

System Programming

CS609

Virtual University of Pakistan
Leaders in Education Technology

CS609-System Programming VU

© Copyright Virtual University of Pakistan

2

Table of Contents

01 - Introduction, Means of I/O ... 3
02 - Interrupt Mechanism... 11
03 - Use of ISRs for C Library Functions .. 19
04 - TSR programs and Interrupts ... 26
05 - TSR programs and Interrupts (Keyboard interrupt) ... 33
06 - TSR programs and Interrupts (Disk interrupt, Keyboard hook) 40
07 - Hardware Interrupts .. 46
08 - Hardware Interrupts and TSR programs ... 54
09 - The interval Timer .. 68
10 - Peripheral Programmable Interface (PPI)... 76
11 - Peripheral Programmable Interface (PPI) II ... 83
12 - Parallel Port Programming ... 95
13 - Serial Communication .. 103
14 - Serial Communication (Universal Asynchronous Receiver Transmitter) 110
15 - COM Ports .. 117
16 - COM Ports II .. 125
17 - Real Time Clock (RTC) ... 133
18 - Real Time Clock (RTC) II .. 146
19 - Real Time Clock (RTC) III .. 155
20 - Determining system information .. 163
21 - Keyboard Interface ... 172
22 - Keyboard Interface, DMA Controller .. 180
23 - Direct Memory Access (DMA) .. 186
24 - Direct Memory Access (DMA) II .. 192
25 - File Systems .. 199
26 - Hard Disk .. 207
27 - Hard Disk, Partition Table .. 216
28 - Partition Table II ... 223
29 - Reading Extended Partition .. 229
30 - File System Data Structures (LSN, BPB) ... 236
31 - File System Data Structures II (Boot block) .. 244
32 - File System Data Structures III (DPB) ... 249
33 - Root Directory, FAT12 File System... 256
34 - FAT12 File System II, FAT16 File System ... 262
35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System) 267
36 - File Organization .. 274
37 - FAT32 File System ... 283
38 - FAT32 File System II ... 291
39 - New Technology File System (NTFS) ... 301
40 - Disassembling the NTFS based file .. 306
41 - Disk Utilities ... 312
42 - Memory Management ... 317
43 - Non-Contiguous memory allocation .. 324
44 - Address translation in Protected mode ... 329
45 - Viruses .. 332

01 - Introduction, Means of I/O

© Copyright Virtual University of Pakistan

3

01 - Introduction, Means of I/O

What is Systems Programming?

Computer programming can be categorized into two categories .i.e.

Input OutputInput OutputProcess

While designing software the programmer may determine the required inputs for
that program, the wanted outputs and the processing the software would perform
in order to give those wanted outputs. The implementation of the processing part
is associated with application programming. Application programming facilitates
the implementation of the required processing that software is supposed to
perform; everything that is left now is facilitated by system programming.

Systems programming is the study of techniques that facilitate the acquisition of
data from input devices, these techniques also facilitates the output of data which
may be the result of processing performed by an application.

Three Layered Approach

A system programmer may use a three layered approach for systems
programming. As you can see in the figure the user may directly access the

programmable hardware in order to perform I/O operations. The user may use
the trivial BIOS (Basic Input Output System) routines in order to perform I/O in

which case the programmer need not know the internal working of the hardware
and need only the knowledge BIOS routines and their parameters.

H/W

DOS

BIOS

In this case the BIOS programs the hardware for required I/O operation which is
hidden to the user. In the third case the programmer may invoke operating
systems (DOS or whatever) routines in order to perform I/O operations. The
operating system in turn will use BIOS routines or may program the hardware
directly in order to perform the operation.

01 - Introduction, Means of I/O

© Copyright Virtual University of Pakistan

4

Methods of I/O

In the three layered approach if we are following the first approach we need to
program the hardware. The hardware can be programmed to perform I/O in three
ways i.e.

• Programmed I/O
• Interrupt driven I/O
• Direct Memory Access

In case of programmed I/O the CPU continuously checks the I/O device if the I/O
operation can be performed or not. If the I/O operations can be performed the
CPU performs the computations required to complete the I/O operation and then
again starts waiting for the I/O device to be able to perform next I/O operation. In
this way the CPU remains tied up and is not doing anything else besides waiting
for the I/O device to be idle and performing computations only for the slower I/O
device.

In case of interrupt driven the flaws of programmed driven I/O are rectified. The
processor does not check the I/O device for the capability of performing I/O
operation rather the I/O device informs the CPU that it’s idle and it can perform
I/O operation, as a result the execution of CPU is interrupted and an Interrupt
Service Routine (ISR) is invoked which performs the computations required for
I/O operation. After the execution of ISR the CPU continues with whatever it was
doing before the interruption for I/O operation. In this way the CPU does not
remain tied up and can perform computations for other processes while the I/O
devices are busy performing I/O and hence is more optimal.

 Usually it takes two bus cycles to transfer data from some I/O port to memory or
vice versa if this is done via some processor register. This transfer time can be
reduced bypassing the CPU as ports and memory device are also interconnected
by system bus. This is done with the support of DMA controller. The DMA (direct
memory access) controller can controller the buses and hence the CPU can be
bypassed data item can be transferred from memory to ports or vice versa in a
single bus cycle.

01 - Introduction, Means of I/O

© Copyright Virtual University of Pakistan

5

I/O controllers

I/O device

I/O controller

CPU

No I/O device is directly connected to the CPU. To provide control signals to the
I/O device a I/O controller is required. I/O controller is located between the CPU
and the I/O device. For example the monitor is not directly collected to the CPU
rather the monitor is connected to a VGA card and this VGA card is in turn
connected to the CPU through busses. The keyboard is not directly connected to
CPU rather its connected to a keyboard controller and the keyboard controller is
connected to the CPU. The function of this I/O controller is to provide

• I/O control signals
• Buffering
• Error Correction and Detection

We shall discuss various such I/O controllers interfaced with CPU and also the
techniques and rules by which they can be programmed to perform the required
I/O operation.

Some of such controllers are

• DMA controller
• Interrupt controller
• Programmable Peripheral Interface (PPI)
• Interval Timer
• Universal Asynchronous Receiver Transmitter

We shall discuss all of them in detail and how they can be used to perform I/O
operations.

Operating systems
Systems programming is not just the study of programmable hardware devices.
To develop effective system software one needs to the internals of the operating
system as well. Operating systems make use of some data structures or tables
for management of computer resources. We will take up different functions of the
operating systems and discuss how they are performed and how can the data
structures used for these operations be accessed.

01 - Introduction, Means of I/O

© Copyright Virtual University of Pakistan

6

File Management
File management is an important function of the operating systems.
DOS/Windows uses various data structures for this purpose. We will see how it
performs I/O management and how the data structures used for this purpose can
be directly accessed. The various data structures are popularly known as FAT
which can be of 12, 16 and 32 bit wide, Other data structures include BPB(BIOS
parameter block), DPB(drive parameter block) and the FCBs(file control block)
which collectively forms the directory structure. To understand the file structure
the basic requirement is the understanding of the disk architecture, the disk
formatting process and how this process divides the disk into sectors and
clusters.

Memory management
Memory management is another important aspect of operating systems.
Standard PC operate in two mode in terms of memory which are

• Real Mode
• Protected Mode

In real mode the processor can access only first one MB of memory to control the
memory within this range the DOS operating system makes use of some data
structures called

• FCB (File control block)
• PSP (Program segment prefix)

We shall discuss how these data structures can be directly accessed, what is the
significance of data in these data structures. This information can be used to
traverse through the memory occupied by the processes and also calculate the
total amount of free memory available.
Certain operating systems operate in protected mode. In protected mode all of
the memory interfaced with the processor can be accessed. Operating systems in
this mode make use of various data structures for memory management which
are

• Local Descriptor Table
• Global Descriptor Table
• Interrupt Descriptor Table

We will discuss the significance these data structures and the information stored
in them. Also we will see how the logical addresses can be translated into
physical addresses using the information these tables

Viruses and Vaccines

Once an understanding of the file system and the memory Management is
developed it is possible to understand the working of viruses. Virus is a simple
program which can embed itself within the computer resources and propagate
itself. Mostly viruses when activated would perform something hazardous.

01 - Introduction, Means of I/O

© Copyright Virtual University of Pakistan

7

We will see where do they embed themselves and how can they be detected.
Moreover we will discuss techniques of how they can be removed and mostly
importantly prevented to perform any infections.
There are various types of viruses but we will discuss those which embed
themselves within the program or executable code which are
Executable file viruses
Partition Table or boot sector viruses

Device Drivers
Just connecting a device to the PC will not make it work unless its device drivers
are not installed. This is so important because a device driver contains the
routines which perform I/O operations on the device. Unless these routines are
provided no I/O operation on the I/O device can be performed by any application.
We will discuss the integrated environment for the development of device drivers
for DOS and Windows.

We shall begin our discussion from means of I/O. On a well designed device it is
possible to perform I/O operations from three different methods

• Programmed I/O
• Interrupt driven I/O
• DMA driven I/O

Output

D0

I/O
Controller

Input

D7

DR

CPU

D0

I/O
Controller

Input

D7

DR

CPU

D0

D7

Strobe
Busy

D0

D7

Strobe
Busy

CPU

In case of programmed I/O the CPU is in a constant loop checking for an I/O
opportunity and when its available it performs the computations operations
required for the I/O operations. As the I/O devices are generally slower than the
CPU, CPU has to wait for I/O operation to complete so that next data item can be
sent to the device. The CPU sends data on the data lines. The device need to be
signaled that the data has been sent this is done with the help of STROBE signal.
An electrical pulse is sent to the device by turning this signal to 0 and then 1. The
device on getting the strobe signal receives the data and starts its output. While
the device is performing the output it’s busy and cannot accept any further data
on the other and CPU is a lot faster device and can process lot more bytes during
the output of previously sent data so it should be synchronized with the slower
I/O device. This is usually done by another feed back signal of BUSY which is
kept active as long as the device is busy. So the CPU is only waiting for the

01 - Introduction, Means of I/O

© Copyright Virtual University of Pakistan

8

device to get idle by checking the BUSY signal as long as the device is busy and
when the device gets idle the CPU will compute the next data item and send it to
the device for I/O operation.
Similar is the case of input, the CPU has to check the DR (data Ready) signal to
see if data is available for input and when its not CPU is busy waiting for it.

Interrupt Driven I/O

The main disadvantage of
programmed I/O as can be
noticed is that the CPU is
busy waiting for an I/O
opportunity and as a result
remain tied up for that I/O
operation. This disadvantage
can be overcome by means
of interrupt driven I/O. In
Programmed I/O CPU itself
checks for an I/O opportunity
but in case of interrupt
driven I/O the I/O controller

interrupts the execution of CPU when ever and I/O operation is required for the
computation of the required I/O operation. This way the CPU can perform other
computation and interrupted to perform and interrupt service routine only when
an I/O operation is required, which is quite an optimal technique.

Interrupt Driven input / output

Strobe

Output

D0

I/O
Controller

IBF

Input

D7

INT

CPU

D0

D7

INT ACK
Busy

I/O
Controller

CPU

01 - Introduction, Means of I/O

© Copyright Virtual University of Pakistan

9

DMA driven I/O

In case data is needed to
transferred from main
memory to I/O port this can
be done using CPU which
will consume 2 bus cycles
for a single word, one bus
cycle from memory to CPU
and other from CPU to I/O
port in case of output and
the vice versa in case of

input. In case no computation on data is required CPU can be bypassed and
another device DMA (direct memory access) controller can be used. Its possible
to transfer a data word directly from memory to CPU and vice versa in a single
bus cycle using the DMA, this technique is definitely faster.

We shall start our discussion with the study of interrupt and the techniques used
to program them. We will discuss other methods of I/O as required.

What are interrupts?

ISR Performing An I/O

1
2

3

Literally to interrupt means to break the continuity of some on going task. When
we talk of computer interrupt we mean exactly the same in terms of the
processor. When an interrupt occurs the continuity of the processor is broken and
the execution branches to an interrupt service routine. This interrupt service
routine is a set of instruction carried out by the CPU to perform or initiate an I/O
operation generally. When the routine is over the execution of the CPU returns to
the point of interruption and continues with the on going process.

DMA Driven I/O

I/O

DMA

CPU

Register

Main Memory

01 - Introduction, Means of I/O

© Copyright Virtual University of Pakistan

10

Interrupts can be of two types
• Hardware interrupts
• Software interrupts

Only difference between them is the method by which they are invoked. Software
interrupts are invoked by means of some software instruction or statement and
hardware interrupt is invoked by means of some hardware controller generally.

Interrupt Mechanism
Interrupts are quite similar to procedures or function because it is also another
form temporary execution transfer, but there some differences as well. Note that
when procedures are invoked by there names which represents their addresses
is specified whereas in case of interrupts their number is specified. This number
can be any 8 bit value which certainly is not its address. So the first question is
what is the significance of this number? Another thing should also be noticed that
procedures are part of the program but the interrupts invoked in the program are
no where declared in the program. So the next question is where do these
interrupts reside in memory and if they reside in memory then what would be the
address of the interrupt?

Firstly lets see where do interrupts reside. Interrupts certainly reside somewhere
in memory, the interrupts supported by the operating system resides in kernel
which you already know is the core part of the operating system. In case of DOS
the kernel is io.sys which loads in memory at boot time and in case of windows
the kernel is kernel32.dll or kernel.dll. these files contain most of the I/O routines
and are loaded as required. The interrupts supported by the ROM BIOS are
loaded in ROM part of the main memory which usually starts at the address
F000:0000H. Moreover it is possible that some device drivers have been installed
these device drivers may provide some I/O routines so when the system boots
these I/O routines get memory resident at interrupt service routines. So these are
the three possibilities.

Secondly a program at compile time does not know the exact address where the
interrupt service routine will be residing in memory so the loader cannot assign
addresses for interrupt invocations. When a device driver loads in memory it
places the address of the services provided by itself in the interrupt vector table.
Interrupt Vector Table (IVT) in short is a 1024 bytes sized table which can hold
256 far addresses as each far address occupies 4 bytes. So its possible to store
the addresses of 256 interrupts hence there are a maximum of 256 interrupt in a
standard PC. The interrupt number is used as an index into the table to get the
address of the interrupt service routine.

02 - Interrupt Mechanism

© Copyright Virtual University of Pakistan

11

02 - Interrupt Mechanism

Interrupt Mechanism
Interrupt follow a follow a certain mechanism for their invocation just like near or far
procedures. To understand this mechanism we need to understand its differences with
procedure calls.

Difference between interrupt and procedure calls
Procedures or functions of sub-routines in various different languages are called by
different methods as can be seen in the examples.

• Call MyProc
• A= Addition(4,5);
• Printf(“hello world”);

The general concept for procedure call in most of the programming languages is that on
invocation of the procedure the parameter list and the return address (which is the value if
IP register in case of near or the value of CS and IP registers in case of far procedure) is
pushed Moreover in various programming languages whenever a procedure is called its
address need to be specified by some notation i.e. in C language the name of the
procedure is specified to call a procedure which effectively can be used as its address.

However in case of interrupts the a number is used to specify the interrupt number in the
call

• Int 21h
• Int 10h
• Int3

Fig 1 (Call to interrupt service routine and procedures/functions)

Main
Call proc1()
Call proc1()

Proc1()

Proc2()

Int 21h

Int 10h

Moreover when an interrupt is invoked three registers are pushed as the return address i.e.
the values of IP, CS and Flags in the described order which are restored on return. Also

02 - Interrupt Mechanism

© Copyright Virtual University of Pakistan

12

no parameters are pushed onto the stack on invocation parameters can only be passed
through registers.

The interrupt vector table
The interrupt number specified in the interrupt call is used as an index into the interrupt
vector table. Interrupt vector table is a global table situated at the address 0000:0000H.
The size of interrupt vector table is 1024 bytes or 1 KB. Each entry in the IVT is sized 4
bytes hence 256 interrupt vectors are possible numbered (0-FFH). Each entry in the table
contains a far address of an interrupt handlers hence there is a maximum of 256 handlers
however each handlers can have a number of services within itself. So the number
operations that can be performed by calling an interrupt service routine (ISR) is indefinite
depending upon the nature of the operating system. Each vector contains a far address of
an interrupt handler. The address of the vector and not the address of interrupt handler can
be easily calculated if the interrupt number is known. The segment address of the whole
IVT is 0000H the offset address for a particular interrupt handler can be determined by
multiplying its number with 4 eg. The offset address of the vector of
INT 21H will be 21H * 4 = 84H and the segment for all vectors is 0 hence its far address
is 0000:0084H,(this is the far address of the interrupt vector and not the interrupt service
routine or interrupt handler). The vector in turn contains the address of the interrupt
service routine which is an arbitrary value depending upon the location of the ISR
residing in memory.

Fig 2 (Interrupt Vector Table)

Interrupt Vector Table
INT0
INT1

INTFF

0000:0000

0000:03FFH

0000:0004

Moreover it is important to understand the meaning of the four bytes within the interrupt
vector. Each entry within the IVT contains a far address the first two bytes (lower word)
of which is the offset and the next two bytes (higher word) is the segment address.

02 - Interrupt Mechanism

© Copyright Virtual University of Pakistan

13

HI(1)
HI(0)
LO(1)
LO(0)

HI(1)
HI(0)
LO(1)
LO(0)INT 0 0000:0001

0000:0003

0000:0004

0000:0007

INT 1

Fig 3 (Far address within Interrupt vector)

Location of ISRs (Interrupt service routines)
Generally there are three kind of ISR within a system depending upon the entity which
implements it

• BIOS (Basic I/O services) ISRs
• DOS ISRs
• ISRs provided by third party device drivers

When the system has booted up and the applications can be run all these kind of ISRs
maybe provided by the system. Those provided by the ROM-BIOS would be typically
resident at any location after the address F000:0000H because this the address within
memory from where the ROM-BIOS starts, the ISRs provided by DOS would be resident
in the DOS kernel (mainly IO.SYS and MSDOS.SYS loaded in memory) and the ISR
provided by third party device drivers will be resident in the memory occupied by the
device drivers.

IO.SYS
Device Driver

Command. COM

USER PROGRAM

Rom Bios

IO.SYS
Device Driver

Command. COM

USER PROGRAM

Rom Bios F000:0000

Fig 4 (ISRs in memory)

This fact can be practically analyzed by the DOS command mem/d which gives the status
of the memory and also points out which memory area occupied by which process as
shown in the text below. The information given by this command indicates the address

02 - Interrupt Mechanism

© Copyright Virtual University of Pakistan

14

where IO.SYS and other device drivers have been loaded but the location of ROM BIOS
is not shown by this command.

C:\>mem /d
Address Name Size Type
 ------- -------- ------ ------
 000000 000400 Interrupt Vector
 000400 000100 ROM Communication Area
 000500 000200 DOS Communication Area

 000700 IO 000370 System Data
 CON System Device Driver
 AUX System Device Driver
 PRN System Device Driver
 CLOCK$ System Device Driver
 COM1 System Device Driver
 LPT1 System Device Driver
 LPT2 System Device Driver
 LPT3 System Device Driver
 COM2 System Device Driver
 COM3 System Device Driver
 COM4 System Device Driver

 000A70 MSDOS 001610 System Data

 002080 IO 002030 System Data
 KBD 000CE0 System Program
 HIMEM 0004E0 DEVICE=
 XMSXXXX0 Installed Device Driver
 000490 FILES=
 000090 FCBS=
 000120 LASTDRIVE=
 0007D0 STACKS=
 0040C0 COMMAND 000A20 Program
 004AF0 MSDOS 000070 -- Free --
 004B70 COMMAND 0006D0 Environment
 005250 DOSX 0087A0 Program
 00DA00 MEM 000610 Environment
 00E020 MEM 0174E0 Program
 025510 MSDOS 07AAD0 -- Free --
 09FFF0 SYSTEM 02F000 System Program

 0CF000 IO 003100 System Data
 MOUSE 0030F0 System Program
 0D2110 MSDOS 000600 -- Free --
 0D2720 MSCDEXNT 0001D0 Program
 0D2900 REDIR 000A70 Program
 0D3380 DOSX 000080 Data
 0D3410 MSDOS 00CBE0 -- Free --

 655360 bytes total conventional memory
 655360 bytes available to MS-DOS
 597952 largest executable program size

 1048576 bytes total contiguous extended memory
 0 bytes available contiguous extended memory
 941056 bytes available XMS memory
 MS-DOS resident in High Memory Area

Interrupt Invocation
Although hardware and software interrupts are invoked differently i.e hardware interrupts
are invoked by means of some hardware whereas software interrupts are invoked by
means of software instruction or statement but no matter how an interrupt has been
invoked processor follows a certain set steps after invocation of interrupts in exactly same
way in both the cases. These steps are listed as below

• Push Flags, CS, IP Registers, Clear Interrupt Flag
• Use (INT#)*4 as Offset and Zero as Segment

02 - Interrupt Mechanism

© Copyright Virtual University of Pakistan

15

• This is the address of interrupt Vector and not the ISR
• Use lower two bytes of interrupt Vector as offset and move into IP
• Use the higher two bytes of Vector as Segment Address and move it into

CS=0:[offset+2]
• Branch to ISR and Perform I/O Operation
• Return to Point of Interruption by Popping the 6 bytes i.e. Flags CS, IP.

This can be analyzed practically by the use of debug program, used to debug assembly
language code, by assembling and debugging INT instructions

C:\>debug
-d 0:84
0000:0080 7C 10 A7 00-4F 03 55 05 8A 03 55 05 |...O.U...U.
0000:0090 17 03 55 05 86 10 A7 00-90 10 A7 00 9A 10 A7 00 ..U.............
0000:00A0 B8 10 A7 00 54 02 70 00-F2 04 74 CC B8 10 A7 00 T.p...t.....
0000:00B0 B8 10 A7 00 B8 10 A7 00-40 01 21 04 50 09 AB D4 @.!.P...
0000:00C0 EA AE 10 A7 00 E8 00 F0-B8 10 A7 00 C4 23 02 C9 #..
0000:00D0 B8 10 A7 00 B8 10 A7 00-B8 10 A7 00 B8 10 A7 00 7
0000:00E0 B8 10 A7 00 B8 10 A7 00-B8 10 A7 00 B8 10 A7 00
0000:00F0 B8 10 A7 00 B8 10 A7 00-B8 10 A7 00 B8 10 A7 00
0000:0100 8A 04 10 02

-a
0AF1:0100 int 21
0AF1:0102
-r
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0AF1 ES=0AF1 SS=0AF1 CS=0AF1 IP=0100 NV UP EI PL NZ NA PO NC
0AF1:0100 CD21 INT 21
-t
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFE8 BP=0000 SI=0000 DI=0000
DS=0AF1 ES=0AF1 SS=0AF1 CS=00A7 IP=107C NV UP DI PL NZ NA PO NC
00A7:107C 90 NOP
-d ss:ffe8
0AF1:FFE0 02 01 F1 0A 02 F2 00 00
0AF1:FFF0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

The dump at the address 0000:0084 H shows the value of the vector of the interrupt #
21H i.e. 21H * 4 = 84H. This address holds the value 107CH in lower word and 00A7H
in the higher word which indicates that the segment address of interrupt # 21 is 00A7H
and the offset address of this ISR is 107CH.

Moreover the instruction INT 21H can be assembled and executed in the debug program,
on doing exactly so the instruction is traced through and the result is monitored. It can be
seen that on execution of this instruction the value of IP is changed to 107CH and the
value of CS is changed to 00A7H which cause the execution to branch to the Interrupt #
21H in memory and the previous values of flags, CS and IP registers are temporarily
saved onto the stack as the value of SP is reduced by 6 and the dump at the location
SS:SP will show these saved values as well.

Parameter passing into Software interrupts
In case of procedures or function in various programming languages parameters are
passed through stack. Interrupts are also kind of function provided by the operating
system but they do not accept parameters by stack rather they need to passed parameters
through registers.

Software interrupts invocation
Now let’s see how various interrupts can be invoked by means of software statements.
First there should be way to pass parameters into a software interrupt before invoking the

02 - Interrupt Mechanism

© Copyright Virtual University of Pakistan

16

interrupt; there are several methods for doing this. One of the methods is the use of
pseudo variables. A variable can be defined a space within the memory whose value can
be changed during the execution of a program but a pseudo variable acts very much like a
variable as its value can be changed anywhere in the program but is not a true variable as
it is not stored in memory. C programming language provides the use of pseudo variables
to access various registers within the processor.
The are various registers like AX, BX, CX and DX within the processor they can be
directly accessed in a program by using their respective pseudo variable by just attaching
a “_” (underscore) before the register’s name eg. _AX = 5; A = _BX .
After passing the appropriate parameters the interrupt can be directly invoked by calling
the geninterrupt () function. The interrupt number needs to be passed as parameter
into the geninterrupt() function.

Interrupt # 21H, Service # 09 description
Now lets learn by means of an example how this can be accomplished. Before invoking
the interrupt the programmer needs to know how the interrupt behaves and what
parameters it requires. Lets take the example of interrupt # 21H and service # 09 written
as 21H/09H in short. It is used to print a string ending by a ‘$’ character and other
parameters describing the string are as below
Inputs
 AH = 0x09
 DS = Segment Address of string
 DX = Offset Address of string
Output
The ‘$’ terminated string at the address DS:DX is displayed
One thing is note worthy that the service # is placed in AH which is common with almost
all the interrupts and its service. Also this service is not returning any siginificant data, if
some service needs to return some data it too is received in registers depending upon the
particular interrupt.

Example:

#include<stdio.h>
#include<BIOS.H>
#include<DOS.H>
#include<conio.h>

char st[80] ={"Hello World$"};

void main()
{
 clrscr(); //to clear the screen contents

_DX = (unsigned int) st;
 _AH = 0x09;
 geninterrupt(0x21);
 getch(); //waits for the user to press any key
}

this is a simple example in which the parameters of int 21H/09H are loaded and then int
21H is invoked. DX and AH registers are accessed through pseudo variables and then

02 - Interrupt Mechanism

© Copyright Virtual University of Pakistan

17

geninterrupt()is called to invoke the ISR. Also note that _DS is not loaded. This is
the case as the string to be loaded is of global scope and the C language compiler
automatically loads the segment address of the global data into the DS register.

Another Method for invoking software interrupts
This method makes use of a Union. This union is formed by two structure which
correspond to general purpose registers AX, BX, CX and DX. And also the half register
AH, AL, BH, BL, CH, CL, DH, DL. These structures are combined such that through this
structure the field ax can be accessed to load a value and also its half components al and
ah can be accessed individually. The declaration of this structure goes as below. If this
union is to be used a programmer need not declare the following declaration rather
declaration already available through its header file “dos.h”

struct full
{
 unsigned int ax;
 unsigned int bx;
 unsigned int cx;
 unsigned int dx;
};
struct half
{
 unsigned char al;
 unsigned char ah;
 unsigned char bl;
 unsigned char bh;
 unsigned char cl;
 unsigned char ch;
 unsigned char dl;
 unsigned char dh;
};
typedef union tagREGS
{
 struct full x;
 struct half h;
}REGS;

This union can be used to signify any of the full or half general purpose register shows if
the field ax in x struct is to be accessed then accessing the fields al and ah in h will also
have the same effect as show in the example below.
Example:

#include<DOS.H>
union REGS regs;
void main (void)
 {
 regs.h.al = 0x55;
 regs.h.ah = 0x99;
 printf (“%x”,regs.x.ax);
 }

02 - Interrupt Mechanism

© Copyright Virtual University of Pakistan

18

output:
 9955

The int86() function
The significance of this REGS union can only be understood after understanding the
int86() function. The int86() has three parameters. The first parameter is the interrupt
number to be invoked, the second parameter is the reference to a REGS type union which
contains the value of parameters that should be passed as inputs, and third parameter is a
reference to a REGS union which will contain the value of registers returned by this
function. All the required parameters for an ISR are placed in REGS type of union and its
reference is passed to an int86() function. This function will put the value in this union
into the respective register and then invoke the interrupt. As the ISR returns it might leave
some meaningful value in the register (ISR will return values), these values can be
retrieved from the REGS union whose reference was passed into the function as the third
parameter.

Example using interrupt # 21H service # 42H
To make it more meaningful we can again elaborate it by means of an example. Here we
make use of ISR 21H/42H which is used to move the file pointer. Its detail is as follows

Int # 21 Service # 42H
Inputs
 AL = Move Technique
 BX = File Handle

 CX-DX = No of Bytes File to be moved
 AH = Service # = 42H
Output
 DX-AX = No of Bytes File pointer actually moved.

BOF cp EOFBOF cp EOF

------------------- --------------------

This service is used to move the file pointer to a certain position relative to a certain
point. The value in AL specify the point relative to which the pointer is moved. If the
value of AL = 0 then file pointer is moved relative to the BOF (begin of File) if AL=1
then its moved relative to current position and if AL = 2 then its moved relative to the
EOF (end of file).
CX-DX specify the number of bytes to move a double word is needed to specify this
value as the size of file in DOS can be up to 2 GB.
On return of the service DX-AX will contain the number of bytes the file pointer is
actually moved eg. If the file pointer is moved relative to the EOF zero bytes the DX-AX
on return will contain the size of file if the file pointer was at BOF before calling the
service.

03 - Use of ISRs for C Library Functions

© Copyright Virtual University of Pakistan

19

03 - Use of ISRs for C Library Functions

The above described service can be used to get the size of a file in the described manner.
The following C language program tries to accomplish just that. This program has been
saved as .C file and not as .CPP file and then compiled.

Example 21H/42H:
#include<stdio.h>
#include<fcntl.h>
#include<io.h>
#include<BIOS.H>
#include<DOS.H>

unsigned int handle;
void main()
{
union REGS regs;
unsigned long int size;
handle = open("c:\\abc.txt",O_RDONLY);
regs.x.bx = handle;
regs.h.ah = 0x42;
regs.h.al = 0x02; //correction
regs.x.cx = 0;
regs.x.dx = 0;
int86(0x21,®s,®s);
((int)(&size)) = regs.x.ax;
(((int)(&size))+1) =regs.x.dx;
printf ("Size is %d“ ,size);
}

This program opens a file and saves its handle in the handle variable. This handle is
passed to the ISR 21H/42H along with the move technique whose value is 2 signifing
movement relative to the EOF and the number of bytes to move are specified to be zero
indicating that the pointer should move to the EOF. As the file was just opened the
previous location of the file pointer will be BOF. On return of this service DX-AX will
contain the size of the file. The low word of this size in ax is placed in the low word of
size variable and the high word in dx is placed in the high word of size variable.

Another Example:
Lets now illustrate how ISR can be invoked by means of another example of BIOS
service. Here we are choosing the ISR 10h/01h. This interrupt is used to perform I/O on
the monitor. Moreover this service is used to change the size of cursor in text mode. The
description of this service is given as under.

03 - Use of ISRs for C Library Functions

© Copyright Virtual University of Pakistan

20

Int # 10H Service # 01H

Entry
 AH = 01
 CH = Beginning Scan Line
 CL = Ending Scan Line
On Exit
 Unchanged

The size of the cursor depends upon the number of net scan lines used to display the
cursor if the beginning scan line is greater than the ending scan line the cursor will
disappear. The following tries to accomplish just that

void main()
{
 char st[80];
 union REGS regs;
 regs.h.ah = 0x01;
 regs.h.ch = 0x01;
 regs.h.cl = 0x00;
 int86(0x10,®s,®s); //corrected
 gets(st);
}

The program is quite self explanatory as it puts the starting scan line to be 1 and the
ending scan line to be 0. Henceforth when the service execute the cursor will disappear.

Use of ISRs for C Library functions
There are various library function that a programmer would typically use in a program to
perform input output operations. These library functions perform trivial I/O operations
like character input (putch()) and character output (getch(), getc() etc). All
these function call various ISRs to perform this I/O. In BIOS and DOS documentation
number of services can be found that lie in correspondence with some C library function
in terms of its functionality.

Writing S/W ISRs
Lets now see how can a programmer write an ISR routine and what needs to be done in
order make the service work properly. To exhibit this we will make use of an interrupt
which is not used by DOS or BIOS so that our experiment does not put any interference
to the normal functions of DOS and BIOS. One such interrupt is interrupt # 65H. The
vector of int 65H is typically filled with zeros another indication that it is not being used.

Getting interrupt vector
As we have discussed earlier IVT is a table containing 4 byte entries each of which is a
far address of an interrupt service routine. All the vectors are arranged serially such that
the interrupt number can be used as an index into the IVT.
Getting interrupt vector refers to the operation which used to reading the far address
stored within the vector. The vector is double word, the lower word of it being the offset
address and the higher word being the segment address. Moreover the address read from a
vector can be used as a function pointer. The C library function used to do the exactly

03 - Use of ISRs for C Library Functions

© Copyright Virtual University of Pakistan

21

same is getvect(int#) which requires the interrupt number a parameter and returns
the value of its vector.

Fig 1 (Vector being read from IVT)

Segment
Segment

Offset
Offset

Segment
Segment

Offset
OffsetINT #

Intproc

far

Function pointers
Another thing required to be understood are the function pointers. C language is a very
flexible language just like there are pointers for integers, characters and other data types
there are pointers for functions as well as illustrated by the following example

void myfunc()
{

}

void (*funcptr) ()

funcptr = myfunc;
(*funcptr) ();
myfunc();

There are three fragments of code in this example. The first fragment shows the
declaration of a function myfunc()
The second fragment show declaration of a pointer to function named funcptr which is
a pointer to a function that returns void.
In the third fragment funcptr is assigned the address of myfunc as the name of the
function can be used as its address just like in the cases of arrays in C. Then the function
pointed by funcptr by the statement (*funcptr)(); is called and then the original
myfunc() is called. The user will observe in both the cases same function myproc()
will be invoked.

03 - Use of ISRs for C Library Functions

© Copyright Virtual University of Pakistan

22

Interrupt pointers and functions
Interrupt functions are special function that as compared to simple functions for reasons
discussed earlier. It can be declared using the keyword interrupt as shown in the
following examples.
void interrupt newint ()
{
...
...
}

Similarly a pointer to such interrupt type function can also be declared as following
void interrupt (*intptr) ();

where intptr is the interrupt pointer and it can be assigned an address using the
getvect() function

intptr = getvect(0x08);

Now interrupt number 8 can be invoked using the interrupt vector as following

(*intptr) ();

Setting Interrupt Vector
Setting interrupt vector is just the reverse process of getting interrupt vector. To set the
interrupt vector means is to change the double word sized interrupt vector within the IVT.
This task can be accomplished using the function setvect(int #, newint) which
requires the number of interrupt whose vector is to be changed and the new value of the
vector.

Segment
Segment

Offset
Offset

Segment
Segment

Offset
OffsetINT #

far

03 - Use of ISRs for C Library Functions

© Copyright Virtual University of Pakistan

23

In the following example a certain interrupt type function has been declared. The address
of this function can be placed on to the vector of any interrupt using setvect()
function as following. The following code places the address of newint function at the
vector of int 8

void interrupt newint ()
{
…
…
}

setvect(0x08, newint);

C program making use of Int 65H

Here is a listing of a program that makes use of int 65H to exhibit how software interrupts
needs to be programmed.

void interrupt (*oldint65)();
char st[80] = {“Hello World$”};
void interrupt newint65(void);
void main()
{
 oldint65 = getvect(0x65);
 setvect(0x65, newint65);
 geninterrupt (0x65);
 geninterrupt (0x65);
 geninterrupt (0x65);
 setvect(0x65, oldint65);
}
void interrupt newint65()
{
 _AH = 0x09;
 _DX=(unsigned int)st;
 geninterrupt (0x21);
}
The above listing saves the address of original int 65H in the pointer oldint65. It then
places the address of its own function newint65 at the vector of interrupt number 65H.
From this point onwards whenever int 65H is invokes the function newint65 will be
invoked. Int 65 is invoked thrice which will force the newint65 function to be invoked
thrice accordingly. After this the original value of the vector stored in oldint65 is restored.
The newint65 function only displays the string st. As the interrupt 65 is invoked
thrice this string will be printed thrice.

The Keep function
One deficiency in the above listing is that it is not good enough for other application i.e.
after the termination of this program the newint65 function is de-allocated from the
memory and the interrupt vector needs to be restored otherwise it will act as a dangling

03 - Use of ISRs for C Library Functions

© Copyright Virtual University of Pakistan

24

pointer (pointing to a place where there is garbage or where there is no meaningful
function). To make the effect of this program permanent the newint65 function need to
be memory resident. This can be achieved by the function keep() which is quite similar
to exit() function. The exit() function returns the execution to the parent shell
program and de-allocates the memory allocated to the program whereas the keep()
function also returns the execution to the parent program but the memory allocated to the
process may still remain allocated.

keep (return code, no. of paras);

the keep() function requires the return code which is usually zero for normal termination
and the number of paragraphs required to be allocated. Each paragraph is 16 bytes in size.

TSR Programs
Following is a listing of a TSR (Terminate and Stay Resident) program which programs
the interrupt number 65H but in this case the new interrupt 65H function remains in
memory even after the termination of the program and hence the vector of int 65h does
not become a dangling pointer.

#include<BIOS.H>
#include<DOS.H>

char st[80] ={"Hello World$"};
void interrupt (*oldint65)();
void interrupt newint65();
void main()
{
 oldint65 = getvect(0x65);
 setvect(0x65, newint65);
 keep(0, 1000);
}
void interrupt newint65()
{
 _AH = 0x09;
 _DX=(unsigned int)st;
 geninterrupt (0x21);
}

The main()function gets and sets the vector of int 65H such that the address of
newint65 is placed at its vector. In this case the program is made memory resident
using the keep function and 1000 paragraphs of memory is reserved for the program (the
amount of paragraphs is just a calculated guess work based upon the size of application).
Now if any application as in the following case invokes int 65H the string st which is also
now memory resident will be displayed.

03 - Use of ISRs for C Library Functions

© Copyright Virtual University of Pakistan

25

#include<BIOS.H>
#include<DOS.H>

void main()
{
 geninterrupt (0x65);
 geninterrupt (0x65);
}

This program invokes the interrupt 65H twice which has been made resident.

04 - TSR programs and Interrupts

© Copyright Virtual University of Pakistan

26

04 - TSR programs and Interrupts

Another Example:

#include<BIOS.H>
#include<DOS.H>
char st[80] ={"Hello World$"};
char st1[80] ={"Hello Students!$"};
void interrupt (*oldint65)();
void interrupt newint65();
void main()
{
 oldint65 = getvect(0x65);
 setvect(0x65, newint65);
 keep(0, 1000);
}
void interrupt newint65()
{
 if ((_AH) == 0) //corrected
 {
 _AH = 0x09;
 _DX = (unsigned int) st;
 geninterrupt (0x21);
 }
 else
 {
 if ((_AH) == 1) //corrected
 {
 _AH = 0x09;
 _DX = (unsigned int) st1;
 geninterrupt (0x21);
 }
 }
}

Various interrupts provide a number of services. The service number is usually placed in
the AH register before invoking the interrupt. The ISR should in turn check the value in
AH register and then perform the function accordingly. The above example exemplifies
just that. In this example int 65 is assigned two services 0 and 1. Service 0 prints the
string st and service 1 prints the string st1. These services can be invoked in the
following manner.

#include<BIOS.H>
#include<DOS.H>
void main()
{
 _AH = 1;
 geninterrupt (0x65);

04 - TSR programs and Interrupts

© Copyright Virtual University of Pakistan

27

 _AH = 0;
 geninterrupt (0x65);
}

Interrupt stealing or interrupt hooks
Previously we have discussed how a new interrupt can be written and implemented.
Interrupt stealing is a technique by which already implemented services can be altered by
the programmer.

This technique makes use of the fact that the vector is stored in the IVT and it can be read
and written. The interrupt which is to be hooked its (original routine) vector is first read
from the IVT and then stored in a interrupt pointer type variable, after this the vector is
changed to point to one of the interrupt function (new routine) within the program. If the
interrupt is invoked now it will force the new routine to be executed provided that its
memory resident. Now two things can be done, the original routine might be performing
an important task so it also needs to invoked, it can either be invoked in the start of the
new routine or at the end of the new routine using its pointer as shown in the following
execution charts below

Fig 1 (Normal Execution of an ISR)
Execution Interrupted

ISR Perform I/O

Normal Execution of Interrupt

Fig 2 (The original ISR being called at he end of new routine)

Interrupt Interception

New Routine

Original Routine

04 - TSR programs and Interrupts

© Copyright Virtual University of Pakistan

28

Fig 3 (The original ISR invoked at the start of new ISR)

Other form of Interrupt Interception

New Routine

Original Routine

Care must be taken while invoking the original interrupt. Generally in case hardware
interrupts are intercepted invoking the original interrupt at the start of new routine might
cause some problems whereas in case of software interrupts the original interrupt can be
invoked anywhere.

Sample Program for interrupt Interception

void interrupt newint();
void interrupt (*old)();
void main()
{
old=getvect(0x08);
setvect(0x08,newint);
keep(0,1000);
}
void interrupt newint ()
{
…
…
(*old)();
}

The above program gets the address stored at the vector of interrupt 8 and stores it in the
pointer oldint. The address of the interrupt function newint is then placed at the vector of
int 8 and the program is made memory resident. From this point onwards whenever
interrupt 8 occurs the interrupt function newint is invoked. This function after performing
its operation calls the original interrupt 8 whose address has been stored in oldint pointer.

Timer Interrupt
In the coming few examples we will intercept interrupt 8. This is the timer interrupt. The
timer interrupt has following properties.

 Its an Hardware Interrupts
 It is Invoked by Means of Hardware
 It approximately occurs 18.2 times every second by means of hardware.

04 - TSR programs and Interrupts

© Copyright Virtual University of Pakistan

29

BIOS Data Area
BIOS contains trivial I/O routines which have been programmed into a ROM type device
and is interfaced with the processor as a part of main memory. However the BIOS
routines would require a few variables, these variables are stored in the BIOS data arera at
the location 0040:0000H in the main memory.
One such byte stored in the BIOS data area is the keyboard status byte at the location
40:17H. This contains the status of various keys like alt, shift, caps lock etc. This byte can
be described by the diagram below

Fig 4 (Keyboard status byte)

01234567 01234567

Right Shift key

Left Shift Key

Ctrl Key

Alt Key

Right Shift key

Left Shift Key

Ctrl Key

Alt Key

Insert key

Caps Lock Key

Num Lock key

Scroll lock key

Insert key

Caps Lock Key

Num Lock key

Scroll lock key

40:17H

Keyboard Status Word

Another Example

#include <dos.h>
void interrupt (*old)();
void interrupt new();
char far *scr=(char far*) 0x00400017;
void main()
{
old=getvect(0x08);
setvect(0x08,new);
keep(0,1000);
}
void interrupt new (){
*scr=64;
(*old)();
}

This fairly simple example intercepts the timer interrupt such that whenever the timer
interrupt occurs the function new() is invoked. Remember this is .C program and not a
.CPP program. Save the code file with .C extension after writing this code. On occurrence
of interrupt 8 the function new sets the caps lock bit in key board status by placing 64 at
this position through its far pointer. So even if the user turns of the caps lock on the next
occurrence of int 8 (almost immediately) the caps lock will be turned on again (turing on
the caps lock on like this will not effect its LED in the keyboard only letters will be typed
in caps).

04 - TSR programs and Interrupts

© Copyright Virtual University of Pakistan

30

Memory Mapped I/O and Isolated I/O
A device may be interfaced with the processor to perform memory mapped or isolated
I/O. Main memory and I/O ports both are physically a kind of memory device. In case of
Isolated I/O, I/O ports are used to hold data temporary while sending/receiving the data
to/from the I/O device. If the similar function is performed using a dedicated part of main
memory then the I/O operation is memory mapped.

Fig 5 (Isolated I/O)

Isolated I/O

M
P I/O

IN

OUT

M
P I/O

IN

OUT

Fig 6 (Memory mapped I/O)

Memory Mapped I/O

M
P I/O

MOV

MOV

Memory Mapped I/O on Monitor
One of the devices in standard PCs that perform memory mapped I/O is the display
device (Monitor). The output on the monitor is controller by a controller called video
controller within the PC. One of the reason for adopting memory mapped I/O for the
monitor is that a large amount of data is needed to be conveyed to the video controller in
order to describe the text or that graphics that is to be displayed. Such large amount of
data being output through isolated I/O does not form into a feasible idea as the number of
port in PCs is limited to 65536.

The memory area starting from the address b800:0000H. Two bytes (a word) are reserved
for a single character to be displayed in this area. The low byte contains the ASCII code
of the character to be displayed and the high byte contains the attribute of the character to
be displayed. The address b800:0000h corresponds to the character displayed at the top

04 - TSR programs and Interrupts

© Copyright Virtual University of Pakistan

31

left corner of the screen, the next word b800:0002 corresponds to the next character on
the same row of the text screen and so on as described in the diagram below.

Fig 7 (Memory mapped I/O on monitor)

Memory Mapped I/O ON Monitor

B8OO:0000
B8OO:0001

B8OO:0002
B8OO:0003

Low Byte = ASCII CODE
High Byte =Attribute Byte

The attribute byte (higher byte) describes the forecolor and the backcolor in which the
character will be displayed. The DOS screen carries black as the backcolor and white as
the fore color by default. The lower 4 bits (lower nibble) represents the forecolor and the
higher 4 bits (higher nibble) represents the back color as described by the diagram below

Fig 8 (Attribute Byte)

Memory Mapped I/O ON Monitor
XXXXXXXX XXXXXXXX

Back Color ColorBold

Blink

Low Byte = Ascii Code
High Byte = Attribute Byte

White111
Blue001
Green010
Red100
Black000

White111
Blue001
Green010
Red100
Black000

fore color

To understand all describe above lets take a look at this example.

unsigned int far *scr=0xb8000000;

void main()
{
(*scr)=0x0756;
(*(scr+1))=0x7055;
}

04 - TSR programs and Interrupts

© Copyright Virtual University of Pakistan

32

This example will generate the output VU
The far pointer scr is assigned the value 0xb800H in the high word which is the segment
address and value 0x0000H in the low word which is the offset address. The word at this
address is loaded with the value 0x0756H and the next word is loaded by the value
0x7055H, 0x07 is the attribute byte meaning black back color and white fore color and
the byte 0x70h means white back color and black fore color.).0x56 and 0x55 are the
ASCII value of “V” and “U” respectively.

05 - TSR programs and Interrupts (Keyboard interrupt)

© Copyright Virtual University of Pakistan

33

05 - TSR programs and Interrupts (Keyboard interrupt)

This same task can be performed by the following program as well. In this case the video
text memory is accessed byte by byte.

unsigned char far *scr=(unsigned char far*)0xb8000000;
void main()
{
*scr=0x56;
*(scr+1)=0x07;
*(scr+2)=0x55;
*(scr+3)=0x70;
}

The next example fills whole of the screen with spaces. This will clear the contents of the
screen.

unsigned char far *scr=(unsigned char far*)0xb8000000;
//corrected
void main()
{
 int i; //instruction added
 for (i=0;i<2000;i++) //corrected
 {
 *scr=0x20; //corrected
 *(scr+1)=0x07; //corrected
 scr=scr+2;
 }
}
Usually the in text mode there are 80 columns and 25 rows making a total of 2000
characters that can be shown simultaneously on the screen. This program runs a loop
2000 times placing 0x20 ASCII code of space character in whole of the text memory in
this text mode. Also the attribute is set to white forecolor and black backcolor.

Another Example
In the following example memory mapped I/O is used in combination with interrupt
interception to perform an interesting task.

#include <dos.h>
void interrupt (*old)();
void interrupt newfunc();
char far *scr=(char far*) 0xb8000000;
void main()
{
 old=getvect(0x08);
 setvect(0x08,newfunc);
 keep(0,1000);
}

05 - TSR programs and Interrupts (Keyboard interrupt)

© Copyright Virtual University of Pakistan

34

 void interrupt newfunc ()
 {
 *scr=0x41; //corrected
 *(scr+1)=0x07; //corrected
 (*old)();

 }

In the above example the timer interrupt is intercepted such that whenever the timer
interrupt is invoked (by means of hardware) the memory resident newfunc() is invoked.
This function simply displays the ASCII character 0x41 or ‘A’ in the top left corner of the
text screen.

Here is another example.
#include <stdio.h>
void interrupt (*old)();
void interrupt newfunc();
char far *scr=(char far*) 0xb8000000;
int j;
void main()
{
 old=getvect(0x08);
 setvect(0x08,newfunc); //corrected
 keep(0,1000); //corrected
}

void interrupt newfunc ()
{
 for (j=0;j<4000;j+=2){ //corrected
 if(*(scr+j)==‘1’){
 *(scr+j)=‘9’; }
 }
(*old)();
}

This program scans through all the bytes of text display memory when int 8 occurs. It
once resident will replace all the ‘1’ on the screen by ‘9’. If even somehow a ‘1’ is
displayed on the screen it will be converted to ‘9’ on occurrence of interrupt 8 which
occurs 18.2 times every second.

The keyboard Interrupt
Keyboard is a hardware device and it makes use of interrupt number 9 for its input
operations. Whenever a key is pressed interrupt # 9 occurs. The operating system
processes this interrupt in order to process the key pressed. This interrupt usually reads
the scan code from the keyboard port and converts it into the appropriate ASCII code and
places the ASCII code in the keyboard buffer in BIOS data area as described I nthe
diagram below

05 - TSR programs and Interrupts (Keyboard interrupt)

© Copyright Virtual University of Pakistan

35

Any Process

INT 9

Kbd

60H Reads Scan
Code converts to
ASCII & place it
in Keyboard
Buffer & returns

Keyboard
Controller

.

Interrupt

INT

Lets now experiment on the keyboard interrupt to understand its behavior

Example

#include <dos.h>
void interrupt (*old)();
void interrupt newfunc();

void main()
{
 old = getvect(0x09);
 setvect(0x09,newfunc);
 keep(0,1000);
}
void interrupt newfunc ()
{
 (*old)();
 (*old)();
 (*old)();
}

This program simply intercepts the keyboard interrupt and places the address of newint
in the IVT. The newint simply invokes the original interrupt 9 thrice. Therefore the
same character input will be placed in the keyboard buffer thrice i.e three characters will
be received for each character input.

Example

#include <dos.h>
void interrupt (*old)();
void interrupt newfunc();
char far *scr = (char far*) 0x00400017;

05 - TSR programs and Interrupts (Keyboard interrupt)

© Copyright Virtual University of Pakistan

36

void main()
{
 old = getvect(0x09);
 setvect(0x09,newfunc);
 keep(0,1000);
}
void interrupt newfunc ()
{
 *scr = 64;
 (*old)();
}

The above program is quite familiar it will just set the caps lock status whenever a key is
pressed. In this case the keyboard interrupt is intercepted.

Example

void interrupt (*old)();
void interrupt newfunc();
char far *scr = (char far*) 0xB8000000;
int j;
void main()
{
 old = getvect(0x09);
 setvect(0x09,newfunc);
 keep(0,1000);
}
void interrupt newfunc ()
{ for(j = 0;j < 4000; j += 2)
 {
 if (*(scr +j) == ‘1’)
 *(scr + j) = ‘9’;
 }
 (*old)(); }

This too is a familiar example. Whenever a key is pressed from the keyboard the newfunc
functions runs through whole of the test display memory and replaces the ASCII ‘1’
displayed by ASCII ‘9’.

05 - TSR programs and Interrupts (Keyboard interrupt)

© Copyright Virtual University of Pakistan

37

Timer & Keyboard Interrupt Program

#include <dos.h>
void interrupt (*oldTimer)(); //corrected
void interrupt (*oldKey)(); //corrected
void interrupt newTimer ();
void interrupt newKey ();
char far *scr = (char far*) 0xB8000000;
int i, t = 0, m = 0;
char charscr [4000];
void main()
{
 oldTimer = getvect(8);
 oldKey = getvect (9);
 setvect (8,newTimer);
 setvect (9,newKey);
 getch();
 getch();
 getch();
 getch();
}

void interrupt newTimer ()
{

t++;
if ((t >= 182) && (m == 0))
{

 for (i =0; i < 4000; i ++)
 charscr [i] = *(scr + i);
 for (i =0; i <=4000; i +=2)
 {
 *(scr + i) = 0x20;
 *(scr + i + 1) = 0x07;
 }
 t = 0; m = 1;

}
 (*oldTimer) ();
}
void interrupt newKey ()
{
 int w;
 if (m == 1)
 {
 for (w =0; w < 4000; w ++)
 *(scr + w) = charscr [w];
 m = 0;
 }
 (*oldKey) ();
}

This program works like a screen saver. The newTimer function increments t whenever
it is invoked so the value of t reaches 182 after ten second. At this moment the function
saves the value in display text memory in a character array and fills the screen with
spaces and sets a flag m. The newKey function is invoked when a key press occurs.

05 - TSR programs and Interrupts (Keyboard interrupt)

© Copyright Virtual University of Pakistan

38

The flag is checked if the it’s set then the screen is restored from the values saved in that
character array.

Reentrant Procedures & Interrupt
 If on return of a function the values within the registers are unchanged as compared to
the values which were stored in registers on entry into the procedures then the procedure
is called reentrant procedure. Usually interrupt procedures are reentrant procedures
especially those interrupt procedure compiled using C language compiler are reentrant.
This can be understood by the following example

AX =1234H

Proc1 ()

AX = ?

AX =FF55H

In the above example the function Proc1() is invoked. On invocation the register AX
contained the value 1234H, the code within the function Proc1() changes the value in AX
to FF55H. On return AX will contain the value 1234H if the function have been
implemented as a reentrant procedure i.e a reentrant procedure would restore the values in
registers their previous value (saved in the stacked) before returning.
C language reentrant procedures save the registers in stack following the order AX, BX,
CX, DX, ES, DS, SI, DI, BP on invocation and restores in reverse order before return.

This fact about reentrant procedures can be analysed through following example.

#include <stdio.h>
void interrupt *old();
void interrupt newint()
void main ()
{
int a;
old = getvect(0x65);
setvect(0x65,newint);
_AX=0xf00f;
geninterrupt(0x65);
a = _AX
printf(“%x”,a);
}

05 - TSR programs and Interrupts (Keyboard interrupt)

© Copyright Virtual University of Pakistan

39

void interrupt newint()
{
_AX=0x1234;
}

Firstly its important to compile this above and all the rest of the examples as .C files
and not as .CPP file. It these codes are compiled using .CPP extension then there is no
surety that this program could be compiled.
Again int 65H is used for this experiment. The int 65H vector is made to point at the
function newint(). Before calling the interrupt 65H value 0xF00F is placed in the AX
register. After invocation of int 65H the value of AX register is changed to 0x1234. But
after return if the value of AX is checked it will not be 0x1234 rather it will be 0xF00F
indicating that the values in registers are saved on invocation and restore before return
and also that the interrupt type procedures are reentrant.

06 - TSR programs and Interrupts (Disk interrupt, Keyboard hook)

© Copyright Virtual University of Pakistan

40

06 - TSR programs and Interrupts (Disk interrupt,
Keyboard hook)

The typical sequence in which registers will be pushed and poped into the stack on
invocation and on return can be best described by the following diagrams

Push flags, CS, IP

Pop IP,CS,flags

Push
AX,BX,CX,DX,ES,DS,SI,DI,BP

POP
BP,DI,SI,DS,ES,DX,CX,BX,AX

Int

Push AX, Push BX,
Push CX, Push DX,
Push ES, Push DS,
Push SI, Push DI, Push BP

Pop BP, Pop DI,
Pop SI , Pop DS,
Pop ES, Pop DX,
Pop CX, Pop BX, Pop AX,
IRET

The registers Flags, CS and IP are pushed on execution of INT instruction and executions
branches to the interrupt procedure. The interrupt procedure pushes register AX, BX, CX,
DX, ES, DS, SI, DI, BP in this order. The interrupt procedure then executes, before
returning it pops all the registers in the reverse order as BP, DI, SI, DS, ES, DX, CX, BX
and AX. IP, CS and flags are poped on execution of the IRET instruction.
Next diagram shows the status of the stack after invocation of the interrupt procedure.

06 - TSR programs and Interrupts (Disk interrupt, Keyboard hook)

© Copyright Virtual University of Pakistan

41

Flags
CS
IP

AX
BX

ES
DX

DS

CX

SI
DI
BP

Flags
CS
IP

AX
BX

ES
DX

DS

CX

SI
DI
BP

The arguments in simple procedure or functions are saved in the stack for the scope of the
function/procedure. When an argument is accessed in fact stack memory is accessed.
Now we will take a look how stack memory can be accessed for instance in case of
interrupt procedures to modify the value of register in stack.

Accessing Stack Example
void interrupt newint (unsigned int BP,unsigned int DI,

unsigned int SI,unsigned int DS, unsigned int
ES,unsigned int DX, unsigned int CX,unsigned
int BX, unsigned int AX,unsigned int IP,
unsigned int CS,unsigned int flags)
//corrected
{
 unsigned int a = AX;

 unsigned int b = BX;
 unsigned int d = ES;
}

Although interrupt do not take parameters through stack but an interrupt procedure can
still have parameters. This parameter list can be used to access the stack. The leftmost
parameter accesses the item on top of the stack and the rest of the parameters accesses
deeper into the stack according to its order toward left. In the above example value of AX
in stack is moved in a, the value of BX is moved into b and the value of ES is moved into
d.

06 - TSR programs and Interrupts (Disk interrupt, Keyboard hook)

© Copyright Virtual University of Pakistan

42

Example:

void interrupt newint (unsigned int
BP,unsigned int DI, unsigned int SI,unsigned
int DS, unsigned int ES,unsigned int DX,
unsigned int CX,unsigned int BX, unsigned int
AX,unsigned int IP, unsigned int CS,unsigned
int flags) //corrected
{
 AX = 0xF00F;

}
void main ()
{
setvect(0x65,newint);
_AX = 0x1234;
geninterrupt (0x65);
a = _AX;
printf (“%x”, a);
}

In this example the value on invocation in AX is 0x1234, the interrupt procedure does not
change the current value of the register through pseudo variables rather it changes the
corresponding of AX in stack which will be restored in AX before return.

Disk Interrupt
The following example makes use of disk interrupt 13H and its service 3H. The details of
this service are as under.
On Entry
AH = Service # = 03
AL = No of Blocks to write
BX = Offset Address of Data
CH = Track # , CL = Sector #
DH = Head #
DL = Drive #(Starts from 0x80 for fixed disk & 0 for removable disks)
ES = Segment Address of data buffer.
On Exit
AH = return Code
Carry flag = 0 (No Error AH = 0)
Carry flag = 1 (Error AH = Error Code)

Boot block is a special block on disk which contains information about the operating
system to be loaded. If the data on boot block is somehow destroyed the disk would be
rendered inaccessible. The address of partition block on hard disk is head # =1, track# = 0
and sector # = 1. Now let’s write an application that will protect the boot block to be
written by any other application.

06 - TSR programs and Interrupts (Disk interrupt, Keyboard hook)

© Copyright Virtual University of Pakistan

43

#pragma inline
#include <dos.h>
#include <bios.h>
void interrupt (*oldtsr) ();
void interrupt newtsr (unsigned int BP, …, flags);
//must provide all the arguments
void main ()
{
 oldtsr = getvect (0x13);
 setvect(0x13, newtsr); //corrected
 keep (0, 1000);
}
void interrupt newtsr(unsigned int BP, unsigned int DI,
unsigned int SI, unsigned int DS, unsigned int ES, unsigned
int DX, unsigned int CX, unsigned int BX, unsigned int AX,
unsigned int IP, unsigned int CS,
unsigned int flags) //corrected
{
if (_AH == 0x03)
if((_DH == 1 && _CH == 0 && _CL == 1)&& _DL >= 0x80)
{
 asm clc;
 asm pushf;
 asm pop flags;
 return;
}
_ ES = ES; _DX = DX;
_CX = CX; _BX = BX;
_AX = AX;
*oldtsr;
asm pushf;
asm pop flags;
AX = _AX; BX = _BX;
CX = _CX; DX = _DX;
ES = _ES;
}

The above program intercepts interrupt 13H. The new interrupt procedure first check AH
for service number and other parameters for the address of boot block. If the boot block is
to be written it simply returns and clears the carry flag before returning to fool the calling
program that the operation was successful. And if the boot block is not to be written then
it places the original parameters back into the registers and calls the original interrupt.
The values returned by the original routine are then restored to the corresponding register
values in the stack so that they maybe updated into the registers on return.

06 - TSR programs and Interrupts (Disk interrupt, Keyboard hook)

© Copyright Virtual University of Pakistan

44

The keyboard Hook
The service 15H/4FH is called the keyboard hook service. This service does not perform
any useful output, it is there to be intercepted by applications which need to alter the
keyboard layout. It called by interrupt 9H after it has acquired the scan code of input
character from the keyboard port while the scan code is in AL register. When this service
returns interrupt 9H translates the scan code into ASCII code and places it in buffer. This
service normally does nothing and returns as it is but a programmer can intercept it in
order to change the scan code in AL and hence altering the input or keyboard layout.

Key Pressed

Move Scan Code
from 60H port to
AL

Convert to ASCII
& place it in keyboard buffer

Int 15H
Service 4FH

The following application show how this can be done.

#include <dos.h>
#include <bios.h>
#include <stdio.h>
void interrupt (*oldint15) ();
void interrupt newint15(unsigned int BP, …, flags);
void main ()
{
 oldint15 = getvect (0x15);
 setvect (0x15, newint15);
 keep (0, 1000);
}
void interrupt newint15(unsigned int BP, unsigned int DI,
unsigned int SI, unsigned int DS, unsigned int ES, unsigned
int DX, unsigned int CX, unsigned int BX, unsigned int AX,
unsigned int IP, unsigned int CS,
unsigned int flags)
{
 if (*(((char*)&AX) + 1) == 0x4F)
 {
 if (*((char*)&AX) == 0x2C)
 (((char)&AX)) = 0x1E;
 else if (*((char*)&AX) == 0x1E)
 ((char)&AX) = 0x2C; //corrected
 }
 else
 (*oldint15)();
}

06 - TSR programs and Interrupts (Disk interrupt, Keyboard hook)

© Copyright Virtual University of Pakistan

45

The application intercepts interrupt 15H. The newint15 function checks for the service #
4F in the high byte of AX, if this value is 4F the definitely the value in AL with be the
scan code. Here a simple substitution have been performed 0x1E is the scan code of ‘A’
and 0x2C is the scan code of ‘Z’. If the scan code is AL is that of ‘A’ it is substituted with
the scan code of ‘Z’ and vice versa. If some other service of 15H is invoked the original
interrupt function is invoked.

07 - Hardware Interrupts

© Copyright Virtual University of Pakistan

46

07 - Hardware Interrupts

The microprocessor package has many signals for data, control and addresses. Some of
these signals may be input signals and some might be output. Hardware interrupts make
use of two of such input signals namely NMI (Non maskable Interrupt) & INTR(Interrupt
Request).

Microprocessor

Reset

Hold
NMI

INTR

NMI is a higher priority signal than INTR, HOLD has even higher priority and RESET
has the highest priority. If any of the NMI or INTR pins are activated the microprocessor
is interrupted on the basis of priority, if no higher priority signals are present. This is how
microprocessor can be interrupted without the use of any software instruction hence the
name hardware interrupts.

Hardware Interrupt and Arbitration
Most of the devices use the INTR line. NMI signal is used by devices which perform
operations of the utmost need like the division by zero interrupt which is generated by
ALU circuitry which performs division. Definitely this operation is not possible and the
circuitry generates an interrupt if it receives a 0 as divisor from the control unit.
INTR is used by other devices like COM ports LPT ports, keyboard, timer etc. Since only
one signal is available for microprocessor interruption, this signal is arbitrated among
various devices. This arbitration can be performed by a special hardware called the
Programmable Interrupt Controller (PIC).

07 - Hardware Interrupts

© Copyright Virtual University of Pakistan

47

Interrupt Controller
A single interrupt controller can arbitrate among 8 different devices.

PIC

IRQ0

IRQ7

D0

D7

INT

As it can be seen from the diagram above the PIC device has 8 inputs IRQ0-IRQ7. IRQ0
has the highest priority and IRQ7 has the lowest. Each IRQ input is attached to an I/O
device whenever the device requires an I/O operation it sends a signal to the PIC. The
PIC on the basis of its priority and presence of other requests decides which request to
serve. Whenever a request is to be served by PIC it interrupt the processor with the INT
output connected to the INTR input of the processor and send the interrupt # to be
generated the data lines connected to the lower 8 datelines of the data bus to inform the
processor about the interrupt number. In case no higher priority signal is available to the
processor and the processor is successfully interrupted the microprocessor sends back an
INTA (interrupt Acknowledge) signal to inform the PIC that the processor has been
interrupted.

The following diagram also shows the typical connectivity of the IRQ lines with various
devices

MICRO
PROCESSORPIC

DO

D7

INTA

INT INTR

0
1

2

3

4

5
6

7

IRQ1

IRQ7

Interval Timer

KBD Controller

COM2

COM1

Other
Controllers
Printer Controller

MICRO
PROCESSORPIC

DO

D7

INTA

INT INTR

0
1

2

3

4

5
6

7

IRQ1

IRQ7

Interval Timer

KBD Controller

COM2

COM1

Other
Controllers
Printer Controller

07 - Hardware Interrupts

© Copyright Virtual University of Pakistan

48

In standard PCs there maybe more than 8 devices so generally two PIC are used for INTR
line arbitration. These 2 PICs are cascaded such that they collectively are able to arbitrate
among 16 devices in all as shown in the following diagram.

PIC

PIC

MASTER

SLAVE

IRQO

IRQ7

IRQ8

IRQ15

cas1
cas2
cas3

cas2
cas3
cas1

INTA

INTA

DO

D7

DO

D7 PIC

PIC

MASTER

SLAVE

IRQO

IRQ7

IRQ8

IRQ15

cas1
cas2
cas3

cas2
cas3
cas1

INTA

INTA

DO

D7

DO

D7

The PICs are cascaded such that a total of 16 IRQ levels can be provided number IRQ0-
IRQ15. The IRQ level 2 is used to cascade both of the PIC devices. The Data lines are
multiplexed such that the interrupt number is issued by the concerned PIC. The IRQ 2
input of the Master PIC is connected to the INT output of the Slave PIC. If the slave PIC
is interrupted by a device its request ins propagated to the master PIC and the master PIC
ultimately interrupts the processor on INTR line according to the priorities.
In a standard PC the PICs are programmed such that the master PIC generated the
interrupt number 8-15 for IRQ0 –IRQ7 respectively and the slave PIC generates interrupt
number 70-77H for IRQ8-IRQ15

Hardware Interrupts are Non-Preemptive
As described earlier IRQ 0 has the highest priority and IRQ 15 has the lowest priority. If a
number of requests are available instantaneously the request with higher priority will be
sent for service first by the PIC. Now what will happen if a lower priority interrupt is
being service and a higher priority interrupt request occurs, will the lower priority
interrupt be preempted? The answer is that the interrupt being serviced will not be
preempted no matter what. The reason for this non-preemptive can be understood by the
example illustrated as below. Let’s first consider that the hardware interrupts are
preemptive for argument sake. If a character ‘A’ is input a H/W interrupt will occur to
process it, while this interrupt is being processed another character is input say ‘B’ in case
the interrupts have been preemptive the previous instance will be preempted and another
instance for the H/W interrupt call will be generated, and similarly consider another
character is input ‘C’ and the same happened for this input as well. In this case the
character first to be fully processed and received will be ‘C’ and then ‘B’ will be

07 - Hardware Interrupts

© Copyright Virtual University of Pakistan

49

processed and then ‘A’. So the sequence of input will change to CBA while the correct
sequence would be ABC.

A PRESSED

B PRESSED

C PRESSED

Input received C B A Logically Incorrect

Logically Correct A B C

The input will be received in correct sequence only if the H/W interrupts are non-
preemptive as illustrated in the diagram below.

Input received A B C Logically Correct

A PRESSED

B PRESSED

C PRESSED

Hardware interrupts requires something more to be programmed into them as compared
with software interrupts. The major difference is because of the reason given above that
the H/W interrupts are non-preemptive. To make them non-preemptive the PIC should
know when the previously issued interrupt returns. The PIC cannot issue the next pending
interrupt unless it is notified that the previous interrupt has returned.

Who Notifies EOI (End of interrupt)
The PIC has to be notified about the return of the previous interrupt by the ISR routine.
From programmer point of view this is the major difference between H/W and software
interrupt. A software interrupt will not require any such notification. As the diagram
below illustrates that every interrupt returns with an IRET instruction. This instruction is
executed by the microprocessor and has no linkage with the PIC. So there has to be a
different method to notify the PIC about the End of interrupt.

07 - Hardware Interrupts

© Copyright Virtual University of Pakistan

50

Pending Hardware interrupts.
While a hardware interrupt is being processed a number of various other interrupt maybe
pending. For the subtle working of the system it is necessary for the In-service hardware
interrupt to return early and notify the PIC on return. If this operation takes long and the
pending interrupt requests occur repeated there is a chance of loosing data.

Programming the PIC
To understand how the PIC is notified about the end of interrupt lets take a look into the
internal registers of PIC and their significance. A PIC has a number of initialization
control words (ICW) and operation control words (OCW), following is characteristic of
ICW and OCWs

• ICW programmed at time of boot up
• ICW are used to program the operation mode like cascade mode or not also it is

used to program the function of PIC i.e if it is to invoke interrupts 08~ 0FH or
70-77H on IRQ request.

• OCW are used at run-time.
• OCW is used signal PIC EOI
• OCW are also used to read/write the value of ISR(In-service register),

IMR(interrupt mask register), IRR(interrupt request register).

To understand the ISR, IMR and IRR lets take a look at the following diagram illustrating
an example.

00001000 00001000

01000000 01000000

10100011 10100011

ISR

IMR

IRR

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

The values shown in the various registers illustrate that the currently in-service interrupt
is that generated through IRQ4 of the PIC (int 0CH in case of mater PIC), also the
interrupt through IRQ1 has been masked (int 9h (keyboard interrupt) in case of master
PIC) which means that even though a request for this interrupt is received by the PIC but
this request is ignored by the PIC until this bit is cleared. And the requests through IRQ7,
IRQ6, IRQ2 and IRQ0 are pending and waiting for the previously issued interrupt to
return.

Port Addresses
Few of the operation control words can be altered after boot time. The addresses for these
OCW are listed as below

• Master PIC has two ports
20H=OCW for EOI
21H=OCW for IMR

07 - Hardware Interrupts

© Copyright Virtual University of Pakistan

51

• Slave PIC has two ports as well
 A0H=OCW for EOI code
 A1H=OCW for IMR

Let’s now discuss an example that accesses these ports to control the PIC

#include <stdio.h>
#include <bios.h>
void main()
{

outport(0x21,0x02);

}

This example simply accesses the bit # 1 of IMR in the master PIC. It sets the bit #1 in
IMR which masks the keyboard interrupt. As a result no input could be received from the
keyboard after running this program.

Let’s now look at another example

#include <dos.h>
#include <stdio.h>
#include <bios.h>
void interrupt(*oldints)();
void interrupt newint8();
int t=0; //corrected
void main()
{
oldints=getvect(0x08);

setvect(0x08,newint8);
keep(0,1000);
}
void interrupt newint8()
{
t++:
 if (t==182)
 {
 outport(0x21,2);
 }
 else{
 if (t==364)
 {
 outport(0x21,0);
 t=0;
 }
 }
(*oldints)();
}

07 - Hardware Interrupts

© Copyright Virtual University of Pakistan

52

The example above is also an interesting example. This program intercepts the timer
interrupt. The timer interrupt makes use of a variable to keep track of how much time has
passed; t is incremented each time int 8 occurs. It the reaches the 182 after 10 second, at
this point the keyboard interrupt is masked and remains masked for subsequent 10 second
at which point the value of t will be 364, also t is cleared to 0 for another such round.

#include <dos.h>
void interrupt(*old)();
void interrupt newint9();
char far *scr=(char far *) 0x00400017;

void main()
{
old=getvect(0x09);
setvect(0x09,newint9);
keep(0,1000);
}
void interrupt newint9()
{
if (inportb(0x60)==83
 &&(((*scr)&12)==12)) //corrected
 {
 outportb(0X20,0x20);
 return;
 }
(*old)();
}

The above program disables the CTRL+ALT+DEL combination in the DOS environment
(if windows OS is also running this combination will not be disabled for its environment).
The keyboard interrupt has been intercepted, whenever the keyboard interrupt occurs the
newint9 function receives the scan key code from the keyboard port 0x60, 83 is the scan
key code of DEL key. Also the program checks if the ALT and CTRL button has been
pressed as well from the status of the 40:17H keyboard status byte. If it confirms that the
combination pressed is CTRL+ALT+DEL then it does not invoke the real int 9 (*oldint()
which will make the computer reboot in DOS environment had the computer been booted
through DOS) and simply returns. But notice that before returning it notifies the PIC that
the interrupt has ended. The EOI code sent to the OCW at the address 0x20 is also 0x20.
This is being done because int 9 is a hardware interrupt, had this been a software interrupt
this would have not been required.

07 - Hardware Interrupts

© Copyright Virtual University of Pakistan

53

#include <dos.h>

void interrupt(*old)();

void interrupt newint9();

void main()
{

old=getvect(0x09);
setvect(0x09,newint9);
keep(0,1000);

}
void interrupt newint9()
{

if (inportb(0x60)==0x1F) //corrected

 {

 outportb(0X20,0x20);
 return;
 }
(*old)();

}

The above C language program suppresses the ‘s’ input from the keyboard. The keyboard
interrupt has been intercepted. When a key is pressed newint9 is invoked. This service
checks the value through the import statement of the keyboard port numbered 0x60. If he
scan code (and not the ASCII code) is 0x1F then it indicates that the ‘s’ key was pressed.
This program in this case simply returns the newint9 hence suppressing this input by not
calling the real int 9. Before return it also notifies the PIC about the end of interrupt.

08 - Hardware Interrupts and TSR programs

© Copyright Virtual University of Pakistan

54

08 - Hardware Interrupts and TSR programs

The keyboard buffer

Keyboard Buffer
• Keyboard Buffer is located in BIOS Data Area.
• Starts at 40: IEH
• Ends at 40 : 3DH
• Has 32 byes of memory 2 bytes for each

character.
• Head pointer is located at address 40 : 1A to

40:IBH
• Tail pointer located at address 40 : IC to 40:IDH

The keyboard buffer is a memory area reserved in the BIOS data area. This area stores the

ASCII or special key codes pressed from the keyboard. It works as a circular buffer and

two bytes are reserved for each character, moreover 2 bytes are used to store a single

character. The first character stores the ASCII code and the second byte stores 0 in case

an ASCII key is pressed. In case a extended key like F1- F12 or arrow key is pressed the

first byte stores a 0 indicating a extended key and the second byte stores its extended key

code.

08 - Hardware Interrupts and TSR programs

© Copyright Virtual University of Pakistan

55

Circular buffer

40:1AH

40:1CH

40:1EH
Head Tail

40:3DH

The circular keyboard buffer starts at the address 40:1EH and contains 32 bytes. The

address 40:1AH stores the head of this circular buffer while the address 40:1CH stores the

tail of this buffer. If the buffer is empty the head and tail points at the same location as

shown in the diagram above.

Storing characters in the keyboard buffer

83
0
0
‘B’
0’
‘A’

0x20
0x21

0x22

0x23

Head = 0x24

0x1E
Tail

The above slide shows how characters are stored in the buffer. If ‘A; is to be stored then

the first byte in the buffer will store its ASCII code and the second will store 0, and if

08 - Hardware Interrupts and TSR programs

© Copyright Virtual University of Pakistan

56

extended key like DEL is to be stored the first byte will store 0 and the second byte will

store its scan code i.e. 83. The diagram also shows that head points to the next byte where

the next input character can be stored. Also notice that head contain the offset from the

address 40:00H and not from address 40:1EH. i.e. it contain 0x24 which is the address of

the next byte to be stored relative to the start of BIOS data area and not the keyboard

buffer.

Position of tail

83
0
0
‘B’

Tail=0x20

0xIE

Head = 24

As discussed earlier the keyboard buffer is a circular buffer therefore the tail need to be

placed appropriately. In the given example the input ‘A’ stored in the buffer is consumed.

On consumption of this character the tail index is updated so that it points to the next

character in the buffer. In brief the tail would point to the next byte to be consumed in the

buffer while head points to the place where next character can be stored.

08 - Hardware Interrupts and TSR programs

© Copyright Virtual University of Pakistan

57

• So KBD buffer acts as a circular buffer.
• The tail value should be examined to get

to the start of the buffer.

Example

#include <dos.h>
void interrupt (*old)();
void interrupt new1()!
unsigned char far *scr = (unsigned char far
*) 0x0040001C
void main()
{
old=getvect(0x09);
setvect(0x09,new1);
keep(0,100);
}

08 - Hardware Interrupts and TSR programs

© Copyright Virtual University of Pakistan

58

void interrupt new1 ()
{
if(inportb(0x60)==83)
{
((unsigned char far)0x00400000+*scr)=25;

if((*scr)==60)
*scr=30;

else
*scr+=2;

outportb(0x20,0x20);
return;
}}

The program listed in the slides above intercepts interrupt 9. Whenever the interrupt 9

occurs it reads the keyboard port 0x60. If the port contains 83 then it means DEL was

pressed, if so it places the code 25 in the buffer and then updates the head in circular

manner. The code 25 placed instead of 83 represents the combinations CTRL+Y. The

program when resident will cause the program to receive CTRL+Y combination

whenever DEL is pressed by the user. i.e in Borland C environment CTRL+Y

combination is used to delete a line, if this program is resident then in Borland C

environment a line will be deleted whenever DEL is pressed by the user. But the thing

worth noticing is that the interrupt function returns and does not call the real interrupt 9

after placing 25 in the buffer, rather it returns directly. But before returning as it has

intercepted a hardware interrupt it needs to notify the PIC, this is done by

outport(0x20,0x20); statement. 0x20 is the address of the OCW that receives the EOI

code which incidentally is also 0x20.

08 - Hardware Interrupts and TSR programs

© Copyright Virtual University of Pakistan

59

EOI Code for Slave IRQ

For Master

outportb(0x20,0x20);

For Slave

outportb(0x20,0x20);
outportb(0xA0,0x20);

As discussed earlier the slave PIC is cascaded with the master PIC. If the hardware

interrupt to be processed is issued by the master PIC then the ISR needs to send the EOI

code to the master PIC but if the interrupt request is issued by the slave PIC then the ISR

needs to inform both master and slave PICs as both of them are cascaded as shown in the

slide.

08 - Hardware Interrupts and TSR programs

© Copyright Virtual University of Pakistan

60

Reading OCW

OCW2& OCW3

XXX
01234567

001 FOR Non Specific EOI

01 If other Registers are to be accessed

00 If EOI is to be sent

The same port i.e 0x20 is used to access the OCWs. 00 is placed in bits number 4 and 3 to

indicate an EOI is being received and 01 is placed to indicate that a internal register is to

be accessed.

0
01234567

O1 To read IRR or ISR

10 = IRR
11= In-Service Register

The value in bits number 1 and 0 indicate which Register is to accessed. 10 is for IRR and

11 is for ISR.

08 - Hardware Interrupts and TSR programs

© Copyright Virtual University of Pakistan

61

Accessing the ISR and IRR.

00010000
01234567

No EOI relevant

Other Register to be Accessed

Don’t Care

A value is placed in the port 0x20 as shown in the above slide to indicate that a register is

to be accessed.

01010000
01234567

01 PIC Notified about reading operation

IRR Accessed

Then again a value in that same port is placed to indicate which register is to be accessed,

as in the above slide IRR is to be accessed.

08 - Hardware Interrupts and TSR programs

© Copyright Virtual University of Pakistan

62

11010000
01234567

01 PIC Notified about reading operation

ISR Accessed

And in this slide a value is formed which can be programmed in the port 0x20 to access

the ISR.

A sample program

#include <stdio.h>
#include <dos.h>
#include <bios.h>
void main (void)
{ char a;

outport(0x20,8);
outport(0x20,0x0A);
a=inport(0x20);
printf (“value of IRR is %x”; ,a);
outport(0x20,0x08);
outport(0x20,0x0B);
a=inport(0x20);
printf (“value of ISR is %x”; ,a);

}

The above program makes use of the technique described to access the ISR and IRR.

Firstly 0x08 is placed to specify that a register is to be accessed then 0x0A is placed to

indicate that IRR is to accessed. Now this port 0x20 can be read which will contain the

value in IRR. Similarly it is done again by placing the 0x0B in port 0x20 to access the

ISR.

08 - Hardware Interrupts and TSR programs

© Copyright Virtual University of Pakistan

63

More about TSR Programs

• A TSR need to be loaded once in memory
• Multiple loading will leave redundant

copies in memory

• So we need to have some check which
will load the program only once

One of the solution to the problem can be

08 - Hardware Interrupts and TSR programs

© Copyright Virtual University of Pakistan

64

Using a Global Variable as a
flag

as shown in the slide below

int flag;

flag =1;
keep(0,1000);

if (flag==1)
Make TSR

else
exit Program

This will not work as this global variable is only global for this instance of the program.

Other instances in memory will have their own memory space. So the

08 - Hardware Interrupts and TSR programs

© Copyright Virtual University of Pakistan

65

Answers is to use a memory area as
flag that is global to all programs.

i.e. IVT

int 65H is empty, we can use
its vector as a flag.
Address of vector

seg = 0
offset = 65H * 4

Example:
#include<stdio.h>
#include<BIOS.H>
#include<DOS.H>
unsigned int far * int65vec =
(unsigned far *)

MK_FP(0,0x65*4)
void interrupt (*oldint) ();
void interrupt newfunc ();
void main()
{
if((*int65vec) != 0xF00F)

//corrected
{

oldint =getvect (0x08);

setvect(0x08, newint);
(*int65vec) = 0xF00F;
keep (0,1000);
}else
{
puts (“Program Already

Resident”);
}}
void interrupt newfunc ()
{ :::::::

:::::::
(*oldint) ();

}

08 - Hardware Interrupts and TSR programs

© Copyright Virtual University of Pakistan

66

The above template shows how the vector of int 0x65 can be used as a flag. This template

shows that a far pointer is maintained which is assigned the address of the int 0x65

vector. Before calling the keep() function i.e making the program resident a value of

0xf00f is placed at this vector(this vector can be tempered as it is not being used by the

OS or device drivers). Now if another instance of the program attempts to run the if

statement at the start of the program will check the presence of 0x0f00f at the int vector

of 0x65, if found the program will simply exit otherwise it will make itself resident. Or in

other word we can say that 0xf00f at the int 0x65 vector in this case indicate that the

program is already resident.

But what if another program is
resident or using this vector.

Another Method
Service # 0xFF usually does not

exist for ISR’s.
Key is to create another service #

0xFF for the ISR interrupt besides
other processing.

Example:
#include<stdio.h>
#include<BIOS.H>
#include<DOS.H>
void interrupt (*oldint) ();
void interrupt newfunc (unsigned int BP,..…,flags);
void main()
{

_DI = 0;
_AH = 0xFF;
geninterrupt (0x13);
if (_DI = = 0xF00F) {
puts (“Program Already Resident”);
exit (0);
}

08 - Hardware Interrupts and TSR programs

© Copyright Virtual University of Pakistan

67

The implements the service 0xff of interrupt 0x13 such that whenever this service is

called it returns 0xf00f in DI and if this value does not return then it means that this

program is not resident.

Example:
Else
{

oldint = getvect (0x13);
setvect (0x13, newint);
keep (0, 1000);

}}
void interrupt newint ()
{

if (_AH == 0xFF)
{
DI = 0xF00F;
return;
}

else
{ :::::::

:::::::
:::::::

}
(*oldint) ();

}

09 - The interval Timer

© Copyright Virtual University of Pakistan

68

09 - The interval Timer
The interval timer

- Synchronous Devices require a
timing signal.

Clock
generated

Interval
Timer

Microprocessor

Interval Timer

Clk
Clk

PCLK =1.19318 MHz

PCLK (for peripheral
Synchronous Devices)

Clk
Ch0 to IRQ0
CH1 TO DRAM controller
Ch2 to PC Speaker

The interval timer is used to divide an input frequency. The input frequency used by the

interval timer is the PCLK signal generated by the clock generator. The interval timer has

three different each with an individual output and memory for storing the divisor value.

09 - The interval Timer

© Copyright Virtual University of Pakistan

69

Dividing Clock signal

Counter Registers:
• Counter registers can be used to divide frequency.

/16 /8 /4 /2

count
7 6 5 4 3 2 1 0

A counter register can be used to divide the clock signal. As shown in the slide above, 0

of the clock register is used to divide the clock frequency by 2 subsequently bit 1 is used

to divide it by 4 and so on.

The Division mechanism

0000 0000
0000 0001
0000 0010
0000 0011
0000 0100
0000 0101
0000 0110
0000 0111

0000 1000
0000 1001
0000 1010
0000 1011
0000 1100
0000 1101
0000 1110
0000 1111

The above slide shows a sequence of output that a 8bit clock register will generate in

sequence whenever it receives the clock signal. Observe bit #1, its value changes between

0 and 1 between two clock cycles so it can be used to divide the basic frequency by 2.

09 - The interval Timer

© Copyright Virtual University of Pakistan

70

Similarly observe bit #2 its value transits between 0 and 1 within 4 clock cycles hence it

divides the frequency by 4 and so on.

Timing diagram

Timing Diagram

Bit 0 (/2)

Bit 1 (/4)

Bit 2 (/8)

Bit 3 (/16)
: : : : :

: : : : :

: : : : :

Here is the timing diagram for above example. Bit #1 performs one cycle in between 2

clock cycles. Similarly bit #2 performs one cycle in between 4 clock cycles and so on.

09 - The interval Timer

© Copyright Virtual University of Pakistan

71

Command registers within the programmable interval timer

Interval Timer Programming:
Command Registers
• 8-bit Command port
• Need to be programmed before

loading the divisor value for a
channel.

• 3 channels, each requires a 16-
bit divisor value to generate the
output frequency.

Command register and the channels need to be programmed for the interval timer to

generate a wanted frequency.

Command Register

00101101

Binary = 0
BCD = 1

Mode 0 ~ 5
=000 ~ 101

Ch: 00=0
01=1
10=2

01=Low Byte
10=High Byte
11=Low Byte followed

by High Byte

7 6 5 4 3 2 1 0

Command register is an 8 bit register which should be programmed as described in the

slide above before loading the divisor value. It signifies the channel to be programmed,

size of divisor value, the mode in which the channel is to be operated and also whether

the counter is to be used a binary or BCD counter.

09 - The interval Timer

© Copyright Virtual University of Pakistan

72

Mode Description

Divisor = 4
Mode = 3

-----3----- -----3-----

-----4----- -----4-----

---2--- ---2---

-----4----- -----4-----

Divisor = 4
Mode = 2

Divisor = 4
Mode = 1

Divisor = 4
Mode = 0

The interval timer can operate in six modes. Each mode has a different square wave

pattern according to need of the application. Some modes might be suitable to control a

motor and some might be suitable to control the speaker.

Binary counter

10010001

10010001
1 0 0 1 0 0 0 0

1 0 0 0 1 0 1 0
1 0 0 0 1 0 1 1

1 0 0 1 0 0 0 1

1 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0

Binary Count:
count

BCD COUNT=89

99=

The interval timer channels can be used as a binary as well as a BCD counter. In case its

used in binary mode its counter registers will count in binary sequence and if its used as a

BCD counter its registers will count in BCD sequence as described above.

09 - The interval Timer

© Copyright Virtual University of Pakistan

73

Ports and Channels

Ports & Channels:
• 3-Channels 16-bit wide divisor value

i.e 0~65535
8-bit port for each channel therefore the

divisor word is loaded serially byte by byte.
Port Addresses
43H = Command Port
40H = 8-bit port for Channel 0
41H = 8-bit port for Channel 1
42H = 8-bit port for Channel 2

The interval timer has 3 channels each channel is 16 bit wide. The port 43H is an 8 bit

port used as the command register. Ports 40h, 41H and 42H are associated with the

channels o, 1 and 2 respectively. Channels are 16 bit wide whereas the ports are 8 bit

wide. A 16 bit value can be loaded serially through the ports into the register.

Steps for programming the interval timer

Programming Concepts for Interval
Timer:

• Load the Command byte into
command register required to
program the specific channel.

• The divisor word is then
Serially loaded byte by byte.

09 - The interval Timer

© Copyright Virtual University of Pakistan

74

The port 61H

Connect
to interval
timer = 1

Turn ON Speaker = 1
Turn OFF Speaker=0

Rest of the bits are used by other
devices and should not be changed.

61H Port

the port 61h is used to control the speaker only the least significant 2 bits are important.

Bit 0 is used to connect the interval timer to the speaker and the bit #1 is used to turn the

speaker on off. Rest of the bits are used by other devices.

Example

Example:
//Program loads divisor value of 0x21FF
//Turns ON the speaker and connects it to Interval
Timer
#include<BIOS.H>
#include<DOS.H>
void main()
{

outportb (0x43,0xB4);
outportb (0x42,0xFF);
outportb (0x42,0x21);
outportb (0x61,inportb(0x61) | 3);
getch();
outportb (0x61,inportb(0x61) & 0xFC);

}

The above programs the interval timer and then turns it on. A value of 0xb4 is loaded into

the command register 0x43. This value signifies that the channel 2 is to programmed,

09 - The interval Timer

© Copyright Virtual University of Pakistan

75

both the bytes of divisor value are to loaded, the interval timer is to be programmed in

mode 2 and is to be used as a binary counter.

Then the divisor value say 0x21ffH, is loaded serially. First 0xFF low byte and then the

high byte 0x21 is loaded. Both the least significant bits of 0x61 port are set to turn on the

speaker and connect it to the interval timer.

On a key press the speaker is again disconnected and turned off.

Producing a Delay in a Program

Timer Count:
40:6CH
Incremented every 1/18.2 seconds. Whenever INT8

unsigned long int far *time = (unsigned long int far*) 0x0040006C
void main()
{

unsigned long int tx;
tx = (*time);
tx = tx +18;
puts(“Before”);
while((*time) <= tx);
puts(“After”);

}

Delay can be produced using double word variable in the BIOS Data area placed at the

location 0040:006C. This value contains a timer count and is incremented every 1/18th of

a second. In this program the this double word is read, placed in a program variable and

incremented by 18. The value of 40:6cH is compared with this variable in a loop. This

loop iterates until the value of 40:6cH is not greater. In this way this loop will keep on

iterating for a second approximately.

10 - Peripheral Programmable Interface (PPI)

© Copyright Virtual University of Pakistan

76

10 - Peripheral Programmable Interface (PPI)
Sample Program

unsigned long int * time = (unsigned long int *) 0x0040006C
void main()
{ unsigned long int tx;

unsigned int divisor = 0x21FF;
while (divisor >= 0x50) {

outportb(0x43,0xB4);
outportb(0x42,*((char*)(&divisor)));
outportb(0x42,*(((char*)(&divisor))+1));
outportb(0x61,inportb(0x61) | 3);

tx = *time;
tx = tx + 4;

while (*time <= tx);
divisor =divisor -30;

}
}

The inner while loop in the program is used to induce delay. The outer loop simply

reloads the divisor value each time it iterates after reducing this value by 30. In this way

the output frequency of the interval timer changes after every quarter of a second

approximately. The speaker will turn on with a low frequency pitch and this frequency

will increase gradually producing a spectrum of various sound pitches.

10 - Peripheral Programmable Interface (PPI)

© Copyright Virtual University of Pakistan

77

Sample Program

#include <dos.h>
#include <bios.h>
void interrupt (*oldint15) ();
void interrupt newint15 (unsigned int BP, unsigned int DI,

unsigned int SI, unsigned int DS, unsigned int ES,
unsigned int DX, unsigned int CX, unsigned int BX,
unsigned int AX, unsigned int IP, unsigned int CS,
unsigned int flags);

void main ()
{

oldint15 = getvect (0x15);
setvect (0x15, newint15);
keep (0, 1000);

}

void interrupt newint15(unsigned int BP, unsigned int DI,
unsigned int SI, unsigned int DS, unsigned int ES,
unsigned int DX, unsigned int CX, unsigned int BX,
unsigned int AX, unsigned int CS, unsigned int IP,
unsigned int flags)
{

if (_AH = = 0x4F)
{

if (_AL == 0x1F)
{

outport (0x43, 0xB4);
outport (0x42, 0xFF);
outport (0x42, 0x21);
outport (0x61, inport(0x61) ^ 3);

}
}
else

(*oldint15) ();
}

The above program is a TSR program that can be used to turn the speaker on/off. The

above program intercepts the int 15h. Whenever this interrupt occurs it looks for service #

0x4f (keyboard hook). If ‘S’(0x1f scan code) has been pressed it toggles the speaker.

10 - Peripheral Programmable Interface (PPI)

© Copyright Virtual University of Pakistan

78

Sample Program

#include <dos.h>
#include <bios.h>
unsigned int divisors[4]={0x21ff,0x1d45,0x1b8a,,0x1e4c};
unsigned long int far *time =(unsigned long int far *)0x0040006C;
void main ()
{ unsigned long int tx;

int i=0;
while (!kbhit ())
{

while (i<4)
{ outport(0x43,0xB4);

outport(0x42,*((char *)(&divisor[i])));
outport(0x42,*(((char *)(&div isor[i]))+1));
outport(0x61, inport(0x61)|3);
tx=*time;
tx=tx+4;
while (tx >= (*time));
i++;

}
i=0;

}
outport(0x61,inport(0x61)&0xFC);

}

This program generates a tune with 4 different pitches. This program is quite similar to

the one discussed earlier. The only major difference is that in that program the pitch was

gradually altered from low to high in this the pitches change periodically until a key is

pressed to terminate the outer loop. Four various pitches are maintained and their divisor

values are placed in the divisors[] array. All these divisor values are loaded one by one

after a delay of approximately quarter of a second and this continues until a key is

pressed.

10 - Peripheral Programmable Interface (PPI)

© Copyright Virtual University of Pakistan

79

Sample Program

#include <stdio.h>
#include <dos.h>
#include <bios.h>

struct tagTones
{ unsigned int divisor;

unsigned int delay;
};

struct tagTones Tones[4]={
{0x21ff,3},{0x1d45,2},{0x1b8a,3},{0x1e4c,4}};
int i,ticks,flag=0 ;
void interrupt (*oldint15)();
void interrupt (*oldint8)();
void interrupt newint15();
void interrupt newint8();

unsigned char far *scr = (unsigned char far *)(0x00400017);

void main ()
{

oldint15=getvect(0x15);
setvect(0x15,newint15);
oldint8=getvect(0x08);
setvect(0x08,newint8);
keep(0,1000);

}

This is an interrupt driven version of the previous program. This program makes use of

the timer interrupt rather than a loop to vary the divisor value. Moreover interrupt 15 is

used to turn the speaker on /off.

10 - Peripheral Programmable Interface (PPI)

© Copyright Virtual University of Pakistan

80

void interrupt newint15()
{

if (_AH==0x4f)
{

if ((_AL==0x1f)&&(((*scr)&12)==12))
{

ticks=0;
i=0;
outport(0x43,0xb4);
outport(0x42,*((char *)(&Tones[i].divisor)));
outport (0x42,*(((char *)(&Tones[i].divisor))+1));
outport(0x61,inport(0x61)|3);
flag=1;

}
else if ((_AL==0x1E)&&(((*scr)&12)==12))
{

outport(0x61,inport(0x61)&0xfc);
flag=0;

}
return;

}
(*oldint15)();

}

The speaker turns on whenever ‘S’ (scan code 0x1f) is pressed and turns off whenever

‘A’ (scan code 0x1E) is pressed.

void interrupt newint8()
{

if (flag==1)
{

ticks++;
if (ticks == Tones[i].delay)
{

if (i==3)
i=0;

else
i++;

outport (0x43, 0xB4);
outport(0x42,*((char *)(&Tones[i].divisor)));
outport(0x42,*(((char *)(&Tones[i].divisor))+1));
outport(0x61,inport(0x61)|3);
ticks = 0;

}
}

(*oldint8)();
}

The timer interrupt shift the divisor value stored in the tones structure whenever the

required numbered of ticks(timer counts) have passed as required by the value stored in

the delay field of the tone structure.

More such divisor values and their delays can be initialized in the tones structure to

generate an alluring tune.

10 - Peripheral Programmable Interface (PPI)

© Copyright Virtual University of Pakistan

81

Peripheral Programmable interface (PPI)

Parallel Ports (PPI)

Parallel Communication

Parallel Out Put Device

Output

D0

D7

Strobe

Busy

CPU

D1
D2

PPI is used to perform parallel communication. Devices like printer are generally based

on parallel communication. The principle of parallel communication is explained in the

slide above. It’s called parallel because a number of bits are transferred from one point ot

another parallel on various lines simultaneously.

10 - Peripheral Programmable Interface (PPI)

© Copyright Virtual University of Pakistan

82

Parallel Communication

Parallel Input DeviceCPU

D0

I/O
Controller

Input

D7

DR

CPU

D1
D2

Advantages of Parallel communication

Parallel Communication

Faster
Only Economically Feasible For

Small Distances

11 - Peripheral Programmable Interface (PPI) II

© Copyright Virtual University of Pakistan

83

11 - Peripheral Programmable Interface (PPI) II

• Device Used as Parallel port Interface (I/O
controller) is PPI

Programmable Peripheral Interface
(PPI)

Programmable Peripheral Interface
(PPI)

CPU PPI
Parallel

I/O Device
Printer

The PPI acts as an interface between the CPU and a parallel I/O device. A I/O device

cannot be directly connected to the buses so they generally require a controller to be

placed between the CPU and I/O device. One such controller is the PPI. Here we will see

how we can program the PPI to control the device connected to the PPI which generally is

the printer.

11 - Peripheral Programmable Interface (PPI) II

© Copyright Virtual University of Pakistan

84

Accessing the Parallel Port
Through BIOS Functions

Int 17H

Accessing the Parallel Port
Through BIOS Functions

Port Interface Number
0=LPT1,1=LPT2,2=LPT3

DX
register

Request Printer02
Initialize Printer 01
Display Characters00

Services
INT 17H

Int 17H is used to control the printer via the BIOS. The BIOS functions that perform the

printer I/O are listed in the slide above with its other parameter i.e DX which contains the

LPT number. A standard PC can have 4 PPI named LPT1, LPT2, LPT3 and LPT4.

11 - Peripheral Programmable Interface (PPI) II

© Copyright Virtual University of Pakistan

85

Status Byte

Accessing the Parallel Port Through BIOS
Functions

All the function Return in AH the Current Printer Status

01234567

Printer Busy
Receive Mode Selected

Out of Paper

Time out

Transfer ErrorPrinter OffLine

The above listed function returns a status byte in the AH register whose meaning is

described in the slide above. Various bits of the byte describe the status of the printer.

Time out Byte

Accessing the Parallel Port Through BIOS
Functions

LPT30040:007A
LPT20040:0079
LPT10040:0078

Time Out Byte

The BIOS service once invoked will try to perform the requested operation on the printer

repeated for a certain time period. In case if the operation is rendered unsuccessful due to

any reason BIOS will not quit trying and will try again and again until the number of tries

specified in the timeout bytes shown above runs out.

11 - Peripheral Programmable Interface (PPI) II

© Copyright Virtual University of Pakistan

86

Accessing the Parallel Port Through BIOS Functions

• Specify the number of Attempts BIOS perform
before giving a time out Error

• This byte Varies Depending upon the speed
of the PC

• Busy =0 Printer is Busy
• Busy =1 Printer is not Busy

Importance of Status Byte

Importance of the Status Byte

If((pstate&0x29)!=0)or
((pstate&0x80)==0) or
((pstate&0x10)==0)
{printerok=FALSE;}
else
{printerok=TRUE;}

The status of the printer can be used in the above described manner to check if the printer

can perform printing or not. In case there is a transfer error, the printer is out of paper or

there is a timeout the printer could not be accessed. Or if the printer is busy or if the

printer is offline the printer cannot be accessed. The pseudo is just performing these

checks.

11 - Peripheral Programmable Interface (PPI) II

© Copyright Virtual University of Pakistan

87

Importance of the Status Byte
17H/00H Write
a character on entry
AH=00
AL=ASCII code
DX=Interface#
On exit
AH=Status Byte

17H/01H Initialize Printer
on entry
AH=01
DX=Interface#
On exit
AH=Status Byte

17H/02H Get Printer Status
on entry
AH=02, DX=Interface# On exit AH=Status Byte

Printing Programs

11 - Peripheral Programmable Interface (PPI) II

© Copyright Virtual University of Pakistan

88

Sample Program

Printing Program
union REGS regs; FILE *fptr;
void main(void)
{
fptr=fopen(“c:\\temp\\abc.txt”,”rb”);
regs.h.ah=1;
regs.x.dx=0;
int86(0x17,®s,®s);
while(!feof(fptr))
{regs.h.ah=2;
regs.x.dx=0;

int86(0x17,®s,®s);
if ((regs.h.ah & 0x80)==0x80)

{ regs.h.ah=0;
regs.h.al=getc(fptr);
int86(0x17,®s,®s);

}}}

The above program performs programmed I/O on the printer using BIOS services. The

program firstly initializes the printer int 17H/01. The while loop will end when the end of

file is reached, in the loop it checks the printer status (int 17h/02) and write the next byte

in the file if the printer is found idle by checking the most significant bit of the status

byte.

Sample Program

#include <dos.h>
void interrupt (*old)();
void interrupt newint ();
main()
{

old = getvect(0x17);
setvect(0x17,newint);
keep(0,1000);

}
void interrupt new ()
{ if (_AH==0)

{
if ((_AL=='A') || (_AL=='Z')) //corrected

return;
(*old)();

}
}

Printing Program 1

The above program intercepts int 17H. Whenever a certain program issues int 17H to

print a character the above TSR program will intercept the service and do nothing if A or

11 - Peripheral Programmable Interface (PPI) II

© Copyright Virtual University of Pakistan

89

Z is to be printed rest of the characters will be printed normally. Only the As and the Zs in

the printing document will be omitted.

Sample Program

#include <dos.h>
void interrupt (*old)();
void interrupt newfunc ();
main()
{

old=getvect(0x17);
setvect(0x17,newfunc);
keep(0,1000);

}
void interrupt newfunc()
{

if (_AH==0)
{

if (_AL != ‘ ‘)
(*old)();

}
}

Printing Program 2

In this sample program again int 17H is intercepted. The new interrupt function will

ignore all the spaces in the print document.

11 - Peripheral Programmable Interface (PPI) II

© Copyright Virtual University of Pakistan

90

Sample Program

#include <dos.h>
void interrupt (*old)();
void interrupt newfunc ();
main()
{

old=getvect(0x17);
setvect(0x17,newfunc);
keep(0,1000);

}
void interrupt newfunc ()
{ if (_AH == 0) {

(*old)();
_AH=0;
(*old)();
_AH=0;
(*old)();

}
(*old)();

}

Printing Program 3

In this program interrupt 17h is again intercepted. Whenever a character is to printed the

new function call the old function thrice. As a result a single character in the print

document will be repeated 4 times.

Direct Parallel Port
Programming

Now we will see how the register within the PPI can be accessed directly to control the

printer.

11 - Peripheral Programmable Interface (PPI) II

© Copyright Virtual University of Pakistan

91

Direct Parallel Port
Programming

• BIOS support up to
three parallel ports

• Address of these LPT
ports is Stored in
BIOS Data Area

LPT4word40:0E
LPT3word40:0C
LPT2word40:0A
LPT1word40:08

Above slide list the addresses within the BIOS data area where the base address (starting

port number) of LPT devices is stored.

Dump of BIOS data area

Direct Parallel Port Programming
Dump File Text

The dump of BIOS data area address specified in the previous slide for a certain computer

shows that the base port address of LPT1 is 0x03bc, for lpt2 it is 0x0378, for Lpt3 it is

0x0278. These values need not be the same for all the computer and can vary from

computer to computer.

11 - Peripheral Programmable Interface (PPI) II

© Copyright Virtual University of Pakistan

92

Swapping LPTs

Direct Parallel Port Programming

unsigned int far * lpt =
(unsigned int far *) 0x00400008 ;

unsigned int temp;
temp=*(lpt);
lpt=(lpt + 1);
*(lpt + 1)=temp;

The LPTs can be swapped i.e LPT1 can be made LPT2 and vice versa for LPT2. This can

be accomplished simply by swapping their addresses in the BIOS data area as shown in

the slide above.

Direct Parallel Port Programming
Port Registers

• 40:08 store the base address for lpt1
• The parallel port interface has 3 ports

internally
• If the Base address is 0X378 then the

three Ports will be 0x378,0x379 0x37A

11 - Peripheral Programmable Interface (PPI) II

© Copyright Virtual University of Pakistan

93

LPT Ports

Direct Parallel Port Programming
Port Registers

01234567

Base +0=Data Port

Base +1=Printer Status

000ERR=0SL=1PE=1ACK=0Busy=0

Printer OnlineOut of Paper

Printer is ready for Next Character

Printer is Busy

The first port (Base +0) is the data port. Data to be sent/received is placed in this port. In

case of printer the (Base + 1) is the printer status port as described in the slide. Each bit

represents the various status of the printer quite similar to the status byte in case of BIOS

service.

Printer Control Register

STALFINSIIRQ000
01234567

Printer Control Register =Base + 2

STROB
Auto
Line
Field

initializeIRQ ENABLE

SELECT InLine
Turn Computer on line

Direct Parallel Port Programming
Port Registers

Execute Interrupt
When ACK=0;

(Base +2) is the printer control register it is used to pass on some control information to

the printer as described in the slide.

11 - Peripheral Programmable Interface (PPI) II

© Copyright Virtual University of Pakistan

94

Direct Parallel Port Programming

Direct Parallel Port Programming
file *fptr;
unsigned far *base=(unsigned int far *)0x00400008
void main (void)
{
fptr=fopen(“c:\\abc.txt”,”rb”);
while(! feof (fptr))
{ if(! (inport (*base + 1) & 0x80)

{ outport(*base,getc(fptr));
outport ((*base+2,inport((*base+2) | 0x01);
outport((*base+2,inport((*base+2) & 0xFE);

}
}}

The above program directly accesses the registers of the PPI to print a file. The while

loop terminates when the file ends. The if statement only schecks if the printer is busy of

not. If the printer is idle the program writes the next byte in file on to the data port and

then turns the strobe bit to 1 and then 0 to indicate that a byte has been sent to the printer.

The loop then again starts checking the busy status of the printer and the process

continue.

12 - Parallel Port Programming

© Copyright Virtual University of Pakistan

95

12 - Parallel Port Programming

Printer Interface and IRQ7

PIC

Printer
Interface

Printer

IRQ7
INT

ACK

Printer
Interface

The printer interface uses the IRQ 7 as shown in the slide above. Therefore if interrupt

driven I/O is to be performed int 0x0f need to be programmed as an hardware interrupt.

Interrupt Driven Printer I/O
char buf [1024]; int i = 0;
void interrupt (*oldint)();
void interrupt newint ();
void main (void)
{
outport((*lpt), inport(*lpt) | 4);
outport((*lpt), inport(*lpt) | 0x10);
oldint =getvect (0x0F);
setvect (0x0F, newint);
outport(0x21, inport(0x21) & 0x7F);//corrected
keep(0,1000);
}

12 - Parallel Port Programming

© Copyright Virtual University of Pakistan

96

void interrupt newint ()
{
outport(*lpt, Buf[i]);
outport((*lpt)+2, inport((*lpt)+2) &0xFE);
outport((*lpt)+2, inport((*lpt)+2) | 1);
i++;

if(i== 1024)
{
outport(0x21, inport(0x21)|0x80);//corrected
setvect(0x0F,oldint);
freemem(_psp);
}

}

Above is a listing of a program that uses int 0x0f to perform interrupt driven I/O. To

enable the interrupt 0x0f three things are required to be done. The interrupt should be

enabled in the printer control register; secondly it should also be unmasked in the IMR in

PIC. The program can then intercept or set the vector of interrupt 0x0f by placing the

address of its function newint();

The newint() will now be called whenever the printer can perform output. This newint()

function writes the next byte in buffer to the data registers and then send a pulse on the

strobe signal to tell the printer that data has been sent to it. When whole of the buffer has

been sent the int 0x0f vector is restored, interrupt is masked and the memory for the

program is de-allocated.

The above listing might not work. Not all of the printer interfaces are designed as

described above. Some modifications in the printer interface will not allow the interrupt

driven I/O to work in this manner. If this does not work the following strategy can be

adopted to send printing to the printer in background.

12 - Parallel Port Programming

© Copyright Virtual University of Pakistan

97

Printing in the background

#include <stdio.h>
#include <dos.h>
#include <bios.h>
#include <conio.h>
#include <stdlib.h>
void interrupt (*oldint)();
void interrupt newint();
unsigned int far * lpt = (unsigned int far *)0x00400008;
char st[80]= "this is a test print string !!!!!!!!!!!";
int i ;
void main ()
{

oldint = getvect(0x08);
setvect(0x08,newint);
keep(0,1000);

}

void interrupt newint()
{

if (((inport((*lpt) +1)) & 0x80) == 0x80)
{

outport (*lpt,st[i++]);
outport ((*lpt)+2, inport((*lpt)+2) & 0xfe);
outport ((*lpt)+2, inport((*lpt)+2) | 1);

}
if (i==32)
{

setvect (0x08,oldint);
freemem(_psp);

}
(*oldint) ();

}

This program uses the timer interrupt to send printing to the printer in the back ground.

Whenever the timer interrupt occurs the interrupt function checks if the printer is idle or

not. If it’s the printer is idle it takes a byte from the buffer and sends it to the data port of

the printer interface and then sends a pulse through the strobe signal. When the buffer is

full the program restores the int 8 vector and the relinquishes the memory occupied by the

program.

12 - Parallel Port Programming

© Copyright Virtual University of Pakistan

98

Printer Cable Connectivity

Printer Cable Connectivity

GND18-25

SLCT IN17

INIT16

ERROR15

AUTO FEED14

SLCT13

PE12

BUSY11

ACK10

D79

D68

D57

D46

D35

D24

D13

D02

STROB1

Not all the bits of the internal registers of the PPI are available in standard PCs. In

standard PCs the PPI is connected to a DB25 connector. And some of the bits of its

internal registers are available as pin outs as describes in the slide above.

12 - Parallel Port Programming

© Copyright Virtual University of Pakistan

99

Computer to Computer communication

Computer to Computer
Connectivity

It might be desirable to connect one computer to another via PPIs to transfer data. One

might desire to connect them such that one port of PPI at one end is connected to another

port of the other PPI at the other end. But interconnecting the whole 8 bits of PPI cannot

be made possible as all the bits of the internal ports are not available as pinouts. So the

answer is to connect a nibble (4-bits) at one end to the nibble at the other. In this way two

way communication can be performed. The nibbles are connected as shown in the slide

above.

12 - Parallel Port Programming

© Copyright Virtual University of Pakistan

100

PPI Interconnection

P0 2 15 Q3
P1 3 13 Q4
P2 4 12 Q5
P3 5 10 Q6
P4 6 11 Q7

Q3 15 2 P0
Q4 13 3 P1
Q5 12 4 P2
Q6 10 5 P3
Q7 11 6 P4

The pins that are interconnected are shown in the slide above. Another thing worth

noticing is that the 4th bit of the data port is connected to the BUSY and vice versa. The

BUSY is inverted before it can be read from the status port. So the 4th bit in data port at

PC1 will be inverted before it can be read at the 7th bit of status register at PC2.

Flow Control

An algorithm should be devised to control the flow of data so the receiver and sender may

know when the data is to be received and when it is to be sent. The following slides

illustrate one such algorithm.

B0B1B2B30 Sender

B0B1B2B31 Receiver

BUSY ACK PE SLC ER

D4 D3 D2 D1 D0

E7 E6 E5 E4 E3

Sender sends
LOW Nibble
and D4 = 0

received as
BUSY = 1

12 - Parallel Port Programming

© Copyright Virtual University of Pakistan

101

First the low nibble of the byte is sent from the sender in bit D0 to D3 of the data port. D4

bit is cleared to indicate the low nibble is being sent. The receiver will know the arrival of

the low nibble when its checks BUSY bit which should be set (by the interface) on

arrival.

B0B1B2B31 Sender

B0B1B2B30 Receiver

BUSY ACK PE SLC ER

D4 D3 D2 D1 D0

Receiver send
back LOW
Nibble and D4=0

received as
BUSY = 1 by
Sender

The receiver then sends back the nibble turning its D4 bit to 0 as an acknowledgement of

the receipt of the low nibble. This will turn the BUSY bit to 1 at the sender side.

B4B5B6B71 Sender

B4B5B6B70 Receiver

BUSY ACK PE SLC ER

D4 D3 D2 D1 D0

Sender sends Hi
Nibble and turns
D4 = 1 received
as BUSY = 0 by
Receiver

The sender then send the high nibble and turns its D4 bit to 1 indicating the transmission

of high nibble. On the receiver side the BUSY bit will turn to 0 indicating the receipt of

high nibble.

12 - Parallel Port Programming

© Copyright Virtual University of Pakistan

102

The receiver then sends back the high nibble to the sender as an acknowledgment.

B4B5B6B70 Sender

B4B5B6B71 Receiver

BUSY ACK PE SLC ER

D4 D3 D2 D1 D0

Receiver send
back Hi Nibble
and turns

D4 = 1 received
as BUSY = 0 by
Sender

13 - Serial Communication

© Copyright Virtual University of Pakistan

103

13 - Serial Communication

Program implementing the described protocol

int i= 0; char Buf[1024];
while (1)
{ ch = Buf [i];

if ((inport((*lpt) + 1)& 0x80) == 0)
{ ch = Buf [i];

ch = ch & 0xEF;
while((inport((*lpt) + 1) &0x80) == 0);

}
else
{ ch = Buf [i];

ch = ch >> 4;
ch = ch | 0x10;
outport (*lpt, ch);
i++;

while((inport((*lpt) + 1) &0x80) == 80);
}

}

This is the sender program. This program if find the BUSY bit clear sends the low nibble

but turns the D4 bit to 0 before sending. Similarly it right shifts the byte 4 times sets the

D4 bit and then sends the high nibble and waits for acknowledgment until the BUSY is

cleared.

int i;
while (1)
{ if ((inport(*lpt + 1)& 0x80) == 0x80)

{ x = inport ((*lpt) + 1);
x = x >> 3;
x = x & 0x0F;
outport((*lpt), x);

while((inport(*lpt + 1) &0x80) == 0x80);
}
else
{ y = inport ((*lpt) + 1);

y = y << 1;
temp = y;
y = y & 0xF0; //instruction added
y = y | x;

13 - Serial Communication

© Copyright Virtual University of Pakistan

104

temp = temp >> 3;
temp = temp | 0x10;
i++;
outport (*lpt, temp);
Buf [i] = y;

while((inport((*lpt) + 1) &0x80) == 0);
}

}

This is receiver program. If the BUSY bit is clear it receives the low nibble and stores it

in x. Similarly if the BUSY bit is 0 it receives the high nibble and concatenates the both

nibble to form a byte.

13 - Serial Communication

© Copyright Virtual University of Pakistan

105

Serial Communication

Serial Communication

• Advantages
• Disadvantages

Types Of Serial Communication

• Synchronous
• Asynchronous

In case of serial communication the bits travel one after the other in serial pattern. The

advantage of this technique is that in this case the cost is reduced as only 1 or 2 lines

maybe required to transfer data.

The major disadvantage of Serial communication is that the speed of data transfer maybe

reduced as data is transferred in serial pattern.

There are two kinds of serial communications.

Synchronous Communication

Synchronous Communication
• Timing signal is used to identify start and end
of a bit.

LSB MSB
1 1 0 1 0 1 1 0

0 1 1 0 1 0 1 1

In case of synchronous communication as shown in the slide a timing signal is required to

identify the start and end of a bit.

13 - Serial Communication

© Copyright Virtual University of Pakistan

106

• Sampling may be edge triggered.
• Special line may be required for
timing signal (requires another line).
• Or the timing signal may be encoded
within the original signal (requires
double the bandwidth).

Synchronous Communication

Asynchronous Communication

• Does not use make use of timing
signal.
• Each byte (word) needs to
encapsulated in start and end bit.

Asynchronous Communication

In case of asynchronous communication no timing signal is required but each byte needs

to be encapsulated to know the end and start of a byte.

13 - Serial Communication

© Copyright Virtual University of Pakistan

107

UART (Universal Asynchronous Receiver Transmitter)

Serial Communication using a UART

0 1 2 3 4 5 6 7 8

5 – 8 bit

1

0

Start bit 1, 1.5, 2
Stop bit

Start bit
of next
byte

Parity
bit

• 1.5 Stop bit

The UART is a device used for asynchronous communications. UART is capable o

encapsulating a byte that might be 5, 6, 7 or 8 bits wide in start and stop bits. Moreover it

can attach an extra parity bit with the data for error detection. The width of stop bits may

also vary.

Bit rate = 9600
A bit is sampled after = 1/9600

-- But start and end bits of a particular
Byte cannot be recognized.
-- So 1.5 stop bit (high) is used to
encapsulate a byte. A low start bit at
the start of Byte is used to identify the
start of a Byte.

Sampling Rate

13 - Serial Communication

© Copyright Virtual University of Pakistan

108

-- Bit rate and other settings should be
the same at both ends i.e.
- Data bits per Byte. (5 – 8)
- Parity check
- Parity Even/Odd
- No. of stop bits.

Sampling Rate

Sampling Rate

Start bit
Data bits

1/1300 sec

Stop bit
Odd parity

A = 41H = 0100 0001 B
Parity = Odd
Data = 8
Stop bit =1
Data rate = 300 bits/sec

13 - Serial Communication

© Copyright Virtual University of Pakistan

109

RS – 232C Standard
• Standard for physical dimensions of the
connectors.

PC
(DTE)

Modem

RS – 232C Cable

Connected via
serial port

(DCE)

RS232C is a standard for physical dimension of the connector interconnecting a

DTE(Data terminal equipment) and DCE (Data communication equipment).

RS – 232C Connectors and Signals
DB25 (25 pin connector)

25 pin connector on PC1
2

9

7
8

4
5
6

10
11
12
13

3

25
24
23
22
21
20
19
18

17
16
15
14

RI

DTRCD
GND
DSR
CTS
RTS
RD

T X D

The pin outs of the DB25 connector used with RS232C is shown in the slide above.

14 - Serial Communication (Universal Asynchronous Receiver Transmitter)

© Copyright Virtual University of Pakistan

110

14 - Serial Communication (Universal Asynchronous
Receiver Transmitter)

RS – 232C Standard
• Standard for physical dimensions of the
connectors.

PC
(DTE)

Modem

RS – 232C Cable

Connected via
serial port

(DCE)

RS – 232C Connectors and Signals
DB25 (25 pin connector)

25 pin connector on PC1
2

9

7
8

4
5
6

10
11
12
13

3

25
24
23
22
21
20
19
18

17
16
15
14

RI

DTRCD
GND
DSR
CTS
RTS
RD

T X D

14 - Serial Communication (Universal Asynchronous Receiver Transmitter)

© Copyright Virtual University of Pakistan

111

Flow Control using RS232C

PC MODEM

DTE DCEDTR

DSR

RTS

CTS

CD

RI

DTR (SHOULD REMAIN HIGH THROUGH OUT THE SESSION)

CTS (CAN BE USED FOR FLOW CONTROL)

RxD TxD

Data is received through the RxD line. Data is send through the TxD line. DTR (data

terminal ready) indicates that the data terminal is live and kicking. DSR(data set ready)

indicates that the data set is live. Whenever the sender can send data it sends the signal

RTS(Request to send) if as a result the receiver is free and can receive data it send the

sender an acknowledge through CTS(clear to send) indicating that its clear to send now.

DB 9 Connector for UART

1

2

3

4

5

6

7

8

9

CD

R x D

T x D

D T R

G N D
RI

CTS

RTS

DSR

DB9 Connector

The above slide shows the pinouts of the DB 9 connector.

14 - Serial Communication (Universal Asynchronous Receiver Transmitter)

© Copyright Virtual University of Pakistan

112

UART internals

UART Internals
Receiver Buffer Register

Interrupt Enable Register

Line Status Register

Interrupt ID Register

Divisor Latch Register

Line Control Register

Modem Control Register

Modem
Status Register

Transmitter Holding Register

Receiver Shift Register

Interrupt
to
Parity LOGIC

R x D

Transmit Shift
Register

T x D

1.CTS 2.DSR
3.CD

4.RI

1.RT 2.DTR

This slide shows the various internal registers within a UART device. The programmer

only needs to program these registers efficiently in order to perform asynchronous

communication.

Register summary

7SPScratch Pad
6MSRModem Status
5LSRLine Status
4MCRMode Control
3LCRLine Control
2IIRInterrupt ID
2FCRFIFO Control Register
1IERInterrupt Enable
1DLMBand Rate Divisor (High Byte)
0DLLBand Rate Divisor (Low Byte)
0RBRReceiver Data
0THRTransmitter Holding Register

Base +

The above table lists the registers within the UART ans also shows their abbreviation.

Also it shows there offsets with respect to the base register.

14 - Serial Communication (Universal Asynchronous Receiver Transmitter)

© Copyright Virtual University of Pakistan

113

Served Ports in Standard PC
BIOS supports 4 UARTS as COM Ports
COM1, COM2, COM3, COM4

2E8H0040:0006COM4
3E8H0040:0004COM3
2F8H0040:0002COM2
03F8H0040:0000COM1

Port BaseMemory
Address

Ports

BIOS Data Area

Text Dump

-d 40:0

0040:0000 F8 03 F8 02 E8 03 E8 02-BC 03 78 03 78 02 C0 9F x.x...
0040:0010 23 C8 20 80 02 85 00 20-00 00 34 00 34 00 71 10 #.4.4.q.
0040:0020 0D 1C 71 10 0D 1C 64 20-20 39 34 05 30 0B 3A 27 ..q...d 94.0.:'
0040:0030 30 0B 0D 1C 00 00 00 00-00 00 00 00 00 00 00 00 0...............
0040:0040 D8 00 C3 00 00 00 00 00-00 03 50 00 00 10 00 00 P.....
0040:0050 00 0A 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0040:0060 0F 0C 00 D4 03 29 30 00-00 00 00 00 02 C9 0B 00 )0.........
0040:0070 00 00 00 00 00 00 08 00-14 14 14 14 01 01 01 01
-q

The above dump of the BIOS data area for a certain computer shows that the address of

COM1 is 03F8 , the address of COM2 is 02F8 and the address of COM3 is 03E8. These

addresses may not be same for all the computers and may vary computer to computer.

14 - Serial Communication (Universal Asynchronous Receiver Transmitter)

© Copyright Virtual University of Pakistan

114

Setting the Baud rate

Setting the Baud Rate
1.8432 MHZ=frequency generating by UARTS
internally

Divisor value loaded in DLL (Base +0)
and DLM (Base +1)

Baud rate =1.8432 MHZ / (16*Divisor)

Divisor = 1, Baud Rate = 115200
Divisor = 0CH, Baud Rate = 9600
Divisor = 180H, Baud Rate = 300

The baud rate is set in accordance with the divisor value loaded within the UART internal

registers base +0 and base +1.

Line Control Register

Line Control Register

01234567

0 Load THR
1Load Divisor Value

Word Length
00 = 5 BITS
01 = 6 BITS
10 = 7 BITS
11 = 8 BITS

Length of Stop BITS
0 = one BIT
1 =1.5 for 5 bit Word

Parity Check and
generation on

Parity
0 = odd
1 = Even.

Stop Communication =1
Resume Communication =0

Constant Parity
0 =NO constant Parity
1 =Constant Parity
0 if bit 4 =1
1 if bit 4 =0

The line control register contains important information about the behaviour of the line

through which the data will be transferred. In it various bits signify the word size, length

of stop bits, parity check, parity type and also the a control bit to load the divisor value.

The bit 7 if set indicates that the base +0 and base + 1 will act as the divisor register

otherwise if cleared will indicate that base + 0 is the data register.

14 - Serial Communication (Universal Asynchronous Receiver Transmitter)

© Copyright Virtual University of Pakistan

115

Line Status Register

0123456

Data Ready =1

Over Run Error = 1

Parity Error =1

Stop Communication Signal from Other end =1

TSR is Empty=1
TSR Contain a Byte=0

THR entry =1
THR contains a BYTE =0

Transfer Error (Framing Error)

Line status register illustrates the status of the line. It indicates if the data can be sent or

received. If bit 5 and 6 both are set then 2 consecutive bytes can be sent for output. Also

this register indicates any error that might occur during communication.

Interrupt Enable Register

Interrupt Enable Register

0123

Trigger Interrupt
On Data Ready =1

Trigger Interrupt
On change in Modem Status =1

Trigger Interrupt
As soon as THR is empty =1

Trigger Interrupt
On line status change =1

If interrupt driven output is to be performed then this register is used to enable interrupt

for the UART. It can also used to select the events for which to generate interrupt as

described in the slide.

14 - Serial Communication (Universal Asynchronous Receiver Transmitter)

© Copyright Virtual University of Pakistan

116

Interrupt ID Register

Interrupt ID Register

012

Trigger Triggered

Modem/Line
00 =Change in Modem Status
01 = THR is Empty
10 = Data is Ready
11 =Error in Data

Once an interrupt occurs it may be required to identify the case of the interrupt. This

register is used to identify the cause of the interrupt.

15 - COM Ports

© Copyright Virtual University of Pakistan

117

15 - COM Ports

Modem Control Register

Modem Controller Register

0134

DTR

0 = Polling Operator
1 = Interrupts Enabled

RTS
1 =Self Test
0 =Normal

In case software oriented flow control technique is used the bits 0 and 1 need to be set in

that case. Bit #3 need to be set to enable interrupts. Moreover if a single computer is

available to a developer the UART contains a self test mode which can be used by the

programmer to self test the software. In self test mode the output of the UART is routed

to its input. So you receive what you send.

15 - COM Ports

© Copyright Virtual University of Pakistan

118

Modem Status Register

Modem Status Register

01234567

CD Change
in CTS

Change in RI

Change in CDCTS

RI

DSR

Change in DSR

This register indicates the status of the modem status line or any change in the status of

these lines.

FIFO Queue

UART (16550) FIFO QUEUE

01267

FIFO buffer on=1

Clear send Buffer =1

Number of Characters Received
To Trigger an Interrupt

00 =After Every Character
01 =After 4 Character
10 =After 8 Character
11 =After 14 Character

Clear Receiver
Buffer =1

This feature is available in the newer version of the UART numbered 16500. A queue or

a buffer of the input or output bytes is maintained within the UART in order to facilitate

more efficient I/O. The size of the queue can be controlled through this register as shown

by the slide.

15 - COM Ports

© Copyright Virtual University of Pakistan

119

Interrupt ID Register

Interrupt ID Register (Revisited)

012367

Interrupt
Triggered =1

Any one of these BEING
Set Indicates FIFO is ON.

Reasons of Interrupt
00=Change in Modem Line Status
01=THR is Empty
10=Data is ready
11=Error in Data Transmit

1= Interrupt Triggered
Because Buffer is not full
But other side has
stop sending data.
(Time OUT)

BIOS Support for COM Ports

INT # 14H

DX = Port # 0 for COM1
1 for COM2 etc.

Service #0 = Set communication parameters
Service #01 = Output characters
Service #02 = Read in characters
Service #03 = Get port status

The following slide shows how int 14H service 0 can be used to set the line parameter of

the UART or COM port. This illustrates the various bits of AL that should be set

according before calling this service.

15 - COM Ports

© Copyright Virtual University of Pakistan

120

Data Length
00 = 5bits
01 = 6bits
10 = 7bits
11 = 8bits

of stop bits
0 = 1 stop bit
1 = 1.5 or 2 stop bit

Parity Check
00 = None
01 = Odd
10 = Parity

Disable
11 = Even

Baud Rate
000 = 110 bauds
001 = 150 bauds
010 = 300 bauds
011 = 600 bauds
100 = 1200 bauds
101 = 2400 bauds
110 = 4800 bauds
111 = 9600 bauds

Service # 0
AL =

The Service on return places the line status in AH register as shown in the slide below.

Data Ready

Over run error
Parity error

Framing error

Time Out

TSR Empty

THR
Break Detected

AH = Line Status

15 - COM Ports

© Copyright Virtual University of Pakistan

121

And places the modem status in the AL register as shown in slide below.

Change in CTS

Change in DSR
Change in RI

Change in CD

CD

RI

Ready (DSR)
Ready to Receive

AL = Modem Status

Other service of 14h include service #1 which is used to send a byte and service #2 which

is used to receive a byte as shown in the slide below.

Service # 01
ON ENTRY

AL = ASCII character to send
ON RETURN

AH = Error Code
If 7th bit in AH = 1 = Unsuccessful

0 = Successful

Service # 02
ON RETURN

AL = ASCII character received
AH = Error Code

15 - COM Ports

© Copyright Virtual University of Pakistan

122

Communication through Modem

Modem

PC
Modem

UART Digital Data Analog

Tel Line

UART

PC
Modem

Digital DataAnalog

Modem is generally used to send/receive data to/from an analog telephone. Had the

telephone line been purely digital there would have been no need of a modem in this

form. If data is to be transferred from one computer to another through some media which

can carry digital data then the modem can be eliminated and the UART on both

computers can be interconnected. Such arrangement is called a NULL modem.

NULL
Modem

PC PC

Cable UARTUART

15 - COM Ports

© Copyright Virtual University of Pakistan

123

NULL Modem Configuration

CD 1
RxD 2
TxD 3
DTR 4
GND 5
DSR 6
RTS 7
CTS 8
RI 9

CD 1
RxD 2
TxD 3
DTR 4
GND 5
DSR 6
RTS 7
CTS 8
RI 9

The above slide shows the configuration used to interconnect two UARTs In this way a

full duplex communication can be performed and moreover flow control can also be

performed using DSR, DTS, RTS and CTS signals.

Sample Program

Example:
#include<BIOS.H>
#include<DOS.H>
char ch1, ch2;

void initialize (int pno)
{

_AH=0;
_AL=0x57;
_DX=pno;
geninterrupt(0x14);

}

15 - COM Ports

© Copyright Virtual University of Pakistan

124

char receivechar (int pno)
{

char ch;
_DX = pno;
_AH = 2;
geninterrupt (0x14);
ch = _AL;
return ch;

}

void sendchar (char ch, int pno)
{

_DX = pno;
_AH = 1;
_AL = ch;
geninterrupt (0x14);

}
unsigned int getcomstatus (int pno)
{

unsigned int temp;
_DX = pno;
_AH = 03;
geninterrupt (0x14);
((char)(&temp)) = _AL;
(((char)(&temp)) + 1) = _AH;
return temp;

}

16 - COM Ports II

© Copyright Virtual University of Pakistan

125

16 - COM Ports II
Sample Program using BIOS routines

Example:
#include<BIOS.H>
#include<DOS.H>
char ch1, ch2;

void initialize (int pno)
{

_AH=0;
_AL=0x57;
_DX=pno;
geninterrupt(0x14);

}

char receivechar (int pno)
{

char ch;
_DX = pno;
_AH = 2;
geninterrupt (0x14);
ch = _AL;
return ch;

}

The initialize () function initializes the COM port whose number is passed as parameter

using BIOS services. The recievechar() function uses the COM port number to receive a

byte from the COM port using BIOS services.

16 - COM Ports II

© Copyright Virtual University of Pakistan

126

void sendchar (char ch, int pno)
{

_DX = pno;
_AH = 1;
_AL = ch;
geninterrupt (0x14);

}
unsigned int getcomstatus (int pno)
{

unsigned int temp;
_DX = pno;
_AH = 03;
geninterrupt (0x14);
((char)(&temp)) = _AL;
(((char)(&temp)) + 1) = _AH;
return temp;

}

The sendchar() function sends a character to the COM port using BIOS service whose

number is passed as parameter. And the getcomstatus() function retrieves the status of the

COM port whose number has been specified and returns the modem and line status in an

unsigned int.

void main()
{

while(1) {
i = getcomstatus (0);
if (((*(((char*)(&i)) + 1)&0x20) == 0x20) && (kbhit()))
{

ch1 = getche();
sendchar (ch1, 0);

}
if ((*(((char*)(&i)) +1) & 0x01) == 0x01) {

ch2 = receivechar (0);
putch (ch2);

}
if ((ch1 == 27) || (ch2 ==27))

break;
}

}

Let’s suppose two UARTs are interconnected using a NULL modem

In the main () function there is a while loop which retrieves the status of the COM port.

Once the status has been retrieved it checks if a byte can be transmitted, if a key has been

pressed and its is clear to send a byte the code within the if statement sends the input byte

to the COM port using sendchar() function.

16 - COM Ports II

© Copyright Virtual University of Pakistan

127

The second if statement checks if a byte can be read from the COM port. If the Data

ready bit is set then it receives a byte from the data port and displays it on the screen.

Moreover there is another check to end the program. The program looks for an escape

character ASCII = 27 either in input or in output. If this is the case then it simply breaks

the loop.

Sample Program

This program does more or less the same as the previous program but the only difference

is that in this case the I/O is done directly using the ports and also that the Self Test

facility is used to check the software.

#include <dos.h>
#include <bios.h>
void initialize (unsigned int far *com)
{

outportb ((*com)+3, inport ((*com)+3) | 0x80);
outportb ((*com),0x80);
outportb((*com) +1, 0x01);
outportb ((*com)+3, 0x1b);

}
void SelfTestOn(unsigned int far * com)
{

outportb((*com)+4,inport((*com)+4)|0x10);
}

The initialize() loads the divisor value of 0x0180 high byte in base +1 and low byte in

base +0. It also programs the line control register for all the required line parameters.

The SelfTestOn() function simply enables the self test facility within the modem control

register.

16 - COM Ports II

© Copyright Virtual University of Pakistan

128

void SelfTestOff(unsigned int far * com)
{

outportb((*com)+4, inport((*com)+4) & 0xEf);
}
void writechar(char ch, unsigned int far * com)
{

while (!((inportb((*com)+5) & 0x20) == 0x20));
outport(*com,ch);

}
char readchar(unsigned int far *com)
{

while (!((inportb((*com)+5) & 0x01)==0x01));
return inportb(*com);

}

The SelfTestOff() function turns this facility off. The writechar() function writes the a

byte passed to this function on the data port. The readchar() function reads a byte from

the data port.

unsigned int far *com=(unsigned int far*) 0x00400000;
void main ()
{

char ch = 0; int i = 1;int j= 1;
char ch2='A';
initialize(com);
SelfTestOn(com);
clrscr();
while (ch!=27)
{

if (i==80)
{

j++;
i=0;

}

The main function after initializing and turning the self test mode on enters a loop which

will terminate on input of the escape character. This loop also controls the position of the

cursor such the cursor goes to the next line right after a full line has been typed.

16 - COM Ports II

© Copyright Virtual University of Pakistan

129

if (j==13)
j=0;

gotoxy(i,j);
ch=getche();
writechar(ch,com);
ch2=readchar(com);
gotoxy(i,j+14);
putch(ch2);
i++;

}
SelfTestOff (com);

}

All the input from the keyboard is directed to the output of the UART and all the input

from the UART is also directed to the lower part of the screen. As the UART is in self

test mode the output becomes the input. And hence the user can see output send to the

UART in the lower part of the screen as shown in the slide below

hello how r u ? whats new about systems programming?

hello how r u ? whats new about systems programming?

16 - COM Ports II

© Copyright Virtual University of Pakistan

130

Sample Program using interrupt driven I/O

#include <dos.h>
#include <bios.h>
void initialize (unsigned int far *com)
{

outportb ((*com)+3, inport ((*com)+3) | 0x80);
outportb ((*com),0x80);
outportb((*com) +1, 0x01);
outportb ((*com)+3, 0x1b);

}
void SelfTestOn(unsigned int far * com)
{

outportb((*com)+4,inport((*com)+4)|0x18);
}

void SelfTestOff(unsigned int far * com)
{

outportb((*com)+4, inport((*com)+4) & 0xE7);
}
void writechar(char ch, unsigned int far * com)
{

//while (!((inportb((*com)+5) & 0x20) == 0x20));
outport(*com,ch);

}
char readchar(unsigned int far *com)
{

//while (!((inportb((*com)+5) & 0x01)==0x01));
return inportb(*com);

}

16 - COM Ports II

© Copyright Virtual University of Pakistan

131

unsigned int far *com=(unsigned int far*) 0x00400000;
unsigned char far *scr=(unsigned char far*) 0xB8000000;
int i =0,j=0;char ch;int k;
void interrupt (*oldint)();
void interrupt newint();
void main ()
{

initialize(com);
SelfTestOn(com);
oldint = getvect(0x0c);
setvect(0x0c,newint);
outport((*com)+1,1);
outport(0x21,inport(0x21)&0xEF);
keep(0,1000);

}

This si program is also quite similar to the previous one. The only difference is that in this

the I/O is performed in an interrupt driven patter using the Int 0x0C as the COM1 uses

IRQ4. Also to use it in this way IRQ4 must be unmasked from the IMR register in PIC.

Also before returning from the ISR the PIC must be signaled an EOI code.

void interrupt newint()
{

ch= readchar(com);
if (i==80)
{

j++;
i=0;

}
if (j==13)

j=0;
k = i*2+(j+14)*80*2;
*(scr+k)=ch;
i++;
outport(0x20,0x20);

}

16 - COM Ports II

© Copyright Virtual University of Pakistan

132

•C:\>DEBUG
-o 3f8 41
-o 3f8 42
-o 3f8 56
-o 3f8 55
-q

C:\>

#include <bios.h>
#include <dos.h>
void interrupt (*oldint)();
void interrupt newint();
unsigned char far *scr= (unsigned char far
*)0xB8000000;
void initialize (unsigned int far *com)
{

outportb ((*com)+3, inport ((*com)+3) | 0x80);
outportb ((*com),0x80);
outportb((*com) +1, 0x01);
outportb ((*com)+3, 0x1b);

}

void main (void)
{

oldint = getvect(0x0C);
setvect (0x0C,newint);
initialize (*com);
outport ((*com)+4, inport ((*com)+4) | 0x08);
outport (0x21,inport (0x21)&0xEF);
outport ((*com) + 1, 1);
keep(0,1000);

}
void interrupt newint ()
{

*scr = inport(*com);
outport (0x20,0x20);

}

17 - Real Time Clock (RTC)

© Copyright Virtual University of Pakistan

133

17 - Real Time Clock (RTC)
Sample Program

#include <dos.h>
#include <bios.h>
char ch1,ch2;

void initialize (unsigned int com)
{

outportb (com+3, inport (com+3) | 0x80);
outportb (com,0x80);
outportb(com +1, 0x01);
outportb (com+3, 0x1b);

}

void main ()
{

initialize(0x3f8);
while (1)
{

if (((inport(0x3fd)&0x20)==0x20) && (kbhit()))
{ ch1=getche();

outport(0x3f8,ch1);
}
if (((inport(0x3fd)&0x01)==1))
{ ch2= inport(0x3f8);

putch(ch2);
}
if ((ch1==27) || (ch2==27))

break;
}

}

This program is same functionally as one of the previous programs which used BIOS

services to get the input data and send the output data. The only difference is that in this

case it does the same directly accessing the ports.

17 - Real Time Clock (RTC)

© Copyright Virtual University of Pakistan

134

CD 1
RxD 2
TxD 3
DTR 4
GND 5
DSR 6
RTS 7
CTS 8
RI 9

CD 1
RxD 2
TxD 3
DTR 4
GND 5
DSR 6
RTS 7
CTS 8
RI 9

NULL Modem (Revisited)

Only two or three of the lines are being used to send receive data rest of the lines are

being used for flow control. The cost of these lines can be reduced by reducing the lines

used to flow control and incorporating software oriented flow control rather than

hardware oriented flow control as show in the slide below.

CD 1
RxD 2
TxD 3
DTR 4
GND 5
DSR 6
RTS 7
CTS 8
RI 9

CD 1
RxD 2
TxD 3
DTR 4
GND 5
DSR 6
RTS 7
CTS 8
RI 9

NULL Modem (Revisited)

The DTR, DSR, RTS and CTS lines have been eliminated to reduce cost but in this flow

control will be performed in a software oriented manner.

17 - Real Time Clock (RTC)

© Copyright Virtual University of Pakistan

135

Makes use of Two Control characters.
– XON (^S)
– XOFF (^T)

Software Oriented Flow
Control

XON whenever received indicates the start of communication and XOFF whenever

received indicates a temporary pause in the communication.

Following is a pseudo code which can be used to implement the software oriented flow

control.

while (1)
{

receivedchar = readchar (com);
if (receivedchar == XON)
{ ReadStatus = TRUE;

continue;
}
if (receivedchar == XOFF)
{ ReadStatus = FALSE;

continue;
}
if (ReadStatus == TRUE)

Buf [i++] = receivedchar;
}

the received character is firstly analysed for XON or XOFF character. If XON is received

the status is set to TRUE and if XOFF is received the status is set to FALSE. The

characters will only be received if the status is TRUE otherwise they will be discarded.

17 - Real Time Clock (RTC)

© Copyright Virtual University of Pakistan

136

Real Time Clock

• Battery powered device
• Updates time even if PC is shutdown
• RTC has 64 byte battery powered RAM
• INT 1AH used to get/set time.

Time Updation Through INT8
Real Time Clock Device

Real time clock is a device incorporated into the PC to update time even if the computer

is off. It has the characteristics shown in the slide above which enables it to update time

even if the computer is off.

The BIOS interrupt 0x1Ah can be used to configure this clock as shown in the slide

below it has various service for getting/setting time/date and alarm.

ON ENTRY
AH = 00

ON EXIT
AL = Midnight flag
CX = Clock count (Hi word)
DX = Clock count (Low word)

1573040 Times Increment
1573040/18.2065 = 86399.9121 sec
Whereas 86400 sec represent 24 hrs.

Clock Counter 1AH/00
(hours*60*60 + min*60 + sec) * 18.2065

17 - Real Time Clock (RTC)

© Copyright Virtual University of Pakistan

137

ON ENTRY
AH = 01
CX = Clock count (Hi word)
DX = Clock count (Low word)

AL = 1 if Midnight passed
AL = 0 if Midnight not passed

Set Clock Counter 1AH/01

ON ENTRY
AH = 02

ON EXIT
CH = Hours (BCD)
CL = Minutes (BCD)
DH = Seconds (BCD)

Read Time 1AH/02

17 - Real Time Clock (RTC)

© Copyright Virtual University of Pakistan

138

ON ENTRY
AH = 03
CH = Hours (BCD)
CL = Minutes (BCD)
DH = Seconds (BCD)
DL = Day Light saving = 1

Standard Time = 0

Set Time 1AH/03

ON ENTRY
AH = 04

ON EXIT
CH = Century (BCD)
CL = Year (BCD)
DH = Month (BCD)
DL = Day (BCD)

Read Date 1AH/04

17 - Real Time Clock (RTC)

© Copyright Virtual University of Pakistan

139

ON ENTRY
AH = 05
CH = Century (BCD)
CL = Year (BCD)
DH = Month (BCD)
DL = Day (BCD)

Set Date 1AH/05

ON ENTRY
AH = 06
CH = Hours (BCD)
CL = Minutes (BCD)
DH = Seconds (BCD)

Set Alarm 1AH/06

17 - Real Time Clock (RTC)

© Copyright Virtual University of Pakistan

140

ON ENTRY
AH = 07

Disable Alarm 1AH/07

ON ENTRY
AH = 09

ON EXIT
CH = Hours (BCD)
CL = Minutes (BCD)
DH = Seconds (BCD)
DL = Alarm Status (00 = Not Enable

01 = Enable)

Read Alarm 1AH/09

17 - Real Time Clock (RTC)

© Copyright Virtual University of Pakistan

141

RTC internals

Real Time Clock

64 Bytes
Battery

Powered
Low power

CMOS
RAM

Clock and
Logic

circuitry

Control
Circuitry

70H

71H

7FH

INT

::::::::::::
::::::::::::
::::::::::::

The RTC internally has an array of registers which can be used to access the 64 byte

battery powered CMOS RAM.

70 – 7FH (16 ports)
Only 70 & 71H are important from

programming point of view

Internal Ports

17 - Real Time Clock (RTC)

© Copyright Virtual University of Pakistan

142

The following slide shows the function of some of the bytes in the battery powered RAM

used to store the units of time and date.

00H = Current Second
01H = Alarm Second
02H = Current Minute
03H = Alarm Minute
04H = Current Hour
05H = Alarm Hour
06H = Day Of the Week
07H = Number Of Day

64 Byte Battery Powered RAM

08H = Month
09H = Year
0AH = Clock Status Register A
0BH = Clock Status Register B
0CH = Clock Status Register C
0DH = Clock Status Register D
32H = Century

64 Byte Battery Powered RAM

17 - Real Time Clock (RTC)

© Copyright Virtual University of Pakistan

143

Day of the week

01H = Sunday
02H = Monday
03H = Tuesday
04H = Wednesday
05H = Thursday
06H = Friday
07H = Saturday

Week Day

The value in the days of the week byte indicates the day according to slide shown above.

Generally BCD values are used to represent the units of time and date.

No of Century and Year are in BCD.
Year

17 - Real Time Clock (RTC)

© Copyright Virtual University of Pakistan

144

Accessing the Battery Powered RAM

Battery Powered RAM is accessed in
two steps

• Specify the Byte no. in 70H port.
• Read/write port 71H to get/set the

value of specified byte.

Accessing the Battery Powered RAM

Following slide shown a fragment of code that can be used to read or write onto any byte

within the 64 byte battery powered RAM.

outport (0x70, 0); outport (0x70, 4);
sec = inport (0x71); outport (0x71,hrs);

Accessing the Battery Powered RAM

17 - Real Time Clock (RTC)

© Copyright Virtual University of Pakistan

145

Clock Status Registers

Status Register A

Interrupt
frequency

Time
frequency

0 = Time is not updated
1 = Time is updated

7 6 5 4 3 2 1 0

The lower 4 bits of this register stores a code indicating the frequency with which the

RTC hardware interrupt can interrupt the processor. The next field is used to specify the

time frequency i.e. the frequency with the time is sampled and hence updated. The most

significant bit indicates that after time sampling if the time has been updated in to the 64

byte RAM or not.

18 - Real Time Clock (RTC) II

© Copyright Virtual University of Pakistan

146

18 - Real Time Clock (RTC) II

Clock Status Registers

7 6 5 4 3 2 1 0

Status Register B

0 = Daylight
saving time

24/12 – hour counter
0 = 12 hour format
1 = 24 hour format

Time & date format
0 = BCD
1 = Binary

Update time

Call periodic
interrupt

Call Alarm interrupt
Call interrupt on
time update

Block generator

The status register B is the main control register. It is used to specify the date time

formats and is also used to enable interrupt on various events like alarm time and time up-

dation. Another feature of RTC is periodic interrupt which occur with a frequency

specified in the A register.

7 6 5 4 3 2 1 0

Status Register C

1 = Time update complete

1 = Alarm time reached

1 = Periodic interrupt call

Status register is used to identify the reason of interrupt generation as described in the

slide above.

18 - Real Time Clock (RTC) II

© Copyright Virtual University of Pakistan

147

7 6 5 4 3 2 1 0

Status Register D

0 = Battery Dead

Only the most significant byte in status register D is important which on being 0 indicates

that the battery is dead.

Sample Program.

void main ()
{

unsigned int hours, months, seconds;
_AH =2;
geninterrupt(0x1a);
hours = _CH;
minutes = _CL;
seconds = _DH;
hours = hours <<4;
*((unsigned char *)(& hours)) =

(*((unsigned char *) (& hours))) >>4;
hours = hours + 0x3030;

seconds = seconds <<4;
*((unsigned char *)(& seconds)) =

(*((unsigned char *)(& seconds))) >>4;
seconds = seconds + 0x3030;

18 - Real Time Clock (RTC) II

© Copyright Virtual University of Pakistan

148

minutes = minutes <<4;
*((unsigned char *)(& minutes)) =

(*((unsigned char *)(& minutes))) >>4;
minutes = minutes + 0x3030;
clrscr();
printf("%c%c-%c%c-%c%c%c%c",

(((unsigned char)(&hours))+1),
((unsigned char)(&hours)),
(((unsigned char)(&minutes))+1),
((unsigned char)(&minutes)),
(((unsigned char)(&seconds))+1),
((unsigned char)(&seconds)),

getch();
}

The above program uses the service int 1Ah/02H to read the time from the real time

clock. It reads the time and converts the packed BCD values into unpacked BCD values.

These values are then converted into ASCII and displayed using the printf() statement.

18 - Real Time Clock (RTC) II

© Copyright Virtual University of Pakistan

149

Read time from RTC (Sample Program)

This sample program directly accesses the 64 byte RAM to access the units of time.

Before reading the time it makes sure by checking the value of Status register A and

checking its most significant bit for time update completion. If the updation is complete

time can be read from the respective registers in the 64 byte RAM.

#include <bios.h>
#include <dos.h>
void main ()
{

int hrs,mins,secs;
char temp;
do {

outportb(0x70,0x0a);
temp=inportb(0x71);

}while ((temp & 0x80) == 0);
outportb(0x70,0);
secs=inport(0x71);
outportb(0x70,2);
mins=inport(0x71);
outportb(0x70,4);
hrs=inport(0x71);

hrs = hrs <<4;
*((unsigned char *)(&hrs)) =

(*((unsigned char *)(&hrs))) >>4;
hrs = hrs + 0x3030;

mins = mins <<4;
*((unsigned char *)(&mins)) =

(*((unsigned char *)(&mins))) >>4;
mins = mins + 0x3030;

secs = secs <<4;
*((unsigned char *)(&secs)) =

(*((unsigned char *)(&secs))) >>4;
secs = secs + 0x3030;
clrscr();

18 - Real Time Clock (RTC) II

© Copyright Virtual University of Pakistan

150

printf("%c%c:%c%c:%c%c",
(((unsigned char)(&hrs))+1),
((unsigned char)(&hrs)),
(((unsigned char)(&mins))+1),
((unsigned char)(&mins)),
(((unsigned char)(&secs))+1),
((unsigned char)(&secs)));
getch();

}

The time units are similarly read and converted to ASCII and displayed.

Write the Time on RTC

#include <bios.h>
#include <dos.h>
unsigned char ASCIItoBCD(char hi, char lo)
{

hi = hi - 0x30;
lo = lo - 0x30;
hi = hi << 4;
hi = hi | lo;
return hi;

}

unsigned long int far *tm =
(unsigned long int far *)0x0040006c;

18 - Real Time Clock (RTC) II

© Copyright Virtual University of Pakistan

151

void main ()
{

unsigned char hrs,mins,secs;
char ch1, ch2;
puts("\nEnter the hours to update: ");
ch1=getche();
ch2=getch();
hrs = ASCIItoBCD(ch1, ch2);

puts("\nEnter the minutes to update: ");
ch1=getche();
ch2=getch();
mins = ASCIItoBCD(ch1, ch2);

puts("\nEnter the seconds to update: ");
ch1=getche();
ch2=getch();
secs = ASCIItoBCD(ch1, ch2);

*tm = 0;
_CH = hrs;
_CL=mins;
_DH= secs;
_DL=0;
_AH =3;
geninterrupt(0x1a);
puts("Time Updated");

}

The above listing of the program inputs the time from the user which is in ASCII format.

It converts the ASCII in packed BCD and uses BIOS services to update the time. In DOS

or windows this time change may not remain effective after the completion of the

program as the DOS or windows device drivers will revert the time to original even if it

has been changed using this method.

18 - Real Time Clock (RTC) II

© Copyright Virtual University of Pakistan

152

Sample Program

#include <bios.h>
#include <dos.h>
unsigned char ASCIItoBCD (unsigned

char hi, unsigned char lo)
{

hi = hi - 0x30;
lo = lo - 0x30;
hi = hi << 4;
hi = hi | lo;
return hi;

}
void main ()
{

unsigned int hrs,mins,secs;
char ch1, ch2;
int temp;

puts("\nEnter the hours to update: ");
ch1=getche();
ch2=getche();
hrs = ASCIItoBCD(ch1, ch2);

puts("\nEnter the minutes to update: ");
ch1=getche();
ch2=getche();
mins = ASCIItoBCD(ch1, ch2);

puts("\nEnter the seconds to update: ");
ch1=getche();
ch2=getche();
secs = ASCIItoBCD(ch1, ch2);

outportb(0x70,0x0b);
temp = inport(0x71);

18 - Real Time Clock (RTC) II

© Copyright Virtual University of Pakistan

153

temp = temp | 0x80;
outportb(0x70,0x0b);
outportb(0x71,temp);

outport (0x70,0);
outport (0x71,secs);
outport (0x70,2);
outport (0x71,mins);
outport (0x70,4);
outport (0x71,hrs);

outportb(0x70,0x0b);
temp = inport(0x71);
temp = temp & 0x7f;
outportb(0x70,0x0b);
outportb(0x71,temp);

delay (30000);
do {

outportb(0x70,0x0a);
temp=inportb(0x71);

}while ((temp & 0x80) == 0);
outportb(0x70,0);
secs=inport(0x71);

outportb(0x70,2);
mins=inport(0x71);

outportb(0x70,4);
hrs=inport(0x71);
hrs = hrs <<4;
*((unsigned char *)(&hrs)) =

(*((unsigned char *)(&hrs))) >>4;
hrs = hrs + 0x3030;

To elaborate more on the problem posed by the OS device drivers here is another

program. This program first updates the time accessing the 64 byte RAM directly and

taking the new time as input from the user. After updating the program produces a delay

of 30 seconds and then reads time to display it. A difference of 30 seconds will be noticed

in the time entered and the time displayed. This shows that during the execution of the

program the time was successfully changed and was being updated accordingly.

18 - Real Time Clock (RTC) II

© Copyright Virtual University of Pakistan

154

mins = mins <<4;
*((unsigned char *)(&mins)) =

(*((unsigned char *)(&mins))) >>4;
mins = mins + 0x3030;
secs = secs <<4;
*((unsigned char *)(&secs)) =

(*((unsigned char *)(&secs))) >>4;
secs = secs + 0x3030;
printf("\nUpdated time is = %c%c:%c%c:%c%c",

(((unsigned char)(&hrs))+1),
((unsigned char)(&hrs)),
(((unsigned char)(&mins))+1),
((unsigned char)(&mins)),
(((unsigned char)(&secs))+1),
((unsigned char)(&secs)));

getch();
}

19 - Real Time Clock (RTC) III

© Copyright Virtual University of Pakistan

155

19 - Real Time Clock (RTC) III
Reading the Date

#include <bios.h>
#include <dos.h>
void main ()
{

unsigned int cen,yrs,mons,days;
_AH =4;
geninterrupt(0x1a);
cen=_CH;
yrs=_CL;
mons=_DH;
days=_DL;
cen = cen <<4;
*((unsigned char *)(&cen)) =

(*((unsigned char *)(&cen))) >>4;
cen = cen + 0x3030;

mons = mons <<4;
*((unsigned char *)(&mons)) =

(*((unsigned char *)(&mons))) >>4;
mons = mons + 0x3030;

yrs = yrs <<4;
*((unsigned char *)(&yrs)) =

(*((unsigned char *)(&yrs))) >>4;
yrs = yrs + 0x3030;

days = days <<4;
*((unsigned char *)(&days)) =

(*((unsigned char *)(&days))) >>4;
days = days + 0x3030;

clrscr();

19 - Real Time Clock (RTC) III

© Copyright Virtual University of Pakistan

156

printf("%c%c-%c%c-%c%c%c%c",
(((unsigned char)(&days))+1),
((unsigned char)(&days)),
(((unsigned char)(&mons))+1),
((unsigned char)(&mons)),
(((unsigned char)(&cen))+1),
((unsigned char)(&cen)),
(((unsigned char)(&yrs))+1),
((unsigned char)(&yrs)));

getch();
}

Setting the Date

unsigned char ASCIItoBCD(char hi, char lo)
{

hi = hi - 0x30;
lo = lo - 0x30;
hi = hi << 4;
hi = hi | lo;
return hi;

}
void main ()
{

unsigned char yrs,mons,days,cen;
char ch1, ch2;
puts("\nEnter the century to update: ");
ch1=getche();
ch2=getche();
cen = ASCIItoBCD(ch1, ch2);

puts("\nEnter the yrs to update: ");
ch1=getche();
ch2=getche();
yrs = ASCIItoBCD(ch1, ch2);
puts("\nEnter the month to update: ");
ch1=getche();
ch2=getche();
mons = ASCIItoBCD(ch1, ch2);
puts("\nEnter the days to update: ");
ch1=getche();
ch2=getche();
days = ASCIItoBCD(ch1, ch2);
_CH = cen;_CL=yrs;_DH= mons;
_DL=days; _AH =5;
geninterrupt(0x1a);
puts("Date Updated");

}

19 - Real Time Clock (RTC) III

© Copyright Virtual University of Pakistan

157

The above sample program takes ASCII input from the user for the new date. After taking

all the date units as input the program sets the new date using the BIOS service 1Ah/05H.

Setting the Alarm

void interrupt (*oldint)();
void interrupt newint();
unsigned int far * scr = (unsigned int far *)0xb8000000;
void main ()
{ oldint = getvect(0x4a);

setvect(0x4a, newint);
_AH=6;
_CH =0x23;
_CL=0x50;
_DH=0;
geninterrupt(0x1a);
keep(0,1000);

}
void interrupt newint()
{ *scr=0x7041;

sound(0x21ff);
}

The alarm can be set using BIOS function 1Ah/06h. Once the alarm is set BIOS will

generate the interrupt 4Ah when the alarm time is reached. The above program intercepts

the interrupt 4Ah such that newint() function is invoked at the time of alarm. The newint()

function will just display a character ‘A’ on the upper left corner of the screen. But this

program may not work in the presence of DOS or Windows drivers.

Another way to set Alarm

#include <bios.h>
#include <dos.h>
void interrupt newint70();
void interrupt (*oldint70)();
unsigned int far *scr =

(unsigned int far *)0xb8000000;
unsigned char ASCIItoBCD(char hi, char lo)
{

hi = hi - 0x30;
lo = lo - 0x30;
hi = hi << 4;
hi = hi | lo;
return hi;

}

19 - Real Time Clock (RTC) III

© Copyright Virtual University of Pakistan

158

void main (void)
{

int temp;
unsigned char hrs,mins,secs;
char ch1, ch2;

puts("\nEnter the hours to update: ");
ch1=getche();
ch2=getch();
hrs = ASCIItoBCD(ch1, ch2);

puts("\nEnter the minutes to update: ");
ch1=getche();
ch2=getch();
mins = ASCIItoBCD(ch1, ch2);

puts("\nEnter the seconds to update: ");
ch1=getche();
ch2=getch();
secs = ASCIItoBCD(ch1, ch2);

outportb(0x70,1);
outportb(0x71,secs);
outportb(0x70,3);

outportb(0x71,mins);
outportb(0x70,5);

outportb(0x71,hrs);
outportb(0x70,0x0b);

temp = inport(0x71);
temp = temp | 0x70;
outportb(0x70,0x0b);
outportb(0x71,temp);

oldint70 = getvect(0x70);
setvect(0x70, newint70);
keep(0,1000);

}
void interrupt newint70()
{

outportb(0x70,0x0c);
if ((inport(0x71) & 0x20) == 0x20)

sound(0x21ff);
*scr=0x7041;
(*oldint70)();

}

19 - Real Time Clock (RTC) III

© Copyright Virtual University of Pakistan

159

This program takes the time of alarm as ASCII input which is firstly converted into BCD.

This BCD time is placed in the 64 byte RAM at the bytes which hold the alarm time.

Once the alarm time is loaded the register is accessed to enable the interrupts such that

other bits are not disturbed. Whenever the RTC generates an interrupt, the reason of the

interrupt needs to be established. This can be done by checking the value of status register

C, if the 5th bit of register C is set it indicates that the interrupt was generated because the

alarm time has been reached. The reason of interrupt generation is established in the

function newint70(). If the interrupt was generated because of alarm then speaker is

turned on by the sound() function and a character ‘A’ is displayed on the upper left corner

of the screen.

Other Configuration Bytes of Battery Powered RAM

19 - Real Time Clock (RTC) III

© Copyright Virtual University of Pakistan

160

19 - Real Time Clock (RTC) III

© Copyright Virtual University of Pakistan

161

Determining Systems Information

INT 11H
INT 12H

INT 11H
used to get hardware environment info.
On Entry

call 11H
On Exit

AX = System Info.

Determining Systems Information

Interrupt 11H is used to determine the systems information. On return this service returns

the systems info in AX register. The detail of the information in AX register is shown in

the slide above.

19 - Real Time Clock (RTC) III

© Copyright Virtual University of Pakistan

162

INT 12H
used for memory interfaced.

INT 15H/88H

Returns = No. of KB above 1MB mark.

Determining Systems Information

Int 12H is used to determine the amount of conventional memory interfaced with the

processor in kilobytes. The amount of memory above conventional memory (extended

memory) can be determined using the service 15H/88H.

20 - Determining system information

© Copyright Virtual University of Pakistan

163

20 - Determining system information

Types of Processor

Flags register test to identify 8086
Determining the Processor Type

Unused in 8086
1215

Pushing or Poping the flags register will set
these 4-bits in 8086.

mov AX, 0
push AX
popf
pushf
pop AX

Test the bits 15 – 12 of AX if all set, the
processor is 8086 else higher

processor.

Determining the Processor Type

The above slides show the test that can be used to determine if the underlying processor is

8086 or not. If its not 8086 some test for it to be 80286 should be performed.

20 - Determining system information

© Copyright Virtual University of Pakistan

164

Checking for 80286

Flags test for 80286
mov AX, 7000H
push AX
popf
pushf
pop AX

If the bits 14 – 12 are cleared the
processor is 286 only.

Determining the Processor Type

If the bits 14-12 are cleared on pushing the flags register then the processor is 80286. This

can be checked as shown in the slide above.

Alignment Test (If Not 286)

Alignment Check

18

Alignment Check:

mov dword ptr [12], EDX

Eflags

In 32-bit processors it is more optimal in terms of speed if double word are placed at

addresses which ate multiples of 4. If data items are placed at odd addresses the access to

such data items is slower by the virtue of the memory interface of such PCs. So it more

optimal to assign such variables addresses which are multiple of 4. The 386 and 486 are

both 32 bit processors but 486 has alignment check which 386 does not have. This

20 - Determining system information

© Copyright Virtual University of Pakistan

165

property can be used to distinguish between 386 and 486. If the previous tests have failed

then there is a possibility that the processor is not 8086 or 286. To eliminate the

possibility of it being a 386 we perform the alignment test. As shown in the slide above

the 18th bit of the EFLAGS register is the alignment bit, it sets if a double word is moved

onto a odd address or an address which does not lie on a 4 byte boundary.

pushfd
pop eax
mov ecx, eax
mov dword ptr [13], EDX
pushfd
pop eax

Alignment Test

In the above slide a double word is moved into a odd address. If the processor is 386 then

the 18th bit of the EFLAGS register will not be set, it will be set if the processor is higher

than 386.

20 - Determining system information

© Copyright Virtual University of Pakistan

166

Distinguishing between 486 and Pentium processors

• 486 will pass the alignment test.
• To distinguish 486 with Pentium

CPUID Test is used.

CPUID Test

A Pentium and 486 both will pass the alignment test. But a 486 does not support the

CPUID instruction. We will next incorporate the CPUID instruction support test to find if

the processor is 486 or a Pentium as Pentium does support CPUID instruction.

• If a program can set and also clear bit 21 of Eflags,
then processor supports CPUID instructions.

• Set bit 21 of Eflags and read value of Eflags and
store it.

• Clear bit 21 of Eflags, read the value of Eflags.
• Compare both the value if bit 21 has changed the

CPUID instruction is available.

CPUID Test
21

Eflags

If the CPUID instruction is available the processor is a Pentium processor otherwise it’s a

486.

20 - Determining system information

© Copyright Virtual University of Pakistan

167

More about CPUID Instruction

Before After the execution of Instruction
EAX = 0 EAX = 1

EBX – EDX – ECX
EBX = “Genu”
EDX = “ineI”
ECX = “ntel”

EAX = 1 EAX (bit 3 – 0) = Stepping ID
EAX (bit 7 – 4) = Model
EAX (bit 11 – 8) = Family
EAX (bit 13 – 12) = Type
EAX (bit 14 – 31) = Reserved

CPUID Instruction

The CPUID instruction, if available, returns the vendor name and information about the

model as shown in the slide above. Beside rest of the test the CPUID instruction can also

be used by the software to identify the vendor name.

20 - Determining system information

© Copyright Virtual University of Pakistan

168

Testing for Coprocessor

Coprocessor control word

Coprocessor Control Word
7

1 1

Interrupt enable flag

11 after initialization
signifies extended
precision operation

The coprocessor control word contains some control information about the coprocessor.

The bit number 7 of coprocessor control word is the Interrupt Enable Flag and bit number

8 & 9 should contain 11 on initialization.

Coprocessor Status Word

Coprocessor Status Word
10

C3 C2 C0

0 0 0 st > operand

0 0 1 st < operand

1 0 0 st = operand

14 8

C3 C0C3 C1

9

The coprocessor status register stores the status of the coprocessor. Very much like the

flags register in the microprocessor the Coprocessor status word can be used to determine

the result of a comparison as shown in the slide.

20 - Determining system information

© Copyright Virtual University of Pakistan

169

Following test can be performed to test the presence of coprocessor.

• Initialize
• Read Hi – Byte of Control register.
• If value in Hi – Byte is 3, then

coprocessor is available, otherwise
its absent.

To Check Coprocessor is
Present

Once its established that the coprocessor is present then the model of the coprocessor

should be determined. In case an invalid numerical operation is requested the 8087

coprocessor generates an interrupt while the higher coprocessors does not use interrupts

in fact they make use of exceptions. This feature can be used to distinguish between 8087

and higher processor as shown in the slide above. The higher processor will not respond

to an attempt made to set the IEM flag while 8087 will respond.

• IEM can be set in 8087.
• IEM cannot be set in 80287, 80387

as they use exception to inform the
software about any invalid
instruction.

• If an attempt to set this bit using
FDISI fails then it implies, its not a
8087 coprocessor .

Check for 8087 Coprocessor

20 - Determining system information

© Copyright Virtual University of Pakistan

170

Distinguishing between 80287 and 80387

• 80387 only allows to reverse the
sign of infinity.

• Perform a division by zero.
• If the sign of result can be

reversed then the coprocessor is
80387.

Distinguish between 80287 & 80387

If the sign of infinity can be reversed than the coprocessor is 80387 otherwise its 80387

20 - Determining system information

© Copyright Virtual University of Pakistan

171

Reading the Computer configuration

void PrintConfig(void)
{
union REGS Register;
BYTE AT;
clrscr();
AT = (peekb(0xF000, 0xFFFE) == 0xFC);
printf("Your PC Configuration \n");
printf("--\n");
printf("PC type : ");
switch(peekb(0xF000, 0xFFFE))
{
case 0xFF : printf("PC\n");

break;
case 0xFE : printf("XT\n");

break;
default : printf("AT or higher\n");

break;
}

printf("Conventional RAM : ");
int86(0x12, &Register, &Register);
printf("%d K\n",Register.x.ax);
if (AT)
{
Register.h.ah = 0x88;
int86(0x15, &Register, &Register);
printf("Additional RAM :

%d K over 1 megabyte\n", Register.x.ax);
}
int86(0x11, &Register, &Register);
printf("Default video mode : ");
printf("Disk drives : %d\n", (Register.x.ax >> 6 & 3) + 1);
printf("Serial interfaces : %d\n", Register.x.ax >> 9 & 0x03);
printf("Parallel interfaces : %d\n\n", Register.x.ax >> 14);
}

void main()
{
PrintConfig();
}

In this program the general configurations of the computer are read using interrupt 11H,

12H and 15H. First its determined if the Processor is and AT (advanced technology all

processors above 8086) type computer or not. This can be done easily by checking its

signature byte placed at the location F000:FFFEH which will contain neither 0xFF nor

0xFE if its an AT computer. The program shows the size of conventional RAM using the

interrupt 12H, then if the computer is an AT computer then the program checks the

extended memory size using int 15H/88H and reports its size. And ultimately the program

calls int 11H to show the number and kind of I/O interfaces available.

21 - Keyboard Interface

© Copyright Virtual University of Pakistan

172

21 - Keyboard Interface

Processor Identification

_getproc proc near

pushf ;Secure flag register contents
push di

;== Determine whether model came before or after 80286 ====

xor ax,ax ;Set AX to 0
push ax ;and push onto stack
popf ;Pop flag register off of stack
pushf ;Push back onto stack
pop ax ;and pop off of AX
and ax,0f000h ;Do not clear the upper four bits
cmp ax,0f000h ;Are bits 12 - 15 all equal to 1?
je not_286_386 ;YES --> Not 80386 or 80286

In the above slide the test for 8086 or not is performed by clearing all the bits of flags

register then reading its value by pushing flags and then poping it in AX, the bits 15-12 of

ax are checked if they have been set then it’s a 8086.

;-- Test for determining whether 80486, 80386 or 80286 ------

mov dl,p_80286 ;In any case, it's one of the
mov ax,07000h ;three processors
push ax ;Push 07000h onto stack
popf ;Pop flag register off
pushf ;and push back onto the stack
pop ax ;Pop into AX register
and ax,07000h ;Mask everything except bits 12-14
je pende ;Are bits 12 - 14 all equal to 0?

;YES --> It's an 80286
inc dl ;No --> it's either an 80386 or an

;80486. First set to 386

;-- The following test to differentiate between 80386 and ---
;-- 80486 is based on an extension of the EFlag register on
;-- the 80486 in bit position 18.
;-- The 80386 doesn't have this flag, which is why you
;-- cannot use software to change its contents.

21 - Keyboard Interface

© Copyright Virtual University of Pakistan

173

The above slide further performs the test for 80286 if the previous test fails. It sets the bit

14-12 of flags and then again reads back the value of flags through stack. If the bits 14-12

have been cleared then it’s a 80486.

cli ;No interrupts now
mov ebx,offset array
mov [ebx],eax
pushfd
pop eax
mov first,eax;

mov [ebx+1],eax
pushfd
pop eax
shr first,18
shr eax,18
and first,1
and eax,1
cmp first,eax
inc dl

sti
jne pende

The above code performs the alignment test as discussed before by test the 18th bit after

addressing a double word at an odd address.

pushfd
pop eax
mov temp, eax
mov eax,1
shl eax,21
push eax
popfd
pushfd
pop eax
shr eax,21
shr temp,21
cmp temp, eax
inc dl
je pende

jmp pende ;Test is ended

the above code performs a test to see if CPUID instruction is available or not for which

the bit number 21 of flags is set and then read back.

21 - Keyboard Interface

© Copyright Virtual University of Pakistan

174

pende label near ;End testing

pop di ;Pop DI off of stack
popf ;Pop flag register off of stack
xor dh,dh ;Set high byte of proc. code to 0
mov ax,dx ;Proc. code = return value of funct.

ret ;Return to caller

_getproc endp ;End of procedure

A CPUID Program

#include "stdafx.h"
#include <stdio.h>
#include <dos.h>
unsigned long int id[3];
unsigned char ch='\0';
unsigned int steppingid ;
unsigned int model,family,type1;
unsigned int cpcw;
int main(int argc, char* argv[])
{

_asm xor eax,eax
_asm cpuid
_asm mov id[0], ebx;
_asm mov id[4], edx;
_asm mov id[8], ecx;
printf("%s\n ", (char *) (id));
_asm mov eax,1
_asm cpuid
_asm mov ecx,eax
_asm AND eax,0xf;
_asm mov steppingid,eax;
_asm mov eax, ecx

21 - Keyboard Interface

© Copyright Virtual University of Pakistan

175

_asm shr eax,4
_asm and eax, 0xf;
_asm mov model,eax
_asm mov eax,ecx
_asm shr eax,8
_asm and eax, 0xf
_asm mov family,eax;
_asm mov eax,ecx
_asm shr eax,12
_asm and eax, 0x3;
_asm mov type1, eax;
printf("\nstepping is %d\n model is %d\nFamily is %d\nType is

%d\n",steppingid,model,family,type1);
}

The above program places 0 in eax register before issuing the CPUID instruction. The

string returned by the instruction is then stored and printed moreover other information

about family, model etc is also printed.

21 - Keyboard Interface

© Copyright Virtual University of Pakistan

176

Detecting a Co Processor

_asm finit
_asm mov byte ptr cpcw+1, 0;
_asm fstcw cpcw
if (*(((char *) (&cpcw))+1)==3)

puts("Coprocessor found");
else

puts ("Coprocessor not found");

After initialization the control word is read if the higher byte contains the value 3.

_getco proc near
mov dx,co_none ;First assume there is no CP

mov byte ptr cs:wait1,NOP_CODE ;WAIT-instruction on 8087
mov byte ptr cs:wait2,NOP_CODE ;Replace by NOP

wait1: finit ;Initialize Cop
mov byte ptr cpz+1,0 ;Move high byte control word to 0

wait2: fstcw cpz ;Store control word
cmp byte ptr cpz+1,3 ;High byte control word = 3?
jne gcende ;No ---> No coprocessor
;-- Coprocessor exists. Test for 8087 -----------------------
inc dx
and cpz,0FF7Fh ;Mask interrupt enable mask flag
fldcw cpz ;Load in the control word
fdisi ;Set IEM flag
fstcw cpz ;Store control word
test cpz,80h ;IEM flag set?
jne gcende ;YES ---> 8087, end test

In the code above the IEM bit is set and then the value of control word is read to analyse

change in the control word. If the most significant bit is set then it’s a 8087 co processor

otherwise other tests must be performed.

21 - Keyboard Interface

© Copyright Virtual University of Pakistan

177

;-- Test for 80287/80387 ------------------------------------
inc dx
finit ;Initialize cop
fld1 ;Number 1 to cop stack
fldz ;Number 0 to cop stack
fdiv ;Divide 1 by 0, erg to ST
fld st ;Move ST onto stack
fchs ;Reverse sign in ST
fcompp ;Compare and pop ST and ST(1)
fstsw cpz ;Store result from status word
mov ah,byte ptr cpz+1 ;in memory and move AX register
sahf ;to flag register
je gcende ;Zero-Flag = 1 : 80287

inc dx ;Not 80287, must be 80387 or inte-
;grated coprocessor on 80486

gcende: mov ax,dx ;Move function result to AX
ret ;Return to caller

_getco endp

An operation (like division by zero is performed) which results in infinity. Then the sign

of the result is reversed, if it can be reversed then its 80387 co processor otherwise its

certainly 80287.

KeyBoard Interface

64H

60H

Processor

INTR

PICIRQ1

Synchronous Data
Keyboard

The keyboard interface as discussed earlier uses the IRQ1 and the port 60H as data port, it

also uses another port number 64H as a status port. The keyboard can perform

synchronous serial I/O.

21 - Keyboard Interface

© Copyright Virtual University of Pakistan

178

7 6 5 4 3 2 1 0

Port 64H Status Register

1 = Output
Buffer full

1 = Input Buffer
full

1 = Keyboard Active

1 = Parity
Error

1 = Time Out Error
during input

1 = Time Out Error
during output

The above slide shows the detailed meaning of bits in port 64H.

Typematic Rate

Typematic Rate
11111 = 2 char/s
11110 = 2.1 char/s
11101 = 2.3 char/s
11010 = 3 char/s
::::::::::::::::
::::::::::::::::
00100 = 20 char/s
00011 = 21.8 char/s
00010 = 24 char/s
00001 = 26.7 char/s
00000 = 30 char/s

Delay
00 ¼ Second
01 ½ Second
10 ¼ Second
11 1 Second

7 6 5 4 3 2 1 0

The typematic rate of the keyboard can be controlled by a control word as depicted in the

slide above. The delay and typematic rates need to be specified in this control word. The

delay indicates the delay between first and second character input whenever a key is

pressed. The timing of rest of the successive character inputs for the same key is

determined by the typematic rate.

21 - Keyboard Interface

© Copyright Virtual University of Pakistan

179

Recieving bytes From
Keyboard

60H

64H

Input from
Keyboard

Input buffer full

The input character scan code is received at port 60H. A certain bit in the port 64H or

keyboard controller is used as the IBF (input buffer full) bit. A device driver can check

this bit to see if a character has been received from the keyboard on which this bit will

turn to 1.

Sending bytes to the Keyboard
60H

64H

From Proce ssor

Output buffer full

Later on
Receives 0xFA to indicate
successful transmission

Similarly some data (as control information) can be send to the keyboard. The processor

will write on the port 60H. The device driver will check the OBF(output buffer full bit of

port 64H which remains set as long as the byte is not received by the keyboard. On

receipt of the byte from the port 60H the keyboard device write a code 0xFA on the port

60H to indicate that the byte has been received properly.

22 - Keyboard Interface, DMA Controller

© Copyright Virtual University of Pakistan

180

22 - Keyboard Interface, DMA Controller

Using the described information we can design a protocol for correctly writing on the

keyboard device as described below.

Keyboard writing Protocol
• Wait till input buffer is full
• Write on buffer
• Wait till output buffer is full
• Check the acknowledgement byte
• Repeat the process if it was previously
unsuccessful.

Keyboard is a typically an input device but some data can also be send to the keyboard

device. This data is used as some control information by the keyboard. One such

information is the typematic rate. This type matic rate can be conveyed to the keyboard as

described by the slide below.

Command for writing Typematic rate

0xF3
Means Typematic rate will be sent in the
next byte.

Other such control information is the LED status. Every keyboard has three LEDs for

representing the status of Num Lock, Caps Lock and the Scroll Lock. If the device driver

22 - Keyboard Interface, DMA Controller

© Copyright Virtual University of Pakistan

181

needs to change the status then the LED status byte should be written on the keyboard as

described below. But before writing this byte the keyboard should be told that the control

byte is to be written. This is done by sending the code 0XED before sending the status

byte using the above described protocol.

Keyboard LEDs

012

Scroll Lock

LED Status byte

Num Lock

Caps Lock

LED Control byte = 0xED

Changing Typematic Rate

#include <dos.h>
#include <conio.h>
char st [80];
int SendKbdRate(unsigned char data , int maxtry)
{
unsigned char ch;
do{

do{
ch=inport(0x64);

}while (ch&0x02);
outport(0x60,data);
do{

ch = inport(0x64);
}while (ch&0x01);

22 - Keyboard Interface, DMA Controller

© Copyright Virtual University of Pakistan

182

if (ch==0xfa)
{ puts("success\n");

break;
}

maxtry = maxtry - 1;
} while (maxtry != 0);

if (maxtry==0)
return 1;

else
return 0;

}

The above program has function SendKbdRate(). This function takes 2 parameters, first

one is value to be sent and the second one is the maximum number of retries it performs if

the byte cannot be sent. This function implements the described protocol. It first waits for

the IBF to be cleared and then starts trying to send the byte. The functions stops trying

either if 0xFA is received (success) or if the number of retries end (failure).

void main ()
{
//clrscr();
SendKbdRate(0xf3,3);
SendKbdRate(0x7f,3);
gets(st);
SendKbdRate(0xf3,3);
SendKbdRate(0,3);
gets(st);
}

Now this function is used to change the typematic rate. Firstly 0XF3 is written to indicate

that the typematic rate is to be changed then the typematic rate is set to 0x7F and a strng

can be type to experience the new typematic rate. Again this rate is set to 0. This program

will not work if you have booted the system in windows. First boot the system in DOS

and then run this program.

22 - Keyboard Interface, DMA Controller

© Copyright Virtual University of Pakistan

183

Changing LEDs Status

#include <bios.h>
#include <dos.h>
char st [80];
unsigned char far *kbd =

(unsigned char far *) 0x00400017;
int SendKbdRate(unsigned char data , int maxtry)
{
unsigned char ch;
do{

do{
ch=inport(0x64);

}while (ch&0x02);
outport(0x60,data);

do{
ch = inport(0x64);

}while (ch&0x01);
ch=inport(0x60);
if (ch==0xfa)
{ puts("success\n");

break;
}

maxtry = maxtry - 1;
} while (maxtry != 0);
if (maxtry==0)

return 1;
else

return 0;
}

22 - Keyboard Interface, DMA Controller

© Copyright Virtual University of Pakistan

184

void main ()
{
//clrscr();
SendKbdRate(0xed,3);
SendKbdRate(0x7,3);
puts("Enter a string ");
gets(st);
*kbd=(*kbd)|0x70;
puts("Enter a string ");
gets(st);
}

Again the same function is being used in this program to turn on the keyboard LEDs.

Firstly 0xED is sent to indicate the operation and then 7 is written to turn on all the LEDs.

But tuning on the LEDs like this will not change the keyboard status indicated by the byte

at 40:17H. If the status for the device driver usage is to changes as well then the

corresponding at 40:17H can be set by ORing it with 0x70. This program will not work if

you have booted the system in windows. First boot the system in DOS and then run this

program.

DMA Controller

I/O Processor

DMA

Main
Memory

22 - Keyboard Interface, DMA Controller

© Copyright Virtual University of Pakistan

185

DMA is a device which can acquire complete control of the buses and hence can be used

to transfer data directly from port to memory or vice versa. Transferring data like this can

prove faster because a transfer will consume 2 bus cycles if it is performed using the

processor. So in this approach the processor is bypasses and its cycles are stolen and are

used by the DMA controller.

23 - Direct Memory Access (DMA)

© Copyright Virtual University of Pakistan

186

23 - Direct Memory Access (DMA)

The latch B of the DMA interface is used to hold the higher 4 or 8 bits of the 20 or 24 bit

absolute address respectively. The lower 16bits are loaded in the base address register and

the number of bytes to be loaded are placed in the count register. The DMA requests to

acquire buses through the HOLD signal, it receives a HLDA (Hold Acknowledge) signal

if no higher priority signal is available. On acknowledgment the DMA acquires control of

the buses and can issue signals for read and write operations to memory and I/O ports

simultaneously. The DREQ signals are used by various devices to request a DMA

operation. And if the DMA controller is successful in acquiring the bus it sends back the

DACK signal to signify that the request is being serviced. For the request to be serviced

properly the DMA channel must the programmed accurately before the request.

DMA Cascading

A single DMA can transfer 8bit operands to and from memory in a single a bus cycle. If

16bit values are to be transmitted then two DMA controllers are required and should be

cascaded as shown above.

23 - Direct Memory Access (DMA)

© Copyright Virtual University of Pakistan

187

DMA Programming Model
• DMA has 4 – Channels
• Each Channel can be programmed to transfer a
block of maximum size of 64k.
• For each Channel there is a

• Base Register
• Count Register
• Higher Address Nibble/Byte is placed in Latch B.

• The Mode register is conveyed which Channel is
to be programmed and for what purpose i.e. Read
Cycle, Write Cycle, Memory to memory transfer.
• A request to DMA is made to start it’s transfer.

Internal Registers
• No of 16 & 8 bit Internal registers
• Total of 27 internal registers in DMA
Register Number Width
Starting Address 4 16
Counter 4 16
Current Addre ss 4 16
Current Counter 4 16
Temporary Address 1 16
Temporary Counter 1 16
Status 1 8
Command 1 8
Intermediate Memory 1 8
Mode 4 8
Mask 1 8
Request 1 8

The above slides shows the characteristics of each register when a DMA channel is to be

programmed and also shows the total number of registers in the DMA controller. Some of

the registers are common for all channels and some are individual for each channel.

23 - Direct Memory Access (DMA)

© Copyright Virtual University of Pakistan

188

DMA Modes

• Block Transfer
• Single Transfer
• Demand Transfer

The DMA can work in above listed modes. In block transfer mode the DMA is

programmed to transfer a block and does not pause or halt until the whole block is

transferred irrespective of the requests received meanwhile.

In Single transfer mode the DMA transfers a single byte on each request and updates the

counter registers on each transfer and the registers need not be programmed again. On the

next request the DMA will again transfer a single byte beginning from the location it last

ended.

Demand transfer is same as block transfer, only difference is that the DREQ signal

remains active throughout the transfer and as soon as the signal deactivates the transfer

stops and on reactivation of the DREQ signal the transfer may start from the point it left.

23 - Direct Memory Access (DMA)

© Copyright Virtual University of Pakistan

189

Programming the DMA

The above table shows the addresses of all the registers that should be programmed to

perform a transfer. These registers act as status and control registers and are common for

all the channels.

23 - Direct Memory Access (DMA)

© Copyright Virtual University of Pakistan

190

DMA Status Register

Terminal count if reached signifies that the whole of the block as requested through some

DMA channel has been transferred. The above status register maintains the status of

Terminal count (TC) and DREQ for each channel within the DMA.

23 - Direct Memory Access (DMA)

© Copyright Virtual University of Pakistan

191

This is the command register. It is used to program various common parameters of

transfer for all the channels.

24 - Direct Memory Access (DMA) II

© Copyright Virtual University of Pakistan

192

24 - Direct Memory Access (DMA) II

This register can be used to simulate a DMA request through software (in case of memory

to memory transfer). The lower 2 bits contains the channel number to be requested and

the bit # 2 is set to indicate a request.

24 - Direct Memory Access (DMA) II

© Copyright Virtual University of Pakistan

193

This register can be used to mask/unmask requests from a device for a certain DMA

channel. The lower 2 bits contains the channel number and the bit #2 is set if the channel

is to be masked.

24 - Direct Memory Access (DMA) II

© Copyright Virtual University of Pakistan

194

This register can also be used to mask the DMA channels. It contains a single bit for each

channel. The corresponding bit is set to mask the requests for that channel.

24 - Direct Memory Access (DMA) II

© Copyright Virtual University of Pakistan

195

This register can be used to set the mode on each. The slide shows the detail of the values

and bits which should be placed in the register in order to program a required mode.

24 - Direct Memory Access (DMA) II

© Copyright Virtual University of Pakistan

196

A channel is programmed for a start address and the count of bytes to be transferred

before the transfer can take place. Both these values are placed in various registers

according to the channel number as shown by the slide above. Once the transfer starts

these values start changing. The start address is updated in to the current address and the

count is also updates as bytes are transferred. During the transfer the status of the transfer

can be analyzed by getting the values of these registers listed In the slide above for the

channel(s) involved in the transfer.

24 - Direct Memory Access (DMA) II

© Copyright Virtual University of Pakistan

197

High Address Nibble/Byte

The above slide shows the port number for each channel in which the higher 4 or 8 bits of

the absolute address is stored in case of 20 or 24 bit address bus.

#include <dos.h>
#include <bios.h>
char st[80];
unsigned long int temp;
unsigned int i;
unsigned int count=48;

void main (void)
{

temp=(unsigned long int)_DS;
temp = temp << 4L;
i = *((unsigned int *)(&temp));
temp = temp>>16L;

This program, programs the DMA channel 3 for read cycle by placing 0x0B in mode

register (0x0B). Before the channel is unmasked and the channel mode is programmed the

base address the count and the higher 4 or 8 bits of the address should be placed in base

register, count register and Latch B respectively. The 20 (or 24) bit address is calculated.

The higher 4 (or 8) bits are placed in the Latch B for channel 3, then the rest of the 16

bits of the base address are placed in base register for channe3 and ultimately the count is

24 - Direct Memory Access (DMA) II

© Copyright Virtual University of Pakistan

198

loaded into the count register for channel 3.

outportb (0x81,*((unsigned char *)(&temp)));
outportb(0x06,*(((unsigned char *)(&i))));
outportb(0x06,*(((unsigned char *)(&i))+1));
count--;
outportb(0x07,*((unsigned char *)(&count)));
outportb(0x07,*(((unsigned char*)(&count))+1));
outportb(0x0b,0x0b);
outportb(0x08,0);
outport(0x0a,3);
getch();

}

25 - File Systems

© Copyright Virtual University of Pakistan

199

25 - File Systems

This program attempts to perform memory to memory transfer operation. This program

will only work for a 8086 processor, higher processors’ DMA may not support memor to

memory transfer.

#include <dos.h>
#include <bios.h>

char st[2048]="hello u whats up?\0";
char st1[2048]="xyz";
unsigned long int temp;
unsigned int i;

void main (void)
{

temp=_DS;
temp = temp<<4;
i = *((unsigned int *)(&temp));
temp = temp >>16;

outportb(0x87,*((unsigned char *)(&temp)));
outportb(0,*((unsigned char *)(&i)));
outportb(0,*(((unsigned char *)(&i))+1));
outportb(1,0xff);
outportb(1,0x07);
outportb(0x0b,0x88);
temp=_DS;
temp= temp+128;
temp=temp<<4;
i= *((unsigned int *)(&temp));
temp=temp>>16;
outportb(0x83,*((unsigned char *)(&temp)));
outportb(2,*((unsigned char *)(&i)));
outportb(2,*(((unsigned char *)(&i))+1));

25 - File Systems

© Copyright Virtual University of Pakistan

200

This program, programs the channel 0 and channel 1 of the DMA. It loads the address of

Source string st in base register and the Latch B and loads the count register for channel 0

and does the same for st1. It then programs the mode, mask and command register for

memory to memory transfer and to unmask channel 0 and channel 1.

outportb(3,0xff);
outportb(3,0x07);
outportb(0x0b,0x85);
outportb(0x08,1);
outportb(0x0f,0x0c);
outportb(0x09,0x04);

while (!kbhit())
{

printf("Channel 0 =
%x,%x\n",inportb(0x01),inportb(0x01));

printf("Channel 1 =
%x,%x\n",inportb(0x03),inportb(0x03));

printf("Status = %x\n",inportb(0x08));
}

puts(st1);
}

File Systems

File System

•Disk Architecture
•Disk Partitioning
•File systems

25 - File Systems

© Copyright Virtual University of Pakistan

201

Disk Architecture

•Disk is a circular which is hollow from the center
•This shape is inherently useful for random
access.

On tracks and sectors

Tracks are the circular division of the disk and the sectors are the longitudinal division of

the disk as shown in the diagram above.

25 - File Systems

© Copyright Virtual University of Pakistan

202

Addressable unit Parameters
• Heads
•Sectors
•Tracks

An addressable unit on disk can be addressed by three parameters i.e. head #, sector # and

track #. The disk rotates and changing sectors and a head can move to and fro changing

tracks. Each addressable unit has a unique combination of sec#, head# and track# as its

physical address.

Blocks

• Blocks are the sectors per track
•Smallest addressable unit in memory
•Address of block is specified as a unique
combination of three parameters (i.e. track, head,
sec)

25 - File Systems

© Copyright Virtual University of Pakistan

203

Density of Magnetic media
• Density of magnetic media is the determinant of
the amount of data that can reside stably on the
disk for example floppy disk come with different
densities.

•Double Density
•High Density

Effect of surface area on disk size

• Increasing the surface area clearly increases the
amount of data that can reside on the disk as more
magnetic media no resides on disk but it might
have some drawbacks like increased seek time in
case only one disk platter is being used

Hard Disks

• Greater amounts of data can reside on hard disk
•As greater amount of magnetic media can reside on the
hard surface of the disk
•Also because the surface area of the disk is increased by
increasing the number of platters as shown in the diagram

25 - File Systems

© Copyright Virtual University of Pakistan

204

Hard Disk Architecture

•

Cylinders

• In case of hard disk where there are number of
platters the term track is replaced by cylinder
•Cylinder is a collection of corresponding tracks
if track on platter changes so will the tracks on
rest of the platters as all the heads move
simultaneously

Rotational Delay

• While accessing a selected block the time
required by the disk to rotate to the specified
sector is called rotational delay

25 - File Systems

© Copyright Virtual University of Pakistan

205

Seek Time

• While accessing a selected block Time required
by the head to reach the particular track/cylinder
is called seek time

Access Time

• The accumulative time that is required to access
the selected block is called access time
•Access time includes the delay required by disk
rotation as well as head movement.

Head is like Electric Coil

• Disk follow the basic principle of magnetism of
dynamo.
•When ever a magnetized portion of disk runs
along the coil like head electricity is produced in
the head which is interpreted as a logic 1
•And whenever a demagnetized portion on the
disk runs through the head no electricity is
produced in head which is interpreted as logic 0

25 - File Systems

© Copyright Virtual University of Pakistan

206

Head position and precautions
• The head is touching the surface of floppy disk
which rotates at a low speed of 300 RPM
•The head is not touching the surface of hard disk
which run at high speeds up to 9600 RPM but is
at a few microns distance from the surface
•All the magnetic disk are made out of magnetic
media and hence data may be lost by exposing
them to sunlight, heat, radiation, magnetic or
electric fields.
•Dust is harmful and even fatal in case of head
disk by the virtue of its speed and its distance of
head from the surface

26 - Hard Disk

© Copyright Virtual University of Pakistan

207

26 - Hard Disk

Reading/Writing a physical Block

• biosdisk(int cmd, int drive, int head, int track,
int sector, int nsects, void * buffer);

Cmd 0 = disk reset
1 = disk status (status of last disk operation)
2 = disk read
3 = disk write
4 = disk verify
5 = disk format

Now we establish how a block can be read or written if its address is known. The function

biosdisk() can be used to read or write a physical block. The slide shows its parameter. It

takes the command (cmd), drive number, head number, track number, number of sectors

to be read or written and the memory from where the data is to read from or written to.

Command signifies the operation that is to be performed.

Reading Writing a physical Block

• Drive 0x80 = first fixed disk (physcial drive)
0x81 = second fixed disk
0x82 = third fixed disks
…. ….
0x00 = first removable disk
0x01 = second removable disk
…. ….

Drive number is described in the slide below it starts from 0 for first removable disk and

starts from 0x80 for first fixed disk.

26 - Hard Disk

© Copyright Virtual University of Pakistan

208

Reading Writing a physical Block
#include <bios.h>
#include <dos.h>
FILE *fp;
unsigned char buf[512];
unsigned char st[60];
unsigned char headno[10];
unsigned char secno[10];
unsigned char trackno[10];
void main (void)
{

int i ;
for (i=0;i<512;i++)

buf[i]=0;

Cont…
gets(st);
fp=fopen(st,"wb");
printf("Head ");
gets(headno);
puts (headno);
printf("\nsector ");
gets(secno);
puts(secno);
printf("\ntrack ");
gets(trackno);
puts(trackno);

26 - Hard Disk

© Copyright Virtual University of Pakistan

209

Cont…
i = biosdisk(2,0x80,atoi(headno),

atoi(trackno),atoi(secno),1,buf) ;
if (*(((char *)(&i))+1)==0)
{

fwrite(buf,1,512,fp);
fclose(fp);

}
else

printf("Cannot Read Error# = %x",i);
}

The above program reads a physically addressed block from disk using bios disk()

function for first fixed disk. The program after reading the specified block writes it to a

file and then closes the file.

Limitation of biosdisk
• Biosdisk() calls int 13H/0/1/2/3/4/5
•Details of 13H services used by Biosdisk()
•On Entry

AH = service #
AL=No. of sectors
BX = offset address of data buffer
CH = track #
CL = sector #
DH = head/side #
DL = Drive #
ES = Segment Address of buffer.

However there are some limitation of this biosdisk() while using large disks. This

function uses the int 13H services listed in the slide above.

26 - Hard Disk

© Copyright Virtual University of Pakistan

210

Limitation of biosdisk()
• Large sized disk are available now with
thousands of tracks
•But this BIOS routine only is capable of
accessing a max. of 1024 tracks.
•Hence if a large disk is being used not whole of
the disk can be accessed using this routine.

The parameter sizes provided by these services may not be sufficient to hold the track

number of block to be accessed.

Extended BIOS functions

• Extended BIOS functions of int 13h can be used
for operations on higher tracks
•As discussed later usual BIOS functions can
access a maximum of 504MB of disk approx.

Above slide shows for which disks extended services are required to access the block

efficiently.

26 - Hard Disk

© Copyright Virtual University of Pakistan

211

Extended BIOS functions

1024655361024Max
Capacit
y

1616256Max
heads

6325563Max
Sec

LimitIDE BIOS

Highest biosdisk() capacity

• Hence the highest capacity of disk can be
accessed using bios functions is
•63x16x1024x512= 504 MB approx.

But IDE disk interface can support disks with memory space larger than 504MB as shown

in the next slide.

26 - Hard Disk

© Copyright Virtual University of Pakistan

212

Highest IDE capacity

• Hence highest physical capacity of the disk
according to the IDE interface is

255x16x65536x512 = 127GB

•Extended BIOS functions allow to access disk
with sizes greater than 504 MB through LBA
translation.

Extended services require that the address of the block is specified as a LBA address.

LBA Translation Method
• Each unique combination of three parameters is
assigned a unique index as shown below
•Firstly all the sectors of a cylinder are indexed
for head=0, then when whole track has been
indexed the sector in the track of same cylinder
with head =1 are indexed and so on up till the end
of all heads
When done with one cylinder the same is repeated
for the next cylinder till the end of cylinders

26 - Hard Disk

© Copyright Virtual University of Pakistan

213

LBA translation is done by numbering the blocks with a single index. The indexes are

assigned to blocks as shown in the slide below. In terms of the disk geometry firstly all

the sectors of a track will be indexed sequentially, then the track exhausts the next track is

chosen on the other side of the disk and so on all the tracks in a cylinder are indexed.

When all the blocks within a cylinder has been indexed the same is done with the next

cylinder.

LBA Translation method
Cylinder head sec

0 0 1 = 0
0 0 2 = 1
0 0 3 = 2

…. …. … ….
0 0 63 = 62
0 1 1 = 63
0 1 2 = 64

…. …. … ….
0 2 1 = 126

if the CHS (cylinder, head , sector) address of a disk is known it can be translated in to

the LBA address and vice versa. For this purpose the total number of cylinders, heads and

sectors must also be known.

Mathematical Notation for LBA translation
• LBA address = (C * H’ +H)* S’ + S – 1
Where

C = Selected cylinder number
H’ = No. of heads
H = Selected head number
S’=Maximum Sector number
S= Selected Sector number

26 - Hard Disk

© Copyright Virtual University of Pakistan

214

Also conversely LBA to CHS translation can also be done using the formulae discussed

in the following slide but for this the total number of cylinders, heads and sectors within

the disk geometry should be known.

LBA to CHS translation
• Conversely LBA address can be translated into
CHS address
cylinder = LBA / (heads_per_cylinder *

sectors_per_track)

temp = LBA % (heads_per_cylinder *
sectors_per_track)

head = temp / sectors_per_track
sector = temp % sectors_per_track + 1

26 - Hard Disk

© Copyright Virtual University of Pakistan

215

Disk Address Packet is a data structure used by extended int 13H services to address a

block and other information for accessing the block. Its structure is defined in the slide

below.

Disk Address Packet

LBA addressQuad
word

8

Far address of bufferDouble
Word

4

ReservedByte3

No. of blocks to transfer, Max value
no greater than 7FH

Byte2

ReservedByte1

Size, Should not be less than 16Byte0

DescriptionSizeOffset

27 - Hard Disk, Partition Table

© Copyright Virtual University of Pakistan

216

27 - Hard Disk, Partition Table

Extended Read
• Service used for extended read is int 13h/42h

On Entry
AH=42H
DL=drive #
DS:SI= far address of Disk address packet
On Exit
If CF=0

AH=0= Success
If CF=1

AH= Error code

Interrupt 13H/42H can be used to read a LBA addressed block whose LBA address is

placed in the Disk Address packet as described in the slide above.

Extended Write
• Service used for extended write is int 13h/43h

On Entry
AH=43H
AL=0,1 write with verify off

2 write with verify on
DL=drive #
DS:SI= far address of Disk address packet
On Exit
If CF=0

AH=0= Success
If CF=1

AH= Error code

Similarly int 13H / 43H can be used to write onto to LBA addressed block as described in

the slide above.

27 - Hard Disk, Partition Table

© Copyright Virtual University of Pakistan

217

Reading a LBA block
#include <dos.h>
#include <bios.h>
struct DAP {

unsigned char size;
unsigned char reserved1;
unsigned char blocks;
unsigned char reserved2;
unsigned char far *buffer;
unsigned long int lbalod;
unsigned long int lbahid;
} dap;

char st[80];
unsigned char buf[512];
FILE *fptr;

void main (void)
{

puts ("enter the lba low double word: ");
gets (st);
dap.lbalod=atol(st);
puts ("enter the lba high double word: ");
gets (st);
dap.lbahid=atol(st);
dap.size=16;
dap.reserved1=0;
dap.blocks=1;
dap.reserved2=0;
dap.buffer = (unsigned char far *)MK_FP(_DS,buf);

_AH=0x42;
_DL=0x80;
_SI=(unsigned int)&dap;
geninterrupt(0x13);
puts ("enter the path: ");
gets (st);
fptr = fopen(st,"wb");
fwrite(buf,512,1,fptr);
fclose (fptr);

}

27 - Hard Disk, Partition Table

© Copyright Virtual University of Pakistan

218

The above slides list a program that that performs a block read operation using the

interrupt 13H/42H. A structure of type DAP is create an appropriate values are placed

into it which includes its LBA address. The offset address of dap is placed in SI register

and the DS already contains its segment address as it has been declared a global variable.

The drive number is also specified and the interrupt is invoked. The interrupt service

reads the contents of the block and places it in a buffer whose address was specified in

dap. The contents of this buffer are then written on to a file. Slide 7

Disk Partitioning
• Partition Table contains information pertaining
to disk partitions.
• Partition Table is the first physical sector

Head = 0
Track/Cylinder = 0
Sec = 1 or LBA = 0

• Partition Table at CHS = 001 is also called MBR
(Master Boot Record).

Structure of Partitioning Table
• Total size of Partition Table is 512 bytes.
• First 446 bytes contains code which loads the
boot block of active partition and is executed at
Boot Time.
• Rest of the 66 bytes is the Data part.
• Last two bytes of the Data part is the Partition
table signature.

27 - Hard Disk, Partition Table

© Copyright Virtual University of Pakistan

219

File System for Each O.S.
• On a single disk there can be 4 different file
systems and hence 4 different O.S.
• Each O.S. will have its individual partition on
disk.
• Data related to each partition is stored in a 16-
bytes chunk within the Data Part of Partition
Table.

Structure of Data Part of P.T.

Signature02 Bytes

Partition into of 4th partition.16 Bytes

Partition into of 3rd partition.16 Bytes

Partition into of 2nd partition.16 Bytes

Partition into of 1st partition.16 Bytes

DescriptionSize

The data part can contain information about four different partitions for different

Operating systems. Each partition information chunk is 16 bytes long and the last two

bytes at the end of the partition table data part is the partition table signature whose value

should be AA55 indicating that the code part contains valid executable code.

27 - Hard Disk, Partition Table

© Copyright Virtual University of Pakistan

220

The structure of the information stored in each 16 byte for partition is shown in the slides

below

File System IDByte

Low 8-bits of cylinder # for last block within
the partition..

Byte

0 – 5 bits are sector # for first block within
the partition and bits 6 -7 are higher bits of
cylinder #

Byte

Head # for first block in the partitionByte

80H if Bootable, 0 if NotByte

DescriptionSize

Count of total blocks within the partition.Double
Word

Relative address of the boot record for the
partition with respect to the first block in
partition in terms of LBA address.

Double
Word

Low 8-bits of cylinder # for last block within
the partition.

Byte

0 – 5 bits are sector # for last block within
the partition and bits 6 -7 are higher bits of
cylinder #

Byte

Head # for last block in the partitionByte

DescriptionSize

The byte at the offset 4 in the 16 byte data part contains the file system ID which can

have various values depending upon the type of OS in use as described by the slides

below.

27 - Hard Disk, Partition Table

© Copyright Virtual University of Pakistan

221

File System ID

MS-DOS 16-bits < 32MB04

MS-DOS extended partition can manage disks of
sizes up to 8.4 GB

05

Xenix/usr03

Xenix root02

DOS 12-bit partition01

Empty00

DescriptionBit #
0 ~ FF for various O.S.

Extended partitions LBA Mapped0F

Win 95 FAT 16 LBA Mapped0E

Win 95 FAT 320B

Win 95 FAT 32 LBA Mapped0C

OS/2 Boot Manager0A

AIX Data partitions09

AIX Boot partitions08

OS/2, 1FS = Installable file system
Advanced Unix
Windows NT NTFS

07

MS-DOS 16-bits FAT >= 32MB06

27 - Hard Disk, Partition Table

© Copyright Virtual University of Pakistan

222

Primary Partition
• Partition defined in the MBR (Master Boot
Record) are primary partition.
• Each Primary Partition contains information
about its respective O.S.
• However if only one O.S. is to be installed then
extended partitions.

Extended Partitions
MBR

Extended PartitionPrimary
Partition

However if a single operating system is to be kept for instance, then the disk can be

divided into primary and extended partitions. Information about primary and extended

partition is kept in the first physical block. The extended partition may again be divided

into a number of partitions, information about further partitions will be kept in extended

partition table which will be the first physical block within extended partition (i.e. it will

not the first block of primary partition.). Moreover there can be extended partitions within

extended partitions and such that in then end there are number of logical partitions this

can go on till the last drive number in DOS.

28 - Partition Table II

© Copyright Virtual University of Pakistan

223

28 - Partition Table II

Extended Partitions
MBR

Extended PartitionPrimary
Partition

1st Block of Extended Partitions

Extended PartitionLogical
Drive

Primary
Partition

28 - Partition Table II

© Copyright Virtual University of Pakistan

224

1st Block of Next Extended Partitions

Logical
Drive

Extended
Partition

Here it can be seen that the first partition table maintains information about the primary

and extended partitions. The second partition table similarly stores information about a

logical and a extended partition within the previous extended partition. Similarly for each

such extended partition there will be a partition table that stores information about the

logical partition and may also contain information about any further extended partition. In

this way the partition tables form a chain as depicted in the slide below. The last partition

table within the chain contains just a single entry signifying the logical drive.

28 - Partition Table II

© Copyright Virtual University of Pakistan

225

Chain of Extended Partitions

Primary Partition

Logical Drive

Logical Drive

Extended Partition

Extended Partition
Extended Partition

Logical Drive
0000

MBR

Extended Partition Example
13AE:0100 33 C0 8E D0 BC 00 7C FB-50 07 50 1F FC BE 1B 7C 3.....|.P.P....|
13AE:0110 BF 1B 06 50 57 B9 E5 01-F3 A4 CB BD BE 07 B1 04 ...PW...........
13AE:0120 38 6E 00 7C 09 75 13 83-C5 10 E2 F4 CD 18 8B F5 8n.|.u..........
13AE:0130 83 C6 10 49 74 19 38 2C-74 F6 A0 B5 07 B4 07 8B ...It.8,t.......
13AE:0140 F0 AC 3C 00 74 FC BB 07-00 B4 0E CD 10 EB F2 88 ..<.t...........
13AE:0150 4E 10 E8 46 00 73 2A FE-46 10 80 7E 04 0B 74 0B N..F.s*.F..~..t.
13AE:0160 80 7E 04 0C 74 05 A0 B6-07 75 D2 80 46 02 06 83 .~..t....u..F...
13AE:0170 46 08 06 83 56 0A 00 E8-21 00 73 05 A0 B6 07 EB F...V...!.s.....
13AE:0180 BC 81 3E FE 7D 55 AA 74-0B 80 7E 10 00 74 C8 A0 ..>.}U.t..~..t..
13AE:0190 B7 07 EB A9 8B FC 1E 57-8B F5 CB BF 05 00 8A 56 W.......V
13AE:01A0 00 B4 08 CD 13 72 23 8A-C1 24 3F 98 8A DE 8A FC r#..$?.....
13AE:01B0 43 F7 E3 8B D1 86 D6 B1-06 D2 EE 42 F7 E2 39 56 C..........B..9V
13AE:01C0 0A 77 23 72 05 39 46 08-73 1C B8 01 02 BB 00 7C .w#r.9F.s......|
13AE:01D0 8B 4E 02 8B 56 00 CD 13-73 51 4F 74 4E 32 E4 8A .N..V...sQOtN2..
13AE:01E0 56 00 CD 13 EB E4 8A 56-00 60 BB AA 55 B4 41 CD V......V. .̀.U.A.
13AE:01F0 13 72 36 81 FB 55 AA 75-30 F6 C1 01 74 2B 61 60 .r6..U.u0...t+a`
13AE:0200 6A 00 6A 00 FF 76 0A FF-76 08 6A 00 68 00 7C 6A j.j..v..v.j.h.|j
13AE:0210 01 6A 10 B4 42 8B F4 CD-13 61 61 73 0E 4F 74 0B .j..B....aas.Ot.
13AE:0220 32 E4 8A 56 00 CD 13 EB-D6 61 F9 C3 49 6E 76 61 2..V.....a..Inva
13AE:0230 6C 69 64 20 70 61 72 74-69 74 69 6F 6E 20 74 61 lid partition ta
13AE:0240 62 6C 65 00 45 72 72 6F-72 20 6C 6F 61 64 69 6E ble.Error loadin
13AE:0250 67 20 6F 70 65 72 61 74-69 6E 67 20 73 79 73 74 g operating syst
13AE:0260 65 6D 00 4D 69 73 73 69-6E 67 20 6F 70 65 72 61 em.Missing opera
13AE:0270 74 69 6E 67 20 73 79 73-74 65 6D 00 00 00 00 00 ting system.....
13AE:0280 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0290 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:02A0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

13AE:02B0 00 00 00 00 00 2C 44 63-48 E0 48 E0 00 00 80 01 ,DcH.H.....
13AE:02C0 01 00 0C A4 FF FF 3F 00-00 00 FC 8A 38 01 00 A5 ?.....8...
13AE:02D0 C1 FF 0F 4A FF FF 3B 8B-38 01 0A 62 90 03 00 00 ...J..;.8..b....
13AE:02E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:02F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 55 AA U.

The above dump shows the dump of the data part of the first partition table which has two

16 bytes entries, the values in the entries can be interpreted as the values shown in the

following slide.

28 - Partition Table II

© Copyright Virtual University of Pakistan

226

First Partition
System ID = 0c = Windows FAT32 partition (LBA MApped)
first block = 3F
No. of blocks = 01388afc
end cylinder# = 1023
end sec # = 63 indicating a LBA disk

Second Partition
System ID = 0f = Extended windows partition
Start block (relative to the start) = 01388b3b = 20482875
No. of blocks = 0390620a = 59793930

-d 100 300
13AE:0100 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0150 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0180 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0190 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:01A0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:01B0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:01C0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:01D0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:01E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:01F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0200 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0210 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0220 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0230 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0240 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0250 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0260 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0270 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0280 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0290 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:02A0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

13AE:02B0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 A6
13AE:02C0 C1 FF 0B 59 FF FF 3F 00-00 00 FC 8A 38 01 00 5A ...Y..?.....8..Z
13AE:02D0 C1 FF 05 0E FF FF 3B 8B-38 01 3B 8B 38 01 00 00;.8.;.8...
13AE:02E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:02F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 55 AA U.

Here is the information found in the partition table of first extended partition table which

implies another extended and a logical partition.

28 - Partition Table II

© Copyright Virtual University of Pakistan

227

First Partition
System ID = 0b = Windows FAT32 partition
first block = 3F
First block physical address = 3F + 01388b3b
No. of blocks = 01388afc
end cylinder# = 1023
end sec # = 63 indicating a LBA disk

Second Partition
System ID = 05 = Extended DOS partition
Start block (relative to the start) = 01388b3b = 20482875
Start block (physical) = 01388b3b + 01388b3b = 2711676H = 40965750
No. of blocks = 01388b3b = 20482875

-d 100 300
13AE:0100 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0150 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0180 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0190 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:01A0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:01B0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:01C0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:01D0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:01E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:01F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0200 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0210 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0220 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0230 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0240 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0250 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0260 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0270 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0280 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0290 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:02A0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

13AE:02B0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 5B [
13AE:02C0 C1 FF 0B 0E FF FF 3F 00-00 00 FC 8A 38 01 00 0F ?.....8...
13AE:02D0 C1 FF 05 4A FF FF 76 16-71 02 94 4B 1F 01 00 00 ...J..v.q..K....
13AE:02E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:02F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 55 AA U.

Here is information in the partition table of the second extended partition that implies yet

another extended partition and a logical partition with the details shown in the following

slide.

28 - Partition Table II

© Copyright Virtual University of Pakistan

228

First Partition
System ID = 0b = Windows FAT32 partition
first block = 3F
First block physical address = 3F + 01388b3b +1388b3b
No. of blocks = 01388afc
end cylinder# = 1023
end sec # = 63 indicating a LBA disk

Second Partition
System ID = 05 = Extended DOS partition
Start block (relative to the start of extended partition) = 2711676H = 40965750
Start block (physical) = 01388b3bH + 2711676H = 3A9A1B1H = 61448625
No. of blocks = 11f4b94 = 18828180

29 - Reading Extended Partition

© Copyright Virtual University of Pakistan

229

29 - Reading Extended Partition

Extended PartitionLogical Drive

0390620A3F 1388AFC

LBA=0 (MBR) LBA =1388B3B

Extended PartitionLogical
Drive

Logical
Drive

2nd Partition
Table

1388B3B

Relative start = 1388B3B

2711676H

3F 1388AFC

29 - Reading Extended Partition

© Copyright Virtual University of Pakistan

230

Extended
Partition

Logical
Drive

Logical
Drive

Logical
Drive

3rd Partition Table

Next Partition Table in Chain

2711676H

3A9A1B1H

Relative
Addre ss =
2711676h
Physical LBA
= 3A9A1B1H

Above slides shows the information collected as yet which indicates the logical drive

there starting LBA blocks, the number of block , the hidden blocks etc. The following

slide shows the contents of the data part of partition table of the last extended partition.

13AE:0100 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

13AE:0110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:02A0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

skipped

13AE:02B0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 10
13AE:02C0 C1 FF 07 4A FF FF 3F 00-00 00 55 4B 1F 01 00 00 ...J..?...UK....
13AE:02D0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:02E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:02F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 55 AA U.

It has just one data entry for the logical drive indicating that this is the partition table in

the chain. The detail of the contents this partition table are shown below.

29 - Reading Extended Partition

© Copyright Virtual University of Pakistan

231

First Partition
System ID = 07 = Windows FAT32 partition
first block = 3F
First block physical address = 3F + 01388b3b +1388b3b +

1388b3b (Blocks in previous partions)
No. of blocks = 011f4b55
end cylinder# = 1023
end sec # = 63 indicating a LBA disk

Second Partition
System ID = 0 = Unused

The following slide shows the summary of all the data collected as yet depicting 4 logical

drives and the number of blocks within.

11F4B941388B3B

3F 3F 3F 3F

1388B3B 1388B3B

29 - Reading Extended Partition

© Copyright Virtual University of Pakistan

232

Null

MBR
1ST Partition
Table

2nd Partition
Table

3rd Partition
Table

#include <dos.h>
#include <bios.h>
struct DAP
{ unsigned char size;

unsigned char reserved1;
unsigned char blocks;
unsigned char reserved2;
unsigned char far *buffer;
unsigned long int lbalod;
unsigned long int lbahid;

} dap;
struct PartEntry
{ unsigned char BootableFlag;

unsigned char StartHead;
unsigned char StartSector;
unsigned char StartCylinder;
unsigned char SystemID;
unsigned char EndHead;
unsigned char EndSector;
unsigned char EndCylinder;
unsigned long AbsBegin;
unsigned long SectCount;

};

29 - Reading Extended Partition

© Copyright Virtual University of Pakistan

233

struct PartTable
{

unsigned char code [446];
struct PartEntry e[4];
unsigned int signature;

};
struct DAP dap;
void ReadLBA (unsigned int drive,

unsigned long int lbalo, unsigned long int lbahi,
unsigned char far * buffer, int nsects)

{
dap.lbalod = lbalo;
dap.lbahid=lbahi;
dap.size=16;
dap.reserved1=0;
dap.blocks=nsects;
dap.reserved2=0;
dap.buffer =buffer;// (unsigned char far *)MK_FP(_DS,buf);
_AH=0x42;
_DL=drive;
_SI=(unsigned int)&dap;
geninterrupt(0x13);

}

void GetPart (unsigned char drive,
unsigned long int low, unsigned long int high)

{
struct PartTable p;
unsigned int Ssec, Esec;
unsigned int Scyl, Ecyl;
unsigned long int BSec;
int i;
ReadLBA(drive,low,high, (unsigned char *) &p,1);
if (p.signature == 0xaa55)
{

for (i=0; i<4;i ++)
{

if (p.e[i].SystemID != 0)
{

Ssec = p.e[i].StartSector;
Ssec = Ssec << 2;
Scyl = p.e[i].StartCylinder;
*(((unsigned char *)(& Scyl))+1) =

*(((unsigned char *)(&Ssec))+1);
Esec = p.e[i].EndSector;
Esec = Esec << 2;
Ecyl = p.e[i].EndCylinder;

29 - Reading Extended Partition

© Copyright Virtual University of Pakistan

234

*(((unsigned char *)(& Ecyl))+1)=
*(((unsigned char *)(&Esec))+1);

printf("Start Head = %d \n Start Sector =
%d \n Start Cylinder = %d\n End Head =
%d \n End Sector = %d \n End Cylinder =
%d\n Boot Record w ith respect to start of partition =
%ld\n Count of sectors from boot sector =
%ld\n System ID= %x LBA (Low) = %ld",
p.e[i].StartHead, p.e[i].StartSector & 0x3f,
Scyl,p.e[i].EndHead, p.e[i].EndSector & 0x3f,
Ecyl, p.e[i].AbsBegin, p.e[i].SectCount,p.e[i].SystemID,low);

if (p.e[i].SystemID == 0x0f)
GetPart(drive,low +p.e[i].AbsBegin,0);
BSec = p.e[i].AbsBegin;
getch();

}
else

printf ("ParTition unused or unknown\n");
}

}
else

printf("Not a Partition Table\n");
}

void main ()
{

GetPart(0x80,0,0) ;
}

Above is a listing of a simple program that reads the partition table using the extended

13H services. It then displays the contents of the data part of the partition table read. For

this purpose it uses various data structures designed in reflection of the partition table and

16 bytes data entries within. The program uses recursion and calls the getpart() function

recursively whenever it finds an extended partition to read the data within the extended

partition table.

29 - Reading Extended Partition

© Copyright Virtual University of Pakistan

235

Get Drive Parameters
On Entry:

AH – 48
DL – Drive number
DS:SI – Address of result buffer

On Exit:
Carry Clear

AH – 0
DS:SI – result buffer

Carry Set
AH – Error Code

The partition table data entry also stores the CHS address of the starting block. But this

address is left insignificant if a LBA enable disk is in question. However LBA address

can be used in place of the CHS address, and in case CHS address is required it can be

calculated if the total number of tracks, sectors and heads are known. To get the total

number of tracks, sectors and head the above described service can be used.

30 - File System Data Structures (LSN, BPB)

© Copyright Virtual University of Pakistan

236

30 - File System Data Structures (LSN, BPB)

30 - File System Data Structures (LSN, BPB)

© Copyright Virtual University of Pakistan

237

Above slides shows the structure of result buffer used by extended 13H services. If a

extended service returns a value it will be stored in the result buffer as described above.

#include <bios.h>
#include <dos.h>
struct RESULTBUFFER
{

unsigned int size;
unsigned int infoflags;
unsigned long int cylinders;
unsigned long int heads;
unsigned long int sectors;
unsigned long int locount;
unsigned long int hicount;
unsigned int bytespersector;
unsigned long int configptr;

} rb;

30 - File System Data Structures (LSN, BPB)

© Copyright Virtual University of Pakistan

238

void main()
{

clrscr();
_AH = 0x48;
_DL = 0x80;
rb.size = 30;
_SI = (unsigned int) &rb;
geninterrupt (0x13);
printf(" Heads = %ld\n Sectors = %ld\n
Tracks/Cylinders = %ld\n Bytes per sector =
%d\n Block count Low word =
%ld\n Block count Hi Word = %ld\n",
rb.heads, rb.sectors, rb.cylinders,
rb.bytespersector,rb.locount,rb.hicount);

}

The above program uses a RESULTBUFFER data structure in reflection of the result

buffer described in previous slides. It uses the interrupt 13H/48H to get the drive

parameters and then displays the received total number of sectors, heads and cylinders.

#include <bios.h>
#include <dos.h>
struct RESULTBUFFER
{ unsigned int size;

unsigned int infoflags;
unsigned long int cylinders;
unsigned long int heads;
unsigned long int sectors;
unsigned long int locount;
unsigned long int hicount;
unsigned int bytespersector;
unsigned long int configptr;

} rb;
void getdrvparam (unsigned int drive,

struct RESULTBUFFER * rbptr)
{ clrscr();

_AH = 0x48;
_DL = drive ;
rbptr->size = 30;
_SI = (unsigned int) rbptr;
geninterrupt (0x13);

}

30 - File System Data Structures (LSN, BPB)

© Copyright Virtual University of Pakistan

239

void main ()
{

char st[15];
unsigned long int lbaindex;
unsigned int cylinder, head , sector, temp;
puts ("Enter the LBA address");
gets (st);
lbaindex = atol(st);
getdrvparam (0x80,&rb);
cylinder = lbaindex / (rb.heads*rb.sectors);
temp = lbaindex % (rb.heads*rb.sectors);
head = temp / rb.sectors;
sector = temp % rb.sectors + 1;
printf ("Heads = %d sectors = %d

cylinders = %d" , head, sector, cylinder);

}

This is also a quite similar program only difference is that it also translates a LBA address

into CHS address and displays it, for this purpose it gets the drive parameters to know the

total number of heads, sectors and cylinders.

LSN (Logical Sector Number)
C H S
0 0 1 = Partition Table

0 1 1 = Boot Block

Boot Block has LSN = 0
• If the blocks are indexed from the boot block such
that the boot block has index = 0,Then this index is
called LSN.
• LSN is relative index from the start of logical drive,
not the physical drive.

For fixed disk
Hidden Blocks =
No. of Sec/Track

LSN is also indexed like LBA the only difference is that LBA is the address relative to

the start of physical drive (i.e. absolute), whereas LSN address is the address from the

start of logical partition i.e relative.

30 - File System Data Structures (LSN, BPB)

© Copyright Virtual University of Pakistan

240

Example

Logical
Drive

Logical
Drive

LBA=1388B3B+3F

LSN = 0 First Logical
Sector

LBA=0 LSN=2

First Logical Block in drive
LBA = 3F

LSN = 0

LSN=2

LSN=1

LSN=1
LBA=1388B3B
No LSN

LBA=2711676

LBA=2711676+3F
LSN=0

As in the above example it can be noticed that the LBA = 0 is not the same as LSN=0.

The LBA=0 block is the first block on disk. Whereas each logical partition has LSN=0

block which is the first block in logical drive and is not necessarily the first block on

physical drive. Also notice the hidden blocks between the first physical block on each

partition and its first LSN block. These hidden blocks are not used by the operating

system for storing any kind of data.

Conclusion
• LBA is physical or absolute address.
• LSN is relative address with respect to the start of
Logical Drive.

30 - File System Data Structures (LSN, BPB)

© Copyright Virtual University of Pakistan

241

File System Data Structures
• BIOS Parameter Block (BPB)
• Drive Parameter Block (DPB)
• File Control Block (FCB)
• FAT 12, FAT 16, FAT 32
• Master File Table (MFT)

To understand the file systems of DOS and Windows the above given data structure

should be understood which are used by the operating system for file management. In the

coming lecture these data structures will be discussed in detail.

Anatomy of a FAT based file system

User DataRoot Dir
(FAT 12&16)

FATFAT

Boot
Block

Clust 2

System Area

Above slide shows the overall anatomy of a FAT based system. Starting block(s) is /are

the boot block(s), immediately after which the FAT (File allocation table) starts. A typical

volume will contain two copies of FAT. After FAT the root directory is situated which

contain information about the files and folders in the root directory. Whole of this area

constitutes the systems area rest of the area is used to store user data and folders.

30 - File System Data Structures (LSN, BPB)

© Copyright Virtual University of Pakistan

242

Clusters
• A cluster is a collection of contiguous blocks.
• User Data is divided into clusters
• Number of blocks within a cluster is in power of 2.
• Cluster size can vary depending upon the size of
the disk.
• DOS has a built in limit of 128 blocks per cluster.
• But practically limit of 64 blocks per cluster has
been established.
• We will learn more about the size of clusters, later.

BPB (BIOS Parameter Block)
• Situated within the Boot Block.
• Contains vital information about the file system.

BIOS parameter block is a data structure maintained by DOS in the boot block for each

drive. The boot block is typically a 512 byte block which as seen the previous slides is the

first logical block i.e. LSN = 0. It contains some code and data. The data part constitutes

the BPB. Details for FAT 12 and 16 are shown in following slides.

30 - File System Data Structures (LSN, BPB)

© Copyright Virtual University of Pakistan

243

BPB (BIOS Parameter Block)

Reserved Sectors. The number of sectors
from the Partition Boot Sector to the start
of the first file allocation table, including
the Partition Boot Sector. The minimum
value is 1.

WORD 0x0E

Sectors Per Cluster. The number of sectors
in a cluster. The default cluster size for a
volume depends on the disk size and the
file system.

BYTE 0x0D

Bytes per Sector. The size of a hardware
sector. Usually 512.

WORD 0x0B

MeaningField
Length

Byte
Offset

Root Entries. The total number of file name
entries that can be stored in the root folder
of the volume.

WORD 0x11

Number of file allocation tables (FATs). The
number of copies of the file allocation table
on the volume. Typically, the value of this
field is 2.

BYTE 0x10

Small Sectors. The number of sectors on
the volume if the number fits in 16 bits
(65535). For volumes larger than 65536
sectors, this field has a value of 0 and the
Large Sectors field is used instead.

WORD 0x13

Number of Heads. WORD 0x1A

Sectors per Track. WORD 0x18

Sectors per file allocation table (FAT).
Number of sectors occupied by each of the
file allocation tables on the volume.

WORD 0x16

Media Type. Provides information about the
media being used. A value of 0xF8
indicates a hard disk.

BYTE 0x15

Large Sectors. If the Small Sectors field is
zero, this field contains the total number of
sectors in the volume. If Small Sectors is
nonzero, this field contains zero..

DWORD 0x20

Hidden Sectors. DWORD 0x1C

Current Head. Not used by the FAT file
system. (Reserved)

BYTE 0x25

Physical Disk Number. This is related to
the BIOS physical disk number. Floppy
drives are numbered starting with 0x00 for
the A disk. Physical hard disks are
numbered starting with 0x80. The value is
typically 0x80 for hard disks, regardless of
how many physical disk drives exist,
because the value is only relevant if the
device is the startup disk.

BYTE 0x24

System ID. Either FAT12 or FAT16,
depending on the format of the disk.

8 bytes0x36

Volume Label. 11 bytes 0x2B

Volume Serial Number. A unique number
that is created when you format the
volume.

4 bytes 0x27

Signature. Must be either 0x27, 0x28 or
0x29 in order to be recognized by
Windows.

BYTE 0x26

31 - File System Data Structures II (Boot block)

© Copyright Virtual University of Pakistan

244

31 - File System Data Structures II (Boot block)

User
Data

Root
Dir

FATFAT

Reserved Blocks

FAT Size Size of Root Dir

The LSN of the boot block is 0. The information contained within the BPB in boot block

can be used to calculate the LSN of the block from where the user data starts. It can be

simply calculated by adding the number of reserved sector, sectors occupied by FAT

copies * number of FAT copies and the the number of blocks reserved for root dir.

Inside a Boot Block
• Contains Code and Data

jmp codepart
OSName
BIOS

Parameter Block

codepart:

• Boot Block executes at Booting time.

The above slide shows the location of BPB within the boot block. A jump instruction

(near jump of 3 bytes size) is used to jump to the code part and skip the data part so that it

is not interpreted as instructions by the processor.

31 - File System Data Structures II (Boot block)

© Copyright Virtual University of Pakistan

245

0000 EB 3C 90 2A 2D 76 34 56 . < . * - v 4 V
0008 49 48 43 00 02 01 01 00 I H C
0010 02 E0 00 40 0B F0 09 00 . . . @
0018 12 00 02 00 00 00 00 00
0020 00 00 00 00 00 00 29 E1 ) .
0028 6C 87 2A 20 20 20 20 20 l . *
0030 20 20 20 20 20 20 46 41 F A
0038 54 31 32 20 20 20 33 C9 T 1 2 3 .
0040 8E D1 BC FC 7B 16 07 BD { . . .
0048 78 00 C5 76 00 1E 56 16 x . . v . . V .
0050 55 BF 22 05 89 7E 00 89 U . " . . ~ . .
0058 4E 02 B1 0B FC F3 A4 06 N
0060 1F BD 00 7C C6 45 FE 0F . . . | . E . .
0068 38 4E 24 7D 20 8B C1 99 8 N $ } . . .
0070 E8 7E 01 83 EB 3A 66 A1 . ~ . . . : f .
0078 1C 7C 66 3B 07 8A 57 FC . | f ; . . W .
0080 75 06 80 CA 02 88 56 02 u V .
0088 80 C3 10 73 ED 33 C9 FE . . . s . 3 . .
0090 06 D8 7D 8A 46 10 98 F7 . . } . F . . .
0098 66 16 03 46 1C 13 56 1E f . . F . . V .
00A0 03 46 0E 13 D1 8B 76 11 . F v .
00A8 60 89 46 FC 89 56 FE B8 ̀ . F . . V . .
00B0 20 00 F7 E6 8B 5E 0B 03 ̂ . .
00B8 C3 48 F7 F3 01 46 FC 11 . H . . . F . .
00C0 4E FE 61 BF 00 07 E8 28 N . a (
00C8 01 72 3E 38 2D 74 17 60 . r > 8 - t . ̀
00D0 B1 0B BE D8 7D F3 A6 61 } . . a
00D8 74 3D 4E 74 09 83 C7 20 t = N t . . .
00E0 3B FB 72 E7 EB DD FE 0E ; . r
00E8 D8 7D 7B A7 BE 7F 7D AC . } { . . . } .
00F0 98 03 F0 AC 98 40 74 0C @ t .
00F8 48 74 13 B4 0E BB 07 00 H t
0100 CD 10 EB EF BE 82 7D EB } .
0108 E6 BE 80 7D EB E1 CD 16 . . . }
0110 5E 1F 66 8F 04 CD 19 BE ̂ . f
0118 81 7D 8B 7D 1A 8D 45 FE . } . } . . E .
0120 8A 4E 0D F7 E1 03 46 FC . N F .
0128 13 56 FE B1 04 E8 C2 00 . V
0130 72 D7 EA 00 02 70 00 52 r p . R
0138 50 06 53 6A 01 6A 10 91 P . S j . j . .
0140 8B 46 18 A2 26 05 96 92 . F . . & . . .
0148 33 D2 F7 F6 91 F7 F6 42 3 B
0150 87 CA F7 76 1A 8A F2 8A . . . v
0158 E8 C0 CC 02 0A CC B8 01
0160 02 80 7E 02 0E 75 04 B4 . . ~ . . u . .
0168 42 8B F4 8A 56 24 CD 13 B . . . V $. .
0170 61 61 72 0A 40 75 01 42 a a r . @ u . B
0178 03 5E 0B 49 75 77 C3 03 . ̂ . I u w . .
0180 18 01 27 0D 0A 49 6E 76 . . ' . . I n v
0188 61 6C 69 64 20 73 79 73 a l i d s y s
0190 74 65 6D 20 64 69 73 6B t e m d i s k
0198 FF 0D 0A 44 69 73 6B 20 . . . D i s k
01A0 49 2F 4F 20 65 72 72 6F I / O e r r o
01A8 72 FF 0D 0A 52 65 70 6C r . . . R e p l
01B0 61 63 65 20 74 68 65 20 a c e t h e
01B8 64 69 73 6B 2C 20 61 6E d i s k , a n
01C0 64 20 74 68 65 6E 20 70 d t h e n p
01C8 72 65 73 73 20 61 6E 79 r e s s a n y
01D0 20 6B 65 79 0D 0A 00 00 k e y
01D8 49 4F 20 20 20 20 20 20 I O
01E0 53 59 53 4D 53 44 4F 53 S Y S M S D O S
01E8 20 20 20 53 59 53 7F 01 S Y S . .
01F0 00 41 BB 00 07 60 66 6A . A . . . ̀ f j
01F8 00 E9 3B FF 00 00 55 AA . . ; . . . U .

Above is the dump of the boot block for a FAT 12 system. The contents of the BPB can

be read from it the following slide shows the detail of the information obtained from the

above BPB.

Logical drive: A
Size: 1 Mb (popularly 1 Mb)
Logical sectors: b40h = 2880
Bytes per sector: 512
Sectors per Cluster: 1
Cluster size: 512
File system: FAT12
Number of copies of FAT: 2
Sectors per FAT: 9
Start sector for FAT1: reserved sectors = 1
Start sector for FAT2: reserved sectors +

size of FAT = 1 + 9 =10
Root DIR Sector: reserved sectors +

2 * (size of FAT) = 1 + 2 * 9 = 19

31 - File System Data Structures II (Boot block)

© Copyright Virtual University of Pakistan

246

Root DIR Entries: E0 = 224
Size of Root dir : 224 * 32 = 7168
Blocks occupied by root dir = 7168 / 512 = 14
2-nd Cluster Start Sector: root dir sectors +

size of root dir in blocks = 19 + 14 = 33
Ending Cluster: 2880 - 33 / sector per cluster + 1

= 2880/33 + 1 = 2848
Media Descriptor: F0
Heads: 2

Hidden sectors: 0
SerialVolumeID: 2A876CE1
Volume Label:

Following is another dump showing the boot block for a FAT 16 system.

0000 EB 3C 90 4D 53 44 4F 53 . < . M S D O S
0008 35 2E 30 00 02 08 08 00 5 . 0
0010 02 00 02 00 00 F8 CC 00
0018 3F 00 FF 00 3F 00 00 00 ? . . . ? . . .
0020 5B 5F 06 00 80 00 29 35 [_) 5
0028 BC A5 2C 4E 4F 20 4E 41 . . , N O N A
0030 4D 45 20 20 20 20 46 41 M E F A
0038 54 31 36 20 20 20 33 C9 T 1 6 3 .
0040 8E D1 BC F0 7B 8E D9 B8 { . . .
0048 00 20 8E C0 FC BD 00 7C |
0050 38 4E 24 7D 24 8B C1 99 8 N $ } $. . .
0058 E8 3C 01 72 1C 83 EB 3A . < . r . . . :
0060 66 A1 1C 7C 26 66 3B 07 f . . | & f ; .
0068 26 8A 57 FC 75 06 80 CA & . W . u . . .
0070 02 88 56 02 80 C3 10 73 . . V s
0078 EB 33 C9 8A 46 10 98 F7 . 3 . . F . . .
0080 66 16 03 46 1C 13 56 1E f . . F . . V .
0088 03 46 0E 13 D1 8B 76 11 . F v .
0090 60 89 46 FC 89 56 FE B8 ̀ . F . . V . .
0098 20 00 F7 E6 8B 5E 0B 03 ̂ . .
00A0 C3 48 F7 F3 01 46 FC 11 . H . . . F . .
00A8 4E FE 61 BF 00 00 E8 E6 N . a
00B0 00 72 39 26 38 2D 74 17 . r 9 & 8 - t .
00B8 60 B1 0B BE A1 7D F3 A6 ̀ } . .
00C0 61 74 32 4E 74 09 83 C7 a t 2 N t . . .
00C8 20 3B FB 72 E6 EB DC A0 ; . r
00D0 FB 7D B4 7D 8B F0 AC 98 . } . }
00D8 40 74 0C 48 74 13 B4 0E @ t . H t . . .
00E0 BB 07 00 CD 10 EB EF A0
00E8 FD 7D EB E6 A0 FC 7D EB . } } .
00F0 E1 CD 16 CD 19 26 8B 55 & . U
00F8 1A 52 B0 01 BB 00 00 E8 . R
0100 3B 00 72 E8 5B 8A 56 24 ; . r . [. V $
0108 BE 0B 7C 8B FC C7 46 F0 . . | . . . F .
0110 3D 7D C7 46 F4 29 7D 8C = } . F .) } .
0118 D9 89 4E F2 89 4E F6 C6 . . N . . N . .
0120 06 96 7D CB EA 03 00 00 . . }
0128 20 0F B6 C8 66 8B 46 F8 . . . f . F .
0130 66 03 46 1C 66 8B D0 66 f . F . f . . f
0138 C1 EA 10 EB 5E 0F B6 C8 ^ . . .
0140 4A 4A 8A 46 0D 32 E4 F7 J J . F . 2 . .
0148 E2 03 46 FC 13 56 FE EB . . F . . V . .
0150 4A 52 50 06 53 6A 01 6A J R P . S j . j
0158 10 91 8B 46 18 96 92 33 . . . F . . . 3
0160 D2 F7 F6 91 F7 F6 42 87 B .
0168 CA F7 76 1A 8A F2 8A E8 . . v
0170 C0 CC 02 0A CC B8 01 02
0178 80 7E 02 0E 75 04 B4 42 . ~ . . u . . B
0180 8B F4 8A 56 24 CD 13 61 . . . V $. . a
0188 61 72 0B 40 75 01 42 03 a r . @ u . B .
0190 5E 0B 49 75 06 F8 C3 41 ̂ . I u . . . A
0198 BB 00 00 60 66 6A 00 EB . . . ̀f j . .
01A0 B0 4E 54 4C 44 52 20 20 . N T L D R
01A8 20 20 20 20 0D 0A 52 65 . . R e
01B0 6D 6F 76 65 20 64 69 73 m o v e d i s
01B8 6B 73 20 6F 72 20 6F 74 k s o r o t
01C0 68 65 72 20 6D 65 64 69 h e r m e d i
01C8 61 2E FF 0D 0A 44 69 73 a D i s
01D0 6B 20 65 72 72 6F 72 FF k e r r o r .
01D8 0D 0A 50 72 65 73 73 20 . . P r e s s
01E0 61 6E 79 20 6B 65 79 20 a n y k e y
01E8 74 6F 20 72 65 73 74 61 t o r e s t a
01F0 72 74 0D 0A 00 00 00 00 r t
01F8 00 00 00 AC CB D8 55 AA U .

31 - File System Data Structures II (Boot block)

© Copyright Virtual University of Pakistan

247

Following is the detail of information read from the above dump which describes the

volume in question.

Logical sectors: = 00065f5b = 417627
Bytes per sector: 200h = 512
Sectors per Cluster: 8
Cluster size: 8*512 = 4096
File system: FAT16
Number of copies of FAT: 2
Sectors per FAT: CCH = 204
Start sector for FAT1: reserved blocks = 8
Start sector for FAT2: reserved blocks +

blocks per FAT = 8 + CCH = D4 = 212
Root DIR Sector: reserved blocks +

2*(size of FAT) = 8 +2*CC = 1A0 = 416
Root DIR Entries: 200H = 512
Size of Root Dir 512 * 32 = 16384 = 32 blocks

Size of Root Dir 512 * 32 = 16384 = 32 blocks
2-nd Cluster Start Sector: root dir start blocks +

blocks in root dir = 1A0 + 20H = 416 + 32 = 448
Ending Cluster: ((logical blocks - start of user data
blocks)/blocks per cluster)

+ 1 =(417627 - 448)/8 + 1 = 52148
Media Descriptor: F8

Heads: 255
Hidden sectors: 63
SerialVolumeID: 2CA5BC35
Volume Label: NO NAME

Besides the LBA address a LSN address can also be used to address a block. If the LSN

address is known the absread() function can be used to read a block and abswrite() can be

used to write on it as described in the slide below where nsect is the number of sector to

be read/written.

31 - File System Data Structures II (Boot block)

© Copyright Virtual University of Pakistan

248

Reading/ Writing a Block
• absread()

is used to read a block given its LSN

• abswrite()
is used to write a block given its LSN

absread(int drive, int nsects, long lsec, void *buffer);

abswrite(int drive, int nsects, long lsec, void *buffer);

32 - File System Data Structures III (DPB)

© Copyright Virtual University of Pakistan

249

32 - File System Data Structures III (DPB)

Besides the BPB another data structure can be used equivalently called the DPB (Drive

parameter block). The operating system translates the information in BPB on disk into the

DPB which is maintained main memory. This data structure can be accessed using the

undocumented service 21H/32H. Its detail is shown in the slide below.

On Entry:
AH = 32h
DL – 0 for current Drive

1 for A: Drive
2 for B: Drive
3 for C: Drive

On Exit:
DS:BX = far address of DPB

Undocumented Services (INT 21H/32H)

The DPB contains the information shown in the table below. This information can be

derived from the BPB but is placed in memory in the form of DPB.

DPB (Drive Parameter Block)

Highest cluster number (number of data
cluster +1)

WORD0Dh

Highest sector number within a clusterBYTE04h

Number of FAT’sBYTE08h

Number of reserved sectors at beginning
of drive

WORD06h

Number of root directory entriesWORD09h

Number of first sector containing user
data

WORD0Bh

Shift count to convert clusters into sectorsBYTE05h

Bytes per sectorWORD 02h

Unit number within device driverBYTE01h

Drive number (00h = A:, 01h = B:, etc)BYTE 00h

DescriptionSizeOffset

32 - File System Data Structures III (DPB)

© Copyright Virtual University of Pakistan

250

DPB (Drive Parameter Block)

Media ID byteBYTE17h

00h if disk accessed, FFh if notBYTE18h

Address of device driver headerDWORD13h

Sector number of first directory sectorWORD11h

Pointer to next DPBDWORD19h

number of sectors per FATWORD0Fh

Cluster at which to start search for free
space when writing, usually the last
cluster allocated

WORD1Dh

Number of free clusters on drive, FFFFh if
not known

WORD1Fh

DescriptionSizeOffset

The following code shows how the service 21H/32H is invoked and the registers in which

it returns a value. It also shows the contents of the DPB by taking the dump at the

location returned by the service for a FAT 12 volume (i.e. Floppy disk).

-a
13A6:0100 mov ah,32
13A6:0102 int 21
13A6:0104

-p
AX=3200 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=13A6 ES=13A6 SS=13A6 CS=13A6 IP=0102 NV UP EI PL NZ NA PO NC
13A6:0102 CD21 INT 21

-p
AX=3200 BX=13D2 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=00A7 ES=13A6 SS=13A6 CS=13A6 IP=0104 NV UP EI PL NZ NA PO NC
13A6:0104 D3E3 SHL BX,CL

-d a7:13d2

00A7:13D0 00 00 00 02 00 00-01 00 02 E0 00 21 00 20 !.
00A7:13E0 0B 09 00 13 00 56 34 12-00 F0 0A FF FF FF FF 00 V4.........
00A7:13F0 00 C9 06 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1400 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1430 00 00 00 00 00 00 00 0C-00 00 80 00 B0 13 10 00
00A7:1440 D8 12 4D 5A 9A 00 29 00-00 00 20 00 C5 00 FF FF ..MZ..)...
00A7:1450 A7 05 ..

32 - File System Data Structures III (DPB)

© Copyright Virtual University of Pakistan

251

The details of the information read from the dump of the DPB are shown below.

Drive # = 0
unit # = 0
Bytes per sector = 0200H = 512 bytes
highest sec no within a cluster = 0
Shift count to convert sec to clust = 0
Reserved sectors at the begining of drive = 0001
FAT copies = 02
Root directory entries = E0 = 224
First sector containing user data = 21H = 33
Highest cluster number = 0b20 = 2848
Number of sectors per fat = 0009 = 9
Sector number of first directory = 0013 = 19

The following code shows how the service 21H/32H is invoked and the registers in which

it returns a value. It also shows the contents of the DPB by taking the dump at the

location returned by the service for a FAT 16 volume (i.e. hard disk partition smaller than

2 GB approx.).

-a
13A6:0100 mov ah,32
13A6:0102 int 21
13A6:0104

-p
AX=3200 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=13A6 ES=13A6 SS=13A6 CS=13A6 IP=0102 NV UP EI PL NZ NA PO NC
13A6:0102 CD21 INT 21

-p
AX=3200 BX=13D2 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=00A7 ES=13A6 SS=13A6 CS=13A6 IP=0104 NV UP EI PL NZ NA PO NC
13A6:0104 0000 ADD [BX+SI],AL DS:13D2=05

-d a7:13d2

00A7:13D0 05 05 00 02 07 03-08 00 02 00 02 C0 01 B4
00A7:13E0 CB CC 00 A0 01 56 34 12-00 F8 0A FF FF FF FF 00 V4.........
00A7:13F0 00 AA CB 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1400 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1430 00 00 00 00 00 00 00 0C-00 00 80 00 B0 13 10 00
00A7:1440 D8 12 4D 5A 9A 00 29 00-00 00 20 00 C5 00 FF FF ..MZ..)...
00A7:1450 A7 05 ..

32 - File System Data Structures III (DPB)

© Copyright Virtual University of Pakistan

252

The details of the information read from the dump of the DPB are shown below.

drive no = 05 = F drive
unit no = 05
bytes per sector = 200H = 512
Highest sector number within a cluster = 7
Hence Sec. per cluster = highest sec. within a

cluster + 1 = 7 + 1 = 8
shift count = 3
reserved sectors = 0008
Number of Fats = 2
Root Dir Entries = 0200H = 512
First sector containing user data = 01C0 = 448
Highest cluster number = cbb4H = 52148
No of sectors per FAT = CC = 204
Sector number of First directory = 01A0 = 416

#include <bios.h>
#include <dos.h>

struct BPB
{

unsigned int bytespersec;
unsigned char secperclust;
unsigned int reservedsecs;
unsigned char fats;
unsigned int rootdirents;
unsigned int smallsecs;
unsigned char media;
unsigned int fatsecs;
unsigned int secspertrack;
unsigned int heads;

32 - File System Data Structures III (DPB)

© Copyright Virtual University of Pakistan

253

unsigned long int hiddensecs;
unsigned long int hugesecs;
unsigned char driveno;
unsigned char reserved;
unsigned char bootsignature;
unsigned long int volumeid;
unsigned char volumelabel[11];
unsigned char filesystem[8];

};
struct bootblock
{

unsigned char jumpinstruction[3];
unsigned char osname[8];
struct BPB bpb;
unsigned char code[448];

};

void nputs(char *p, int n)
{

int i ;
for (i =0;i<n;i++)

putch(p[i]);
}
void main(void)
{

struct bootblock bb;
clrscr();
absread(0,1,0,&bb);
printf("jump instruction = %x\n" ,

bb.jumpinstruction);
printf("OS = ");
nputs (bb.osname,8);
puts("\n");

printf("No of bytes per sector = %d \nNo of sectors
per cluster = %d\n No of reserved sectors =
%d" , bb.bpb.bytespersec,
bb.bpb.secperclust, bb.bpb.reservedsecs);

printf("No of FATs = %d\nNo of Root Directory
entry = %d \nNo of Small sectors = %d
\nMedia descriptor = %xH \nFAT sectors =
%dSectors per track = %d \nNo of Heads =
%d \nNo of hidden sectors = %ld \nNo. of
huge sectors = %ld \nDrive number = %x
\nReserved = %xH \nBoot Signature = %xH
\nVolume ID = %lx \n" , bb.bpb.fats,
bb.bpb.rootdirents, bb.bpb.smallsecs,
bb.bpb.media, bb.bpb.fatsecs,
bb.bpb.secspertrack, bb.bpb.heads,
bb.bpb.hiddensecs, bb.bpb.hugesecs,
bb.bpb.driveno, bb.bpb.reserved,
bb.bpb.bootsignature,bb.bpb.volumeid);

32 - File System Data Structures III (DPB)

© Copyright Virtual University of Pakistan

254

puts (" Volume Name =");
nputs (bb.bpb.volumelabel,11);
puts ("\n");

puts (" File system =");
nputs (bb.bpb.filesystem,8);
puts("\n");
getch();

}

The above program creates a data structure in reflection of the BPB and reads the boot

record of the volume using absread(). It extracts the data part of the boot block and

displays all the values stored in it.

#include <dos.h>
#include <bios.h>
struct DPB {

unsigned char driveno;
unsigned char unitno;
unsigned int bytespersec;
unsigned char highestsecinclust;
unsigned char shiftcount;
unsigned int reservedsecs;
unsigned char fats;
unsigned int rootentries;
unsigned int firstuserdatasec;
unsigned int highestclustnumber; //only for 16 and 12

bit FATs
unsigned int secsperfat;
unsigned int firstdirsec;
unsigned int ddheaderoff;
unsigned int ddheaderseg;

32 - File System Data Structures III (DPB)

© Copyright Virtual University of Pakistan

255

unsigned char media;
unsigned char accessed;
unsigned int nextdpboff;
unsigned int nextdpbseg;
unsigned int searchstart;
unsigned int freeclust;

};
void main (void)
{

struct DPB far *ptr;
struct DPB dpb;
clrscr();
_asm push DS;
_asm push BX;
_AH=0x32;
_DL=1;
geninterrupt (0x21);

ptr = (struct DPB far *)MK_FP(_DS,_BX);
dpb=*ptr;
_asm pop BX;
_asm pop DS;
printf("Drive No = %x\n",dpb.driveno);
printf("Unit No = %x\n",dpb.unitno);
printf("Bytes per sector = %d\n",dpb.bytespersec);
printf("Highest sector number within a cluster =

%d\n",dpb.highestsecinclust);
printf("Shift Count = %d\n",dpb.shiftcount);
printf("Reserved sectors = %d\n",dpb.reservedsecs);
printf("number of FATs = %d\n",dpb.fats);
printf("Root enteries = %d\n",dpb.rootentries);
printf("First User data sec = %d\n",dpb.firstuserdatasec);
printf("Highest Cluster number =

%d\n",dpb.highestclustnumber);
printf("No of Sectors per FAT = %d\n",dpb.secsperfat);
printf("First directory Sector = %d\n",dpb.firstdirsec);

printf("DD header offset = %x\n",dpb.ddheaderoff);
printf("DD header segment = %x\n",dpb.ddheaderseg);
printf("Media ID= %d\n",dpb.media);
printf("Disk accessed recently= %d\n",dpb.accessed);
printf("Next DPB offset address = %d\n",dpb.nextdpboff);
printf("Next DPB segment address =

%d\n",dpb.nextdpbseg);
printf("Point where to start the search for next cluster=

%d\n",dpb.searchstart);
printf("Free cluster= %d\n",dpb.freeclust);
getch();

}

The above program is doing is the same using the DPB rather than BPB.

33 - Root Directory, FAT12 File System

© Copyright Virtual University of Pakistan

256

33 - Root Directory, FAT12 File System

The Root Directory

root

The DOS directory structure is a Tree like structure. The top most level of the tree being

the root directory. The root directory contains files and folders. Each folder can contains

more files and folders and so on it continues recursively as shown by the slide.

File
• Is logically viewed as an organization of Data.
• Physically it can be a collection of clusters or
blocks.
• O.S. needs to maintain information about the
cluster numbers of which a file may be comprised
of.

Control information about files are maintained in a data structure called the File control

block (FCB). The FCB for each file is created and stored in the disk.

33 - Root Directory, FAT12 File System

© Copyright Virtual University of Pakistan

257

File Control Block (FCB)

AttributeBYTE 0B

First ClusterWORD1Ah

sizeDWORD1Ch

DateWORD18h

TimeWORD16h

Reserved + used by OS/2BYTE [10]0C

File extensionBYTE [3]08

File Name in 8 bytes BYTE [8]00

DescriptionTYPEOffset

The root directory consists of FCBs for all the files and folders stored on the root

directory. To obtain these FCBs, the portion on disk reserved for root directory can be

read.

User
Data

Root
Dir

FATFAT

Boot Block

Location of Root Directory

33 - Root Directory, FAT12 File System

© Copyright Virtual University of Pakistan

258

Contents of Root Directory of a FAT12 System
-a
13AD:0100 mov ah,32
13AD:0102 mov int 21
13AD:0104

-p
AX=3200 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=13AD ES=13AD SS=13AD CS=13AD IP=0102 NV UP EI PL NZ NA PO NC
13AD:0102 CD21 INT 21

-p
AX=3200 BX=13D2 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=00A7 ES=13AD SS=13AD CS=13AD IP=0104 NV UP EI PL NZ NA PO NC
13AD:0104 D3E3 SHL BX,CL

-d a7:13d2
00A7:13D0 00 00 00 02 00 00-01 00 02 E0 00 21 00 20 !.
00A7:13E0 0B 09 00 13 00 56 34 12-00 F0 0A FF FF FF FF 00 V4.........
00A7:13F0 00 C8 06 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1400 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1430 00 00 00 00 00 00 00 0C-00 00 80 00 B7 13 10 00
00A7:1440 DF 12 4D 5A 9A 00 29 00-00 00 20 00 C5 00 FF FF ..MZ..)...
00A7:1450 A7 05 ..
-q

Contents of Root Directory of a FAT12 System
-l 1000 0 13 e

-d 1000 2c00

13AD:1000 E5 5F 41 4E 53 20 20 20-54 58 54 20 10 BB 19 70 ._ANS TXT ...p
13AD:1010 3C 33 3C 33 00 00 60 05-72 28 02 00 4F 8F 00 00 <3<3..`.r(..O...
13AD:1020 41 43 00 70 00 61 00 70-00 65 00 0F 00 54 72 00 AC.p.a.p.e...Tr.
13AD:1030 2E 00 74 00 78 00 74 00-00 00 00 00 FF FF FF FF ..t.x.t.........
13AD:1040 43 50 41 50 45 52 20 20-54 58 54 20 00 BB 19 70 CPAPER TXT ...p
13AD:1050 3C 33 3C 33 00 00 60 05-72 28 02 00 4F 8F 00 00 <3<3..`.r(..O...
13AD:1060 54 45 53 54 20 20 20 20-54 58 54 20 18 AB 29 70 TEST TXT ..)p
13AD:1070 3C 33 3C 33 00 00 AE 70-3C 33 4A 00 31 00 00 00 <3<3...p<3J.1...
13AD:1080 E5 4F 4F 54 20 20 20 20-54 58 54 20 18 4D 4E 70 .OOT TXT .MNp
13AD:1090 3C 33 3C 33 00 00 D5 70-3C 33 4B 00 B3 8A 00 00 <3<3...p<3K.....
13AD:10A0 E5 4F 4F 54 20 20 20 20-54 58 54 20 18 4D 4E 70 .OOT TXT .MNp
13AD:10B0 3C 33 3C 33 00 00 22 71-3C 33 4B 00 26 00 00 00 <3<3.."q<3K.&...
13AD:10C0 52 4F 4F 54 20 20 20 20-54 58 54 20 18 25 55 71 ROOT TXT .%Uq
13AD:10D0 3C 33 3C 33 00 00 56 71-3C 33 4B 00 0D 00 00 00 <3<3..Vq<3K.....

In the above two slides first the contents of DPB are read to find the start of the root

directory. Using this block number the contents of root directory are read, as it can be

seen they contain number of FCBs each containing information about a file within the

directory.

The user data area is divided into clusters. The first cluster in user data area is numbered 2

in a FAT based systems. A cluster is not the same as block and also there are no system

calls available which use the cluster number. All the system calls use the LSN address. If

the cluster number is known it should be converted into LSN to access the blocks within

the cluster. Moreover all the information about file management uses the cluster number

33 - Root Directory, FAT12 File System

© Copyright Virtual University of Pakistan

259

rather than the LSN for simplicity and for the purpose of managing large disk space. So

here we devise a formula to convert the cluster number into LSN.

User DataRoot
Directory

FATFAT

Reserved Block Clust 2

Blocks for FAT

Converting a Cluster # into Sector #

First Block of User Data

No. of entries*32/byte s per block

using the information the above slide the following formula can be devised as shown in

the slide below to convert the cluster number into LSN.

No. of System Area Blocks =
Reserved Block + Sector per FAT * No. of
FAT’s + No. of entries * 32 / Bytes per Block

First User Block No. =
No. of System Area Blocks

Sector No. =
(Clust_no – 2)* Blocks per Clust + First User
Block #

The following memory dump extracts the starting cluster number from the FCB of a file

and then converts the cluster number in sector to get its starting block.

33 - Root Directory, FAT12 File System

© Copyright Virtual University of Pakistan

260

Directory Dump (Again)
-l 1000 0 13 e

-d 1000 2c00

13AD:1000 E5 5F 41 4E 53 20 20 20-54 58 54 20 10 BB 19 70 ._ANS TXT ...p
13AD:1010 3C 33 3C 33 00 00 60 05-72 28 02 00 4F 8F 00 00 <3<3..`.r(..O...
13AD:1020 41 43 00 70 00 61 00 70-00 65 00 0F 00 54 72 00 AC.p.a.p.e...Tr.
13AD:1030 2E 00 74 00 78 00 74 00-00 00 00 00 FF FF FF FF ..t.x.t.........
13AD:1040 43 50 41 50 45 52 20 20-54 58 54 20 00 BB 19 70 CPAPER TXT ...p
13AD:1050 3C 33 3C 33 00 00 60 05-72 28 02 00 4F 8F 00 00 <3<3..`.r(..O...
13AD:1060 54 45 53 54 20 20 20 20-54 58 54 20 18 AB 29 70 TEST TXT ..)p
13AD:1070 3C 33 3C 33 00 00 AE 70-3C 33 4A 00 31 00 00 00 <3<3...p<3J.1...
13AD:1080 E5 4F 4F 54 20 20 20 20-54 58 54 20 18 4D 4E 70 .OOT TXT .MNp
13AD:1090 3C 33 3C 33 00 00 D5 70-3C 33 4B 00 B3 8A 00 00 <3<3...p<3K.....
13AD:10A0 E5 4F 4F 54 20 20 20 20-54 58 54 20 18 4D 4E 70 .OOT TXT .MNp
13AD:10B0 3C 33 3C 33 00 00 22 71-3C 33 4B 00 26 00 00 00 <3<3.."q<3K.&...
13AD:10C0 52 4F 4F 54 20 20 20 20-54 58 54 20 18 25 55 71 ROOT TXT .%Uq
13AD:10D0 3C 33 3C 33 00 00 56 71-3C 33 4B 00 0D 00 00 00 <3<3..Vq<3K.....

File Contents =
File Cluster # = 4a
File Start Sector # = (4a – 2)*1 + 21H = 69H

The contents of the blocks/cluster at the start of file are then examined by loading the

sectors within the first cluster to that file in the following slide. Here the contents of the

file can be seen on the right side column.

Cluster Dump
-l 1000 0 69 1

-d 1000

13AD:1000 74 68 69 73 20 69 73 20-61 20 74 65 78 74 20 66 this is a text f
13AD:1010 69 6C 65 20 75 73 65 64-20 74 6F 20 73 74 6F 72 ile used to stor
13AD:1020 65 20 73 6F 6D 65 20 74-65 73 74 20 74 65 78 74 e some test text
13AD:1030 2E 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AD:1040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AD:1050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AD:1060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AD:1070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-q

33 - Root Directory, FAT12 File System

© Copyright Virtual University of Pakistan

261

Here is another example using a FAT 16 system.

Another Example with FAT16 bit System
DPB Dump
-a
13AD:0100 mov ah,32
13AD:0102 int 21
13AD:0104

-p
AX=3200 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=13AD ES=13AD SS=13AD CS=13AD IP=0102 NV UP EI PL NZ NA PO NC
13AD:0102 CD21 INT 21

-p
AX=3200 BX=13D2 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=00A7 ES=13AD SS=13AD CS=13AD IP=0104 NV UP EI PL NZ NA PO NC
13AD:0104 D3E3 SHL BX,CL

-d a7:13d2
00A7:13D0 05 05 00 02 07 03-08 00 02 00 02 C0 01 B4
00A7:13E0 CB CC 00 A0 01 56 34 12-00 F8 0A FF FF FF FF 00 V4.........
00A7:13F0 00 98 CB 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1400 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1430 00 00 00 00 00 00 00 0C-00 00 80 00 B7 13 10 00
00A7:1440 DF 12 4D 5A 9A 00 29 00-00 00 20 00 C5 00 FF FF ..MZ..)...
00A7:1450 A7 05 ..
-q

34 - FAT12 File System II, FAT16 File System

© Copyright Virtual University of Pakistan

262

34 - FAT12 File System II, FAT16 File System

Here is another example which examines the contents of a file for a FAT 16 system.

Firstly the DPB is read as shown In the following slide.

Another Example with FAT16 bit System
DPB Dump
-a
13AD:0100 mov ah,32
13AD:0102 int 21
13AD:0104

-p
AX=3200 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=13AD ES=13AD SS=13AD CS=13AD IP=0102 NV UP EI PL NZ NA PO NC
13AD:0102 CD21 INT 21

-p
AX=3200 BX=13D2 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=00A7 ES=13AD SS=13AD CS=13AD IP=0104 NV UP EI PL NZ NA PO NC
13AD:0104 D3E3 SHL BX,CL

-d a7:13d2
00A7:13D0 05 05 00 02 07 03-08 00 02 00 02 C0 01 B4
00A7:13E0 CB CC 00 A0 01 56 34 12-00 F8 0A FF FF FF FF 00 V4.........
00A7:13F0 00 98 CB 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1400 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1430 00 00 00 00 00 00 00 0C-00 00 80 00 B7 13 10 00
00A7:1440 DF 12 4D 5A 9A 00 29 00-00 00 20 00 C5 00 FF FF ..MZ..)...
00A7:1450 A7 05 ..
-q

Once the DPB has been read the blocks reserved for root directory are determined and are

then read to get the contents of the root directory.

Directory Dump
-l 1000 5 1a0 20

-d 1000 4000
13AD:100 0 4E 45 57 20 56 4F 4C 55-4D 45 20 08 00 00 00 00 N EW VOL UME
13AD:101 0 00 00 00 00 00 00 61 76-2D 33 00 00 00 00 00 00a v-3... ...
13AD:102 0 41 52 00 65 00 63 00 79-00 63 00 0F 00 21 6C 00 A R.e.c. y.c... !l.
13AD:103 0 65 00 64 00 00 00 FF FF-FF FF 00 00 FF FF FF FF e .d....
13AD:104 0 52 45 43 59 43 4C 45 44-20 20 20 16 00 4E 79 5E R ECYCLE D .. Ny^
13AD:105 0 2F 33 2F 33 00 00 7A 5E-2F 33 02 00 00 00 00 00 / 3/3..z ^/3... ...
13AD:106 0 42 20 00 49 00 6E 00 66-00 6F 00 0F 00 72 72 00 B .I.n. f.o... rr.
13AD:107 0 6D 00 61 00 74 00 69 00-6F 00 00 00 6E 00 00 00 m .a.t.i .o...n ...
13AD:108 0 01 53 00 79 00 73 00 74-00 65 00 0F 00 72 6D 00 . S.y.s. t.e... rm.
13AD:109 0 20 00 56 00 6F 00 6C 00-75 00 00 00 6D 00 65 00 .V.o.l .u...m .e.
13AD:10A 0 53 59 53 54 45 4D 7E 31-20 20 20 16 00 4E 79 5E S YSTEM~ 1 .. Ny^
13AD:10B 0 2F 33 2F 33 00 00 7A 5E-2F 33 03 00 00 00 00 00 / 3/3..z ^/3... ...
13AD:10C 0 41 64 00 50 00 62 00 31-00 2E 00 0F 00 6A 74 00 A d.P.b. 1..... jt.
13AD:10D 0 78 00 74 00 00 00 FF FF-FF FF 00 00 FF FF FF FF x .t....

13AD:10E0 44 50 42 31 20 20 20 20-54 58 54 20 00 57 81 69 DPB1 TXT .W.i
13AD:10F0 36 33 36 33 00 00 07 78-36 33 0A 00 8A 06 00 00 6363...x63......
13AD:1100 44 50 42 32 20 20 20 20-54 58 54 20 18 12 AE 69 DPB2 TXT ...i
13AD:1110 36 33 36 33 00 00 03 75-36 33 0B 00 5F 06 00 00 6363...u63.._...
13AD:1120 46 49 52 53 54 20 20 20-20 20 20 10 08 6F ED 56 FIRST ..o.V
13AD:1130 3C 33 3C 33 00 00 EE 56-3C 33 0C 00 00 00 00 00 <3<3...V<3......
13AD:1140 53 45 43 4F 4E 44 20 20-20 20 20 10 08 50 EF 56 SECOND ..P.V
13AD:1150 3C 33 3C 33 00 00 F0 56-3C 33 12 00 00 00 00 00 <3<3...V<3......

The root directory contains a collection of FCBs. The FCB for the file in question is

searched from where the first cluster of the file can be get.

34 - FAT12 File System II, FAT16 File System

© Copyright Virtual University of Pakistan

263

Cont…
13AD:12C0 43 50 41 50 45 52 20 20-54 58 54 20 00 9D 7D 6F CPAPER TXT ..}o
13AD:12D0 3C 33 3C 33 00 00 60 05-72 28 29 00 4F 8F 00 00 <3<3..`.r().O...
13AD:12E0 E5 6D 00 65 00 6E 00 74-00 2E 00 0F 00 9F 74 00 .m.e.n.t......t.
13AD:12F0 78 00 74 00 00 00 FF FF-FF FF 00 00 FF FF FF FF x.t.............
13AD:1300 E5 4E 00 65 00 77 00 20-00 54 00 0F 00 9F 65 00 .N.e.w. .T....e.
13AD:1310 78 00 74 00 20 00 44 00-6F 00 00 00 63 00 75 00 x.t. .D.o...c.u.
13AD:1320 E5 45 57 54 45 58 7E 31-54 58 54 20 00 32 09 73 .EWTEX~1TXT .2.s
13AD:1330 3C 33 3C 33 00 00 0A 73-3C 33 00 00 00 00 00 00 <3<3...s<3......
13AD:1340 54 45 53 54 20 20 20 20-54 58 54 20 18 32 09 73 TEST TXT .2.s
13AD:1350 3C 33 3C 33 00 00 17 73-3C 33 45 00 27 00 00 00 <3<3...s<3E.'...

File Contents
File Size = 39D =27H
File Cluster # = 45H
File Sec # = (45H – 2)*8 + 01C0 = 3D8H

After calculating the sector number for the cluster the contents of the file can be accessed

by reading all the blocks within the cluster. In this way only the starting cluster will be

read. If the file contains a number of cluster the subsequent clusters numbers within the

file chain can be accessed from the FAT.

File Dump
-l 1000 5 3d8 8

-d 1000

13AD:1000 74 68 69 73 20 69 73 20-61 20 74 65 73 74 20 74 this is a test t
13AD:1010 65 78 74 20 66 69 6C 65-20 66 6F 72 20 31 36 20 ext file for 16
13AD:1020 62 69 74 20 46 41 54 00-00 00 00 00 00 00 00 00 bit FAT.........
13AD:1030 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AD:1040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AD:1050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AD:1060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AD:1070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-q

34 - FAT12 File System II, FAT16 File System

© Copyright Virtual University of Pakistan

264

Larger File Contents
• Larger files would be comprised of numerous
clusters.
• The first Cluster # can be read from FCB for rest
of the Cluster, a chain is maintained within the FAT.

FAT12
• FAT is a simple table which contains cluster
number of each file.
• FAT12 will have 12-bit wide entries and can have
2 1̂2 entries maximum.
• Although some of these entries may be reserved.

34 - FAT12 File System II, FAT16 File System

© Copyright Virtual University of Pakistan

265

File Organization

9
11
0
7

R
R

12 – bit
0
1
2
3

6
5
4

7

Start Cluster #

FCB

Cont…

EOF

6
8
9

10
11

2 1̂2

Above slides show how a cluster chain for a file is maintained in the FAT. The first

cluster number is in the FCB. Subsequent clusters will be accessed from the FAT using

the previous cluster number as index to look up into the FAT for the next cluster number.

A FAT theoretically will contain 2n entries where n is 12 for FAT 12 and 16 for FAT16.

But all the entries are not used some of the entries are reserved following slide shows its

detail.

34 - FAT12 File System II, FAT16 File System

© Copyright Virtual University of Pakistan

266

Unused FAT Entries
• Reserved Entries = FF0H ~ FF6H

• EOF value = FF7H ~ FFFH

• First Two Clusters = 0,1

• Free Cluster = 0

• Max. range of Cluster # = 2 ~ FEFH

• Total # of Clusters of FAT12 = FEEH

Cluster Size Determination
tempof = size of disk / no. of entries in FAT (FEEH)
if (temp > 32768)

use higher FAT16 or FAT32
else
{

choose the nearest value + temp greater than
temp, which is a power of 2,
Set this to be the Cluster size = bytes
Size of Cluster in Blocks =

Cluster size in Bytes / Bytes per Block
}

No. of Entries of FAT =
No. of Blocks in disk in User Data Area / Size
of Cluster in Blocks.

There can various volume with various sizes with FAT12 or FAT16. The number of

entries for FAT 12 or FAT16 are limited then the question arises how can a certain

volume with moderate space and another volume with large space can be managed by the

same FAT system. The answer is that the number of entries might be same but the size of

cluster may be different. The cluster size can vary from 512 bytes to 32K in powers of 2

depending upon the volume size. The above slide shows how the cluster size and the

exact number of required FAT entries can be determined.

35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System)

© Copyright Virtual University of Pakistan

267

35 - FAT12 File System (Selecting a 12-bit entry within
FAT12 System)

There is no primitive data type of 12 bits. But the entries in 12 bit FAT are 12 bits wide.

Three consecutive bytes in FAT 12 will contain two entries. The following slide shows an

algorithm that can be used to extract these entries from a FAT 12 data structure.

Selecting a 12-bit entry within FAT12
offset = cluster No * 3/2
temp = cluster No * 3%2
if (temp == 0)
{

Then the entry is even, consider the word at this
offset. Make a 12-bit value, by selecting the low
Nibble of the high byte of this. Use this Nibble as
the higher 4-bits. And use the low byte as the lower
eight bits.

}
else
{

The entry is odd, consider the word at this offset.
Select the high Nibble of the low byte as lower 4-bits.
And select high byte as the higher 8-bits.

}

Example

18h

61h

85h246h184h * 3 / 2 =

247h185h * 3 / 2 =

35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System)

© Copyright Virtual University of Pakistan

268

Contents of DPB
-a
13A6:0100 mov ah,32
13A6:0102 int 21
13A6:0104

-p
AX=3200 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=13A6 ES=13A6 SS=13A6 CS=13A6 IP=0102 NV UP EI PL NZ NA PO NC
13A6:0102 CD21 INT 21

-p
AX=3200 BX=13D2 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=00A7 ES=13A6 SS=13A6 CS=13A6 IP=0104 NV UP EI PL NZ NA PO NC
13A6:0104 0000 ADD [BX+SI],AL
DS:13D2=00

-d a7:13d2

00A7:13D0 00 00 00 02 00 00-01 00 02 E0 00 21 00 20 !.
00A7:13E0 0B 09 00 13 00 56 34 12-00 F0 0A FF FF FF FF 00 V4.........
00A7:13F0 00 CF 0A 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1400 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1430 00 00 00 00 00 00 00 0C-00 00 80 00 B0 13 10 00
00A7:1440 D8 12 4D 5A 9A 00 29 00-00 00 20 00 C5 00 FF FF ..MZ..)...
00A7:1450 A7 05 ..

Contents of ROOT
-l 1000 0 13 e
-d 1000 2c00
13A6:1000 E5 5F 41 4E 53 20 20 20-54 58 54 20 10 BB 19 70 ._ANS TXT ...p
13A6:1010 3C 33 3C 33 00 00 60 05-72 28 02 00 4F 8F 00 00 <3<3..`.r(..O...
13A6:1020 E5 43 00 70 00 61 00 70-00 65 00 0F 00 54 72 00 .C.p.a.p.e...Tr.
13A6:1030 2E 00 74 00 78 00 74 00-00 00 00 00 FF FF FF FF ..t.x.t.........
13A6:1040 E5 50 41 50 45 52 20 20-54 58 54 20 00 BB 19 70 .PAPER TXT ...p
13A6:1050 3C 33 3D 33 00 00 60 05-72 28 02 00 4F 8F 00 00 <3=3..`.r(..O...
13A6:1060 54 45 53 54 20 20 20 20-54 58 54 20 18 AB 29 70 TEST TXT ..)p
13A6:1070 3C 33 3C 33 00 00 AE 70-3C 33 4A 00 31 00 00 00 <3<3...p<3J.1...
13A6:1080 E5 4F 4F 54 20 20 20 20-54 58 54 20 18 4D 4E 70 .OOT TXT .MNp
13A6:1090 3C 33 3C 33 00 00 D5 70-3C 33 4B 00 B3 8A 00 00 <3<3...p<3K.....
13A6:10A0 E5 4F 4F 54 20 20 20 20-54 58 54 20 18 4D 4E 70 .OOT TXT .MNp
13A6:10B0 3C 33 3C 33 00 00 22 71-3C 33 4B 00 26 00 00 00 <3<3.."q<3K.&...
13A6:10C0 52 4F 4F 54 20 20 20 20-54 58 54 20 18 25 55 71 ROOT TXT .%Uq
13A6:10D0 3C 33 3C 33 00 00 62 71-3C 33 4B 00 A5 8A 00 00 <3<3..bq<3K.....
13A6:10E0 E5 44 55 4D 50 20 20 20-54 58 54 20 18 7B 8A 71 .DUMP TXT .{.q
13A6:10F0 3C 33 3C 33 00 00 A7 71-3C 33 91 00 B4 02 00 00 <3<3...q<3......
13A6:1100 43 44 55 4D 50 20 20 20-54 58 54 20 18 7B 8A 71 CDUMP TXT .{.q
13A6:1110 3C 33 3C 33 00 00 63 72-3C 33 91 00 98 02 00 00 <3<3..cr<3......
13A6:1120 E5 30 58 58 20 20 20 20-54 4D 50 20 18 1C 42 57 .0XX TMP ..BW
13A6:1130 3D 33 3D 33 00 00 43 57-3D 33 93 00 54 0B 00 00 =3=3..CW=3..T...
13A6:1140 41 43 00 70 00 61 00 70-00 65 00 0F 00 54 72 00 AC.p.a.p.e...Tr.
13A6:1150 2E 00 74 00 78 00 74 00-00 00 00 00 FF FF FF FF ..t.x.t.........
13A6:1160 43 50 41 50 45 52 20 20-54 58 54 20 00 BB 19 70 CPAPER TXT ...p
13A6:1170 3C 33 3D 33 00 00 43 57-3D 33 93 00 54 0B 00 00 <3=3..CW=3..T...
13A6:1180 44 50 42 44 55 4D 50 20-54 58 54 20 18 72 EC 64 DPBDUMP TXT .r.d
13A6:1190 3D 33 3D 33 00 00 02 65-3D 33 02 00 C4 04 00 00 =3=3...e=3......
13A6:11A0 44 44 20 20 20 20 20 20-54 58 54 20 18 A4 13 65 DD TXT ...e
13A6:11B0 3D 33 3D 33 00 00 3B 65-3D 33 05 00 0E 00 00 00 =3=3..;e=3......

Here a familiar operation has been performed. After reading the DPB the root directory is

read to search for the entry of file CPAPER.TXT.

35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System)

© Copyright Virtual University of Pakistan

269

Following slide shows the dump for the FAT12 for the particular volume.

Contents of FAT
-l 1000 0 1 9

-d 1000 2200

13A6:1000 F0 FF FF 03 40 00 FF 6F-00 07 80 00 09 A0 00 0B @..o........
13A6:1010 C0 00 0D E0 00 0F 00 01-11 20 01 13 40 01 15 60 @..`
13A6:1020 01 17 80 01 19 A0 01 1B-C0 01 1D E0 01 1F 00 02
13A6:1030 21 20 02 23 40 02 25 60-02 27 80 02 29 A0 02 2B ! .#@.%`.'..)..+
13A6:1040 C0 02 2D E0 02 2F 00 03-31 20 03 33 40 03 35 60 ..-../..1 .3@.5`
13A6:1050 03 37 80 03 39 A0 03 3B-C0 03 3D E0 03 3F 00 04 .7..9..;..=..?..
13A6:1060 41 20 04 43 40 04 45 90-09 00 00 00 00 00 00 FF A .C@.E.........
13A6:1070 CF 04 4D E0 04 4F 00 05-51 20 05 53 40 05 55 60 ..M..O..Q .S@.U`
13A6:1080 05 57 80 05 59 A0 05 5B-C0 05 5D E0 05 5F 00 06 .W..Y..[..].._..
13A6:1090 61 20 06 63 40 06 65 60-06 67 80 06 69 A0 06 6B a .c@.e`.g..i..k
13A6:10A0 C0 06 6D E0 06 6F 00 07-71 20 07 73 40 07 75 60 ..m..o..q .s@.u`
13A6:10B0 07 77 80 07 79 A0 07 7B-C0 07 7D E0 07 7F 00 08 .w..y..{..}.....
13A6:10C0 81 20 08 83 40 08 85 60-08 87 80 08 89 A0 08 8B . ..@..`........
13A6:10D0 C0 08 8D E0 08 8F 00 09-FF 2F 09 FF 4F 09 95 60 /..O..`
13A6:10E0 09 97 80 09 FF AF 09 9B-C0 09 9D F0 FF FF 0F 00

Using the root directory entry and the FAT contents the contents of the file can be

accessed.

Contents of FILE
-l 1000 0 b2 1

-d 1000

13A6:1000 0D 0A 0D 0A 31 2E 20 57-68 61 74 20 77 6F 75 6C 1. What woul
13A6:1010 64 20 62 65 20 74 68 65-20 6F 75 74 70 75 74 20 d be the output
13A6:1020 6F 66 20 74 68 65 20 66-6F 6C 6C 6F 77 69 6E 67 of the following
13A6:1030 3A 0D 0A 0D 0A 6D 61 69-6E 28 20 29 0D 0A 7B 0D :....main()..{.
13A6:1040 0A 09 69 6E 74 20 61 5B-31 30 5D 20 3B 0D 0A 09 ..int a[10] ;...
13A6:1050 70 72 69 6E 74 66 20 28-20 22 25 75 20 25 75 22 printf ("%u %u"
13A6:1060 2C 20 61 2C 20 26 61 20-29 20 3B 0D 0A 7D 0D 0A , a, &a) ;..}..
13A6:1070 0D 0A 41 6E 73 2E 0D 0A-09 49 66 20 74 68 65 20 ..Ans....If the
-l 1000 b3 1

-d 1000

13A6:1000 0D 0A 0D 0A 31 2E 20 57-68 61 74 20 77 6F 75 6C 1. What woul
13A6:1010 64 20 62 65 20 74 68 65-20 6F 75 74 70 75 74 20 d be the output
13A6:1020 6F 66 20 74 68 65 20 66-6F 6C 6C 6F 77 69 6E 67 of the following
13A6:1030 3A 0D 0A 0D 0A 6D 61 69-6E 28 20 29 0D 0A 7B 0D :....main()..{.
13A6:1040 0A 09 69 6E 74 20 61 5B-31 30 5D 20 3B 0D 0A 09 ..int a[10] ;...
13A6:1050 70 72 69 6E 74 66 20 28-20 22 25 75 20 25 75 22 printf ("%u %u"
13A6:1060 2C 20 61 2C 20 26 61 20-29 20 3B 0D 0A 7D 0D 0A , a, &a) ;..}..
13A6:1070 0D 0A 41 6E 73 2E 0D 0A-09 49 66 20 74 68 65 20 ..Ans....If the

35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System)

© Copyright Virtual University of Pakistan

270

Cont…
-l 1000 0 b4 1

-d 1000

13A6:1000 65 20 69 73 20 6E 6F 74-20 69 6E 63 6C 75 64 65 e is not include
13A6:1010 64 20 62 79 20 23 69 6E-63 6C 75 64 65 2C 20 68 d by #include, h
13A6:1020 65 6E 63 65 20 74 68 65-0D 0A 09 4C 69 6E 6B 65 ence the...Linke
13A6:1030 72 20 45 72 72 6F 72 2E-0D 0A 2D 2D 2D 2D 2D 2D r Error...------
13A6:1040 2D 2D 2D 2D 2D 2D 2D 2D-2D 2D 2D 2D 2D 2D 2D 2D ----------------
13A6:1050 2D 2D 2D 2D 2D 2D 2D 2D-2D 2D 2D 2D 2D 2D 2D 2D ----------------
13A6:1060 2D 2D 2D 2D 2D 2D 2D 2D-2D 2D 2D 2D 2D 2D 2D 2D ----------------
13A6:1070 2D 2D 2D 2D 2D 2D 2D 2D-2D 2D 2D 2D 2D 2D 2D 2D ----------------
-l 1000 0 b5 1

-d 1000

13A6:1000 6E 67 20 70 6F 69 6E 74-20 66 6F 72 6D 61 74 73 ng point formats
13A6:1010 20 6E 6F 74 20 6C 69 6E-6B 65 64 0D 0A 09 41 62 not linked...Ab
13A6:1020 6E 6F 72 6D 61 6C 20 70-72 6F 67 72 61 6D 20 74 normal program t
13A6:1030 65 72 6D 69 6E 61 74 69-6F 6E 0D 0A 0D 0A 09 54 ermination.....T
13A6:1040 68 69 73 20 65 72 72 6F-72 20 6F 63 63 75 72 73 his error occurs
13A6:1050 20 62 65 63 61 75 73 65-20 74 68 65 20 66 6C 6F because the flo
13A6:1060 61 74 69 6E 67 20 70 6F-69 6E 74 20 65 6D 75 6C ating point emul
13A6:1070 61 74 6F 72 20 69 73 20-6E 6F 74 20 69 6E 69 74 ator is not init

Cont…
-l 1000 0 b6 1

-d 1000

13A6:1000 74 68 65 20 66 6F 6C 6C-6F 77 69 6E 67 3A 0D 0A the following:..
13A6:1010 0D 0A 6D 61 69 6E 28 20-29 0D 0A 7B 0D 0A 09 69 ..main()..{...i
13A6:1020 6E 74 20 61 5B 33 5D 5B-34 5D 20 3D 20 7B 20 31 nt a[3][4] = { 1
13A6:1030 2C 20 32 2C 20 33 2C 20-34 2C 20 34 2C 20 33 2C , 2, 3, 4, 4, 3,
13A6:1040 20 32 2C 20 31 2C 20 37-2C 20 38 2C 20 39 2C 20 2, 1, 7, 8, 9,
13A6:1050 30 20 7D 20 3B 0D 0A 09-70 72 69 6E 74 66 20 28 0 } ;...printf (
13A6:1060 20 22 5C 6E 20 25 75 20-25 75 22 2C 20 61 20 2B "\n %u %u", a +
13A6:1070 20 31 2C 20 26 61 20 2B-20 31 20 29 20 3B 0D 0A 1, &a + 1) ;..
-q

35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System)

© Copyright Virtual University of Pakistan

271

Following slide shows the file organization in a FAT16 system. The starting cluster

number is the FCB entry and the subsequent clusters can be determined by traversing the

chain for that file in the FAT16 data structure.

File Organization

9
11
0
7

R
R

16 – bit
0
1
2
3

6
5
4

7

Start Cluster #

FCB

Cont…

EOF

6
8
9

10
11

2 1̂6

Not all the entries in FAT16 will be used, the following shows which ones of the entry are

reserved.

35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System)

© Copyright Virtual University of Pakistan

272

Unused FAT Entries
• Reserved Entries = FFF0H ~ FFF6H

• EOF value = FFF7H ~ FFFFH

• First Two Clusters = 0,1

• Free Cluster = 0

• Max. range of Cluster # = 2 ~ FFEFH

• Total # of Clusters of FAT16 = FFEEH

The following slide shows the content of the DPB for a FAT16 volume. Same int

21h/32H is used to determine its address and the parameters can be determined by taking

dump of the memory at the address returned.

Contents of DPB
-a
13A6:0100 mov ah,32
13A6:0102 int 21
13A6:0104

-p
AX=3200 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=13A6 ES=13A6 SS=13A6 CS=13A6 IP=0102 NV UP EI PL NZ NA PO NC
13A6:0102 CD21 INT 21

-p
AX=3200 BX=13D2 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=00A7 ES=13A6 SS=13A6 CS=13A6 IP=0104 NV UP EI PL NZ NA PO NC
13A6:0104 D3E3 SHL BX,CL

-d a7:13d2

00A7:13D0 05 05 00 02 07 03-08 00 02 00 02 C0 01 B4
00A7:13E0 CB CC 00 A0 01 56 34 12-00 F8 0A FF FF FF FF 00 V4.........
00A7:13F0 00 7D CB 00 00 00 00 00-00 00 00 00 00 00 00 00 .}..............
00A7:1400 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1430 00 00 00 00 00 00 00 0C-00 00 80 00 B0 13 10 00
00A7:1440 D8 12 4D 5A 9A 00 29 00-00 00 20 00 C5 00 FF FF ..MZ..)...
00A7:1450 A7 05 ..
-q

Here the slide shows the contents of the root directory depicting the FCB of a file named

CPAPER.TXT. The control information about this file can be read from the dump.

35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System)

© Copyright Virtual University of Pakistan

273

Cont…
13A6:1320 E5 45 57 54 45 58 7E 31-54 58 54 20 00 32 09 73 .EWTEX~1TXT .2.s
13A6:1330 3C 33 3C 33 00 00 0A 73-3C 33 00 00 00 00 00 00 <3<3...s<3......
13A6:1340 54 45 53 54 20 20 20 20-54 58 54 20 18 32 09 73 TEST TXT .2.s
13A6:1350 3C 33 3C 33 00 00 17 73-3C 33 45 00 27 00 00 00 <3<3...s<3E.'...
13A6:1360 46 49 4C 45 20 20 20 20-54 58 54 20 18 81 83 73 FILE TXT ...s
13A6:1370 3C 33 3C 33 00 00 8D 73-3C 33 54 00 99 02 00 00 <3<3...s<3T.....
13A6:1380 E5 30 58 58 20 20 20 20-54 4D 50 20 18 65 A6 68 .0XX TMP .e.h
13A6:1390 3D 33 3D 33 00 00 A7 68-3D 33 08 00 12 63 00 00 =3=3...h=3...c..
13A6:13A0 41 43 00 70 00 61 00 70-00 65 00 0F 00 54 72 00 AC.p.a.p.e...Tr.
13A6:13B0 2E 00 74 00 78 00 74 00-00 00 00 00 FF FF FF FF ..t.x.t.........

13A6:13C0 43 50 41 50 45 52 20 20-54 58 54 20 00 9D 7D 6F CPAPER TXT ..}o
13A6:13D0 3C 33 3D 33 00 00 A7 68-3D 33 08 00 12 63 00 00 <3=3...h=3...c..
13A6:13E0 46 44 50 42 20 20 20 20-54 58 54 20 18 05 56 69 FDPB TXT ..Vi
13A6:13F0 3D 33 3D 33 00 00 BD 69-3D 33 29 00 BA 04 00 00 =3=3...i=3).....
13A6:1400 46 44 44 20 20 20 20 20-54 58 54 20 18 48 E4 75 FDD TXT .H.u
13A6:1410 3D 33 3D 33 00 00 23 76-3D 33 2A 00 13 00 00 00 =3=3..#v=3*.....

The above slides shows that the first cluster of the file is 0008. The following slide shows

the contents of FAT. The FAT is loaded firstly in memory at the offset address 1000H.

Each entry occupies 2 bytes. So the index 0008 will be located at 1000H + 0008*2 =

1010H. At 1010H, 0009 is stored which is the next cluster of the file, using 0009H as

index we look up at 1012H, which stores 0055H, which means 0055H is the next cluster.

Contents of FAT
-l 1000 5 8 cc

-d 1010

13A6:1010 09 00 55 00 FF FF FF FF-FF FF FF FF FF FF FF FF ..U.............
13A6:1020 00 00 00 00 FF FF FF FF-FF FF FF FF FF FF FF FF
13A6:1030 FF FF FF FF FF FF FF FF-FF FF 1E 00 1F 00 20 00
13A6:1040 21 00 FF FF FF FF FF FF-46 00 00 00 00 00 00 00 !.......F.......
13A6:1050 00 00 FF FF 5A 00 00 00-00 00 00 00 00 00 00 00Z...........
13A6:1060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1080 00 00 00 00 00 00 00 00-00 00 FF FF 47 00 48 00 G.H.

-d 10aa

13A6:10A0 56 00 57 00 58 00 Q.R.S.....V.W.X.
13A6:10B0 59 00 FF FF 5B 00 5C 00-5D 00 5E 00 5F 00 60 00 Y...[.\.].^._.`.
13A6:10C0 61 00 62 00 63 00 64 00-65 00 66 00 67 00 68 00 a.b.c.d.e.f.g.h.
13A6:10D0 69 00 6A 00 6B 00 6C 00-FF FF FF FF 00 00 00 00 i.j.k.l.........
13A6:10E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:10F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1100 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-q

using 0055H as index we look up at 10AAH to find the next cluster number and so on.

36 - File Organization

© Copyright Virtual University of Pakistan

274

36 - File Organization

Now converting all those cluster number in previous lecture into LSN we get the starting

LSN for each cluster.

For cluster # 0009H and 55h

Contents of FILE
-l 1000 5 1f8 8

-d 1000

13A6:1000 65 65 6E 20 64 65 6C 65-74 65 64 20 61 63 63 69 een deleted acci
13A6:1010 64 65 6E 74 6C 79 20 61-6E 64 20 69 66 20 79 6F dently and if yo
13A6:1020 75 0D 0A 77 61 6E 74 20-74 6F 20 63 6F 70 79 20 u..want to copy
13A6:1030 61 6C 6C 20 65 78 65 63-75 74 61 62 6C 65 20 66 all executable f
13A6:1040 69 6C 65 73 20 74 6F 20-74 68 65 20 73 70 65 63 iles to the spec
13A6:1050 69 66 69 65 64 20 64 69-72 65 63 74 6F 72 79 2C ified directory,
13A6:1060 20 79 6F 75 20 68 61 76-65 20 74 6F 0D 0A 72 65 you have to..re
13A6:1070 63 6F 6D 70 69 6C 65 20-61 6C 6C 20 74 68 65 20 compile all the
-l 1000 5 458 8

-d 1000

13A6:1000 20 2A 2F 0D 0A 0D 0A 09-77 68 69 6C 65 20 28 20 */.....while (
13A6:1010 71 20 21 3D 20 4E 55 4C-4C 20 29 0D 0A 09 7B 0D q != NULL)...{.
13A6:1020 0A 09 09 73 20 3D 20 72-20 3B 0D 0A 09 09 72 20 ...s = r ;....r
13A6:1030 3D 20 71 20 3B 0D 0A 09-09 71 20 3D 20 71 20 2D = q ;....q = q -
13A6:1040 3E 20 6C 69 6E 6B 20 3B-0D 0A 09 09 72 20 2D 3E > link ;....r ->
13A6:1050 20 6C 69 6E 6B 20 3D 20-73 20 3B 0D 0A 09 7D 0D link = s ;...}.
13A6:1060 0A 0D 0A 09 2A 78 20 3D-20 72 20 3B 0D 0A 7D 0D *x = r ;..}.
13A6:1070 0A 0D 0A 2F 2A 20 64 69-73 70 6C 61 79 73 20 74 .../* displays t

For cluster 56H and 57H

Cont…
-l 1000 5 460 8

-d 1000

13A6:1000 20 61 72 72 2C 20 62 76-61 6C 2C 20 65 76 61 6C arr, bval, eval
13A6:1010 2C 20 28 20 70 20 2B 20-31 20 29 2C 20 6C 61 73 , (p + 1), las
13A6:1020 74 73 75 62 20 29 20 3B-0D 0A 0D 0A 09 09 61 72 tsub) ;......ar
13A6:1030 72 5B 70 5D 2B 2B 20 3B-0D 0A 09 7D 0D 0A 7D 0D r[p]++ ;...}..}.
13A6:1040 0A 0D 0A 77 6F 72 6B 20-28 20 69 6E 74 20 2A 61 ...work (int *a
13A6:1050 72 72 2C 20 69 6E 74 20-6C 61 73 74 73 75 62 20 rr, int lastsub
13A6:1060 29 0D 0A 7B 0D 0A 09 69-6E 74 20 70 2C 20 6A 2C)..{...int p, j,
13A6:1070 20 6E 75 6D 20 3B 0D 0A-0D 0A 09 66 6F 72 20 28 num ;.....for (

-l 1000 5 468 8

-d 1000

13A6:1000 09 09 09 09 72 20 3D 20-30 20 3B 0D 0A 09 09 09r = 0 ;.....
13A6:1010 09 62 72 65 61 6B 20 3B-0D 0A 09 09 7D 0D 0A 09 .break ;....}...
13A6:1020 7D 0D 0A 09 70 72 69 6E-74 66 20 28 20 22 25 64 }...printf ("%d
13A6:1030 22 2C 20 72 65 73 75 6C-74 20 29 20 3B 0D 0A 7D ", result) ;..}
13A6:1040 0D 0A 0D 0A 2D 2D 2D 2D-2D 2D 2D 2D 2D 2D 2D 2D------------
13A6:1050 2D 2D 2D 2D 2D 2D 2D 2D-2D 2D 2D 2D 2D 2D 2D 2D ----------------
13A6:1060 2D 2D 2D 2D 2D 2D 2D 2D-2D 2D 2D 2D 2D 2D 2D 2D ----------------
13A6:1070 2D 2D 2D 2D 2D 2D 2D 2D-2D 2D 2D 2D 2D 2D 2D 2D ----------------
-q

36 - File Organization

© Copyright Virtual University of Pakistan

275

File Delete Experiment (Contents of ROOT)
-l 1000 5 1a0 20

-d 1000 5000
13A6:1000 4E 45 57 20 56 4F 4C 55-4D 45 20 08 00 00 00 00 NEW VOLUME
13A6:1010 00 00 00 00 00 00 61 76-2D 33 00 00 00 00 00 00av-3......
13A6:1020 41 52 00 65 00 63 00 79-00 63 00 0F 00 21 6C 00 AR.e.c.y.c...!l.
13A6:1030 65 00 64 00 00 00 FF FF-FF FF 00 00 FF FF FF FF e.d.............
13A6:1040 52 45 43 59 43 4C 45 44-20 20 20 16 00 4E 79 5E RECYCLED ..Ny^
13A6:1050 2F 33 2F 33 00 00 7A 5E-2F 33 02 00 00 00 00 00 /3/3..z^/3......
13A6:1060 42 20 00 49 00 6E 00 66-00 6F 00 0F 00 72 72 00 B .I.n.f.o...rr.
13A6:1070 6D 00 61 00 74 00 69 00-6F 00 00 00 6E 00 00 00 m.a.t.i.o...n...
13A6:1080 01 53 00 79 00 73 00 74-00 65 00 0F 00 72 6D 00 .S.y.s.t.e...rm.
13A6:1090 20 00 56 00 6F 00 6C 00-75 00 00 00 6D 00 65 00 .V.o.l.u...m.e.
13A6:10A0 53 59 53 54 45 4D 7E 31-20 20 20 16 00 4E 79 5E SYSTEM~1 ..Ny^
13A6:10B0 2F 33 2F 33 00 00 7A 5E-2F 33 03 00 00 00 00 00 /3/3..z^/3......
13A6:10C0 41 64 00 50 00 62 00 31-00 2E 00 0F 00 6A 74 00 Ad.P.b.1.....jt.
13A6:10D0 78 00 74 00 00 00 FF FF-FF FF 00 00 FF FF FF FF x.t.............
13A6:10E0 44 50 42 31 20 20 20 20-54 58 54 20 00 57 81 69 DPB1 TXT .W.i
13A6:10F0 36 33 36 33 00 00 07 78-36 33 0A 00 8A 06 00 00 6363...x63......
13A6:1100 44 50 42 32 20 20 20 20-54 58 54 20 18 12 AE 69 DPB2 TXT ...i
13A6:1110 36 33 36 33 00 00 03 75-36 33 0B 00 5F 06 00 00 6363...u63.._...
13A6:1120 46 49 52 53 54 20 20 20-20 20 20 10 08 6F ED 56 FIRST ..o.V
13A6:1130 3C 33 3C 33 00 00 EE 56-3C 33 0C 00 00 00 00 00 <3<3...V<3......
13A6:1140 53 45 43 4F 4E 44 20 20-20 20 20 10 08 50 EF 56 SECOND ..P.V
13A6:1150 3C 33 3C 33 00 00 F0 56-3C 33 12 00 00 00 00 00 <3<3...V<3......
13A6:1160 54 48 49 52 44 20 20 20-20 20 20 10 08 1B F1 56 THIRD V
13A6:1170 3C 33 3C 33 00 00 F2 56-3C 33 13 00 00 00 00 00 <3<3...V<3......

Cont…
13A6:1180 E5 52 45 45 20 20 20 20-54 58 54 20 18 89 4C 57 .REE TXT ..LW
13A6:1190 3C 33 3C 33 00 00 4D 57-3C 33 1D 00 F8 00 00 00 <3<3..MW<3......
13A6:11A0 E5 52 56 50 42 46 20 20-54 58 54 20 18 85 43 6C .RVPBF TXT ..Cl
13A6:11B0 3C 33 3C 33 00 00 62 6C-3C 33 10 00 AF 00 00 00 <3<3..bl<3......
13A6:11C0 E5 52 56 50 42 46 20 20-54 58 54 20 18 08 BB 6C .RVPBF TXT ...l
13A6:11D0 3C 33 3C 33 00 00 83 6D-3C 33 10 00 BA 04 00 00 <3<3...m<3......
13A6:11E0 E5 4F 4F 54 46 20 20 20-54 58 54 20 18 45 D3 6D .OOTF TXT .E.m
13A6:11F0 3C 33 3C 33 00 00 F8 6D-3C 33 11 00 6F 4F 00 00 <3<3...m<3..oO..
13A6:1200 E5 4F 4F 54 46 20 20 20-54 58 54 20 18 04 CF 6E .OOTF TXT ...n
13A6:1210 3C 33 3C 33 00 00 F8 6D-3C 33 1D 00 6F 4F 00 00 <3<3...m<3..oO..
13A6:1220 44 52 56 50 42 46 20 20-54 58 54 20 18 04 CF 6E DRVPBF TXT ...n
13A6:1230 3C 33 3C 33 00 00 83 6D-3C 33 22 00 BA 04 00 00 <3<3...m<3".....
13A6:1240 54 52 45 45 20 20 20 20-54 58 54 20 18 05 CF 6E TREE TXT ...n
13A6:1250 3C 33 3C 33 00 00 4D 57-3C 33 23 00 F8 00 00 00 <3<3..MW<3#.....
13A6:1260 52 4F 4F 54 46 20 20 20-54 58 54 20 18 04 CF 6E ROOTF TXT ...n
13A6:1270 3C 33 3C 33 00 00 36 73-3C 33 24 00 67 ED 00 00 <3<3..6s<3$.g...
13A6:1280 E5 5F 41 4E 53 20 20 20-54 58 54 20 10 9D 7D 6F ._ANS TXT ..}o
13A6:1290 3C 33 3C 33 00 00 60 05-72 28 29 00 4F 8F 00 00 <3<3..`.r().O...
13A6:12A0 E5 43 00 70 00 61 00 70-00 65 00 0F 00 54 72 00 .C.p.a.p.e...Tr.
13A6:12B0 2E 00 74 00 78 00 74 00-00 00 00 00 FF FF FF FF ..t.x.t.........
13A6:12C0 E5 50 41 50 45 52 20 20-54 58 54 20 00 9D 7D 6F .PAPER TXT ..}o
13A6:12D0 3C 33 3D 33 00 00 60 05-72 28 29 00 4F 8F 00 00 <3=3..`.r().O...
13A6:12E0 E5 6D 00 65 00 6E 00 74-00 2E 00 0F 00 9F 74 00 .m.e.n.t......t.
13A6:12F0 78 00 74 00 00 00 FF FF-FF FF 00 00 FF FF FF FF x.t.............
13A6:1300 E5 4E 00 65 00 77 00 20-00 54 00 0F 00 9F 65 00 .N.e.w. .T....e.
13A6:1310 78 00 74 00 20 00 44 00-6F 00 00 00 63 00 75 00 x.t. .D.o...c.u.

Cont…
13A6:1320 E5 45 57 54 45 58 7E 31-54 58 54 20 00 32 09 73 .EWTEX~1TXT .2.s
13A6:1330 3C 33 3C 33 00 00 0A 73-3C 33 00 00 00 00 00 00 <3<3...s<3......
13A6:1340 54 45 53 54 20 20 20 20-54 58 54 20 18 32 09 73 TEST TXT .2.s
13A6:1350 3C 33 3C 33 00 00 17 73-3C 33 45 00 27 00 00 00 <3<3...s<3E.'...
13A6:1360 46 49 4C 45 20 20 20 20-54 58 54 20 18 81 83 73 FILE TXT ...s
13A6:1370 3C 33 3C 33 00 00 8D 73-3C 33 54 00 99 02 00 00 <3<3...s<3T.....
13A6:1380 E5 30 58 58 20 20 20 20-54 4D 50 20 18 65 A6 68 .0XX TMP .e.h
13A6:1390 3D 33 3D 33 00 00 A7 68-3D 33 08 00 12 63 00 00 =3=3...h=3...c..
13A6:13A0 41 43 00 70 00 61 00 70-00 65 00 0F 00 54 72 00 AC.p.a.p.e...Tr.
13A6:13B0 2E 00 74 00 78 00 74 00-00 00 00 00 FF FF FF FF ..t.x.t.........
13A6:13C0 43 50 41 50 45 52 20 20-54 58 54 20 00 9D 7D 6F CPAPER TXT ..}o
13A6:13D0 3C 33 3D 33 00 00 A7 68-3D 33 08 00 12 63 00 00 <3=3...h=3...c..
13A6:13E0 46 44 50 42 20 20 20 20-54 58 54 20 18 05 56 69 FDPB TXT ..Vi
13A6:13F0 3D 33 3D 33 00 00 BD 69-3D 33 29 00 BA 04 00 00 =3=3...i=3).....
13A6:1400 46 44 44 20 20 20 20 20-54 58 54 20 18 48 E4 75 FDD TXT .H.u
13A6:1410 3D 33 3D 33 00 00 23 76-3D 33 2A 00 13 00 00 00 =3=3..#v=3*.....

36 - File Organization

© Copyright Virtual University of Pakistan

276

Now let’s just analyze the contents of root directory of the same volume. If the DIR

command is performed on the same volume its result will be as below. Note the entry for

file named TEST.TXT

Volume in drive F is NEW VOLUME
Volume Serial Number is 2CA5-BC35

Directory of F:\

22-09-05 03:00 PM 1,674 dPb1.txt
22-09-05 02:40 PM 1,631 dpb2.txt
28-09-05 10:55 AM <DIR> first
28-09-05 10:55 AM <DIR> second
28-09-05 10:55 AM <DIR> third
28-09-05 01:44 PM 1,210 drvpbf.txt
28-09-05 10:58 AM 248 tree.txt
28-09-05 02:25 PM 60,775 rootf.txt
28-09-05 02:24 PM 39 test.txt
28-09-05 02:28 PM 665 file.txt
29-09-05 01:05 PM 25,362 Cpaper.txt
29-09-05 01:13 PM 1,210 fdpb.txt
29-09-05 02:49 PM 80,999 fdd.txt
29-09-05 03:02 PM 1,305 ffat.txt
29-09-05 03:06 PM 2,657 ffile.txt
29-09-05 03:52 PM 0 dir.txt

13 File(s) 177,775 bytes
3 Dir(s) 213,278,720 bytes free

Contents of Root Listing

Now on the same volume the file TEST.TXT is deleted. Lets analyse the contents of the

root directory now.

-l 1000 5 1a0 20

-d1000 5000

13A6:1000 4E 45 57 20 56 4F 4C 55-4D 45 20 08 00 00 00 00 NEW VOLUME
13A6:1010 00 00 00 00 00 00 61 76-2D 33 00 00 00 00 00 00av-3......
13A6:1020 41 52 00 65 00 63 00 79-00 63 00 0F 00 21 6C 00 AR.e.c.y.c...!l.
13A6:1030 65 00 64 00 00 00 FF FF-FF FF 00 00 FF FF FF FF e.d.............
13A6:1040 52 45 43 59 43 4C 45 44-20 20 20 16 00 4E 79 5E RECYCLED ..Ny^
13A6:1050 2F 33 2F 33 00 00 7A 5E-2F 33 02 00 00 00 00 00 /3/3..z^/3......
13A6:1060 42 20 00 49 00 6E 00 66-00 6F 00 0F 00 72 72 00 B .I.n.f.o...rr.
13A6:1070 6D 00 61 00 74 00 69 00-6F 00 00 00 6E 00 00 00 m.a.t.i.o...n...
13A6:1080 01 53 00 79 00 73 00 74-00 65 00 0F 00 72 6D 00 .S.y.s.t.e...rm.
13A6:1090 20 00 56 00 6F 00 6C 00-75 00 00 00 6D 00 65 00 .V.o.l.u...m.e.
13A6:10A0 53 59 53 54 45 4D 7E 31-20 20 20 16 00 4E 79 5E SYSTEM~1 ..Ny^
13A6:10B0 2F 33 2F 33 00 00 7A 5E-2F 33 03 00 00 00 00 00 /3/3..z^/3......
13A6:10C0 41 64 00 50 00 62 00 31-00 2E 00 0F 00 6A 74 00 Ad.P.b.1.....jt.
13A6:10D0 78 00 74 00 00 00 FF FF-FF FF 00 00 FF FF FF FF x.t.............
13A6:10E0 44 50 42 31 20 20 20 20-54 58 54 20 00 57 81 69 DPB1 TXT .W.i
13A6:10F0 36 33 36 33 00 00 07 78-36 33 0A 00 8A 06 00 00 6363...x63......
13A6:1100 44 50 42 32 20 20 20 20-54 58 54 20 18 12 AE 69 DPB2 TXT ...i
13A6:1110 36 33 36 33 00 00 03 75-36 33 0B 00 5F 06 00 00 6363...u63.._...
13A6:1120 46 49 52 53 54 20 20 20-20 20 20 10 08 6F ED 56 FIRST ..o.V
13A6:1130 3C 33 3C 33 00 00 EE 56-3C 33 0C 00 00 00 00 00 <3<3...V<3......
13A6:1140 53 45 43 4F 4E 44 20 20-20 20 20 10 08 50 EF 56 SECOND ..P.V
13A6:1150 3C 33 3C 33 00 00 F0 56-3C 33 12 00 00 00 00 00 <3<3...V<3......
13A6:1160 54 48 49 52 44 20 20 20-20 20 20 10 08 1B F1 56 THIRD V
13A6:1170 3C 33 3C 33 00 00 F2 56-3C 33 13 00 00 00 00 00 <3<3...V<3......

Contents of Root After Deleting

36 - File Organization

© Copyright Virtual University of Pakistan

277

Cont…
13A6:1180 E5 52 45 45 20 20 20 20-54 58 54 20 18 89 4C 57 .REE TXT ..LW
13A6:1190 3C 33 3C 33 00 00 4D 57-3C 33 1D 00 F8 00 00 00 <3<3..MW<3......
13A6:11A0 E5 52 56 50 42 46 20 20-54 58 54 20 18 85 43 6C .RVPBF TXT ..Cl
13A6:11B0 3C 33 3C 33 00 00 62 6C-3C 33 10 00 AF 00 00 00 <3<3..bl<3......
13A6:11C0 E5 52 56 50 42 46 20 20-54 58 54 20 18 08 BB 6C .RVPBF TXT ...l
13A6:11D0 3C 33 3C 33 00 00 83 6D-3C 33 10 00 BA 04 00 00 <3<3...m<3......
13A6:11E0 E5 4F 4F 54 46 20 20 20-54 58 54 20 18 45 D3 6D .OOTF TXT .E.m
13A6:11F0 3C 33 3C 33 00 00 F8 6D-3C 33 11 00 6F 4F 00 00 <3<3...m<3..oO..
13A6:1200 E5 4F 4F 54 46 20 20 20-54 58 54 20 18 04 CF 6E .OOTF TXT ...n
13A6:1210 3C 33 3C 33 00 00 F8 6D-3C 33 1D 00 6F 4F 00 00 <3<3...m<3..oO..
13A6:1220 44 52 56 50 42 46 20 20-54 58 54 20 18 04 CF 6E DRVPBF TXT ...n
13A6:1230 3C 33 3C 33 00 00 83 6D-3C 33 22 00 BA 04 00 00 <3<3...m<3".....
13A6:1240 54 52 45 45 20 20 20 20-54 58 54 20 18 05 CF 6E TREE TXT ...n
13A6:1250 3C 33 3C 33 00 00 4D 57-3C 33 23 00 F8 00 00 00 <3<3..MW<3#.....
13A6:1260 52 4F 4F 54 46 20 20 20-54 58 54 20 18 04 CF 6E ROOTF TXT ...n
13A6:1270 3C 33 3C 33 00 00 36 73-3C 33 24 00 67 ED 00 00 <3<3..6s<3$.g...
13A6:1280 E5 5F 41 4E 53 20 20 20-54 58 54 20 10 9D 7D 6F ._ANS TXT ..}o
13A6:1290 3C 33 3C 33 00 00 60 05-72 28 29 00 4F 8F 00 00 <3<3..`.r().O...
13A6:12A0 E5 43 00 70 00 61 00 70-00 65 00 0F 00 54 72 00 .C.p.a.p.e...Tr.
13A6:12B0 2E 00 74 00 78 00 74 00-00 00 00 00 FF FF FF FF ..t.x.t.........
13A6:12C0 E5 50 41 50 45 52 20 20-54 58 54 20 00 9D 7D 6F .PAPER TXT ..}o
13A6:12D0 3C 33 3D 33 00 00 60 05-72 28 29 00 4F 8F 00 00 <3=3..`.r().O...
13A6:12E0 E5 6D 00 65 00 6E 00 74-00 2E 00 0F 00 9F 74 00 .m.e.n.t......t.
13A6:12F0 78 00 74 00 00 00 FF FF-FF FF 00 00 FF FF FF FF x.t.............
13A6:1300 E5 4E 00 65 00 77 00 20-00 54 00 0F 00 9F 65 00 .N.e.w. .T....e.
13A6:1310 78 00 74 00 20 00 44 00-6F 00 00 00 63 00 75 00 x.t. .D.o...c.u.

The entry for TEST.TXT still exists as can be seen from the next slide. The only

difference that have occurred is that the first character has been replaced by a byte with

the value 0xE5

Cont…
13A6:1320 E5 45 57 54 45 58 7E 31-54 58 54 20 00 32 09 73 .EWTEX~1TXT .2.s
13A6:1330 3C 33 3C 33 00 00 0A 73-3C 33 00 00 00 00 00 00 <3<3...s<3......
13A6:1340 E5 45 53 54 20 20 20 20-54 58 54 20 18 32 09 73 .EST TXT .2.s
13A6:1350 3C 33 3C 33 00 00 17 73-3C 33 45 00 27 00 00 00 <3<3...s<3E.'...
13A6:1360 46 49 4C 45 20 20 20 20-54 58 54 20 18 81 83 73 FILE TXT ...s
13A6:1370 3C 33 3C 33 00 00 8D 73-3C 33 54 00 99 02 00 00 <3<3...s<3T.....
13A6:1380 E5 30 58 58 20 20 20 20-54 4D 50 20 18 65 A6 68 .0XX TMP .e.h
13A6:1390 3D 33 3D 33 00 00 A7 68-3D 33 08 00 12 63 00 00 =3=3...h=3...c..
13A6:13A0 41 43 00 70 00 61 00 70-00 65 00 0F 00 54 72 00 AC.p.a.p.e...Tr.
13A6:13B0 2E 00 74 00 78 00 74 00-00 00 00 00 FF FF FF FF ..t.x.t.........
13A6:13C0 43 50 41 50 45 52 20 20-54 58 54 20 00 9D 7D 6F CPAPER TXT ..}o
13A6:13D0 3C 33 3D 33 00 00 A7 68-3D 33 08 00 12 63 00 00 <3=3...h=3...c..
13A6:13E0 46 44 50 42 20 20 20 20-54 58 54 20 18 05 56 69 FDPB TXT ..Vi
13A6:13F0 3D 33 3D 33 00 00 BD 69-3D 33 29 00 BA 04 00 00 =3=3...i=3).....
13A6:1400 46 44 44 20 20 20 20 20-54 58 54 20 18 48 E4 75 FDD TXT .H.u
13A6:1410 3D 33 3D 33 00 00 31 76-3D 33 2A 00 67 3C 01 00 =3=3..1v=3*.g<..
13A6:1420 E5 46 41 54 20 20 20 20-54 58 54 20 18 96 2C 78 .FAT TXT ..,x
13A6:1430 3D 33 3D 33 00 00 37 78-3D 33 6D 00 1A 05 00 00 =3=3..7x=3m.....
13A6:1440 46 46 41 54 20 20 20 20-54 58 54 20 18 96 2C 78 FFAT TXT ..,x
13A6:1450 3D 33 3D 33 00 00 50 78-3D 33 6E 00 19 05 00 00 =3=3..Px=3n.....
13A6:1460 46 46 49 4C 45 20 20 20-54 58 54 20 18 11 97 78 FFILE TXT ...x
13A6:1470 3D 33 3D 33 00 00 D3 78-3D 33 6D 00 61 0A 00 00 =3=3...x=3m.a...
13A6:1480 44 49 52 20 20 20 20 20-54 58 54 20 18 49 9A 7E DIR TXT .I.~
13A6:1490 3D 33 3D 33 00 00 9B 7E-3D 33 6F 00 AC 03 00 00 =3=3...~=3o.....
13A6:14A0 44 49 52 44 20 20 20 20-54 58 54 20 18 7B C0 7E DIRD TXT .{.~
13A6:14B0 3D 33 3D 33 00 00 C1 7E-3D 33 45 00 AC 03 00 00 =3=3...~=3E.....
13A6:14C0 44 44 44 45 4C 20 20 20-54 58 54 20 18 49 F7 7E DDDEL TXT .I.~
13A6:14D0 3D 33 3D 33 00 00 F8 7E-3D 33 70 00 13 00 00 00 =3=3...~=3p.....

But when the DIR command execute on the same volume the file does not show.

36 - File Organization

© Copyright Virtual University of Pakistan

278

Volume in drive F is NEW VOLUME
Volume Serial Number is 2CA5-BC35

Directory of F:\

22-09-05 03:00 PM 1,674 dPb1.txt
22-09-05 02:40 PM 1,631 dpb2.txt
28-09-05 10:55 AM <DIR> first
28-09-05 10:55 AM <DIR> second
28-09-05 10:55 AM <DIR> third
28-09-05 01:44 PM 1,210 drvpbf.txt
28-09-05 10:58 AM 248 tree.txt
28-09-05 02:25 PM 60,775 rootf.txt
28-09-05 02:28 PM 665 file.txt
29-09-05 01:05 PM 25,362 Cpaper.txt
29-09-05 01:13 PM 1,210 fdpb.txt
29-09-05 02:49 PM 80,999 fdd.txt
29-09-05 03:02 PM 1,305 ffat.txt
29-09-05 03:06 PM 2,657 ffile.txt
29-09-05 03:52 PM 940 dir.txt
29-09-05 03:54 PM 0 dird.txt

13 File(s) 178,676 bytes
3 Dir(s) 213,278,720 bytes free

Contents of Root Listing After Deleting

Now let’s see the contents of the file by converting the first cluster number in the FCB

into LSN and taking its dump. We get the following slide.

Contents of File After Deleting
-l 1000 5 3d8 1

-d 1000

13AD:1000 74 68 69 73 20 69 73 20-61 20 74 65 73 74 20 74 this is a test t
13AD:1010 65 78 74 20 66 69 6C 65-20 66 6F 72 20 31 36 20 ext file for 16
13AD:1020 62 69 74 20 46 41 54 00-00 00 00 00 00 00 00 00 bit FAT.........
13AD:1030 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AD:1040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AD:1050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AD:1060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AD:1070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-q

The contents of the file are still there.

36 - File Organization

© Copyright Virtual University of Pakistan

279

So we infer the following.

Deleted Files
• 0xE5 at the start of file entry is used to mark the
file as deleted.
• The contents of file still remain on disk.
• The contents can be recovered by placing a valid
file name, character in place of E5 and then
recovering the chain of file in FAT.
• If somehow the clusters used by deleted file has
been overwritten by some other file, it cannot be
recovered.

Not only the file is marked for deletion but also the chain of its cluster in FAT is

reclaimed by putting zeros in there place. This also indicates that these clusters are now

free.

Now let’s have some discussion about sub-directories. In the contents of the above given

root directory notice an entry named SECOND. The attribute byte of this entry is 0x20

which indicates that it’s a directory, the size is 0 which shows that there is now user data

in it, but even though the size 0 its has a first cluster which is 0x12. Converting 0x12 into

LSN and then reading its contents we get the following dump. This shows that this cluster

contains the FCBs for all the file and folders within this directory.

Contents of Sub-Directories
-l 1000 5 240 8

-d 1000

13A6:1000 2E 20 20 20 20 20 20 20-20 20 20 10 00 50 EF 56 . ..P.V
13A6:1010 3C 33 3C 33 00 00 F0 56-3C 33 12 00 00 00 00 00 <3<3...V<3......
13A6:1020 2E 2E 20 20 20 20 20 20-20 20 20 10 00 50 EF 56 P.V
13A6:1030 3C 33 3C 33 00 00 F0 56-3C 33 00 00 00 00 00 00 <3<3...V<3......
13A6:1040 53 55 42 31 20 20 20 20-20 20 20 10 08 B1 07 57 SUB1 W
13A6:1050 3C 33 3C 33 00 00 08 57-3C 33 16 00 00 00 00 00 <3<3...W<3......
13A6:1060 53 55 42 32 20 20 20 20-20 20 20 10 08 23 0A 57 SUB2 ..#.W
13A6:1070 3C 33 3D 33 00 00 0B 57-3C 33 17 00 00 00 00 00 <3=3...W<3......

-l 1000 5 268 8

-d 1000

13A6:1000 2E 20 20 20 20 20 20 20-20 20 20 10 00 23 0A 57 . ..#.W
13A6:1010 3C 33 3C 33 00 00 0B 57-3C 33 17 00 00 00 00 00 <3<3...W<3......
13A6:1020 2E 2E 20 20 20 20 20 20-20 20 20 10 00 23 0A 57 #.W
13A6:1030 3C 33 3C 33 00 00 0B 57-3C 33 12 00 00 00 00 00 <3<3...W<3......
13A6:1040 53 55 42 33 20 20 20 20-20 20 20 10 08 9A 0E 57 SUB3 W
13A6:1050 3C 33 3D 33 00 00 0F 57-3C 33 18 00 00 00 00 00 <3=3...W<3......
13A6:1060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

36 - File Organization

© Copyright Virtual University of Pakistan

280

In the entries within SECOND we see an entry SUB2. Its starting cluster is 0017H. This

value is converted into LSN and the contents read. The slide above also shows the

contents of SUB2.

Similarly the following slide shows the contents of SUB3 within SUB2 and the contents

of SUB4 within SUB3.

Cont…
-l 1000 5 270 8

-d 1000

13A6:1000 2E 20 20 20 20 20 20 20-20 20 20 10 00 9A 0E 57 W
13A6:1010 3C 33 3C 33 00 00 0F 57-3C 33 18 00 00 00 00 00 <3<3...W<3......
13A6:1020 2E 2E 20 20 20 20 20 20-20 20 20 10 00 9A 0E 57 W
13A6:1030 3C 33 3C 33 00 00 0F 57-3C 33 17 00 00 00 00 00 <3<3...W<3......
13A6:1040 53 55 42 34 20 20 20 20-20 20 20 10 08 AF 12 57 SUB4 W
13A6:1050 3C 33 3D 33 00 00 13 57-3C 33 19 00 00 00 00 00 <3=3...W<3......
13A6:1060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

-l 1000 5 278 8

-d 1000

13A6:1000 2E 20 20 20 20 20 20 20-20 20 20 10 00 AF 12 57 W
13A6:1010 3C 33 3C 33 00 00 13 57-3C 33 19 00 00 00 00 00 <3<3...W<3......
13A6:1020 2E 2E 20 20 20 20 20 20-20 20 20 10 00 AF 12 57 W
13A6:1030 3C 33 3C 33 00 00 13 57-3C 33 18 00 00 00 00 00 <3<3...W<3......
13A6:1040 53 55 42 35 20 20 20 20-20 20 20 10 08 0D 17 57 SUB5 W
13A6:1050 3C 33 3D 33 00 00 18 57-3C 33 1A 00 00 00 00 00 <3=3...W<3......
13A6:1060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

The following slide shows the contents of SUB5 and also the contents of file

MYFILE.TXT in SUB5.

Cont…
-l 1000 5 280 8

-d 1000

13A6:1000 2E 20 20 20 20 20 20 20-20 20 20 10 00 0D 17 57 W
13A6:1010 3C 33 3C 33 00 00 18 57-3C 33 1A 00 00 00 00 00 <3<3...W<3......
13A6:1020 2E 2E 20 20 20 20 20 20-20 20 20 10 00 0D 17 57 W
13A6:1030 3C 33 3C 33 00 00 18 57-3C 33 19 00 00 00 00 00 <3<3...W<3......
13A6:1040 4D 59 46 49 4C 45 20 20-54 58 54 20 18 00 23 57 MYFILE TXT ..#W
13A6:1050 3C 33 3C 33 00 00 25 57-3C 33 1B 00 15 00 00 00 <3<3..%W<3......
13A6:1060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

-l 1000 5 288 8

-d 1000

13A6:1000 73 6E 66 6B 73 6E 66 73-6E 66 61 73 6E 7A 78 63 snfksnfsnfasnzxc
13A6:1010 73 64 63 0D 0A 00 00 00-00 00 00 00 00 00 00 00 sdc.............
13A6:1020 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1030 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-q

36 - File Organization

© Copyright Virtual University of Pakistan

281

In all the sub-directories one thing is worth noticing. The first two entries are the . and ..

entries. These two are special entries as described in the slide below.

The . and . . Directories
cd .

gives the current path

cd . .
goes one level backwards.

Notice the contents of SECOND directory. The . entry has the cluster number 0012H

which is the cluster number for the SECOND directory and the .. entry has cluster number

which indicates the higher level directory which is the root directory.

. and .. Sub-Directories
-l 1000 5 240 8

-d 1000

13A6:1000 2E 20 20 20 20 20 20 20-20 20 20 10 00 50 EF 56 . ..P.V
13A6:1010 3C 33 3C 33 00 00 F0 56-3C 33 12 00 00 00 00 00 <3<3...V<3......
13A6:1020 2E 2E 20 20 20 20 20 20-20 20 20 10 00 50 EF 56 P.V
13A6:1030 3C 33 3C 33 00 00 F0 56-3C 33 00 00 00 00 00 00 <3<3...V<3......
13A6:1040 53 55 42 31 20 20 20 20-20 20 20 10 08 B1 07 57 SUB1 W
13A6:1050 3C 33 3C 33 00 00 08 57-3C 33 16 00 00 00 00 00 <3<3...W<3......
13A6:1060 53 55 42 32 20 20 20 20-20 20 20 10 08 23 0A 57 SUB2 ..#.W
13A6:1070 3C 33 3D 33 00 00 0B 57-3C 33 17 00 00 00 00 00 <3=3...W<3......

-l 1000 5 268 8

-d 1000

13A6:1000 2E 20 20 20 20 20 20 20-20 20 20 10 00 23 0A 57 . ..#.W
13A6:1010 3C 33 3C 33 00 00 0B 57-3C 33 17 00 00 00 00 00 <3<3...W<3......
13A6:1020 2E 2E 20 20 20 20 20 20-20 20 20 10 00 23 0A 57 #.W
13A6:1030 3C 33 3C 33 00 00 0B 57-3C 33 12 00 00 00 00 00 <3<3...W<3......
13A6:1040 53 55 42 33 20 20 20 20-20 20 20 10 08 9A 0E 57 SUB3 W
13A6:1050 3C 33 3D 33 00 00 0F 57-3C 33 18 00 00 00 00 00 <3=3...W<3......
13A6:1060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

Also examine the contents of SUB2 directory the . directory has cluster number 0017h

which the cluster number for SUB2 and the .. entry has the cluster number 0012H which

is the cluster number of its parent directory SECOND

Same can be observed for SUB3, SUB4, SUB5 or any other sub-directory in question.

36 - File Organization

© Copyright Virtual University of Pakistan

282

Cont…
-l 1000 5 270 8

-d 1000

13A6:1000 2E 20 20 20 20 20 20 20-20 20 20 10 00 9A 0E 57 W
13A6:1010 3C 33 3C 33 00 00 0F 57-3C 33 18 00 00 00 00 00 <3<3...W<3......
13A6:1020 2E 2E 20 20 20 20 20 20-20 20 20 10 00 9A 0E 57 W
13A6:1030 3C 33 3C 33 00 00 0F 57-3C 33 17 00 00 00 00 00 <3<3...W<3......
13A6:1040 53 55 42 34 20 20 20 20-20 20 20 10 08 AF 12 57 SUB4 W
13A6:1050 3C 33 3D 33 00 00 13 57-3C 33 19 00 00 00 00 00 <3=3...W<3......
13A6:1060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

-l 1000 5 278 8

-d 1000

13A6:1000 2E 20 20 20 20 20 20 20-20 20 20 10 00 AF 12 57 W
13A6:1010 3C 33 3C 33 00 00 13 57-3C 33 19 00 00 00 00 00 <3<3...W<3......
13A6:1020 2E 2E 20 20 20 20 20 20-20 20 20 10 00 AF 12 57 W
13A6:1030 3C 33 3C 33 00 00 13 57-3C 33 18 00 00 00 00 00 <3<3...W<3......
13A6:1040 53 55 42 35 20 20 20 20-20 20 20 10 08 0D 17 57 SUB5 W
13A6:1050 3C 33 3D 33 00 00 18 57-3C 33 1A 00 00 00 00 00 <3=3...W<3......
13A6:1060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

So this how CD. command gives the current path and CD.. moves to the one higher level

directory.

37 - FAT32 File System

© Copyright Virtual University of Pakistan

283

37 - FAT32 File System

Let’s now perform few more experiments to see how long file names are managed.

Windows can have long file names up to 255 characters. For This purpose a file is created

with a long file name as shown in the slide below.

Following shows the result of DIR command on the same volume.

Long FileName
Volume in drive H is NEW VOLUME
Volume Serial Number is 8033-3F79

Directory of H:\

09/14/2005 10:00 AM <DIR> New Folder
10/23/2005 11:20 AM 0 I am new file to experiment long file
names.txt

1 File(s) 0 bytes
1 Dir(s) 409,944,064 bytes free

37 - FAT32 File System

© Copyright Virtual University of Pakistan

284

In the following slide the DPB of the volume is being read.

Drive Parameter Block
-a
0AFC:0100 mov ah,32
0AFC:0102 int 21
0AFC:0104

-p
AX=3200 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0AFC ES=0AFC SS=0AFC CS=0AFC IP=0102 NV UP EI PL NZ NA PO NC
0AFC:0102 CD21 INT 21

-p
AX=3200 BX=13D2 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=00A7 ES=0AFC SS=0AFC CS=0AFC IP=0104 NV UP EI PL NZ NA PO NC
0AFC:0104 06 PUSH ES

-d a7:13d2

00A7:13D0 07 07 00 02 0F 04-08 00 02 00 02 B0 01 87
00A7:13E0 C3 C4 00 90 01 56 34 12-00 F8 0A FF FF FF FF 00 V4.........
00A7:13F0 00 7A C3 00 00 00 00 00-00 00 00 00 00 00 00 00 .z..............
00A7:1400 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1430 00 00 00 00 00 00 00 0C-00 00 80 00 06 0B 10 00
00A7:1440 2E 0A 4D 5A 9A 00 29 00-00 00 20 00 C5 00 FF FF ..MZ..)...
00A7:1450 A7 05 ..

Using the information in DPB the root directory entries are read and are being shown in

the slide below.

Directory Entry
-l 1000 7 190 20

-d 1000
0AFC:1000 4E 45 57 20 56 4F 4C 55-4D 45 20 08 00 00 00 00 NEW VOLUME
0AFC:1010 00 00 00 00 00 00 04 4F-2E 33 00 00 00 00 00 00O.3......
0AFC:1020 41 4E 00 65 00 77 00 20-00 46 00 0F 00 DD 6F 00 AN.e.w. .F....o.
0AFC:1030 6C 00 64 00 65 00 72 00-00 00 00 00 FF FF FF FF l.d.e.r.........
0AFC:1040 4E 45 57 46 4F 4C 7E 31-20 20 20 10 00 41 09 50 NEWFOL~1 ..A.P
0AFC:1050 2E 33 2E 33 00 00 0A 50-2E 33 02 00 00 00 00 00 .3.3...P.3......
0AFC:1060 42 20 00 49 00 6E 00 66-00 6F 00 0F 00 72 72 00 B .I.n.f.o...rr.
0AFC:1070 6D 00 61 00 74 00 69 00-6F 00 00 00 6E 00 00 00 m.a.t.i.o...n...
0AFC:1080 01 53 00 79 00 73 00 74-00 65 00 0F 00 72 6D 00 .S.y.s.t.e...rm.
0AFC:1090 20 00 56 00 6F 00 6C 00-75 00 00 00 6D 00 65 00 .V.o.l.u...m.e.
0AFC:10A0 53 59 53 54 45 4D 7E 31-20 20 20 16 00 44 09 50 SYSTEM~1 ..D.P
0AFC:10B0 2E 33 2E 33 00 00 0A 50-2E 33 03 00 00 00 00 00 .3.3...P.3......
0AFC:10C0 E5 6D 00 65 00 6E 00 74-00 2E 00 0F 00 9F 74 00 .m.e.n.t......t.
0AFC:10D0 78 00 74 00 00 00 FF FF-FF FF 00 00 FF FF FF FF x.t.............
0AFC:10E0 E5 4E 00 65 00 77 00 20-00 54 00 0F 00 9F 65 00 .N.e.w. .T....e.
0AFC:10F0 78 00 74 00 20 00 44 00-6F 00 00 00 63 00 75 00 x.t. .D.o...c.u.
0AFC:1100 E5 45 57 54 45 58 7E 31-54 58 54 20 00 9D 11 50 .EWTEX~1TXT ...P
0AFC:1110 2E 33 2E 33 00 00 12 50-2E 33 00 00 00 00 00 00 .3.3...P.3......
0AFC:1120 E5 79 00 73 00 74 00 65-00 6D 00 0F 00 A4 2E 00 .y.s.t.e.m......
0AFC:1130 74 00 78 00 74 00 00 00-FF FF 00 00 FF FF FF FF t.x.t...........
0AFC:1140 E5 6C 00 20 00 74 00 68-00 65 00 0F 00 A4 20 00 .l. .t.h.e.... .
0AFC:1150 66 00 61 00 74 00 31 00-36 00 00 00 20 00 73 00 f.a.t.1.6... .s.
0AFC:1160 E5 66 00 69 00 6C 00 65-00 20 00 0F 00 A4 74 00 .f.i.l.e.t.

37 - FAT32 File System

© Copyright Virtual University of Pakistan

285

Cont…
0AFC:1170 6F 00 20 00 63 00 68 00-65 00 00 00 63 00 6B 00 o. .c.h.e...c.k.
0AFC:1180 E5 74 00 68 00 69 00 73-00 69 00 0F 00 A4 73 00 .t.h.i.s.i....s.
0AFC:1190 20 00 61 00 20 00 6E 00-65 00 00 00 77 00 20 00 .a. .n.e...w. .
0AFC:11A0 E5 48 49 53 49 53 7E 32-54 58 54 20 00 9D 11 50 .HISIS~2TXT ...P
0AFC:11B0 2E 33 2E 33 00 00 12 50-2E 33 00 00 00 00 00 00 .3.3...P.3......
0AFC:11C0 41 52 00 65 00 63 00 79-00 63 00 0F 00 21 6C 00 AR.e.c.y.c...!l.
0AFC:11D0 65 00 64 00 00 00 FF FF-FF FF 00 00 FF FF FF FF e.d.............
0AFC:11E0 52 45 43 59 43 4C 45 44-20 20 20 16 00 86 A7 63 RECYCLED c
0AFC:11F0 3C 33 3C 33 00 00 A8 63-3C 33 08 00 00 00 00 00 <3<3...c<3......
0AFC:1200 E5 6D 00 65 00 6E 00 74-00 2E 00 0F 00 9F 74 00 .m.e.n.t......t.
0AFC:1210 78 00 74 00 00 00 FF FF-FF FF 00 00 FF FF FF FF x.t.............
0AFC:1220 E5 4E 00 65 00 77 00 20-00 54 00 0F 00 9F 65 00 .N.e.w. .T....e.
0AFC:1230 78 00 74 00 20 00 44 00-6F 00 00 00 63 00 75 00 x.t. .D.o...c.u.
0AFC:1240 E5 45 57 54 45 58 7E 31-54 58 54 20 00 8C F8 56 .EWTEX~1TXT ...V
0AFC:1250 57 33 57 33 00 00 F9 56-57 33 00 00 00 00 00 00 W3W3...VW3......
0AFC:1260 E5 61 00 6D 00 65 00 2E-00 74 00 0F 00 43 78 00 .a.m.e...t...Cx.
0AFC:1270 74 00 00 00 FF FF FF FF-FF FF 00 00 FF FF FF FF t...............
0AFC:1280 E5 6B 00 20 00 6C 00 6F-00 6E 00 0F 00 43 67 00 .k. .l.o.n...Cg.
0AFC:1290 20 00 66 00 69 00 6C 00-65 00 00 00 20 00 6E 00 .f.i.l.e... .n.
0AFC:12A0 E5 20 00 66 00 69 00 6C-00 65 00 0F 00 43 20 00 . .f.i.l.e...C .
0AFC:12B0 74 00 6F 00 20 00 63 00-68 00 00 00 65 00 63 00 t.o. .c.h...e.c.
0AFC:12C0 E5 74 00 68 00 69 00 73-00 20 00 0F 00 43 69 00 .t.h.i.s. ...Ci.
0AFC:12D0 73 00 20 00 61 00 20 00-6E 00 00 00 65 00 77 00 s. .a. .n...e.w.
0AFC:12E0 E5 48 49 53 49 53 7E 31-54 58 54 20 00 8C F8 56 .HISIS~1TXT ...V
0AFC:12F0 57 33 57 33 00 00 F9 56-57 33 00 00 00 00 00 00 W3W3...VW3......
0AFC:1300 E5 6D 00 65 00 6E 00 74-00 2E 00 0F 00 9F 74 00 .m.e.n.t......t.

Cont…
0AFC:1310 78 00 74 00 00 00 FF FF-FF FF 00 00 FF FF FF FF x.t.............
0AFC:1320 E5 4E 00 65 00 77 00 20-00 54 00 0F 00 9F 65 00 .N.e.w. .T....e.
0AFC:1330 78 00 74 00 20 00 44 00-6F 00 00 00 63 00 75 00 x.t. .D.o...c.u.
0AFC:1340 E5 45 57 54 45 58 7E 31-54 58 54 20 00 26 85 5A .EWTEX~1TXT .&.Z
0AFC:1350 57 33 57 33 00 00 86 5A-57 33 00 00 00 00 00 00 W3W3...ZW3......
0AFC:1360 44 61 00 6D 00 65 00 73-00 2E 00 0F 00 0A 74 00 Da.m.e.s......t.
0AFC:1370 78 00 74 00 00 00 FF FF-FF FF 00 00 FF FF FF FF x.t.............
0AFC:1380 03 74 00 20 00 6C 00 6F-00 6E 00 0F 00 0A 67 00 .t. .l.o.n....g.
0AFC:1390 20 00 66 00 69 00 6C 00-65 00 00 00 20 00 6E 00 .f.i.l.e... .n.
0AFC:13A0 02 20 00 74 00 6F 00 20-00 65 00 0F 00 0A 78 00 . .t.o. .e....x.
0AFC:13B0 70 00 65 00 72 00 69 00-6D 00 00 00 65 00 6E 00 p.e.r.i.m...e.n.
0AFC:13C0 01 49 00 20 00 61 00 6D-00 20 00 0F 00 0A 6E 00 .I. .a.m.n.
0AFC:13D0 65 00 77 00 20 00 66 00-69 00 00 00 6C 00 65 00 e.w. .f.i...l.e.
0AFC:13E0 49 41 4D 4E 45 57 7E 31-54 58 54 20 00 26 85 5A IAMNEW~1TXT .&.Z
0AFC:13F0 57 33 57 33 00 00 86 5A-57 33 00 00 00 00 00 00 W3W3...ZW3......
0AFC:1400 52 4F 4F 54 48 20 20 20-54 58 54 20 18 0F 95 5C ROOTH TXT ...\
0AFC:1410 57 33 57 33 00 00 96 5C-57 33 0E 00 13 00 00 00 W3W3...\W3......
0AFC:1420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0AFC:1430 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0AFC:1440 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0AFC:1450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0AFC:1460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0AFC:1470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

I n the above slide it can be noticed that the long file name is also stored with the FCBs.

Also the fragments of Unicode strings in the long file name forms a chain. The first byte

in the chain will be 0x01, the first byte of the next fragment will be 0x02 and so on till the

last fragment. If the last fragment is the nth fragment starting from 0 such that n is

between 0 and 25 the first byte of the last fragment will be given as ASCII of ‘A’ plus n.

37 - FAT32 File System

© Copyright Virtual University of Pakistan

286

Now lets move our discussion to FAT32. In theory the major difference between FAT 16

and FAT 32 is of course the FAT size. FAT32 evidently will contain more entries and can

hence manage a very large disk whereas FAT16 can manage a space of 2 GB maximum

practically.

Following slide shows the structure of the BPB for FAT32. Clearly there would be some

additional information required in FAT32 so the structure for BPB used in FAT32 is

different.

Fat32 BPB Structure

37 - FAT32 File System

© Copyright Virtual University of Pakistan

287

37 - FAT32 File System

© Copyright Virtual University of Pakistan

288

There can be different volumes with different volume sizes. The device driver for file

handling would require knowing the FAT size. The following slide illustrates an

algorithm that can be used to determine the FAT size in use after reading the BPB.

37 - FAT32 File System

© Copyright Virtual University of Pakistan

289

37 - FAT32 File System

© Copyright Virtual University of Pakistan

290

Fat Type Determination
if(BPB_FATSz16 != 0)

FATSz = BPB_FATSz16;
else

FATSz = BPB_FATSz32;
if(BPB_TotSec16 != 0)

TotSec = BPB_TotSec16;
else

TotSec = BPB_TotSec32;
DataSec = TotSec – (BPB_ResvdSecCnt + (BPB_NumFATs * FATSz) +

RootDirSectors);
CountofClusters = DataSec / BPB_SecPerClus;

if(CountofClusters < 4085)
/* Volume is FAT12 */

else if(CountofClusters < 65525)
/* Volume is FAT16 */

else
/* Volume is FAT32 */

38 - FAT32 File System II

© Copyright Virtual University of Pakistan

291

38 - FAT32 File System II

Following slide shows how the chain of clusters is maintained in a FAT32 based system.

File Organization

9
11
0
7

R
R

32 – bit
0
1
2
3

6
5
4

7

Start Cluster #

FCB

Cont…

EOF

6
8
9

10
11

2 2̂8

38 - FAT32 File System II

© Copyright Virtual University of Pakistan

292

Fat32 Entry
• Each entry is of 32-bits size but only
lower 28-bits are used.
• Higher 4-bits are not tempered.
• While reading higher 4-bits are
ignored.
• While writing higher 4-bits are not
changed.

FCB in FAT32 system has an enhanced meaning as shown by the slide below.

Anatomy of FAT32 based system differs from FAT16 based systems significantly as

explained by the slide below.

38 - FAT32 File System II

© Copyright Virtual University of Pakistan

293

Fat32 File System

-----------Clust3Clust2FAT2 FAT1

Reserved Blocks
• No fixed space reserved for root
directory.
• FCB of root directory are saved in a
cluster and the cluster # for root directory
is saved in BPB as discussed earlier.

In reflection of the anatomy of FAT32 based system the method used to translate the

cluster # into LSN also varies. The following formula is used for this purpose.

Starting Sector # for a Cluster
Starting Sector = Reserved Sect. + FatSize *

FatCopies + (cluster # - 2) *
size of cluster

Now we determine all the parameters in the above slide for a certain volume to translate a

cluster number into LSN.

38 - FAT32 File System II

© Copyright Virtual University of Pakistan

294

Reserved Blocks

Offset 14 = 0x0E = Reserved Sect. = 0x0024

0000 EB 58 90 4D 53 57 49 4E . X . M S W I N 235 88 144 77 83 87 73 78
0008 34 2E 31 00 02 20 24 00 4 . 1 . . $. 52 46 49 0 2 32 36 0
0010 02 00 00 00 00 F8 00 00 2 0 0 0 0 248 0 0
0018 3F 00 F0 00 3F 00 00 00 ? . . . ? . . . 63 0 240 0 63 0 0 0
0020 41 29 54 02 3E 25 00 00 A) T . > % . . 65 41 84 2 62 37 0 0
0028 00 00 00 00 02 00 00 00 0 0 0 0 2 0 0 0
0030 01 00 06 00 00 00 00 00 1 0 6 0 0 0 0 0
0038 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0
0040 80 01 29 F1 17 79 2D 4E . .) . . y - N 128 1 41 241 23 121 45 78
0048 4F 20 4E 41 4D 45 20 20 O N A M E 79 32 78 65 77 69 32 32
0050 20 20 46 41 54 33 32 20 F A T 3 2 32 32 70 65 84 51 50 32
0058 20 20 33 C9 8E D1 BC F4 3 32 32 51 201 142 209 188 244
0060 7B 8E C1 8E D9 BD 00 7C { | 123 142 193 142 217 189 0 124
0068 88 4E 02 8A 56 40 B4 08 . N . . V @ . . 136 78 2 138 86 64 180 8
0070 CD 13 73 05 B9 FF FF 8A . . s 205 19 115 5 185 255 255 138
0078 F1 66 0F B6 C6 40 66 0F . f . . . @ f . 241 102 15 182 198 64 102 15
0080 B6 D1 80 E2 3F F7 E2 86 ? . . . 182 209 128 226 63 247 226 134
0088 CD C0 ED 06 41 66 0F B7 A f . . 205 192 237 6 65 102 15 183
0090 C9 66 F7 E1 66 89 46 F8 . f . . f . F . 201 102 247 225 102 137 70 248
0098 83 7E 16 00 75 38 83 7E . ~ . . u 8 . ~ 131 126 22 0 117 56 131 126

Copies of FAT

Offset 16 = 0x10 = Count of FAT’S = 0x0002

0000 EB 58 90 4D 53 57 49 4E . X . M S W I N 235 88 144 77 83 87 73 78
0008 34 2E 31 00 02 20 24 00 4 . 1 . . $. 52 46 49 0 2 32 36 0
0010 02 00 00 00 00 F8 00 00 2 0 0 0 0 248 0 0
0018 3F 00 F0 00 3F 00 00 00 ? . . . ? . . . 63 0 240 0 63 0 0 0
0020 41 29 54 02 3E 25 00 00 A) T . > % . . 65 41 84 2 62 37 0 0
0028 00 00 00 00 02 00 00 00 0 0 0 0 2 0 0 0
0030 01 00 06 00 00 00 00 00 1 0 6 0 0 0 0 0
0038 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0
0040 80 01 29 F1 17 79 2D 4E . .) . . y - N 128 1 41 241 23 121 45 78
0048 4F 20 4E 41 4D 45 20 20 O N A M E 79 32 78 65 77 69 32 32
0050 20 20 46 41 54 33 32 20 F A T 3 2 32 32 70 65 84 51 50 32
0058 20 20 33 C9 8E D1 BC F4 3 32 32 51 201 142 209 188 244
0060 7B 8E C1 8E D9 BD 00 7C { | 123 142 193 142 217 189 0 124
0068 88 4E 02 8A 56 40 B4 08 . N . . V @ . . 136 78 2 138 86 64 180 8
0070 CD 13 73 05 B9 FF FF 8A . . s 205 19 115 5 185 255 255 138
0078 F1 66 0F B6 C6 40 66 0F . f . . . @ f . 241 102 15 182 198 64 102 15
0080 B6 D1 80 E2 3F F7 E2 86 ? . . . 182 209 128 226 63 247 226 134
0088 CD C0 ED 06 41 66 0F B7 A f . . 205 192 237 6 65 102 15 183
0090 C9 66 F7 E1 66 89 46 F8 . f . . f . F . 201 102 247 225 102 137 70 248
0098 83 7E 16 00 75 38 83 7E . ~ . . u 8 . ~ 131 126 22 0 117 56 131 126

Sector per FAT copy

Offset 36 = 0x24 = Sectors occupied by single FAT = 0x0000253E

0000 EB 58 90 4D 53 57 49 4E . X . M S W I N 235 88 144 77 83 87 73 78
0008 34 2E 31 00 02 20 24 00 4 . 1 . . $. 52 46 49 0 2 32 36 0
0010 02 00 00 00 00 F8 00 00 2 0 0 0 0 248 0 0
0018 3F 00 F0 00 3F 00 00 00 ? . . . ? . . . 63 0 240 0 63 0 0 0
0020 41 29 54 02 3E 25 00 00 A) T . > % . . 65 41 84 2 62 37 0 0
0028 00 00 00 00 02 00 00 00 0 0 0 0 2 0 0 0
0030 01 00 06 00 00 00 00 00 1 0 6 0 0 0 0 0
0038 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0
0040 80 01 29 F1 17 79 2D 4E . .) . . y - N 128 1 41 241 23 121 45 78
0048 4F 20 4E 41 4D 45 20 20 O N A M E 79 32 78 65 77 69 32 32
0050 20 20 46 41 54 33 32 20 F A T 3 2 32 32 70 65 84 51 50 32
0058 20 20 33 C9 8E D1 BC F4 3 32 32 51 201 142 209 188 244
0060 7B 8E C1 8E D9 BD 00 7C { | 123 142 193 142 217 189 0 124
0068 88 4E 02 8A 56 40 B4 08 . N . . V @ . . 136 78 2 138 86 64 180 8
0070 CD 13 73 05 B9 FF FF 8A . . s 205 19 115 5 185 255 255 138
0078 F1 66 0F B6 C6 40 66 0F . f . . . @ f . 241 102 15 182 198 64 102 15
0080 B6 D1 80 E2 3F F7 E2 86 ? . . . 182 209 128 226 63 247 226 134
0088 CD C0 ED 06 41 66 0F B7 A f . . 205 192 237 6 65 102 15 183
0090 C9 66 F7 E1 66 89 46 F8 . f . . f . F . 201 102 247 225 102 137 70 248
0098 83 7E 16 00 75 38 83 7E . ~ . . u 8 . ~ 131 126 22 0 117 56 131 126

38 - FAT32 File System II

© Copyright Virtual University of Pakistan

295

Cluster # for Root Directory

Offset 44 = 0x2C = 0x0000 0002

0000 EB 58 90 4D 53 57 49 4E . X . M S W I N 235 88 144 77 83 87 73 78
0008 34 2E 31 00 02 20 24 00 4 . 1 . . $. 52 46 49 0 2 32 36 0
0010 02 00 00 00 00 F8 00 00 2 0 0 0 0 248 0 0
0018 3F 00 F0 00 3F 00 00 00 ? . . . ? . . . 63 0 240 0 63 0 0 0
0020 41 29 54 02 3E 25 00 00 A) T . > % . . 65 41 84 2 62 37 0 0
0028 00 00 00 00 02 00 00 00 0 0 0 0 2 0 0 0
0030 01 00 06 00 00 00 00 00 1 0 6 0 0 0 0 0
0038 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0
0040 80 01 29 F1 17 79 2D 4E . .) . . y - N 128 1 41 241 23 121 45 78
0048 4F 20 4E 41 4D 45 20 20 O N A M E 79 32 78 65 77 69 32 32
0050 20 20 46 41 54 33 32 20 F A T 3 2 32 32 70 65 84 51 50 32
0058 20 20 33 C9 8E D1 BC F4 3 32 32 51 201 142 209 188 244
0060 7B 8E C1 8E D9 BD 00 7C { | 123 142 193 142 217 189 0 124
0068 88 4E 02 8A 56 40 B4 08 . N . . V @ . . 136 78 2 138 86 64 180 8
0070 CD 13 73 05 B9 FF FF 8A . . s 205 19 115 5 185 255 255 138
0078 F1 66 0F B6 C6 40 66 0F . f . . . @ f . 241 102 15 182 198 64 102 15
0080 B6 D1 80 E2 3F F7 E2 86 ? . . . 182 209 128 226 63 247 226 134
0088 CD C0 ED 06 41 66 0F B7 A f . . 205 192 237 6 65 102 15 183
0090 C9 66 F7 E1 66 89 46 F8 . f . . f . F . 201 102 247 225 102 137 70 248
0098 83 7E 16 00 75 38 83 7E . ~ . . u 8 . ~ 131 126 22 0 117 56 131 126

Size of Cluster in Sectors

Offset 13 = 0x0D = 0x20 = 32 blocks

0000 EB 58 90 4D 53 57 49 4E . X . M S W I N 235 88 144 77 83 87 73 78
0008 34 2E 31 00 02 20 24 00 4 . 1 . . $. 52 46 49 0 2 32 36 0
0010 02 00 00 00 00 F8 00 00 2 0 0 0 0 248 0 0
0018 3F 00 F0 00 3F 00 00 00 ? . . . ? . . . 63 0 240 0 63 0 0 0
0020 41 29 54 02 3E 25 00 00 A) T . > % . . 65 41 84 2 62 37 0 0
0028 00 00 00 00 02 00 00 00 0 0 0 0 2 0 0 0
0030 01 00 06 00 00 00 00 00 1 0 6 0 0 0 0 0
0038 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0
0040 80 01 29 F1 17 79 2D 4E . .) . . y - N 128 1 41 241 23 121 45 78
0048 4F 20 4E 41 4D 45 20 20 O N A M E 79 32 78 65 77 69 32 32
0050 20 20 46 41 54 33 32 20 F A T 3 2 32 32 70 65 84 51 50 32
0058 20 20 33 C9 8E D1 BC F4 3 32 32 51 201 142 209 188 244
0060 7B 8E C1 8E D9 BD 00 7C { | 123 142 193 142 217 189 0 124
0068 88 4E 02 8A 56 40 B4 08 . N . . V @ . . 136 78 2 138 86 64 180 8
0070 CD 13 73 05 B9 FF FF 8A . . s 205 19 115 5 185 255 255 138
0078 F1 66 0F B6 C6 40 66 0F . f . . . @ f . 241 102 15 182 198 64 102 15
0080 B6 D1 80 E2 3F F7 E2 86 ? . . . 182 209 128 226 63 247 226 134
0088 CD C0 ED 06 41 66 0F B7 A f . . 205 192 237 6 65 102 15 183
0090 C9 66 F7 E1 66 89 46 F8 . f . . f . F . 201 102 247 225 102 137 70 248
0098 83 7E 16 00 75 38 83 7E . ~ . . u 8 . ~ 131 126 22 0 117 56 131 126

So using all this information we calculate the LSN for cluster number 2 as shown the

slide below for this particular volume.

38 - FAT32 File System II

© Copyright Virtual University of Pakistan

296

Starting Sector for Cluster # 2
Starting Sector = Reserved Sect. + FatSize *

FatCopies + (cluster # - 2) *
size of cluster

= 0x0024 + 0x0000 253E *
0x0002 + (2 – 2) * 0x20

= 0x4AA0
= 19104D

To examine the contents of a file first a file is created whose contents are also shown in

the slide.

Creation of a File on Root
Directory

and is stored as myfile.txt on the root directory.

38 - FAT32 File System II

© Copyright Virtual University of Pakistan

297

Creation of a File on Root
Directory

Now we examine the contents of cluster number 2 which contains the root directory as

already seen in the previous slides.

000000000000 0000 E5 41 47 45 46 49 4C 45 53 59 53 26 00 3B A2 31 .AGEFILESYS&.;.1
000000000010 0010 A8 32 84 33 00 00 53 4E 84 33 03 00 00 60 01 00 .2.3..SN.3... .̀.
000000000020 0020 57 49 4E 44 4F 57 53 20 20 20 20 10 00 4C A2 31 WINDOWS ..L.1
000000000030 0030 A8 32 21 34 00 00 A3 31 A8 32 03 0A 00 00 00 00 .2!4...1.2......
000000000040 0040 4E 54 4C 44 52 20 20 20 20 20 20 27 08 00 71 A7 NTLDR '..q.
000000000050 0050 03 31 A8 32 00 00 71 A7 03 31 85 8E B0 D0 03 00 .1.2..q..1......
000000000060 0060 4E 54 44 45 54 45 43 54 43 4F 4D 27 00 00 D1 A4 NTDETECTCOM'....
000000000070 0070 03 31 A8 32 00 00 D1 A4 03 31 9E 8F CC B9 00 00 .1.2.....1......
000000000080 0080 42 4F 4F 54 20 20 20 20 49 4E 49 06 18 30 25 32 BOOT INI..0%2
000000000090 0090 A8 32 21 34 0E 00 5C 33 A8 32 F0 AD D3 00 00 00 .2!4..\3.2......
0000000000A0 00A0 42 20 00 53 00 65 00 74 00 74 00 0F 00 4A 69 00 B .S.e.t.t...Ji.
0000000000B0 00B0 6E 00 67 00 73 00 00 00 FF FF 00 00 FF FF FF FF n.g.s...........
0000000000C0 00C0 01 44 00 6F 00 63 00 75 00 6D 00 0F 00 4A 65 00 .D.o.c.u.m...Je.

Cluster # 2

0000000034E0 34E0 E5 59 46 49 4C 45 20 20 54 58 54 20 18 67 CC 16 .YFILE TXT .g..
0000000034F0 34F0 21 34 21 34 00 00 CD 16 21 34 00 00 00 00 00 00 !4!4....!4......
000000003500 3500 4D 59 46 49 4C 45 20 20 54 58 54 20 18 67 CC 16 MYFILE TXT .g..
000000003510 3510 21 34 21 34 09 00 CD 16 21 34 C9 29 29 00 00 00 !4!4....!4.))...
000000003520 3520 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000003530 3530 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

38 - FAT32 File System II

© Copyright Virtual University of Pakistan

298

From the information from above slides the low and high words of the first cluster

number is obtained and is shown in the slide below. The higher 4 bits of the cluster

number should be ignored as discussed earlier.

Cluster # within FCB
Cluster # Low Word = 29C9
Cluster # Hi Word = 0009H
0009 29C9 & 0FFF FFFF = 009 29C9

Using the cluster number above the LSN for this cluster is determined as shown in the

slide below.

File Data Sectors
Starting Sector = Reserved Sect. + FatSize *

FatCopies + (cluster # - 2) *
size of cluster

= 0024 + 253E * 2 +
(929C9 – 2) * 0x20

= 4AA0 + 12538E0
= 1258380
= 19235712

38 - FAT32 File System II

© Copyright Virtual University of Pakistan

299

The blocks within the cluster are read and their contents can be seen in the slide below.

File Data
Dump of LSN 19235712

0000 74 68 69 73 20 69 73 20 t h i s i s 116 104 105 115 32 105 115 32
0008 66 69 6C 65 20 74 6F 20 f i l e t o 102 105 108 101 32 116 111 32
0010 74 65 73 74 20 46 41 54 t e s t F A T 116 101 115 116 32 70 65 84
0018 33 32 20 66 69 6C 65 20 3 2 f i l e 51 50 32 102 105 108 101 32
0020 73 74 72 75 63 74 75 72 s t r u c t u r 115 116 114 117 99 116 117 114
0028 65 00 00 00 00 00 00 00 e 101 0 0 0 0 0 0 0
0030 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0
0038 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0
0040 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0
0048 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0
0050 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0
0058 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0
0060 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0
0068 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0
0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 9 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 A 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 B 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 C 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 D 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 E 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 F 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 9 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 A 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 B 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 C 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 D 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 E 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 F 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In the FAT32 there is another special reserved block called FSInfo sector. The block

contains some information required by the operating system while cluster

allocation/deallocation to files. This information is also critical for FAT16 based systems.

But in FAT12 and 16 this information is calculated when ever required. This calculation

at the time of allocation is not feasible in FAT32 as the size of FAT32 is very large and

such calculations will consume a lots of time, so to save time this information is stored in

the FSInfo block and is updated at the time of allocation/deallocation.

38 - FAT32 File System II

© Copyright Virtual University of Pakistan

300

39 - New Technology File System (NTFS)

© Copyright Virtual University of Pakistan

301

39 - New Technology File System (NTFS)

The following slide shows the anatomy of an NTFS based system. The FAT and root

directory has been replaced by the MFT. It will generally have two copies the other copy

will be a mirror image of the original. Rests of the blocks are reserved for user data. In the

middle of the volume is a copy of the first 16 MTF record which are very important to the

system.

User DataUser DataMFT
(Mirror)

MFT

Boot Block Copy of First 16 MFT records

39 - New Technology File System (NTFS)

© Copyright Virtual University of Pakistan

302

The following slides show the Boot sector structure for a NTFS based system.

NTFS General Boot Sector Structure

End of Sector
Marker

WORD0x01FE

Bootstrap
Code

426 bytes0x54

Extended BPB 48 bytes0x24

BPB25 bytes0x0B

OEM ID LONGLONG0x03

Jump
Instruction

3 bytes0x00

Field NameField LengthByte Offset

39 - New Technology File System (NTFS)

© Copyright Virtual University of Pakistan

303

The following slide shows a sample of the boot block dump. The following slides depict

various parameters placed in the Boot block.

Physical Sector:Cyl 0, Side 1, Sector 1
00000000:EB 52 90 4E 54 46 53 20 -20 20 20 00 02 08 00 00 .R.NTFS
00000010:00 00 00 00 00 F8 00 00 -3F 00 FF 00 3F 00 00 00?...?...
00000020:00 00 00 00 80 00 80 00 -4A F5 7F 00 00 00 00 00J.......
00000030:04 00 00 00 00 00 00 00 -54 FF 07 00 00 00 00 00T.......
00000040:F6 00 00 00 01 00 00 00 -14 A5 1B 74 C9 1B 74 1Ct..t. 00000050:00 00 00 00 FA 33 C0 8E -D0 BC 00 7C FB B8 C0 073.....|.... 00000060:8E D8 E8 16 00
B8 00 0D -8E C0 33 DB C6 06 0E 003..... 00000070:10 E8 53 00 68 00 0D 68 -6A 02 CB 8A 16 24 00 B4 ..S.h..hj....$.. 00000080:08 CD 13 73 05 B9 FF FF -8A F1 66 0F
B6 C6 40 66 ...s......f...@f 00000090:0F B6 D1 80 E2 3F F7 E2 -86 CD C0 ED 06 41 66 0F?.......Af. 000000A0:B7 C9 66 F7 E1 66 A3 20 -00 C3 B4 41 BB AA 55 8A
..f..f....A..U. 000000B0:16 24 00 CD 13 72 0F 81 -FB 55 AA 75 09 F6 C1 01 .$...r...U.u.... 000000C0:74 04 FE 06 14 00 C3 66 -60 1E 06 66 A1 10 00 66 t......f`..f...f
000000D0:03 06 1C 00 66 3B 06 20 -00 0F 82 3A 00 1E 66 6Af;....:..fj 000000E0:00 66 50 06 53 66 68 10 -00 01 00 80 3E 14 00 00 .fP.Sfh.....>... 000000F0:0F 85 0C 00 E8
B3 FF 80 -3E 14 00 00 0F 84 61 00>.....a. 00000100:B4 42 8A 16 24 00 16 1F -8B F4 CD 13 66 58 5B 07 .B..$......fX [.. 00000110:66 58 66 58 1F EB 2D 66 -33 D2 66 0F
B7 0E 18 00 fXfX.-f3.f...... 00000120:66 F7 F1 FE C2 8A CA 66 -8B D0 66 C1 EA 10 F7 36 f......f..f....6 00000130:1A 00 86 D6 8A 16 24 00 -8A E8 C0 E4 06 0A CC B8
......$......... 00000140:01 02 CD 13 0F 82 19 00 -8C C0 05 20 00 8E C0 66f 00000150:FF 06 10 00 FF 0E 0E 00 -0F 85 6F FF 07 1F 66 61o...fa

00000160:C3 A0 F8 01 E8 09 00 A0 -FB 01 E8 03 00 FB EB FE
00000170:B4 01 8B F0 AC 3C 00 74 -09 B4 0E BB 07 00 CD 10<.t........
00000180:EB F2 C3 0D 0A 41 20 64 -69 73 6B 20 72 65 61 64A disk read
00000190:20 65 72 72 6F 72 20 6F -63 63 75 72 72 65 64 00 error occurred.
000001A0:0D 0A 4E 54 4C 44 52 20 -69 73 20 6D 69 73 73 69 ..NTLDR is missi
000001B0:6E 67 00 0D 0A 4E 54 4C -44 52 20 69 73 20 63 6F ng...NTLDR is co
000001C0:6D 70 72 65 73 73 65 64 -00 0D 0A 50 72 65 73 73 mpressed...Press
000001D0:20 43 74 72 6C 2B 41 6C -74 2B 44 65 6C 20 74 6F Ctrl+Alt+Del to
000001E0:20 72 65 73 74 61 72 74 -0D 0A 00 00 00 00 00 00 restart........
000001F0:00 00 00 00 00 00 00 00 -83 A0 B3 C9 00 00 55 AAU.

Sample of NTFS Boot Block

Sector Per Cluster =0008

Physical Sector:Cyl 0, Side 1, Sector 1
00000000:EB 52 90 4E 54 46 53 20 -20 20 20 00 02 08 00 00 .R.NTFS
00000010:00 00 00 00 00 F8 00 00 -3F 00 FF 00 3F 00 00 00?...?...
00000020:00 00 00 00 80 00 80 00 -4A F5 7F 00 00 00 00 00J.......
00000030:04 00 00 00 00 00 00 00 -54 FF 07 00 00 00 00 00T.......
00000040:F6 00 00 00 01 00 00 00 -14 A5 1B 74 C9 1B 74 1Ct..t. 00000050:00 00 00 00 FA 33 C0 8E -D0 BC 00 7C FB B8 C0 073.....|.... 00000060:8E D8 E8 16 00
B8 00 0D -8E C0 33 DB C6 06 0E 003..... 00000070:10 E8 53 00 68 00 0D 68 -6A 02 CB 8A 16 24 00 B4 ..S.h..hj....$.. 00000080:08 CD 13 73 05 B9 FF FF -8A F1 66 0F
B6 C6 40 66 ...s......f...@f 00000090:0F B6 D1 80 E2 3F F7 E2 -86 CD C0 ED 06 41 66 0F?.......Af. 000000A0:B7 C9 66 F7 E1 66 A3 20 -00 C3 B4 41 BB AA 55 8A
..f..f....A..U. 000000B0:16 24 00 CD 13 72 0F 81 -FB 55 AA 75 09 F6 C1 01 .$...r...U.u.... 000000C0:74 04 FE 06 14 00 C3 66 -60 1E 06 66 A1 10 00 66 t......f`..f...f
000000D0:03 06 1C 00 66 3B 06 20 -00 0F 82 3A 00 1E 66 6Af;....:..fj 000000E0:00 66 50 06 53 66 68 10 -00 01 00 80 3E 14 00 00 .fP.Sfh.....>... 000000F0:0F 85 0C 00 E8
B3 FF 80 -3E 14 00 00 0F 84 61 00>.....a. 00000100:B4 42 8A 16 24 00 16 1F -8B F4 CD 13 66 58 5B 07 .B..$......fX [.. 00000110:66 58 66 58 1F EB 2D 66 -33 D2 66 0F
B7 0E 18 00 fXfX.-f3.f...... 00000120:66 F7 F1 FE C2 8A CA 66 -8B D0 66 C1 EA 10 F7 36 f......f..f....6 00000130:1A 00 86 D6 8A 16 24 00 -8A E8 C0 E4 06 0A CC B8
......$......... 00000140:01 02 CD 13 0F 82 19 00 -8C C0 05 20 00 8E C0 66f 00000150:FF 06 10 00 FF 0E 0E 00 -0F 85 6F FF 07 1F 66 61o...fa

00000160:C3 A0 F8 01 E8 09 00 A0 -FB 01 E8 03 00 FB EB FE
00000170:B4 01 8B F0 AC 3C 00 74 -09 B4 0E BB 07 00 CD 10<.t........
00000180:EB F2 C3 0D 0A 41 20 64 -69 73 6B 20 72 65 61 64A disk read
00000190:20 65 72 72 6F 72 20 6F -63 63 75 72 72 65 64 00 error occurred.
000001A0:0D 0A 4E 54 4C 44 52 20 -69 73 20 6D 69 73 73 69 ..NTLDR is missi
000001B0:6E 67 00 0D 0A 4E 54 4C -44 52 20 69 73 20 63 6F ng...NTLDR is co
000001C0:6D 70 72 65 73 73 65 64 -00 0D 0A 50 72 65 73 73 mpressed...Press
000001D0:20 43 74 72 6C 2B 41 6C -74 2B 44 65 6C 20 74 6F Ctrl+Alt+Del to
000001E0:20 72 65 73 74 61 72 74 -0D 0A 00 00 00 00 00 00 restart........
000001F0:00 00 00 00 00 00 00 00 -83 A0 B3 C9 00 00 55 AAU.

MFT File Cluster #

MFT File Cluster # =00000004

The first 16 entries of the MFT are reserved. Rests of the entries are used for user files.

There is an entry for each file in the MFT. There can be difference in the way a file is

managed depending upon the size of the file.

39 - New Technology File System (NTFS)

© Copyright Virtual University of Pakistan

304

MFT Internal Structure

Small Directory
Record

Large File Record

Small File Record

Log File
MFT

Following slide shows the detail about the first 16 system entries within the MFT.

39 - New Technology File System (NTFS)

© Copyright Virtual University of Pakistan

305

40 - Disassembling the NTFS based file

© Copyright Virtual University of Pakistan

306

40 - Disassembling the NTFS based file

Now in the following example a file is created and its entry is searched in the MFT. The

following slide shows that the name of the file created is TEST.TXT.

Creation of a File on NTFS
Volume

This slide show the contents of the file created.

Creation of a File on NTFS
Volume

The first logical block is read to read the contents of the BPB in NTFS. Following shows

the contents of boot block for this volume.

40 - Disassembling the NTFS based file

© Copyright Virtual University of Pakistan

307

Boot Sector of the Volume
0000 EB 52 90 4E 54 46 53 20 . R . N T F S 235 82 144 78 84 70 83 32
0008 20 20 20 00 02 08 00 00 32 32 32 0 2 8 0 0
0010 00 00 00 00 00 F8 00 00 0 0 0 0 0 248 0 0
0018 3F 00 FF 00 3F 00 00 00 ? . . . ? . . . 63 0 255 0 63 0 0 0
0020 00 00 00 00 80 00 80 00 0 0 0 0 128 0 128 0
0028 44 A2 D7 01 00 00 00 00 D 68 162 215 1 0 0 0 0
0030 00 00 0C 00 00 00 00 00 0 0 12 0 0 0 0 0
0038 24 7A 1D 00 00 00 00 00 $ z 36 122 29 0 0 0 0 0
0040 F6 00 00 00 01 00 00 00 246 0 0 0 1 0 0 0

0048 6A 94 9C 86 D4 9C 86 78 j x 106 148 156 134 212 156 134 120
0050 00 00 00 00 FA 33 C0 8E 3 . . 0 0 0 0 250 51 192 142
0058 D0 BC 00 7C FB B8 C0 07 . . . | 208 188 0 124 251 184 192 7
0060 8E D8 E8 16 00 B8 00 0D 142 216 232 22 0 184 0 13
0068 8E C0 33 DB C6 06 0E 00 . . 3 142 192 51 219 198 6 14 0
0070 10 E8 53 00 68 00 0D 68 . . S . h . . h 16 232 83 0 104 0 13 104
0078 6A 02 CB 8A 16 24 00 B4 j $. . 106 2 203 138 22 36 0 180
0080 08 CD 13 73 05 B9 FF FF . . . s 8 205 19 115 5 185 255 255
0088 8A F1 66 0F B6 C6 40 66 . . f . . . @ f 138 241 102 15 182 198 64 102
0090 0F B6 D1 80 E2 3F F7 E2 ? . . 15 182 209 128 226 63 247 226
0098 86 CD C0 ED 06 41 66 0F A f . 134 205 192 237 6 65 102 15
00A0 B7 C9 66 F7 E1 66 A3 20 . . f . . f . 183 201 102 247 225 102 163 32
00A8 00 C3 B4 41 BB AA 55 8A . . . A . . U . 0 195 180 65 187 170 85 138
00B0 16 24 00 CD 13 72 0F 81 . $. . . r . . 22 36 0 205 19 114 15 129
00B8 FB 55 AA 75 09 F6 C1 01 . U . u 251 85 170 117 9 246 193 1
00C0 74 04 FE 06 14 00 C3 66 t f 116 4 254 6 20 0 195 102
00C8 60 1E 06 66 A1 10 00 66 ` . . f . . . f 96 30 6 102 161 16 0 102
00D0 03 06 1C 00 66 3B 06 20 f ; . 3 6 28 0 102 59 6 32
00D8 00 0F 82 3A 00 1E 66 6A . . . : . . f j 0 15 130 58 0 30 102 106
00E0 00 66 50 06 53 66 68 10 . f P . S f h . 0 102 80 6 83 102 104 16
00E8 00 01 00 80 3E 14 00 00 > . . . 0 1 0 128 62 20 0 0
00F0 0F 85 0C 00 E8 B3 FF 80 15 133 12 0 232 179 255 128
00F8 3E 14 00 00 0F 84 61 00 > a . 62 20 0 0 15 132 97 0
0100 B4 42 8A 16 24 00 16 1F . B . . $. . . 180 66 138 22 36 0 22 31
0108 8B F4 CD 13 66 58 5B 07 f X [. 139 244 205 19 102 88 91 7
0110 66 58 66 58 1F EB 2D 66 f X f X . . - f 102 88 102 88 31 235 45 102
0118 33 D2 66 0F B7 0E 18 00 3 . f 51 210 102 15 183 14 24 0
0120 66 F7 F1 FE C2 8A CA 66 f f 102 247 241 254 194 138 202 102
0128 8B D0 66 C1 EA 10 F7 36 . . f 6 139 208 102 193 234 16 247 54
0130 1A 00 86 D6 8A 16 24 00 $. 26 0 134 214 138 22 36 0
0138 8A E8 C0 E4 06 0A CC B8 138 232 192 228 6 10 204 184
0140 01 02 CD 13 0F 82 19 00 1 2 205 19 15 130 25 0
0148 8C C0 05 20 00 8E C0 66 f 140 192 5 32 0 142 192 102
0150 FF 06 10 00 FF 0E 0E 00 255 6 16 0 255 14 14 0
0158 0F 85 6F FF 07 1F 66 61 . . o . . . f a 15 133 111 255 7 31 102 97
0160 C3 A0 F8 01 E8 09 00 A0 195 160 248 1 232 9 0 160
0168 FB 01 E8 03 00 FB EB FE 251 1 232 3 0 251 235 254
0170 B4 01 8B F0 AC 3C 00 74 < . t 180 1 139 240 172 60 0 116
0178 09 B4 0E BB 07 00 CD 10 9 180 14 187 7 0 205 16
0180 EB F2 C3 0D 0A 41 20 64 A d 235 242 195 13 10 65 32 100
0188 69 73 6B 20 72 65 61 64 i s k r e a d 105 115 107 32 114 101 97 100
0190 20 65 72 72 6F 72 20 6F e r r o r o 32 101 114 114 111 114 32 111
0198 63 63 75 72 72 65 64 00 c c u r r e d . 99 99 117 114 114 101 100 0
01A0 0D 0A 4E 54 4C 44 52 20 . . N T L D R 13 10 78 84 76 68 82 32
01A8 69 73 20 6D 69 73 73 69 i s m i s s i 105 115 32 109 105 115 115 105
01B0 6E 67 00 0D 0A 4E 54 4C n g . . . N T L 110 103 0 13 10 78 84 76
01B8 44 52 20 69 73 20 63 6F D R i s c o 68 82 32 105 115 32 99 111
01C0 6D 70 72 65 73 73 65 64 m p r e s s e d 109 112 114 101 115 115 101 100
01C8 00 0D 0A 50 72 65 73 73 . . . P r e s s 0 13 10 80 114 101 115 115
01D0 20 43 74 72 6C 2B 41 6C C t r l + A l 32 67 116 114 108 43 65 108
01D8 74 2B 44 65 6C 20 74 6F t + D e l t o 116 43 68 101 108 32 116 111
01E0 20 72 65 73 74 61 72 74 r e s t a r t 32 114 101 115 116 97 114 116
01E8 0D 0A 00 00 00 00 00 00 13 10 0 0 0 0 0 0
01F0 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0

01F8 83 A0 B3 C9 00 00 55 AA U . 131 160 179 201 0 0 85 170```̀ ```````````````````````̀ ```````````````````````̀ ````

Following slides shows various parameters obtained from BPB.

00F0 0F 85 0C 00 E8 B3 FF 80 15 133 12 0 232 179 255 128
00F8 3E 14 00 00 0F 84 61 00 > a . 62 20 0 0 15 132 97 0
0100 B4 42 8A 16 24 00 16 1F . B . . $. . . 180 66 138 22 36 0 22 31
0108 8B F4 CD 13 66 58 5B 07 f X [. 139 244 205 19 102 88 91 7
0110 66 58 66 58 1F EB 2D 66 f X f X . . - f 102 88 102 88 31 235 45 102

0118 33 D2 66 0F B7 0E 18 00 3 . f 51 210 102 15 183 14 24 0
0120 66 F7 F1 FE C2 8A CA 66 f f 102 247 241 254 194 138 202 102
0128 8B D0 66 C1 EA 10 F7 36 . . f 6 139 208 102 193 234 16 247 54
0130 1A 00 86 D6 8A 16 24 00 $. 26 0 134 214 138 22 36 0
0138 8A E8 C0 E4 06 0A CC B8 138 232 192 228 6 10 204 184
0140 01 02 CD 13 0F 82 19 00 1 2 205 19 15 130 25 0
0148 8C C0 05 20 00 8E C0 66 f 140 192 5 32 0 142 192 102
0150 FF 06 10 00 FF 0E 0E 00 255 6 16 0 255 14 14 0
0158 0F 85 6F FF 07 1F 66 61 . . o . . . f a 15 133 111 255 7 31 102 97
0160 C3 A0 F8 01 E8 09 00 A0 195 160 248 1 232 9 0 160
0168 FB 01 E8 03 00 FB EB FE 251 1 232 3 0 251 235 254
0170 B4 01 8B F0 AC 3C 00 74 < . t 180 1 139 240 172 60 0 116
0178 09 B4 0E BB 07 00 CD 10 9 180 14 187 7 0 205 16
0180 EB F2 C3 0D 0A 41 20 64 A d 235 242 195 13 10 65 32 100

0188 69 73 6B 20 72 65 61 64 i s k r e a d 105 115 107 32 114 101 97 100
0190 20 65 72 72 6F 72 20 6F e r r o r o 32 101 114 114 111 114 32 111
0198 63 63 75 72 72 65 64 00 c c u r r e d . 99 99 117 114 114 101 100 0
01A0 0D 0A 4E 54 4C 44 52 20 . . N T L D R 13 10 78 84 76 68 82 32
01A8 69 73 20 6D 69 73 73 69 i s m i s s i 105 115 32 109 105 115 115 105
01B0 6E 67 00 0D 0A 4E 54 4C n g . . . N T L 110 103 0 13 10 78 84 76
01B8 44 52 20 69 73 20 63 6F D R i s c o 68 82 32 105 115 32 99 111
01C0 6D 70 72 65 73 73 65 64 m p r e s s e d 109 112 114 101 115 115 101 100
01C8 00 0D 0A 50 72 65 73 73 . . . P r e s s 0 13 10 80 114 101 115 115
01D0 20 43 74 72 6C 2B 41 6C C t r l + A l 32 67 116 114 108 43 65 108
01D8 74 2B 44 65 6C 20 74 6F t + D e l t o 116 43 68 101 108 32 116 111
01E0 20 72 65 73 74 61 72 74 r e s t a r t 32 114 101 115 116 97 114 116
01E8 0D 0A 00 00 00 00 00 00 13 10 0 0 0 0 0 0
01F0 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0
01F8 83 A0 B3 C9 00 00 55 AA U . 131 160 179 201 0 0 85 170

Sector Per Cluster = 0008 MFT Cluster # =000c0000h=786432

40 - Disassembling the NTFS based file

© Copyright Virtual University of Pakistan

308

For NTFS simply the following formula will be used to translate the sector number into

cluster number.

Sector # = Cluster # * Sector Per Cluster

Determining the Sector # from
Cluster #

Following slide shows how the sector number for the MFT on this volume was

calculated. The first block of MFT no this volume is 6291456.

MFT Cluster # * 8 = Sector

786432 * 8 = 6291456

6291520

Disassembling the File

40 - Disassembling the NTFS based file

© Copyright Virtual University of Pakistan

309

From the block number 6291456 entries were searched for TEST.TXT and this file entry

was found at the block number 6291520.

0000 46 49 4C 45 30 00 03 00 F I L E 0 . . . 70 73 76 69 48 0 3 0
0008 55 55 12 04 00 00 00 00 U U 85 85 18 4 0 0 0 0

0 0 1 0 0 3 0 0 0 1 0 0 3 8 0 0 0 1 0 0 8 . . . 3 0 1 0 5 6 0 1 0

0 0 1 8 7 0 0 1 0 0 0 0 0 0 0 4 0 0 0 0 p 11 2 1 0 0 0 4 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 8 0 6 0 0 0 0 0 0 2 0 0 0 0 0 0 0 6 0 0 0 3 2 0 0 0

0 0 3 0 0 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 3 8 1 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 ` . . . 1 6 0 0 0 9 6 0 0 0

0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 4 8 4 8 0 0 0 0 0 0 1 8 0 0 0 0 0 0 H 7 2 0 0 0 2 4 0 0 0

0 0 5 0 E 1 3 E 2 9 2 B A D 1 2 C 6 0 1 . >) + 22 5 6 2 4 1 4 3 1 7 3 1 8 19 8 1

0 0 5 8 0 3 8 6 7 D 3 F A D 1 2 C 6 0 1 . . } ? 3 1 3 4 1 2 5 6 3 1 7 3 1 8 19 8 1
0 0 6 0 0 3 8 6 7 D 3 F A D 1 2 C 6 0 1 . . } ? 3 1 3 4 1 2 5 6 3 1 7 3 1 8 19 8 1

0 0 6 8 0 B B 0 8 2 6 D B 7 1 2 C 6 0 1 . . . m 1 1 1 7 6 1 3 0 10 9 1 8 3 1 8 19 8 1
0 0 7 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0

0 0 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 8 0 0 0 0 0 0 0 0 0 0 B 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 9 8 3 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 . . . p . . . 4 8 0 0 0 1 1 2 0 0 0

0 0 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 4 0
0 0 A 8 5 2 0 0 0 0 0 0 1 8 0 0 0 1 0 0 R 8 2 0 0 0 2 4 0 1 0

0 0 B 0 0 5 0 0 0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 0 0 0 5 0

0 0 B 8 E 1 3 E 2 9 2 B A D 1 2 C 6 0 1 . >) + 22 5 6 2 4 1 4 3 1 7 3 1 8 19 8 1
0 0 C 0 E 1 3 E 2 9 2 B A D 1 2 C 6 0 1 . >) + 22 5 6 2 4 1 4 3 1 7 3 1 8 19 8 1

0 0 C 8 E 1 3 E 2 9 2 B A D 1 2 C 6 0 1 . >) + 22 5 6 2 4 1 4 3 1 7 3 1 8 19 8 1
0 0 D 0 E 1 3 E 2 9 2 B A D 1 2 C 6 0 1 . >) + 22 5 6 2 4 1 4 3 1 7 3 1 8 19 8 1

0 0 D 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 E 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0

00F0 08 03 74 00 65 00 73 00 . . t . e . s . 8 3 116 0 101 0 115 0
00F8 74 00 2E 00 74 00 78 00 t . . . t . x . 116 0 46 0 116 0 120 0
0100 74 00 2E 00 54 00 58 00 t . . . T . X . 116 0 46 0 84 0 88 0
0108 40 00 00 00 28 00 00 00 @ . . . (. . . 64 0 0 0 40 0 0 0
0110 00 00 00 00 00 00 05 00 0 0 0 0 0 0 5 0
0118 10 00 00 00 18 00 00 00 16 0 0 0 24 0 0 0
0120 06 B0 B6 4A 9B 7E DA 11 . . . J . ~ . . 6 176 182 74 155 126 218 17
0128 A9 46 00 50 8D 39 66 58 . F . P . 9 f X 169 70 0 80 141 57 102 88
0130 80 00 00 00 38 00 00 00 8 . . . 128 0 0 0 56 0 0 0
0138 00 00 18 00 00 00 01 00 0 0 24 0 0 0 1 0
0140 1E 00 00 00 18 00 00 00 30 0 0 0 24 0 0 0
0148 68 65 6C 6C 6F 20 74 68 h e l l o t h 104 101 108 108 111 32 116 104
0150 69 73 20 69 73 20 61 20 i s i s a 105 115 32 105 115 32 97 32
0158 4E 54 46 53 20 74 65 73 N T F S t e s 78 84 70 83 32 116 101 115
0160 74 20 66 69 6C 65 00 00 t f i l e . . 116 32 102 105 108 101 0 0
0168 FF FF FF FF 82 79 47 11 y G . 255 255 255 255 130 121 71 17

0170 20 00 54 00 65 00 78 00 . T . e . x . 32 0 84 0 101 0 120 0

0178 74 00 20 00 44 00 6F 00 t . . D . o . 116 0 32 0 68 0 111 0
0180 63 00 75 00 6D 00 65 00 c . u . m . e . 99 0 117 0 109 0 101 0
0188 6E 00 74 00 2E 00 74 00 n . t . . . t . 110 0 116 0 46 0 116 0

0 1 9 0 7 8 0 0 7 4 0 0 0 0 0 0 0 0 0 0 x . t 12 0 0 1 1 6 0 0 0 0 0

0 1 9 8 8 0 0 0 0 0 0 0 1 8 0 0 0 0 0 0 12 8 0 0 0 2 4 0 0 0
0 1 A 0 0 0 0 0 1 8 0 0 0 0 0 0 0 1 0 0 0 0 2 4 0 0 0 1 0

0 1 A 8 0 0 0 0 0 0 0 0 1 8 0 0 0 0 0 0 0 0 0 0 2 4 0 0 0
0 1 B 0 F F F F F F F F 8 2 7 9 4 7 1 1 y G . 25 5 2 5 5 2 5 5 25 5 1 3 0 1 2 1 7 1 1 7

0 1 B 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 C 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 D 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 E 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 F 8 0 0 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 0 1 0 0 2 2 2 2 22

The above dump shows the file name as well as the contents of the file are stored in this

entry. Has the file been larger it would not have been possible to store the content of the

file in this entry so other clusters would have been used and there would indexes would

have been kept in the entry.

As an exercise one can try to find out the sub folders and the contents of the files stored in

it.

40 - Disassembling the NTFS based file

© Copyright Virtual University of Pakistan

310

The following slides explain how the NTFS volume can be accessed in DOS. Normally it

can not be accessed if the system has booted in DOS as the DOS device drivers do not

understand NTFS.7

Accessing NTFS volume in DOS

• NTFS volume can not be accessed in DOS
using DOS based function like absread()
etc.
• DOS device drivers does not understand
the NTFS data structures like MFT etc.
• If NTFS volume is accessed in DOS, it will
fire the error of Invalid Media.

How to Access NTFS volume using
BIOS Functions

• If the system has booted in DOS then a
NTFS volume can be accessed by an Indirect
Method, using BIOS functions..
• This technique makes use of physical
addresses.
• Sector can be accessed by converting their
LSN into LBA address and then using the
LBA address in extended BIOS functions to
access the disk sectors.

40 - Disassembling the NTFS based file

© Copyright Virtual University of Pakistan

311

Translating LSN to LBA

NTFS Partition BlockOther File System

No. of Physical Blocks
for other Partition

Hidden Blocks

LBA = No. of Physical Blocks in other Partition +
Hidden Blocks + LSN

• All this information can be retrieved from the
Partition Table + Boot Block

41 - Disk Utilities

© Copyright Virtual University of Pakistan

312

41 - Disk Utilities
#include <stdio.h>
#include <dos.h>
#include <bios.h>
#include <alloc.h>
typedef struct tagfcb
{ unsigned char filename [8];

unsigned char ext[3];
unsigned char attrib;
unsigned char reserved [10];
unsigned int time,date;
unsigned int firstcluster;
unsigned long int size;

}FCB;
typedef struct tagBPB
{ unsigned int bytespersec;

unsigned char secperclust;
unsigned int reservedsecs;
unsigned char fats;
unsigned int rootdirents;
unsigned int smallsecs;
unsigned char media;

unsigned int fatsecs;
unsigned int secspertrack;
unsigned int heads;
unsigned long int hiddensecs;
unsigned long int hugesecs;
unsigned char driveno;
unsigned char reserved;
unsigned char bootsignature;
unsigned long int volumeid;
unsigned char volumelabel[11];
unsigned char filesystem[8];

}BPB;

struct bootblock
{

unsigned char jumpinst[3];
unsigned char osname[8];
BPB bpb;
unsigned char code[448];

};

DPB far * getdpb(int drive)
{

DPB far *dpb=(DPB far *)0;
_asm push ds;
_asm mov ah,0x32
_asm mov dl,byte ptr drive;
_asm mov dx,ds;
_asm int 0x21;
_asm pop ds
_asm cmp al,0xff
_asm je finish
_asm mov word ptr dpb+2,dx
_asm mov word ptr dpb,bx
return dpb;
finish:

return ((DPB far *)(0));
}

41 - Disk Utilities

© Copyright Virtual University of Pakistan

313

void main (void)
{

unsigned char filename[9];
struct bootblock bb;
unsigned char ext[4];
FCB * dirbuffer;
unsigned int * FAT;
DPB d;
DPB far * dpbptr;
int i,flag;
unsigned int cluster;
puts("Enter filename:");
gets (filename);
puts("Enter Extension");
gets(ext);
if ((absread(0x05,1,0,&bb))==0)

puts ("Success");
else{

puts("Failure");
exit(0);

}

FAT =malloc(512);
dirbuffer=malloc((bb.bpb.rootdirents) * 32);
absread(0x05,bb.bpb.fatsecs,bb.bpb.reservedsecs+1,F AT);
absread(0x05,(bb.bpb.rootdirents*32)/bb.bpb.b yt espersec
,bb.bpb.fatsecs*bb.bpb.fats+bb.bpb.reservedsecs ,dirbuffer);
i = 0; flag=0;
while(i<bb.bpb.rootdirents)
{

if((strncmpi(filen ame,d irbuffer[i].filename,strlen(filename)))==0)
{

if ((strncmpi(ext,dirbuffer[i].ext,strlen(ext)))==0)
{

flag=1;
cluster = d irbuffer[i].firstcluster;
printf("\nFirst clu ster = %x ",cluster);
while (cluster < 0xFFF0)
{

absread(0x05,1,bb.bpb.reservedsecs+(cluster/256),F AT);
cluster = FAT[cluster%256];
printf("\nNext Cluster is :%x",cluster);

}
}
if (flag ==1)

break;
i++;

}else
i++;

}
}

The above program uses the DPB to reach the clusters of a file. The getDPB() function

gets the far address of the DPB. Using this address the drive parameters are used to

determine the location of FAT and root directory. The file is firstly searched in the root

directory through sequential search. If the file name and extension is found the first

cluster number is used to look up into the FAT for subsequent clusters. The particular

block containing the next cluster within the FAT is loaded and the entry is read, similarly

the whole chain is traversed till the end of file is encountered.

41 - Disk Utilities

© Copyright Virtual University of Pakistan

314

Disk Utilities
Format
• Low Level Format

-- sets the block size.
-- sets the Initial values in the block.
-- indexes the block for optimal usage.
-- can be accomplished using BIOS

routines for small disks or extended
BIOS services for larger disks.

• Quick Format
-- initializes the data structures for file

management.
-- initializes and sets the size of FAT, root
directory etc, according to the drive size.
-- initializes the data in boot block and

places appropriate boot strap code for
the boot block.

Disk Partitioning Software
• Write the code part of partition table to
appropriately load the Boot Block of active
partition in primary partition table.
• Places data in the partition table regarding
primary and extended partitions.
• As per specification of the user assigns a
appropriate size to primary and extended
partition by modifying their data part.

41 - Disk Utilities

© Copyright Virtual University of Pakistan

315

Scan Disk
Surface Scan for Bad Sectors

• It attempts to write a block.
• After write it reads back the block contents.
• Performs the CRC test on data read back.
• If there is an error then the data on that block
is not stable the cluster of that block should be
marked bad.
• The cluster is marked bad by placing the
appropriate code for bad cluster so that they
may not be allocated to any file.

Lost Chains
• The disk scanning software may also look
for lost chains.
• Lost chains are chains in FAT which
apparently don’t belong to any file.
• They may occur due to some error in the
system like power failure during deletion
process.

Looking for Lost Chains
• For each file entry in the directory structure
its chain in FAT is traversed.
• All the cluster in the file are marked.
• When done with all the files and folders, if
some non-zero and non-reserved clusters are
left then they belong to some lost chains.
• The lost chains are firstly discretely
identified and then each chain can either be
restored to newly named files or can be
deleted.

41 - Disk Utilities

© Copyright Virtual University of Pakistan

316

Cross References
• If a cluster lie in more than one file
chain, then its said to be Cross
Referenced.
• Cross references can pose great
problems.
• Cross references can be detected easily
by traversing through the chain of all files
and marking the cluster # during traversal.
• If a cluster is referenced more than once
then it indicates a cross reference.
• To solve the problem only one reference
should be maintained.

7
14

EOF

9

7

53

5

7

11

13

14

Defragmenter
• Disk fragmentation is unwanted.
• Fragmentation means that clusters of a same file are not
contiguously placed, rather they are far apart, increasing seek
time hence access time.
• So its desirable that files clusters may be placed contiguously,
this can be done by compaction or defragmentation.
• Defragmentation Software reserves space for each file in
contiguous block by moving the data in clusters and
readjusting.
• As a result of defragmentation the FAT entries will change
and data will move from one cluster to other localized cluster to
reduce seek time.
• Defragmentation has high computation cost and thus cannot
be performed frequently.

File Restoration
• FAT structure provides the possibility of recovering a file
after deletion, if its clusters were contiguous and have not been
over-written.
• DOS perform file deletion by placing 0xE5 at the first byte of
it FCB entry and placing 0’s (meaning available) in the entries
for the file clusters in the FAT.
• Two task should be performed successfully to undelete a file

-- Replacing the 0xE5 entry in FCB by a valid file name
character.

-- placing the appropriate values in FAT for
representation of file cluster chain.
• If any one of the above cannot be done then the file cannot be
fully recovered.

42 - Memory Management

© Copyright Virtual University of Pakistan

317

42 - Memory Management

Memory Management
• Understanding of the data structures and
techniques used for memory management.
• Study of the overall memory areas used by
operating system and applications.

The following slide shows the memory map of the first 1MB of RAM. The first 640KB is

called conventional RAM and the higher 384KB is called system memory. Some of the

memory areas are reserved for special purposes as described by the slide rest is user area

where user application can reside.

Memory Map

Shadow RAM
Unused

Text Display

Graphics Display

Command.Com
(Transient Part)

User Applications

Command.Com (Resident
Part)

Other Device Drivers

MSDOS.Sys

IO.Sys

DOS Data Area

BIOS Data Area

IVT

Earlier PCs (20-bit Address Bus

Converted RAM
(640 KB)

System Memory
(384 KB)

0000 : 0000H

9000 : FFFFH
A000 : 0000H

F000 : 0000H
F000 : FFFFH

42 - Memory Management

© Copyright Virtual University of Pakistan

318

In higher processors, the main memory may be greater than 1MB. In this slide it shows

that the memory portion higher than 1MB is called extended memory and some unused

portion in system memory is called the expanded memory.

Memory Map
Higher Processors with 24-bit or 32-bit Address Bus

Expanded Memory (64 KB)

Extended Memory
(higher than 1 MB)

Conventional RAM (640 KB)

System RAM (384 KB)

Expanded Memory
• also called EMS
• can be accessed using a driver called EMM386.EXE
• this driver allows the use of unused memory within
system memory.

Extended Memory
• also called XMS
• can be accessed by installing the driver HIMEM.SYS
• this driver enable the extended memory by shifting from
Real to Protected Mode.

42 - Memory Management

© Copyright Virtual University of Pakistan

319

Dual Modes in Higher PCs
Higher PCs can operate in two modes
• REAL MODE
• PROTECTED MODE

Real Mode
• PCs initially boots up in Real Mode. It may be shifted to
protected mode during the booting process using drivers
like HIMEM.SYS
• Only first 1 MB of RAM can be accessed in Real Mode.
• The Real Mode address is a 20-bit address, stored and
represented in the form of Segment : Offset
• OS like DOS has a memory management system in
reflection of the Real Mode.

Protected Mode
• PC has to be shifted to Protected Mode if originally
boots in Real Mode.
• In Protected Mode whole of the RAM is accessible that
includes the Conventional, Expanded and Extended
Memories.
• OS like Windows has a memory management system
for Protected Mode.
• A privilege level can be assigned to a memory area
restricting its access.

42 - Memory Management

© Copyright Virtual University of Pakistan

320

Memory Management in DOS
• DOS uses the conventional memory first 640 KB for its
memory management.
• Additional 64 KB can be utilized by installing
EMM386.EXE and additional 64 KB in the start of
extended memory by installing HIMEM.SYS
• Smallest allocatable unit in DOS is a Paragraph, not a
Byte.

Paragraph
• Whenever memory is to be allocated DOS allocates memory in form of
Paragraph.
• A Paragraph can be understood from the following example

consider two Physical Addresses
1234 H : 0000 H
1235 H : 0000 H

• Note there is a difference of 1 between the Segment address.
• Now lets calculate the Physical address

12340 H
12350 H

Difference = 10 H
• A difference of 1 H in Segment address cause a difference of 10 H in Physical
address.
• DOS loader assign a segment address whenever memory area is allocated,
hence a change of 1 in Segment address will impart a d ifference of 16 D | 10 H
in physical address.

Data Structures for Memory
Management

• DOS makes use of various Data Structures for Memory
Management:

• MCB (Memory Control Block)
• EB (Environment Block)
• PSP (Program Segment Prefix)

42 - Memory Management

© Copyright Virtual University of Pakistan

321

MCB or Arena Header
• MCB is used to control an allocated block in memory.
• Every allocated block will have a MCB before the start
of block.
• MCB is a 16-bytes large structure.

Reserved or contains the program name in
case of higher versions of DOS.

5Byte [11]

Contains number of Paragraphs controlled by
the MCB.

3Word

Contains the Segment address of the PSP
and the program controlled by MCB.

1Word

Contains ‘M’ if the MCB controls allocated
memory and ‘Z’ if it controls free space.

0Byte

OffsetSize

Environment Block
• Contains Environment information like Environment
variables and file paths for that program

PSP
• is situated before the start of a process.
• contains control information like DTA (Disk Transfer
Area) and command line parameters.

42 - Memory Management

© Copyright Virtual University of Pakistan

322

The following slide shows that two MCBs are allocated for each program typically. The

first MCB controls the Environment Block the next MCB controls the PSP and the

program. If this is the last program in memory then the MCB after the program has ‘Z’ in

its first byte indicating that it is the last MCB in the chain.

Typical Memory Organization

Free
Z

Program
PSP

M
E.B

M
Program

PSP
M

E.B
M

All the MCB forms a chain. If the address of first MCB is known the segment

address of next MCB can be determined by adding the number of paragraph

controlled by MCB + ! into the segment address of the MCB. Same is true for all

MCBs and hence the whole chain can be traversed.

How to Access the Start of Chain
• An documented service can be used to obtain the
address of the first MCB.
• Service 21H/52H is used for this purpose.
• This service returns

The address of DOS internal data structures in ES : BX
• 4-bytes behind the address returned lies the far address
of the first MCB in memory.
• Using this address and hence traversing through the
chain of MCBs using the information within MCBs.

42 - Memory Management

© Copyright Virtual University of Pakistan

323

-a
13B0:0100 mov ah,52
13B0:0102 int 21
13B0:0104

-p
AX=5200 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=13B0 ES=13B0 SS=13B0 CS=13B0 IP=0102 NV UP EI PL NZ NA PO NC
13B0:0102 CD21 INT 21

-p
AX=5200 BX=0026 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=13B0 ES=00A7 SS=13B0 CS=13B0 IP=0104 NV UP EI PL NZ NA PO NC
13B0:0104 0000 ADD [BX+SI],AL
DS:0026=FF

-d a7:22
00A7:0020 00 00 08 02 EA 15-A7 00 CE 00 A7 00 5A 00 Z.
00A7:0030 70 00 24 00 70 00 80 00-00 00 00 00 00 00 7C 03 p.$.p.........|.
00A7:0040 00 00 72 03 00 00 04 04-00 00 D9 02 04 80 C6 0D ..r.............
00A7:0050 CC 0D 4E 55 4C 20 20 20-20 20 00 00 00 00 00 00 ..NUL
00A7:0060 00 AB 73 03 0E 00 00 00-00 03 01 00 04 00 00 00 ..s.............
00A7:0070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:0080 00 FF FF 00 00 00 00 0E-00 00 00 05 FF 9F 08 02
00A7:0090 82 14 D3 28 2E FE D7 28-2E FE D7 28 2E FE D3 28 ...(...(...(...(
00A7:00A0 2E FE ..
-q

The above slide shows how service 21H/52H is used to get the address of first MCB in

memory.

In the following slide the dump of the first MCB is taken. ‘M’ in the first byte at the

location read indicates the placement of MCB at this location. The address of next MCB

can be calculated by adding the number of paragraphs controlled by MCB + 1 into the

segment address. Using this method all the MCBs in memory are traversed till the last

MCB with first byte ‘Z’ is encountered.

-d 208:0
0208:0000 4D 08 00 03 02 09 0E 1F-53 44 00 CD 21 EB FE 26 M.......SD..!..&
0208:0010 51 0A 02 CE 00 9A F0 FE-4B 42 44 00 08 02 53 25 Q.......KBD...S%
0208:002 0 28 18 10 00 08 08 03 00-02 67 2D 27 28 90 2B A0 (...... ..g-'(.+.
0208:003 0 BF 1F 00 4F 0D 0E 00 00-00 00 9C AE 8F 14 1F 96 . ..O...
0208:004 0 B9 A3 FF 00 01 02 03 04-05 14 07 38 39 3A 3B 3C 89 :;<
0208:005 0 3D 3E 3F 0C 00 0F 08 00-00 00 00 00 10 0E 00 FF = >?....
0208:006 0 50 18 10 00 10 00 03 00-02 67 5F 4F 50 82 55 81 Pg_OP .U.
0208:007 0 BF 1F 00 4F 0D 0E 00 00-00 00 9C 8E 8F 28 1F 96 . ..O... (..

-D 40C:0
040C:0000 4D 0D 04 A2 00 00 06 00-43 4F 4D 4D 41 4E 44 00 M.......COMMAND.
040C:0010 CD 20 FF 9F 00 9A F0 FE-1D F0 7F 01 0D 04 4B 01 K.
040C:002 0 0D 04 56 01 0D 04 0D 04-01 03 01 00 02 FF FF FF . .V....
040C:003 0 FF FF FF FF FF FF FF FF-FF FF FF FF B8 04 FA 05
040C:004 0 0D 04 14 00 18 00 0D 04-FF FF FF FF 00 00 00 00
040C:005 0 05 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
040C:006 0 CD 21 CB 00 00 00 00 00-00 00 00 00 00 20 20 20 . !.....
040C:007 0 20 20 20 20 20 20 20 20-00 00 00 00 00 20 20 20

-D 4AF:0
04AF:0000 4D 00 00 07 00 73 1A 52-65 71 75 69 72 65 64 20 M....s.Required
04AF:0010 00 01 00 00 00 00 00 00-87 06 00 00 FF FF FF FF
04AF:002 0 FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
04AF:003 0 43 3A 5C 57 49 4E 44 4F-57 53 5C 54 45 4D 50 5C C :\WIND OWS\TE MP\
04AF:004 0 73 63 73 35 2E 74 6D 70-00 00 00 00 00 00 00 00 s cs5.tm p..... ...

04AF:005 0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
04AF:006 0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
04AF:007 0 00 20 76 61 6C 75 65 20-6E 6F 74 20 61 6C 6C 6F . value not a llo

-D 4B7:0
04B7:0000 4D 0D 04 6D 00 61 72 61-6D 65 74 65 72 20 76 61 M..m.arameter va
04B7:0010 43 4F 4D 53 50 45 43 3D-43 3A 5C 57 49 4E 44 4F COMSPEC=C:\WINDO
04B7:002 0 57 53 5C 53 59 53 54 45-4D 33 32 5C 43 4F 4D 4D W S\SYST EM32\C OMM

04B7:003 0 41 4E 44 2E 43 4F 4D 00-41 4C 4C 55 53 45 52 53 A ND.COM .ALLUS ERS
04B7:004 0 50 52 4F 46 49 4C 45 3D-43 3A 5C 44 4F 43 55 4D P ROFILE =C:\DO CUM

04B7:005 0 45 7E 31 5C 41 4C 4C 55-53 45 7E 31 00 41 50 50 E ~1\ALL USE~1. APP
04B7:006 0 44 41 54 41 3D 43 3A 5C-44 4F 43 55 4D 45 7E 31 D ATA=C: \DOCUM E~1
04B7:007 0 5C 79 64 6B 5C 41 50 50-4C 49 43 7E 31 00 43 4F \ ydk\AP PLIC~1 .CO

-D 525:0
0525:0000 4D 26 05 7A 08 8E DB C5-44 4F 53 58 00 58 5B 1F M&.z....DOSX.X[.
0525:001 0 CD 20 A0 0D 00 9A C0 00-00 00 DE 01 0D 04 4B 01 K.

0525:002 0 0D 04 56 01 0D 04 0D 04-01 01 01 00 02 FF FF FF . .V....
0525:003 0 FF FF FF FF FF FF FF FF-FF FF FF FF 12 D2 E8 00
0525:004 0 36 05 14 00 18 00 26 05-FF FF FF FF 00 00 00 00 6&

0525:005 0 05 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0525:006 0 CD 21 CB 00 00 00 00 00-00 00 00 00 03 20 20 20 . !.....

0525:007 0 20 20 20 20 20 20 20 20-00 00 00 00 00 20 20 20

-D DA0:0
0DA0:0000 4D 03 0E 61 00 61 6E 6E-6F 74 20 72 75 6E 20 74 M..a.annot run t
0DA0:0010 43 4F 4D 53 50 45 43 3D-43 3A 5C 57 49 4E 44 4F COMSPEC=C:\WINDO
0DA0:002 0 57 53 5C 53 59 53 54 45-4D 33 32 5C 43 4F 4D 4D W S\SYST EM32\C OMM
0DA0:003 0 41 4E 44 2E 43 4F 4D 00-41 4C 4C 55 53 45 52 53 A ND.COM .ALLUS ERS
0DA0:004 0 50 52 4F 46 49 4C 45 3D-43 3A 5C 44 4F 43 55 4D P ROFILE =C:\DO CUM

0DA0:005 0 45 7E 31 5C 41 4C 4C 55-53 45 7E 31 00 41 50 50 E ~1\ALL USE~1. APP
0DA0:006 0 44 41 54 41 3D 43 3A 5C-44 4F 43 55 4D 45 7E 31 D ATA=C: \DOCUM E~1

0DA0:007 0 5C 79 64 6B 5C 41 50 50-4C 49 43 7E 31 00 43 4F \ ydk\AP PLIC~1 .CO

-D E02:0
0E02:0000 5A 03 0E FC 91 27 8A 05-44 45 42 55 47 00 9D 00 Z....'..DEBUG...
0E02:001 0 CD 20 FF 9F 00 9A F0 FE-1D F0 DE 01 0D 04 4B 01 K.

0E02:002 0 0D 04 56 01 0D 04 0D 04-01 03 01 00 02 FF FF FF . .V....
0E02:003 0 FF FF FF FF FF FF FF FF-FF FF FF FF A1 0D B9 49 I
0E02:004 0 14 0E 14 00 18 00 03 0E-FF FF FF FF 00 00 00 00
0E02:005 0 05 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0E02:006 0 CD 21 CB 00 00 00 00 00-00 00 00 00 00 20 20 20 . !.....
0E02:007 0 20 20 20 20 20 20 20 20-00 00 00 00 00 20 20 20
-Q

43 - Non-Contiguous memory allocation

© Copyright Virtual University of Pakistan

324

43 - Non-Contiguous memory allocation

#include <stdio.h>
#include <conio.h>
#include <bios.h>
#include <dos.h>

typedef struct tagMCB {
unsigned char sig;
unsigned int pspseg;
unsigned int paras;
unsigned char reserved[11];

}MCB;

void main (void)
{

unsigned int seg,off;
unsigned int far * temp;
unsigned long i;
char st[20];
MCB far * pmcb;
_AH=0x52;
geninterrupt(0x21);

seg = _ES;
off = _BX;
off = off- 4;
temp = (unsigned int far *) MK_FP(seg,off);
seg = *(temp+1);
pmcb = (MCB far *)MK_FP(seg,*temp);
while (pmcb->sig == 'M')
{

printf("\nSegment Address of PSP is %x",pmcb->pspseg);
printf("\nNo of Paras controlled by MCB = %x\n",pmcb->paras);
seg = seg + pmcb->paras + 1;
pmcb = (MCB far *)MK_FP(seg,*temp);

}
if (pmcb->sig == 'Z')
{

printf("\nLast MCB found");
printf("\nNo of free Paras = %x",pmcb->paras);
i = (pmcb->paras)*16L;
ltoa(i,st,10);
printf("\nLargest contigous block = ");
puts (st);

}
}

This program used the same method as discussed in previous lecture to get the address of

first MCB, calculate the addresses of subsequent MCBs and traverse the MCBs to reach

the last MCB.

43 - Non-Contiguous memory allocation

© Copyright Virtual University of Pakistan

325

Non-Contiguous Allocation
• Earlier Operating System like DOS has contiguous memory
management system i.e. a program cannot be loaded in memory if a
contiguous block of memory is not available to accommodate it.
• 80286 and higher processors support non-contiguous allocation.
• 80286 support Segmentation in Protected Mode, i.e. a process is
subdivided into segment of variable size and each segment or few
segments of the process can be placed anywhere in memory
• 80386 and higher processors also support Paging, i.e. a Process
may be divided into fixed size Pages and then only few pages may
be loaded any where in memory for Process Execution.
• The key to such non-contiguous allocation systems is the
addressing technique.

Address Translation
• In Protected Mode the direct method of
seg * 10H + offset for Logical to Physical
address translation is discarded and an
indirect method is adopted.

43 - Non-Contiguous memory allocation

© Copyright Virtual University of Pakistan

326

Selectors
• In Protected Mode the Segment Registers are used as
Selector.
• As the name suggest they are used to select a descriptor
entry from some Descriptor Table.

Descriptor
• A Descriptor describes a Memory Segment by storing attributes
related to a Memory Segment.
• Significant attributes of a Memory Segment can be its base
(starting) address, it length or limit and its access rights.

43 - Non-Contiguous memory allocation

© Copyright Virtual University of Pakistan

327

The following slide shows the structure of descriptors of 80286 and 80386 processors

Limit (L15 – L0)

Base (B15 – B0)

Access Base(B23-
B16)
Rights

Reserved

Lim (L15 – L0)

Base (B15 – B0)

Access Base(B23-B16)
Rights

Base A Limit
(B24 – B31) G D 0 V (L16 –L 19)

L

6

4

2

0

7

5

3

1

80286 Descriptor

• Base (B31 – B0) contains the base address of Segment within the
4GB Physical space.
• Limit (L19 – L0) define the length of segment in units of bytes

if G = 0 and in units of 4K (pages) if G= 1.
This allow the Segment to be of 1M if G = 0 and of 4G if G = 1.

80386 Descriptor

6

4

2

0

7

5

3

1

Descriptor
• Access Right: contains the privilege level and other

information depending upon the type of descriptor.
• G: the granularity bit selects the multiplier of 1

or 4K times the limit field. If G = 0 multiplier is 1; if G = 1
multiplier is 4K.

• D: selects the default registers size. If D = 0 the
default register size is 16-bit, if D = 1 the size is 32-bit.

• AVL: the Operating System often uses this bit to
indicate that the segment described by the Descriptor is available in
memory

Segment Descriptor
• If the Descriptor describes a memory segment then the Access Rights Byte will
have the following meaning.

• P: Present bit, if P = 1 Segment is Present,
if P = 0 Segment is not Present.

• DPL: Descriptor Privilege level 00 for highest and 11 for lowest. Low
privilege level memory area cannot access a memory area with high
privilege whereas vice versa is TRUE.

• S: Indicates data or code segment if S = 1 or a System Descriptor if S = 0.
• E: Executable, if E = 0 Then it’s a Data/Stack Segment,

if E = 1 Then it’s a Code Segment.
• X: If E = 0 then X indicates the direction of expansion of the Segment.

If X = 0 Segment expands upwards (i.e. Data Segment)
If X = 1 Segment expands downwards (i.e. Stack Segment)
If E =1 then X indicates if the privilege level of Code Segment is
ignored (X = 0) or observed (X = 1).

• A Accessed is set whenever the Segment is set.

ARWXESDP
L

P

43 - Non-Contiguous memory allocation

© Copyright Virtual University of Pakistan

328

Lim (L15 – L0)

Base (B15 – B0)

Base(B23-B16)

P DPL 0 TYPE

Base Limit
(B24 – B31) G 0 0 0 (L16 –L19) 6

4

2

0

7

5

3

1

System Descriptor & Access Byte

Descriptor Table
• GDT: Global Descriptor Table
• LDT: Local Descriptor Table
• IDT: Interrupt Descriptor Table
• GDT and LDT can have up to 8192 entries, each of 8-
bytes width.
• IDT can have up to 256 entries.

44 - Address translation in Protected mode

© Copyright Virtual University of Pakistan

329

44 - Address translation in Protected mode

Selector
• A Selector is called a Selector because it acts as an
index into the Descriptor Table to select a GDT or LDT
entry.

RPLTI

15 2 1 0

Requested Privilege Level
00 (Highest)
11 (Lowest)

TI = 0 Global
TI = 1 Local

Selector Index
Selects a Descriptor Table entry
From LDT or GDT

Segment Register

Address Translation in
Protected Mode

• All the tables are maintained in Main Memory.
• Segment Registers are used as Selectors.
• The Descriptor Entry selected from the Descriptor Table
is placed in a hidden cache to optimize address
translation.

44 - Address translation in Protected mode

© Copyright Virtual University of Pakistan

330

The hidden cache is illustrated in the slide below. The registers in dotted lines are hidden

i.e. are not accessible to any application directly.

GS

FS
SS

ES
DS

CS

LDTR
TR

LimitBase

Access RightsLimitBase Address

GDTR
IDTR

Address Translation in
Protected Mode

• Whenever a Selector is assigned a new value, the hardware looks up into the
Descriptor Table and loads the Base Address, Limit and Access Rights into the
hidden cache.
• Whenever an instruction is issued the address referred is translating into Physical
address using the effective Offset within the instruction and the Base Address in the
corresponding Segment Cache, e.g.

mov AX, [1234H]
effective offset = 1234H
base = base within the cache of DS
abs. address = base +1234H

Or in instruction
mov DL, [EBP]

effective offset address = EBP
base address = base address in cache of SS register
abs. address = base address + EBP

• Hence the absolute address cannot be calculated directly from the Segment address
value.

44 - Address translation in Protected mode

© Copyright Virtual University of Pakistan

331

Control Register
• 80386 and above have 4 Control Registers CR0 ~ CR3.
• These Control Registers are used for conveying certain
control information for Protected Mode Addressing and
Co-Processors.
• Here we will illustrate only the least significant bit of
CR0.

• The least significant bit of CR0 is PE-bit which can be
set to enable Protected Mode Addressing and can be
cleared to enter Real Mode.

PE
CR0

Moving to Protected Mode
• Protected Mode can be entered by setting the PE bit of CR0, but

before this some other initialization must be done. The following
steps accomplish the switching from Real to Protected Mode
correctly.

1. Initialize the Interrupt Descriptor Table, so it contains valid Interrupt
gates for at least the first 32 Interrupt type numbers. The IDT may
contain up to 256, 8-byte interrupt gates defining all 256 interrupt
types.

2. Initialize the GDT, so it contains a NULL Descriptor, at Descriptor 0
and valid Descriptor for at least one Data and one Stack.

3. Switch to Protected by setting the PE-bit in CR0.
4. Perform a IntraSegment (near) JMP to flush the Internal Pre-fetch

Queue.
5. Load all the Data Selectors (Segment Registers) with their initial

Selectors Values.
6. The 80386 is now in Protected Mode.

Viruses
• Viruses are special program having ability to embed
themselves in a system resources and there on propagate
themselves.
State of Viruses
• Dormant State: A Virus in dormant state has
embedded itself within and is observing system activities.
• Activation State: A Virus when activated would
typically perform some unwanted tasks causing data loss.
This state may triggered as result of some event.
• Infection State: A Virus is triggered into this
state typically as a result of some disk operation. In this
state, the Virus will infect some media or file in order to
propagate itself.

45 - Viruses

© Copyright Virtual University of Pakistan

332

45 - Viruses

Types of Viruses
• Partition Table Virus
• Boot Sector Virus
• File Viruses

How Partition Table Virus Works
• The Partition Table Code is executed at boot time to choose the Active Partition.
• Partition Table Viruses embed themselves in the Partition Table of the disk.
• If the Virus Code is large and cannot be accommodated in the Code Part of 512-
bytes Partition Table block then it may also use other Physically Addressed Blocks
to reside itself.
• Hence at Boot time when Partition Table is to be executed to select the Active
Partition, the virus executes. The Virus when executed loads itself in the Memory,
where it can not be reached by the OS and then executes the original Partition Table
Code (stored in some other blocks after infection) so that the system may be booted
properly.
• When the system boots the Virus will be resident in memory and will typically
intercept 13H (the disk interrupt).
• Whenever a disk operation occurs int 13H occurs. The Virus on occurrence of 13H
checks if removable media has been accessed through int 13H. If so then it will copy
its code properly to the disk first Physical Block (and other blocks depending upon
size of Virus Code). The removable disk is now infected.
• If the disk is now removed and is then used in some other system, the Hard Drive
of this system will not be infected unless the system is booted from this disk. Because
only on booting from this removable disk its first physical block will get the chance
to be executed.

How Partition Table Virus Loads
itself

• The transient part of Command.Com loads itself such that its
last byte is loaded in the last byte of Conventional Memory. If
somehow there is some Memory beyond Command.Com’s
transient part it will not be accessible by DOS.
• At 40:13H a word contains the amount of KBs in
Conventional Memory which is typically 640.
• If the value at 40:13H is somehow reduced to 638 the
transient part of Command.Com will load itself such that its
last byte is loaded at the last byte of 638KB mark in
Conventional RAM.
• In this way last 2KB will be left unused by DOS. This
amount of memory is used by the Virus according to its own
size.

45 - Viruses

© Copyright Virtual University of Pakistan

333

How Boot Sector Virus Works
• Boot Sector also works in almost the same pattern, the
only difference is that it will embed itself within the Boot
Block Code.

File Viruses
• Various Viruses embeds themselves in different
executable files.
• Theoretically any file that can contain any executable
code, a Virus can be embedded into it. i.e. .COM, .EXE
are executable files so Viruses can be embedded into
them, Plain Text Files, Plain Bitmap Files are pure data
and cannot be executed so Viruses cannot be actively
embedded into them, and even if they are somehow
embedded they will never get a chance to execute itself.

COM File
• COM File is a mirror image of the program code. Its
image on disk is as it is loaded into the memory.
• COM Files are single segment files in which both Code
and Data resides.
• COM File will typically have a Three Bytes Near Jump
Instruction as the first instruction in program which will
transfer the execution to the Code Part of the Program.

jmp code
====
==== ;Data Part
====

code:
====
==== ;Code Part

45 - Viruses

© Copyright Virtual University of Pakistan

334

How COM File Virus Infects
Files

• A COM File Virus if resident may infect COM Files on
execution.
• Typically COM File Virus will Interrupt 21H Service
4B. This Service is used to load a Program.
• Whenever a Program is to be Loaded int 21H Service #
4BH is used to Load a Program. The Virus if resident will
check the parameters of this Service to get the file path. If
the File is .COM File then the Virus appends itself to the
file and tempers with the first 3-bytes of .COM File so
that the execution branches to the Virus Code when the
program is executed.

How COM Virus Loads Itself
• When a file is Loaded in Memory it will occupy a number of
Paragraphs controlled by some MCB.
• If the file is infected the Virus is also loaded within the Memory
Area allocated to the Program.
• In this case the Virus does not exist as an Independent Program as
it does not have its own PSP. If the Program is terminated the Virus
Code will also be unloaded with the program. The Virus will try to
attain an Independent Status for which it needs to relocate itself and
create its own PSP and MCB in Memory.
• When the program runs the Virus Code executes first. The Virus
creates an MCB, defines a new PSP initializes the PSP and
relocates itself, updates the last MCB, so that it can exist as an
Individual Program, and then transfers the execution back to the
Original Program Code.
• Now if the Original Program Terminates the Virus will still
remain resident.

45 - Viruses

© Copyright Virtual University of Pakistan

335

The following slide illustrates how a COM file virus relocates itself to make itself

independent in memory.

Free Paras

Z

Virus PSP

Program

PSP

M

Free Paras
Updated

Z

PSP

Virus

M

PSP

M

Paras

How the Virus Relocates itself

EXE File Viruses
• The EXE File Viruses also works the same way in
relocating themselves.
• The main difference in COM File and DOS EXE File is
that the COM File starts its execution from the first
instruction, whereas the entry point of execution in EXE
File can be anywhere in the Program.
• The entry point in case of EXE File is tempered by the
Virus which is stored in a 27-byte header in EXE File.

45 - Viruses

© Copyright Virtual University of Pakistan

336

Detection
• Viruses can be detected by searching for their Signature
in Memory or Executable Files.
• Signature is a binary subset of Virus Code. It is a part of
Virus Code that is unique for that particular Virus only
and hence can be used to identify the Virus
• Signature for a Virus is selected by choosing a unique
part of its Code. To find a Virus this Code should be
searched in memory and in files. If a match is found then
the system is infected.

Removal
Partition Table & Boot Sector Viruses
• Partition Table and Boot Sector Viruses can be removed
by re-writing the Partition Table or Boot Sector Code.
• If the Virus is resident it may exhibit stealth i.e. prevent
other programs from writing on Partition Table or Boot
Sector by intercepting int 13H
• In case it’s a stealth Virus the system should be booted
from a clean disk will not give the Virus any chance to
execute or load itself.

File Viruses

Virus

Program

• If the Virus size is known Viruses can be removed easily from file.
• Firstly, the original value of first 3-bytes in case of COM File or the entry
point in case of EXE should be restored.
• The appended portion of Virus can be removed by coping the contents of
original file into a temporary file.

•The Virus Code is not copied.
• The original file is then deleted and the temporary file is renamed as the
original file.

Original .Com temp

