System Programming
CS609

Virtual University of Pakistan

Leaders in Education Technology

CS609-System Programming VU

Table of Contents

01 - Introduction, MEANS OF I/Ooiiiiiie e 3
02 - INterrupt MECHANISM..... .ot 11
03 - Use of ISRs for C Library FUNCHIONS...........coiiiiiiinssese s 19
04 - TSR programs and INTEITUPLScoverveieieieieieiees st 26
05 - TSR programs and Interrupts (Keyboard interrupt)cccooceveveininniniesnence 33
06 - TSR programs and Interrupts (Disk interrupt, Keyboard hook)...........cccccveverinennne. 40
07 - Hardware INTEITUPLScueeieie ettt st et re e resre e steeneene e 46
08 - Hardware Interrupts and TSR Programs..........ccceveeeeriereenieseeseseeseseeseesseeseeseessens 54
09 - The INErVal TIMENoiiiii e 68
10 - Peripheral Programmable Interface (PPI).......cccccoviiiiiiiiiieie e 76
11 - Peripheral Programmable Interface (PPI) H......c.cccooeiiiieiieeceee e 83
12 - Parallel POrt Programimingocooeoeereseeieeie e siesesieeie e see e saesreesesseesaesneeseessens 95
13 - Serial COMMUNICALIONcoveiiiieie e re e 103
14 - Serial Communication (Universal Asynchronous Receiver Transmitter)................ 110
T G0 1Y/ o] ¢ USRS 117
16 - COM POITS T .o 125
17 - Real TIME CIOCK (RTC) .vvoiiiiiiieceee sttt sttt 133
18 - Real Time CIOCK (RTC) H....iiiiieiieeceee e 146
19 - Real Time CIOCK (RTC) HT ..o 155
20 - Determining System iNfOrMatioNccooveiiiieniiiie e e 163
21 - Keybhoard INTEITACEvoeeiiee et 172
22 - Keyboard Interface, DMA CONtrollerc.oovveieiiiiiece e 180
23 - Direct Memory AcCCESS (DMAL) ..ottt 186
24 - Direct Memory ACCESS (DMA) 1 ..o 192
25 - FHIE SYSIBIMIS. ...ttt sttt be et e te e st nbeeneenreenee s 199
26 - HAA DISK......iiiieieiieeie ettt este e e s teeneenreeneenraenee s 207
27 - Hard Disk, Partition TabI........oocviiiiiiiiiee ettt ettt eten e s eben s e s senran e 216
28 - Partition TabIe 1.cov i 223
29 - Reading Extended Partitionccccviieieiieie i 229
30 - File System Data Structures (LSN, BPB).........cccooveieiiiiieiecic e 236
31 - File System Data Structures 11 (Boot DIOCK)ccceririiiiiiiiiiiieic e 244
32 - File System Data Structures I (DPB)ccccvvviiieniie i 249
33 - Root Directory, FAT12 File SYStEM.......cccociiiiiiiieie e 256
34 - FAT12 File System 11, FAT16 File SYStEMcccccoveiiiiieieiieneceene e 262
35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System)...........cccc..... 267
36 - File Organizationcooiieiiieieinese et ene s 274
37 - FAT32 FIlE SYSTEIM ... 283
38 - FAT32 File SYSIEM T ...oviiiiiiiee e 291
39 - New Technology File System (NTFS)ccccovoieiiiiieiece e 301
40 - Disassembling the NTFS based file..........cccooveiiiieie i 306
41 - DISK ULHITIES ... 312
42 - MemOory ManagemMENL.........ciiiieiiee ittt et e st e e nree s 317
43 - Non-Contiguous memory alloCationcccceovveiiiiiciie e 324
44 - Address translation in ProteCted MOUEcuevviieierieiese e 329
A5 = WITUSES ..veenteetee sttt sttt e ettt e b et e e e bt et e e se et e s b e e s e e ebeeseeste e s beebeeneeabeeneenteaneenbeeneenes 332

© Copyright Virtual University of Pakistan 2

01 - Introduction, Means of 1/0O

01 - Introduction, Means of 1/0

What is Systems Programming?

Computer programming can be categorized into two categories .i.e.

Input—> Process) Quitpuit

While designing software the programmer may determine the required inputs for
that program, the wanted outputs and the processing the software would perform
in order to give those wanted outputs. The implementation of the processing part
is associated with application programming. Application programming facilitates
the implementation of the required processing that software is supposed to
perform; everything that is left now is facilitated by system programming.

Systems programming is the study of techniques that facilitate the acquisition of
data from input devices, these techniques also facilitates the output of data which
may be the result of processing performed by an application.

Three Layered Approach

A system programmer may use a three layered approach for systems
programming. As you can see in the figure the user may directly access the
programmable hardware in order to perform I/O operations. The user may use
the trivial BIOS (Basic Input Output System) routines in order to perform I/O in
which case the programmer need not know the internal working of the hardware
and need only the knowledge BIOS routines and their parameters.

{

DOS

v

BIOS

H/W
In this case the BIOS programs the hardware for required I/O operation which is
hidden to the user. In the third case the programmer may invoke operating
systems (DOS or whatever) routines in order to perform 1/O operations. The

operating system in turn will use BIOS routines or may program the hardware
directly in order to perform the operation.

© Copyright Virtual University of Pakistan 3

01 - Introduction, Means of 1/0O

Methods of I/O

In the three layered approach if we are following the first approach we need to
program the hardware. The hardware can be programmed to perform 1/O in three
ways i.e.

e Programmed I/O

e Interrupt driven I/O

e Direct Memory Access

In case of programmed 1/O the CPU continuously checks the 1/0 device if the I/0O
operation can be performed or not. If the I/O operations can be performed the
CPU performs the computations required to complete the I/O operation and then
again starts waiting for the 1/0 device to be able to perform next I/O operation. In
this way the CPU remains tied up and is not doing anything else besides waiting
for the 1/0O device to be idle and performing computations only for the slower I/O
device.

In case of interrupt driven the flaws of programmed driven 1/O are rectified. The
processor does not check the 1/O device for the capability of performing 1/0
operation rather the 1/0 device informs the CPU that it’s idle and it can perform
I/O operation, as a result the execution of CPU is interrupted and an Interrupt
Service Routine (ISR) is invoked which performs the computations required for
I/O operation. After the execution of ISR the CPU continues with whatever it was
doing before the interruption for I/O operation. In this way the CPU does not
remain tied up and can perform computations for other processes while the 1/0
devices are busy performing I/O and hence is more optimal.

Usually it takes two bus cycles to transfer data from some I/O port to memory or
vice versa if this is done via some processor register. This transfer time can be
reduced bypassing the CPU as ports and memory device are also interconnected
by system bus. This is done with the support of DMA controller. The DMA (direct
memory access) controller can controller the buses and hence the CPU can be
bypassed data item can be transferred from memory to ports or vice versa in a
single bus cycle.

© Copyright Virtual University of Pakistan 4

01 - Introduction, Means of 1/0O

I/O controllers

I/O device

!

1/O controller

V

No I/O device is directly connected to the CPU. To provide control signals to the
I/0 device a I/O controller is required. I/O controller is located between the CPU
and the I/0O device. For example the monitor is not directly collected to the CPU
rather the monitor is connected to a VGA card and this VGA card is in turn
connected to the CPU through busses. The keyboard is not directly connected to
CPU rather its connected to a keyboard controller and the keyboard controller is
connected to the CPU. The function of this 1/O controller is to provide

e 1/O control signals

e Buffering

e Error Correction and Detection
We shall discuss various such I/O controllers interfaced with CPU and also the
techniques and rules by which they can be programmed to perform the required
I/O operation.

CPU

Some of such controllers are
e DMA controller
e Interrupt controller
e Programmable Peripheral Interface (PPI)
e Interval Timer
e Universal Asynchronous Receiver Transmitter

We shall discuss all of them in detail and how they can be used to perform 1/O
operations.

Operating systems

Systems programming is not just the study of programmable hardware devices.
To develop effective system software one needs to the internals of the operating
system as well. Operating systems make use of some data structures or tables
for management of computer resources. We will take up different functions of the
operating systems and discuss how they are performed and how can the data
structures used for these operations be accessed.

© Copyright Virtual University of Pakistan 5

01 - Introduction, Means of 1/0O

File Management

File management is an important function of the operating systems.
DOS/Windows uses various data structures for this purpose. We will see how it
performs I/O management and how the data structures used for this purpose can
be directly accessed. The various data structures are popularly known as FAT
which can be of 12, 16 and 32 bit wide, Other data structures include BPB(BIOS
parameter block), DPB(drive parameter block) and the FCBs(file control block)
which collectively forms the directory structure. To understand the file structure
the basic requirement is the understanding of the disk architecture, the disk
formatting process and how this process divides the disk into sectors and
clusters.

Memory management
Memory management is another important aspect of operating systems.
Standard PC operate in two mode in terms of memory which are

e Real Mode

e Protected Mode

In real mode the processor can access only first one MB of memory to control the
memory within this range the DOS operating system makes use of some data
structures called

e FCB (File control block)

e PSP (Program segment prefix)

We shall discuss how these data structures can be directly accessed, what is the
significance of data in these data structures. This information can be used to
traverse through the memory occupied by the processes and also calculate the
total amount of free memory available.
Certain operating systems operate in protected mode. In protected mode all of
the memory interfaced with the processor can be accessed. Operating systems in
this mode make use of various data structures for memory management which
are

e Local Descriptor Table

e Global Descriptor Table

e Interrupt Descriptor Table

We will discuss the significance these data structures and the information stored

in them. Also we will see how the logical addresses can be translated into
physical addresses using the information these tables

Viruses and Vaccines

Once an understanding of the file system and the memory Management is
developed it is possible to understand the working of viruses. Virus is a simple
program which can embed itself within the computer resources and propagate
itself. Mostly viruses when activated would perform something hazardous.

© Copyright Virtual University of Pakistan 6

01 - Introduction, Means of 1/0O

We will see where do they embed themselves and how can they be detected.
Moreover we will discuss techniques of how they can be removed and mostly
importantly prevented to perform any infections.

There are various types of viruses but we will discuss those which embed
themselves within the program or executable code which are

Executable file viruses

Partition Table or boot sector viruses

Device Drivers

Just connecting a device to the PC will not make it work unless its device drivers
are not installed. This is so important because a device driver contains the
routines which perform 1/O operations on the device. Unless these routines are
provided no I/O operation on the I/O device can be performed by any application.
We will discuss the integrated environment for the development of device drivers
for DOS and Windows.

We shall begin our discussion from means of I/0O. On a well designed device it is
possible to perform 1/O operations from three different methods

e Programmed I/O

e Interrupt driven I/O

e DMA driven I/O

Output Input
— Do | |
DO
D7
D7
Busy
, | Strobe DR
CPU CPU /0
Controller

In case of programmed 1/O the CPU is in a constant loop checking for an I/O
opportunity and when its available it performs the computations operations
required for the I/O operations. As the I/O devices are generally slower than the
CPU, CPU has to wait for I/O operation to complete so that next data item can be
sent to the device. The CPU sends data on the data lines. The device need to be
signaled that the data has been sent this is done with the help of STROBE signal.
An electrical pulse is sent to the device by turning this signal to 0 and then 1. The
device on getting the strobe signal receives the data and starts its output. While
the device is performing the output it's busy and cannot accept any further data
on the other and CPU is a lot faster device and can process lot more bytes during
the output of previously sent data so it should be synchronized with the slower
I/O device. This is usually done by another feed back signal of BUSY which is
kept active as long as the device is busy. So the CPU is only waiting for the

© Copyright Virtual University of Pakistan 7

01 - Introduction, Means of 1/0O

device to get idle by checking the BUSY signal as long as the device is busy and
when the device gets idle the CPU will compute the next data item and send it to
the device for I/O operation.

Similar is the case of input, the CPU has to check the DR (data Ready) signal to
see if data is available for input and when its not CPU is busy waiting for it.

Interrupt Driven I/O

Interrupt Driven input / output

The main disadvantage of

programmed 1/O as can be
noticed is that the CPU is
0| [busy waiting for an /0
] opportunity and as a result
S ; remain tied up for that I/O
— Jo7] ‘ operation. This disadvantage
—————— Strabe can be overcome by means
] f%ﬁ INT of interrupt driven 1/O. In
— e Programmed I/O CPU itself
CPU o TPU 1/0 checks for an /0 opportunity
Controller Controller | pyt in case of interrupt

driven 1/O the 1/O controller
interrupts the execution of CPU when ever and I/O operation is required for the
computation of the required I/O operation. This way the CPU can perform other
computation and interrupted to perform and interrupt service routine only when
an 1/0O operation is required, which is quite an optimal technique.

© Copyright Virtual University of Pakistan 8

01 - Introduction, Means of 1/0O

DMA driven |/O

In case data is needed to
transferred from main
— —> memory to 1/O port this can
be done using CPU which
1 S 1 will consume 2 bus cycles

for a single word, one bus
cycle from memory to CPU
and other from CPU to I/O
> < port in case of output and
the vice versa in case of
input. In case no computation on data is required CPU can be bypassed and
another device DMA (direct memory access) controller can be used. Its possible
to transfer a data word directly from memory to CPU and vice versa in a single
bus cycle using the DMA, this technique is definitely faster.

We shall start our discussion with the study of interrupt and the techniques used
to program them. We will discuss other methods of I/O as required.

What are interrupts?

ISR Performing An 1/O

Literally to interrupt means to break the continuity of some on going task. When
we talk of computer interrupt we mean exactly the same in terms of the
processor. When an interrupt occurs the continuity of the processor is broken and
the execution branches to an interrupt service routine. This interrupt service
routine is a set of instruction carried out by the CPU to perform or initiate an 1/0
operation generally. When the routine is over the execution of the CPU returns to
the point of interruption and continues with the on going process.

© Copyright Virtual University of Pakistan 9

01 - Introduction, Means of 1/0O

Interrupts can be of two types

e Hardware interrupts

e Software interrupts
Only difference between them is the method by which they are invoked. Software
interrupts are invoked by means of some software instruction or statement and
hardware interrupt is invoked by means of some hardware controller generally.

Interrupt Mechanism

Interrupts are quite similar to procedures or function because it is also another
form temporary execution transfer, but there some differences as well. Note that
when procedures are invoked by there names which represents their addresses
is specified whereas in case of interrupts their number is specified. This number
can be any 8 bit value which certainly is not its address. So the first question is
what is the significance of this number? Another thing should also be noticed that
procedures are part of the program but the interrupts invoked in the program are
no where declared in the program. So the next question is where do these
interrupts reside in memory and if they reside in memory then what would be the
address of the interrupt?

Firstly lets see where do interrupts reside. Interrupts certainly reside somewhere
in memory, the interrupts supported by the operating system resides in kernel
which you already know is the core part of the operating system. In case of DOS
the kernel is io.sys which loads in memory at boot time and in case of windows
the kernel is kernel32.dll or kernel.dll. these files contain most of the 1/O routines
and are loaded as required. The interrupts supported by the ROM BIOS are
loaded in ROM part of the main memory which usually starts at the address
FO00:0000H. Moreover it is possible that some device drivers have been installed
these device drivers may provide some I/O routines so when the system boots
these 1/O routines get memory resident at interrupt service routines. So these are
the three possibilities.

Secondly a program at compile time does not know the exact address where the
interrupt service routine will be residing in memory so the loader cannot assign
addresses for interrupt invocations. When a device driver loads in memory it
places the address of the services provided by itself in the interrupt vector table.
Interrupt Vector Table (IVT) in short is a 1024 bytes sized table which can hold
256 far addresses as each far address occupies 4 bytes. So its possible to store
the addresses of 256 interrupts hence there are a maximum of 256 interrupt in a
standard PC. The interrupt number is used as an index into the table to get the
address of the interrupt service routine.

© Copyright Virtual University of Pakistan 10

02 - Interrupt Mechanism

02 - Interrupt Mechanism

Interrupt Mechanism

Interrupt follow a follow a certain mechanism for their invocation just like near or far
procedures. To understand this mechanism we need to understand its differences with
procedure calls.

Difference between interrupt and procedure calls
Procedures or functions of sub-routines in various different languages are called by
different methods as can be seen in the examples.

e Call MyProc

e A= Addition(4,5);

e Printf(*hello world”);

The general concept for procedure call in most of the programming languages is that on
invocation of the procedure the parameter list and the return address (which is the value if
IP register in case of near or the value of CS and IP registers in case of far procedure) is
pushed Moreover in various programming languages whenever a procedure is called its
address need to be specified by some notation i.e. in C language the name of the
procedure is specified to call a procedure which effectively can be used as its address.

However in case of interrupts the a number is used to specify the interrupt number in the
call

e Int21h
e Int10h
e [nt3

Fig 1 (Call to interrupt service routine and procedures/functions)

Main
Call procl()
Call procl()

Procl1()

Proc2()

== == K

Moreover when an interrupt is invoked three registers are pushed as the return address i.e.
the values of IP, CS and Flags in the described order which are restored on return. Also

© Copyright Virtual University of Pakistan 11

02 - Interrupt Mechanism

no parameters are pushed onto the stack on invocation parameters can only be passed
through registers.

The interrupt vector table

The interrupt number specified in the interrupt call is used as an index into the interrupt
vector table. Interrupt vector table is a global table situated at the address 0000:0000H.
The size of interrupt vector table is 1024 bytes or 1 KB. Each entry in the IVT is sized 4
bytes hence 256 interrupt vectors are possible numbered (0-FFH). Each entry in the table
contains a far address of an interrupt handlers hence there is a maximum of 256 handlers
however each handlers can have a number of services within itself. So the number
operations that can be performed by calling an interrupt service routine (ISR) is indefinite
depending upon the nature of the operating system. Each vector contains a far address of
an interrupt handler. The address of the vector and not the address of interrupt handler can
be easily calculated if the interrupt number is known. The segment address of the whole
IVT is 0000H the offset address for a particular interrupt handler can be determined by
multiplying its number with 4 eg. The offset address of the vector of

INT 21H will be 21H * 4 = 84H and the segment for all vectors is 0 hence its far address
is 0000:0084H,(this is the far address of the interrupt vector and not the interrupt service
routine or interrupt handler). The vector in turn contains the address of the interrupt
service routine which is an arbitrary value depending upon the location of the ISR
residing in memory.

Fig 2 (Interrupt Vector Table)

Interrupt Vector Table

INTO 0000:0000
INT1 0000:0004
INTFF 0000:03FFH

Moreover it is important to understand the meaning of the four bytes within the interrupt
vector. Each entry within the IVT contains a far address the first two bytes (lower word)
of which is the offset and the next two bytes (higher word) is the segment address.

© Copyright Virtual University of Pakistan 12

02 - Interrupt Mechanism

INT O LO(0) 0000:0001
LO(1)
HI(0)
HI(1) 0000:0003
INT 1 0000:0004
0000:0007

Fig 3 (Far address within Interrupt vector)

Location of ISRs (Interrupt service routines)
Generally there are three kind of ISR within a system depending upon the entity which
implements it

e BIOS (Basic I/O services) ISRs

e DOSISRs

e ISRs provided by third party device drivers
When the system has booted up and the applications can be run all these kind of ISRs
maybe provided by the system. Those provided by the ROM-BIOS would be typically
resident at any location after the address FO00:0000H because this the address within
memory from where the ROM-BIOS starts, the ISRs provided by DOS would be resident
in the DOS kernel (mainly 10.SYS and MSDOS.SYS loaded in memory) and the ISR
provided by third party device drivers will be resident in the memory occupied by the
device drivers.

10.SYS

Device Driver
Command. COM

USER PROGRAM

Rom Bios FO000:0000

Fig 4 (ISRs in memory)

This fact can be practically analyzed by the DOS command mem/d which gives the status
of the memory and also points out which memory area occupied by which process as
shown in the text below. The information given by this command indicates the address

© Copyright Virtual University of Pakistan 13

02 - Interrupt Mechanism

where 10.SYS and other device drivers have been loaded but the location of ROM BIOS
is not shown by this command.

C:\>mem /d

Address
000000
000400
000500

000700

000A70

002080

0040C0
004AFO0
004B70
005250
0ODAOO
00E020
025510
09FFFO

OCFO00

0D2110
0D2720
0D2900
0D3380
0D3410

655360
655360
597952

1048576
0
941056

Name Size
000400
000100
000200
10 000370
CON
AUX
PRN
CLOCK$
ComM1
LPT1
LPT2
LPT3
COomM2
COM3
com4
MSDOS 001610
10 002030
KBD O0O0OCEO
HIMEM 0004EO0
XMSXXXXO0
000490
000090
000120
0007D0
COMMAND 000A20
MSDOS 000070
COMMAND 0006D0
DOSX 0087A0
MEM 000610
MEM 0174EO
MSDOS 07AADO
SYSTEM 02F000
10 003100
MOUSE 0030F0
MSDOS 000600
MSCDEXNT 0001D0
REDIR 000A70
DOSX 000080
MSDOS OOCBEO

Interrupt Vector
ROM Communication Area
DOS Communication Area

System Data
System Device Driver
System Device Driver
System Device Driver
System Device Driver
System Device Driver
System Device Driver
System Device Driver
System Device Driver
System Device Driver
System Device Driver
System Device Driver

System Data

System Data
System Program
DEVICE=

Installed Device Driver
FILES=
FCBS=
LASTDRIVE=
STACKS=

Program

-- Free --

Environment

Program

Environment

Program

-- Free --

System Program

System Data
System Program
-- Free --
Program

Program

Data

-- Free --

bytes total conventional memory

bytes available to MS-DOS

largest executable program size

bytes total contiguous extended memory
bytes available contiguous extended memory
bytes available XMS memory

MS-DOS resident in High Memory Area

Interrupt Invocation

Although hardware and software interrupts are invoked differently i.e hardware interrupts

are invoked by means of some hardware whereas software interrupts are invoked by
means of software instruction or statement but no matter how an interrupt has been

invoked processor follows a certain set steps after invocation of interrupts in exactly same
way in both the cases. These steps are listed as below

e Push Flags, CS, IP Registers, Clear Interrupt Flag
e Use (INT#)*4 as Offset and Zero as Segment

© Copyright Virtual University of Pakistan

14

02 - Interrupt Mechanism

e This is the address of interrupt Vector and not the ISR

e Use lower two bytes of interrupt Vector as offset and move into IP

« Use the higher two bytes of Vector as Segment Address and move it into
CS=0:[offset+2]

e Branch to ISR and Perform 1/0 Operation

* Return to Point of Interruption by Popping the 6 bytes i.e. Flags CS, IP.

This can be analyzed practically by the use of debug program, used to debug assembly
language code, by assembling and debugging INT instructions

C:\>debug

0000:0080 7C 10 A7 00-4F 03 55 05 8A 03 55 05]...0.U...U.
0000:0090 17 03 55 05 86 10 A7 00-90 10 A7 00 9A 10 A7 00 .
0000:00A0 B8 10 A7 00 54 02 70 00-F2 04 74 CC B8 10 A7 00 PR IR o PR
0000:00BO B8 10 A7 00 B8 10 A7 00-40 01 21 04 50 09 AB D4 @.1.P...
0000:00CO EA AE 10 A7 00 E8 00 FO-B8 10 A7 00 C4 23 02 C9 ..o iiioo.o.. #.o.
0000:00D0 B8 10 A7 00 B8 10 A7 00-B8 10 A7 00 B8 10 A7 00 iiiiininn. 7
0000:00EO0 B8 10 A7 00 B8 10 A7 00-B8 10 A7 00 B8 10 A7 00 ... iieoeaao-.
0000:00FO0 B8 10 A7 00 B8 10 A7 00-B8 10 A7 00 B8 10 A7 00 iiiiinan..

0AF1:0100 int 21

-r
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0AF1 ES=0AF1 SS=0AF1 CS=0AF1 1P=0100 NV UP ElI PL NZ NA PO NC
OAF1:0100 CD21 INT 21

-t

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFE8 BP=0000 SI=0000 DI=0000
DS=0AF1 ES=0AF1 SS=0AF1 CS=00A7 1P=107C NV UP DI PL NZ NA PO NC
00A7:107C 90 NOP

-d ss:ffe8
OAF1:FFEO 02 01 F1 OA 02 F2 00 00
OAF1:FFFO 00 00 00 00 00 00 00 00-00 OO 00 OO 00 00 0O 00

The dump at the address 0000:0084 H shows the value of the vector of the interrupt #
21H i.e. 21H * 4 = 84H. This address holds the value 107CH in lower word and 00A7H
in the higher word which indicates that the segment address of interrupt # 21 is 00A7H
and the offset address of this ISR is 107CH.

Moreover the instruction INT 21H can be assembled and executed in the debug program,
on doing exactly so the instruction is traced through and the result is monitored. It can be
seen that on execution of this instruction the value of IP is changed to 107CH and the
value of CS is changed to 00A7H which cause the execution to branch to the Interrupt #
21H in memory and the previous values of flags, CS and IP registers are temporarily
saved onto the stack as the value of SP is reduced by 6 and the dump at the location
SS:SP will show these saved values as well.

Parameter passing into Software interrupts

In case of procedures or function in various programming languages parameters are
passed through stack. Interrupts are also kind of function provided by the operating
system but they do not accept parameters by stack rather they need to passed parameters
through registers.

Software interrupts invocation
Now let’s see how various interrupts can be invoked by means of software statements.
First there should be way to pass parameters into a software interrupt before invoking the

© Copyright Virtual University of Pakistan 15

02 - Interrupt Mechanism

interrupt; there are several methods for doing this. One of the methods is the use of
pseudo variables. A variable can be defined a space within the memory whose value can
be changed during the execution of a program but a pseudo variable acts very much like a
variable as its value can be changed anywhere in the program but is not a true variable as
it is not stored in memory. C programming language provides the use of pseudo variables
to access various registers within the processor.

The are various registers like AX, BX, CX and DX within the processor they can be
directly accessed in a program by using their respective pseudo variable by just attaching
a“_” (underscore) before the register’snameeg. _AX = 5; A = _BX.

After passing the appropriate parameters the interrupt can be directly invoked by calling
the geninterrupt () function. The interrupt number needs to be passed as parameter
into the geninterrupt() function.

Interrupt # 21H, Service # 09 description
Now lets learn by means of an example how this can be accomplished. Before invoking
the interrupt the programmer needs to know how the interrupt behaves and what
parameters it requires. Lets take the example of interrupt # 21H and service # 09 written
as 21H/09H in short. It is used to print a string ending by a ‘$’ character and other
parameters describing the string are as below
Inputs

AH = 0x09

DS = Segment Address of string

DX = Offset Address of string
Output
The ‘$’ terminated string at the address DS:DX is displayed
One thing is note worthy that the service # is placed in AH which is common with almost
all the interrupts and its service. Also this service is not returning any siginificant data, if
some service needs to return some data it too is received in registers depending upon the
particular interrupt.

Example:

#include<stdio.h>
#include<BI0OS_.H>
#include<DOS.H>
#include<conio.h>

char st[80] ={""Hello World$'"};

void main()

{

clrscr(); //to clear the screen contents

_DX = (unsigned int) st;

_AH = 0x09;

geninterrupt(0x21);

getch(); //waits for the user to press any key
}

this is a simple example in which the parameters of int 21H/09H are loaded and then int
21H is invoked. DX and AH registers are accessed through pseudo variables and then

© Copyright Virtual University of Pakistan 16

02 - Interrupt Mechanism

geninterrupt()is called to invoke the ISR. Also note that _DS is not loaded. This is
the case as the string to be loaded is of global scope and the C language compiler
automatically loads the segment address of the global data into the DS register.

Another Method for invoking software interrupts

This method makes use of a Union. This union is formed by two structure which
correspond to general purpose registers AX, BX, CX and DX. And also the half register
AH, AL, BH, BL, CH, CL, DH, DL. These structures are combined such that through this
structure the field ax can be accessed to load a value and also its half components al and
ah can be accessed individually. The declaration of this structure goes as below. If this
union is to be used a programmer need not declare the following declaration rather
declaration already available through its header file “dos.h”

struct full

{
unsigned Int ax;
unsigned int bx;
unsigned Int cx;
unsigned iInt dx;
};
struct half
{
unsigned char al;
unsigned char ah;
unsigned char bl;
unsigned char bh;
unsigned char cl;
unsigned char ch;
unsigned char dl;
unsigned char dh;
};
typedef union tagREGS
{
struct full Xx;
struct half h;
}REGS;

This union can be used to signify any of the full or half general purpose register shows if
the field ax in x struct is to be accessed then accessing the fields al and ah in h will also
have the same effect as show in the example below.

Example:

#include<DOS _H>
union REGS regs;
void main (void)

{

regs.-h.al = 0x55;
regs.h.ah = 0x99;

printf (“%x”,regs.x.ax);
ks

© Copyright Virtual University of Pakistan 17

02 - Interrupt Mechanism

output:
9955

The int86 () function

The significance of this REGS union can only be understood after understanding the
int86() function. The int86() has three parameters. The first parameter is the interrupt
number to be invoked, the second parameter is the reference to a REGS type union which
contains the value of parameters that should be passed as inputs, and third parameter is a
reference to a REGS union which will contain the value of registers returned by this
function. All the required parameters for an ISR are placed in REGS type of union and its
reference is passed to an int86() function. This function will put the value in this union
into the respective register and then invoke the interrupt. As the ISR returns it might leave
some meaningful value in the register (ISR will return values), these values can be
retrieved from the REGS union whose reference was passed into the function as the third
parameter.

Example using interrupt # 21H service # 42H
To make it more meaningful we can again elaborate it by means of an example. Here we
make use of ISR 21H/42H which is used to move the file pointer. Its detail is as follows

Int#21 Service # 42H
Inputs
AL = Move Technique
BX = File Handle
CX-DX = No of Bytes File to be moved
AH = Service # = 42H

Output
DX-AX = No of Bytes File pointer actually moved.
BOF cp EOF

This service is used to move the file pointer to a certain position relative to a certain
point. The value in AL specify the point relative to which the pointer is moved. If the
value of AL = 0 then file pointer is moved relative to the BOF (begin of File) if AL=1
then its moved relative to current position and if AL = 2 then its moved relative to the
EOF (end of file).

CX-DX specify the number of bytes to move a double word is needed to specify this
value as the size of file in DOS can be up to 2 GB.

On return of the service DX-AX will contain the number of bytes the file pointer is
actually moved eg. If the file pointer is moved relative to the EOF zero bytes the DX-AX
on return will contain the size of file if the file pointer was at BOF before calling the
service.

© Copyright Virtual University of Pakistan 18

03 - Use of ISRs for C Library Functions

03 - Use of ISRs for C Library Functions

The above described service can be used to get the size of a file in the described manner.
The following C language program tries to accomplish just that. This program has been
saved as .C file and not as .CPP file and then compiled.

Example 21H/42H:
#include<stdio.h>
#include<fcntl .h>
#include<io.h>
#include<BIOS.H>
#include<DOS.H>

unsigned int handle;
void main()

union REGS regs;
unsigned long int size;
handle = open(*c:\\abc.txt",0 RDONLY);

regs.x.bx = handle;

regs.h.ah = 0x42;

regs.h.al = 0x02; //correction
regs.x.cx = 0;

regs.x.dx = 0;

int86(0x21,®s,®s);
((int)(&size)) = regs.x.ax;
(((int)(&size))+1) =regs.x.dx;
printf ('Size is %d“ ,size);

}

This program opens a file and saves its handle in the hand I e variable. This handle is
passed to the ISR 21H/42H along with the move technique whose value is 2 signifing
movement relative to the EOF and the number of bytes to move are specified to be zero
indicating that the pointer should move to the EOF. As the file was just opened the
previous location of the file pointer will be BOF. On return of this service DX-AX will
contain the size of the file. The low word of this size in ax is placed in the low word of
size variable and the high word in dx is placed in the high word of size variable.

Another Example:

Lets now illustrate how ISR can be invoked by means of another example of BIOS
service. Here we are choosing the ISR 10h/01h. This interrupt is used to perform 1/0 on
the monitor. Moreover this service is used to change the size of cursor in text mode. The
description of this service is given as under.

© Copyright Virtual University of Pakistan 19

03 - Use of ISRs for C Library Functions

Int# 10H Service # 01H

Entry
AH =01
CH = Beginning Scan Line
CL = Ending Scan Line
On Exit
Unchanged

The size of the cursor depends upon the number of net scan lines used to display the
cursor if the beginning scan line is greater than the ending scan line the cursor will
disappear. The following tries to accomplish just that

void main()

{
char st[80];
union REGS regs;
regs.h.ah = 0x01;
regs.h.ch = 0x01;
regs.h.cl = 0x00;
int86(0x10,®s,®s); //corrected
gets(st);
by

The program is quite self explanatory as it puts the starting scan line to be 1 and the
ending scan line to be 0. Henceforth when the service execute the cursor will disappear.

Use of ISRs for C Library functions

There are various library function that a programmer would typically use in a program to
perform input output operations. These library functions perform trivial 1/0 operations
like character input (putch()) and character output (getch(), getc() etc). All
these function call various ISRs to perform this 1/0. In BIOS and DOS documentation
number of services can be found that lie in correspondence with some C library function
in terms of its functionality.

Writing S/W ISRs

Lets now see how can a programmer write an ISR routine and what needs to be done in
order make the service work properly. To exhibit this we will make use of an interrupt
which is not used by DOS or BIOS so that our experiment does not put any interference
to the normal functions of DOS and BIOS. One such interrupt is interrupt # 65H. The
vector of int 65H is typically filled with zeros another indication that it is not being used.

Getting interrupt vector

As we have discussed earlier IVT is a table containing 4 byte entries each of which is a
far address of an interrupt service routine. All the vectors are arranged serially such that
the interrupt number can be used as an index into the IVT.

Getting interrupt vector refers to the operation which used to reading the far address
stored within the vector. The vector is double word, the lower word of it being the offset
address and the higher word being the segment address. Moreover the address read from a
vector can be used as a function pointer. The C library function used to do the exactly

© Copyright Virtual University of Pakistan 20

03 - Use of ISRs for C Library Functions

same is getvect(int#) which requires the interrupt number a parameter and returns
the value of its vector.

Fig 1 (Vector being read from IVT)
INT # Offset -
Offset

Segment
Segment

far

Intproc

Function pointers

Another thing required to be understood are the function pointers. C language is a very
flexible language just like there are pointers for integers, characters and other data types
there are pointers for functions as well as illustrated by the following example

void myfunc()

by
void (*Ffuncptr) ()

funcptr = myfunc;

(C*funcptr) ();
myfunc();

There are three fragments of code in this example. The first fragment shows the
declaration of a function myfunc()

The second fragment show declaration of a pointer to function named funcptr which is
a pointer to a function that returns void.

In the third fragment funcptr is assigned the address of myfunc as the name of the
function can be used as its address just like in the cases of arrays in C. Then the function
pointed by funcptr by the statement (*funcptr)(); is called and then the original
myfunc() is called. The user will observe in both the cases same function myproc()
will be invoked.

© Copyright Virtual University of Pakistan 21

03 - Use of ISRs for C Library Functions

Interrupt pointers and functions

Interrupt functions are special function that as compared to simple functions for reasons
discussed earlier. It can be declared using the keyword interrupt as shown in the
following examples.

void interrupt newint ()

Similarly a pointer to such interrupt type function can also be declared as following
void interrupt (C*intptr) ();

where Intptr is the interrupt pointer and it can be assigned an address using the
getvect() function

intptr = getvect(0x08);
Now interrupt number 8 can be invoked using the interrupt vector as following
Cintptr) ();

Setting Interrupt Vector

Setting interrupt vector is just the reverse process of getting interrupt vector. To set the
interrupt vector means is to change the double word sized interrupt vector within the IVT.
This task can be accomplished using the function setvect(int #, newint) which
requires the number of interrupt whose vector is to be changed and the new value of the
vector.

INT # Offset B
Offset
Segment [
Segment fa

© Copyright Virtual University of Pakistan 22

03 - Use of ISRs for C Library Functions

In the following example a certain interrupt type function has been declared. The address
of this function can be placed on to the vector of any interrupt using setvect()
function as following. The following code places the address of newint function at the
vector of int 8

void interrupt newint ()

{

setvect(0x08, newint);

C program making use of Int 65H

Here is a listing of a program that makes use of int 65H to exhibit how software interrupts
needs to be programmed.

void interrupt (*oldint65)();
char st[80] = {*“Hello World$”};
void interrupt newint65(void);
void main()

{
oldint65 = getvect(0x65);
setvect(0x65, newint65);
geninterrupt (0x65);
geninterrupt (0x65);
geninterrupt (0x65);
setvect(0x65, oldint65);

}

void interrupt newint65()

{
_AH = 0x09;
_DX=(Cunsigned int)st;
geninterrupt (0x21);

by

The above listing saves the address of original int 65H in the pointer old int65. It then
places the address of its own function newint65 at the vector of interrupt number 65H.
From this point onwards whenever int 65H is invokes the function newint65 will be
invoked. Int 65 is invoked thrice which will force the newint65 function to be invoked
thrice accordingly. After this the original value of the vector stored in oldint65 is restored.
The newint65 function only displays the string st. As the interrupt 65 is invoked
thrice this string will be printed thrice.

The Keep function

One deficiency in the above listing is that it is not good enough for other application i.e.
after the termination of this program the newint65 function is de-allocated from the
memory and the interrupt vector needs to be restored otherwise it will act as a dangling

© Copyright Virtual University of Pakistan 23

03 - Use of ISRs for C Library Functions

pointer (pointing to a place where there is garbage or where there is no meaningful
function). To make the effect of this program permanent the newint65 function need to
be memory resident. This can be achieved by the function keep() which is quite similar
to exit() function. The exit() function returns the execution to the parent shell
program and de-allocates the memory allocated to the program whereas the keep()
function also returns the execution to the parent program but the memory allocated to the
process may still remain allocated.

keep (return code, no. of paras);

the keep() function requires the return code which is usually zero for normal termination
and the number of paragraphs required to be allocated. Each paragraph is 16 bytes in size.

TSR Programs
Following is a listing of a TSR (Terminate and Stay Resident) program which programs

the interrupt number 65H but in this case the new interrupt 65H function remains in
memory even after the termination of the program and hence the vector of int 65h does
not become a dangling pointer.

#include<BI0OS_.H>
#include<DOS .H>

char st[80] ={"Hello World$'"}
void interrupt (*oldint65)()
void interrupt newint65();
void main()

{
oldint65 = getvect(0x65);
setvect(0x65, newint65);
keep(0, 1000);
by
void interrupt newint65()
{
_AH = 0x09;
_DX=(unsigned int)st;
geninterrupt (0x21);
+

The main()function gets and sets the vector of int 65H such that the address of
newint65 is placed at its vector. In this case the program is made memory resident
using the keep function and 1000 paragraphs of memory is reserved for the program (the
amount of paragraphs is just a calculated guess work based upon the size of application).
Now if any application as in the following case invokes int 65H the string st which is also
now memory resident will be displayed.

© Copyright Virtual University of Pakistan 24

03 - Use of ISRs for C Library Functions

#include<BI0OS_.H>
#include<DOS .H>

void main()

{
geninterrupt (0x65);

geninterrupt (0x65);

This program invokes the interrupt 65H twice which has been made resident.

© Copyright Virtual University of Pakistan

25

04 - TSR programs and Interrupts

04 - TSR programs and Interrupts

Another Example:

#include<BI0S.H>

#include<DOS.H>

char st[80] ={""Hello World$"};

char stl1[80] ={""Hello Students!$"};
void interrupt (CColdint65)();

void interrupt newint65();

void main()

{
oldint65 = getvect(0x65);
setvect(0x65, newint65);
keep(0, 1000);
}
void interrupt newint65()
{
if ((_AH) == 0) //corrected
_AH = 0x09;
_DX = (unsigned int) st;
geninterrupt (0x21);
by
else
ifT ((_AH) == 1) //corrected
_AH = 0x09;
_DX = (unsigned int) stl;
geninterrupt (0x21);
by
by
}

Various interrupts provide a number of services. The service number is usually placed in
the AH register before invoking the interrupt. The ISR should in turn check the value in
AH register and then perform the function accordingly. The above example exemplifies
just that. In this example int 65 is assigned two services 0 and 1. Service 0 prints the
string st and service 1 prints the string stl. These services can be invoked in the
following manner.

#include<BIOS_H>
#include<DOS .H>
void main()

{
_AH = 1;
geninterrupt (0x65);

© Copyright Virtual University of Pakistan 26

04 - TSR programs and Interrupts

_AH = 0;
geninterrupt (0x65);
}

Interrupt stealing or interrupt hooks

Previously we have discussed how a new interrupt can be written and implemented.
Interrupt stealing is a technique by which already implemented services can be altered by
the programmer.

This technique makes use of the fact that the vector is stored in the IVT and it can be read
and written. The interrupt which is to be hooked its (original routine) vector is first read
from the IVT and then stored in a interrupt pointer type variable, after this the vector is
changed to point to one of the interrupt function (new routine) within the program. If the
interrupt is invoked now it will force the new routine to be executed provided that its
memory resident. Now two things can be done, the original routine might be performing
an important task so it also needs to invoked, it can either be invoked in the start of the
new routine or at the end of the new routine using its pointer as shown in the following
execution charts below

Fig 1 (Normal Execution of an ISR)
Execution Interrupted

ISR Perform I/O

Normal Execution of Interrupt

Fig 2 (The original ISR being called at he end of new routine)
New Routine

Original Routine

Interrupt Interception

© Copyright Virtual University of Pakistan 27

04 - TSR programs and Interrupts

Fig 3 (The original ISR invoked at the start of new ISR)

Original Routine

New Routine

Other form of Interrupt Interception

Care must be taken while invoking the original interrupt. Generally in case hardware
interrupts are intercepted invoking the original interrupt at the start of new routine might
cause some problems whereas in case of software interrupts the original interrupt can be
invoked anywhere.

Sample Program for interrupt Interception

void interrupt newint();
void interrupt (Cold)();
void main()

{

old=getvect(0x08);
setvect(0x08,newint);
keep(0,1000);

}

void interrupt newint ()

{

old)O;
}

The above program gets the address stored at the vector of interrupt 8 and stores it in the
pointer oldint. The address of the interrupt function newint is then placed at the vector of
int 8 and the program is made memory resident. From this point onwards whenever
interrupt 8 occurs the interrupt function newint is invoked. This function after performing
its operation calls the original interrupt 8 whose address has been stored in oldint pointer.

Timer Interrupt
In the coming few examples we will intercept interrupt 8. This is the timer interrupt. The

timer interrupt has following properties.
» Its an Hardware Interrupts
» Itis Invoked by Means of Hardware
> It approximately occurs 18.2 times every second by means of hardware.

© Copyright Virtual University of Pakistan 28

04 - TSR programs and Interrupts

BIOS Data Area

BIOS contains trivial 1/0 routines which have been programmed into a ROM type device
and is interfaced with the processor as a part of main memory. However the BIOS
routines would require a few variables, these variables are stored in the BIOS data arera at
the location 0040:0000H in the main memory.

One such byte stored in the BIOS data area is the keyboard status byte at the location
40:17H. This contains the status of various keys like alt, shift, caps lock etc. This byte can
be described by the diagram below

Fig 4 (Keyboard status byte)
40:17H |7 |6 |5 |4 |3 |2 |1 |O

Insert key RIE];t Shift key
Caps Lock Key Left Shift Key
Num Lock key < =) Ctrl Key
Scroll lock key < » AltKey

Keyboard Status Word

Another Example

#include <dos.h>

void interrupt (old)();

void interrupt new();

char far *scr=(char far*) 0x00400017;
void main()

{

old=getvect(0x08);

setvect(0x08,new);

keep(0,1000);

void interrupt new (O
*scr=64;
§*old)();

This fairly simple example intercepts the timer interrupt such that whenever the timer
interrupt occurs the function new() is invoked. Remember this is .C program and not a
.CPP program. Save the code file with .C extension after writing this code. On occurrence
of interrupt 8 the function new sets the caps lock bit in key board status by placing 64 at
this position through its far pointer. So even if the user turns of the caps lock on the next
occurrence of int 8 (almost immediately) the caps lock will be turned on again (turing on
the caps lock on like this will not effect its LED in the keyboard only letters will be typed
in caps).

© Copyright Virtual University of Pakistan 29

04 - TSR programs and Interrupts

Memory Mapped I/O and Isolated 1/0

A device may be interfaced with the processor to perform memory mapped or isolated
I/0. Main memory and I/O ports both are physically a kind of memory device. In case of
Isolated 1/O, 1/O ports are used to hold data temporary while sending/receiving the data
to/from the 1/0O device. If the similar function is performed using a dedicated part of main
memory then the I/O operation is memory mapped.

Fig 5 (Isolated 1/0)

Isolated 1/O
/)

M ‘\ p "V 1/10

Fig 6 (Memory mapped 1/0)

Memory Mapped 1/0

MOV

M 1/0

MOV

Memory Mapped 1/0 on Monitor

One of the devices in standard PCs that perform memory mapped 1/O is the display
device (Monitor). The output on the monitor is controller by a controller called video
controller within the PC. One of the reason for adopting memory mapped 1/O for the
monitor is that a large amount of data is needed to be conveyed to the video controller in
order to describe the text or that graphics that is to be displayed. Such large amount of
data being output through isolated I/O does not form into a feasible idea as the number of
port in PCs is limited to 65536.

The memory area starting from the address b800:0000H. Two bytes (a word) are reserved
for a single character to be displayed in this area. The low byte contains the ASCII code
of the character to be displayed and the high byte contains the attribute of the character to
be displayed. The address b800:0000h corresponds to the character displayed at the top

© Copyright Virtual University of Pakistan 30

04 - TSR programs and Interrupts

left corner of the screen, the next word b800:0002 corresponds to the next character on
the same row of the text screen and so on as described in the diagram below.

Fig 7 (Memory mapped 1/0 on monitor)

Memory Mapped 1/0 ON Monitor

B8OO:0002
B8OO:0003

B8OO:0000
BBOO:0001 gguee_ /

Low Byte = ASCII CODE

High Byte =Attribute Byte
The attribute byte (higher byte) describes the forecolor and the backcolor in which the
character will be displayed. The DOS screen carries black as the backcolor and white as
the fore color by default. The lower 4 bits (lower nibble) represents the forecolor and the
higher 4 bits (higher nibble) represents the back color as described by the diagram below

Fig 8 (Attribute Byte)
Memory Mapped 1/0O ON Monitor

fore color

Back Color Bold Color

Low Byte = Ascii Code 000 |Black

High Byte = Attribute Byte 100 Red
010 Green
001 Blue
111 White

To understand all describe above lets take a look at this example.
unsigned Int far *scr=0xb8000000;

void main()

E*scr)=0x0756;

(*(scr+1))=0x7055;
}

© Copyright Virtual University of Pakistan 31

04 - TSR programs and Interrupts

This example will generate the output MU

The far pointer scr is assigned the value 0xb800H in the high word which is the segment
address and value 0x0000H in the low word which is the offset address. The word at this
address is loaded with the value 0x0756H and the next word is loaded by the value
0x7055H, 0x07 is the attribute byte meaning black back color and white fore color and
the byte 0x70h means white back color and black fore color.).0x56 and 0x55 are the
ASCII value of “V” and “U” respectively.

© Copyright Virtual University of Pakistan 32

05 - TSR programs and Interrupts (Keyboard interrupt)

05 - TSR programs and Interrupts (Keyboard interrupt)

This same task can be performed by the following program as well. In this case the video
text memory is accessed byte by byte.

unsigned char far *scr=(unsigned char far*)0xb8000000;
void main()

{

*scr=0x56;
*(scr+1)=0x07;
*(scr+2)=0x55;
*(scr+3)=0x70;
s

The next example fills whole of the screen with spaces. This will clear the contents of the
screen.

unsigned char far *scr=(unsigned char far*)0xb8000000;
//corrected
void main()

{
int 1; //instruction added
for (1=0;i1<2000;1++) //corrected
{
*scr=0x20; //corrected
*(scr+1)=0x07; //corrected
SCr=scr+2;
}
}

Usually the in text mode there are 80 columns and 25 rows making a total of 2000
characters that can be shown simultaneously on the screen. This program runs a loop
2000 times placing 0x20 ASCII code of space character in whole of the text memory in
this text mode. Also the attribute is set to white forecolor and black backcolor.

Another Example
In the following example memory mapped 1/O is used in combination with interrupt
interception to perform an interesting task.

#include <dos.h>

void interrupt (*old)();

void interrupt newfunc();

char far *scr=(char far*) 0xb8000000;
void main()

{
old=getvect(0x08);
setvect(0x08,newfunc);
keep(0,1000);

}

© Copyright Virtual University of Pakistan 33

05 - TSR programs and Interrupts (Keyboard interrupt)

void interrupt newfunc

{
*scr=0x41; //corrected
*(scr+1)=0x07; //corrected
Cold)O;

}

In the above example the timer interrupt is intercepted such that whenever the timer
interrupt is invoked (by means of hardware) the memory resident newfunc() is invoked.
This function simply displays the ASCII character Ox41 or ‘A’ in the top left corner of the
text screen.

Here is another example.

#include <stdio.h>

void interrupt (*old)();

void interrupt newfunc();

char far *scr=(char far*) 0xb8000000;

int j;
void main()
{

old=getvect(0x08);
setvect(0x08,newfunc); //corrected
keep(0,1000); //corrected

}

void interrupt newfunc ()
{
for (j=0;j<4000;j+=2){ //corrected
if(*(scr+i)=="1"){
*(scr+j)="9"; }

}
Cold)O;
}

This program scans through all the bytes of text display memory when int 8 occurs. It
once resident will replace all the 1’ on the screen by “9’. If even somehow a ‘1’ is
displayed on the screen it will be converted to 9’ on occurrence of interrupt 8 which
occurs 18.2 times every second.

The keyboard Interrupt

Keyboard is a hardware device and it makes use of interrupt number 9 for its input
operations. Whenever a key is pressed interrupt # 9 occurs. The operating system
processes this interrupt in order to process the key pressed. This interrupt usually reads
the scan code from the keyboard port and converts it into the appropriate ASCII code and
places the ASCII code in the keyboard buffer in BIOS data area as described | nthe
diagram below

© Copyright Virtual University of Pakistan 34

05 - TSR programs and Interrupts (Keyboard interrupt)

Keyboard Any Process
Controller
, INT9
] Interrupt
60H Reads Scan
INT Code converts to
ASCII & place it
in Keyboard
Buffer & returns
Kbd

Lets now experiment on the keyboard interrupt to understand its behavior
Example

#include <dos.h>

void interrupt (*old)();

void interrupt newfunc();

void main()

{
old = getvect(0x09);
setvect(0x09,newfunc);
keep(0,1000);
}
void interrupt newfunc ()
{
Crold)();
Cold)():
) Cold)():

This program simply intercepts the keyboard interrupt and places the address of newint
in the IVT. The newint simply invokes the original interrupt 9 thrice. Therefore the
same character input will be placed in the keyboard buffer thrice i.e three characters will
be received for each character input.

Example

#include <dos.h>

void interrupt (*old)();

void interrupt newfunc();

char far *scr = (char far*) 0x00400017;

© Copyright Virtual University of Pakistan 35

05 - TSR programs and Interrupts (Keyboard interrupt)

void main()

{
old = getvect(0x09);
setvect(0x09,newfunc);
keep(0,1000);
}
void interrupt newfunc ()
{
*scr = 64;
Cold)():
+

The above program is quite familiar it will just set the caps lock status whenever a key is
pressed. In this case the keyboard interrupt is intercepted.

Example
void interrupt (*old)();

void interrupt newfunc();
char far *scr = (char far*) 0xB8000000;

int j;
void main()
{

old = getvect(0x09);
setvect(0x09,newfunc);
keep(0,1000);
}
void interrupt newfunc ()
{ for(jJ = 0;jJ < 4000; j += 2)
{
ifT (*(scr +3) == “17)
*(scr + j) = “97;

by
Cold)(); }
This too is a familiar example. Whenever a key is pressed from the keyboard the newfunc

functions runs through whole of the test display memory and replaces the ASCII ‘1’
displayed by ASCII “9°.

© Copyright Virtual University of Pakistan 36

05 - TSR programs and Interrupts (Keyboard interrupt)

Timer & Keyboard Interrupt Program

#include <dos.h>
void interrupt (oldTimer)(); //corrected
void interrupt (*oldKey)(); //corrected
void interrupt newTimer ();
void interrupt newKey ();
char far *scr = (char far*) 0xB8000000;
int i, t=0, m=0;
char charscr [4000];
void main()
{
oldTimer = getvect(8);
oldKey = getvect (9);
setvect (8,newTimer);
setvect (9,newKey);
getch();
getch();
getch();
getch(Q);

void interrupt newTimer ()

T++;
if ((t >= 182) && (m == 0))
{
for (i =0; 1 < 4000; i1 ++)
charscr [i] = *(scr + i);
for (i =0; 1 <=4000; i +=2)
{
*(scr + 1) = 0x20;
*(scr + 1 + 1) = Ox07;

3
t=0;m=1;
}

ColdTimer) ();
}

void interrupt newKey ()

{
int w;
if (m==1)
{
for (w =0; w < 4000; w ++)
*(scr + w) = charscr [w];
m = 0;

CroldKey) ();
3

This program works like a screen saver. The newT imer function increments t whenever
it is invoked so the value of t reaches 182 after ten second. At this moment the function
saves the value in display text memory in a character array and fills the screen with
spaces and sets a flag m. The newKey function is invoked when a key press occurs.

© Copyright Virtual University of Pakistan 37

05 - TSR programs and Interrupts (Keyboard interrupt)

The flag is checked if the it’s set then the screen is restored from the values saved in that
character array.

Reentrant Procedures & Interrupt

If on return of a function the values within the registers are unchanged as compared to
the values which were stored in registers on entry into the procedures then the procedure
is called reentrant procedure. Usually interrupt procedures are reentrant procedures
especially those interrupt procedure compiled using C language compiler are reentrant.
This can be understood by the following example

AX =1234H

Proc () AX =FF55H

AX =7

In the above example the function Procl() is invoked. On invocation the register AX
contained the value 1234H, the code within the function Proc1() changes the value in AX
to FF55H. On return AX will contain the value 1234H if the function have been
implemented as a reentrant procedure i.e a reentrant procedure would restore the values in
registers their previous value (saved in the stacked) before returning.

C language reentrant procedures save the registers in stack following the order AX, BX,
CX, DX, ES, DS, SI, DI, BP on invocation and restores in reverse order before return.

This fact about reentrant procedures can be analysed through following example.

#include <stdio.h>
void interrupt *old(Q);
void interrupt newint()
void main ()

{

int a;

old = getvect(0x65);
setvect(0x65,newint);
_AX=0xT00f;
geninterrupt(0x65);
a=_AX
printf(“%x,a);

by

© Copyright Virtual University of Pakistan 38

05 - TSR programs and Interrupts (Keyboard interrupt)

void interrupt newint()
{
_AX=0x1234;

}

Firstly its important to compile this above and all the rest of the examples as .C files
and not as .CPP file. It these codes are compiled using .CPP extension then there is no
surety that this program could be compiled.

Again int 65H is used for this experiment. The int 65H vector is made to point at the
function newint(). Before calling the interrupt 65H value OXFOOF is placed in the AX
register. After invocation of int 65H the value of AX register is changed to 0x1234. But
after return if the value of AX is checked it will not be 0x1234 rather it will be 0xFOOF
indicating that the values in registers are saved on invocation and restore before return
and also that the interrupt type procedures are reentrant.

© Copyright Virtual University of Pakistan

39

06 - TSR programs and Interrupts (Disk interrupt, Keyboard hook)

06 - TSR programs and Interrupts (Disk interrupt,
Keyboard hook)

The typical sequence in which registers will be pushed and poped into the stack on
invocation and on return can be best described by the following diagrams

Push
AX,BX,CX,DX,ES,DS,SI,DI,BP

ﬁv
Push flags, CS, IP
POP
v BP,DI,SI,DS,ES,DX,CX,BX,AX

Pop IP,CS,flags

Push AX, Push BX,
Push CX, Push DX,
Push ES, Push DS,
Push SI, Push DI, Push BP

Int

- Pop BP, Pop DI,
Pop SI, Pop DS,
Pop ES, Pop DX,

Pop CX, Pop BX, Pop AX,
IRET

The registers Flags, CS and IP are pushed on execution of INT instruction and executions
branches to the interrupt procedure. The interrupt procedure pushes register AX, BX, CX,
DX, ES, DS, SI, DI, BP in this order. The interrupt procedure then executes, before
returning it pops all the registers in the reverse order as BP, DI, SI, DS, ES, DX, CX, BX
and AX. IP, CS and flags are poped on execution of the IRET instruction.

Next diagram shows the status of the stack after invocation of the interrupt procedure.

© Copyright Virtual University of Pakistan 40

06 - TSR programs and Interrupts (Disk interrupt, Keyboard hook)

v

BP
Dl
Sl
DS
ES
DX
CX
BX
AX

IP
CS
Flags

v

The arguments in simple procedure or functions are saved in the stack for the scope of the
function/procedure. When an argument is accessed in fact stack memory is accessed.
Now we will take a look how stack memory can be accessed for instance in case of
interrupt procedures to modify the value of register in stack.

Accessing Stack Example

void interrupt newint (unsigned int BP,unsigned int DI,
unsigned int Sl,unsigned int DS, unsigned int
ES,unsigned int DX, unsigned int CX,unsigned
int BX, unsigned int AX,unsigned int IP,
unsigned int CS,unsigned int flags)

//corrected

{
unsigned int a = AX;
unsigned int b = BX;
unsigned int d = ES;

}

Although interrupt do not take parameters through stack but an interrupt procedure can
still have parameters. This parameter list can be used to access the stack. The leftmost
parameter accesses the item on top of the stack and the rest of the parameters accesses
deeper into the stack according to its order toward left. In the above example value of AX

in stack is moved in a, the value of BX is moved into b and the value of ES is moved into
d.

© Copyright Virtual University of Pakistan 41

06 - TSR programs and Interrupts (Disk interrupt, Keyboard hook)

Example:

void interrupt newint (unsigned int
BP,unsigned int DI, unsigned int Sl,unsigned
int DS, unsigned int ES,unsigned int DX,
unsigned int CX,unsigned int BX, unsigned int
AX,unsigned int IP, unsigned int CS,unsigned
int flags) //corrected

{
AX = OxFOOF;

void main ()
{
setvect(0x65,newint);
_AX = 0x1234;
geninterrupt (0x65);
a = _AX;
printf (“%x”, a);
+

In this example the value on invocation in AX is 0x1234, the interrupt procedure does not
change the current value of the register through pseudo variables rather it changes the
corresponding of AX in stack which will be restored in AX before return.

Disk Interrupt
The following example makes use of disk interrupt 13H and its service 3H. The details of

this service are as under.

On Entry

AH = Service # = 03

AL = No of Blocks to write

BX = Offset Address of Data
CH=Track# , CL =Sector#

DH = Head #

DL = Drive #(Starts from 0x80 for fixed disk & 0 for removable disks)
ES = Segment Address of data buffer.
On Exit

AH = return Code

Carry flag = 0 (No Error AH = 0)
Carry flag = 1 (Error AH = Error Code)

Boot block is a special block on disk which contains information about the operating
system to be loaded. If the data on boot block is somehow destroyed the disk would be
rendered inaccessible. The address of partition block on hard disk is head # =1, track# = 0
and sector # = 1. Now let’s write an application that will protect the boot block to be
written by any other application.

© Copyright Virtual University of Pakistan 42

06 - TSR programs and Interrupts (Disk interrupt, Keyboard hook)

#pragma inline

#include <dos.h>

#include <bios.h>

void interrupt (*oldtsr) ();

void interrupt newtsr (unsigned int BP, .., flags);
//must provide all the arguments

void main ()

{
oldtsr = getvect (0x13);
setvect(0x13, newtsr); //corrected
keep (0, 1000);

}

void interrupt newtsr(unsigned int BP, unsigned int DI,
unsigned int SI, unsigned int DS, unsigned int ES, unsigned
int DX, unsigned int CX, unsigned int BX, unsigned int AX,
unsigned int IP, unsigned int CS,

unsigned int flags) //corrected

{

it (_AH == 0x03)

iT(C _DH == 1 & _CH == 0 && _CL == 1)&& _DL >= 0x80)

{
asm clc;
asm pushf;
asm pop fTlags;
return;
by

_ ES = ES; DX = DX;
_CX = CX; _BX = BX;
_AX = AX;

*oldtsr;

asm pushft;

asm pop fTlags;

AX = AX; BX = BX;
CX = _CX; DX = _DX;
ES = ES;

}

The above program intercepts interrupt 13H. The new interrupt procedure first check AH
for service number and other parameters for the address of boot block. If the boot block is
to be written it simply returns and clears the carry flag before returning to fool the calling
program that the operation was successful. And if the boot block is not to be written then
it places the original parameters back into the registers and calls the original interrupt.
The values returned by the original routine are then restored to the corresponding register
values in the stack so that they maybe updated into the registers on return.

© Copyright Virtual University of Pakistan 43

06 - TSR programs and Interrupts (Disk interrupt, Keyboard hook)

The keyboard Hook

The service 15H/4FH is called the keyboard hook service. This service does not perform
any useful output, it is there to be intercepted by applications which need to alter the
keyboard layout. It called by interrupt 9H after it has acquired the scan code of input
character from the keyboard port while the scan code is in AL register. When this service
returns interrupt 9H translates the scan code into ASCII code and places it in buffer. This
service normally does nothing and returns as it is but a programmer can intercept it in
order to change the scan code in AL and hence altering the input or keyboard layout.

Move Scan Code

from 60H port to

AL Int 15H
/ Service 4FH

Convert to ASCII
& place it in keyboard buffer

Key Pressed

N

The following application show how this can be done.

#include <dos.h>

#include <bios.h>

#include <stdio.h>

void interrupt (*oldintl5) ();

void interrupt newintl5Cunsigned int BP, .., flags);
void main ()

{
oldintl5 = getvect (0x15);
setvect (0x15, newintl5);
keep (0, 1000);

be

void interrupt newintl5Cunsigned int BP, unsigned int DI,
unsigned int Sl, unsigned int DS, unsigned int ES, unsigned
int DX, unsigned int CX, unsigned int BX, unsigned int AX,
unsigned int IP, unsigned int CS,

unsigned int flags)

{
it (*(((char*)&AX) + 1) == O0x4F)
{
if (*((char*)&AX) == 0x20C)
(((char)&AX)) = Ox1E;
else it (*((char*)&AX) == Ox1E)
((char)&AX) = 0x2C; //corrected
}
else
Croldintl5)(Q);
}

© Copyright Virtual University of Pakistan 44

06 - TSR programs and Interrupts (Disk interrupt, Keyboard hook)

The application intercepts interrupt 15H. The newint15 function checks for the service #
4F in the high byte of AX, if this value is 4F the definitely the value in AL with be the
scan code. Here a simple substitution have been performed Ox1E is the scan code of ‘A’
and 0x2C is the scan code of ‘Z’. If the scan code is AL is that of ‘A’ it is substituted with
the scan code of ‘Z’ and vice versa. If some other service of 15H is invoked the original
interrupt function is invoked.

© Copyright Virtual University of Pakistan 45

07 - Hardware Interrupts

07 - Hardware Interrupts

The microprocessor package has many signals for data, control and addresses. Some of
these signals may be input signals and some might be output. Hardware interrupts make
use of two of such input signals namely NMI (Non maskable Interrupt) & INTR(Interrupt

Request).
Reset

Hold
NMI Microprocessor

INTR

NMI is a higher priority signal than INTR, HOLD has even higher priority and RESET
has the highest priority. If any of the NMI or INTR pins are activated the microprocessor
is interrupted on the basis of priority, if no higher priority signals are present. This is how
microprocessor can be interrupted without the use of any software instruction hence the
name hardware interrupts.

Hardware Interrupt and Arbitration

Most of the devices use the INTR line. NMI signal is used by devices which perform
operations of the utmost need like the division by zero interrupt which is generated by
ALU circuitry which performs division. Definitely this operation is not possible and the
circuitry generates an interrupt if it receives a 0 as divisor from the control unit.

INTR is used by other devices like COM ports LPT ports, keyboard, timer etc. Since only
one signal is available for microprocessor interruption, this signal is arbitrated among
various devices. This arbitration can be performed by a special hardware called the
Programmable Interrupt Controller (PIC).

© Copyright Virtual University of Pakistan 46

07 - Hardware Interrupts

Interrupt Controller
A single interrupt controller can arbitrate among 8 different devices.

DO IRQO
| PIC
D7 }
P R—
INT IRQT

As it can be seen from the diagram above the PIC device has 8 inputs IRQO0-IRQ7. IRQO
has the highest priority and IRQ7 has the lowest. Each IRQ input is attached to an 1/0
device whenever the device requires an 1/0 operation it sends a signal to the PIC. The
PIC on the basis of its priority and presence of other requests decides which request to
serve. Whenever a request is to be served by PIC it interrupt the processor with the INT
output connected to the INTR input of the processor and send the interrupt # to be
generated the data lines connected to the lower 8 datelines of the data bus to inform the
processor about the interrupt number. In case no higher priority signal is available to the
processor and the processor is successfully interrupted the microprocessor sends back an
INTA (interrupt Acknowledge) signal to inform the PIC that the processor has been
interrupted.

The following diagram also shows the typical connectivity of the IRQ lines with various
devices

Interval Timer

0 IRQ1
KBD Controller 1
DO
2 i
| MICRO
COM2 3 pIC D7 | pROCESSOR
COM1 4
INT INTR
Other
Controllers 10 NTA
Printer Controller |2 1RQ7

© Copyright Virtual University of Pakistan 47

07 - Hardware Interrupts

In standard PCs there maybe more than 8 devices so generally two PIC are used for INTR
line arbitration. These 2 PICs are cascaded such that they collectively are able to arbitrate
among 16 devices in all as shown in the following diagram.

MASTER |roo

)
@)

PIC |——|IRQ7

casl

INTA -

)
\l

DO IRQS

| D7 PIC IRQ15
casl

| cas2
INTA cas3

SLAVE

The PICs are cascaded such that a total of 16 IRQ levels can be provided number IRQO-
IRQ15. The IRQ level 2 is used to cascade both of the PIC devices. The Data lines are
multiplexed such that the interrupt number is issued by the concerned PIC. The IRQ 2
input of the Master PIC is connected to the INT output of the Slave PIC. If the slave PIC
is interrupted by a device its request ins propagated to the master PIC and the master PIC
ultimately interrupts the processor on INTR line according to the priorities.

In a standard PC the PICs are programmed such that the master PIC generated the
interrupt number 8-15 for IRQO0 —IRQ7 respectively and the slave PIC generates interrupt
number 70-77H for IRQ8-IRQ15

Hardware Interrupts are Non-Preemptive

As described earlier IRQ 0 has the highest priority and IRQ 15 has the lowest priority. If a
number of requests are available instantaneously the request with higher priority will be
sent for service first by the PIC. Now what will happen if a lower priority interrupt is
being service and a higher priority interrupt request occurs, will the lower priority
interrupt be preempted? The answer is that the interrupt being serviced will not be
preempted no matter what. The reason for this non-preemptive can be understood by the
example illustrated as below. Let’s first consider that the hardware interrupts are
preemptive for argument sake. If a character ‘A’ is input a H/W interrupt will occur to
process it, while this interrupt is being processed another character is input say ‘B’ in case
the interrupts have been preemptive the previous instance will be preempted and another
instance for the H/W interrupt call will be generated, and similarly consider another
character is input ‘C’ and the same happened for this input as well. In this case the
character first to be fully processed and received will be ‘C” and then ‘B’ will be

© Copyright Virtual University of Pakistan 48

07 - Hardware Interrupts

processed and then “‘A’. So the sequence of input will change to CBA while the correct
sequence would be ABC.

C PRESSED

APRESSED

B PRESSED

Input received C B A mmmmp |_ogically Incorrect

Logically Coret! m——s ABC

The input will be received in correct sequence only if the H/W interrupts are non-
preemptive as illustrated in the diagram below.

< APRESSED
< B PRESSED
< C PRESSED
Input received ABC » Logically Correct

Hardware interrupts requires something more to be programmed into them as compared
with software interrupts. The major difference is because of the reason given above that
the H/W interrupts are non-preemptive. To make them non-preemptive the PIC should
know when the previously issued interrupt returns. The PIC cannot issue the next pending
interrupt unless it is notified that the previous interrupt has returned.

Who Notifies EOI (End of interrupt)

The PIC has to be notified about the return of the previous interrupt by the ISR routine.
From programmer point of view this is the major difference between H/W and software
interrupt. A software interrupt will not require any such notification. As the diagram
below illustrates that every interrupt returns with an IRET instruction. This instruction is
executed by the microprocessor and has no linkage with the PIC. So there has to be a
different method to notify the PIC about the End of interrupt.

© Copyright Virtual University of Pakistan 49

07 - Hardware Interrupts

Pending Hardware interrupts.

While a hardware interrupt is being processed a number of various other interrupt maybe
pending. For the subtle working of the system it is necessary for the In-service hardware
interrupt to return early and notify the PIC on return. If this operation takes long and the
pending interrupt requests occur repeated there is a chance of loosing data.

Programming the PIC
To understand how the PIC is notified about the end of interrupt lets take a look into the
internal registers of PIC and their significance. A PIC has a number of initialization
control words (ICW) and operation control words (OCW), following is characteristic of
ICW and OCWs
* ICW programmed at time of boot up
» ICW are used to program the operation mode like cascade mode or not also it is
used to program the function of PIC i.e if it is to invoke interrupts 08~ OFH or
70-77H on IRQ request.
* OCW are used at run-time.
* OCW is used signal PIC EOI
* OCW are also used to read/write the value of ISR(In-service register),
IMR(interrupt mask register), IRR(interrupt request register).

To understand the ISR, IMR and IRR lets take a look at the following diagram illustrating
an example.

/ 6 5 4 3 2 10

ISR o [0 [0 |1 |0 |0 |0 |0
/ 6 5 4 3 2 10
IMR o (0 |0 |0 (0O |0 |1 |0
/ 6 5 4 3 2 1 0
IRR 1 1 (0 |0 |0 1 |0 1

The values shown in the various registers illustrate that the currently in-service interrupt
is that generated through IRQ4 of the PIC (int OCH in case of mater PIC), also the
interrupt through IRQ1 has been masked (int 9h (keyboard interrupt) in case of master
PI1C) which means that even though a request for this interrupt is received by the PIC but
this request is ignored by the PIC until this bit is cleared. And the requests through IRQ7,
IRQ6, IRQ2 and IRQO are pending and waiting for the previously issued interrupt to
return.

Port Addresses
Few of the operation control words can be altered after boot time. The addresses for these
OCW are listed as below

* Master PIC has two ports
20H=0OCW for EOI
21H=0CW for IMR

© Copyright Virtual University of Pakistan 50

07 - Hardware Interrupts

» Slave PIC has two ports as well
AOH=0OCW for EOI code
A1H=0CW for IMR

Let’s now discuss an example that accesses these ports to control the PIC

#include <stdio.h>
#include <bios.h>
void main()

{
outport(0x21,0x02);

}

This example simply accesses the bit # 1 of IMR in the master PIC. It sets the bit #1 in

IMR which masks the keyboard interrupt. As a result no input could be received from the

keyboard after running this program.
Let’s now look at another example

#include <dos.h>

#include <stdio.h>
#include <bios.h>

void interrupt(Croldints)();
void interrupt newint8();
int t=0; //corrected

void main()

{
oldints=getvect(0x08);

setvect(0x08,newint8);

keep(0,1000);
void interrupt newint8()
{
tT++:
it (t==182)
{
outport(0x21,2);
3}
else{
it (t==364)
{
outport(0x21,0);
t=0;
by
}
Coldints)();
+

© Copyright Virtual University of Pakistan

51

07 - Hardware Interrupts

The example above is also an interesting example. This program intercepts the timer
interrupt. The timer interrupt makes use of a variable to keep track of how much time has
passed; t is incremented each time int 8 occurs. It the reaches the 182 after 10 second, at
this point the keyboard interrupt is masked and remains masked for subsequent 10 second
at which point the value of t will be 364, also t is cleared to O for another such round.

#include <dos.h>

void interrupt(*old)();

void interrupt newint9();

char far *scr=(char far *) 0x00400017;

void main()

{

old=getvect(0x09);
setvect(0x09,newint9);
keep(0,1000);

void interrupt newint9()

{
if (inportb(0x60)==83
&&(((*scr)&l12)==12)) //corrected

outportb(0X20,0x20);
return;

}
Cold)O;
}

The above program disables the CTRL+ALT+DEL combination in the DOS environment
(if windows OS is also running this combination will not be disabled for its environment).
The keyboard interrupt has been intercepted, whenever the keyboard interrupt occurs the
newint9 function receives the scan key code from the keyboard port 0x60, 83 is the scan
key code of DEL key. Also the program checks if the ALT and CTRL button has been
pressed as well from the status of the 40:17H keyboard status byte. If it confirms that the
combination pressed is CTRL+ALT+DEL then it does not invoke the real int 9 (*oldint()
which will make the computer reboot in DOS environment had the computer been booted
through DOS) and simply returns. But notice that before returning it notifies the PIC that
the interrupt has ended. The EOI code sent to the OCW at the address 0x20 is also 0x20.
This is being done because int 9 is a hardware interrupt, had this been a software interrupt
this would have not been required

© Copyright Virtual University of Pakistan 52

07 - Hardware Interrupts

#include <dos.h>
void interrupt(*old)();
void interrupt newint9();

void main()

{

old=getvect(0x09);
setvect(0x09,newint9);
keep(0,1000);

}

void interrupt newint9()

{
it (inportb(0x60)==0x1F) //corrected

{

outportb(0X20,0x20);
return;

}
Cold)O;
}

The above C language program suppresses the ‘s’ input from the keyboard. The keyboard
interrupt has been intercepted. When a key is pressed newint9 is invoked. This service
checks the value through the import statement of the keyboard port numbered 0x60. If he
scan code (and not the ASCII code) is Ox1F then it indicates that the ‘s’ key was pressed.
This program in this case simply returns the newint9 hence suppressing this input by not
calling the real int 9. Before return it also notifies the PIC about the end of interrupt.

© Copyright Virtual University of Pakistan 53

08 - Hardware Interrupts and TSR programs

08 - Hardware Interrupts and TSR programs

The keyboard buffer

Keyboard Buffer

» Keyboard Buffer is located in BIOS Data Area.
» Starts at 40: IEH
* Ends at40 : 3DH

» Has 32 byes of memory 2 bytes for each
character.

» Head pointer is located at address 40 : 1A to
40:1BH

* Tail pointer located at address 40 : IC to 40:IDH

The keyboard buffer is a memory area reserved in the BIOS data area. This area stores the
ASCII or special key codes pressed from the keyboard. It works as a circular buffer and
two bytes are reserved for each character, moreover 2 bytes are used to store a single
character. The first character stores the ASCII code and the second byte stores 0 in case
an ASCII key is pressed. In case a extended key like F1- F12 or arrow key is pressed the
first byte stores a O indicating a extended key and the second byte stores its extended key

code.

© Copyright Virtual University of Pakistan 54

08 - Hardware Interrupts and TSR programs

Circular buffer

40:1AH

40:1CH

Head Tail
> a 40:1EH

> >

<«— 40:3DH

The circular keyboard buffer starts at the address 40:1EH and contains 32 bytes. The
address 40:1AH stores the head of this circular buffer while the address 40:1CH stores the
tail of this buffer. If the buffer is empty the head and tail points at the same location as

shown in the diagram above.

Storing characters in the keyboard buffer

Tail
—— OX1E
0’
‘B’ 0x20
0 ox21
0 0x22
83 0x23

4——— Head = 0x24

The above slide shows how characters are stored in the buffer. If “A; is to be stored then

the first byte in the buffer will store its ASCII code and the second will store 0, and if

© Copyright Virtual University of Pakistan 55

08 - Hardware Interrupts and TSR programs

extended key like DEL is to be stored the first byte will store 0 and the second byte will
store its scan code i.e. 83. The diagram also shows that head points to the next byte where
the next input character can be stored. Also notice that head contain the offset from the
address 40:00H and not from address 40:1EH. i.e. it contain 0x24 which is the address of
the next byte to be stored relative to the start of BIOS data area and not the keyboard
buffer.

Position of tail

OxXE
Tail=0x20

B

0

0

83 Head = 24

As discussed earlier the keyboard buffer is a circular buffer therefore the tail need to be
placed appropriately. In the given example the input ‘A’ stored in the buffer is consumed.
On consumption of this character the tail index is updated so that it points to the next
character in the buffer. In brief the tail would point to the next byte to be consumed in the

buffer while head points to the place where next character can be stored.

© Copyright Virtual University of Pakistan 56

08 - Hardware Interrupts and TSR programs

Example

* So KBD buffer acts as a circular buffer.

» The tail value should be examined to get
to the start of the buffer.

#include <dos.h>

void interrupt (*old)();

void interrupt new1()!

unsigned char far *scr = (unsigned char far
*) 0x0040001C

void main()

{

old=getvect(0x09);

setvect(0x09,newl);

keep(0,100);

}

© Copyright Virtual University of Pakistan

57

08 - Hardware Interrupts and TSR programs

void interrupt newl ()
{
if(inportb(0x60)==83)
{
*((unsigned char far¥)0x00400000+*scr)=25;
if((*scr)==60)
*scr=30;
else
*scr+=2;
outportb(0x20,0x20);
return;

B

The program listed in the slides above intercepts interrupt 9. Whenever the interrupt 9
occurs it reads the keyboard port 0x60. If the port contains 83 then it means DEL was
pressed, if so it places the code 25 in the buffer and then updates the head in circular
manner. The code 25 placed instead of 83 represents the combinations CTRL+Y. The
program when resident will cause the program to receive CTRL+Y combination
whenever DEL is pressed by the user. i.e in Borland C environment CTRL+Y
combination is used to delete a line, if this program is resident then in Borland C
environment a line will be deleted whenever DEL is pressed by the user. But the thing
worth noticing is that the interrupt function returns and does not call the real interrupt 9
after placing 25 in the buffer, rather it returns directly. But before returning as it has
intercepted a hardware interrupt it needs to notify the PIC, this is done by
outport(0x20,0x20); statement. 0x20 is the address of the OCW that receives the EOI

code which incidentally is also 0x20.

© Copyright Virtual University of Pakistan

58

08 - Hardware Interrupts and TSR programs

EOI Code for Slave IRQ

For Master

outportb(0x20,0x20);
For Slave

outportb(0x20,0x20);
outportb(0xA0,0x20);

As discussed earlier the slave PIC is cascaded with the master PIC. If the hardware
interrupt to be processed is issued by the master PIC then the ISR needs to send the EOI
code to the master PIC but if the interrupt request is issued by the slave PIC then the ISR
needs to inform both master and slave PICs as both of them are cascaded as shown in the

slide.

© Copyright Virtual University of Pakistan 59

08 - Hardware Interrupts and TSR programs

Reading OCW

OCW2& OCW3

00 IfEOI is to be sent

001 FOR Non Specific EOI

01 If other Registers are to be accessed

The same port i.e 0x20 is used to access the OCWs. 00 is placed in bits number 4 and 3 to

indicate an EOI is being received and 01 is placed to indicate that a internal register is to

be accessed.

L [1 Jo | |

O1 Toread IRRor ISR1 l

10=1IRR
11= In-Service Register

The value in bits number 1 and 0 indicate which Register is to accessed. 10 is for IRR and

11 is for ISR.

© Copyright Virtual University of Pakistan

60

08 - Hardware Interrupts and TSR programs

Accessing the ISR and IRR.

No EOl relevant Don’t Care

Other Register to be Accessed

A value is placed in the port 0x20 as shown in the above slide to indicate that a register is

to be accessed.

IRR Accessed

01 PIC Notified about reading operation

Then again a value in that same port is placed to indicate which register is to be accessed,

as in the above slide IRR is to be accessed.

© Copyright Virtual University of Pakistan

61

08 - Hardware Interrupts and TSR programs

ISR Accessed

01 PIC Notified about reading operation

And in this slide a value is formed which can be programmed in the port 0x20 to access
the ISR.

A sample program

#include <stdio.h>

#include <dos.h>

#include <bios.h>

void main (void)

{ char a;
outport(0x20,8);
outport(0x20,0x0A);
a=inport(0x20);
printf (“value of IRR is %X"; ,a);
outport(0x20,0x08);
outport(0x20,0x0B);
a=inport(0x20);
printf (“value of ISR is %X’; ,a);

The above program makes use of the technique described to access the ISR and IRR.
Firstly 0x08 is placed to specify that a register is to be accessed then 0x0A is placed to
indicate that IRR is to accessed. Now this port 0x20 can be read which will contain the
value in IRR. Similarly it is done again by placing the 0x0B in port 0x20 to access the
ISR.

© Copyright Virtual University of Pakistan 62

08 - Hardware Interrupts and TSR programs

More about TSR Programs

* ATSR need to be loaded once in memory

» Multiple loading will leave redundant
copies in memory

* So we need to have some check which
will load the program only once

One of the solution to the problem can be

© Copyright Virtual University of Pakistan

63

08 - Hardware Interrupts and TSR programs

Using a Global Variable as a
flag

as shown in the slide below

int flag;

flag =1;
keep(0,1000);

if (flag==1)

Make TSR
else

exit Program

This will not work as this global variable is only global for this instance of the program.

Other instances in memory will have their own memory space. So the

© Copyright Virtual University of Pakistan

64

08 - Hardware Interrupts and TSR programs

Answers is to use a memory area as
flag that is global to all programs.
ie. IVT

int 65H is empty, we can use
Its vector as a flag.
Address of vector

seg=0

offset = 65H * 4

Example:

#include<stdio.h> setvect(0x08, newint);
#include<BIOS.H> (*int65vec) = OxFOOF;
#include<DOS.H> keep (0,1000);
unsigned int far * int65vec = }else

(unsigned far *) {

MK _FP(0,0x65*4) puts (“Program Already
void interrupt (*oldint) (); Resident”);
void interrupt newfunc (); 1}
void main() void interrupt newfunc ()
{ { B
if((*int65vec) != 0xFOOF) nnn

/lcorrected (*oldint) ();
{

oldint =getvect (0x08):

© Copyright Virtual University of Pakistan

65

08 - Hardware Interrupts and TSR programs

The above template shows how the vector of int 0x65 can be used as a flag. This template
shows that a far pointer is maintained which is assigned the address of the int 0x65
vector. Before calling the keep() function i.e making the program resident a value of
OxfOOf is placed at this vector(this vector can be tempered as it is not being used by the
OS or device drivers). Now if another instance of the program attempts to run the if
statement at the start of the program will check the presence of 0x0f00f at the int vector
of Ox65, if found the program will simply exit otherwise it will make itself resident. Or in
other word we can say that OxfOOf at the int 0x65 vector in this case indicate that the

program is already resident.

»But what if another program is
resident or using this vector.

Another Method
» Service # OXFF usually does not
exist for ISR’s.

»>Key is to create another service #
OxFF for the ISR interrupt besides
other processing.

Example:
#include<stdio.h>
#include<BIOS.H>
#include<DOS.H>
void interrupt (*oldint) ();
void interrupt newfunc (unsigned int BP,....., flags);

void main()

{
_DI=0;
_AH = OxFF;

geninterrupt (0x13);

if (_DI = = 0xFOOF) {

puts (“Program Already Resident”);
exit (0);

}

© Copyright Virtual University of Pakistan 66

08 - Hardware Interrupts and TSR programs

The implements the service Oxff of interrupt 0x13 such that whenever this service is
called it returns OxfOOf in DI and if this value does not return then it means that this

program is not resident.

Example:
Else
{
oldint = getvect (0x13);
setvect (0x13, newint);
keep (0, 1000);
Hi _ else
void interrupt newint () { seeeees
{ R
if CAH == OxFF) i
{ }
DI = OxFOOF; (*oldint) ();
return; }
}

© Copyright Virtual University of Pakistan

67

09 - The interval Timer

09 - The interval Timer
The interval timer

Interval Timer

- Synchronous Devices require a
timing signal.

generated |C

Clk_

- IkT [o

PCLK =1.19318 MHz

PCLK (for peripheral
Synchronous Devices)

Interval
Timer

"|Microprocessor

Cho to IRQO

CH1 TO DRAM controller
Ch2 to PC Speaker

The interval timer is used to divide an input frequency. The input frequency used by the

interval timer is the PCLK signal generated by the clock generator. The interval timer has

three different each with an individual output and memory for storing the divisor value.

© Copyright Virtual University of Pakistan

68

09 - The interval Timer

Dividing Clock signal

Counter Reqisters:

» Counter registers can be used to divide frequency.

7 6543210
I N =

II_I_I_U_I_I_L(_I_I

v v v v

16 /8 /14 12

A counter register can be used to divide the clock signal. As shown in the slide above, 0

of the clock register is used to divide the clock frequency by 2 subsequently bit 1 is used

to divide it by 4 and so on.

The Division mechanism

0000 0000 0000 1000
0000 0001 0000 1001
0000 0010 0000 1010
0000 0011 0000 1011
0000 0100 0000 1100
0000 0101 0000 1101
0000 0110 0000 1110
0000 0111 0000 1111

The above slide shows a sequence of output that a 8bit clock register will generate in

sequence whenever it receives the clock signal. Observe bit #1, its value changes between

0 and 1 between two clock cycles so it can be used to divide the basic frequency by 2.

© Copyright Virtual University of Pakistan

69

09 - The interval Timer

Similarly observe bit #2 its value transits between 0 and 1 within 4 clock cycles hence it

divides the frequency by 4 and so on.

Timing diagram

Timing Diagram

Juuurrruuuuuy
Bit 0 (2)
Bit 1 (/4) |
Bit2 (/8) l_

Bit 3 (/16) r

Here is the timing diagram for above example. Bit #1 performs one cycle in between 2

clock cycles. Similarly bit #2 performs one cycle in between 4 clock cycles and so on.

© Copyright Virtual University of Pakistan

70

09 - The interval Timer

Command registers within the programmable interval timer

Interval Timer Programming:
Command Registers
* 8-bit Command port

* Need to be programmed before
loading the divisor value for a
channel.

» 3 channels, each requires a 16-
bit divisor value to generate the
output frequency.

Command register and the channels need to be programmed for the interval timer to
generate a wanted frequency.

Command Register

7 6 2
1|0 1|0

T
Ch: 00=0 oy

01=1

10=2 Mode 0 ~5
=000 ~ 101

Ll 3}
o
O

0l=Low Byte

10=High Byte

11=Low Byte followed
by High Byte

Command register is an 8 bit register which should be programmed as described in the
slide above before loading the divisor value. It signifies the channel to be programmed,
size of divisor value, the mode in which the channel is to be operated and also whether

the counter is to be used a binary or BCD counter.

© Copyright Virtual University of Pakistan

71

09 - The interval Timer

Mode Description

Ty uyuUyyuuwy
Divisor =4
Mode =0

Divisor =4

e UerUl

Divisor =4
Mode =2 ‘ ‘2 ‘2 ‘ ‘

Divisor =4

The interval timer can operate in six modes. Each mode has a different square wave
pattern according to need of the application. Some modes might be suitable to control a
motor and some might be suitable to control the speaker.

Binary counter

Binary Count:
[JoJoJo[1JoJo [1 |e—=x

1 0 o 0 1 0 1 O
1 0 0o o0 1 0 1 1

BcDcounT=s9—{1 |0 [0 [0 |1 [0 [0 |1 |
1 0 01 0 0 0 0

1 0 01 0 0 0 1

%=1 0 0 1 1 0 0 1

0 0 0o 0 0 o0 o0 O

The interval timer channels can be used as a binary as well as a BCD counter. In case its
used in binary mode its counter registers will count in binary sequence and if its used as a
BCD counter its registers will count in BCD sequence as described above.

© Copyright Virtual University of Pakistan 72

09 - The interval Timer

Ports and Channels

Ports & Channels:

* 3-Channels 16-bit wide divisor value
i.e 0~65535

8-bit port for each channel therefore the
divisor word is loaded serially byte by byte.

Port Addresses

43H = Command Port

40H = 8-hit port for Channel 0
41H = 8-bit port for Channel 1
42H = 8-hit port for Channel 2

The interval timer has 3 channels each channel is 16 bit wide. The port 43H is an 8 bit
port used as the command register. Ports 40h, 41H and 42H are associated with the
channels o, 1 and 2 respectively. Channels are 16 bit wide whereas the ports are 8 bit

wide. A 16 bit value can be loaded serially through the ports into the register.

Steps for programming the interval timer

Programming Concepts for Interval
Timer:
» Load the Command byte into
command register required to

program the specific channel.

» The divisor word is then
Serially loaded byte by byte.

© Copyright Virtual University of Pakistan 73

09 - The interval Timer

The port 61H

61H Port

Connect
to interval
timer =1
Rest of the bits are used by other
devices and should not be changed.
Turn ON Speaker =1
Turn OFF Speaker=0

the port 61h is used to control the speaker only the least significant 2 bits are important.

Bit 0 is used to connect the interval timer to the speaker and the bit #1 is used to turn the

speaker on off. Rest of the bits are used by other devices.

Example

Example:

//Program loads divisor value of Ox21FF
/ITurns ON the speaker and connects it to Interval
Timer
#include<BIOS.H>
#include<DOS.H>
void main()
{
outportb (0x43,0xB4);
outportb (0x42,0xFF);
outportb (0x42,0x21);
outporth (0x61,inportb(0x61) | 3);
getch();
outportb (0x61,inportb(0x61) & OxFC);

The above programs the interval timer and then turns it on. A value of 0xb4 is loaded into

the command register 0x43. This value signifies that the channel 2 is to programmed,

© Copyright Virtual University of Pakistan

74

09 - The interval Timer

both the bytes of divisor value are to loaded, the interval timer is to be programmed in
mode 2 and is to be used as a binary counter.

Then the divisor value say 0x21ffH, is loaded serially. First OXFF low byte and then the
high byte 0x21 is loaded. Both the least significant bits of 0x61 port are set to turn on the
speaker and connect it to the interval timer.

On a key press the speaker is again disconnected and turned off.

Producing a Delay in a Program

Timer Count:
40:6CH
Incremented every 1/18.2 seconds. Whenever INT8

unsigned long int far *time = (unsigned long int far*) 0x0040006C

void main()

{
unsigned long int tx;
tx = (*time);
tx = tx +18;

puts(“Before”);
while((*time) <= tx);
puts(*“After”);

Delay can be produced using double word variable in the BIOS Data area placed at the
location 0040:006C. This value contains a timer count and is incremented every 1/18" of
a second. In this program the this double word is read, placed in a program variable and
incremented by 18. The value of 40:6¢cH is compared with this variable in a loop. This
loop iterates until the value of 40:6¢H is not greater. In this way this loop will keep on

iterating for a second approximately.

© Copyright Virtual University of Pakistan 75

10 - Peripheral Programmable Interface (PPI)

10 - Peripheral Programmable Interface (PPI)
Sample Program

unsigned long int * time = (unsigned long int *) 0x0040006C
void main()
{ unsigned long int tx;
unsigned int divisor = Ox21FF;
while (divisor >= 0x50) {
outportb(0x43,0xB4);
outportb(0x42,*((char*)(&divisor)));
outportb(0x42,*(((char*)(&divisor))+1));
outportb(0x61,inportb (0x61) | 3);
txX = *time;
X=1tx+4
while (*time <= tx);
divisor =divisor -30;
}

The inner while loop in the program is used to induce delay. The outer loop simply
reloads the divisor value each time it iterates after reducing this value by 30. In this way
the output frequency of the interval timer changes after every quarter of a second
approximately. The speaker will turn on with a low frequency pitch and this frequency

will increase gradually producing a spectrum of various sound pitches.

© Copyright Virtual University of Pakistan

76

10 - Peripheral Programmable Interface (PPI)

Sample Program

The above program is a TSR program that can be used to turn the speaker on/off. The

#include <dos.h>

#include <bios.h>

void interrupt (*oldint15) ();

void interrupt newint15 (unsigned int BP, unsigned int DI,
unsigned int Sl, unsigned int DS, unsigned int ES,
unsigned int DX, unsigned int CX, unsigned int BX
unsigned int AX, unsigned int IP, unsigned int CS,
unsigned int flags);

void main ()

{
oldintl15 = getvect (0x15);
setvect (0x15, newint15);
keep (0, 1000);

void interrupt newint15(unsigned int BP, unsigned int DI,
unsigned int Sl, unsigned int DS, unsigned int ES,
unsigned int DX, unsigned int CX, unsigned int BX,
unsigned int AX, unsigned int CS, unsigned int IP,
unsigned int flags)

if (AH = = Ox4F)

if (AL == Ox1F)
{
outport (0x43, 0xB4);
outport (0x42, OXFF);
outport (0x42, 0x21);
outport (0x61, inport(0x61) " 3);

}

else
(*oldint15) ();

above program intercepts the int 15h. Whenever this interrupt occurs it looks for service #

0x4f (keyboard hook). If “S’(0x1f scan code) has been pressed it toggles the speaker.

© Copyright Virtual University of Pakistan

77

10 - Peripheral Programmable Interface (PPI)

Sample Program

#include <dos.h>

#include <bios.h>

unsigned int divisors[4]={0x21ff,0x1d45,0x1b8a, 0x1le4c};
unsigned long int far *time =(unsigned long int far *)0x0040006C;

void main ()
{ unsigned long int tx;
int i=0;

while (Ikbhit ()
{

while (i<4)
outport(0x43,0xB4);
outport(0x42,*((char *)(&divisor[i])));
outport(0x42,*(((char *)(&divisor[i]))+1));
outport(0x61, inport(0x61)|3);
tx=*time;
tX=tx+4;
while (tx >= (*time));
i++

}
outport(0x61,inport(0x61) &0xFC);

This program generates a tune with 4 different pitches. This program is quite similar to
the one discussed earlier. The only major difference is that in that program the pitch was
gradually altered from low to high in this the pitches change periodically until a key is
pressed to terminate the outer loop. Four various pitches are maintained and their divisor
values are placed in the divisors[] array. All these divisor values are loaded one by one
after a delay of approximately quarter of a second and this continues until a key is

pressed.

© Copyright Virtual University of Pakistan 78

10 - Peripheral Programmable Interface (PPI)

Sample Program

#include <stdio.h>
#include <dos.h>
#include <bios.h>
struct tagTones
{ unsigned int divisor;
unsigned int delay;
¥
struct tagTones Tones[4]={
{0x21ff,3},{0x1d45,2},{0x1b8a,3},{Ox 1e4c,4}};
int i,ticks,flag=0 ;
void interrupt (*oldint15)();
void interrupt (*oldint8)();
void interrupt newint15();
void interrupt newint8();

unsigned char far *scr = (unsigned char far *)(0x00400017);

void main ()

{
oldint15=getvect(0x15);
setvect(0x15,newint15);
oldint8=getvect(0x08);
setvect(0x08,newint8);
keep(0,1000);

This is an interrupt driven version of the previous program. This program makes use of
the timer interrupt rather than a loop to vary the divisor value. Moreover interrupt 15 is

used to turn the speaker on /off.

© Copyright Virtual University of Pakistan

10 - Peripheral Programmable Interface (PPI)

void interrupt newint15()
if (AH==0x4f)
if (LAL==0x1f)&&(((*scn&12)==12))

ticks=0;
i=0;
outport(0x43,0xb4);
outport(0x42,*((char *)(& Tones[i].divisor)));
outport (0x42,*(((char *)(&Tones[i].divisor))+1));

outport(0x61,inport(0x61)|3);
flag=1,;

else if (_LAL==0x1E)&&(((*scn&12)==12))

outport(0x61,inport(0x61)&0xfc);

flag=0;
}
return;
}
(*oldint15)();

A

The speaker turns on whenever ‘S’ (scan code 0x1f) is pressed and turns off whenever
‘A’ (scan code Ox1E) is pressed.

void interrupt newint8()
if (flag==1)
{

ticks++;
if (ticks == Tones][i].delay)
{

if (i==3)
i=0;
else
i++;
outport (0x43, 0xB4);
outport(0x42,*((char *)(&Tones[i].divisor)));
outport(0x42,*(((char *)(&Tones[i].divisor))+1));
outport(0x61,inport(0x61)|3);
ticks = 0;

}

}
(*oldint8)();

The timer interrupt shift the divisor value stored in the tones structure whenever the

required numbered of ticks(timer counts) have passed as required by the value stored in

the delay field of the tone structure.

More such divisor values and their delays can be initialized in the tones structure to
generate an alluring tune.

© Copyright Virtual University of Pakistan

80

10 - Peripheral Programmable Interface (PPI)

Peripheral Programmable interface (PPI)

Parallel Ports (PPI)

Parallel Communication

CPU
Busy

Output

—_—
—_—

DO
D1

2
Parallel Out Put Device

—_—ee]
;—'D7
—

Strobe

PPI is used to perform parallel communication. Devices like printer are generally based

on parallel communication. The principle of parallel communication is explained in the

slide above. It’s called parallel because a number of bits are transferred from one point ot

another parallel on various lines simultaneously.

© Copyright Virtual University of Pakistan

81

10 - Peripheral Programmable Interface (PPI)

Parallel Communication

Input

DO
D1
D2

CPU D7

Parallel Input Device

DR

CPU I'o
Controller

Advantages of Parallel communication

Parallel Communication

> Faster
»Only Economically Feasible For
Small Distances

© Copyright Virtual University of Pakistan

82

11 - Peripheral Programmable Interface (PPI) 1l

11 - Peripheral Programmable Interface (PPI) Il

Programmable Peripheral Interface

(PPI)

» Device Used as Parallel port Interface (1/0
controller) is PPI

Programmable Peripheral Interface

(PP)

The PPI acts as an interface between the CPU and a parallel 1/O device. A 1/O device
cannot be directly connected to the buses so they generally require a controller to be
placed between the CPU and 1/O device. One such controller is the PPI. Here we will see

how we can program the PPI to control the device connected to the PPI which generally is
the printer.

© Copyright Virtual University of Pakistan 83

11 - Peripheral Programmable Interface (PPI) 1l

Accessing the Parallel Port
Through BIOS Functions

Accessing the Parallel Port
Through BIOS Functions

Services

INT 17H |00 |Display Characters
01 |Initialize Printer
02 |Request Printer
DX Port Interface Number
register |0=LPT1,1=LPT2,2=LPT3

Int 17H is used to control the printer via the BIOS. The BIOS functions that perform the
printer 1/O are listed in the slide above with its other parameter i.e DX which contains the
LPT number. A standard PC can have 4 PPl named LPT1, LPT2, LPT3 and LPT4.

© Copyright Virtual University of Pakistan 84

11 - Peripheral Programmable Interface (PPI) 1l

Status Byte

Accessing the Parallel Port Through BIOS
Functions

All the function Returnin AH the Current Printer Status

[7 o Is |4 3 [2 1 o |

Printer Busy- Time out
Receive Mode Selected
Out of Paper
Printer OffLine < » Transfer Error

The above listed function returns a status byte in the AH register whose meaning is

described in the slide above. Various bits of the byte describe the status of the printer.

Time out Byte

Accessing the Parallel Port Through BIOS
Functions

Time Out Byte

0040:0078 LPT1
0040:0079 LPT2
0040:007A LPT3

The BIOS service once invoked will try to perform the requested operation on the printer
repeated for a certain time period. In case if the operation is rendered unsuccessful due to
any reason BI1OS will not quit trying and will try again and again until the number of tries

specified in the timeout bytes shown above runs out.

© Copyright Virtual University of Pakistan 85

11 - Peripheral Programmable Interface (PPI) 1l

Accessing the Parallel Port Through BIOS Functions

 Specify the number of Attempts BIOS perform
before giving a time out Error

» This byte Varies Depending upon the speed
of the PC

* Busy =0 Printer is Busy
e Busy =1 Printer is not Busy

Importance of Status Byte

Importance of the Status Byte

If((pstate&0x29)!=0)or
((pstate&0x80)==0) or
((pstate&0x10)==0)
{printerok=FALSE;}
else
{printerok=TRUE;}

The status of the printer can be used in the above described manner to check if the printer
can perform printing or not. In case there is a transfer error, the printer is out of paper or
there is a timeout the printer could not be accessed. Or if the printer is busy or if the
printer is offline the printer cannot be accessed. The pseudo is just performing these

checks.

© Copyright Virtual University of Pakistan 86

11 - Peripheral Programmable Interface (PPI) 1l

Importance of the Status Byte

17H/00H Write
acharacter onentry
AH=00

AL=ASCII code
DX=Interface#

On exit

AH=Status Byte

17H/01H Initialize Printer
onentry

AH=01

DX=Interface#

On exit

AH=Status Byte

17H/02H Get Printer Status
onentry

AH=02, DX=Interface# On exit AH=Status Byte

Printing Programs

© Copyright Virtual University of Pakistan

87

11 - Peripheral Programmable Interface (PPI) 1l

Sample Program

Printing Program

union REGS regs; FILE *fptr;

void main(void)

{

fptr=fopen(*“c:\\temp\\abc.txt”,”rb”);

regs.h.ah=1;

regs.x.dx=0;

int86(0x17,®s,®s);

while(Ifeof(fptr))

{regs.h.ah=2;

regs.x.dx=0;

int86(0x17,®s,®s);
if ((regs.h.ah & 0x80)==0x80)
{ regs.h.ah=0;

regs.h.al=getc(fptr);
int86(0x17,®s,®s);

i

The above program performs programmed 1/O on the printer using BIOS services. The

program firstly initializes the printer int 17H/01. The while loop will end when the end of

file is reached, in the loop it checks the printer status (int 17h/02) and write the next byte

in the file if the printer is found idle by checking the most significant bit of the status

byte.

Sample Program

#include <dos.h> Printing Program 1
void interrupt (*old)();

void interrupt newint ();

main()

{

old = getvect(0x17);
setvect(0x17,newint);
keep(0,1000);

}

void interrupt new ()

{ if CAH==0)

if (LAL=="A") || CAL=="Z")) //corrected
return;

(*old)();

The above program intercepts int 17H. Whenever a certain program issues int 17H to

print a character the above TSR program will intercept the service and do nothing if A or

© Copyright Virtual University of Pakistan

88

11 - Peripheral Programmable Interface (PPI) 1l

Z is to be printed rest of the characters will be printed normally. Only the As and the Zs in

the printing document will be omitted.

Sample Program

#include <dos.h> Printing Program 2
void interrupt (*old)();

void interrupt newfunc ();

main()

{

old=getvect(0x17);
setvect(0x17,newfunc);

keep(0,1000);
\}/oid interrupt newfunc()
t if (AH==0)
if (_ALI=* *)
(*old)();
}

In this sample program again int 17H is intercepted. The new interrupt function will

ignore all the spaces in the print document.

© Copyright Virtual University of Pakistan

89

11 - Peripheral Programmable Interface (PPI) 1l

Sample Program

#include <dos.h> —
void inte rrupt (*old)(); Printing Program 3

void inte rrupt newfunc ();
main()

old=getvect(0x17);
setvect(0x17,newfunc);
keep(0,1000);

void inte rrupt newfunc ()

{ if(_AH==0){
(*old)();
_AH=0;
(*old)();
_AH=0;
(*old)(;

}
(*old)();

In this program interrupt 17h is again intercepted. Whenever a character is to printed the

new function call the old function thrice. As a result a single character in the print

document will be repeated 4 times.

Direct Parallel Port
Programming

Now we will see how the register within the PPI can be accessed directly to control the

printer.

© Copyright Virtual University of Pakistan

90

11 - Peripheral Programmable Interface (PPI) 1l

Direct Parallel Port

Programming

» BIOS support up to
three parallel ports

» Address of these LPT
ports is Stored in
BIOS Data Area
40:08 |word |[LPT1

40:0A |word |LPT2
40:0C (word |LPT3
40:0E |word |LPT4

Above slide list the addresses within the BIOS data area where the base address (starting

port number) of LPT devices is stored.

Dump of BIOS data area

Direct Parallel Port Programming
Dump File Text

\Documents and Settingssydk.PGC>debug > ppi.txt

\Documents and Settingssydk.PGC>debug > ppi.txt

[ERROR: An Extended Memory Manager iz already installed.
KMS Driver not installed.

SNDOCUME™1sydk. PGCXtype ppi.txt
d 40:88

BC B3 78 @3 78 @2 C@ 9F
23 C8 9@ 80 B2 80 AP 20-BA 6@ 2E 6@ 2E 08 64 20
2@ 39 34 @5 38 @B 3A 27-30 BB 38 @7 @D 1C 77 11
?? 11 6F 18 6F 18 72 13-72 13 64 20 64 20 0@ 8@
48 00 C3 O PP AA AP PA-BA B3 50 O B8 1A PO AA
0@ Bn B8 OA PP AA AP PA-BA GO PO O BA AA PO BA
@F AC 88 D4 B3 29 30 F6-A3 6@ FA 6 FA S5F 10 8@
0 0O BA OA PP AA PO BA-14 14 14 14 @1 61 A1 A1
1E 0@ 3E 6@ 18 1A BB 6@

\DOGUME™1Nydk. PGCY

The dump of BIOS data area address specified in the previous slide for a certain computer

shows that the base port address of LPT1 is 0x03bc, for Ipt2 it is 0x0378, for Lpt3 it is
0x0278. These values need not be the same for all the computer and can vary from

computer to computer.

© Copyright Virtual University of Pakistan

91

11 - Peripheral Programmable Interface (PPI) 1l

Swapping LPTs

Direct Parallel Port Programming

unsigned int far * Ipt =
(unsigned int far *) 0x00400008 ;
unsigned int temp;
temp=>(Ipt);
Ipt=(Ipt + 1);
*(Ipt + 1)=temp;

The LPTs can be swapped i.e LPT1 can be made LPT2 and vice versa for LPT2. This can

be accomplished simply by swapping their addresses in the BIOS data area as shown in

the slide above.

Direct Parallel Port Programming
Port Reqisters

» 40:08 store the base address for Iptl

e The parallel port interface has 3 ports
internally

« If the Base address is 0X378 then the
three Ports will be 0x378,0x379 Ox37A

© Copyright Virtual University of Pakistan 92

11 - Peripheral Programmable Interface (PPI) 1l

LPT Ports

Direct Parallel Port Programming

Port Reqisters
Base +0=Data Port

[7]65]a]3]2]1]o]

Base +1=Printer Status

Busy=0 | ACK=0 | PE=1 |SL=1 |ERR=O |0 |0 |O |

! '

Out of Paper Printer Online

Printer is ready for Next Character

Printer is Busy

The first port (Base +0) is the data port. Data to be sent/received is placed in this port. In

case of printer the (Base + 1) is the printer status port as described in the slide. Each bit

represents the various status of the printer quite similar to the status byte in case of BIOS

service.

Printer Control Reqister

(Base +2) is the printer control register it is used to pass on some control information to

Direct Parallel Port Programming
Port Registers
Printer Control Register =Base + 2
7 6 5 4 3 2 1 0
lo o Jo [IrRQ [si [IN |ALF [ST |

IRQ ENABLE initialize Ao
Execute Interrupt Line STROB
When ACK=0; Field

SELECT InLine
Turn Computer on line

the printer as described in the slide.

© Copyright Virtual University of Pakistan

93

11 - Peripheral Programmable Interface (PPI) 1l

Direct Parallel Port Programming

Direct Parallel Port Programming
file *fptr;
unsigned far *base=(unsigned int far *)0x00400008
void main (void)
{
fptr=fopen(“c:\\abc.txt”,”rb);
while(! feof (fptr))
{ if(!(inport (*base + 1) & 0x80)
{ outport(*base,getc(fptr));
outport ((*base+2,inport((*base+2) | 0x01);
outport((*base+2,inpo rt((*base+2) & OXFE);
}
B

The above program directly accesses the registers of the PPI to print a file. The while
loop terminates when the file ends. The if statement only schecks if the printer is busy of
not. If the printer is idle the program writes the next byte in file on to the data port and
then turns the strobe bit to 1 and then 0 to indicate that a byte has been sent to the printer.
The loop then again starts checking the busy status of the printer and the process

continue.

© Copyright Virtual University of Pakistan 94

12 - Parallel Port Programming

12 - Parallel Port Programming

Printer Interface and IRQ7

Printer
Interface
Printer ~ ACK
) INT] Interface [
PIC]RQ7

Printer

The printer interface uses the IRQ 7 as shown in the slide above. Therefore if interrupt

driven 1/O is to be performed int OXOf need to be programmed as an hardware interrupt.

Interrupt Driven Printer 1/0O
char buf [1024]; inti=0;
void interrupt (*oldint)();
void interrupt newint ();
void main (void)
{
outport((*Ipt), inport(*Ipt) | 4);
outport((*Ipt), inport(*Ipt) | 0x10);
oldint =getvect (OX0F);
setvect (OxOF, newint);
outport(0x21, inport(0x21) & 0x7F);//corrected
keep(0,1000);

}

© Copyright Virtual University of Pakistan 95

12 - Parallel Port Programming

void interrupt newint ()
{
outport(*Ipt, BUff i]);
outport((*Ipt)+2, inport((*Ipt)+2) &OxFE);
outport((*Ipt)+2, inport((*Ipt)+2) | 1);
i++;
if(i==1024)
{
outport(0x21, inport(0x21)|0x80);//corrected
setvect(OxOF,oldint);
freemem(_psp);

}

Above is a listing of a program that uses int 0xOf to perform interrupt driven 1/0. To
enable the interrupt OxOf three things are required to be done. The interrupt should be
enabled in the printer control register; secondly it should also be unmasked in the IMR in
PIC. The program can then intercept or set the vector of interrupt OxOf by placing the
address of its function newint();

The newint() will now be called whenever the printer can perform output. This newint()
function writes the next byte in buffer to the data registers and then send a pulse on the
strobe signal to tell the printer that data has been sent to it. When whole of the buffer has
been sent the int 0xOf vector is restored, interrupt is masked and the memory for the
program is de-allocated.

The above listing might not work. Not all of the printer interfaces are designed as
described above. Some modifications in the printer interface will not allow the interrupt
driven 1/0O to work in this manner. If this does not work the following strategy can be

adopted to send printing to the printer in background.

© Copyright Virtual University of Pakistan 96

12 - Parallel Port Programming

Printing in the background

#include <stdio.h>
#include <dos.h>
#include <bios.h>
#include <conio.h>
#include <stdlib.h>
void interrupt (*oldint)();
void interrupt newint();
unsigned int far * Ipt = (unsigned int far *)0x00400008;
char st[80]= "this is a test print string HH111H11",
inti;
void main ()
{
oldint = getvect(0x08);
setvect(0x08,newint);
keep(0,1000);

void interrupt newint()

{
if (((inport((*Ipt) +1)) & 0x80) == 0x80)
{
outport (*Ipt,stfi++]);
outport ((*Ipt)+2, inport((*Ipt)+2) & Oxfe);
outport ((*Ipt)+2, inport((*Ipt)+2) | 1);
}
if (i==32)
{
setvect (0x08,0ldint);
freemem(_psp);
}
(*oldint) ();
}

This program uses the timer interrupt to send printing to the printer in the back ground.
Whenever the timer interrupt occurs the interrupt function checks if the printer is idle or
not. If it’s the printer is idle it takes a byte from the buffer and sends it to the data port of
the printer interface and then sends a pulse through the strobe signal. When the buffer is
full the program restores the int 8 vector and the relinquishes the memory occupied by the

program.

© Copyright Virtual University of Pakistan 97

12 - Parallel Port Programming

Printer Cable Connectivity

Printer Cable Connectivity

STROB

DO

D1

D2

D3

D4

D5

D6

Ol [N |~ |W|[IN|F

=
o

ACK

=
[N

BUSY

[u
N

PE

=
w

SLCT

=
»

AUTO FEED

[
o

ERROR

[
[e2]

INIT

=
]

SLCTIN

18-25

GND

ﬁ
—
ﬁ
—
ﬁ
—
—l
ﬁ
— | D7
_
—
—
—
ﬁ
_
—
ﬁ
—

Not all the bits of the internal registers of the PPI are available in standard PCs. In

standard PCs the PPI is connected to a DB25 connector. And some of the bits of its

internal registers are available as pin outs as describes in the slide above.

© Copyright Virtual University of Pakistan

98

12 - Parallel Port Programming

Computer to Computer communication

Computer to Computer

LEPT . LT

~5TR ~STR

Oe O

1
oo 2 oo
D1 S o1
o= - Oz
D=] o=
O+ g =
oS - oS

5

o= 10 o=
SEC - 11 ATk
BELSY - 12 ELSY

PE - 1= PE
SLTC e 1 SLTC

~FAF ;? ~FF
~ERR |- 1= ~ERR
~LMT ;T ~IMNT
~SLTCIM IW ~SLTEIMN

ErO1 15 EMOL
GHOZ =0 ErHO2
GHOZ2 1 GHNDOZ3
GO+] GO
GHOS =3 GHDS
GHO= 4 GHO=
GHOF =5 GHDOF
GHOSZ sHO2

It might be desirable to connect one computer to another via PPIs to transfer data. One
might desire to connect them such that one port of PPI at one end is connected to another
port of the other PPI at the other end. But interconnecting the whole 8 bits of PPI cannot
be made possible as all the bits of the internal ports are not available as pinouts. So the
answer is to connect a nibble (4-bits) at one end to the nibble at the other. In this way two
way communication can be performed. The nibbles are connected as shown in the slide
above.

© Copyright Virtual University of Pakistan 99

12 - Parallel Port Programming

PPI Interconnection

PO 2 15 Q3
P1 3 13 Q4
P2 4 12 Q5
P3 5 10 Q6
P4 6 —{>— 11 Q7
Q3 15 2 PO
Q4 13 3 P1
Q5 12 4 P2
Q6 10 5 P3
Q7 11 —«}— 6 P4

The pins that are interconnected are shown in the slide above. Another thing worth
noticing is that the 4™ bit of the data port is connected to the BUSY and vice versa. The
BUSY is inverted before it can be read from the status port. So the 4™ bit in data port at

PC1 will be inverted before it can be read at the 7" bit of status register at PC2.

Flow Control
An algorithm should be devised to control the flow of data so the receiver and sender may
know when the data is to be received and when it is to be sent. The following slides

illustrate one such algorithm.

D4 D3 D2 D1 DO

q [Bp [52 [1] po [P

Sender sends
LOW Nibble
andD4 =0
received as
BUSY=1

| B3 | B2 | B1 | BO |Rece|ver

BUSY ACK PE SLC ER
E7 E6 E5 E4 E3

© Copyright Virtual University of Pakistan 100

12 - Parallel Port Programming

First the low nibble of the byte is sent from the sender in bit DO to D3 of the data port. D4
bit is cleared to indicate the low nibble is being sent. The receiver will know the arrival of
the low nibble when its checks BUSY bit which should be set (by the interface) on
arrival.

BUSY ACK PE SLC ER

Receiver send | ;L %3 | §2 | §1 480 |Sender

back LOW
Nibble and D4=0
received as

BUSY =1 by
Sender

[0 [B3[B2[B1]BO |Recei"er

D4 D3 D2 D1 DO

The receiver then sends back the nibble turning its D4 bit to 0 as an acknowledgement of
the receipt of the low nibble. This will turn the BUSY bit to 1 at the sender side.

D4 D3 D2 D1 DO

y [67 [86 85 [pa ™

Sender sends H|
Nibble and turns
D4 =1 received

as BUSY =0 by

Receiver

Receiver

The sender then send the high nibble and turns its D4 bit to 1 indicating the transmission
of high nibble. On the receiver side the BUSY bit will turn to 0 indicating the receipt of
high nibble.

© Copyright Virtual University of Pakistan 101

12 - Parallel Port Programming

The receiver then sends back the high nibble to the sender as an acknowledgment.

BUSY ACK PE SLC ER

Receiver send |

(57 [ge [g5 [p4 ™

back Hi Nibble
and turns

D4 =1 received
as BUSY =0 by
Sender

|

il

| B7 | B6 | BS | B4 |Receiver

D4

D3 D2 D1 DO

© Copyright Virtual University of Pakistan

102

13 - Serial Communication

13 - Serial Communication

Program implementing the described protocol

inti=0; char Buf[1024];
while (1)
{ ch=Buf [i];
if ((inport((*Ipt) + 1)& 0x80) == 0)
{ ch=Buf[i];
ch=ch & OXEF;
while((inport((*1pt) + 1) &0x80) == 0);

else

{ ch=Bufi];
ch=ch>>4;
ch=ch | 0x10;

outport (*Ipt, ch);
i++;
while((inport((*Ipt) + 1) &0x80) == 80);
}

This is the sender program. This program if find the BUSY bit clear sends the low nibble

but turns the D4 bit to 0 before sending. Similarly it right shifts the byte 4 times sets the

D4 bit and then sends the high nibble and waits for acknowledgment until the BUSY is

cleared.

inti;
while (1)
{ if ((inport(*Ipt + 1)& 0x80) == 0x80)
{ x = inport ((*Ipt) + 1);
X=X>>3;
X =X & 0x0F;
outport((*Ipt), x);
while((inport(*Ipt + 1) &0x80) == 0x80);

else

{ y=inport((*Ipt) +1);
y=y<<l
temp =y;
y =y & 0xFO0; //instruction added
y=ylx

© Copyright Virtual University of Pakistan

103

13 - Serial Communication

temp = temp >> 3;
temp = temp | 0x10;
i++;
outport (*Ipt, temp);
Buf[i] = y;
while((inport((*Ipt) + 1) &0x80) == 0);
}

This is receiver program. If the BUSY bit is clear it receives the low nibble and stores it
in x. Similarly if the BUSY bit is O it receives the high nibble and concatenates the both
nibble to form a byte.

© Copyright Virtual University of Pakistan 104

13 - Serial Communication

Serial Communication

Serial Communication

» Advantages
» Disadvantages

Types Of Serial Communication

 Synchronous
 Asynchronous

In case of serial communication the bits travel one after the other in serial pattern. The

advantage of this technique is that in this case the cost is reduced as only 1 or 2 lines

maybe required to transfer data.

The major disadvantage of Serial communication is that the speed of data transfer maybe

reduced as data is transferred in serial pattern.
There are two kinds of serial communications.

Synchronous Communication

Synchronous Communication

of a hit.

LSB
1 1 0

H L

01101011

* Timing signal is used to identify start and end

iniinml

UutbuuuL

In case of synchronous communication as shown in the slide a timing signal is required to

identify the start and end of a bit.

© Copyright Virtual University of Pakistan

105

13 - Serial Communication

Synchronous Communication

» Sampling may be edge triggered.

« Special line may be required for
timing signal (requires another line).

* Or the timing signal may be encoded
within the original signal (requires
double the bandwidth).

Asynchronous Communication

Asynchronous Communication

* Does not use make use of timing
signal.

* Each byte (word) needs to
encapsulated in start and end bit.

In case of asynchronous communication no timing signal is required but each byte needs

to be encapsulated to know the end and start of a byte.

© Copyright Virtual University of Pakistan 106

13 - Serial Communication

UART (Universal Asynchronous Receiver Transmitter)

The UART is a device used for asynchronous communications. UART is capable o

Serial Communication using a UART

Parity Start bit

bit I of next
byte

01 2 3 456 7 8

1
0_||||||||||||||_
5 -8 bit j
Start bit 1,15,2
Stop bit
« 1.5 Stop bit

encapsulating a byte that might be 5, 6, 7 or 8 bits wide in start and stop bits. Moreover it

can attach an extra parity bit with the data for error detection. The width of stop bits may

also vary.

Sampling Rate

Bit rate = 9600

A bit is sampled after = 1/9600
-- But start and end bits of a particular
Byte cannot be recognized.
-- S0 1.5 stop bit (high) is used to
encapsulate a byte. A low start bit at
the start of Byte is used to identify the
start of a Byte.

© Copyright Virtual University of Pakistan

107

13 - Serial Communication

Sampling Rate
-- Bit rate and other settings should be
the same at both ends i.e.
- Data bits per Byte. (5-8)
- Parity check
- Parity Even/Odd
- No. of stop bits.

Sampling Rate

1/1300 sec

ﬁ?ﬂ,, :

| Data bits l ‘ Stop bit
Start bit odd parity

A =41H=01000001B

Parity = Odd

Data = 8

Stop bit =1

Data rate = 300 bits/sec

© Copyright Virtual University of Pakistan 108

13 - Serial Communication

RS — 232C Standard

» Standard for physical dimensions of the
connectors.

RS —232C Cable

P C (DCE)

Modem

(DTE) i

serial port

RS232C is a standard for physical dimension of the connector interconnecting a

DTE(Data terminal equipment) and DCE (Data communication equipment).

RS — 232C Connectors and Signals
DB25 (25 pin connector)

13
12
11
10

25

24

23

22 RI
21

20 DTR
19

18

17
16
15
14
25 pin connector on PC

.

CD 8
GND 7
DSR 6
CTS 5
RTS 4
RD 3
TXD 2

O0000D0D0OD0OO0O0
OC00000D0OD0D00O0O0O0

Y’

The pin outs of the DB25 connector used with RS232C is shown in the slide above.

© Copyright Virtual University of Pakistan 109

14 - Serial Communication (Universal Asynchronous Receiver Transmitter)

14 - Serial Communication (Universal Asynchronous
Receiver Transmitter)

RS — 232C Standard

» Standard for physical dimensions of the
connectors.

RS —232C Cable

P C (DCE)

Modem
D I E Connected via
serial port
RS — 232C Connectors and Signals
DB25 (25 pin connector)
130 31
o
5 SO P
D
cp 8l o ol 20 OTR
GND 7| © ol 19
DSR 6| © ol
cTs 5|0 ol
RTS 4| O °
16
RD 3|0
O |15
TXD 2|0 o l1a
1l _—"" 25pin connector on PC

© Copyright Virtual University of Pakistan 110

14 - Serial Communication (Universal Asynchronous Receiver Transmitter)

Flow Control using RS232C

RI

CD

DT ¢ DTR L DCE|
DSR — I i
PC) RTS R MODEM
ctfs —— i

1 RXD)

DTR (SHOULD REMAIN HIGH THROUGH OUT THE SESSION)
CTS (CAN BE USED FOR FLOW CONTROL)

Data is received through the RxD line. Data is send through the TxD line. DTR (data

terminal ready) indicates that the data terminal is live and kicking. DSR(data set ready)
indicates that the data set is live. Whenever the sender can send data it sends the signal
RTS(Request to send) if as a result the receiver is free and can receive data it send the

sender an acknowledge through CTS(clear to send) indicating that its clear to send now.

DB 9 Connector for UART

DB9 Connector

1
co| O 3
2 O |bsr
rRxD| O 7
3 O|rrs
TxD| O 8
4 Ofcrs
DTR| O 9
5 OJR
GND

\

The above slide shows the pinouts of the DB 9 connector.

© Copyright Virtual University of Pakistan 111

14 - Serial Communication (Universal Asynchronous Receiver Transmitter)

UART internals

UART Internals -

4 : [Receiver Buffer Register |4—| Receiver Shift Register :

| Interrupt Enable Register | _

; 5 Interrupt
Line Status Register 'y to
Parity LOGIC
Interrupt ID Register
Divisor Latch Register
Line Control Register 1RT 2DTR

: | Modem Control Register F

A

3.C

Modem <
)|

Status Register \ 4 4RI
H \ 4 > ; ; TxD
H - 7 B » Transmit Shift .
v : | Transmitter Holding Register | »| Register — =

This slide shows the various internal registers within a UART device. The programmer
only needs to program these registers efficiently in order to perform asynchronous
communication.

Reqister summary

Base +
Transmitter Holding Register THR |[O
Receiver Data RBR |0
Band Rate Divisor (Low Byte) | DLL 0
Band Rate Divisor (High Byte) |DLM |1
Interrupt Enable IER 1
FIFO Control Register FCR |2
Interrupt 1D IR 2
Line Control LCR |3
Mode Control MCR |4
Line Status LSR 5
Modem Status MSR |6
Scratch Pad SP 7

The above table lists the registers within the UART ans also shows their abbreviation.

Also it shows there offsets with respect to the base register.

© Copyright Virtual University of Pakistan 112

14 - Serial Communication (Universal Asynchronous Receiver Transmitter)

Served Ports in Standard PC

BIOS supports 4 UARTS as COM Ports
COM1, COM2, COM3, COM4

Ports Memory Port Base
Address

coM1 0040:0000 [03F8H
COM2 0040:0002 |2F8H
COM3 0040:0004 |3E8H
COM4 0040:0006 |2E8H

BIOS Data Area

-d 40:0
0040:0000 F8 03 F8 02 E8 03 E8 02-BC 03 78 03 78 02 CO9F X.X...
0040:0010 23 C8 20 80 02 85 00 20-00 00340034 007110 #.......4.44Q9.

0040:0020 0D 1C 71 10 0D 1C 64 20-20 39 34 0530 0B 3A 27 ..q...d 94.0.:'
0040:0030 30 0B OD 1C 00 00 00 00-00 00 00 00 00 00 00 00 O...............
0040:0040 D8 00 C3 00 00 00 00 00-00 03 50 00 00100000 P....
0040:0050 00 OA 00 00 00 00 00 00-00 00 00 00 0000 0000cceneeenee
0040:0060 OF OC 00 D4 03 29 30 00-00 OO0 00 0002 C9 0B 00)0.........
0040:0070 00 00 00 00 0000 08 00-1414141401010101

-q

The above dump of the BIOS data area for a certain computer shows that the address of
COM1 is 03F8 , the address of COM2 is 02F8 and the address of COM3 is 03E8. These

addresses may not be same for all the computers and may vary computer to computer.

© Copyright Virtual University of Pakistan 113

14 - Serial Communication (Universal Asynchronous Receiver Transmitter)

Setting the Baud rate

Setting the Baud Rate

1.8432 MHZ=frequency generating by UARTS
internally
Baud rate =1.8432 MHZ / (16*Divisor)

Divisor value loaded in DLL (Base +0)
and DLM (Base +1)

Divisor =1, Baud Rate = 115200
Divisor = 0CH, Baud Rate = 9600
Divisor = 180H, Baud Rate = 300

The baud rate is set in accordance with the divisor value loaded within the UART internal
registers base +0 and base +1.

Line Control Reqgister

Line Control Register

[7 o Is Ja |3 [2 1 Jo |
| —

Mord Length
0Load THR 00=5BITS
1Load Divisor Value 01=6BITS
10=7BITS
11=8BITS

| —
Stop Communication =1 Length of Stop BITS

Resume Communication =0 0 = one BIT
Constant Parity Pra— 1=1.5for 5 bit Word
0 =NO constant Parity i
1 =Constant Parity > Parity Check and
0ifbit4 =1 generation on
1ifbit4 =0 Parity

0=00d Cmmm—

1 =Even.

The line control register contains important information about the behaviour of the line
through which the data will be transferred. In it various bits signify the word size, length
of stop bits, parity check, parity type and also the a control bit to load the divisor value.
The bit 7 if set indicates that the base +0 and base + 1 will act as the divisor register

otherwise if cleared will indicate that base + 0 is the data register.

© Copyright Virtual University of Pakistan 114

14 - Serial Communication (Universal Asynchronous Receiver Transmitter)

Line Status Register

<J6 s |4 |3 [2 1 Jo |

TSR is Empty=1
TSR Contain a Byte=

THR entry =1
THR contains a BYTE =0

Data Ready =1

Over Run Error =1

Parity Error =1

S

Transfer Error (Framing Error)

Stop Communication Sianal from Other end =1

Line status register illustrates the status of the line. It indicates if the data can be sent or

received. If bit 5 and 6 both are set then 2 consecutive bytes can be sent for output. Also

this register indicates any error that might occur during communication.

Interrupt Enable Register

Interrupt Enable Register

Trigger Interrupt <

IXIXX3 [2 1 Jo |
L,

Trigger Interrupt
On Data Ready =1

As soonas THR is emﬁty =1

On change in Modem Status =1

Trigger Interrupt <

Trigger Interrupt

On line status change =1
—

If interrupt driven output is to be performed then this register is used to enable interrupt

for the UART. It can also used to select the events for which to generate interrupt as

described in the slide.

© Copyright Virtual University of Pakistan

115

14 - Serial Communication (Universal Asynchronous Receiver Transmitter)

Interrupt ID Reqister

Interrupt ID Register

XDXDXRK]2 1 o |
LT L

Trigger Triggered

ModenvLine D —
00 =Change in Modem Status

01 = THR is Empty

10 = Data is Ready

11 =Error in Data

Once an interrupt occurs it may be required to identify the case of the interrupt. This

register is used to identify the cause of the interrupt.

© Copyright Virtual University of Pakistan 116

15 - COM Ports

15 - COM Ports

Modem Control Register

Modem Controller Reqister

DXD<]4 J3 Xt Jo |

DTR

1 =Self Test
0=Normal ¢ —RTS

0 = Polling Operator
1= Interrupts Enabled

In case software oriented flow control technique is used the bits 0 and 1 need to be set in
that case. Bit #3 need to be set to enable interrupts. Moreover if a single computer is
available to a developer the UART contains a self test mode which can be used by the
programmer to self test the software. In self test mode the output of the UART is routed

to its input. So you receive what you send.

© Copyright Virtual University of Pakistan 117

15 - COM Ports

Modem Status Reqgister

Modem Status Reqgister

7 Jo Is Ja 3 [2]1 o |

Change
cp in CTS
Rl < S Change in DSR
DSR Change in RI
CTS < » Change in CD

This register indicates the status of the modem status line or any change in the status of
these lines.

FIFO Queue

UART (16550) FIFO QUEUE
[7 6 DX[HAX2 [t |01|

FIFO bufferon=1

Number of Characters Received
To Trigger an Interrupt .
Clear Receiver

00 =After Every Character Buffer =1
01 =After 4 Character

10 =After 8 Character v

11 =After 14 Character Clear send Buffer =1

This feature is available in the newer version of the UART numbered 16500. A queue or
a buffer of the input or output bytes is maintained within the UART in order to facilitate

more efficient 1/0. The size of the queue can be controlled through this register as shown
by the slide.

© Copyright Virtual University of Pakistan 118

15 - COM Ports

Interrupt ID Reqister

Interrupt ID Regqgister (Revisited)

|7|161 >z J2 |1 Jo |

1= Interrupt Triggeréd Interrupt
Because Buffer is not full Triggered =1
But other side has

stop sending data. Reasons of Interrupt

(Time OUT) 00=Change in Modem Line Status

01=THR is Empty
10=Data is ready
f 11=Error in Data Transmit

Any one of these BEING
Set Indicates FIFO is ON.

BIOS Support for COM Ports

INT # 14H

DX = Port # 0 for COM1
1 for COM2 etc.

Service #0 = Set communication parameters
Service #01 = Output characters

Service #02 = Read in characters

Service #03 = Get port status

The following slide shows how int 14H service 0 can be used to set the line parameter of
the UART or COM port. This illustrates the various bits of AL that should be set

according before calling this service.

© Copyright Virtual University of Pakistan 119

15 - COM Ports

Service # 0

AL =

000 =110 bauds
001 =150 bauds
010 =300 bauds
011 =600 bauds
100 = 1200 bauds
101 = 2400 bauds
110 = 4800 bauds
111 = 9600 bauds

Baud Rate :] Parity Check

Data Length

00 = None :
01 = Odd 00:5b!ts
10 = Parity 01 =6bits
Disable 10 = 7bits
11=Even ¢ 11 =8bits
of stop bits
0 =1 stop bit
1=150r2stop bit

The Service on return places the line status in AH register as shown in the slide below.

AH = Line Status

Time Out<=

TSR Empty

THR <

Data Ready

Over run error

Break Detected <

» Parity error

» Framing error

© Copyright Virtual University of Pakistan

120

15 - COM Ports

And places the modem status in the AL register as shown in slide below.

AL = Modem Status

CDJ Change in CTS
RI Change in DSR
Ready (DSR) <= » Change in RI
Ready to Receive < » Change in CD

Other service of 14h include service #1 which is used to send a byte and service #2 which

is used to receive a byte as shown in the slide below.

Service # 01
ON ENTRY
AL = ASCII character to send
ON RETURN
AH = Error Code
If 7th bit in AH = 1 = Unsuccessful
0 = Successful

Service # 02
ON RETURN
AL = ASCII character received
AH = Error Code

© Copyright Virtual University of Pakistan

121

15 - COM Ports

Communication through Modem

Modem

PC LI Modem| T
I l

UART Digital Data Analog

S e B
I | ™

Analog Digital Data UART

Modem is generally used to send/receive data to/from an analog telephone. Had the
telephone line been purely digital there would have been no need of a modem in this
form. If data is to be transferred from one computer to another through some media which
can carry digital data then the modem can be eliminated and the UART on both

computers can be interconnected. Such arrangement is called a NULL modem.

PC PC

UART cable UART

© Copyright Virtual University of Pakistan 122

15 - COM Ports

NULL Modem Configuration

cD1 cD1

RxD 2 RxD 2
TxD 3 >< TxD 3
DTR 4-\/- DTR 4
GND 5 GND 5
DSR 6/ T DSR 6
RTS 7>_< RTS 7
cTS8 cTs8

RI9 RI9

The above slide shows the configuration used to interconnect two UARTS In this way a

full duplex communication can be performed and moreover flow control can also be
performed using DSR, DTS, RTS and CTS signals.
Sample Program

Example:

#include<BIOS.H>
#include<DOS.H>
char chl, ch2;

void initialize (int pno)

{
_AH=0;
_AL=0x57;
_DX=pno;
geninterrupt(0x14);
}

© Copyright Virtual University of Pakistan

123

15 - COM Ports

char receivechar (int pno)
{

char ch;

_DX = pno;

_AH=2;

geninterrupt (0x14);

ch=_AL;

return ch;

void sendchar (char ch, int pno)
{

_DX = pno;

_AH=1;

_AL=ch;

geninterrupt (0x14);
}

unsigned int getcomstatus (int pno)

{
unsigned int temp;
_DX = pno;
_AH=03;
geninterrupt (0x14);
((char)(&temp)) = _AL;
(((char)(&temp)) + 1) = _AH;
return temp;

© Copyright Virtual University of Pakistan 124

16 - COM Ports 11

16 - COM Ports I

Sample Program using BIOS routines

Example:

#include<BIOS.H>
#include<DOS.H>
char chl, ch2;

void initialize (int pno)

_AH=0;
_AL=0x57;
_DX=pno;
geninterrupt(0x14);

char receivechar (int pno)
{

char ch;

_DX=pno;

_AH=2;

geninterrupt (0x14);

ch=_AL;

return ch;

The initialize () function initializes the COM port whose number is passed as parameter
using BIOS services. The recievechar() function uses the COM port number to receive a

byte from the COM port using BIOS services.

© Copyright Virtual University of Pakistan 125

16 - COM Ports 11

void sendchar (char ch, int pno)
{
_DX = pno;
_AH=1,;
_AL =ch;
geninterrupt (0x14);
}
unsigned int getcomstatus (int pno)
{
unsigned int temp;
_DX = pno;
_AH=03;
geninterrupt (0x14);
((char)(&temp)) = _AL;
(((char)(&temp)) + 1) = _AH;
return temp;
}

The sendchar() function sends a character to the COM port using BIOS service whose
number is passed as parameter. And the getcomstatus() function retrieves the status of the
COM port whose number has been specified and returns the modem and line status in an

unsigned int.

void main()

while(1) {
i = getcomstatus (0);
if (((*(((char*)(&i)) + 1)&0x20) == 0x20) && (Kbhit()))
{

chl = getche();
sendchar (chl, 0);

}

if ((*(((char*)(&i)) +1) & 0x01) == 0x01) {
ch2 = receivechar (0);
putch (ch2);

}
if ((chl ==27) || (ch2 ==27))
break;

Let’s suppose two UARTS are interconnected using a NULL modem

In the main () function there is a while loop which retrieves the status of the COM port.
Once the status has been retrieved it checks if a byte can be transmitted, if a key has been
pressed and its is clear to send a byte the code within the if statement sends the input byte

to the COM port using sendchar() function.

© Copyright Virtual University of Pakistan 126

16 - COM Ports 11

The second if statement checks if a byte can be read from the COM port. If the Data
ready bit is set then it receives a byte from the data port and displays it on the screen.
Moreover there is another check to end the program. The program looks for an escape
character ASCII = 27 either in input or in output. If this is the case then it simply breaks

the loop.

Sample Program

This program does more or less the same as the previous program but the only difference
is that in this case the 1/0 is done directly using the ports and also that the Self Test

facility is used to check the software.

#include <dos.h>
#include <bios.h>
void initialize (unsigned int far *com)
{
outportb ((*com)+3, inport ((*com)+3) | 0x80);
outportb ((*com),0x80);
outportb((*com) +1, 0x01);
outportb ((*com)+3, 0x1b);
}
void SelfTestOn(unsigned int far * com)
{
outportb((*com)+4,inport((*com)+4)|0x10);
}

The initialize() loads the divisor value of 0x0180 high byte in base +1 and low byte in
base +0. It also programs the line control register for all the required line parameters.
The SelfTestOn() function simply enables the self test facility within the modem control

register.

© Copyright Virtual University of Pakistan 127

16 - COM Ports 11

void SelfTestOff(unsigned int far * com)
outportb((*com)+4, inport((*com)+4) & OxEf);
void writechar(char ch, unsigned int far * com)

while (!((inportb((*com)+5) & 0x20) == 0x20));
outport(*com,ch);

}

char readchar(unsigned int far *com)

while (!((inportb((*com)+5) & 0x01)==0x01));
return inportb(*com);

}

The SelfTestOff() function turns this facility off. The writechar() function writes the a
byte passed to this function on the data port. The readchar() function reads a byte from

the data port.

unsigned int far *com=(unsigned int far*) 0x00400000;
void main ()
{

char ch=0;inti= 1;intj=1;

char ch2="A’";

initialize(com);

SelfTestOn(com);

clrscr();

while (ch!=27)

if (i==80)

The main function after initializing and turning the self test mode on enters a loop which
will terminate on input of the escape character. This loop also controls the position of the

cursor such the cursor goes to the next line right after a full line has been typed.

© Copyright Virtual University of Pakistan 128

16 - COM Ports 11

if (j==13)
=0;

gotoxy(i,j);
ch=getche();
writechar(ch,com);
ch2=readchar(com);
gotoxy(i,j+14);
putch(ch2);

i++;

}
SelfTestOff (com);
}

All the input from the keyboard is directed to the output of the UART and all the input
from the UART is also directed to the lower part of the screen. As the UART is in self
test mode the output becomes the input. And hence the user can see output send to the

UART in the lower part of the screen as shown in the slide below

hello how r u? whats new about systems programming?

hello how r u? whats new about systems programming?

© Copyright Virtual University of Pakistan 129

16 - COM Ports 11

Sample Program using interrupt driven 1/O

#include <dos.h>
#include <bios.h>
void initialize (unsigned int far *com)
{
outportb ((*com)+3, inport ((*com)+3) | 0x80);
outportb ((*com),0x80);
outportb((*com) +1, 0x01);
outportb ((*com)+3, 0x1b);
}
void SelfTestOn(unsigned int far * com)
{
outportb((*com)+4,inport((*com)+4)|0x18);
}

void SelfTestOff(unsigned int far * com)
outportb((*com)+4, inport((*com)+4) & OXE7);

void writechar(char ch, unsigned int far * com)

{
Iiwhile (!((inportb((*com)+5) & 0x20) == 0x20));
outport(*com,ch);

char readchar(unsigned int far *com)

Ihwhile ({((inportb((*com)+5) & 0x01)==0x01));
return inportb(*com);

}

© Copyright Virtual University of Pakistan 130

16 - COM Ports 11

unsigned int far *com=(unsigned int far*) 0x00400000;
unsigned char far *scr=(unsigned char far*) 0x88000000;
inti =0,j=0;char ch;int k;
void interrupt (*oldint)();
void interrupt newint();
void main ()
{
initialize(com);
SelfTestOn(com);
oldint = getvect(0x0c);
setvect(0x0Oc,newint);
outport((*com)+1,1);
outport(0x21,inport(0x21)&0XEF);
keep(0,1000);

This si program is also quite similar to the previous one. The only difference is that in this

the 1/O is performed in an interrupt driven patter using the Int 0xOC as the COM1 uses

IRQ4. Also to use it in this way IRQ4 must be unmasked from the IMR register in PIC.

Also before returning from the ISR the PIC must be signaled an EOI code.

void interrupt newint()
{
ch= readchar(com);
if (I==80)

}
if (j==13)

i=0;
k = i*2+(j+14)*80*2;
*(scr+k)=ch;
i++;
outport(0x20,0x20);

© Copyright Virtual University of Pakistan

131

16 - COM Ports 11

«C:\>DEBUG
-0 3f8 41
-0 3f8 42
-0 3f8 56
-0 3f8 55

—q

C:\>

#include <bios.h>

#include <dos.h>

void interrupt (*oldint)();

void interrupt newint();

unsigned char far *scr= (unsigned char far
*)0xB8000000;

void initialize (unsigned int far *com)

{

outportb ((*com)+3, inport ((*com)+3) | 0x80);

outportb ((*com),0x80);
outportb((*com) +1, 0x01);
outportb ((*com)+3, Ox1b);

void main (void)
{
oldint = getvect(0x0C);
setvect (0x0C,newint);
initialize (*com);
outport ((*com)+4, inport ((*com)+4) | 0x08);
outport (0x21 |nport 0x21)&0XEF);
outport ((*com) +1, 1),
keep(0,1000);
}

void interrupt newint ()

{
*scr = inport(*com);
outport (0x20,0x20);

}

© Copyright Virtual University of Pakistan

132

17 - Real Time Clock (RTC)

17 - Real Time Clock (RTC)

Sample Program

#include <dos.h>
#include <bios.h>
char chl,ch2;
void initialize (unsigned int com)
{
outportb (com+3, inport (com+3) | 0x80);
outportb (com,0x80);
outportb(com +1, 0x01);
outportb (com+3, 0x1b);
}
void main ()
{
initialize(0x318);
while (1)
if (((inport(0x3fd)&0x20)==0x20) && (kbhit()))
{ chl=getche();
outport(0x3f8,chl);
}
if (((inport(0x3fd)&0x01)==1))
{ ch2= inport(0x3f8);
putch(ch2);
}
if ((ch1==27) || (ch2==27))
break;
}
}

This program is same functionally as one of the previous programs which used BIOS

services to get the input data and send the output data. The only difference is that in this

case it does the same directly accessing the ports.

© Copyright Virtual University of Pakistan

133

17 - Real Time Clock (RTC)

NULL Modem (Revisited)
CDh1 CDh1

RxD 2 RxD 2
TXD 3 " TXD 3
DTR 4\/ DTR 4
GND 5 GND 5
DSR 6-/ T DSR 6
RTS 7 >< RTS 7
CTS 8 CTS 8

RI9 RI9

Only two or three of the lines are being used to send receive data rest of the lines are
being used for flow control. The cost of these lines can be reduced by reducing the lines
used to flow control and incorporating software oriented flow control rather than

hardware oriented flow control as show in the slide below.

NULL Modem (Reuvisited)

CcD1 CD1
RxD 2 RxD 2
TxD 3 —— TxD 3
DTR 4 DTR 4
GND 5 GND 5
DSR 6 DSR 6
RTS 7 RTS 7
CTS 8 CTS 8
RIQ RIQ

The DTR, DSR, RTS and CTS lines have been eliminated to reduce cost but in this flow

control will be performed in a software oriented manner.

© Copyright Virtual University of Pakistan 134

17 - Real Time Clock (RTC)

XON whenever received indicates the start of communication and XOFF whenever

Software Oriented Flow
Control

Makes use of Two Control characters.

~XON ("S)
—XOFF (~T)

received indicates a temporary pause in the communication.

Following is a pseudo code which can be used to implement the software oriented flow

control.

while (1)
{
receivedchar = readchar (com);
if (receivedchar == XON)
{ ReadStatus = TRUE;
continue;
}
if (receivedchar == XOFF)
{ ReadStatus = FALSE;
continue;
}
if (ReadStatus == TRUE)
Buf [i++] = receivedchar;

the received character is firstly analysed for XON or XOFF character. If XON is received

the status is set to TRUE and if XOFF is received the status is set to FALSE. The

characters will only be received if the status is TRUE otherwise they will be discarded.

© Copyright Virtual University of Pakistan

135

17 - Real Time Clock (RTC)

Real Time Clock

Time Updation Through INT8
Real Time Clock Device

Battery powered device

Updates time even if PC is shutdown
RTC has 64 byte battery powered RAM
INT 1AH used to get/set time.

Real time clock is a device incorporated into the PC to update time even if the computer
is off. It has the characteristics shown in the slide above which enables it to update time

even if the computer is off.

The BIOS interrupt Ox1Ah can be used to configure this clock as shown in the slide

below it has various service for getting/setting time/date and alarm.

Clock Counter 1AH/00
(hours*60*60 + min*60 + sec) * 18.2065

ON ENTRY

AH =00

ON EXIT

AL = Midnight flag

CX = Clock count (Hi word)

DX = Clock count (Low word)
1573040 Times Increment
1573040/18.2065 = 86399.9121 sec
Whereas 86400 sec represent 24 hrs.

© Copyright Virtual University of Pakistan 136

17 - Real Time Clock (RTC)

AL =1 if Midnight passed
AL =0 if Midnight not passed
Set Clock Counter 1AH/01

ON ENTRY
AH =01
CX = Clock count (Hi word)
DX = Clock count (Low word)

Read Time 1AH/02

ON ENTRY
AH =02

ON EXIT
CH = Hours (BCD)
CL = Minutes (BCD)
DH = Seconds (BCD)

© Copyright Virtual University of Pakistan 137

17 - Real Time Clock (RTC)

Set Time 1AH/03

ON ENTRY
AH =03
CH = Hours (BCD)
CL = Minutes (BCD)
DH = Seconds (BCD)
DL =Day Lightsaving=1
Standard Time =0

Read Date 1AH/04

ON ENTRY
AH =04

ON EXIT
CH = Century (BCD)
CL =Year (BCD)
DH = Month (BCD)
DL =Day (BCD)

© Copyright Virtual University of Pakistan 138

17 - Real Time Clock (RTC)

Set Date 1AH/05

ON ENTRY
AH =05
CH = Century (BCD)
CL =Year (BCD)
DH = Month (BCD)
DL =Day (BCD)

Set Alarm 1AH/06

ON ENTRY
AH =06
CH = Hours (BCD)
CL = Minutes (BCD)
DH = Seconds (BCD)

© Copyright Virtual University of Pakistan 139

17 - Real Time Clock (RTC)

Disable Alarm 1AH/07

ON ENTRY
AH =07

Read Alarm 1AH/09

ON ENTRY
AH = 09

ON EXIT
CH = Hours (BCD)
CL = Minutes (BCD)
DH = Seconds (BCD)

DL = Alarm Status (00 = Not Enable
01 = Enable)

© Copyright Virtual University of Pakistan 140

17 - Real Time Clock (RTC)

RTC internals

Real Time Clock

»
»

P

INT

v

) | |70 [€™] Clock and

« 7| [P Logic
— circuitry

| 124" Control
- Circuitry

64 Bytes
Battery
Powered
Low power
CMOS
RAM

The RTC internally has an array of registers which can be used to access the 64 byte

battery powered CMOS RAM.

Internal Ports

70 — 7FH (16 ports)

Only 70 & 71H are important from
programming point of view

© Copyright Virtual University of Pakistan

141

17 - Real Time Clock (RTC)

The following slide shows the function of some of the bytes in the battery powered RAM

used to store the units of time and date.

64 Byte Battery Powered RAM

OOH = Current Second
01H = Alarm Second
02H = Current Minute
03H = Alarm Minute
04H = Current Hour
O5H = Alarm Hour

06H = Day Of the Week
07H = Number Of Day

64 Byte Battery Powered RAM

08H = Month

O9H = Year

OAH = Clock Status Register A
OBH = Clock Status Register B
OCH = Clock Status Register C
ODH = Clock Status Register D
32H = Century

© Copyright Virtual University of Pakistan 142

17 - Real Time Clock (RTC)

Day of the week

Week Day
01H = Sunday
02H = Monday

03H = Tuesday
04H = Wednesday
O5H = Thursday
06H = Friday

07H = Saturday

The value in the days of the week byte indicates the day according to slide shown above.

Generally BCD values are used to represent the units of time and date.

Year
No of Century and Year are in BCD.

© Copyright Virtual University of Pakistan 143

17 - Real Time Clock (RTC)

Accessing the Battery Powered RAM

Accessing the Battery Powered RAM

Battery Powered RAM is accessed in

two steps
» Specify the Byte no. in 70H port.

» Read/write port 71H to get/set the
value of specified byte.

Following slide shown a fragment of code that can be used to read or write onto any byte
within the 64 byte battery powered RAM.

Accessing the Battery Powered RAM

outport (0x70, 0); outport (0x70, 4);
sec = inport (0x71); outport (0x71,hrs);

© Copyright Virtual University of Pakistan 144

17 - Real Time Clock (RTC)

Clock Status Reqisters

Status Reqister A

7 6 5 2 1 0
| |
Interrupt
frequency
Time
frequency
v

0 =Time is not updated
1 =Time is updated

The lower 4 bits of this register stores a code indicating the frequency with which the

RTC hardware interrupt can interrupt the processor. The next field is used to specify the

time frequency i.e. the frequency with the time is sampled and hence updated. The most

significant bit indicates that after time sampling if the time has been updated in to the 64

byte RAM or not.

© Copyright Virtual University of Pakistan

145

18 - Real Time Clock (RTC) Il

18 - Real Time Clock (RTC) I

Clock Status Reqisters

Status Reqgister B

7 6 5 4 3 2 1 0

LO = Daylight
Update time saving time

Call periodic 24/12 - hour counter
interrupt 0 =12 hour format
1 =24 hour format

Call Alarm interrupt
Call interrupton

- B — Time & date format
time update ->0 —BCD
Block gene rato I« 1=Binary

The status register B is the main control register. It is used to specify the date time
formats and is also used to enable interrupt on various events like alarm time and time up-
dation. Another feature of RTC is periodic interrupt which occur with a frequency

specified in the A register.

Status Reaqister C

7 6 5 4 3 2 1 0

L 1 =Time update complete

» 1 = Alarm time reached

—) | = Periodic interrupt call

Status register is used to identify the reason of interrupt generation as described in the

slide above.

© Copyright Virtual University of Pakistan 146

18 - Real Time Clock (RTC) Il

Status Reqister D

7 6 5 4 3 2 1 0

0 = Battery Dead

Only the most significant byte in status register D is important which on being 0 indicates
that the battery is dead.

Sample Program.

void main ()
{
unsigned int hours, months, seconds;
_AH=2;
geninterrupt(0xla);
hours =_CH,;

minutes = _CL;

seconds = _DH,;

hours = hours <<4;

*((unsigned char *)(& hours)) =
(*((unsigned char *) (& hours))) >>4;

hours = hours + 0x3030;

seconds = seconds <<4;

*((unsigned char *)(& seconds)) =
(*((unsigned char *)(& seconds))) >>4;

seconds = seconds + 0x3030;

© Copyright Virtual University of Pakistan

147

18 - Real Time Clock (RTC) Il

minutes = minutes <<4;
*((unsigned char *)(& minutes)) =
(*((unsigned char *)(& minutes))) >>4;

minutes = minutes + 0x3030;

clrscr();

printf("%c%c-%c%c-%c%c%c%c”,
(((unsigned char)(&hours))+1),
((unsigned char)(&hours)),
(((unsigned char)(&minutes))+1),
((unsigned char)(&minutes)),
(((unsigned char)(&seconds))+1),
((unsigned char)(&seconds)),

getch();

The above program uses the service int LAh/02H to read the time from the real time
clock. It reads the time and converts the packed BCD values into unpacked BCD values.

These values are then converted into ASCII and displayed using the printf() statement.

© Copyright Virtual University of Pakistan 148

18 - Real Time Clock (RTC) Il

Read time from RTC (Sample Program)

This sample program directly accesses the 64 byte RAM to access the units of time.

Before reading the time it makes sure by checking the value of Status register A and

checking its most significant bit for time update completion. If the updation is complete

time can be read from the respective registers in the 64 byte RAM.

#include <bios.h>
#include <dos.h>
void main ()
{
int hrs,mins,secs;
char temp;
do {

outportb(0x70,0);
secs=inport(0x71);
outportb(0x70,2);
mins=inport(0x71);
outportb(0x70,4);
hrs=inport(0x71);

outportb(0x70,0x0a);
temp=inportb(0x71);
Jwhile ((temp & 0x80) == 0);

hrs = hrs <<4;

clrscr();

*((unsigned char *)(&hrs)) =
(*((unsigned char *)(&hrs))) >>4;
hrs = hrs + 0x3030;

mins = mins <<4;

*((unsigned char *)(&mins)) =
(*((unsigned char *)(&mins))) >>4;

mins = mins + 0x3030;

Secs = secs <<4,

*((unsigned char *)(&secs)) =
(*((unsigned char *)(&secs))) >>4;

secs = secs + 0x3030;

© Copyright Virtual University of Pakistan

149

18 - Real Time Clock (RTC) Il

printf("%c%c:%c%c:%c%c",
(((unsigned char)(&hrs))+1),
((unsigned char)(&hrs)),
(((unsigned char)(&mins))+1),
((unsigned char)(&mins)),
(((unsigned char)(&secs))+1),
((unsigned char)(&secs)));
getch();

The time units are similarly read and converted to ASCII and displayed.

Write the Time on RTC

#include <bios.h>
#include <dos.h>
unsigned char ASCIItoBCD(char hi, char lo)

{
hi = hi - 0x30;
lo =lo - 0x30;
hi = hi << 4;
hi = hi | lo;
return hi;

}

unsigned long int far *tm =
(unsigned long int far *)0x0040006c;

© Copyright Virtual University of Pakistan 150

18 - Real Time Clock (RTC) Il

void main ()
{
unsigned char hrs,mins,secs;
char chl, ch2;
puts("\nEnter the hours to update: ");
chl=getche();
ch2=getch();
hrs = ASCIlItoBCD(chl, ch2);

puts("\nEnter the minutes to update: ");
chl=getche();

ch2=getch();

mins = ASCIItoBCD(ch1, ch2);

puts("\nEnter the seconds to update: ");
chl=getche();

ch2=getch();

secs = ASCIItoBCD(ch1, ch2);

*tm = 0;

_CH=hrs;
_CL=mins;
_DH=secs;

_DL=0;

_AH=3;
geninterrupt(0x1a);
puts("Time Updated");

The above listing of the program inputs the time from the user which is in ASCII format.
It converts the ASCII in packed BCD and uses BIOS services to update the time. In DOS
or windows this time change may not remain effective after the completion of the
program as the DOS or windows device drivers will revert the time to original even if it

has been changed using this method.

© Copyright Virtual University of Pakistan 151

18 - Real Time Clock (RTC) Il

Sample Program

#include <bios.h>

#include <dos.h>

unsigned char ASCIItoBCD (unsigned
char hi, unsigned char lo)

{
hi = hi - 0x30;
lo =lo - 0x30;
hi = hi << 4;
hi = hi | lo;
return hi;

void main ()

{

unsigned int hrs,mins,secs;
char chl, ch2;
int temp;

puts("\nEnter the hours to update: ");
chl=getche();

ch2=getche();

hrs = ASCIItoBCD(ch1, ch2);

puts("\nEnter the minutes to update:");
chl=getche();

ch2=getche();

mins = ASCIItoBCD(chl, ch2);

puts("\nEnter the seconds to update: ");
chl=getche();

ch2=getche();

secs = ASCIItoBCD(chl, ch2);

outportb(0x70,0x0b);
temp = inport(0x71);

© Copyright Virtual University of Pakistan

152

18 - Real Time Clock (RTC) Il

temp = temp | 0x80;
outportb(0x70,0x0b);
outportb(0x71,temp);

outport (0x70,0);
outport (0x71,secs);
outport (0x70,2);
outport (0x71,mins);
outport (0x70,4);
outport (0x71,hrs);

outportb(0x70,0x0b);
temp = inport(0x71);
temp = temp & OX7f;
outportb(0x70,0x0b);
outportb(0x71,temp);

delay (30000);
do{
outportb(0x70,0x0a);
temp=inportb(0x71);
Jwhile ((temp & 0x80) == 0);
outportb(0x70,0);
secs=inport(0x71);

outportb(0x70,2);
mins=inport(0x71);

outportb(0x70,4);

hrs=inport(0x71);

hrs = hrs <<4;

*((unsigned char *)(&hrs)) =
(*((unsigned char *)(&hrs))) >>4;

hrs = hrs + 0x3030;

To elaborate more on the problem posed by the OS device drivers here is another
program. This program first updates the time accessing the 64 byte RAM directly and
taking the new time as input from the user. After updating the program produces a delay
of 30 seconds and then reads time to display it. A difference of 30 seconds will be noticed
in the time entered and the time displayed. This shows that during the execution of the

program the time was successfully changed and was being updated accordingly.

© Copyright Virtual University of Pakistan 153

18 - Real Time Clock (RTC) Il

mins = mins <<4;
*((unsigned char *)(&mins)) =
(*((unsigned char *)(&mins))) >>4;
mins = mins + 0x3030;
Secs = secs <<4;
*((unsigned char *)(&secs)) =
(*((unsigned char *)(&secs))) >>4;
secs = secs + 0x3030;
printf("\nUpdated time is = %c%c:%c%c:%c%c",
(((unsigned char)(&hrs))+1),
((unsigned char)(&hrs)),
(((unsigned char)(&mins))+1),
((unsigned char)(&mins)),
(((unsigned char)(&secs))+1),
((unsigned char)(&secs)));
getch();

© Copyright Virtual University of Pakistan 154

19 - Real Time Clock (RTC) IlI

19 - Real Time Clock (RTC) Il

Reading the Date

{

#include <bios.h>
#include <dos.h>
void main ()

unsigned int cen,yrs,mons,days;

_AH =4;

geninterrupt(Ox1a);

cen=_CH,;

yrs=_CL,;

mons=_DH;

days=_DL;

cen = cen <<4;

*((unsigned char *)(&cen)) =
(*((unsigned char *)(&cen))) >>4;

cen = cen + 0x3030;

mons = mons <<4;

*((unsigned char *)(&mons)) =
(*((unsigned char *)(&mons))) >>4;

mons = mons + 0x3030;

yrs = yrs <<4,

*((unsigned char *)(&yrs)) =
(*((unsigned char *)(&yrs))) >>4;

yrs = yrs + 0x3030;

days = days <<4;

*((unsigned char *)(&days)) =
(*((unsigned char *)(&days))) >>4;

days = days + 0x3030;

clrscr();

© Copyright Virtual University of Pakistan

155

19 - Real Time Clock (RTC) IlI

Setting the Date

printf("%c%c-%c%c-%c%c%c%c",
(((unsigned char)(&days))+1),
((unsigned char)(&days)),
(((unsigned char)(&mons))+1),
((unsigned char)(&mons)),
(((unsigned char)(&cen))+1),
((unsigned char)(&cen)),
(((unsigned char)(&yrs))+1),
((unsigned char)(&yrs)));

getch();

unsigned char ASCIItoBCD(char hi, char lo)
{
hi = hi - 0x30;
lo=1lo - 0x30;
hi = hi<< 4;
hi = hi | lo;
return hi;
}
void main ()
{
unsigned char yrs,mons,days,cen;
char chl, ch2;
puts("\nEnter the century to update: ");
chl=getche();
ch2=getche();
cen = ASCIItoBCD(chl, ch2);

puts("\nEnter the yrs to update: ");
chl=getche();

ch2=getche();

yrs = ASCIltoBCD(ch1l, ch2);
puts("\nEnter the month to update: ");
chl=getche();

ch2=getche();

mons = ASCIItoBCD(chl, ch2);
puts("\nEnter the days to update: ");
chl=getche();

ch2=getche();

days = ASCIItoBCD(chl, ch2);
_CH=cen;_CL=yrs;_DH= mons;
_DL=days; _AH =5;
geninterrupt(0x1a);

puts("Date Updated");

© Copyright Virtual University of Pakistan

156

19 - Real Time Clock (RTC) IlI

The above sample program takes ASCII input from the user for the new date. After taking

all the date units as input the program sets the new date using the BIOS service 1Ah/05H.

Setting the Alarm

void interrupt (*oldint)();

void interrupt newint();

unsigned int far * scr = (unsigned int far *)0xb8000000;

void main ()

{ oldint = getvect(0x4a);
setvect(Ox4a, newint);
_AH=6;

_CH=0x23;
_CL=0x50;
_DH=0;
geninterrupt(0x1a);
keep(0,1000);

}

void interrupt newint()

{ *scr=0x7041;
sound(0x21ff);

}

The alarm can be set using BIOS function 1Ah/06h. Once the alarm is set BIOS will
generate the interrupt 4Ah when the alarm time is reached. The above program intercepts
the interrupt 4Ah such that newint() function is invoked at the time of alarm. The newint()
function will just display a character ‘A’ on the upper left corner of the screen. But this

program may not work in the presence of DOS or Windows drivers.

Another way to set Alarm

#include <bios.h>
#include <dos.h>
void interrupt newint70();
void interrupt (*oldint70)();
unsigned int far *scr =
(unsigned int far *)0xb8000000;
unsigned char ASCIItoBCD(char hi, char lo)
{
hi = hi - 0x30;
lo=1lo - 0x30;
hi = hi << 4;
hi = hi | lo;
return hi;

© Copyright Virtual University of Pakistan 157

19 - Real Time Clock (RTC) IlI

void main (void)

{
int temp;
unsigned char hrs,mins,secs;
char chl, ch2;

puts("\nEnter the hours to update: ");
chl=getche();

ch2=getch();

hrs = ASCIItoBCD(ch1, ch2);

puts("\nEnter the minutes to update:");
chl=getche();

ch2=getch();

mins = ASCIItoBCD(chl, ch2);

puts("\nEnter the seconds to update: ");
chl=getche();

ch2=getch();

secs = ASCIItoBCD(ch1, ch2);

outportb(0x70,1);
outportb(0x71,secs);
outportb(0x70,3);

outportb(0x71,mins);
outportb(0x70,5);

outportb(0x71,hrs);
outportb(0x70,0x0b);

temp = inport(0x71);
temp = temp | 0x70;
outportb(0x70,0x0b);
outportb(0x71,temp);

oldint70 = getvect(0x70);
setvect(0x70, newint70);
keep(0,1000);

}

void interrupt newint70()

{
outportb(0x70,0x0c);
if ((inport(0x71) & 0x20) == 0x20)

sound(0x21ff);

*scr=0x7041;
(*oldint70)();

© Copyright Virtual University of Pakistan 158

19 - Real Time Clock (RTC) IlI

This program takes the time of alarm as ASCII input which is firstly converted into BCD.
This BCD time is placed in the 64 byte RAM at the bytes which hold the alarm time.
Once the alarm time is loaded the register is accessed to enable the interrupts such that
other bits are not disturbed. Whenever the RTC generates an interrupt, the reason of the
interrupt needs to be established. This can be done by checking the value of status register
C, if the 5™ bit of register C is set it indicates that the interrupt was generated because the
alarm time has been reached. The reason of interrupt generation is established in the
function newint70(). If the interrupt was generated because of alarm then speaker is
turned on by the sound() function and a character ‘A’ is displayed on the upper left corner

of the screen.

Other Configuration Bytes of Battery Powered RAM
Configuration Data And Battery Operated RAM

BL"&ILit“; 1[1\' I.I.I'|I_' \'IIIli hime inr\\]'ln.lﬁi\n. lh\.' i hil“\.‘l'.\ I\"Il-lli.l\l]lIL'nII.‘I':- IL‘_':'_I‘-[L‘TH' Lll'v\\ L'u\]][{lil1 L'lllll-l::'lllnllillll li-'ll'.l. i J|_1hu
memory locations of various BIOS manufacturers, only those that are designated as unreserved contain the same
information. Since all the other locations are used at the discretion of BIOS and hardware designers, these locations shouldn't
be overwritten by a program

Content . Content
0EH Diagnostic byts (see balow) 18H High byte in K of an expansion board's main
memory size
OFH Status at system power-down 19H Reserved
10H Write to disk (see below) 2DH Reserved
11H Hard drive 1 type 2EH Checksum high byte
(memory locations 10H - 20H)
Hard drive 2 type 2FH Checksum low byte
12H (memory locations 10H - 2DH)
13H Raserved 30H Low byte in K of expansion memeory size
14H Configuration byte (see below) 31H High byte in K of expansion memory size
15H Low byte in K of hard drive main memory size | 32H First two century digits in BCD notation
16H High byte in K of motherboard main memory 33H- Reserved
size 3FH
17H Low byte in K of an expansion board’s main
Mamory size

© Copyright Virtual University of Pakistan 159

19 - Real Time Clock (RTC) IlI

Diagnostic byte (0EH)

The diagnostic byte documents various errors that may occur during the Power-On Self Test (POST).

76543210 Diagnostic Byte Structure

(Memory location OEH)

\—h 1 = Date or time incarrect (memory locations 00h-09H)

—® 1 = Hard drive or contraller error

P 1 = Memory size incorrect (memory locations 15H and 16H)
P 1 = Configuration byte incorrect

P 1 = Checksum incorrect (memory locations 2EH - 2FH)

P 1 = Realtime battery clock dead

Disk description (10H)

Memory address 10H of the battery backed RAM contains information identifying the first and the second disk drive formats

(5.25-inch or 3.5-inch) and their capacities.

76543210 Disk description
(memory location 10H)

\—‘—P Second drive type:

0000k = no second drive
0001b = 5.25-inch 320/360K
0010b = 5.25-inch 1.2 Meg
0011b = 3.5-inch 720K
0100b = 3.5-inch 1.44 Meg

= First drive type:
0000b = no disk drive
0001b = 5.25-inch 320/360K
0010b = 5.25-inch 1.2 Meg
0011b = 3.5-inch 720K
0100b = 3.5-inch 1.44 Meg

Configuration byte (14H)

Memeory address 14H of the battery backed RAM contains configuration data that specifies the number of disk drives, the

video mode at system startup, and the availability of a math coprocessor.

7 6 5432 10 Configuration Byte Structure
Memory location 14H
\—P 1 = No disk drive installed
1 = Math coprocessor installed

L——— W 1 = Hard drive or controller error

I Number of disk drives:
00b = reserved
01b = CGAJEGA/VGA, 40 columns
10b = CGAJ/ EGA/ WVGA, 80 columns
11b = MDA/Mercules, 80 columns

- Unused (0)

© Copyright Virtual University of Pakistan

160

19 - Real Time Clock (RTC) IlI

Determining Systems Information

Determining Systems Information

INT 11H

INT 12H

INT 11H
used to get hardware environment info.
On Entry
call 11H
On Exit
AX = System Info.

BIOS configuration information (ATs)

—i= | = Malh coprocassor installed

\\ Lﬁ‘ 1 = Al least 1 disk drive is connected

Video mode at system starbup:
O0b = unussd
01b = 40x25 characters (COLOR)
10k = B0x25 characters (COLOR)
11b = 80x25 characters (MONCH)

#= NHumber of disk drives is bit = 0
00k = 1 disk drive
01b = 2 disk drives
10k = 3 disk drives
1Mb = 4 disk drives

#= Humber of RS-232 interfaces
= Mumber of printér ports

Interrupt 11H is used to determine the systems information. On return this service returns
the systems info in AX register. The detail of the information in AX register is shown in

the slide above.

© Copyright Virtual University of Pakistan 161

19 - Real Time Clock (RTC) IlI

Determining Systems Information
INT 12H

used for memory interfaced.

INT 15H/88H

Returns = No. of KB above 1MB mark.

Int 12H is used to determine the amount of conventional memory interfaced with the
processor in kilobytes. The amount of memory above conventional memory (extended

memory) can be determined using the service 15H/88H.

© Copyright Virtual University of Pakistan 162

20 - Determining system information

20 - Determining system information

Types of Processor

Determining the Processor Type

Flags reqister test to identify 8086

15 12

Unused in 8086

Pushing or Poping the flags register will set
these 4-bits in 8086.

Determining the Processor Type

mov AX, O
push AX
popf
pushf
pop AX
Test the bits 15 — 12 of AX if all set, the

processor is 8086 else higher
processor.

The above slides show the test that can be used to determine if the underlying processor is
8086 or not. If its not 8086 some test for it to be 80286 should be performed.

© Copyright Virtual University of Pakistan 163

20 - Determining system information

Checking for 80286

Determining the Processor Type

Flags test for 80286

mov AX, 7000H

push AX

popf

pushf

pop AX
If the bits 14 — 12 are cleared the
processor is 286 only.

If the bits 14-12 are cleared on pushing the flags register then the processor is 80286. This

can be checked as shown in the slide above.

Alignment Test (If Not 286)

18

Eflags

Alignment Check

Alignment Check:
mov dword ptr [12], EDX

In 32-bit processors it is more optimal in terms of speed if double word are placed at
addresses which ate multiples of 4. If data items are placed at odd addresses the access to
such data items is slower by the virtue of the memory interface of such PCs. So it more
optimal to assign such variables addresses which are multiple of 4. The 386 and 486 are

both 32 bit processors but 486 has alignment check which 386 does not have. This

© Copyright Virtual University of Pakistan 164

20 - Determining system information

property can be used to distinguish between 386 and 486. If the previous tests have failed
then there is a possibility that the processor is not 8086 or 286. To eliminate the
possibility of it being a 386 we perform the alignment test. As shown in the slide above
the 18" bit of the EFLAGS register is the alignment bit, it sets if a double word is moved

onto a odd address or an address which does not lie on a 4 byte boundary.

Alignment Test
pushfd

pop eax
MoV ecx, eax

mov dword ptr [13], EDX
pushfd

pop eax

In the above slide a double word is moved into a odd address. If the processor is 386 then
the 18™ bit of the EFLAGS register will not be set, it will be set if the processor is higher
than 386.

© Copyright Virtual University of Pakistan 165

20 - Determining system information

Distinguishing between 486 and Pentium processors

A Pentium and 486 both will pass the alignment test. But a 486 does not support the

CPUID Test

» 486 will pass the alignment test.

* To distinguish 486 with Pentium
CPUID Test is used.

CPUID instruction. We will next incorporate the CPUID instruction support test to find if

the processor is 486 or a Pentium as Pentium does support CPUID instruction.

CPUID Test

Eflags

« If a program can set and also clear bit 21 of Eflags,

then processor supports CPUID instructions.

» Set bit 21 of Eflags and read value of Eflags and

store it.

 Clear bit 21 of Eflags, read the value of Eflags.
« Compare both the value if bit 21 has changed the

CPUID instruction is available.

If the CPUID instruction is available the processor is a Pentium processor otherwise it’s a

486.

© Copyright Virtual University of Pakistan

166

20 - Determining system information

More about CPUID Instruction

CPUID Instruction
Before After the execution of Instruction
EAX=0 EAX=1

EBX - EDX - ECX

EBX = “Genu”
EDX = “inel”
ECX = “ntel’

EAX =1 EAX (bit 3 — 0) = Stepping ID
EAX (bit 7 — 4) = Model
EAX (bit 11 — 8) = Family
EAX (bit 13 — 12) = Type
EAX (bit 14 — 31) = Reserved

The CPUID instruction, if available, returns the vendor name and information about the

model as shown in the slide above. Beside rest of the test the CPUID instruction can also
be used by the software to identify the vendor name.

© Copyright Virtual University of Pakistan 167

20 - Determining system information

Testing for Coprocessor

Coprocessor control word

Coprocessor Control Word

7

L Interrupt enable flag

)11 after initialization
signifies extended
precision operation

[
[

The coprocessor control word contains some control information about the coprocessor.
The bit number 7 of coprocessor control word is the Interrupt Enable Flag and bit number

8 & 9 should contain 11 on initialization.

Coprocessor Status Word

Coprocessor Status Word
14 10 9 8
cs cs|ct|co
C3 Cc2 (0]
0 0 0 st>operand
0 0 1 st<operand
1 0 0 st=operand

The coprocessor status register stores the status of the coprocessor. Very much like the
flags register in the microprocessor the Coprocessor status word can be used to determine
the result of a comparison as shown in the slide.

© Copyright Virtual University of Pakistan 168

20 - Determining system information

Following test can be performed to test the presence of coprocessor.

To Check Coprocessor is
* |nitialize Present
» Read Hi — Byte of Control register.

e If value in Hi — Byte is 3, then
coprocessor is available, otherwise
its absent.

Once its established that the coprocessor is present then the model of the coprocessor
should be determined. In case an invalid numerical operation is requested the 8087
coprocessor generates an interrupt while the higher coprocessors does not use interrupts
in fact they make use of exceptions. This feature can be used to distinguish between 8087
and higher processor as shown in the slide above. The higher processor will not respond

to an attempt made to set the IEM flag while 8087 will respond.

Check for 8087 Coprocessor

e |[EM can be set in 8087.

* |[EM cannot be set in 80287, 80387
as they use exception to inform the
software about any invalid
instruction.

* If an attempt to set this bit using
FDISI fails then it implies, its not a
8087 coprocessor .

© Copyright Virtual University of Pakistan 169

20 - Determining system information

Distinguishing between 80287 and 80387

Distinguish between 80287 & 80387
» 80387 only allows to reverse the
sign of infinity.
 Perform a division by zero.

* If the sign of result can be
reversed then the coprocessor is
80387.

If the sign of infinity can be reversed than the coprocessor is 80387 otherwise its 80387

© Copyright Virtual University of Pakistan 170

20 - Determining system information

Reading the Computer configuration

void PrintConfig(void)
{
union REGS Register;
BYTEAT;
clrscer();
AT = (peekb(0xF000, OxFFFE) == 0xFC);
printf(" Your PC Configuration \n");
printf(" \n");
printf(" PC type M);
switch(peekb(0xF000, OxFFFE))

{

case OxFF : printf("PC\n");
break;

case OxFE : printf("XT\n");
break;

default : printf("AT or higher\n");
break;

}

printf("Conventional RAM :");
int86(0x12, &Register, &Register);
printf(" %d K\n",Register.x.ax);

if (AT)

Register.h.ah = 0x88;
int86(0x 15, &Register, &Register);
printf(" Additional RAM :
%d K over 1 megabyte\n", Register.x.ax);

}

int86(0x11, &Register, &Register);

printf(" Default video mode :");

printf("Disk drives 1 %d\n", (Register.x.ax >>6 & 3) +1);
printf("Serial interfaces : %d\n", Register.x.ax >>9 & 0x03);
printf("Parallel interfaces : %d\n\n", Register.x.ax >> 14);

}
void main()

PrintConfig();

In this program the general configurations of the computer are read using interrupt 11H,
12H and 15H. First its determined if the Processor is and AT (advanced technology all
processors above 8086) type computer or not. This can be done easily by checking its
signature byte placed at the location FOO0:FFFEH which will contain neither OXFF nor
OxFE if its an AT computer. The program shows the size of conventional RAM using the
interrupt 12H, then if the computer is an AT computer then the program checks the
extended memory size using int 15H/88H and reports its size. And ultimately the program
calls int 11H to show the number and kind of 1/O interfaces available.

© Copyright Virtual University of Pakistan 171

21 - Keyboard Interface

21 - Keyboard Interface

Processor Identification

_getproc proc near

pushf ;Secure flag register contents
push di

;== Determine whether model came before or after 80286 ====

Xor ax,ax ;Set AX to 0

push ax ;and push onto stack

popf ;Pop flag register off of stack

pushf ;Push back onto stack

pop ax ;and pop off of AX

and ax,0f000h ;Do not clear the upper four bits
cmp ax,0f000h ;Are bits 12 - 15 all equal to 1?

je not_286_386 ;YES --> Not 80386 or 80286

In the above slide the test for 8086 or not is performed by clearing all the bits of flags
register then reading its value by pushing flags and then poping it in AX, the bits 15-12 of

ax are checked if they have been set then it’s a 8086.

;- Test for determining whether 80486, 80386 or 80286 ------

mov dl,p_80286 ;Inany case, it's one of the
mov ax,07000h ;three processors
push ax ;Push 07000h onto stack
popf ;Pop flag register off
pushf ;and push back onto the stack
pop ax ;Pop into AX register
and ax,07000h ;Mask everything except bits 12-14
je pende ;Are bits 12 - 14 all equal to 0?
;YES --> It's an 80286
inc dl ;No --> it's either an 80386 or an

;80486. First set to 386

;-- The following test to differentiate between 80386 and ---
;-- 80486 is based on an extension of the EFag register on
;-- the 80486 in bit position 18.

;-- The 80386 doesn't have this flag, which is why you

;-- cannot use software to change its contents.

© Copyright Virtual University of Pakistan 172

21 - Keyboard Interface

The above slide further performs the test for 80286 if the previous test fails. It sets the bit

14-12 of flags and then again reads back the value of flags through stack. If the bits 14-12

have been cleared then it’s a 80486.

mov [ebx],eax
pushfd
pop eax
mov first,eax;

mov [ebx+1],eax
pushfd
pop eax
shr first,18
shr eax,18
and first,1
and eax,1
cmp first,eax
inc dl

sti
jne pende

cli ;No interrupts now
mov ebx,offset array

The above code performs the alignment test as discussed before by test the 18" bit after

addressing a double word at an odd address.

pushfd

pop eax

mov temp, eax
mov eax,l

shl eax,21
push eax
popfd

pushfd

pop eax

shr eax,21
shr temp,21
cmp temp, eax
inc dl

je pende

jmp pende ;Test is ended

the above code performs a test to see if CPUID instruction is available or not for which

the bit number 21 of flags is set and then read back.

© Copyright Virtual University of Pakistan

173

21 - Keyboard Interface

_getproc endp

;Set high byte of proc.code to 0

;Proc. code =return value of funct.

pende label near ;End testing
pop di ;Pop Dl off of stack
popf ;Pop flag register off of stack
xor dh,dh
mov ax,dx
ret ;Return to caller

;End of procedure

A CPUID Program

#include "stdafx.h"
#include <stdio.h>
#include <dos.h>

unsigned long int id[3];
unsigned char ch="\0";
unsigned int steppingid ;
unsigned int model,family,typel;
unsigned int cpcw;
int main(int argc, char* argv[])
{
_asm xor eax,eax
_asm cpuid
_asm mov id[0], ebx;
_asm mov id[4], edx;
_asm mov id[8], ecx;
printf(" %s\n ", (char *) (id));
_asm mov eax,1
_asm cpuid
_asm mov ecx,eax
_asm AND eax,0xf;
_asm mov steppingid,eax;
_asm mov eax, ecx

© Copyright Virtual University of Pakistan

174

21 - Keyboard Interface

asm shr eax,4

asm and eax, Oxf;
asm mov model,eax
asm mov eax,ecx
asm shr eax,8

asm and eax, Oxf
asm mov family,eax;
asm mov eax,ecx
asm shr eax,12

asm and eax, 0x3;
asm mov typel, eax;

printf("\nstepping is %d\n model is %d\nFamily is %d\nType is

%d\n" ,steppingid,model,family,typel);

The above program places 0 in eax register before issuing the CPUID instruction. The

string returned by the instruction is then stored and printed moreover other information

about family, model etc is also printed.

© Copyright Virtual University of Pakistan

175

21 - Keyboard Interface

Detecting a Co Processor

_asm finit
_asm mov byte ptr cpcw+1, 0;
_asm fstcw cpcw
if (*(((char *) (&cpcw))+1)==3)
puts (" Coprocessor found");
else
puts ("Coprocessor not found");

After initialization the control word is read if the higher byte contains the value 3.

_getco proc near
mov dx,co_none ;Arst assume there is no CP

mov byte ptr cs:waitl,NOP_CODE ;WAIT-instruction on 8087

mov byte ptr cs:wait2,NOP_CODE ;Replace by NOP
waitl: finit ;Initialize Cop

mov byte ptr cpz+1,0 ;Move high byte control word to 0
wait2: fstcw cpz ;Store control word

cmp byte ptr cpz+1,3 ;High byte control word = 3?

jne gcende ;No ---> No coprocessor

;-- Coprocessor exists. Test for 8087 -------------smmmmmmnen

inc dx

and cpz,0FF7Fh ;Mask interrupt enable mask flag

fldcw cpz ;Load in the control word

fdisi ;Set IEM flag

fstcw cpz ;Store control word

test cpz,80h ;IEM flag set?

jne gcende ;YES ---> 8087, end test

In the code above the IEM bit is set and then the value of control word is read to analyse

change in the control word. If the most significant bit is set then it’s a 8087 co processor

otherwise other tests must be performed.

© Copyright Virtual University of Pakistan

176

21 - Keyboard Interface

;-- Test for 80287/80387

inc dx

finit ;Initialize cop

fld1 ;Number 1 to cop stack

fldz ;Number 0 to cop stack

fdiv ;Divide 1 by 0, ergto ST

fld st ;Move ST onto stack

fchs ;Reverse signin ST

fcompp ;Compare and pop ST and ST(1)

fstsw cpz ;Store result from status word

mov ah,byte ptr cpz+1 ;in memory and move AX register

sahf ;to flag register

je gcende ;Zero-Flag = 1 : 80287

inc dx ;Not 80287, must be 80387 or inte-

;grated coprocessor on 80486

gcende: mov ax,dx ;Move function result to AX

ret ;Return to caller
_getco endp

An operation (like division by zero is performed) which results in infinity. Then the sign

of the result is reversed, if it can be reversed then its 80387 co processor otherwise its
certainly 80287.

KeyBoard Interface

60H

Processor

—|_ -

»| Synchronous Data
Keyboard

3
v

ro1 | PIC

The keyboard interface as discussed earlier uses the IRQ1 and the port 60H as data port, it

also uses another port number 64H as a status port. The keyboard can perform

synchronous serial 1/0.

© Copyright Virtual University of Pakistan

177

21 - Keyboard Interface

Port 64H Status Reqister

7 6 5 4 3 2 1 0

) Ll = Output
1=Parity Buffer full

Error
1=Time Out Error 1 = Input Buffer
during input full

1=Time Out Error

during output —p 1 = Keyboard Active

The above slide shows the detailed meaning of bits in port 64H.

Typematic Rate

7 6 5 4 3 2 1 0

‘ Typematic Rate
Delay < 11111 =2 charls
00 ¥ Second 11110 = 2.1 char/s
01 % Second 11101 = 2.3 char/s

10 Y Second
11 1 Second

11010 =3 char/s

00100 = 20 char/s
00011 = 21.8 char/s
00010 = 24 char/s
00001 = 26.7 char/s
00000 = 30 char/s

The typematic rate of the keyboard can be controlled by a control word as depicted in the
slide above. The delay and typematic rates need to be specified in this control word. The
delay indicates the delay between first and second character input whenever a key is
pressed. The timing of rest of the successive character inputs for the same key is

determined by the typematic rate.

© Copyright Virtual University of Pakistan 178

21 - Keyboard Interface

Recieving bytes From
Keyboard

Input from
Keyboard

— 60H

64H

f————> Input buffer full

The input character scan code is received at port 60H. A certain bit in the port 64H or
keyboard controller is used as the IBF (input buffer full) bit. A device driver can check
this bit to see if a character has been received from the keyboard on which this bit will

turn to 1.

Sending bytes to the Keyboard

60H
<+——————From Processor

Later on

Receives OxFA to indicate —
successful transmission

64H

[—————> Output buffer full

Similarly some data (as control information) can be send to the keyboard. The processor
will write on the port 60H. The device driver will check the OBF(output buffer full bit of
port 64H which remains set as long as the byte is not received by the keyboard. On
receipt of the byte from the port 60H the keyboard device write a code OXFA on the port
60H to indicate that the byte has been received properly.

© Copyright Virtual University of Pakistan 179

22 - Keyboard Interface, DMA Controller

22 - Keyboard Interface, DMA Controller

Using the described information we can design a protocol for correctly writing on the
keyboard device as described below.

Keyboard writing Protocol

» Wait till input buffer is full

 Write on buffer

» Wait till output buffer is full

* Check the acknowledgement byte

* Repeat the process if it was previously
unsuccessful.

Keyboard is a typically an input device but some data can also be send to the keyboard
device. This data is used as some control information by the keyboard. One such

information is the typematic rate. This type matic rate can be conveyed to the keyboard as
described by the slide below.

Command for writing Typematic rate

OxF3

Means Typematic rate will be sent in the
next byte.

Other such control information is the LED status. Every keyboard has three LEDs for
representing the status of Num Lock, Caps Lock and the Scroll Lock. If the device driver

© Copyright Virtual University of Pakistan 180

22 - Keyboard Interface, DMA Controller

needs to change the status then the LED status byte should be written on the keyboard as
described below. But before writing this byte the keyboard should be told that the control
byte is to be written. This is done by sending the code 0XED before sending the status

byte using the above described protocol.

Keyboard LEDs

LED Status byte

IXIXIXDA]2 [t Jo |

Scroll Lock

Sy NUM LoCk

d——— Caps Lock

LED Control byte = 0XED

Changing Typematic Rate

#include <dos.h>
#include <conio.h>
char st [80];
int SendKbdRate (unsigned char data , int maxtry)
{
unsigned char ch;
do{
do{
ch=inport(0x64);
twhile (ch&0x02);
outport(0x60,data);
do{
ch = inport(0x64);
}while (ch&0x01);

© Copyright Virtual University of Pakistan 181

22 - Keyboard Interface, DMA Controller

if (ch==0xfa)
{ puts("success\n");
break;
}

maxtry = maxtry - 1;
} while (maxtry != 0);
if (maxtry==0)
return 1;
else
return O;

The above program has function SendKbdRate(). This function takes 2 parameters, first
one is value to be sent and the second one is the maximum number of retries it performs if
the byte cannot be sent. This function implements the described protocol. It first waits for
the IBF to be cleared and then starts trying to send the byte. The functions stops trying

either if OXFA is received (success) or if the number of retries end (failure).

void main ()

{

Ilclrscr();
SendKbdRate (0xf3,3);
SendKbdRate (0x7f,3);
gets(st);
SendKbdRate (0xf3,3);
SendKbdRate(0,3);
gets(st);

}

Now this function is used to change the typematic rate. Firstly 0XF3 is written to indicate
that the typematic rate is to be changed then the typematic rate is set to 0x7F and a strng
can be type to experience the new typematic rate. Again this rate is set to 0. This program
will not work if you have booted the system in windows. First boot the system in DOS
and then run this program.

© Copyright Virtual University of Pakistan 182

22 - Keyboard Interface, DMA Controller

Changing LEDs Status

{
do{

#include <bios.h>
#include <dos.h>

char st [80];

unsigned char far *kbd =

(unsigned char far *) 0x00400017;

int SendKbdRate (unsigned char data , int maxtry)

unsigned char ch;

do{

ch=inport(0x64);
Jwhile (ch&0x02);
outport(0x60,data);

do{
ch = inport(0x64);
}while (ch&0x01);
ch=inport(0x60);
if (ch==0xfa)
{ puts("success\n");
break;
}

maxtry = maxtry - 1,
} while (maxtry != 0);
if (maxtry==0)

return 1;
else

return O;

© Copyright Virtual University of Pakistan

183

22 - Keyboard Interface, DMA Controller

void main ()

{

/lclrscr();
SendKbdRate (0Oxed,3);
SendKbdRate (0x7,3);
puts("Enter a string ");
gets(st);

*kbd=(*kbd)|0x70;
puts("Enter a string ");
gets(st);

}

Again the same function is being used in this program to turn on the keyboard LEDs.
Firstly OXED is sent to indicate the operation and then 7 is written to turn on all the LEDs.
But tuning on the LEDs like this will not change the keyboard status indicated by the byte
at 40:17H. If the status for the device driver usage is to changes as well then the
corresponding at 40:17H can be set by ORing it with 0x70. This program will not work if
you have booted the system in windows. First boot the system in DOS and then run this

program.

DMA Controller

Main
Memory

/0 4P| Processor | g

A\ 4

-~ s

DMA

© Copyright Virtual University of Pakistan 184

22 - Keyboard Interface, DMA Controller

DMA is a device which can acquire complete control of the buses and hence can be used
to transfer data directly from port to memory or vice versa. Transferring data like this can
prove faster because a transfer will consume 2 bus cycles if it is performed using the
processor. So in this approach the processor is bypasses and its cycles are stolen and are
used by the DMA controller.

© Copyright Virtual University of Pakistan 185

23 - Direct Memory Access (DMA)

23 - Direct Memory Access (DMA)

The latch B of the DMA interface is used to hold the higher 4 or 8 bits of the 20 or 24 bit
absolute address respectively. The lower 16bits are loaded in the base address register and
the number of bytes to be loaded are placed in the count register. The DMA requests to
acquire buses through the HOLD signal, it receives a HLDA (Hold Acknowledge) signal
if no higher priority signal is available. On acknowledgment the DMA acquires control of
the buses and can issue signals for read and write operations to memory and 1/O ports
simultaneously. The DREQ signals are used by various devices to request a DMA
operation. And if the DMA controller is successful in acquiring the bus it sends back the
DACK signal to signify that the request is being serviced. For the request to be serviced

properly the DMA channel must the programmed accurately before the request.

DMA Cascading

Cascading two
DIMA eonirollers
Channal

onthe AT Cascading using DREQO
channel 4 Dack 0

1 DREQ1
DACK 1

Channel

DREQ 0 f—— HRO DREQ 2 -
oACK 0 |—w] HLOA 2 Dack 2 Expansion card

Usually disk drive

IRy

5 DREQTI—+ 3 DREQ2

DACK1{—a DACK 3 —
+— WO @ DREQ? -
— HLDA ' DACK2 Expansion card
SCS| confraller
7 DREQ3|—a (for example)
[——

DACK 31—+

MASTER SLAVE
8237A 8237A

A single DMA can transfer 8bit operands to and from memory in a single a bus cycle. If
16bit values are to be transmitted then two DMA controllers are required and should be

cascaded as shown above.

© Copyright Virtual University of Pakistan 186

23 - Direct Memory Access (DMA)

DMA Programming Model

* DMA has 4 — Channels

 Each Channel can be programmed to transfer a
block of maximum size of 64k.

 For each Channel there is a

® Base Register
» Count Register
« Higher Address Nibble/Byte is placed in Latch B.

» The Mode register is conveyed which Channel is
to be programmed and for what purpose i.e. Read
Cycle, Write Cycle, Memory to memory transfer.
e Arequest to DMA is made to start it’s transfer.

Internal Registers

* No of 16 & 8 bit Internal registers

* Total of 27 internal registers in DMA
Register Number Width

Starting Address 16
Counter

Current Address
Current Counter
Temporary Address
Temporary Counter
Status

Command
Intermediate Memory
Mode

Mask

Request

"H'b"‘""—‘HP—"bhp,;
i
o

The above slides shows the characteristics of each register when a DMA channel is to be
programmed and also shows the total number of registers in the DMA controller. Some of

the registers are common for all channels and some are individual for each channel.

© Copyright Virtual University of Pakistan 187

23 - Direct Memory Access (DMA)

DMA Modes

* Block Transfer
* Single Transfer
e Demand Transfer

The DMA can work in above listed modes. In block transfer mode the DMA is
programmed to transfer a block and does not pause or halt until the whole block is
transferred irrespective of the requests received meanwhile.

In Single transfer mode the DMA transfers a single byte on each request and updates the
counter registers on each transfer and the registers need not be programmed again. On the
next request the DMA will again transfer a single byte beginning from the location it last
ended.

Demand transfer is same as block transfer, only difference is that the DREQ signal
remains active throughout the transfer and as soon as the signal deactivates the transfer

stops and on reactivation of the DREQ signal the transfer may start from the point it left.

© Copyright Virtual University of Pakistan 188

23 - Direct Memory Access (DMA)

Programming the DMA

Programming the DMA controller

The following table shows the different DMA controller registers which are used to determine the status of the controller or
define the parameters:

 DMA register inthe PC/XT (or AT) that directs the DMA contralier

Read Write

[*siave in an AT / only one DMA in a PC/XT
** master in an AT/ nat present in a PC/XT

Register Port* Port™
Stalus osh | ooon |
Command 0gh | CDOh
Request oeh | ooz
Masking 104h | 0D4h
Mode (OBh 0D6h
ByteWord-FlipFlop och | oDsh
Intermeclate memory och | ooan |
Reset ach | ODAR
Masking reset 0Eh | ODCh
Masking (Fh (DEN

Before you access one of these registers, decide if you're addressing the master or the skive. If vou have a PCXT that has

only one DMA controller, it's not possible to access a second DMA controller (master in the AT).

The above table shows the addresses of all the registers that should be programmed to

perform a transfer. These registers act as status and control registers and are common for

all the channels.

© Copyright Virtual University of Pakistan

189

23 - Direct Memory Access (DMA)

DMA Status Reqister

6. The DMA Controller

76543210 B
register at the 08h, or 0DOh, port

LI- 1 =Terminal Count for channel 0 achieved
L—— 4 1 = Terminal Count for channel 1 achieved

——— 1 = Terminal Count for channel 2 achieved
L g 1=Terminal Countfor channgl 3 achieved
9 1 = DMA request via DREQO line for channel 0

L 1 =DOMArequest via DREQ1 line for channel 1
P 1= DMA request via DREQ2 line for channal 2

P 1= DMArequest via DREQS line for channel 3

225

The command register is located at the same port address as the status register. [t goes through several settings on the DMA
controller. Some of these settings, especiallv the 3 bit, are interesting in eertain situations for DMA programming using
software. The problem with this register, however, is that it cannot be selected and used due to the status of the other bits.

Terminal count if reached signifies that the whole of the block as requested through some
DMA channel has been transferred. The above status register maintains the status of

Terminal count (TC) and DREQ for each channel within the DMA.

© Copyright Virtual University of Pakistan 190

23 - Direct Memory Access (DMA)

DMA Command Register

wins booted and that you can take over these defaull settings without causing any damage.

7 6 5 4 3210 Command Registar at 08h or 0D0h

I—- Type of transter

0 = betwean memory & peripheral device (PC slandard)
1 = batwasn mamony & meamory (Rot possible on all PCs)

L g Address stop for channel O with memory i mamory transfer:
0 = channsl O runs through memory
1 = channsl O stops ot slaf sddress

—= ActivationDesctivation of controller:
0 = Controller ks enabled (PC standard)
1 = Contraller is not enablad

L Compressed access (only of importancs if bitd = O):
0 = normial access with four DMA cycles and any subsequent Walt states (PC standandy
1 = compressed aceess with only thres DMA cycles plus Wail stakes

= Fricrity fomation
0 = shatic, with channel 0 as highast and channel 2 as lowest prionty (PC standard b
1 = rotating pricrity

L Druration of Write signal (only of importancs if bit 3 = 1)
0 =late (PC standard)
1= exiended

DR level:
0 = DR request if lins high (PC standard)
1= DRO requast f lins low

Y

Y

DACKx laval
0 = DACK confimation through line low (PC standard)
1 = DACK confirmalion through lime high

This is the command register. It is used to program various common parameters of

transfer for all the channels.

© Copyright Virtual University of Pakistan 191

24 - Direct Memory Access (DMA) 11

24 - Direct Memory Access (DMA) Il

DMA Request Register

The request register is used o initiate a DMA transfer under soltware control. This is done by simulating the activation or
elearing ofone of the DREQx lines The request register is also used to initiale amemory to memory transfer, since a peripheral
device is not involved and therefore cannot send a signal over a DRECK line

76543210 EEEETET
ojo|ojofo at the 09h, or 0D2h, port

LL.- Binary channal number {0-3)

g Request bit
0 = no requeast
1 = simulate request via DRECx line

This register can be used to simulate a DMA request through software (in case of memory
to memory transfer). The lower 2 bits contains the channel number to be requested and

the bit # 2 is set to indicate a request.

© Copyright Virtual University of Pakistan 192

24 - Direct Memory Access (DMA) 11

DMA Mask—1 Reqister

76543210 TnE_! DMA controller's maskingt
ololololo register at the 0Ah, or 0D4h, port

I—I—D Binary channel number (0-3)

- Macking bit
= no masking
1= ignore OMA requests on this channgl

Another way 1o mask or make a channel receptive 1o DMA requests is provided by mask register 2. In contrast to the mask
register 1, all Tour channels are affected. Use this register only to change the status for all four channels simulaneously.

Ag its name swggests, the mode register determines a channel’s operating mode. You can specify if the next DMA transfer
will happen as asingle transfer, a block transfer, or a demand transfer, [talso specifies if the channel is to cascade two DMA
controllers. In most cases vou won't have to change this later setting since this happens when the computer is booted.

This register can be used to mask/unmask requests from a device for a certain DMA
channel. The lower 2 bits contains the channel number and the bit #2 is set if the channel

is to be masked.

© Copyright Virtual University of Pakistan 193

24 - Direct Memory Access (DMA) 11

DMA Mask—2 Register

6. The DMA Controller

ojofofo

I—P Channel (:

0 =no masking, l&t DA requasts pass
1 =ignore DA requests on this channgl

- Channel 1:
0 =no masking, let DA requests pass

1=igncre DhArequests on this channgl

= Channel 2:
{1 = no masking, let DA requests pass
1 =ignore DA requests on this channel

——» Channel 3
0 = no masking, let DA requests pass

1 =ignore DA requests on this channel

This register can also be used to mask the DMA channels. It contains a single bit for each

channel. The corresponding bit is set to mask the requests for that channel.

© Copyright Virtual University of Pakistan 194

24 - Direct Memory Access (DMA) 11

DMA Mode Reqgister

T 6 5 4 3 2 1 0 | s

l—‘—h Binary channsl number

- Horzomal resolution:
00 = Verify ifor self lest of controller)
01 = Write {from pefipheral to RAM)
10 = Read {from RAM to peripheral)
11 = undsfined

L Aulc-initialization after TC or EOP:
0=on
1=on

I 0 = adkdress incrementation
1 = address decrementation

= Cperating mode of channsl
00 = Demand transfer
{1 = Single transfar
10 = Block transfer
11 = Cascading

Bit 5 of the mode register, determine the “direction”™ of a transfer. This "direction” isn' o or from a peripheral, rler it's
forward or backward direction in memory. 5o you can decrement instead of merement the memory address during a DMA
transfer. I his case, a data block is read backwards 1o forwards by the peripheral. Also the ending address of the buffer is
loaded into the proper register before stanting the iransfer

This register can be used to set the mode on each. The slide shows the detail of the values

and bits which should be placed in the register in order to program a required mode.

© Copyright Virtual University of Pakistan 195

24 - Direct Memory Access (DMA) 1l

Setup & Query of DMA

DMA register in the PC/XT or AT for setup and query of the DMA channel

Channel Register Paort* d Write

] Start address 00h aCoh
i) Current address a0h acon |
0 Transfer length-1 o1h oczn |
a Remaining length-1 a1h ac2h
1 Start address az2h 0Cdh .
1 Current address 0zh aC4h
1 Transter length-1 osh | ocen |
1 Remalning length-1 a3h oceh |
2 Start address 04h 0C8h
2 Current address 04h aceh |
2 Transter length-1 Qsh OCAR :
2 Remaining length-1 Q5h OCAh
3 Start address o6h | occH |
3 Current address 06h 0CCh
3 Transfer length-1 a7h OCEh
3 Remalning length-1 ath ocEn |

I only one DMA ina PCIXT
*Master in an AT / not present ina PCIXT

To set up one of these registers o determine the start address or the length of a DMA transfer, you must output to port OCh
or OD8h. An internal FlipFlop, lowered to zero, shows the state of a 16-bit transfer. After the FlipFlop is lowered to #ero,
it sends the low-order bvie of the address to the port, for example port OC4h For channel 1 of the AT master DMA controller
(AT channel 53 This output trips the intermal FlipFlop. The pon now knows that the most signficant byte of the address is
coming. This procedure is necessary because access to the different 16-bit registers has to fiv into the B-bit wide DMA
hardware Therefiore a La-hit value has ta be divided into o loaw Bwie and o hicoh bvte And sinee the Tow and hish bvies are

A channel is programmed for a start address and the count of bytes to be transferred
before the transfer can take place. Both these values are placed in various registers
according to the channel number as shown by the slide above. Once the transfer starts
these values start changing. The start address is updated in to the current address and the
count is also updates as bytes are transferred. During the transfer the status of the transfer
can be analyzed by getting the values of these registers listed In the slide above for the

channel(s) involved in the transfer.

© Copyright Virtual University of Pakistan 196

24 - Direct Memory Access (DMA) 11

High Address Nibble/Byte

Channel Port Channel Port

0 87h 4 8Fh
1 g2h 5 SEh
2 g2h 6 5eh
3 g1h 7 SAh

The above slide shows the port number for each channel in which the higher 4 or 8 bits of

the absolute address is stored in case of 20 or 24 bit address bus.

#include <dos.h>
#include <bios.h>

char st[80];

unsigned long int temp;
unsigned int i;
unsigned int count=48;

void main (void)

{
temp=(unsigned long int)_DS;
temp =temp << 4L,
i = *((unsigned int *)(&temp));
temp = temp>>16L,;

This program, programs the DMA channel 3 for read cycle by placing 0x0B in mode
register (0xOB). Before the channel is unmasked and the channel mode is programmed the
base address the count and the higher 4 or 8 bits of the address should be placed in base
register, count register and Latch B respectively. The 20 (or 24) bit address is calculated.
The higher 4 (or 8) bits are placed in the Latch B for channel 3, then the rest of the 16

bits of the base address are placed in base register for channe3 and ultimately the count is

© Copyright Virtual University of Pakistan 197

24 - Direct Memory Access (DMA) 11

loaded into the count register for channel 3.

outportb (0x81,*((unsigned char *)(&temp)));
outportb(0x06,*(((unsigned char *)(&i))));
outportb(0x06,*(((unsigned char *)(&i))+1));
count--;

outportb(0x07,*((unsigned char *)(&count)));
outportb(0x07,*(((unsigned char*)(&count))+1));
outportb(0x0b,0x0b);

outportb(0x08,0);

outport(0x0a,3);

getch();

© Copyright Virtual University of Pakistan 198

25 - File Systems

25 - File Systems

This program attempts to perform memory to memory transfer operation. This program

will only work for a 8086 processor, higher processors’ DMA may not support memor to

memory transfer.

#include <dos.h>
#include <bios.h>

char st{2048]="hello u whats up?\0";
char st1[2048]="xyz";

unsigned long int temp;
unsigned int i;

void main (void)

temp=_DS;

temp = temp<<4,

i = *((unsigned int *)(&temp));
temp = temp >>16;

outportb(0x87,*((unsigned char *)(&temp)));
outportb(0,*((unsigned char *)(&i)));
outportb(0,*(((unsigned char *)(&i))+1));
outportb(1,0xff);

outportb(1,0x07);

outportb(0x0b,0x88);

temp=_DS;

temp=temp+128;

temp=temp<<4;

i= *((unsigned int *)(&temp));
temp=temp>>16;
outportb(0x83,*((unsigned char *)(&temp)));
outportb(2,*((unsigned char *)(&i)));
outportb(2,*(((unsigned char *)(&i))+1));

© Copyright Virtual University of Pakistan

199

25 - File Systems

This program, programs the channel 0 and channel 1 of the DMA. It loads the address of

Source string st in base register and the Latch B and loads the count register for channel 0

and does the same for stl. It then programs the mode, mask and command register for

memory to memory transfer and to unmask channel 0 and channel 1.

outportb(3,0xff);
outportb(3,0x07);
outportb(0x0b,0x85);
outportb(0x08,1);
outportb(0x0f,0x0c);
outportb(0x09,0x04);
while ('kbhit())
{
printf(“Channel 0 =

%x %x\n" inportb(0x01),inportb(0x01));

printf("Channel 1 =

%x,%x\n" inportb(0x03),inportb (0x03));

printf(" Status = %x\n" ,inportb (0x08));

puts(stl);

File Systems

File System

*Disk Architecture
Disk Partitioning
*File systems

© Copyright Virtual University of Pakistan

200

25 - File Systems

Disk Architecture

*Disk is a circular which is hollow from the center
*This shape is inherently useful for random
access.

On tracks and sectors

Tracks are the circular division of the disk and the sectors are the longitudinal division of

the disk as shown in the diagram above.

© Copyright Virtual University of Pakistan 201

25 - File Systems

Addressable unit Parameters
* Heads
*Sectors
*Tracks

An addressable unit on disk can be addressed by three parameters i.e. head #, sector # and
track #. The disk rotates and changing sectors and a head can move to and fro changing
tracks. Each addressable unit has a unique combination of sec#, head# and track# as its

physical address.

Blocks

* Blocks are the sectors per track

«Smallest addressable unit in memory

eAddress of block is specified as a unique
combination of three parameters (i.e. track, head,
Sec)

© Copyright Virtual University of Pakistan 202

25 - File Systems

Density of Magnetic media

« Density of magnetic media is the determinant of
the amount of data that can reside stably on the
disk for example floppy disk come with different

densities.
*Double Density
*High Density

Effect of surface area on disk size

* Increasing the surface area clearly increases the
amount of data that can reside on the disk as more
magnetic media no resides on disk but it might
have some drawbacks like increased seek time in
case only one disk platter is being used

Hard Disks

* Greater amounts of data can reside on hard disk
*As greater amount of magnetic media can reside on the
hard surface of the disk
*Also because the surface area of the disk is increased by
increasing the number of platters as shown in the diagram

© Copyright Virtual University of Pakistan

203

25 - File Systems

Hard Disk Architecture

Seclor

Track X
Platter 1

Platter 2

Platter 3

Platter 4

Cylindar X

Cylinders

* In case of hard disk where there are number of
platters the term track is replaced by cylinder
*Cylinder is a collection of corresponding tracks
if track on platter changes so will the tracks on
rest of the platters as all the heads move
simultaneously

Rotational Delay

» While accessing a selected block the time
required by the disk to rotate to the specified
sector is called rotational delay

© Copyright Virtual University of Pakistan 204

25 - File Systems

Seek Time

» While accessing a selected block Time required
by the head to reach the particular track/cylinder
is called seek time

Access Time

» The accumulative time that is required to access
the selected block is called access time

*Access time includes the delay required by disk
rotation as well as head movement.

Head is like Electric Coil

* Disk follow the basic principle of magnetism of
dynamo.

*When ever a magnetized portion of disk runs
along the coil like head electricity is produced in
the head which is interpreted as a logic 1

*And whenever a demagnetized portion on the
disk runs through the head no electricity is
produced in head which is interpreted as logic 0

© Copyright Virtual University of Pakistan

205

25 - File Systems

Head position and precautions

* The head is touching the surface of floppy disk
which rotates at a low speed of 300 RPM

*The head is not touching the surface of hard disk
which run at high speeds up to 9600 RPM but is
at a few microns distance from the surface

+All the magnetic disk are made out of magnetic
media and hence data may be lost by exposing
them to sunlight, heat, radiation, magnetic or
electric fields.

*Dust is harmful and even fatal in case of head
disk by the virtue of its speed and its distance of
head from the surface

© Copyright Virtual University of Pakistan 206

26 - Hard Disk

26 - Hard Disk

Reading/Writing a physical Block

* biosdisk(int cmd, int drive, int head, int track,
int sector, int nsects, void * buffer);
Cmd 0 = disk reset
1 = disk status (status of last disk operation)
2 = disk read
3 = disk write
4 = disk verify
5 = disk format

Now we establish how a block can be read or written if its address is known. The function
biosdisk() can be used to read or write a physical block. The slide shows its parameter. It
takes the command (cmd), drive number, head number, track number, number of sectors
to be read or written and the memory from where the data is to read from or written to.

Command signifies the operation that is to be performed.

Reading Writing a physical Block

* Drive 0x80 = first fixed disk (physcial drive)
0x81 = second fixed disk
0x82 = third fixed disks

0x00 = first removable disk
0x01 = second removable disk

Drive number is described in the slide below it starts from 0 for first removable disk and
starts from 0x80 for first fixed disk.

© Copyright Virtual University of Pakistan 207

26 - Hard Disk

Reading Writing a physical Block

#include <bios.h>
#include <dos.h>

FILE *fp;

unsigned char buf[512];
unsigned char st[60];
unsigned char headno[10];
unsigned char secno[10];
unsigned char trackno[10];
void main (void)

{
inti;
for (i=0;i<512;i++)
buf[i]=0;
Cont...
gets(st);

fp=fopen(st,"wb");
printf("Head ");
gets(headno);
puts (headno);
printf("\nsector ");
gets(secno);
puts(secho);
printf("\ntrack ");
gets(trackno);
puts(trackno);

© Copyright Virtual University of Pakistan

208

26 - Hard Disk

The above program reads a physically addressed block from disk using bios disk()

Cont...

i = biosdisk(2,0x80,atoi(headno),
atoi(trackno),atoi(secno),1,buf) ;
if (*(((char *)(&i))+1)==0)
{

fwrite(buf,1,512 fp);
fclose(fp);

else
printf("Cannot Read Error# = %Xx",i);

function for first fixed disk. The program after reading the specified block writes it to a

file and then closes the file.

However there are some limitation of this biosdisk() while using large disks. This

Limitation of biosdisk

* Biosdisk() calls int 13H/0/1/2/3/4/5
Details of 13H services used by Biosdisk()
*On Entry

AH = service #

AL=No. of sectors

BX = offset address of data buffer

CH = track #

CL =sector #

DH = head/side #

DL = Drive #

ES = Segment Address of buffer.

function uses the int 13H services listed in the slide above.

© Copyright Virtual University of Pakistan

209

26 - Hard Disk

Limitation of biosdisk()

» Large sized disk are available now with
thousands of tracks

*But this BIOS routine only is capable of
accessing a max. of 1024 tracks.

*Hence if a large disk is being used not whole of
the disk can be accessed using this routine.

The parameter sizes provided by these services may not be sufficient to hold the track

number of block to be accessed.

Extended BIOS functions

» Extended BIOS functions of int 13h can be used
for operations on higher tracks

*As discussed later usual BIOS functions can
access a maximum of 504MB of disk approx.

Above slide shows for which disks extended services are required to access the block

efficiently.

© Copyright Virtual University of Pakistan 210

26 - Hard Disk

Extended BIOS functions

BIOS IDE Limit
Max 63 255 63
Sec
Max 256 16 16
heads
Max 1024 65536 (1024
Capacit
y

Highest biosdisk() capacity

 Hence the highest capacity of disk can be

accessed using bios functions is
*63x16x1024x512= 504 MB approx.

But IDE disk interface can support disks with memory space larger than 504MB as shown

in the next slide.

© Copyright Virtual University of Pakistan

211

26 - Hard Disk

Extended services require that the address of the block is specified as a LBA address.

Highest IDE capacity

» Hence highest physical capacity of the disk
according to the IDE interface is
255x16x65536x512 = 127GB

«Extended BIOS functions allow to access disk
with sizes greater than 504 MB through LBA
translation.

LBA Translation Method

* Each unique combination of three parameters is
assigned a unique index as shown below

*Firstly all the sectors of a cylinder are indexed
for head=0, then when whole track has been
indexed the sector in the track of same cylinder
with head =1 are indexed and so on up till the end
of all heads

When done with one cylinder the same is repeated
for the next cylinder till the end of cylinders

© Copyright Virtual University of Pakistan

212

26 - Hard Disk

LBA translation is done by numbering the blocks with a single index. The indexes are

assigned to blocks as shown in the slide below. In terms of the disk geometry firstly all

the sectors of a track will be indexed sequentially, then the track exhausts the next track is

chosen on the other side of the disk and so on all the tracks in a cylinder are indexed.

When all the blocks within a cylinder has been indexed the same is done with the next

cylinder.

LBA Translation method

0
0
0

o

0

Cylinder head sec

0 1
0 2 =
0 3 =

1 1 63
1 2 64
2 1 =126

if the CHS (cylinder, head , sector) address of a disk is known it can be translated in to

the LBA address and vice versa. For this purpose the total number of cylinders, heads and

sectors must also be known.

Mathe matical Notation for LBA translation

e LBAaddress=(C*H +H)*S"+ S-1
Where

C = Selected cylinder number

H’ = No. of heads

H = Selected head number
’=Maximum Sector number

S= Selected Sector number

© Copyright Virtual University of Pakistan

213

26 - Hard Disk

Also conversely LBA to CHS translation can also be done using the formulae discussed
in the following slide but for this the total number of cylinders, heads and sectors within

the disk geometry should be known.

LBA to CHS translation

 Conversely LBA address can be translated into

CHS address

cylinder = LBA / (heads_per_cylinder *
sectors_per_track)

temp = LBA % (heads_per_cylinder *
sectors_per_track)

head = temp / sectors_per_track
sector = temp % sectors_per_track + 1

© Copyright Virtual University of Pakistan 214

26 - Hard Disk

Disk Address Packet is a data structure used by extended int 13H services to address a

block and other information for accessing the block. Its structure is defined in the slide

below.

Disk Address Packet

Offset | Size Description
0 Byte Size, Should not be less than 16
1 Byte Reserved
2 Byte No. of blocks to transfer, Max value
no greater than 7FH
3 Byte Reserved
4 Double Far address of buffer
Word
8 Quad LBA address
word

© Copyright Virtual University of Pakistan

215

27 - Hard Disk, Partition Table

27 - Hard Disk, Partition Table

Extended Read

» Service used for extended read is int 13h/42h
On Entry
AH=42H
DL=drive #
DS:Sl= far address of Disk address packet
On Exit
If CF=0
AH=0= Success
If CF=1
AH= Error code

Interrupt 13H/42H can be used to read a LBA addressed block whose LBA address is
placed in the Disk Address packet as described in the slide above.

Extended Write

* Service used for extended write is int 13h/43h
On Entry
AH=43H
AL=0,1 write with verify off
2 write with verify on

DL=drive #
DS:Sl= far address of Disk address packet
On Exit
If CF=0

AH=0= Success
If CF=1

AH= Error code

Similarly int 13H / 43H can be used to write onto to LBA addressed block as described in

the slide above.

© Copyright Virtual University of Pakistan

216

27 - Hard Disk, Partition Table

Reading a LBA block

#include <dos.h>
#include <bios.h>
struct DAP {

unsigned char size;
unsigned char reservedl;
unsigned char blocks;
unsigned char reserved2;
unsigned char far *buffer;
unsigned long int Ibalod,;
unsigned long int Ibahid;
}dap;

char st[80];
unsigned char buf[512];
FILE *fptr;

{

void main (void)

puts ("enter the Iba low double word: ");
gets (st);

dap.lbalod=atol(st);

puts ("enter the Iba high double word: ");
gets (st);

dap.lbahid=atol(st);

dap.size=16;

dap.reserved1=0;

dap.blocks=1;

dap.reserved2=0;

dap.buffer = (unsigned char far *MK_FP(_DS,buf);

_AH=0x42;

_DL=0x80;
_SI=(unsigned int)&dap;
geninterrupt(0x13);

puts ("enter the path: ");
gets (st);

fptr = fopen(st,"wb");
fwrite(buf,512,1,fptr);
fclose (fptr);

© Copyright Virtual University of Pakistan

217

27 - Hard Disk, Partition Table

The above slides list a program that that performs a block read operation using the
interrupt 13H/42H. A structure of type DAP is create an appropriate values are placed
into it which includes its LBA address. The offset address of dap is placed in Sl register
and the DS already contains its segment address as it has been declared a global variable.
The drive number is also specified and the interrupt is invoked. The interrupt service
reads the contents of the block and places it in a buffer whose address was specified in
dap. The contents of this buffer are then written on to a file. Slide 7

Disk Partitioning
* Partition Table contains information pertaining
to disk partitions.
* Partition Table is the first physical sector

Head =0

Track/Cylinder =0

Sec=10orLBA=0
* Partition Table at CHS = 001 is also called MBR
(Master Boot Record).

Structure of Partitioning Table

* Total size of Partition Table is 512 bytes.

* First 446 bytes contains code which loads the
boot block of active partition and is executed at
Boot Time.

* Rest of the 66 bytes is the Data part.

« Last two bytes of the Data part is the Partition
table signature.

© Copyright Virtual University of Pakistan 218

27 - Hard Disk, Partition Table

File System for Each O.S.

» On a single disk there can be 4 different file
systems and hence 4 different O.S.

 Each O.S. will have its individual partition on
disk.

* Data related to each partition is stored in a 16-
bytes chunk within the Data Part of Partition
Table.

Structure of Data Part of P.T.

Size Description

16 Bytes | Partitioninto of 15t partition.

16 Bytes | Partition into of 2" partition.

16 Bytes | Partitioninto of 3 partition.

16 Bytes | Partitioninto of 41 partition.

02 Bytes | Signature

The data part can contain information about four different partitions for different
Operating systems. Each partition information chunk is 16 bytes long and the last two
bytes at the end of the partition table data part is the partition table signature whose value

should be AA55 indicating that the code part contains valid executable code.

© Copyright Virtual University of Pakistan 219

27 - Hard Disk, Partition Table

The structure of the information stored in each 16 byte for partition is shown in the slides

below

The byte at the offset 4 in the 16 byte data part contains the file system ID which can

have various values depending upon the type of OS in use as described by the slides

below.

Size Description

Byte 80H if Bootable, 0 if Not

Byte Head # for first block in the partition

Byte 0 — 5 bits are sector # for first block within
the partition and bits 6 -7 are higher bits of
cylinder #

Byte Low 8-bits of cylinder # for last block within
the partition..

Byte File System ID

Size Description

Byte Head # for last block in the partition

Byte 0 - 5 bits are sector # for last block within
the partition and bits 6 -7 are higher bits of
cylinder #

Byte Low 8-bits of cylinder # for last block within
the partition.

Double Relative address of the boot record for the

Word partition with respect to the first block in
partitionin terms of LBA address.

Double Count of total blocks within the partition.

Word

© Copyright Virtual University of Pakistan

220

27 - Hard Disk, Partition Table

File System ID

0 ~ FF for various O.S.

Bit # | Description

00 Empty

01 DOS 12-bit partition

02 Xenix root

03 Xenix/usr

04 MS-DOS 16-bits < 32MB

05 MS-DOS extended partition can manage disks of
sizes up to 8.4 GB

06 MS-DOS 16-bits FAT >= 32MB

07 0S/2, 1FS = Installable file system
Advanced Unix
Windows NT NTFS

08 AIX Boot partitions

09 AIX Data partitions

0A OS/2 Boot Manager

0B Win 95 FAT 32

ocC Win 95 FAT32 LBA Mapped

OE Win 95 FAT16 LBA Mapped

OF Extended partitions LBA Mapped

© Copyright Virtual University of Pakistan

221

27 - Hard Disk, Partition Table

Primary Partition

« Partition defined in the MBR (Master Boot
Record) are primary partition.

 Each Primary Partition contains information
about its respective O.S.

» However if only one O.S. is to be installed then
extended partitions.

Extended Partitions

MBR

=

Primary Extended Partition
Partition

However if a single operating system is to be kept for instance, then the disk can be
divided into primary and extended partitions. Information about primary and extended
partition is kept in the first physical block. The extended partition may again be divided
into a number of partitions, information about further partitions will be kept in extended
partition table which will be the first physical block within extended partition (i.e. it will
not the first block of primary partition.). Moreover there can be extended partitions within
extended partitions and such that in then end there are number of logical partitions this

can go on till the last drive number in DOS.

© Copyright Virtual University of Pakistan 222

28 - Partition Table Il

28 - Partition Table Il

Extended Partitions

MBR

=

Primary Extended Partition
Partition

1st Block of Extended Partitions

Primary |Logical Extended Partition
Partition | Drive

© Copyright Virtual University of Pakistan

223

28 - Partition Table Il

1st Block of Next Extended Partitions

Logical
Drive

Extended
Partition

Here it can be seen that the first partition table maintains information about the primary

and extended partitions. The second partition table similarly stores information about a

logical and a extended partition within the previous extended partition. Similarly for each

such extended partition there will be a partition table that stores information about the

logical partition and may also contain information about any further extended partition. In

this way the partition tables form a chain as depicted in the slide below. The last partition

table within the chain contains just a single entry signifying the logical drive.

© Copyright Virtual University of Pakistan

224

28 - Partition Table Il

Chain of Extended Partitions

MBR

|:Extended P

J—Logical Drive ’_‘

[—————— Primary Partition

artition

[———————————Logical Drive

|:Extended Partition

Extended Partition

[Logical Drive

0000

Extendqg I?Varl';‘itlion Example

13AE:02B0 00 00
13AE:02C0 01 00
13AE:02D0 C1 FF
13AE:02E0 00 00
13AE:02F0 00 00

00 00 00 2C 44 63-48 EO 48 EO 00 00 80 01
0C A4 FF FF 3F 00-00 00 FC 8A 38 01 00 A5
OF 4A FF FF 3B 8B-38 01 OA 62 90 03 00 00
00 00 00 00 00 00-00 00O 00 00 00 00 00 00
00 00 00 00 00 00-00 00 00 00 00 00 55 AA

The above dump shows the dump of the data part of the first partition table which has two

16 bytes entries, the values in the entries can be interpreted as the values shown in the

following slide.

© Copyright Virtual University of Pakistan

225

28 - Partition Table Il

First Partition

System ID = Oc = Windows FAT32 partition (LBA MApped)
first block = 3F

No. of blocks = 01388afc

end cylinder# = 1023

end sec # = 63 indicating a LBA disk

Second Partition

System ID = Of = Extended windows partition

Start block (relative to the start) = 01388b3b = 20482875
No. of blocks = 0390620a = 59793930

13AE:02B0 00 00 00 00 00 00 00 00-00 00 00 OO OO 00 00 A6
13AE:02C0 C1 FF OB 59 FF FF 3F 00-00 00 FC 8A 38 01 00 5A
13AE:02D0 C1 FF 05 OE FF FF 3B 8B-38 01 3B 8B 38 01 00 00
13AE:02E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:02F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 55 AA

Here is the information found in the partition table of first extended partition table which
implies another extended and a logical partition.

© Copyright Virtual University of Pakistan 226

28 - Partition Table Il

First Partition

System ID = Ob = Windows FAT32 partition
first block = 3F

First block physical address = 3F+ 01388b3b
No. of blocks =01388afc

end cylinder# = 1023

end sec # =63 indicating a LBA disk

Second Partition

System ID = 05 = Extended DOS partition

Start block (relative to the start) = 01388b3b = 20482875

Start block (physical) =01388b3b + 01388b3b = 2711676H = 40965750
No. of blocks =01388b3b = 20482875

13AE:02B0 00 00 00 00 00 00 00 00-00 00 00 OO OO 00 00 5B
13AE:02C0 C1 FF OB OE FF FF 3F 00-00 00 FC 8A 38 01 00 OF
13AE:02D0 C1 FF 05 4A FF FF 76 16-71 02 94 4B 1F 01 00 00
13AE:02E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13AE:02F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 55 AA

Here is information in the partition table of the second extended partition that implies yet

another extended partition and a logical partition with the details shown in the following

slide.

© Copyright Virtual University of Pakistan

227

28 - Partition Table Il

First Partition

System ID = Ob = Windows FAT32 partition

first block = 3F

First block physical address = 3F+ 01388b3b +1388b3b
No. of blocks =01388afc

end cylinder# = 1023

end sec # =63 indicating a LBA disk

Second Partition

System ID = 05 = Extended DOS partition

Start block (relative to the start of extended partition) = 2711676H = 40965750
Start block (physical) =01388b3bH + 2711676H = 3A9A1B1H = 61448625

No. of blocks =11f4b94 = 18828180

© Copyright Virtual University of Pakistan 228

29 - Reading Extended Partition

29 - Reading Extended Partition

LBA=0 (MBR) LBA =1388B3B

Logical Drive Extended Partition

| 3F | 1388AFC e ‘ 0390620A srsersssessserssanans

| 3F| 1388AFC ‘

Logical Logical Extended Partition
Drive Drive
2nd pPartition Relative start = 1388B3B
Table
s 1388838
............. 2711676H werssmnnnann

© Copyright Virtual University of Pakistan 229

29 - Reading Extended Partition

Next Partition Table in Chain

Logical Logical Logical Extended
Drive Drive Drive Partition
3rd Partition Table Relative
Address =
2711676h
Physical LBA
.............. 2711676H seerresssssans = 3A9A1B1H
............................ BA0AIBLIH serrresessssssnnsrnnssinans

Above slides shows the information collected as yet which indicates the logical drive
there starting LBA blocks, the number of block , the hidden blocks etc. The following

slide shows the contents of the data part of partition table of the last extended partition.

13AE: 0120
13AE : 02A0

13AE:02BO
13AE :02C0
13AE : 02D0
13AE : 02E0
13AE : 02F0

EREODO 00 00 00 0
13AE: 0110

® 00 @ @-0 0
00 00

00 00
00 00

skipped

00 00
Cl FF
00 00
00 00
00 00

o

0 00 00 00 00-00 00 00 00 00 00 00 00
00 00 00 00 00 00-00 00 00 00 00 00 00 00
00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00-00 00 00 00 00 00 00 10
07 4A FF FF 3F 00-00 00 55 4B 1F 01 00 00
00 00 00 00 00 00-00 00 0O 00 00 00 00 00
00 00 00 00 00 00-00 00 00 00 00 00 00 00
00 00 00 00 00 00-00 00 00 00 00 00 55 AA

It has just one data entry for the logical drive indicating that this is the partition table in

the chain. The detail of the contents this partition table are shown below.

© Copyright Virtual University of Pakistan

230

29 - Reading Extended Partition

First Partition

System ID = 07 = Windows FAT32 partition

first block = 3F

First block physical address = 3F +01388b3b +1388b3b +
1388b3b (Blocks in previous partions)

No. of blocks = 011f4b55

end cylinder# = 1023

end sec # =63 indicating a LBA disk

Second Partition
System ID = 0 = Unused

The following slide shows the summary of all the data collected as yet depicting 4 logical

drives and the number of blocks within.

3F 3F 3F 3F

... 1388B3B-==|+e- 1388B 3B +++fes- 1388B3B ‘ 11F4ABO4 =reeenes

© Copyright Virtual University of Pakistan 231

29 - Reading Extended P

artition

15T Partition

2nd Partition

3rd Partition

{

struct PartEntry

unsigned char BootableFlag;
unsigned char StartHead;
unsigned char StartSector;
unsigned char StartCylinder;
unsigned char SystemID;
unsigned char EndHead;
unsigned char End Sector;
unsigned char EndCylinder;
unsigned long AbsBegin;
unsigned long SectCount;

MBR Table Table Table
Null
#include <dos.h>
#include <bios.h>
struct DAP
{ unsigned char size;
unsigned char reserved1l;
unsigned char blocks;
unsigned char reserved2;
unsigned char far *buffer;
unsigned long int Ibalod;
unsigned long int Ibahid;
}dap;

© Copyright Virtual University of Pakistan

232

29 - Reading Extended Partition

{

b

struct PartTable

unsigned char code [446];
struct PartEntry e[4];
unsigned int signature;

struct DAP dap;
void ReadLBA (unsigned int drive,

unsigned long int Ibalo, unsigned long int Ibahi,
unsigned char far *buffer, int nsects)

dap.lbalod =Ibalo;
dap.lbahid=lbahi;
dap.size=16;
dap.reserved1=0;
dap.blocks=nsects;
dap.reserved2=0;
dap.buffer =buffer;// (unsigned char far MK_FP(_DS,buf);
_AH=0x42;

_DL=drive;
_SlI=(unsigned int)&dap;
geninterrupt(0x13);

{

void GetPart (unsigned char drive,

unsigned long int low, unsigned long int high)

struct PartTable p;

unsigned int Ssec, Esec;

unsigned int Scyl, Ecyl;

unsigned long int BSec;

inti;

ReadL BA(drive low high, (unsigned char *) &p,1);
if (p.signature == 0xaa55)

for (i=0; i<4;i ++)
if (p.e[i].SystemID!=0)
{

Ssec =p.eli].StartSector;

Ssec = Ssec << 2;

Scyl =p.e[i].StartCylinder;

*(((unsigned char *)(& Scyl))+1) =
*(((unsigned char *)(&Ssec))+1);

Esec =p.e[i].EndSector;

Esec = Esec << 2;

Ecyl =p.e[i].EndCylinder;

© Copyright Virtual University of Pakistan

233

29 - Reading Extended Partition

*(((unsigned char *)(& Ecyl))+1)=
*(((unsigned char *)(&Esec))+1);
printf("Start Head = %d \n Start Sector =
%d \n Start Cylinder =9%d\n End Head =
%d \n End Sector = %d \n End Cylinder =
%d\n Boot Record with respect to start of partition =
%ld\n Count of sectors from boot sector =
%ld\n System ID= %x LBA (Low) =%ld",
p.e[i].StartHead, p.e[i].StartSector & Ox3f,
Scyl,p.e[i].EndHead, p.e[i].EndSector & 0x3f,
Ecyl, p.e[i].AbsBegin, p.e[i].SectCount,p.e[i].SystemID,low);
if (p.e[i].System ID == 0xOf)
GetPart(drive,low +p.e[i]. AbsBegin,0);
BSec =p.e[i].AbsBegin;
getch();
}
else
printf ("ParTition unused or unknown\n");
}
}
else
printf("Not a Partition Table\n");

void main ()

{
}

GetPart(0x80,0,0);

Above is a listing of a simple program that reads the partition table using the extended
13H services. It then displays the contents of the data part of the partition table read. For
this purpose it uses various data structures designed in reflection of the partition table and
16 bytes data entries within. The program uses recursion and calls the getpart() function
recursively whenever it finds an extended partition to read the data within the extended

partition table.

© Copyright Virtual University of Pakistan 234

29 - Reading Extended Partition

Get Drive Parameters
On Entry:
AH - 48
DL — Drive number
DS:SI — Address of result buffer
On Exit:
Carry Clear
AH-0
DS:SI — result buffer
Carry Set
AH — Error Code

The partition table data entry also stores the CHS address of the starting block. But this
address is left insignificant if a LBA enable disk is in question. However LBA address
can be used in place of the CHS address, and in case CHS address is required it can be
calculated if the total number of tracks, sectors and heads are known. To get the total

number of tracks, sectors and head the above described service can be used.

© Copyright Virtual University of Pakistan 235

30 - File System Data Structures (LSN, BPB)

30 - File System Data Structures (LSN, BPB)

Type

Description

Word

Buffer Size, must be 26 or greater. The caller sets this value o the maximum buffer
size. [Fthe length of this buffer is less than 30, this functions does not retum the
pointer to the Enhanced Disk Drive structure (EDD). If the Buffer Size is 30 or
greater on entry, it is set to exactly 30 on exit. [fthe Buffer Size is between 26 and
29, it is set to exactly 26 on exit. Ifthe Buffer Size is less than 26 on entry an emror is

returmned.

Waord

Information Flags

Inthe following table, a | bit indicates that the feature is available, a 0 bit indicates

the feature is not available and will operate in a manner consistent with the

COnven e
Bit

TITC T T,

Description

DM A boundary ervors are handled transparently

The geometry supplied in bytes 8-12 is valid

Device is removable

Device supports write with verify

Device has change line support (bit 2 must be set)

Device & lockable (bit 2 must be set).

[

Device geometry 1s st o maximum, no media is present (bt 2
must be seth. This bit is turned off when media is present na
remavable media device.

1=13

Reserved, must be O

© Copyright Virtual University of Pakistan

236

30 - File System Data Structures (LSN, BPB)

4 oubk: Word Migmther 1|rr'lJ.|I_1.|..IJ'\:|||||J\'r\ Thisiz | greater than the maxirmum \}Im\.ln nusmbye
Uze [t 1 3h Fo 08h fo find the logloal pumber of oy linders

L [houbk: Word Namber of plipsical heads, This is | greater than e macimum head number. Lse
Int 13h Fn OFh 1% find the fogica’ namber of heads

12 oublk: Word Nuember of plysical seclors per track. This numbsr i the same 55 the maximum

sector numbser becamse sector addreszes are | based. Use Imt 13h Fo 08k o find the
lagionl mamber o sectors per track

s Chiad Ward

Mamber of plpsical seclors. This is | greater thas the masinvum seclor number

24 Word

Number of bytes in o sector

6 Doubde Word

Painter e Esbasced Didk Drive (EDD) conBiperatisn paramelers, This fiebd is
cnly present il Int 13h. Fu d1h, CX register bit 2 is emabled. This Geld points 1o
atemparary bulfer which the BIOS may re-use on subsequent Int 13h calls, A
vatlue of FFFFh: FFFFh in this Diek) means (hat the pomder is invalid.

Above slides shows the structure of result buffer used by extended 13H services. If a

extended service returns a value it will be stored in the result buffer as described above.

{

} 1b;

#include <bios.h>
#include <dos.h>
struct RESULTBUFFER

unsigned int size;

unsigned int infoflags;
unsigned long int cylinders;
unsigned long int heads;
unsigned long int sectors;
unsigned long int locount;
unsigned long int hicount;
unsigned int bytespersector;
unsigned long int configptr;

© Copyright Virtual University of Pakistan

237

30 - File System Data Structures (LSN, BPB)

void main()

{
clrscr();
_AH = 0x48;
_DL = 0x80;
rb.size = 30;

_Sl = (unsigned int) &rb;

geninterrupt (0x13);

printf(" Heads = %dd\n Sectors = %d\n
Tracks/Cylinders = %dd\n Bytes per sector =
%d\n Block count Low word =

%ld\n Block count Hi Word = %dd\n",
rb.heads, rb.sectors, rb.cylinders,
rb.bytespersector,rb.locount,rb.hicount);

The above program uses a RESULTBUFFER data structure in reflection of the result
buffer described in previous slides. It uses the interrupt 13H/48H to get the drive

parameters and then displays the received total number of sectors, heads and cylinders.

{

}rb;

{

#include <bios.h>
#include <dos.h>
struct RESULTBUFFER

unsigned int size;

unsigned int infoflags;
unsigned long int cylinders;
unsigned long int heads;
unsigned long int sectors;
unsigned long int locount;
unsigned long int hicount;
unsigned int bytespersector;
unsigned long int configptr;

void getdrvparam (unsigned int drive,

struct RESULTBUFFER * rbptr)
clrscr();

_AH = 0x48;

_DL =drive ;

rbptr->size = 30;
_SI=(unsigned int) rbptr;
geninterrupt (0x13);

© Copyright Virtual University of Pakistan

238

30 - File System Data Structures (LSN, BPB)

void main ()
{
char st[15];
unsigned long int Ibaindex;
unsigned int cylinder, head , sector, temp;
puts ("Enter the LBA address");
gets (st);
Ibaindex = atol(st);
getdrvparam (0x80,&rb);
cylinder = Ibaindex / (rb.heads*rb.sectors);
temp = Ibaindex % (rb.heads*rb.sectors);
head =temp/rb.sectors;
sector =temp %rb.sectors + 1;
printf ("Heads = %d sectors = %d
cylinders = %d" , head, sector, cylinder);

This is also a quite similar program only difference is that it also translates a LBA address
into CHS address and displays it, for this purpose it gets the drive parameters to know the
total number of heads, sectors and cylinders.

LSN (Logical Sector Number)

C H S

0 0 1 = Partition Table
For fixed disk H .
Hidden Blocks =
No. of Sec/Track :

0 1 1 =BootBlock

Boot Block has LSN =0
« |f the blocks are indexed from the boot block such
that the boot block has index = 0,Then this index is
called LSN.
* LSN is relative index from the start of logical drive,
not the physical drive.

LSN is also indexed like LBA the only difference is that LBA is the address relative to
the start of physical drive (i.e. absolute), whereas LSN address is the address from the

start of logical partition i.e relative.

© Copyright Virtual University of Pakistan 239

30 - File System Data Structures (LSN, BPB)

Example
LBA=2711676
LBA=1388B3B LBA=2711676+3F
LSN=1 No LSN LSN=0
Logical Logical
Drive Drive

by

LBA=0| LSN=2 LBA=1388B3B+3F LSN=1
LSN = O First Logical _
Sector LSN=2
First Logical Block in drive
LBA =3F
LSN=0

As in the above example it can be noticed that the LBA = 0 is not the same as LSN=0.
The LBA=0 block is the first block on disk. Whereas each logical partition has LSN=0
block which is the first block in logical drive and is not necessarily the first block on
physical drive. Also notice the hidden blocks between the first physical block on each

partition and its first LSN block. These hidden blocks are not used by the operating
system for storing any kind of data.

Conclusion

* LBA is physical or absolute address.
* LSNis relative address with respect to the start of
Logical Drive.

© Copyright Virtual University of Pakistan 240

30 - File System Data Structures (LSN, BPB)

File System Data Structures
» BIOS Parameter Block (BPB)

* Drive Parameter Block (DPB)

* File Control Block (FCB)

e FAT 12, FAT 16, FAT 32

» Master File Table (MFT)

To understand the file systems of DOS and Windows the above given data structure
should be understood which are used by the operating system for file management. In the
coming lecture these data structures will be discussed in detail.

Anatomy of a FAT based file system

............ SyStem Area sesesesees

FAT | FAT | Root Dir User Data
(FAT 12&16)

Boot Clust 2

Above slide shows the overall anatomy of a FAT based system. Starting block(s) is /are
the boot block(s), immediately after which the FAT (File allocation table) starts. A typical
volume will contain two copies of FAT. After FAT the root directory is situated which
contain information about the files and folders in the root directory. Whole of this area

constitutes the systems area rest of the area is used to store user data and folders.

© Copyright Virtual University of Pakistan 241

30 - File System Data Structures (LSN, BPB)

Clusters

* A cluster is a collection of contiguous blocks.

» User Data is divided into clusters

» Number of blocks within a cluster is in power of 2.
* Cluster size can vary depending upon the size of
the disk.

» DOS has a built in limit of 128 blocks per cluster.

* But practically limit of 64 blocks per cluster has
been established.

» We will learn more about the size of clusters, later.

BPB (BIOS Parameter Block)

» Situated within the Boot Block.
« Contains vital information about the file system.

BIOS parameter block is a data structure maintained by DOS in the boot block for each
drive. The boot block is typically a 512 byte block which as seen the previous slides is the
first logical block i.e. LSN = 0. It contains some code and data. The data part constitutes
the BPB. Details for FAT 12 and 16 are shown in following slides.

© Copyright Virtual University of Pakistan 242

30 - File System Data Structures (LSN, BPB)

Oox0B

0Ox0D

OxOE

0x10

Ox11

Field
Length

WORD

BYTE

WORD

BYTE

WORD

BPB (BIOS Parameter Block)

Byte
Offset

Meaning

Bytes per Sector. The size of a hardware
sector. Usually 512.

Sectors Per Cluster. The number of sectors
in a cluster. The default cluster size for a
volume depends on the disk size and the
file system.

Reserved Sectors. The number of sectors
from the Partition Boot Sector to the start
of the first file allocation table, including
the Partition Boot Sector. The minimum
value is 1.

Number of file allocation tables (FATs). The
number of copies of the file allocation table
on the volume. Typically, the value of this
field is 2.

Root Entries. The total number of file name
entries that can be stored in the root folder
of the volume.

0x13

0x15

0x16

0x18
Ox1A
Oox1C
0x20

WORD

BYTE

WORD

WORD
WORD
DWORD
DWORD

Small Sectors. The number of sectors on
the volume if the number fits in 16 bits
(65535). For volumes larger than 65536
sectors, this field has a value of O and the
Large Sectors field is used instead.

Media Type. Provides information about the

media being used. A value of OxF8
indicates a hard disk.

Sectors per file allocation table (FAT).
Number of sectors occupied by each of the
file allocation tables on the volume.
Sectors per Track.

Number of Heads.

Hidden Sectors.

Large Sectors. If the Small Sectors field is
zero, this field contains the total number of
sectors in the volume. If Small Sectors is
nonzero, this field contains zero..

0x24

0x25

0x26

0ox27

0x2B
0x36

BYTE

BYTE

BYTE

4 bytes

11 bytes
8 bytes

Physical Disk Number. This is related to
the BIOS physical disk number. Floppy
drives are numbered starting with 0x00 for
the A disk. Physical hard disks are
numbered starting with Ox80. The value is
typically 0x80 for hard disks, regardless of
how many physical disk drives exist,
because the value is only relevant if the
device is the startup disk.

Current Head. Not used by the FAT file
system. (Reserved)

Signature. Must be either 0x27, 0x28 or
0x29 in order to be recognized by
Windows.

Volume Serial Number. A unique number
that is created when you format the
volume.

Volume Label.

System ID. Either FAT12 or FAT16,
depending on the format of the disk.

© Copyright Virtual University of Pakistan

243

31 - File System Data Structures Il (Boot block)

31 - File System Data Structures Il (Boot block)

FAT Size Size of Root Dir
| |
FAT |FAT [Root |User
Dir Data

Reserved Blocks

The LSN of the boot block is 0. The information contained within the BPB in boot block

can be used to calculate the LSN of the block from where the user data starts. It can be
simply calculated by adding the number of reserved sector, sectors occupied by FAT

copies * number of FAT copies and the the number of blocks reserved for root dir.

Inside a Boot Block
» Contains Code and Data
jmp codepart
OSName
BIOS
Parameter Block

codepart:

« Boot Block executes at Booting time.

The above slide shows the location of BPB within the boot block. A jump instruction

(near jump of 3 bytes size) is used to jump to the code part and skip the data part so that it

is not interpreted as instructions by the processor.

© Copyright Virtual University of Pakistan

244

31 - File System Data Structures Il (Boot block)

0000 EB 3C 90 2A 2D 76 34 56 <. *-v4Vv
0008 49 48 43 00 02 01 01 00 THC
0010 02 EO 00 40 OB FO 09 00 .0
0018 12 00 02 00 OO0 00 OO OO
0020 00 00 00 00 OO0 00 29 E1) -
0028 6C 87 2A 20 20 20 20 20 .=

0030 20 20 20 20 20 20 46 41 FA

0038 54 31 32 2020 2033 C9 T12 3.

Above is the dump of the boot block for a FAT 12 system. The contents of the BPB can

be read from it the following slide shows the detail of the information obtained from the

above BPB.

Logical drive: A

Size: 1 Mb (popularly 1 Mb)

Logical sectors: b40h = 2880

Bytes per sector: 512

Sectors per Cluster: 1

Cluster size: 512

File system: FAT12

Number of copies of FAT: 2

Sectors per FAT: 9

Start sector for FAT1: reserved sectors = 1

Start sector for FAT2: reserved sectors +
size of FAT =1 +9 =10

Root DIR Sector: reserved sectors +
2*(sizeof FAT)=1+2*9=19

© Copyright Virtual University of Pakistan

245

31 - File System Data Structures Il (Boot block)

Root DIR Entries: EO = 224
Size of Rootdir: 224 *32 = 7168
Blocks occupied by root dir = 7168 / 512 = 14
2-nd Cluster Start Sector: root dir sectors +
size of root dir in blocks =19 + 14 =33
Ending Cluster: 2880 - 33 / sector per cluster + 1
=2880/33 +1 =2848
Media Descriptor: FO
Heads: 2

Hidden sectors: O
SerialVolumelD: 2A876CE1
Volume Label:

Following is another dump showing the boot block for a FAT 16 system.

4D 53 44 4F 53 . <. MSDOS
0002080800 5.0.....
00 00 F8 CC 00
00 3F 0000 00 ? .. .72...
008000293 [_....)5
AEAF 204E 41 . . ,NO NA
20 20 20 46 41 M FA
2020 2033 C9 T 3

© Copyright Virtual University of Pakistan 246

31 - File System Data Structures Il (Boot block)

Following is the detail of information read from the above dump which describes the

volume in question.

Logical sectors: = 00065f5b = 417627
Bytes per sector: 200h =512
Sectors per Cluster: 8
Cluster size: 8*512 = 4096
File system: FAT16
Number of copies of FAT: 2
Sectors per FAT: CCH = 204
Start sector for FAT1: reserved blocks =8
Start sector for FAT2: reserved blocks +
blocks per FAT =8 + CCH=D4 =212
Root DIR Sector: reserved blocks +
2*(size of FAT) =8 +2*CC = 1A0 =416
Root DIR Entries: 200H =512
Size of Root Dir 512 * 32 =16384 = 32 blocks

Size of Root Dir 512 * 32 = 16384 = 32 blocks
2-nd Cluster Start Sector: root dir start blocks +
blocks in root dir = 1A0 + 20H = 416 + 32 = 448
Ending Cluster: ((logical blocks - start of user data
blocks)/blocks per cluster)
+1 =(417627 - 448)/8 +1 = 52148
Media Descriptor: F8

Heads: 255

Hidden sectors: 63
SerialVolumelD: 2CA5BC35
Volume Label: NO NAME

Besides the LBA address a LSN address can also be used to address a block. If the LSN

address is known the absread() function can be used to read a block and abswrite() can be

used to write on it as described in the slide below where nsect is the number of sector to

be read/written.

© Copyright Virtual University of Pakistan

247

31 - File System Data Structures Il (Boot block)

Reading/ Writing a Block

« absread()
is used to read a block given its LSN

* abswrite()
is used to write a block given its LSN

absread(int drive, int nsects, long Isec, void *buffer);

abswrite(int drive, int nsects, long Isec, void *buffer);

© Copyright Virtual University of Pakistan 248

32 - File System Data Structures I11 (DPB)

32 - File System Data Structures Ill (DPB)

Besides the BPB another data structure can be used equivalently called the DPB (Drive

parameter block). The operating system translates the information in BPB on disk into the

DPB which is maintained main memory. This data structure can be accessed using the

undocumented service 21H/32H. Its detail is shown in the slide below.

Undocumented Services (INT 21H/32H)

On Entry:
AH=32h

DL -0 for current Drive
1 for A: Drive
2 for B: Drive
3 for C: Drive

On Exit:

DS:BX =far address of DPB

The DPB contains the information shown in the table below. This information can be

derived from the BPB but is placed in memory in the form of DPB.

DPB (Drive Parameter Block)

(o]0]]
01h
02h
04h
05h
06h

08h
09h
OBh

oDh

Offset

Size

BYTE
BYTE
WORD
BYTE
BYTE
WORD

BYTE
WORD
WORD

WORD

Description
Drive number (OOh = A:, 01h = B:, etc)
Unit number within device driver
Bytes per sector
Highest sector number within a cluster
Shift count to convert clusters into sectors

Number of reserved sectors at beginning
of drive

Number of FAT’s

Number of root directory entries
Number of first sector containing user
data

Highest cluster number (number of data
cluster +1)

© Copyright Virtual University of Pakistan

249

32 - File System Data Structures I11 (DPB)

DPB (Drive Parameter Block)

Offset Size

OFh WORD
11h WORD
13h DWORD
17h BYTE
18h BYTE
19h DWORD
1Dh WORD
1Fh WORD

Description
number of sectors per FAT
Sector number of first directory sector
Address of device driver header
Media ID byte
00h if disk accessed, FFh if not
Pointer to next DPB

Cluster at which to start search for free
space when writing, usually the last
cluster allocated

Number of free clusters on drive, FFFFh if
not known

The following code shows how the service 21H/32H is invoked and the registers in which

it returns a value. It also shows the contents of the DPB by taking the dump at the

location returned by the service for a FAT 12 volume (i.e. Floppy disk).

-a

13A6:0100 mov ah,32
13A6:0102 int 21
13A6:0104

-P

13A6:0102 CD21

-p

13A6:0104 D3E3
-d a7:13d2

00A7 : 13D0 00 00
00A7:13E0 0B 09 00 13
00A7:13FO 00 C9 06 00
00A7:1400 00 00 00 00
00A7:1410 00 00 00 00
00A7:1420 00 00 00 00
00A7:1430 00 00 00 00
00A7:1440 D8 12 4D 5A
00A7:1450 A7 05

S|

00
00
00
00
00
00
00
9A

AX=3200 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 S1=0000 DI=0000
DS=13A6 ES=13A6 SS=13A6 CS=13A6 IP=0102 NV UP EI PL NZ NA PO NC

NT 21

AX=3200 BX=13D2 CX=0000 DX=0000 SP=FFEE BP=0000 SI1=0000 DI=0000
DS=00A7 ES=13A6 SS=13A6 CS=13A6 IP=0104 NV UP EIl PL NZ NA PO NC

HL BX,CL

02 00 00-01 00 02 EO 00 21 00 20
56 34 12-00 FO OA FF FF FF FF 00
00 00 00-00 00 00 00 00 00 00 00
00 00 00-00 00 00 00 00 00 00 00
00 00 00-00 00 00 00 00 00 00 00
00 00 00-00 00 00 00 00 00 00 00
00 00 0C-00 00 80 00 BO 13 10 00
00 29 00-00 00 20 00 C5 00 FF FF

© Copyright Virtual University of Pakistan

250

32 - File System Data Structures I11 (DPB)

The details of the information read from the dump of the DPB are shown below.

Drive #=0

unit# =0

Bytes per sector = 0200H = 512 bytes
highest sec no within a cluster = 0

Shift count to convert sec to clust = 0
Reserved sectors at the begining of drive = 0001
FAT copies =02

Root directory entries = EQ = 224

First sector containing user data = 21H = 33
Highest cluster number = 0b20 = 2848
Number of sectors per fat = 0009 =9
Sector number of first directory = 0013 =19

The following code shows how the service 21H/32H is invoked and the registers in which

it returns a value. It also shows the contents of the DPB by taking the dump at the

location returned by the service for a FAT 16 volume (i.e. hard disk partition smaller than

2 GB approx.).

-a
13A6:0100 mov ah,32
13A6:0102 int 21
13A6:0104

-p
AX=3200 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=13A6 ES=13A6 SS=13A6 CS=13A6 [IP=0102 NV UP EIl PL NZ NA PO NC

13A6:0102 CD21 INT 21

-P

AX=3200 BX=13D2 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=00A7 ES=13A6 SS=13A6 CS=13A6 IP=0104 NV UP EIl PL NZ NA PO NC
13A6:0104 0000 ADD [BX+S1],AL DS:13D2=05
-d a7:13d2

00A7 :13D0 05 05 00 02 07 03-08 00 02 00 02 CO 01 B4

00A7:13E0 CB CC 00 A0 01 56 34 12-00 F8 OA FF FF FF FF 00
00A7:13F0 00 AA CB 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1400 00 00 00 00 00 00 00 00-00 00 00 0O 0O 00 00 00
00A7:1410 00 00 00 00 0O 00 00 00-00 OO 0O 00 00 00 00 00
00A7:1420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1430 00 00 00 00 00 00 00 OC-00 00 80 00 BO 13 10 00
00A7:1440 D8 12 4D 5A 9A 00 29 00-00 00 20 00 C5 00 FF FF
00A7:1450 A7 05

© Copyright Virtual University of Pakistan

251

32 - File System Data Structures I11 (DPB)

The details of the information read from the dump of the DPB are shown below.

drive no = 05 = F drive

unit no = 05

bytes per sector = 200H =512

Highest sector number within a cluster = 7

Hence Sec. per cluster = highest sec. within a
Cluster+1=7+1=8

shift count =3

reserved sectors = 0008

Number of Fats = 2

Root Dir Entries = 0200H = 512

First sector containing user data = 01C0O = 448

Highest cluster number = cbb4H = 52148

No of sectors per FAT = CC = 204

Sector number of First directory = 01A0 =416

#include <bios.h>
#include <dos.h>

struct BPB

{
unsigned int bytespersec;
unsigned char secperclust;
unsigned int reservedsecs;
unsigned char fats;
unsigned int rootdirents;
unsigned int smallsecs;
unsigned char media;
unsigned int fatsecs;
unsigned int secspertrack;
unsigned int heads;

© Copyright Virtual University of Pakistan 252

32 - File System Data Structures I11 (DPB)

b
{

unsigned long int hiddensecs;
unsigned long int hugesecs;
unsigned char driveno;
unsigned char reserved,;
unsigned char bootsignature;
unsigned long int volumeid;
unsigned char volumelabel[11];
unsigned char filesystem[8];

struct bootblock

unsigned char jumpinstruction[3];
unsigned char osname[8];

struct BPB bpb;

unsigned char code[448];

{

{

void nputs(char *p,intn)

inti;
for (i =0;i<n;i++)
putch(p[i]);

void main(void)

struct bootblock bb;

clrscr();

absread(0,1,0,&bb);

printf("jump instruction =%x\n" ,
bb.jumpinstruction);

printf("OS =");
nputs (bb.osname,8);
puts("\n");

printf("No of bytes per sector = %d \nNo of sectors
per cluster =%d\n No of reserved sectors =
%d" , bb.bpb.bytespersec,
bb.bpb.secperclust, bb.bpb.reservedsecs);

printf("No of FATs =%d\nNo of Root Directory
entry =%d \nNo of Small sectors =%d
\nMedia descriptor = %xH \nFAT sectors =
%dSectors per track =%d \nNo of Heads =
%d \nNo of hidden sectors =%]Id \nNo. of
huge sectors =%Id \nDrive number =%x
\nReserved =%xH \nBoot Signature = %xH
\nVolume ID = %Ix \n" , bb.bpb.fats,
bb.bpb.rootdirents, bb.bpb.smallsecs,
bb.bpb.media, bb.bpb.fatsecs,
bb.bpb.secspertrack, bb.bpb.heads,
bb.bpb.hiddensecs, bb.bpb.hugesecs,
bb.bpb.driveno, bb.bpb.reserved,
bb.bpb.bootsignature,bb.bpb.volumeid);

© Copyright Virtual University of Pakistan

253

32 - File System Data Structures I11 (DPB)

puts (" Volume Name =");
puts ("\n");
puts (" File system =");

puts(“\n");
getch();

nputs (bb.bpb.volumelabel,11);

nputs (bb.bpb.filesystem,8);

The above program creates a data structure in reflection of the BPB and reads the boot

record of the volume using absread(). It extracts the data part of the boot block and

displays all the values stored in it.

#include <dos.h>

#include <bios.h>

struct DPB {
unsigned char driveno;
unsigned char unitno;
unsigned int bytespersec;

unsigned char shiftcount;
unsigned int reservedsecs;
unsigned char fats;
unsigned int rootentries;

bit FATs
unsigned int secsperfat;
unsigned int firstdirsec;
unsigned int ddheaderoff;
unsigned int ddheaderseg;

unsigned char highestsecinclust;

unsigned int firstuserdatasec;
unsigned int highestclustnumber; //only for 16 and 12

© Copyright Virtual University of Pakistan

254

32 - File System Data Structures I11 (DPB)

unsigned char media;
unsigned char accessed;
unsigned int nextdpboff;
unsigned int nextdpbseg;
unsigned int searchstart;
unsigned int freeclust;

h

void main (void)

{
struct DPB far *ptr;
struct DPB dpb;
clrscr();
_asm push DS;
_asm push BX;
_AH=0x32;
_DL=1,;
geninterrupt (0x21);

ptr = (struct DPB far *)MK_FP(_DS,_BX);

dpb=*ptr;

_asmpop BX;

_asmpop DS;

printf("Drive No = %x\n",dpb.driveno);

printf("Unit No = %x\n",dpb.unitno);

printf("Bytes per sector = %d\n",dpb.bytespersec);

printf("Highest sector number within a cluster =
%d\n",dpb.highestsecinclust);

printf("Shift Count = %d\n",dpb.shiftcount);

printf("Reserved sectors = %d\n",dpb.reservedsecs);

printf("“number of FATs = %d\n",dpb.fats);

printf("Root enteries = %d\n",dpb.rootentries);

printf("First User data sec = %d\n" ,dpb.firstuserdatasec);

printf("Highest Cluster number =
%d\n",dpb.highestclustnumber);

printf("No of Sectors per FAT = %d\n",dpb.secsperfat);

printf("First directory Sector = %d\n",dpb.firstdirsec);

printf("DD header offset = %x\n",dpb.ddheaderoff);

printf("DD header segment = %x\n",dpb.ddheaderseqg);

printf("Media ID= %d\n",dpb.media);

printf("Disk accessed recently= %d\n",dpb.accessed);

printf("Next DPB offset address = %d\n",dpb.nextdpboff);

printf("Next DPB segment address =
%d\n",dpb.nextdpbseg);

printf("Point where to start the search for next cluster=
%d\n",dpb.searchstart);

printf("Free cluster= %d\n",dpb.freeclust);

getch();

The above program is doing is the same using the DPB rather than BPB.

© Copyright Virtual University of Pakistan

255

33 - Root Directory, FAT12 File System

33 - Root Directory, FAT12 File System

The Root Directory

root
O—10
O
—EIEé
O—1—0
. O
- Lo
O——O0——O0—0
0
L0

The DOS directory structure is a Tree like structure. The top most level of the tree being
the root directory. The root directory contains files and folders. Each folder can contains

more files and folders and so on it continues recursively as shown by the slide.

File

* Is logically viewed as an organization of Data.

* Physically it can be a collection of clusters or
blocks.

* O.S. needs to maintain information about the
cluster numbers of which a file may be comprised
of.

Control information about files are maintained in a data structure called the File control
block (FCB). The FCB for each file is created and stored in the disk.

© Copyright Virtual University of Pakistan 256

33 - Root Directory, FAT12 File System

The root directory consists of FCBs for all the files and folders stored on the root
directory. To obtain these FCBs, the portion on disk reserved for root directory can be

read.

File Control Block (FCB)

Offset
00
08
oB
ocC

16h
18h
1Ah
1Ch

TYPE
BYTE [8]
BYTE [3]
BYTE
BYTE[10]
WORD
WORD
WORD
DWORD

File Name in 8 bytes

Description

File extension

Attribute

Reserved + used by OS/2

Time
Date

First Cluster

size

Location of Root Directory

FAT

FAT

Root
Dir

User
Data

Boot Block

© Copyright Virtual University of Pakistan

257

33 - Root Directory, FAT12 File System

Contents of Root Directory of a FAT12 System
gAD:DlOO mov ah, 32

13AD:0102 mov int 21

13AD: 0104

-P

AX=3200 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 S1=0000 DI=0000
DS=13AD ES=13AD SS=13AD CS=13AD IP=0102 NV UP El PL NZ NA PO NC
13AD:0102 CD21 INT 21

-P
AX=3200 BX=13D2 CX=0000 DX=0000 SP=FFEE BP=0000 S1=0000 DI=0000
DS=00A7 ES=13AD SS=13AD CS=13AD IP=0104 NV UP EI PL NZ NA PO NC

13AD:0104 D3E3 SHL BX,CL

-d a7:13d2

00A7 : 13D0 00 00 00 02 00 00-01 00 02 EO 00 21 00 20 [
00A7:13E0 OB 09 00 13 00 56 34 12-00 FO OA FF FF FF FF 00 V4..

00A7:13F0 00 C8 06 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1400 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 OO0
00A7:1410 00 00 00 00 00 00 00 00-00 OO 00 00 00 00 00 00
00A7:1420 00 00 00 00 0O 00 00 00-00 00 00 00 00 00 00 00 R
00A7:1430 00 00 00 00 00 00 00 OC-00 00 80 00 B7 13 10 00 -o...
00A7:1440 DF 12 4D 5A 9A 00 29 00-00 00 20 00 C5 00 FF FF SMZLD)l Ll
00A7:1450 A7 05

-q

Contents of Root Directory of a FAT12 System

-1 1000 0 13 e
-d 1000 2c00

13AD:1000 E5 5F 41 4E 53 20 20 20-54 58 54 20 10 BB 19 70 ._ANS TXT ...p
13AD:1010 3C 33 3C 33 00 00 60 05-72 28 02 00 4F 8F 00 00 <3<3..°.r(..0...
13AD:1020 41 43 00 70 00 61 00 70-00 65 00 OF 00 54 72 00 AC.p.a.p.e...Tr.
13AD:1030 2E 00 74 00 78 00 74 00-00 00 00 00 FF FF FF FF R D
13AD:1040 43 50 41 50 45 52 20 20-54 58 54 20 00 BB 19 70 CPAPER TXT ...p
13AD:1050 3C 33 3C 33 00 00 60 05-72 28 02 00 4F 8F 00 00 <3<3..°.r(..0...
13AD:1060 54 45 53 54 20 20 20 20-54 58 54 20 18 AB 29 70 TEST TXT .)p
13AD:1070 3C 33 3C 33 00 00 AE 70-3C 33 4A 00 31 00 00 00 <3<3...p<3J.1...
13AD:1080 E5 4F 4F 54 20 20 20 20-54 58 54 20 18 4D 4E 70 .00T TXT .MNp
13AD:1090 3C 33 3C 33 00 00 D5 70-3C 33 4B 00 B3 8A 00 00 <3<3...p<3K.....
13AD:10A0 E5 4F 4F 54 20 20 20 20-54 58 54 20 18 4D 4E 70 .00T TXT .MNp
13AD:10BO 3C 33 3C 33 00 00 22 71-3C 33 4B 00 26 00 00 00 <3<3.."q<3K.&...
13AD:10CO 52 4F 4F 54 20 20 20 20-54 58 54 20 18 25 55 71 ROOT TXT .%Uq
13AD:10D0 3C 33 3C 33 00 00 56 71-3C 33 4B 00 OD 00 00 00 <3<3..Vq<3K.....

In the above two slides first the contents of DPB are read to find the start of the root
directory. Using this block number the contents of root directory are read, as it can be

seen they contain number of FCBs each containing information about a file within the

The user data area is divided into clusters. The first cluster in user data area is numbered 2
in a FAT based systems. A cluster is not the same as block and also there are no system
calls available which use the cluster number. All the system calls use the LSN address. If
the cluster number is known it should be converted into LSN to access the blocks within

the cluster. Moreover all the information about file management uses the cluster number

© Copyright Virtual University of Pakistan

33 - Root Directory, FAT12 File System

rather than the LSN for simplicity and for the purpose of managing large disk space. So

here we devise a formula to convert the cluster number into LSN.

Converting a Cluster # into Sector #

Blocks for FAT
No. of entries*32/bytes per block

Root
Directory

Reserved Block Clust 2

First Block of User Data

using the information the above slide the following formula can be devised as shown in

the slide below to convert the cluster number into LSN.

No. of System Area Blocks =
Reserved Block + Sector per FAT * No. of
FAT’s + No. of entries * 32 / Bytes per Block

First User Block No. =
No. of System Area Blocks

Sector No. =
(Clust_no — 2)* Blocks per Clust + First User
Block #

The following memory dump extracts the starting cluster number from the FCB of a file

and then converts the cluster number in sector to get its starting block.

© Copyright Virtual University of Pakistan 259

33 - Root Directory, FAT12 File System

Directory Dump (Again)

File
File

13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
10A0
1080
10Co
1000

Contents

-d 1000 2c00

E5
3C
41
2E
43
3C
54
3C
E5
3C

-1 1000 0 13 e

5F
33
43
00
50
33
45
33
4F
33
4F
33
4F
33

Cluster # =

a1
3c
00
74
a1
3c
53
3
aF
3c
aF
3c
aF
3c

4a

File Start Sector #

4E
33
70
00
50
33
54
33
54
33
54
33
54
33

53
00
00
78
45
00
20
00
20
00
20
00
20

20
00
61
00
52
00
20
00
20
00
20
00
20
00

20
60
00
74
20
60
20
AE
20
D5
20
22
20
56

20-54
05-72
70-00
00-00
20-54
05-72
20-54
70-3C
20-54
70-3C
20-54
71-3C
20-54
71-3C

58
28
65
00
58
28
58
33
58
33
58
33
58

54
02
00
00
54
02
54
4A
54
4B
54
48
54

20
00
OoF
00
20
00
20
00
20
00
20
00

00

= (4a - 2)*1 + 21H = 6%H

10
aF
00
FF
00
aF
18
31
18
B3
18
26
18
oD

BB
8F
54
FF
BB
8F
AB
00
)
8A
i)

25
00

19
00
72
FF
19
00
29
00
4E

4E

55
00

__ANS TXT ...p
<3<3..7.r(..0...
AC.p.a.p.e...Tr.
I) G

CPAPER TXT -
<3<3..7.r(..0...
TEST TXT ..
<3<3...p<3J.1...
-00T TXT .

<3<3...p<3K.....
-00T TXT .MNp
<3<3.."q<3K.&...
ROOT TXT .%Uq
<3<3..Vg<3K.....

The contents of the blocks/cluster at the start of file are then examined by loading the

sectors within the first cluster to that file in the following slide. Here the contents of the

file can be seen on the right side column.

-a

13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:

-d 1000

1000
1010
1020
1030
1040
1050
1060
1070

Cluster Dump

-1 1000 0 69 1

20
75
6D
00
00
00
00
00

69
73
65
00
00
00
00
00

73
65
20
00
00
00
00
00

20-61
64-20
74-65
00-00
00-00
00-00
00-00
00-00

65
20
20
00
00
00
00
00

78
73
74
00
00
00
00
00

888883%8

this is a text f
ile used to stor
e some test text

© Copyright Virtual University of Pakistan

260

33 - Root Directory, FAT12 File System

Here is another example using a FAT 16 system.

Another Example with FAT16 bit System
DPB Dump

-a

13AD:0100 mov ah,32
13AD:0102 int 21
13AD: 0104

-P

AX=3200 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 S1=0000 DI=0000
DS=13AD ES=13AD SS=13AD CS=13AD IP=0102 NV UP El PL NZ NA PO NC
13AD:0102 CD21 INT 21

-p
AX=3200 BX=13D2 CX=0000 DX=0000 SP=FFEE BP=0000 S1=0000 DI=0000
DS=00A7 ES=13AD SS=13AD CS=13AD IP=0104 NV UP EI PL NZ NA PO NC

13AD:0104 D3E3 SHL BX,CL

-d a7:13d2

00A7:13D0 05 05 00 02 07 03-08 00 02 00 02 CO 01 B4
00A7:13E0 CB CC 00 AO 01 56 34 12-00 F8 OA FF FF FF FF 00
00A7:13F0 00 98 CB 00 00 00 00 00-00 00 00 00 00 00 00 0O
00A7:1400 00 00 00 00 00 00 00 00-00 00 00 00 OO 00O 00 OO0
00A7:1410 00 00 00 00 00 00 00 00-00 00 00 00 OO 00O 00 OO0
00A7:1420 00 00 00 00 00 00O 00 00-00 00 00 OO0 OO 00 00 OO
00A7:1430 00 00 00 00 00 00O 00 OC-00 00 80 00 B7 13 10 00
00A7:1440 DF 12 4D 5A 9A 00 29 00-00 00 20 00 C5 00 FF FF

00A7:1450 A7 05
-q

© Copyright Virtual University of Pakistan 261

34 - FAT12 File System Il, FAT16 File System

34 - FAT12 File System Il, FAT16 File System

Here is another example which examines the contents of a file for a FAT 16 system.

Firstly the DPB is read as shown In the following slide.

Another Example with FAT16 bit System

DPB Dump

-a
13AD:0100 mov ah, 32
13AD:0102 int 21

13AD: 0104

-P

AX=3200 BX=0000
DS=13AD ES=13AD
13AD:0102 CD21

AX=3200 BX=13D2
DS=00A7 ES=13AD
13AD:0104 D3E3

-d a7:13d2
00A7 : 13D0
00A7:13E0 CB CC
00A7:13F0 00 98
00A7:1400 00 00
00A7:1410 00 00
00A7:1420 00 00
00A7:1430 00 00
00A7:1440 DF 12
00A7:1450 A7 05
-q

CX=0000 DX=0000 SP=FFEE BP=0000 S1=0000 DI=0000
SS=13AD CS=13AD IP=0102 NV UP EI PL NZ NA PO NC
INT 21

CX=0000 DX=0000 SP=FFEE BP=0000 SI1=0000 DI=0000
SS=13AD CS=13AD IP=0104 NV UP EI PL NZ NA PO NC

SHL BX,CL
05 05 00 02 07 03-08 00 02 00 02 CO 01 B4
00 AO 01 56 34 12-00 F8 OA FF FF FF FF 00
CB 00 00 00 00 00-00 00 00 00 OO 00 00 00
00 00 00 00 00 00-00 00 00 00 00 00 00 00
00 00 00 00 00 00-00 00 00 00 OO0 00 00 00
00 00 00 00 00 00-00 00 00 00O OO 00 00 00
00 00 00 00 00 OC-00 00 80 00 B7 13 10 00
4D 5A 9A 00 29 00-00 00 20 00 C5 00 FF FF

Once the DPB has been read the blocks reserved for root directory are determined and are

then read to get the contents of the root directory.

Directory

Dump

-1 1000 5 1a0 20

-d 1000 4000

134011050
13AD:1060
134:1070 60 00
13011080

13AD:10E0 44 50
13AD:10F0 36 33
13AD:1100 44 50
13AD:1110 36 33
13AD:1120 46 49
13AD:1130 3C 33
13AD:1140 53 45
13AD:1150 3C 33

134D:1040 52 45 43 59 43 4C 45

134D:1000 4E 45 57 20 56 4F 4C 55-4D 45 20 08 00 00 00 00 NEW VOLUVE ...
134D:1010 00 00 00 00 00 00 61 76-2D 33 00 00 00 00 00 00 cav-alll
13D:1020 41 52 00 65 00 63 00 79-00 63 00 OF 00 21 6C 00 AR.e.c.y.c...!l
130D:1030 65 00 64 00 00 00 FF FF-FF FF 00 00 FF FF FF FF e.d...........

44-20 20 20 16 00 4E 79 SE RECYCLED ..My~

134D:10C0 41 64 00 50 00 62 00 31-00 2E 00 OF 00 6A 74 00 Ad.P.b.l.....Jt
134D:1000 78 00 74 00 00 00 FF FF-FF FF 00 00 FF FF FF FF x.t

42 31 20 20 20 20-54 58 54 20 00 57 81 69 DPB1 TXT .W.i
36 33 00 00 07 78-36 33 OA 00 8A 06 00 00 6363...x63......
42 32 20 20 20 20-54 58 54 20 18 12 AE 69 DPB2 TXT ...i
36 33 00 00 03 75-36 33 OB 00 5F 06 00 00 6363...u63.._...

52 53 54 20 20 20-20 20 20 10 08 6F ED 56 FIRST ..0.V
3C 33 00 00 EE 56-3C 33 OC 00 00 00 00 00 <3<3...V<3......
43 4F 4E 44 20 20-20 20 20 10 08 50 EF 56 SECOND ..P.V

3C 33 00 00 FO 56-3C 33 12 00 00 00 00 00 <3<3...V<3......

The root directory contains a collection of FCBs. The FCB for the file in question is

searched from where the first cluster of the file can be get.

© Copyright Virtual University of Pakistan

262

34 - FAT12 File System Il, FAT16 File System

13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:

File
File
File
File

12C0
1200
12E0
12F0
1300
1310
1320
1330
1340
1350

Cont...

43 50
3C 33
E5 6D
78 00
ES 4E
78 00
E5 45
3C 33
54 45
3C 33

Contents
Size = 39D =27H
Cluster # = 45H
Sec # = (45H — 2)*8 + 01CO = 3D8H

41 50 45 52
3C 33 00 00
00 65 00 6E
74 00 00 00
00 65 00 77
74 00 20 00
57 54 45 58
3C 33 00 00
53 54 20 20
3C 33 00 00

20 20-54 58 54 20 00 9D
60 05-72 28 29 00 4F 8F
00 74-00 2E 00 OF 00 9F
FF FF-FF FF 00 00 FF FF
00 20-00 54 00 OF 00 9F
44 00-6F 00 00 00 63 00
7E 31-54 58 54 20 00 32
OA 73-3C 33 00 00 00 00
20 20-54 58 54 20 18 32
17 73-3C 33 45 00 27 00

7D 6F
00 00
74 00
FF FF
65 00
75 00
09 73
00 00
09 73
00 00

CPAPER TXT ..}o
<3<3..7.r().0...
.me.n.t......

t.

- P - T
x.t. .D.o...c.u.
JEWTEX-1TXT .2.s

<3<3...s<3.....
TEST TXT .2.s
<3<3...s<3E."...

After calculating the sector number for the cluster the contents of the file can be accessed

by reading all the blocks within the cluster. In this way only the starting cluster will be

read. If the file contains a number of cluster the subsequent clusters numbers within the

file chain can be accessed from the FAT.

-a

13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:
13AD:

-d 1000

1000
1010
1020
1030
1040
1050
1060
1070

74 68
65 78
62 69
00 00
00 00
00 00
00 00
00 00

File Dump

-1 1000 5 3d8 8

69 73 20 69
74 20 66 69
74 20 46 41

73 20-61 20 74 65 73 74
6C 65-20 66 6F 72 20 31
54 00-00 00 00 00 00 00
00 00-00 00 00 00 00 00
00 00-00 00 00 00 00 00
00 00-00 00 00 00 00 00
00 00-00 00 00 00 00 00
00 00-00 00 00 00 00 00

this is a test t

© Copyright Virtual University of Pakistan

263

34 - FAT12 File System Il, FAT16 File System

Larger File Contents

» Larger files would be comprised of numerous
clusters.

» The first Cluster # can be read from FCB for rest
of the Cluster, a chain is maintained within the FAT.

FAT12

* FAT is a simple table which contains cluster
number of eachfile.

* FAT12 will have 12-bit wide entries and can have
22 entries maximum.

« Although some of these entries may be reserved.

© Copyright Virtual University of Pakistan 264

34 - FAT12 File System Il, FAT16 File System

File Organization
12 — bit
0 R
1R FCB
2
3
4 7 |
Start Cluster #
5 0
6 11
7 9
Cont...
8
9 6
10
11| EOF
2M2

Above slides show how a cluster chain for a file is maintained in the FAT. The first

cluster number is in the FCB. Subsequent clusters will be accessed from the FAT using

the previous cluster number as index to look up into the FAT for the next cluster number.

A FAT theoretically will contain 2" entries where n is 12 for FAT 12 and 16 for FAT16.

But all the entries are not used some of the entries are reserved following slide shows its

detail.

© Copyright Virtual University of Pakistan

265

34 - FAT12 File System Il, FAT16 File System

Unused FAT Entries

* Reserved Entries = FFOH ~ FF6H
» EOF value = FF7H~ FFFH
* First Two Clusters =0,1

* Free Cluster =0

» Max. range of Cluster # =2 ~FEFH

» Total # of Clusters of FAT12 = FEEH

Cluster Size Determination
tempof = size of disk / no. of entries in FAT (FEEH)
if (temp > 32768)
use higher FAT16 or FAT32
else

{

choose the nearest value + temp greater than

temp, which is a power of 2,

Set this to be the Cluster size = bytes

Size of Cluster in Blocks =

Cluster size in Bytes / Bytes per Block

}
No. of Entries of FAT =

No. of Blocks in disk in User Data Area / Size

of Cluster in Blocks.

There can various volume with various sizes with FAT12 or FAT16. The number of
entries for FAT 12 or FAT16 are limited then the question arises how can a certain
volume with moderate space and another volume with large space can be managed by the
same FAT system. The answer is that the number of entries might be same but the size of
cluster may be different. The cluster size can vary from 512 bytes to 32K in powers of 2
depending upon the volume size. The above slide shows how the cluster size and the
exact number of required FAT entries can be determined.

© Copyright Virtual University of Pakistan 266

35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System)

35 - FAT12 File System (Selecting a 12-bit entry within
FAT12 System)

There is no primitive data type of 12 bits. But the entries in 12 bit FAT are 12 bits wide.
Three consecutive bytes in FAT 12 will contain two entries. The following slide shows an

algorithm that can be used to extract these entries from a FAT 12 data structure.

Selecting a 12-bit entry within FAT12
offset = cluster No * 3/2

temp = cluster No * 3%2

if (temp ==0)

Thenthe entry is even, consider the word at this
offset. Make a 12-bit value, by selecting the low
Nibble of the high byte of this. Use this Nibble as
the higher 4-bits. And use the low byte as the lower
eight bits.

else

The entry is odd, consider the word at this offset.
Select the high Nibble of the low byte as lower 4-bits.
And select high byte as the higher 8-bits.

Example

184h*3/2 = 246h 85h

185n*3/2 =247p| 61N

18h

© Copyright Virtual University of Pakistan 267

35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System)

Contents of DPB

13A6:0100 mov ah, 32
13A6:0102 int 21
13A6:0104

-p

AX=3200 BX=0000
DS=13A6 ES=13A6
13A6:0102 CD21

AX=3200 BX=13D2
DS=00A7 ES=13A6

00A7:1450 A7 05

CX=0000 DX=0000 SP=FFEE BP=0000 S1=0000 DI=0000
SS=13A6 CS=13A6 IP=0102 NV UP EI PL NZ NA PO NC
INT 21

CX=0000 DX=0000 SP=FFEE BP=0000 S1=0000 DI1=0000
SS=13A6 CS=13A6 IP=0104 NV UP EI PL NZ NA PO NC

13A6:0104 0000 ADD [BX+S1],AL

DS:13D2=00

-d a7:13d2

00A7 :13D0 00 00 00 02 00 00-01 00 02 EO 00 21 00 20
00A7:13E0 0B 09 00 13 00 56 34 12-00 FO OA FF FF FF FF 00
00A7:13F0 00 CF OA 00 00 00O 00 00-00 00 00 00 00 00 00 00
00A7:1400 00 00 00 00 00 00O 00 00-00 0O 00 00 00 00 00 0O
00A7:1410 00 00 00 00 00 00O 00 00-00 00 00 00 00 00 00 00
00A7:1420 00 00 00 00 00 00O 00 00-00 00O 00 00 00 00 00 00
00A7:1430 00 00 00 00 00 00O 00 OC-00 00 80 00 BO 13 10 00
00A7:1440 D8 12 4D 5A 9A 00 29 00-00 00 20 00 C5 00 FF FF

Contents of ROOT

T 10000 13 e

-d 1000 2c00

13A6:1000 ES5 S5F 41 4E 53 20 20 20-54 58 54 20 10 BB 19 70

13A6:1010 3C 33 3 33 00 00 € 05-72 28 (@ 00 4F 8F O 00

13A6:1020 E5 43 00 70 00 61 (O 70-00 65 00 OF 00 54 72 00

13A6:1030 2E 00 74 00 78 00 74 00-00 00 @O 00 FF FF FF FF

13A6:1040 E5 50 41 50 45 52 20 20-54 58 54 20 00 BB 19 70

13A6:1050 3C 33 2 33 00 00 €0 05-72 28 2 00 4F 8F O 00

13A6:1060 54 45 53 54 20 20 20 20-54 58 54 20 18 AB 2 70

13A6:1070 3C 33 3C 33 00 00 A& 70-3C 33 4A 00 31 00 (O 00

13A6:1080 ES5 4F 4F 54 20 20 20 20-54 58 54 20 18 4D 4« 70

13A6:1090 3C 33 3T 33 00 00 6 70-3C 33 48 00 B3 8A (O 00

13A6:10A0 E5 4F 4F 54 20 20 20 20-54 58 54 20 18 4D 4 70

13A6:10B0 3C 33 3 33 00 00 2 71-3C 33 48 00 26 00 M 00

13A6:10C0 52 4F 4F 54 20 20 20 20-54 58 54 20 18 25 % 71

13A6:10D0 3C 33 L 33 00 00 6 71-3C 33 48 00 A5 8A (D 00

13A6:10E0 E5 44 5 4D 50 20 20 20-54 58 54 20 18 7B €A 71

13A6:10F0 3C 33 3C 33 00 00 A7 71-3C 33 91 00 B4 02 (O 00

13A6:1100 43 44 55 4D 50 20 20 20-54 58 54 20 18 7B 8A 71

13A6:1110 3C 33 3 33 00 00 & 72-3C 33 91 00 98 02 (O 00

13A6:1120 E5 30 58 58 20 20 20 20-54 4D 50 20 18 1C 42 57

13A6:1130 3D 33 2 33 00 00 43 57-3D 33 9B 00 54 0B (O 00

13A6:1140 41 43 0 70 00 61 O 70-00 65 O OF 00 54 72 00

13A6:1150 2E 00 74 00 78 00 74 00-00 00 Q0 00 FF FF AF FF

13A6:1160 43 50 41 50 45 52 20 20-54 58 54 20 CPAPER TXT ..
13A6:1170 3C 33 3D 33 00 00 43 57-3D 33 93 00 <3=3..0W=3..T...
13A6:1180 44 50 42 44 55 4D 50 20-54 58 54 20 DPBDUMP TXT .r.
13A6:1190 3D 33 3D 33 00 00 02 65-30 33 02 00 =3=3...e=3......
13A6:11A0 44 44 20 20 20 20 20 20-54 58 54 20 DD ™>T
13A6:11B0 3D 33 3D 33 00 00 3B 65-3D 33 05 00 =3=3..;e=3......

Here a familiar operation has been performed. After reading the DPB the root directory is
read to search for the entry of file CPAPER.TXT.

© Copyri

ght Virtual University of Pakistan

268

35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System)

Following slide shows the dump for the FAT12 for the particular volume.

Using the root directory entry and the FAT contents the contents of the file can be

accessed.

Contents of FAT

-1 1000 0 1 9

-d 1000 2200

13A6:1000 FO FF FF 03 40 00 FF
13A6:1010 CO 00 OD EO 00 OF 00
13A6:1020 01 17 80 01 19 A0 01
13A6:1030 21 20 02 23 40 02 25
13A6:1040 CO 02 2D EO 02 2F 00
13A6:1050 03 37 80 03 39 A0 03
13A6:1060 41 20 04 43 40 04 45
13A6:1070 CF 04 4D EO 04 4F 00
13A6:1080 05 57 80 05 59 A0 05
13A6:1090 61 20 06 63 40 06 65
13A6:10A0 CO 06 6D EO 06 6F 00
13A6:10B0 07 77 80 07 79 A0 07
13A6:10C0 81 20 08 83 40 08 85
13A6:10D0 CO 08 8D EO 08 8F 00
13A6:10E0 09 97 80 09 FF AF 09

6F-00
01-11
1B-CO
60-02
03-31
3B-CO
90-09
05-51
5B-CO
60-06
07-71
7B-CO
60-08
09-FF
9B-CO

07
20
01
27
20
03
00
20
05
67
20
07
87
2F
09

80
o1
1D
80
03
3D
00
05
5D
80
07
70
80
09
9D

00
13
EO
02
33
EO
00
53
EO
06
73
E0
08
FF
Fo

09
40
01
29
40
03
00
40
05
69
40
07
89
4F
FF

AO
01
1F
AO
03
3F
00
05
5F
A0
07
7F
AO
09

00
15
00
02
35
00
00
55
00
06
75
00
08
95
OF

Contents of FILE

-1 1000 0 b2 1

-d 1000

13A6:1000 OD OA OD OA 31 2E 20
13A6:1010 64 20 62 65 20 74 68
13A6:1020 6F 66 20 74 68 65 20
13A6:1030 3A OD OA OD OA 6D 61
13A6:1040 OA 09 69 6E 74 20 61
13A6:1050 70 72 69 6E 74 66 20
13A6:1060 2C 20 61 2C 20 26 61
13A6:1070 OD OA 41 6E 73 2E OD
-1 1000 b3 1

-d 1000

13A6:1000 OD OA OD OA 31 2E 20
13A6:1010 64 20 62 65 20 74 68
13A6:1020 6F 66 20 74 68 65 20
13A6:1030 3A OD OA OD OA 6D 61
13A6:1040 OA 09 69 6E 74 20 61
13A6:1050 70 72 69 6E 74 66 20
13A6:1060 2C 20 61 2C 20 26 61
13A6:1070 0D OA 41 6E 73 2E 0D

57-68
65-20
66-6F
69-6E
5B-31
28-20
20-29
0A-09

57-68
65-20
66-6F
69-6E
5B-31
28-20
20-29
0A-09

61
6F
6C
28
30
22
20
49

61
6F
6C
28
30
22
20
49

74
75
6C
20
5D
25
3B
66

74
75
6C
20
5D
25
3B
66

20
74
6F
29
20
75
oD
20

20
74
6F
29
20
75
oD
20

77
70
77
oD
3B
20
0A
74

77
70
77
oD
3B
20
0A
74

6F
75
69
0A
oD
25
70
68

6F
75
69
0A
0D
25
70
68

75
74
6E
7B
0A
75
oD
65

75
74
6E
B
0A
75
oD
65

-..-1. What woul
d be the output
of the following
-main()..{.
. t a[10] ;...
printf ("%u %u"
,a, &a) ..}

-...1. What woul
d be the output

. t a[10] ;..
printf ("%u %u"
,a, &) ;. 3.
-.Ans....IT the

© Copyright Virtual University of Pakistan

269

35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System)

Cont...

-1 1000 0 b4 1
-d 1000

13A6:1000 65 20 69 73 20 6E 6F 74-20 69 6E 63 6C 75 64 65 e is not include
64 20 62 79 20 23 69 6E-63 6C 75 64 65 2C 20 68 d by #include, h
65 6E 63 65 20 74 68 65-0D OA 09 4C 69 6E 6B 65 ence the...Linke
72 20 45 72 72 6F 72 2E-0D OA 2D 2D 2D 2D 2D 2D r Error.
2D 2D 2D 2D 2D 2D 2D 2D-2D 2D 2D 2D 2D 2D 2D 2D @ --------
2D 2D 2D 2D 2D 2D 2D 2D-2D 2D 2D 2D 2D 2D 2D 2D
2D 2D 2D 2D 2D 2D 2D 2D-2D 2D 2D 2D 2D 2D 2D 2D
2D 2D 2D 2D 2D 2D 2D 2D-2D 2D 2D 2D 2D 2D 2D 2D
-1 1000 0 b5 1

-d 1000

13A6:1000 6E 67 20 70 6F 69 6E 74-20 66 6F 72 6D 61 74 73 ng point formats

H 20 6E 6F 74 20 6C 69 6E-6B 65 64 OD OA 09 41 62 not linked...Ab
6E 6F 72 6D 61 6C 20 70-72 6F 67 72 61 6D 20 74 normal program t
65 72 6D 69 6E 61 74 69-6F 6E OD OA OD OA 09 54 ermination.....T
68 69 73 20 65 72 72 6F-72 20 6F 63 63 75 72 73 his error occurs
20 62 65 63 61 75 73 65-20 74 68 65 20 66 6C 6F because the flo
61 74 69 6E 67 20 70 6F-69 6E 74 20 65 6D 75 6C ating point emul
61 74 6F 72 20 69 73 20-6E 6F 74 20 69 6E 69 74 ator is not init

Cont...

-1 1000 0 b6 1
-d 1000

13A6:1000 74 68 65 20 66 6F 6C 6C-6F 77 69 6E 67 3A OD OA the following:

OD OA 6D 61 69 6E 28 20-29 OD OA 7B OD OA 09 69 -.main()..{...i

H 6E 74 20 61 5B 33 5D 5B-34 5D 20 3D 20 7B 20 31 nt a[3][4] = { 1
13A6:1030 2C 20 32 2C 20 33 2C 20-34 2C 20 34 2C 20 33 2C . 2,3,4, 4,3,
13A6:1040 20 32 2C 20 31 2C 20 37-2C 20 38 2C 20 39 2C 20 2,1,7,8,09,

30 20 7D 20 3B OD OA 09-70 72 69 6E 74 66 20 28 0 } ;...printf (

H 20 22 5C 6E 20 25 75 20-25 75 22 2C 20 61 20 2B "\n %u %u", a +
13A6:1070 20 31 2C 20 26 61 20 2B-20 31 20 29 20 3B 0D OA 1, &a + 1) ;..

© Copyright Virtual University of Pakistan 270

35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System)

Following slide shows the file organization in a FAT16 system. The starting cluster
number is the FCB entry and the subsequent clusters can be determined by traversing the
chain for that file in the FAT16 data structure.

File Organization
16 — bit
0 R
1l R FCB
2
3
4 7 I |
Start Cluster #
5 0
6 11
7 9
Cont...
8
9 6
10
11| EOF
2M6

Not all the entries in FAT16 will be used, the following shows which ones of the entry are

reserved.

© Copyright Virtual University of Pakistan 271

35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System)

Unused FAT Entries
» Reserved Entries

* EOF value
¢ First Two Clusters
* Free Cluster

» Max. range of Cluster #

= FFFOH ~ FFF6H

= FFF7H ~ FFFFH

=2~ FFEFH

» Total # of Clusters of FAT16 = FFEEH

The following slide shows the content of the DPB for a FAT16 volume. Same int

21h/32H is used to determine its address and the parameters can be determined by taking

dump of the memory at the address returned.

Contents of DPB

13A6:0100 mov ah, 32
13A6:0102 int 21
13A6:0104

-p

AX=3200 BX=0000 CX=0000 DX=0000 SP=FFEE
DS=13A6 ES=13A6 SS=13A6 CS=13A6 IP=0102
13A6:0102 CD21 INT 21

AX=3200 BX=13D2 CX=0000 DX=0000 SP=FFEE
DS=00A7 ES=13A6 SS=13A6 CS=13A6 1P=0104
SHL

00A7:1450 A7 05
-q

BP=0000 S1=0000 DI=0000
NV UP EI PL NZ NA PO NC

BP=0000 S1=0000 DI=0000
NV UP EI PL NZ NA PO NC

13A6:0104 D3E3 BX,CL
-d a7:13d2
00A7:13D0 05 05 00 02 07 03-08 00 02 00 02 CO 01 B4

00A7:13E0 CB CC 00 AO 01 56 34 12-00 F8 OA FF FF FF FF 00
00A7:13F0 00 7D CB 00 00 00 00 00-00 0O 00 00 00 00 00 00
00A7:1400 00 00 00 00 00 00 00 00-00 OO 0O 00 00 00 00 00
00A7:1410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00A7:1430 00 00 00 00 00 00 00 OC-00 00 80 00 BO 13 10 00
00A7:1440 D8 12 4D 5A 9A 00 29 00-00 00 20 00 C5 00 FF FF

Here the slide shows the contents of the root directory depicting the FCB of a file named

CPAPER.TXT. The control information about this file can be read from the dump.

© Copyright Virtual University of Pakistan

272

35 - FAT12 File System (Selecting a 12-bit entry within FAT12 System)

Cont...

13A6:1320 E5 45 57 54 45 58 7E 31-54 58 54 20 00 32 09 73 .EWTEX~1TXT .2.s
13A6:1330 3C 33 3C 33 00 00 OA 73-3C 33 00 00 00 00 00 00 <3<3...
13A6:1340 54 45 53 54 20 20 20 20-54 58 54 20 18 32 09 73

13A6:1350 3C 33 3C 33 00 00 17 73-3C 33 45 00 27 00 00 00

13A6:1360 46 49 4C 45 20 20 20 20-54 58 54 20 18 81 83 73

13A6:1370 3C 33 3C 33 00 00 8D 73-3C 33 54 00 99 02 00 00

13A6:1380 ES5 30 58 58 20 20 20 20-54 4D 50 20 18 65 A6 68

13A6:1390 3D 33 3D 33 00 00 A7 68-3D 33 08 00 12 63 00 00

13A6:13A0 41 43 00 70 00 61 00 70-00 65 00 OF 00 54 72 00

13A6:1380 2E 00 74 00 78 00 74 00-00 00 00 00 FF FF FF FF
13A6:13C0 43 50 41 50 45 52 20 20-54 58 54 20 00 9D 7D 6F CPAPER TXT ..}o
13A6:13D0 3C 33 3D 33 00 00 A7 68-3D 33 08 00 12 63 00 00 <3=3...h=3...c..
13A6:13E0 46 44 50 42 20 20 20 20-54 58 54 20 18 05 56 69 FDPB TXT ..Vi
13A6:13F0 3D 33 3D 33 00 00 BD 69-3D 33 29 00 BA 04 00 00 =3=3...i=3).....
13A6:1400 46 44 44 20 20 20 20 20-54 58 54 20 18 48 E4 75 FDD TXT .H.u
13A6:1410 3D 33 3D 33 00 00 23 76-3D 33 2A 00 13 00 00 00 =3=3..#v=3*.....

The above slides shows that the first cluster of the file is 0008. The following slide shows
the contents of FAT. The FAT is loaded firstly in memory at the offset address 1000H.
Each entry occupies 2 bytes. So the index 0008 will be located at 1000H + 0008*2 =
1010H. At 1010H, 0009 is stored which is the next cluster of the file, using 0009H as
index we look up at 1012H, which stores 0055H, which means 0055H is the next cluster.

Contents of FAT

-1 1000 5 8 cc

-d 1010

13A6:1010 09 00 55 00 FF FF FF FF-FF FF FF FF FF FF FF FF
13A6:1020 00 00 00 00 FF FF FF FF-FF FF FF FF FF FF FF FF
13A6:1030 FF FF FF FF FF FF FF FF-FF FF 1E 00 1F 00 20 00
13A6:1040 21 00 FF FF FF FF FF FF-46 00 00 00 00 00 00 00
13A6:1050 00 00 FF FF 5A 00 00 00-00 00 00 00 00 00 00 00
13A6:1060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1080 00 00 00 00 00 00 00 00-00 00 FF FF 47 00 48 00

-d 10aa

13A6 : 10A0 56 00 57 00 58 00
13A6:10B0 59 00 FF FF 5B 00 5C 00-5D 00 5E 00 5F 00 60 00
13A6:10C0 61 00 62 00 63 00 64 00-65 00 66 00 67 00 68 00
13A6:10D0 69 00 6A 00 6B 00 6C 00-FF FF FF FF 00 00 00 00
13A6:10E0 00 00 00 00 00 00 00 00-00 00 00 0O OO 00 00 00
13A6:10FO 00 00 00 00 00 00 00 00- 00 00 00 00 00 00 00
13A6:1100 00 00 00 00 00 00 00 00 00 00 00 00 00
13A6:1110 00 00 00 00 00 00 00 00 00 00 00 00 00
-q

using 0055H as index we look up at 10AAH to find the next cluster number and so on.

© Copyright Virtual University of Pakistan 273

36 - File Organization

36 - File Organization

Now converting all those cluster number in previous lecture into LSN we get the starting

LSN for each cluster.
For cluster # 0009H and 55h

Contents of FILE

-1 1000 5 1f8 8

-d 1000

13A6:1000 65 65 6E 20 64 65 6C
13A6:1010 64 65 6E 74 6C 79 20
13A6:1020 75 OD OA 77 61 6E 74
13A6:1030 61 6C 6C 20 65 78 65
13A6:1040 69 6C 65 73 20 74 6F
13A6:1050 69 66 69 65 64 20 64
13A6:1060 20 79 6F 75 20 68 61
13A6:1070 63 6F 6D 70 69 6C 65
-1 1000 5 458 8

-d 1000

13A6:1000 20 2A 2F 0D OA 0D OA
13A6:1010 71 20 21 3D 20 4E 55
13A6:1020 OA 09 09 73 20 3D 20
13A6:1030 3D 20 71 20 3B OD OA
13A6:1040 3E 20 6C 69 6E 6B 20
13A6:1050 20 6C 69 6E 6B 20 3D
13A6:1060 OA OD OA 09 2A 78 20
13A6:1070 OA OD OA 2F 2A 20 64

65-74
61-6E
20-74
63-75
20-74
69-72
76-65
20-61

09-77
4C-4C
72-20
09-09
3B-0D
20-73
3D-20
69-73

65
64
6F

68
65
20
6C

68
20
3B
71
0A
20
72

64
20
20
61
65
63
74
6C

69
29
oD
20
09
3B
20
6C

20
69
63
62
20
74
6F
20

6C
oD
0A
3D
09
oD
3B
61

61
66
6F
6C
73
6F
oD
74

65
0A
09
20
72
0A
oD
79

63
20
70
65
70
72
0A
68

20
09
09
71
20
09
0A
73

63
79
79
20
65
79
72
65

28
7B
72
20
2D
70
70
20

69
6F
20
66
63
2c
65
20

een deleted acci
dently and if yo
u..want to copy
all executable f
iles to the spec
ified directory,
you have to..re
compile all the

=r

ca X S--}-
.../* displays t

For cluster 56H and 57H

Cont...

-1 1000 5 460 8
-d 1000

13A6:1000 20 61 72 72 2C 20 62
13A6:1010 2C 20 28 20 70 20 2B
13A6:1020 74 73 75 62 20 29 20
13A6:1030 72 5B 70 5D 2B 2B 20
13A6:1040 OA OD OA 77 6F 72 6B
13A6:1050 72 72 2C 20 69 6E 74
13A6:1060 29 OD OA 7B OD OA 09
13A6:1070 20 6E 75 6D 20 3B OD

-1 1000 5 468 8
-d 1000

13A6:1000 09 09 09 09 72 20 3D
13A6:1010 09 62 72 65 61 6B 20
13A6:1020 7D OD OA 09 70 72 69
13A6:1030 22 2C 20 72 65 73 75
13A6:1040 0D OA OD OA 2D 2D 2D
13A6:1050 2D 2D 2D 2D 2D 2D 2D
13A6:1060 2D 2D 2D 2D 2D 2D 2D
13A6:1070 2D 2D 2D 2D 2D 2D 2D
-q

76-61
20-31
3B-0D
3B-0D
20-28
20-6C
69-6E
0A-0D

20-30
3B-0D
6E-74
6C-74
2D-2D
2D-2D
2D-2D
2D-2D

6C
20
0A
0A
20
61
74
0A

0A
66
20
2D
2D
2D

2C
29
oD
09
69
73
20
09

3B
09
20
29
20
2D
20

20
2C
0A
7D
6E
74
70
66

oD
09
28
20
2D
2D
2D
2D

65
20
09
oD
74
73
2C
6F

0A
7D
20
3B
2D
2D
2D
2D

76
6C
09
0A
20
75
20
72

09
0D
22
0D
2D
2D
2D
2D

61
61
61
70
2A
62
6A
20

09
0A
25
0A
2D
2D
2D
2D

6C
73
72
oD
61
20
2c
28

arr, bval, eval
> (p+1), las
tsub) ;...... ar
rlpl++ ; 3-
...work (int *a
rr, int lastsub
)--{...int p, j,
num ;.....for (

ceear =0 5Ll
.break ;..._.}...
}---printf ("%d
", result)

© Copyright Virtual University of Pakistan

274

36 - File Organization

File Delete Experiment (Contents of ROOT)

-1 1000 5 1a0 20

-d 1000 5000
13A6:1000 4E 45 57 20 56 4F 4C 55-4D 45 20 08 00 00 00 00 NEW VOLUME
13A6:1010 00 00 00 00 00 00 61 76-2D 33 00 00 00 00 00 00
41 52 00 65 00 63 00 79-00 63 00 OF 00 21 6C 00
65 00 64 00 00 00 FF FF-FF FF 00 00 FF FF FF FF
52 45 43 59 43 4C 45 44-20 20 20 16 00 4E 79 5E
2F 33 2F 33 00 00 7A 5E-2F 33 02 00 00 00 00 00
42 20 00 49 00 6E 00 66-00 6F 00 OF 00 72 72 00
6D 00 61 00 74 00 69 00-6F 00 00 00 6E 00 00 0O
01 53 00 79 00 73 00 74-00 65 00 OF 00 72 6D 00
20 00 56 00 6F 00 6C 00-75 00 00 00 6D 00 65 00 ..
53 59 53 54 45 4D 7E 31-20 20 20 16 00 4E 79 5E SYSTEM~1
2F 33 2F 33 00 00 7A 5E-2F 33 03 00 00 00 00 00 /3/3..z"/3..
41 64 00 50 00 62 00 31-00 2E 00 OF 00 6A 74 00 Ad.P.b.1.....
78 00 74 00 00 00 FF FF-FF FF 00 00 FF FF FF FF D
44 50 42 31 20 20 20 20-54 58 54 20 00 57 81 69 DPB1 TXT .W.i
36 33 36 33 00 00 07 78-36 33 OA 00 8A 06 00 00 6363...X63......
44 50 42 32 20 20 20 20-54 58 54 20 18 12 AE 69 DPB2 TXT .
36 33 36 33 00 00 03 75-36 33 0B 00 5F 06 00 00 6363...u63..
46 49 52 53 54 20 20 20-20 20 20 10 08 6F ED 56 FIRST
3C 33 3C 33 00 00 EE 56-3C 33 0OC 00 00 00 00 00 <3<3...V<3..
53 45 43 4F 4E 44 20 20-20 20 20 10 08 50 EF 56 SECOND
3C 33 3C 33 00 00 FO 56-3C 33 12 00 00 00 00 00 <3<3...V<3..
54 48 49 52 44 20 20 20-20 20 20 10 08 1B F1 56 THIRD -
3C 33 3C 33 00 00 F2 56-3C 33 13 00 00 00 00 00 <3<3...V<3..
45 45 20 20 20 20-54 58 54 20 18 89 4C 57 -REE TXT . .LW
3C 33 00 00 4D 57-3C 33 1D 00 F8 00 00 00 <3<3..MW<3...
56 50 42 46 20 20-54 58 54 20 18 85 43 6C -RVPBF TXT
3C 33 00 00 62 6C-3C 33 10 00 AF 00 00 00 <3<3..bl<3...
56 50 42 46 20 20-54 58 54 20 18 08 BB 6C -RVPBF TXT .
3C 33 00 00 83 6D-3C 33 10 00 BA 04 00 00 <3<3...m<3..
4F 54 46 20 20 20-54 58 54 20 18 45 D3 6D -00TF TXT .
3C 33 00 00 F8 6D-3C 33 11 00 6F 4F 00 00 <3<3...m<3..
4F 54 46 20 20 20-54 58 54 20 18 04 CF 6E .00TF TXT ..
3C 33 00 00 F8 6D-3C 33 1D 00 6F 4F 00 00 <3<3...m<3..
56 50 42 46 20 20-54 58 54 20 18 04 CF 6E DRVPBF TXT
3C 33 00 00 83 6D-3C 33 22 00 BA 04 00 00 <3<3...m<3".
45 45 20 20 20 20-54 58 54 20 18 05 CF 6E TREE TXT
3C 33 00 00 4D 57-3C 33 23 00 F8 00 00 00 <3<3..MW<3#.
4F 54 46 20 20 20-54 58 54 20 18 04 CF 6E ROOTF TXT
3C 33 00 00 36 73-3C 33 24 00 67 ED 00 00 <3<3..6s<3%$.
41 4E 53 20 20 20-54 58 54 20 10 9D 7D 6F ._ANS TXT
3C 33 00 00 60 05-72 28 29 00 4F 8F 00 00 <3<3..°.r()-
00 70 00 61 00 70-00 65 00 OF 00 54 72 00 .C.p.a.p.e..
74 00 78 00 74 00-00 00 00 00 FF FF FF FF R TN
41 50 45 52 20 20-54 58 54 20 00 9D 7D 6F -PAPER TXT ..}o
3D 33 00 00 60 05-72 28 29 00 4F 8F 00 00 <3=3..7.r().0...
00 65 00 6E 00 74-00 2E 00 OF 00 9F 74 00
74 00 00 00 FF FF-FF FF 00 00 FF FF FF FF
00 65 00 77 00 20-00 54 00 OF 00 9F 65 00
74 00 20 00 44 00-6F 00 00 00 63 00 75 00
57 54 45 58 7E 31-54 58 54 20 00 32 09 73 EWTEX~1TXT .2.s
3C 33 00 00 OA 73-3C 33 00 00 00 00 00 00 <3<3...s<3......
53 54 20 20 20 20-54 58 54 20 18 32 09 73 TEST TXT .2.s
3C 33 00 00 17 73-3C 33 45 00 27 00 00 00 <3<3...s<3E."...
4C 45 20 20 20 20-54 58 54 20 18 81 83 73 FILE TXT ...s
3C 33 00 00 8D 73-3C 33 54 00 99 02 00 00 <3<3...s<3T.....
58 58 20 20 20 20-54 4D 50 20 18 65 A6 68 . OXX TMP .e.h
3D 33 00 00 A7 68-3D 33 08 00 12 63 00 00
00 70 00 61 00 70-00 65 00 OF 00 54 72 00
74 00 78 00 74 00-00 00 00 00 FF FF FF FF
41 50 45 52 20 20-54 58 54 20 00 9D 7D 6F
3D 33 00 00 A7 68-3D 33 08 00 12 63 00 00 <3=3...h=3..
50 42 20 20 20 20-54 58 54 20 18 05 56 69 FDPB TXT .
3D 33 00 00 BD 69-3D 33 29 00 BA 04 00 00 =3=3...i=3)
44 20 20 20 20 20-54 58 54 20 18 48 E4 75 FDD TXT
3D 33 00 00 23 76-3D 33 2A 00 13 00 00 00 =3=3..#v=3*...

© Copyright Virtual University of Pakistan

275

36 - File Organization

Now let’s just analyze the contents of root directory of the same volume. If the DIR

command is performed on the same volume its result will be as below. Note the entry for

file named TEST.TXT

Contents of Root Listing
Volume in drive F is NEW VOLUME
Volume Serial Number is 2CA5-BC35
Directory of F:\
22-09-05 03:00 PM 1,674 dPbl.txt
22-09-05 02:40 PM 1,631 dpb2.txt
28-09-05 10:55 AM <DIR> first
28-09-05 10:55 AM <DIR> second
28-09-05 10:55 AM <DIR> third
28-09-05 01:44 PM 1,210 drvpbf.txt
28-09-05 10:58 AM 248 tree.txt
28-09-05 02:25 PM 60,775 rootf.txt
28-09-05 02:24 PM 39 test.txt
28-09-05 02:28 PM 665 file.txt
29-09-05 01:05 PM 25,362 Cpaper.txt
29-09-05 01:13 PM 1,210 fdpb.txt
29-09-05 02:49 PM 80,999 fdd.txt
29-09-05 03:02 PM 1,305 ffat.txt
29-09-05 03:06 PM 2,657 ffile.txt
29-09-05 03:52 PM 0 dir.txt

13 File(s) 177,775 bytes

3 Dir(s) 213,278,720 bytes free

Now on the same volume the file TEST.TXT is deleted. Lets analyse the contents of the

root directory now.

Contents of Root After Deleting

-T'1000 5 1a0 20

-d1000 5000

13A6:1000 4E 45 57 20 56 4F 4C 55-4D 45 20 08 00 00 00 00 NEW VOLUME
13A6:1010 00 00 00 00 00 00 61 76-2D 33 00 00 00 00 00 00
13A6:1020 41 52 00 65 00 63 00 79-00 63 00 OF 00 21 6C 00
13A6:1030 65 00 64 00 00 00 FF FF-FF FF 00 00 FF FF FF FF
13A6:1040 52 45 43 59 43 4C 45 44-20 20 20 16 00 4E 79 5E
13A6:1050 2F 33 2F 33 00 00 7A 5E-2F 33 02 00 00 00 00 00
13A6:1060 42 20 00 49 00 6E 00 66-00 6F 00 OF 00 72 72 00
13A6:1070 6D 00 61 00 74 00 69 00-6F 00 00 00 6E 00 00 00
13A6:1080 01 53 00 79 00 73 00 74-00 65 00 OF 00 72 6D 00
13A6:1090 20 00 56 00 6F 00 6C 00-75 00 00 00 6D 00 65 00
13A6:10A0 53 59 53 54 45 4D 7E 31-20 20 20 16 00 4E 79 5E
13A6:10B0 2F 33 2F 33 00 00 7A 5E-2F 33 03 00 00 00 00 00
13A6:10C0 41 64 00 50 00 62 00 31-00 2E 00 OF 00 6A 74 00
13A6:10D0 78 00 74 00 00 00 FF FF-FF FF 00 00 FF FF FF FF
13A6:10E0 44 50 42 31 20 20 20 20-54 58 54 20 00 57 81 69
13A6:10F0 36 33 36 33 00 00 07 78-36 33 OA 00 8A 06 00 00
13A6:1100 44 50 42 32 20 20 20 20-54 58 54 20 18 12 AE 69
13A6:1110 36 33 36 33 00 00 03 75-36 33 0B 00 5F 06 00 00
13A6:1120 46 49 52 53 54 20 20 20-20 20 20 10 08 6F ED 56
13A6:1130 3C 33 3C 33 00 00 EE 56-3C 33 0OC 00 00 00 00 00
13A6:1140 53 45 43 4F 4E 44 20 20-20 20 20 10 08 50 EF 56
13A6:1150 3C 33 3C 33 00 00 FO 56-3C 33 12 00 00 00 00 00
13A6:1160 54 48 49 52 44 20 20 20-20 20 20 10 08 1B F1 56
13A6:1170 3C 33 3C 33 00 00 F2 56-3C 33 13 00 00 00 00 00

© Copyright Virtual University of Pakistan

276

36 - File Organization

The entry for TEST.TXT still exists as can be seen from the next slide. The only

45

aF

56

aF

41
3D

74
00
74

45
33
50
33
50
33
54
33
54
33
50
33
45
33
54
33
4E
33
70
00
50
33
65
00
65
00

20
00
42
00
42
00
46
00
46
00
42
00
20
00
46
00
53
00
00
78
45
00
00
00
00
20

20
00
46
00
46
00
20
00
20
00
46
00
20
00
20
00
20
00
61
00
52
00
6E
00
7
00

20

20
62
20
83
20

20
F8
20
83
20
4D
20
36
20
60
00
74
20
60

FF
00
a4

20-54
57-3C
20-54
6C-3C
20-54
6D-3C
20-54
6D-3C
20-54
6D-3C
20-54
6D-3C
20-54
57-3C
20-54
73-3C
20-54
05-72
70-00
00-00
20-54
05-72
74-00
FF-FF
20-00
00-6F

58
33
58
33
58
33
58
33
58
33
58
33

33
58
33
58
65

58

54

10
54
10
54
11
54
1D
54
22

23
54
24
54

00
00
54
29
00
00
00
00

20
00

00
20
00
20
00
20
00
20
00
20
00
20
00
20
00
OF
00
20
00
OF
00
OF
00

18
F8
18
AF
18
BA
18
6F
18
6F
18
BA
18
F8
18
67
10
4F
00
FF
00
4F
00
FF
00
63

89
00
85
00
08
04
45
4F
04

04
04
05
00
04
ED

9F
00

4c
00
43
00
BB
00
D3
00
CF
00
CF
00
CF
00
CF
00
7
00
72
FF
0]
00

FF
65
75

-REE TXT .
<3<3..MW<3..
-RVPBF TXT
<3<3..blI<3..
-RVPBF TXT
<3<3...m<3..
-00TF TXT .
<3<3...m<3..
-00TF TXT .
<3<3...m<3..
DRVPBF TXT .
<3<3...m<3".
TREE TXT
<3<3..MW<3#.
ROOTF TXT
<3<3..6s<3%.
__ANS TXT .
<3<3..7.rQ)-
.C.p.a.p.e...
Lltlxeto Ll
-PAPER TXT
<3=3..°.rQ).
.m.e.n.t....
X.t... .

-N.e.w. .T....e.
x.t. .D.o...c.u.

difference that have occurred is that the first character has been replaced by a byte with

the value OXE5

But when the DIR command execute on the same volume the file does not show.

45

33

33

49
33
44
33

57
3C
53
3C
4ac
3C
58
3D
00
74
41
3D
50
3D

3D
41
3D
41
3D
49
3D
52
3D
52
3D
44
3D

54
33
54
33
45
33
58
33
70
00
50
33
42
33
20
33
54
33
54
33
4c
33
20
33
44
33
45
33

45
00
20
00
20
00
20
00
00
78
45
00
20
00
20
00
20
00
20
00
45
00
20
00
20
00
4c
00

58
00
20
00
20
00
20
00
61
00
52
00
20
00
20
00
20
00
20
00
20
00
20
00
20
00
20
00

7E
0A
20
17
20
8D
20
A7
00
74
20
A7
20
BD
20
31
20
37
20
50
20

20
9B
20
c1
20
F8

31-54
73-3C
20-54
73-3C
20-54
73-3C
20-54
68-3D
70-00
00-00
20-54
68-3D
20-54
69-3D
20-54
76-3D
20-54
78-3D
20-54
78-3D
20-54
78-3D
20-54
7E-3D
20-54
7E-3D
20-54
7E-3D

33
58
33
58

4D
33
65

58
33
58
33
58
33
58
33
58
33
58
33
58

58
33
58
33

00
54
45
54
54
50
08
00
00
54
08
54
29

54
6D
54
6E
54
6D
54
6F
54
45
54
70

20
00
20
00
20
00
20
00
OF
00
20
00
20
00
20
00
20
00
20
00
20
00
20
00
20
00
20
00

00
00
18
27
18
99
18
12
00
FF
00
12
18
BA
18
67
18
1A
18
19
18
61
18
AC
18
AC
18
13

32
00
32
00
81
02
65
63
54
FF
9D
63
05
04

3C
96
05
96

09
00
09
00
83
00
A6
00
72
FF
[0}
00
56
00

o1
2C
00
2C
00
97
00
9A
00
co
00
F7
00

JEWTEX~1TXT .2.s

<3<3...8<3......
-EST TXT .2.s
<B3<3...s<3E."...
FILE TXT
<3<3...s<3T..

<3=3...h=3...
FDPB TXT .
=3=3._.i=3).....
FDD TXT .H.u
=3=3..1v=3*.g<..
-FAT TXT
=3=3..7x=3m.
FFAT TXT
=3=3..Px=3n..
FFILE TXT ..
=3...x=3m.
DIR TXT .
=3=3...~=30..
DIRD TXT .
=3=3...~=3E.
DDDEL TXT

=3=3...~=3p..

© Copyright Virtual University of Pakistan

277

36 - File Organization

Contents of Root Listing After Deleting

Volume in drive F is NEW VOLUME
Volume Serial Number is 2CA5-BC35

Directory of F:\

22-09-05 03:00 PM 1,674
22-09-05 02:40 PM 1,631
28-09-05 10:55 AM <DIR>
28-09-05 10:55 AM <DIR>
28-09-05 10:55 AM <DIR>
28-09-05 01:44 PM 1,210
28-09-05 10:58 AM 248
28-09-05 02:25 PM 60,775
28-09-05 02:28 PM 665
29-09-05 01:05 PM 25,362
29-09-05 01:13 PM 1,210
29-09-05 02:49 PM 80,999
29-09-05 03:02 PM 1,305
29-09-05 03:06 PM 2,657
29-09-05 03:52 PM 940
29-09-05 03:54 PM 0
13 File(s)
3 Dir(s)

dPbl._txt
dpb2.txt
first
second
third
drvpbf. txt
tree.txt
rootf.txt
file_ txt
Cpaper. txt
fdpb.txt
fdd. txt
ffat.txt
ffile.txt
dir.txt
dird.txt

178,676 bytes
213,278,720 bytes free

Now let’s see the contents of the file by converting the first cluster number in the FCB

into LSN and taking its dump. We get the following slide.

Contents of File After Deleting

-1 1000 5 3d8 1

-d 1000

13AD:1000 74 68 69 73
13AD:1010 65 78 74 20
13AD:1020 62 69 74 20
13AD:1030 00 00 00 00
13AD:1040 00 00 00 00
13AD:1050 00 00 00 00
13AD:1060 00 00 00 00
13AD:1070 00 00 00 00
-q

20
66
46
00
00
00
00
00

69 73 20-61 20 74 65 73 74

69 6C 65-20 66 6F 72 20 31 36 20
41 54 00-00 00 00 00 00 00 00 00
00 00 00-00 00 00 00 00 00 00 00
00 00 00-00 00 00 00 00 00 00 00
00 00 00-00 00 00 00 00 00 00 00
00 00 00-00 00 00 00 00 00 00 00
00 00 00-00 00 00 00 00 00 00 00

20 74 this is a test t

The contents of the file are still there.

© Copyright Virtual University of Pakistan

278

36 - File Organization

So we infer the following.

Deleted Files

» OXE5 at the start of file entry is used to mark the
file as deleted.
» The contents of file still remain on disk.

» The contents can be recovered by placing a valid
file name, character in place of E5 and then
recovering the chain of file in FAT.

« If somehow the clusters used by deleted file has
been overwritten by some other file, it cannot be
recovered.

Not only the file is marked for deletion but also the chain of its cluster in FAT is

reclaimed by putting zeros in there place. This also indicates that these clusters are now

free.

Now let’s have some discussion about sub-directories. In the contents of the above given

root directory notice an entry named SECOND. The attribute byte of this entry is 0x20

which indicates that it’s a directory, the size is 0 which shows that there is now user data

in it, but even though the size 0 its has a first cluster which is 0x12. Converting 0x12 into

LSN and then reading its contents we get the following dump. This shows that this cluster

contains the FCBs for all the file and folders within this directory.

Contents of Sub-Directories

13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:

13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:

-d 1000

1000
1010
1020
1030
1040
1050
1060
1070

-1 1000 5

-d 1000

1000
1010
1020
1030
1040
1050
1060
1070

-1 1000 5 240 8

2E 20
3C 33
2E 2E
3C 33
53 55
3C 33
53 55
3C 33

268 8

2E 20
3C 33
2E 2E
3C 33
53 55
3C 33
00 00
00 00

20 20 20 20 20 20-20 20 20 10 00 50
3C 33 00 00 FO 56-3C 33 12 00 00 00
20 20 20 20 20 20-20 20 20 10 00 50
3C 33 00 00 FO 56-3C 33 00 00 00 00
42 31 20 20 20 20-20 20 20 10 08 Bl
3C 33 00 00 08 57-3C 33 16 00 00 00
42 32 20 20 20 20-20 20 20 10 08 23
3D 33 00 00 0B 57-3C 33 17 00 00 00

20 20 20 20 20 20-20 20 20 10 00 23
3C 33 00 00 0B 57-3C 33 17 00 00 00
20 20 20 20 20 20-20 20 20 10 00 23
3C 33 00 00 0B 57-3C 33 12 00 00 00
42 33 20 20 20 20-20 20 20 10 08 9A
3D 33 00 00 OF 57-3C 33 18 00 00 00
00 00 00 00 00 00-00 00 00 00 00 00
00 00 00 00 00 00-00 00 00 00 00 00

<3<3...V<3......

<3<3...V<3......
SuB1l W
<3<3...W<3......
suB2 LLHW
<3=3...W<3......

© Copyright Virtual University of Pakistan

279

36 - File Organization

In the entries within SECOND we see an entry SUB2. Its starting cluster is 0017H. This

value is converted into LSN and the contents read. The slide above also shows the

contents of SUB2.

Similarly the following slide shows the contents of SUB3 within SUB2 and the contents
of SUB4 within SUB3.

13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:

13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:

-d 1000

1000
1010
1020
1030
1040
1050
1060
1070

-1 1000 5

-d 1000

1000
1010
1020
1030
1040
1050
1060
1070

Cont...

-1 1000 5 270 8

2E
3C
2E
3C
53
3C

00

20
33
2E
33
55
33
00
00

20
33
2E
33
55
33
00
00

20
3C
20
3C
42
3D
00
00

20
3C
20
3C
42
3D
00
00

20
33
20
33
34
33
00
00

20
33
20
33
35
33
00
00

20
00
20
00
20
00
00
00

20
00
20
00
20
00
00
00

20
00
20
00
20
00
00
00

20
00
20
00
20
00
00
00

20
OF
20
OF
20
13

00

20
13
20
13
20
18
00
00

20-20
57-3C
20-20
57-3C
20-20
57-3C
00-00
00-00

20-20
57-3C
20-20
57-3C
20-20
57-3C
00-00
00-00

20
33
20
33
20
33

00

20
33
20
33
20
33
00
00

20
18
20
17
20
19
00
00

20
19
20
18
20

00
00

10
00
10
00
10
00
00
00

10
00
10
00
10
00
00
00

00
00
00
00
08
00
00
00

00
00
00
00
08
00
00
00

9A
00
9A
00
AF
00

00

AF
00
AF
00
0D
00
00
00

<3<3...
<3<3... R
suB4 oW
<3=3...W<3......

The following slide shows the contents of SUB5 and also the contents of file

MYFILE.TXT in SUBS.

-q

13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:

13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:

-d 1000

1000
1010
1020
1030
1040
1050
1060
1070

-1 1000 5

-d 1000

1000
1010
1020
1030
1040
1050
1060
1070

Cont...

-1 1000 5

73
73
00
00
00
00
00
00

20
33
2E
33
59
33
00
00

6E
64
00
00
00
00
00
00

20
3C
20
3C
46
3C
00
00

66
63
00
00
00
00
00
00

20
33
20
33
49
33
00
00

6B
oD
00
00
00
00
00
00

20
00
20
00
4c
00
00
00

73
0A
00
00
00
00
00
00

20
00
20
00
45
00
00
00

6E
00
00
00
00
00
00
00

20

20
18

88888888

20-20
57-3C
20-20
57-3C
20-54
57-3C
00-00
00-00

73-6E
00-00
00-00
00-00
00-00
00-00
00-00
00-00

20
33
20
33
58
33

88888888

20

20
19
54
1B
00
00

61
00
00
00
00
00
00
00

10
00
10
00
20
00
00
00

73
00
00
00
00
00
00
00

00
00
00
00
18
15
00
00

6E
00
00
00
00
00
00
00

0D
00
0D
00
00
00

00

8888888%

78
00
00
00
00
00
00
00

- U}
<3<3...W<3......
. W
<3<3...W<3......
MYFILE TXT ..#W

<3<3..9W<3......

snfksnfsnfasnzxc

© Copyright Virtual University of Pakistan

280

36 - File Organization

In all the sub-directories one thing is worth noticing. The first two entries are the . and ..

entries. These two are special entries as described in the slide below.

The . and . . Directories

cd.

gives the current path

cd..

goes one level backwards.

Notice the contents of SECOND directory. The . entry has the cluster number 0012H
which is the cluster number for the SECOND directory and the .. entry has cluster number

which indicates the higher level directory which is the root directory.

. and .. Sub-Directories

-1 1000 5 240 8

-d 1000

13A6:1000 2E 20 20 20 20 20 20 20-20 20 20 10 00 50 EF 56 - ..P.V
13A6:1010 3C 33 3C 33 00 00 FO 56-3C 33 12 00 00 00 00 00 <3<3...V<3......
13A6:1020 2E 2E 20 20 20 20 20 20-20 20 20 10 00 50 EF 56 - ..P.V
13A6:1030 3C 33 3C 33 00 00 FO 56-3C 33 00 00 00 00 00 00 <3<3...V<3......
13A6:1040 53 55 42 31 20 20 20 20-20 20 20 10 08 Bl 07 57 SUB1 —}
13A6:1050 3C 33 3C 33 00 00 08 57-3C 33 16 00 00 00 00 00 <3<3...W<3......
13A6:1060 53 55 42 32 20 20 20 20-20 20 20 10 08 23 OA 57 SUB2 LH#W

13A6:1070 3C 33 3D 33 00 00 OB 57-3C 33 17 00 00 00 00 00 <3=3...W<3......

-1 1000 5 268 8

-d 1000

13A6:1000 2E 20 20 20 20 20 20 20-20 20 20 10 00 23 OA 57 - LH#W
13A6:1010 3C 33 3C 33 00 00 OB 57-3C 33 17 00 00 00 00 00 <3<3...W<3......
13A6:1020 2E 2E 20 20 20 20 20 20-20 20 20 10 00 23 OA 57 - LH#W
13A6:1030 3C 33 3C 33 00 00 OB 57-3C 33 12 00 00 00 00 00 <3<3...W<3......
13A6:1040 53 55 42 33 20 20 20 20-20 20 20 10 08 9A OE 57 SUB3 —}

13A6:1050 3C 33 3D 33 00 00 OF 57-3C 33 18 00 00 00 00 00 <3=3...W<3......
13A6:1060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
13A6:1070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

Also examine the contents of SUB2 directory the . directory has cluster number 0017h
which the cluster number for SUB2 and the .. entry has the cluster number 0012H which
is the cluster number of its parent directory SECOND

Same can be observed for SUB3, SUB4, SUBS or any other sub-directory in question.

© Copyright Virtual University of Pakistan 281

36 - File Organization

13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:

13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:
13A6:

-d 1000

1000
1010
1020
1030
1040
1050
1060
1070

-1 1000 5

-d 1000

1000
1010
1020
1030
1040
1050
1060
1070

Cont...

-1 1000 5 270 8

2E
3C
2E
3C
53
3C
00
00

20
33
2E
33
55
33
00
00

20
33
2E
33
55
33

00

20
3C
20
3C
42
3D
00
00

20
3C
20
3C
42
3D

00

20
33
20
33
34
33
00
00

20
33
20
33
35
33
00
00

20
00
20
00
20
00
00
00

20
00
20
00
20
00
00
00

20
00
20
00
20
00
00
00

20
00
20
00
20
00
00
00

20
OF
20
OF
20
13
00
00

20
13
20
13
20
18

00

20-20
57-3C
20-20
57-3C
20-20
57-3C
00-00
00-00

20-20
57-3C
20-20
57-3C
20-20
57-3C
00-00
00-00

20
33
20
33
20
33
00
00

20
33
20
33
20
33

00

20
18
20
17
20
19
00
00

20
19
20
18
20

00
00

10
00
10
00
10
00
00
00

10
00
10
00
10
00
00
00

00
00
00
00
08
00
00
00

00
00
00
00
08
00
00
00

9A
00
9A
00
AF
00
00
00

AF
00
AF
00
0D
00

00

OE
00
OE
00
12
00
00
00

57
00
57
00
57
00
00
00

<3<3...]

<3<3...

suB4

<3=3...

So this how CD. command gives the current path and CD.. moves to the one higher level

directory.

© Copyright Virtual University of Pakistan

282

37 - FAT32 File System

37 - FAT32 File System

Let’s now perform few more experiments to see how long file names are managed.

Windows can have long file names up to 255 characters. For This purpose a file is created

with a long file name as shown in the slide below.

Gl [de Vew Fgortes ook Hep

> AP 2L Fokders | [TE1]-

Other Maces

o My Computar
() My Documents

3 Shared Documents
K My Hebrmrh Pl

Following shows the result of DIR command on the same volume.

Long FileName

Volume in drive His NEW VOLUME
Volume Serial Number is 8033-3F79

Directory of H:\
09/14/2005 10:00 AM <DIR> New Folder
names.txt

1 File(s) 0 bytes
1 Dir(s) 409,944,064 bytes free

10/23/2005 11:20 AM 01 am new file to experiment long file

© Copyright Virtual University of Pakistan

283

37 - FAT32 File System

In the following slide the DPB of the volume is being read.

Drive Parameter Block

-a

0AFC:0100 mov ah,

OAFC:0102 int 21
O0AFC:0104

-p
AX=3200 BX=0000
DS=0AFC ES=0AFC
OAFC:0102 CD21

AX=3200 BX=13D2
DS=00A7 ES=0AFC
O0AFC:0104 06

-d a7:13d2

00A7 :13D0

00A7:13E0 C3 C4
00A7:13F0 00 7A
00A7:1400 00 00
00A7:1410 00 00
00A7:1420 00 00
00A7:1430 00 00
00A7:1440 2E OA
00A7:1450 A7 05

32

CX=0000 DX=0000 SP=FFEE

SS=0AFC CS=0AFC

INT

21

1P=0102

CX=0000 DX=0000 SP=FFEE

SS=0AFC CS=0AFC

888888%

4D

PUSH

00
01
00
00
00
00
00

02
56
00
00
00
00
00
00

OF
34
00
00
00
00
00
29

ES

04-08
12-00
00-00
00-00
00-00
00-00
0C-00
00-00

888888838

1P=0104

BP=0000 S1=0000 DI=0000
PL NZ NA PO NC

NV UP EI

BP=0000 S1=0000 DI=0000
NV UP EI PL NZ NA PO NC

00
FF
00
00
00
00
00
00

02
FF
00
00

00
06
Cc5

Using the information in DPB the root directory entries

the slide below.

are read and are being shown in

Directory Entry

-1 1000 7 190 20

-d 1000

OAFC:1000 4E 45
O0AFC:1010 00 00
OAFC:1020 41 4E
OAFC:1030 6C 00
OAFC:1040 4E 45
OAFC:1050 2E 33
OAFC:1060 42 20
OAFC:1070 6D 00
OAFC:1080 01 53
OAFC:1090 20 00
OAFC:10A0 53 59
OAFC:10B0 2E 33
OAFC:10CO E5 6D
OAFC:10D0 78 00
OAFC:10EO0 E5 4E
OAFC:10F0 78 00
OAFC:1100 E5 45
OAFC:1110 2E 33
OAFC:1120 E5 79
OAFC:1130 74 00
OAFC:1140 E5 6C
OAFC:1150 66 00
OAFC:1160 E5 66

57
00
00
64
57
2E
00
61
00
56
53
2E

74
00
74
57
2E

78
00
61
00

20
00
65
00
46
33
49
00
79
00
54
33
65
00
65
00
54
33
73
00
20
00
69

56
00
00
65
4F
00
00
74
00
6F
45
00
00
00
00
20
45
00
00
74
00
74
00

aF
00
77
00
ac
00
6E
00
73
00
4D
00
6E
00
77
00
58
00
74
00
74
00
6C

55-4D
4F-2E
20-00
00-00
31-20
50-2E
66-00
00-6F
74-00
00-75
31-20
50-2E
74-00
FF-FF
20-00
00-6F
31-54
50-2E
65-00
00-FF
68-00
00-36
65-00

45
33
46
00
20
33
6F
00
65
00
20
33
2E
FF
54
00
58
33
6D
FF
65
00
20

20
00
00
00
20
02
00
00
00
00
20
03
00
00
00
00
54
00
00
00
00
00
00

08
00
OF
00
10
00
OoF
00
OF
00
16
00
OF
00
OoF
00
20
00
OF
00
OF
00
OF

00
00
00
FF
00
00
00
6E
00
6D
00
00
00
FF
00
63
00
00
00
FF
00
20
00

00
00
)
FF
a1
00
72
00
72
00
44
00
oF
FF
oF
00
9D

A4
FF
A4
00
A4

00
00
6F
FF
09
00
72
00
D
65

00

NEW VOLUME ..

R 0.3..

AN.e.w. .F...
ld.er......

© Copyright Virtual University of Pakistan

284

37 - FAT32 File System

1170
1180
1190
11A0
11B0
11C0
1100
11E0
11F0
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
12A0
12B0
12co
12D0
12E0
12F0
1300

Cont...

OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:

00

00

33
52
00

33

00
4E
00
45
33
61
00
6B
00
20
00
74
00
48
33
6D

20

00

00
53
33
65
00
59
33

00
65
00
54
33
6D
00
20
00
66
00
68
00
53
33
65

63
00
20
49
00
00
00
43
00
00
00
00
20
45
00
00
FF
00
69
00
20
00
61
49
00
00

00
69
00
53
00
63
00
ac
00
6E
00
77
00
58
00
65
FF
6C
00
69
00
69
00
53
00
6E

68

6E
7E
12
00
FF
45

00
FF
00
a4
7E
Fo
00
FF
00
[
00
63
00
20
7E
Fo
00

00-65
73-00
00-65
32-54
50-2E
79-00
FF-FF
44-20
63-3C
74-00
FF-FF
20-00
00-6F
31-54
56-57
2E-00
FF-FF
6F-00
00-65
6C-00
00-68
73-00
00-6E
31-54
56-57
74-00

00
69

58
33
63
FF
20
33
2E
FF
54
00
58
33
74
FF
6E
00
65
00
20

58
33
2E

00
00

54
00
00
00
20
08
00
00
00
00
54
00
00
00
00
00
00
00
00

54
00
00

00
OF
00
20
00
OF
00
16
00
OF
00
OF
00
20
00
OF
00
OoF
00
OF
00
OF
00
20
00
OF

63
00
77
00
00
00
FF
00
00
00
FF
00
63
00
00
00
FF
00
20
00
65
00
65
00
00
00

00
A4
00
9D
00
21
FF
86
00
oF
FF
oF
00
8Cc
00
43
FF
43
00
43
00
43
00
8Cc
00
oF

68 00
73 00
20 00
11 50
00 00
6C 00
FF FF
A7 63
00 00
74 00
FF FF
65 00
75 00
F8 56
00 00
78 00
FF FF
67 00
6E 00
20 00
63 00
69 00
77 00
F8 56
00 00
74 00

- -n.e...w. .
-HISIS-2TXT ...P

<3<3...c<3.
.m.e.n.t...

...e.
x.t. .D.o...c.u.
SEWTEX~1TXT ...V
W3W3...VW3......
-a.m.e...t...Cx.

Cont..

OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:
OAFC:

1310
1320
1330
1340
1350
1360
1370
1380
1390
13A0
13B0
13C0
13D0
13E0
13F0
1400
1410
1420
1430
1440
1450
1460
1470

00

00
45
33
61
00

00

74

74
57
57
00
74
00
66
00

00

889548

00

888

00

00
54
33
6D
00

00

00
00
20
45
00
00
00
00
69
00
72
00
20
45
00
48
00
00
00
00
00
00
00

00
7
00
58
00
65
00
6C
00
6F
00
61
00
57
00
20
00
00
00
00
00
00
00

FF

7E
86

FF

FF-FF
20-00
00-6F
31-54
5A-57
73-00
FF-FF
6F-00
00-65
20-00
00-6D
6D-00
00-69
31-54
5A-57
20-54
5C-57
00-00
00-00
00-00
00-00
00-00
00-00

FF

58
33
2E
FF
6E

00
OF
00
20
00
OF
00
OoF
00
OF
00
OoF
00
20
00
20
00
00
00
00
00
00
00

FF

FF

8888888%88828%82R2888%

FF FF

x.t. .D.o...c.u.
EWTEX~1TXT .&.Z
W3W3...ZW3.
Da.m.e.s...

ew. .f.i...l.e.
TAMNEW~1TXT .&.Z
W3W3...ZW3.
ROOTH TXT ...\
W3W3...\W3......

I n the above slide it can be noticed that the long file name is also stored with the FCBs.

Also the fragments of Unicode strings in the long file name forms a chain. The first byte

in the chain will be 0x01, the first byte of the next fragment will be 0x02 and so on till the

last fragment. If the last fragment is the nth fragment starting from 0 such that n is

between 0 and 25 the first byte of the last fragment will be given as ASCII of ‘A’ plus n.

© Copyright Virtual University of Pakistan

285

37 - FAT32 File System

Now lets move our discussion to FAT32. In theory the major difference between FAT 16

and FAT 32 is of course the FAT size. FAT32 evidently will contain more entries and can

hence manage a very large disk whereas FAT16 can manage a space of 2 GB maximum

practically.

Following slide shows the structure of the BPB for FAT32. Clearly there would be some

additional information required in FAT32 so the structure for BPB used in FAT32 is

different.

Fat32 BPB Structure

BPB_RsvdSecCnt

4 2 Number of reserved sectors in the Reserved region of the volume
starting at the first sector of the volune. This field must nt be 0.
For FAT12 and FAT16 volumes, this value should never be
anything other than 1. For FAT32 volumes, this value is typically
32, There is a lof of FAT code in the world “hard wired" o |
teserved sector for FATI2 and FAT16 volumes and that doesn't
bother to check this field to make sure itis . Microsoft operating
systems will properly support any non-zero value in this field.

© Copyright Virtual University of Pakistan

286

37 - FAT32 File System

BPE_NumFATs

16

The count of FAT data structures on the volume. This field should
always contain the valwe 2 for any FAT volume of ny Ty,
Adthough any value greater than or equal to 1 s pe
many soflware programs akd a few operating systems” FAT llll,‘
system drivers may ol function properly ir the value is something
other than 2. All Microsoft file system drivers will support a val
othier tham 2, but it i= sl highly recommended that no value other
than 2 be used in this field.

The reason the standard value for this ficld is 2 s o provide redun-
daney for the FAT data structure so that i a sector goes bad in one
of the FATs, that data is not lost because it is duplicated in the other
FAT. On non=disk-based media, such as FLASH memory cands,
where such readundancy is a useless Feature, a value of 1 may be
used o save the space that a second copy of the FAT uses, but
some FAT file system drivers might not recognize such a volumee
properly.

BPBE_RootlEmCnt

[

For FATI2Z and FAT16 volumes, this Gield contains the count of 32-
byte directory entries in the root directory. For I'32 volumes,
this Freld must be set o0, For FAT2 and FATESG volunwes, this
value should always specilfy a count that when multiplicd by 32
results in an even multiple of BPE_ByisPerSec. For maxinuim
compatibility. FAT 16 volumes should use the value 512,

BPB_TotSecl o

[&)

Thi= field i= the old To-bit total count of sectors on the volumee,
This cou Audes the count of all sectors in all four regions of the
volume. This leld can be 00 Qr it is O, then BPB_TolSec3 2 must be
non=Fero, For FATA2 volumes, this feld must be 0, For FAT12 and
FATIO volumes, this feld contains the sector count, and
BPBE_Totsect2 15001 the twoial sector count <= (is less than

O 10O).

BPB_Media

xFR is the standard value for “Mixed” {non-removable) media. For
removible media, OxFO is frequently used. The legal values for this
field are OxFO, OxFR, 0xI%, OxFA, OxFB, OxFC, OXFD, OXFE, and

UsFF. The only other impartant point is that whatever value is put
in here must also be put in the low byie ofthe FAT|O] entrv. This
dates back to the old MS-DOS 1.x media determination noted
carlier and is no longer usually used for anvthing.

BPB_FATSz16

17

[%]

This field is the FATIZFATILG 1o-bit count of sectors occupiced by
ONE FAT, On FAT32 volumes this field must be 0, and
BPB_FATSzY. contains the FAT siz¢ count,

BPB_SecPerTrk

()

Sectors per track for interrupt 0x13. This field is only relevant for
media that have a geometry (volume is broken down into tracks by
multiple heads and cylindersh and are visible on intermupt Ox13.
This field contzins the “secters per track”™ geometry valve,

BPB NumHeads

(o)

Number of heads for interrupt Ox13. This field is relevant as
discussed earlier for BPB_SecPerTrk. This field contains the one
based “count of heads™. For example, on a 1.44 MB 3.5-inch floppy
drive this valug is 2

BPB_HiddSec

Count of hidden sectors preceding the partition that contains this
FAT volume. This field is generally only relevant for media visible
o interrupt Ox13. This field should always be zero on media that
are not partitioned. Zxactly what value is appropriale is operating
system specific.

BPB_TotSec32

3]

This field & the new 32-bit total count of sectors on the volume.
This count includes the count of all sectors in all four rezions of the
volume. This field can bz 0: iF it 5 0, then BPE_TolSec |6 must be
non-zero. For FAT22 volumes, this field must be non-zero. For
FATIZFAT 16 volumes. this field contains the sector count of
BPB_TotSeclé is O (count is greater than or equal to 0x]0000).

© Copyright Virtual University of Pakistan

287

37 - FAT32 File System

Name

Offset
(byte)

Sire
(bytes)

Fat12 and Fat16 Structure Starting at Offset 36

Description

BS DrvNum

16

[nt 0x13 drive number (e.. 0x80). This field supports MS-DOS
bootstrap and is set to the INT 013 drive number of the media
{0x00 for floppy disks, 0x80 for hard disks).

NOTE: This field is actually operating svstem specific.

BS_Reserved!

Reserved (used by Windows NT). Code that formats FAT volumes
should always set this byte to 0.

BS_BoolSig

38

Extended boot signature (0x29). This is a signature byte that
indicates that the following three fields in the boot sector are
present,

BS_VollD

30

Volume serial number. This field. together with BS_Vollab,
supports volume tracking on removable media. These values allow
FAT file system drivers to detect that the wrong disk is inserted in a
removable drive. This 1D is usually generated by simply combining
the current date and time into a 32-bit value.

BS_VolLab

T

Volume label. This field matches the 11-byte volume label
recorded in the root directory.

NOTE: FAT file system drivers should make sure that they update
this field when the volume label file in the root directory has its
name changed or created. The setting for this field when there is no
volume label is the string “NO NAME

BS_FilSysType

There can be different volumes with different volume sizes. The device driver for file

34

One of the strings “FAT12 ", “FAT16 ", or“FAT
NOTE: Many people think that the string in this field has
something to do with the determination of what type of FAT
FATI2, FATI6, or FAT32—that the volume has. This is not true,

handling would require knowing the FAT size. The following slide illustrates an

algorithm that can be used to determine the FAT size in use after reading the BPB.

© Copyright Virtual University of Pakistan

288

37 - FAT32 File System

FAT32 Structure Starting at Offset 36

Name

Offset
(byte)

Size
{bvtes)

Description

BPB_FATSz32

36

3

This field is only defined for FAT32 media and does not exist on
FATI2 and FATI6 media. This field is the FAT32 32-bit count of
sectors oceupied by ONE FAT. BPB_FATSz16 must be (.

BPB_ExtFlags

40

This field is only defined for FAT32 media and does not exist on

FATI2 and FAT16 media.

Bits 0-3 — Zero-hased number of active FAT. Only valid if mimoring
is disabled.

Bits 4-6 - Reserved.

Bit 7 -0 means the FAT is mirrored at runtime into all FATS.

— | means only one FAT is active; it is the one referenced

in bits 0-3,

Bits 8-15 - Reserved.

BPB_FSVer

L)

This field is only defined for FAT32 media and does not exist on
FATI2 and FAT16 media. High bvte is major revision number,
Low byte is minor revision number. This is the version number of
the FATA2 volume. This supports the ability to extend the FAT32
media type in the future without werrying about old FAT32 drivers
mounting the volume. This document defines the version o 0:0, If
this field is non-zero, back-level Windows versions will not mount
the volume.

NOTE: Disk utilities should respect this field and not operate on
volumes with a higher major or minor version number than that for
which they were designed. FAT32 file system drivers must check
this field and not mount the volume if it does not contain a version
number that was defined at the time the driver was writlen.

BPB_RootClus

This field is only defined for FAT32 media and does not exist on
FATI2 and FATI6 media. This is set to the cluster number of the
first cluster of the root directory, usually 2 but not required to be 2.
NOTE: Disk utilities that change the location of the root directory
should make every effort to place the first cluster of the root
directory in the first non-bad cluster on the drive (i.c.. in cluster 2,
unless it’s marked bad). This is specified so that disk repair utilities
can easily find the root directory if this field accidentally gets
zeroed.

BPE_FSlnfo

BPE_BkBootSec

ET

|

(5]

This febd s only defined for FAT32 media and doss not exist on
FATIZ and FAT1O media. Sector number of FSINFO structure in the
peserved area of the FATI2 volume, Usially 1.

NOTE: There wil
butonly the copy pointed to by this fiekl will be kept up to date (i.e.
both the primary and backup boot secord will point to the same
FSINFO sector),

ichd is only defined for FAT32 media and dozs not exist on
FATI2 and FATI6 media. IF non-zero, indicates the sector nuimber
in the reserved arca of the volume of a copy of the boot record.
Uspally 6. No value otlver than 6 is recomimended.

BPE_Reserved

1 copy of the FSINFO structure in BackupBoot,

This field is only defined for FAT32 media and doss not exist on
FATI2 and FATI6 media, Reserved for future expansion, Code

that formats FAT32 volumes should always set all of the bytes of
field 1o 0.

BS_IInvNum

135_Reserved

65

s iU does for FAT12Z and FATLG
2 media is that the field isata

has t

n s it does for FATI2 and FATIG
Iy dilference for FATI2 madia is that the ficld isata
n the boot sector.

media, 1
difterent off:

BS_BootSig

i

This fiekd has the samz definition 5 it coes for FATI2 and FATIE
media. The only difference for FAT32 media is that the field is ata
different offset in the boo sector,

Bs_Voallld

This fickd has the same definition @s it coes for FATI2 and FATIE
media, The only difference for FAT32 media is that the field is ai a
different offset in the bool sector,

BS_Aollab

This fiekd has the same definition as it coes for FATI2 and FATIE
maedin, The only difference for FAT32 media is that the field is ata
different offset in the boo sector,

Bs_FilsysType

Always settot ra "PAT3Z P see e note forths
field in the FATI2HFAT 1a section earlier. This Neld has nothing to
dovwith FAT type determination.

© Copyright Virtual University of Pakistan

289

37 - FAT32 File System

Fat Type Determination

if(BPB_FATSZ16 I= 0)
FATSz = BPB_FATSz16;

else
FATSz = BPB_FATSz32;
if(BPB_TotSec16 !=0)
TotSec = BPB_TotSec16;
else
TotSec = BPB_TotSec32;
DataSec = TotSec — (BPB_ResvdSecCnt + (BPB_Num FATs * FATSz) +
RootDirSectors);
CountofClusters = DataSec / BPB_SecPerClus;

if(CountofClusters < 4085)
/*Volume is FAT12 */
else if(CountofClusters < 65525)
/*Volume is FAT16 */
else
/*Volume is FAT32 */

© Copyright Virtual University of Pakistan 290

38 - FAT32 File System Il

38 - FAT32 File System Il

Following slide shows how the chain of clusters is maintained in a FAT32 based system.

File Organization
32 — bit
ol R
1] R FCB
2
3
4 7 | |
Start Cluster #
5[0
6 11
7 9
Cont...
8
9 6
10
11| EOF
2/28

© Copyright Virtual University of Pakistan

291

38 - FAT32 File System Il

 Each entry is of 32-bits size but only
lower 28-bits are used.

* Higher 4-bits are not tempered.

» While reading higher 4-bits are
ignored.

» While writing higher 4-bits are not

Fat32 Entry

changed.

FCB in FAT32 system has an enhanced meaning as shown by the slide below.

FAT 32 Byvte Directory Entry Structure

Name Offset Size Description
(byte) (bytes)
DIR_ Name 0 11 Short name.
DIR_Attr 11 | File attributes:
ATTR_READ ONLY 001
ATTR_HIDDEN 0x02
ATTR_SYSTEM Ox04
ATTR_VOLUME_ID Ox08
ATTR_DIRECTORY el
ATTR_ARCHIVE 0x20
ATTR_LONG_NAME ATTR_READ_ONLY |
ATTR_HIDDEN |
ATTR_SYSTEM |
ATTR_VOLUME_ID
The upper two bits of the attribute byte are reserved and should
always be set to 0 when a file is created and never modified or
looked at after that.

DIR_NTRes 12 1 Reserved for use by Windows NT. Set value to 0 when a file is
created and never modify or look at it after that.

DIR_CriTimeTenth 13 I Millisecond stamp at file creation ime. This field actually
contains a count of tenths of a second. The granularity of the
seconds part of DIR_CriTime is 2 seconds so this field is a
count of tenths of a second and its valid value range is 0-194
inclusive.

DIR_CriTime 14 2 Time file was created.

DIR_CrtDate 16 2 Date file was created.

DIR_LstAccDate 18 2 Last access date. Note that there is no last access time, only a
date. This is the date of last read or write. In the case of a write,
this should be set to the same date as DIR_WriDale,

DIR_FsiClusHI 20 2 Hizh word of this entry’s first cluster number (always 0 for a
FATI2 or FATI6 volume).

DIR_WrtTime 22 2 Time of last write. Note that file creation is considered a write

DIR_WriDate 24 2 Date of last write. Note that file creation is considered a wrile.

Anatomy of FAT32 based system differs from FAT16 based systems significantly as

explained by the slide below.

© Copyright Virtual University of Pakistan

292

38 - FAT32 File System Il

Fat32 File System

FAT1

FAT2

Clust2

Clust3

v

directory.

Reserved Blocks
* No fixed space reserved for root

» FCB of root directory are saved in a
cluster and the cluster # for root directory
is saved in BPB as discussed earlier.

In reflection of the anatomy of FAT32 based system the method used to translate the

cluster # into LSN also varies. The following formula is used for this purpose.

Starting Sector # for a Cluster

Starting Sector = Reserved Sect. + FatSize *

FatCopies + (cluster # - 2) *
size of cluster

Now we determine all the parameters in the above slide for a certain volume to translate a

cluster number into LSN.

© Copyright Virtual University of Pakistan

293

38 - FAT32 File System Il

Reserved Blocks

0000 EB 58 90 4D 53 5 X .MSWIEN 235 88 144 77 83 87 73 78
0008 34 2E 31 00 02 20 24 00 4 .1 $. 52 46 49 0 2 32 36 0
0010 02 00 00 00 00 F8 00 0O .. . 2 0 0 0 0 248 0 0]
0018 3F 00 FO 00 3F 00 00 0O ? .. ? .. 63 0 240 0 63 0 0 0]
0020 41 29 54 02 3E 25 00 00 AT .>%. 65 41 84 2 62 37 0 0
0028 00 00 00 00 02 00 00 0O - 0 0 0 0 2 0 0 0
0030 01 00 06 00 00 00 00 0O 1 0 6 0 0 0 0 0]
0038 00 00 00 00 00 00 00 00 - P 0 0 0 0 0 0] 0 0
0040 80 01 29 F1 17 79 2D 4E . -) . .y-N 128 1 41 241 23 121 45 78
0048 4F 20 4E 41 4D 45 20 20 9] NAME 79 32 78 65 77 69 32 32
0050 20 20 46 41 54 33 32 20 FAT32 32 32 70 65 84 51 50 32
0058 20 20 33 C9 8E D1 BC F4 3 - 32 32 51 201 142 209 188 244
0060 7B 8E Cl1 8E D9 BD 00 7C {| 123 142 193 142 217 189 0 124
0068 88 4E 02 8A 56 40 B4 08 SN L LVe .. 136 78 2 138 86 64 180 8
0070 CD 13 73 05 B9 FF FF 8A . s PR 205 19 115 5 185 255 255 138
0078 F1 66 OF B6 C6 40 66 OF . .. @ f . 241 102 15 182 198 64 102 15
0080 B6 D1 80 E2 3F F7 E2 86 -7 .. 182 209 128 226 63 247 226 134
0088 CD CO ED 06 41 66 OF B7 .. AT L 205 192 237 6 65 102 15 183
0090 C9 66 F7 E1 66 89 46 F8 . f . fF L F L 201 102 247 225 102 137 70 248
0098 83 7E 16 00 75 38 83 7E ~ .u8 .~ 131 126 22 0 117 56 131 126
Offset 14 = OXOE = Reserved Sect. = 0x0024
0000 EB 58 90 4D 53 57 . >< - I N 235 144 77 83 87 73 78
0008 34 2E 31 00 02 20 24 OO 1 $ - 52 6 49 2 32 36 0
0010 02 00 00 00 00 F8 00 00 - - 2 0 0 0 0 248 0 0
0018 3F 00 FO 00 3F 00 00 0O ? .. ? .. 63 0 240 0 63 0] 0 0]
0020 41 29 54 02 3E 25 00 00 AT .>% . 65 41 84 2 62 37 0 0]
0028 00 00 00 00 02 00 00 OO - 0] 0 0 0 2 0 0 0
0030 01 00 06 00 00 00 00 0O 1 0 6 0 0 0] 0 0]
0038 00 00 00 00 00 00 OO0 0O 0 0 0 0 0 0 0 0
0040 80 01 29 F1 17 79 2D 4E . .) . .y-N 128 1 41 241 23 121 45 78
0048 4F 20 4E 41 4D 45 20 20) NAME 79 32 78 65 77 69 32 32
0050 20 20 46 41 54 33 32 20 FAT32 32 32 70 65 84 51 50 32
0058 20 20 33 C9 8E D1 BC F4 3 - 32 32 51 201 142 209 188 244
0060 7B 8E C1 8E D9 BD 00 7C {. | 123 142 193 142 217 189 0 124
0068 88 4E 02 8A 56 40 B4 08 . N . .V@. . 136 78 2138 8 64 180 8
0070 CD 13 73 05 B9 FF FF 8A . s P 205 19 115 5 185 255 255 138
0078 F1 66 OF B6 C6 40 66 OF . .. e f . 241 102 15 182 198 64 102 15
0080 B6 D1 80 E2 3F F7 E2 86 L7 .. 182 209 128 226 63 247 226 134
0088 CD CO ED 06 41 66 OF B7 .. LAF L 205 192 237 6 65 102 15 183
0090 C9 66 F7 E1 66 89 46 F8 . f . fF L F L 201 102 247 225 102 137 70 248
0098 83 7E 16 00 75 38 83 7E ~ .us8 ~ 131 126 22 0 117 56 131 126
— — ’ -—
Offset 16 = 0x10 = Count of FAT’S = 0x0002
0000 EB 58 90 4 . >< - I N 235 88 144 77 83 87 73 78
0008 34 2E 31 00 02 20 24 OO $ - 52 46 49 0 2 32 36 0
0010 02 00 00 00 00 F8 00 00 - - 2 0 0 0 0 248 0 0
0018 3F 00 FO 00 3F 00 00 0O ? .. ? .. 63 0 240 0 63 0] 0 0]
0020 41 29 54 02 3E 25 00 00 AT .>% . 65 41 84 2 62 37 0 0]
0028 00 00 00 00 02 00 00 OO - 0] 0 0 0 2 0 0 0
0030 01 00 06 00 00 00 00 0O 1 0 6 0 0 0] 0 0]
0038 00 00 00 00 00 00 OO0 0O 0 0 0 0 0 0 0 0
0040 80 01 29 F1 17 79 2D 4E . .) . .y-N 128 1 41 241 23 121 45 78
0048 4F 20 4E 41 4D 45 20 20) NAME 79 32 78 65 77 69 32 32
0050 20 20 46 41 54 33 32 20 FAT32 32 32 70 65 84 51 50 32
0058 20 20 33 C9 8E D1 BC F4 3 - 32 32 51 201 142 209 188 244
0060 7B 8E C1 8E D9 BD 00 7C {. | 123 142 193 142 217 189 0 124
0068 88 4E 02 8A 56 40 B4 08 . N . .V@. . 136 78 2138 8 64 180 8
0070 CD 13 73 05 B9 FF FF 8A . s . P 205 19 115 5 185 255 255 138
0078 F1 66 OF B6 C6 40 66 OF . f .. e f . 241 102 15 182 198 64 102 15
0080 B6 D1 80 E2 3F F7 E2 86 L7 .. 182 209 128 226 63 247 226 134
0088 CD CO ED 06 41 66 OF B7 LAF L 205 192 237 6 65 102 15 183
0090 C9 66 F7 E1 66 89 46 F8 . f . fF L F L 201 102 247 225 102 137 70 248
0098 83 7E 16 00 75 38 83 7E ~ .us8 ~ 131 126 22 0 117 56 131 126
Offset 36 = 0x24 = Sectors occupied by single FAT = 0x0000253E

© Copyright Virtual University of Pakistan

294

38 - FAT32 File System Il

for Root Dire

Cluster

ctory

0000 49 4E X .MSWIN 235 88 144 87 73 78
0008 34 2E 31 00 02 20 24 00 4 1. . $. 52 46 49 [0] 2 32 36 0
0010 02 00 00 00 00 F8 00 00 e e e e e e 2 0 0 0 0 248 0 0
0018 3F 00 FO 00 3F 00 00 00 ? L L ? 0L 63 0 240 0 63 0 0 0
0020 41 29 54 02 3E 25 00 00 AT .>%. 65 41 84 2 62 37 0 0
0028 00 00 00 00 02 00 00 00 e e e e e e 0 0 0 [0] 2 0 0 0
0030 01 00 06 00 OO0 OO 00 OO 1 0 6 0 0 0 0 0
0038 00 00 00 00 00 00 00 00 C e e e e 0 0 0 0] 0 0 0 0
0040 80 01 29 F1 17 79 2D 4E .-) .- .-y-N 128 1 41 241 23 121 45 78
0048 4F 20 4E 41 4D 45 20 20 o] NAME 79 32 78 65 77 69 32 32
0050 20 20 46 41 54 33 32 20 FAT32 32 32 70 65 84 51 50 32
0058 20 20 33 C9 8E D1 BC F4 3. .- . 32 32 51 201 142 209 188 244
0060 7B 8E C1 8ED9 BD 00 7C { | 123 142 193 142 217 189 0 124
0068 88 4E 02 8A 56 40 B4 08 LN ovae .. 136 78 2 138 86 64 180 8
0070 CD 13 73 05 B9 FF FF 8A LS 205 19 115 5 185 255 255 138
0078 F1 66 OF B6 C6 40 66 OF P . e f . 241 102 15 182 198 64 102 15
0080 B6 D1 80 E2 3F F7 E2 86 L7 L. 182 209 128 226 63 247 226 134
0088 CD CO ED 06 41 66 OF B7 .. - AT 205 192 237 6 65 102 15 183
0090 C9 66 F7 E1 66 89 46 F8 .F .. F L F L 201 102 247 225 102 137 70 248
0098 83 7E 16 00 75 38 83 7E o .u8 .~ 131 126 22 0 117 56 131 126
Offset 44 = 0x2C = 0x0000 0002
0000 EB 58 90 4D 53 57 49 4E X .MSWIN 235 88 144 77 83 87 73 78
0008 34 2E 31 00 02 20 24 00 4 .1 . . $. 52 46 49 0 2 32 36 0
0010 02 00 00 00 00 F8 00 00 e e e e e e 2 0 0 0 0 248 0 0
0018 3F 00 FO 00 3F 00 00 00 ? L L ? 0L 63 0 240 0 63 0 0 0
0020 41 29 54 02 3E 25 00 00 A)T > % . 65 41 84 2 62 37 0 0
0028 00 00 00 00 02 00 00 00 e e e e e e 0 0 0 [0] 2 0 0 0
0030 01 00 06 00 00 OO 00 OO 1 0 6 0 0 0 0 0
0038 00 00 00 00 00 00 00 00 e e e e e e 0 0 0 [0] 0 0 0 0
0040 80 01 29 F1 17 79 2D 4E .-) .- .-y-N 128 1 41 241 23 121 45 78
0048 4F 20 4E 41 4D 45 20 20] NAME 79 32 78 65 77 69 32 32
0050 20 20 46 41 54 33 32 20 FAT32 32 32 70 65 84 51 50 32
0058 20 20 33 C9 8E D1 BC F4 3. ... 32 32 51 201 142 209 188 244
0060 7B 8E C1 8E D9 BD 00 7C L. - - - . 1 123 142 193 142 217 189 0 124
0068 88 4E 02 8A 56 40 B4 08 . N . .V@.. 136 78 2138 8 64 180 8
0070 CD 13 73 05 B9 FF FF 8A LS 4. - .. 205 19 115 5 185 255 255 138
0078 F1 66 OF B6 C6 40 66 OF T 241 102 15 182 198 64 102 15
0080 B6 D1 80 E2 3F F7 E2 86 L. ? .. 182 209 128 226 63 247 226 134
0088 CD CO ED 06 41 66 OF B7 - . - AT 205 192 237 6 65 102 15 183
0090 C9 66 F7 E1 66 89 46 F8 .F o F L F L 201 102 247 225 102 137 70 248
0098 83 7E 16 00 75 38 83 7E ~ .u8 ~ 131 126 22 0 117 56 131 126
Offset 13 = 0x0D = 0x20 = 32 blocks

So using all this information we calculate the LSN for cluster number 2 as shown the

slide below for this particular volume.

© Copyright Virtual University of Pakistan

295

38 - FAT32 File System Il

Starting Sector for Cluster # 2

Starting Sector = Reserved Sect. + FatSize *
FatCopies + (cluster # - 2) *
size of cluster

= 0x0024 + 0x0000 253E *
0x0002 + (2 - 2) * 0x20

= 0x4AA0

=19104D

To examine the contents of a file first a file is created whose contents are also shown in
the slide.

Creation of a File on Root

and is stored as myfile.txt on the root directory.

© Copyright Virtual University of Pakistan 296

38 - FAT32 File System Il

Creation of a File on Root

&

My Recent
Documents

My Computer

My Metwork

C

Savein | “es Local Disk [C:]

J 0@ m

Iyswsetup
IChBad Boys 2 [Ctest
I BORLANDC —va
(= compag I WINDOWS
[ChDocuments and Settings Ea
I esprimnt [Z] apoIT
(0 firesall [Z] pumpP
IC3) handouts 1Z] hel
I lectures E] pcom
[ChMsPress [Z] PCOMR,
[CDPC INTERN [Z] pcoms
I pinfa E] self
|2y Prince of Persia 2 = | SERDUMP

IC=)Prince of Persia 4 -Sand of Time (2] sero

ICProgram Files

. e 3
Savessbpe | Text Documerts () >
Encoding: AMSI e

Now we examine the contents of cluster number 2 which contains the root directory as

already seen in the previous slides.

Cluster # 2

000000000000 0000 E5 41 47 45 46 49 4C 45 53 59 53 26 00 3B A2 31 .AGEFILESYS&.
000000000010 0010 A8 32 84 33 00 00 53 4E 84 33 03 00 00 60 01 00 .2.3..SN.3.
000000000020 0020 57 49 4E 44 4F 57 53 20 20 20 20 10 00 4C A2 31 WINDOWS
000000000030 0030 A8 32 21 34 00 00 A3 31 A8 32 03 OA 00 00 00 00 214,012,
000000000040 0040 4E 54 4C 44 52 20 20 20 20 20 20 27 08 00 71 A7 NTLDR
000000000050 0050 03 31 A8 32 00 00 71 A7 03 31 85 8E BO DO 03 00 .1.2..q..1.
000000000060 0060 4E 54 44 45 54 45 43 54 43 4F 4D 27 00 00 D1 A4 NTDETECTCOM
000000000070 0070 03 31 A8 32 00 00 D1 A4 03 31 9E 8F CC B9 00 00

000000000080 0080 42 4F 4F 54 20 20 20 20 49 4E 49 06 18 30 25 32

000000000090 0090 A8 32 21 34 OE 00 5C 33 A8 32 FO AD D3 00 00 00

0000000000A0 00AO 42 20 00 53 00 65 00 74 00 74 00 OF 00 4A 69 00

0000000000B0 00BO 6E 00 67 00 73 00 00 00 FF FF 00 00 FF FF FF FF

0000000000CO 0OCO 01 44 00 6F 00 63 00 75 00 6D 00 OF 00 4A 65 00

0000000034E0 34E0 E5 59 46 49 4C 45 20 20 54 58 54 20 18 67 CC 16 .YFILE
0000000034F0 34F0 21 34 21 34 00 00 CD 16 21 34 00 00 00 00 00 00 1414....14...
000000003500 3500 4D 59 46 49 4C 45 20 20 54 58 54 20 18 67 CC 16 MYFILE
000000003510 3510 21 34 21 34 09 00 CD 16 21 34 C9 29 29 00 00 00 1414....1
000000003520 3520 00 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 00

000000003530 3530 00 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 00

© Copyright Virtual University of Pakistan

297

38 - FAT32 File System Il

From the information from above slides the low and high words of the first cluster
number is obtained and is shown in the slide below. The higher 4 bits of the cluster

number should be ignored as discussed earlier.

Cluster # within FCB

Cluster # Low Word = 29C9
Cluster # Hi Word = 0009H
0009 29C9 & OFFF FFFF = 009 29C9

Using the cluster number above the LSN for this cluster is determined as shown in the
slide below.

File Data Sectors

Starting Sector = Reserved Sect. + FatSize *
FatCopies + (cluster # - 2) *
size of cluster

=0024 + 253E * 2 +
(929C9 - 2) * 0x20
= 4AA0 + 12538E0
= 1258380
= 19235712

© Copyright Virtual University of Pakistan 298

38 - FAT32 File System Il

The blocks within the cluster are read and their contents can be seen in the slide below.

File Data

Dump of LSN 19235712

0000 74 68 69 73 20 69 73 20
0008 66 69 6C 65 20 74 6F 20

t 116 104 105 115 32 105 115 32
f
0010 74 65 73 74 20 46 41 54 t
3
s

is

to 102 105 108 101 32 116 111 32

FAT 116 101 115 116 32 70 65 84
0018 33 32 20 66 69 6C 65 20 le
0020 73 74 72 75 63 74 75 72 tu

51 50 32 102 105 108 101 32
r 115 116 114 117 99 116 117 114

0028 65 00 00 00 00 00 00 00 e 101 0 o 0 O o0 o0 O
0030 00 00 00 00 00 00 00 OO 0 o0 0O o 0O o o0 O
0038 00 00 00 00 00 00 00 OO 0o o0 0O o O o o0 o
0040 00 00 00 00 00 00 00 OO 0 o0 0O o O 0 o0 O
0048 00 00 00 00 00 00 00 OO0 0 o0 o 0 O o0 o0 O
0050 00 00 00 00 00 00 00 OO 0o o0 0O o 0O o o0 O
0058 00 00 00 00 00 00 00 OO 0 o0 0O 0o O o o0 o
0060 00 00 00 00 00 00 00 OO 0 o0 0O o O 0O o0 O
0068 00 00 00 00 00 00 00 OO0 0o o0 0o 0 O o0 o0 O

In the FAT32 there is another special reserved block called FSInfo sector. The block
contains some information required by the operating system while cluster
allocation/deallocation to files. This information is also critical for FAT16 based systems.
But in FAT12 and 16 this information is calculated when ever required. This calculation
at the time of allocation is not feasible in FAT32 as the size of FAT32 is very large and
such calculations will consume a lots of time, so to save time this information is stored in

the FSInfo block and is updated at the time of allocation/deallocation.

© Copyright Virtual University of Pakistan 299

38 - FAT32 File System Il

FAT32 FSInfo Sector Structure and Backup Boot Sector

Name

Offset
{byte)

Size
{bytes)

Description

FSI_LeadSig

0

4

Value 0x41613232, This lead signature is used to validate that this
is in fact an FSInfo sector.
=

FS1_Reserved]

430

This field is cumently reserved for future expansion. FAT32 format
code should always nitialize all bytes of this field to 0. Bytes in
this field must currently never be used.

FSI_StrucSig

454

Value Ox61417272, Another signature that is more localized in the
sector 1o the location of the fields that are used.

FSI_Free_Count

458

Contains the last known free cluster count on the volume, If the
computed. Any other value can be used, but is nol necessarily
correct. It should be range checked at least to make sure it is <
volume cluster count,

FSI_Nxt_Free

402

This is a hint for the FAT driver. It indicates the cluster number at
which the driver should start looking for free clusters. Because a
FAT32 FAT is large, it can be rather time consuming if there are a
lot of allocated clusters at the start of the FAT and the driver starts
looking for a free cluster starting at cluster 2. Typically this value is
set to the last cluster number that the driver allocated. If the value is
leoking at cluster 2. Any other value can be used, but should be
checked first to make sure it is a valid cluster number for the
volume.

FSI_Reserved?

490

This field is cumently reserved for future expansion. FAT32 format
code should always initialize all bytes of this field to 0. Bytes in
this field must currently never be used.

FSI_TrailSig

308

Value 0XAASS0000. This trail signature is used to validate that this
is in fact an FSInfo sector. Note that the high 2 bytes of this
value—which go into the bytes at offsets 310 and 511-—match the
signature byvtes used at the same offsels in sector 0.

© Copyright Virtual University of Pakistan

300

39 - New Technology File System (NTFS)

39 - New Technology File System (NTFS)

The following slide shows the anatomy of an NTFS based system. The FAT and root

directory has been replaced by the MFT. It will generally have two copies the other copy

will be a mirror image of the original. Rests of the blocks are reserved for user data. In the

middle of the volume is a copy of the first 16 MTF record which are very important to the

system.

MFT

MFT
(Mirror)

User Data

User Data

Boot Block

Copy of First 16 MFT records

© Copyright Virtual University of Pakistan

301

39 - New Technology File System (NTFS)

The following slides show the Boot sector structure for a NTFS based system.

0x00

0x03
Ox0B
0ox24

0x54

0x01

FE

NTFS General Boot Sector Structure
3 bytes Jump
Instruction
LONGLONG OEM ID
25 bytes BPB
48 bytes Extended BPB
426 bytes Bootstrap
Code
WORD End of Sector
Marker

BPB of NTFS Boot Block

0XOB WORD 0X0002
0X0D BYTE 0x08

OXOE WORD 0X0000

0x10 3BYTES OX000000

0x13 WORD 0X0000

0X15 BYTE OXFB

0x16 WORD 0X0000

0x18 WORD 0X3F00

Ox1A WORD OXFFOO

0x1C DWORD OX3F000000

0X20 DWORD OX00000000

0x24 DWORD Ox80008000

0x28 Longlong OX4AF57F0000000000
0X30 Lengleng Ox0400000000000000
0x38 Longlong OX54FF070000000000
0x40 DWORD OXF6000000

0x44 DWORD Ox01000000

0x48 Lenglong OX14A51B74C91B741C
0X50 DWORD OX00000000

Bytes Per Sector
Sectors Per Cluster
Reserved Sectors
always 0

not used by NTFS
Media Descriptor
always 0

Sectors Per Track
Number Of Heads
Hidden Sectors
hot used by NTFS
hot used by NTFS
Total Sectors
Logical Cluster Number forthe file §MFT

Logical Cluster Number forthe file
SMFTMirr

Clusters Per File Record Segment
Clusters Per Index Block

Volume Serial Number
Checksum

© Copyright Virtual University of Pakistan

302

39 - New Technology File System (NTFS)

The following slide shows a sample of the boot block dump. The following slides depict

various parameters placed in the Boot block.

Sample of NTFS Boot Block

Physical Sector:Cyl 0, Side 1, Sector 1

00000000:EB 52 90 4E 54 46 53 20 -20 20 20
00000010:00 00 00 00 00 F8 00 00 -3F 00 FF
00000020 00 00 00 00 80 00 80 00 -4A F5 7F

00000160103 AO F8 01 E8 09 00 A0 -FB 01 EB 03 00 FB Ef
00000170:B4 01 8B FO AC 3C 00 74 -09 B4 OE BB 07
00000180:EB F2 C3 OD OA 41 20 64 -69 73 6B 20 72 65 61 64 A dlsk read
00000190:20 65 72 72 6F 72 20 6F -63 63 75 72 72 65 64 00 error occurred.

000001A0:0D OA 4E 54 4C 44 52 20 -69 73 20 6D 69 73 73 69 ..NTLDR is missi
000001B0:6E 67 00 OD OA 4E 54 4C -44 52 20 69 73 20 63 6F ng...NTLDR is co
000001C0:6D 70 72 65 73 73 65 64 -00 OD OA 50 72 65 73 73 mpressed...Press
000001D0:20 43 74 72 6C 2B 41 6C -74 2B 44 65 6C 20 74 6F Ctrl+Alt+Del to
000001E0:20 72 65 73 74 61 72 74 -OD OA 00 00 00 00 00 OO restart.
000001F0:00 00 00 00 00 00 00 00 -83 AD B3 C9 00 00 55 AAU.

Sector Per Cluster =0008

MFT File Cluster #

Physical Sector:Cyl 0, Side 1, Sector 1

00000000:EB 52 90 4E 54 46 53 20 -20 20 20 00 02 08 00 00 .R.NTFS ...
00000010:00 00 00 00 00 F8 00 00 -3F 00 FF 00 3F 00 00 0O
00000020:00 00 00 00 80 00 80 00 -4A F5 7F 00 00 00 00 00 .. -
00000030:04 00 00 00 00 00 OO 00 -54 FF 07 00 OO 00 0000T..

o2] 88588 i, /).557"900;5106

D074 04 FE 06 1400 G366 -0 3E 06 6

: 550555 %0 06 52 68 8 0 - 01 00 @ 2 14 00 6 17 5m
RS b 5 zommusnamumvs\
e BReEE T e e niaE 2000 a 0135400 6 06 816 20 00 -8
¥ SR o6 b oo ¥ 0F & b o 8 &

00000160.C3 AO F8 01 E8 09 00 AO FB 01 EB 03 00 FB EB FEcoaao...
00000170:B4 01 8B FO AC 3C 00 74 -09 B4 OE BB 07 00 -
00000180:EB F2 C3 OD OA 41 20 64 -69 73 6B 20 72 65 A dlsk read
00000190:20 65 72 72 6F 72 20 6F -63 63 75 72 72 65 64 00 error occurred.
000001A0:0D OA 4E 54 4C 44 52 20 -69 73 20 6D 69 73 73 69 ..NTLDR is missi
000001B0:6E 67 00 OD OA 4E 54 4C -44 52 20 69 73 20 63 6F ng...NTLDR is co
000001C0:6D 70 72 65 73 73 65 64 -00 OD OA 50 72 65 73 73 mpressed...Press
000001D0:20 43 74 72 6C 2B 41 6C -74 2B 44 65 6C 20 74 6F Ctrl+Alt+Del to
000001E0:20 72 65 73 74 61 72 74 -0D OA 00 00 00 00 00 00 restart........
000001F0:00 00 00 00 00 00 OO 00 -83 A0 B3 C9 00 00 55 AA u.

MFT File Cluster # =00000004

The first 16 entries of the MFT are reserved. Rests of the entries are used for user files.
There is an entry for each file in the MFT. There can be difference in the way a file is

managed depending upon the size of the file.

© Copyright Virtual University of Pakistan 303

39 - New Technology File System (NTFS)

MET Internal Structure
MFT
Log File
Small File Record
Large File Record
Small Directory T
Record

Following slide shows the detail about the first 16 system entries within the MFT.

MFT Entrv Detalls

Standard
Information

Attribute List

File Mame

Security
Descriptor

Data

Object ID

Logged Tool
Stream

Reparse Point

Index Root

Index
allocation

Bitmap

Volume
Information

Yolume Name

Includes information such as timestamp and link count.

Lists the b cation of all attribute records that do not fit in the MFT record.

& repeatable attribute for both long and short file names. The long name of thefile
can be up to 255 Unicode characters. The short name is the 8.3, case-insensitive

name for the file. Additional names, or hard links, required by POSIX can he
included as additional file name attributes.

Describes who owns the file and who can access it.

Contains filedata. NTFS allows mukiple data attributes per file. Each file typically
has oneunnamed data attribute, A file can also have one or more named data
attributes, each using a particular syntax.

& volume-unique file identifier. Used bythe distributed link tracking service. Not all
files have object identifiers.

Similar to a data stream, but operations are logged to the NTFS log file just like
NTFS metadata changes, Thisis used by EFS,

Used for wolume mount points, They are also used by Installable File System (IFS)
filter drivers to mark certain files as special to that driver.

Used to implement folders and other indexes.
Used to implement folders and other indexes.

Used to implement folders and other indexes.
Used only in the $Yolume system file, Contains the wolume version,

Used onlv in the $Yolume svstem file. Contains the volume label.

© Copyright Virtual University of Pakistan

304

39 - New Technology File System (NTFS)

MFT System Entries

Masterfile table

Masterfile table
2

Loq file

Yolurme

Attribute
definitions

Root file name
index

Cluster bitrnap

Boot sector

Bad cluster file
Security file
Upcase table

NTFS extension
file

§ Mt

& MftMirr

$LoqgFile

$Wolumne

§ AttrDef

$Bitrmap
$Boot

$BadClus
$Secure

$lpcase

$Extend

(]

10

11

12-15

Contains one base file record for each file and folder on an NTFS
wolurne. Ifthe dlocation information for a file or folder is too large
to fit within a single record, other file records are allocated as well,

& duplicate image of the first four records of the MFT, This file
qguarantees access to the MFT in case of a single-sector failure,

Contains alist of transaction steps used for NTFS recoverability, Log
file size depends on the volume size and can be as large as 4 MB, It
isused by Windows NT/2000 to restore consistency to NTFS after a
systern failure.

Contains inforrnation about the volume, such as the volume label
and the volurme wersion,

A table of attribute names, nurnbers, and descariptions,

The root folder,

A representation of the volurne showing which clusters are in use.

Includes the BPB used to mount the valume and additional
bootstrap loader code used if the volurne is bootable.

Contains bad clusters for the volume,
Contains unique security descriptors for all files within a wolume,

Converts lowercase characters to matching Unicode uppercase
charaders.

Used for various optional extensions such as quotas, reparse point
data, and object identifiers,

Reserved for future use,

© Copyright Virtual University of Pakistan

305

40 - Disassembling the NTFS based file

40 - Disassembling the NTFS based file

Now in the following example a file is created and its entry is searched in the MFT. The
following slide shows that the name of the file created is TEST.TXT.

i Syt HTFS
Free Space: 12,9 G0
Total s 14.7 Gl

Hyies

060106 451 P
060106 337

i My Comgurer

This slide show the contents of the file created.

I test. txt - Notepad
Fle Edt Format Yiew Help

LB

hello this 15 a nNTFS test file

The first logical block is read to read the contents of the BPB in NTFS. Following shows

the contents of boot block for this volume.

© Copyright Virtual University of Pakistan

306

40 - Disassembling the NTFS based file

.Boot Sector of the Volume,,
0008 20 20 20 00 02 08 32 32 32 0 2 8 0 0
0010 00 00 00 00 00 F8 0O 0248 0 O
0018 3F 00 FF 00 3F 00 063 0 0 O
0020 00 00 00 00 80 0O 0128 0128 O
0028 44 A2 D7 01 00 00 1 0 0 0 O
0030 00 00 OC 00 00 00 0O 0 0O o0 o
0038 24 7A 1D 00 00 00 0 0 0O 0 o
0040 F6 00 00 00 01 00 0 1 0 0 O
Following slides shows various parameters obtained from BPB.
OOFO OF 85 0C 00 EB BBFF 80 15 133 12 0 232 179 255 128
OOF8 3E 14 00 00 OF 84 61 00 > a . 62 20 O 0 15132 97 0
0100 B4 42 8A 16 24 00 16 1F B..$. .. 180 66 138 22 36 0 22 31
0108 8B F4 CD 13 66 58 5B 07 - - -FX [139 244 205 19 102 88 91 7
0110 66 58 66 58 1F EB 2D 66 f X f X - f 102 88 102 88 31 235 45 102
G0 @ boes B i0E) % | i § 1% a1 24 w20 S
o0 o £aco & o 08 e 3 T B S ieem 6 Do s
Sip BB BEELR Poabes R B ERE w2
0 ogeF ;o iree [lolllia mmemiom 7 die 9
oo 3 01E0 0 0 Faco 12 i e
o uEREn L mig s 9,0
0188 69 73 6B 20 72 65 61 64 isk read 105 115 107 32 114 101 97 100
0190 20 65 72 72 6F 72 20 6F error o 32 101 114 114 111 114 32 111
0198 63 6375 7272656400 ccurred. 99 99 117 114 114 101 100 0
01A0 0D OA 4E 54 4C 44 52 20 -NTLDR 13 10 78 84 76 68 82 32
01A8 69 73 20 6D 69 73 73 69 is missi 105 115 32 109 105 115 115 105
01BO 6E 67 00 OD OA 4E 54 4C ng . . . NTL 110 103 0 13 10 78 84 76
01B8 44 52 20 69 73 20 63 6F DR is co 68 82 32 105 115 32 99 111
01CO 6D 70 72 6573 7365 64 mpr ess ed 109 112 114 101 115 115 101 100
01C8 00 OD OA 50 72 65 73 73 ..Press 0 13 10 80 114 101 115 115
01D0 20 43 74 72 6C 2B 41 6C ctrll+Al 32 67 116 114 108 43 65 108
01D8 74 2B 44 65 6C 20 74 6F t+Del to 116 43 68 101 108 32 116 111
Ol1E0 20 72 65 73 74 61 72 74 restart 32 114 101 115 116 97 114 116
01E8 OD OA 00 00 00 00 0O OO 13 10 O 0O 0 0 ©O 0
01F0O 00 00 00 00 00 00 00 00 0O 0 0O o O 0 O 0
Ol1F8 83 AOB3 C9 00 0055 AA [V 131 160 179 201 0 O 85170
Sector Per Cluster = 0008 MFT Cluster # =000c0000h=786432

© Copyright Virtual University of Pakistan

307

40 - Disassembling the NTFS based file

For NTFS simply the following formula will be used to translate the sector number into

cluster number.

Determining the Sector # from
Cluster #

Sector # = Cluster # * Sector Per Cluster

Following slide shows how the sector number for the MFT on this volume was
calculated. The first block of MFT no this volume is 6291456.

Disassembling the File

MFT Cluster # * 8 = Sector

786432 * 8 = 6291456

6291520

© Copyright Virtual University of Pakistan 308

40 - Disassembling the NTFS based file

From the block number 6291456 entries were searched for TEST.TXT and this file entry
was found at the block number 6291520.

0000 46 49 4C 45 30 00 03 00 F 1 LEO 70 73 76 69 48 o 3 0
0008 5555 12 04 0000 0000 UU 85 8 18 4 0 0o 0 O
00FO 08 03 74 00 65 00 73 00 .. t.e.s 8 3116 0 101 0115 0
00F8 74 00 2E 00 74 00 7800 t . . . t . X . 116 0 46 0 116 0120 O
0100 74 00 2E 00 54 00 58 00 t . . . T . X . 116 0 46 0 8 0 88 O
0108 40 00 00 00 28 00 0000 @ . . . (- . - 64 0 0 0 40 o 0 o0
0110 00 00 00 00 00 00 05 00 o 0 O 0 o 0o 5 0
0118 10 00 00 00 18 00 00 OO 16 0 O 0 24 0 0 O
0120 06 BO B6 4A 9B 7E DA 11 N 6 176 182 74 155 126 218 17
0128 A9 46 00 50 8D 39 66 58 .F.P.9FfX 169 70 O 80 141 57 102 88
0130 80 00 00 00 38 00 00 00 [- I 128 0 0 0 56 o 0 o0
0138 00 00 18 00 00 00 01 OO 0O 0 24 0 O o 1 o0
0140 1E 00 00 00 18 00 00 OO 30 0 0O 0 24 0 0 O
0148 68 65 6C 6C 6F 20 74 68 he Il 1o th 104 101 108 108 111 32 116 104
0150 69 73 20 69 73 20 61 20 is is a 105 115 32 105 115 32 97 32
0158 4E 54 46 53 20 74 6573 NTFS tes 78 84 70 83 32 116 101 115
0160 74 20 66 69 6C 65 00 00 t File . . 116 32 102 105 108 101 0O O
0168 FF FF FF FF 82 79 47 11 y - 255 255 255 255 130 121 71 17
0178 74 00 20 00 44 00 6F 00 t . . D . 116 0 32 0 68 0111 O

0180 63 00 75 00 6D 00 65 00 c . u . m .
0188 6E 00 74 00 2E 00 74 00 n . t

99 0117 0 109 0101 O
110 0116 0O 46 0116 O

The above dump shows the file name as well as the contents of the file are stored in this
entry. Has the file been larger it would not have been possible to store the content of the
file in this entry so other clusters would have been used and there would indexes would
have been kept in the entry.

As an exercise one can try to find out the sub folders and the contents of the files stored in
it.

© Copyright Virtual University of Pakistan 309

40 - Disassembling the NTFS based file

The following slides explain how the NTFS volume can be accessed in DOS. Normally it

can not be accessed if the system has booted in DOS as the DOS device drivers do not
understand NTFS.7

Accessing NTES volume in DOS

* NTFS volume can not be accessed in DOS
using DOS based function like absread()
etc.

» DOS device drivers does not understand
the NTFS data structures like MFT etc.

 [f NTFS volume is accessed in DOS, it will
fire the error of Invalid Media.

How to Access NTFS volume using

BIOS Functions
* If the system has booted in DOS then a

NTFS volume can be accessed by an Indirect
Method, using BIOS functions..

* This technique makes use of physical
addresses.

» Sector can be accessed by converting their
LSN into LBA address and then using the
LBA address in extended BIOS functions to
access the disk sectors.

© Copyright Virtual University of Pakistan

310

40 - Disassembling the NTFS based file

Translating LSN to LBA

Hidden Blocks

i

Other File System NTFS Partition Block
i

No. of Physical Blocks
for other Partition

LBA = No. of Physical Blocks in other Partition +
Hidden Blocks + LSN

« All this information can be retrieved from the
Partition Table + Boot Block

© Copyright Virtual University of Pakistan 311

41 - Disk Utilities

41 - Disk Utilities

#include <stdio.h>

#include <dos.h>

#include <bios.h>

#include <alloc.h>

typedef struct tagfcb

{ unsigned char filename [8];
unsigned char ext[3];
unsigned char attrib;
unsigned char reserved [10];
unsigned int time,date;
unsigned int firstcluster;
unsigned long int size;

}FCB;

typedef struct tagBPB
unsigned int bytespersec;
unsigned char secperclust;
unsigned int reservedsecs;
unsigned char fats;
unsigned int rootdirents;
unsigned int smallsecs;
unsigned char media;

unsigned int fatsecs;
unsigned int secspertrack;
unsigned int heads;

unsigned long int hiddensecs;
unsigned long int hugesecs;
unsigned char driveno;
unsigned char reserved;
unsigned char bootsignature;
unsigned long int volumeid;
unsigned char volumelabel[11];
unsigned char filesystem([8];

}BPB;
struct bootblock
{
unsigned char jumpinst[3];
unsigned char osname([8];
BPB bpb;
unsigned char code[448];
h

DPB far * getdpb(int drive)
{
DPB far *dpb=(DPB far *)0;
_asm push ds;
_asm mov ah,0x32
_asm mov dl,byte ptr drive;
_asm mov dx,ds;
_asm int 0x21;
_asm pop ds
_asm cmp al,0xff
_asm je finish
_asm mov word ptr dpb+2,dx
_asm mov word ptr dpb,bx
return dpb;
finish:
return ((DPB far *)(0));

© Copyright Virtual University of Pakistan

312

41 - Disk Utilities

void main (void)
{

unsigned char filename[9];

struct bootblock bb;

unsigned char ext[4];

FCB * dirbuffer;

unsigned int * FAT;

DPB d;

DPB far * dpbptr;

intiflag;

unsigned int cluster;

puts("Enter filename:");

gets (filename);

puts("Enter Extension");

gets(ext);

if ((absread(0x05,1,0,&bb))==0)
puts ("Success");

else{
puts("Failure");
exit(0);

FAT =malloc(512);

dirbuffer=malloc((bb.bpb.rootdirents) * 32);
absread(0x05,bb.bpb fats ecs,bb.bpb.r eserved secs+1FAT);
absread (0x05,(bb bpb.rootdirents*32)/bb.bpb b yt esper sec
bb.bpb fatsecs*bb.bpb.fats+bb.bpb.reservedsecs dirbuffer);
i=0; flag=0;

while(i<bb bpb.rootdirents)

if((strncmpi(filen ame,d irbuffer[i] filenam e strlen(filenam e)))==0)
{

if ((strncmpi(ext dirbuffer[i].ext, strlen(ext)))==0)

{

flag=1;

cluster = dirbuffer[i] firstcluster;
printf("\nFirst clu ster = %x " cluster);
while (cluster < OxFFFO0)

{

absread(0x05,1,bb.bpb.reservedsecs+(cluster/256),F AT);
cluster = FAT[cluster%256];
printf("\nNext Cluster is :%x" cluster);

}

}
if (flag ==1)
break;

The above program uses the DPB to reach the clusters of a file. The getDPB() function
gets the far address of the DPB. Using this address the drive parameters are used to
determine the location of FAT and root directory. The file is firstly searched in the root
directory through sequential search. If the file name and extension is found the first
cluster number is used to look up into the FAT for subsequent clusters. The particular
block containing the next cluster within the FAT is loaded and the entry is read, similarly

the whole chain is traversed till the end of file is encountered.

© Copyright Virtual University of Pakistan 313

41 - Disk Utilities

Format

Disk Utilities

* Low Level Format
-- sets the block size.
-- sets the Initial values in the block.
-- indexes the block for optimal usage.
-- can be accomplished using BIOS
routines for small disks or extended
BI1OS services for larger disks.

e Quick Format

-- initializes the data structures for file
management.

-- initializes and sets the size of FAT, root

directory etc, according to the drive size.

-- initializes the data in boot block and
places appropriate boot strap code for
the boot block.

Disk Partitioning Software

» Write the code part of partition table to
appropriately load the Boot Block of active
partition in primary partition table.

* Places data in the partition table regarding
primary and extended partitions.

* As per specification of the user assigns a
appropriate size to primary and extended
partition by modifying their data part.

© Copyright Virtual University of Pakistan

314

41 - Disk Utilities

Scan Disk

Surface Scan for Bad Sectors
* It attempts to write a block.
 After write it reads back the block contents.
» Performs the CRC test on data read back.
« If there is an error then the data on that block
is not stable the cluster of that block should be
marked bad.
* The cluster is marked bad by placing the
appropriate code for bad cluster so that they
may not be allocated to any file.

Lost Chains
» The disk scanning software may also look

for lost chains.

* Lost chains are chains in FAT which
apparently don’t belong to any file.

» They may occur due to some error in the
system like power failure during deletion
process.

Looking for Lost Chains
» For each file entry in the directory structure

its chain in FAT is traversed.

« All the cluster in the file are marked.

* When done with all the files and folders, if
some non-zero and non-reserved clusters are
left then they belong to some lost chains.

* The lost chains are firstly discretely
identified and then each chain can either be
restored to newly named files or can be
deleted.

© Copyright Virtual University of Pakistan

315

41 - Disk Utilities

Cross References

« If a cluster lie in more than one file 3 5
chain, then its said to be Cross

Referenced. 5[7
« Cross references can pose great

problems.

* Cross references can be detected easily
by traversing through the chain of all files
and marking the cluster # during traversal.
» If a cluster is referenced more thanonce 4| EQF
then it indicates a cross reference.
* To solve the problem only one reference
should be maintained. 13| 14
14 7

Defragmenter

« Disk fragmentation is unwanted.

* Fragmentation means that clusters of a same file are not
contiguously placed, rather they are far apart, increasing seek
time hence access time.

« So its desirable that files clusters may be placed contiguously,
this can be done by compaction or defragme ntation.

« Defragmentation Software reserves space for each file in
contiguous block by moving the data in clusters and
readjusting.

« As a result of defragmentation the FAT entries will change
and data will move from one cluster to other localized cluster to
reduce seek time.

« Defragmentation has high computation cost and thus cannot
be performed frequently.

File Restoration

* FAT structure provides the possibility of recovering a file
after deletion, if its clusters were contiguous and have not been
over-written.
« DOS perform file deletion by placing OXES5 at the first byte of
it FCB entry and placing 0’s (meaning available) in the entries
for the file clusters in the FAT.
« Two task should be performed successfully to undelete a file
-- Replacing the OXE5 entry in FCB by a valid file name
character.
-- placing the appropriate values in FAT for
representation of file cluster chain.
« If any one of the above cannot be done then the file cannot be
fully recovered.

© Copyright Virtual University of Pakistan

316

42 - Memory Management

42 - Memory Management

Memory Management
* Understanding of the data structures and

techniques used for memory management.
» Study of the overall memory areas used by
operating system and applications.

The following slide shows the memory map of the first LMB of RAM. The first 640KB is
called conventional RAM and the higher 384KB is called system memory. Some of the
memory areas are reserved for special purposes as described by the slide rest is user area

where user application can reside.

Earlier PCs (20-bit Address Bus
VT 0000 : 0000H
BIOS Data Area
DOS Data Area
Converted RAM 10.Sys
(640KB) MSDOS.Sys
Other Device Drivers
Command.Com (Resident
Part)
User Applications
Command.Com
(Transient Part) 9000 : FFFFH
Graphics Display A000 : 0000H
Text Display
System Memory Unused
(384 KB) Shadow RAM
FO0O0 : 0000H
F000 : FFFFH

© Copyright Virtual University of Pakistan 317

42 - Memory Management

In higher processors, the main memory may be greater than 1MB. In this slide it shows
that the memory portion higher than 1MB is called extended memory and some unused

portion in system memory is called the expanded memory.

Memory Map

Higher Processors with 24-bit or 32-bit Address Bus
Conventional RAM (640 KB)

Expanded Memory (64 KB)[—_— System RAM (384 KB)

Extended Memory
(higher than 1 MB)

Expanded Memory
* also called EMS
» can be accessed using a driver called EMM386.EXE
« this driver allows the use of unused memory within
system memory.

Extended Memory
» also called XMS
* can be accessed by installing the driver HHIMEM.SYS
« this driver enable the extended memory by shifting from
Real to Protected Mode.

© Copyright Virtual University of Pakistan 318

42 - Memory Management

Dual Modes in Higher PCs
Higher PCs can operate in two modes
* REAL MODE
* PROTECTED MODE

Real Mode

* PCs initially boots up in Real Mode. It may be shifted to
protected mode during the booting process using drivers
like HHIMEM.SYS

* Only first 1 MB of RAM can be accessed in Real Mode.
* The Real Mode address is a 20-bit address, stored and
represented in the form of Segment : Offset

* OS like DOS has a memory management system in
reflection of the Real Mode.

Protected Mode
* PC has to be shifted to Protected Mode if originally
boots in Real Mode.
* In Protected Mode whole of the RAM is accessible that
includes the Conventional, Expanded and Extended
Memories.
* OS like Windows has a memory management system
for Protected Mode.
* A privilege level can be assigned to a memory area
restricting its access.

© Copyright Virtual University of Pakistan 319

42 - Memory Management

Memory Management in DOS
» DOS uses the conventional memory first 640 KB for its
memory management.
« Additional 64 KB can be utilized by installing
EMM386.EXE and additional 64 KB in the start of
extended memory by installing HIMEM.SYS
» Smallest allocatable unit in DOS is a Paragraph, not a

Byte.

Paragraph
« Whenever memory is to be allocated DOS allocates memory in form of
Paragraph.

« A Paragraph can be understood fromthe following example
consider two Physical Addresses
1234 H : 0000 H
1235 H : 0000 H
« Note there is a difference of 1 between the Segment address.
* Now lets calculate the Physical address

12340 H
12350 H
Difference = 10H
« A difference of 1 H in Segment address cause a difference of 10 H in Physical

address.

* DOS loader assign a segment address whenever memory area is allocated,
hence a change of 1 in Segment address will impart a difference of 16 D | 10 H
in physical address.

Data Structures for Memory
Management

» DOS makes use of various Data Structures for Memory
Management:

* MCB (Memory Control Block)

«EB (Environment Block)

* PSP (Program Segment Prefix)

© Copyright Virtual University of Pakistan 320

42 - Memory Management

MCB or Arena Header

* MCB is used to control an allocated block in memory.
« Every allocated block will have a MCB before the start
of block.

* MCB is a 16-bytes large structure.

Size Offset

Byte 0 Contains ‘M’ if the MCB controls allocated
memory and ‘Z if it controls free space.

Word 1 Contains the Segment address of the PSP
and the program controlled by MCB.

Word 3 Contains number of Paragraphs controlled by
the MCB.

Byte [11] 5 Reserved or contains the program name in

case of higher versions of DOS.

Environment Block
 Contains Environment information like Environment
variables and file paths for that program

PSP

* is situated before the start of a process.
» contains control information like DTA (Disk Transfer
Area) and command line parameters.

© Copyright Virtual University of Pakistan 321

42 - Memory Management

The following slide shows that two MCBs are allocated for each program typically. The
first MCB controls the Environment Block the next MCB controls the PSP and the
program. If this is the last program in memory then the MCB after the program has ‘Z’ in
its first byte indicating that it is the last MCB in the chain.

Typical Memory Organization
M
E.B
M
PSP
Program
E.B
M
PSP
Program
z]
Free

All the MCB forms a chain. If the address of first MCB is known the segment
address of next MCB can be determined by adding the number of paragraph
controlled by MCB + ! into the segment address of the MCB. Same is true for all

MCBs and hence the whole chain can be traversed.

How to Access the Start of Chain
» An documented service can be used to obtain the
address of the first MCB.

» Service 21H/52H is used for this purpose.
* This service returns

The address of DOS internal data structures in ES : BX
* 4-bytes behind the address returned lies the far address
of the first MCB in memory.
» Using this address and hence traversing through the
chain of MCBs using the information within MCBs.

© Copyright Virtual University of Pakistan 322

42 - Memory Management

-a

13B0:0102 int 21
13B0:0104

-p

AX=5200 BX=0000
DS=13B0 ES=13B0O
13B0:0102 CD21

-P

AX=5200 BX=0026
DS=13B0 ES=00A7
13B0:0104 0000
DS:0026=FF

-d a7:22
00A7:0020
00A7:0030 70 00
00A7:0040 00 00
00A7:0050 CC 0D
00A7:0060 00 AB
00A7:0070 00 00
00A7:0080 00 FF
00A7:0090 82 14
00A7:00A0 2E FE
-q

13B0:0100 mov ah,

52

CX=0000 DX=0000 SP=FFEE BP=0000 SI1=0000 DI=0000
§S=13B0 CS=13B0 IP=0102 NV UP EI PL NZ NA PO NC
INT 21

CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
SS=13B0 CS=1380 1P=0104 NV UP EI PL NZ NA PO NC
ADD [BX+S1],AL

00 00 08 02 EA 15-A7
24 00 70 00 80 00-00
72 03 00 00 04 04-00
4E 55 4C 20 20 20-20
73 03 OE 00 00 00-00
00 00 00 00 00 00-00
FF 00 00 00 00 OE-00
D3 28 2E FE D7 28-2E

CE 00 A7 00 5A 00
00 00 00 00 7C 03
D9 02 04 80 C6 OD
00 00 00 00 00
01 00 04 00 00 00
00 00 00 00 00 00
00 05 FF 9F 08 02
D7 28 2E FE D3 28

m8888888

The above slide shows how service 21H/52H is used to get the address of first MCB in

memory.

In the following slide the dump of the first MCB is taken. ‘M’ in the first byte at the

location read indicates the placement of MCB at this location. The address of next MCB

can be calculated by adding the number of paragraphs controlled by MCB + 1 into the

segment address. Using this method all the MCBs in memory are traversed till the last

MCB with first byte ‘Z’ is encountered.

-d 208:0

08
51 0A

0206: 0010

-D 40C:0
040C:0000 4D OD
040C:0010 CD 20

-D 4AF:0
04AF:0000 4D 00
04AF:0010 00 O1

0525:0000

D DA0:0
0DA0:0000 4D 03
0DAO:0010

-D E02:0

0E02:0000 5A 03

00 03 02 09 OE 1F-53 44 00 CD 21 EB FE 26 M.......SD..!..&
02 CE 00 9A FO FE-4B 42 44 00 08 02 53 25 Q.......KBD...S%
04 A2 00 00 06 00-43 4F 4D 4D 41 4E 44 00 M.......COMMAND.
FF 9F 00 9A FO FE-1D FO 7F 01 OD 04 4B 01 e K.

00 07 00 73 1A 52-65 71 75 69 72 65 64 20 M....s.Required
00 00 00 00 00 00-87 06 00 00 FF FF FF FF

00 61 72 61-6D 65 74 65 72 20 76 61 M..m.arameter va
50 45 43 3D-43 3A 5C 57 49 4E 44 4F COMSPEC=C:\WINDO

08 8E DB C5-44 4F 53 58 00 58 5B 1F M&.z....DOSX.X[-

OE 61 00 61 6E 6E-6F 74 20 72 75 6E 20 74 M..a.annot run t
53 50 45 43 3D-43 3A 5C 57 49 4E 44 4F COMSPEC=C:\WINDO

OE FC 91 27 8A 05-44 45 42 55 47 00 9D 00 Z...."..DEBUG...

© Copyright Virtual University of Pakistan

323

43 - Non-Contiguous memory allocation

43 - Non-Contiguous memory allocation

#include <stdio.h>
#include <conio.h>
#include <bios.h>
#include <dos.h>

typedef struct tagMCB {
unsigned char sig;
unsigned int pspseg;
unsigned int paras;
unsigned char reserved[11];
IMCB;

void main (void)

{
unsigned int seg,off;
unsigned intfar * temp;
unsigned long i;
char st[20];
MCB far * pmcb;
_AH=0x52;
geninterrupt(0x21);

seg =_ES;
off=_BX;
off = off- 4;
temp = (unsigned int far *) MK_FP(seg,off);
seg = *(temp+1);
pmcb = (MCB far *) MK_FP(seg,*temp);
while (pmcb->sig == 'M)
{
printf("\nSegment Address of PSP is %X',pmcb->pspseqg);

printf("\nNo of Paras controlled by MCB = %X\n",pmcb->paras);

seg = seg + pmch->paras + 1;

pmcb = (MCB far *) MK_FP(seg,*temp);
}
if (pomcb->sig == 'Z')
{

printf("\nLast MCB found");

printf("\nNo of free Paras = %x',pmcb->paras);
i = (pmcb->paras)*16L;

Itoa(i,st,10);

printf("\nLargest contigous block =");

puts (st);

This program used the same method as discussed in previous lecture to get the address of

first MCB, calculate the addresses of subsequent MCBs and traverse the MCBs to reach

the last MCB.

© Copyright Virtual University of Pakistan

324

43 - Non-Contiguous memory allocation

Non-Contiguous Allocation
« Earlier Operating System like DOS has contiguous memory
management system i.e. a program cannot be loaded in memory if a
contiguous block of memory is not available to accommodate it.
« 80286 and higher processors support non-contiguous allocation.
« 80286 support Segmentation in Protected Mode, i.e. a process is
subdivided into segment of variable size and each segment or few
segments of the process can be placed anywhere in memory
« 80386 and higher processors also support Paging, i.e. a Process
may be divided into fixed size Pages and then only few pages may
be loaded any where in memory for Process Execution.
« The key to such non-contiguous allocation systems is the
addressing technique.

Address Translation
* |[n Protected Mode the direct method of

seg * 10H + offset for Logical to Physical
address translation is discarded and an
indirect method is adopted.

© Copyright Virtual University of Pakistan 325

43 - Non-Contiguous memory allocation

Selectors
* In Protected Mode the Segment Registers are used as
Selector.

« As the name suggest they are used to select a descriptor
entry from some Descriptor Table.

Descriptor

A Descriptor describes a Memory Segment by storing attributes
related to a Memory Segment.

« Significant attributes of a Memory Segment can be its base
(starting) address, it length or limit and its access rights.

© Copyright Virtual University of Pakistan 326

43 - Non-Contiguous memory allocation

The following slide shows the structure of descriptors of 80286 and 80386 processors

80286 Descriptor 80386 Descriptor
7 Reserved 6 Base A [Limit
7| (824-B31) D L16 L 19) 6
L
5 | Access | Base(B23- 4 Access Base(B23-B16)
B16) 5| 4
. Rights
Rights
3 Base (B15 — BO) 2 3 Base (B15 - BO) ,
1 Limit (L15 — LO) 0 N Lim (L15 - LO) o

 Base (B31 — BO) contains the base address of Segment within the
4GB Physical space.
« Limit (L19 — LO) define the length of segment in units of bytes
if G=0and in units of 4K (pages) if G=1.
This allow the Segment to be of IM if G=0and of4G if G = 1.

Descriptor

« Access Right: contains the privilege level and other
information depending upon the type of descriptor.

¢ G: the granularity bit selects the multiplier of 1
or 4K times the limit field. I1f G = 0 multiplier s 1; if G=1
multiplier is 4K.

*D: selects the default registers size. 1f D = 0 the
default register size is 16-bit, if D = 1 the size is 32-bit.

« AVL: the Operating System often uses this bit to

indicate that the segment described by the Descriptor is available in

memory

Segment Descriptor

« If the Descriptor describes a memory segment then the Access Rights Byte will
have the following meaning.

P |DP | S E X |RW | A
L

e P: Present bit, if P =1 Segment is Present,
if P =0 Segment is not Present.

* DPL: Descriptor Privilege level 00 for highest and 11 for lowest. Low
privilege level memory area cannot access a memory area with high
privilege whereas vice versa is TRUE.

.S Indicates data or code segment if S=1ora System Descriptor if S = 0.

< E: Executable, if E=0 Then it’s a Data/Stack Segment,

if E=1Then it’s a Code Segment.

e X: If E =0 then X indicates the direction of expansion of the Segment.
If X = 0 Segment expands upwards (i.e. Data Segment)
If X = 1 Segment expands downwards (i.e. Stack Segment)
If E =1 then X indicates if the privilege level of Code Segment is
ignored (X =0) or observed (X = 1).

A Accessed is set whenever the Segment is set.

© Copyright Virtual University of Pakistan 327

43 - Non-Contiguous memory allocation

System Descriptor & Access Byte

Base imit
(B24 - B31) 0 |o 16 -L19)

~

i Base(B23-B16)

5 P DPL 0 HE A
Base (B15 — B0)
3 2
Lim (L15 - LO)
1 0

Descriptor Table

* GDT: Global Descriptor Table

* LDT: Local Descriptor Table

* IDT: Interrupt Descriptor Table

* GDT and LDT can have up to 8192 entries, each of 8-
bytes width.

* IDT can have up to 256 entries.

© Copyright Virtual University of Pakistan

328

44 - Address translation in Protected mode

44 - Address translation in Protected mode

Selector

A Selector is called a Selector because it acts as an
index into the Descriptor Table to select a GDT or LDT

entry.

Segment Register

15 2 1 0
| I TI=0 Global |I|TI| ﬁPL |
= oba
TI=1 Local o
Selector Index Requested Privilege Level
Selects a Descriptor Table entry 00 (Highest)
From LDT or GDT 11 (Lowest)

Address Translation in
Protected Mode

« All the tables are maintained in Main Memory.

* Segment Registers are used as Selectors.

* The Descriptor Entry selected from the Descriptor Table
is placed in a hidden cache to optimize address
translation.

© Copyright Virtual University of Pakistan

329

44 - Address translation in Protected mode

The hidden cache is illustrated in the slide below. The registers in dotted lines are hidden

i.e. are not accessible to any application directly.

Base Address Limit Access Rights

Address Translation in
Protected Mode

« Whenewer a Selector is assigned a new value, the hardware looks upinto the
Descriptor Table andloads the Base Address, Limit and Access Rights into the
hidden cache.
« Whenever an instruction is issued the address referred is translating into Physical
address using the effective Offset within the instruction and the Base Address in the
corresponding Segment Cache, e.g.
mov AX, [1234H]
effective offset = 1234H
base = base within the cache of DS
abs. address = base +1234H
Orininstruction
mov DL, [EBP]
effective offset address = EBP
base address = base address in cache of SS register
abs. address = base address + EBP
« Hence the absolute address cannot be calculated directly from the Segment address
value.

© Copyright Virtual University of Pakistan

330

44 - Address translation in Protected mode

Control Reqister

+ 80386 and above have 4 Control Registers CRO ~ CR3.
» These Control Registers are used for conveying certain
control information for Protected Mode Addressing and
Co-Processors.

* Here we will illustrate only the least significant bit of
CRO.

PE]

CRO
* The least significant bit of CRO is PE-bit which can be
set to enable Protected Mode Addressing and can be
cleared to enter Real Mode.

Moving to Protected Mode

« Protected Mode can be entered by setting the PE bit of CRO, but
before this some other initialization must be done. The following
steps accomplish the switching from Real to Protected Mode
correctly.

1. |Initialize the Interrupt Descriptor Table, so it contains valid Interrupt
gates for at least the first 32 Interrupt type numbers. The IDT may
contain up to 256, 8-byte interrupt gates defining all 256 interrupt
types.

2. Initialize the GDT, so it contains a NULL Descriptor, at Descriptor 0

and valid Descriptor for at least one Data and one Stack.

Switch to Protected by setting the PE-bit in CRO.

Performa IntraSegment (near) JMP to flush the Internal Pre-fetch

Queue.

5. Load all the Data Selectors (Segment Registers) with their initial
Selectors Values.

6. The 80386 is now in Protected Mode.

> w

Viruses

* Viruses are special program having ability to embed
themselves in a system resources and there on propagate

themselves.

State of Viruses

* Dormant State: A Virus in dormant state has
embedded itself within and is observing system activities.
* Activation State: A Virus when activated would

typically perform some unwanted tasks causing data loss.
This state may triggered as result of some event.

* Infection State: A Virus is triggered into this
state typically as a result of some disk operation. In this
state, the Virus will infect some media or file in order to
propagate itself.

© Copyright Virtual University of Pakistan 331

45 - Viruses

45 - Viruses

Types of Viruses

« Partition Table Virus
» Boot Sector Virus
* File Viruses

How Partition Table Virus Works

« The Partition Table Code is executed at boot time to choose the Active Partition.

« Partition Table Viruses embed themselves in the Partition Table of the disk.

« If the Virus Code is large and cannot be accommodated in the Code Part of 512-
bytes Partition Table block then it may also use other Physically Addressed Blocks
to reside itself.

« Hence at Boot time when Partition Table is to be executed to select the Active
Partition, the virus executes. The Virus when executed loads itselfin the Memory,
where it can not be reached by the OS and then executes the original Partition Table
Code (stored in some other blocks after infection) so that the system may be booted
properly.

* When the system boots the Virus will be resident in memory and will typically
intercept 13H (the disk interrupt).

« Whenewer a disk operation occurs int 13H occurs. The Virus on occurrence of 13H
checks if removable media has been accessed through int 13H. If so then it will copy
its code properly to the disk first Physical Block (and other blocks depending upon
size of Virus Code). The removable disk is now infected.

« If the disk is now removed and is then used in some other system, the Hard Drive
of this system will not be infected unless the system is booted from this disk. Because
only on booting from this removable disk its first physical block will get the chance
to be executed.

How Partition Table Virus Loads
itself

* The transient part of Command.Com loads itself such that its
last byte is loaded in the last byte of Conventional Memory. If
somehow there is some Memory beyond Command.Com’s
transient part it will not be accessible by DOS.

* At 40:13H a word contains the amount of KBs in
Conventional Memory which is typically 640.

« If the value at 40:13H is somehow reduced to 638 the
transient part of Command.Com will load itself such that its
last byte is loaded at the last byte of 638KB mark in
Conventional RAM.

* In this way last 2KB will be left unused by DOS. This
amount of memory is used by the Virus according to its own
size.

© Copyright Virtual University of Pakistan

332

45 - Viruses

How Boot Sector Virus W orks

* Boot Sector also works in almost the same pattern, the
only difference is that it will embed itself within the Boot
Block Code.

File Viruses

* Various Viruses embeds themselves in different
executable files.

* Theoretically any file that can contain any executable
code, a Virus can be embedded into it. i.e. .COM, .EXE
are executable files so Viruses can be embedded into
them, Plain Text Files, Plain Bitmap Files are pure data
and cannot be executed so Viruses cannot be actively
embedded into them, and even if they are somehow
embedded they will never get a chance to execute itself.

COM File

* COM File is a mirror image of the program code. Its

image on disk is as it is loaded into the memory.

* COM Files are single segment files in which both Code

and Data resides.

* COM File will typically have a Three Bytes Near Jump

Instruction as the first instruction in program which will

transfer the execution to the Code Part of the Program.
jmp code

==== ;Data Part
code:

==== :Code Part

© Copyright Virtual University of Pakistan

333

45 - Viruses

How COM File Virus Infects

Files

» A COM File Virus if resident may infect COM Files on
execution.

* Typically COM File Virus will Interrupt 21H Service
4B. This Service is used to load a Program.

» Whenever a Program is to be Loaded int 21H Service #
4BH is used to Load a Program. The Virus if resident will
check the parameters of this Service to get the file path. If
the File is .COM File then the Virus appends itself to the
file and tempers with the first 3-bytes of .COM File so
that the execution branches to the Virus Code when the
program is executed.

How COM Virus Loads ltself

* When a file is Loaded in Memory it will occupy a number of
Paragraphs controlled by some MCB.

« |fthe file is infected the Virus is also loaded within the Memory
Avrea allocated to the Program.

« In this case the Virus does not exist as an Independent Program as
it does not have its own PSP. Ifthe Program is terminated the Virus
Code will also be unloaded with the program. The Virus will try to
attain an Independent Status for which it needs to relocate itself and
create its own PSP and MCB in Memory.

« When the program runs the Virus Code executes first. The Virus
creates an MCB, defines a new PSP initializes the PSP and
relocates itself, updates the last MCB, so that it can exist as an
Individual Program, and then transfers the execution back to the
Original Program Code.

« Now ifthe Original Program Terminates the Virus will still
remain resident.

© Copyright Virtual University of Pakistan

334

45 - Viruses

The following slide illustrates how a COM file virus relocates itself to make itself

independent in memory.

How the Virus R

locates itself

—‘ Paras

v M
PSP
PSP
Program M| | | |
PSP
Virus PSP Virus
Z|||]|| [
Free Paras FreIe Paras
Updated

EXE File Viruses

 The EXE File Viruses also works the same way in
relocating themselves.

» The main difference in COM File and DOS EXE File is

that the COM File starts its execution from the first

instruction, whereas the entry point of execution in EXE
File can be anywhere in the Program.
* The entry point in case of EXE File is tempered by the
Virus which is stored in a 27-byte header in EXE File.

© Copyright Virtual University of Pakistan

335

45 - Viruses

Detection

* Viruses can be detected by searching for their Signature
in Memory or Executable Files.

« Signature is a binary subset of Virus Code. It is a part of
Virus Code that is unique for that particular Virus only
and hence can be used to identify the Virus

» Signature for a Virus is selected by choosing a unigque
part of its Code. To find a Virus this Code should be
searched in memory and in files. If a match is found then
the system is infected.

Removal

Partition Table & Boot Sector Viruses

* Partition Table and Boot Sector Viruses can be removed
by re-writing the Partition Table or Boot Sector Code.

« If the Virus is resident it may exhibit stealth i.e. prevent
other programs from writing on Partition Table or Boot
Sector by intercepting int 13H

* In case it’s a stealth Virus the system should be booted
from a clean disk will not give the Virus any chance to
execute or load itself.

File Viruses

« If the Virus size is known Viruses can be removed easily from file.

« Firstly, the original value of first 3-bytes in case of COM File or the entry
point in case of EXE should be restored.

* The appended portion of Virus can be removed by coping the contents of
original file into a temporary file.

Original .Com temp

Program

Virus

*The Virus Code is not copied.
* The original file is then deleted and the temporary file is renamed as the
original file.

© Copyright Virtual University of Pakistan

336

