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Lecture No.1   Introduction to Computer Graphics 

 
1.1 Definition 
 
Computers accept process, transform and present information. 
 
Computer Graphics involves technology to accept, process, transform and present 
information in a visual form that also concerns with producing images (or animations) 
using a computer. 
 
1.2 Why Study Computer Graphics? 
 
There are certain important reasons to study computer graphics. We will discuss them 
under certain heads: 
 
Visualization 
I like to see what I am doing. Many a times it happens that you perform certain tasks 
which you cannot visualize; for example as a student of data structures, you implement 
trees, graphs and other Abstract Data Types (ADTs) but you cannot visualize them 
whereas you must be having an inner quest to see what these actually look like. 
 
I like to show people what I am doing. Similarly at certain times you would be 
performing certain tasks which you know but it would be difficult for others to 
understand them so there is very important requirement of showing the things in order to 
make them understandable. 
 
 Graphics is interesting 
We are visual creatures and for us a picture is worth a thousand words. If we can get rid 
of text based static screen and get some graphics; it’s always interesting to see things in 
colours and motion on the screen. Therefore graphics is interesting because it involves 
simulation, algorithm, and architecture. 
 
 Requirement 
Well there are certain areas which require use of computer graphics heavily.  One 
example is drawing of machines. It is required to prepare drawing of a machine before the 
actual production.  The other heavy requirement is for architects as they have to prepare a 
complete blue print of the building they have to build long before the actual construction 
work gets underway. AutoCAD and other applications of the kind are heavily used today 
for building architecture. 
 
 Entertainment 
Merely a couple of decades back, the idea of a 24 hours Cartoons Network was really a 
far fetched one. That was the time when one would wait for a whole week long before 
getting an entertainment of mere 15 minutes. Well thanks to computer graphics that have 
enabled us to entertain ourselves with animated movies, cartoons etc. 
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1.3 Some History 
 
The term “computer graphics” was coined in 1960 by William Fetter to describe the new 
design methods that he was developing at Boeing. He created a series of widely 
reproduced images on a plotter exploring cockpit design using a 3D model of a human 
body. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Whirlwind: early graphics using Vector Scope (1951) 
 
Spacewars: first computer graphics game (MIT 1961) 
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First CAD system (IBM 1959) 

 
 
 
 
 
 
 
 
 
 
 
 

First bump-mapped images (Blinn 1978) 
 
 
 
 
 
 
 
 
 
 
 
 
Early texture-mapped image (Catmull 1974) 

HP
Highlight

HP
Highlight

HP
Highlight



1-Introduction to Computer Graphics                                                                                                           VU 
 

 
© Copyright Virtual University of Pakistan 

 

6

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First distributed ray traced image (Cook 1984) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First ray traced image (Whitted 1980) 
 
1.4 Graphics Applications 
 
Due to rapid growth in the field of computing, now computer is used as an economical 
and efficient tool for the production of pictures. Computer graphics applications are found 
in almost all areas. Here we will discuss some of the important areas including: 
 

i. User Interfaces 
ii. Layout and Design 
iii. Scientific Visualization and Analysis 
iv. Art and Design 
v. Medicine and Virtual Surgery 
vi. Layout Design & Architectural Simulations 
vii. History and cultural heritage 
viii. Entertainment 
ix. Simulations 
x. Games 
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User Interfaces 
 
Almost all the software packages provide a graphical interface. A major component of 
graphical interface is a window manager that allows a user to display multiple windows 
like areas on the screen at the same time. Each window can contain a different process 
that can contain graphical or non-graphical display. In order to make a particular window 
active, we simply have to click in that window using an interactive pointing device. 
 
Graphical Interface also includes menus and icons for fast selection of programs, 
processing operations or parameter values. An icon is a graphical symbol that is designed 
to look like the processing option it represents. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B205 Control Console (1960) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Impressive and Interactive 3D environment  
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3D Studio MAX 

 
Layout and Design 
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Scientific Visualization and Analysis 
 
Computer graphics is very helpful in producing graphical representations for scientific 
visualization and analysis especially in the field of engineering and medicine. It helps a 
lot in drawing charts and creating models. 
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ART AND DESIGN 
Computer graphics is widely used in Fine Arts as well as commercial arts for producing 
better as well as cost effective pictures. Artists use a variety of programs in their work, 
provided by computer graphics. Some of the most frequently used packages include: 
Artist’s paintbrush 
Pixel paint 
Super paint 
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Medicine and Virtual Surgery 
Computer graphics has extensive use in tomography and simulations of operations. 
Tomography is the technique that allows cross-sectional views of physiological systems 
in X-rays photography. Moreover, recent advancement is to make model and study 
physical functions to design artificial limbs and even plan and practice surgery.  
 
Computer-aided surgery is currently a hot topic.  
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Room Layout Design and Architectural Simulations 
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Layout Design & Architectural Simulations 
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History and cultural heritage 
Another important application of computer graphics is in the field of history and cultural 
heritage. A lot of work is done in this area to preserve history and cultural heritage. The 
features so for provide are: 
 

 Innovative graphics presentations developed for cultural heritage 
applications  

 Interactive computer techniques for education in art history and archeology  
 New analytical tools designed for art historians 
 Computer simulations of different classes of artistic media 
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Movies 
Computer graphics methods are now commonly used in making motions pictures, music 
videos and television shows. Sometimes the graphics scenes are displayed by themselves 
and sometimes graphics objects are combined with the actors and live scenes. A number 
of hit movies and shows are made using computer graphics technology. Some of them 
are: 
 
Star Trek- The Wrath of Khan 
Deep Space Nine 
Stay Tuned 
Reds Dreams 
She’s Mad 
 

 
 
 
 
Tron (1980) 
First time computer graphics were used for live action sequences. 
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Fully computer generated animated features 
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Star Wars (1977) 



1-Introduction to Computer Graphics                                                                                                           VU 
 

 
© Copyright Virtual University of Pakistan 

 

19

 

Star Trek II: The Wrath of Khan, genesis 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Last Starfighter (15 minutes) (1982) 
 
 The Last Starfighter (15 minutes) (1982) 
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Special 
Effects… in 
Live Action 
Cinema 
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“Traditional” Animated 
Features… 
Some examples: 
• Automating Keyframing in 
many Disney-type 
animations 
• The flocking behaviour of 
the wild beast in Lion King 
•Non photorealistic 
rendering: 3D effects in 
Futurama  
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Behind the scenes on Antz Production
Number of frames in the movie 119,592 
Number of times the movie was rendered during production 15 (approx.)
Number of feet of approved animation produced in a week 107 ft. 
Total number of hours of rendering per week 275,000 hrs.
Average size of the frame rendered 6 MB 
Total number of Silicon Graphics servers used for rendering 270 
Number of desktop systems used in production 166 
Total Number of processors used for rendering 700 
Average amount of memory per processor 256 MB 
Time it would have taken to render this movie on 1 processor 54 yrs., 222 days, 15 mins., 36 

Amount of storage required for the movie 3.2 TB 
Amount of frames kept online at any given time 75000 frames 
Time to re-film out final cut beginning to end 41.5 days (997 hrs.) 
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Simulations 
Simulation by all means is a very helpful tool to show the idea you have or the work you 
are doing or to see the results of your work. Given below is the picture in which you can 
see wave’s ripples on water; no doubt looking like original but is simply a simulation. A 
number of software packages are used for simulation including: 
 
Crackerjack Computer Skills 
Keen Artistic Eye 
Flash 
Maya 

 
 

 
 
Game 
Thanks to computer graphics, real time games are now possible. Now game programming 
itself has become an independent field and game programmers are in high demand. Some 
of the famous games are: 

 
• Quake 
• Dooms 
• Need For Speed 
• Commandos 
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Related Disciplines 
 
 
 
 
 
 
 
 
 
 
 
 
 
Interdisciplinary 

 Science 
 Physics: light, color, appearance, behavior 
 Mathematics: Curves and Surfaces, Geometry and Perspective 
 Engineering 
 Hardware: graphics media and processors, input and output devices 
 Software: graphics libraries, window systems 
 Art, Perception and Esthetics 
 Color, Composition, Lighting, Realism 

 

IMAGES

Data  
Processing

Image 
Processing 

Computer  
Vision Computer 

Graphics 

DATA
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Lecture No.2   Graphics Systems I 

 
Introduction of Graphics Systems 
With the massive development in the field of computer graphics a broad range of graphics 
hardware and software systems is available. Graphics capabilities for both two-
dimensional and three-dimensional applications are now common on general-purpose 
computers, including many hand-held calculators. On personal computers there is usage 
of a variety of interactive input devices and graphics software packages; whereas, for 
higher-quality applications some special-purpose graphics hardware systems and 
technologies are employed. 
 
VIDEO DISPLAY DEVICES 
The primary output device in a graphics system is a video monitor. The operation of most 
video monitors is based on the standard cathode-ray-tube (CRT) design, but several other 
technologies exist and solid-state monitors may eventually predominate. 
 
Refresh Cathode-Ray Tubes 
Following figures illustrate the basic operation of a CRT. A beam of electrons (cathode 
rays) emitted by an electron gun, passes through focusing and deflection systems that 
direct the beam toward specified positions on the phosphor-coated screen. The phosphor 
then emits a small spot of light at each position contacted by the electron beam. 
 
The light emitted by the phosphor fades very rapidly therefore to keep the picture it is 
necessary to keep the phosphor glowing. This is achieved through redrawing the picture 
repeatedly by quickly directing the electron beam back over the same points and the 
display using this technique is called refresh CRT.  
 
The primary components of an electron gun in a CRT are the heated metal cathode and a 
control grid. Heat is supplied to the cathode by directing a current through filament (a 
coil of wire), inside the cylindrical cathode structure. Heating causes electrons to be 
boiled off the hot cathode surface. In the vacuum inside the CRT envelope, the free, 
negatively charged electrons are then accelerated toward the phosphor coating by a high 
positive voltage. 
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The accelerating voltage can be generated with a positively charged metal coating on 
the inside of the CRT envelope near the phosphor screen an accelerating anode can be 
used. 
 
 

 
 
 

 
 
Intensity of the electron beam is controlled by setting voltage levels on the control grid, 
a metal cylinder that fits over the cathode. A high negative voltage applied to the control 
grid will shut off the beam by repelling electrons and stopping them from passing through 
the small hole at the end of the control grid structure. A smaller negative voltage on the 
control grid simply decreases the number of electrons striking the phosphor coating on 
the screen.  
 
It is the responsibility of focusing system to converge electron beam to a small spot 
where it strikes the phosphor. Otherwise the electrons will repel each other and the beam 
would disperse. This focusing is achieved through electric or magnetic fields.  
 
In electrostatic focusing the electron beam passes through a positively charged metal 
cylinder that forms an electrostatic lens. Then electrostatic lens focuses the electron beam 
at the center of the screen. Similar task can be achieved with a magnetic field setup by a 
coil mounted around the outside of the CRT envelope. Magnetic lens focusing produces 
the smallest spot size on the screen and is used in special purpose devices. 
 
The distance that the electron beam must travel from gun to the exact location of the 
screen that is small spot is different from the distance to the center of the screen in most 
CRTs because of the curvature therefore some additional focusing hardware is required 
in high precision systems to take beam to all positions of the screen. This procedure is 
achieved in two steps in first step beam is conveyed through the exact center of the screen 
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and then additional focusing system adjust the focusing according to the screen position 
of the beam. 
 
Cathode-ray tubes are now commonly constructed with magnetic deflection coils 
mounted on the outside of the CRT envelope. Two pairs of coils are used, with the coils 
in each pair mounted on opposite sides of the neck of the CRT envelope. One pair is 
mounted on the top and bottom of the neck and the other pair is mounted on opposite 
sides of the neck. The magnetic field produced by each pair of coils results in a traverse 
deflection force that is perpendicular both to the direction of the magnetic field and to the 
direction of travel of the electron beam. Horizontal deflection is achieved with one pair 
of coils, and vertical deflection by the other pair. The proper deflection amounts are 
attained by adjusting the current through the coils. When electrostatic deflection is used, 
two pairs of parallel plates are mounted inside the CRT envelope. One pair of plates is 
mounted horizontally to control the vertical deflection, and the other pair is mounted 
vertical to control horizontal deflection.    
 
 
 

Phosphor is available in different kinds. One variety is available in color but a major 
issue is their persistence. Persistence is defined as the time it takes the emitted light from 
the phosphor to decay to one-tenth of its original intensity. Lower persistence phosphors 
require higher refresh rates to maintain a picture on the screen without flicker. A 
phosphor with low persistence is useful for displaying highly complex, static pictures. 
Monitors normally come with persistence in the range from 10 to 60 microseconds. 
 
The maximum number of points (that can be uniquely identified) on a CRT is referred to 
as the resolution. A more precise definition of resolution is the number of points per 
centimeter that can be plotted horizontally and vertically, although it is often simply 
stated as the total number of points in each direction. 
Finally aspect ratio; is the ratio of vertical points to horizontal points necessary to 
produce equal-length lines in both directions on the screen. An aspect ratio of 3/4 means 
that a vertical line plotted with three points has the same length as a horizontal line 
plotted with four points. 
 
RASTER-SCAN SYSTEMS 
Raster scan is the most common type of monitors using CRT. In raster scan picture is 
stored in the area called refresh buffer or frame buffer. First of all why information is 
stored; because picture have to be refreshed again and again for this very reason it is 
stored. Second is how it is stored; so picture is stored in a two dimensional matrix where 
each element corresponds to each pixel on the screen. If there arise a question what is a 
pixel? The very simple answer is a pixel (short for picture element) represents the shortest 
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possible unique position/ element that can be displayed on the monitor without 
overlapping. 
 
The frame buffer stores information in a two dimensional matrix; the question is that how 
many bits are required for each pixel or element. If there is black and white picture then 
there is only one bit required to store ‘0’ for black or 1 for white and in this case buffer 
will be referred as bitmap. In colour pictures obviously multiple bits are required for 
each pixel position depending on the possible number of colours for example to show 256 
colours 8 bits will be required for each pixel and in case if multiple bits are used for one 
pixel frame buffer will be referred as pixmap. 
 
Now with the information in frame buffer, let us see how an image is drawn. The drawing 
is done in a line-by-line fashion. After drawing each line from left to right it reaches at the 
left end of the next line to draw next line; which is called horizontal retrace. Similarly 
after completing all lines in horizontal fashion it again reaches the top left corner to start 
redrawing the image (that is for refreshing) and this is called vertical retrace. Normally 
each vertical retrace takes 1/60th of a second to avoid flickering.  
 
There are two further methods to scan the image: interlaced and non-interlaced. In 
interlaced display beam completes scanning in two passes. In one pass only odd lines are 
drawn and in the second pass even lines are drawn. Interlacing provides effect of double 
refresh rate by completing half of the lines in half of the time. Therefore, in systems with 
low refresh rates interlacing helps avoid flickering. 
 
 
RANDOM-SCAN Displays 
In random-scan displays a portion of the screen can be displayed. Random-scan displays 
draw a picture one line at a time and are also called vector displays (or stroke-writing or 
calligraphic displays). In these systems image consists of a set of line drawing commands 
referred to as Refresh Display File. Random-scan can refresh the screen in any fashion 
by repeating line drawing mechanism. 
 
Random-scan displays are designed to draw all the component lines of a picture 30 to 60 
times each second. High-quality vector systems are capable of handling approximately 
100,000 short lines at this refresh rate. When a small set of lines is to be displayed, each 
refresh cycle is delayed to avoid refresh rates greater than 60 frames per second. 
Otherwise, faster refreshing of the set of lines could burn out the phosphor. 
 
Random-scan displays are designed for line-drawing applications and cannot display 
complex pictures. The lines drawn in vector displays are smoother whereas in raster-scan 
lines often become jagged.  
 
Color CRT Monitors 
A CRT monitor displays colour pictures by using a combination of phosphors that emit 
different coloured light. With the combination of phosphor a range of colours can be 
displayed. There are two techniques used in colour CRT monitors: 
 
 Beam Penetration Method 
 Shadow Mask Method 
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In beam penetration method two layers of phosphor, usually coated onto the inside of 
the CRT screen, and the displayed colour depend on how far the electron beam penetrates 
into the phosphor layers. At intermediate beam speeds, combinations of red and green 
light are emitted to show two additional colours, orange and yellow. Beam penetration is 
an inexpensive way to produce colours as only a few colours are possible and the quality 
of picture is also not impressive. 
 
Shadow mask methods can 
display a wide range of colours. 
In this technique each pixel 
position is made up of three 
phosphor dots called triads as 
shown in the following figure. 
Three phosphor dots have 
different colors i.e. red, green and 
blue and the display colour is 
made by the combination of all three dots. Three guns are used to throw beam at the three 
dots of the same pixel. By varying intensity at each dot a wide range of colours can be 
generated. 
 
A shadow-mask is used which has holes aligned with the dots so that each gun can fire 
beam to corresponding dot only. 
 

CRT Displays  
Advantages 

Fast response (high resolution possible) 
Full colour (large modulation depth of E-beam) 
Saturated and natural colours 
Inexpensive, matured technology 
Wide angle, high contrast and brightness 

Disadvantages 
Large and heavy (typ. 70x70 cm, 15 kg) 
High power consumption (typ. 140W) 
Harmful DC and AC electric and magnetic fields 
Flickering at 50-80 Hz (no memory effect) 
Geometrical errors at edges 
 
Direct View Storage Devices 
 
A direct view storage tube stores the picture 
information as a charge distribution just 
behind the phosphor-coated screen. Two 
electron guns are used in this system as 
shown in the following figure. They are: 
 
 Primary Gun 
 Flood Gun 

 
Primary gun is used to store the picture 
pattern whereas flood gun maintains the picture display. 
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DVST has advantage that no refresh is required so very complex pictures can be 
displayed at very high resolutions without flicker. Whereas, it has disadvantage that 
ordinarily no colors can be displayed and that selected parts of a picture cannot be erased. 
To eliminate a picture section, the entire screen must be erased and the modified picture 
redrawn. The erasing and redrawing process can take several seconds for a complex 
picture.  
 
Flat-Panel Displays 
This is emerging technology slowly replacing CRT 
monitors. The flat-panel displays have following 
properties:  
 

• Little Volume 
• Light Weight 
• Lesser Power consumption 

 
Flat panels are used in calculators, pocket video games and 
laptop computers.  
 
There are two categories of flat panel displays: 

• Emissive Display (Plasma Panels) 
• Non-Emissive Display (Liquid Crystal Display) 

 
The emissive displays (emitters) are devices that convert electrical energy into light. 
Plasma panels, thin-film electro-luminescent displays, and light-emitting diodes are 
examples of emissive displays. Non-emissive displays (non-emitters) use optical effects 
to convert sunlight or light from some other 
source into graphics patterns. The most 
important example of a non-emissive flat-panel 
display is a liquid-crystal device. 
 
Plasma-panel Displays 
 
Plasma panels also called gas-discharge displays 
are constructed by filling the region between two 
glass plates with a mixture of gases that usually 
includes neon. A series of vertical conducting 
ribbons is placed on one glass panel, and a set of 
horizontal ribbons is built into the other glass panel. Firing 
voltages applied to a pair of horizontal and vertical 
conductors cause the gas at the intersection of the two 
conductors to break down into glowing plasma of electrons 
and ions. Picture definition is stored in a refresh buffer, and 
the firing voltages are applied to refresh the pixel positions 
60 times per second. 
 
Advantages 
–Large viewing angle 
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–Good for large-format displays 
–Fairly bright 
Disadvantages 
–Expensive 
–Large pixels (~1 mm versus ~0.2 mm) 
–Phosphors gradually deplete 
–Less bright as compared to CRTs, using more power 
 
Liquid Crystal Displays 
 
Liquid crystal refers to the fact that these 
compounds have a crystalline arrangement 
of molecules, yet they flow like a liquid. 
Flat panel displays use nematic liquid 
crystal, as demonstrated in the following 
figures. 
 
Two glass plates, each containing a light 
polarizer at right angles to the other plate, 
sandwich the liquid-crystal material. Rows 
of horizontal transparent conductors are 
built into one glass plate, and columns of 
vertical conductors are put into the other 
plate. The intersection of two conductors 
defines a pixel position. Polarized light 
passing through the material is twisted so 
that it will pass through the opposite 
polarizer. The light is then reflected back to 
the viewer. To turn off the pixel, we apply 
a voltage to the two intersecting conductors 
to align the molecules so that the light is 
not twisted. 
 

LCD Displays 
 
Advantages 
Small footprint (approx 1/6 of CRT) 
Light weight (typ. 1/5 of CRT) 
Low power consumption (typ. 1/4 of CRT) 
Completely flat screen - no geometrical errors 
Crisp pictures - digital and uniform colours 
No electromagnetic emission 
Fully digital signal processing possible 
Large screens (>20 inch) on desktops 
 
Disadvantages 
High price (presently 3x CRT) 
Poor viewing angle (typ. +/- 50 degrees) 
Low contrast and luminance (typ. 1:100) 
Low luminance (Natural light) (typ. 200 cd/m2) 
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Three-Dimensional Viewing Devices 
Graphics monitors for the display of three-dimensional scenes have been devised using a 
technique that reflects a CRT image from a vibrating, flexible mirror. In this system when 
varifocal mirror vibrates it changes focal length. These vibrations are synchronized with 
the display of an object on a CRT so that 
each point on the object is reflected from 
the mirror into spatial position 
corresponding to the distance of that 
point from a specified viewing position. 
This allows user to walk around an object 
or scene and view it from different sides. 
 
Virtual Reality Devices 
Virtual reality system enables users to 
move and react in a computer-simulated 
environment. Various types of devices allow 
users to sense and manipulate virtual objects 
much as they would real objects. This natural 
style of interaction gives participants the 
feeling of being immersed in the simulated 
world. Virtual reality simulations differ from 
other computer simulations in that they require 
special interface devices that transmit the 
sights, sounds, and sensations of the simulated 
world to the user. These devices also record 
and send the speech and movements of the 
participants to the simulation program.  

To see in the virtual world, the user wears a 
head-mounted display (HMD) with screens 
directed at each eye. The HMD contains a 
position tracker to monitor the location of the 
user's head and the direction in which the user 
is looking. Using this information, a computer 
recalculates images of the virtual world to match the 
direction in which the user is looking and displays 
these images on the HMD.  

Users hear sounds in the virtual world through 
earphones in the HMD. The hepatic interface, which 
relays the sense of touch and other 
physical sensations in the virtual 
world, is the least developed 
feature. Currently, with the use of a 
glove and position tracker, the user 
can reach into the virtual world and 
handle objects but cannot actually 
feel them.  
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Another interesting simulation is interactive walk through. A sensing system in the 
headset keeps track of the viewer’s opposition, so that the front and back of objects can 
be seen as the viewer walks and interacts with the displays. Similarly given below is a 
figure using a headset and a data glove worn on the right hand? 
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Lecture No.3   Graphics Systems II 

 
Raster-Scan Systems 
 
Interactive raster graphics systems typically employ several processing units. In addition 
to the CPU, a special purpose processor, called the video controller or display 
controller is used to control the operation of the display device.  
 
Organization of a simple raster system is shown in following figure. Here the frame 
buffer can be anywhere in the system memory, and the video controller accesses the 
frame buffer to refresh the screen. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
In addition to the video controller more sophisticated raster systems employ other 
processors as coprocessors and accelerators to implement various graphics operations. 
  
Video Controller 
Following figure shows a commonly used organization for raster systems. A fixed area of 
the system memory is reserved for the frame buffer, and the video controller is given 
direct access to the frame-buffer memory. 
 
Frame-buffer locations, and the corresponding screen positions, are referenced in 
Cartesian coordinates.  
 
 
 
 

Architecture of a simple raster graphics system
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In the following figure the basic refresh operations of the video controller are 
diagrammed. Two registers are used to store the coordinates of the screen pixels. Initially, 
the x register is set to 0 and the y register is set to ymax. The value stored in the frame 
buffer for this pixel position is then retrieved and used to set the intensity of the CRT 
beam. Then the x register is incremented by 1, and the process repeated for the next pixel 
on the top scan line. This procedure is repeated for each pixel along the next line by 
resetting x register to 0 and decrementing the y register by 1. Pixels along this scan line 
are then processed in turn, and the procedure is repeated for each successive scan line. 
After cycling through all pixels along the bottom scan line y=0, the video controller resets 
to the first pixel position on the top scan line and the refresh process starts over. 
 

 
 
Since the screen must be refreshed at the rate of 60 frames per second, the simple 
procedure illustrated in above figure cannot be accommodated by typical RAM chips. 
The cycle time is too large making the process very slow. To speed up pixel processing, 
video controllers can retrieve multiple pixel values from the refresh buffer on each pass. 

Architecture of a raster system with a fixed portion of a system 
memory reserved for the frame buffer. 

 
 
 

Memory Addresses Pixel Register 

Frame Buffer  

Raster Scan Generator 

Register X Register Y 

Horizontal and Vertical 
Deflection Voltages 

Intensity 

Basic Video Controller Refresh Operations 
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The multiple pixel intensities are then stored in a separate register and used to control the 
CRT beam intensity for a group of adjacent pixels. When that group of pixels has been 
processed, the next block of pixel values is retrieved from the frame buffer. 
 
Raster Scan Display Processor 
Following figure shows one way to setup the organization of a raster system containing a 
separate display processor, sometimes referred to as a graphics controller or a display 
coprocessor. The purpose of the display processor is to free the CPU from the graphics 
chores. In addition to the system memory, a separate display processor memory area can 
also be provided. 
 
A major task of the display processor is digitizing a picture definition given in an 
application program into a set of pixel-intensity values for storage in the frame buffer. 
This digitization process is called scan conversion. 

 
 
Raster-Scan Characters 
Graphics commands specifying straight lines and other geometric objects are scan 
converted into a set of discrete intensity points. Scan converting a straight-line segment, 
for example, means that we have to locate the pixel positions closest to the line path and 
store the intensity for each position in the frame buffer. Similar methods are used for scan 
converting curved lines and polygon outlines.  
 
Characters can be defined with rectangular grids, as shown in following figure, or they 
can be defined with curved outlines shown in the right hand side figure given below. The 
array size for character grids can vary from about 5 by 7 to 9 by 12 or more for higher-
quality displays. A character grid is displayed by superimposing the rectangular grid 
pattern into the frame buffer at a specified coordinate position. With characters that are 
defined as curve outlines, character shapes are scan converted into the frame buffer. 

System Bus 

I/O Devices 

Display Processor 
Memory 

CPU Display 
Processor 

Frame 
Buffer  

Architecture of a raster graphics system with a display processor 

Video 
Controller Monitor 

System Memory 
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Random-Scan Systems 
The organization of a simple random scan system is shown in following figure. An 
application program is input and stored in the system memory along with a graphics 
package. Graphics commands in the application program are translated by the graphics 
package into a display file stored in the system memory. This display file is then accessed 
by the display processor to refresh the screen. The display processor cycles through each 
command in the display file program once during every refresh cycle. Sometimes the 
display processor in a random scan system is referred to as a display processing unit or 
graphics controller. 
 
 Monitor 
 
 
 
 
 
        System Bus 

 
 
 
 

 
      I/O Devices 
 
 
 

Architecture of a simple random scan system 
 
Graphics Card or Display Adapters 
A video card is typically an adapter, a removable expansion card in the PC. Thus, it can 
be replaced!  
 
A video display adapter which is the special printed circuit board that plugs into one of 
the several expansion slots present on the mother board of the computer. A video display 
adapter is simply referred as a video card. 
 

Defined as a grid of 
pixel positions Defined as a 

curve outline 

CPU System 
Memory

Display 
Processor
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The video card can also be an integral part of the system board; this is the case in certain 
brands of PCs and is always the case in laptops and clear preference for the replaceable 
video card in some PCs. 
 
A number of display adapters are available with varying capabilities especially Intel 
systems support following adapters: 
 

 Monochrome Adapter (MA) 
 Hercules Adapter (HA) 
 Color Graphics Adapter (CGA) 
 Enhanced Graphics Adapter (EGA) 
 Multicolor Graphics Adapter (MCGA) 
 Video Graphics Adapter (VGA) 
 Super Video Graphics Adapter (SVGA) 
 Extended Graphics Adapter (XGA) 

 
Monochrome Adapter 
The simplest and the first available adapter is MA. This adapter can display only text in 
single color and has no graphics displaying capability. Originally this drawback only 
prevented the users from playing video games, but today, even the most serious business 
software uses graphics and color to great advantage. Hence, MA is no longer suitable, 
though it offers clarity and high resolution. 
 
Hercules Adapter 
The Hercules card emulates the monochrome adapter but also operates in a graphics 
mode. Having graphics capabilities the Hercules card became somewhat of a standard for 
monochrome systems. 
 
Color Graphics Adapter 
This adapter can display text as well as graphics. In text mode it operates in 25 rows by 
80 column mode with 16 colors. In graphics mode two resolutions are available:   
 

 Medium resolution graphics mode 320 * 200 with 4 colors available from palette 
of 16 colors 

 and 640 * 200 with 2 colors 
 
One drawback of CGA card is that it produces flicker and snow. Flicker is the annoying 
tendency of the text to flash as it moves up or down. Snow is the flurry of bright dots that 
can appear anywhere on the screen. 
 
Enhanced Graphics Adapter 
The EGA was introduced by IBM in 1984 as alternative to CGA card. The EGA could 
emulate most of the functions and all the display modes of CGA and MA. The EGA 
offered high resolution and was not plagued with the snow and flicker problems of CGA. 
In addition EGA is designed to use the enhanced color monitor capable of displaying 640 
* 350 in 16 colors from a palette of 64. 
 
The EGA card has several internal registers. A serious limitation of the EGA card is that 
it supports write operations to most of its internal registers, but no read operation. The 
result is it is not possible for software to detect and preserve the state of the adapter, 
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which makes EGA unsuited for memory resident application or for multitasking like 
windows and OS/2. 
 
 
Multicolor Graphics Adapter 
The MCGA was designed to emulate the CGA card and to maintain compatibility with all 
the CGA modes. In addition to the text and graphics modes of the CGA, MCGA has two 
new graphics modes: 
 640 * 480 with 2 colors 
320 * 200 in with 256 colors 
 
Video Graphics Adapter 
The VGA supports all the display modes of MA, CGA and MCGA. In addition VGA 
supports a graphics mode of 640 * 480 with 16 colors. 
 
Super Video Graphics Adapter 
The SVGA designation refers to enhancements to the VGA standard by independent 
vendors. Unlike display adapters discussed earlier SVGA does not refer to a card that 
meets a particular specification but to a group of cards that have different capabilities. For 
example one card may have resolutions 800 * 600 and 1024 * 768, whereas, another card 
may have same resolution but more colors. These cards have different capabilities, but 
still both of them are classified as SVGA. Since each SVGA card has different 
capabilities, you need special device driver programs for driving them. This means that 
unlike VGA cards which can have a single driver that works with all VGA cards, 
regardless of the vendor, each SVGA card must have a corresponding driver. 
 
Extended Graphics Adapter 
The XGA evolved from the VGA and provides greater resolution, more colors and much 
better performance. The XGA has a graphics processor bus mastering. Being a bus master 
adapter means that the XGA can take control of the system as though it were the mother 
board. In essence, a bus master is an adapter of the mother board. The XGA offers 2 new 
modes: 
 640 * 480 with 16 bit colors (65536 colors) 
 1024 * 768 with 8 bit colors (256 colors) 
 
Video Card Supports the CPU 
The video card provides a support function for the CPU. It is a processor like the CPU. 
However it is especially designed to control screen images.   
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RAM on the Video Card 
Video cards always have a certain amount of RAM. This RAM is also called the frame 
buffer. Today video cards hold plenty of RAM, but earlier it was more important:  
 
 How much RAM? That is significant for color depth at the highest resolutions.  
 Which type of RAM? This is significant for card speed.  
 
Video card RAM is necessary to keep the entire screen image in memory. The CPU sends 
its data to the video card. The video processor forms a picture of the screen image and 
stores it in the frame buffer. This picture is a large bit map. It is used to continually 
update the screen image. 
 
3D - lots of RAM  
Supporting the demand for high quality 3D performance many new cards come with a 
frame buffer of 16 or 32 MB RAM and they use the AGP interface for better bandwidth 
and access to the main memory. 
 
VRAM  
Briefly, in principle all common RAM types can be used on the video card. Most cards 
use very fast editions of ordinary RAM (SDRAM or DDR). 
 
 Some high end cards (like Matrox Millennium II) earlier used special VRAM (Video 
RAM) chips. This was a RAM type, which only was used on video cards. In principle, a 
VRAM cell is made up of two ordinary RAM cells, which are "glued" together. 
Therefore, you use twice as much RAM than otherwise. 
 
VRAM also costs twice as much. The smart feature is that the double cell allows the 
video processor to simultaneously read old and write new data on the same RAM address. 
Thus, VRAM has two gates which can be active at the same time. Therefore, it works 
significantly faster.  
 
With VRAM you will not gain speed improvements increasing the amount of RAM on 
the graphics controller. VRAM is already capable of reading and writing simultaneously 
due to the dual port design. 
UMA and DVMT  
On some older motherboards the video controller was integrated. Using SMBA (Shared 
Memory Buffer Architecture) or UMA (Unified Memory Architecture) in which parts of 
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the system RAM were allocated and used as frame buffer. But sharing the memory was 
very slow and the standards never became very popular. 
  
A newer version of this is found in Intel chip set 810 and the better 815, which also 
integrates the graphics controller and use parts of the system RAM as frame buffer. Here 
the system is called Dynamic Video Memory Technology (D.V.M.T.). 
 
The RAMDAC  
All traditional graphics cards have a RAMDAC chip converting the signals from digital 
to analog form. CRT monitors work on analog signals. The PC works with digital data 
which are sent to the graphics adapter. Before these signals are sent to the monitor they 
have to be converted into analog 
output and this is processed in the 
RAMDAC: 
 
The recommendation on a good 
RAMDAC goes like this:  

 External chip, not 
integrated in the VGA 
chip  

 Clock speed: 250 - 360 
MHz.  

 
Heavy Data Transport 
The original VGA cards were said to be "flat." They were unintelligent. They received 
signals and data from the CPU and forwarded them to the screen, nothing else. The CPU 
had to make all necessary calculations to create the screen image. 
  
As each screen image was a large bit map, the CPU had to move a lot of data from RAM 
to the video card for each new screen image.  
 
The graphic interfaces, like Windows, gained popularity in the early nineties. That 
marked the end of the "flat" VGA cards. The PC became incredibly slow, when the CPU 
had to use all its energy to produce screen images. You can try to calculate the required 
amount of data. 
 
A screen image in 1024 x 768 in 16 bit color is a 1.5 MB bit map. That is calculated as 
1024 x 768 x 2 bytes. Each image change (with a refresh rate of 75 HZ there is 75 of 
them each second) requires the movement of 1.5 MB data. That zaps the PC energy, 
especially when we talk about games with continual image changes. 
  
Furthermore, screen data have to be moved across the I/O bus. In the early nineties, we 
did not have the PCI and AGP buses, which could move large volumes of data. The 
transfer took place through the ISA bus, which has a very limited width. Additionally the 
CPUs were 386’s and early 486’s, which also had limited power.  
  
Accelerator Cards 
In the early nineties the accelerator video cards appeared. Today all cards are accelerated 
and they are connected to the CPU through high speed buses like PCI and AGP.  
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With accelerated video chips, Windows (and with that the CPU) need not calculate and 
design the entire bit map from image to image. The video card is programmed to draw 
lines, Windows and other image elements.  
 
The CPU can, in a brief code, transmit 
which image elements have changed 
since the last transmission. This saves 
the CPU a lot of work in creating screen 
images. The video chip set carries the 
heavy load: 
 
All video cards are connected to the PCI or the AGP bus, this way providing maximum 
data transmission. The AGP bus is an expanded and improved version of the PCI bus - 
used for video cards only. 
  
Modern video cards made for 3D gaming use expensive high-end RAM to secure a 
sufficient bandwidth. If you for example want to see a game in a resolution of 1280 x 
1024 at 80 Hz, you may need to move 400 MB of data each second - that is quite a lot. 
The calculation goes like this: 
  
1280 X 1024 pixels x 32 bit (color depth) x 80 = 419,430,400 bytes 
419,430,400 bytes = 409,600 kilobytes = 400 megabytes. 
 
 

 

 
 
Graphics Libraries 
Graphics developers some time use 2D or 3D libraries to create graphics rapidly and 
efficiently. These developers include game developers, animators, designers etc. 
 
The following libraries are commonly used among developers: 
  
FastGL 
OpenGL 
DirectX 
Others 
 
Advantages of Graphics Libraries 
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These libraries help developers to create fast and optimized animations and also help to 
access features that are available in video hardware. 
 
Hardware manufacturers give support in hardware for libraries. Famous manufacturers 
include SIS, NVIDIA, ATI, INTEL etc. 
 
Graphics Software 
There is a lot of 2D and 3D software available in the market. These software provide 
visual interface for creation of 2D and 3D animation / models image creation. These tools 
are under use of movie makers, professional animators and designers. 
 
These tools are flash, Maya, 3D studio max, adobe photo shop, CorelDraw, image viewer, 
paintbrush etc. 
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Lecture No.4   Point 

 
Pixel: The smallest dot illuminated that can be seen on screen. 
 
Picture: Composition of pixels makes picture that forms on whole screen 
 
Resolution 
We know that Graphics images on the screen are built up from tiny dots called picture 
elements or pixels. The display resolution is defined by the number of rows from top to 
bottom, and number of pixels from left to right on each scan line. 
 
Since each mode uses a particular resolution. For example mode 19 uses a resolution of 
200 scan lines, each containing 320 pixels across. This is often referred to as 320*200 
resolution. 
In general, higher the resolution, more pleasing is the picture. Higher resolution means a 
sharper, clearer picture, with less pronounced ‘staircase’ effect on lines drawn diagonally 
and better looking text characters. On the other hand, higher resolution also means more 
memory requirement for the display. 
 
Text and Graphics Modes 
We discussed different video hardware devices that include VGA cards and monitors. 
Video cards are responsible to send picture data to monitor each time it refresh itself. 
Video cards support both different text and graphics modes. Modes consist of their own 
refresh rate, number of colors and resolutions (number of rows multiply by number of 
columns). The following famous video modes that we can set in today’s VGA cards on 
different refresh rate: 
 
25 * 80 with 16 colors support (text mode) 
320 * 200 with 8 bit colors support (graphics mode) 
640 * 480 with 16 colors support (graphics mode) 
640 * 480 with 8, 16, 24, 32 bit color support (graphics mode) 
800 * 600 with 8, 16, 24, 32 bit color support (graphics mode) 
 
Text and Graphics 
All modes are fundamentally of two types, text or graphics. Some modes display only text 
and some are made only for graphics. As seen earlier, the display adapter continuously 
dumps the contents of the VDU (video display unit) memory on the screen. 
 
The amount of memory required representing a character on screen in text mode and a 
pixel in graphics mode varies from mode to mode. 
 
Mode No. Type Resolution Memory Required 
3 Text 80 x 25 2 bytes per char 
6 Graphics 640 x 200 1 bit per pixel 
7 Text 80 x 25 2 bytes per char 
18 Graphics 640 x 480 1 bit per pixel 
19 Graphics 320 x 200 1 byte per pixel 
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In mode 6 each pixel displayed on the screen occupies one bit in VDU memory. Since 
this bit can take only two values, either 0 or 1, only two colors can be used with each 
pixel. 
 
How text displays 
 
As seen previously text modes need two bytes in VDU memory to represent one character 
on screen; of these two bytes, the first byte contains the ASCII value of the character 
being displayed, whereas the second byte is the attribute byte. The attribute byte controls 
the color in which the character is being displayed. 
 
The ASCII value present in VDU memory must be translated into a character and drawn 
on the screen. This drawing is done by a character generator this is part of the display 
adapter or in VBIOS. The CGA has a character generator that uses 8 scan lines and 8 
pixels in each of these scan lines to produce a character on screen; whereas the MA’s 
character generator uses 9 scan lines and 14 pixels in each of these scan lines to produce a 
character. This larger format of MA makes the characters generated by MA much sharper 
and hence easier to read. 
 
On older display adapters like MA and CGA, the character generator is located in ROM 
(Read Only Memory). EGA and VGA do not have a character generator ROM. Instead, 
character generator data is loaded into plane 2 of display RAM. This feature makes it easy 
for custom character set to be loaded. Multiple character sets (up to 4 for EGA and up to 
8 for VGA) may reside in RAM simultaneously. 
 
A set of BIOS services is available for easy loading of character sets. Each character set 
can contain 256 characters. Either one or two character sets may be active giving these 
adapters on the screen simultaneously. When two character sets are active, a bit in each 
character attribute byte selects which character set will be used for that character. 
 
Using a ROM-BIOS service we can select the active character set. Each character in the 
standard character set provided with the EGA is 8 pixels wide and 14 pixels tall. Since 
VGA has higher resolution, it provides a 9 pixel wide by 16 pixels tall character set. 
Custom character set can also be loaded using BIOS VDU services. 
 
The graphics modes can also display characters, but they are produced quite differently. 
The graphics modes can only store information bit by bit. The big advantage of this 
method is that you design characters of desired style, shape and size. 
 
Text mode colors 
 
In mode 3, for each character on screen there are two bytes in VDU memory, one 
containing the ACCII value of the character and other containing its attribute. The 
attribute byte controls the color of the character. The attribute byte contains three 
components: the foreground color (color of the character itself), the background color 
(color of the area not covered by the character) and the blinking component of the 
character. The next slide shows the breakup of the attribute byte. 
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Bits 
7  6 5  4 3 2 1 Purpose 
X x x x x x x 1 Blue component of foreground color 
X x x x x x 1 x  Green component of foreground color 
X x x x x 1 x x Red component of foreground color 
X x x x 1 x x x Intensity component of foreground color 
X x x 1 x x x x Blue component of background color 
X x 1 x x x x x Green component of background color 
X 1 x x x x x x  Red component of background color 
1 x x x x x x x  Blinking component 

 
Graphics Mode colors 
So far we have seen how to set color in text modes. Setting color in graphics modes is 
quite different. In the graphics mode each pixel on the screen has a color associated with 
it. There are important differences here as compared to setting color in text mode. First, 
the pixels cannot blink. Second, each pixel is a discrete dot of color, there is no 
foreground and background. Each pixel is simply one color or another. The number of 
colors that each adapter can support and the way each adapter generates these colors is 
drastically different. But we will only discuss here colors in VGA. 
 
Colors in VGA 
IBM first introduced the VGA card in April 1987. VGA has 4 color planes – red, green, 
blue and intensity, with one bit from each of these planes contributing towards 1 pixel 
value. 
 
There are lots of ways that you can write pixel on screen. You can write pixel on screen 
by using one of the following methods: 
 
Using video bios services to write pixel 
Accessing memory and registers directly to write pixel on screen. 
Using library functions to write pixel on screen 
 
Practical approach to write pixel on screen 
As we have discussed three ways to write pixel on screen. Here we will discuss all these 
ways practically and see how the pixel is displayed on screen. For that we will have to 
write code in Assembly and C languages. So get ready with these languages 
 
Writing pixel Using Video BIOS 
The following steps are involved to write pixel using video BIOS services. 
Setting desired video mode 
Using bios service to set color of a screen pixel 
Calling bios interrupt to execute the process of writing pixel. 
 
 
Source code 
Below are the three lines written in assembly language that can set graphics mode 
19(13h). You can use this for assembler or you can embed this code in C language using 
‘asm’ keyword 
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   MOV AH,0 
   MOV AL,13h ;;mode number from 0-19 
   INT 10H 
 
To insert in C language above code will be inserted with key word asm and curly braces. 
asm{ 
   MOV AH,0 
   MOV AL,13h ;;mode number from 0-19 
   INT 10H 
  } 
 
Description 
Line #1: mov ah,0  is the service number for setting video mode that is in register ah 
Line #2: mov al,13h   is the mode number that is in register al 
Line #3: int 10h   is the video bios interrupt number that will set mode 13h 
 
Source code for writing pixel 
The following code can be used to write pixel using video bios interrupt 10h and service 
number 0ch. 
 
MOV AH,0Ch 
MOV AL,COLOR_NUM 
MOV BH,0 
MOV CX,ROW_NUM 
MOV DX,COLUMN_NUM 
INT 10h 
 
Description 
Line#1: service number in register Ah 
Line#2: color value, since it is 13h mode so it has 0-255 colors range. You can assign any 
color number from 0 to 255 to all register. Color will be selected from default palette 
setting against the number you have used. 
Line#3: page number in Bh register. This mode supports only one page. So 0 is used in 
Bh register. 0 mean default page. 
Line#4: column number will be used in CX register 
Line#5: row number will be used in DX register 
Line#6: BIOS interrupt number 10h 
 
 
Writing pixel by accessing memory directly 
So far we used BIOS to draw pixel. Here we will draw pixel by accessing direct pointer to 
the video memory and write color value. The following steps are involved to write direct 
pixel without using BIOS: 
 
Set video mode by using video BIOS routine as discussed earlier 
Set any pointer to the video graphics memory address 0x0A0000. 
Now write any color value in the video memory addressing 
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Direct Graphics Memory Access Code 
 
Mov ax,0a000h 
Mov ds,ax  ;;segment address changed 
Mov si,10  ;; column number 
Mov [si],COLOR_NUM 
 
Work to do: 
Write pixel at 12th row and 15th column 
Hint: use formula (row * 320 + column) in si register. 
 
Writing character directly on screen 
You can also write direct text by setting any text mode using BIOS service and then 
setting direct pointer at text memory address 0x0b8000. 
 
Example 
Set mode Number 3. using BIOS service and then use this code to write character 
 
Mov ax,0b8000h 
Mov ds,ax 
Mov si,10   ;;column number 
Mov [si],’a’   ;;character to write 
 
Using Library functions 
While working in C language, you can use graphics library functions to write pixel on 
screen. These graphics library functions then use BIOS routines or use direct memory 
access drivers to draw pixel on screen. 
 
initgraph(&gdriver, &gmode, "");  
/* read result of initialization */ 
errorcode = graphresult();  
if (errorcode != grOk) 
/* an error occurred */ 
 {                                                                           
 printf("Graphics error: %s\n", getch()); exit(1);              
 /* return with error code */                        
  } 
/* draw a pixel on 10th row and 10 column */ 
putpixel(10, 10, BLUE); 
/* clean up */ 
closegraph(); 
 
Steps in C language 
First call Initgraph() function 
and then call putpixel() function to draw pixel on screen. It takes row, column and color 
value as parameters. 
after drawing pixel use closegraph() function to close the graphics routines provided by 
built in driver by Borland. 
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Discussion on pixel drawing methods 
BIOS routines are standard routines built in VGA cards but these routines are very much 
slow. You will use pixel to draw filled triangle, rectangles and circles and these all will be 
much slower than direct memory access method. Direct memory access method allows 
you to write pixel directly by passing the complex BIOS routines. It is easy and faster but 
its programming is only convenient in mode 13h. Library functions are easier to use and 
even faster because these are optimized and provided with special drivers by different 
companies. 
 
Drawing pixel in Microsoft Windows 
So far we have been discussing writing pixel in DOS. Here we will discuss briefly how to 
write pixel in Microsoft Windows. Microsoft windows are a complete graphical operating 
system but it does not allow you to access BIOS or direct memory easily. It provides 
library functions (APIs) that can be used to write graphics. 
By working in graphics in windows one must have knowledge about Windows GDI 
(graphics device interface) system. 
 
Windows GDI functions 
Here are some windows GDI functions that can be used to draw pixel e.g SetPixel and 
SetPixelV. Both are used to draw pixel on screen. The example and source code of 
writing pixel in windows will be available. 
 
Window Code Example: 
 
// a.cpp : Defines the entry point for the application. 
// 
 
#include "stdafx.h" 
#include "resource.h" 
 
#define MAX_LOADSTRING 100 
 
// Global Variables: 
HINSTANCE hInst;        // current 
instance 
TCHAR szTitle[MAX_LOADSTRING];       
 // The title bar text 
TCHAR szWindowClass[MAX_LOADSTRING];      
  // The title bar text 
 
// Foward declarations of functions included in this code module: 
ATOM    MyRegisterClass(HINSTANCE hInstance); 
BOOL    InitInstance(HINSTANCE, int); 
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); 
LRESULT CALLBACK About(HWND, UINT, WPARAM, LPARAM); 
 
int APIENTRY WinMain(HINSTANCE hInstance, 
                     HINSTANCE hPrevInstance, 
                     LPSTR     lpCmdLine, 
                     int       nCmdShow) 
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{ 
  // TODO: Place code here. 
 MSG msg; 
 HACCEL hAccelTable; 
 
 // Initialize global strings 
 LoadString(hInstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING); 
 LoadString(hInstance, IDC_A, szWindowClass, MAX_LOADSTRING); 
 MyRegisterClass(hInstance); 
 
 // Perform application initialization: 
 if (!InitInstance (hInstance, nCmdShow))  
 { 
  return FALSE; 
 } 
 
 hAccelTable = LoadAccelerators(hInstance, (LPCTSTR)IDC_A); 
 
 // Main message loop: 
 while (GetMessage(&msg, NULL, 0, 0))  
 { 
  if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg))  
  { 
   TranslateMessage(&msg); 
   DispatchMessage(&msg); 
  } 
 } 
 
 return msg.wParam; 
} 
 
//  FUNCTION: MyRegisterClass() 
// 
//  PURPOSE: Registers the window class. 
// 
//  COMMENTS: 
// 
//    This function and its usage is only necessary if you want this code 
//    to be compatible with Win32 systems prior to the 'RegisterClassEx' 
//    function that was added to Windows 95. It is important to call this function 
//    so that the application will get 'well formed' small icons associated 
//    with it. 
// 
ATOM MyRegisterClass(HINSTANCE hInstance) 
{ 
 WNDCLASSEX wcex; 
 
 wcex.cbSize = sizeof(WNDCLASSEX);  
 
 wcex.style = CS_HREDRAW | CS_VREDRAW; 
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 wcex.lpfnWndProc = (WNDPROC)WndProc; 
 wcex.cbClsExtra  = 0; 
 wcex.cbWndExtra  = 0; 
 wcex.hInstance  = hInstance; 
 wcex.hIcon   = LoadIcon(hInstance, (LPCTSTR)IDI_A); 
 wcex.hCursor  = LoadCursor(NULL, IDC_ARROW); 
 wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1); 
 wcex.lpszMenuName = (LPCSTR)IDC_A; 
 wcex.lpszClassName = szWindowClass; 
 wcex.hIconSm  = LoadIcon(wcex.hInstance, (LPCTSTR)IDI_SMALL); 
 
 return RegisterClassEx(&wcex); 
} 
 
// 
//   FUNCTION: InitInstance(HANDLE, int) 
// 
//   PURPOSE: Saves instance handle and creates main window 
// 
//   COMMENTS: 
// 
//        In this function, we save the instance handle in a global variable and 
//        create and display the main program window. 
// 
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow) 
{ 
   HWND hWnd; 
 
   hInst = hInstance; // Store instance handle in our global variable 
 
   hWnd = CreateWindow(szWindowClass, szTitle, WS_OVERLAPPEDWINDOW, 
      CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL); 
 
   if (!hWnd) 
   { 
      return FALSE; 
   } 
 
   ShowWindow(hWnd, nCmdShow); 
   UpdateWindow(hWnd); 
 
   return TRUE; 
} 
 
// 
//  FUNCTION: WndProc(HWND, unsigned, WORD, LONG) 
// 
//  PURPOSE:  Processes messages for the main window. 
// 
//  WM_COMMAND - process the application menu 
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//  WM_PAINT - Paint the main window 
//  WM_DESTROY - post a quit message and return 
// 
// 
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, 
LPARAM lParam) 
{ 
 int wmId, wmEvent; 
 PAINTSTRUCT ps; 
 HDC hdc; 
 TCHAR szHello[MAX_LOADSTRING]; 
 LoadString(hInst, IDS_HELLO, szHello, MAX_LOADSTRING); 
 
 switch (message)  
 { 
  case WM_COMMAND: 
   wmId    = LOWORD(wParam);  
   wmEvent = HIWORD(wParam);  
   // Parse the menu selections: 
   switch (wmId) 
   { 
    case IDM_ABOUT: 
       DialogBox(hInst, (LPCTSTR)IDD_ABOUTBOX, hWnd, 
(DLGPROC)About); 
       break; 
    case IDM_EXIT: 
       DestroyWindow(hWnd); 
       break; 
    default: 
       return DefWindowProc(hWnd, message, wParam, 
lParam); 
   } 
   break; 
  case WM_PAINT: 
   { 
   hdc = BeginPaint(hWnd, &ps); 
   // TODO: Add any drawing code here... 
   RECT rt; 
   GetClientRect(hWnd, &rt); 
   int j=0; 
   //To draw some pixels of RED colour on the screen 
   for(int i=0;i<100;i++) 
   { 
    SetPixel(hdc,i+j,10,RGB(255,0,0)); 
    j+=6; 
   } 
 
   EndPaint(hWnd, &ps); 
   } 
   break; 
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  case WM_DESTROY: 
   PostQuitMessage(0); 
   break; 
  default: 
   return DefWindowProc(hWnd, message, wParam, lParam); 
   } 
   return 0; 
} 
// Mesage handler for about box. 
LRESULT CALLBACK About(HWND hDlg, UINT message, WPARAM wParam, 
LPARAM lParam) 
{ 
 switch (message) 
 { 
  case WM_INITDIALOG: 
    return TRUE; 
 
  case WM_COMMAND: 
   if (LOWORD(wParam) == IDOK || LOWORD(wParam) == 
IDCANCEL)  
   { 
    EndDialog(hDlg, LOWORD(wParam)); 
    return TRUE; 
   } 
   break; 
 } 
    return FALSE; 
} 
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Lecture No.5   Line Drawing Techniques 

 
Line 
A line, or straight line, is, roughly speaking, an (infinitely) thin, (infinitely) long, straight 
geometrical object, i.e. a curve that is long and straight. Given two points, in Euclidean 
geometry, one can always find exactly one line that passes through the two points; this 
line provides the shortest connection between the points and is called a straight line. 
Three or more points that lie on the same line are called collinear. Two different lines can 
intersect in at most one point; whereas two different planes can intersect in at most one 
line. This intuitive concept of a line can be formalized in various ways. 

 
A line may have three forms with respect to slope i.e. it may have slope = 1 as shown in 
following figure (a), or may have slope < 1 as shown in figure (b) or it may have slope > 
1 as shown in figure (c). Now if a line has slope = 1 it is very easy to draw the line by 
simply starting form one point and go on incrementing the x and y coordinates till they 
reach the second point. So that is a simple case but if slope < 1 or is > 1 then there will be 
some problem. 
 

   
figure (a)   figure (b)   figure (c) 

 
There are three techniques to be discussed to draw a line involving different time 
complexities that will be discussed later. These techniques are: 
 

 Incremental line algorithm 
 DDA line algorithm 
 Bresenham line algorithm 

 
Incremental line algorithm 
This algorithm exploits simple line equation y = m x + b 
Where m = dy / dx 
and b = y – m x 
 
Now check if |m| < 1 then starting at the first point, simply increment x by 1 (unit 
increment) till it reaches ending point; whereas calculate y point by the equation for each 
x and conversely if |m|>1 then increment y by 1 till it reaches ending point; whereas 
calculate x point corresponding to each y, by the equation. 
 
Now before moving ahead let us discuss why these two cases are tested. First if |m| is less 
than 1 then it means that for every subsequent pixel on the line there will be unit 
increment in x direction and there will be less than 1 increment in y direction and vice 
versa for slope greater than 1. Let us clarify this with the help of an example: 
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Suppose a line has two points p1 (10, 10) and p2 (20, 18) 
Now difference between y coordinates that is dy = y2 – y1 = 18 – 10 = 8 
Whereas difference between x coordinates is dx = x2 – x1 = 20 – 10 = 10 
This means that there will be 10 pixels on the line in which for x-axis there will be 
distance of 1 between each pixel and for y-axis the distance will be 0.8. 
 
Consider the case of another line with points p1 (10, 10) and p2 (16, 20) 
Now difference between y coordinates that is dy = y2 – y1 = 20 – 10 = 10 
Whereas difference between x coordinates is dx = x2 – x1 = 16 – 10 = 6 
 
This means that there will be 10 pixels on the line in which for x-axis there will be 
distance of 0.6 between each pixel and for y-axis the distance will be 1. 
 
Now having discussed this concept at length let us learns the algorithm to draw a line 
using above technique, called incremental line algorithm: 
 
Incremental_Line (Point p1, Point p2) 
dx = p2.x – p1.x 
dy = p2.y – p1.y 
m = dy / dx 
x = p1.x 
y = p1.y 
b = y – m * x 
if |m| < 1 
 for counter = p1.x to p2.x 
  drawPixel (x, y) 
  x = x + 1 
  y = m * x + b 
else 
 for counter = p1.y to p2.y 
  drawPixel (x, y) 
  y = y + 1 
  x = ( y – b ) / m 
 
Discussion on algorithm: 
Well above algorithm is quite simple and easy but firstly it involves lot of mathematical 
calculations that is for calculating coordinate using equation each time secondly it works 
only in incremental direction. 
 
We have another algorithm that works fine in all directions and involving less calculation 
mostly only addition; which will be discussed in next topic. 
 
Digital Differential Analyzer (DDA) Algorithm: 
DDA abbreviated for digital differential analyzer has very simple technique. Find 
difference dx and dy between x coordinates and y coordinates respectively ending points 
of a line. If |dx| is greater than |dy|, than |dx| will be step and otherwise |dy| will be step. 
 
if |dx|>|dy| then 

step = |dx| 
else  
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step = |dy| 
  
 
Now very simple to say that step is the total number of pixel required for a line.  Next 
step is to divide dx and dy by step to get xIncrement and yIncrement that is the increment 
required in each step to find next pixel value. 
 
xIncrement = dx/step 
yIncrement = dy/step 
 
Next a loop is required that will run step times. In the loop drawPixel and add xIncrement  
in x1 by and yIncrement  in y1. 
 
To sum-up all above in the algorithm, we will get, 
 
DDA_Line (Point p1, Point p2) 
dx = p2.x – p1. x 
dy = p2.y – p1. y 
x1=p1.x 
y1=p1.y 
if |dx|>|dy| then 

step = |dx| 
else  

step = |dy| 
xIncrement = dx/step 
yIncrement = dy/step 
for counter = 1 to step 

drawPixel (x1, y1) 
x1 = x1 + xIncrement 

 y1 = y1 + yIncrement 
 
Criticism on Algorithm: 
There is serious criticism on the algorithm that is use of floating point calculation. They 
say that when we have to draw points that should have integers as coordinates then why 
to use floating point calculation, which requires more space as well as they have more 
computational cost. 
 
Therefore there is need to develop an 
algorithm which would be based on 
integer type calculations. Therefore, 
work is done and finally we will 
come up with an algorithm 
“Bresenham Line Drawing 
algorithm” which will be discussed 
next. 
 
Bresenham's Line Algorithm 
 
Bresenham's algorithm finds the 
closest integer coordinates to the 
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actual line, using only integer math. Assuming that the slope is positive and less than 1, 
moving 1 step in the x direction, y either stays the same, or increases by 1. A decision 
function is required to resolve this choice. 
 
If the current point is (xi, yi), the next point can be either (xi+1,yi) or (xi+1,yi+1) . The 
actual position on the line is (xi+1, m(xi+1)+c) . Calculating the distance between the true 
point, and the two alternative pixel positions available gives:  
 

d1 = y - yi 
= m * (x+1)+b-yi  

d2 = yi + 1 - y 
= yi + 1 – m ( xi + 1 ) - b 

 
Let us magically define a decision function p, to determine which distance is closer to the 
true point. By taking the difference between the distances, the decision function will be 
positive if d1 is larger, and negative otherwise. A positive scaling factor is added to 
ensure that no division is necessary, and only integer math need be used. 
 

pi = dx (d1-d2) 
pi = dx (2m * (xi+1) + 2b – 2yi-1 ) 
pi = 2 dy (xi+1) –2 dx yi + dx (2b-1 ) ------------------ (i) 
pi = 2 dy xi – 2 dx yi + k    ------------------ (ii) 

where  k=2 dy + dx (2b-1) 
 

Then we can calculate pi+1 in terms of pi without any xi , yi or k . 
 

pi+1 = 2 dy xi+1 – 2 dx yi+1 + k  
pi+1 = 2 dy (xi + 1) - 2 dx yi+1 + k  since xi+1= xi + 1 
pi+1 = 2 dy xi  + 2 dy- 2 dx yi+1 + k   ------------------ (iii) 
Now subtracting (ii) from (iii), we get 
pi+1 - pi = 2 dy - 2 dx (yi+1 - yi ) 
pi+1  = pi + 2 dy - 2 dx (yi+1 - yi ) 

If the next point is: (xi+1,yi) then 
 

d1<d2 => d1-d2<0  
=> pi<0  
=> pi+1= pi + 2 dy  
 

If the next point is: (xi+1,yi+1) then  
 

d1>d2 => d1-d2>0  
=> pi>0  
=> pi+1= pi + 2 dy - 2 dx  

 
The pi is our decision variable, and calculated using integer arithmetic from pre-computed 
constants and its previous value.  Now a question is remaining how to calculate initial 
value of pi. For that use equation (i) and put values (x1, y1) 

 
pi = 2 dy (x1+1) – 2 dx yi + dx (2b-1 ) 
where b = y – m x implies that 
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pi = 2 dy x1 +2 dy – 2 dx yi + dx ( 2 (y1 – mx1) -1  ) 
pi = 2 dy x1 +2 dy – 2 dx yi + 2 dx y1 – 2 dy x1  - dx 
pi = 2 dy x1 +2 dy – 2 dx yi + 2 dx y1 – 2 dy x1  - dx 

 
there are certain figures will cancel each other shown in same different colour 
 

pi = 2 dy  - dx 
 

Thus Bresenham's line drawing algorithm is as follows: 
dx =  x2-x1 
dy =  y2-y1  
p  =  2dy-dx 
c1 =  2dy  
c2 =  2(dy-dx) 
x  =  x1  
y  =  y1  
plot (x,y,colour) 
while (x <  x2 )  
 x++;  
 if (p < 0)  
  p = p +  c1   
 else  
  p = p +  c2   

y++  
plot (x,y,colour)  

Again, this algorithm can be easily generalized to other arrangements of the end points of 
the line segment, and for different ranges of the slope of the line. 
 
Improving performance 
 
Several techniques can be used to improve the performance of line-drawing procedures. 
These are important because line drawing is one of the fundamental primitives used by 
most of the other rendering applications. An improvement in the speed of line-drawing 
will result in an overall improvement of most graphical applications.  
 
Removing procedure calls using macros or inline code can produce improvements. 
Unrolling loops also may produce longer pieces of code, but these may run faster. 
 
The use of separate x and y coordinates can be discarded in favour of direct frame buffer 
addressing. Most algorithms can be adapted to calculate only the initial frame buffer 
address corresponding to the starting point and to replaced: 

 
X++ with Addr++  
Y++ with Addr+=XResolution  

 
Fixed point representation allows a method for performing calculations using only integer 
arithmetic, but still obtaining the accuracy of floating point values. In fixed point, the 
fraction part of a value is stored separately, in another integer:  
 

M = Mint.Mfrac  
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Mint = Int(M)  
Mfrac = Frac(M)× MaxInt  
 

Addition in fixed point representation occurs by adding fractional and integer components 
separately, and only transferring any carry-over from the fractional result to the integer 
result. The sequence could be implemented using the following two integer additions: 
ADD  Yfrac,Mfrac ; ADC  Yint,Mint  
 
Improved versions of these algorithms exist. For example the following variations exist 
on Bresenham's original algorithm: 
 
Symmetry (forward and backward simultaneously)  
Segmentation (divide into smaller identical segments - GCD(D x,D y) )  
Double step, triple step, n step. 
 
Setting a Pixel 
Initial Task: Turning on a pixel (loading the frame buffer/bit-map). Assume the simplest 
case, i.e., an 8-bit, non-interlaced graphics system. Then each byte in the frame buffer 
corresponds to a pixel in the output display. 

 

To find the address of a particular pixel (X,Y) we use the following formula: 

addr(X, Y) = addr(0,0) + Y rows * (Xm + 1) + X (all in bytes) 

addr(X,Y) = the memory address of pixel (X,Y) 

addr(0,0) = the memory address of the initial pixel (0,0) 

Number of rows = number of raster lines. 

Number of columns = number of pixels/raster line. 
 
Example: 
For a system with 640 × 480 pixel resolution, find the address of pixel X = 340, Y = 150 
addr(340, 150) = addr(0,0) + 150 * 640 (bytes/row) + 340 

= base + 96,340 is the byte location 

Graphics system usually have a command such as set_pixel (x, y) where x, y are integers. 
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Lecture No.6   Circle Drawing Techniques 

 
Circle 
A circle is the set of points in a plane that are equidistant from a 
given point O. The distance r from the center is called the 
radius, and the point O is called the center. Twice the radius is 
known as the diameter . The angle a circle subtends 
from its center is a full angle, equal to 360° or radians.  

A circle has the maximum possible area for a given perimeter, 
and the minimum possible perimeter for a given area.  

The perimeter C of a circle is called the circumference, and is given by  

     C = 2 π r 

 
Circle Drawing Techniques 
First of all for circle drawing we need to know what the input will be. Well the input will 
be one center point (x, y) and radius r. Therefore, using these two inputs there are a 
number of ways to draw a circle. They involve understanding level very simple to 
complex and reversely time complexity inefficient to efficient. We see them one by one 
giving comparative study. 
 
Circle drawing using Cartesian coordinates 
This technique uses the equation for a circle on radius r centered at (0, 0) 
given as: 
 
   x2 + y2 = r2,  
an obvious choice is to plot 
 

   y = ±  
 
 
Obviously in most of the cases the circle is not centered at (0, 0), rather there is a center 
point (xc, yc); other than (0, 0). Therefore the equation of the circle having center at point 
(xc, yc): 
   (x- xc) 2 + (y-yc)2 = r2, 
this implies that ,  
  y = yc ±  
 
Using above equation a circle can easily be drawn. The value of x varies from r-xc to r+xc. 
and y will be calculated using above formula. Using this technique a simple algorithm 
will be: 
 
Circle1 (xcenter, ycenter, radius) 
for x = radius - xcenter  to  radius + xcenter 
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y = xc +  

drawPixel (x, y) 

y = xc -  

drawPixel (x, y)  
 
This works, but is inefficient because of the 
multiplications and square root operations.  It 
also creates large gaps in the circle for values of 
x close to r as shown in the above figure. 
 
 
Circle drawing using Polar coordinates 
A better approach, to eliminate unequal spacing as shown in above figure is to calculate 
points along the circular boundary using polar coordinates r and θ. Expressing the circle 
equation in parametric polar form yields the pair of equations 
 
   x = xc + r cos θ 
   y = yc + r sin θ 
 
Using above equation circle can be plotted by calculating x and y coordinates as θ takes 
values from 0 to 360 degrees or 0 to 2π. The step size chosen for θ depends on the 
application and the display device. Larger angular separations along the circumference 
can be connected with straight-line segments to approximate the circular path. For a more 
continuous boundary on a raster display, we can set the step size at 1/r. This plots pixel 
positions that are approximately one unit apart. 
 
Now let us see how this technique can be sum up in algorithmic form. 
 
Circle2 (xcenter, ycenter, radius) 
for θ = 0 to 2π step 1/r 
 x = xc + r * cos θ 
 y = yc + r * sin θ 

drawPixel (x, y)  
 
Again this is very simple technique and also solves 
problem of unequal space but unfortunately this 
technique is still inefficient in terms of calculations 
involves especially floating point calculations. 
 
Calculations can be reduced by considering the symmetry of circles. The shape of circle 
is similar in each quadrant. We can generate the circle section in the second quadrant of 
the xy-plane by noting that the two circle sections are symmetric with respect to the y axis 
and circle sections in the third an fourth quadrants can be obtained from sections in the 
first and second quadrants by considering symmetry about the x axis. We can take this 
one step further and note that there is also symmetry between octants. Circle sections in 
adjacent octants within one quadrant are symmetric with respect to the 45o line dividing 
the two octants. These symmetry conditions are illustrated in above figure. 
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x=yx  + y  - r    = 0
22 2

 
Therefore above algorithm can be optimized by using symmetric octants. Let’s see: 
 
Circle2 (xcenter, ycenter, radius) 
for θ = 0 to π / 4 step 1/r 
 x = xc + r * cos θ 
 y = yc + r * sin θ 

DrawSymmetricPoints (xcenter, ycenter, x, y)  
 
DrawSymmeticPoints (xcenter, ycenter, x, y) 
Plot (  x + xcenter,  y + ycenter ) 
Plot (  y + xcenter,  x + ycenter ) 
Plot (  y + xcenter, -x + ycenter ) 
Plot (  x + xcenter, -y + ycenter ) 
Plot ( -x + xcenter, -y + ycenter) 
Plot ( -y + xcenter, -x + ycenter) 
Plot ( -y + xcenter,  x + ycenter) 
Plot ( -x + xcenter,  y + ycenter) 
  

 
Hence we have reduced half the calculations by considering symmetric octants of the 
circle but as we discussed earlier inefficiency is still there and that is due to the use of 
floating point calculations. In next algorithm we will try to remove this problem. 
 
Midpoint circle Algorithm 
As in the Bresenham line drawing algorithm we derive a decision parameter that helps us 
to determine whether or not to increment in the y coordinate against increment of x 
coordinate or vice versa for slope > 1. Similarly here we will try to derive decision 
parameter which can give us closest pixel position. 
Let us consider only the first octant of a circle of 
radius r centred on the origin.  We begin by plotting 
point (r, 0) and end when x < y. 
 
The decision at each step is whether to choose the 
pixel directly above the current pixel or the pixel; 
which is above and to the left (8-way stepping). 
 
Assume: 

Pi = (xi, yi)   is the current pixel. 
 Ti = (xi, yi +1)  is the pixel directly above 
 Si = (xi -1, yi +1)  is the pixel above and to the left. 
 
To apply the midpoint method, we define a circle function: 
  
 fcircle(x, y) = x2 + y2 – r2 

 
Therefore following relations can be observed: 
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Xk+1 

Yk 

Yk-1 

Xk 

X2+Y2-r2=0 

  < 0, if (x, y) is inside the circle boundary 
f circle (x, y) = 0, if (x, y) is on the circle boundary 
  > 0, if (x, y) is outside the circle boundary 
 
The circle function tests given above are performed for the 
midpoints between pixels near the circle path at each 
sampling step. Thus, the circle function is the decision 
parameter in the midpoint algorithm, and we can set up 
incremental calculations for this function as we did in the 
line algorithm. 
 
Figure given above shows the midpoint between the two candidate pixels at sampling 
position xk+1. Assuming we have just plotted the pixel at (xk, yk), we next need to 
determine whether the pixel at position (xk + 1, yk), we next need to determine whether 
the pixel at position (xk+1, yk) or the one at position (xk+1, yk-1) is closer to the circle. 
Our decision parameter is the circle function evaluated at the midpoint between these two 
pixels: 
 
  Pk = f circle ( xk + 1, yk - ½ ) 

                 Pk
 = ( xk + 1 ) 2 + ( yk - ½ ) 2 – r 2 …………………………( 1 ) 

 
If pk < 0, this midpoint is inside the circle and the pixel on scan line yk is closer to the 
circle boundary. Otherwise, the mid position is outside or on the circle boundary, and we 
select the pixel on scan-line yk-1. 
 
Successive decision parameters are obtained using incremental calculations. We obtain a 
recursive expression for the next decision parameter by evaluating the circle function at 
sampling position xk+2= xk+1+1=xk+1+1 = xk+2: 
 
  Pk+1 = f circle ( xk+1 + 1,  yk+1 - ½ ) 

Pk+1 = [ ( xk + 1 ) + 1 ] 2 + ( yk+1 - ½ ) 2 –  r 2…………………………( 2 ) 

 
Subtracting (1) from (2), we get 
  

Pk+1 - Pk = [ ( xk + 1 ) + 1 ] 2 + ( yk+1 - ½ ) 2 –  r 2 – ( xk + 1 ) 2 - ( yk - ½ ) 2 + 
r 2 

or 
Pk+1 = Pk + 2( xk + 1 ) + ( y2

k+1 - y2
k ) – ( yk+1 - yk ) + 1 

 
Where yk+1 is either yk or yk-1, depending on the sign of Pk. Therefore, if Pk < 0 or negative 
then yk+1 will be yk and the formula to calculate Pk+1 will be: 
 

Pk+1 = Pk + 2( xk + 1 ) + ( y2
k - y2

k ) – ( yk - yk ) + 1 
Pk+1 = Pk + 2( xk + 1 ) + 1 

 
Otherwise, if Pk > 0 or positive then yk+1 will be yk-1and the formula to calculate Pk+1 will 
be: 
 

Pk+1 = Pk + 2( xk + 1 ) + [ (y k -1)2
 - y2

k ] – ( yk -1- yk ) + 1 
Pk+1 = Pk + 2( xk + 1 ) + (y2

 k - 2 y k +1 - y2
k ] – ( yk -1- yk ) + 1 
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Pk+1 = Pk + 2( xk + 1 ) - 2 y k + 1 + 1 +1 
Pk+1 = Pk + 2( xk + 1 ) - 2 y k + 2 +1 
Pk+1 = Pk + 2( xk + 1 ) - 2 ( y k – 1 ) + 1 
 

Now a similar case that we observe in line algorithm is that how would starting Pk be 
evaluated. For this at the start pixel position will be ( 0, r ). Therefore, putting this value is 
equation , we get  
 

                 P0
 = ( 0 + 1 ) 2 + ( r - ½ ) 2 – r 2 

                 P0
 = 1 +  r2

  - r + ¼  – r 2 

 P0
 =  5/4 – r 

 
If radius r is specified as an integer, we can simply round p0 to:  
 

P0
 =  1 – r 

 

Since all increments are integer. Finally sum up all in the algorithm: 
 
MidpointCircle (xcenter, ycenter, radius) 
y = r;  
x = 0;  
p = 1 - r; 
do 
 DrawSymmetricPoints (xcenter,  ycenter, x, y)  
 x = x + 1 
 If p < 0 Then  
  p = p + 2 * ( x + 1 ) + 1 
 else 
  y = y - 1 
  p = p + 2 * ( x + 1 ) – 2 * ( y  - 1 ) + 1   
while ( x  <  y ) 
 
Now let us consider an example to calculate first octant of the circle using above 
algorithm; while one quarter is displayed where you can observe that exact circle is 
passing between the points calculated in a raster circle. 
 
Example: 

xcenter= 0 ycenter= 0 radius= 10 
 
 
 
 
 
 
 
 
 
 

p  x  Y 
-9  0  10 
-6  1  10 
-1  2  10 
6  3  10 
-3  4  9 
8  5  9 
5  6  8 
6  7  7 
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Lecture No.7   Ellipse and Other Curves
 
 
Ellipse 
 
An ellipse is a curve that is the locus of all points in the plane the sum of whose distances 
r1 and r2 from two fixed points F1 and F2, (the foci) 
separated by a distance of  is a given positive 
constant . This results in the two-center bipolar 
coordinate equation:  

r1 + r2 = 2a 

where a is the semi-major axis and the origin of the 
coordinate system is at one of the foci. The 
corresponding parameter b is known as the semi-
minor axis.  

The ellipse was first studied by Menaechmus, investigated by Euclid, and named by 
Apollonius. The focus and conic section 
directrix of an ellipse were considered by 
Pappus. In 1602, Kepler believed that the 
orbit of Mars was oval; he later discovered 
that it was an ellipse with the Sun at one 
focus. In fact, Kepler introduced the word 
"focus" and published his discovery in 1609. 
In 1705 Halley showed that the comet now 
named after him moved in an elliptical orbit around the Sun (MacTutor Archive). An 
ellipse rotated about its minor axis gives an oblate spheroid, while an ellipse rotated about 
its major axis gives a prolate spheroid.  

Let an ellipse lie along the x-axis and find the equation of the figure given above where 
F1 and F2 are at (-c, 0) and (c, 0). In Cartesian coordinates,  

 
 
Bring the second term to the right side and square both sides,  

 

Now solve for the square root term and simplify  

    

     
Square one final time to clear the remaining square root,  
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Grouping the x terms then gives  

 

this can be written in the simple form  

 

Defining a new constant  

 

puts the equation in the particularly simple form 

  
 
The parameter b is called the semi-minor axis by analogy with the parameter a, which is 
called the semi-major axis (assuming b < a). The fact that b as defined at right is actually 
the semi-minor axis is easily shown by letting r1 and r2 be equal. Then two right triangles 
are produced, each with hypotenuse a, base c, and height b =  a2 - c2. Since the largest 
distance along the minor axis will be achieved at this point, b is indeed the semi-minor 
axis.  

If, instead of being centered at (0, 0), the center of the ellipse is at (x0, y0), at right 
equation becomes:  

 
 
Ellipse Drawing Techniques 
Now we already understand circle 
drawing techniques. One way to 
draw ellipse is to use the following 
equation: 
 

 
 
where x0 may be replaced by xc in 
case of center other than origin and 
same in case of y. 
 
Another way is to use polar coordinates r and θ, for that we have parametric equations: 
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 x = xc + rx cos θ 
 y = yc + ry sin θ 
 
Four-way symmetry 
Symmetric considerations can be had to 
further reduce computations. An ellipse in 
standard position is symmetric between 
quadrants, but unlike a circle, it is not 
symmetric between the two octants of a 
quadrant. Thus, we must calculate pixel 
positions along the elliptical arc throughout 
one quadrant, and then we obtain positions 
in the remaining three quadrants by 
symmetry as shown in at right figure.  
 
Midpoint ellipse algorithm 
 
Consider an ellipse centered at the origin: 
 

 
 
To apply the midpoint method, we define an ellipse function: 
 
 f ellipse (x, y) = ry2x2 + rx2y2 – rx2 ry2 
 
Therefore following relations can be observed: 
 
  < 0, if (x, y) is inside the circle boundary 
f ellipse (x, y) = 0, if (x, y) is on the circle boundary 
  > 0, if (x, y) is outside the circle boundary 
 
Now as you have some idea that ellipse is different 
from circle. Therefore, a similar approach that is 
applied in circle can be applied here using some 
different sampling direction as shown in the figure 
at right. There are two regions separated in one 
octant. 
 
Therefore, idea is that in region 1 sampling will be 
at x direction; whereas y coordinate will be related 
to decision parameter. In region 2 sampling will be 
at y direction; whereas x coordinate will be related 
to decision parameter.  
 
So consider first region 1. We will start at (0, r y); we take unit steps in the x direction 
until we reach the boundary between region 1 and region 2. Then we switch to unit steps 
in the y direction over the remainder of the curve in the first quadrant. At each step, we 
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ry
2x2 + rx

2y2 – rx
2 ry

2=0 

need to test the value of the slope of the curve. The ellipse slope is calculated from 
following equation: 
 
 dy / dx = -2 ry2x2 / 2 rx2y2   
 
At the boundary region 1 and region 2, dy/ dx = -1 
and 
 
 2 rx2y2 = 2 ry2x2 

 
Therefore, we move out of region 1 whenever 
  

 2 ry2x2 >= 2 rx2y2  

 
Figure at right shows the midpoint between the two candidate pixels at sampling position 
xk + 1 in the first region. Assuming position (xk, yk) has been selected at the previous 
step; we determine the next position along the ellipse path by evaluating the decision 
parameter at this midpoint:  
 
 P1k = f ellipse ( xk + 1, yk – ½ ) 
 f ellipse (xk +1, yk – ½ ) = r2y ( xk + 1)2 + rx2 ( yk – ½ )2 – rx2 ry2 -------( 1 ) 
If pk < 0, this midpoint is inside the ellipse and the pixel on scan line yk is closer to the 
ellipse boundary. Otherwise, the mid position is outside or on the ellipse boundary, and 
we select the pixel on scan-line yk-1. 
 
Successive decision parameters are obtained using incremental calculations. We obtain a 
recursive expression for the next decision parameter by evaluating the ellipse function at 
sampling position xk+1=xk+2: 
 

fellipse (xk+1 +1, yk+1 – ½ ) = ry2 [( xk + 1) + 1 ] 2 + rx2 ( yk+1 – ½ ) 2 – rx2 
ry2  ---( 2 )  
 
Subtracting (1) from (2), and by simplification, we get 
  

Pk+11 = Pk1 + 2 ry2 ( xk + 1) + rx2 ( yk+12– yk2 ) - rx2 (yk+1 - yk ) + ry2 
 
Where yk+1 is either yk or yk-1, depending on the sign of Pk. Therefore, if Pk < 0 or negative 
then yk+1 will be yk and the formula to calculate Pk+1 will be: 
 

P1k+1 = Pk1 + 2 ry2 ( xk + 1) + rx2 ( y k2 – yk2 ) - rx2 (yk - yk ) + ry2 
 Pk+11 = Pk1 + 2 ry2 ( xk + 1 ) + ry2 

 
Otherwise, if Pk > 0 or positive then yk+1 will be yk-1and the formula to calculate Pk+1 will 
be: 
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Pk+11 = Pk1  + 2 ry2 ( xk + 1) + r2x ( (yk –1)2 – yk2 ) - rx2 (yk – 1 – yk ) + ry2  
P1k+1 = P1k + 2 r y

 2 ( x  k + 1) + r x
 2  (  – 2 y k + 1 ) - r x

 2 ( – 1 ) + r y
 2 

P1k+1 = P1k + 2 ry
2 ( x k + 1) – 2 rx

2 y k + r2
x

  + rx
2 + ry

2 
P1k+1 = P1k + 2 r y

2 ( x k + 1) – 2 r x
2 ( y k – 1 ) + r y

2 
 

Now a similar case that we observe in line algorithm is from where starting Pk will 
evaluate. For this at the start pixel position will by ( 0, ry ). Therefore, putting this value is 
equation , we get  
 

P10
 = r y

2 ( 0 + 1) 2 + r x
2 (ry – ½ ) 2 – rx

2 ry
2 

P10
 = r2

y
  + rx

2 ry
2 – r2

x
 ry + ¼ rx

2 – rx
2 ry

2 

P10
 = r2

y
  – rx

2 r y + ¼ rx
2 

 
Similarly same procedure will be adapted for region 2 and decision parameter will be 
calculated, here we are giving decision parameter and there derivation is left as an 
exercise for the students. 
 

Pk+12 = Pk2 – 2 rx2 ( yk + 1 ) + rx2  ,   
 if pk2 > 0 
   

Pk+12 = Pk2 + 2 ry2 ( xk + 1) – 2 rx2 yk + rx2  
otherwise  

 
The initial parameter for region 2 will be calculated by following formula using the last 
point calculated in region 1 as: 

 

P02 = ry2  (x0 +  ½  ) + rx2 (y0 - 1 )2 – rx2ry2 

 
Since all increments are integer. Finally sum up all in the algorithm: 
 
MidpointEllipse (xcenter, ycenter, r x, r y) 
x =0  
x =0  
 y = ry 
 do 
  DrawSymmetricPoints (xcenter,  ycenter, x, y) 
  P01 = ry2 – rx2 ry + ¼ rx2  x = x +1 

 

If p1k < 0 
  Pk+11 = Pk1 + 2 ry2 ( xk + 1 ) + ry2 else 
  Pk+11 = Pk1 + 2 ry2 ( xk + 1) – 2 rx2 ( yk– 1 ) + r2y 
   y = y -1 
 
  P02 = ry2  (x 0 +  ½  ) + rx2 (y 0 - 1 )2 – rx2 ry2 y = y -1 
  If p2k > 0 
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  Pk+12 = Pk2 – 2 rx2 ( yk + 1 ) + rx2 else 
  Pk+12 = Pk2 + 2 ry2 ( xk + 1) – 2 rx2 yk + rx2  x = x + 1 
while ( 2 ry2x2 >= 2 rx2y2 ) 

 
Other Curves 
Various curve functions are useful in object modeling, animation path specifications, 
data, function graphing, and other graphics applications. Commonly encountered curves 
include conics, trigonometric and exponential functions, probability distributions, general 
polynomials, and spline functions.  
 
Displays of these curves can be generated with methods similar to those discussed for the 
circle and ellipse. We can obtain positions along curve paths directly from explicit 
representations y = f(x) or from parametric forms. Alternatively, we could apply the 
incremental midpoint method to plot curves described with implicit functions f(x,y) = 0. 
 
Conic Sections 
A conic section is the intersection of a plane and a cone. 
 
Circle 

 

Ellipse (h)Parabola (h)Hyperbola (h) 

  

 

Ellipse (v)Parabola (v)Hyperbola (v)

 
 
The general equation for a conic section: 
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 
 
The type of section can be found from the sign of: B2-4AC 
 
If B2 - 4AC is then the curve is a... 
 < 0 ellipse, circle, point or no curve. 
 = 0 parabola, 2 parallel lines, 1 line or no curve. 
 > 0 hyperbola or 2 intersecting lines. 
 
For any of the below with a center (j, k) instead of (0, 0), replace each x term with (x-j) 
and each y term with (y-k).  
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  Circle Ellipse Parabola Hyperbola 
Equation (horiz. 
vertex): x2 + y2 = r2 x2 / a2 + y2 / b2

= 1 4px = y2 x2 / a2 - y2 / b2 = 1 

Equations of 
Asymptotes:       y = ± (b/a)x 

Equation (vert. 
vertex): x2 + y2 = r2 y2 / a2 + x2 / b2

= 1 4py = x2 y2 / a2 - x2 / b2 = 1 

Equations of 
Asymptotes:       x = ± (b/a)y 

Variables: r = circle 
radius 

a = major 
radius (= 1/2 
length major 
axis) 
b = minor 
radius (= 1/2 
length minor 
axis) 
c = distance 
center to focus

p = distance 
from vertex to 
focus (or 
directrix) 

a = 1/2 length 
major axis
b = 1/2 length 
minor axis
c = distance center 
to focus 

Eccentricity: 0   c/a c/a 
Relation to Focus: p = 0 a2 - b2 = c2 p = p a2 + b2 = c2 
Definition: is the 
locus of all points 
which meet the 
condition... 

distance to 
the origin is 
constant 

sum of 
distances to 
each focus is 
constant 

distance to 
focus = distance 
to directrix 

difference between 
distances to each 
foci is constant 

 
Hyperbola 
We begin this section with the definition of a hyperbola. A hyperbola is the set of all 
points (x, y) in the plane the difference of whose distances from two fixed points is some 
constant. The two fixed points are called the foci.  

Each hyperbola consists of two branches. The line 
segment; which connects the two foci intersects the 
hyperbola at two points, called the vertices. The line 
segment; which ends at these vertices is called the 
transverse axis and the midpoint of this line is 
called the center of the hyperbola. See figure at right 
for a sketch of a hyperbola with these pieces 
identified.  

Note that, as in the case of the ellipse, a hyperbola 
can have a vertical or horizontal orientation.  

We now turn our attention to the standard equation 
of a hyperbola. We say that the standard equation of 
a hyperbola centered at the origin is given by  

Focus 

Center 

Transverse 
Axis 

Vertex 
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if the transverse axis is horizontal, or  

 

if the transverse axis is vertical.  

Notice a very important difference 
in the notation of the equation of a 
hyperbola compared to that of the 
ellipse. We see that a always 
corresponds to the positive term in 
the equation of the ellipse. The 
relationship of a and b does not determine the orientation of the hyperbola. (Recall that 
the size of a and b was used in the section on the ellipse to determine the orientation of 
the ellipse.) In the case of the hyperbola, the variable in the ``positive'' term of the 
equation determines the orientation of the hyperbola. Hence, if the variable x is in the 
positive term of the equation, as it is in the equation 

x2/a2-y2/b2=1, 

  

 

then the hyperbola is oriented as follows:  

 

If the variable y is in the positive term of the equation, as it is in the equation  

 

then we see the following type of hyperbola:  
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Note that the vertices are always a units from the center of the hyperbola, and the distance 
c of the foci from the center of the hyperbola can be determined using a, b, and the 
following equality:  

 

We will use this relationship often, so keep it in mind.  

The next question you might ask is this: ``what happens to the equation if the center of 
the hyperbola is not (0, 0)?'' As in the case of the ellipse, if the center of the hyperbola is 
(h, k), then the equation of the hyperbola becomes  

 

if the transverse axis is horizontal, or  

 

if the transverse axis is vertical.  

A few more terms should be mentioned here before we move to some examples. First, as 
in the case of an ellipse, we say that the eccentricity of a hyperbola, denoted by e, is given 
by  

 

or we say that the eccentricity of a hyperbola is given by the ratio of the distance between 
the foci to the distance between the vertices. Now in the case of a hyperbola, the distance 
between the foci is greater than the distance between the vertices. Hence, in the case of a 
hyperbola,  

 

Recall that for the ellipse,  

 

Two final terms that we must mention are asymptotes and the conjugate axis. The two 
branches of a hyperbola are “bounded by” two straight lines, known as asymptotes. These 
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asymptotes are easily drawn once one plots the vertices and the points (h, k+b) and (h, k-
b) and draws the rectangle which goes through these four points. The line segment joining 
(h, k+b) and (h, k-b) is called the conjugate axis. The asymptotes then are simply the lines 
which go through the corners of the rectangle. 

But what are the actual equations of these asymptotes? Note that if the hyperbola is 
oriented horizontally, then the corners of this rectangle have the following coordinates:  

 

and  

 

Here I have paired these points in such a way that each asymptote goes through one pair 
of the points. Consider the first pair of points:  

 

Given two points, we can find the equation of the unique line going through the points 
using the point--slope form of the line. First, let us determine the slope of our line. We 
find this as ``change in y over change in x'' or ``rise over run''. In this case, we see that 
this slope is equal to  

 

or simply  

 

Then, we also know that the line goes through the center (h, k). Hence, by the point--
slope form of a line, we know that the equation of this asymptote is  

 

or  

 

The other asymptote in this case has a negative slope; which is given by  

 

Using the same argument, we see that this asymptote has equation  

 

What if the hyperbola is vertically oriented? Then one of the asymptote will go through 
the “corners” of the rectangle given by  
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Then the slope in this case will not be b/a but will be a/b. Hence, analogous to the work 
we just performed, we can show that the asymptotes of a vertically oriented hyperbola are 
determined by  

 

and  

 
 
Parabola 
A parabola is the set of all points (x, y) that are 
the same distance from a fixed line (called the 
directrix) and a fixed point (focus) not on the 
directrix. See figure for the view of a parabola 
and its related focus and directrix.  

Note that the graph of a parabola is similar to one branch of a hyperbola. However, you 
should realize that a parabola is not simply one branch of a hyperbola. Indeed, the 
branches of a hyperbola approach linear asymptotes, while a parabola does not do so.  

Several other terms exist which are associated with a 
parabola. The midpoint between the focus and 
directrix of the parabola is called the vertex and the 
line passing through the focus and vertex is called 
the axis of the parabola. (This is similar to the major 
axis of the ellipse and the transverse axis of the 
hyperbola.) See figure at right.  

 

Now let's move to the standard algebraic equations 
for parabolas and note the four types of parabolas 
that exist. As we discuss the four types, you 
should notice the differences in the equations 
that are related to each of the four parabolas.  

The standard form of the equation of the 
parabola with vertex at (0, 0) with the focus 
lying d units from the vertex is given by  

 

if the axis is vertical and  

 

if the axis is horizontal. See figure below for an 
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example with vertical axis and figure below for an example with horizontal axis.  

Note here that we have assumed that  

 

It is also the case that d could be negative, which flips the orientation of the parabola. 
(See Figures)  

Thus, we see that there are four different orientations of parabolas, which depend on a) 
which variable is squared (x or y) and b) whether d is positive or negative.   

One last comment before going to some 
examples; if the vertex of the parabola is at      
(h, k), then the equation of the parabola does 
change slightly. The equation of a parabola with 
vertex at (h, k) is given by  

 

if the axis is vertical and  

 
 
 
 
Rotation of Axes 
Note that in the sections at right dealing with the ellipse, hyperbola, and the parabola, the 
algebraic equations that appeared did not contain a term of the form xy. However, in our 
“Algebraic View of the Conic Sections,'' we stated that every conic section is of the form  

 

where A, B, C, D, E, and F are constants. In 
essence, all of the equations that we have studied 
have had B=0. So the question arises: ``what 
role, if any, does the xy term play in conic 
sections? If it were present, how would that 
change the geometric figure?''  

First of all, the answer is NOT that the conic 
changes from one type to another. That is to say, 
if we introduce a xy term, the conic does NOT 
change from an ellipse to a hyperbola. If we start 
with the standard equation of an ellipse and 
insert an extra term, a xy term, we still have an 
ellipse.  

So what does the xy term do? The xy term 
actually rotates the graph in the plane. For example, in the case of an ellipse, the major 
axis is no longer parallel to the x-axis or y-axis. Rather, depending on the constant in 
front of the xy term, we now have the major axis rotated. 
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Animated Applications 
Ellipses, hyperbolas, and parabolas are particularly useful in certain animation 
applications. These curves describe orbital and other motions for objects subjected to 
gravitational, electromagnetic, or nuclear forces. Planetary orbits in the solar system, for 
example, are ellipses; and an object projected into a uniform gravitational field travels 
along a parabolic trajectory.  
 
Figure at right shows a parabolic path in standard position for gravitational field acting in 
the negative y direction. The explicit equation for the parabolic trajectory of the object 
shown can be written as: 
 

y = y0 + a (x - x0 )2 + b ( x - x0 )  
 
With constants a and b determined by the initial velocity v0 of the object and the 
acceleration g due to the uniform gravitational force. We can also describe such parabolic 
motions with parametric equations using a time parameter t, measured in seconds from 
the initial projection point: 
 
x =  x0 + vx0 t 
y = y0 + vy0 t – ½ g t 2 
 
Here vx0 and vy0 are the initial velocity components, and the value of g near the surface of 
the earth is approximately 980 cm/ sec2. Object positions along the parabolic path are 
then calculated at selected time steps. 
 
Some related real world applications are given below. 
 
Parabolic Reflectors 
One of the ``real--world'' applications 
of parabolas involves the concept of a 
3-dimensional parabolic reflector in 
which a parabola is revolved about its 
axis (the line segment joining the 
vertex and focus). The shape of car 
headlights, mirrors in reflecting 
telescopes, and television and radio 
antennae (such as the one at right) all 
utilize this property.  

In terms of a car headlight, this 
property is used to reflect the light 
rays emanating from the focus of the parabola 
(where the actual light bulb is located) in parallel 
rays.  

This property is used in a converse fashion when 
one considers parabolic antennae. Here, all 
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incoming rays parallel to the axis of the parabola are reflected through the focus.  
 
Elliptical Orbits 
At one time, it was thought that the planets in our solar system revolve around the sun in 
a circular orbit. It was later discovered, however, that the orbits are not circular, but were 
actually very round elliptical shapes. (Recall the discussion of the eccentricity of an 
ellipse mentioned at right.) The eccentricity of the orbit of the Earth around the sun is 
approximately 0.0167, a fairly small number. Pluto's orbit has the highest eccentricity of 
all the planets in our solar system at 0.2481. Still, this is not a very large value.  

As a matter of fact, the sun acts as one of the foci in the ellipse. This phenomenon was 
first noted by Apollonius in the second century B.C. Kepler later studied this in a more 
rigorous fashion and developed the scientific view of planetary motion.  
 
Whispering Galleries 
In rooms whose ceilings are elliptical, a sound made at one focus of the ellipse will be 
reflected to the other focus (across the room), allowing people standing at the two foci to 
hear one another very clearly. This has been called the ``whispering gallery'' effect and 
has been used by many in the design of special rooms. In particular, St. Paul's Cathedral 
and one of the rooms at the United States Capitol were built with this in mind. 
 
Polynomials and Spline Curves 
A polynomial function of nth degree in x is defined as 
 
 y =   a k x k 

 
y = a 0 x 0 + a 1 x 1 + ----------------+ a n-1 x n-1 + a n x n 

 
Where n is a nonnegative integer and the a k are constants, with a n not equal to 0. We get 
a quadratic when n = 2; a cubic polynomial when n = 3; a quadratic when n = 4; and so 
forth. And obviously a straight line when n = 1. Polynomials are useful in a number of 
graphics applications, including the design of object shapes, the specifications of 
animation paths, and the graphing of data trends in a discrete set of data points. 
 
Designing object shapes or motion paths is typically done by specifying a few points to 
define the general curve contour, then fitting the selected points with a polynomial. One 
way to accomplish the curve fitting is to construct a cubic polynomial curve section 
between each pair of specified points. Each curve section is then described in parametric 
form as 
 

x = a x0 + a x1 u + a x2 u 2 + a x3 u 3 
y = a y0 + a y1 u + a y2 u 2 + a y3 u 3 

Where parameter u varies over the interval 0 to1.  A curve is shown below calculated 
using at right equations. 
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Continuous curves that are formed with polynomial pieces are called spline curves, or 
simply splines. Spline is a detailed topic; which will be discussed later in 3 dimensions.



8-Filled-Area Primitives-I                                                                                                                             VU       
 

 
© Copyright Virtual University of Pakistan 

 

80

Lecture No.8   Filled-Area Primitives-I
 
So far we have covered some output primitives that is drawing primitives like point, line, 
circle, ellipse and some other variations of curves. Also we can draw certain other shapes 
with the combinations of lines like triangle, rectangle, square and other polygons (we will 
have some discussion on polygons coming ahead). Also we can draw some shapes using 
mixture of lines and curves or circles etc. So we are able to draw outline/ sketch of certain 
models but need is there to make a solid model. 
Therefore, in this section we will see what are filled area primitives and what are the 
different issues related to them. There are two basic approaches to area filling on raster 
systems. One way is to draw straight lines between the edges of polygon called scan-line 
polygon filling. As said earlier there are several issues related to scan line polygon, which 
we will discuss in detail. Second way is to start from an interior point and paint outward 
from this point till we reach the boundary called boundary-fill. A slight variation of this 
technique is used to fill an area specified by cluster (having no specific boundary). The 
technique is called flood-fill and having almost same strategy that is to start from an 
interior point and start painting outward from this point till the end of cluster. 
Now having an idea we will try to see each of these one by one, starting from scan-line 
polygon filling.  
 
Scan-line Polygon Fill 
Before we actually start discussion on scan-line polygon filling technique, it is useful to 
discuss what is polygon? Besides polygon definition we will discuss the following topics 
one by one to have a good understanding of the concept and its implementation.  

 Polygon Definition  

 Filled vs. Unfilled Polygons  

 Parity Definition  

 Scan-Line Polygon Fill Algorithm  

 Special Cases Handled By the Fill  

 Polygon Fill Example   
Polygon 
A polygon can be defined as a shape that is formed by line segments that are placed end 
to end, creating a continuous closed path. Polygons can be divided into three basic types: 
convex, concave, and complex.  

I. Convex polygons are the simplest type of polygon to fill. To determine 
whether or not a polygon is convex, ask the following question:  

Does a straight line connecting ANY two points that are inside the polygon intersect any 
edges of the polygon? 
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If the answer is no, the polygon is convex. This means that for any scan-line, the scan-line 
will cross at most two polygon edges (not counting any horizontal edges). Convex 
polygon edges also do not intersect each other.  

II. Concave polygons are a superset of convex polygons, having fewer 
restrictions than convex polygons. The line connecting any two points 
that lie inside the polygon may intersect more than two edges of the 
polygon. Thus, more than two edges may intersect any scan line that 
passes through the polygon. The polygon edges may also touch each 
other, but they may not cross one another. 

  

Complex polygons are just what their name suggests: complex. Complex polygons are 
basically concave polygons that may have self-intersecting edges. The complexity arises 
from distinguishing which side is inside the polygon when filling it. 

  
 

Difference between Filled and Unfilled Polygon  
When an unfilled polygon is rendered, only the points on the perimeter of the polygon are 
drawn. Examples of unfilled polygons are shown in the next page.  

However, when a polygon is filled, the interior of the polygon must be considered. All of 
the pixels within the boundaries of the polygon must be set to the specified color or 
pattern. Here, we deal only with solid colors. The following figure shows the difference 
between filled and unfilled polygons.  
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In order to determine which pixels are inside the polygon, the odd-parity rule is used 
within the scan-line polygon fill algorithm. This is discussed next. 
Parity 
What is parity? Parity is a concept used to determine which pixels lie within a polygon, 
i.e. which pixels should be filled for a given polygon.  

The Underlying Principle: Conceptually, the odd parity test entails drawing a line 
segment from any point that lies outside the polygon to a point P that we wish to 
determine whether it is inside or outside of the polygon. Count the number of edges that 
the line crosses. If the number of polygon edges crossed is odd, then P lies within the 
polygon. Similarly, if the number of edges is even, then P lies outside of the polygon. 
There are special ways of counting the edges when the line crosses a vertex. This will be 
discussed in the algorithm section. Examples of counting parity can be seen in the 
following demonstration.  

    
Using the Odd Parity Test in the Polygon Fill Algorithm 

The odd parity method creates a problem: How do we determine whether a pixel lies 
outside of the polygon to test for an inside one, if we cannot determine whether one lies 
within or outside of the polygon in the first place? If we assume our polygon lies entirely 
within our scene, then the edge of our drawing surface lies outside of the polygon.  

Furthermore, it would not be very efficient to check each point on our drawing surface to 
see if it lies within the polygon and, therefore, needs to be colored.  

So, we can take advantage of the fact that for each scan-line we begin with even parity; 
we have NOT crossed any polygon edges yet. Then as we go from left to right across our 
scan line, we will continue to have even parity (i.e., will not use the fill color) until we 
cross the first polygon edge. Now our parity has changed to odd and we will start using 
the fill color.  

How long will we continue to use the fill color? Well, our parity won't change until we 
cross the next edge. Therefore, we want to color all of the pixels from when we crossed 
the first edge until we cross the next one. Then the parity will become even again.  
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So, you can see if we have a sorted list of x-intersections of all of the polygon edges with 
the scan line, we can simply draw from the first x to the second, the third to the forth and 
so on. 
Polygon Filling 
In order to fill a polygon, we do not want to have to determine the type of polygon that 
we are filling. The easiest way to avoid this situation is to use an algorithm that works for 
all three types of polygons. Since both convex and concave polygons are subsets of the 
complex type, using an algorithm that will work for complex polygon filling should be 
sufficient for all three types. The scan-line polygon fill algorithm, which employs the 
odd/even parity concept previously discussed, works for complex polygon filling.  

Reminder: The basic concept of the scan-line algorithm is to draw points from edges of 
odd parity to even parity on each scan-line.  

b) What is a scan-line?  

A scan-line is a line of constant y value, i.e., y=c, where c lies within our drawing region, 
e.g., the window on our computer screen.  

The scan-line algorithm is outlined next.  
Algorithm 
When filling a polygon, you will most likely just have a set of vertices, indicating the x 
and y Cartesian coordinates of each vertex of the polygon. The following steps should be 
taken to turn your set of vertices into a filled polygon.  

1. Initializing All of the Edges:  

The first thing that needs to be done is determine how the polygon's vertices are related. 
The all_edges table will hold this information.  

Each adjacent set of vertices (the first and second, second and 
third, similarly last and first) defines an edge. In above figure 
vertices are shown by small lines and edges are numbered from 
1 to 9 each between successive vertices. 

For each edge, the following information needs to be kept in a 
table: 

1. The minimum y value of the two vertices  

2. The maximum y value of the two vertices  

3. The x value associated with the minimum y value 

4. The slope of the edge  

The slope of the edge can be calculated from the formula for a line:  

y = mx + b;  

where m = slope,   b = y-intercept,  
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y0 = maximum y value,  

y1 = minimum y value,  

x0 = maximum x value,  

x1 = minimum x value The formula for the slope is as follows:  

m = (y0 - y1) / (x0 - x1).  

For example, the edge values may be kept as follows, where N is equal to the total 
number of edges - 1 (starting from 0) and each index into the all_edges array contains a 
pointer to the array of edge values.  

Index  Y-min Y-max X-val 1/m 

0  10 16 10 0 

1  16 20 10 1.5 

  - - - - 

  - - - - 

N  10 16 28 0 

Table:  All_edges 

2. Initializing the Global Edge Table:  

The global edge table will be used to keep track of the edges that are still needed to 
complete the polygon. Since we will fill the edges from bottom to top and left to right. To 
do this, the global edge table should be inserted with edges grouped by increasing 
minimum y values. Edges with the same minimum y values are sorted on minimum x 
values as follows:  

1. Place the first edge with a slope that is not equal to zero in the global edge table.  

2. If the slope of the edge is zero, do not add that edge to the global edge table.  

3. For every other edge, start at index 0 and increase the index of the global edge table 
once each time the current edge's y value is greater than that of the edge at the current 
index in the global edge table.  

Next, Increase the index to the global edge table once each time the current edge's x value 
is greater than and the y value is less than or equal to that of the edge at the current index 
in the global edge table.  

If the index, at any time, is equal to the number of edges currently in the global edge 
table, do not increase the index.  

Place the edge information for minimum y value, maximum y value, x value, and 1/m in 
the global edge table at the index.  
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The global edge table should now contain all of the edge information necessary to fill the 
polygon in order of increasing minimum y and x values.  

3. Initializing Parity  

The initial parity is even since no edges have been crossed yet.  

4. Initializing the Scan-Line  

The initial scan-line is equal to the lowest y value for all of the global edges. Since the 
global edge table is sorted, the scan-line is the minimum y value of the first entry in this 
table.  

5. Initializing the Active Edge Table  

The active edge table will be used to keep track of the edges that are intersected by the 
current scan-line. This should also contain ordered edges. This is initially set up as 
follows:  

Since the global edge table is ordered on minimum y and x values, search, in order, 
through the global edge table and, for each edge found having a minimum y value equal 
to the current scan-line, append the edge information for the maximum y value, x value, 
and 1/m to the active edge table. Do this until an edge is found with a minimum y value 
greater than the scan line value. The active edge table will now contain ordered edges of 
those edges that are being filled as such:  

Index  Y-max X-val 1/m 

0  16 10 0 

1  20 10 1.5 

  - - - 

  - - - 

N  16 28 0 

Active 

6. Filling the Polygon  

Filling the polygon involves deciding whether or not to draw pixels, adding to and 
removing edges from the active edge table, and updating x values for the next scan-line.  

Starting with the initial scan-line, until the active edge table is empty, do the following:  

1. Draw all pixels from the x value of odd to the x value of even parity edge pairs.  

2. Increase the scan-line by 1.  

3. Remove any edges from the active edge table for which the maximum y value is equal 
to the scan line.  
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4. Update the x value for each edge in the active edge table using the formula x1 = x0 + 
1/m. (This is based on the line formula and the fact that the next scan-line equals the 
old scan-line plus one.)  

5. Remove any edges from the global edge table for which the minimum y value is equal 
to the scan-line and place them in the active edge table.  

6. Reorder the edges in the active edge table according to increasing x value. This is 
done in case edges have crossed.  

Special Cases 
There are some special cases, the scan-line polygon fill algorithm covers these cases, but 
you may not understand how or why. The following will explain the handling of special 
cases to the algorithm.  

1. Horizontal Edges:  

Here we follow the minimum y value rule during scan-line polygon fill. If the edge is at 
the minimum y value for all edges, it is drawn. Otherwise, if the edge is at the maximum 
y value for any edge, we do not draw it. (See the next section containing information 
about top vs. bottom edges.)  

This is easily done in the scan-line polygon fill implementation. Horizontal edges are 
removed from the edge table completely.  

Question arises that how horizontal lines are are filled then? Since each horizontal line 
meets exactly two other edge end-points on the scan-line, the algorithm will allow a fill of 
the pixels between those two end-point vertices when filling on the scan-line which the 
horizontal line is on, if it meets the top vs. bottom edge criteria.  

 

--> --> 

As can be seen above, if we start with a polygon with horizontal edges, we can remove 
the horizontal edges from the global edge table. The two endpoints of the edge will still 
exist and a line will be drawn between the lower edges following the scan-line polygon 
fill algorithm. (The blue arrowed line is indicating the scan-line for the bottom horizontal 
edge.)  

2. Bottom and Left Edges vs. Top and Right Edges:  

If polygons, having at least one overlapping edge the other, were filled completely from 
edge to edge, these polygons would appear to overlap and/or be distorted. This would be 
especially noticeable for polygons in which edges have limited space between them.  

In order to correct for this phenomenon, our algorithm does not allow fills of the right or 
top edges of polygons. This distortion problem could also be corrected by not drawing 
either the left or right edges and not drawing either the top or bottom edges of the 
polygon. Either way, a consistent method should be used with all polygons. If some 
polygons are filled with the left and bottom edges and others with the bottom and right 
edges, this problem will still occur.  
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--> 

 
As can be seen above, if we remove the right and top edges from both polygons, the 
polygons no longer appear to be different shapes. For polygons with more overlap 
than just one edge, the polygons will still appear to overlap as was meant to happen.  

3. How do we deal with two edges meeting at a vertex when counting parity? This is a 
scenario which needs to be accounted for in one of the following ways:  

1.  

When dealing with two edges; which meet at a vertex and for both edges the vertex is the 
minimum point, the pixel is drawn and is counted twice for parity.  

Essentially, the following occurs. In the scan-line polygon fill algorithm, the vertex is 
drawn for the first edge, since it is a minimum value for that edge, but not for the second 
edge, since it is a right edge and right edges are not drawn in the scan-line fill algorithm. 
The parity is increased once for the first edge and again for the second edge.  

2.  

When dealing with two edges; which meet at a vertex and for both edges the vertex is the 
maximum point, the pixel is not drawn and is counted twice for parity.  

Basically, this occurs because the vertex is not drawn for the first edge, since it is a 
maximum point for that edge, and parity is increased. The vertex is then not drawn for the 
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second edge, since it is a right edge, and parity is The point should not be drawn since 
maximum y values for edges are not drawn in the scan-line polygon fill implementation.  

3. When dealing with two edges; which meet at a vertex and for one edge the vertex is 
the maximum point and for the other edge the vertex is the minimum point, we must also 
consider whether the edges are left or right edges. Two edges meeting in such a way can 
be thought of as one edge; which is "bent".  

 

If the edges are on the left side of the polygon, the pixel is drawn and is counted once 
for parity purposes. This is due to the fact that left edges are drawn in the scan-line 
polygon fill implementation. The vertex is drawn just once for the edge; which has this 
vertex as its minimum point. Parity is incremented just once for this "bent edge".  

4.  

If both edges are on the right, the pixel is not drawn and is counted just once for parity 
purposes. This is due to the fact that right edges are not drawn in the scan-line polygon 
fill implementation.  
A Simple Example 
Just to reiterate the 
algorithm, the following 
simple example of scan-
line polygon filling will 
be outlined. Initially, 
each vertex of the 
polygon is given in the 
form of (x, y) and is in 
an ordered array as 
such:  

Ordered Vertices 

We will now walk through the steps of the algorithm to fill in the polygon:  

 

0 (10, 10) 

1 (10, 16) 

2 (16, 20) 

3 (28, 10) 

4 (28, 16) 

5 (22, 10) 
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1. Initializing All of the Edges:  

We want to determine the minimum y value, maximum y value, x value, and 1/m for each 
edge and keep them in the all_edges table. We determine these values for the first edge as 
follows:  

Y-min: Since the first edge consists of the first and second vertex in the array, we use the 
y values of those vertices to choose the lesser y value. In this case it is 10.  

Y-max: In the first edge, the greatest y value is 16.  

X-val: Since the x value associated with the vertex with the highest y value is 10, 10 is 
the x value for this edge.  

1/m: Using the given formula, we get (10-10)/ (16-10) for 1/m.  

The edge value results are in the form of Y-min, Y-max, X-val, and Slope for each edge 
array pointed to in the all_edges table. As a result of calculating all edge values, we get 
the following in the all_edges table.  

Index  Y-min Y-max X-val 1/m 

0  10 16 10 0 

1  16 20 10 1.5 

2  10 20 28 -1.2 

3  10 16 28 0 

4  10 16 22 1 

5  10 10 10 Inf 

Table:  All_edges 

2. Initializing the Global Edge Table:  

We want to place all the edges in the global edge table in increasing y and x values, as 
long as slope is not equal to zero. For the first edge, the slope is not zero so it is placed in 
the global edge table at index=0.  

 

Index  Y-min Y-max X-val 1/m 

0  10 16 10 0 

Table:  global 

For the second edge, the slope is not zero and the minimum y value is greater than that at 
zero, so it is placed in the global edge table at index=1.  
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Index  Y-min Y-max X-val 1/m 

0  10 16 10 0 

1  16 20 10 1.5 

Table:  global 

For the third edge, the slope is not zero and the minimum y value is equal the edge's at 
index zero and the x value is greater than that at index 0, so the index is increased to 1. 
Since the third edge has a lesser minimum y value than the edge at index 2 of the global 
edge table, the index for the third edge is not increased again. The third edge is placed in 
the global edge table at index=1. 

  

Index  Y-min Y-max X-val 1/m 

0  10 16 10 0 

1  10 20 28 -1.2 

2  16 20 10 1.5 

Table:  global 

We continue this process until we have the following:  

Index  Y-min Y-max X-val 1/m 

0  10 16 10 0 

1  10 16 22 1 

2  10 16 28 0 

3  10 20 28 -1.2 

4  16 20 10 1.5 

Table:  global 

Notice that the global edge table has only five edges and the all_edges table has six. This 
is due to the fact that the last edge has a slope of zero and, therefore, is not placed in the 
global edge table.  

3. Initializing Parity  

Parity is initially set to even.  

4. Initializing the Scan-Line  

Since the lowest y value in the global edge table is 10, we can safely choose 10 as our 
initial scan-line.  
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5. Initializing the Active Edge Table  

Since our scan-line value is 10, we choose all edges which have a minimum y value of 10 
to move to our active edge table. This results in the following.  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 22 1  

2  16 28 0  

3  20 28 -1.2  

Table:  active       Table:  global 

6. Filling the Polygon  

Starting at the point (0, 10), which is on our scan-line and outside of the polygon, will 
want to decide which points to draw for each scan-line.  

1. Scan-line = 10:  

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this 
point until the next edge is encountered at x=22. Parity is then changed to even. The next 
edge is reached at x=28 and the point is drawn once on this scan-line due to the special 
parity case. We are now done with this scan-line. The polygon is now filled as follows:  
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First, we update the x values in the active edge table using the formula x1 = x0 + 1/m to 
get the following:  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 23 1  

2  16 28 0  

3  20 26.8 -1.2  

Table:  active       Table:  global 

The edges then need to be reordered since the edge at index 3 of the active edge table has 
a lesser x value than that of the edge at index 2. Upon reordering, we get:  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 23 1  

2  16 26.8 -1.2  

3  20 28 0  

Table:  active       Table:  global 

2. Scan-line = 11:  

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this 
point until the next edge is encountered at x=23. Parity is then changed to even. The next 
edge is reached at x=27 and parity is changed to odd. The points are then drawn until the 
next edge is reached at x=28. We are now done with this scan-line. The polygon is now 
filled as follows:  

 

Upon updating the x values, the edge tables are as follows:  



8-Filled-Area Primitives-I                                                                                                                             VU       
 

 
© Copyright Virtual University of Pakistan 

 

93

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 24 1  

2  16 25.6 -1.2  

3  20 28 0  

Table:  active       Table:  global 

It can be seen that no reordering of edges is needed at this time.  

3. Scan-line = 12:  

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this 
point until the next edge is encountered at x=24. Parity is then changed to even. The next 
edge is reached at x=26 and parity is changed to odd. The points are then drawn until the 
next edge is reached at x=28. We are now done with this scan-line.  The polygon is now 
filled as follows:  

 

Updating the x values in the active edge table gives us:  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 25 1  

2  16 24.4 -1.2  

3  20 28 0  

Table:  active       Table:  global 

We can see that the active edges need to be reordered since the x value of 24.4 at index 2 
is less than the x value of 25 at index 1. Reordering produces the following:  
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Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 24.4 1  

2  16 25 0  

3  20 28 -1.2  

Table:  active       Table:  global 

4. Scan-line = 13:  

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this 
point until the next edge is encountered at x=25 Parity is then changed to even. The next 
edge is reached at x=25 and parity is changed to odd. The points are then drawn until the 
next edge is reached at x=28. We are now done with this scan-line. The polygon is now 
filled as follows:  

 

Upon updating the x values for the active edge table, we can see that the edges do not 
need to be reordered.  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 23.2 1  

2  16 26 0  

3  20 28 -1.2  

Table:  active       Table:  global 

5. Scan-line = 14:  

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this 
point until the next edge is encountered at x=24. Parity is then changed to even. The next 
edge is reached at x=26 and parity is changed to odd. The points are then drawn until the 
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next edge is reached at x=28. We are now done with this scan-line. The polygon is now 
filled as follows:  

 

Upon updating the x values for the active edge table, we can see that the edges still do not 
need to be reordered.  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  16 10 0  0  16 20 10 1.5 

1  16 22 -1.2  

2  16 27 1  

3  20 28 0  

Table:  active       Table:  global 

6. Scan-line = 15:  

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this 
point until the next edge is encountered at x=22. Parity is then changed to even. The next 
edge is reached at x=27 and parity is changed to odd. The points are then drawn until the 
next edge is reached at x=28. We are now done with this scan-line. The polygon is now 
filled as follows:  
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Since the maximum y value is equal to the next scan-line for the edges at indices 0, 2, and 
3, we remove them from the active edge table. This leaves us with the following:  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  20 22 -1.2  0  16 20 10 1.5 

Table:  active       Table:  global 

We then need to update the x values for all remaining edges.  

Index  Y-
max 

X-
val 

1/m  Index  Y-min Y-max X-val 1/m 

0  20 20.8 -1.2  0  16 20 10 1.5 

Table:  active       Table:  global 

Now we can add the last edge from the global edge table to the active edge table since its 
minimum y value is equal to the next scan-line. The active edge table now looks as 
follows (the global edge table is now empty):  

Index  Y-
max 

X-
val 

1/m 

0  20 20.8 -1.2 

1  20 10 1.5 

Table:  active 

These edges obviously need to be reordered. After reordering, the active edge table 
contains the following:  

Index  Y-
max 

X-
val 

1/m 

0  20 10 1.5 

1  20 20.8 -1.2 

Table:  active 

7. Scan-line = 16:  

Once the first edge is encountered at x=10, parity = odd. All points are drawn from this 
point until the next edge is reached at x=21. We are now done with this scan-line. The 
polygon is now filled as follows:  
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The x values are updated and the following is obtained:  

Index  Y-
max 

X-
val 

1/m 

0  20 11.5 1.5 

1  20 19.6 -1.2 

Table:  active 

8. Scan-line = 17:  

Once the first edge is encountered at x=12, parity = odd. All points are drawn from this 
point until the next edge is reached at x=20. We are now done with this scan-line. The 
polygon is now filled as follows:  

 

We update the x values and obtain:  

Index  Y-
max 

X-
val 

1/m 

0  20 13 1.5 

1  20 18.4 -1.2 

Table:  active 

9. Scan-line = 18:  
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Once the first edge is encountered at x=13, parity = odd. All points are drawn from this 
point until the next edge is reached at x=19. We are now done with this scan-line. The 
polygon is now filled as follows:  

 

Upon updating the x values we get:  

Index  Y-
max 

X-
val 

1/m 

0  20 14.5 1.5 

1  20 17.2 -1.2 

Table:  active 

10. Scan-line = 19:  

Once the first edge is encountered at x=15, parity = odd. All points are drawn from this 
point until the next edge is reached at x=18. We are now done with this scan-line. Since 
the maximum y value for both edges in the active edge table is equal to the next scan-line, 
we remove them. The active edge table is now empty and we are now done.  

The polygon is now filled as follows:  

 

Now that we have filled the polygon, let's see what it looks like to the human eye:  
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Lecture No.9   Filled-Area Primitives-II 

  
Boundary fill 
Another important class of area-filling algorithms starts at a point known to be inside a 
figure and starts filling in the figure outward from the point. Using these algorithms a 
graphic artist may sketch the outline of a figure and then select a color or pattern with 
which to fill it. The actual filling process begins when a point inside the figure is selected. 
These routines are like the paint-scan function seen in common interactive paint 
packages.  
The first such method that we will discuss is called the boundary-fill algorithm. The 
boundary-fill method requires the coordinates of a starting point, a fill color, and a 
boundary color as arguments.  
 
Boundary fill algorithm: 
The Boundary fill algorithm performs the following steps: 
Check the pixel for boundary color 
Check the pixel for fill color 
Set the pixel in fill color 
Run the process for neighbors 
 
The pseudo code for Boundary fill algorithm can be written as: 
    boundaryFill (x, y, fillColor, boundaryColor) 
     if ((x < 0) || (x >= width))  
    return 
 if ((y < 0) || (y >= height))  
    return 
 current = GetPixel(x, y) 
 if ((current != boundaryColor) && (current != fillColor)) 
 setPixel(fillColor, x, y) 
 boundaryFill (x+1, y, fillColor, boundaryColor) 
 boundaryFill (x, y+1, fillColor, boundaryColor) 
 boundaryFill (x-1, y, fillColor, boundaryColor) 
 boundaryFill (x, y-1, fillColor, boundaryColor) 
 
Note that this is a recursive routine. Each invocation of boundaryFill () may call itself 
four more times.  
The logic of this routine is very simple. If we are not either on a boundary or already 
filled we first fill our point, and then tell our neighbors to fill themselves. 
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Process of Boundary Fill Algorithm 
 
By the way, sometimes the boundary fill algorithm doesn't work. Can you think of such a 
case?  
 
Flood Fill  
Sometimes we need an area fill algorithm that replaces all connected pixels of a selected 
color with a fill color.  
The flood-fill algorithm does exactly that.  
Flood-fill algorithm 
An area fill algorithm that replaces all connected pixels of a selected color with a fill 
color.  

 
Before Applying Flood-fill algorithm (Light color) 
 

 
After Applying Flood-fill algorithm (Dark color) 
 
Flood-fill algorithm in action 
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The pseudo code for Flood fill algorithm can be written as: 
    public void floodFill(x, y, fillColor, oldColor) 
     
        if ((x < 0) || (x >= width))  
    return 
        if ((y < 0) || (y >= height))  
    return 
        if ( getPixel (x, y) == oldColor)  
  
            setPixel (fillColor, x, y) 
            floodFill (x+1, y, fillColor, oldColor) 
            floodFill (x, y+1, fillColor, oldColor) 
            floodFill (x-1, y, fillColor, oldColor) 
            floodFill (x, y-1, fillColor, oldColor) 
         
     
It's a little awkward to kick off a flood fill algorithm because it requires that the old color 
must be read before it is invoked. The following implementation overcomes this 
limitation, and it is also somewhat faster, a little bit longer. The additional speed comes 
from only pushing three directions onto the stack each time instead of four. 
    fillFast (x, y, fillColor) 
        if ((x < 0) || (x >=width)) return 
        if ((y < 0) || (y >=height)) return 
        int oldColor = getPixel (x, y) 
        if ( oldColor == fill ) return 
        setPixel (fillColor, x, y) 
        fillEast (x+1, y, fillColor, oldColor) 
        fillSouth (x, y+1, fillColor, oldColor) 
        fillWest (x-1, y, fillColor, oldColor) 
        fillNorth (x, y-1, fillColor, oldColor) 
     
    fillEast (x, y, fillColor, oldColor) 
        if (x >= width) return 
        if ( getPixel(x, y) == oldColor)  
            setPixel( fillColor, x, y) 
            fillEast (x+1, y, fillColor, oldColor) 
            fillSouth (x, y+1, fillColor, oldColor) 
            fillNorth (x, y-1, fillColor, oldColor) 
 
    fillSouth(x, y, fillColor, oldColor) 
        if (y >=height) return 
        if (getPixel (x, y) == oldColor)  
            setPixel (fillColor, x, y) 
            fillEast (x+1, y, fillColor, oldColor) 
            fillSouth (x, y+1, fillColor, oldColor) 
            fillWest (x-1, y, fillColor, oldColor) 
         
    fillWest(x, y, fillColor, oldColor) 
    { 
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        if (x < 0) return 
        if (getPixel (x, y) == oldColor) 
            setPixel (fillColor, x, y) 
            fillSouth (x, y+1, fillColor, oldColor) 
            fillWest (x-1, y, fillColor, oldColor) 
            fillNorth (x, y-1, fillColor, oldColor) 
      
    fillNorth (x, y, fill, old) 
        if (y < 0) return 
        if (getPixel (x, y) == oldColor)  
            setPixel (fill, x, y) 
            fillEast (x+1, y, fillColor, oldColor) 
            fillWest (x-1, y, fillColor, oldColor) 
            fillNorth (x, y-1, fillColor, oldColor) 
         
 
 
A final consideration when writing an area-fill algorithm is the size and connectivity of 
the neighborhood around a given pixel.  
 

 
 
The eight-connected neighborhood is able to get into nooks and crannies that an 
algorithm based on a four-connected neighborhood cannot.  
 
Here's the code for an eight-connected flood fill.  
    floodFill8 (x, y, fill, old)     
        if ((x < 0) || (x >=width)) return 
        if ((y < 0) || (y >=height)) return 
        if (getPixel (x, y) == oldColor)  
            setPixel (fill, x, y); 
            floodFill8 (x+1, y, fillColor, oldColor) 
            floodFill8 (x, y+1, fillColor, oldColor) 
            floodFill8 (x-1, y, fillColor, oldColor) 
            floodFill8 (x, y-1, fillColor, oldColor) 
            floodFill8 (x+1, y+1, fillColor, oldColor) 
            floodFill8 (x-1, y+1, fillColor, oldColor) 
            floodFill8 (x-1, y-1, fillColor, oldColor) 
            floodFill8 (x+1, y-1, fillColor, oldColor) 
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Lecture No.10   Mathematics Fundamentals 
 
 
Matrices and Simple Matrix Operations 
In many fields matrices are used to represent objects and operations on those objects. In 
computer graphics matrices are heavily used especially their major role is in case of 
transformations (we will discuss in very next lecture), but not only transformation there 
are many areas where we use matrices and we will see in what way matrices help us. 
Anyhow today we are going to discuss matrix and their operation so that we will not face 
any problem using matrices in coming lectures and in later lectures. Today we will cover 
following topics:  

What a Matrix is?  
Dimensions of a Matrix  
Elements of a Matrix  
Matrix Addition 
Zero Matrix 
Matrix Negation 
Matrix Subtraction 
Scalar multiplication of a matrix 
The transpose of a matrix 
 

Definition of Matrix 
A matrix is a collection of numbers arranged into a fixed number of rows and columns. 
Usually the numbers are real numbers. In general, matrices can contain complex numbers 
but we won't see those here. Here is an example of a matrix with three rows and three 
columns:  

 
The top row is row 1. The leftmost column is column 1. This matrix is a 3x3 matrix 
because it has three rows and three columns. In describing matrices, the format is:  
rows X columns  
Each number that makes up a matrix is called an element of the matrix. The elements in a 
matrix have specific locations.  

The upper left corner of the matrix is row 1 column 1. In the above matrix the element at 
row 1 column 1 is the value 1. The element at row 2 columns 3 is the value 4.6.  

 
Matrix Dimensions 
The numbers of rows and columns of a matrix are called its dimensions. Here is a matrix 
with three rows and two columns:  

HP
Highlight

HP
Highlight

HP
Highlight

HP
Highlight

HP
Highlight

HP
Highlight

HP
Pencil

HP
Pencil

HP
Pencil



10-3D Concepts                                                                                                                                             VU        
 

 
© Copyright Virtual University of Pakistan 

 

104

 
Sometimes the dimensions are written off to the side of the matrix, as in the above matrix. 
But this is just a little reminder and not actually part of the matrix. Here is a matrix with 
different dimensions. It has two rows and three columns. This is a different "data type" 
than the previous matrix. 

 

 
 
Question: What do you suppose a square matrix is? Here is an example: 

 
 
Answer: The number of rows == the number of columns 
 
Square Matrix 
In a square matrix the number of rows equals the number of columns. In computer 
graphics, square matrices are used for transformations.  
 
A column matrix consists of a single column. It is a N x 1 matrix. These notes, and most 
computer graphics texts, use column matrices to represent geometrical vectors. At left is a 
4 x 1 column matrix. A row matrix consists of a single row. 
 
A column matrix is also called column vector and call a row matrix a row vector.  
 
Question: What are square matrices used for? 
Answer: Square matrices are used (in computer graphics) to represent geometric 
transformations. 
 
Names for Matrices 
Try to remember that matrix starts from rows never from columns so if order of matrix is 
3*2 that means there are three rows and two columns. A matrix can be given a name. In 
printed text, the name for a matrix is usually a capital letter in bold face, like A or M. 
Sometimes as a reminder the dimensions are written to the right of the letter, as in B3x3.  
The elements of a matrix also have names, usually a lowercase letter the same as the 
matrix name, with the position of the element written as a subscript. So, for example, the 
3x3 matrix A might be written as:  
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Sometimes you write A = [aij] to say that the elements of matrix A are named aij.  
Question: (Thought Question:) If two matrices contain the same numbers as elements, are 
the two matrices equal to each other?  
Answer: No, to be equal, two matrices must have the same dimensions, and must have the 
same values in the same positions.  
 
Matrix Equality 
For two matrices to be equal, they must have  
The same dimensions.  
Corresponding elements must be equal.  
In other words, say that An x m = [aij] and that Bp x q = [bij].  
Then A = B if and only if n=p, m=q, and aij=bij for all i and j in range.  
 

 
 
Here are two matrices which are not equal even though they have the same elements.  
 

 
 
Matrix Addition 
If two matrices have the same number of rows and same number of columns, then the 
matrix sum can be computed:  
 
If A is an MxN matrix, and B is also an MxN matrix, then their sum is an MxN matrix 
formed by adding corresponding elements of A and B  
Here is an example of this:  
 

 
 
Of course, in most practical situations the elements of the matrices are real numbers with 
decimal fractions, not the small integers often used in examples.  
 
Question: What 3x2 matrix could be added to a second 3x2 matrix without changing that 
second matrix?  
 
Answer: The 3x2 matrix that has all its elements zero. 
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Zero Matrix 
A zero matrix is one; which has all its elements zero. Here is a 3x3 zero matrix:  

 
The name of a zero matrix is a boldface zero: 0, although sometimes people forget to 
make it bold face. Here is an interesting problem:  

 
 
Question: Form the above sum. No electronic calculators allowed! 
Answer: Of course, the sum is the same as the non-zero matrix. 
 
Rules for Matrix Addition 
You should be happy with the following rules of matrix addition. In each rule, the 
matrices are assumed to all have the same dimensions.  
A + B = B + A  
A + 0 = 0 + A = A  
0 + 0 = 0  
These look the same as some rules for addition of real numbers. (Warning!! Not all rules 
for matrix math look the same as for real number math.)  
The first rule says that matrix addition is commutative. This is because ordinary addition 
is being done on the corresponding elements of the two matrices, and ordinary (real) 
addition is commutative:  

 
 
Question: Do you think that (A + B) + C = A + (B + C)  
Answer: Yes — this is another rule that works like real number math.  
 
Practice with Matrix Addition 
Here is another matrix addition problem. Mentally form the sum (or use a scrap of paper):  
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Hint: this problem is not as tedious as it might at first seem.  
Question: What is the sum? 
Answer: Each element of the 3x3 result is 10. 
 
Multiplication of a Matrix by a Scalar 
A matrix can be multiplied by a scalar (by a real number) as follows:  
To multiply a matrix by a scalar, multiply each element of the matrix by the scalar.  
Here is an example of this. (In this example, the variable a is a scalar.)  

 
 
Question: Show the result if the scalar a in the above is the value -1. 
Answer: Each element in the result is the negative of the original, as seen below. 
 
Negative of a Matrix 
The negation of a matrix is formed by negating each element of the matrix:  

-A = -1A 
So, for example:  

 
 
It will not surprise you that A + (-A)  = 0   
Question: Look at the above fact. Can you think of a way to define matrix subtraction?  
Answer: It seems like subtraction could be defined as adding a negation of a matrix.  
 
Matrix Subtraction 
If A and B have the same number of rows and columns, then A - B is defined as A + (-B). 
Usually you think of this as:  
To form A - B, from each element of A subtract the corresponding element of B.  
Here is a partly finished example:  
 

 
 
Notice in particular the elements in the first row of the answer. The way the result was 
calculated for the elements in row 1 column 2 is sometimes confusion.  
Question: Mentally fill in the two question marks. 
Answer: 
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Transpose 
The transpose of a matrix is a new matrix whose rows are the columns of the original 
(which makes its columns the rows of the original). Here is a matrix and its transpose:  

 
The superscript "T" means "transpose". Another way to look at the transpose is that the 
element at row r column c if the original is placed at row c column r of the transpose. We 
will usually work with square matrices, and it is usually square matrices that will be 
transposed. However, non-square matrices can be transposed, as well:  

 
 
Question: What is the transpose of: 

 
Answer: 

 
 
 
A Rule for Transpose 
If a transposed matrix is itself transposed, you get the original back:  
 

 
 
This illustrates the rule (AT)T = A.  
Question: What is the transpose of: 

 
Answer: 
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The transpose of a row matrix is a column matrix. And the transpose of a column matrix 
is a row matrix.  
 
Rule Summary 
Here are some rules that cover what has been discussed. You should check that they seem 
reasonable, rather than memorize them. For each rule the matrices have the same number 
of rows and columns.  

A + 0 = A  A + B = B + A  0 + 0 = 0  

A + (B + C) = (A + B) + C (ab)A = a(bA)  a(A + B) = aB + aA  

a0 = 0  (-1)A = -A  A - A= 0  

(AT)T = A 0T = 0  

In the above, a and b are scalars (real numbers). A and B are matrices, and 0 is the zero 
matrix of appropriate dimension.  
Question: If A = B and B = C, then does A = C? 
Answer: Yes 
 
Vectors 
Another important mathematical concept used in graphics is the Vector. If P1 = (x1, y1, z1) 
is the starting point and P2 = (x2, y2, z2) is the ending point, then the vector V = (x2 – x1, 
y2 – y1, z2 – z1) 

 
 
and if P2 = (x2, y2, z2) is the starting point and P1 = (x1, y1, z1) is the ending point, then 
the vector V = (x1 – x2, y1 – y2, z1 – z2) 
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This just defines length and direction, but not position. 

 
Vector Projections 

Projection of v onto the x-axis 
 
 
 

 
 
 
 
 

 
 
 
 
 
Projection of v onto the xz plane 

 
 
 
 
 
 
 
 
 
 
2D Magnitude and Direction 
The magnitude (length) of a vector: 
   |V| = sqrt ( Vx

2 + Vy
2 ) 

 
The equation is derived from the Pythagorean theorem. 
The direction of a vector: 
    tan α = Vy / Vx 
    α = tan-1 (Vy / Vx) 
Where α is angular displacement from the x-axis. 
 
3D Magnitude and Direction 
3D magnitude is a simple extension of 2D 
  |V| = sqrt( Vx

2 + Vy
2 + Vz

2 ) 
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3D direction is a bit harder than in 2D. Particularly it needs 2 angles to fully describe 
direction. Latitude/ longitude is a real-world example. 
 
Direction Cosines are often used: 

• α, β, and γ are the positive angles that the vector makes with each positive 
coordinate axes x, y, and z, respectively 

   cos α = Vx / |V| 
   cos β = Vy / |V| 
   cos γ = Vz / |V| 
 
Vector Normalization 
“Normalizing” a vector means shrinking or stretching it so its magnitude is 1. A simple 
way is normalize by dividing by its magnitude: 
 
  V = (1, 2, 3) 
 |V| = sqrt( 12 + 22 + 32) = sqrt(14) + 3.74 
Vnorm = V / |V| = (1, 2, 3) / 3.74 = 
         (1 / 3.74, 2 / 3.74, 3 / 3.74) = (.27, .53, .80) 
 
|Vnorm| = sqrt( .272 + .532 + .802) = sqrt( .9 ) = .95 
 
Note that the last calculation doesn’t come out to exactly 1.  This is because of the error 
introduced by using only 2 decimal places in the calculations above. 
  
Vector Addition 
Equation:  
V3 = V1 + V2 = (V1x + V2x , V1y + V2y , V1z + V2z) 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Vector Subtraction 
 
Equation:  
V3 = V1 - V2 = (V1x - V2x , V1y - V2y , V1z - V2z) 
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Dot Product 
The dot product of 2 vectors is a scalar 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V1 . V2 = (V1x V2x) + (V1y V2y ) + (V1z V2z ) 
Or, perhaps more importantly for graphics: 

V1 . V2 = |V1|  |V2|  cos(θ) 
where θ is the angle between the 2 vectors and θ is in the range 0 ≤ θ ≤ Π  

 
Why is dot product important for graphics? 
It is zero if and only if the 2 vectors are perpendicular cos (90) = 0 
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The Dot Product computation can be simplified when it is known that the vectors are unit 
vectors 
 V1 . V2 = cos(θ) 
because |V1|  and |V2|  are both 1 
 
Saves 6 squares, 4 additions, and 2 sqrts. 
 
Cross Product 
The cross product of 2 vectors is a vector 
V1 x V2 = ( V1y V2z   -   V1z V2y , 
         V1z V2x    -   V1x V2z , 
         V1x V2y    -   V1y V2x ) 
 
Note that if you are big into linear algebra there is also a way to do the cross product 
calculation using matrices and determinants 
 
Again, just as with the dot product, there is a more graphical definition: 
V1 x V2 = u |V1|  |V2| sin (θ) 
 
where θ is the angle between the 2 vectors and θ is in the range 0 ≤ θ ≤ Π and u is the unit 
vector that is perpendicular to both vectors 
 
Why u?  
  |V1|  |V2|  sin(θ) produces a scalar and the  result needs to be a vector. 
 
 
 
 
 
 
 
The direction of u is determined by the right hand rule. 
The perpendicular definition leaves an ambiguity in terms of the direction of u 
Note that you can’t take the cross product of 2 vectors that are parallel to each other 
Sin (0) = sin (180) = 0 à produces the vector (0, 0, 0)  
 
Forming Coordinate Systems 
Cross products are great for forming coordinate system frames (3 vectors that are 
perpendicular to each other) from 2 random vectors. 

1) Cross V1 and V2 to form V3. 
V3 is now perpendicular to both V1 and V2 

2) Cross V2 and V3 to form V4 
V4 is now perpendicular to both V2 and V3 
Then V2, V4, and V3 form your new frame 
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V1 and V2 are in the new xy plane 
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LLeeccttuurree  NNoo..1111      2D Transformations I  

 
In the previous lectures so far we have discussed output primitive as well as filling 
primitives. With the help of them we can draw an attractive 2D drawing but that will be 
static whereas in most of the cases we require moving pictures for example games, 
animation, and different model; where we show certain objects moving or rotating or 
changing their size. 
 
Therefore, changes in orientation that is displacement, rotation or change in size is called 
geometric transformation. Here, we have certain basic transformations and some special 
transformation. We start with basic transformation. 
 
Basic Transformations 
 

Translation 
Rotation 
Scaling 

 
Above are three basic transformations. Where translation is independent of others 
whereas rotation and scaling depends on translation in most of cases. We will see how in 
their respective sections but here we will start with translation. 
 

Translation 
A translation is displacement from original 
place. This displacement happens to be 
along a straight line; where two distances 
involves one is along x-axis that is tx and 
second is along y-axis that is ty. The same 
is shown in the figure also we can express 
it with following equation as well as by 
matrix:  
 
x′ = x + tx ,   y′ = y + ty 
 
Here (tx, ty) is translation vector or shift 
vector. We can express above equations as a single matrix equation by using column 
vectors to represent coordinate positions and the translation vector: 
 
    P′ = P + T  
 
Where P =      P′=   T =  
 
 
Translation is a rigid-body transformation that moves objects without deformation. That 
is, every point on the object is translated by the same amount.  
 
A straight line can be translated by applying the above transformation equation to each of 
the line endpoints and redrawing the line between the new coordinates. Similarly a 
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polygon can be translated by applying the above transformation equation to each vertices 
of the polygon and redrawing the polygon with new coordinates. Similarly curved objects 
can be translated. For example to translate circle or ellipse, we translate the center point 
and redraw the same using new center point. 
 
Rotation 
A two dimensional rotation is applied to an object by repositioning it along a circular path 
in the xy plane. To rotate a point, its coordinates and rotation angle is required. Rotation 
is performed around a fixed point called pivot point. In start we will assume pivot point to 
be the origin or in other words we will find rotation equations for the rotation of object 
with respect to origin, however later we will see if we change our pivot point what should 
be done with the same equations. 
 
Another thing is to be noted that for a positive angle the rotation will be anti-clockwise 
where for negative angle rotation will be clockwise. 
 
Now for the rotation around the origin 
as shown in the above figure we 
required original position/ coordinates 
which in our case is P(x,y) and rotation 
angle θ. Now using polar coordinates 
assume point is already making angle Ф 
from origin and distance of point from 
origin is r, therefore we can represent x 
and y in the form: 
 
x = r cosФ and y = r sinФ 
 
Now if we want to rotate point by an angle θ, we have new angle that is (Ф+ θ), therefore 
now point P′(x′,y′) can be represented as: 
 
x′ = r cos(Ф + θ) = r cosФ cosθ – r sinФ sinθ 
and 
y′ = r sin(Ф + θ) = r cosФ sinθ + r sinФ cosθ  
 
Now replacing r cosФ = x and  r sinФ = y in above equations we get: 
 
x′ = x cosθ – y sinθ and  y′= x sinθ + y cosθ 
 
Again we can represent above equations with the help of column vectors: 
 
   P′= R . P 
Where  
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When coordinate positions are represented as row vectors instead of column vectors, the 
matrix product in rotation equation is transposed so that the transformed row coordinate 
vector [x′,y′] is calculated as:  
 
 P′ T  = (R . P)T 
  = PT . RT 

Where PT and the other transpose matrix can be obtained by interchanging rows and 
columns. Also, for rotation matrix, the transpose is obtained by simply changing the sign 
of the sine terms. 
 
Rotation about an Arbitrary Pivot Point: 
As we discussed above that pivot point may be 
any point as shown in the above figure, 
however for the sake of simplicity we assume 
above that pivot point is at origin. 
 
Anyhow, the situation can be dealt easily as 
we have equations of rotation with respect to 
origin. We can simply involve another 
transformation already read that is translation 
so simply translate pivot point to origin. By 
translation, now points will make angle with 
origin, therefore apply the same rotation equations and what next? Simply retranslate the 
pivot point to its original position that is if we subtract xr,yr now add them therefore we 
get following equations: 
 
x′ = xr + (x - xr) cosθ – (y - yr) sinθ  
y′ = yr + (x - xr) sinθ  – (y - yr) cosθ  
 
As it is discussed in translation rotation is also rigid-body transformation that moves the 
object along a circular path. Now if we want to rotate a point we already achieved it. But 
what if we want to move a line along its one end point very simple treat that end point as 
pivot point and perform rotation on the other end point as discussed above. Similarly we 
can rotate any polygon with taking some pivot point and recalculating vertices and then 
redrawing the polygon. 
 
Scaling 
A scaling transformation changes the size of an object. Scaling may be in any terms 
means either increasing the original size or decreasing the original size. An exemplary 
scaling is shown in the above figure 
where scaling factors used Sx=3 and 
Sy=2. So, what are these scaling factors 
and how they work very simple, simply 
we multiply each coordinate with its 
respective scaling factor. 
 
Therefore, scaling with respect to origin 
is achieved by multiplying x coordinate 
with factor Sx and y coordinate with 

Sx=3 
Sy=2
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factor Sy. Therefore, following equations can be expressed: 
 
  x′ = x.Sx   

y′ = y.Sy 
In matrix form it can be expressed as: 
  
   P′ = S.P 
 

 
 
Now we may have different values for scaling factor. Therefore, as it is multiplying factor 
therefore, if we have scaling factor > 1 then the object size will be increased than original 
size; whereas; in reverse case that is scaling factor < 1 the object size will be decreased 
than original size and obviously there will be no change occur in size for scaling factor 
equal 1. 
 
Two variations are possible in scaling that is having scaling factors to be kept same that is 
to keep original shape; which is called uniform scaling having Sx factor equal Sy factor. 
Other possibility is to keep Sx and Sy factor unequal that is called differential scaling and 
that will alter the original shape that is a square will no more remain square.  
 
Now above equation of scaling can be applied to any line, circle and polygon etc. 
However, as in case of line and polygon we will scale ending points or vertices then 
redraw the object but in circle or ellipse we will scale the radius.  
 
Now coming to the point when scaling with respect to any point other then origin, then 
same methodology will work that is to apply translation before scaling and retranslation 
after scaling. So here if we consider fixed/ pivot point (xf,yf), then following equations 
will be achieved: 
 
 
x′ = xf + (x - xf)Sx 
y′ = yf + (y - yf)Sy  
 
These can be rewritten as: 
 
x′ = x. Sx + xf (1 – Sx) 
y′ = y. Sy  + yf (1 – Sy)  
 
Where the terms xf (1 – Sx) and yf (1 – Sy) are constant for all points in the object. 
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LLeeccttuurree  NNoo..1122      2D Transformations II  
    
 
Before starting our next lecture just recall equations of three basic transformations i.e. 
translation, rotation and scaling: 
 
 Translation: P′= P + T  
 
 Rotation:  P′= R. P 
 
 Scaling: P′= S. P 
 
In many cases of computer graphics applications we require sequence of transformations. 
For example in animation on each next move we may have object to be translated than 
scaled. Similarly in games an object in a particular moment may have to be rotated as 
well as translated. That means we have to perform sequence of matrix operations but the 
matrix we have seen in the previous lecture have order which restrict them to be operated 
in sequence. However, with slight reformulated we can bring them into the form where 
they can easily be operated in any sequence thus efficiency can be achieved.  
 
Homogeneous Coordinates 
 

Again considering our previous lecture all the three basic transformations covered in 
that lecture can be expressed by following equation: 

  P′= M1.P + M2 
 

With coordinate positions P and P’ represented as column vectors. Matrix M1 is a 2 
by 2 array containing multiplicative factors, and M2 is a two-element column 
matrix containing translation terms. For translation, M1 is a the identity matrix, For 
rotation or scaling, M2 contains the translational terms associated with the pivot 
point or scaling fixed point. To produce a sequence of transformations with these 
equations, such as scaling followed by rotation then translation, we must calculate 
the transformed coordinate’s one step at a time. First, coordinate positions are 
scaled, then these scaled coordinates are rotated, and finally the rotated coordinates 
are translated. 

 
Now the question is can we find a way to eliminate the matrix addition associated with 
translation? Yes, we can but for that M1 will have to be rewritten as a 3x3 matrix and also 
the coordinate positions will have to be expressed as a  homogeneous coordinate triple:  
 
  (x, y) as (xh, yh, h) where 
 
  x =     xh       ,   y =     yh    
   h          h  
We can choose the h as any non-zero value. However, a convenient choice is 1, thus (x, 
y) has homogeneous coordinates as (x, y, 1). Expressing positions in homogeneous 
coordinates allows us to represent all geometric transformation equations as matrix 
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multiplications. Coordinates are represented with three-element column vectors, and 
transformation operations are written as 3 by 3 matrices. 
  
Translation with Homogeneous Coordinates 
The translation can now be expressed using homogeneous coordinates as:  
 

 
Abbreviated as: 
     P′ =   T (tx, ty)  .  P 
 
Rotation with Homogeneous Coordinates 
The rotation can now be expressed using homogeneous coordinates as:  
 

 
 
Abbreviated as: 
   P′ =   R (θ)  .  P 
 
Scaling with Homogeneous Coordinates 
The scaling can now be expressed using homogeneous coordinates as:  

 
 
Abbreviated as: 
     P′   =   S (Sx, Sy)  .  P 
Matrix representations are standard methods for implementing transformations in 
graphics systems. In many systems, rotation and scaling functions produce 
transformations with respect to the coordinate origin as expressed in the equation above. 
Rotations and scaling relative to other reference positions are then handled as a 
succession of transformation operations. 
 
Composite Transformations 

As in the previous section we achieved homogenous matrices for each of the basic 
transformation, we can find a matrix for any sequence of transformation as a 
composite transformation matrix by calculating the matrix product of the individual 
transformations. 
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Translations 
If two successive translations vectors (tx1, ty1) and (tx2, ty2) are applied to a 

coordinate position P, the final transformed location P is calculated as 
 
P′ = T(tx2,ty2) . {T(tx1,ty1) . P} 
  = {T(tx2,ty2) . T(tx1,ty1)} . P 
 
where P and P′ are represented as homogeneous-coordinate column vectors. The 

composite transformation matrix for this sequence of translations is 
 

 
or 

T(tx2,ty2) . T(tx1,ty1) = T(tx1 + tx2 , ty1 + ty2) 
 
Which means that two successive translations are additive. Hence, 
 

 
 
Composite Rotations 
Two successive Rotations applied to a point P produce the transformed position 
 
   P′ = R(θ2) . {R(θ1) . P} 
    = {R(θ2) . R(θ1)} . P 
By multiplying the two rotation matrices, we can verify that two successive rotations are 
additive: 
 
   R(θ2) . R(θ1) = R(θ1 + θ2) 
so that the final rotated coordinates can be calculated with the composite rotation matrix 
as 
   P′ = R(θ1 + θ2) . P 
 
Composite Scaling 
Concatenating transformation matrices for two successive scaling operations produces the 
following composite scaling matrix: 
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  or 
   S (sx2,sy2).S(sx1,sy1) = S(sx1.sx2, sy1.sy2) 
The resulting matrix in the case indicates that successive scaling operations are 
multiplicative. That is, if we were to triple the size of an object twice in succession, the 
final size would be nine times that of the original. 
 
General Pivot Point Rotation 
 
With a graphics package that only provides a rotate function for revolving object about 
the coordinate origin, we can generate rotations about any selected pivot point (xr, yr) by 
performing the following sequence of translate-rotate-translate operations: 

 
Translate the object so that the pivot-point positions is moved to the coordinate origin 
Rotate the object about the coordinate origin 
Translate the object so that the pivot point is returned to its original position 

 

 

 
 
which can be expressed in the form 
 
T(xr , yr) . R(θ) . T(-xr ,-yr) = R(xr, yr , θ) 
 
where T(-xr , -yr) = T-1(xr , yr). 
 
General Fixed Point Scaling 
Following figure is showing a transformation sequence to produce scaling with respect to 
a selected fixed point (xf, yf) using a scaling function that can only scale relative to the 
coordinate origin. 
 

Translate object so that the fixed point coincides with the coordinate origin 
Scale the object with respect to the coordinate origin 
Use the inverse translation of step 1 to return the object to its original position 

 
Concatenating the matrices for these three operations produces the required scaling 
matrix. 
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T(xf,yf).S(sx,sy).T(-xf,-yf) = S(xf,yf , sx,sy) 
 
This transformation is automatically generated on systems that provide a scale function 
that accepts coordinates for the fixed point. 
 
Concatenation Properties 
Matrix multiplication is associative. For any three matrices A, B and C, the matrix 
product A. B. C can b3e performed by first multiplying A and B or by first multiplying B 
and C: 
 

A . B . C = (A . B) . C = A . (B . C) 
Therefore, we can evaluate matrix products using a left-to-right or a right-to-left 
associative grouping. On the other hand, transformation products may not be 
commutative. The matrix product A. B is not equal to B. A, in general. This means that if 
we want to translate and rotate an object, we must be careful about the order in which the 
composite matrix is evaluated as show in following figure.  
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Reversing the order in which a sequence of transformations is performed may affect the 
transformed position of an object. In above figure an object is first translated, and then 
rotated. Whereas, in this figure an object is rotated first, then translated. 

 
 

 
For some special cases, such as a sequence of transformations all of same kind, the 
multiplication of transformation matrices is commutative. As an example, two successive 
rotations could be performed in either order and the final position would be the same. 
This commutative property holds also for two successive translations or two successive 
scalings. Another commutative pair of operation is rotation and uniform scaling (Sx = Sy). 
 
General Composite Transformations and Computational Efficiency 

A general two-dimensional transformation, representing a combination of translations, 
rotations, and scaling, can be expressed as 

 

 
 
The four elements rsij are the multiplicative rotation-scaling terms in the transformation 
that involve only rotating angles and scaling factors. Elements trsx and trsy are the 
translational terms containing combinations of translation distances, pivot-point and 
fixed-point coordinates, and rotation angles and scaling parameters. For example, if an 
object is to be scaled and rotated about its centroid coordinates (xc, yc) and then 
translated, the values for the elements of the composite transformation matrix are 
 
T (tx,ty) . R(xc,yc, θ) . S(xc,yc,sx,sy) 
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Although matrix given before above matrix requires nine multiplications and six 
additions, the explicit calculations for the transformed coordinates are 
 
x’ = x.rsxx + y.rsxy + trsx 
y’ = x.rsyx + y.rsyy + trsy 
 
Thus, we only need to perform four multiplications and four additions to transform 
coordinate positions. This is the maximum number of computations required for any 
transformation sequence, once the individual matrices have been concatenated and the 
elements of the composite matrix evaluated. Without concatenation, the individual 
transformations would be applied one at a time and the number of calculations could be 
significantly increased. An efficient implementation for the transformation operations, 
therefore, is to formulate transformation matrices, concatenate any transformation 
sequence, and calculate transformed coordinates using above equations. 
 
Other Transformations 
Basic transformations such as translation, rotation, and scaling are included in most 
graphics packages. Some packages provide a few additional transformations that are 
useful in certain applications. Two such transformations are reflection and shear. 
 

Reflection 
A reflection is a transformation that produces a mirror image of an object. The 

mirror image for a two-dimensional reflection is generated relative to an axis of 
reflection by rotating the object 180o about the reflection axis. We can choose an 
axis of reflection in the xy plane or perpendicular to the xy plane. When the 
reflection axis is a line in the xy plane; the rotation path about this axis is in a 
plane perpendicular to the xy plane. For reflection axes that are perpendicular to 
the xy plane, the rotation path in the xy plane. Following are examples of some 
common reflections. 

 
Reflection about the line y=0, the x-axis, relative to axis of reflection can be 

achieved by rotating the object about axis of reflection by 180o. 

 
 

⎥
⎥
⎥

⎦
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⎢
⎢
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010
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The transformation matrix is 

 
 
Similarly in case of reflection about y-axis the transformation matrix will be, also 

the reflection is shown in following figure: 
 

 
 

 
 

Shear 
A transformation that distorts the shape of an object such that the transformed 

shape appears as if the object were composed of internal layers that had been 
caused to slide over each other is called a shear. Two common shearing 
transformations are those that shift coordinate x values and those that shift y 
values. 

 
An x direction shear relative to the x axis is produced with the transformation 

matrix 
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which transforms coordinate position as 
 x′ = x + shx . y 
 y′ = y  

 
Any real number can be assigned to the shear parameter shx. A coordinate position (x,y) is 
then shifted horizontally by an amount proportional to its distance (y value) from the x 
axis (y=0). Setting  shx to 2, for example, changes the square in following figure into a 
parallelogram. Negative values for shx shift coordinate positions to the left. 

 

 
Similarly y-direction shear relative to the y-axis is produced with the transformation 
matrix 

 
and coordinate positions transformed as 
x′ = x 
y′ = shy . x + y  
 
Another similar transformation may be in x and y direction shear, where matrix will be  

 
and coordinate positions transformed as 
 
x′ = x + shx . y  
y′ = shy . x + y
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Lecture No.13   Drawing Example 
 
Let us now learn some of the implementation techniques. So far we already have done 
with learning drawing primitives including output primitives as well as filling primitives. 
Also we have studied transformations. So we should be in position to make use of them in 
two-dimensional drawing. Though most of you will think that they can draw two-
dimensional drawing very easily yet it may not be true due to lack of knowledge of some 
implementation techniques, which are very useful in drawing as well as in transformation. 
So we will cover this with some examples. 
 
Drawing Table 
First of all we are going to draw a very simple drawing that is a “table”. Yes, a simple 
rectangular table with four legs. So, in order to draw such table we have to draw “table 
top” plus four legs connecting four edges of the rectangle. 
 
Design 
Here we will first design the table like an ordinary student. So, what we will do we will 
see the location of the table. For example assume that our screen has dimensions 640*480 
and initially we want to draw table right in the middle of the center. Also, another factor 
is important that is y axis travels from top to bottom. That is y=0 will be the top edge of 
the screen and 480 will be the lower edge of the screen. Another thing is the dimension of 
the table we want to draw. Therefore, we have table that has width 20, length 14 and 
height 10.  
 
Therefore, we have to find out four vertices that make the corners of the table. So, first of 
all consider x coordinate.  Left edge of the table will be 10 less from the center of the 
screen that is 320. Therefore, x1 and x4 values will be 310. Similarly right edge of the 
table will be 10 plus center of the screen. Therefore, x2 and x3 values will be 330. 
Similarly, top edge of the table will be 10 less from the center of the screen that is 240. 
Therefore, y1 and y2 values will be 233 and y3 and y4, which are lying on the lower 
edge, will be 247. Finally, last parameter is required to define the length of legs. Having 
length of legs we have to simply draw vertical lines of that length starting from each 
corner respectively. Therefore, following code will be required to draw such a table: 
 
  void translate(int tx, int ty) 
  { 
   xc+=tx; 
   yc+=ty; 
   x1+=tx; 
   x2+=tx; 
   x3+=tx; 
   x4+=tx; 
   y1+=ty; 
   y2+=ty; 
   y3+=ty; 
   y4+=ty; 
  } 
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  void rotate (float angle) 
  { 
   int tempx=x1; 
   x1=xc+(tempx-xc)*cos(angle)-(y1-yc)*sin(angle); 
   y1=yc+(tempx-xc)*sin(angle)+(y1-yc)*cos(angle); 
   tempx=x2; 
   x2=xc+(tempx-xc)*cos(angle)-(y2-yc)*sin(angle); 
   y2=yc+(tempx-xc)*sin(angle)+(y2-yc)*cos(angle); 
   tempx=x3; 
   x3=xc+(tempx-xc)*cos(angle)-(y3-yc)*sin(angle); 
   y3=yc+(tempx-xc)*sin(angle)+(y3-yc)*cos(angle); 
   tempx=x4; 
   x4=xc+(tempx-xc)*cos(angle)-(y4-yc)*sin(angle); 
   y4=yc+(tempx-xc)*sin(angle)+(y4-yc)*cos(angle); 
  } 
 
  void scale(int sx, int sy) 
  { 
   x1=xc+(x1-xc)*sx; 
   x2=xc+(x2-xc)*sx; 
   x3=xc+(x3-xc)*sx; 
   x4=xc+(x4-xc)*sx; 
   y1=yc+(y1-yc)*sy; 
   y2=yc+(y2-yc)*sy; 
   y3=yc+(y3-yc)*sy; 
   y4=yc+(y4-yc)*sy; 
   legLength*=sy; 
  } 
    

x1=310, x2=330, x3=330, x4=310; 
 y1=233, y2=233, y3=247, y4=247; 
 legLength=10; 
 
So, what I want that you should observe the issue. Now consider first of all translation. In 
translation you have to translate all the points one by one and redraw the picture. 
Instruction to translate the table will be of the form: 
 

Now in this design drawing is pretty simple. We have to draw 4 lines between corner 
points. That is from (x1, y1) to (x2, y2), from (x2, y2) to (x3, y3), from (x3, y3) to 
(x4, y4) and from (x4, y4) to (x1, y1). That will suffice our table top. Next simply 
draw four lines each starting from one of the corner of the table in the vertical 
direction having length 10. Now let us see the simple code of drawing such table: 

 
 //Table Top  

line (x1, y1, x2, y2); 
 line (x2, y2, x3, y3); 
 line (x3, y3, x4, y4); 
 line (x4, y4, x1, y1); 
 //Table Legs 
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 line (x1, y1, x1, y1+legLength); 
 line (x2, y2, x2, y2+legLength); 
 line (x3, y3, x3, y3+legLength); 
 line (x4, y4, x4, y4+legLength); 
 
 Now is not that easy to draw table in the same manner? We will discuss the problem after 
take a bit look at basic transformations (translation, rotation, scaling). The code is: 
 

void translate(int tx, int ty) 
 { 
  xc+=tx; 
  yc+=ty; 
  x1+=tx; 
  x2+=tx; 
  x3+=tx; 
  x4+=tx; 
  y1+=ty; 
  y2+=ty; 
  y3+=ty; 
  y4+=ty; 
 } 
 
Now seeing the code you can easily understand the idea. In translation we have to 
translate all points one by one and then redrawing the table at new calculated points. Later 
you will see in the other method that translation will only involve one line. 
 
Anyhow next we will move to other transformation (rotation). Having pivot point at the 
center of the screen, we have to perform translation in three steps. That is translation then 
rotation and then translation. So take a look at the code: 
 
 void rotate (float angle) 
 { 
  int tempx=x1; 
  x1=xc+(tempx-xc)*cos(angle)-(y1-yc)*sin(angle); 
  y1=yc+(tempx-xc)*sin(angle)+(y1-yc)*cos(angle); 
  tempx=x2; 
  x2=xc+(tempx-xc)*cos(angle)-(y2-yc)*sin(angle); 
  y2=yc+(tempx-xc)*sin(angle)+(y2-yc)*cos(angle); 
  tempx=x3; 
  x3=xc+(tempx-xc)*cos(angle)-(y3-yc)*sin(angle); 
  y3=yc+(tempx-xc)*sin(angle)+(y3-yc)*cos(angle); 
  tempx=x4; 
  x4=xc+(tempx-xc)*cos(angle)-(y4-yc)*sin(angle); 
  y4=yc+(tempx-xc)*sin(angle)+(y4-yc)*cos(angle); 
 } 
 
So, here calculations required each time and for each pixel; whereas; you will observe 
that we can make that rotation pretty simple. A similar problem is lying in the case of 
scaling that is to perform three steps; translation then scaling and then translation. So look 
at the code given below: 
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 void scale(int sx, int sy) 
 { 
  x1=xc+(x1-xc)*sx; 
  x2=xc+(x2-xc)*sx; 
  x3=xc+(x3-xc)*sx; 
  x4=xc+(x4-xc)*sx; 
  y1=yc+(y1-yc)*sy; 
  y2=yc+(y2-yc)*sy; 
  y3=yc+(y3-yc)*sy; 
  y4=yc+(y4-yc)*sy; 
  legLength*=sy; 
 } 
 
Therefore, same heavy calculations involves in scaling. So, here we will conclude our 
first method and will start next method so that we can judge how calculations become 
simple. Now having all discussion on table drawing, let us now consider the complete 
implementation of class Table: 
 
/******************************************************************** 
Table is designed without considering pivot point simply taking points according to the 
requirement. 
 
Therefore, translation of table involves translation of all points. 
 
Scaling and Rotation will be done after translation. 
********************************************************************/ 
 
#include <graphics.h> 
#include <iostream.h> 
#include <conio.h> 
#include <math.h> 
 
float round(float x) 
{ 
 return x+0.5; 
} 
 
class Table 
{ 
 private: 
  int xc, yc;//Center of the figure 
  int xp, yp;//Pivot point for this figure 
  int x1, x2, x3, x4; 
  int y1, y2, y3, y4; 
  int legLength; 
 
 public: 
  Table() 
  { 
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   xc=320, yc=240;//Center of the figure 
   xp=0; yp=0;//Pivot point for this figure 
   x1=310, x2=330, x3=330, x4=310; 
   y1=233, y2=233, y3=247, y4=247; 
   legLength=10; 
  } 
 
  void translate(int tx, int ty) 
  { 
   xc+=tx; 
   yc+=ty; 
   x1+=tx; 
   x2+=tx; 
   x3+=tx; 
   x4+=tx; 
   y1+=ty; 
   y2+=ty; 
   y3+=ty; 
   y4+=ty; 
  } 
 
  void rotate (float angle) 
  { 
   int tempx=x1; 
   x1=xc+(tempx-xc)*cos(angle)-(y1-yc)*sin(angle); 
   y1=yc+(tempx-xc)*sin(angle)+(y1-yc)*cos(angle); 
   tempx=x2; 
   x2=xc+(tempx-xc)*cos(angle)-(y2-yc)*sin(angle); 
   y2=yc+(tempx-xc)*sin(angle)+(y2-yc)*cos(angle); 
   tempx=x3; 
   x3=xc+(tempx-xc)*cos(angle)-(y3-yc)*sin(angle); 
   y3=yc+(tempx-xc)*sin(angle)+(y3-yc)*cos(angle); 
   tempx=x4; 
   x4=xc+(tempx-xc)*cos(angle)-(y4-yc)*sin(angle); 
   y4=yc+(tempx-xc)*sin(angle)+(y4-yc)*cos(angle); 
  } 
 
  void scale(int sx, int sy) 
  { 
   x1=xc+(x1-xc)*sx; 
   x2=xc+(x2-xc)*sx; 
   x3=xc+(x3-xc)*sx; 
   x4=xc+(x4-xc)*sx; 
   y1=yc+(y1-yc)*sy; 
   y2=yc+(y2-yc)*sy; 
   y3=yc+(y3-yc)*sy; 
   y4=yc+(y4-yc)*sy; 
   legLength*=sy; 
  } 
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  void draw() 
  { 
   line (x1, y1, x2, y2); 
   line (x2, y2, x3, y3); 
   line (x3, y3, x4, y4); 
   line (x4, y4, x1, y1); 
   line (x1, y1, x1, y1+legLength); 
   line (x2, y2, x2, y2+legLength); 
   line (x3, y3, x3, y3+legLength); 
   line (x4, y4, x4, y4+legLength); 
  } 
}; 
 
 
void main() 
{ 
 clrscr(); 
 int gdriver = DETECT, gmode, errorcode; 
 initgraph(&gdriver, &gmode, "c:\\tc\\bgi"); 
 Table table; 
 table.draw(); 
 setcolor(CYAN); 
 table.translate(15, 25); 
 table.draw(); 
 table.translate(50, 75); 
 table.scale(3,2); 
 table.draw(); 
 table.translate(-100, 75); 
 table.rotate(3.14/4); 
 table.draw(); 
 getch(); 
 closegraph(); 
} 
 
------------------------------------------------------------------------------------------------------------
--------------------- 
 
Second Method 
 
Well now we will design our table by considering pivot point. That is we will decide our 
pivot point and next all points will be taken according to that pivot point. Similarly you 
will see that this consideration will do a little effect on drawing portion of the code; 
otherwise all other things will become simpler. 
 
Table Design 
So let us start with designing the table, that is to calculate parameters of the table. That is 
4 corners plus length of legs. First of all we assume that our pivot point is lying on the 
center of the screen and initially that is (0, 0). So having pivot point we will calculate 
other points with respect to that point. 
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So having length 20 units, left edge of the table will be ten digits away from the pivot 
point and away on the left side; therefore; x1 and x4 will be –10; and similarly right edge 
of the table will be ten digits away from the pivot point on the right side. Therefore, x2 
and x3 will be 10 (yes, positive ten). 
 
Now consider the top and lower edges of the table they will be 7 points away from the 
pivot point in each direction; therefore value of y on the upper edge will be –7 and on the 
lower edge it will be 7 (yes, positive seven). Now finally y1, y2 will be –7 and y3, y4 will 
be 7. Well, length of the leg will be simple ten. Therefore, now take a look at the 
parameters in this design: 
 
  xc=320, yc=240;//Center of the figure 
  xp=0; yp=0;//Pivot point for this figure 
  x1=-10, x2=10, x3=10, x4=-10; 
  y1=-7, y2=-7, y3=7, y4=7; 
  legLength=10; 
 
Table Drawing 
So, points x1, x2, x3, and x4 are not having the value at which they will appear on the 
screen rather they are at the relative distance from the pivot point. Here, we are also using 
xc, yc that is center on the screen that will keep pivot point align. Now having vertices 
defined in this fashion our drawing method will be differ from the older one. That is 
while drawing lines we will add center of the screen and pivot point in each vertex. That 
will take us to the exact position of the screen. Let us look at the drawing code: 
 int xc=this->xc+xp; 
 int yc=this->yc+yp; 
 line (xc+x1, yc+y1, xc+x2, yc+y2); 
 line (xc+x2, yc+y2, xc+x3, yc+y3); 
 line (xc+x3, yc+y3, xc+x4, yc+y4); 

line (xc+x4, yc+y4, xc+x1, yc+y1); 
 line (xc+x1, yc+y1, xc+x1, yc+y1+legLength); 
 line (xc+x2, yc+y2, xc+x2, yc+y2+legLength); 
 line (xc+x3, yc+y3, xc+x3, yc+y3+legLength); 
 line (xc+x4, yc+y4, xc+x4, yc+y4+legLength); 
 
So, in the above code first we have added xp to xc in order to reduce some of the 
calculations required in each line drawing command. Next, we have added that calculated 
figure to all line drawing commands in order to draw them exactly at the position where it 
should be appear in the screen. 
 
Now having a bit difficulty while drawing there are many more facilities that we will 
enjoy in especially transformation. 
 
Table Transformation 
So, first of all consider Translation. In this technique translation is quite simple that is 
simply add translation vector in the pivot point. All other points will be calculated 
accordingly. Now look at the very simple code of translation: 
 void translate(int tx, int ty) 
 { 
  xp+=tx; 



13-Drawing Example                                                                                                                                     VU        
 

 
© Copyright Virtual University of Pakistan 

 

135

  yp+=ty; 
 } 
So how simple add tx to xp and ty to yp. Similarly next consider rotation that is again 
very simple; no need of translation. Let us look at the code:  
 void rotate (float angle) 
 { 
  int tempx=x1; 
  x1=tempx*cos(angle)-y1*sin(angle); 
  y1=tempx*sin(angle)+y1*cos(angle); 
  tempx=x2; 
  x2=tempx*cos(angle)-y2*sin(angle); 
  y2=tempx*sin(angle)+y2*cos(angle); 
  tempx=x3; 
  x3=tempx*cos(angle)-y3*sin(angle); 
  y3=tempx*sin(angle)+y3*cos(angle); 
  tempx=x4; 
  x4=tempx*cos(angle)-y4*sin(angle); 
  y4=tempx*sin(angle)+y4*cos(angle); 
 } 
 
So, here you can check that there is no extra calculation simply rotated points are 
calculated using formula that is used to rotate a point around the origin. Now similarly 
given below you can see calculations of scaling. 
 
 void scale(int sx, int sy) 
 { 
  x1=x1*sx; 
  x2=x2*sx; 
  x3=x3*sx; 
  x4=x4*sx; 
  y1=y1*sy; 
  y2=y2*sy; 
  y3=y3*sy; 
  y4=y4*sy;  
  legLength=legLength*sy; 
 } 
 
So very simple calculation is done again that is to multiply scaling factor with old vertices 
and new vertices will be obtained. 
 
So, now we look at the class Table in which table is designed considering pivot point and 
taking all other points accordingly. 
                                                                                                                                                                        
/******************************************************************** 
Table is designed with considering pivot point and taking all other 
points with respect to that pivot point. 
 
Therefore, translation of table involves translation of only pivot 
point, all other points will change respectively. 
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Scaling and Rotation will be done directly no translation or other 
transformation is required. 
********************************************************************/ 
 
 
#include <graphics.h> 
#include <iostream.h> 
#include <conio.h> 
#include <math.h> 
 
float round(float x) 
{ 
 return x+0.5; 
} 
 
class Table 
{ 
 private: 
  int xc, yc;//Center of the figure 
  int xp, yp;//Pivot point for this figure 
  int x1, x2, x3, x4; 
  int y1, y2, y3, y4; 
  int legLength; 
  int sfx, sfy;   //Scaling factor 
 public: 
 Table() 
 { 
  xc=320, yc=240;//Center of the figure 
  xp=0; yp=0;//Pivot point for this figure 
  x1=-10, x2=10, x3=10, x4=-10; 
  y1=-7, y2=-7, y3=7, y4=7; 
  legLength=10; 
  sfx=1, sfy=1; 
 } 
 
 void translate(int tx, int ty) 
 { 
  xp+=tx; 
  yp+=ty; 
 } 
 
 void rotate (float angle) 
 { 
  int tempx=x1; 
  x1=tempx*cos(angle)-y1*sin(angle); 
  y1=tempx*sin(angle)+y1*cos(angle); 
  tempx=x2; 
  x2=tempx*cos(angle)-y2*sin(angle); 
  y2=tempx*sin(angle)+y2*cos(angle); 
  tempx=x3; 
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  x3=tempx*cos(angle)-y3*sin(angle); 
  y3=tempx*sin(angle)+y3*cos(angle); 
  tempx=x4; 
  x4=tempx*cos(angle)-y4*sin(angle); 
  y4=tempx*sin(angle)+y4*cos(angle); 
 } 
 void scale(int sx, int sy) 
 { 
  x1=x1*sx; 
  x2=x2*sx; 
  x3=x3*sx; 
  x4=x4*sx; 
  y1=y1*sy; 
  y2=y2*sy; 
  y3=y3*sy; 
  y4=y4*sy; 
  legLength=legLength*sy; 
 } 
 void draw() 
 { 
  int xc=this->xc+xp; 
  int yc=this->yc+yp; 
  line (xc+x1, yc+y1, xc+x2, yc+y2); 
  line (xc+x2, yc+y2, xc+x3, yc+y3); 
  line (xc+x3, yc+y3, xc+x4, yc+y4); 
  line (xc+x4, yc+y4, xc+x1, yc+y1); 
  line (xc+x1, yc+y1, xc+x1, yc+y1+legLength); 
  line (xc+x2, yc+y2, xc+x2, yc+y2+legLength); 
  line (xc+x3, yc+y3, xc+x3, yc+y3+legLength); 
  line (xc+x4, yc+y4, xc+x4, yc+y4+legLength); 
 }}; 
void main() 
{ 
 clrscr(); 
 int gdriver = DETECT, gmode, errorcode; 
 initgraph(&gdriver, &gmode, "c:\\tc\\bgi"); 
 Table table; 
 table.draw(); 
 setcolor(CYAN); 
 table.translate(15, 25); 
 table.draw(); 
 table.translate(50, 0); 
 table.scale(3,2); 
 table.draw(); 
 table.translate(-100, 0); 
 table.rotate(3.14/4); 
 table.draw(); 
 getch(); 
 closegraph(); 
} 
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Lecture No.14   Clipping-I 

 
Concept 
It is desirable to restrict the effect of graphics primitives to a sub-region of the canvas, to 
protect other portions of the canvas. All primitives are clipped to the boundaries of this 
clipping rectangle; that is, primitives lying outside the clip rectangle are not drawn.  

The default clipping rectangle is the full canvas (the screen), and it is obvious that we 
cannot see any graphics primitives outside the screen. 
A simple example of line clipping can illustrate this idea: 
 
This is a simple example of line clipping: the display window is the canvas and also the 
default clipping rectangle, thus all line segments inside the canvas are drawn. 
 
The red box is the clipping rectangle we will use later, and the dotted line is the extension 
of the four edges of the clipping rectangle. 
 

 
 

 
Point Clipping 
Assuming a rectangular clip window, point clipping is easy. we save the point if: 
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xmin <= x <=xmax  
ymin <= y <= ymax  
 
Line Clipping 
This section treats clipping of lines against rectangles. Although there are specialized 
algorithms for rectangle and polygon clipping, it is important to note that other graphic 
primitives can be clipped by repeated application of the line clipper.  
 
Clipping Individual Points 
Before we discuss clipping lines, let's look at the simpler problem of clipping individual 
points.  
If the x coordinate boundaries of the clipping rectangle are Xmin and Xmax, and the y 
coordinate boundaries are Ymin and Ymax, then the following inequalities must be 
satisfied for a point at (X, Y) to be inside the clipping rectangle:  
            Xmin < X < Xmax 
 
        and  
 
         Ymin < Y < Ymax 
       
If any of the four inequalities does not hold, the point is outside the clipping rectangle. 
Trivial Accept - save a line with both endpoints inside all clipping boundaries.  
Trivial Reject - discard a line with both endpoints outside the clipping boundaries.  
For all other lines - compute intersections of line with clipping boundaries.  
 
Parametric representation of a line:  
 
x = x1 + u (x2 - x1)  
y = y1 + u (y2 - y1), and 0 <= u <= 1.  
If the value of u for an intersection with a clipping edge is outside the range 0 to 1, then 
the line does not enter the interior of the window at that boundary. If the value of u is 
within this range, then the line does enter the interior of the window at that boundary. 
 
Solve Simultaneous Equations  
To clip a line, we need to consider only its endpoints, not its infinitely many interior 
points. If both endpoints of a line lie inside the clip rectangle (eg AB, refer to the first 
example ), the entire line lies inside the clip rectangle and can be trivially accepted. If one 
endpoint lies inside and one outside(eg CD), the line intersects the clip rectangle and we 
must compute the intersection point. If both endpoints are outside the clip rectaangle, the 
line may or may not intersect with the clip rectangle (EF, GH, and IJ), and we need to 
perform further calculations to determine whether there are any intersections. 
The brute-force approach to clipping a line that cannot be trivially accepted is to intersect 
that line with each of the four clip-rectangle edges to see whether any intersection points 
lie on those edges; if so, the line cuts the clip rectangle and is partially inside. For each 
line and clip-rectangle edge, we therefore take the two mathematically infinite lines that 
contain them and intersect them. Next, we test whether this intersection point is "interior" 
-- that is, whether it lies within both the clip rectangle edge and the line; if so, there is an 
intersection with the clip rectangle. In the first example, intersection points G' and H' are 
interior, but I' and J' are not. 
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The Cohen-Sutherland Line-Clipping Algorithm 
The more efficient Cohen-Sutherland Algorithm performs initial tests on a line to 
determine whether intersection calculations can be avoided.  
Steps for Cohen-Sutherland algorithm 
End-points pairs of the line are checked for trivial acceptance or trivial reject using 
outcode.  
If not trivial-acceptance or trivial-reject, the line is divided into two segments at a clip 
edge.  
Line is iteratively clipped by testing trivial-acceptance or trivial-rejected, and divided into 
two segments until completely inside or trivial-rejected.  
Trivial acceptance/reject test 
To perform trivial accept and reject tests, we extend the 
edges of the clip rectangle to divide the plane of the clip 
rectangle into nine regions. Each region is assigned a 4-
bit code determined by where the region lies with 
respect to the outside halfplanes of the clip-rectangle 
edges. Each bit in the outcode is set to either 1 (true) or 
0 (false); the 4 bits in the code correspond to the 
following conditions: 
Bit 1: outside halfplane of top edge, above top edge Y > 
Ymax  
Bit 2: outside halfplane of bottom edge, below bottom 
edge Y < Ymin  
Bit 3: outside halfplane of right edge, to the right of right edge X > Xmax  
Bit 4: outside halfplane of left edge, to the left of left edge X < Xmin  
Conclusion 
In summary, the Cohen-Sutherland algorithm is efficient when out-code testing can be 
done cheaply (for example, by doing bit-wise operations in assembly language) and 
trivial acceptance or rejection is applicable to the majority of line segments. (For 
example, large windows - everything is inside, or small windows - everything is outside). 
 
Liang-Barsky Algorithm 
Faster line clippers have been developed that are based on analysis of the parametric 
equation of a line segment, which we can write in the form: 
 
 x = x1 + u ∆x 
 y = y1 + u ∆y, where 0 <= u <= 1 
 
Where ∆x = x2 - x1 and ∆y = y2 - y1. Using these parametric equations, Cryus and Beck 
developed an algorithm that is generally more efficient than the Cohen-Sutherland 
algorithm. Later, Liang and Barsky independently devised an even faster parametric line-
clipping algorithm. Following the Liang-Barsky approach, we first write the point-
clipping in a parametric way: 
  

xmin <= x1 + u ∆x <= xmax 
 ymin <= y1 + u ∆y <= ymax  
 
of these four inequalities can be expressed as 
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u * pk <= qk, for k = 1, 2, 3, 4  
 
Where parameters p and q are defined as: 
 
 p1 = -∆x, q1 = x1 - xmin 

 p2 = -∆x, q2 = xmax  - x1 
 p3 = -∆y, q3 = y1 - ymin 
 p4 = -∆y, q4 = ymax  - y1 
 
Any line that is parallel to one of the clipping boundaries has pk = 0 for the value of k 
corresponding to that boundary (k = 1, 2, 3, 4 correspond to the left, bottom, and top 
boundaries, respectively). If, for that value of k, we also find qk >= 0, the line is inside the 
parallel clipping boundary. 
 
When pk < 0, the infinite extension of the line proceeds from the outside to the inside of 
the infitite extension of the particular clipping boundary. If pk > 0, the line proceeds from 
the inside to the outside. For a nonzero value of pk = 0, we can calculate the value of u 
that corresponds to the point where the infinitely extended line intersects the extension of 
boundary k as: 
   
u = qk / pk  
 
For each line, we can calculate values for parameters u1 and u2 that defines that part of the 
line that lies within the clip rectangle. The value of u1 is determined by looking at the 
rectangle edges for which the line proceeds from the outer side to the inner side. (p < 0). 
For these edges we calculate rk = qk / pk. 
 
The value of u1 is taken as the largest of the set consisting of o and the various values of r. 
Conversely, the value of u2 is determined by examining the boundaries for which the line 
proceeds from inside to outside (p > o). A value of rk is calculated for each of these 
boundaries and the value of u2 is the minimum of the set consisting of 1 and the 
calculated r values. If u1 > u2, the line is completely outside the clip window and it can be 
rejected. Otherwise, the end points of the clipped line are calculated from the two values 
of parameter u. 
 
This algorithm is presented in the following procedure. Line intersection parameters are 
initialized to the values u1 = 0 and u2 = 1. For each clipping boundary, the appropriate 
values for p and q are calculated and used by the function clipTest to determine whether 
the line can be rejected or whether the intersection parameters are to be adjusted. 
 
When p < 0, the parameter r is used to update u1; when p < 0, the parameter r is used to 
update u2. 
 
If updating u1 or u2 results in u1 > u2, we reject the line. 
 
Otherwise, we update the appropriate u parameter only if the new value results in a 
shortening of the line. 
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When p = 0 and q < 0, we can discard the line since it is parallel to and outside of this 
boundary.  
 
If the line has not been rejected after all four values of p and q have been tested, the 
endpoints of the clipped line are determined from values of u1 and u2. 
 
 
Conclusion 
 
In general, the Liang-Barsky algorithm is more efficient than the Cohen Sutherland 
algorithm, since intersection calculations are reduced. Each update of parameters u1 and 
u2 requires only one division; and window intersections of the line are computed only 
once, when the final values of u1 and u2 have computed. In contrast, the Cohen-
Sutherland algorithm can repeatedly calculate intersections along a line path, even though 
the line may be completely outside the clip window, and, each intersection calculation 
requires both a division and a multiplication. Both the Cohen Sutherland and the Liang 
Barsky algorithms can be extended to three-dimensional clipping. 
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Lecture No.15   Clipping-II 

 
Polygon Clipping 
A polygon is usually defined by a sequence of vertices and edges. If the polygons are un-
filled, line-clipping techniques are sufficient however, if the polygons are filled, the 
process in more complicated. A polygon may be fragmented into several polygons in the 
clipping process, and the original colour associated with each one. The Sutherland-
Hodgeman clipping algorithm clips any polygon against a convex clip polygon. The 
Weiler-Atherton clipping algorithm will clip any polygon against any clip polygon. The 
polygons may even have holes.  
An algorithm that clips a polygon must deal with many different cases. The case is 
particularly note worthy in that the concave polygon is clipped into two separate 
polygons. All in all, the task of clipping seems rather complex. Each edge of the polygon 
must be tested against each edge of the clip rectangle; new edges must be added, and 
existing edges must be discarded, retained, or divided. Multiple polygons may result from 
clipping a single polygon. We need an organized way to deal with all these cases. 
The following example illustrates a simple case of polygon clipping. 

 
Given below are some examples to elaborate further. 
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Polygon clipping - disjoint polygons. 
 

 
Polygon clipping - disjoint polygons. 
 



15-Clipping-II                                                                                                                                                VU        
 

 
© Copyright Virtual University of Pakistan 

 

145

 
Polygon clipping - open polygons. 
 

 
Polygon clipping - open polygons. 
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Polygon clipping - open polygons. 
 
Sutherland and Hodgman's polygon-clipping algorithm 
Sutherland and Hodgman's polygon-clipping algorithm uses a divide-and-conquer 
strategy: It solves a series of simple and identical problems that, when combined, solve 
the overall problem. The simple problem is to clip a polygon against a single infinite clip 
edge. Four clip edges, each defining one boundary of the clip rectangle, successively clip 
a polygon against a clip rectangle. 
 
Note the difference between this strategy for a polygon and the Cohen-Sutherland 
algorithm for clipping a line: The polygon clipper clips against four edges in succession, 
whereas the line clipper tests outcode to see which edge is crossed, and clips only when 
necessary. 
 
Steps of Sutherland-Hodgman's polygon-clipping algorithm 

• Polygons can be clipped against each edge of the window one at a time. 
Windows/edge intersections, if any, are easy to find since the X or Y coordinates 
are already known.  

• Vertices which are kept after clipping against one window edge are saved for 
clipping against the remaining edges.  

• Note that the number of vertices usually changes and will often increase.  
• We are using the Divide and Conquer approach.  

Here is a STEP-BY-STEP example of polygon clipping. 
 
 
Four Cases of polygon clipping against one edge 
The clip boundary determines a visible and invisible region. The edges from vertex i to 
vertex i+1 can be one of four types: 
Case 1 : Wholly inside visible region - save endpoint  
Case 2 : Exit visible region - save the intersection  
Case 3 : Wholly outside visible region - save nothing  
Case 4 : Enter visible region - save intersection and endpoint  
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Because clipping against one edge is independent of all others, it is possible to arrange the 
clipping stages in a pipeline. The input polygon is clipped against one edge and any 
points that are kept are passed on as input to the next stage of the pipeline. In this way 
four polygons can be at different stages of the clipping process simultaneously. This is 
often implemented in hardware. 
 

Example No # 1 Clipping a Polygon 

 
Original polygon 
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Clip Left 

 
Clip Right 
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Clip Bottom 

 
Clip Top 
 

Example No #2 Clipping a Rectangle 

If Clipping Rectangle is denoted by dashed lines and Line is defined 
by using points P1 and P2 
Case i 
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For each boundary b in [ L(Left), R(Right), T(Top), B(Bottom) ] 
If P1 outside and P2 inside. 
Output: 
intersection Point (P1’) 
Point P2 
 
Case ii 
        

 
For each boundary b in [ L(Left), R(Right), T(Top), B(Bottom) ] 
If P1 inside and P2 inside 
Output: 
   Point P2 
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Case iii 

        
 
 
For each boundary b in [ L(Left), R(Right), T(Top), B(Bottom) ] 
If P1 outside and P2 outside 
Do nothing 
Case iv 

 

        
  
 
For each boundary b in [ L(Left), R(Right), T(Top), B(Bottom) ] 
If P1 inside and P2 outside (We are going from P1 to P2) 
 Output: 
Point of intersection (P2’) only. 
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Pipeline Clipping Approach 
An array, s records the most recent point that was clipped for each clip-window boundary. 
The main routine passes each vertex p to the clipPoint routine for clipping against the 
first window boundary. If the line defined by endpoints p and s (boundary) crosses this 
window boundary, the intersection is calculated and passed to the next clipping stage. If p 
is inside the window, it is passed to the next clipping stage. Any point that survives 
clipping against all window boundaries is then entered into the output array of points. The 
array firstPoint stores for each window boundary the first point flipped against that 
boundary. After all polygon vertices have been processed, a closing routine clips lines 
defined by the first and last points clipped against each boundary. 
 
Shortcoming of Sutherlands -Hodgeman Algorithm 
Convex polygons are correctly clipped by the Sutherland-Hodegeman algorithm, but 
concave polygons may be displayed with extraneous lines. This occurs when the clipped 
polygon should have two or more separate sections. But since there is only one output 
vertex list, the last vertex in the list is always joined to the first vertex. There are several 
things we could do to correct display concave polygons. For one, we could split the 
concave polygon into two or more convex polygons and process each convex polygon 
separately. 
 
Another approach to check the final vertex list for multiple vertex points along any clip 
window boundary and correctly join pairs of vertices. Finally, we could use a more 
general polygon clipper, such as wither the Weiler-Atherton algorithm or the Weiler 
algorithm described in the next section. 
 
Weiler-Atherton Polygon Clipping 
 
In this technique, the vertex-processing procedures for window boundaries are modified 
so that concave polygons are displayed correctly. This clipping procedure was developed 
as a method for identifying visible surfaces, and so it can be applied with arbitrary 
polygon-clipping regions. 
 
The basic idea in this algorithm is that instead of always proceeding around the polygon 
edges as vertices are processed, we sometimes want to follow the window boundaries. 
Which path we follow depends on the polygon-processing direction(clockwise or 
counterclockwise) and whether the pair of polygon vertices currently being processed 
represents an outside-to-inside pair or an inside-to-outside pair. For clockwise processing 
of polygon vertices, we use the following rules: 
 
 For an outside-top inside pair of vertices, follow the polygon boundary 
 For an inside-to-outside pair of vertices, follow the window boundary in a clockwise 

direction 
 
In following figure, the processing direction in the Wieler-Atherton algorithm and the 
resulting clipped polygon is shown for a rectangular clipping window. 
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Lecture No.16   3D Concepts 

 
Welcome! You are about to embark on a journey into the wondrous world of three-
dimensional computer graphics. Before we take the plunge into esoteric 3D jargon and 
mathematical principles (as we will in the next lectures), let’s have a look at what the 
buzzword “3D” actually means. 
We have heard the term “3D” applied to everything from games to the World Wide Web 
to Microsoft’s new look for Windows XP. The term 3D is often confusing because games 
(and other applications) which claim to be 3D, are not really 3D. In a 3D medium, each of 
our eyes views the scene from slightly different angles. This is the way we perceive the 
real world. Obviously, the flat monitors most of us use when playing 3D games 3D 
applications can’t do this.  However, some Virtual Reality (VR) glasses have this 
capability by using a separate TV-like screen for each eye. These VR glasses may 
become common place some years from now, but today, they are not the norm. Thus, for 
present-day usage, we can define “3D to mean “something using a three-dimensional 
coordinate system.” 
 
A three-dimensional coordinate system is just a fancy term for a system that measures 
objects with width, height, and depth (just like the real world). Similarly, 2-dimensional 
coordinate systems measure objects with width and height --- ignoring depth properties 
(so unlike the real world). 
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Shadow of a 3D object on paper 
16.1 Coordinate Systems 
Coordinate systems are the measured frames of reference within which geometry is 
defined, manipulated and viewed. In this system, you have a well-known point that serves 
as the origin (reference point), and three lines(axes) that pass through this point and are 
orthogonal to each other ( at right angles – 90 degrees).  
 
With the Cartesian coordinate system, you can define any point in space by saying how 
far along each of the three axes you need to travel in order to reach the point if you start at 
the origin. 
 
Following are three types of the coordinate systems. 
a) 1-D Coordinate Systems: 
 

 
This system has the following characteristics: 

• Direction and magnitude along a single axis, with reference to an origin 

• Locations are defined by a single coordinate 

• Can define points, segments, lines, rays 

• Can have multiple origins (frames of reference) and transform coordinates among 
them 
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b) 2-D Coordinate Systems: 

 

• Direction and magnitude along two axes, with reference to an origin 

• Locations are defined by x, y coordinate pairs 

• Can define points, segments, lines, rays, curves, polygons, (any planar geometry) 

• Can have multiple origins (frames of reference and transform coordinates among 
them 

c) 3-D Coordinate Systems: 

 

• 3D Cartesian coordinate systems 

• Direction and magnitude along three axes, with reference to an origin 

• Locations are defined by x, y, z triples 

• Can define cubes, cones, spheres, etc., (volumes in space) in addition to all one- 
and two-dimensional entities 

• Can have multiple origins (frames of reference) and transform coordinates among 
them 
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16.2 Left-handed versus Right-handed 

 

• Determines orientation of axes and direction of rotations  

• Thumb = pos x, Index up = pos y, Middle out = pos z  

• Most world and object axes tend to be right handed  

• Left handed axes often are used for cameras  

a) Right Handed Rule: 
“Right Hand Rule” for rotations: grasp axis with right hand with thumb oriented in 
positive direction, fingers will then curl in direction of positive rotation for that axis. 

 

Right handed Cartesian coordinate system describes the relationship of the X,Y, and Z 
in the following manner: 
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• X is positive to the right of the origin, and negative to the left. 

• Y is positive above the origin, and negative below it. 

• Z is negative beyond the origin, and positive behind it. 

 

 

 

 

 

 

 

 

 

 

 

b) Left Handed Rule: 

 

+Z 

-Z 

+X 

+Y 

East 

North 

West 

Sout

Origin 

-Z 

+Z 

+X 

+Y 
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Left handed Cartesian coordinate system describes the relationship of the X, Y and Z 
in the following manner: 

• X is positive to the right of the origin, and negative to the left. 

• Y is positive above the origin, and negative below it. 

• Z is positive beyond the origin, and negative behind it. 

Defining 3D points in mathematical notations 
3D points can be described using simple mathematical notations 

P = (X, Y, Z) 

Thus the origin of the Coordinate system is located at point (0,0,0), while five units to 
the right of that position might be located at point (5,0,0). 

 

 

Y-up versus Z-up: 

 

 

• z-up typically used by designers  

• y-up typically used by animators  

• orientation by profession supposedly derives from past work habits 

• often handled differently when moving from application to application 
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16.3 Global and Local Coordinate Systems: 

 

 

• Local coordinate systems can be defined with respect to global coordinate system 

• Locations can be relative to any of these coordinate systems 

• Locations can be translated or "transformed" from one coordinate system to 
another. 

16.4 Multiple Frames of Reference in a 3-D Scene: 

 

• In fact, there usually are multiple coordinate systems within any 3-D screen 
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• Application data will be transformed among the various coordinate systems, 
depending on what's to be accomplished during program execution 

• Individual coordinate systems often are hierarchically linked within the scene 

16.5 Defining points in C language structure 
 You can now define any point in the 3D by saying how far east, up, and north it is 
from your origin. The center of your computer screen ? it would be at a point such as 
“1.5 feet east, 4.0 feet up, 7.2 feet north.” Obviously, you will want a data structure to 
represent these points. An example of such a structure is shown in this code snippet: 

typedef struct _POINT3D 
{ 
 float x; 

float y; 
float z; 

}POINT3D; 
 
POINT3D screenCenter = {1.5, 4.0, 7.2}; 
 

16.6 The Polar Coordinate System 
Cartesian systems are not the only ones we can use. We could have also described the 
object position in this way: “starting at the origin, looking east, rotate 38 degrees 
northward, 65 degrees upward, and travel 7.47 feet along this line. “As you can see, this 
is less intuitive in a real world setting. And if you try to work out the math, it is harder to 
manipulate (when we get to the sections that move points around). Because such polar 
coordinates are difficult to control, they are generally not used in 3D graphics. 
16.7 Using Multiple Coordinate Systems 
As we start working with 3D objects, you may find that it is more efficient to work with 
groups of points instead of individual single points. For example, if you want to model 
your computer, you may want to store it in a structure such as that shown in this code 
snippet: 
typedef struct _CPU{ 

 
POINT3D center; // the center of the CPU, in World coordinates 
POINT3D coord[8];  // the 8 corners of the CPU box relative to the center point 

 
}CPU; 
 
In next lectures we will learn how we can show 3D point on 2D computer screen. 
16.8 Defining Geometry in 3-D 
Here are some definitions of the technical names that will be used in 3D lectures. 
Modeling: is the process of describing an object or scene so that we can construct an 
image of it. 
Points & Polygons:  
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• Points:  three-dimensional locations (or coordinate triples)  

 

• Vectors: - have direction and magnitude; can also be thought of as displacement  

 

• Polygons: - sequences of  “correctly” co-planar points; or an initial point and a 
sequence of vectors 

 

 

Primitives 

Primitives are the fundamental geometric entities within a given data structure. 
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• We have already touched on point, vector and polygon primitives  

 

 

• Regular Polygon Primitives - square, triangle, circle, n-polygon, etc. 

 

• Polygon strips or meshes 

• Meshes provide a more economical description than multiple individual polygons 
 
For example, 100 individual triangles, each requiring 3 vertices, would require  
100 x 3 or 300 vertex definitions to be stored in the 3-D database. 
 
By contrast, triangle strips require n + 2 vertex definitions for any n number or 
triangles in the strip. Hence, a 100 triangle strip requires only 102 unique vertex 
definitions. 

• Meshes also provide continuity across surfaces which is important for shading 
calculations  

 

• 3D primitives in a polygonal database 
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3D shapes are represented by polygonal meshes that define or approximate geometric 
surfaces.  

 

• With curved surfaces, the accuracy of the approximation is directly proportional to the 
number of polygons used in the representation. 

• More polygons (when well used) yield a better approximation.  

• But more polygons also exact greater computational overhead, thereby degrading 
interactive performance, increasing render times, etc. 

Rendering - The process of computing a two dimensional image using a combination of 
a three-dimensional database, scene characteristics, and viewing transformations. Various 
algorithms can be employed for rendering, depending on the needs of the application. 

Tessellation - The subdivision of an entity or surface into one or more non-overlapping 
primitives. Typically, renderers decompose surfaces into triangles as part of the rendering 
process. 

Sampling - The process of selecting a representative but finite number of values along a 
continuous function sufficient to render a reasonable approximation of the function for 
the task at hand. 

Level of Detail (LOD) - To improve rendering efficiency when dynamically viewing a 
scene, more or less detailed versions of a model may be swapped in and out of the scene 
database depending on the importance (usually determined by image size) of the object in 
the current view. 

 

 

 

 
 
 
 
 

HP
Highlight

HP
Highlight

HP
Highlight

HP
Highlight

HP
Highlight

HP
Highlight

HP
Highlight

HP
Highlight

HP
Highlight

HP
Highlight

HP
Highlight

HP
Highlight

HP
Highlight

HP
Highlight

HP
Highlight



16-3D Concepts                                                                                                                                             VU      
 

 
© Copyright Virtual University of Pakistan 

 

165

Polygons and rendering 

 

• Clockwise versus counterclockwise  

 

Surface normal - a vector that is perpendicular to a surface and “outward” facing 

• Surface normals are used to determine visibility and in the calculation of shading 
values (among other things) 

 

• Convex versus concave  

• A shape is convex if any two points within the shape can be connected 
with a straight line that never goes out of the shape. If not, the shape is 
concave. 

• Concave polygons can cause problems during rendering (e.g. tears, etc., in 
apparent surface). 
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• Polygon meshes and shared vertices  

 

• Polygons consisting of non-co-planar vertices can cause problems when rendering 
(e.g. visible tearing of the surface, etc.) 

• With quad meshes, for example, vertices within polygons can be inadvertently 
transformed into non-co-planer positions during modeling or animation 
transformations. 

• With triangle meshes, all polygons are triangles and therefore all vertices within 
any given polygon will be coplanar. 

With polygonal databases: 

• Explicit, low-level descriptions of geometry tend to be employed 

• Object database files can become very large relative to more economical, higher 
order descriptions. 

• Organic forms or free-form surfaces can be difficult to model. 

16.9 Surface models  

Here is brief over view of surface models: 
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• Surfaces can be constructed from mathematical descriptions 

• Resolution independent - surfaces can be tessellated at rendering with an 
appropriate level of approximation for current display devices and/or viewing 
parameters 

• Tessellation can be adaptive to the local degree of curvature of a surface. 

 

 

• Primitives  

 

• Free-form surfaces can be built from curves 

• Construction history, while also used in polygonal modeling, can be particularly 
useful with curve and surface modeling techniques.  
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• Parameterization  

 

• Curve direction and surface construction  

 

 

• Surface parameterization (u, v, w)  are used 

o For placing texture maps, etc.  

o For locating trimming curves, etc.  
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Metaballs (blobby surfaces)  

• Potential functions (usually radially symmetric Gaussian functions) are used to 
define surfaces surrounding points 

 

Lighting Effects 

 

 

Texture Mapping: 

The texture mapping is of the following types that we will be studying in our coming 
lectures on 3D: 
1. Perfect Mapping: 
2. Affine Mapping 
3. Area Subdivision 
4. Scan-line Subdivision 
5. Parabolic Mapping 
6. Hyperbolic Mapping 
7. Constant-Z Mapping
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Lecture No.17   3D Transformations I 

 
Definition of a 3D Point 

A point is similar to its 2D counterpart; we simply add an extra component, Z, for the 3rd 
axis: 

 

Points are now represented with 3 numbers: <x, y, z>. This particular method of 
representing 3D space is the "left-handed" coordinate system. In the left-handed system 
the x axis increases going to the right, the y axis increases going up, and the z axis 
increases going into the page/screen. The right-handed system is the same but with the z-
axis pointing in the opposite direction. 

Distance between Two 3D Points 

The distance between two points <Ax,Ay,Az> and <Bx,By,Bz> can be found by again 
using the Pythagoras theorem: 
dx = Ax-Bx  
dy = Ay-By  
dz = Az-Bz  
distance = sqrt(dx*dx + dy*dy + dz*dz) 
Definition of a 3D Vector 

Like it's 2D counterpart, a vector can be thought of in two ways: either a point at <x,y,z> 
or a line going from the origin <0,0,0> to the point <x,y,z>. 

3D Vector addition and subtraction is virtually identical to the 2D case. You can add a 3D 
vector <vx,vy,vz> to a 3D point <x,y,z> to get the new point <x',y',z'> like so: 
x' = x + vx  
y' = y + vy  
z' = z + vz 
Vectors themselves can be added by adding each of their components, or they can be 
multiplied (scaled) by multiplying each component by some constant k (where k <> 0). 
Scaling a vector by 2 (say) will still cause the vector to point in the same direction, but it 
will now be twice as long. Of course you can also divide the vector by k (where k <> 0) 
to get a similar result. 

To calculate the length of a vector we simply calculate the distance between the origin 
and the point at <x, y, z>: 
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Length = | <x,y,z> - <0,0,0> |  
       = sqrt( (x-0)*(x-0) + (y-0)*(y-0) + (z-0)*(z-0) )  
       = sqrt(x*x + y*y + z*z) 
Unit Vector 

Often in 3D computer graphics you need to convert a vector to a unit vector, ie a vector 
that points in the same direction but has a length of 1.  

This is done by simply dividing each component by the length: 
Let <x,y,z> be our vector, length = sqrt(x*x + y*y + z*z) 
Unit vector   =   <x,y,z>   =   |   x    ,         y    ,         z    | 
                           length          | length    length    length |  
(Where length = |<x,y,z>|) 

Note that if the vector is already a unit vector then the length will be 1, and the new 
values will be the same as the old. 

Definition of a Line 

As in 2D, we can represent a line by it's endpoints (P1 and P2) or by the parametric 
equation:  
P = P1 + k * (P2-P1) 
Where k is some scalar value between 0 and 1 

Transformations: 
 A static set of 3D points or other geometric shapes on screen is not very 
interesting. You could just use a paint program to produce one of these. To make your 
program interesting, you will want a dynamic landscape on the screen. You want the 
points to move in the world coordinate system, and you even want the point-of-view 
(POV) to move. In short, you want to model the real world. The process of moving points 
in space is called transformation, and can be divided into translation, rotation and other 
kind of transformations. 
 
 
Translation 
 Translation is used to move a point, or a set of points, linearly in space, for 
example, you may want to move a point “3 meters east, -2 meters up, and 4 meters 
north.” Looking at this textual description, you might think that this looks very much like 
a Point3D, and you would be close. But the above does not require one critical piece of 
information: it does not reference the origin. The above only encapsulates direction and 
distance, not an absolute point in space. This called a vector and can be represented in a 
structure identical to Point3D: 
 
 struct Vector3D 
  float x;  distance along x axes 
  float y;  distance along y axes 
  float z;  distance along z axes 

end struct 
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Vector Addition 
 You translate a point by adding a vector to it; you add points and vectors by 
adding the components piecewise: 
 
Point3D point = {0, 0, 0} 
Vector3D vector = {10, -3, 2.5 } 
 
Adding vector to point 
 
point.x = point.x + vector.x; 
point.y = point.y + vector.y; 
point.z = point.z + vector.z; 
 
Point will be now at the absolute point < 10,-3 2.5>. you could move it again: 
 
point.x = point.x + vector.x; 
point.y = point.y + vector.y; 
point.z = point.z + vector.z; 
 
And point would now be at the absolute point <20, -6, 5>.  
 
In pure mathematical sense, you cannot add two points together – such an operation 
makes no sense (what is Lahore plus Karachi?). However, you can subtract a point from 
another in order to uncover the vector that would have to be added to the first to translate 
it into the second: 
 
 
Point3D p1,p2 
Vector3D v; 
 
Set p1 and p2 to the desired points 
v.x = p2.x – p1.x 
v.y = p2.y – p1.y 
v.z = p2.z – p1.z 
 
Now you can add v to p1, you would translate it into the point p2. 
 
The following lists the operations you can do between points and vectors: 
 
point – point  => vector 
point + point = point - ( - point) => vector 
vector – vector => vector 
vector + vector => vector 
point – vector = point + (-vector) => point 
point + vector => point 
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Multiplying: Scalar Multiplication 
 
Multiplying a vector by a scalar ( a number with no units), and could be coded with:  
  
 Vector.x  =  Vector.x  * scalarValue 
 Vector.y  =  Vector.y  * scalarValue 
 Vector.z  =  Vector.z  * scalarValue 
 
If you had a vector with a length of 4 and multiplied it by 2.5, you would end up with a 
vector of length 10 that points in the same direction the original vector pointed.  If you 
multiplied by -2.5 instead, you would still end up with a vector of length 10; but now it 
would be pointing in the opposite direction of the original vector. 
 
Multiplying: Vector Multiplication 
 
You can multiply with vectors two other ways; both involve multiplying a vector by a 
vector. 
 
Dot Product 
 
The dot product of two vectors is defined by the formula: 
Vector A, B  
 
 
 
A * B = A.x * B.x + A.y * B.y + A.z * B.z 
 
The result of a dot product is a number and has units of A’s units times B’s units. Thus, if 
you calculate the dot product for two vectors that both use feet for units, your answer will 
be in square feet. However, in 3D graphics we usually ignore the units and just treat it 
like a scalar. 
Consider the following definition of the dot product that is used by physicists (instead of 
mathematicians): 
 
A * B = |A| * |B| * cos(theta) 
 
Where theta is the angle between the two vectors 
 
Remember that |v| represents the length of vector V and is a non-negative number; we can 
replace the vector lengths above and end up with: 
 
K = |A| * |B| (therefore k > = 0) 
 
A * B = K * cos (theta) 
 
Therefore: 
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A * B => cos(theta) 
 
Where “=>” means “directly correlates to.” Now, if you remember, the cos(theta) 
function has the following properties: 
 
cos(theta)  > 0 iff theta is less than 90 degrees or greater than 270 degrees 
cos(theta) < iff theta is greater than 90 degrees and less than 270 degrees 
cos(theta) = 0 iff theta is 90 degrees or 270 degrees 
 
We can extend this to the dot product of two vectors, since it directly correlates to the 
angle between the two vectors: 
 
A*B  > 0 iff the angle between them is less than 90 or greater than 270 degrees 
A*B  < 0 iff the angle between them is greater than 90 and less than 270 degrees 
A*B  = 0 iff the angle between them is 90 or 270 degrees (they are orthogonal). 
 
Use of Dot Product 
 Assume you have a point of view at < px,py,pz>. It is looking along the vector 
<vx,vy,vz>, and you have a point in space <x,y,z> you want to know if the point–of-view 
can possible see the point, of if the point is “behind “ the POV, as shown in figure. 
 

 
 
Point3D pov; 
Vector3D povDir; 
Point3D test; 
Vector3D vTest 
float dotProduct; 
vTest.x = pov.x – test.x; 
vTest.y = pov.y – test.y; 
vTest.z = pov.z – test.z; 
 

Direction of View 
<vx,vy,vz> 

Point of View 
<px,py,pz> 

Test vector 
<tx, ty, tz> 

Point 
<x, y, z> 
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dotProduct == vTest.x*povDir.x  + vTest.y*povDir.y + vTest.z * povDir.z; 
 
if(dotProduct > 0) 
 point is “in front of “ POV 
else if (dotProduct < 0) 
 point is “behind” POV 
else 
 point is orthogonal to the POV direction 
 
Cross Product 
Another kind of multiplication that you can do with vectors is called the cross product 
this is defined as: 
Vector A, B 
 
A X B = < A.y * B.z – A.z * B.y, A.z * B.x – A.x * B.z, A.x * B.y – A.y * B.x >  
 
For physicists: 
 
|A x B| = |A| * |B| sin(theta) 
 
Where theta is the angle between the two vectors. 
 
The above formula for A x B came from the determinate of order 3 of the matrix: 
 
|  X   Y   Z | 
|A.x A.y A.z| 
|B.x B.y B.z| 
 
Transformations 
The process of moving points in space is called transformation.   
Types of Transformation 
There are various types of transformations as we have seen in case of 2D transformations. 
These include: 

a) Translation 
b) Rotation 
c) Scaling 
d) Reflection 
e) Shearing 

 
Translation 
Translation is used to move a point, or a set of points, linearly in space. Since now we are 
talking about 3D, therefore each point has 3 coordinates i.e. x, y and z. similarly, the 
translation distances can also be specified in any of the 3 dimensions. These Translation 
Distances are given by tx, ty and tz. 
For any point P(x,y,z) after translation we have P′(x′,y′,z′) where  

x′ = x + tx ,    
y′ = y + ty ,  
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z′ = z + tz  
and (tx, ty , tz) is Translation vector 

 
Now this can be expressed as a single matrix equation: 
    P′ = P + T 
 
Where:  

  
3D Translation Example 
We may want to move a point “3 meters east, -2 meters up, and 4 meters north.” What 
would be done in such event? 
Steps for Translation 
Given a point in 3D and a translation vector, it can be translated as follows: 
 

Point3D point = (0, 0, 0) 
Vector3D vector = (10, -3, 2.5) 

Adding vector to point 
point.x = point.x + vector.x; 
point.y = point.y + vector.y; 
point.z = point.z + vector.z; 

And finally we have translated point. 
 
Homogeneous Coordinates 
Analogous to their 2D Counterpart, the homogeneous coordinates for 3D translation can 
be expressed as : 
 

' 1 0 0
' 0 1 0

.
' 0 0 1

1 0 0 0 1 1
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x t x
y t y
z t z
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Abbreviated as: 
   P’ = T (tx, ty, tz).  P 
On solving the RHS of the matrix equation, we get: 
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Which shows that each of the 3 coordinates gets translated by the corresponding 
translation distance. 
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Lecture No.18   3D Transformations II 

 
Rotation 
Rotation is the process of moving a point in space in a non-linear manner. More 
particularly, it involves moving the point from one position on a sphere whose center is at 
the origin to another position on the sphere. Why would you want to do something like 
this? As we will show in later section, allowing the point of view to move around is only 
an illusion – projection requires that the POV be at the origin. When the user thinks the 
POV is moving, you are actually translating all your points in the opposite direction; and 
when the user thinks the POV is looking down a new vector, you are actually rotating all 
the points in the opposite direction; and when the user thinks the POV is looking down a 
new vector, you are actually rotating all the points in the opposite direction.  
 
Normalization: Note that this process of moving your points so that your POV is at the 
origin looking down the +Z axis is called normalization. 
 
Rotation a point requires that you know  
the coordinates for the point, and  
That you know the rotation angles.  
 
You need to know three different angles: how far to rotate around the X axis( YZ 
rotation, or “pitch”); how far to rotate around the Y axis (XZ plane, or “yaw”); and how 
far to rotate around the Z axis (XY rotation, or “roll”). Conceptually, you do the three 
rotations separately. First, you rotate around one axis, followed by another, then the last. 
The order of rotations is important when you cascade rotations; we will rotate first around 
the Z axis, then around the X axis, and finally around the Y axis. 
 
To show how the rotation formulas are derived, let’s rotate the point <x,y,z> around the Z 
axis with an angle of θ degrees.  
ROLL:- 

 
If you look closely, you should note that when we rotate around the Z axis, the Z element 
of the point does not change. In fact, we can just ignore the Z – we already know what it 
will be after the rotation. If we ignore the Z element, then we have the same case as if we 
were rotating the two-dimensional point <x,y> through the angle θ. 
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This is the way to rotate a 2-D point. For simplicity, consider the pivot at origin and rotate 
point P (x,y) where x = r cosФ and y = r sinФ 
If rotated by θ then: 
x′  = r cos(Ф + θ) 
 = r cosФ cosθ – r sinФ sinθ 
and 
y′  = r sin(Ф + θ) 
 = r cosФ sinθ + r sinФ cosθ 
 

 
 
Replacing r cosФ with x and r sinФ with y, we have:  
x′ = x cosθ – y sinθ 
and 
y′ = x sinθ + y cosθ 
and  
z′ = z (as it does not change when rotating around z-axis) 
 

 
Now for rotation around other axes, cyclic permutation helps 
form the equations for yaw and pitch as well: 
 
In the above equations replacing x with y and y with z gives 
equations for rotation around x-axis. Now in the modified 
equations if we replace y with z and z with x then we get the 
equations for rotation around y-axis. 
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Rotation about x-axis (i.e. in yz plane): 
x′  = x 
y′  = y cosθ – z sinθ 
z′  = y sinθ + z cosθ 
 
Rotation about y-axis (i.e. in xz plane): 
x′  = z sinθ +  x cosθ 
y ′  = y 
z′  = z cosθ – x sinθ 
 
 
 
Using Matrices to create 3D 
A matrix is usually defined as a two-dimensional array of numbers. However, I think you 
will find it much more useful to think of a matrix as an array of vectors. When we talk 
about vectors, what it really mean is an ordered set of numbers ( a tuple in mathematics 
terms). We can use 3D graphics vectors and points interchangeably for this, since they are 
both 3-tuples ( or triples). 
 
In general we work with “square” matrices. This means that the number of vectors in the 
matrix is the same as the number of elements in the vectors that comprise it. 
Mathematically, we show a matrix as a 2-D array of numbers surrounded by vertical 
lines. For example: 
 
|x1 y1 z1| 
|x2 y2 z2| 
|x3 y3 z3| 
 
we designate this as a 3*3 matrix ( the first 3 is the number of rows, and the second 3 is 
the number of columns).  
The “rows” of the matrix are the horizontal vectors that make it up; in this case, <x1, 
y1,z1>, <x2,y2,z2>, and <x3,y3,z3>. In mathematics, we call the vertical vectors 
“columns.” In this case they are < x1,x2,x3>, <y1,y2,y3> and <z1,z2,z3>. 
The most important thing we do with a matrix is to multiply it by a vector or another 
matrix. We follow one simple rule when multiplying something by a matrix: multiply 
each column by a multiplicand and store this as an element in the result. Now as I said 
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earlier, you can consider each column to be a vector, so when we multiply by a matrix, 
we are just doing a bunch of vector multiplies. So which vector multiply do you use-the 
dot product, or the crosss product? You use the dot product.  
We also follow on simple rule when multiplying a matrix by something: mubliply each ro 
by the multiplier. Again, rows are just vectors, and the type of ultiplicaiton is the dot 
product. 
Let’s look at some examples. First, let’s assume that I have a matrix M, and I want to 
multiply it by a point < x,y,z>, the first ting I know is that the vector rows of the matrix 
must contain three elements (in other words, three columns). Why ? because I have to 
multiply those rows by my point using a dot product, and to do that, the two vectors must 
have the same number of element. Since I am going to get dot product for each row in M, 
I will end up with a tuple that has one element for each row in M. as I stated earlier, we 
work almost exclusively with square matrices, since I must have three columns, M will 
also have three rows. Lets see: 
          |1 0 0| 
< x,y,z> * |0 1 0| ={<x,y,z>*< 1,0,0> ,<x,y,z><0,1,0>,<x,y,z> *<0,0,1>}={ x,y,z} 
       |0 0 1|  
 
 
 
Using Matrices for Rotation 
 
Roll (rotate about the Z axis): 
 

 
 
 
 
 
 

Pitch (rotate about the X axis): 
 
 
 
 
 
 
 
Yaw (rotate about the Y axis): 
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Example: 
To show this happening, let's manually rotate the point <2,0,0> 45 degrees clockwise 
about the z axis. 

 
Now you can take an object and apply a sequence of transformations to it to make it do 
whatever you want. All you need to do is figure out the sequence of transformations 
needed and then apply the sequence to each of the points in the model. 
As an example, let's say you want to rotate an object sitting at a certain point p around its 
z axis. You would perform the following sequence of transformations to achieve this: 

 
The first transformation moves a point such that it is situated about the world origin 
instead of being situated about the point p. The next one rotates it (remember, you can 
only rotate about the origin, not arbitrary points in space). Finally, after the point is 
rotated, you want to move it back so that it is situated about p. The final translation 
accomplishes this. 
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Rotation w.r.t. Arbitrary Axis: 
If an object is required to be rotated with respect to a line acting as an axis of rotation, 
arbitrarily, then the problem is addressed using multiple transformations. Let us assume 
that such an arbitrary axis is parallel to one of the coordinate axes, say x-axis. 

 
The first step in such case would be to translate the object such that the arbitrary axis 
coincides with the x-axis. 
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The next step would be to rotate the object w.r.t. x-axis through angle θ.  

 
Then the object is translated such that the arbitrary axis gets back to its original position. 

  
And thus the job is done. 
An interesting usage of compound transformations:- 
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Now, if the arbitrary axis is not parallel to any of the coordinate axes, then the problem is 
slightly more difficult. It only adds to the number of steps required to get the job done.  
Let P1, P2 be the line arbitrary axis. 
 

 
 
In the first step, the translation takes place that coincides the point P1 to the origin. Points 
after this step are P1’ and P2’. 
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Now the arbitrary axis is rotated such that the point P2’ rotates to become P2’’ and lies on 
the z-axis. 
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In the next step the object of interest is rotated around z-axis. 
 
 
 
 
 

 
Now the object of interest is rotated about origin such that the arbitrary axis is poised like 
in above figure. Point P2’’ gets back to its previous position P2’. 
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Finally the translation takes place to position the arbitrary axis back to its original 
position. 
 
Scaling  
Coordinate transformations for scaling relative to the origin are 
 X` = X . Sx 
 Y` = Y. Sy 
 Z` =  Z. Sz 
Scaling an object with transformation changes the size of the object and reposition the 
object relative to the coordinate origin. If the transformation parameters are not all equal, 
relative dimensions in the object are changed.  
 
Uniform Scaling : We preserve the original shape of an object with a uniform scaling ( 
Sx = Sy = Sz) 
 
Differential Scaling : We do not preserve the original shape of an object with a 
differential scaling ( Sx <> Sy <> Sz) 
 
 
Scaling relative to the coordinate Origin: 
 
 Scaling transformation of a position P = (x, y, z) relative to the coordinate origin 
can be written as 
 
 
 
 
 
 
 
 
Scaling with respect to a selected fixed position: 
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Scaling with respect to a selected fixed position (Xf,Yf,Zf) can be represented with the 
following transformation sequence: 
 
Translate the fixed point to the origin. 
Scale the object relative to the coordinate origin 
Translate the fixed point back to its original position 
 
For these three transformations we can have composite transformation matrix by 
multiplying three matrices into one 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Reflection 
A three-dimensional reflection can be performed relative to a selected reflection axis or 
with respect to a selected reflection plane. In general, three-dimensional reflection 
matrices are set up similarly to those for two dimensions. Reflections relative to a given 
axis are equivalent to 180 degree rotations. 
 
The matrix representation for this reflection of points relative to the X axis 
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The matrix representation for this reflection of points relative to the Y axis 
 
  
 
 
 
 
 
The matrix representation for this reflection of points relative to the xy plane is  
 
 
 
 
 
 
 
 
Shears 
Shearing transformations can be used to modify object shapes.  
As an example of three-dimensional shearing, the following transformation produces a  
z-axis shear: 
 
 
 
 
 
 
 
 
 
Parameters a and b can be assigned and real values. The effect of this transformation 
matrix is to alter x and y- coordinate values by an amount that is proportional to the z 
value, while leaving the z coordinate unchanged. 
  
y-axis Shear 
 
 
 
 
 
 
x-axis Shear 
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