another folder inside WEB-INF folder and change its name to classes.
Remember classesname is also case sensitive.

* Servlets and Java Beans will go in classes folder (C:\jakarta-tomcat-
5.5.9\webapps\myapp\WEB-INF\classes)

That’s the minimum directory structure required in order to get started. This is also shown in
the figure below:

2 [CF jakatta-tomeat-5.5.9
C bin

[Ch cotnmnon
Chconfs
Ch logs
Ch server
Ch shared
[C3 tetnn
B 3 webapps
2 balancer
Chisp-examples
2
B 3 WEB-IMNF
Ch clazses
CAROCT
3y serviets-examples
[Ch totncat-docs
0D wehdav
[CT weork

-- name of web application
-- folder of HTML and JSP

e To test application hierarchy, make a simple html file e.g. index.html file.
Write some basic HTML code into it and save it in main application directory i.e.
C:\jakarta-tomcat-5.5.9\webapps\myapp\

» Restartthe server and access it by using the URL
http://localhost:8080/myapp/index.html

* A more detailed view of the Tomcat standard directory structure is given below.

© Copyright Virtual University of Pakistan Page 259

Web Design and Development (CS506)

myapp

JSP pages,

static HTML pages
applect classes, ete

weh.xml

s wehb.xnd
*tld
Library All server-side All .tag files
arcluve files class files for this {45 this
Web module Web module

Here you can see some other folders like lib& tags under the WEB-INF.
The lib folder is required if you want to use some achieve files (.jar). For
example an API in jar format that can help generating .pdffiles.

* Similarly tags folder is helpful for building custom tags or for using .tag
files.

Note: Restart Tomcat every time you create a new directory structure, a servlet or a java bean so
that it can recognize it. For JSP and html files you don’t have to restart the server.

27.2 Writing Servlets

27.2.1Servlet Types

 Servlet related classes are included in two main packages javax.servlet
and javax.servlet.http.

Every servlet must implement the javax.servlet.Servlet interface, it

© Copyright Virtual University of Pakistan

Page 260

Web Design and Development (CS506)

contains the servlet’s life cycle methods etc. (Life cycle methods will be discussed in
next handout)

* In order to write your own servlet, you can subclass from GernericServlet
or HttpServlet

27.2.1.1 GenericServlet class

» Available in javax.servlet package

» Implements javax.servlet.Servlet
Extend your class from this class if you are interested in writing protocol
independent servlets

27.2.1.2 HttpServlet class

= Available in javax.servlet.http package

» Extends from GenericServletclass

* Adds functionality for writing HTTP specific servlets as compared to
GernericServlet

= Extend your class from HttpServlet, if you want to write HTTP based servlets

27.3 Servlet Class Hierarchy

The Servlet class hierarchy is given below. Like all java classes GenericServlet also
inherits from Object class. Apart from GenericServlet and HttpServlet classes,
ServletRequest, HttpServletRequest, ServeltResponse and
HttpServletResponse are also helpful in writing a servlet.

As you can guess ServletRequest & ServletResponse are used in conjunction with
GenericServlet. These classes are used for processing protocol independent requests and
generating protocol independent responses respectively.

© Copyright Virtual University of Pakistan Page 261

Web Design and Development (CS506)

Object
F_)
GenericServlet ServietRequest ServietResponse
T T T
HttpServlet HttpServietRequest HttpServietResponse

HttpServletRequest & HttpServletRespose are used for processing HTTP protocol specific
requests and generating HTTP specific response. Obviously these classes will be used in
conjunction with HttpServet class, which means you are making a HTTP protocol specific
servlet.

27.4 Types of HTTP requests

HTTP supports different types of request to be sent over to server. Each request has some
specific purpose. The most important ones are get & post. Given below a brief overview
of each request type is given. You can refer to RFC of HTTP for further details.

» GET: Requests a page from the server. This is the normal request used when
browsing web pages.

e POST: This request is used to pass information to the server. Its most common
use is with HTML forms.

e PUT: Used to put a new web page on a server.

« DELETE: Used to delete a web page from the server.

» OPTIONS: Intended for use with the web server, listing the supported options.

» TRACE: Used to trace servers

27.5 GET & POST, HTTP request types

Some details on GET and POST HTTP request types are given below.
- GET

o Attribute-Value pair is attached with requested URL after “?’.

© Copyright Virtual University of Pakistan Page 262

Web Design and Development (CS506)

o For example if attribute is ‘name’ and value is ‘ali’ then the request will be
http://www.gmail.com/register?name=ali

o For HTTP based servlet, override doGet () methods of HttpServlet class to handle
these type of requests.

- POST

o Attribute-Value pair attached within the request body. For your reference HTTP
request diagram is given below again:

GET /index.html HTTP/1.1 request line

Host: java.sun.com request headers
User-Agent: Mozilla/4.5 [en]

Accept: image/gif, image/jpeg, image/pipeg, */*
Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

optional request body
Request parameters etc

o Override doPost()method of HttpServlet class to handle POST type requests.

27.6 Steps for making a Hello World Servlet

To get started we will make a customary “HelloWorldServlet”. Let’s see what
are the steps involved in writing a servlet that will produce ““Hello World™

1. Create a directory structure for your application (i.e. helloapp). This is a one time process
for any application

2.Create a HelloWorldServlet source file by extending this class from HttpServlet
and overriding your desired method. For example doGet() or doPost().

3. Compile it (If get error of not having required packages, check your class path)

4. Place the class file of HelloWorldServlet in the classes folder of your web
application (i.e. myapp).

a. Note: If you are using packages then create a complete structure under classes
folder

© Copyright Virtual University of Pakistan Page 263

Web Design and Development (CS506)

5. Create a deployment descriptor (web.xml) and put it inside WEB-INF folder
6. Restart your server if already running
7. Access it using Web browser

Example Code: HelloWorldServlet.java

//File HelloWorldServlet.java

// importing required packages

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

// extending class from HttpServelt

public class HelloWorldServlet extends HttpServlet {

/* overriding doGet() method because writing a URL in the browser by default generate request of
GET type As you can see, HttpServletRequest and HttpServletResponse are passed to this method.
These objects will help in processing of HTTP request and generating response for HTTP This
method can throw ServletException or IOException, so we mention these exception types after
method signature

*/

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

{

/* getting output stream i.e PrintWriter from response object by calling getWriter method on it As

mentioned, for generating response, we will use HttpServletResponse object
*/

PrintWriter out = response.getWriter();

I* printing Hello World in the browser using PrintWriter object. You can also write HTML like
out.printin(*<h1> Hello World </h1>”)

*/

out.printin(*Hello World!);

} // end doGet()

} // end HelloWorldServlet

Example Code: web.xml

eXtensible Markup Language (xml) contains custom defined tags which convey
information about the content. To learn more about XML visit http://ww.w3schools.com.

Inside web.xml, the <web-app> is the root tag representing the web application. All other tags
come inside of it.

<?xml version="1.0" encoding="1SO-8859-1"?>
<web-app>

© Copyright Virtual University of Pakistan Page 264

Web Design and Development (CS506)

<servlet>

<servlet-name> HelloWorldServlet </servlet-name>
<servlet-class> HelloWorldServlet </servlet-class> </servlet>
<servlet-mapping>

<servlet-name> HelloWorldServlet </servlet-name> <url-pattern>
/myfirstservlet </url-pattern>

</servlet-mapping>

</web-app>

The <servlet>tag represents one’s servlet name and its class. To specify the name of
servlet, <servlet-name> tag is used. Similarly to specify the class name of servlet (itis the
same name you used for making a servlet), <servlet-class>tag is used.

Note: It is important to note here that you can specify any name for a servlet inside
<servlet-name> tag. This name is used for referring to servlet in later part of
web.xml. You can think of it as your id assigned to you by your university while you have
actually different name (like <servlet-class>).

Next we will define the servlet mapping. By defining servlet mapping we are specifying URL to
access a servlet. <servlet-mapping> tag is used for this purpose.

Inside <servlet-mapping> tag, first you will write the name of the servlet for which you
want to specify the URL mapping using <servlet-name> tag and then you will define the URL
pattern using <url-pattern>tag. Notice the forward slash (/) is used before specifying the url.
You can specify any name of URL. The forward slash indicates the root of your
application.

<url-pattern>/myfirstservlet </url-pattern>

Now you can access HelloWorldServelt(if it is placed in myapp application) by giving the
following url in the browser

http://localhost:8080/myapp/myfirstservlet

Note: Save this web.xml file by placing double quotes(“web.xml”) around it as you did to save
Java files.

27.7 Compiling and Invoking Servlets

» Compile HelloWorldServlet.java using javac command.

e Put HelloWorldServlet.class in C:\jakarta-tomcat-
5.5.9/webapps/myapp/ WEB-INF/classesfolder
e Put web.xml file in C:\jakarta-tomcat-

5.5.9/webapps/myapp/WEB-INF folder
» Invoke your servlet by writing following URL in web browser. Don’t forget to

© Copyright Virtual University of Pakistan Page 265

Web Design and Development (CS506)

restart your tomcat server if already running
http://localhost:8080/myapp/myfirstservlet

Note: By using IDEs like netBeans® 4.1, you don’t have to write web.xml by yourself
or even to worry about creating directory structure and to copy files inappropriate locations.
However manually undergoing this process will strengthen your concepts and will help you to
understand the underlying mechanics.

27.8 References:

» Entire material for this handout is taken from the book JAVA A Lab Course by Umair
Javed. This material is available just for the use of VU students of the course Web
Design and Development and not for any other commercial purpose without the consent
of author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 266

Web Design and Development (CS506)

Lecture 28: Servlets Lifecycle

In the last handout, we have seen how to write a simple servlet. In this handout we will look
more specifically on how servlets get created and destroyed. What different set of method are
invoked during the lifecycle of a typical servlet.

The second part consists on reading HTML form data through servlet technology. This will be
explored in detail using code example

28.1 Stages of Servlet Lifecycle

A servlet passes through the following stages in its life.
» Initialize

e Service
e Destroy

As you can conclude from the diagram below, that with the passage of time a
servlet passes through these stages one after another.

Serviet

Initialization
{Load Resourges)

¥

Request » Service
RE‘SDOH So {Accept Beguests)
L J
Destruction

{Unload Resources)

28.1.1Initialize

When the servlet is first created, it is in the initialization stage. The webserver invokes he
init()method of the servlet in this stage. It should be noted here that init() is only called once
and is not called for each request. Since there is no constructor available in Servlet so this urges
its use for one time initialization (loading of resources, setting of parameters etc) just as the

© Copyright Virtual University of Pakistan Page 267

Web Design and Development (CS506)

Tava Servlet-bazed Web Server

Mam Process

TV
Request for Serviet 1 ——Wr—me___|
Servletl
Request for Servlet l_p\
/ Servlet2
Request for Servlet |————»

init()method of applet.
Initialize stage has the following characteristics and usage

» Executed once, when the servlet gets loaded for the first time

* Not called for each client request

» The above two points make it an ideal place to perform the startup tasks which are
done in constructor in a normal class.

28.1.2Service

The service() method is the engine of the servlet, which actually processes the client’s request.
On every request from the client, the server spawns a new thread and calls the service() method
as shown in the figure below. This makes it more efficient as compared to the
technologies that use single thread to respond to requests.

The figure below show both versions of the implementation of service cycle. In the upper
part of diagram, we assume that servlet is made by sub-classing from GenericServlet. (Remember,
GenericServlet is used for constructing protocol independent servlets.). To provide the desired
functionality, service() method is overridden. The client sends a request to the web server; a new
thread is created to serve this request followed by calling the service()method. Finally a response is
prepared and sent back to the user according to the request.

© Copyright Virtual University of Pakistan Page 268

Web Design and Development (CS506)

GenericServliet subclass

=
-

request ————p

response -{—

Server

HttpServlet subclass
ﬂ_’ doGet() \
- [

response < —

request —————3»
POST responsge €————
Web Server

GET request ——————3p- e
L

service()

:| Implemented by subclass
\ ~

The second part of the figure illustrates a situation in which servlet is made using
HttpServlet class. Now, this servlet can only serves the HTTP type requests. In these
servlets doGet() and doPost() are overridden to provide desired behaviors. When a request is
sent to the web server, the web server after creating a thread, passes on this request to
service()method. The service() method checks the HTTP requests type (GET, POST etc) and
calls the doGet() or doPost() method depending on how the request is originally sent. After
forming the response by doGet() or doPost() method, the response is sent back to the service()
method that is finally sent to the user by the web server.

28.1.3 Destroy

The web server may decide to remove a previously loaded servlet instance, perhaps because it is
explicitly asked to do so by the server administrator, or perhaps servlet container shuts down or
the servlet is idle for a long time, or may be the server is overloaded. Before it does, however it
calls the servlets destroy()method. This makes it a perfect spot for releasing the acquired
resources.

© Copyright Virtual University of Pakistan Page 269

Web Design and Development (CS506)

28.2 Summary

A Servlet is constructed and initialized. The initialization can be performed inside of

init()method.

» Servlet services zero or more requests by calling service() method that may
decide to call further methods depending upon the Servlet type (Generic or HTTP

specific)

» Server shuts down, Servlet is destroyed and garbage is collected

The following figure can help to summarize the life cycle of the Servlet

Create
+ failure
| SUCCEesS
Initialize
+ failure

Success

Available
(Servicing Requests)

Y

destroy request

Y

Y

Destroy

>

Unload

The web sever creates a servlet instance. After successful creation, the servlet enters into
initialization phase. Here, init() method is invoked for once. In case web server fails in
previous two stages, the servlet instance is unloaded from the server.

After initialization stage, the Servlet becomes available to serve the clients requests and to
generate response accordingly. Finally, the servlet is destroyed and unloaded from web

SCIrver.

28.3 Reading HTML Form Data Using Servlets

In the second part, the required concepts and servlet technology is explored in order to read

© Copyright Virtual University of Pakistan

Page 270

Web Design and Development (CS506)

HTML form data. To begin with, let’s first identify in how many ways a client can send data

28.3.1HTML & Servlets

Generally HTML is used as a Graphics User Interface for a Servlet. In the figure below,
HTML form is being used as a GUI interface for MyServlet. The data entered by the user in
HTML form is transmitted to the MyServlet that can process this data once it read out.
Response may be generated to fulfil the application requirements.

Client Server
[.
File] Edit [riew [FavoToolqHely
Text box Example —
Fitat Mame Tomcat Servlet Contamer
[
Sur Hame e PL MyServlet
Checkbox Example
O Apple [|
O Banana
O Mango
HTNML Form

28.3.2 Types of Data send to Web Server

When a user submits a browser request to a web server, it sends two categories of data:

e Form Data

Data that the user explicitly type into an HTML form. For example: registration
information provided for creating a new email account.

« HTTP Request Header Data
© Copyright Virtual University of Pakistan Page 271

Web Design and Development (CS506)

Data, which is automatically, appended to the HTTP Request from the client for
example, cookies, browser type, and browser [P address.

Based on our understanding of HTML, we now know how to create user forms. We also
know how to gather user data via all the form controls: text, password, select, checkbox,
radio buttons, etc. Now, the question arises: if I submit form data to a Servlet, how do I
extract this form data from servlet? Figuring this out, provides the basis for creating
interactive web applications that respond to user requests.

28.3.2.1 Reading HTML Form Data from Servlet

Now let see how we can read data from “HTML form” using Servlet. The
HttpServletRequest object contains three main methods for extractingform data submitted by
the user:

e getParameter(String name)

o Used to retrieve a single form parameter and returns String corresponding to name
specified.

o Empty String is returned in the case when user does not enter any thing in the
specified form field.

o Ifthe name specified to retrieve the value does not exist, it returns null.

Note: You should only use this method when you are sure that the parameter has only one
value. If the parameter might have more than one value, use getParamterValues().

e getParameterValues(String name)

o Returns an array of Strings objects containing all of the given values of the given
request parameter.
o If'the name specified does not exist, nullis returned

e getParameterNames()

o Ifyou are unsure about the parameter names, this method will be helpful

o It returns Enumeration of String objects containing the names of the parameters
that
come with the request.

o Ifthe request has no parameters, the method returns an empty Enumeration.

Note: All these methods discussed above work the same way regardless of the request
type(GET or POST). Also remember that form elements are case sensitive for example,
“userName” is not the same as the “username.”

© Copyright Virtual University of Pakistan Page 272

Web Design and Development (CS506)

Example Code: Reading Form Data using Servlet

This example consists of one HTML page (index.html), one servlet (MyServlet.java) and one
xml file (web.xml) file. The HTML page contains two form parameters: firstName and
surName. The Servlet extracts these specific parameters and echoes them back to the browser after

appending “Hello™.

Note: The example given below and examples later in coming handouts are built using
netBeans®4.1. It’s important to note that tomcat server bundled with netBeans® runs on 8084

port by default.
index.html

© Copyright Virtual University of Pakistan Page 273

Web Design and Development (CS506)

Reading Two Parameters - Microsoft Internet Explorer

File Edit WView Favorites Tools Help

Address I’; C:'\Documents and Settings\umairj. UMAIR \Desktop\index. html

Please fill out this form:

l:irﬁmame:| H

Surname: |

[Submit Farm] [Reseat]

_|ol x

I
l.l’

Let’s have a look on the HTML code used to construct the above page.

£ | Done i ¥y Cn:nmeuter

<htmI>

<head>

<title> Reading Two Parameters </title> </head>

<body>

<H2> Please fill out this form: </H2>

<FORM METHOD="GET"
ACTION=""http://localhost:8084/paramapp/formservlet"
NAME="myform" >

 Firstname:
<INPUT TYPE = “text” NAME=""firstName'">

 Surname:

<INPUT TYPE = “text” NAME=""surName"'>

© Copyright Virtual University of Pakistan Page 274

Web Design and Development (CS506)

<INPUT TYPE="submit" value="Submit Form">
<INPUT TYPE="reset" value="Reset">
</FORM>

</body>

</html>

Let’s discuss the code of above HTML form. As you can see in the <FORM>tag, the attribute
METHODis set to “GET””. The possible values for this attribute can be GET and POST. Now what
do these values mean?

» Setting the method attribite to “GET” means that we want to send the HTTP request
using the GET method which will evantually activate the doGet() method of the
servlet. In the GET method the information in the input fields entered by the user, merges
with the URL as the query string and are visible to the user.

» Setting METHOD value to “POST” hides the entered information from the user as this
information becomes the part of request body and activates doPost()method of the
servlet.

Attribute ACTION of<FROM>tag is set to http://localhost:8084/paramapp/formservlet.
The form data will be transmitted to this URL. paramapp is the name of web application
created using netBeans. formservlet

is the value of <url-pattern> defined in the web.xml.The code of web.xml is given at the
end.

The NAMEqattribute is set to “myform” that helps when the same page has more than one
forms. However, here it is used only for demonstration purpose.

To create the text fields where user can enter data, following lines of code come into play

<INPUT TYPE = “text” NAME="firstName">
<INPUT TYPE = “text” NAME="surName">

Each text field is distinguished on the basis of name assigned to them. Later these
names also help in extracting the values entered into these text fields.

MyServlet.java

Now let’s take a look at the servlet code to which HTML form data is submitted.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

© Copyright Virtual University of Pakistan Page 275

Web Design and Development (CS506)

public class MyServlet extends HttpServlet
{
public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, [OException

{

// reading first name parameter/textfield

String fName = req.getParameter(“firstName”);

// reading surname parameter/textfield

String sName = req.getParameter(‘“‘surName”);

// gettting stream from HttpServletResponse object

PrintWriter out = res.getWriter();

out.println("Hello: " + fName + " " + sName);

out.close();

}

+// end FormServlet

We started the code with importing three packages.

import java.io.*,
import javax.servlet.®;
import javax.servlet.http.*;

These packages are imported to have the access on PrintWriter, HttpServlet,
HttpServletRequest, HttpServletResponse, ServletException and IOException classes.

The class MySevlet extends from HttpServlet to inherit the HTTP specific functionality.
If you recall HTML code (index.html) discussed above, the value of mehtod attribute was
set to “GET”. So in this case, we only need to override doGet() Method.

Entering inside doGet()method brings the crux of the code. These are:

String fName = req.getParameter(“firstName”); String sName =
req.getParameter(“surName”);

Two String variables fNameand sNameare declared that receive String values returned by
getParameter() method. As discussed earlier, this method returns String corresponds
to the form parameter. Note that the values of nameattributes of input tags used in index.html
have same case with the ones passed to getParameter() methods as parameters. The part of
HTML code is reproduced over here again:

<INPUT TYPE = “text” NAME="firstName">
<INPUT TYPE = “text” NAME="surName'>

© Copyright Virtual University of Pakistan Page 276

Web Design and Development (CS506)

In the last part of the code, we get the object of PrintWriterstream from the object of
HttpServletResponse. This object will be used to send data back the response. Using PrintWriter
object (out), the names are printed with appended ““Hello”” that becomes visible in the browser.

web.xml

<?xml version="1.0" encoding="1SO-8859-1"?> <web-app>
<servlet>

<servlet-name> FormServlet </servlet-name>

<servlet-class> MyServlet </servlet-class> </servlet>
<servlet-mapping>

<servlet-name> FormServlet </servlet-name>

<url-pattern> /formservlet </url-pattern> </servlet-mapping>
</web-app>

The <servlet-mapping> tag contains two tags <servlet-name> and
<urlpatteren> containing name and pattern of the URL respectively. Recall the value of action
attribute of the <form>element in the HTML page. You can see it is exactly the same as
mentioned in <url-pattern> tag.

http://localhost:8084/paramapp/formservlet

28.4 References:

* JAVA aLab Course by Umair Javed
e Java API documentation
» Core Servlets and JSP by Marty Hall

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 277

Web Design and Development (CS506)

Lecture 29: More on Servlets

The objective of this handout is to learn about the use and implementation of initialization
parameters for a Servlet. Moreover different ways of redirecting response and forwarding or
including requests also discussed in detail.

29.1 Initialization Parameters
Some times at the time of starting up the application we need to provide some initial
information e,g, name of the file where server can store logging information, DSN for
database etc. Initial configuration can be defined for a Servlet by defining some string
parameters in web.xml. This allows a Servlet to have initial parameters from outside. This

is similar to providing command line parameters to a standard console based application.

Example: setting init parameters in web.xml

Let’s have a look on the way of defining these parameters in web.xml

<init-param> //defining param 1

<param-name> param] </param-name>
<param-value> valuel </param-value>
</init-param>

<init-param> //defining param 2

<param-name> param2 </param-name>
<param-value> value2 </param-value> </init-param>

In the above code, it is shown that for each parameter we need to define separate
<initparam>tag that have two sub tags <param-name> and <param-value>, which contain the
name and values of the parameter respectively.

29.1.1ServletConfig

Every Servlet has an object called ServletConfig associated with it as shown in the fig.
below. It contains relevant information about the Servlet like initialization parameters
defined in web.xml

© Copyright Virtual University of Pakistan Page 278

Web Design and Development (CS506)

Servlet

ServletConfig

Init
Farameters

29.1.2Reading Initialization Parameters

Now let’s see, how we can access init parameters inside the Servlet. The method
getlnitParameter()of ServletConfig is usually used to access init parameters. Ittakes a String
as parameter, matches it with <param-name> tag under all

<init-param> tags and returns <param-value> from the web.xml

One way is to override init() method as shown in the code below. The
ServletConfigobject can then be used to read initialization parameter.

public void init(ServletConfig config) throws ServletException {
String name = config.getInitParameter(‘“paramName”);

}

Another way to read initialization parameters out side the init () method is

» Call getServletConfig() to obtain the ServletConfig object
» Use getlnitParameter() of ServletConfig to read initialization
parameters

public void anyMethod() // defined inside servlet

{
ServletConfig config = getServletConfig();

String name = config.getInitParameter(“param_name");

}

Example Code: Reading init parameters

MyServlet.javawill read the init parameter (log file name) defined inside web.xml. The code is
given below:

import java.io.*;
import java.net.*;

© Copyright Virtual University of Pakistan Page 279

Web Design and Development (CS506)

import javax.servlet.*;

import javax.servlet.http.*;

public class MyServlet extends HttpServlet {

// attribute used to store init-parameter value

String fileName;

// overriding init() method

public void init(ServletConfig config)

throws ServletException {

super.init(config);

// reading init-parameter “logfilename” stored in web.xml
fileName = config.getInitParameter("logfilename");

}

/>l<

Both doGet() & doPost() methods are override over here. processRequest() is called from both these
methods. This makes possible for a servlet to handle both POST and GET requests identically.

*/

// Handles the HTTP GET request type

protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

{

processRequest(request, response);
b
// Handles the HTTP POST request type

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{

processRequest(request, response);
b
// called from doGet() & doPost()

protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{

PrintWriter out = response.getWriter();

// writing init-parameter value that is store in fileName
out.println(fileName);
out.close();

}
} // end MyServlet

web.xml

<?xml version="1.0" encoding="UTF-8"?> <web-app>

<servlet>

© Copyright Virtual University of Pakistan Page 280

Web Design and Development (CS506)

<servlet-name> MyServlet </servlet-name>

<servlet-class> MyServlet </servlet-class>

<init-param>

<param-name> logfilename </param-name>

<param-value> logoutput.txt </param-value> </init-param>
</servlet>

<servlet-mapping>

<servlet-name> MyServlet </servlet-name>

<url-pattern> /myservlet </url-pattern> </servlet-mapping>

</web-app>

29.1.3Response Redirection

We can redirect the response of the Servlet to another application resource (another Servlet, an
HTML page or a JSP) but the resource (URL) must be available to the calling Servlet, in the same
Servlet context (discussed later).

There are two forms of response redirection that can be possible:

» Sending a standard redirect
* Sending a redirect to an error page

29.1.4Sending a standard Redirect

» Using response.sendRedirect(“myHtml.htm]”) method, a new request is generated
which redirects the user to the specified URL.

e If the URL is of another Servlet, that second Servlet will not have access to the
original request object. For example, if the request is redirected from servletl to
servlet2, then servlet2 would not be able to access the request object of servletl.

» To have access to the original request object, you must use the request dispatching
technique (discussed later) instead of redirect.

29.1.5Sending a redirect to an error page

Instead of using response.sendRedirect (), wecan useresponse.sendEorror () to show user an error
page. This method takes two parameters, first the error number that is a predefined constant of the
response class (listed below) and seconds the appropriate error message. The steps to redirect the
user to an error page are:

© Copyright Virtual University of Pakistan Page 281

Web Design and Development (CS506)

* An error code is sent as a parameter of response.sendError (int, msg)
method

» The error page is displayed with the msg passed to method

e The error numbers are predefined constants of the HttpServletResponse class.
For example:

o SC NOT FOUND (404)
o SC_NO CONTENT (204)
o SC REQUEST TIMEOUT (408)

Example Code: Response Redirection

The example given below demonstrates a typical sign on example in which a user is asked to
provide login/password, providing correct information leads to welcome page or otherwise to a
registration page. This example consists of login.html, welcome.html, register.html and
MyServlet.java files. Let’s examine these one after another.

login.html

This page contains two text fields; one for entering username and another for password. The data
from this page is submitted to MyServlet.java.

<htmI>

<body>

<h2> Please provide login details</h2>
<FORM METHOD="POST"
ACTION="http://localhost:8084/redirectionex/myservlet" NAME="myForm" >

 User Id:

<INPUT TYPE="text" name="userid"/>

 Password:

<INPUT TYPE="password" name="pwd"/>

<input type="submit" value="Submit Form"/>
</form>

</body>

</html>

welcome.html

The user is directed to this page only if user provides correct login / password. This page only
displays a successfully logged-in message to the user.

<htmI>
<body>
<h2> You have successfully logged in </h2> </body>
</html>

© Copyright Virtual University of Pakistan Page 282

Web Design and Development (CS506)

register.html

The user is redirected to this page in case of providing incorrect login/password information.
The user can enter user id, address and phone number here to register.

Note: The code given below will only show fields to the user. It does not register user as no
such functionality is added into this small example.

<htmI>

<body>

<h2>Your login is incorrect. Please register yourself</h2>
<FORM METHOD="POST" ACTION="" NAME="myForm">

 Name:

<INPUT TYPE="text" NAME="userid"/>

 Address:

<INPUT TYPE="text" NAME="address"/>

 Phone No:

<INPUT TYPE="text" NAME="phoneno"/>

<input type="submit" value="Register"/>

</FORM>

</body>

</htm]>

MyServlet.java

MyServlet.java accepts requests from login.html and redirects the user to welcome.html or
register.html based on the verification of username & password provided. Username &
password are compared with fix values in this example, however you can verify these from
database or from a text file etc.

import java.io.*;

import java.net.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class MyServlet extends HttpServlet {

// Handles the HTTP GET request type
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{

processRequest(request, response);
h
// Handles the HTTP POST request type

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{

© Copyright Virtual University of Pakistan Page 283

Web Design and Development (CS506)

processRequest(request, response);
b
protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{

String id = request.getParameter("userid");

String pwd = request.getParameter("pwd");

// comparing id & password with fix values

if(id.equals("ali") && pwd.equals("vu")) {

// redirectign user to welcome.html

response.sendRedirect("welcome.html");

b
else {

// redirecting user to register.html

response.sendRedirect("register.html");

/* if you want to display an error message to the

user, you can use the following method

response.sendError(response.SC_PROXY AUTHENTICATION REQUIRED, "Send Error Demo");
*/

} // end else

}

29.2 ServletContext

ServletContext belongs to one web application. Therefore it can be used for sharing
resources among servlets in the same web application.

As initialization parameters, for a single servlet are stored in ServletConfig,
ServetContext can store initialization parameters for the entire web application. These
parameters are also called context attributes and exist for the lifetime of the application.
The following figure illustrates the sharing of context attributes among all the servlets
of a web application.

Servlet Context

Servletl Servlet2

< | 7

<uses> <uses> <uses>

L/

Context
Attributes

Note:

© Copyright Virtual University of Pakistan Page 284

Web Design and Development (CS506)

» There is a single ServletContext per web application
« Different Sevlets will get the same ServletContext object, when calling
getServletContext() during different sessions

29.3 Request Dispatcher

RequestDispatcher provides a way to forward or include data from another source. The method
getRequestDispatcher(String path) of ServletContext returns a RequestDispatcher object
associated with the resource at the given path passed as a parameter.

Two important methods of RequestDispatcher are:
» forward(ServletRequest req, ServletResponse resp)
» include(ServletRequest req, ServletResponse resp)
29.4 RequestDispatcher: forward
Characteristics of forward methods are:

» It allows a Servlet to forward the request to another resource (Servlet, JSP or
HTML file) in the same Servlet context.

e Forwarding remains transparent to the client unlike
res.sendRedirect(String location). You can not see the changes in the URL.

* Request Object is available to the called resource. In other words, it remains in
scope.

» Before forwarding request to another source, headers or status codes can be set, but
output content cannot be added.

To clarify the concepts, lets take the help from following figure. User initates the request to
servletl. servletl forwards the request to servlet2 by -calling forward(request,
response). Finally a response is returned back to the user by servlet2.

HTTPResponse

\ Servletl

Person

Forward(request
, response)
HTTPRequest

© Copyright Virtual University of Pakistan Page 285

A 4

Servlet2

Web Design and Development (CS506)

29.5 RequestDispatcher: include

It allows a Servlet to include the results of another resource in its response. The two major
differences from forward are:

» Data can be written to the response before an include
= The first Servlet which receive the request, is the one which finishes the response

It will be more cleared from the following figure. User sends a HTTPRequest to Servletl.
Serlet2 is called by Servletl by using include(request, response) method. The response

generated by Servlet2 sends back to Servletl. Servletl can also add its own response content and
finally send it back to user.

Return from
HTTPResponse .
include
Servlet2
Servletl
Person
include(request,
response)
HTTPRequest

29.6 References:

Java A Lab Course by Umair Javed
Core Servlets and JSP by Marty Hall
Java API documentation

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 286

Web Design and Development (CS506)

Lecture 30: Dispatching Requests

In this handout we will start with request dispatching techniques and give some examples related
to that. Further more some methods of HttpResponse and HttpRequest will also be discussed.
Finally, this handout will be concluded by discussing the importance of session racking. Before
starting, let’s take a look at the summery of the previous lecture.

30.1 Recap

In the previous lecture we had some discussion about Response Redirection and Request
Dispatcher. We said that Response Redirection was used to redirect response of the Servlet to
another application resource. This resource might be another Servlet or any JSP page.

Two forms of Response redirection were discussed. These were:

30.1.1Sending a standard request:

Using response.sendRedirect(“path of resource”) method, a new request is generated which
redirects the user to the given URL. If the URL 1s of another servlet, that second servlet will not
be able to access the original request object.

30.1.2Redirection to an error page:

An error code is passed as a parameter along with message to response.sendError(int, msg
method. This method redirects the user to the particular error page in case of occurrence o
specified error.

Similarly request dispatching provides us the facility to forward the request processing to another
servlet, or to include the output of another resource (servlet, JSP or HTML etc) in the response.
Unlike Response Redirection, request object of calling resource is available to called resource.
The two ways of Request Dispatching are:

30.1.3Forward:
Forwards the responsibility of request processing to another resource.
30.1.4Include:

Allows a servlet to include the results of another resource in its response. So unlike forward, the
first servlet to receive the request is the one which finishes the response.

Example Code: Request Dispatching - include

© Copyright Virtual University of Pakistan Page 287

Web Design and Development (CS506)

Lets start with the example of include. We will see how a Servlet includes the output of another
resource in its resiolonse. The following examc]i)l_e includes a calling Servlet MyServlet and Servlet
IncludeServlet, who’s output will be included in the calling Servlet.

The code of MyServlet.java servlet is given below.

MyServlet.java

import java.io.*;

import java.net.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class MyServlet extends HttpServlet {

/* this method is being called by both doGet() and doPost().We usually follow this practice, when we
are not sure about the type of incoming request to the servlet. So the actual processing is being done in
the processRequest().

*/

protected void processRequest(HttpServletRequest request, HttpServletResponse response)

throws ServletException, [OException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<htmI>");

out.println("<body>");

out.println("<h1>Start of include request </h1>");
out.flush();

// getting the object of ServletContext, that will be used to
// obtain the object of RequestDispacther
ServletContext context = getServletContext();

// getting the object of RequestDispatcher by passing the path
// of included resource as a parameter
RequestDispatcher rd = context.getRequestDispatcher("/includeservlet");

// calling include method of RequestDispatcher by passing

// request and response objects as parameters. This will execute
//the second servlet and include its output in the first servlet
rd.include(request, response);

/* the statements below will be executed after including the output of the /includeservlet */
out.println("<h1>End of include request </h1>");

out.println("</body>");
out.println("</htmI>");

© Copyright Virtual University of Pakistan Page 288

Web Design and Development (CS506)

// closing PrintWriter stream out.close();

}

// This method only calls processRequest()

protected void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {

processRequest(request, response);

}

// This method only calls processRequest()

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {

processRequest(request, response);

}

} // end MyServlet

Include Servlet

Now let’s take a look at the code of IncludeServlet.java

import java.io.*;

import java.net.*;

import javax.servlet.®;

import javax.servlet.http.*;

public class IncludeServlet extends HttpServlet {

// this method is being called by both doGet() and doPost()
protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

// Obtaining the object of PrintWriter, this will return the

// same PrintWriter object we have in MyServlet

PrintWriter out = response.getWriter();

// Including a HTML tag using PrintWriter

out.println("<h1> <marquee>I am included </marquee></h1>");

}

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);

}

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException {
processRequest(request, response);

}

© Copyright Virtual University of Pakistan Page 289

Web Design and Development (CS506)

‘ }+ // end IncludeServlet

In the processRequest(), firstly we get the PrintWriter stream from the
HttpServletResponse object. Then we include an HTML tag to the output of the calling servlet.
One thing that must be considered is that PrintWriter stream is not closed in the end, because it is
the same stream that is being used in the calling servlet and this stream may also be used in the
calling servlet again. So, if it is closed over here, it can not be used again in the calling servlet.

web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app>

<servlet>
<servlet-name>MyServlet</servlet-name>
<servlet-class>MyServlet</servlet-class>
</servlet>

<servlet>
<servlet-name>IncludeServlet</servlet-name>
<servlet-class>IncludeServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>MyServlet</servlet-name>
<url-pattern>/myservlet</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>IncludeServlet</servlet-name>
<url-pattern>/includeservlet</url-pattern>
</servlet-mapping>

</web-app>

Code Example: Request Dispatcher — forward

As discussed earlier, we can forward the request processing to another resource using forward
method of request dispatcher. In this exam (}e, the user enters his/her name and salary on the
index.htmlan% submits the form to FirstServlet,which calculates the tax on salary and forwards
the request to another servlet for further processing i.e. SecondServlet.

index.html

<htmI>

<body>

<form method="POST" ACTION = “firstservlet" NAME="myForm">
<h2> Enter your name</h2>

<INPUT TYPE="text" name="name"/>

<h2> Salary</h2>

<INPUT TYPE="text" name="salary"/>

© Copyright Virtual University of Pakistan Page 290

Web Design and Development (CS506)

<INPUT type="submit" value="Submit"/>
</form>

</body>

</html>

FirstServlet.java

import java.io.*;

import java.net.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {

// this method is being called by both doGet() and doPost()

protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

// getting value of salary text filed of the HTML form
String salary = request.getParameter("salary");

// converting it to the integer.

int sal = Integer.parselnt(salary);

// calculating 15% tax

int tax = (int)(sal * 0.15);

// converting tax into string

String taxValue = tax + "";

// request object can store values in key-value form, later it
// can be retrieved by using getAttribute() method
request.setAttribute("tax", taxValue);

// getting object of servletContext

ServletContext sContext = getServletContext();

/I getting object of request dispatcher

RequestDispatcher rd = sContext.getRequestDispatcher("/secondservlet");

// calling forward method of request dispatcher
rd.forward(request, response);

}

// This method is calling processRequest()

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException {

processRequest(request, response);

b
// This method is calling processRequest()

© Copyright Virtual University of Pakistan Page 291

Web Design and Development (CS506)

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

processRequest(request, response);

b
b

Note: It the case of Forward, it is illegal to make the reference of PrintWriter stream in the
calling Servlet. Only the called resource can use PrintWriter stream to generate response

SecondServlet.java

import java.io.*;

import java.net.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SecondServlet extends HttpServlet {

// this method is being called by both doGet() and doPost()
protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html");

PrintWriter out = response.getWriter();

// obtaining values of name and salary text fields of index.html
String name = request.getParameter("name");

String salary = request.getParameter("salary");

/* getting attribute value that has been set by the calling servlet i.e. FirstServlet */
String tax = (String)request.getAttribute("tax");

// generating HTML tags using PrintWriter
out.println("<htmI>");

out.println("<head>");
out.println("<title>SecondServlet</title>");
out.println("</head>");

out.println("<body>");

out.println("<h1> Welcome " + name+ "</h1>");

out.println("<h3> Salary " + salary+ "</h3>");
out.println("<h3> Tax " + tax+ "</h3>");
out.println("</body>");
out.println("</htmI>");

out.close();

}
// This method is calling processRequest()

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException {

© Copyright Virtual University of Pakistan Page 292

Web Design and Development (CS506)

processRequest(request, response);
b
// This method is calling processRequest()

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException {

processRequest(request, response);

}
}

web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app>

<servlet>
<servlet-name>FirstServlet</servlet-name>
<servlet-class>FirstServlet</servlet-class>
</servlet>

<servlet>
<servlet-name>SecondServlet</servlet-name>
<servlet-class>SecondServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>FirstServlet</servlet-name>
<url-pattern>/firstservlet</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>SecondServlet</servlet-name>
<url-pattern>/secondservlet</url-pattern>
</servlet-mapping>

</web-app>

30.2 HttpServletRequest Methods

Let’s discuss some methods of HttpServletRequestclass

30.2.1setAttribute(String, Object)

We can put any object to the context using setAttribute() method in the key-value pair form..
These attributes are also set or reset between requests. These are often used in conjunction with
Request Dispatcher. This has also been illustrated in the above example. These attributes are
available every where in the same web application so that any other Servlet or JSP resource can
access them by using getAttribute() method.

© Copyright Virtual University of Pakistan Page 293

Web Design and Development (CS506)

30.2.2 getAttribute(String)

The objects set by the setAttribute() method can be accessed using getAttribute() method.
Passing the key in the form of string as a parameter to this method will return the object
associated with that particular key in the context. Cast the object into its appropriate type.

30.2.3 getMethod()

This method returns the name of HTTP method which was used to send the request. The
two possible returning values could be, get or post.

30.2.4 getRequestURL()

It can be used to track the source of Request. It returns the part of the request’s URL with
out query string.

30.2.5 getProtocol()

It returns the name and version of the protocol used.

30.2.6getHeaderNames()

It returns the enumeration of all available header names that are contained in the request.

30.2.7getHearderName()

It takes a String parameter that represents the header name and returns that appropriate header.

Null value is returned if there is no header exists with the specified name.
30.3 HttpServletResponse Methods

Let’s discuss some methods of HttpServletResponseclass

30.3.1setContentType()

Almost every Servlet uses this header. It is used before getting the PrintWriter Stream. It is used
to set the Content Type that the PrintWriter is going to use. Usually we set “text/html”, when we

want to send text output or generate HTML tags on the client’s browser.

30.3.2setContentLength()

This method is used to set the content length. It takes length as an integer parameter.

30.3.3addCookie()

This method is used to add a value to the Set-Cookie header. It takes a Cookie object as a

parameter and adds it to the Cookie-header. We will talk more about Cookies in the session

© Copyright Virtual University of Pakistan Page 294

Web Design and Development (CS506)

tracking part.

30.3.4sendRedirect()

This method redirects the user to the specific URL. This method also accepts the relative URL. It

takes URL string as parameter and redirects the user to that resource.

30.4 Session Tracking

Many applications require a series of requests from the same client to be associated withone
another. For example, any online shopping application saves the state of a user's shopping cart
across multiple requests. Web-based applications are responsible for maintaining such state,
because HTTP protocol is stateless. To support applications that need to maintain state, Java
Servlet technology provides an API for managing sessions and allows several mechanisms for
implementing sessions.

Before looking inside the session tracking mechanism lets see the limitation of HTTP protocol to
get the real picture of problems that can happen with out maintaining thesession.

30.4.1Continuity problem- user’s point of view

Server State

Page 1 Added book
to cart
Added book
] to cart
P 2 CC#= XXX
age > Billing
address
|
Order
Page 3 submitted
and logged
]
Page 4

Suppose a user logs on to the online bookshop, selects some books and adds them to his cart. He

© Copyright Virtual University of Pakistan Page 295

Web Design and Development (CS506)

enters his billing address and finally submits the order. HTTP cannot track session as it is
stateless in nature and user thinks that the choices made on pagel are remembered on page3.

30.4.2Continuity problem- Server’s point of view

PCI

Requestl

Request2

PC2

— 00000

I

PC3

- —

PC4

The server has a very different point of view. It considers each request independent from other
even if the requests are made by the same client.

30.5 References:

e Java A Lab Course by Umair Javed
e Core Servlet and JSP by Marty Hall

Note: Coding exercises in working condition for this lecture are also available on “Downloads”

section of LMS.

© Copyright Virtual University of Pakistan

Page 296

Web Design and Development (CS506)

Lecture 31: Session Tracking

We have discussed the importance of session tracking in the previous handout. Now, we’ll
discover the basic techniques used for session tracking. Cookies are one of these techniques and
remain our focus in this handout. Cookies can be used to put small information on the client’s
machine and can be used for various other purposes besides session tracking. An example of
simple “Online Book Store”, using cookies, will also be surveyed.

As mentioned elsewhere, HTTP is a stateless protocol. Every request is considered
independent of every other request. But many applications need to maintain a conversational
state with the client. A shopping cart is a classical example of such conversational state.

31.1 Store State Somewhere

To maintain the conversational state, the straightforward approach is to store the state. But
where? These states either can be stored on server or on client. However, both options have their
merits and demerits. Let’s cast a glance on these options:

Storing state on server side makes server really complicated as states needed to be stored for
each client. Some one can imagine how much space and processing is required in this
scenario as some web servers are hit more than hundred times in a second. E.g. Google,
Yahoo etc.

What if states are stored on client side in order to maintain a conversation? Do all the clients permit
you doing that? What if client (user) wiped out these states from the machine?

Concluding this discussion, state is stored neither completely on server side nor on client.
States are maintained by the mutual cooperation of both client & server. Generally modern
servers give the capability to store state on the server side and some information (e.g. client
[D/state ID) passed from the client will relate each client with its corresponding state.

31.2 Post-Notes

In order to maintain the conversational state, server puts little notes (some text, values etc) on the
client slide. When client submits the next form, it also unknowingly submits these little notes.
Server reads these notes and able to recall who the client is.

31.3 Three Typical Solutions

Three typical solutions come across to accomplish session tracking. These are:

1. Cookies

© Copyright Virtual University of Pakistan Page 297

Web Design and Development (CS506)

2. URL Rewriting
3. Hidden Fields

31.3.1Cookies

31.3.1.1 What a cookie is?

Don’t be tempted? These are not, what you might be thinking off. In fact, in computer
terminology, ““‘a cookie is a piece of text that a web server can store on a client’s(user)hard disk™.

Cookies allow the web sites to store information on a client machine and later retrieve it. The pieces
of information are stored as name-value pair on the client. Later while reconnecting to the same site

(or same domain depending upon the cookie settings), client returns the same name-value pair to
the server.

31.3.1.2 Cookie’s Voyage

To reveal the mechanism of cookies, let’s take an example. We are assuming here
that the web application we are using will set some cookies
» Ifyou type URL of a Web site into your browser, your browser sends a request for that web
page
o For example, when you type www.amazon.com a request is send to the Amazon’s
server

» Before sending a request, browser looks for cookie files that amazon has set
o If browser finds one or more cookie files related to amazon, it will send it along
with the request
o Ifnot, no cookie data will be sent with the request

» Amazaon web server receives the request and examines the request for cookies
If cookies are received, amazon can use them

o If no cookie is received, amazon knows that you have not visited before or the
cookies that were previously set got expired.

o Server creates a new cookie and send to your browser in the header of HTTP
Response so that it can be saved on the client machine.

31.3.2Potential Uses of Cookies

Whether cookies have more pros or cons is arguable. However, cookies are helpful in the following
situations

» identifying a user during an e-commerce session. For example, this book is added into
shopping cart by this client.
* Avoiding username and password as cookies are saved on your machine

© Copyright Virtual University of Pakistan Page 298

Web Design and Development (CS506)

» customizing a site. For example, you might like email-inbox in a different look form
others. This sort of information can be stored in the form of cookies on your machine and
latter can be used to format inbox according to your choice.

» Focused Advertising. For example, a web site can store information in the form of
cookies about the kinds of books, you mostly hunt for.

31.3.3Sending Cookies to Browser

Following are some basic steps to send a cookie to a browser (client).

1. Create a Cookie Object

A cookie object can be created by calling the Cookieconstructor, which takes two strings: the
cookie name and the cookie value.

9 <6

Cookie ¢ = new Cookie (“name”, “value™);

2. Setting Cookie Attributes

Before adding the cookie to outgoing headers (response), various characteristics of the cookie
can be set. For example, whether a cookie persists on the disk or not. If yes then how long.

A cookies by default, lasts only for the current user session (i.e. until the user quits the session)
and will not be stored on the disk.

Using setMaxAge(int lifetime)method indicates how much time (in seconds) should elapse
before the cookie expires.

c.setMaxAge(60); // expired after one hour

3. Place the Cookie into HTTP response

After making changes to cookie attributes, the most important and unforgettable step is to add this
currently created cookie into response. If you forget this step, no cookie will be sent to the browser.

response.addCookie(c);

31.3.4Reading Cookies from the Client

© Copyright Virtual University of Pakistan Page 299

Web Design and Development (CS506)

To read the cookies that come back from the client, following steps are generally followed.

1. Reading incoming cookies

To read incoming cookies, get them from the request object of the
HttpServeltRequestby calling following method
Cookie cookies[] = request.getCookies();

This call returns an array of Cookiesobject corresponding to the name & values that came in the
HTT P request header.

2. Looping down Cookies Array

Once you have an array of cookies, you can iterate over it. Two important methods of Cookie
class are getName() & getValue(). These are used to retrieve cookie name and value
respectively.

// looping down the whole cookies array
for(int i=0; i<cookies.length; i++) {

// getting each cookie from the array
Cookie ¢ = cookies][i];

// in search for particular cookie

if(c.getName().equals(“someName”) {

/* if found, you can do something with cookie or with the help of cookie.
If don’t want to process further, loop can also be stopped using

break statement

*/

}
} // end for

Example Codel: Repeat Visitor

In the example below, servlet checks for a unique cookie, named “repeat”. If the cookie is present,
servlet displays “Welcome Back”. Absence of cookie indicates that the user is visiting this site
for the first time thus servlet displays a message ““Welcome Aboard™.

This example contains only one servlet “RepeatVisitorServlet.java”and its code is given below.
A code snippet of web.xml is also accompanied.

Note: As a reminder, all these examples are built using netBeans4.1. This IDE will write
web.xml for you. However, here it is given for your reference purpose only, or for those which are
not using any IDE to strengthen their concepts

RepeatVisitorServlet.java

© Copyright Virtual University of Pakistan Page 300

Web Design and Development (CS506)

import java.io.*;

import java.net.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class RepeatVisitorServlet extends HttpServlet {

// Handles the HTTP <code>GET</code> method.

protected void doGet(HttpServletRequest request,HttpServletResponse response)
throws ServletException, IOException

{

processRequest(request, response);
b
// Handles the HTTP <code>POST</code> method.

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{

processRequest(request, response);
b
// called from both doGet() & doPost()

protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

// writing html

out.println("<htmI>");

out.println("<body>");

out.println("<h2>Cookie Example </h2>");

String msg ="";

boolean repeatVisitor = false;

// reading cookies

Cookie[] cookies = request.getCookies();

// if cookies are returned from request object

if (cookies !=null) {

//search for cookie -- repeat

for (int i = 0; 1 < cookies.length; i++) {

// retrieving one cookie out of array

Cookie ¢ = cookies[i];

// retrieving name & value of the cookie

String name = c.getName();

String val = c.getValue();

// confirming if cookie name equals “repeat” and

// value equals “yes”

if(name.equals("repeat") && val.equals("yes"))

{

msg="Welcome Back"; repeatVisitor = true; break;

}

© Copyright Virtual University of Pakistan Page 301

Web Design and Development (CS506)

} // end for

} // end if

// if no cookie with name “repeat” is found
if (repeatVisitor = false)

{

// create a new cookie

Cookie c1 = new Cookie("repeat", "yes");
// setting time after which cookies expires
cl.setMaxAge(60);

// adding cookie to the response
response.addCookie(cl);

msg = "Welcome Aboard";

b
// displaying message value out.println("<h2>" + msg + "</h2>");
out.println("</body>");

out.println("</htmI>");

out.close();

}
}+// end RepeatVisitorServlet
web.xml
<?xml version="1.0" encoding="UTF-8"?> <web-app>
<servlet>

<servlet-name> RepeatVisitorServlet </servlet-name>
<servlet-class> RepeatVisitorServlet </servlet-class> </servlet>
<servlet-mapping>
<servlet-name> RepeatVisitorServlet </servlet-name>
<url-pattern> /repeatexample </url-pattern>
</servlet-mapping>
</web-app>

Output

On first time visiting this URL, an output similar to the one
® Welcome Abroad - Netscape

Welcome Abroad

On refreshing this page or revisiting it within an hour (since the age of cookie was set to 60 mins),
following output should be expected.

given below would be displayed

Help
http://localhost/302ervlet/coreservlets.RequestVisitor ‘ Go

window

@® Welcome Abroad - Netscape

Welcome Back

window Help

http://localhost/302ervlet/coreservlets. RequestVisitor | Go

© Copyright Virtual University of Pakistan Page 302

Web Design and Development (CS506)

Example Code2: Online Book Store using cookies

A scale down version of online book store is going to be built using cookies. For the first time,
cookies will be used to maintain the session.

Three books will be displayed to the user along with check boxes. User can select any check box
to add the book in the shopping cart. The heart of the application is, it remembers the books
previously selected by the user.

The following figure will help you understand the theme of this example. Books displayed
under the heading of “You have selected the following books” were added to cart one after
another. The important thing is server that remembers the previously added books by the
same user and thus maintains the session. Session management is accomplished using
cookies.

Online Book Store

|:| java core servlets
|:| java how to program

|:| java complete reference

Add to Cart

You have selected following books

java core servlets

java complete reference

Online Book Store example revolves around one ShoppingCartServlet.java. This
Servlet has one global HashMap (globalMap) in which HashMap of individual user (sessionInfo) are
going to be stored. This (sessionIlnfo) HashMap stores the books selected by the user.

What’s the part of cookies? Cookie (named JSESSIONID, with unique value) is used to keep
the unique sessionlD associated with each user. This sessionlD is passed back and forth
between user and the server and is used to retrieve the HashMap (sessionInfo) of the user
from the global HashMap at the server. It should be noted here that, HashMaps of individual
users are stored in a global HashMap against a sessionID.

ShoppingCartServlet.java

‘ import java.io.*;

© Copyright Virtual University of Pakistan Page 303

Web Design and Development (CS506)

import java.net.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util. *;

public class ShoppingCartServlet extends HttpServlet {

// used to generate a unique value which is

// used as a cookie value

public static int S_ID = 1;

// used to store HashMaps of indiviual users

public static HashMap<String, HashMap> globalMap =<String, HashMap> new HashMap();

// Handles the HTTP GET method.
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{

processRequest(request, response);

¥
// Handles the HTTP <code>POST</code> method.

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException

{

processRequest(request, response);
}
// called from both doGet() & doPost()

protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException {
response.setContentType("text/html;charset=UTF-8");

// declaring user's HashMap

HashMap<String, String> sessionInfo = null;

String sID ="";

// method findCookie is used to determine whether browser
// has send any cookie named "JSESSIONID"
Cookie ¢ = findCookie(request);

// if no cookies named "JSESSIONID" is recieved, means that
// user is visiting the site for the first time.

if (c ==null) {

// make a unique string

sID = makeUniqueString();

// creating a HashMap where books selected by the

// user will be stored

sessionInfo = new HashMap<String, String>();

// add the user's HashMap (sessionInfo) into the

// globalMap against unique string i.e. sID

© Copyright Virtual University of Pakistan Page 304

Web Design and Development (CS506)

globalMap.put(sID, sessionInfo);

// create a cookie named "JSESSIONID" alongwith

// value of sID i.e. unique string

Cookie sessionCookie = new Cookie("JSESSIONID", sID);
// add the cookie to the response
response.addCookie(sessionCookie);

} else {

// if cookie is found named "JSESSIONID",

// retrieve a HashMap from the globalMap against

// cookie value i.e. unique string which is your
//sessionlD

sessionlnfo = (HashMap<String, String>) globalMap.get(
c.getValue());

}

PrintWriter out = response.getWriter();

out.println("<htm[>");

out.println("<head>");

out.println("<title>Shooping Cart Example</title>");
out.println("</head>");

out.println("<body>");
out.println("<h1>Online Book Store</h1>");

String url = "http://localhost:8084/cookiesessionex/shoppingcartex";

// user will submit the from to the same servlet out.println("<form action="+ url +">" +
"<h3><input type=checkbox name=firstCB value=firstCB />" +

" java core servlts</h3>" + "
"+

“<h3><input type=checkbox name=secondCB value=secondCB />" + " java how to program</h3>" +
H
ﬂ_|’_

"<h3><input type=checkbox name=thirdCB value=thirdCB />" + " java complete reference</h3>" +
"
ﬂ+

"<input type=submit value=\"Add to Cart\" />" + "</from>"
);
out.println("
");

out.println("<h1>You have selected followig books</h1>");

out.println("
");

//reteriving params of check boxes

© Copyright Virtual University of Pakistan Page 305

Web Design and Development (CS506)

String fBook = request.getParameter("firstCB");
String sBook = request.getParameter("secondCB"); String tBook = request.getParameter("thirdCB");

// if first book is selected then add it to

// user's HashMap i.e. sessionInfo

if (fBook !=null && fBook.equals("firstCB")) {
sessionInfo.put("firstCB", "java core servlets");

}

// if second book is selected then add it to

// user's HashMap i.e. sessionInfo

if (sBook !=null && sBook.equals("secondCB")){
sessionInfo.put("secondCB", "java how to program");
}
// if third book is selected then add it to

// user's HashMap i.e. sessionInfo

if (tBook != null && tBook.equals("thirdCB")){
sessionInfo.put("thirdCB", "java complete reference");
}
// used to display the books currently stored in

// the user's HashMap i.e. sessionInfo printSessionInfo(out, sessionInfo); out.println("</body>");
out.println("</htmI>");

out.close();

} // end processRequest()

// method used to generate a unique string

public String makeUniqueString() {

return "ABC" + S _ID++;

}
// returns a reference global HashMap.

public static HashMap findTableStoringSessions() {
return globalMap;

}
// method used to find a cookie named "JSESSIONID" public Cookie findCookie(HttpServletRequest
request){

Cookie[] cookies = request.getCookies();
if (cookies !=null) {

for(int i=0; i<cookies.length; i++) { Cookie ¢ = cookies[i];
if (c.getName().equals("JSESSIONID")){

// doSomethingWith cookie

return c;

b
}
b

return null;

© Copyright Virtual University of Pakistan Page 306

Web Design and Development (CS506)

}

// used to print the books currently stored in
// user's HashMap. i.e. sessionInfo

public void printSessionInfo(PrintWriter out,
HashMap sessionInfo)

{
String title ="";

title= (String)sessionInfo.get("firstCB");
if (title !=null){

out.println("<h3> "+ title +"</h3>");

}
title= (String)sessionInfo.get("secondCB");
if (title !=null){

out.println("<h3> "+ title +"</h3>");

}
title= (String)sessionInfo.get("thirdCB");
if (title !=null){

out.println("<h3> "+ title +"</h3>");

}

}
}+ // end ShoppingCartServlet

web.xml

<?xml version="1.0" encoding="UTF-8"?7> <web-app>

<servlet>

<servlet-name> ShoppingCart </servlet-name>

<servlet-class> ShoppingCartServlet </servlet-class> </servlet>
<servlet-mapping>

<servlet-name> ShoppingCart </servlet-name>

<url-pattern> /shoppingcartex </url-pattern> </servlet- mapping>
</web-app>

31.4 References:

e Java A Lab Course by Umair Javed

e Core Servlets and JSP by Marty Hall

» Stanford Course - Internet Technologies
e Java API documentation

Note: Coding exercises in working condition for this lecture are also available on “Downloads”

section of LMS.

© Copyright Virtual University of Pakistan

Page 307

Web Design and Development (CS506)

Lecture 32: Session Tracking 2

In the last handout we have discussed the solutions for session tracking and talked about
one important mechanism cookies in detail. We said cookies allow the server to store
information on a client machine and later retrieve it. Now we will see two more
mechanisms that provide us facility to maintain a session between user’s requests. These
are URL Rewriting and Hidden Form Fields. After that we will discuss a session tracking
API provided by java.

32.1 URL Rewriting

URL rewriting provides another way for session tracking. With URL rewriting, the parameter
that we want to pass back and forth between the server and client is appended to the URL. This
appended information can be retrieve by parsing the URL. This information can be in the form
of:

» Extra path information,
» Added parameters, or
* Some custom, server-specific URL change

Note: Due to limited space available in rewriting a URL, the extra information is usually limited to a
unique session ID.

The following URLs have been rewritten to pass the session ID 123

» Original -http://server: port/servlet /rewrite

» Extra path information -http://server: port/servlet/rewrite/123
» Added parameters -http://server: port/servlet/rewrite?id=123
» Custom change -http://server: port/servlet/rewrite;id123

32.1.1Disadvantages of URL rewriting

The following Disadvantages of URL rewriting, are considerable: -

e What if the user bookmarks the page and the problem get worse if server is not
assigning a unique session id.

« Every URL on a page, which needs the session information, must be rewritten
each time page is served, which can cause

o Computationally expensive
o Can increase communication overhead

© Copyright Virtual University of Pakistan Page 308

Web Design and Development (CS506)

» unlike cookies, state information stored in the URL is not persistent
» this mechanism limits the client interaction with the server to HTTP GET request.

Example Code: Online Bookstore using URL Rewriting

This is the modified version of online book store (selling two books only, however you can add in
on your own) that is built using cookies in the last handout. Another important difference is books
are displayed in the form of hyperlink instead of check boxes. URL rewriting mechanism is used to
maintain session information.

How to make Query String

Before jumping on to example, one important technique is needed to be learned i.e. making
on query string. If you ever noticed the URL of a servlet in a browser that is receiving some
HTML form values, also contains the HTML fields name with values entered/selected by the
user.

Now, if you want to pass some attribute and values along with URL, you can use the

technique of query string. Attribute names and values are written in pair form after the ?.
For example, if you want to send attribute “name” and its value “ali”, the URL will look
like

"1 Original

URL

http://server:port/servletex /register
"l After adding

parameters

http://server:port/servletex/register ?name=ali

If you want to add more than one parameter, all subsequent parameters are separated by & sign.
For example

1 Adding two parameters

http://server:port/servletex/register ?name=ali&address=gulberg
URLRewriteServlet.java :

import java.io.*;
import java.net.*;
import javax.servlet.*;

import javax.servlet.http.*;

© Copyright Virtual University of Pakistan Page 309

Web Design and Development (CS506)

import java.util. *;

public class URLRewriteServlet extends HttpServlet {

// used to generate a unique value which is

// used as a cookie value

public static intS_ID =1;

// used to store HashMaps of indiviual users

public static HashMap<String, HashMap> globalMap = new HashMap<String, HashMap>();

// Handles the HTTP GET method.
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException

{

processRequest(request, response);
b
// Handles the HTTP <code>POST</code> method.

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException

{

processRequest(request, response);

}

// called from both doGet() & doPost()
protected void processRequest(HttpServietRequest request, HttpServletResponse response)
throws ServletException, IOException {

// declaring user's HashMap
HashMap<String, String> sessioninfo = null;

// reading sessionld

String sID = request.getParameter(“JSESSIONID”);

/* if parameter JSESSIONID is received, means that user is visiting the site for the first time. */
if (SID == null)

{
// make a unique string

sID = makeUniqueString();

// creating a HashMap where books selected by the
// user will be stored

sessionlnfo = new HashMap<String, String>();

// add the user's HashMap (sessionInfo) into the
// globalMap against unique string i.e. sID
globalMap.put(slD, sessioninfo);

Yelse {

// if parameter "JSESSIONID" has some value

© Copyright Virtual University of Pakistan Page 310

Web Design and Development (CS506)

// retrieve a HashMap from the globalMap against

// sID 1.e. unique string which is your sessionID

sessioninfo = (HashMap<String, String>) globalMap.get(sID);
H
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
out.println("<htmI>");

out.println("<head>");

out.println("<title>Shopping Cart Example</title>");
out.println("</head>");

out.println("<body>");

out.println("<h1>Online Book Store</h1>");

// Making three URLS by using query string mechanism
// The attributes/parameters are JSSESSIONID and book name (like
// firstCB) along with values sID and book name respectively

String firsturl = ""http://localhost:8084/urlbookstore/urlrewriteserviet?JSESSIONID="" + sID
+ "' &firstCB=firstCB"";

String secondurl = "http://localhost:8084/urlbookstore/urlrewriteservlet?JSESSIONID="" +
sID + ""&secondCB=secondCB"";

out.println("<h3>" + " java core servlts </h3>" + "
" "<h3>" + " java how to program </h3>" + "
");

out.println("
");

out.println("<h1>You have selected following books</h1>");

out.println("
");

//retrieving params that are emebded in URLs

String fBook = request.getParameter("firstCB"); String sBook = request.getParameter("secondCB");
/1 if first book is selected then add it to

// user's HashMap i.e. sessionlnfo

if (fBook != null && fBook.equals("firstCB")) {

sessionInfo.put("firstCB", "java core servlets");

}

// if second book is selected then add it to
// user's HashMap i.e. sessionlnfo

if (sBook !=null && sBook.equals("secondCB")){
sessionInfo.put("secondCB", "java how to program");

}

// used to display the books currently stored in
// the user's HashMap i.e. sessionInfo printSessionInfo(out, sessionInfo);

out.println("</body>");

© Copyright Virtual University of Pakistan Page 311

Web Design and Development (CS506)

out.println("'</htmI>");

out.close();

} // end processRequest()

// method used to generate a unique string
public String makeUniqueString() {
return "ABC" +S_ID++;

}

// returns a reference global HashMap.

public static HashMap findTableStoringSessions(){
return globalMap;

}
// used to print the books currently stored in

// user's HashMap. i.e. sessionInfo

public void printSessionInfo(PrintWriter out, HashMap sessionInfo)
{
String title ="";

title= (String)sessionInfo.get("firstCB");

if (title !=null){
out.println("<h3> "+ title +"</h3>");

}

title= (String)sessionInfo.get("secondCB");
if (title = null){

out.println("<h3> "+ title +"</h3>");

H

h
}+ // end URLRewriteServlet

web.xml

<?xml version="1.0" encoding="UTF-8"?> <web-app>

<servlet>
<servlet-name> URLRewriteServlet </servlet-name>
<servlet-class> URLRewriteServlet </servlet-class> </servlet>

<servlet-mapping>

<servlet-name> URLRewriteServlet </servlet-name>
<url-pattern> /urlrewriteservlet </url-pattern>
</servlet-mapping>

</web-app>

© Copyright Virtual University of Pakistan Page 312

Web Design and Development (CS506)

32.2 Hidden Form Fields

HTML forms can have an element that looks like the following:
<INPUT TYPE="HIDDEN" NAME="sessionid" VALUE="123" />

Hidden Forms Fields do not affect the appearance of HTML page. They actually
contain the information that is needed to send to the server. Thus, hidden fields
can also be used to store information (like sessionid) in order to maintain session.

<form method="POST” action="/exec/obidos/handle-buy-box=/ref = bp_add/103-
4591077-290203">

<input type="hidden” name="colid” value="">

<input type="hidden” name="template-name” value="">
<input type="hidden” name="store-name” value="gateway”>
<input type="hidden” name="maw” value="1">

<input type="hidden” name="coliid” value="">

<input type="hidden” name="dropdown-selection” value="default-address”>
<table border="0" width="100%" cellspacing="0" cellpadding="6">

In the above figure you can see the use of Hidden form fields for storing particular
information.

32.3 Java Solution for Session Tracking

Java provides an excellent solution to all the problems that occurred in tracking a session. The
Servlet API provides several methods and classes specifically designed to handle session
tracking. In other words, servlets have built in session tracking.

Sessions are represented by an HttpSession object. HttpSession tacking API built on
top of URL rewriting and cookies. All cookies and URL rewriting mechanism is hidden
and most application server uses cookies but automatically revert to URL
rewriting when cookies are unsupported or explicitly disabled. Using HttpSession API
in servlets is straightforward and involves looking up the session object associated with the
current request, creating new session object when necessary, looking up information
associated with a session, storing information in a session, and discarding completed or
abandoned sessions.

© Copyright Virtual University of Pakistan Page 313

Web Design and Development (CS506)

32.4 Working with HttpSession

Let’s have a look on HttpSession working step by
step.

1. Getting the user’s session object

To get the user’s session object, we call the getSession() method of
HttpServeltRequestthat returns the object of HitpSession

HttpSession sess = request.getSession(true);

If true is passed to the getSession() method, this method returns the current session
associated with this request, or, if the request does not have a session, it

creates a new one. We can confirm whether this session object (sess) is newly
created or returned by using isNew() method of HttpSession. In case of passing
false, null is returned if the session doesn’t exist.

2. Storing information in a Session

To store information in Session object (sess), we use setAttribute() method
of HttpSession class. Session object works like a HashMap, so it is able to store
any java object against key. So you can store number of keys and their values in pair form. For
example,

sess.setAttribute(*sessionid”, ”123”);

3. Looking up information associated with a Session

To retrieve back the stored information from session object, getAttribute()method of
HttpSession class is used. For example,

String sid=(String)sess.getAttribute(*‘sessionid™);

Note: - getAttribute() method returns Object type, so typecast is required.

© Copyright Virtual University of Pakistan Page 314

Web Design and Development (CS506)

4. Terminating a Session

After the amount of time, session gets terminated automatically. We can see its
maximum activation time by using getMaxInactivelnterval() method of HttpSession class.
However, we can also terminate any existing session manually. For this, we
need to call invalidate () method of HttpSession class as shown below.

sess.invalidate()

Example Code: Showing Session Information

To understand HttpSessionAPI properly we need to have a look on an example. In this
example, we will get the session object and check whether it is a new user or not. If the
user is visiting for the first time, we will print “Welcome™ and if we find the old one,
we’ll print “Welcome Back”. Moreover, we will print the session information and count
the number of accesses for every user

import java.io.*;

import java.net.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class ShowSessionServlet extends HttpServlet {

// Handles the HTTP <code>GET</code> method.
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException

{

processRequest(request, response);

}

// Handles the HTTP <code>POST</code> method.
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{

processRequest(request, response);

}

// called from both doGet() & doPost()
protected void processRequest(HttpServlietRequest request, HttpServletResponse response)
throws ServletException, IOException

{

// used for displaying message (like Welcomem, Newcomer) to
// user

© Copyright Virtual University of Pakistan Page 315

Web Design and Development (CS506)

String heading;
response.setContentType("text/html");

// Getting session object

HttpSession session = request.getSession(true);

/* Getting stored information using getAttribute() method */

Integer accessCount = (Integer)session.getAttribute("sessionCount");

/* If user comes for the first time, accessCount will be assigned null, so we can guess easily that this
anew user */

if (accessCount == null)
{
accessCount = new Integer(1);
heading = "Welcome, Newcomer";
} else

{
heading = "Welcome Back";

// Incrementing the value

accessCount = new Integer(accessCount.intValue() + 1);
j
/* Storing the new value of accessCount in the session using setAttribute() method */
session.setAttribute("sessionCount", accessCount);

// Getting the PrintWriter

PrintWriter out = response.getWriter();

/*Generating HTML tags using PrintWriter to print session info and no of times this user has
accessed this page */

out.println("<HTML>" +

"<BODY>"+

" <h1>Session Tracking Example</h1>" +

" <H2>Information on Your Session:</H2>\n" +

" <H3> Session ID: " + session.getld() + "</H3>" +

" <H3>Number of Previous Accesses: " + accessCount +

" </H3>H +

"</BODY>"+" </HTML>"

)i

//Closing the PrintWriter stream
out.close();

} // end processRequest

} // end ShowSessionServlet class

web.xml

© Copyright Virtual University of Pakistan Page 316

Web Design and Development (CS506)

<?xml version="1.0" encoding="UTF-8"?>
<web-app>

<servlet>

<servlet-name> ShowSession </servlet-name>
<servlet-class> ShowSessionServlet </servlet-class>
</servlet>

<servlet-mapping>

<servlet-name> ShowSession </servlet-name>
<url-pattern> /showsession </url-pattern>
</servlet-mapping>

</web-app>

32.5 HttpSession — Behind the scenes

When we call getSession()method, there is a lot going on behind the scenes. For every
user, a unique session ID is assigned automatically. As the server deals with lot of users
at a time, this ID is used to distinguish one user from another. Now here is the question,
how this ID sends to the user? Answer is, there are two options

Option 1: If the browser supports cookies, the Servlet will automatically creates a
session cookie and store the session ID within that cookie.

Option 2: If the first option fails because of browser that does not support cookies
then the Servlet will try to extract the session ID from the URL

32.6 Encoding URLs sent to Client

Servlet will automatically switch to URL rewriting when cookies are not supported or
disabled by the client. When Session Tracking is based on URL rewriting, it requires
additional help from the Servlets. For a Servlet to support session tracking via URL
rewriting, it has to rewrite (encode) every local URL before sending it to the client. Now see how
this encoding works

HttpServletResponseprovides two methods to perform encoding

» String encodeURL(String URL)
» String encodeRedirectURL(String URL)

If Cookies are disabled, both methods encode (rewrite) the specific URL to include the session
ID and returns the new URL. However, if cookies are enabled, the URL is returned
unchanged.

© Copyright Virtual University of Pakistan Page 317

Web Design and Development (CS506)

32.7 Difference between encodeURL () and encodeRedirectURL()

encodeURL() is used for URLs that are embedded in the webpage, that the servlet generates. For
example,

String URL = "/servlet/sessiontracker’’; String eURL =
response.encodeURL (URL); out.printin(“<AHREF=\"" + eURL
+7\7> ");

Whereas encodeRedirectURL() is used for URLs that refers yours site is in
sendRedirect() call. For example,

String URL = ""/servlet/sessiontracker”;
String eURL
Response.sendRedirect(eURL);

response.encodeRedirectURL(URL);

Example Code: OnlineBookStore using HttpSession

This book store is modified version of last one, which is built using URL rewriting
mechanism. Here, HttpSessionwill be used to maintain session.

ShoppingCartServlet.java

import java.io.*;

import java.net.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class ShoppingCartServlet extends HttpServlet {

// Handles the HTTP GET method.

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException

{

processRequest(request, response);

}

// Handles the HTTP <code>POST</code> method.
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{

processRequest(request, response);

}
// called from both doGet() & doPost()

protected void processRequest(HttpServletRequest request, HttpServletResponse response)

© Copyright Virtual University of Pakistan Page 318

Web Design and Development (CS506)

throws ServletException, [OException {
response.setContentType("text/html;charset=UTF-8");
HttpSession session = request.getSession(true);

PrintWriter out = response.getWriter();
out.println("<htmI>");

out.println("<head>");

out.println("<title>Shopping Cart Example</title>");
out.println("</head>");

out.println("<body>");

out.println("<h1>Online Book Store</h1>");

// First URL built using query string, representing first book
String firstURL = "http://localhost:8084/urlrewritebookstore/shoppingcart?book=firs t";

// Second URL built using query string, representing second book

// Note that parameter name is still book, so that later we need

/I to read only this parameter

String secondURL = "http://localhost:8084/urlrewritebookstore/shoppingcart?book=seco nd";

// Encoding URLs

String eURL1 = response.encodeURL(firstURL);
String eURL2 = response.encodeURL(secondURL);
out.println(

"<h3>" +

" java core servlets </h3>" + "
"+

"<h3>" +

" java How to Program </h3>"

)
out.println("
");

out.println("<h1>You have selected following books</h1>");
out.println("
");

//retrieving params that are emebded in URLs

String fBook = request.getParameter("firstCB");

String sBook = request.getParameter("secondCB");

out.println("
");

out.println("<h1>You have selected following books</h1>");
out.println("
");

//retrieving param that is embedded into URL

String book = request.getParameter("book");

if (book !=null){

// if firstURL, value of first hyperlink is clicked

// then storing the book into session object against fBook

if (book.equals("first")){

session.setAttribute("fBook", "java core servlets");

}
/1 if secondURL, value of second hyperlink is clicked

© Copyright Virtual University of Pakistan Page 319

Web Design and Development (CS506)

// then storing the book into session object against sBook
else if(book.equals("second")){
session.setAttribute(""sBook", "java how to program");

H
}//outer if ends

// used to display the books currently stored in
// the HttpSession object i.e. session
printSessionInfo(out, session);

out.println("</body>");
out.println("</html>"); out.close();
} // end processRequest()

// used to display values stored in HttpSession object
public void printSessionInfo(PrintWriter out, HttpSession session)

{

String title ="";

// reading value against key fBook from session,
// if exist displays it

title= (String)session.getAttribute("fBook");

if (title !=null){

out.println("<h3> "+ title +"</h3>");

}

// reading value against key sBook from session,
/1 if exist displays it

title= (String)session.getAttribute("sBook");

if (title !=null){

out.println("<h3> "+ title +"</h3>");

}
} // end printSessionInfo

} // end ShoppingCartServlet

web.xml

<?xml version="1.0" encoding="UTF-8"?> <web-app>
<servlet>

<servlet-name> ShoppingCartServlet </servlet-name>
<servlet-class> ShoppingCartServlet </servlet-class>
</servlet>

<servlet-mapping>

<servlet-name> ShoppingCartServlet </servlet-name>
<url-pattern> /shoppingcart </url-pattern>

© Copyright Virtual University of Pakistan Page 320

Web Design and Development (CS506)

</servlet-mapping>
</web-app>

32.8 Some Methods of HttpSession

Now let’s explore some methods of HttpSessionclass

« setAttribute(String, Object)
o This method associates a value with a name.
« getAttribute(String)

o Extracts previously stored value from a session object. It returns nullif no value is
associated with the given name

= removeAttribute(String)
o0 This method removes values associated with the name

e getld()

o This method returns the unique identifier of this session

« getCreationTime()
o This method returns time at which session was first created

« getMaxlnactivelnterval() , setMaxInactivelnterval(int)
o To get or set the amount of time session should go without access before being
invalidated.

32.9 References:

» Java A Lab Course by Umair Javed

» Core Servlets and JSP by Marty Hall

» Stanford Course - Internet Technologies

= Java Tutorial on Servlets

o http://java.sun.com/j2ee/tutorial/l1 _3-fcs/doc/Servlets11.html

= Java API documentation
Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 321

Web Design and Development (CS506)

Lecture 33: Address Book Case Study Using Servlets

33.1 Design Process

In this handout, we will discuss the design process of a simple address book. A step by step
procedure of creating a simple address book is given below.

33.2 Layers & Web Application

As discussed previously, normally web applications are partitioned into logical layers.
Each layer performs a specific functionality which should not be mixed with other layers.
For example data access layer is used to interact with database and we do not make any
direct calls to database from the presentation layer. Layers are isolated from each other to
reduce coupling between them but they provide interfaces to communicate with each
other.

(N\

Users Calling services

——— &

Presentation layers

Ve
&

Business Layers

A

Data Layers

A4 A4

Data Sources Services

Simplified view of a web application and
its layers

« Presentation Layer

o Provides a user interface for client to interact with application. This is the only
o Part of application visible to client.

« Business Layer

o The business or service layer implements the actual business logic or functionality
of the application. For example in case of online shopping systems this layer
Handles transaction management.

© Copyright Virtual University of Pakistan Page 322

Web Design and Development (CS506)

- Data Layer

o This layer consists of objects that represent real-world business objects such as an
Order, OrderLineltem, Product, and so on. It also encapsulates classes which are
used to interact with the data providing services such as databases, other
web services etc.

In our case study of address book, we will also try to make use of the
layered architecture. We will create a separate layer for working with data, and our
presentation and business logic will be merged into servlets. It means that we will not
have separate layers for presentation and business rather one layer (formed by servlets)
will do the job of both presentation and business logic. The extent to which you divide
your application into layers depends upon the size of the application and some other
factors such as scalability, portability etc.

33.2.1Step 1

» Create a database (AddressBook)
» Make a table named Person according to the figure shown below. It has columns
name, address, phomeNum

Person : Table
Name Address phoneNum
Saad Model town 437546
Usman Defence 6342211
Ali Gulberg 9201211
%
Record | I< < 1 > > Of3

33.2.2 Step 2

The next step is to create a class that can hold the information of a single person.
Remember we have stored the information in the database, now when we extract this
information from the database as a result of some search, we will require some object to
store the data for that particular person. The Personlnfo class will be used at that point
to store the retrieved data and transport it to presentation layer. Also we extend this
application and add the functionality of “AddingNewContacts” in the database.
The PersonInfoclass can be used to transport data from front end to the database.

» Make a Personlnfoclass with the following consideration

It has three three attributes: name, address, ph.

© Copyright Virtual University of Pakistan Page 323

Web Design and Development (CS506)

No.

It has a parameterized constructor which takes in the above mentioned parameters Override
the

toString()method:

//File: Personlnfo.java

public class PersonInfo {

String name;

String address;

String phoneNum,;

public PersonInfo(String n, String a, String pn) {
name = n;

address = a;

phoneNum = pn;

b
public String toString(){

return "Name: " + name + " Address: " + address + " Phone No: " + phoneNum;

}

+// end class PersonInfo

Note: To keep the code simple, attributes (name, address & phoneNum) are not
declared as private, which is indeed not a good programming approach.

33.2.3Step 3

Now we will create a class that will be used to interact with the database for the search, insert,
update and delete operations. We will call it PersonDAOwhere DAO stands for the “data access
object”. The PersonDAOalong with the PersonInfoclass forms the data layer of our
application. As you can see that these two classes do not contain any code related to
presentation or business logic (There is not much of business logic in this application
anyway). So PersonDAOalong with PersonInfois used to retrieve and store data in this
application. If at some stage we choose to use some other way of storing data (e.g. files) only
the PersonDAO class will change and nothing else, which is a sign of better design as
compared to a design in which we put everything in a single class.

So, Make a PersonDAOQOclass which contains:

A searchPerson(String name)method that first establishes a connection to the
database and returns PersonInfo object after searching the information of

the specified person from the

database.

//File: PersonDAOQO.java

import java.sql.*;

© Copyright Virtual University of Pakistan Page 324

Web Design and Development (CS506)

public class PersonDAO {

// method searchPerson

public PersonInfo searchPerson(String sName){
PersonInfo person = null;

try {
Class.forName("sun.jdbc.odbe.JdbcOdbeDriver");
String url = "jdbc:odbe: AddressBookDSN";
Connection con = DriverManager.getConnection(url);
String sql = "SELECT * FROM Person WHERE name = 7";
PreparedStatement pStmt = con.prepareStatement(sql);
pStmt.setString(1, sName);

ResultSet rs = pStmt.executeQuery();

if (rs.next()) {

String name = rs.getString("name");

String add = rs.getString(""address");

String pNum = rs.getString("phoneNum");

person = new PersonInfo(name, add, pNum);
con.close();

} catch(Exception ex){

System.out.println(ex);

}

return person;
}+// end method

}

33.2.4Step 4

To find what user wants to search, we need to give user an interface through which he/she
can enter the input. The SearchPesonServlet.javawill do this job for us, It will collect the data
from the user and submit that data to another class. The SearchPersonServletforms the part of
our presentation layer. As you can see that it is being used to present a form to the user and
collect input.

Write SearchPersonServlet.java
Will take input for name to search in address

book

Submits the request to ShowPersonServlet

//File: SearchPersonServlet.java
import java.io.*;
import java.net.*;
import javax.servlet.*;

© Copyright Virtual University of Pakistan Page 325

Web Design and Development (CS506)

import javax.servlet.http.*;

public class SearchPersonServlet extends HttpServlet {

protected void processRequest(HttpServietRequest request, HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println(

"<html>" + "<body>" +

"<h1> Address Book </h1>" + "<form action=showperson >" +

// showperson is alias or

// url pattern of

// ShowPersonServlet

"<h2> Enter name to search </h2>
" + "<input type=text name=pName />
" + "<input
type=submit value=Search Person />" + "</form>" +

"</b0dy>" + "</html>"

)
out.close();
b
// Handles the HTTP GET method.

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException {

processRequest(request, response);

}
// Handles the HTTP POST method.

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

processRequest(request, response);

h
}

33.2.5Step 5

The data submitted by the SearchPersonServletwill be submitted to another servlet i.e.
ShowPersonServlet,which will interact with the Datal.ayer(Business logic processing) collects
the output and show it to the user. The ShowPersonServletforms the part of our presentation
layer and business layer. As you can see that it is being used to do processing on the

incoming data and giving it to data layer (business layer) and present data/output to the user
(presentation layer)
Write ShowPersonServlet.java

Receives request from SearchPersonServlet
Instantiate objects of Personlnfoand PersonDAOclass

Call searchPerson()method of PersonDAOclass Show results

//File : ShowPersonServlet.java

© Copyright Virtual University of Pakistan Page 326

Web Design and Development (CS506)

import java.io.*;

import java.net.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ShowPersonServlet extends HttpServlet {

protected void processRequest(HttpServletRequestrequest, HttpServletResponse response)
throws ServletException, [OException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String name = request.getParameter("pName");

// creating PersonDAO object, and calling searchPerson() method

PersonDAO personDAO = new PersonDAQO();

PersonInfo person = personDAO.searchPerson(name);

out.println("<htm[>");

out.println("<body>");

out.println("<h1>Search Results</h1>");

if (person !=null){

out.println("<h3>"+ person.toString() +"</h3>");

h
else{

out.println("<h3>Sorry! No records found</h3>");
b
out.println("</body>"); out.println("</htmI>"); out.close();
b
// Handles the HTTP GET method.

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException {

processRequest(request, response);

}+ // Handles the HTTP POST method.

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException {

processRequest(request, response);

}

} // end ShowPersonServlet

© Copyright Virtual University of Pakistan

Page 327

Web Design and Development (CS506)

Sequence Diagram: Address Book (search use case)

"""""" q f-----------q Tt User
2. Press ?
submit ! 1. Access URL
button '
............... 1 Foe e L r....
A n
1.1. doGet
1|2.1.2. Output . (req, res)
' v
_______________________ 0 S
E 2.1. doPost(req, res)| 1.1.1.processRequest(
| req, res)
! v
--------------------- 5 -
& y\
v [2112)]
2.1.1.3 E searchper 2.1.1.processRequest(
return| son(req, req, res)
personinfo| | res)
object ' |2.1.1.1. create
i '

------------------------- 0 g

|2.1.1.2.2. call setters | |2.1.1.2.1.create |

© Copyright Virtual University of Pakistan Page 328

Web Design and Development (CS506)

33.3 Package

Many times when we get a chance to work on a small project, one thing we intend to do is to put
all java files into one single directory (folder). It is quick, easy and harmless. However if our small
project gets bigger, and the number of files is increasing, putting all these files into the same

directory would be a nightmare for us. In java we can avoid this sort of problem by using

Packages.

33.3.1What is a package?

In simple terms, a set of Java classes organized for convenience in the same directory to
avoid the name collisions. Packages are nothing more than the way we organize files into
different directories according to their functionality, usability as well as category they
should belong to. An obvious example of packaging is the JDK package from SUN

(Java.xxx.yyy) as shown below:

Folders
N lava
g applet
m At
B beans
O
" lang
mref
m reflect
m math
Ll
" i
B SECHIIRY
m sl

Basically, files in one directory (or package) would have different functionality from
those of another directory. For example, files in java.io package do something related to

Mame

I socketUmplFactory.java

[] SocketinputStream.java

Ml socketo ptions.java

B 5ocketoutputStream java
SocketPermission java

| j

Il UnknownHostException java

Il UnknownServiceException java

Il RL.java

Il YRLClassLoader java

Il YRLConnection java
URLDecoder.java
URLEncoder java
URLStreamHandler java

n URLStreamHandlerFactory java

Figure. Basic structure of JDK package

1AVA File
1AVA File
1AVA File
IAVA File
IAVA File
IAVA File
IAVA File
1AVA File
1AVA File
1AVA File
IAVA File
IAVA File
IAVA File
IAVA File

I/O, but files in java.net package give us the way to deal with the Network.

Packaging also helps us to avoid class name collision when we use the same class name as

that of others. For example, if we have a class name called "ArrayList", its name would
crash with the ArrayListclass from JDK. However, this never happens because JDK use

© Copyright Virtual University of Pakistan

Page 329

Web Design and Development (CS506)

java.utilas a package name for the ArrayList class (java.util. ArrayList). So our ArrayList
class can be named as "ArrayList" or we can put it into another package like
com.mycompany.ArrayListwithout fighting with anyone. The benefits of using package
reflect the ease of maintenance, organization, and increase collaboration among
developers. Understanding the concept of package will also help us manage and use files
stored in jar files in more efficient ways.

33.3.2How to create a package

Suppose we have a file called HelloWorld.java, and we want to put this file in a package
world. First thing we have to do is to specify the keyword packagewith the name of the
package we want to use (worldin our case) on top of our source file, before the code that
defines the real classes in the package, as shown in our HelloWorldclass below:

// only comment can be here package
world;

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World");

}

One thing you must do after creating a package for the class is to create nested subdirectories to
represent package hierarchy of the class. In our case, we have the worldpackage, which requires
only one directory. So, we create a directory (folder) worldand put our HelloWorld.javainto it.
Address
Folders Mame Size Type
m(C) Il Helloworld java] JAVA File
moc

Dizmaond
Found000
netpub

Kpcms
Multimediz files

ment files
Iy Music
Program files
Recycled
Ternp
Neblomic publish

Figure: HelloWorld in world package (C:\world\HelloWorld.java

© Copyright Virtual University of Pakistan Page 330

Web Design and Development (CS506)

33.3.3How to use package

By using "import" keyword, all class files reside only in that package can be imported.
For example,

/[we can use any public classes inside world package
import world.*;

// import all public classes from java.util package
import java.util. *;

/l import only ArrayList class (not all classes in
// java.util package
import java.util. ArrayList;

Note: While working with IDEs, You don’t have to create folders (packages) and to place
classes at right locations. Many IDEs (like netBeans® 4.1) performs this job on your behalf.

33.4 JavaServer Pages (JSP)

Like Servlets, JSP is also a specification. JSP technology enables Web developers and designers
to rapidly develop and easily maintain, information-rich, dynamic Web pages that leverage
existing business systems. As part of the Java technology family, JSP technology enables rapid
development of Web-based applications that are platform independent. JSP technology separates
the user interface from content generation, enabling designers to change the overall page layout
without altering the underlying dynamic content.

33.4.1The Need for JSP

With servlets, it is easy to

» Read form data

» Read HTTP request headers

» Set HTTP status codes and response headers
= Use cookies and session tracking

» Share data among servlets

» Remember data between requests

» Get fun, high-paying jobs

But, it sure is a pain to

» Use those println()statements to generate HTML
* Maintain that HTML

© Copyright Virtual University of Pakistan Page 331

Web Design and Development (CS506)

33.4.2The JSP Framework

e Use regular HTML for most of the pages
» Mark servlet code with special tags
» Entire JSP page gets translated into a servlet (once), and servlet is what actually gets invoked
(for each request)
e The Java Server Pages technology combine with Java code and HTML tags in the
same document to produce a JSP file.

Java | T | HTML = Jsp

33.4.3 Advantages of JSP over Competing Technologies

= Versus ASP or ColdFusion
o JSPs offer better language for dynamic part i.e. java
o JSPs are portable to multiple servers and operating systems
» Versus PHP
o JSPs offer better language for dynamic part
o JSPs offer better tool support
= Versus pure servlets
o JSPs provide more convenient way to create HTML
o JSPs can use standard front end tools (e.g., UltraDev)
o JSPs divide and conquer the problem of presentation and business logic.

33.4.4Setting Up Your Environment

In order to create a web-application that entirely consists of JSP pages and Html based
pages, the setup is fairly simple as compared to a servlet based web application.

* Set your CLASSPATH. No.
» Compile your code. No.
» Use packages to avoid name conflicts. No.
* Put JSP page in special directory, like WEB-INF for servlets No.

o tomcat install dir/webapps/ROOT
o jrun_install dir/servers/default/default-app
= Use special URL to invoke JSP page. No
» However
o If you want to use java based classes in an application along with JSPs, Previous

© Copyright Virtual University of Pakistan Page 332

Web Design and Development (CS506)

rules about CLASSPATH, install dirs, etc, still apply to regular classes used by JSP

33.5 References:

Java A Lab Course by Umair Javed
= Java Package Tutorial by Patrick Bouklee http://jarticles.com/package/package eng.html
» JavaServer Pages Overview http://java.sun.com/products/jsp/overview.html

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 333

Web Design and Development (CS506)

Lecture 34: Java Server Pages

As we concluded in our discussion on JSP, JSP is a text based document capable of returning
either static or dynamic content to a client’s browser. Static content and dynamic content can
be intermixed. The examples of static content are HTML, XML & Text etc. Java code, displaying
properties of JavaBeans and invoking business logic defined in custom tags are all examples of
dynamic content.

34.1 First run of a JSP

Figure below shows what phases a JSP passed through before displaying result.

Web Web server
Browser
JSP
. JSP Java
Request Source > >
Parser Source
“Web | | 3P Java
—; S Servl < Compiler
Result | age ! erviet
' (HTML)

The web browser makes a request to JSP source code. This code is bifurcated into HTML
and java code by the JSP parser. The java source code is compiled by the Java compiler
resulting in producing a servlet equivalent code of a JSP. The servlet code is intermixed
with HTML and displayed to the user. It is important to note that a JSP only passes
through all these phases when it is invoked for the first time or when the changes have
been made to JSP. Any later call to JSP does not undergo of compilation phase.

34.1.1Benefits of ISP

» Convenient
o we already know java and HTML. So nothing new to be learned to work with
JSP.
o Like servlets (as seen, ultimately a JSP gets converted into a servlet), provides an
extensive infrastructure for

© Copyright Virtual University of Pakistan Page 334

Web Design and Development (CS506)

71 Tracking sessions
7] Reading and sending HTML headers
'] Parsing and decoding HTML form data
» Efficient
o Every request for a JSP is handled by a simple JSP java thread as JSP gets
converted into a servlet. Hence, the time to execute a JSP document is not
dominated by starting a process.
» Portable
o Like Servlets, JSP is also a specification and follows a well standardized API.The
JVM which is used to execute a JSP file is supported on many architectures and
operating systems.
» Inexpensive
o There are number of free or inexpensive Web Servers that are good for
commercial quality websites.

34.1.2JSP vs. Servlet

Let’s compare JSP and Servlet technology by taking an example that simply plays current
date.

First have a look on JSP that is displaying a current date. This page more looks like a
HTML page except of two strangely written lines of codes. Also there are no signs of
doGet(), doPost().

<%(@ page import="java.util.*” %>
<htmlI>

<body>

<h3>

Current Date is:<%= new Date()%>
</h3>

</body>

</html>

Now, compare the JSP code above with the Servlet code given below that is also displaying the
current date.

//File: SearchPersonServlet.java

import java.io.*;
import java.net.*;
import javax.servlet.*;

© Copyright Virtual University of Pakistan Page 335

Web Design and Development (CS506)

import javax.servlet.http.*;
import java.util.*;
public class SearchPersonServlet extends HttpServlet {

protected void processRequest(HttpServietRequest request, HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println(“<html>" + “<body>" + “<h3>" +

“Current Date is:*“ + new Date() +

“</h3>” + “</body>" + “</html>"

)
out.close();
b
// Handles the HTTP GET method.

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException {

processRequest(request, response);

}
// Handles the HTTP POST method.

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

processRequest(request, response);

h
}

Clearly, a lot of code is needed to be written in the case of servlet example to perform a
basic job.

34.2 JSP Ingredients

Besides HTML, a JSP may contain the following elements.
» Directive Elements

o Provides global control of JSPc..oo.l <% @%>
» Scripting Elements
0 JSPcommentscocvuiiiiiiiiiiiiiiiii <%----%>
0 declarations............cooviiiiiiiiii <%! %>
o Used to declare instance variables & methods
IS 4 o) (1 10 <%=%>
o A java code fragment which returns String
C1oseriptlets. ..o, <%%>

o Blocks of java code

 Action Elements

© Copyright Virtual University of Pakistan Page 336

Web Design and Development (CS506)

0 Special ISP tagscccoovviiiiiiiiiiiiieie, <jsp: />

We’ll discuss in detail all the ingredients of JSP. This handout will cover only scripting elements,
remaining ones will be discussed in next handouts.

34.3 Scripting Elements

34.3.1Comments

Comments are ignored by JSP-to-servlet translator. Two types of comments are possibly used in
JSP.

e HTML comment:

These comments are shown in browser, means on taking view source of the web
page; these sorts of comments can be read. Format of HTML comments is like to:

<!-- comment text-->

» JSP comment:
These comments are not displayed in browser and have format like:

<%-- comment text --%>

34.3.2Expressions

The format of writing a Java expression is:
<%= Java expression %>

These expressions are evaluated, after converted to strings placed into HTML page at the place it
occurred in JSP page

Examples of writing Expressions are:

» <h2> Time: <% new java.util.Date() %> </h2>

will print current data & time after converting it to String

» <h2> Welcome: <% request.getParameter(“name”)%> </h2>

will print the name attribute

34.3.3Scriptlets

© Copyright Virtual University of Pakistan Page 337

Web Design and Development (CS506)

The format of writing a scriptlet is: <% Java code %>
After opening up the scriptlet tag, any kind of java code can be written inside it. This code is
inserted verbatim into corresponding servlet.

Example of writing a scriptlet is:
» <%String n = request.getParameter(‘“name”);
out.println(“welcome ” + n);
%>
The above scriptlet reads the name attribute and prints it after appending “welcome”

34.3.4Declarations

The format of writing a declaration tag is: <%! Java code %>
This tag is used to declare variables and methods at class level. The code written inside this tag is
inserted verbatim into servlet’s class definition.

Example of declaring a class level (attribute) variable is:

s <%!
private int someField = 5; %>
%>
Example of declaring a class level method is:
s <%!

public void someMethod (......) {

Code Example: Using scripting elements

The next example code consists of two JSP pages namely firstjsp and
second.jsp. The user will enter two numbers on the firstjsp and after pressing the calculate
sum button, able to see the sum of entered numbers on second.jsp

first.jsp

This page only displays the two text fields to enter numbers along with a button.

<html>

<body>
<h2>Enter two numbers to see their sum</h1>
<!—the form values will be posted to second.jsp -->

© Copyright Virtual University of Pakistan Page 338

Web Design and Development (CS506)

<form name = "myForm" action="second.jsp" >

<h3> First Number </h3>

<input type="text" name="numl" />

<h3> Second Number </h3>

<input type="text" name="num2" />

<input type="submit" value="Calculate Sum" /> </form>
</body>

</htm]>

second.jsp

This page retrieves the values posted by first.jsp. After converting the numbers into integers,
displays their sum.

<html>

<body>

<!-- JSP to sum two numbers -->

<%-- Declaration--%>

<%!

// declaring a variable to store sum int res;

// method helps in calculating the sum public int sum(int op1, int op2) {
return opl + op2;

}
%>

<%-- Scripltet--%>

<%

String op1 = request.getParameter("num1"); String op2 = request.getParameter("'num2"); int
firstNum = Integer.parselnt(op1);

int secondNum = Integer.parselnt(op2);

// calling method sum(), declared above in declartion tag res = sum(firstNum, secondNum);
%>

<%-- expression used to display sum --%>

<h3>Sum is: <%=res%> </h3>

</body>

</html>

34.4 Writing JSP scripting Elements in XML

Now days, the preferred way for composing a JSP pages is using XML. Although writing JSP
pages in old style is still heavily used as we had shown you in the last example. Equivalent
XML tags for writing scripting elements are given below:

1 Comments: No equivalent tag is
defined

© Copyright Virtual University of Pakistan Page 339

Web Design and Development (CS506)

1 Declaration:<jsp:declartion> </jsp:declaration>

1 Expression:<jsp:expression> </jsp:expression>

1 Scriptlet:<jsp:scriptlet> </jsp:scriptlet>

It’s important to note that every opening tag also have a closing tag too. The second.jspof last

example is given below in XML style.

<?xml version="1.0" encoding="UTF-8"?>

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">

<!-- to change the content type or response encoding change the following line
>

<jsp:directive.page contentType="text/xml;charset=UTF-8"/>

<!-- any content can be specified here, e.g.: -->

<jsp:element name="text">

<jsp:body>

<jsp:declaration>

int res;

public int sum(int op1, int op2) {

return opl + op2;

}
</jsp:declaration>

<jsp:scriptlet>

String op1 = request.getParameter("num1"); String op2 = request.getParameter("num2"); int
firstNum = Integer.parselnt(op1);

int secondNum = Integer.parselnt(op2);

res = sum(firstNum, secondNum);

</jsp:scriptlet>

<jsp:text> Sum is: </jsp:text>

<jsp:expression> res </jsp:expression>

</jsp:body>

</jsp:element> </jsp:root>

34.5 References:

» Java A Lab Course by Umair Javed

» Core Servlets and JSP by Marty Hall
Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 340

Web Design and Development (CS506)

Lecture 35: JavaServer Pages

We have started JSP journey in the last handout and thoroughly discussed the JSP
scripting elements. JSP directive elements and implicit objects will be discussed in this
handout. Let’s review JSP journey again to find out what part we have already covered.

1 Directive Elements

- Provides global control of JSP <%0 (E Yo

* Scripting Elements

- TSP comments ..o =

— declarations ... L U L

+ [Jsedto declareinstance vanables & methods

Xpressions I o |+
* Ajava code fragment which retums String
implicit
objects : o
1 scriptlets S o -

* Blocks of java code
» Action Elements

- Special ISPtags ... <jsp: ... =

We start our discussion from implicit objects. Let’s find out what these
are?

35.1 Implicit Objects

To simplify code in JSP expressions and scriptlets, you are supplied with eight
automatically defined variables, sometimes called implicit objects. The three most
important variables are request, response & out. Details of these are given below:

request

This variable is of type HttpServletRequest, associated with the request. It gives
you access to the request parameters, the request type (e.g. GET or POST), and
the incoming HTTP request headers (e.g. cookies etc).

response

© Copyright Virtual University of Pakistan Page 341

Web Design and Development (CS506)

This variable is of type HittpServletResponse, associated with the
response to client. By using it, you can set HTTP status codes, content type and
response headers etc.

e out

This is the object of JspWriter used to send output to the client.

Code Example: Use of Implicit Objects

The following example constitutes of 4 JSP pages. These are index.jsp, controller.jsp,
web.jsp and java.jsp. The user will select either the option of “java or “web” from
index.jsp, displayed in the form of radio buttons and submits the request to controller.jsp.
Based on the selection made by the user, controller.jspwill redirect the user to respective pages
(web.jsp or java.jsp).

The flow of the example is shown below in the pictorial form.

web.jsp
If page == web
index.jsp jC;cc))ntroller.
If page == java
\A . .
java.jsp

The code of these entire pages is given below.

index.jsp

<htmI>

<body>

<h2>Select the page you want to visit</h2>
<form name="myForm" action="controller.jsp" >

<h3>

<input type=""radio™ name = ""page"* value=""web"'/>
Web Design & Develoment

</h3>

© Copyright Virtual University of Pakistan Page 342

Web Design and Development (CS506)

<h3>

<input type=""radio’ name = ""page"* value=""java""/>
Java

</h3>

<input type="submit" value="Submit" />

</form>

</body>

</html>

controller.jsp

<html>

<body>

<l-- scriptlet -->

<%

// reading parameter “page”’, name of radio button using
// implicit object request

String pageName = request.getParameter("page");

// deciding which page to move on based on “page” value
// redirecting user by using response implicit object

if (pageName.equals("web")) {
response.sendRedirect("web.jsp");

} else if (pageName.equals("java")) {
response.sendRedirect("java.jsp");

h
%>
</body>
</html>

web.jsp

<htm]>

<body>

// use of out implicit object, to generate HTML
<%

out.println("<h2>" +

);
%>
</body>
</html>
java.jsp
<html>

"Welcome to Web Design & Development Page" + "</h2>"

© Copyright Virtual University of Pakistan

Page 343

Web Design and Development (CS506)

<body>

// use of out implicit object, to generate HTML
<%

out.println("<h2>" +

"Welcome to Java Page" + "</h2>"

);

%>

</body>

</htm]>

The details of remaining 5 implicit objects are given
below:

session
This variable is of type HttpSession, used to work with session object.
application

This variable is of type ServletContext. Allows to store values in key-value pair form that are
shared by all servlets in same web application/

config

This variable is of type ServletConfig. Represents the JSP configuration options e.g. init-
parameters etc.

pageContext

This variable is of type javax.servlet.jsp.PageContext, to give a single point of access to
many of the page attributes. This object is used to stores the object values associated with this
object.

exception

This variable is of type java.lang. Throwable. Represents the exception that is
passed to JSP error page.

page
This variable is of type java.lang.Object. It is synonym for this.

© Copyright Virtual University of Pakistan Page 344

Web Design and Development (CS506)

35.2 JSP Directives

JSP directives are used to convey special processing information about the page to JSP
container. It affects the overall structure of the servlet that results from the JSP page. It enables
programmer to:

* Specify page settings
» To include content from other resources
* To specify custom-tag libraries

35.2.1Format

<%(@ directive {attribute="val”}* %>

In JSP, there are three types of directives: page, include & taglib. The formats of using
these are:

» page:<%@ page{attribute="val”} *%>
» include:<%@ include{attribute="val”} *%>
» taglib:<%@ taglib{attribute="val”} *%>

35.2.2JSP page Directive

Give high level information about servlet that will result from JSP page. It can be used
anywhere in the document. It can control

* Which classes are imported

» What class the servlet extends

» What MIME type is generated

e How multithreading is handled

= Ifthe participates in session

* Which page handles unexpected errors etc.

The lists of attributes that can be used with page directive are:

» language = “java”

« extends = “package.class”

» import = “package.* ,package.class”
e session = “true | false”

e info= “text”

e contentType = “mimeType”

» isThreadSafe = “true | false”

» errorPage= “relativeURL”

= isErrorPage = “true | false”

© Copyright Virtual University of Pakistan Page 345

Web Design and Development (CS506)

Some example uses are:

» To import package like java.util

<Y%(@page import="java.util.*” info="using util package” %>
» To declare this page as an error page

<%(@ page isErrorPage = “true” %>
» To generate the excel spread sheet

<%(@ page contentType = “application/vnd.ms-excel” %>

35.2.3JSP include Directive

Lets you include (reuse) navigation bars, tables and other elements in JSP page. You can include
files at

» Translation Time (by using include directive)
» Request Time (by using Action elements, discussed in next handouts)

Format
<% @include file="relativeURL"%>

Purpose

To include a file in a JSP document at the time document is translated into a servlet. It
may contain JSP code that affects the main page such as response page header settings
etc.

Example Code: using include directive

This example contains three JSP pages. These are index.jsp, header.jsp& footer.jsp. The
header.jspwill display the text of ““web design and development” along with current date. The
footer.jspwill display only “virtual university”. The outputs of both these pages will be included
in index.jspby using JSP include directive.

header.jsp

<% (@page import="java.util.*"%>
<html>

<body>

<marquee>

<h3> Web Desing & Development </h3>
<h3><%=new Date()%></h3>

© Copyright Virtual University of Pakistan Page 346

Web Design and Development (CS506)

</marquee>

</body>

</html>
footer.jsp

<html>

<body>

<marquee>

<h3> Virtual University </h3>
</marquee>

</body>

</html>

index.jsp

<html>

<body>

// includes the output of header.jsp

<%@jinclude file="header.jsp" %>

<TABLE BORDER=1>
<TR><TH></TH><TH>Apples<TH>Oranges
<TR><TH>First Quarter<TD>2307<TD>4706
<TR><TH>Second Quarter<TD>2982<TD>5104
<TR><TH>Third Quarter<TD>3011<TD>5220
<TR><TH>Fourth Quarter<TD>3055<TD>5287 </TABLE>
// includes the output of footer.jsp

<Y%@include file="footer.jsp" %>

</body>

</html>

Example Code: setting content type to generate excel spread sheet

In this example, index.jsp is modified to generate excel spread sheet of the last example. The
change is shown in bold face.
index.jsp

// setting content type to generate excel sheet using page directive
<%@page contentType="application/vnd.ms-excel" %>
<html>

<body>

// includes the output of header.jsp

<%@jinclude file="header.jsp" %>

<TABLE BORDER=1>
<TR><TH></TH><TH>Apples<TH>Oranges

<TR><TH>First Quarter<TD>2307<TD>4706
<TR><TH>Second Quarter<TD>2982<TD>5104

© Copyright Virtual University of Pakistan Page 347

Web Design and Development (CS506)

<TR><TH>Third Quarter<TD>3011<TD>5220
<TR><TH>Fourth Quarter<TD>3055<TD>5287 </TABLE>
// includes the output of footer.jsp

<%@include file="footer.jsp" %>

</body>

</html>

35.3 JSP Life Cycle Methods

The life cycle methods of JSP are jsplnit(), jspService() and jspDesroy().
On receiving each request, jspService() method is invoked that generates the response as

well.
[jsplnit()]

\ 4 {

_jspServices() }
»’
[jspDestroy() }

e Java A Lab Course by Umair Javed
» Core Servlets and JSP by Marty Hall

Request

Response €=

35.4 References:

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 348

Web Design and Development (CS506)

Lecture 36

In the last handout, we learned how to work with JSP directives and the use of implicit objects.
In this handout, we’ll learn about JavaBeans and what affect they produce. Before learning
JavaBeans, let’s start with an example that helps us to understand the impact of using JavaBeans.

Code Example: Displaying Course Outline

This example is actually the modification of the last one we had discussed in previous handout.
User will select either course “web design and development” or *““java”. On submitting request,
course outline would be displayed of the selected course in tabular format. This course outline
actually loaded from database. The schema of the database used for this example is given below:

Relationships

SessionDeta

coursed
courseName Detailed
sessionNo
co .
topic
assignment
coursed

The flow of this example is shown below:

index.jsp

This page is used to display the course options to the user in the radio button form.

<html>

<body>

<h2>Select the page you want to visit</h2>

<form name="myForm" action="controller.jsp" >

<h3>

<input type="radio" name = "page" value="web"/> Web Design & Develoment
</h3>

<h3>

<input type="radio" name = "page" value="java'"/> Java
</h3>

<input type="submit" value="Submit" />

© Copyright Virtual University of Pakistan Page 349

Web Design and Development (CS506)

</form>
</body>
</html>

controller.jsp

Based upon the selection made by the user, this page will redirect the user to respective
pages. Those are web.jspand java.jsp

<htm]>

<body>

<!-- scriptlet -->

<%

// reading parameter named page

String pageName = request.getParameter("page");

// redirecting user based on selection made if (pageName.equals("web")) {
response.sendRedirect("web.jsp");

} else if (pageName.equals("java")) {
response.sendRedirect("java.jsp");

}
%>
/body>
</htmI>

web.jsp

This page is used to display course outline of ““web design and development™ in a tabular
format after reading them from database. The code is:

// importing java.sql package using page directive, to work with
// database

<%@page import="java.sql.*"%>

<html>

<body>

<center>

<h2> Welcome to Web Design & Development Page </h2>
<h3> Course Outline</h3>

<TABLE BORDER="1">

<TR>

<TH>Session No.</TH>
<TH>Topics</TH>
<TH>Assignments</TH>

© Copyright Virtual University of Pakistan Page 350

Web Design and Development (CS506)

</TR>

<%-- start of scriptlet --%>

<%

// establishing conection
Class.forName("sun.jdbc.odbc.JdbcOdbeDriver"),

String conUrl = "jdbc:odbe:CourseDSN";
Connection con = DriverManager.getConnection(conUrl);

// preparing query using join statements

String sql =" SELECT sessionNo, topic, assignment " + " FROM Course, SessionDetail" +
" WHERE courseName = ? " +

" AND Course.courseld = SessionDetail.courseID";

PreparedStatement pStmt = con.prepareStatement(sql);

// setting parameter value web”. pStmt.setString(1 , "web");
ResultSet rs = pStmt.executeQuery(); String sessionNo;
String topic;

String assignment;

// iterating over resultset while (rs.next()) {

sessionNo = rs.getString("sessionNo");

topic = rs.getString("topic");

assignment = rs.getString("assignment");

if (assignment == null) {
assignment = "";
}

%>
<%-- end of scriptlet --%>

<%-- The values are displayed in tabular format using expressions, however it can also be done using
out.println(sessionNo) like statements
--9%0>

<TR>

<TD> <%-=sessionN0%> </TD>
<TD> <%-=topic%> </TD>
<TD> <%=assignment%> </TD>
</TR>

<%
} // end while

90>

</TABLE >

© Copyright Virtual University of Pakistan Page 351

Web Design and Development (CS506)

</center>
</body>
</html>

java.jsp

The code of this page is very much alike of “web.jsp”. The only change is in making of
query. Here the value is set “‘java” instead of ““web”’

// importing java.sql package using page directive, to work with
// database

<Y%(@page import="java.sql.*"%>

<htmI>

<body>

<center>

<h2> Welcome to Java Page </h2>

<h3> Course Outline</h3>

<TABLE BORDER="1" >

<TR>

<TH>Session No.</TH>

<TH>Topics</TH>

<TH>Assignments</TH>

</TR>

<%-- start of scriptlet --%>

<%

// establishing conection
Class.forName("sun.jdbc.odbc.JdbcOdbeDriver"),

String conUrl = "jdbc:odbc:CourseDSN";

Connection con = DriverManager.getConnection(conUrl);
// preparing query using join statements

String sql =" SELECT sessionNo, topic, assignment " + " FROM Course, SessionDetail" +
" WHERE courseName =? " +

" AND Course.courseld = SessionDetail.courselD";
PreparedStatement pStmt = con.prepareStatement(sql);

// setting parameter value web”. pStmt.setString(1, "java");
ResultSet rs = pStmt.executeQuery(); String sessionNo;
String topic;

String assignment;

// iterating over resultset while (rs.next()) {

sessionNo = rs.getString("sessionNo");

topic = rs.getString("topic");

assignment = rs.getString("assignment");

if (assignment == null){

nn,

assignment ="";

}

© Copyright Virtual University of Pakistan Page 352

Web Design and Development (CS506)

%>

<%-- end of scriptlet --%>

<%-- The values are displayed in tabular format using expressions, however it can also be done using
out.println(sessionNo) like statements
--90>

<TR>

<TD> <%=sessionNo%> </TD>
<TD> <%-=topic%> </TD>

<TD> <%=assignment%> </TD>
</TR>

<%

}+ // end while

%>

</TABLE >

</center>

</body>

</html>

Issues with Last Example

Too much cluttered code in web.jspand java.jsp. This makes it very difficult
to understand (probably you experienced it by yourself) and to
make changes/enhancements.

A single page is doing everything that is really a bad approach while making
of web applications. The tasks performed by web.jspor java.jspare:

- Displaying contents (Presentation logic)
- Connecting with database (DB connectivity logic)

- Results Processing (Business Logic)

Can we simplify it? Yes, the answer lies in the use of JavaBeans technology.

36.1 JavaBeans

» A java class that can be easily reused and composed together in an application.
» Any java class that follows certain design conventions can be a JavaBean.

© Copyright Virtual University of Pakistan Page 353

Web Design and Development (CS506)

36.1.1JavaBeans Design Conventions

These conventions are:
» A bean class must have a zero argument constructor
* A bean class should not have any public instance variables/attributes (fields)
= Private values should be accessed through setters/getters
o For boolean data types, use boolean isXXX() & setXXX(boolean)
* A bean class must be serializable

A Sample JavaBean

The code snippet of very basic JavaBean is given below that satisfies all the conventions
described above. The MyBean.java class has only one instance variable.

public class MyBean implements Serializable {

private String name;
// zero argument constructor
public MyBean(){

[T3ER

name = “”’;
}
// standard setter

public void setName(String n) {
name = n;

}
// standard getter

public String getName() {
return name,

}
// any other method

public void print() {
System.out.println(“Name is: ” + name);

}

} // end Bean class

Example Code: Displaying course outline by incorporating

JavaBeans

This example is made by making more enhancements to the last one. Two JavaBeans are

© Copyright Virtual University of Pakistan Page 354

Web Design and Development (CS506)

included in this example code. These are CourseOutlineBean& CourseDAO.

The CourseOutlineBean is used to represent one row of the table. It contains the
following attributes:

e sessionNo

» topic
e assignment

The CourseDAO (where DAO stands of Data Acess Object) bean encapsulates database
connectivity and result processing logic.

The web.jsp and java.jsp will use both these JavaBeans. The code of these and the JSPs
used in this example are given below.

CourseOutlineBean.java

package vu;

import java.io.*;

public class CourseOutlineBean implements Serializable {

private int sessionNo; private String topic; private String assignment;

// no argument constructor public CourseOutlineBean() { sessionNo = 0;
topic ="";

assignmen ;
§
// setters

public void setSessionNo(int s){
sessionNo = s;

¥

public void setTopic(String t){
topic =t;

¥

public void setAssignment(String a){
assignment = a;

§
/] getters

public int getSessionNo(){
return sessionNo;

h
public String getTopic(){
return topic;

h
public String getAssignment(){
return assignment;

h
}+ // end class

© Copyright Virtual University of Pakistan

Page 355

Web Design and Development (CS506)

CourseDAO.java

package vu;

import java.io.*;

import java.sql.*;

import java.util. *;

public class CourseDAO implements Serializable {
private Connection con;

public CourseDAO() {

establishConnection();

}/********** eStabliShconneCtion methOd sk sk e sk sk ke sfe sk sk sfe ok sk sk ok skeoskosk skoskok

// method used to make connection with database private void establishConnection(){
try{

// establishing conection

Class.forName("sun.jdbc.odbc.JdbcOdbeDriver"),

String conUrl = "jdbc:odbc:CourseDSN";

con = DriverManager.getConnection(conUrl);

}catch(Exception ex){ System.out.println(ex);

}/*********** retrieveCourseList method st sk sk sfe sk sk sk sk ste sk s skeskeoskeoskeoske sk sk sk sk

public ArrayList retrieveCourseList(String cName){ ArrayList courseList = new ArrayList();

try{
}

String sql =" SELECT sessionNo, topic, assignment " +

" FROM Course, SessionDetail" + " WHERE courseName =? " +
" AND Course.courseld = SessionDetail.courselD ";
PreparedStatement pStmt = con.prepareStatement(sql);
pStmt.setString(1, cName);

ResultSet rs = pStmt.executeQuery();

int sNo; String topic; String assignment;
while (rs.next()) {

sNo =rs.getlnt("sessionNo");

topic = rs.getString("topic");
assignment = rs.getString("assignment");
if (assignment == null){

assignmen ;
H
// creating a CourseOutlineBean object
CourseOutlineBean cBean = new CourseOutlineBean();
cBean.setSessionNo(sNo);

cBean.setTopic(topic);
cBean.setAssignment(assignment);

// adding a bean to arraylist

© Copyright Virtual University of Pakistan Page 356

Web Design and Development (CS506)

courseList.add(cBean);
}
}catch(Exception ex){ System.out.println(ex);
} finally {

// to close connection releaseResources();

j
// returning ArrayList object
return courseList;

} // end retrieveCourseOutline

//********** releaseResourceS methOd sk st sk sfe ke sfe steoske sk sk sk sfesie seskeske ek skeok
private void releaseResources(){

try{

if(con !=null){

con.close();

}
}catch(Exception ex){ System.out.println();
b
}

} // end releaseResources

}// end CourseDAO

index.jsp

This page is used to display the course options to the user in the radio button form.

<htmI>

<body>

<h2>Select the page you want to visit</h2>

<form name="myForm" action="controller.jsp" >
<h3>

<input type="radio" name = "page" value="web"/>
Web Design & Develoment

</h3>

<h3>

<input type="radio" name = "page" value="java"/> Java
</h3>

<input type="submit" value="Submit" />

© Copyright Virtual University of Pakistan Page 357

Web Design and Development (CS506)

</form>
</body>
</html>

controller.jsp

Based on user selection, redirects the user to desired page.
<htmI>
<body>

<l-- scriptlet -->

<%

String pageName = request.getParameter("page");
if (pageName.equals("web")) {
response.sendRedirect("web.jsp");

} else if (pageName.equals("java")) {
response.sendRedirect("java.jsp");

h
%>
</body>
</html>

web.jsp

This page is used to display course outline of ““web design and development™ in a tabular
format after reading them from database. Moreover, this page also uses the JavaBeans
(CourseOutlineBean & CourseDAO).

<%@page import="java.util.*" %>

<%-- importing vu package that contains the JavaBeans--%>
<%@page import="vu.*" %>

<html>

<body>

<center>

<h2> Welcome to Web Design & Development Course </h2>
<h3> Course Outline</h3>

<TABLE BORDER="1" >

<TR>

<TH>Session No.</TH>

<TH>Topics</TH>

<TH>Assignments</TH>

</TR>

<%-- start of scriptlet --%>

<%

© Copyright Virtual University of Pakistan Page 358

Web Design and Development (CS506)

// creating CourseDAO object

CourseDAO courseDAO = new CourseDAO();

// calling retrieveCourseList() of CourseDAO class and
// passing “web” as value. This method returns ArrayList
ArrayList courseList = courseDAO.retrieveCourseList("web"); CourseOutlineBean webBean = null;
// iterating over ArrayList to display course outline
for(int i=0; i<courseList.size(); i++){

webBean = (CourseOutlineBean)courseList.get(i);

%>

<%-- end of scriptlet --%>

<TR>

<TD> <%= webBean.getSessionNo()%> </TD>
<TD> <%= webBean.getTopic()%> </TD>

<TD> <%= webBean.getAssignment()%> </TD>
</TR>

<%

} // end for

%>

</TABLE >

</center>

</body>

</html>

java.jsp

The code contains by this page is almost same of web.jsp. Here, “java” is passed to
retieveCourseList() method. This is shown in boldface.

<% (@page import="java.util.*" %>

<%-- importing vu package that contains the JavaBeans--%>
<%@page import="vu.*" %>

<html>

<body>

<center>

<h2> Welcome to Java Course </h2>

<h3> Course Outline</h3>

<TABLE BORDER="1" >

<TR>

<TH>Session No.</TH>

<TH>Topics</TH>

<TH>Assignments</TH>

</TR>

<%-- start of scriptlet --%>

<%

// creating CourseDAO object

CourseDAO courseDAO = new CourseDAO();

© Copyright Virtual University of Pakistan Page 359

Web Design and Development (CS506)

// calling retrieveCourseList() of CourseDAO class and
// passing “java” as value. This method returns ArrayList
ArrayL.ist courseList = courseDAO.retrieveCourseList(*'java™);
CourseOutlineBean javaBean = null;

// iterating over ArrayList to display course outline
for(int i=0; i<courseList.size(); i++){

javaBean = (CourseOutlineBean)courseList.get(i);

%>

<%-- end of scriptlet --%>

<TR>

<TD> <%= javaBean.getSessionNo()%> </TD>
<TD> <%= javaBean.getTopic()%> </TD>

<TD> <%= javaBean.getAssignment()%> </TD>
</TR>

<%

} // end for

%>

</TABLE >

</center>

</body>

</html>

36.2 References:

« Entire material for this handout is taken from the book JAVA A Lab Course by Umair
Javed. This material is available just for the use of VU students of the course Web
Design and Development and not for any other commercial purpose without the consent of
author.

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 360

Web Design and Development (CS506)

Lecture 37: JSP Action Elements and Scope

The journey we had started of JSP is very much covered except of JSP action elements. In this
handout, we’ll study the use of JSP action elements. Further also learn how and where to store
JavaBean objects that can be shared among JSP pages.

Let’s first quickly look on the JSP journey to find out where we have reached.

* Directive Elements

Provides global control of JSP ... <@ %>

» Scripting Elements

- JEP comuneits o <% %
— declarations e =%!%=
» Used to declare instance variables & methods
BT E5SI0IS =00
Xpressions i e S e e e e e =0p="0=
. o * Ajava code fragment which retumns String
implicit
Q}HE{'H scriptlets b O
+ Blocks of java code
= Action Elements
. opecialIe P fane oo ansn e snan s 4 L | LA =

37.1 JSP Action Elements

JSP action elements allow us to work with JavaBeans, to include pages at request time and to
forward requests to other resources etc.

Format

Expressed using XML syntax

< Opening tag<jsp:actionElement attribute="value” >
« Body body
e Closing tag</jsp:actionElement>

Empty tags (without body) can also be used like

<jsp:actionElementattribute="value” >

© Copyright Virtual University of Pakistan Page 361

Web Design and Development (CS506)

Some JSP Action Elements
» To work with JavaBeans
-<jsp:useBean />
-<jsp:setProperty />
-<jsp:getProperty />

» To include resources at request time
-<jsp:include />

» To forward request to another JSP or Servlet
-<jsp:forward />

» To work with applets
-<jsp:plugin />

37.2 Working with JavaBeans using JSP Action Elements

The three action elements are used to work with JavaBeans. These are discussed in detail
below:

37.2.1JSP useBean Action Element

It is used to obtain a reference to an existing JavaBean object by specifying id(name of
object) and scope in which bean is stored. If a reference is not found, the bean is
instantiated.

The format of this action element is:

<jsp:useBean id = “name”
scope = “page|request|session|application” class="“package.Class ”’
/>

The 1id attribute specifies the name of the JavaBean object that is also used for later
references. The scopeattribute can have one possible value out of page, request, session and
application. If this attribute is omitted, the default value of scope attribute is page. We’ll discuss in
detail about scope shortly.

The classattribute specifies the type of object is going to be created.

jsp:useBeanis being equivalent to building an object in scriptlet. For example to build an object
of MyBeanusing scriptlet is:

© Copyright Virtual University of Pakistan Page 362

Web Design and Development (CS506)

<%
MyBean m = new MyBean();
%>

Achieving above functionality using jsp:useBean action element will look like this:
<jsp:useBean id=“m”
scope = “page”

class="“vu.MyBean” />

In the above code snippet, we are assuming that MyBeanlies in vu package.

37.2.2JSP setProperty Action Element

To set or change the property value of the specified bean. String values are converted to types of
properties by using the related conversion methods.

The format of this action element is:

<jsp:setProperty name = “beanName or id” property = “name” value
=“value”/>

The name attribute should match the id given in jsp:useBean. The property attribute
specifies the name of the property to change and the valueattribute specifies the new value.

jsp:setPropertyis being equivalent to following code of scriptlet. For example to change the name
property of m (instance of MyBean) using scriptlet is:

<%
m.setProperty(“ali”);
%>

Achieving above functionality using jsp:setPropertyaction element will look like this:

<jsp:setProperty name = “m” property = “name” value = “ali” />

37.2.3JSP getProperty Action Element

Use to retrieves the value of property, converts it to String and writes it to output stream.
The format of this action element is:

<jsp:getProperty name = “beanName or id”’property = “name”/>

© Copyright Virtual University of Pakistan Page 363

Web Design and Development (CS506)

jsp:getProperty is being equivalent to following code of scriptlet. For example to retrieve the
name property of m (instance of MyBean) followed by writing it to output stream, scriptlet code will
look like:

<%
String name = m.getName(); out.println(name);
%>

Achieving above functionality using jsp:getProperty action element will look like this:

13 9.

<jsp:getProperty name = “m”property = “name” />

Example Code: Calculating sum of two numbers by using action elements and JavaBean

This example contains index.jspand result.jspand one JavaBean i.e. SumBean.
User will enter two numbers on index.jspand their sum will be displayed on
result.jsp. Let’s examine these one after another

SumBean.java

The SumBean has following attributes

e firstNumber
e secondNumber
e sum

The firstNumber and secondNumbers are “write-only” properties means for these only
setters would be defined. Whereas sum is a ““read-only”” property as only getter would be
defined for it.

The SumBeanalso contain one additional method for calculating sum i.e. calulateSum().
After performing addition of firstNumber with secondNumber, this method will assign the
result to sum attribute.

package vu;

import java.io.*;

public class SumBean implements Serializable {
private int firstNumber;

private int secondNumber;

private int sum;

// no argument constructor

public SumBean() {

© Copyright Virtual University of Pakistan Page 364

Web Design and Development (CS506)

firstNumber = 0;
secondNumber = 0;
sum = 0;

}
// firstNumber & secondNumber are writeonly properties
// setters

public void setFirstNumber(int n){

firstNumber = n;

}
public void setSecondNumber(int n){
secondNumber = n;

§
// no setter for sum

// sum is a read only property
public int getSum(){

return sum;

}
// method to calculate sum

public void calculateSum() {

sum = firstNumber + secondNumber;

b
}

index.jsp

This page will display two text fields to enter number into them.

<html>
<body>

<h2>Enter two numbers to calculate their sum</h2>
<form name="myForm" action="result.jsp">
<h3>

Enter first number

<input type="text" name="numl" />

Enter second number

<input type="text" name="num?2" />

<input type="submit" value="Calculate Sum" />
</h3>

</form>

</body>

</html]>

© Copyright Virtual University of Pakistan

Page 365

Web Design and Development (CS506)

result.jsp

This page will calculate the sum of two entered numbers by the user and displays the sum
back to user. The addition is performed using SumBean

<%-- importing vu package that contains the SumBean --%>
<%@page import="vu.*"%>

<html>

<body>

<h2>The sum is:

<%-- instantiating bean using action element -- %>

<%--

//Servlet equivalent code of useBean

SumBean sBean = new SumBean();

--9%0>

<jsp:useBean id="sBean" class="vu.SumBean" scope="page"/>
<%-- setting firstNumber property of sBean using action elements
- 05>

<%-- implicit conversion from string to int as num1 is of type
String and firstNumber is of type int

--9%0>

<%--

//Servlet equivalent code of setProperty for num1

int no = Integer.parselnt(request.getParameter("num1"));
sBean.setFirstNumber(no);

--9%0>

<jsp:setProperty name="sBean"

property="firstNumber" param="num1" />

<%--

//Servlet equivalent code of setProperty for num2

int no = Integer.parselnt(request.getParameter("num?2"));
sBean.setSecondNumber(no);

--9%0>

//Servlet equivalent code of setProperty for num?2

int no = Integer.parselnt(request.getParameter("num?2"));
sBean.setSecondNumber(no);

<jsp:setProperty name="sBean"

property="secondNumber" param="num?2" />

<%

// calling calculateSum() method that will set the value of
//'sum attribute

sBean.calculateSum();

%>

© Copyright Virtual University of Pakistan Page 366

Web Design and Development (CS506)

<%--

// servlet equivalent code of displaying sum

int res = sBean.getSum();

out.println(res);

--9%0>

<jsp:getProperty name="sBean" property="sum" />
</h2>

</body>

</html>

37.3 Sharing Beans & Object Scopes

So far, we have learned the following techniques to create objects.

» Implicitly through JSP directives
= Explicitly through actions
e Directly using scripting code

Although the beans are indeed bound to local variables, that is not the only behavior. They are
also stored in four different locations, depending on the value of the optional scopeattribute of
jsp:useBean. The scope attribute has the following possible values: page, request, sessionand
application.

Let’s discover what impact these scopes can produce on JavaBeans objects which are stored in one
of these scopes.

37.3.1page

This is the default value of scope attribute, if omitted. It indicates, in addition to being
bound to local wvariable, the bean object should be placed in the pageContext object.
The bean’s values are only available and persist on JSP in which bean is created.

In practice, beans created with page scope are always accessed (their values) by jsp:getProperty,
jsp:setProperty, scriptlets or expressions later in the same page. This will be more cleared with the
help of following diagram:

© Copyright Virtual University of Pakistan Page 367

Web Design and Development (CS506)

First.jsp (1) request 1

A 4

Second
Jsp

(3) request 1

(2) create

Or request 2

v

third.jsp

7

(4) Values not

Available

v

MyBean m = new MyBean(); MvBean m
m.setName (“ali”); Iname = alil

In the diagram above, first.jsp generates a request “request 1 that is submitted to
second.jsp. Now, second.jsp creates an object mof MyBeanby calling its default constructor
and stores a value “ali”” for the name property by making a call to appropriate setter method.

Since, the scope specified in this example is “page” when the object of MyBean is

instantiated using jsp:useBeanaction element. Therefore, object (m) of MyBeanis stored in

PageContext.

Whether, second.jspforwards the same request (request 1) to third.jspor generates a new
request (request 2), at third.jsp, values (e.g. ali) stored in MyBeanobject m, are not available.
Hence, specifying scope “page” results in using the object on the same page where they are created.

37.3.2request

This value signifies that, in addition to being bound to local variable, the bean object
should be placed in ServletRequest object for the duration of the current request.
In other words, until you continue to forward the request

JSP/servlet, the beans values are available. This has been illustrated in the following

diagram.

© Copyright Virtual University of Pakistan

to another

Page 368

Web Design and Development (CS506)

First.jsp (1) request 1 | Second (3) request 1 | third.jsp (5) request 2| ¢\ h
> Jsp > ™ isp
(4) Values /
(2) create .
Available (6) Values not
/ Available

MvBean m
[name = ali]

In the diagram above, MyBeanis instantiated by specifying scope =“request”
that results in storing object in ServletRequest. A value ““ali”” is also stored in m
using setter method.

second.jspforwards the same request (request 1) to third.jsp, since scope of m(object of MyBean)
is request, as a result third.jsp can access the values(e.g. ali) stored in m. According to the
figure, third.jspgenerates a new request (request 2) and submits it to fourth.jsp. Since a new
request is generated therefore values stored in object m(e.g. ali) are not available to fourth.jsp.

37.3.3 session

This value means that, in addition to being bound to local variable, the bean object
will be stored in the HttpSession object associated with the current request. As you
already know, object’s value stored in HttpSession persists for whole user’s session.
The figure below helps in understanding this concept.

Firstjsp | (1)request1l | Second (4) request 1 third.jsp (6) request 2 ¢, 4y,
> sp gl

\ 4

Jsp

/ /
(5) Values

Available (7) Values

/ Available
MvBean m
[name = ali]

HttpSession

(3) create

© Copyright Virtual University of Pakistan Page 369

Web Design and Development (CS506)

In the diagram above, MyBeanis instantiated by specifying scope = “session” that results in
storing object in HttpSession. A value “ali” is also stored in m using setter method.

Irrespective of request forwarding or new request generation from second.jsp to other

resources, the values stored in HttpSession remains available until user’s session is
ended.

37.3.4 Application

This very useful value means that, in addition to being bound to local variable, the bean object
will be stored in ServletContext. The bean objects stored in ServletContextis shared by all
JSPs/servlets in the same web application. The diagram given below illustrates this scenario:

First.jsp | (1) requestl Second (4) request 1 third.jsp (6) request 2 Fourth
»| Jsp > » jsp
(5) Values /
(3) create

Available (7) Values

/ Available
MvBean m
[name = ali]

ServletContext

© Copyright Virtual University of Pakistan Page 370

Web Design and Development (CS506)

37.4 Summary of Object’s Scopes

Most visible % application
session
request

Least visible page

Within all pages belonging to same application

Only from pages belonging to same session as
the one in which they are created

Only within pages processing the request in
which they are created

Objects may be accessed only within pages
where they are created

Let’s take another view of session, request & page scopes in the next figure that helps us to
understand the under beneath things.

Client (PC)

Request

Response

Request Response

-

/

hd

Request scope

N~

—

Page 1 Page 2 Page 3 Page 4

G /
h'd

Request scope

Session scope

© Copyright Virtual University of Pakistan

_

Web Design and Development (CS506)

The figure shows four JavaServer Pages. Each page has its own page scope. Therefore
objects stored in page scope are only available to same pages on which they are created.

Suppose pagel forwards the request to page2. Objects stored in request scope remains available
to pagel as well to page 2. Similar case is true for page 3 & page 4.

If user makes a visit to all these pages in one session, object’s values stored in session scope
remains available on all these pages.

To understand the difference between sessions & application scope, consider the
following figure:

Client 1 E—

Sessiop ID 1 —
I'_> ————

Sessiof ID 2
Session 2
\/

Client 2

Client 1
Sessiop ID 1 server - application
Sessiol ID 2

As you can conclude from the figure, for each user (client), objects are stored in different
sessions. However, in the case of application scope, all users stores objects in single
place.

Client 2

© Copyright Virtual University of Pakistan Page 372

Web Design and Development (CS506)

37.5 More JSP Action Elements

Let’s talk about two important action elements. These are include& forward.

37.5.1JSP include action Element

It is used to include files at request time. For example, to reuse HTML, JSP or plain text content. It’s
important to note that JSP content cannot affect main page (in which output is included); only output
of included JSP is used. It also allows updating of the included content without changing the main JSP.

The jsp:includeaction element requires two attributes: page& flush.

e page: arelative URL of the file to be included.
» flush: must have the value ““true”

<jsp:include page = “relative URL” flush = “true” />

jsp:include is being equivalent to following code of scriptlet. For example to include the
output of one.jsp , scriptlet code will look like:
<%
RequestDispatcher rd =request.getRequestDispatcher(“one.jsp™);
rd.include(request, response);
%>
Achieving above functionality using jsp:include action element will look like this:

<jsp:include page = “one.jsp” flush = “true” />

37.5.2JSP forward action Element

It is used to forward request to another resource. The format of jsp:forward action
is:

<jsp:forward page = “one.jsp” />

jsp:forward is being equivalent to following code of scriptlet. For example to forward the
request to one.jsp , scriptlet code will look like:
<%
RequestDispatcher rd = request.getRequestDispatcher(“one.jsp”);
rd.forward(request, response);
%>

© Copyright Virtual University of Pakistan Page 373

Web Design and Development (CS506)

37.6 References:

e Java A Lab Course by Umair Javed.
* Core Servlets and JavaServer Pages by Marty Hall

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 374

Web Design and Development (CS506)

Lecture 38: JSP Custom Tags

To begin with, let’s review our last code example of lecture 36 i.e. Displaying course
outline. We incorporated JavaBeans to minimize the database logic from the JSP. But
still, we have to write some lines of java code inside java.jsp & web.jsp. As discussed
earlier, JSPs are built for presentation purpose only, so all the other code that involves

business and database logic must be shifted elsewhere like we used JavaBeans for such

purpose.

There is also another problem attached to it. Generally web page designers which have enough
knowledge to work with HTML and some scripting language, faced lot of difficulties in
writing some simple lines of java code. To overcome these issues, java provides us the
mechanism of custom tags.

38.1 Motivation

To give you an inspiration, first have a glance over the code snippet we used in JSP of the course
outline example of last lecture. Of course, not all code is given here; it’s just for your reference to
give you a hint.

<%
CourseDAO courseDAO = new CourseDAO();c..cuvnen....
// iterating over ArrayList for

(v) {

........................ //displaying courseoutline
}

Yo T

Can we replace all the above code with one single line? Yes, by using custom tag we can write like
this:

<mytag:coursetag pageName="“java” />

By only specifying the course/page name, this tag will display the course outline in
tabular format. Now, you must have realized how significant changes custom tags can
bring on.

38.2 What is a Custom Tag?

» In simplistic terms, “a user defined component that is used to perform certain action”.

© Copyright Virtual University of Pakistan Page 375

Web Design and Development (CS506)

This action could be as simple as displaying “‘hello world™ or it can be as complex as
displaying course outline of selected course after reading it from database.

» It provides mechanism for encapsulating complex functionality for use in JSPs. Thus
facilitates the non-java coders.

* We already seen & used many built in tags like:

o <jsp:useBean...... />
o <jsp:include />
o <jsp:forward /> etc.

38.3 Why Build Custom Tag?

e We introduced action <jsp:useBean> and JavaBeans to incorporate complex,
encapsulated functionality in a JSP.

» However, JavaBeans cannot manipulate JSP content and Web page designers
must have some knowledge to use JavaBeans in a page

e With Custom tags, it is possible for web page designers to use complex
functionality without knowing any java

38.4 Advantages of using Custom Tags

» Provides cleaner separation of processing logic and presentation, than JavaBeans.
» Have access to all JSP implicit objects like out, requestetc.
e Can be customized by specifying attributes.

38.5 Typesof Tags

Three types of can be constructed. These are:

1. Simple Tag
2. Tag with Attribute
3. Tag with Body

38.5.1Simple Tag
A simple tag has the following characteristics:

» Start and End of tag

* No body is specified within tag
* No attributes

» For example

© Copyright Virtual University of Pakistan Page 376

Web Design and Development (CS506)

<mytag : hello/>

2N

Tag Library Tag Name
Prefix

38.5.2Tag with Attributes
A tag with attributes has the following characteristics:

» Start and End of tag
e Attributes within tag
* No body enclosed

* For example

< mytag:hello attribute = “value” />

38.5.3Tag with Body

A tag with body has the following characteristics:

» Start and End of tag

» May be attributes

* Body enclosed within tag
» For example

< mytag:hello optional attributes

some body

</ mytag:hello >

38.6 Building Custom Tags

So far, we have used many built-in tags. Now the time has come to build your own one. Custom
tags can be built either by using JSP 1.2 specification or JSP 2.0 (latest) specification.

To develop custom tags using JSP 1.2 involves lot of cumbersome (too difficult for James

Gossling alsp). However, JSP 2.0 brings lots of goodies like

© Copyright Virtual University of Pakistan

Web Design and Development (CS506)

» Simple tag extensions to build custom tags
» Integrated Expression Language (will be discussed in coming lecture)
* Also provides an alternate mechanism for building custom tags using tag files

(.tag)
» Improved XML syntax etc.

38.6.1Steps for Building Custom Tags

The following steps are used in order to develop your own custom tag. These are:

1.Develop the Tag Handler class
2. Write Tag library Descriptor (.tld) file

3. Deployment

38.6.2Develop the Tag Handler class

« Tag Handler is also a java class that is implicitly called when the associated tag is
encountered in the JSP.

e Must implement SimpleTaginterface
* Usually extend from SimpleTagSupport class that has already implemented

SimpleTaginterface.
» For example,

public class MyTagHandler extends SimpelTagSupport {

. dO'}Fag()method
o By default does nothing
o Need to implement / override to code/write functionality of tag
o Invoked when the end element of the tag encountered.
 JSP implicit objects (e.g. out etc) are available to tag handler class through
pageContextobject.
» pageContextobject can be obtained using getJspContext()method.
= For example to get the reference of implicit outobject, we write.
o PageContext pc = (PageContext) getJspContext();

o JspWriter out = pc.getOut();

38.6.3Write Tag Library Discriptor (.tld) file

e Itis a XML based document.

© Copyright Virtual University of Pakistan Page 378

Web Design and Development (CS506)

» Specifies information required by the JSP container such as:
Tag library version

o JSP version
o Tag name
0
0

)

Tag Handler class name
Attribute names etc.

Note: If you are using any IDE (like netBeans® 4.1, in order to build custom tags,
the IDE will write .tldfile for you.

38.6.4 Deployment

e Place Tag Handler class in myapp/WEB-INF/classes folder of web
application.
» Place .tldfile in myapp/WEB-INF/tldsfolder of web application.

Note: Any good IDE will also perform this step on your behalf

38.7 Using Custom Tags
Use taglibdirective in JSP to refer to the tag library. For example

<% (@ taglib uri="TLD file name” prefix="mytag” %>

The next step is to call the tag by its name as defined in TLD. For example, if tag
name is hello then we write:

< mytag:hello />
where mytag is the name of prefix specified in taglibdirective.
What actually happened behind the scenes? Container calls the doTag()

method of appropriate tag handler class. After that, Tag Handler will write the
appropriate response back to the page.

Example Code: Building simple tag that displays “Hello World”

Enough we have talked about what are custom tags, their types. Now, it is a time to
build a custom tag that displays ““Hello World™.

Approach

» Extend Tag Handler class from SimpleTagSupport class and override

© Copyright Virtual University of Pakistan Page 379

Web Design and Development (CS506)

doTag()method
e Build TLD file
* Deploy

Note: As mentioned earlier, if you are using any IDE (like netBeans® 4.1), the last two steps will
be performed by the IDE.

WelcomeTagHandler.java

package vu;

// importing required packages
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

// inheriting from SimpleTagSupport class

public class WelcomeTagHandler extends SimpleTagSupport {

// overriding doTag() method

public void doTag() throws JspException {

// obtaining the reference of out implicit object

PageContext pageContext = (PageContext)getJspContext(); JspWriter out =
pageContext.getOut();

try {

out.printin(** Hello World *);

} catch (java.io.IOException ex) {

throw new JspException(ex.getMessage());

}
}+ // end doTag() method

} // end WelcomeTagHandler class

customtags.tld

If using IDE, this file will be written automatically. In this file you specify the tag name
along with Tag Handler class.

<?xml version="1.0" encoding="UTF-8"?>

<taglib version="2.0" xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLlocation="http://java.sun.com/xml/ns/j2ee web- jsptaglibrary 2 0.xsd">
<tlib-version>1.0</tlib-version>

<short-name>mytag</short-name>

<!—the value of uri will be used in JSP to refer to this tld -->
<uri>/WEB-INF/tlds/customtags</uri>

<l—

Specifying the tag name and tag class. Also mentioning that this tag has no body
>

<tag>

<name>welcome</name>

© Copyright Virtual University of Pakistan Page 380

Web Design and Development (CS506)

<tag-class>vu.WelcomeTagHandler</tag-class>
<body-content>empty</body-content>
</tag>

</taglib>

index.jsp

<%--

using taglib directive, specifying the tld file name as well as

prefix. Note that you you use any value for the prefix attribtute

--90>

<%@taglib uri="/WEB-INF/tlds/customtags.tld" prefix="mytag" %>

<html>

<body>

<h2>A Simple Tag Example</h2>

<h3>

<%-- calling welcome tag with the help of prefix --%>
<mytag:welcome />

</h3>

</body>

</html>

38.8 Building tags with attributes

If you want to build a tag that can also take attributes, for example

<mytag:hello attribute="value” />

To handle attributes, you need to add
Instance variables and Corresponding setter methods

Behind the scenes, container will call these setter methods implicitly and pass the value
of the custom tag attribute as an argument.

Example Code: Building tag with attribute

In this example, we will modify our course outline example to incorporate tags. Based on
attribute value, the tag will display the respective course outline in tabular format.

© Copyright Virtual University of Pakistan Page 381

Web Design and Development (CS506)

Approach

» Extend Tag Handler class from SimpleTagSupportclass
o Add instance variable of type String

o Write setter method for this attribute
o Override doTag()method

e Build TLD file
e Deploy

CourseOutlineBean.java

This is the same file used in the last example

package vubean;

import java.io.*;

public class CourseOutlineBean implements Serializable {
private int sessionNo;

private String topic;

private String assignment;

// no argument constructor

public CourseOutlineBean() {

sessionNo = 0;

topic ="";

assignment ="";

b
/] setters

public void setSessionNo(int s){
sessionNo = s;

h

public void setTopic(String t){
topic =t;

b

public void setAssignment(String a){
assignment = a;

}
/] getters

public int getSessionNo(){
return sessionNo;

H
public String getTopic(){
return topic;

}

public String getAssignment(){
return assignment;

© Copyright Virtual University of Pakistan Page 382

Web Design and Development (CS506)

h
}+ // end class

CourseDAO.java

No changes are made to this file too.

package vu;

import java.io.*;

import java.sql.*;

import java.util. *;

import vubean.*;

public class CourseDAO implements Serializable {
private Connection con;

public CourseDAO() {

establishConnection();

3/********** establishConnection method sk sk sk sk sk sk sk sk sk skeoske skeskeoske skeskok skeskok
// method used to make connection with database

private void establishConnection() {

try{

// establishing conection
Class.forName("sun.jdbc.odbc.JdbcOdbceDriver");

String conUrl = "jdbc:odbe:CourseDSN";

con = DriverManager.getConnection(conUrl);

}catch(Exception ex){

System.out.println(ex);

j
b

//*********** retrieveCourseList method sk sk sk sk sk sk skeoske sk sk skeskeoske skeskok skeoskok
public ArrayList retrieveCourseList(String cName){

ArrayList courseList = new ArrayList();

try{

String sql =" SELECT sessionNo, topic, assignment " + " FROM Course, SessionDetail" +
" WHERE courseName =? " +

" AND Course.courseld = SessionDetail.courselD ";
PreparedStatement pStmt = con.prepareStatement(sql);
pStmt.setString(1, cName);

ResultSet rs = pStmt.executeQuery();

int sNo; String topic; String assignment;

while (rs.next()) {

sNo =rs.getlnt("sessionNo");

topic = rs.getString("topic");

assignment = rs.getString("assignment");

© Copyright Virtual University of Pakistan Page 383

Web Design and Development (CS506)

if (assignment == null) {
assignment ="";

b
// creating a CourseOutlineBean object
CourseOutlineBean cBean = new CourseOutlineBean();

cBean.setSessionNo(sNo);
cBean.setTopic(topic);
cBean.setAssignment(assignment);
// adding a bean to arraylist
courseList.add(cBean);

}
}catch(Exception ex){
System.out.println(ex);
} finally {

// to close connection
releaseResources();

H
// returning ArrayList object

return courseList;

}+ // end retrieveCourseOutline

//********** releaseResources method sk sl sk sfe sk st sk sie st skeosk skeoseosk sk skeskok sk
private void releaseResources(){

try{

if(con !=null){

con.close();

}
}catch(Exception ex){
System.out.println();

b
} // end releaseResources
}+// end CourseDAO

MyTagHandler.java

The tag handler class uses JavaBeans (CourseOutlineBean.java&
CourseDAO.java), and includes the logic of displaying course outline in tabular
format.

package vutag;

// importing package that contains the JavaBeans
import vubean.*;

import vu.*;

import javax.servlet.jsp.tagext.*;

© Copyright Virtual University of Pakistan Page 384

Web Design and Development (CS506)

import javax.servlet.jsp.*;

import java.util. *;

public class MyTagHandler extends SimpleTagSupport {
/*

Declaration of pageName property.

*/

private String pageName;

public void doTag() throws JspException {

CourseDAO courseDAO = new CourseDAO();

ArrayList courseList = courseDAO.retrieveCourseList(pageName);
// to display course outline in tabular form, this method is

// used — define below

display(courseList);

h
/*

Setter for the pageName attribute.

*/

public void setPageName(java.lang.String value) {
this.pageName = value;

}
/*

display method used to print courseoutline in tabular form

*/

private void display(ArrayList courseList)throws JspException {
PageContext pc = (PageContext)getJspContext();

JspWriter out = pc.getOut();

try{

// displaying table headers

out.print("<TABLE BORDER=1 >");

out.print("<TR>");

out.print("<TH> Session No </TH>");

out.print("<TH> Topic</TH>");

out.print("<TH> Assignment </TH>");

out.print("</TR>");

// loop to iterate over courseList

for (int i=0; i<courseList.size(); i++){

CourseOutlineBean courseBean = (CourseOutlineBean)courseList.get(i);
// displaying one row

out.print("<TR>");

out.print("<TD>" + courseBean.getSessionNo() + "</TD>"); o
ut.print("<TD>" + courseBean.getTopic() + "</TD>");

out.print("<TD>" + courseBean.getAssignment() + "</TD>");

© Copyright Virtual University of Pakistan Page 385

Web Design and Development (CS506)

out.print("</TR>");
}catch(java.io.IOException ex){
throw new JspException(ex.getMessage());

}

}
} // end clas MyTagHandler java

mytaglibrary.tld

<?xml version="1.0" encoding="UTF-8"?>

<taglib version="2.0" xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee web- jsptaglibrary 2 0.xsd">
<tlib-version>1.0</tlib-version>
<short-name>mytaglibrary</short-name>

<!—the value of uri will be used in JSP to refer to this tld -->
<uri>/WEB-INF/tlds/mytaglibrary</uri>

<l—

Specifying the tag name and tag class. Also mentioning that this tag has no body
-—>

<tag>

<name>coursetag</name>
<tag-class>vutag.MyTagHandler</tag-class>
<body-content>empty</body-content>

<l—

Specifying the attribute name and its type

>

<attribute>

<name>pageName</name>

<type>java.lang.String</type>

</attribute>

</tag>

</taglib>

out.print("</TABLE>");

index.jsp

This page is used to display the course options to the user in the radio button form.

<html>

<body>

<h2>Select the page you want to visit</h2>
<form name="myForm" action="controller.jsp" >
<h3>

© Copyright Virtual University of Pakistan Page 386

Web Design and Development (CS506)

<input type="radio" name = "page" value="web"/> Web Design & Development
</h3>

<h3>

<input type="radio" name = "page" value="java"/>
Java

</h3>

<input type="submit" value="Submit" />

</form>

</body>

</html>

controller.jsp

Based upon the selection made by the user, this page will redirect the user to respective
pages. Those are web.jspand java.jsp

<htmlI>

<body>

<l-- scriptlet -->

<%

String pageName = request.getParameter("page");
if (pageName.equals("web")) {
response.sendRedirect("web.jsp");

} else if (pageName.equals("java)) {
response.sendRedirect("java.jsp");

H
%>
</body>
</htm]>

java.jsp

<%-- using taglib directive, specifying the tld file and prefix -
00>
<% (@taglib uri="/WEB-INF/tlds/mytaglibrary.tld" prefix="mytag"%>

<html>

<body>

<center>

<h2> Welcome to Java Learning Center </h2>
<h3> Course Outline</h3>

© Copyright Virtual University of Pakistan Page 387

Web Design and Development (CS506)

<%--

calling coursetag and specifying java as attribute
value

--9%0>

<mytag:coursetag pageName="java" />
</center>

</body>

</html>

web.jsp

<%-- using taglib directive, specifying the tld file and prefix -
040>

<%@taglib uri="/WEB-INF/tlds/mytaglibrary.tld" prefix="mytag"%>
<html>

<body>

<center>

<h2> Welcome to Java Learning Center </h2>

<h3> Course Outline</h3>

<%--

calling coursetag and specifying java as attribute value

--90>

<mytag:coursetag pageName="java" />

</center>

</body>

</html>

38.9 References:

e Java A Lab Course by Umair Javed.
» Core Servlets and JavaServer Pages by Marty Hall

Note: Coding exercises in working condition for this lecture are also available on “Downloads”

section of LMS.

© Copyright Virtual University of Pakistan

Page 388

Web Design and Development (CS506)

Lecture 39: MVC + Case Study

We have covered an adequate amount of Servlets and JSPs in detail. Now, the time has come to
learn different architectures that are most commonly used for the sake of web development. These
architectures also help us to understand where these components best fit in. In this handout,
we’ll cover the most widely used/popular architecture i.e. Model

View Controller
(MVC).

A small case study “Address Book™ is also part of this handout that is based on MVCModel 1.
Before moving on to MVC, let’s see what error pages are and how they are
used?

39.1 Error Page

Error Pages enables you to customize error messages. You can even hide them from the
user's view entirely, if you want. This also makes possible to maintain a consistent look and feel
throughout an application, even when those dreaded error messages are thrown.

By means of page directive, a JSP can be given the responsibility of an Error page. An Error JSP
is called by the web server when an uncaught exception gets occurred. This exception is passed as
an instance of java.lang. Throwableto Error JSP (also accessible via implicit exceptionobject).

39.1.1Defining and Using Error Pages

isErrorPageattribute of a page directive is used to declare a JSP as an error
page.

JSP pages are informed about the error page by setting errorPageattribute of page
directive

In the figure below, error.jspis defined as JSP Error page and index.jspis informed to call
error.jspif any uncaught exception rose. This is done by setting attributes errorPage and
isErrorPageof the page directive on these JSPs.

Index.jsp Error.jsp
<%@page ... - > <%@page ...
errorPage="error.jsp” %> isErroPage="true” %>

- exception

© Copyright Virtual University of Pakistan Page 389

Web Design and Development (CS506)

39.2 Case Study — Address Book

What we have learned is going to be implemented in this Address Book example. Here MS-Access
is being used as DBMS. This database will have only one table, Person with following attributes

B PersonDB: Database [Access file format) __ N HX
e
Mame | Address phoneNo
Queries Ali Modeltown | 9231256 |
Forms Raza | Clifton 4329871
Reports
Pages

39.2.1Ingredients of Address Book

Java Beans, Java Server Pages and Error Page that are being used in this Address Book Example are:

Java Beans
» Personlnfo — Has following attributes:
0 name
o address

0 phoneNum
= PersonDAO
o Encapsulates database logic.
o Therefore, it will be used to save and retrieve Personlnfo data.
Java Server Pages
- addperson.jsp
o Used to collect new person info that will be saved in database.
e saveperson.jsp
o Receives person info from addperson.jsp
o Saves it to database
= searchperson.jsp
o Used to provide search criteria to search Person’s info by providing name
= showperson.jsp
o This page receive person’s name from searchperson.jspto search in
o database
o Retrieves and displays person record found against person name
Error Page
« addbookerror.jsp
o This page is declared as an error page and used to identify the type of exception.

© Copyright Virtual University of Pakistan Page 390

Web Design and Development (CS506)

o In addition to that, it also displays the message associated with the received
exception to the user.

addperson . saveperson
. g .js
isp isp
Personinfo /\\ addbookerror
A exception " .isp
Java Beans v
PersonDAO
searchperson »|| showperson
jsp .jsp

addperson.jsp takes person’s information from the user and sends it to saveperson.jsp. After
receiving request, saveperson.jspmakes an object of PersonInfousing received information
and saves it into the database using PersonDAO Java bean.

Similarly, searchperson.jsptakes search criteria (name) from the user and passes it to
showperson.jspthat searches the record in database using PersonDAOand shows the results to
the user.

If any uncaught exception is generated on these JSP, addbookerror.jspis called
implicitly, which displays an appropriate message to the user after identifying the exception type.

Code for the Case Study

Let’s have a look on the code of each component used in the case study; first start from
JavaBeans.

Personlinfo

Personlnforepresents the record of one person and its objects are used to interrupt the

information about persons.

package vu;
import java.io.*;
public class PersonInfo implements Serializable{

© Copyright Virtual University of Pakistan Page 391

Web Design and Development (CS506)

private String name;
private String address;
private int phoneNum;

// no argument constructor
public PersonInfo() {
name ="";

address ="";

phoneNum = 0;

}
// setters

public void setName(String n){
name = n;

}
public void setAddress(String a){
address = a;

}
public void setPhoneNum(int pNo){
phoneNum = pNo;

h
/] getters

public String getName(){
return name;

h
public String getAddress(){
return address;

}

public int getPhoneNum(){
return phoneNum;

}

}+ // end class PersonInfo

PersonDAO

This class will help in retrieving and storing person’s records in database. The
code is given below:

package vu;

import java.util. *;

import java.sql.*;

public class PersonDAO{

private Connection con;

// default constructor

public PersonDAO() throws ClassNotFoundException , SQLException

{

© Copyright Virtual University of Pakistan

Page 392

Web Design and Development (CS506)

establishConnection();
h
// method used to establish connection with db

private void establishConnection() throws ClassNotFoundException , SQLException
{
// establishing conection
Class.forName("sun.jdbc.odbc.JdbcOdbeDriver");
String conUrl = "jdbc:odbe:PersonDSN";

con = DriverManager.getConnection(conUrl);

b
// used to search the person records against name and returns

// the ArrayList that contains only those PersonInfo objects

// which matches the search criteria i.e. name

public ArrayList retrievePersonList(String pName) throws SQLException
{
ArrayList personList = new ArrayList();

// preparing query

String sql =" SELECT * FROM Person WHERE name = ?";

PreparedStatement pStmt = con.prepareStatement(sql);

pStmt.setString(1, pName);

// executing query

ResultSet rs = pStmt.executeQuery();

String name; String add; int pNo;

while (rs.next()) {

name = rs.getString("name");

add = rs.getString("address");

pNo = rs.getInt("phoneNumber");

// creating a CourseOutlineBean object

PersonInfo personBean = new PersonInfo();

personBean.setName(name);

personBean.setAddress(add);

personBean.setPhoneNum(pNo);

// adding a bean to arraylist

personList.add(personBean);

} // end while

return personList;

}+ // end retrievePersonList

// this method accepts an object of PersonInfo, and stores it

// into the database

public void addPerson(PersonInfo person) throws SQLException {

String sql =" INSERT INTO Person(name, address, phoneNumber) VALUES (?, ?, 7)";
PreparedStatement pStmt = con.prepareStatement(sql); String name = person.getName();
String add = person.getAddress();

© Copyright Virtual University of Pakistan Page 393

Web Design and Development (CS506)

int pNo = person.getPhoneNum();

pStmt.setString(1 , name);

pStmt.setString(2 , add);

pStmt.setlnt(3, pNo);

pStmt.executeUpdate();

} // end addPerson

// overriding finalize method to release acquired resources
public void finalize() {

try{

if(con !=null){

con.close();

}
}catch(SQLException sqlex){
System.out.println(sqlex);

}
} // end finalize

} // end PersonDAO class

Now let’s take a look at the code for JSP pages

addperson.jsp

This JSP page gets person record’s information from the user. It contains three Input Fields for
name, address and phone number as shown in the diagram. This page sends this information to
saveperson.jspfor further processing.

Address Book

Add New Person

Name

Address

PhoneNo

Search Person

The code that is used to generate the above page is given below:

© Copyright Virtual University of Pakistan Page 394

Web Design and Development (CS506)

<%--

Although there are no chances of exception to arise on this page, for consistency, error page is defined
on top of all JSPs

00>

<%@page errorPage="addbookerror.jsp" %>
<htmlI>

<body>

<center>

<h2> Address Book </h2>

<h3> Add New Person</h3>

<%-- Form that contains Text input fields and sending it to saveperson.jsp
--9%>

<form name ="register" action="saveperson.jsp" />
<TABLE BORDER="1" >

<TR>

<TD> <h4 > Name </h4> </TD>

<TD> <input type="text" name="name" /> </TD>
</TR>

<TR>

<TD> <h4> Address </h4> </TD>

<TD> <input type="text" name="address" /> </TD>
</TR>

<TR>

<TD> <h4>Phone Number</h4> </TD>

<TD> <input type="text" name="phoneNum" /> </TD>
</TR>

<TR>

<TD COLSPAN="2" ALIGN="CENTER" >
<input type="submit" value="save" />

<input type="reset" value="clear" />

</TD>

</TR>

</TABLE>

</form>

<h4>

<%-- A link to searchperson.jsp --%>

 Search Person
</h4>

</center>

</body>

</html>

© Copyright Virtual University of Pakistan Page 395

Web Design and Development (CS506)

saveperson.jsp

This JSP page gets data from the addperson.jsp, makes an object of PersonInfo and saves it to
the database using PersonDAOclass. Apart from these, it also displays an informative message
to the user if new person record is saved successfully into thedatabase and two hyperlinks to
navigate on to the desired pages as shown in the following diagram:

New Person Record is saved successfully!

Add Person

Search Person

The code of this page is given below:

<%-- defining error page --%>

<%(@page errorPage="addbookerror.jsp" %>
<%(@ page import="java.sql.*" %>

<htmlI>

<body>

<%-- creating PersonDAO object and storing in page scope --%>
<jsp:useBean id="pDAO" class="vu.PersonDAO" scope="page" />
<%-- creating PersonBean object and storing in page scope --%>
<jsp:useBean id="personBean" class="vu.Personlnfo" scope = "page"
/>

<%--

setting all properties of personBean object with input parameters using *
--9%>

<jsp:setProperty name="personBean" property="*" />

<%--

to save Person record into the database, calling addperson
method of PersonDAO

05>

<%

pDAO.addPerson(personBean);

%>

<center>

© Copyright Virtual University of Pakistan Page 396

Web Design and Development (CS506)

<h3> New Person Record is saved successfully!</h3>
<h4>

 Add Person

</h4>

<h4>

 Search Person
</h4>

</center>

</body>

</html>

searchperson.jsp

It gets search criteria from the user (i.e. name) and sends it to showperson.jspto display the search
results. The outlook of the page is given below:

Address Book

Search Person

Name

Add Person

used to generate the above page given page is:

<%-- defining error page --%>
<%@page errorPage="addbookerror.jsp" %>

<html>

<body>

<center>

<h2> Address Book </h2>
<h3> Search Person</h3>

<%--
Form that contains Text input field and sending it to showperson.jsp
--00>

© Copyright Virtual University of Pakistan Page 397

Web Design and Development (CS506)

<form name ="search" action="showperson.jsp" />
<TABLE BORDER="1" >

<TR>

<TD> <h4 >Name</h4> </TD>

<TD> <input type="text" name="name" /> </TD>
</TR>

<TR>

<TD COLSPAN="2" ALIGN="CENTER"">
<input type="submit" value="search" />

<input type="reset" value="clear" />

</TD>

</TR>

</TABLE>

</form>

<h4>

 Add Person

</h4>

</center>

</body>

</htm]>

showperson.jsp

showperson.jspreceives search criteria (i.e. name) from the searchperson.jsp, that is entered
by the user to find the matching record. This page retrieves the complete list of matching records
from the database using PersonDAO, and shows them to the user.

This following figure gives you the sight, when person named “saad” is searched.

Address Book

Following Result meet your research criteria

Name Address PhoneNo.
Saad Gulberg 9700234
Add Person

Search Person

© Copyright Virtual University of Pakistan Page 398

Web Design and Development (CS506)

Below, the code of showperson.jsp is given:

<%-- defining error page --%>

<%@page errorPage="addbookerror.jsp" %>
<%-- importing required packages --%>
<%@page import="java.util.*" %>
<%@page import="vu.*" %>

<htmI>

<body>

<center>

<h2> Address Book </h2>

<h3> Following results meet your search criteria</h3>
<TABLE BORDER="1" >

<TR>

<TH> Name </TH>

<TH> Address </TH>

<TH> PhoneNum </TH>

</TR>

<jsp:useBean id="pDAOQO" class="vu.PersonDAQO" scope="page" />
<%

// getting search criteria sent by searchperson.jsp
String pName = request.getParameter("name");

// retrieving matching records from the Database using
// retrievePersonList() method of PersonDAO
ArrayList personList = personDAO.retrievePersonList(pName);
PersonInfo person = null;

/I Showing all matching records by iterating over ArrayList
for(int i=0; i<personList.size(); i++) {

person = (Personlnfo)personList.get(i);

%>

<TR>

<TD> <%= person.getName()%> </TD>

<TD> <%= person.getAddress()%> </TD>

<TD> <%= person.getPhoneNum()%> </TD>

</TR>

<%

} // end for

%>

</TABLE >

 Add Person

 Search Person
</center>

</body>

© Copyright Virtual University of Pakistan Page 399

Web Design and Development (CS506)

</html>

addbookerror.jsp

This JSP error page is called implicitly by all other JSP pages whenever any uncaught/unhandled
exception occurs. It also finds out the type of the exception that is generated,and shows an
appropriate message to the user:

<%-- indicating that this is an error page --%>
<%@page isErrorPage="true" %>

<%-- importing class --%>

<%@page import = "java.sql.SQLException" %>
<htmlI>

<head>

<title>Error</title>

</head>

<body>

<h2>

Error Page

</h2>

<h3>

<%-- scriptlet to determine exception type --%>
<%

if (exception instanceof SQLException) {

%>

An SQL Exception

<%

} else if (exception instanceof ClassNotFoundException){
%>

A Class Not Found Exception

<%

}else {

%>

A Exception

<%

} // end if-else

%>

<%-- end scriptlet to determine exception type --%>
occured while interacting with the database
</h3>

<h3>

The Error Message was

© Copyright Virtual University of Pakistan Page 400

Web Design and Development (CS506)

<%= exception.getMessage() %>

</h3>

<h3 > Please Try Again Later! </h3>
<%--

hyperlinks to return back to addperson.jsp or
searchperson.sjp

05>

<h3>

Add Person

Search Person

</h3>

</body>

</html>

39.3 Model View Controller (MVC)

Now, more than ever, enterprise applications need to support multiple types of users with multiple
types of interfaces. For example, an online store may require an HTML front for Web customers,
a WML front for wireless customers, a JavaTM (JFC) / Swing interface for administrators, and an

XML-based Web service for suppliers

Classic Web
customer

Wireless Administrat
customer or

Supplier

B2B agent

v
HTML view WML view JFC/Swing XML-based
view vebservcies

Enterprise information system

Also, several problems can arise when applications contain a mixture of data access code,business

logic code, and presentation code. Such applications are difficult to maintain,because

© Copyright Virtual University of Pakistan

Page 401

Web Design and Development (CS506)

interdependencies between all of the components cause strong ripple effects whenever a change is
made anywhere. High coupling makes classes difficult or impossible to reuse because they
depend on so many other classes. Adding new data views often requires re-implementing or
cutting and pasting business logic code, which then requires maintenance in multiple places. Data
access code suffers from the same problem, being cut and pasted among business logic methods.

The Model-View-Controller architecture solves these problems by decoupling data access, business
logic, and data presentation and user interaction. Such separation allows multiple views to share
the same enterprise data model, which makes supporting multiple clients easier to
implement, test, and maintain.

39.3.1Participants and Responsibilities

The individual’s responsibility of three participants (model, view & controller) is given below:

* Model
The model represents the state of the component (i.e. its data and the methods required to
manipulate it) independent of how the component is viewed or rendered.

* View

The view renders the contents of a model and specifies how that data should be presented.
There can be multiple views for the same model within single applications or model may
have different views in different applications or operating systems.

= Controller

The controller translates interactions with the view into actions to be performed by the
model. In a web application, they appear as GET and POST HTTP requests. The actions
performed by the model include activating business processes or changing the state of the
model. Based on the user interactions and the outcome of the model actions, the controller
responds by selecting an appropriate view.

39.3.2Evolution of MVVC Architecture

In the beginning, we used no MVC. Then we had MVC Model 1 and MVC Model 2 architectures.
And people came up with so called web application frameworks such as Apache Struts based on
Model 2 architecture. And finally we have a standard web based application framework 1i.e.
JavaServer Faces (JSF).

In this handout, we’ll only talk about MVC Model 1.

39.3.2.1 MVC Model 1

A Model 1 architecture consists of a Web browser directly accessing Web-tier JSP pages.The JSP
pages access JavaBeans that represent the application model. And the next view to display

© Copyright Virtual University of Pakistan Page 402

Web Design and Development (CS506)

(JSP page, servlet, HTML page, and so on) is determined either by hyperlinks selected in the
source document or by request parameters.

L

» JSP
reauest
4 pages
«————

o]
=
(]
é response 2
® 3
\ 2N Y
Servlet EIS

Container

In Model 1 architecture, view selection is decentralized, because the current page being displayed
determines the next page to display. In addition, each JSP page or servlet processes its own inputs
(parameters from GET or POST). And this is hard to maintain, for example, if you have to change
the view selection, then several JSP pages need to be changed. In some Model 1 architectures,
choosing the next page to display occurs in scriptlet code, but this usage is considered poor form.

In MVC Model 1 architecture, the JSP page alone is responsible for processing the incoming
request and replying back to the client. There is still separation of presentation from content,
because all data access is performed using JavaBeans.

Although the Model 1 architecture should be perfectly suitable for simple applications, it may not
be desirable for complex implementations. Random usage of this architecture usually leads to a
significant amount of scriptlets or Java code embedded within the JSP page, especially if there is a
significant amount of request processing to be performed. While this may not seem to be much of
a problem for Java developers, it is certainly an issue if your JSP pages are created and maintained
by designers which are only aware of HTML and some scripting language.

Note: Probably some of you must be thinking about the case study discussed earlier inthis
handout. Indeed, it is based on MVC Model 1 architecture.

39.4 References:

» Java A Lab Course by Umair Javed

« Java BluePrints - J2EE Patterns
http://java.sun.com/blueprints/patterns/MV C-detailed.html

» Exploring the MVC Design Pattern
http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc.html

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 403

Web Design and Development (CS506)

Lecture 40: Model 2 Architecture MVC

We have studied page-centric approach and page-with-bean approach until now. You must be
wondering when we had covered these. Probably these buzz words are new one for you but we
already covered these topics. Let’s review these once again.

40.1 Page-Centric Approach

A web application that is collection of JSPs. Generally this approach is followed to get started with
developing web applications. This approach is represented in the following diagram:

request

database

User > JSP —

respons

The page-centric approach has lot of draw backs such as the code becomes a mixture of
presentation, business and data access logic. The maintenance and up-gradation of the application
becomes a nightmare. Scaling of such kind of application is also difficult and lots of code is also
get duplicated.

40.1.1Page-with-Bean Approach (MVC Modell)

This approach is different from page-centric approach in a way that all the business logic goes
into JavaBeans. Therefore, the web application is a collection of JSPs and JavaBeans. But still
this approach is insufficient to separate different kind of logics. We have made an address book
example in the last handout using this approach.

request

P
—

=) =
User < JSP - bean < | database

respons

40.2 MVC Model 2 Architecture

This architecture introduces a controller. This controller can be implemented using JSP or
servlet. Introducing a controller gives the following advantages:
It centralizes the logic for dispatching requests to the next view based on:

* The Request URL
e Input Parameters
» Application state

© Copyright Virtual University of Pakistan Page 404

Web Design and Development (CS506)

It gives the single point of control to perform security checks and to record logging information
It also encapsulates the incoming data into a form that is usable by the back-end MVC model.

We’ll discuss it with the help of an example.

The following figure will help you to understand the architecture and functioning of the
application that is built using MVC Model 2 architecture.

MVC Design Pattern

e N

)
»| (Controller)
reauest Servlet
A \\
\ 2
—

4

lasmoug
w
7

< JSP

response

(View)
Java Bean

/

El
Servlet Container (EIS)

The client (browser) sends all the requests to the controller. Servlet/JSP acts as the Controller and
is in charge of the request processing and creation of any beans or objects(Models) used by the
JSP.

JSP is working as View and there is not much processing logic within the JSP page itself,it is
simply responsible for retrieving objects and/or beans, created by the Servlet,extracting dynamic
content from them and put them into the static templates.

40.3 Case Study: Address Book using MVVC Model 2
The address book example that is built using page-with-bean approach will be modified
to incorporate controller. We’ll show you how to implement controller using JSP as well as with
servlet. Let’s first incorporate controller using JSP.

40.3.1Introducing a JSP as Controller
Add another JSP (controller.jsp) that

» Acts as a controller Recieves requests from addperson.jsp& searchperson.jsp

» Identifies the page which initiates the request

» Uses JavaBeans to save or search persons to/from database

» Forwards or redirects the request to appropriate (saveperson.jspor
showperson.jsp) page.

© Copyright Virtual University of Pakistan Page 405

Web Design and Development (CS506)

The program flow of this example is shown in the following diagram:

addPerson
Jsp

searchPerson
Jsp

addBookerror

.jsp

Personinfo
A

A\ 4
PersonDAO

savePerson
.jsp
Controller exception
(JSP/Servlet)
A
showPerson
.jsp

_/

Java Beans

As you can see in the diagram that au we requests are submitted to controller which uses the
JavaBeans and forwards/redirects the user to another view (JSP)? If any exception arises on

controller or JSPs, the control would automatically be transferred to addbookerror.jspto

display an appropriate message.

40.3.2How controller differentiates between requests?

Most likely, you must be thinking about it. The simplest solution lies in using the consistent

name (e.g. action) of the submit button across all the pages but with different and unique

values.

The same rule applies to hyperlinks that send the action parameter along with value by using

query string technique.

This eases the controller’s job to identify which page is actually generated the request and what

to do next. The controller simply retrieves the value of action parameter using
request.getParameter()method. Now, if-else structure can be used to compare the possible

values of action to act upon the

requested task.

© Copyright Virtual University of Pakistan

Page 406

Web Design and Development (CS506)

Now, let’s first see the code of JavaBean that is used in this example.

Personinfo

This JavaBean is used to represent one person record. The code is given below:

package vu;

import java.io.*;

public class PersonInfo implements Serializable {
private String name;

private String address;

private int phoneNum;

// no argument constructor

public PersonInfo() {

name ="";

address="";

phoneNum = 0;
b

// setters

public void setName(String n){
name = n;

b
public void setAddress(String a){
address = a;

}
public void setPhoneNum(int pNo){
phoneNum = pNo;

}
/] getters

public String getName(){

return name;

© Copyright Virtual University of Pakistan Page 407

Web Design and Development (CS506)

j
public String getAddress(){

return address;

;
public int getPhoneNum(){

return phoneNum;

}

} // end class Personlnfo

PersonDAO

This class will help in retrieving and storing person’s records in database. The code is given
below:

package vu;

import java.util. *;

import java.sql.*;

public class PersonDAO {

private Connection con;

// default constructor

public PersonDAOQO() throws ClassNotFoundException , SQLException
{

establishConnection();
b
// method used to establish connection with db

private void establishConnection() throws ClassNotFoundException ,SQLException

{

// establishing conection
Class.forName("sun.jdbc.odbc.JdbcOdbeDriver"),
String conUrl = "jdbc:odbe:PersonDSN";

con = DriverManager.getConnection(conUrl);

}

// used to search the person records against name and returns

© Copyright Virtual University of Pakistan Page 408

Web Design and Development (CS506)

// the ArrayList that contains only those PersonInfo objects

// which matches the search criteria i.e. name

public ArrayList retrievePersonList(String pName) throws SQLException
{
ArrayList personList = new ArrayList();

// preparing query

String sql =" SELECT * FROM Person WHERE name = ?";
PreparedStatement pStmt = con.prepareStatement(sql);
pStmt.setString(1, pName);

// executing query

ResultSet rs = pStmt.executeQuery();

String name; String add; int pNo;

while (rs.next()) {

name = rs.getString("name");

add = rs.getString("address");

pNo = rs.getInt("phoneNumber");

// creating a CourseOutlineBean object

Personlnfo personBean = new PersonInfo();

personBean.setName(name);
personBean.setAddress(add);
personBean.setPhoneNum(pNo);

// adding a bean to arraylist
personList.add(personBean);
} // end while

return personList;

} // end retrievePersonList

// this method accepts an object of PersonlInfo, and stores it

// into the database

© Copyright Virtual University of Pakistan Page 409

Web Design and Development (CS506)

public void addPerson(PersonInfo person) throws SQLException {

String sql =" INSERT INTO Person(name, address, phoneNumber) VALUES (?, ?, 7)";
PreparedStatement pStmt = con.prepareStatement(sql);

String name = person.getName();

String add = person.getAddress();

int pNo = person.getPhoneNum();

pStmt.setString(1 , name);

pStmt.setString(2 , add);

pStmt.setlnt(3 , pNo);

pStmt.executeUpdate();

}+ // end addPerson

// overriding finalize method to release acquired resources

public void finalize() {

try{

if(con !=null){

con.close();

b
}catch(SQLException sqlex) {
System.out.println(sqlex);

}
} // end finalize

} // end PersonDAO class

addperson.jsp

This page is used for entering a new person record into the database. Note that a hyperlink is also

given at the bottom of the page that takes the user to searchperson.jsp.

Note: Since we are following MVC model 2 architecture, so all the hyperlinks will also sends the

request to controller first which redirects the user to requested page.

© Copyright Virtual University of Pakistan

Page 410

Web Design and Development (CS506)

Address Book

Add New Person

Name

Address

PhoneNo

Search Person

The code of above page is given below:

<%--

Although there are no chances of exception to arise on this page, for consistency, error page is defined
on top of all JSPs

>

<%@page errorPage="addbookerror.jsp" %>

<htmI>

<body>

<center>

<h2> Address Book </h2>

<h3> Add New Person</h3>

<%--

As mentioned in MVC2, all the requests are submitted to
controller, that’s why action’s contains the value of
“controller.jsp”

>

<form name ="register" action="controller.jsp" />

© Copyright Virtual University of Pakistan Page 411

Web Design and Development (CS506)

<TABLE BORDER="1" >

<TR>

<TD> <h4> Name </h4> </TD>

<TD> <input type="text" name="name" /> </TD>
</TR>

<TR>

<TD> <h4> Address </h4> </TD>

<TD> <input type="text" name="address" /> </TD>
</TR>

<TR>

<TD> <h4>Phone Number</h4> </TD>

<TD> <input type="text" name="phoneNum" /> </TD>
</TR>

<TR>

<TD COLSPAN="2" ALIGN="CENTER">

<%--

As described above the technique to differentiate between the requests, the name of the button is
“action” with value “save”.

0>

<input type="submit" name ="action" value="save" />
<input type="reset" value="clear" />

</TD>

</TR>

</TABLE>

</form>

<h4>

<%--

The hyperlink will also sends the request to controller
Note the action parameter with its value are also part of hyperlink using the query string technique.

--0%6>

 Search Person

© Copyright Virtual University of Pakistan Page 412

Web Design and Development (CS506)

</h4>
</center>
</body>

</html>

searchperson.jsp

This JSP is used to search the person record against name given in the text field. A hyperlink is
also given at the bottom of addperson.jsp.

Address Book

Search Person

Name

Add Person

The code that is used to generate that above page is given below:

<%-- defining error page --%>

<%@page errorPage="addbookerror.jsp" %>
<htmI>

<body>

<center>

<h2> Address Book </h2>

<h3> Search Person</h3>

<form name ="search" action="controller.jsp" />
<TABLE BORDER="1" >

<TR>

© Copyright Virtual University of Pakistan Page 413

Web Design and Development (CS506)

<TD> <h4> Name </h4></TD>

<TD> <input type="text" name="name" /> </TD>
</TR>

<TR>

<TD COLSPAN="2" ALIGN="CENTER">

<%--

The name of the button is still “action” but with
different value “search”.

>

<input type="submit" name ="action" value="search" />
<input type="reset" value="clear" />

</TD>

</TR>

</TABLE>

</form>

<h4>

<%--

The action parameter with different value “addperson” are
part of hyperlink here as well.

>

Add Person

</h4>

</center>

</body>

</html>

controller.jsp

As mentioned earlier that controller.jspidentifies the page which initiates the request and use
JavaBeans to save/search persons to/from database. Also its job list includes redirecting the user

© Copyright Virtual University of Pakistan Page 414

Web Design and Development (CS506)

to appropriate page.

Since this JSP is doing only processing therefore no view available. Let’s check it out its code:

<%-- defining error page --%>

<%@page errorPage="addbookerror.jsp" %>

<%-- importing required packages. package vu contains JavaBeans -
0>

<%(@page import ="java.util. *" %>

<%(@page import = "vu.*" %>

<html>

<body>

<%-- declaring PersonDAO object--%>

<jsp:useBean id="pDAQO" class="vu.PersonDAQO" scope="page" />
<%--

scriptlet to identify JSP for redirection purpose if request comes from hyperlinks
>

<%

// retrieving action parameter value

// Remember that “action” is the name of buttons as well

// it is used in hyperlinks in making of query string

String action = request.getParameter("action");

// if "Add Person" hyperlink is clicked if (action.equals("addperson")){
response.sendRedirect("addperson.jsp");

// if "Search Person" hyperlink is clicked

} else if (action.equals("searchperson")){
response.sendRedirect("searchperson.jsp");

// if "save" button is clicked of addperson.jsp

telse if (action.equals("save")) {

%>

// declaring PersonInfo obeject

© Copyright Virtual University of Pakistan Page 415

Web Design and Development (CS506)

<jsp:useBean id="personBean" class="vu.PersonInfo" scope="page"/>
<%--

setting all properties of personBean object with input parameters using *
0>

<jsp:setProperty name="personBean" property="*" />

<%-- to insert record into database--%>

<%

pDAO.addPerson(personBean);

// redirecting user to saveperson.jsp response.sendRedirect("saveperson.jsp");
%>

<%-- if "search" button is clicked on searchperson.jsp --%>

<%

telse if (action.equals("search")) {

String pName = request.getParameter("name");

ArrayList personList = pDAO.retrievePersonList(pName);

// storing personList(contains PersonInfo objects) into

// request hashmap

request.setAttribute("list", personList);

%>

<%--

forwarding request to showperson.jsp to retrieve stored arraylist
(“list™)

0>

<jsp:forward page="showperson.jsp" />

<%

} // end if page == search

%>

</body>

</html>

© Copyright Virtual University of Pakistan Page 416

Web Design and Development (CS506)

saveperson.jsp

This page displays a successful message indicating that person record is saved. Its also give the
options to the user to move on to addperson.jspor searchperson.jsp through hyperlinks. Note
that these hyperlinks also first take the user to controller.jspthen on to requested page.

New Person Record is saved successfully!

Add Person

Search Person

The code of saveperson.jspis given below:

<%-- defining error page --%>

<%@page errorPage="addbookerror.jsp" %>

<htmI>

<body>

<center>

<h3> New Person Record is saved successfully!</h3>
<h4>

 Add Person

</h4>

<h4>

Search Person

</h4>

</center>

</body>

</html>

© Copyright Virtual University of Pakistan Page 417

Web Design and Development (CS506)

showperson.jsp

This following figure gives you the view when name “saad” is searched.

Address Book

Following Result meet your research criteria

Name Address PhoneNo.
Saad Gulberg 9700234
Add Person

Search Person

Below, the code of showperson.jspis given:

<%-- defining error page --%>

<% (@page errorPage="addbookerror.jsp" %>
<%-- importing required packages --%>
<%@page import="java.util.*" %>
<%@page import="vu.*" %>

<htmI>

<body>

<center>

<h2> Address Book </h2>

<h3> Following results meet your search criteria</h3>
<TABLE BORDER="1" >

<TR>

<TH>Name </TH>

<TH> Address </TH>

<TH> PhoneNum </TH>

© Copyright Virtual University of Pakistan Page 418

Web Design and Development (CS506)

</TR>

<%

// retrieving arraylist stored on controller.jsp to display

// PersonInfo objects

ArrayList personList = (ArrayList)request.getAttribute("list");
Personlnfo person = null;

for(int i=0; i<personList.size(); i++) {

person = (PersonInfo)personList.get(i);

%>

<%-- displaying PersonInfo details--%>

<TR>

<TD> <%= person.getName()%> </TD>

<TD> <%= person.getAddress()%> </TD>

<TD> <%= person.getPhoneNum()%> </TD>

</TR>

<%

} // end for

%>

</TABLE >

<h4>

 Add Person
Search Person
</h4>

</center>

</body>

</html>

addbookerror.jsp

User will view this page only when any sort of exception is generated. The code of this page is

given below:

<%-- indicating that this is an error page --%>

© Copyright Virtual University of Pakistan

Page 419

Web Design and Development (CS506)

<%@page isErrorPage="true" %>

<%-- importing class --%>

<% (@page import = "java.sql. SQLException" %>
<html>

<head>

<title>Error</title>

</head>

<body>

<h2>

Error Page

</h2>

<h3>

<%-- scriptlet to determine exception type --%>
<%

if (exception instanceof SQLException) {

%>

An SQL Exception

<%

} else if (exception instanceof ClassNotFoundException){
%>

A Class Not Found Exception

<%

} else {

%>

A Exception

<%

} // end if-else

%>

<%-- end scriptlet to determine exception type --%>
occured while interacting with the database

</h3>

© Copyright Virtual University of Pakistan

Web Design and Development (CS506)

<h3>

The Error Message was

<%= exception.getMessage() %>

</h3>

<h3 > Please Try Again Later! </h3>
<%--

hyperlinks to return back to adperson.jsp or
searchperson.sjp

>

<h3>

 Add Person

Search Person

</h3>

</body>

</html>

JSP is the Right Choice as a Controller?

Since JSP that is performing the job of controller is doing only processing and there is no view
available of it. It includes the logic of selecting JSP and to retrieve/store records from/to dataset

using JavaBeans.

But remember the reason for introducing JSPs? JavaServer Pages are built for presentation (view)
only so JSP is really not a good place for such kind of logic. Concluding, what’s the option we

have? The answer is, use Servlets as controller.

Introducing a Servlet as Controller

Remove the controller.jspfrom the previous example code and add ControllerServlet.java
example.This
ControllerServlet.java performs the same job that was previously performed by

servlet) into

controller.jsp.

Besides adding ControllerServlet.java,you have to modify all the addresses which

(a

© Copyright Virtual University of Pakistan

Page 421

Web Design and Development (CS506)

are previously pointing to controller.jsp. For example the value of actionattribute of
formtag & the address of hyperlink in all concerned pages.

If controller is defined inweb.xmlas an alias of ControllerServlet.java, consider the
following fragment of code which shows the value of action attribute of form tag before and after
introducing change.

When controller.jsp is acting as a controller
<form name ="register" action=""controller.jsp"* />

When ControllerServlet.java is acting as a controller then value of action attribute becomes:

<form name ="register" action=""controller" />

Similarly, the following comparison shows the code of hyperlinks used in the previous example
before and after making changes

When controller.jsp is acting as a controller

Search Person

When ControllerServlet.java is acting as a controller

Search Person

Passing Exceptions to an Error JSP from a Servlet

Servlet can use existing error pages (like addbookerror.jsp) to pass on the exceptions. Set the
requestattribute to javax.servlet.jsp.JspExcpetion with the exception object you want to pass.
After that forwards the request to error page.

For example, the following code snippet is taken from ControllerServlet.java to
demonstrate how to pass SQLExceptionto addbookerror.jsp

+catch (SQLEXxception sqglex){

// setting SQLException instance))
request.setAttribute(*'javax.servlet.jsp.JspException™ , sqlex);

RequestDispatcher rd =
request.getRequestDispatcher(**addbookerror.jsp™);

rd.forward(request, response);
© Copyright Virtual University of Pakistan Page 422

Web Design and Development (CS506)

}+ // end catch
ControllerServlet.java

The following code is of servlet that is acting as a controller

package controller;

import vu.*;

import java.io.*;

import java.net.*;

import java.sql.*;

import java.util. *;

import javax.servlet.*;

import javax.servlet.http.*;

public class ControllerServlet extends HttpServlet {

// This method only calls

processRequest() protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

processRequest(request, response);

b
// This method only calls processRequest() protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, [OException

{

processRequest(request, response);
h
protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {

// retrieving value of action parameter

String userAction = request.getParameter("action");

/1 if request comes to move to addperson.jsp from hyperlink if (userAction.equals("addperson")) {
response.sendRedirect("addperson.jsp");

// if request comes to move to searchperson.jsp from hyperlink

© Copyright Virtual University of Pakistan Page 423

Web Design and Development (CS506)

} else if (userAction.equals("searchperson")) {
response.sendRedirect("searchperson.jsp");

// if “save” button clicked on addperson.jsp to add new record
} if (userAction.equals("save")) {

// this method defined below

addPerson(request,response);

/1 if “search” button clicked on searchperson.jsp for search

} else if (userAction.equals("search"))

{
// this method defined below
searchPerson(request,response);
}
} // end processRequest()

// if request comes to add/save person

private void addPerson(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, [OException {

try

{
// creating PersonDAO object

PersonDAO pDAO = new PersonDAO();

// creating PersonlInfo object

PersonInfo person = new PersonInfo();

// setting properties of Person object

// setting name property

String pName = request.getParameter("name");
person.setName(pName);

// setting address propertyt

String add = request.getParameter("address");

person.setAddress(add);

// setting phoneNumb property

© Copyright Virtual University of Pakistan Page 424

Web Design and Development (CS506)

String pNo = request.getParameter("phoneNum");

int phoneNum = Integer.parselnt(pNo);

person.setPhoneNum(phoneNum);

// calling PersonDAO method to save data into database

pDAO.addPerson(person);

// redirecting page to saveperson.jsp

response.sendRedirect("saveperson.jsp");

catch (SQLException sqlex){

// setting SQLException instance request.setAttribute("javax.servlet.jsp.JspException" , sqlex);
RequestDispatcher rd = request.getRequestDispatcher("addbookerror.jsp");
rd.forward(request, response);

}catch (ClassNotFoundException cnfe){

// setting ClassNotFoundException instance
request.setAttribute("javax.servlet.jsp.JspException" , cnfe);

RequestDispatcher rd = request.getRequestDispatcher("addbookerror.jsp");
rd.forward(request, response);

b
}+// end addperson()

// if request comes to search person record from database

private void searchPerson(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException{

try {

// creating PersonDAO object

PersonDAO pDAO = new PersonDAQO();

String pName = request.getParameter("name");

// calling DAO method to retrieve personlist from database

// against name

ArrayList personList = pDAO.retrievePersonList(pName);

request.setAttribute("list", personList);

// forwarding request to showpeson, so it can render personlist

RequestDispatcher rd = request.getRequestDispatcher("showperson.jsp");

© Copyright Virtual University of Pakistan Page 425

Web Design and Development (CS506)

rd.forward(request, response);

+catch (SQLException sqlex){

// setting SQLException instance
request.setAttribute("javax.servlet.jsp.JspException" , sqlex);
RequestDispatcher rd = request.getRequestDispatcher("addbookerror.jsp™);
rd.forward(request, response);

}catch (ClassNotFoundException cnfe){

// setting ClassNotFoundException instance
request.setAttribute("javax.servlet.jsp.JspException" , cnfe);
RequestDispatcher rd = request.getRequestDispatcher("addbookerror.jsp");
rd.forward(request, response);

}
}// end searchPerson()

} // end ControllerServlet

web.xml
As you already familiar, for accessing a servlet, you need to define a URL pattern in
web.xml. This is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<web-app>

<servlet>

<servlet-name> ControllerServlet </servlet-name>
<servlet-class> controller.ControllerServlet </servlet-class>
</servlet>

<servlet-mapping>

<servlet-name> ControllerServlet </servlet-name>
<url-pattern> /controller </url-pattern>
</servlet-mapping>

</web-app>

40.4 References:

e Java A Lab Course by Umair Javed.
e Java E-commerce course at Stanford

Note: Coding exercises in working condition for this lecture are also available on “Downloads”

section of LMS.

© Copyright Virtual University of Pakistan

Page 426

Web Design and Development (CS506)

Lecture 41: Layers and Tiers

How do you structure an application to support such operational requirements as maintainability,
reusability, scalability and robustness? The answer lies in using Layers and Tiers? What different
technologies Java provides to support layered or tiered architectures. The answer to these questions
will remain our focus in this handout. A small case study will also be used to comprehend the
concept of layers.

41.1 Layersvs. Tiers

Layers are merely logical grouping of the software components that make up the application or
service, whereas Tiers refer to the physical residence of those layers.

In general,
Layers — represents the logical view of application
Tiers — represents physical view of application

However, both terms are used intractably very often. You must be confused what does logical &
physical view mean? Let’s elaborate layers and tiers further in detail to differentiate between them.

41.1.1Layers

The partitioning of a system into layers such that each layer performs a specific type of
functionality and communicates with the layer that adjoins it.

The separation of concerns minimizes the impact of adding services/features to an application.
The application developed in layers also enables tiered distribution(discussed later). Furthermore
easier maintenance, reuse of code, high cohesion & loose coupling sort of additional benefits are
also enjoyed by the use of tiered architecture.

To begin with, layered architecture based on three layers. These are

» Presentation Layer
* Business Layer
e Data Layer

Note: However, there is no upper limit of number of layers an application can have. Each layer
can also be further break down into several layers depending upon the requirements and size of
the application.

The figure given below shows a simplified view of an application and its layers.

© Copyright Virtual University of Pakistan Page 427

Web Design and Development (CS506)

Users

4 v

Presentation layers

Bussiness Llayers

Data Llayers

I
Data Sources [Services }

As you can see in the figure, users can only interact with the presentation layer. The presentation
layer passes the user request to the business layer, which further passes the request to the data
layer. The data layer communicates with the data sources (like Database etc.) or other external
services in order to accomplish the user request.

Let’s discuss each layer’s responsibility in detail:

41.1.1.1 Presentation Layer

It provides a user interface to the client/user to interact with the application. This is the only part
of the application visible to client.

Its job list includes collecting user’s input, validating user’s input (on client side using JavaScript
like technologies OR on server side), presenting the results of the request made by the user and
controlling the screen flow (which page/view will be visible to the user).

41.1.1.2 Business Layer

Also called application layer, it is only concerned with the application specific functionality. It is
used to implement business rules and to perform business tasks.

For example, in a banking system, this layer will provide the functionality of banking functions

such as opening an account, transferring of balance from one account to another, calculation of
taxes etc.

41.1.1.3 Data Layer

It is concerned with the management of the data & data sources of the system. Data sources can
be database, XML, web services, flat file etc. Encapsulates data retrieval & storage logic For
example, the address book application needs to retrieve all person records from a database to
display them to the user.

© Copyright Virtual University of Pakistan Page 428

Web Design and Development (CS506)

41.1.2Tiers

As mentioned, layers help in building a tiered architecture. Like layers, there is no restriction on
using number of tiers. An application can be based on Single-tier, Two-tier,Three-tier or N-Tier
(application which have more than three tiers). The choice of using a tiered architecture is
contingent to the business requirements and the size of the application etc.

Tiers are physically separated from each other. Layers are spread across tiers to build up an
application. Two or more layers can reside on one tier. The following figure presents a three-tier
architectural view of an application.

] Cliet machine
Presentation Layers
Browser
N\
Web Server { Bussiness Layers
Server machine
N\

Application { Data Layers

Server

DB Server { EIS Layers DB machine

JAAN

The client tier represents the client machine where actually web browser is running and usually
displays HTML. You can think of a Presentation as of two parts; one is on client side, for
example, HTML. There is also a presentation layer that is used to generate the client presentation
often called server presentation. We’ll discuss about it later.

The server machine can consist on a single server machine or more. Therefore, it is possible web
server is running on one server machine while application server on another. Web server is used
to execute web pages like JSPs whereas application server is used to run special business objects
like Enterprise JavaBeans (discussed later). The web layer and applications server can be on two
separate machines or they can be on same tier as shown in the diagram.

The database server is often running on a separate tier, i.e. DB machine often called Enterprise
information tier.

41.2 Layers Support in Java

The secret of wide spread use of Java lies in providing specific technology for each layer.This
not only eases the development by freeing the programmer for caring operational features but
only reduces the production time of the software.

© Copyright Virtual University of Pakistan Page 429

Web Design and Development (CS506)

In the following figure, Presentation is bifurcated into two layers. These are Client Presentation
layer and Server Presentation Layer. What client sees in a browser forms client presentation
layer while server presentation layer includes the Java technology components (JSP and
Servlets etc.) that are used to generate the client presentation.

Layers Java/J2EE Technology

Client Presentation HTML/Applets

JSP/Servlets
Frameworks(Struts, JSF etc)

Server Presentation

Business JavaBeans/EJB

Data DAO/Connectors

On business layer, JavaBeans (also referred as Plain Old Java Objects (POJO)) can be
used. While moving towards a bigger architecture, the J2EE provides the special class that fits
in business layer i.e. Enterprise JavaBean (EJB).

EJBs are special java classes that are used to encapsulate business logic. They provide
additional benefits in building up an application such as scalability, robustness,scalability etc.

On data layer, Data Access Objects (DAQO) can be used. Similarly you can use connectors.
There are other different specialized components provided in java that ease the development
of data layer.

41.3 J2EE Multi-Tiered Applications

In a typical J2EE Multi-Tiered application, a client can either be a swing based application or a
web based. As you can see in the following figure, clients can access the web server from
behind the firewall as well.

Suppose, our client is HTML based. Client does some processing on HTML and transports it to
web server. JSP and Servlets are possible technologies that can be used in a web server. However,
there are some Frameworks such as JSF etc that can be used in a web server. The classes which
form the presentation layer reside on web server and of course controllers are also used over here.

© Copyright Virtual University of Pakistan Page 430

Web Design and Development (CS506)

Firewall
I N\
I / J2EE Enterprise
I Application Enterprise Information
I Server JavaBean System(EIS):
Client % Relational
I Database,
: | Legac
Client 1« I »/Web Server . g -y .
. Enterprise Application,
/:/» SJ I’t oveeean ERP Systems
erviets
Client b
| Ent .
Middle Other Services: n erprlse_
. HTML/ Information
Client - Tier INDI, JMS, .
| \ JavaMail / Tier
Client
Tier

If web server, wants to perform some business process, it usually gets help from some business
layer components. The business layer component can be a simple JavaBean (POJO) but in a
typical J2EE architecture, EJBs are used. Enterprise JavaBeans interacts with the database or
information system to store and retrieve data.

EJBs and JSP/Servlets works in two different servers. As you already know, JSP and Servlets
runs in a web server where as EJBs requires an application server. But, generally application
server contains the web server as well.

Application server including web server generally resides on a single tier (machine),which is
often called middle tier. This tier stores and retrieves data from the Enterprise Information Tier
(EIS) which is a separate tier. The response sends back to the client by the middle tier can be
HTML, XML etc. This response can be seen on the separate tier know as client tier.

41.4 Case Study: Matrix Multiplication using Layers
Problem Statement

Calculate product of two matrices of order 2 * 2
Result of multiplication should be stored in DB as well as shown to the user.
Format
« Input format
o input will be in 4,2,6,5 format separated by commas where 4,2 represents entries of
the first row
» Display format
o Displays the matrix as a square
- Storage format for DB
o Matrix will be stored as a string in the database along with the order of the matrix

© Copyright Virtual University of Pakistan Page 431

Web Design and Development (CS506)

o The following figure shows the table design that will be used to store the results.

Matrix : Table _ N HBX|

* | Field Data Type
Name
id AutoNumber
mOrder Text
mValues Text

Layer by Layer View

A picture’s worth than thousand words. Therefore, before jumping on to code, let’s put a glance
over layers that will be used in this small case study. The classes that will be used on each layer

and what functionality each class will perform will also be discussed.

First, look on the following picture that will describe the whole story.

Client side HTM

Presentation /7 4}

Sever side Matrixinput.j Matrixresult.j
Presentation sP P

i

v P
Controller Laver ControllerServlet
7 S
—+
Business Layer MartrixMultiplier =
9]
D
ﬂ 5
Data Layer MartrixDAO

]

© Copyright Virtual University of Pakistan Page 432

Web Design and Development (CS506)

The data layer has a class MatrixDAOthat is used to save the matrix result into database. As
mentioned in the problem statement, that resultant matrix should be saved in the database. So,
MatrixDAOis used to accomplish that.

MatrixDAOcalled by the MatrixMultiplier, a business layer class. The functionality list of
MatrixMultiplierincludes:

[Converting the user input string (e.g. 2,3,4,1) into a proper object i.e. a matrix data structure.

-Helps in calculating product of two matrices.

Controller layer’s class ControllerServletcalls the MatrixMultiplier. This layer calls the
various business methods (like multiplication of two matrices) of business layer class and got
the resultant matrix. Furthermore, ControllerServletsends the output to the matrixresult.jsp
and receives the input from

matrixinput.jsp.

The MatrixBean representing matrix data structure, as you can see in the figure is used across
several layers. In fact, the object formed by MatrixMultiplier from a user input string is of
MatrixBean type. It is used to transfer data from one layer to another.

First, look on the MatrixBean code given below:

MatrixBean

package bo;

import java.io.*;

public class MatrixBean implements Serializable {
//'a 2D array representing matrix

public int matrix[][] ;

// constructor

public MatrixBean()

{

matrix = new int[2][2];

2

matrix[0][0] =

3

0
0
0;
0

|
matrix[0][1]
matrix[1][0]
matrix|[1][1]
h

// setter that takes 4 int values and assigns these to array

2

public void setMatrix(int w, int X, int y, int z){

© Copyright Virtual University of Pakistan Page 433

Web Design and Development (CS506)

matrix[0][0] = w;
matrix[0][1] = x;
matrix[1][0] =y;
matrix[1][1] = z;
b
// getter returning a 2D array
public int[][] getMatrix(){
return matrix;

b
// used to convert 2D array into string

public String toString() {

return matrix[0][0] + "," + matrix[0][1] +"," + matrix[1][0] +"," +matrix[1][1] ;
b
} // end MatrixBean

matrixinput.jsp

This JSP is used to collect the input for two matrices in the form of string such as 2,3,5,8.The data
will be submitted to ControllerServletfrom this page.

<html>

<body>

<h2>

Enter Two Matrices of order 2 * 2 to compute Product
</h2>

<h3>

<%--

“controller” is an alias/URL pattern of ControllerServlet
VAN

<form name="matrixInput" action="controller" > First Matrix:
<input type="text" name = "firstMatrix" /> E.g. 2,3,4,1

Second Matrix:

© Copyright Virtual University of Pakistan Page 434

Web Design and Development (CS506)

<input type="text" name = "secondMatrix" />

<input type = "submit" value = "Calculate Product" />
</form>

</h3>

</body>

</html>

ControllerServlet

This servlet acting as a controller receives the input from matrixinput.jsp. Furthermore,it will
interact with the business layer class MatrixMultiplier to convert the string into a MatrixBean
object, and to multiply two matrices.

package controller;

import bl.*;

import bo.* ;

import java.io.*;

import java.net.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class ControllerServlet extends HttpServlet {

// ' This method only calls processRequest()
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

processRequest(request, response);

}

// This method only calls processRequest()
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException{

processRequest(request, response);
b

© Copyright Virtual University of Pakistan Page 435

Web Design and Development (CS506)

protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

// retrieving values from input fields of matrixinput.jsp

String sMatrix1 = request.getParameter("firstMatrix");

String sMatrix2 = request.getParameter("secondMatrix");

// Creating MatrixMultipler object

MatrixMultiplier mm = new MatrixMultiplier();

// Passing Strings to convertToObject() method of MatrixMultiplier

/I convertToObject() is used to convert strings into MatrixBean

MatrixBean fMatrix = mm.convertToObject(sMatrix1);

MatrixBean sMatrix = mm.convertToObject(sMatrix2);

// passing MatrixBean’s objects to multiply() method of
// MatrixMultiplier and receiving the product matrix in the form
// of MatrixBean

MatrixBean rMatrix = mm.multiply(fMatrix, sMatrix);

// saving results in database

mm.saveResult(rMatrix);

// storing the product of matrices into request, so that it can be

// retrieved on matrixresult.jsp

request.setAttribute("product", rMatrix);

// forwarding request to matrixresult.jsp

RequestDispatcher rd = request.getRequestDispatcher("matrixresult.jsp");
rd.forward(request, response);

}+ // end processRequest()

}+ // end ControllerServlet

MatrixMultiplier

The business layer class that’s primary job is to calculate product of tow matrices given in the

© Copyright Virtual University of Pakistan Page 436

Web Design and Development (CS506)

form of MatrixBean. This class also has a method convertToObject that takes a String and
returns back a MatrixBean object. MatrixMultiplier will also interact with the data layer class

MatrixDAO to store results in the database.

package bl;

import bo.*;

import dal.*;

public class MatrixMultiplier {
//constructor

public MatrixMultiplier() {

b
// used to convert a String (like 2,3,4,5) into a MatrixBean object
public MatrixBean convertToObject(String sMatrix) {

//splitting received string into tokens by passing “,” as
//delimeter

String tokens[] = sMatrix.split(",");

//creating MatrixBean object

MatrixBean matrixBO = new MatrixBean();

// converting tokens into integers
int w = Integer.parselnt(tokens[0]);
int x = Integer.parselnt(tokens[1]);
int y = Integer.parselnt(tokens[2]);
int z = Integer.parselnt(tokens[3]);

// setting values into MatrixBean object by calling setter

matrixBO.setMatrix(w , X , y, Z);

return matrixBO;

} // end convertToObject()

// used to multiply two matrices , receives two MatrixBean objects

// and returns the product in the form of MatrixBean as well

© Copyright Virtual University of Pakistan

Page 437

Web Design and Development (CS506)

public MatrixBean multiply(MatrixBean fMatrix , MatrixBean sMatrix)

{

// creating MatrixBean object where product of the matrices will
// be
// stored

MatrixBean resultMatrix = new MatrixBean();

// retrieving two dimensional arrays from MatrixBeans object to
// perform multipication

int matrixA[][] = fMatrix.getMatrix();

int matrixB[][] = sMatrix.getMatrix();

int matrixC[][] = resultMatrix.getMatrix();

// code to multiply two matrices

for (int 1=0; 1<2; i++) {

for (int j=0; j<2; j++) {

for (int k=0; k<2; k++) {

matrixC[i][j] += (matrixA[i][k] * matrixB[k][j]);

h
b

// storing the product from 2d array to MatrixBean object by

// calling setter

resultMatrix.setMatrix(matrixC[0][0], matrixC[0][1], matrixC[1][0], matrixC[1][1]);
return resultMatrix;

} // end multiply()

// save results (MatrixBean containg product of two matrices)

//into

// database using DAO

public void saveResult(MatrixBean resultMatrix)

{
MatrixDAo dao=null;

try{

© Copyright Virtual University of Pakistan Page 438

Web Design and Development (CS506)

dao = newMatrixDAO();

} catch(ClassNotFoundException ¢){
} catch(SQLException e){

} dao.saveMatrix(resultMatrix);

b
}+ // end MatrixMulitplier

MatrixDAO

As class name depicts, it is used to store product results into database. Let’s look on the
code to see how it is accomplished.

package dal;

import java.util.*;

import java.sql.*;

import bo.*;

public class MatrixDAO{

private Connection con;

// constructor

public MatrixDAO() throws ClassNotFoundException , SQLException {
establishConnection();

h
// method used to establish connection with db

private void establishConnection() throws ClassNotFoundException,SQLException {
// establishing conection

class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

String conUrl = "jdbc:odbc:Matrix DSN";

con = DriverManager.getConnection(conUrl);

b
// used to store MatrixBean into database after converting it to
// a String

public void saveMatrix(MatrixBean matrix) {

© Copyright Virtual University of Pakistan Page 439

Web Design and Development (CS506)

try{

String sql = "INSERT INTO Matrix(mOrder, mValues) VALUES (?,7)";

PreparedStatement pStmt = con.prepareStatement(sql);

// converting MatrixBean into String by calling toString()
String sMatrix = matrix.toString();

// setting order of matrix

pStmt.setString(1, "2*2");

// setting matrix values in the form of string
pStmt.setString(2 , sMatrix);
pStmt.executeUpdate();
catch(SQLException sqlex){
System.out.println(sqlex);

h
} // end saveMatrix

// overriding finalize method to release acquired resources
public void finalize() {

try{

if(con !=null){

con.close();

b
}catch(SQLException sex){ System.out.println(sex);

}
} // end finalize
} // end MatrixDAO class

matrixresult.jsp

Used to display resultant product of two matrices. The code is given below:

<%-- importing “bo” package that contains MatrixBean --%>

<% (@ page import="bo.*"%>

© Copyright Virtual University of Pakistan

Page 440

Web Design and Development (CS506)

<htmlI>

<body>

<h1>The resultant Matrix is </h1>

<%--

retrieving MatrixBean object from request, that was set on
ControllerServlet

0>

<%

MatrixBean productMatrix = (MatrixBean)request.getAttribute("product");
// retrieving values in 2d array so that it can be displayed
int matrix[][] = productMatrix.getMatrix() ;

%>

<%-- displaying MatrixBean’s object values --%>
<TABLE>

<TR>

<TD> <%= matrix[0][0] %> </TD>

<TD> <%= matrix[0][1] %> </TD>

</TR>

<TR>

<TD> <%= matrix[1][0] %> </TD>

<TD> <%= matrix[1][1] %> </TD>

</TR>

</TABLE>

</body>

</html>

web.xml

<?xml version="1.0" encoding="UTF-8"7>
<web-app>
<servlet>

<servlet-name> ControllerServlet </servlet-name>

© Copyright Virtual University of Pakistan Page 441

Web Design and Development (CS506)

<servlet-class> controller.ControllerServlet </servlet-class>
</servlet>

<servlet-mapping>

<servlet-name> ControllerServlet </servlet-name>
<url-pattern> /controller </url-pattern>

</servlet-mapping>

</web-app>

41.5 References:

e Java A Lab Course by Umair Javed.
= Java Passion by Sang Shin

Note: Coding exercises in working condition for this lecture are also available on “Downloads”

section of LMS.

© Copyright Virtual University of Pakistan

Page 442

Web Design and Development (CS506)

Lecture 42: Expression Language

Sun Microsystems introduced the Servlet API, in the later half of 1997, positioning it as a
powerful alternative for CGI developers who were looking around for an elegant solution that was
more efficient and portable than CGI (Common Gateway Interface)programming. However, it
soon became clear that the Servlet API had its own drawbacks, with developers finding the
solution difficult to implement, from the perspective of code maintainability and extensibility. It
is in some ways, this drawback that prompted the community to explore a solution that would
allow embedding Java Code in HTML - JavaServer Pages (JSP) emerged as a result of this
exploration.

Java as the scripting language in JSP scares many people particularly web page designers which
have enough knowledge to work with HTML and some scripting language, faced lot of
difficulties in writing some simple lines of java code. Can we simplify this problem to ease the
life of web designer? Yes, by using Expression Language (EL).

JavaServer Pages Standard Tag Library (JSTL) 1.0 introduced the concept of the EL but it was
constrained to only the JSTL tags. With JSP 2.0 you can use the EL with template text.

Note: - JSTL will be discussed in the following Handout.

42.1 Overview

The Expression Language, not a programming or scripting language, provides a way to simplify
expressions in JSP. It is a simple language that is geared towards looking up objects, their
properties and performing simple operations on them. It is inspired form both the ECMAScript
and the XPath expression language.

42.2 JSP Before and After EL

To add in motivational factor so that you start learning EL with renewed zeal and zest, a
comparison is given below that illustrates how EL affects the JSPs.

The following figure depicts the situation of a JSP before EL. We have to declare a variable
before using it, data type must be known in advance and most importantly have to use awkward
syntax and many more. All these problems are highlighted in the following figure:

© Copyright Virtual University of Pakistan Page 443

Web Design and Development (CS506)

1.Must Declare 2.Must Know Type
<%
Person p = (Person) request.getAttribute(“person’)
%>

4. Knowledge of Scripting
3.Awkwad Syntax Language required even

for simple manipulation

Contrary to the above figure, have a look on the subsequent figure that gives you a hint how
useful EL can be?

1.Direct Access 2.Easier Syntax

Person Name $ {p.name}

<c: if test = “${p.address == param.add} >

</c: if> \

4. All app data ieasil
3.Better adopted PP Y
accessable

expression language

© Copyright Virtual University of Pakistan Page 444

Web Design and Development (CS506)

42.3 Expression Language Nuggets

We’ll discuss the following important pieces of EL. These are:

* Syntax of EL

» Expressions & identifiers

» Arithmetic, logical & relational operators
* Automatic type conversion

» Access to beans, arrays, lists & maps

» Access to set of implicit objects

42.3.1EL Syntax

The format of writing any EL expression is:

$ { validExpression }

The valid expressions can consist on these individuals or combination of these given below:

» Literals

* Operators

= Variables (object references)

» Implicit call to function using property name

o EL Literals

The list of literals that can be used as an EL expression and their possible values are

given in the tabular format below:

Literals Literal Values
Boolean true or false
Integer Similar to Java e g. 243 -9642

Floating Point | Similarto Java e.g. 54.67,1.83

String Any string delimited by single ordouble quotee.g.

“hello™ , *hello”

Mull MNull

Examples of using EL literals are:
${ false } <%-- evaluates to false --%>

© Copyright Virtual University of Pakistan Page 445

Web Design and Development (CS506)

${8*3} <%-- evaluates to 24 --%>
« EL Operators

The lists of operators that can be used in EL expression are given below:

Tvpe Operator
Arithmetic +- % (div) % (mod)
Grouping ()
Logical Sc&(and) ||(or) not)
Relational =(gq) '=(ne) = (1t) = (gt} == (le) == (ge)
Empty The emptv operator is a prefix operation used to determineif
a value is null or emptv. Itretumns a Boolean value
Conditional ?:

Let us look at some examples that use operators as valid expression:

${(6*5)+5} <%--evaluate to 35 --%>
${ (x >=min) && (x <= max) }
${ empty name }
o Returns true if name is
Tl Empty string (),
T Null etc.
EL Identifiers

Identifiers in the expression language represent the names of objects stored in one of the JSP
scopes: page, request, session, or application. These types of objects are referred to scoped
variables throughout this handout.

EL has 11 reserved identifiers, corresponding to 11 implicit objects. All other identifiers
assumed to refer to scoped variables.

e EL implicit Objects

The Expression Language defines a set of implicit objects given below in tabular format:

© Copyright Virtual University of Pakistan Page 446

Web Design and Development (CS506)

Category | Implicit Object Operator
The context for the JSP page, used to access the JSP
JSP pageContext
implicit objects such as request, response, session,
pageScope A Map associating names & values of page scoped
attributes
Scopes requestScope A Map associating names & values of request scoped
attributes
sessionScope A Map associating names & values of session scoped
attributes
applicationScope A Map associating names & values of application
scoped attributes
Maps a request parameter name to a single String
Request | Param
parameter value.

Parameters | ,aamValues Maps a request parameter name to an array of values
Request header Maps a request header name to a single header value.
Headers | headerValues Maps a request header name to an array of value.
Cookies | cookie A Map storing the cookies accompanying the request

by

Initialization | . . A Map storing the context initialization parameters of

mitParam

Parameters the web application by name

Examples of using implicit objects are:

» ${ pageContext.response }
o Evaluates to responseimplicit object of JSP
e ${ param.name }
o This expression is equivalent to calling request.getParameter(‘“name”);
e ${ cookie.name.value }
o Returns the value of the first cookie with the given name

o Equivalent to_
if (cookie.getName().equals(“name”){
String val = cookie.getValue();

© Copyright Virtual University of Pakistan

Page 447

Web Design and Development (CS506)

Example Code: Summation of Two Numbers using EL

This simple example demonstrates you the capabilities of EL. index.jspis used to collect
input for two numbers and their sum is displayed on result.jspusing EL.

Let’s first see the code of index.jsp

index.jsp

<html>

<body>

Enter two numbers to see their sum
<form action="result.jsp" >

First Number :

<input type="text" name="numl" />

Second Number:

<input type="text" name="num?2" />

<input type="submit" value="Calculate Sum" />

</form>

</body>

</html>

result.jsp

<htmI>

<body>

<%-- The code to sum two numbers if we used scriptlet

<%

String nol = request .getParameter("num1"); String no2 = request .getParameter("num2");

int num1 = Integer.parselnt(nol);

int num?2 = Integer.parselnt(no2);

© Copyright Virtual University of Pakistan

Page 448

Web Design and Development (CS506)

%>
Result is: <%= num1 + num?2 %>

--90>

<%-- implicit Object param is used to access request parameters
By Using EL summing two numbers

>

Result is: $ {param.num1 + param.num?2}

</body>

</html>

42.3.2 EL Identifiers (cont.)

We had started our discussion on EL identifiers. Let’s find out how these identifiers (variables)
can be stored/retrieved in/from different scopes.

- Storing Scoped
Variables

By using java code, either in pure servlet or in a scriptlet of JSP, we can store variables in a
particular scope. For example,

o Storing a variable in session scope using Java code

Assume that we have PersonInfoclass and we want to store its object pin
session scope then we can write the following lines of code to accomplish that:

HttpSession ses = request.getSession(true); Personlnfo p = new

PersonInfo(); p.setName(“ali”);
ses.setAttribute(“person” , p);

o Storing a variable in request scope using Java code
For the following lines of code, assume that request is of HttpServletRequest type. To
store PersonInfo object p in request scope, we’ll write:

PersonInfo p = new Personlnfo(); p.setName(“ali”);
request.setAttribute(“person” , p);

You must be thinking of some another method (with which you are already familiar) to store
a variable in a scope, certainly by using JSP action tags, we learned how to store a variable in
any particular scope.

© Copyright Virtual University of Pakistan Page 449

Web Design and Development (CS506)

o Storing a variable in request scope using JSP action tag

If we want to store p of type PersonInfo in request scope by using JSP action tags,
then we’ll write:

99..9%

<jsp:useBean id="p” class="PersonInfo”
scope="request”/>
Later, you can change the properties of object p by using action tag as well.For example

<jsp:setProperty name="p” property="name” value="ali”
/>

» Retrieving Scoped variables

You are already very much familiar of retrieving any stored scoped variable by using java
code and JSP action tags. Here, we’ll discuss how EL retrieves scoped variables. As already
mentioned, identifiers in the valid expression represent the names of objects stored in one of
the JSP scopes: page, request, session and application.

When the expression language encounters an identifier, it searches for a scoped variable with
that name first in page scope,then in request scope,then in session scope,and finally in
application scope

Note: - If no such object is located in four scopes, null is returned.

For example, if we’ve stored Personlnfo object pin session scope by mean of any
mechanism discussed previously and have written the following EL expression to access the name
property of p

${p.name}

Then EL searches for p first in page scope, then in request scope, then in session scope where it
found p. After that it calls p.getName()method. This is also shown in pictorial form below:

[Page scope]

()
request scope

- J/

4 N

application scope
Found
L) Call getName()

application scope]

S

© Copyright Virtual University of Pakistan Page 450

Web Design and Development (CS506)

42.3.3 EL Accessors

The dot (.) and bracket ([]) operator let you access identifies and their properties. The dot
operator typically used for accessing the properties of an object and the bracket operator is
generally used to retrieve elements of arrays and collections.

 Dot()
operator

Assume that JavaBean PersonInfohas name property and its object personis stored in some
scope. Then to access the name property of personobject, we’ll write the following
expression using EL:

$ {person.name}

! !

identifier property

The EL accesses the object’s properties using the JavaBeans conventions therefore getName()
must be defined in PersonInfo. Moreover, if property being accessed itself an object, the dot
operator can be applied recursively. For example

$ {user.address.city}

identifier property Property of
address

« Bracket ([]) operator

This operator can be applied to arrays & collections implementing List interface e.g.
ArrayListetc.

o Index of the element appears inside brackets

o Forexample, ${ personList[2] }returns the 3rd element stored in it Moreover,
this operator can also be applied to collections implementing Map interface e.g. HashMap
etc.

o Key is specified inside brackets

o For example, ${ myMap[“id”] }returns the value associated with the

© Copyright Virtual University of Pakistan Page 451

Web Design and Development (CS506)

42 .3.4EL — Robust Features

Some powerful characteristics of Expression Language
are:

» Multiple expressions can be combined and intermixed with static text. For example

$ { “Hello” ${user.firstName} ${user.lastName} }

» EL also supports automatic type conversion; as a result primitive can implicitly wrap
and unwrap into/from their corresponding java classes. For example

begin = “$ { student.marks }”

f \

P

int

Integer
Behind the scenes

« Most importantly, if object/identifier is null, no NullPointerException would be thrown.
For example. If the expression written is:

${person.name}

Assume that personis null, then no exception would be thrown and the result would also be

null.

42.3.5Using Expression Language

Expression Language can be used in following situations

* As attribute values in standard & custom actions. E.g.
<jsp:setProperty id = “person” value = ${....} />

* Intemplate text — the value of the expression is inserted into the current output. E.g.
<h3>${...... } </h3>

» With JSTL (discussed in the next handout)

© Copyright Virtual University of Pakistan Page 452

Web Design and Development (CS506)

Example Code: AddressBook using EL

So far, we have shown you implementation of AddressBook example in number of different ways.
This time EL will be incorporated in this example. AddressBook code example consists on
searchperson.jsp, showperson.jsp,ControllerServlet, Personlnfoand PersonDAOclasses. Let’s
look on the code of each of these components:

Personinfo.java

The JavaBean used to represent one person record.

package vu;

import java.io.*;

public class PersonInfo implements Serializable {
private String name;

private String address;

private int phoneNum;

// no argument constructor

public PersonInfo() {

name ="";

address="";

phoneNum = 0;

}
/] setters

public void setName(String n){
name = n;

b
public void setAddress(String a){
address = a;

}
public void setPhoneNum(int pNo){
phoneNum = pNo;

}

© Copyright Virtual University of Pakistan Page 453

Web Design and Development (CS506)

/1 getters

public String getName() {
return name;

h
public String getAddress(){
return address;

h
public int getPhoneNum(){

return phoneNum;

b
}

PersonDAO.java

It is used to retrieve/search person records from database.

package vu;

import java.util. *;

import java.sql.*;

public class PersonDAO{

private Connection con;

// constructor

public PersonDAQO() throws ClassNotFoundException , SQLException {
establishConnection();

}//used to establish connection with database
private void establishConnection()

throws ClassNotFoundException , SQLException {
// establishing connection
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
String conUrl = "jdbc:odbc:PersonDSN";

con = DriverManager.getConnection(conUrl);

}

© Copyright Virtual University of Pakistan Page 454

Web Design and Development (CS506)

// used to search person records against name
public ArrayList retrievePersonList(String pName) throws SQLException {
ArrayList personList = new ArrayList();
String sql =" SELECT * FROM Person WHERE name = ?";
PreparedStatement pStmt = con.prepareStatement(sql);
pStmt.setString(1, pName);
System.out.println("retrieve person list");
ResultSet rs = pStmt.executeQuery();
String name;
String add;
int pNo;
while (rs.next()) {
name = rs.getString(""'name");
add = rs.getString("address");
pNo = rs.getInt("phoneNumber");
// creating a PersonInfo object
PersonInfo personBean = new PersonInfo();
personBean.setName(name);
personBean.setAddress(add);
personBean.setPhoneNum(pNo);
// adding a bean to arraylist
personList.add(personBean);
}+ // end while
return personList;
} // end retrievePersonList
//overriding finalize method to release resources
public void finalize() {
try{
if(con !=null){

con.close();

© Copyright Virtual University of Pakistan Page 455

Web Design and Development (CS506)

h
}catch(SQLException sex){

System.out.println(sex);
}
} // end finalize
} // end class

searchperson.jsp

This JSP is used to gather person’s name from the user and submits this data to the

ControllerServlet.

<htmI>

<body>

<center>

<h2> Address Book </h2>

<h3> Search Person</h3>

<FORM name ="search" action="controllerservlet" />
<TABLE BORDER="1" >

<TR>

<TD> <h4 >Name</h4> </TD>

<TD> <input type="text" name="name" /> </TD>
</TR>

<htmI>

<body>

<center>

<h2> Address Book </h2>

<h3> Search Person</h3>

<FORM name ="search" action="controllerservlet" />
<TABLE BORDER="1" >

<TR>

<TD> <h4 >Name</h4> </TD>

<TD> <input type="text" name="name" /> </TD>

</TR>

© Copyright Virtual University of Pakistan

Web Design and Development (CS506)

ControllerServlet.java
The Controller Servlet receives request from searchperson.jsp and after fetching search

results from database, forwards the request to showperson.jsp.
package controller;

import vu.*;

import java.util.*;
import java.io.*;
import java.net.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class ControllerServlet extends HttpServlet {

// This method only calls processRequest()

protected void doGet(HttpServletRequest request, HttpServletResponse response throws
ServletException, IOException e){

processRequest(request, response);

}
// This method only calls processRequest()

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {

processRequest(request, response);

H
protected void processRequest(HttpServletRequest request, HttpServletResponse response)
throws ServletException, [OException {

// defined below

searchPerson(request, response);

} // end processRequest()

protected void searchPerson(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

try {

© Copyright Virtual University of Pakistan Page 457

Web Design and Development (CS506)

// creating PersonDAO object

PersonDAO pDAO = new PersonDAQO();

// retrieving request parameter “name” entered on showperson.jsp
String pName = request.getParameter("name");

// calling DAO method to retrieve personlist from database

// against the name entered by the user

ArrayList personList = pDAO.retrievePersonList(pName);

// storing personlist in request scope, later it is retrieved

// back on showperson.jsp

request.setAttribute("plist", personList);

// forwarding request to showperson, so it renders personlist
RequestDispatcher rd = request.getRequestDispatcher("showperson.jsp");
rd.forward(request, response);

}catch (Exception ex) {

System.out.printIn("Exception is" + ex);

b
} // end searchPerson

} // end ControllerServlet

showperson.jsp

This page is used to display the search results. To do so, it reclaims the stored ArrayList
(personList) from the request scope. Furthermore, this page also uses the Expression Language
to display records.

<%-- importing required packages--%>
<% (@page import="java.util.*" %>
<%@page import="vu.*" %>

<htmI>

<body>

<center>

© Copyright Virtual University of Pakistan Page 458

Web Design and Development (CS506)

<h2> Address Book </h2>

<h3> Following results meet your search criteria</h3>
<TABLE BORDER="1" >

<TR>

<TH>Name</TH>

<TH>Address</TH>

<TH>PhoneNum</TH>

</TR>

<%-- start of scriptlet --%>

<%

// retrieving ArrayList from request scope
ArrayList personList =(ArrayList)request.getAttribute("plist");
PersonInfo person = null;

for(int i=0; i<personList.size(); i++) {

person = (PersonInfo)personList.get(1);

// storing PersonInfo object in request scope

/* As mentioned, an object must be stored in
some scope to work with Expression Language*/
request.setAttribute("p", person);

%>

<%-- end of scriptlet --%>

<TR>

<%-- accessing properties of stored PersonInfo
object with name “p” using EL --%>

<TD> ${ p.name } </TD>

<TD> ${ p.address} </TD>

<TD> ${ p.phoneNum} </TD>

<%-- The following expressions are now replaced by EL statements written above--%>

<%-- <%= person.getName()%> --%>

<%-- <%= person.getAddress()%> --%>

© Copyright Virtual University of Pakistan

Page 459

Web Design and Development (CS506)

<%-- <%= person.getPhoneNum()%> --%>
</TR>

<%

} // end for

%>

</TABLE >

</center>

</body>

</html>

web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app>

<servlet>

<servlet-name> ControllerServlet </servlet-name>
<servlet-class> controller.ControllerServlet </servlet-class>
</servlet>

<servlet-mapping>

<servlet-name> ControllerServlet </servlet-name>
<url-pattern> /controllerservlet </url-pattern>
</servlet-mapping>

</web-app>

42.4 References:

» Java A Lab Course by Umair Javed.
» Expression Language Tutorial by Sun

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSPIntro7.html

e The JSTL Expression Language by David M. Geary

http://www.informit.com/articles/article.asp?p=30946 &rl=1

Note: Coding exercises in working condition for this lecture are also available on “Downloads”

section of LMS.

© Copyright Virtual University of Pakistan

Page 460

Web Design and Development (CS506)

Lecture 43: JavaServer Pages Standard Tag Library (JSTL)

43.1 Introduction

The JSP Standard Tag Library (JSTL) is a collection of custom tag libraries that implement
general-purpose functionality common to Web applications, including iteration and
conditionalization, data management formatting, manipulation of XML, and database access. Like
JSP, JSTL is also a specification not an implementation. The development theme of JSTL is
“scriptlet free JSP”.

These tag libraries provide a wide range of custom action functionality that most JSP authors have
found themselves in need of in the past. Having a defined specification for how the functionality
is implemented means that a page author can learn these custom actions once and then use and
reuse them on all future products on all application containers that support the specification.
Using the JSTL will not only make your JSPs more readable and maintainable, but will allow you
to concentrate on good design and implementation practices in your pages.

43.2 JSTL&EL

JSTL includes supports for Expression Language thus EL can be used to specify dynamic
attribute values for JSTL actions without using full-blown programming language. Prior to JSP
2.0, EL can only be used in attributes of JSTL tags but EL now becomes a standard part of JSP
2.0. This allows the use of EL anywhere in the document.

43.3 Functional Overview

As mentioned, JSTL encapsulates common functionality that a typical JSP author would
encounter. This set of common functionality has come about through the input of the various
members of the expert group. Since this expert group has a good cross-section of JSP authors and
users, the actions provided in the JSTL should suit a wide audience.While the JSTL is commonly
referred to as a single tag library, it is actually composed of four separate tag libraries:
Core—>contains tags for conditions, control flow and to access variables etc.

XML manipulation—>contains tags for XML parsing and processing

SQL—>contains tags for accessing and working with database.

Internationalization and formatting—>contains tags to support locale messages, text, numbers

and date formation

© Copyright Virtual University of Pakistan Page 461

Web Design and Development (CS506)

43.4 Twin Tag Libraries

JSTL comes in two flavors to support various skill set personal

« Expression Language (EL) version
o Dynamic attribute values of JSTL tags are specified using JSTL expression
language (i.e. ${ expression })
o The EL based JSTL tag libraries along with URIs and preferred prefixes are given
below in tabular format

Library URI Prefix
Core http://java.sun.com/jsp/jstl/core c
SQL http://java.sun.com/jsp/jstl/sql sql
Internationalization/ http://java.sun.com/jsp/jstl/fmt fmt
XML http://java.sun.com/jsp/jstl/xml X

» Request Time (RT) version

o Dynamic attribute values of JSTL tags are specified using JSP expression
(i.e. <%= expression %>)

o The RT based JSTL tag libraries along with URIs and preferred prefixes are given
below in tabular format

Library URI Prefix
Core http://java.sun.com/jsp/jstl/core_rt crt
SQL http://java.sun.com/jsp/jstl/sql_rt sql_rt
Internationalization/ http://java.sun.com/jsp/jstl/fmt_rt fmt_rt
XML http://java.sun.com/jsp/jstl/xml_rt x_rt

43.5 Using JSTL

As we discussed earlier, JSTL includes four standard tag libraries. As is true with any JSP custom
tag library, a taglibdirective must be included in any page that you want to be able to use this
library's tags.

For example, to use EL based core tag library, the taglibdirective appears as:

© Copyright Virtual University of Pakistan Page 462

Web Design and Development (CS506)

<%@taglib prefix="c” uri=http://java.sun.com/jsp/jstl/core %>

And to use RT based core tag library, the taglibdirective appears as:
<%@taglib prefix="c_rt” uri=http://java.sun.com/jsp/jstl/core_rt
%>

43.6 Working with Core Actions (tags)

The set of tags that are available in the Core tag library come into play for probably most
anything you will be doing in your JSPs such as:

» Manipulation of scoped variables

e Qutput
» Conditional logic
* loops

» URL manipulation
» and Handling errors.

Let’s walk through some important core
actions:

c:se
t

Provides a tag based mechanism for creating and setting scope based variables. Its syntax is
as follows:

<c:set var="name” scope = “scope” value = “expression” />

Where the varattribute specifies the name of the scoped variable, the scopeattribute indicates
which scope (page | request | session | application) the variable resides in, and the valueattribute
specifies the value to be bound to the variable. If the specified variable already exists, it will
simply be assigned the indicated value. If not, a new scoped variable is created and initialized to
that value.

The scopeattribute is optional and default to page.

Three examples of using c:setare given below. In the first example, a pagescoped variable
“timezone™ is set to a value“Asia /

Karachi”.

<c:set var="timezone” value="“Asia/Karachi” />

In the second example, a request scoped variable “email”” email is set to a
value

“me@gmail.co

m,’

<c:set var="email” scope="request” value="me@gmail.com” />

© Copyright Virtual University of Pakistan Page 463

Web Design and Development (CS506)

In the third example, a page scoped variable ““email” is set to value of request
parameter*‘email”
by using paramimplicit object. If email parameter is defined in JSP page as:

<input type="text” value = “email” />

Then c:settag would be used as:
<c:set var="email” scope="request” value="“param.email” />

Using c:set with JavaBeans & Map

c:settag can also be used to change the property of a bean or the value against some key. For
this purpose, the syntax of the c:settag would look like this:

<c:set target="bean/map” property="property/key” value="“value”

/>

If target is a bean, sets the value of the property specified. This process is equivalent to
<jsp:setProperty ... />JSP action tag.

If target is a Map, sets the value of the key specified

And of course, these beans and maps must be stored in some scope prior to any attempt is made
to change their properties.

For example, consider the following snippet of code that stores Personinfo’s object person into
request scope using <jsp:useBean ... />tag. Then using c:settag,
person’s name property is set to “ali”.

<jsp:useBean 1d="person” class="“vu.PersonInfo” scope="request”
/>

<c:set target="person” property =“‘name” value = “ali” />
c:out

A developer will often want to simply display the value of an expression, rather than store it.

This can be done by using c:outcore tag, the syntax of which appears below:
<c:out value = “expression” default = “expression” />

This tag evaluates the expression specified by its valueattribute, and then prints the result. If
the optional defaultattribute is specified, the c:outaction will print its

(default) value if the valueattribute's expression evaluates either to null or an empty String.
This tag is equivalent to JSP expression i.e. <%=expression %>.

© Copyright Virtual University of Pakistan Page 464

Web Design and Development (CS506)

Consider the following examples in which the usage of c:outtag has shown. In the first
example, string “Hello”” would be displayed

<c:out value = “Hello” />

In the second example, if request parameter num evaluates to null or an empty string then default
value “0” would be displayed.

<c:out value = “${param.num}” default = “0” />

The above fragment of code is equivalent to following scriptlet:

<%
String no = request.getParameter(‘“num”);

if (no ==null || no.equals(*”’)) {
System.out.println(0);
telse{ Out.println(no);
If we want to display the property of a bean like name, we’ll write
<c:out value= “${person.name}” default = “Not Set” />
c:remove
As its name suggests, the c:removeaction is used to delete a scoped variable, and takes two
attributes. The varattribute names the variable to be removed, and the optional scopeattribute

indicates the scope from which it should be removed and defaults to page.

For example, to remove a variable named square from page scope, we’ll write:

<c:remove var = “square” />

And if variable email is required to be removed from requestscope, then c:removetag will look
like:

<c:remove var = “email” scope = “request” />

c:forEach

In the context of Web applications, iteration is primarily used to fetch and display collections of
data, typically in the form of a list or sequence of rows in a table. The primary JSTL action for
implementing iterative content is the c:forEachcore tag. This tag supports two different
styles of iteration:

Iteration over an integer range (like Java language's for statement)

Iteration over a collection (like Java language's Iterator and Enumeration classes).

© Copyright Virtual University of Pakistan Page 465

Web Design and Development (CS506)

Iteration over an Integer range

To iterate over a range of integers, the syntax of the c:forEachtag will look like:

<c:forEach var="name” begin="expression” end="expression”
step="expression” >
Body Content

</c:forEach>

The beginand endattributes should be either constant integer values or expressions evaluating to
integer values. They specify the initial value of the index for the iteration and the index value
at which iteration should cease, respectively. When iterating over a range of integers using
c:forEach, these two attributes are required and all others are optional.

The stepattribute specifies the amount to be added to the index after each iteration. Thus the
index of the iteration starts at the value of the beginattribute, is incremented by the value of
the stepattribute, and halts iteration when it exceeds the value of the endattribute. Note that if
the stepattribute is omitted, the step size defaults to 1.

If the varattribute is specified, then a scoped variable with the indicated name will be created
and assigned the current value of the index for each pass through the iteration. This scoped
variable has nested visibility that is it can only be accessed within the body of the c:forEach tag.

For example to generate squares corresponding to range of integer values, the c:forEachtag will
be used as:

<c:forEach var="x” begin="0" end="“10" step="2" >
<c:out value="${x * x}” />

</c:forEach>

By executing the above code, following output would appear:
4163664100

Iteration over a Collection

When iterating over the members of a collection and arrays etc, one additional attribute of the
c:forEachtag is used: the itemsattribute. Now the c:forEachtag will look similar to this:
<c:forEach var="name” items="expression” >

Body Content
</c:forEach>

When you use this form of the c:forEachtag, the itemsattribute is the only required
attribute. The value of the itemsattribute should be the collection/array over whose members
the iteration is to occur, and is typically specified using an EL expression. If a variable name is
also specified using varattribute, then the named variable will be bound to successive elements
of the collection for each iteration pass.

© Copyright Virtual University of Pakistan Page 466

Web Design and Development (CS506)

For example, to iterate over a String array (messages) using java code, we used to write in JSP:

<

%

for(int i=0; i<messages.length; i++) { String msg =
(r)nessages[i];

0
>

<%= msg %>

<
%
} // end for
%
>

This can be done using c:forEachtag in much simpler way as shown below:
<c:forEach var="“msg” items="${messages}” >

<c:out value= “${msg}” />

</c:forEach>

Similarly, to iterate over a persons ArrayListthat contains PersonInfo objects, w used to write
in JSP:

<%
ArrayList persons = (ArrayList)request.getAttribute(“pList”);
for(int i=0; i<persons.size(); i++) { Personlnfo p ==

(PersonInfo)persons.get(i); String name = p.getName();
%>

<%= name %>
<%

}+ // end for
%>

Indeed, the above task can be achieved in much simpler way using c:forEachtag as shown
below:

<c:forEach var="p” items="${persons}” >
<c:out value= “${p.name}” />

</c:forEach>

The c:forEachtag processes each element of this list(persons) in turn, assigning it to a
scoped variable named p. Note that typecast is also not required.

Furthermore, you can use the begin, end, and stepattributes to restrict which elements of the
collection are included in the iteration.

© Copyright Virtual University of Pakistan Page 467

Web Design and Development (CS506)

c:if

Like ordinary Java’s if, used to conditionally process the body content. It simply evaluates a
single test expression and then processes its body content only if that expression evaluates to
true. If not, the tag's body content is ignored. The syntax for writing c:iftag is:

<c:if test= “expression” >
Body Content
</c:if>

For example, to display a message “a equals b” if two strings a & b are equal, the c:if tag is

used as:

<c:if test=“${a==Db}" >
<h2> A equals B </h2>
</c:if>

c:choose

c:choosethe second conditionalization tag, used in cases in which mutually exclusively test

are required to determine what content should be displayed. The syntax is shown below:
<c:choose>

<c:when test= “expression” >
Body content
</c:when>

<c:otherwise >

Body content
</c:otherwise>

</c:choose>

Each condition to be tested is represented by a corresponding <c:when>tag, of which there
must be at least one. Only the body content of the first <c:when>tag whose test evaluates to
true will be processed. If none of the <c:when>tests return true, then the body content of the
<c:otherwise>tag will be processed.

Note, though, that the <c:otherwise>tag is optional; a <c:choose>tag can have at most one
nested <c:otherwise>tag. If all <c:when>tests are false and no <c:otherwise> action is present,
then no <c:choose>body content will be processed.

The example code given below illustrates the usage of c:choosetag in which two strings a &
b are compared and appropriates messages are displayed:

<c:choose>

© Copyright Virtual University of Pakistan Page 468

Web Design and Development (CS506)

<c:when test= “a==Db” >
<h2> a equals b</h2>
</c:when>

<c:when test= “a<=b” >
<h2> a is less than b</h2>
</c:when>

<c:otherwise >
<h2> Don’t know what a equals to </h2>
</c:otherwise>

</c:choose>

43.7 NetBeans 4.1 and JSTL

If you are using netBeans 4.1 IDE then you have to add JSTL library to your project manually.
To do so, right click on the libraries folder, you can find it under project’s name and select the
Add Library option. This is also shown in the following figure:

:Projects :Runtime

@ Jstl_ex2

B web Pages
. Web Services
[] Configuration Files

8 Add Project...

Add Library...

Add JAR/Folder

The Add Library dialog box opens in front of you. Select JSTL 1.1 option and press Add Library
button. Now you can refer to any JSTL library in your JSPs.

© Copyright Virtual University of Pakistan Page 469

Web Design and Development (CS506)

Libraries

.Absolute Layout

8
B unit

Note: Remember that the JSTL 1.1 library is only added to current project. You have to repeat
this step for each project in which you want to incorporate JSTL.

Example Code: AddressBook using JSTL core tags

This is the modified version of AddressBook that was built using Expression Language in the last
handout. Only showperson.jspis modified to incorporate JSTL core tags along with Expression
Language in place of scriptlets. The remaining participants searchperson.jsp, ControllerServlet,
PersonInfoand PersonDAOIeft unchanged. Let’s look on the

code of each of these components:

Personinfo.java

The JavaBean used to represent one person record.

package vu;

import java.io.*;

public class PersonInfo implements Serializable {

private String name; private String address; private int phoneNum;
// no argument constructor public PersonInfo() {

name =""; address = ""; phoneNum = 0;

b
/] setters

public void setName(String n){

© Copyright Virtual University of Pakistan Page 470

Web Design and Development (CS506)

name = n;
}
public void setAddress(String a){
address = a;

}
public void setPhoneNum(int pNo){
phoneNum = pNo;

}
/] getters

public String getName(){
return name;

}
public String getAddress(){
return address;

}
public int getPhoneNum(){

return phoneNum;

i)

Note: Coding exercises in working condition for this lecture are also available on “Downloads”

section of LMS.

© Copyright Virtual University of Pakistan

Page 471

Web Design and Development (CS506)

Lecture 44: Client Side Validation & JavaServer Faces (JSF)

In this handout, we’ll talk about client side validation and also learn about growing in demand
Java technology i.e. JSF. First start with client side validation

44.1 Client Side Validation

Forms validation on the client-side is essential -- it saves time and bandwidth, and gives you
more options to point out to the user where they've gone wrong in filling out the form.
Furthermore, the browser doesn't have to make a round-trip to the server to perform routine
client-side tasks. For example, you wouldn't want to send the browser to the server to validate
that all of the required fields on a form were filled out.

Any scripting language can be used to achieve the said objective. However, JavaScript and
VBScript are t wo popular options

44.1.1Why is Client Side Validation Good?

There are two good reasons to use client-side validation:

» It's a fast form of validation: if something's wrong, the alarm is triggered upon submission
of the form.

* You can safely display only one error at a time and focus on the wrong field, to help ensure
that the user correctly fills in all the details you need.

Code Example: Form Validation using JavaScript

For example on the following form, we want to make sure that text filed for name should not be
left empty and age field does not contain any negative value. To accomplish this we’ll use
JavaScript. If user forgets to provide name and/or enters a negative value, a message would be
displayed to the user that indicates what was went wrong? However, if user conforms to
requirements, he/she would be taken to another page that displays a greeting message.

Note: In this example, JavaScript semantics isn’t discussed over here as I am assuming that you
might be familiar with some scripting language. Otherwise, www.w3schools.com is an excellent
resource to learn about scripting languages

© Copyright Virtual University of Pakistan Page 472

Web Design and Development (CS506)

Client Side Validation Example

Name: | |

Age: | |

The code that is used to generate this page is given below:

<HTML>

<HEAD>

<!— start of scripting code and mentioning type -->

<SCRIPT TYPE = "text/javascript">

/* defining a function that receives form’s reference, defined inside the body and returns false if any
requirement violated

*/

function validateForm(thisform)

{
/* checking the value of the name field, if it is left empty
then displaying a message

*/

if (thisform.name.value == null || thisform.name.value =="")
{
alert("Username is required");

return false;

}

© Copyright Virtual University of Pakistan Page 473

Web Design and Development (CS506)

// if value of age is negative, displaying a message if (thisform.age.value <0)
{
alert("Age can't be negative");
return false;

} // end of function

</SCRIPT> <!—end of script-- >
</HEAD>
<BODY>

<!—- validateForm method is called and specified as a value of onsubmit value, if this method returns
false, the user remains on the same page -->

<FORM method="post" onsubmit="return validateForm(this)" action = “greeting.jsp” >

<h2> Client Side Validation Example </h2>

Name: <INPUT type="text" name="name" size="30" />

Age: <INPUT type="text" name="age" size="30" />

<INPUT type="submit" value="Submit">

</FORM>

</BODY>
</HTML>

© Copyright Virtual University of Pakistan Page 474

Web Design and Development (CS506)

44.2 JavaServer Faces (JSF)

JSF technology simplifies building the user interface for web applications. It does this by
providing a higher-level framework for working with your web applications. Some distinct
features will be discussed provided by this technology. To begin with, have a look on some
popular existing frameworks

44.2.1Different existing frameworks

» Struts
A popular open source JSP-based Web application framework helps in defining a structured
programming model (MVC), also validation framework and reduces tedious coding but...
o Adds complexity and doesn’t provide Ul tags
o Very Java programmer centric
- Tapestry

Another popular framework that is extensively used in the industry is Tapestry. It has almost

similar sort of problems as with Struts.

44.2.2 JavaServer Faces

A framework which provides solutions for:

» Representing Ul components

* Managing their state

» Handling events

* Input validation

» Data binding

» Automatic conversion

* Defining page navigation

» Supporting internationalization and accessibility.

If you are familiar with Struts and Swing (the standard Java user interface framework for desktop
applications), think of JavaServer Faces as a combination of those two frameworks. Like Swing,
JSF provides a rich component model that eases event handling and component rendering; and
like Struts, JSF provides Web application lifecycle management through a controller servlet.

44.2.3JSF Ul Components

Some of the standard JavaServer Faces components are shown below:

© Copyright Virtual University of Pakistan Page 475

Web Design and Development (CS506)

Application Field Group

© New Group O Existing Group

New Group

Application Field Type

O New Group © Existing Group

New Group || Cell Phone Number

Application Field Display

Select Checkboxes

Name Vv | One

Two

Three

Some custom JavaServer Faces components are

Jarwary 2005

Su Mo Tu We Th Fr Sa

1
2 3 45 678
1001 12 131415
1617 1819 2021 22
23 24 25 26 2728 29
30 31

JSF Messages:
Application Map:

weblogic.serviet WebAppComponentvBean

com.sun.faces HTML_BASIC

weblogic.serviet WebAppComponentRuntimeMBean

com.sun.faces ApplicationAssociate
javax serviet context tempdir

com.sun faces. OneTimelnitialization
Session Map:

dsa_notify

javax faces request charset
iAdminApplication jsp

[Caching Stub]Proxy for mydomain:Application
ui_dir,Location=myserver,Name=accessweb-

com.sun faces. renderkit Renderkitimpl@191°

weblogic.servietinternal. WebAppRuntimeMBe
mydomain:ApplicationRuntime=myserver__ag
ui_dir Location=myserver Name=myserver_m
ui,ServerRuntime=myserver, Type=WebAppCo
mydomain:Location=myserver Name=mysern
ui_dir ServerRuntime=myserver, Type=Applica’
com.sun.faces.application ApplicationAssocia
Cibeawser_projectsidomainsimydomainirmy:
ui_dir_accessweb-uipublic

com.sun faces. OneTimelnitialization

com.ihc.issa.accessweb ui.dsa NotificationMg
UTF-8
javaxfaces.component UlViewRoot@119e00”

© Copyright Virtual University of Pakistan

Page 476

Web Design and Development (CS506)

And some open course JavaServer Faces components are also available like:

4-60of7 4 b < February 2004 >

)) Mon Tues Wed Thur Fri Sat Sun
ID First Name Family Name

1
4 Hans Mueller 2 3 4 5 &8 7 8
5 Amadeus Mozart © < L [dysslf ;Z £ é ﬁ iig
6 Harry Potter @ 3 Ky Father 23 24 25 26 27 28 29
© 3 Gran: Fathsar
©- (3 Cads [dsthsr
&3 [y [other

And some third-party Java Server Faces components are also available:

I S EEr
[T i P e T

are = COROM

44.2.4 JSF Events Handling

A JSF application works by processing events triggered by the JSF components on the pages.
These events are caused by user actions. For example, when the user clicks button, the button
triggers an event. You, the JSF programmer, decide what the JSF application will do when a

© Copyright Virtual University of Pakistan Page 477

Web Design and Development (CS506)

particular event is fired. You do this by writing event listeners.In other words, a JSF application
is event-driven.

For example, if you write a JSF code to create a button, you will write:

<h:commandButton value="Login*
actionListener="#{customer.loginActionListener}”
action="#{customer.login}” />

The wvalue attribute specifies the text that appeared on the face of a button, the
actionListenerattributes specifies to call the loginActionListenermethod written somewhere in a
Customerclass if an event is triggered and on which to go next,is decided by the loginmethod of
Customer class and given as a value of actionattribute.

The method specified in actionattribute should return a Stringvalue as the returned
Stringvalue is used in page navigation.

Note: Many IDE provides visual support for JSF so you can drag and drop components instead
of writing tedious coding for defining JSF components as shown above. Sun Studio Creator® is
a free open source IDE that provides visual support for JSF and can be downloaded form Sun
site.

The code examples are also built using this IDE.
class Customer {
public void loginActionListener(ActionEvent e)

public String login() {
return “OK”;
1}

Example Code: Hello User
The example code (“hello user 1) is given along with the handout. It is strongly advised that

you must see the lecture video in order to learn how this example is built.

User will provide a name in the text field and his/her name after appending “hello” to it,would
be displayed on the same page.

44.2.5 JSF Validators
Validators make input validation simple and save developers hours of programming. JSF
provides a set of validator classes for validating input values entered into input components.

Alternatively, you can writeyour own validator if none of the standard validators suits your

© Copyright Virtual University of Pakistan Page 478

Web Design and Development (CS506)

needs.

Some built-in validators are:

« DoubleRangeValidator
Any numeric type, between specified maximum and minimum values

« LongRangeValidator
Any numeric type convertible to long, between specified maximum and minimum

values

- LengthValidator
Ensures that the length of a component's local value falls into a certain range
(between minimum & maximum). The value must be of String type.

Example Code: Hello User
The example code (“hello user 2”°) is given along with the handout. You can open it using Sun

Studio Creator IDE. It is strongly advised that you must see the lecture video in order to learn

how this example is built.

It is actually a modified version of the last example. This time, we’ll make sure that user couldn’t
left blank the name field and must enter a name between ranges of 2 to 10 characters. If any
condition fails, an appropriate message would be displayed.

44.2.6JSF — Managed Bean-Intro

These are JavaBeans defined in the configuration file and are used to hold the data from JSF
components. Managed beans represent the data model, and are passed between business logic
and pages. Some other salient features are:

e Use the declarative model
» Entry point into the model and event handlers
e (Can have beans with various states

Here is an example of a managed-bean element whose scope is Session, meaning that an instance
of this bean is created at the beginning of a user session.

<managed-bean>
<managed-bean-name>myBean</managed-bean-name>

<managed-bean-class>myPackage.MyBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>

44.2.7JSF - Value Binding
Value binding expressions can be used inside of JSF components to:

» Automatically instantiate a JavaBean and place it in the request or session scope.
» Override the JavaBean's default values through its accessor methods.

© Copyright Virtual University of Pakistan Page 479

Web Design and Development (CS506)

* Quickly retrieve Map, List, and array contents from a JavaBean.
» Synchronize form contents with value objects across a number of requests.

The syntax of binding expressions is based on the JavaServer Pages (JSP) 2.0 Expression
Language. In JSP, expressions are delimited with "${}", but in JSF they are delimited
with "#{}".

44.2.8JSF — Method Binding

Unlike a value binding, a method binding does not represent an accessor method. Instead,
a method binding represents an activation method.

For example, binding an event handler to a method

<h:commandButton
actionListener="#{customer.loginActionListener}”

44.2.9JSF Navigation

Page navigation determines the control flow of a Web application. JSF provides a default
navigational handler and this behavior can be configured in configuration. However, you
can do it visually in most tools like Sun Studio Creator

Note: We have quickly breezed through the JSF technology essentials due to shortage of
time. You must explore it by yourself to excel on it. You can find the resources in
the last handout to acquire further skills.

44.3 References:

e Java A Lab Course by Umair Javed

* Intrduction to JavaServer Faces by Sun
http://java.sun.com

» JavaServer Faces Programming by Kumiawan

Note: Coding exercises in working condition for this lecture are also available on “Downloads”
section of LMS.

© Copyright Virtual University of Pakistan Page 480

Web Design and Development (CS506)

Lecture 45: JavaServer Faces

In the last lecture, we have covered the basic nutshells of JSF. Having a belief on*“learning by
doing”, in this lecture another example is also given to show you the capabilities of JSF.

Example Code: Addition of Two Numbers
The example code (““‘AddNumbers™) is given along with the handout. It is strongly advised that

you must see the lecture video in order to learn the making plus working of this example.

This example demonstrates the usage of value and method binding expressions, managed beans,
and how to use page navigation technique using IDE etc.

45.1 Web Services

In the remaining handout, we’ll take an overview of web services’ potential, their types and
working model. Resources are given at the end for those who are interested in learning new
technologies.

45.1.1 Introduction

Web services are Web-based enterprise applications that use open, XML-based standards and
transport protocols to exchange data with calling clients.

Web Service is becoming one of those overly overloaded buzzwords these days. Due to their
increasing popularity, Java platform Enterprise Edition (J2EE) provides the APIs and tools you
need to create and deploy interoperable web services and clients.

45.1.2 Web service, Definition by W3C

W3C recently has come up with a decent definition of web services. According to W3C,“A Web
service is a software application identified by a URI, whose interfaces and binding are capable of
being defined, described and discovered by XML artifacts and supports direct interactions with
other software applications using XML based messages via internet-based protocols”.

45.1.3 Distributed Computing Evolution
Let's think a little bit on how distributed computing technology has evolved.

© Copyright Virtual University of Pakistan Page 481

Web Design and Development (CS506)

i i} 2
< < w2 2 @
3 2 2| @ 3
Q -
| 2
< 2
S e
Internet =
¥
Client-Server A
silos Web-based computing Web services/peer-to-peer

In the beginning, things were built and deployed typically in the form of client and server
model in which clients talk to a single server, for example, remote procedure calls (RPC).

The second phase can be called web-based computing in which many clients talk to
many servers through the net. In this phase, communicating partners still have to go through
some pre- arrangement in terms of what common object model they have to use or what

common communication protocol they have to agree upon.

Finally, the web services model in which service users and service providers can be
dynamically connected. And the pretty much every computing device and application
participates as both service user and service provider.

45.1.4 Characteristics of Web services

Web services are XML-based throughout. Pretty much everything in the domain of Web
services is defined in XML. For example, the format of the data being exchanged between
service user and service provider is defined in XML or the description of web service is

defined in XML.

Because the only contract that has to be agreed upon between service user and service
provider is syntax and semantics of XML messages, as long as valid messages can be
generated and understood, it does not matter what programming language is used. So a web
service is said to be programming language independent.

Web services can be dynamically located and invoked. And typically they will be accessed
and invoked over both internet and intranet.

© Copyright Virtual University of Pakistan Page 482

Web Design and Development (CS506)

45.1.5 Why Web services?

Interoperable
Connect across heterogeneous networks using ubiquitous web-based standards

Economical
Recycle components, no installation and tight integration of software

Automatic
No human intervention required even for highly complex transactions

Accessible
Legacy assets & internal apps are exposed and accessible on the web

Available
Services on any device, anywhere, anytime

Scalable
No limits on scope of applications and amount of heterogeneous applications

45.1.6 Types of Web service
Data providers
For example, a service providing stock quotes

Business-to-business process integration
For example, purchase orders

Enterprise application integration
Different applications work together simply by adding a webservice wrapper

Comparison between Web page & Web service
Just to give you a sense on the difference between a web page and a web

service,consider the following table:

Web page Web Service
Has a Ul No GUI
Interacts with user Interacts with application
Works with web browser client Works with any type of client

45.2 Web service Architectural Components

Following are the core building blocks of web service architecture:

« Service Description-How do clients know how it works (which functions,
parameters etc.)?

At the minimum, you need a standard way of describing a web service that is universally

© Copyright Virtual University of Pakistan Page 483

Web Design and Development (CS506)

understood by all potential service users and service providers. This is important because
without commonly agreed upon description of service, a service provider might have to
produce individually tailored way of describing its service to all its potential service users.

Web Service Description Language (WSDL pronounced as viz-dal) is industry agreed
upon XML language that can be used to describe web service. It provides XML format for
describing web services in terms of methods, properties, data types and protocols.

< Service Registration (Publication) and Discovery

There has to be registry by which a service can be published and discovered.

Universal Description, Discovery & Integration (UDDI), a way to publish and find web
services. A repository of web services on the internet where a machine or a human can
find different web services. www.uddi.org

« Service Invocation

Then there has to be standard way of invoking a service. Finally, for business transactions
in which secure and reliable message delivery is important, there has to be a standard
electronic business framework.

The following figure represents simplified web service architecture and summarizes the

working of web services:
— 3

1. Service Register 2. Client Request

PUBLISH Server Location
FIND
3. Client calls
Web service
. Services
Services [i
BIND Client
45.3 References:
» Java A Lab Course by Umair
Javed
* Web services overview by sang
shin
Note: Coding exercises in working condition for this lecture are also available on

Downloads” section of LMS.

© Copyright Virtual University of Pakistan Page 484

Web Design and Development (CS506)

45.4 Resources:

* An excellent resource for learning Java related technologies is:

http://www.apl.jhu.edu/~hall/java/

Java Programming Resources

FervielLJ 3P Books: Check oot these

J2EE Training Courses: Shat courses on J50, semlets, Somts, J5F, md Javs progrnesing It st B bookes Shoe B
are mandabte from 2 well-bmemn mithar and mrard-winsing Ratruchor, Poblic or en-sie at pons campany - Care Gerd
- Mlare Serbols & J5P
Java FAGQSs and Tutorials Downloading Compilars & Browsers Java Programiming Coursas

Integrated Devalopment Environments
(IDEs) & Editors

Qificial Java Bocumentatian Core Semnviels & J3P Coda Archive

Java Books Java Resources at Sun Core Web Programiinimg Cade Arshive
Java Forums and Discussion T i &
= aroums HTML & Javagcripg Baginners’ Comer
Q@roups
Java Jobs corgsenlets.cam J3P, Ferviet, Jruts, & JIF

Programming Resources

dv Jaie GabiFrgalencarcom mrd CoPsborste e vour casts Eecaptiznsd Jave Racortieg
Bid on JI0E greghomn, b Frad, Frad &-modk-bsisd soapar. Tezl POE. HTRL Esc#l. Sairg

and mices

Aiperting on this wte

o Jervn programming sesmeers collected by S Hal for comraes @1 the Toins Haphkizs Par-Time W05 Program &
B Cangntsr Soiaies el b visior sndoiy sevinsss il dhant eoerses. Moy e extracied Boes Care Sen ks and
LosenSumtiian: Falac Cavatepuar Pages and Core SWal Proprosmpikes froen Sun Microsvatems Press med Prentce Tall
—
£

e http://java.sun.com

e http://www.javaworld.com

e http://www.theserverside.com

e http://www.jsfcentral.com

e http://www.jspolympus.com
e http://www.onjava.com

© Copyright Virtual University of Pakistan Page 485

