

1

CS603 - Software Architecture and Design (Handouts)

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

http://forumvu.com

2

CS603 - Software Architecture and Design (Handouts)

Week 1 Summery

Course Description

 Course introduces the essential concepts of software architecture and

design. Both software architecture and design are important phases of

software development.

 The course will provide a strong foundation to students for coming up

with the skills necessary to develop architecture and realize it in design

for developing applications fulfilling both functional and non-functional

requirements.

 Different architectural styles and object oriented design patterns will be

taught which will help students to analyze, select and implement design

strategies required to realize the selected architecture. Overall course is

an essential and great contribution to student’s skills and their software

engineering career.

Aim

 To provide the students an understanding of concepts and command to

develop architecture and design for developing state of the art software

applications.

Learning outcomes

On successful completion of this course students would be able to

 Argue the importance and role of software architecture and design in

software systems.

 2. Develop Architecture and Design for software systems.

 3. Recognize major software architectural styles and design patterns.

 4. Apply software architecture/design strategies as per the given

requirements to build state of art applications.

http://forumvu.com

3

CS603 - Software Architecture and Design (Handouts)

Introduction to the Discipline of Design

Design is a Universal Activity

 We live in a designed world.

 Design is economically important and effects our quality of life

 Any product that is an aggregate of more primitive elements, can benefit

from the activity of design.

Software Products

 Software is any executable entity, such as a program, or its parts, such as

sub-programs.

 A software product is an entity comprised of one or more programs, data,

and supporting materials and services that satisfies client needs and

desires either as an independent artifact or as essential ingredient in some

other artifact.

What Is Software Design?

 Software design is the activity of specifying the mature and composition

of software products that satisfy client needs and desire, subject to

constraints.

 Software designers do what designers in other disciplines do, except they

do it for software products.

 Design bridges that gap between knowing what is needed (software

requirements specification) to entering the code that makes it work (the

construction phase).

4

CS603 - Software Architecture and Design (Handouts)

5

CS603 - Software Architecture and Design (Handouts)

Design Occurs at Different Levels

Standard Levels of Design

Why Design is Hard

 Design is difficult because design is an abstraction of the solution which

has yet to be created

http://forumvu.com

6

CS603 - Software Architecture and Design (Handouts)

Design as Problem Solving

 An especially fruitful way to think about design is as problem solving.

Advantages

 Suggests partitioning information between problem and solution

 Emphasizes that there may be more than one good solution (design)

 Suggests techniques such as changing the problem, trial and error,

brainstorming, etc.

Abstraction

 Abstraction is an important problem-solving technique, especially in

software design

 Abstraction is suppressing or ignoring some properties of objects, events,

or situations in favor of others.

Importance of Abstraction

1.Problem simplification

 Abstracting allows us to focus on the most important aspects of a problem

in (partially) solving it.

2.Structuring problem solving

 Top-down strategy: Solve an abstract version of the problem, then add

details (refinement)

 Bottom-up strategy: Solve parts of a problem and connect them for a

complete solution

What is Model?

 A model is an entity used to represent another entity (the target) by

establishing

 (a) a correspondence between the parts or elements of the target and the

parts or elements of the model, and

 (b) a correspondence between relationships among the parts or elements

of the target and relationships among the parts or elements of the model.

7

CS603 - Software Architecture and Design (Handouts)

Modeling

 A model represents a target by having model parts corresponding to

target parts, with relationships between model parts corresponding to

relationships between target parts.

Modeling in Design

 Modeling is used for the following purposes:

1. Problem understanding

2. Design creation and investigation

3. Documentation

 Modeling work because models abstract details of the target.

 Models can fail if important and relevant details are left out.

Modeling in Software Design

Software design models may be divided into two broad classes: static and

dynamic models

 A static model represents aspects of programs that do not change during

program execution.



A dynamic model represents what happens during program execution.

Target Model

8

CS603 - Software Architecture and Design (Handouts)

Static and Dynamic Models

 Static model examples include object and class models, component and

deployment diagrams, and data structure diagrams.

 Dynamic model examples include use case descriptions, interaction

diagrams, and state diagrams.

The Benefits of Good Design

 Good design reduces software complexity which makes the software

easier to understand and modify. This facilitates rapid development

during a project and provides the foundation for future maintenance and

continued system evolution.

 It enables reuse. Good design makes it easier to reuse code.

 It improves software quality. Good design exposes defects and makes it

easier to test the software.

 Complexity is the root cause of other problems such as security. A

program that is difficult to understand is more likely to be vulnerable to

exploits than one that is simpler.

Varieties of Design

 Product design is a discipline that arose during the Industrial Revolution

and is now an established field whose practitioners specify products.

 The major issues in product design are aesthetics, product features and

capabilities, usability, manageability, manufacturability, and operability.

 Engineering design is the activity of specifying the technical

mechanisms and workings of a product. Engineers apply mathematical

and scientific principles and techniques to work out the technical details

of complex products.

 Product designers and engineers often work together in design teams to

specify large and complex products.

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

http://forumvu.com

9

CS603 - Software Architecture and Design (Handouts)

Product Designer vs. Engineering Designer

 Product designers are concerned with styling and aesthetics, function and

usability, manufacturability and manageability.

 Industrial designers, (building) architects, interior designers, graphic

designers, etc.

 Engineering designers are concerned with technical mechanisms and

workings.

 Structural, mechanical, chemical, and electrical engineers

 Product designers handle the “externals” of product design while

engineers take care of the “internal” technical details.

Design Teams

 The talents and skills of both product designers and engineers are needed

to design such things. Table 1 illustrates the complementary

responsibilities of product and engineering designers for several products.

 Table 1: Product and Engineering Designers’ Responsibilities

10

CS603 - Software Architecture and Design (Handouts)

Software design

 The field of software design can be divided into two sub-fields that each

demand considerable skill and expertise: software product design and

software engineering design.

Software Product Design

 Software product design is the activity of specifying software product

features, capabilities, and interfaces to satisfy client needs and desires.

 Requires skills in user interface and interaction design, communications,

industrial design, and marketing

Software Engineering Design

 Software engineering design is the activity of specifying programs and

sub-systems, and their constituent parts and workings, to meet software

product specifications.

 Requires skills in programming, algorithms, data structures, software

design principles, practices, processes, techniques, architectures, and

patterns

11

CS603 - Software Architecture and Design (Handouts)

Week 2 Summery

Software Design in the Life Cycle

 The software life cycle is the sequence of activities through which a

software product passes from initial conception through retirement from

service.

Waterfall Life Cycle Model

The waterfall model captures the logical, but not the temporal, relationships

between software development activities.

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

12

CS603 - Software Architecture and Design (Handouts)

Requirements Specification Activity

 The goal of the requirements specification activity is to specify a product

satisfying the needs and desires of clients and other interested parties.

 specifications are recorded in a software requirements specification

(SRS).

 we assume that every SRS includes a user interface design.

 Factors that limit the range of design solutions, such as cost, time, size,

user capability, and required technology, are called design constraints.

Design constraints are usually given as part of the problem specification

Design Activity

 During the design activity, developers figure out how to build the product

specified in the SRS. This includes selecting an overall program structure,

specifying major parts and sub-systems and their interactions, then

determining how each part or sub-system will be built.

 The result of the design activity is a design document recording the

entire design specification. The design document solves the (engineering)

design problem posed in the SRS.

Implementation Activity

 Code is written in accord with the specifications in the design document.

The product of the implementation activity is a more or less finished,

working program satisfying the SRS.

 Programming essentially includes some engineering design work.

Testing Activity

 Programs are run during the testing activity to find bugs.

 Testing is usually done bottom up, with small parts or program units

tested alone, and then integrated collections of program units tested as

separate sub-systems, and finally the entire program tested as a whole.

Maintenance Activity

 Maintenance activity occurs after a product has been deployed to clients

 After deployment to clients, products are corrected, ported, and enhanced

during maintenance activities.

13

CS603 - Software Architecture and Design (Handouts)

 Product design occurs during the requirements specification and

maintenance activities, and engineering design occurs during the design,

implementation, and maintenance activities.

Design Across the Life Cycle

Design Across the Life Cycle Figure illustrates how software design activities

are spread across the life cycle.

“What” Versus “How”

 Traditional way to make the distinction between requirements and design

activities

 Not adequate because

◦ Many “what” specifications turn out to be design decisions

◦ Many “how” specifications turn out to be client or customer needs

or desires

 Distinguish requirements from design based on problem solving:

requirements activity formulates a problem solved in design

Engineering Design

Product Redesign and

Engineering Redesign

Product Design
Requirements
Specification

Design

Implementation

Testing

Maintenance

Software Product Life Cycle

14

CS603 - Software Architecture and Design (Handouts)

Design Problems and Solutions

 Problems and solutions demarcate various software design activities.

Product design tackles a client problem and produces a product

specification as a solution. This solution presents the problem to

engineering designers, who produce a design document as their solution.

Design Problems and Solutions

“Design” as a Verb and a Noun

 This activity is what we refer to when we use the word “design” as a

verb, as in the sentence “Engineers design programs meeting

requirements specifications.” But we have also used “design” as a noun,

as in the sentence “Engineers develop a design meeting requirements

specifications.”

 Obviously, the word “design” is both a verb and a noun and refers to

both an activity and a thing. A design specification is the output of the

design activity and should meet the goals of the design activity—it should

specify a program satisfying client needs and desires, subject to

constraints.

Engineering

Design

 Product

 Design

Solution: SRS

Problem: Needs,

Desires, Constraints

Solution: Features

and Capabilities

Solution:

Interactions

Solution: Design
Document

Solution: High-

Level Design

Solution: Low-

Level Design

Solution: Code

Design Features
and Capabilities

Design Interactions

Create High-Level

Design

Create Low-Level

Design

Write Code

Software Design

15

CS603 - Software Architecture and Design (Handouts)

Software Engineering Design Methods

 A software design method is an orderly procedure for generating a

precise and complete software design solution that meets clients’ needs

and constraints

Design Method Components

A method typically specifies the following items:

 Design Process —A collection of related tasks that transforms a set of

inputs into a set of outputs

 Design Notations —A symbolic representational system

 Design Heuristics —Rules providing guidance, but no guarantee, for

achieving some end

 Design methods also use design principles stating characteristics of

design that make them better or worse.

History of Software Engineering Design Methods

 The first design method was stepwise refinement, a top-down technique

for decomposing procedures into simpler procedures until programming-

level operations are reached.

 The dominant design methods from the mid-1970s through the early

1990s were various versions of structured design.

 Structured design methods focus on procedural composition but include

other sorts of models as well.

 Object-oriented design methods emerged in the 1990s in response to

shortcomings of structured design methods.

 Object-oriented methods promote thinking about programs as collections

of collaborating objects rather than in terms of procedural decomposition.

16

CS603 - Software Architecture and Design (Handouts)

Method Neutrality

 Strongly emphasizes object-oriented notations, heuristics, and models.

 Most of the notations used in this course are UML notations, but some

other important notations are included as well.

 A design task is a small job done in the design process, such as choosing

classes or operations, or checking whether a model is complete. Notation

and task heuristics are discussed throughout the course when notations

and design tasks are introduced.

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

http://forumvu.com

17

CS603 - Software Architecture and Design (Handouts)

Week 3 Summery

Modeling processes with Activity diagram

Modeling

 A picture is worth 1000 words.

 A model is a representation of reality, like a model car, airplane.

 Most models have both diagrams and textual components.

What is UML?

 UML stands for “Unified Modeling Language”

 It is a industry-standard graphical language for specifying, visualizing,

constructing, and documenting the artifacts of software systems.

18

CS603 - Software Architecture and Design (Handouts)

What is UML?

 The UML uses mostly graphical notations to express the OO analysis and

design of software projects.

 Simplifies the complex process of software design.

Process

 A process is a collection of related tasks that transforms a set of inputs

into a set of outputs.

19

CS603 - Software Architecture and Design (Handouts)

Design Process

 A design process is the core of any design endeavor, so it is essential that

designers adopt an efficient and effective process.

 We need process description notations for design process.

 We will use UML Activity diagram.

Activity diagram

 An activity diagram shows actions and the flow of control and data

between them.

20

CS603 - Software Architecture and Design (Handouts)

Activity, action and execution

 An activity is a non-atomic task or procedure decomposable into actions.

◦ Shipping a product

◦ Wash clothes

◦ …

 An action is a task or procedure that cannot be broken into parts (i.e. it is

atomic).

◦ Check products in stock

◦ Check dead level

◦ Package the product

◦ …

21

CS603 - Software Architecture and Design (Handouts)

Activity, action and execution

 Activity diagrams model processes as an activity graph.

◦ Activity nodes represent actions or objects

 Rounded rectangle containing arbitrary text naming or

describing some action.

◦ Activity edges represent control or data flows.

 Represented by solid arrows with unfilled arrow heads.

22

CS603 - Software Architecture and Design (Handouts)

Modeling processes with Activity diagram

Activity graph elements

Activity diagram execution

 Execution is modeled by tokens.

 When there is a token on every incoming edge of an action node, it

consumes them and begins execution.

 When an action node completes execution, it produces tokens on each of

its outgoing edges.

 An initial node produces a token on each outgoing edge when an activity

begins.

 An activity final node consumes a token available on any incoming edge

and terminates the activity.

23

CS603 - Software Architecture and Design (Handouts)

 Execution is modeled by tokens.

 When there is a token on every incoming edge of an action node, it

consumes them and begins execution.

 When an action node completes execution, it produces tokens on each of

its outgoing edges.

 An initial node produces a token on each outgoing edge when an activity

begins.

 An activity final node consumes a token available on any incoming edge

and terminates the activity.

Activity diagram execution

24

CS603 - Software Architecture and Design (Handouts)

Branching nodes

Branching execution

 If a token is made available on the incoming edge of a decision node, the

token is made available on the outgoing edge whose guard is true.

 If a token is available on any incoming edge of a merge node, it is made

available on its outgoing edge.

 Guards must be mutually exclusive.

Deadlocks

 Run Drier cannot execute: when the activity begins, there is a token on

the edge from the initial node but not on the other incoming edge.

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

http://forumvu.com

25

CS603 - Software Architecture and Design (Handouts)

Forks and joins

Sort

Clothes

Wash

Whites

Wash

Darks

Dry

Clothes

Fold

Clothes

Do Laundry

26

CS603 - Software Architecture and Design (Handouts)

Forks and joins execution

 A token available on the incoming edge of a fork node is reproduced and

made available on all its outgoing edges.

 When tokens are available on every incoming edge of a join node, a token

is made available on its outgoing edge.

 Concurrency can be modeled without these nodes.

Forks and joins

 Flow final node

Object Nodes

 Data and objects are shown as object nodes.

 Any flow that begins or ends at an object node is a data flow.

Destroyer

[captured]

Cruiser

Battlegroup

Battleship

[damaged]

27

CS603 - Software Architecture and Design (Handouts)

Object Nodes

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

28

CS603 - Software Architecture and Design (Handouts)

Control and Data Flows

 Control tokens do not contain data, data tokens do.

 A control flow is an activity edge, conduit for control tokens.

 A data flow is an activity edge, conduit for data tokens.

 Rules for token-based execution apply just as well to data flows as to

control flows, with the addition of a mechanism for adding and removing

data from tokens.

Activity parameters

 An activity parameter is an object node placed on the boundaries of an

activity symbol to represent data or object inputs or outputs.

 Input activity parameters have only outgoing arrows, and output activity

parameters have only incoming arrows.

29

CS603 - Software Architecture and Design (Handouts)

Activity parameters (Example)

Activity diagram heuristics

 Model flow control and objects down the page and from left to right.

 Name activities and action nodes with verb phrases.

 Name object nodes and pins with noun phrases.

 Don’t use both control and data flows when a data flow alone can do the

job.

 Make sure that all flows entering an action node can provide tokens

concurrently.

 Use the [else] guard at every branch.

30

CS603 - Software Architecture and Design (Handouts)

Summary

 Forks and joins

 Activity parameters

 Activity diagram heuristics

Week 4 Summery

Software design processes

Software design

 Software design consists of two different activities.

◦ Software product design

◦ Software engineering design

31

CS603 - Software Architecture and Design (Handouts)

Analysis and resolution

 The first step of “problem solving” must always be to understand the

problem.

 If design is problem solving, then this activity must be the first step in

design.

 Analysis is the activity of breaking down a design problem for the

purpose of understanding it.

 Once problem is understood, next step is to solve it.

 Unfortunately, the activity of solving a design problem does not have a

good, widely accepted name.

 Traditionally this activity has been called design, but this is very

confusing.

 In the traditional way of speaking, design consists of the following steps:

 Analysis—Understanding the problem.

 Design—Solving the problem.

 In our context, we refer to the activity of solving a design problem as

resolution.

 The terms used in our context will be:

 Analysis is breaking down a design problem to understand it.

 Resolution is solving a design problem

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

32

CS603 - Software Architecture and Design (Handouts)

Analysis and Resolution in Software Design

A generic problem solving strategy

 Understand the problem

 Generate candidate solutions

 Evaluate solutions

 Select best solution(s)

 Iterate if no solution is adequate

 Ensure the solution is complete, well-documented, and deliver it

Product Design Analysis

Product Design Resolution

Software Design
Product Idea : Problem

Design Document : Solution

Engineering Design Analysis

Engineering Design Resolution

Product

Idea

SRS

Design

Document

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

33

CS603 - Software Architecture and Design (Handouts)

A generic problem solving strategy

 Understand the problem

 Generate candidate solutions

 Evaluate solutions

 Select best solution(s)

 Iterate if no solution is adequate

 Ensure the solution is complete, well-documented, and deliver it

A generic design process

 Analyze the Problem

 Generate/Improve Candidate Solutions

 Evaluate Candidate Solutions

 Select Solutions

 Iterate

 Finalize the Design

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

34

CS603 - Software Architecture and Design (Handouts)

Generic design process

Analyze the

Problem

Generic Design
need : Problem

design : Solution

Resolve the

Problem

need

Problem

Statement

design

[else]

[problem

misunderstood]

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

35

CS603 - Software Architecture and Design (Handouts)

A Design Resolution Process

Design Process Characteristics

 Designers should generate many candidate solutions during the design

process.

 The design process is highly iterative; designers must frequently

reanalyze the problem and must generate and improve solutions many

times.

Generate/Improve

Candidate Solutions

Generic Design Resolution
problem : Problem Statement

design : Solution

problem

design

[else]

[adequate solution]

Solutions

[candidate]

Evaluate Candidate

Solutions

Solutions

[evaluated]

Select

Solutions

Solutions

[selected]

Finalize

Design

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

36

CS603 - Software Architecture and Design (Handouts)

A Generic Software

Product Design

Process

Generic Software Product Design
Project Mission Statement : Problem

SRS : Solution

Project Mission

Statement

SRS

[adequate]

[else]

[complete]

[else]

Analyze Product

Design Problem

Elicit/Analyze

Detailed Needs

Generate/Improve

Candidate Requirements

Evaluate Candidate

Requirements

Select Requirements

Finalize Requirements

Analysis

Resolution

37

CS603 - Software Architecture and Design (Handouts)

A Generic Software

Engineering Design

Process

Generic Software Engineering Design
SRS : Problem

Design Document : Solution

Analysis

Architectural

Design

Design

Document

SRS

[adequate architecture]

[else]

[adequate detailed design]

[adequate architecture]

Analyze SRS

Generate/Improve

Candidate Architectures

Evaluate Candidate

Architectures

Select Architecture

Finalize Architecture

Generate/Improve Detailed

Design Alternatives

Evaluate Detailed

Design Alternatives

[else]

Select Detailed

Design

Finalize Design

[else]

Detailed

Design

38

CS603 - Software Architecture and Design (Handouts)

Software design management

Design require management

 Software development is complex, expensive, time consuming done by

groups of people.

 If it is simply allowed to “happen,” the result is chaos.

 Chaos is avoided when software development is managed.

 Software development must be planned, organized, and controlled, and

the people involved must be led.

 There are at least two sorts of business activities that must be managed.

 Operations are standardized activities that occur continuously or at

regular intervals.

 Hiring and performance review

 Payroll operations

 Shipping and receiving operations

 A project is a one-time effort to achieve a particular, current goal of an

organization, usually subject to specific time or cost constraints.

 Efforts to introduce new products,

 Redesign tools and processes to save money

 restructure an organization in response to business needs.

Project planning activities

 Software development clearly fits project management:

 Planning—Formulating a scheme for doing a project.

 Organizing—Structuring the organizational entities involved in a project

and assigning them responsibilities and authority.

 Staffing—Filling the positions in an organizational structure and keeping

them filled.

39

CS603 - Software Architecture and Design (Handouts)

Design require management

 Tracking—Observing the progress of work and adjusting work and plans

accordingly.

 Leading—Directing and helping people doing project work.

Project Planning

 The first step in working out a project plan is to determine how much

work must be done and the resources needed to do it.

 Estimation is calculation of the approximate cost, effort, time, or

resources required to achieve some end.

◦ Mostly begin by estimating the size of work products such as

source code, documentation, and so forth, and then deriving

estimates of effort, time, cost, and other resources.

 A schedule specifies the start and duration of work tasks, and often the

dates of milestones.

 A milestone is any significant event in a project.

 A risk is any occurrence with negative consequences.

 Risk analysis is an orderly process of identifying, understanding, and

assessing risks.

 The final portion of the project plan is a specification of various rules

governing work. Such rules fall into the following categories:

◦ Policies and Procedures

◦ Tools and Techniques

Project organization

 There are many ways to organize people into groups and assign them

responsibilities and authority

◦ Organizational structure.

 There are also many ways for people in groups to interact, make

decisions, and work together

◦ Team structures.

40

CS603 - Software Architecture and Design (Handouts)

Organizational structure

 Project organization: Groups might be responsible for carrying projects

from their inception through completion

 Functional organization: Groups might be responsible for just part of

the project, such as design or coding or testing

Team structure

 hierarchical team: A team might have a leader who makes decisions,

assigns work and resolves conflicts.

 Democratic team: A team might attempt to make decisions, assign work,

and resolve conflicts though discussion, consensus, and voting.

Project staffing

 An organizational structure has groups with roles that must be filled e.g.

testing group.

 Project staffing is the activity of filling the roles designated in an

organizational structure and keeping them filled with appropriate

individuals.

◦ Hiring and orienting new employees

◦ career development guidance

◦ opportunities through training and education

◦ Evaluating their performance

Project tracking

 Nothing ever goes exactly as planned, so it is essential to observe the

progress of a project and adjust the work, respond to risks, and, if

necessary, alter the plan.

 Project Tracking: Measuring and reporting the status of milestones,

tasks and activities required in achieving the pre-defined project results

 Reasons for project tracking:

 A task may simply take more or less time than expected.

 Some of the rules governing the project may cause problems.

41

CS603 - Software Architecture and Design (Handouts)

 The resources needed to accomplish tasks may not be as

anticipated.

 Something bad may occur.

 Tracking is essential so that estimates, schedules, resource

allocations, risk analyses, and rules can be revised.

Leading a project

 An adequate direction and support, a broad category of management

responsibility called leadership is required for successful project.

 Merely directing people does not guarantee success.

◦ People also need a congenial work environment, an emotionally

◦ socially supportive workplace,

◦ Make them feel that they are doing something important

http://forumvu.com

42

CS603 - Software Architecture and Design (Handouts)

Iterative Planning and Tracking

Summary

 Project management

 Project management activities

 Iterative planning and tracking

43

CS603 - Software Architecture and Design (Handouts)

Week 5 Summery

Software design management

Project planning activities

 Software development clearly fits project management:

 Planning—Formulating a scheme for doing a project.

 Organizing—Structuring the organizational entities involved in a project

and assigning them responsibilities and authority.

 Staffing—Filling the positions in an organizational structure and keeping

them filled.

Design require management

 Tracking—Observing the progress of work and adjusting work and plans

accordingly.

 Leading—Directing and helping people doing project work.

Design Project Decomposition

 Most aspects of project management depend on the work to be done and,

in particular, on how it is decomposed.

 An obvious way to break down a design project is to divide the work

according to the generic design processes discussed in the last section.

Design Project Decomposition

Work Phase Typical Work Products

Product

Design

Analysis:

Design Problem

Statement of interested parties, product

concept, project scope, markets, business

goals

Models (of the problem)

Prototypes (exploring the problem)

44

CS603 - Software Architecture and Design (Handouts)

Analysis:

Detailed Needs

Client surveys, questionnaires, interview

transcripts, etc.

Problem domain description

Lists of needs, stakeholders

Models (of the problem)

Prototypes (exploring needs)

Resolution:

Product

Specification

Requirements specifications

Models (of the product)

Prototypes (demonstrating the product)

Work Phase Typical Work Products

Engineering

Design

Analysis
Models (of the engineering problem)

Prototypes (exploring the problem)

Resolution:

Architectural

Design

Architectural design models

Architectural design specifications

Architectural prototypes

Resolution:

Detailed Design

Detailed design models

Detailed design specifications

Detailed design prototypes

45

CS603 - Software Architecture and Design (Handouts)

Design Project Planning

 The initial project plan focuses on design problem analysis, with only

rough plans for the remainder of the work.

 So, plan will be revised before product design resolution, engineering

design analysis, and engineering design resolution.

 Initial estimates of effort, time, and resources are as precise as possible,

based on the work products to be completed.

 These estimates may be based on data about work done in the past or an

analogy with similar jobs with which the planners are familiar.

 The estimates are then used to block out:

 An initial schedule

 Allocate resources

 Analyze risks

 Set the rules guiding the project.

 Product analysis work is tracked against the initial plan.

 Ideally, problem analysis is complete when it is time to revise the plan,

since planning the product design resolution phase requires this

information.

 The plan may be altered during tracking to make this happen.

 A revised plan prepared before the product design resolution phase

should have much more accurate:

 Estimates

 Schedule

 Resource allocations

 Risk analysis

 Iterative planning and tracking continues through the engineering

design with more details added each time the plan is revised.

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

46

CS603 - Software Architecture and Design (Handouts)

Design Project Organization

 Design teams should be formed with responsibility of:

◦ Design as a whole

◦ Each major phase

◦ Each sub-phase

◦ Production of the various work products.

◦ E.g, a large company might have a division responsible for

requirements and design.

Design Project Staffing

 Organizations are staffed to fit the decomposition of design work.

 Projects need staff to:

◦ Elicit and analyze needs

◦ Create prototypes

◦ Model systems

◦ Create product designs

◦ Write requirements specifications

◦ Design user interaction

◦ Make high-level and low-level engineering designs

◦ Quality assurance.

Design Project Leadership

 Leading a design problem needs extra skills:

◦ Visionary

◦ Creative

◦ Anticipate changes

◦ Experience

47

CS603 - Software Architecture and Design (Handouts)

Design as project driver

 Design work extends from the start of a software development project to

the coding phase, and it recurs during maintenance.

 Two major products of software design, the SRS and the design

document, are the blueprints for coding and testing.

 So, design is the driving activity in software development.

 By the time the software design is complete, enough information is

available to make accurate and complete plans for the coding and testing

phases.

 Good design work early in the life cycle is crucial for software

development project success.

Context of Software Product Design

Products and markets

 Organizations create products for economic gain.

 Product development is very expensive, so an organization must be

careful to create products that it can actually sell or use.

 A market is a set of actual or prospective customers who need or want a

product, have the resources to exchange something of value for it, and are

willing to do so.

Importance of market

Organizations study markets to:

◦ Choose which markets to sell to (target markets)

◦ Choose what products to develop

◦ Determine product features and characteristics

◦ Thus, the sorts of products that an organization decides to develop

ultimately depend on the target markets to which it hopes to sell

the products.

http://forumvu.com

48

CS603 - Software Architecture and Design (Handouts)

Products influence design

 A lot of what happens during product design depends on what sort of

product is being designed.

 A product’s characteristics influences:

◦ The decision to develop the product;

◦ The resources and time devoted to product development;

◦ The techniques

◦ Methods, and tools used to develop the product;

◦ Distribution and support of the final product.

Categorizing products

 Products fall into different categories along several dimensions.

 A product category is a dimension along which products may differ.

◦ Target market size

◦ Product line novelty

◦ Technological novelty

 A product type is a collection of products that have the same value in a

particular product category.

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

49

CS603 - Software Architecture and Design (Handouts)

Target Market Size

Target market size is the number of customers a product is intended to serve.

Categorizing products

 Designers of custom and niche-market products designers can identify

needs and desires for a product as compared to consumer products.

 Designing consumer products is easy than designing niche-market

products which is easy than designing custom products.

 Competitors are important when designing consumer and niche-market

products, but this is not the case designing custom products.

 Different aspects of product design are more or less important in these

different categories.

 Consumer products place a premium on attractive user interface

design.

 Functionality is usually more important for custom and niche-

market products.

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

50

CS603 - Software Architecture and Design (Handouts)

Product Line Novelty

 Product line novelty is how “new” a product is in relation to other

products in current product line.

Type Description Examples

New Different from

anything else in the

product line

Tax preparation product in a

line of accounting products,

AquaLush

Derivative Similar to one or

more existing

products in the

product line

Database management system

for individual

users in a line of systems for

corporate users

Maintenance

Release

New release of an

existing product

Third release of a spreadsheet

Product Line Novelty

 Maintenance releases pose higher constraints on designers than derivative

products which pose higher constraints than designing new products.

 Designing a new product is a very big job, designing a derivative product

is a smaller but still formidable task, and designing a new release may be

relatively easy.

Technical Novelty

 Technical novelty means “how much new technology” is incorporated in

a product, w.r.t. target market at a particular time.

51

CS603 - Software Architecture and Design (Handouts)

Type Description Examples

Visionary

Technology

New technology must

be

developed for the

product

Mobile computing (2000),

Wearable automatic

lecture note-taker (2004)

Leading-

Edge

Technology

Proven technology

not yet in

widespread use

Peer-to-peer file-sharing

products (2002),

AquaLush (2006)

Established

Technology

Widely used,

standard

technology

Products with graphical user

interfaces (2000)

Technical Novelty

 Designing products with visionary or leading-edge technologies is most

difficult kind of software design.

◦ Hard to figure out what clients want.

◦ Whether products with new technology will attract customers

 Products with visionary technology may never be built if efforts to

develop the new technology fail.

 Even if they are a technological success, they may still fail in the

marketplace if customers don’t like the new technology.

 Leading-edge and established technology products are more likely to

succeed.

52

CS603 - Software Architecture and Design (Handouts)

Week 6 Summery

Project Mission Statement

 A project mission statement is a document that defines a development

project’s goals and limits.

 The project mission statement plays two important roles:

1. Launches a development project

2. States the software design problem

 The project mission statement is the main input to the product design

process.

Project Mission Statement Template

1. Introduction

2. Product Vision and Project Scope

3. Target Markets

4. Stakeholders

5. Assumptions and Constraints

6. Business Requirements

Introduction

 The introduction contains background information to provide context.

 Information about the major business opportunity that the new product

will take advantage of and the product operating environment.

Product Vision and Project Scope

 A product vision statement is a general description of the product’s

purpose and form.

 The project scope is the work to be done on a project.

• Often only part of the product vision.

• May list what will not to be done as well as what will be done.

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

http://forumvu.com

53

CS603 - Software Architecture and Design (Handouts)

Target Market

 Upper management chooses the target market segments for a new product

or release during product planning.

 Target markets are those market segments to which the organization

intends to sell the new product. Market segments determine users,

features, competitors, and so forth.

Stakeholders

 A stakeholder is anyone affected by a product or involved in or

influencing its development.

◦ Product users and purchasers

◦ Developers and their managers

◦ Marketing, sales, distribution, and product support personnel

◦ Regulators, inspectors, and lawyers

 Developers must know the target market and stakeholders to build a

product satisfying stakeholders’ needs.

Assumptions and Constraints

 An assumption is something that developers take for granted.

◦ Feature of the problem

◦ Examples: target deployment environments, levels of user support

 A constraint is any factor that limits developers.

◦ Restriction on the solution

◦ Examples: cost and time limits, conformance to regulations

Business Requirements

A business requirement is a statement of a client or development organization

goal that a product must meet.

◦ Time, cost, quality, or business results

◦ Should be stated so that it is clear whether it is satisfied

(quantitative goals)

◦ Broad goals related to business, not detailed product specifications

54

CS603 - Software Architecture and Design (Handouts)

Needs Elicitation

Needs Vs Requirements

 Stakeholder needs and desires define the product design problem.

 Requirements specify the product design solution.

 Needs and requirements statements are similar, but the heart of product

design is moving from needs to requirements.

• Conflicting needs and desires

• Tradeoffs (needs and constraints)

• Ways of satisfying needs and desires

Needs Elicitation Challenges

 Stakeholders often cannot explain their work, or articulate their needs and

desires.

 Needs and desires can only be understood in a larger context that

 includes understanding the problem domain.

 Stakeholders make mistakes, leave things out, and are misleading.

 Stakeholders often don’t understand the capabilities and limitations of

technology.

 Designers are faced with a flood of information, often contradictory,

incomplete, and confusing.

How to tackle Elicitation Challenges

 Designers must obtain information from stakeholders in a systematic

fashion using several elicitation techniques and must document and

analyze the results to ensure that needs and desires are understood

correctly and completely.

 The main way to organize requirements elicitation is to work from the top

down through levels of abstraction. Organization within each level of

abstraction is achieved by focusing on particular product aspects, which

depend on the product itself.

55

CS603 - Software Architecture and Design (Handouts)

Elicitation Heuristics

 Learn about the problem domain first.

If designers don’t understand the problem domain, they need to elicit,

document, and analyze information

about it before eliciting needs.

 Determine stakeholder goals as the context of stakeholder needs and

desires

What a stakeholder needs and wants is a consequence of his or her goals. For

example, a user may need a product to record sample data. Why would the user

need this? Because the user’s goal is to monitor a manufacturing process by

sampling and analyzing its output

 Study user tasks.

For example, suppose users currently collect and measure samples by hand,

record the data in a log book, use a calculator to compute statistics, enter the

results on a paper graph, and study the graph to see if the process is running

properly.

Elicitation Techniques

56

CS603 - Software Architecture and Design (Handouts)

Elicitation Techniques

 Interviews- question and answer session during which one or more

designers ask questions of one or more stakeholders or problem-domain

experts

• Most important technique for recording responses

 Observation- Many products automate or support work done by people,

so designers need to understand how people do their work to design such

products

• Especially useful for eliciting derivative product and maintenance release

needs because it can reveal many opportunities for product improvement

 Focus Groups —Is an informal discussion among six to nine people led

by a facilitator who keeps the group on topic. Focus groups consist of

stakeholders or stakeholder representatives who discuss some aspect of

the product.

• Main technique of obtaining needs for consumer products, especially

new products and those with visionary or leading-edge technologies.

 Prototype — A working model of part or all of a final product.

Prototypes provide a useful basis for conversations with stakeholders

about features, capabilities, and user interface issues such as interaction

protocols.

• Especially useful for products with visionary technology because they

help people understand what a product with the new technology will be

like.

 Questionnaires – It is efficient technique to elicit information from many

people.

• Close ended questions

Easier to analyze and range of possible responses is well-understood

• Open ended questions

It includes detailed responses and relatively harder to understand

57

CS603 - Software Architecture and Design (Handouts)

Week 7 Summery

Product Design Process Overview

Introduction

Steps of Software Design Process

There are six steps of software design process:

 Understanding of Design problem

 Elicit/Analyze Detailed Needs

 Generating/Improve Candidate Requirements

 Evaluate Candidate Requirements

58

CS603 - Software Architecture and Design (Handouts)

 Select Requirements

 Finalize Requirements

1. Understanding of Design Problem

The nature of this task depends on whether there is an adequate project

mission statement

A good project mission statement defines the product design problem, so

the designers need only study the mission statement and research any

parts of it they do not understand.

2. Elicitation of Detailed Needs

Second step in design process is comprised of eliciting and analyzing

detailed needs

 Designers needs to learn much more about stakeholder needs and desires,

especially those of users and purchasers that will meet its business

requirements.

3,4,5-Improvement, Evaluation and Selection of Requirements

 Third step proceeds by generating and refining requirements, therefore

fulfilling the needs determined during analysis

 Once alternative requirements are generated and stated, they are

evaluated in fourth step

 In fifth step, requirements are selected on basis of evaluation

6. Requirements Finalization

 The last step of the software product design process is to finalize the SRS

So, we start with Project Mission statement that act as input to Design process

and the outcome of this process is SRS (Software Requirement Specification).

Outer iteration in Fig 1 reflects refinement activity of product details

specification.

59

CS603 - Software Architecture and Design (Handouts)

Product Design Process: A Top-Down Process

 Product design resolution sets technical requirements at a high level of

abstraction and then refine them until all product details are specified.

 During this process, user-level needs are elicited and analyzed first, and

user-level functional, data , and non-functional requirements are

generated , refined, and evaluated until they are adequate

 The user-level requirements provide an abstract solution to the design

problem. They are then refined to produce operational–level requirements

 Operational-level requirements are refined to produce physical-level

requirements

Refinement Process

Refinement is complete when these 3 level requirements are specified

Users Functional
and Non-
functional

Requirements

•Elicitation and
Analyze of user
requirements

Operational –
level

Requirements

•Refinement of
user-level
requirements

Physical-level

Requirements

•Refinement of
operational-
level
requirements

60

CS603 - Software Architecture and Design (Handouts)

Product Design Process: A User Centered Approach

User-centered design comprises the following three principles:

 Stakeholder Focus – Determine the needs and desires of all stakeholders

(especially users), and involve them in evaluating the design and perhaps

even in generating the design

 Empirical Evaluation – Gather stakeholder needs and desires and assess

design quality by collecting data rather than by relying on guesses.

 Iteration – Improve designs repeatedly until they are adequate.

Terminologies

 Requirement Elicitation – Collecting stakeholder needs and desires is

called requirements elicitation , or needs identification or needs

elicitation

 Requirements Analysis – Understanding stakeholder needs is called

needs analysis or requirements analysis

 Requirements Validation – Confirming with stakeholder that a product

design satisfies their needs and desires is called requirements validation

or just validation.

Role of Stakeholders

61

CS603 - Software Architecture and Design (Handouts)

Needs Documentation and Analysis

Formulating & Organizing Documentation

 The raw data collected from interviews, observation, focus groups,

workshops, competitive studies and so forth needs to be sorted, stated

clearly, and organized.

 First step is to divide the data into two categories:

 Data about the problem domain

 Data about Stakeholders’ goals, needs, and desires

Documenting the Problem Domain

 Data about the problem domain can be further categorized and grouped to

form an organized set of notes.

 Problem Domain Glossary is a useful tool in understanding the domain .

Most problem domains have their own terminology that designers must

learn

 Organization Chart can be made to display data about the stakeholders’

organization

Cont.. UML Activity Diagrams

 UML Activity Diagrams are useful tools for organizing and

documenting problem domain information about business processes or

user processes.

Activity diagrams are graphical representations of workflows of stepwise

activities and actions with support for choice, iteration and concurrency. Data

about processes obtained from interviews, observation, focus groups, or

document studies can be represented in a activity diagram much better than in

text.

Documenting Goals, Needs and Desires

 Raw data about stakeholders’ goals , needs and desires can be organized

into two lists:

 A stakeholders-goal list

 Needs list

62

CS603 - Software Architecture and Design (Handouts)

Stakeholders Groups are based on roles, not individuals.

AquaLush Case Study

 A stakeholders-goals list is a
catalog of important
stakeholder categories and
their goals.

63

CS603 - Software Architecture and Design (Handouts)

Stakeholders' Roles : An Example

Table : Stakeholders’ Goals List

◦ A need statement documents
a single
product feature, function, or
property needed or desired
by one or more stakeholders.

http://forumvu.com

64

CS603 - Software Architecture and Design (Handouts)

A need statement should

Name the stakeholder category or categories

State one specific need

Be a positive declarative sentence

Often requires interpretation of raw data

 Example:

Here is a list of “Elicited Needs” and “Needs Statements”

Table : Elicited Needs and Needs Statements

Problem Modeling

 Many kinds of models can represent the problem and help designers

understand it.

 Models document the problem, can be reviewed with stakeholders for

consistency.

 Many modeling notations and techniques are useful for analysis like

◦ Various UML diagrams

◦ Use case descriptions, user interface diagrams, dialog maps

65

CS603 - Software Architecture and Design (Handouts)

Checking Needs Documentation

 Correctness—A statement is correct if it is contingent and accords with

the facts.

 Scope—A goal or need is within the project scope if it can be satisfied

using the planned features of the product created by the project.

 Terminological Consistency - Terminological consistency is using

words with the same meaning and not using synonyms.

Continued

 Uniformity—A description has uniformity when it treats similar items in

similar ways.

 Completeness—Documentation is complete when it contains all relevant

material.

Review Activities

◦ Developers should use checklists

◦ Stakeholders should review documents

A Needs Documentation Checklist

66

CS603 - Software Architecture and Design (Handouts)

Week 8 Summery

Software Requirement Specification (SRS)

Software Requirement

 A software (product) requirement is a statement that a software product

must have a certain feature, function, capability, or property.

 Requirements are captured in specifications, which are simply statements

that must be true of a product.

Software Requirement Specification

A software requirements specification (SRS) is a document cataloging all the

requirements for a software product.

• This activity is aimed at finding out from the product’s intended clients,

and other interested parties, what they need and want from a software

product. These needs and desires are translated into specifications of the

functions, capabilities, appearance, behavior, and other characteristics of

the software product.

• These specifications constitute the software product requirements, and

they are recorded in a software requirements specification (SRS)

document.

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

67

CS603 - Software Architecture and Design (Handouts)

SRS in Software Product Life Cycle

 Types of Requirements

Requirements

Business

Technical

Functional

Non-Functional

Data

68

CS603 - Software Architecture and Design (Handouts)

Business Requirements

 Business requirements relate to a business' objectives, vision and goals

and are often captured by business analysts who analyze business

activities and processes.

 Example:

 If a company’s need is to track its field employees by means of an employee

tracking system, the business requirements for the project might be described

as:

 “Implement a web and mobile based employee tracking system that tracks

field employees and increases efficiency by means of monitoring employee

activity, absenteeism and productivity. “

Functional Requirements

 A functional requirement is a statement of how a software product must

map program inputs to program outputs.

 Functional requirements are specifications of the product’s externally

observable behavior, so they are often called behavioral requirements.

 Examples:

 Display the name, total size, available space and format of a flash drive

connected to the USB port.

 Upon request from managers, the system must produce daily, weekly,

monthly, quarterly, or yearly sales reports in HTML format.

Non-Functional Requirements

 A non-functional requirement is a statement that a software product

must have certain properties.

 Non-functional requirements are also called non-behavioral

requirements.

The following statements are examples of non-functional requirements:

 The payroll system must process the payroll for all XYZ Corp employees

in six hours or less.

 The system must run without failure for at least 24 hours after being

restarted, under normal conditions of use.

http://forumvu.com

69

CS603 - Software Architecture and Design (Handouts)

Non-Functional Attributes

Data Requirements

 A data requirement is a statement that certain data must be input to,

output from, or stored by a product.

 Data requirements describe the format, structure, type, and allowable

values of data entering, leaving, or stored by the product.

 The Computer Assignment System must store customer names in fields

recording first, last, and middle names.

 The system must display all times in time fields with the format

hh:mm:ss,

where hh is a two-digit military time hour field, mm is a two-digit military time

minutes field, and ss is a two-digit military time seconds field.

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

70

CS603 - Software Architecture and Design (Handouts)

Levels of Abstraction

 A user-level requirement is statement about how a product must support

stakeholders in achieving their goals or tasks.

 An operational-level requirement is a statement about inputs, outputs,

operations, characteristics, etc. that a product must provide, without

reference to physical realization.

 A physical-level requirement is a statement about the physical form of a

product, its physical interfaces, or its data formats.

SRS Template

 There is no universal SRS template. There are many templates available

in books and on the internet. Most employ requirements types and levels

of abstraction to help organize the

 material.

 Templates must be adapted for the product at hand.

IEEE Template

1. Product Description

 1.1 Product Vision

 1.2 Business Requirements

 1.3 Users and Other Stakeholders

 1.4 Project Scope

 1.5 Assumptions

 1.6 Constraints

2. Functional Requirements

3. Data Requirements

4. Non-Functional Requirements

5. Interface Requirements

 5.1 User Interfaces

 5.2 Hardware Interfaces

 5.3 Software Interfaces

71

CS603 - Software Architecture and Design (Handouts)

IEEE SRS Template

1. Product Description

 1.1 Product Vision

 A product vision statement is a general description of a product’s.

purpose and form.

 1.2 Business Requirements

 Business requirements are statements of client or development

organization goals that a product must meet

 1.3 Users and Other Stakeholders

 A stakeholder is anyone affected by a product or involved in or

influencing its development. Developers must know who the stakeholders

are so that they are all consulted (or at least considered) in designing,

building, deploying, and supporting the product.

 1.4 Project Scope

The project scope is the work to be done in the project.

IEEE Template

1.5 Assumptions

 An assumption is something that the developers may take for granted. It

is important to make assumptions explicit so that all stakeholders are

aware of them and can call them into question.

1.6 Constraints

 A constraint is any factor that limits developers. Of course developers

must be aware of all constraints

2. Functional Requirements

 Functional requirements are specifications of the product’s externally

observable behavior.

72

CS603 - Software Architecture and Design (Handouts)

IEEE Format

3. Data Requirements

 Data requirements describe the format, structure, type, and allowable

values of data entering, leaving, or stored by the product.

4. Non-Functional Requirements

 A non-functional requirement is a statement that a software product must

have certain properties.

5. Interface Requirements

 5.1 User Interfaces

 5.2 Hardware Interfaces

 5.3 Software Interfaces

SRS Description

 In this template, the design problem is documented in the “Product

Description” section, which contains most of the information from the

project mission statement. If a project mission statement exists, it should

be referenced rather than reproduced...

 The sections named “Functional Requirements,” “Data Requirements,”

and “Non-Functional Requirements” contain specifications mainly at the

user and operational levels of abstraction.

SRS

 The SRS is often referred to as the “parent” document because all

subsequent project management documents, such as design

specifications, statements of work, software architecture specifications,

testing and validation plans, and documentation plans, are related to it.

 It’s important to note that an SRS contains functional and nonfunctional

requirements only; it doesn’t offer design suggestions, possible solutions

to technology or business issues, or any other information other than what

the development team understands the customer’s system requirements to

be.

 Example:

https://www.scribd.com/doc/11934168/SRS-of-ATM

https://www.scribd.com/doc/11934168/SRS-of-ATM

73

CS603 - Software Architecture and Design (Handouts)

Week 9 Summery

Software Design and Architecture

(Prototyping)

Prototypes

A prototype is a special kind of model.

• Represent a target (the product)

• Must work in some way

Horizontal & Vertical Prototypes

 A horizontal prototype realizes part or all of a product’s user interface.

• One program layer

• Mock-ups

 A vertical prototype does processing apart from that required to present

a user interface.

• Cuts across program layers

• Proof of concept prototype

A prototype is a working model

of part or all of a final product.

74

CS603 - Software Architecture and Design (Handouts)

Throwaway and Evolutionary Prototypes

 A throwaway prototype is developed as a design aid and then discarded.

• Exploratory prototype

• Quick to build

• Risky to use in the final product

 An evolutionary prototype is a prototype that becomes (part of) the final

product.

• Iterative development

• More expensive to build

Low- and High-Fidelity Prototypes

 Fidelity is how closely a prototype represents the final product it models.

 Low-fidelity prototypes

• Paper

• “Executed” by walking through interactions

• Very quick and easy

 High-fidelity prototypes

• Usually electronic

75

CS603 - Software Architecture and Design (Handouts)

• Take longer to build (good tools help)

Prototype Uses

 User involvement

 Enhanced communication

 Eliminates ambiguities

 Improves accuracy

 Early identification of problem

 Developers understanding of problem

Prototyping Risks

 Using a throwaway prototype as the basis for development

• Avoid making high-fidelity throwaway prototypes

• Make it very clear to stakeholders that the prototype only appears

to work

 Fixation on appearance rather than function

• Use low-fidelity prototypes for needs elicitation

 Final product does not look like prototype

• Ensure that high-fidelity prototypes are accurate representations

Summary

 A variety of models are used for several tasks in product design.

 A prototype is a working model of (part of) a final product.

 Prototypes can be throwaway or evolutionary, horizontal or vertical, and

have varying degrees of fidelity.

 Prototypes are useful for needs elicitation, for alternative generation,

evaluation, and selection, and for design finalization.

 Risks attendant on the use of prototypes can usually be mitigated.

76

CS603 - Software Architecture and Design (Handouts)

Software Architecture and design

(Introduction to UML)

Modeling

 A picture is worth 1000 words.

 A model is a representation of reality, like a model car, airplane.

 Most models have both diagrams and textual components.

Why Modeling?

 Visualization.

 Communicate with customer.

 Reduction of complexity.

77

CS603 - Software Architecture and Design (Handouts)

UML

 Unified Modeling Language

 Has become Industry standard

 Uses graphical notations to express OO analysis and design of software

 Simplifies the complex process of software design

 Using graphical notations is better than natural language

 Helps acquire the overall view of system

 Not dependent on any language

Use case modeling

(Part 1)

 Use case diagrams describe what tasks the system performs.

◦ E.g. Order placement, a ticket reservation, assignment submission

etc.

 Who uses the system

◦ A customer, a librarian, a student etc.

 Which user interacts with which usecase.

Sample Use case model

78

CS603 - Software Architecture and Design (Handouts)

Components of use case

 Use case: subset of the overall system functionality.

 Actor: Anyone or anything that needs to interact with the system to

exchange information.

 Association: which actor interacts with which use case.

 Sample use case diagram

 A Librarian updates a book catalogue

Sample use case diagram

 A passenger bus ticket

Librarian

Update
Catalogue

Student

Reserve Seat

Buy ticket

Search for
available

seats

79

CS603 - Software Architecture and Design (Handouts)

Reuse (dependency) in use case

 Extends: An extend dependency, formerly called an Extends relationship

is a generalization relationship where an extending use case continues the

behavior of a base use case

Reuse (dependency) in use case

 Includes: An include dependency, is a generalization relationship

denoting the inclusion of the behavior described by another use case.

Use
case A

Use
case B

<<Extends>>

Send
Group
Email

Send
Email

<<Extends>>

Use
case A

Use
case B

<<includes>>

Login Verify
empty
fields

<<includes>>

80

CS603 - Software Architecture and Design (Handouts)

Sample use case diagram

 A Librarian updates a book catalogue

Includes vs Extends

 Includes

◦ You have a piece of behavior that is similar across many use cases

◦ Break this out as a separate use-case and let the other ones

“include” it.

◦ <<Includes>> keyword is used.

 Extends

◦ A use-case is similar to another one but does a little bit more

◦ Put the normal behavior in one use-case and the exceptional

behavior somewhere else.

◦ <<Extends>> keyword is used

Student

Reserve Seat

Buy ticket

Search for available
seats

<<includes>>

<<includes>>

<<Extends>>

http://forumvu.com

81

CS603 - Software Architecture and Design (Handouts)

Week 10 Summery

Use case modeling

(Part 2)

 Step-1: Identify business actors.

 Step-2: Identify business use cases.

 Step-3: Construct use-case model diagram.

 Step-4: Documents business requirements use-case narratives.

 Step-1: Identify business actors.

◦ Who or what provides inputs to the system?

◦ Who or what receives outputs from the system?

◦ Are interfaces required to other systems?

◦ Who will maintain information in the system?

 Actors should be named with a noun or noun phrase

 Step-2: Identify business use cases.

◦ What are the main tasks of the actor?

◦ What information does the actor need from the system?

◦ What information does the actor provide to the system?

 Use cases should be named with a verb phrase specifying the goal of the

actor (e.g. PlaceOrder)

82

CS603 - Software Architecture and Design (Handouts)

 Step-3: Construct use-case model diagram.

 Step-4: Documents business requirements use-case narratives.

Admin

Add Flight

83

CS603 - Software Architecture and Design (Handouts)

Air Ticket Reservation System

 Reservations on local system

 Passenger goes to client terminal in local office

 Searches flights/seats.

 Takes print of available seats.

 Booking staff confirms seat.

 Client terminal also displays flash news/updates.

 Admin can Add/Edit/Cancel flight schedule (Email is sent to passengers)

 Admin can cancel ticket.

 Admin can Add/Edit/Cancel Reservation

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

84

CS603 - Software Architecture and Design (Handouts)

Air Ticket Reservation System

 Actors

◦ Passenger

◦ Admin

◦ ?

 Use cases

◦ ViewNewsFlash

◦ PrintSchedule

◦ SearchSeat

◦ AddFlight

◦ ReserveSeat

◦ EditReservation

◦ CancelReservation

 Use cases

◦ SendEmail

◦ AddFlight

◦ EditFlight

◦ CancelFlight

◦ AddUser

◦ EditUser

◦ DeleteUser

85

CS603 - Software Architecture and Design (Handouts)

86

CS603 - Software Architecture and Design (Handouts)

Week 11 Summery

Introduction to Engineering Design Analysis

Engineering Design Analysis

 Engineering design analysis activities consist mainly of studying the SRS

and product design models and producing new models of the problem.

 It is also considering the inconsistencies and incompleteness in the SRS

often come to light. If so, engineering designers must ask product

designers for clarification or elaboration.

 This may lead product designers to redo part of the design, which may in

turn lead to discussion and consultation with stakeholders.

 Analyzing the SRS and product design models can improve both their

quality and the quality of the product design itself, besides laying the

foundation for engineering design resolution.

Analysis Goals, Inputs, and Activities

1. Understand an engineering design problem using

1. SRS

2. Product design models

2. Achieve understanding by

1. Studying the SRS and design models

2. Making analysis models

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

87

CS603 - Software Architecture and Design (Handouts)

Analysis Models

 An analysis model is any representation of a design problem.

 Both static and dynamic models

 Object-oriented and other kinds of models

Class and Object Models

 A class (object) model is a representation of classes (objects) in a

problem or a software solution.

 Class (object) diagrams are graphical forms of class (object) models.

Types of Class Models

 Analysis or conceptual models—Important entities or concepts in the

problem, their attributes, important relationships

 Design class models—Classes in a software system, attributes,

operations, associations, but no implementation details

 Implementation class models—Classes in a software system with

implementation details

 Analysis models represent the problem; design and implementation

models represent the solution.

Classes and Objects

 An object is an entity that holds data and exhibits behavior.

 A class is an abstraction of a set of objects with common operations and

attributes.

 An attribute is a data item held by an object or class.

 An operation is an object or class behavior.

 An association is a connection between classes representing a relation on

the sets of instances of the connected classes.

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

http://forumvu.com

88

CS603 - Software Architecture and Design (Handouts)

Summary

 Engineering design begins with analysis of the SRS and product design

models.

 Analysis modeling helps designers understand the design problem.

 Class models include analysis (conceptual), design, and implementation

class models.

Conceptual Modeling

Conceptual models

 A conceptual model is a static model of the important entities in a

problem, their responsibilities or attributes, the important relationships

among them and perhaps their behaviors.

 Conceptual models are about real-world entities in the problem domain

and not about software.

Uses of Conceptual Models

 In Product design

◦ Understanding the problem domain

◦ Setting data requirements

◦ Validating requirements

 In Engineering design

◦ Understanding a product design

◦ Providing a basis for engineering design modeling

89

CS603 - Software Architecture and Design (Handouts)

Conceptual Modeling Process

Identifying Classes-Brainstorming

 Study the product design (SRS, use case models, other models)

 Look for nouns and noun phrases for

◦ Physical entities

◦ Individuals, roles, groups, organizations

◦ Real things managed, tracked, recorded, or represented in the

product

◦ People, devices, or systems that interact with the product (actors)

Identifying Classes-Rationalizing

 Remove noun phrases designating properties (they may be attributes)

 Remove noun phrases designating behaviors (they may be operations)

 Combine different names for the same thing

Identify

Classes

Add

Attributes

Conceptual Modeling

Add

Associations

Add

Multiplicities

90

CS603 - Software Architecture and Design (Handouts)

 Remove entities that do not directly interact with the product

 Clarify vague nouns or noun phrases

 Remove irrelevant or implementation entities

Adding Attributes 1

 Study the SRS and product design models looking for adjectives and

other modifiers.

 Use names from the problem domain.

 Include only those types, multiplicities, and initial values specified in the

problem.

Adding Attributes 2

 Don’t add object identifiers unless they are important in the problem

 Don’t add implementation attributes

 Add operations sparingly

Adding Associations Brainstorming

 Study the SRS and product design models looking for verbs and

prepositions describing relationships between model entities

 Look for relationships such as

◦ Physical or organizational proximity;

◦ Control, coordination, or influence;

◦ Creation, destruction, or modification;

◦ Communication; and

◦ Ownership or containment.

Adding Associations—Rationalizing 1

 Limit the number of associations to at most one between any pair of

classes

 Combine different names for the same association

 Break associations among three or more classes into binary associations

91

CS603 - Software Architecture and Design (Handouts)

Adding Associations—Rationalizing 2

 Make association names descriptive and precise.

 Add rolenames where they are needed

Adding Multiplicities

 Take pairs of associated entities in turn.

◦ Make one class the target, the other the source.

◦ Determine how many instances of the target class can be related to

a single instance of the source class.

◦ Reverse the target and source and determine the other multiplicity.

 Consult the product design.

 Add only multiplicities important in the problem.

Summary

 A conceptual model represents the important entities in a design problem

along with their properties and relationships.

 Conceptual models represent the design problem, not the software

solution.

 Conceptual models are useful throughout product design and in

engineering design analysis.

 There is a process for conceptual modeling.

 Process steps can be done by analyzing the text of product design

artifacts.

 Several heuristics guide designers in conceptual modeling.

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

92

CS603 - Software Architecture and Design (Handouts)

Week 12 Summery

UML Class Diagram

Classes and Objects

 An object is an entity that holds data and exhibits behavior.

 A class is an abstraction of a set of objects with common operations and

attributes.

 An attribute is a data item held by an object or class.

 An operation is an object or class behavior.

 An association is a connection between classes representing a relation on

the sets of instances of the connected classes.

UML Names

 A name in UML is character string that identifies a model element.

◦ Simple name: sequence of letters, digits, or punctuation characters

◦ Composite name: sequence of simple names separated by the

double colon (::)

 Examples

◦ Java::util::Vector

◦ veryLongNameWithoutPunctuationCharacters

◦ short_name

UML Class Symbol

Phone

number

color

java::util::Random

nextBoolean()

nextDouble()

nextFloat()

nextInt()

nextLong()

setSeed()

Table

Book

author

title

ISBN

ring()

dial()

redial()

hangUp()

Exceptions

noNumberException

lowPowerException

93

CS603 - Software Architecture and Design (Handouts)

 Compartments

1. Class name

2. Attributes

3. Operations

4. Other compartments

 Compartment order

 Suppressing compartments

 Class name compartment must contain a name (simple or composite)

Attribute Specification Format

name : type [multiplicity] = initial-value

 name—simple name, cannot be suppressed

 type—any string, may be suppressed with the :

 multiplicity—number of values stored in attribute

◦ list of ranges of the form n..k, such that n <=k

◦ k may be *

◦ n..n is the same as n

◦ 0..* is the same as *

◦ 1 by default

◦ if suppressed, square brackets are omitted

 initial-value—any string, may be suppressed along with the =

Operation Specification Format

 name(parameter-list) : return-type-list

 name—simple name, cannot be suppressed

 parameter-list

◦ direction param-name : param-type = default-value

◦ direction—in, out, inout, return; in when suppressed

◦ param-name—simple name; cannot be suppressed

94

CS603 - Software Architecture and Design (Handouts)

◦ param-type—any string; cannot be suppressed

◦ default-value—any string; if suppressed, so is =

 return-type-list—any comma-separated list of strings; if omitted (with :)

indicates no return value

 The parameter-list and return-type-list may be suppressed together.

Attribute and Operation Examples

Association Lines

 Labeled or unlabeled lines

 Readable in two directions

 Direction arrows

 Rolenames

Player

roundScore : int = 0

totalScore : int = 0

words : String[*] = ()

resetScores()

setRoundScore(in size : int)

findWords(in board : Board)

getRoundScore() : int

getTotalScore() : int

getWords() : String[*]

WaterHeaterController

mode : HeaterMode = OFF

occupiedTemp : int = 70

emptyTemp : int = 55

setMode(newMode : Mode = OFF)

setOccupiedTemp(newTemp : int)

setEmptyTemp(newTemp : int)

clockTick(out ack : Boolean)

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

http://forumvu.com

95

CS603 - Software Architecture and Design (Handouts)

Association Multiplicity

 The multiplicity at the target class end of an association is the number of

instances of the target class that can be associated with a single instance

of the source class.

Student

Course

0..1

takes

teaches

occupies
DormRoom

Professor

0..3
1..*

*

1..*

1..*

Person

Property

manager

rents

subordinate

manages

renter

rental

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

96

CS603 - Software Architecture and Design (Handouts)

Class Diagram Rules

 Class symbols must have a name compartment.

 Compartments must be in order.

 Attributes and operations must be listed one per line.

 Attribute and operation specifications must be syntactically correct.

Class Diagram Heuristics 1

 Name classes, attributes, and roles with noun phrases.

 Name operations and associations with verb phrases.

 Capitalize class names only.

 Center class and compartment names but left-justify other compartment

contents.

Class Diagram Heuristics 2

 Stick to binary associations.

 Prefer association names to rolenames.

 Place association names, rolenames and multiplicities on opposite sides

of the line

Class Diagram Uses

 Central static modeling tool in object-oriented design

◦ Conceptual models

◦ Design class diagrams

◦ Implementation class diagrams

 Can be used throughout both the product and engineering design

processes

 UML class diagrams can be used for all types of class models, and

throughout the design process.

97

CS603 - Software Architecture and Design (Handouts)

UML Object Diagram

Object Diagrams

 Object diagrams are used much less often than class diagrams

 Object symbols have only two compartments:

◦ Object name

◦ Attributes (may be suppressed)

Object Name Format

 object-name : class-name

 [stateList]

 object-name—simple name

 class-name—a name (simple or composite)

 stateList—list of strings; if suppressed, the square brackets are omitted

 The object-name and class-name may both be suppressed, but not

simultaneously

Object Attribute Format

 attribute-name = value

 attribute-name—simple name

 value—any string

 Any attribute and its current value may be suppressed together

Examples of Object Symbols

:Rectangle

a1
t:Telephone

b:Book

[checked out]
width = 720

height = 320

color = blue

title = “Ivanhoe”

author = “Sir Walter Scott”

x = 10

y = 14

number = 8792460

color = black

status = ONHOOK

98

CS603 - Software Architecture and Design (Handouts)

Object Links

 Show that particular objects participate in a relation between sets of

objects

 Instances of associations

 Shown using a link line

◦ Solid line (no arrowheads)

◦ Underlined association name

 Link lines never have multiplicities

Object Diagram Uses

 Show the state of one or more objects at a moment during execution

 Dynamic models as opposed to class diagrams, which are static models

 UML object diagrams represent the state of objects during execution.

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

99

CS603 - Software Architecture and Design (Handouts)

Week 13 Summery

Introduction to Architectural Design

 Engineering design resolution has 2 phases:”architectural design” and

“detailed design”.

 Architectural design is a problem-solving activity whose input is the

product description in an SRS and whose output is the abstract

specification of a program realizing the desired product. Architectural

design sits between software product design and detailed design.

Some architectural design occurs during product design for following reasons:

 Product designers must judge the feasibility of their designs, which may

be difficult without some initial engineering design work.

 Stakeholders must be convinced that their needs will be met, which may

be difficult without demonstrating how the engineers plan to build the

product.

 Tradeoffs of feasible product, schedule and budget will not be clear

without architecture.

 In a very small program consisting of only a handful of classes or

modules interacting in simple ways, the software architecture is hardly

distinguishable from the detailed design, so it is appropriate for the

architecture to be simple and quite abstract. However, a very large and

complicated system with hundred or thousand of classes, distributed over

many machines , interacting with many peripheral devices , and with

demanding non-functional requirements, demands a detailed high level

specification that is carefully worked out and analyzed.

Architectural Design Process

 The architectural design process is a straight forward application of the

generic design process to the problem of architectural design.

100

CS603 - Software Architecture and Design (Handouts)

A software architecture document(SAD) is simply a document that specifies

the architecture of a software system,

Software Architecture Document Template

Figure 9.2 – Software Architecture Document Template

The above template is appropriate for documenting the software architectures of

small-to-medium sized systems.

101

CS603 - Software Architecture and Design (Handouts)

Quality Attributes

 SW architecture is crucial not only for satisfying a product’s functional

requirements but also for satisfying its non-functional requirements.

These are also called quality attributes.

 A quality attributes is a characteristics or property of a software product

independent of its function that is important in satisfying stakeholder needs and

desires.

Types of Quality Attributes

 Quality attributes fall into two categories: development attributes and

operational attributes.

 Development attributes include properties important to development

organization stake holders, such as maintainability and reusability.

 Operational quality attributes include properties like performance,

availability, reliability and security.

Product Overview- It
summarizes the product vision,
stakeholders, target market,
assumptions, constraints and
business requirements.

Architectural Models- It
presents the architecture, using
a variety of models and design
notations to represent different
aspects or views.

Mapping between Models- It
uses tables and textual

explanations to help readers
see connections of different

architectural models.

Architectural Design Rationale-
It explains the main design

decision made in arriving at the
architecture.

SW Architecture
Document
Template

102

CS603 - Software Architecture and Design (Handouts)

 Example: Consider a program responsible for matching fingerprints read

from scanners against a database to allow people into and out of a secure

facility.

 Besides its functional requirements, this program has some obvious non-

functional requirements. For example, it must respond quickly, it must be

available the entire time people are entering or leaving the facility, it must

match finger prints fairly reliably, and it must resist attackers.

Introduction to Detailed Design

Detailed Design

 Detailed design is the activity of specifying the internal elements of all

major program parts; their structure, relationships, and processing; and

often their algorithms and data structures.

 Every program has a software architecture, but its level of abstraction is

highly variable, depending on program size. Very large programs have

many large sub-systems described during architectural design at high

level of abstraction. Small programs have a few small components

described in some detail during architectural design.

 During detailed design, designers specify class responsibilities, class

attributes, class operations, object interactions, object states, state

changes, processes, and process synchronization.

 Programmers choose control structures, program entity names, primitive

types, parameter passing mechanisms, and programming idioms. But

either party can make a variety of low-level design involving packaging

visibility, algorithms, and data structure.

The Scope of Detailed Design

 Detailed design fills in the design specifications left open after

architectural design. The main goal of detailed design is to specify the

program in sufficient detail so that programmers can implement it.

103

CS603 - Software Architecture and Design (Handouts)

 At the highest levels of abstraction, detailed design may be like

architectural design in specifying the main parts of major sub-systems,

including their states and transitions, collaborations, responsibilities,

interfaces, properties, and relationships with other components. At the

lowest levels of abstraction, detailed design may specify implementation

details down to pseudo code and data formats. Detailed design

representations include static models, such as class diagrams, operation

specifications, and data structure diagrams, as well as dynamic models,

such as interaction diagrams, state diagrams, and pseudo code.

Stages of Detailed Design

Because of its size, complexity, and range of abstraction and representation, it is

helpful to further divide detailed design into two stages:

 Mid-level design

 Low-level design

Mid-Level Design

Mid-level design must specify both static and dynamic aspects of components.

Specifications include the DeSCRIPTR aspects i.e,

Decomposition—Mid-level components are the parts comprising architectural

components. These parts must be identified.

States and State Transitions—Some components have important states and

state-based behavior. Designers must specify the states and state transitions of

such components.

Collaborations—Designers must specify the dynamic flow of control and data

among mid-level components enabling them to solve problems collaboratively.

Component interactions include object message passing behavior, calling

relationships between operations, data flow, and processes and process

synchronization.

Responsibilities—Designers must specify mid-level component obligations to

carry out tasks or maintain data.

104

CS603 - Software Architecture and Design (Handouts)

 Interfaces—Designers must describe the communication mechanisms

mid-level components use when interacting. This includes interface

syntax, semantics, and pragmatics.

 Properties—Designers must state important mid-level component

properties, usually having to do with quality attributes, such as security,

reliability, and modifiability.

 Relationships—Some component relationships are established during

architectural design, but many are not. The most important of these

established during mid-level design are inheritance relationships,

interface realization and dependency relationships, and visibility and

accessibility associations.

Low level Design

Low-level design involves issues beyond DeSCRIPTR specifications involving

coding and programming

Languages:

 Packaging—Decisions must be made and documented about how to

bundle code into various compilation units, libraries, packages, and so

forth.

 Algorithms—Certain algorithms may be chosen depending on

consideration of time and space efficiency, ease of implementation and

maintenance, and programming language support. Sometimes designers

may specify the processing steps of individual operations.

 Implementation—Designers must resolve implementation issues,

notably

the visibility and accessibility of various entities, and how to realize

associations.

 Data Structures and Types—Designers may decide how to store data to

meet product requirements, which involves selecting data structures and

105

CS603 - Software Architecture and Design (Handouts)

choosing variable data types.

Fig 13.2.1: Detailed Design Process

A design document is a complete engineering design specification. It has two

parts : a software architecture document(SAD) and a detailed design document

(DDD).

106

CS603 - Software Architecture and Design (Handouts)

Week 14 Summery

Design Patterns

 Design patterns are recurring solutions to object-oriented design problems

in a particular context.

 Patterns describe recurring data-oriented problems and the data modeling

solutions that can be used to solve them.

Patterns

 Documenting patterns is one way that you can reuse and possibly share

the information that you have learned about how it is best to solve a

specific program design problem.

 Design patterns are experience captured in a well-structured and

consistent format; they provide blueprints that guide designers to solve

specific problems by specifying important design characteristics, such as

the classes that need to be created, their level of granularity, their

relationships, and how all these classes and relationships work together to

solve a problem. They provide this information in a generic sense, so that

they can be reused many times over, in different software systems,

without ever doing it the same way twice.

Benefits of Patterns

 When used effectively, they can help improve efficiency in the detailed

design effort by providing high-quality reusable solutions that can be

applied in many practical applications.

 A design pattern saves you from “reinventing the wheel,” or worse,

inventing a “new wheel” that is slightly out of round, too small for its

intended use, and too narrow for the ground it will roll over. Design

patterns, if used effectively, will invariably make you a better software

designer

 It solves a problem: Patterns capture solutions, not just abstract principles

or strategies. • It is a proven concept: Patterns capture solutions with a

track record, not theories or speculation.

 There are many benefits from studying and applying design patterns.

First, they can help designers and programmers become more efficient. It

is now common to find built-in

http://forumvu.com

107

CS603 - Software Architecture and Design (Handouts)

 support for design patterns in today’s popular language frameworks,

such as Java and the

 .NET framework. Therefore, knowing about design patterns can help

programmers come

 up to speed quicker in these environments and enable them to quickly

apply them to particular

 problems.

GOF Design Pattern Format

The basic template includes ten things as described below

 Name

· Works as idiom

Name has to be meaningful

 Problem

• A statement of the problem which describes its intent

• The goals and objectives it wants to reach within the given context

 Context

• Preconditions under which the problem and its solutions seem to occur

• Result or consequence

• State or configuration after the pattern has been applied

 Forces

· Relevant forces and constraints and their interactions and conflicts.

· motivational scenario for the pattern.

GOF Design Pattern

 Solution

· Static and dynamic relationships describing how to realize the pattern.

· Instructions on how to construct the work products.

· Pictures, diagrams, prose which highlight the pattern’s structure, participants,

and collaborations.

108

CS603 - Software Architecture and Design (Handouts)

 Examples

• One or more sample applications to illustrate

• a specific context

• how the pattern is applied

 Resulting context

· the state or configuration after the pattern has been applied

· consequences (good and bad) of applying the pattern

 Rationale

· justification of the steps or rules in the pattern

• how and why it resolves the forces to achieve the desired goals,

principles, and philosophies

· how does the pattern actually work

 Related patterns

• the static and dynamic relationships between this pattern and other

patterns

 Known uses

• to demonstrate that this is a proven solution to a recurring problem

Classification of Design Patterns

Design Patterns

When first studying design patterns, it is important to understand what each

pattern

does and how it does it.

In the influential work presented by Gamma, Helm, Johnson, and Vissides

(1995) design patterns are classified based on purpose and scope. The purpose

of a design pattern identifies the functional essence of the pattern; therefore, it

serves as fundamental differentiation criteria between design patterns.

109

CS603 - Software Architecture and Design (Handouts)

GOF(Gang of Four) Classification

Three different purposes are identified by the Gang of Four (GoF):

 Creational

 Structural

 Behavioral

Creational Pattern

Creational design patterns are the ones that attempt to efficiently manage the

creation process of objects in a software system.

The basic form of object creation could result in design problems or added

complexity to the design. Creational design patterns solve this problem by

somehow controlling this object creation. Creational patterns are overall known

for abstracting the instantiation process of one or more objects.

Creational Patterns Types

 Abstract Factory

Creates an instance of several families of classes

 Builder

Separates object construction from its representation

 Factory Method

Creates an instance of several derived classes

 Object Pool

Avoid expensive acquisition and release of resources by recycling objects

that are no longer in use

 Prototype

A fully initialized instance to be copied or cloned

 Singleton

A class of which only a single instance can exist

https://sourcemaking.com/design_patterns/abstract_factory
https://sourcemaking.com/design_patterns/builder
https://sourcemaking.com/design_patterns/factory_method
https://sourcemaking.com/design_patterns/object_pool
https://sourcemaking.com/design_patterns/prototype
https://sourcemaking.com/design_patterns/singleton
Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

110

CS603 - Software Architecture and Design (Handouts)

Abstract Pattern : Creational

 The purpose of the Abstract Factory is to provide an interface for creating

families of related objects, without specifying concrete classes

 The "factory" object has the responsibility for providing creation services

for the entire platform family. Clients never create platform objects

directly, they ask the factory to do that for them.

 https://sourcemaking.com/design_patterns/abstract_factory

Structural Design Patterns

 Structural Design Patterns are design patterns that ease the design by

identifying a simple way to realize relationships between entities.

 These design patterns are all about Class and Object composition.

Structural class-creation patterns use inheritance to compose interfaces.

Structural object-patterns define ways to compose objects to obtain new

functionality.

Structural Pattern Types

 Adapter

Match interfaces of different classes

 Bridge

Separates an object’s interface from its implementation

 Composite

A tree structure of simple and composite objects

 Decorator

Add responsibilities to objects dynamically

 Facade

A single class that represents an entire subsystem

 Flyweight

A fine-grained instance used for efficient sharing

 Private Class Data

Restricts accessor/mutator access

 Proxy

An object representing another object

https://sourcemaking.com/design_patterns/abstract_factory
https://sourcemaking.com/design_patterns/abstract_factory
https://sourcemaking.com/design_patterns/adapter
https://sourcemaking.com/design_patterns/bridge
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/facade
https://sourcemaking.com/design_patterns/flyweight
https://sourcemaking.com/design_patterns/private_class_data
https://sourcemaking.com/design_patterns/proxy

111

CS603 - Software Architecture and Design (Handouts)

Façade Pattern: Structural

 The Facade defines a unified, higher level interface to a subsystem that

makes it easier to use. Consumers encounter a Facade when ordering

from a catalog. The consumer calls one number and speaks with a

customer service representative. The customer service representative acts

as a Facade, providing an interface to the order fulfillment department,

the billing department, and the shipping department.

 Facade discusses encapsulating a complex subsystem within a single

interface object. This reduces the learning curve necessary to successfully

control the subsystem

 Wrap a complicated subsystem with a simpler interface.

 https://sourcemaking.com/design_patterns/facade

https://sourcemaking.com/design_patterns/facade
https://sourcemaking.com/design_patterns/facade

112

CS603 - Software Architecture and Design (Handouts)

Behavioral Design Patterns

 These design patterns are all about Class's objects communication.

Behavioral patterns are those patterns that are most specifically

concerned with communication between objects.

 They identify common communication patterns between objects and

realize these patterns. By doing so, these patterns increase flexibility in

carrying out this communication.

Behavioral Design Pattern Types

 Chain of responsibility

A way of passing a request between a chain of objects

 Command

Encapsulate a command request as an object

 Interpreter

A way to include language elements in a program

 Iterator

Sequentially access the elements of a collection

 Mediator

Defines simplified communication between classes

 Memento

Capture and restore an object's internal state

 Null Object

Designed to act as a default value of an object

 Observer

A way of notifying change to a number of classes

 State

Alter an object's behavior when its state changes

 Strategy

Encapsulates an algorithm inside a class

 Template method

Defer the exact steps of an algorithm to a subclass

 Visitor

Defines a new operation to a class without change

https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/command
https://sourcemaking.com/design_patterns/interpreter
https://sourcemaking.com/design_patterns/iterator
https://sourcemaking.com/design_patterns/mediator
https://sourcemaking.com/design_patterns/memento
https://sourcemaking.com/design_patterns/null_object
https://sourcemaking.com/design_patterns/observer
https://sourcemaking.com/design_patterns/state
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/visitor

113

CS603 - Software Architecture and Design (Handouts)

Observer Pattern: Behavioral

 The Observer defines a one-to-many relationship so that when one object

changes state, the others are notified and updated automatically.

Example:

Some auctions demonstrate this pattern. Each bidder possesses a numbered

paddle that is used to indicate a bid. The auctioneer starts the bidding, and

"observes" when a paddle is raised to accept the bid. The acceptance of the bid

changes the bid price which is broadcast to all of the bidders in the form of a

new bid.

 https://sourcemaking.com/design_patterns/observer

https://sourcemaking.com/design_patterns/observer
https://sourcemaking.com/design_patterns/observer

114

CS603 - Software Architecture and Design (Handouts)

Week 15 Summery

Architectural Styles:

Layered Architectures

Software Architecture

 A software architecture is the structure of a program comprised by its

major constituents, their responsibilities and properties, and the

relationships and interactions between them.

Architectural Styles

 An architectural style is a paradigm of program or system constituent

types and their interactions.

 To present several important architectural styles, including

 Layered style

 Pipe-and-Filter style

 Shared-Data style

 Event-Driven style

 Model-View-Controller style

 Hybrid architectures

Layered Style Architectures

 The program is partitioned into an array of layers or groups.

 Layers use the services of the layer or layers below and provide services

to the layer or layers above.

 The Layered style is among the most widely used of all architectural

styles.

Uses and Invokes

 Module A uses module B if a correct version of B must be present for A

to execute correctly.

 Module A calls or invokes module B if A triggers execution of B.

 Note that

◦ A module may use but not invoke another

http://forumvu.com

115

CS603 - Software Architecture and Design (Handouts)

◦ A module may invoke but not use another

◦ A module may both use and invoke another

◦ A module may neither use nor invoke another

Layer Constraints

 Static structure—The software is partitioned into layers that each provide

a cohesive set of services with a well-defined interface.

 Dynamic structure—Each layer is allowed to use only the layer directly

below it (Strict Layered style) or the all the layers below it (Relaxed

Layered style).

Representing Layers

Wedding Cake

Diagram
Onion Diagram

Layer 0

Layer 4

Layer 3

Layer 2

Layer 1

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

Layer

Is Allowed

to Use
Atop

Legend

Layer

Directly

Includes

Is Allowed

to Use

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

116

CS603 - Software Architecture and Design (Handouts)

Forming Layers

 Levels of abstraction

◦ Example: Network communication layers

 Virtual machines

◦ Examples: Operating systems, interpreters

 Information hiding, decoupling, etc

◦ Examples: User interface layers, virtual device layers

Layered Style Advantages

 Layers are highly cohesive and promote information hiding.

 Layers are not strongly coupled to layers above them, reducing overall

coupling.

 Layers help decompose programs, reducing complexity.

 Layers are easy to alter or fix by replacing entire layers, and easy to

enhance by adding functionality to a layer.

 Layers are usually easy to reuse.

Layered Style Disadvantages

 Passing everything through many layers can complicate systems and

damage performance.

 Debugging through multiple layers can be difficult.

 Layer constraints may have to be violated to achieve unforeseen

functionality.

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

117

CS603 - Software Architecture and Design (Handouts)

Other Architectural Styles

Architectural Styles

 An architectural style is a paradigm of program or system constituent

types and their interactions.

 To present several important architectural styles, including

 Layered style

 Pipe-and-Filter style

 Shared-Data style

 Event-Driven style

 Model-View-Controller style

 Hybrid architectures

Pipe-and-Filter Style

 A filter is a program component that transforms an input stream to an

output stream.

 A pipe is conduit for a stream.

 The Pipe-and-Filter style is a dynamic model in which program

components are filters connected by pipes.

Pipe-and-Filter Example

Lexical Analyzer

Parser

Semantic Analyzer

Code Generator

Filter Pipe

Legend

118

CS603 - Software Architecture and Design (Handouts)

Pipe-and-Filter Characteristics

 Pipes are isolated and usually only communicate through data streams, so

they are easy to write, test, reuse, and replace.

 Filters may execute concurrently.

◦ Requires pipes to synchronize filters

 Pipe-and-filter topologies should be acyclic graphs.

◦ Avoids timing and deadlock issues

 A simple linear arrangement is a pipeline.

Pipe-and-Filter Advantages

 Filters can be modified and replaced easily.

 Filters can be rearranged with little effort, making it easy to develop

similar programs.

 Filters are highly reusable.

 Concurrency is supported and is relatively easy to implement.

Pipe-and-Filter Disadvantages

 Filters communicate only through pipes, which makes it difficult to

coordinate them.

 Filters usually work on simple data streams, which may result in wasted

data conversion effort.

 Error handling is difficult.

Shared-Data Style

 One or more shared-data stores are used by one or more shared-data

accessors that communicate solely through the shared-data stores.

 Two variants:

◦ Blackboard style—The shared-data stores activate the accessors

when the stores change.

◦ Repository style—The shared-data stores are passive and

manipulated by the accessors.

 This is a dynamic model only.

119

CS603 - Software Architecture and Design (Handouts)

Shared-Data Style Example

Shared-Data Style Advantages

 Shared-data accessors communicate only through the shared-data store,

so they are easy to change, replace, remove, or add to.

 Accessor independence increases robustness and fault tolerance.

 Placing all data in the shared-data store makes it easier to secure and

control.

Shared-Data Style Disadvantages

 Forcing all data through the shared-data store may degrade performance.

 If the shared-data store fails, the entire program is crippled.

Event-Driven Style

 Also called the Implicit Invocation style

 An event is any noteworthy occurrence.

 An event dispatcher mediates between components that announce and are

notified of events.

 This is a dynamic model only

Accessor

Legend

Accesses

Project Data

Store

Shared-

Data Store

Schedule

Tracking Tool

Testing Tool

Class Diagram

Editor

Compiler

Sequence

Diagram Editor

State Diagram

Editor

120

CS603 - Software Architecture and Design (Handouts)

Event-Driven Style Example

Stylistic Variations

 Events may be notifications or they may carry data.

 Events may have constraints honored by the dispatcher, or the dispatcher

may manipulate events.

 Events may be dispatched synchronously or asynchronously.

 Event registration may be constrained in various ways.

Event-Driven Style Advantages

 It is easy to add or remove components.

 Components are decoupled, so they are highly reusable, changeable, and

replaceable.

 Systems built with this style are robust and fault tolerant.

Event

Dispatcher

Event

Dispatcher

Announce

Event

Legend

Smoke

Detector

Door

Sensor

Carbon

Dioxide

Detector

Thermostat

Motion

Sensor

Detect

Fire

Monitor

Security

Check

Environment

Sensor

Monitor
Send

Notification

121

CS603 - Software Architecture and Design (Handouts)

Event-Driven Style Disadvantages

 Component interaction may be awkward when mediated by the event

dispatcher.

 There are no guarantees about event sequencing or timing, which may

make it difficult to write correct programs.

 Event traffic tends to be highly variable, which may make it difficult to

achieve performance goals.

Model-View-Controller (MVC) Style

 This style models how to set up the relationships between user interface

and problem-domain components.

 Model—A problem-domain component with data and operations for

achieving program goals independent of the user interface

 View—A data display component

 Controller—A component that receives and acts on user input

MVC Static Structure

ViewController

Model

«can use»

«layer»

User Interface

«layer»

Application Domain

«can use»

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

122

CS603 - Software Architecture and Design (Handouts)

MVC Behavior

MVC Advantages

 Views and controllers can be added, removed, or changed without

disturbing the model.

 Views can be added or changed during execution.

 User interface components can be changed, even at runtime.

MVC Disadvantages

 Views and controller are often hard to separate.

 Frequent updates may slow data display and degrade user interface

performance.

 The MVC style makes user interface components highly dependent on

model components.

:User :Controller :Model:View

manipulate
change()

makeChange()

notify()

query()

notify()

query()

sd MVCinteraction

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

123

CS603 - Software Architecture and Design (Handouts)

Hybrid Architectures

Most systems of any size include several architectural styles, often at different

levels of abstraction.

◦ An overall a system may have a Layered style, but the one layer

may use the Event-Driven style, and another the Shared-Data style.

◦ An overall system may have a Pipe-and-Filter style, but the

individual filters may have Layered styles.

 THE END

Ahtsham
Typewriter
Virtual University Help Forum - ForumVU.com

http://forumvu.com

