
SPRINGER BRIEFS IN STATISTICS

Shigeru Yamada

Software
Reliability
Modeling
 Fundamentals
and Applications

SpringerBriefs in Statistics

For further volumes:
http://www.springer.com/series/8921

http://www.springer.com/series/8921

Shigeru Yamada

Software Reliability
Modeling

Fundamentals and Applications

123

Shigeru Yamada
Graduate School of Engineering
Tottori University
Tottori
Japan

ISSN 2191-544X ISSN 2191-5458 (electronic)
ISBN 978-4-431-54564-4 ISBN 978-4-431-54565-1 (eBook)
DOI 10.1007/978-4-431-54565-1
Springer Tokyo Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013950356

� The Author(s) 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Software reliability is one of the most important characteristics of software product
quality. Its measurement and management technologies during the software pro-
duct life-cycle are essential to produce and maintain quality/reliable software
systems.

Chapter 1 of this book introduces several aspects of software reliability mod-
eling and its applications. Hazard rate and nonhomogeneous Poisson process
(NHPP) models are investigated particularly for quantitative software reliability
assessment. Further, imperfect debugging and software availability models are
discussed with reference to incorporating practical factors of dynamic software
behavior. Three software management problems are presented as application
technologies of software reliability models: the optimal software release problem,
the statistical testing-process control, and the optimal testing-effort allocation
problem.

Chapter 2 of this book describes several recent developments in software
reliability modeling and their applications as quantitative techniques for software
quality/reliability measurement and assessment. The discussion includes a quality
engineering analysis of human factors affecting software reliability during the
design review phase, which is the upper stream of software development, as well
as software reliability growth models based on stochastic differential equations and
discrete calculus during the testing phase, which is the lower stream. From the
point of view of quantitative project management, quality-oriented software
management analysis by applying the multivariate analysis method and the
existing software reliability growth models to actual process monitoring data are
also discussed. The final part of the Chap. 2 provides an illustration of operational
performability evaluation for the software-based system, by introducing the con-
cept of systemability defined as the reliability characteristic subject to the
uncertainty of the field environment.

Tottori, Japan, May 2013 Shigeru Yamada

v

http://dx.doi.org/10.1007/978-4-431-54565-1_1
http://dx.doi.org/10.1007/978-4-431-54565-1_2
http://dx.doi.org/10.1007/978-4-431-54565-1_2

Acknowledgments

I would like to express my sincere appreciation to Drs. Shinji Inoue, Yoshinobu
Tamura, and Koichi Tokuno for their helpful suggestions in completion of this
monograph on software reliability modeling. Thanks also go to my research col-
leagues from universities and industry for their warm advice. I am also indebted to
Mr. Takahiro Nishikawa, Department of Social Management Engineering, Grad-
uate School of Engineering, Tottori University, Japan, for his support in the
editing.

vii

Contents

1 Introduction to Software Reliability Modeling
and Its Applications . 1
1.1 Introduction . 1
1.2 Definitions and Software Reliability Model 2
1.3 Software Reliability Growth Modeling 6
1.4 Imperfect Debugging Modeling . 15

1.4.1 Imperfect Debugging Model with Perfect
Correction Rate. 16

1.4.2 Imperfect Debugging Model for Introduced Faults 18
1.5 Software Availability Modeling. 19

1.5.1 Model Description. 20
1.5.2 Software Availability Measures 23

1.6 Application of Software Reliability Assessment 25
1.6.1 Optimal Software Release Problem 25
1.6.2 Statistical Software Testing-Progress Control 29
1.6.3 Optimal Testing-Effort Allocation Problem 32

References . 36

2 Recent Developments in Software Reliability Modeling 39
2.1 Introduction . 39
2.2 Human Factors Analysis. 41

2.2.1 Design-Review and Human Factors. 41
2.2.2 Design-Review Experiment . 43
2.2.3 Analysis of Experimental Results 44
2.2.4 Investigation of Analysis Results 46

2.3 Stochastic Differential Equation Modeling 48
2.3.1 Stochastic Differential Equation Model 49
2.3.2 Method of Maximum-Likelihood 50
2.3.3 Expected Numbers of Detected Faults 51
2.3.4 Numerical Illustrations. 51

2.4 Discrete NHPP Modeling . 51
2.4.1 Discrete Exponential SRGM. 54
2.4.2 Discrete Inflection S-Shaped SRGM 55

ix

http://dx.doi.org/10.1007/978-4-431-54565-1_1
http://dx.doi.org/10.1007/978-4-431-54565-1_1
http://dx.doi.org/10.1007/978-4-431-54565-1_1
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec1
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec1
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec2
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec2
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec3
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec3
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec4
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec4
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec5
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec5
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec5
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec6
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec6
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec7
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec7
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec8
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec8
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec9
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec9
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec10
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec10
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec11
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec11
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec12
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec12
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec13
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Sec13
http://dx.doi.org/10.1007/978-4-431-54565-1_1#Bib1
http://dx.doi.org/10.1007/978-4-431-54565-1_2
http://dx.doi.org/10.1007/978-4-431-54565-1_2
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec1
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec1
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec2
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec2
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec3
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec3
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec4
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec4
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec5
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec5
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec6
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec6
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec7
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec7
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec8
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec8
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec9
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec9
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec10
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec10
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec11
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec11
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec12
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec12
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec13
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec13
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec14
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec14

2.4.3 Model Comparisons . 57
2.4.4 Software Reliability Assessment 60

2.5 Quality-Oriented Software Management Analysis 62
2.5.1 Process Monitoring Data . 63
2.5.2 Factor Analysis Affecting QCD 64
2.5.3 Analysis Results of Software Management Models 66
2.5.4 Implementation of Project Management 66
2.5.5 Software Reliability Assessment 68

2.6 Operational Software Performability Evaluation 72
2.6.1 Markovian Software Reliability Model 73
2.6.2 Consideration of Systemability 76
2.6.3 Model Description and Analysis for Task Processing . . . 79
2.6.4 Derivation of Software Performability Measures 81
2.6.5 Numerical Examples . 83

References . 86

Index . 89

x Contents

http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec15
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec15
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec16
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec16
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec17
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec17
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec18
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec18
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec19
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec19
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec20
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec20
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec21
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec21
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec22
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec22
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec23
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec23
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec24
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec24
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec25
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec25
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec26
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec26
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec27
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec27
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec28
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Sec28
http://dx.doi.org/10.1007/978-4-431-54565-1_2#Bib1

Chapter 1
Introduction to Software Reliability Modeling
and Its Applications

Abstract Software reliability is one of the most important characteristics of software
quality. Its measurement and management technologies during the software life-
cycle are essential to produce and maintain quality/reliable software systems. In this
chapter, we discuss software reliability modeling and its applications. As to software
reliability modeling, hazard rate and NHPP models are investigated particularly for
quantitative software reliability assessment. Further, imperfect debugging and soft-
ware availability models are also discussed with reference to incorporating practical
factors of dynamic software behavior. And three software management problems
are discussed as an application technology of software reliability models: the opti-
mal software release problem, statistical testing-progress control, and the optimal
testing-effort allocation problem.

Keywords Software product quality/reliability assessment · Software reliability
growth modeling · Nonhomogeneous Poisson process · Imperfect debugging ·
Software availability · Markov process · Optimal release problem · Testing-progress
control · Testing-effort allocation

1.1 Introduction

In recent years, many computer system failures have been caused by software faults
introduced during the software development process. This is an inevitable problem,
since an software system installed in the computer system is an intellectual prod-
uct consisting of documents and source programs developed by human activities.
Then, total quality management (TQM) is considered to be one of the key technolo-
gies needed to produce more highly quality software products [1, 2]. In the case
of TQM used for software development, all phases of the development process, i.e.
requirement specification, design, coding, and testing, have to be controlled system-
atically to prevent the introduction of software bugs or faults as far as possible and to

S. Yamada, Software Reliability Modeling, SpringerBriefs in Statistics, 1
DOI: 10.1007/978-4-431-54565-1_1, © The Author(s) 2014

2 1 Introduction to Software Reliability Modeling and Its Applications

Fig. 1.1 A general software development process (water-fall paradigm)

detect any introduced faults in the software system as early as possible. Basically,
the concept of TQM means assuring the quality of the products in each phase to
the next phase. Particularly, quality control carried out at the testing phase, which is
the last stage of the software development process, is very important. During the
testing phase, the product quality and the software performance during the operation
phase are evaluated and assured. In concrete terms, a lot of software faults introduced
in the software system through the first three phases of the development process by
human activities are detected, corrected, and removed. Figure 1.1 shows a general
software development process called a waterfall paradigm.

Therefore, TQM for software development, i.e. software TQM, has been empha-
sized. Software TQM aims to manage the software life-cycle comprehensively, con-
sidering productivity, quality, cost and delivery simultaneously, and assure software
quality elements in Fig. 1.2. In particular, the management technologies for improv-
ing software reliability are very important. The quality characteristic of software
reliability is that computer systems can continue to operate regularly without the
occurrence of failures in software systems.

In this chapter, we discuss a quantitative technique for software quality/reliability
measurement and assessment (see Fig. 1.3) as one of the key software reliability
technologies, which is a so-called software reliability model (abbreviated as SRM),
and its applications.

1.2 Definitions and Software Reliability Model

Generally, a software failure caused by software faults latent in the system cannot
occur except on a specific occasion when a set of specific data is put into the system
under a specific condition, i.e. the program path including software faults is executed.

1.2 Definitions and Software Reliability Model 3

Fig. 1.2 Elements of software quality based on a cause-and-effect diagram

Therefore, the software reliability is dependent on the input data and the internal
condition of the program. We summarize the definitions of the technical terms related
to the software reliability below.

A software system is a product which consists of the programs and documents
produced through the software development process discussed in the previous section
(see Fig. 1.1). The specification derived by analyzing user requirements for the soft-
ware system is a document which describes the expected performance and function
of the system. When the software performance deviates from the specification and
an output variable has an improper value or the normal processing is interrupted, it is
said that a software failure occurs. That is, software failure is defined as an unaccept-
able departure of program operation from the program requirements. The cause of
software failure is called a software fault. Then, software fault is defined as a defect
in the program which causes a software failure. The software fault is usually called a
software bug. Software error is defined as human action that results in the software
system containing a software fault [3, 4]. Thus, the software fault is considered to
be a manifestation of software errors.

Based on the basic definitions above, we can describe a software behavior as
Input(I)-Program(P)-Output(O) model [5, 6], as shown in Fig. 1.4.

In this model a program is considered as a mapping from the input space con-
stituting input data available on use to the output space constituting output data or
interruptions of normal processing. Testing space T is an input subspace of I , the
performance of which can be verified and validated by software testing. Software

4 1 Introduction to Software Reliability Modeling and Its Applications

Fig. 1.3 Aim of software
quality/reliability measure-
ment and assessment

faults detected and removed during the testing phase map the elements of input sub-
space E into an output subspace O ′ constituting the events of a software failure. That
is, the faults detected during the testing phase belong to the intersection of subspace
E and T . Software faults remaining in the operation phase belong to the subspace E
but not to the testing space T .

Figure 1.5 compares the characteristics between software reliability and hard-
ware reliability. Under the definitions for technical terms above, software reliability
is defined as the attribute that a software system will perform without causing soft-
ware failures over a given time period under specified conditions, and is measured by
its probability [3, 4]. A software reliability model (SRM) is a mathematical analy-
sis model for the purpose of measuring and assessing software quality/reliability
quantitatively. Many software reliability models have been proposed and applied
to practical use because software reliability is considered to be a “must-be quality
”characteristic of a software product. The software reliability models can be divided
into two classes [6, 7] as shown in Fig. 1.6. One treats the upper software develop-
ment process, i.e. design and coding phases, and analyzes the reliability factors of the
software products and processes, which is categorized in the class of static model.
The other deals with testing and operation phases by describing a software failure-
occurrence phenomenon or software fault-detection phenomenon, by applying the
stochastic/statistics theories and can estimate and predict the software reliability,
which is categorized in dynamic model.

In the former class, a software complexity model is well known and can mea-
sure the reliability by assessing the complexity based the structural characteristics

1.2 Definitions and Software Reliability Model 5

Fig. 1.4 An input-program-output model for software behavior

of products and the process features to produce the products. In the latter class, a
software reliability growth model is especially well known. Further, this model is
divided into three categories [6, 7]:

(1) Software failure-occurrence time model
The model which is based on the software failure-occurrence time or the software
fault-detection time.

(2) Software fault-detection count model
The model which is based on the number of software failure-occurrences or the
number of detected faults.

(3) Software availability model
The model which describes the time-dependent behavior of software system
alternating up (operation) and down (restoration or fault correction) states.

6 1 Introduction to Software Reliability Modeling and Its Applications

Fig. 1.5 Comparison between the characteristics of software reliability and hardware reliability

The software reliability growth models are utilized for assessing the degree of
achievement of software quality, deciding the time to software release for operational
use, and evaluating the maintenance cost for faults undetected during the testing
phase. We discuss the software reliability growth models and their applications below.

1.3 Software Reliability Growth Modeling

Generally, a mathematical model based on stochastic and statistical theories is useful
to describe the software fault-detection phenomena or the software failure-occurrence
phenomena and estimate the software reliability quantitatively. During the testing
phase in the software development process, software faults are detected and removed
with a lot of testing-effort expenditures. Then, the number of faults remaining in the
software system decreases as the testing goes on. This means that the probability of
software failure-occurrence is decreasing, so that the software reliability is increasing
and the time-interval between software failures becoming longer with the testing time
(see Fig. 1.7).

A mathematical tool which describes software reliability aspect is a software
reliability growth model [6–9].

Based on the definitions discussed in the previous section, we can develop a
software reliability growth model based on the assumptions used for the actual envi-
ronment during the testing phase or the operation phase. Then, we can define the
following random variables on the number of detected faults and the software failure-
occurrence time (see Fig. 1.8):

1.3 Software Reliability Growth Modeling 7

Fig. 1.6 Hierarchical classification of software reliability models

N (t) the cumulative number of software faults (or the cumulative number of observed
software failures) detected up to time t ,

Si the i th software-failure occurrence time (i = 1, 2, . . . ; S0 = 0),
Xi the time-interval between (i − 1)-st and i th software failures (i = 1, 2, . . . ;

X0 = 0).

Figure 1.8 shows the occurrence of event {N (t) = i} since i faults have been
detected up to time t . From these definitions, we have

Si =
i∑

k=1

Xk, Xi = Si − Si−1. (1.1)

Assuming that the hazard rate, i.e. the software failure rate, for Xi (i = 1, 2, . . .),
zi (x), is proportional to the current number of residual faults remaining in the system,
we have

8 1 Introduction to Software Reliability Modeling and Its Applications

Fig. 1.7 Software reliability growth

t = 0 1 2 3

S

(i 1) i
{N(t) = i}

i

S i-1

t

XiX1 X3X2

Time

X0 = 0, S0 = 0()

(Software failure-occurrence or fault-detection)

Fig. 1.8 The stochastic quantities related to a software fault-detection phenomenon or a software
failure-occurrence phenomenon

zi (x) = (N − i + 1)λ(x), i = 1, 2, . . . , N ; x ≥ 0, λ(x) > 0, (1.2)

where N is the initial fault content and λ(x) the software failure rate per fault remain-
ing in the system at time x . If we consider two special cases in (1.2) as

λ(x) = φ, φ > 0, (1.3)

λ(x) = φxm−1, φ > 0, m > 0, (1.4)

then two typical software hazard rate models, respectively called the Jelinski-
Moranda model [10] and the Wagoner model [11] can be derived, where φ and
m are constant parameters. Usually, it is difficult to assume that a software system
is completely fault free or failure free. Then, we have a software hazard rate model
called the Moranda model [12] for the case of the infinite number of software failure

1.3 Software Reliability Growth Modeling 9

occurrences as

zi (x) = Dki−1, i = 1, 2, . . . ; D > 0, 0 < k < 1, (1.5)

where D is the initial software hazard rate and k the decreasing ratio. Equation (1.5)
describes a software failure-occurrence phenomenon where a software system has
high frequency of software failure occurrence during the early stage of the testing
or the operation phase and it gradually decreases thereafter (see Fig. 1.9). Based on
the software hazard rate models above, we can derive several software reliability
assessment measures (see Fig. 1.10). For example, the software reliability function
for Xi (i = 1, 2, . . .) is given as

Ri (x) = exp

[
−

∫ x

0
zi (x)dx

]
, i = 1, 2, (1.6)

Further, we also discuss NHPP models [8, 13–15], which are modeled for ran-
dom variable N (t) as typical software reliability growth models (see Fig. 1.11). In

Fig. 1.9 The Jelinski-Moranda model and Moranda model

10 1 Introduction to Software Reliability Modeling and Its Applications

Fig. 1.10 The hazard rate model and its software reliability assessment measures

the NHPP models, a nonhomogeneous Poisson process (NHPP) is assumed for the
random variable N (t), the distribution function of which is given by

Pr{N (t) = n} = {H(t)}n

n! exp[−H(t)], n = 1, 2, . . . ,

H(t) ≡ E[N (t)] =
∫ t

0
h(x)dx, (1.7)

where Pr{·} and E[·] mean the probability and expectation, respectively. H(t) in
(1.7) is called a mean value function which indicates the expectation of N (t), i.e. the
expected cumulative number of faults detected (or the expected cumulative number
of software failures occurred) in the time interval (0, t], and h(t) in (1.7) called an
intensity function which indicates the instantaneous fault-detection rate at time t .

From (1.7), various software reliability assessment measures can be derived (see
Fig. 1.12). For examples, the expected number of faults remaining in the system at
time t is given by

1.3 Software Reliability Growth Modeling 11

Fig. 1.11 The NHPP model

n(t) = a − H(t), (1.8)

where a ≡ H(∞), i.e. parameter a denotes the expected initial fault content in
the software system. Given that the testing or the operation has been going on up
to time t , the probability that a software failure does not occur in the time-interval
(t, t + x](x ≥ 0) is given by conditional probability Pr{Xi > x |Si−1 = t} as

R(x |t) = exp[H(t) − H(x + t)], t ≥ 0, x ≥ 0. (1.9)

R(x |t) in (1.9) is a so-called software reliability. Measures of MTBF (mean time
between software failures or fault detections) can be obtained follows:

12 1 Introduction to Software Reliability Modeling and Its Applications

Fig. 1.12 Software reliability assessment measures

MTBFI (t) = 1

h(t)
, (1.10)

MTBFC (t) = t

h(t)
. (1.11)

MTBFs in (1.10) and (1.11) are called instantaneous MTBF and cumulative MTBF,
respectively.

It is obvious that the lower the value of n(t) in (1.8), the higher the value R(x |t) for
specified x in (1.9), or the longer the value of MTBFs in (1.10) and (1.11), the higher
the achieved software reliability is. Then, analyzing actual test data with accepted
NHPP models, these measures can be utilized to assess software reliability during
the testing or operation phase, where statistical inferences, i.e. parameter estimation
and goodness-of-fit test, are usually performed by a method of maximum-likelihood.

To assess the software reliability actually, it is necessary to specify the mean
value function H(t) in (1.7). Many NHPP models considering the various testing or
operation environments for software reliability assessment have been proposed in
the last decade [4, 6, 7]. Typical NHPP models are summarized in Table 1.1. As dis-
cussed above, a software reliability growth is described as the relationship between
the elapsed testing or operation time and the cumulative number of detected faults
and can be shown as the reliability growth curve mathematically (see Fig. 1.13).

1.3 Software Reliability Growth Modeling 13

Ta
bl

e
1.

1
A

su
m

m
ar

y
of

N
H

PP
m

od
el

s

N
H

PP
m

od
el

M
ea

n
va

lu
e

fu
nc

tio
n

H
(t

)
In

te
ns

ity
fu

nc
tio

n
h
(t

)
E

nv
ir

on
m

en
t

E
xp

on
en

tia
l

so
ft

w
ar

e
re

lia
bi

lit
y

gr
ow

th
m

od
el

[1
6,

17
]

m
(t

)
=

a(
1

−
e−

bt
)

(a
>

0,
b

>
0)

h
m
(t

)
=

ab
e−

bt
A

so
ft

w
ar

e
fa

ilu
re

-o
cc

ur
re

nc
e

ph
en

om
en

on
w

ith
a

co
ns

ta
nt

fa
ul

t-
de

te
ct

io
n

ra
te

at
an

ar
bi

-
tr

ar
y

tim
e

is
de

sc
ri

be
d

M
od

ifi
ed

ex
po

ne
nt

ia
ls

of
tw

ar
e

re
li-

ab
ili

ty
gr

ow
th

m
od

el
[1

8,
19

]

m
p
(t

)
=

a
2 ∑ i=

1
p i

(1
−

e−
b i

t)

(a
>

0,
0

<
b 2

<
b 1

<
1,

2 ∑ i=
1

p i
=

1,
0

<
p i

<
1)

h
p
(t

)
=

a
2 ∑ i=

1
p i

b i
e−

b i
t

A
di

ffi
cu

lty
of

so
ft

w
ar

e
fa

ul
t-

de
te

ct
io

n
du

r-
in

g
th

e
te

st
in

g
is

co
ns

id
er

ed
.(

b 1
is

th
e

fa
ul

t-
de

te
ct

io
n

ra
te

fo
r

ea
si

ly
de

te
ct

ab
le

fa
ul

ts
:

b 2
is

th
e

fa
ul

t-
de

te
ct

io
n

ra
te

fo
r

ha
rd

ly
de

te
ct

ab
le

fa
ul

ts
)

D
el

ay
ed

S-
sh

ap
ed

so
ft

w
ar

e
re

lia
bi

l-
ity

gr
ow

th
m

od
el

[2
0,

21
]

M
(t

)
=

a[1
−

(1
+

bt
)e

−b
t]

(a
>

0,
b

>
0)

h
M

(t
)
=

ab
2
te

−b
t

A
so

ft
w

ar
e

fa
ul

t-
de

te
ct

io
n

pr
oc

es
s

is
de

sc
ri

be
d

by
tw

o
su

cc
es

si
ve

ph
en

om
en

a,
i.e

.
fa

ilu
re

-d
et

ec
tio

n
pr

oc
es

s
an

d
fa

ul
t-

is
ol

at
io

n
pr

oc
es

s

In
fle

ct
io

n
S-

sh
ap

ed
so

ft
w

ar
e

re
lia

-
bi

lit
y

gr
ow

th
m

od
el

[2
2,

23
]

I(
t)

=
a(

1
−

e−
bt

)

(1
+

ce
−b

t)
(a

>
0,

b
>

0,
c

>
0)

h
I(

t)
=

ab
(1

+
c)

e−
bt

(1
+

ce
−b

t)
2

A
so

ft
w

ar
e

fa
ilu

re
-o

cc
ur

re
nc

e
ph

en
om

en
on

w
ith

m
ut

ua
ld

ep
en

de
nc

y
of

de
te

ct
ed

fa
ul

ts
is

de
sc

ri
be

d

Te
st

in
g-

ef
fo

rt
-d

ep
en

de
nt

so
ft

w
ar

e
re

lia
bi

lit
y

gr
ow

th
m

od
el

[2
4,

25
]

T
(t

)
=

a[1
−

e−
rW

(t
)
]

W
(t

)
=

α
(1

−
e−

β
tm

)

(a
>

0,
0

<
r

<
1,

α
>

0,
β

>
0,

m
>

0)

h
T
(t

)
=

ar
α
β

·m
tm

−1
e−

rW
(t

)
T

he
tim

e-
de

pe
nd

en
tb

eh
av

io
r

of
th

e
am

ou
nt

of
te

st
in

g
ef

fo
rt

an
d

th
e

cu
m

ul
at

iv
e

nu
m

be
r

of
de

te
ct

ed
fa

ul
ts

is
co

ns
id

er
ed

(c
on

tin
ue

d)

14 1 Introduction to Software Reliability Modeling and Its Applications

Ta
bl

e
1.

1
(c

on
tin

ue
d)

Te
st

in
g-

do
m

ai
n-

de
pe

nd
en

t
so

ft
w

ar
e

re
lia

bi
lit

y
gr

ow
th

m
od

el
[2

6,
27

]

D
(t

)
=

a[1
−

1

ν
−

b
(ν

e−b
t

−b
e−

ν
t)

](ν
�=

b)
h

D
(t

)
=

aν
b

ν
−

b
(e

−b
t
−

e−ν
t)

T
he

te
st

in
g

do
m

ai
n,

w
hi

ch
is

th
e

se
to

f
so

ft
-

w
ar

e
fu

nc
tio

ns
in

flu
en

ce
d

by
ex

ec
ut

ed
te

st
ca

se
s,

is
co

ns
id

er
ed

L
og

ar
ith

m
ic

Po
is

so
n

ex
ec

u-
tio

n
tim

e
m

od
el

[2
8,

29
]

μ
(t

)
=

1 θ
ln

(λ
0
θ

t
+

1)

(λ
0

>
0,

θ
>

0)
λ
(t

)
=

λ
0

(λ
0
θ

t
+

1)
W

he
n

th
e

te
st

in
g

or
op

er
at

io
n

tim
e

is
m

ea
-

su
re

d
on

th
e

ba
si

s
of

th
e

nu
m

be
r

of
C

PU
ho

ur
s,

an
ex

po
ne

nt
ia

lly
de

cr
ea

si
ng

so
ft

w
ar

e
fa

ilu
re

ra
te

is
co

ns
id

er
ed

w
ith

re
sp

ec
tt

o
th

e
cu

m
ul

at
iv

e
nu

m
be

r
of

so
ft

w
ar

e
fa

ilu
re

s

a
th

e
ex

pe
ct

ed
nu

m
be

r
of

in
iti

al
fa

ul
tc

on
te

nt
in

th
e

so
ft

w
ar

e
sy

st
em

b,
b i

,
r

th
e

pa
ra

m
et

er
s

re
pr

es
en

tin
g

th
e

fa
ul

t-
de

te
ct

io
n

ra
te

c
th

e
pa

ra
m

et
er

re
pr

es
en

tin
g

th
e

in
fle

ct
io

n
fa

ct
or

of
te

st
pe

rs
on

ne
l

p i
th

e
fa

ul
tc

on
te

nt
ra

tio
of

Ty
pe

i
fa

ul
t(

i
=

1,
2)

α
,
β
,
m

th
e

pa
ra

m
et

er
s

w
hi

ch
de

te
rm

in
e

th
e

te
st

in
g-

ef
fo

rt
fu

nc
tio

n
W

(t
)

ν
th

e
te

st
in

g-
do

m
ai

n
gr

ow
th

ra
te

λ
0

th
e

in
iti

al
so

ft
w

ar
e

fa
ilu

re
ra

te
θ

th
e

re
du

ct
io

n
ra

te
of

so
ft

w
ar

e
fa

ilu
re

ra
te

1.3 Software Reliability Growth Modeling 15

Among the NHPP models in Table 1.1, exponential and modified exponential soft-
ware reliability growth models are appropriate when the observed reliability growth
curve shows an exponential curve ((A) in Fig. 1.13). Similarly, delayed S-shaped
and inflection S-shaped software reliability growth models are appropriate when the
reliability growth curve is S-shaped ((B) in Fig. 1.13).

In addition, as for computer makers or software houses in Japan, logistic curve
and Gompertz curve models have often been used as software quality assessment
models, on the assumption that software fault-detection phenomena can be shown
by S-shaped reliability growth curves [30, 31]. In these deterministic models, the
cumulative number of faults detected up to testing t is formulated by the following
growth equations:

L(t) = k

1 + me−αt
, m > 0, α > 0, k > 0, (1.12)

G(t) = ka(bt), 0 < a < 1, 0 < b < 1, k > 0. (1.13)

In (1.12) and (1.13), assuming that a convergence value of each curve (L(∞) or
G(∞)), i.e. parameter k, represents the initial fault content in the software system,
it can be estimated by a regression analysis.

1.4 Imperfect Debugging Modeling

Most software reliability growth models proposed so far are based on the assump-
tion of perfect debugging, i.e. that all faults detected during the testing and operation
phases are corrected and removed perfectly. However, debugging actions in real test-
ing and operation environment are not always performed perfectly. For example,
typing errors invalidate the fault-correction activity or fault-removal is not carried
out precisely due to incorrect analysis of test results [32]. We therefore have an inter-
est in developing a software reliability growth model which assumes an imperfect

Fig. 1.13 Typical software
reliability growth curves

16 1 Introduction to Software Reliability Modeling and Its Applications

debugging environment (cf. [33, 34]). Such an imperfect debugging model is
expected to estimate reliability assessment measures more accurately.

1.4.1 Imperfect Debugging Model with Perfect Correction Rate

To model an imperfect debugging environment, the following assumptions are made:

1. Each fault which causes a software failure is corrected perfectly with probability
p(0 ≤ p ≤ 1). It is not corrected with probability q(= 1 − p). We call p the
perfect debugging rate or the perfect correction rate.

2. The hazard rate is given by (1.5) and decreases geometrically each time a detected
fault is corrected (see Fig. 1.14).

3. The probability that two or more software failures occur simultaneously is neg-
ligible.

4. No new faults are introduced during the debugging. At most one fault is removed
when it is corrected, and the correction time is not considered.

Let X (t) be a random variable representing the cumulative number of faults corrected
up to the testing time t . Then, X (t) forms a Markov process [35]. That is, from
assumption 1, when i faults have been corrected by arbitrary testing time t ,

X (t) =
{

i, with probability q,

i + 1, with probability p,
(1.14)

(see Fig. 1.15). Then, the one-step transition probability for the Markov process that
after making a transition into state i , the process {X (t), t ≥ 0} makes a transition
into state j by time t is given by

Fig. 1.14 Behavior of hazard
rate

1.4 Imperfect Debugging Modeling 17

Fig. 1.15 A diagrammatic representation of transitions between states of X (t)

Qi j (t) = pi j (1 − exp[−Dki t]), (1.15)

where pi j are the transition probabilities from state i to state j and are given by

pi j =
⎧
⎨

⎩

q, (i = j),
p, (j = i + 1), i, j = 0, 1, 2,

0, (elsewhere),
(1.16)

Equation (1.15) represents the probability that if i faults have been corrected at time
zero, j faults are corrected by time t after the next software failure occurs. Therefore,
based on Markov analysis by using the assumptions and stochastic quantities above,
we have the software reliability function and the mean time between software failures
for Xi (i = 1, 2, . . .) as

Ri (x) =
i−1∑

s=0

(
i − 1

s

)
psqi−1−s exp[−Dks x], (1.17)

E[Xi] =
∫ ∞

0
Ri (x)dx = (

p
k + q)i−1

D
. (1.18)

And if the initial fault content in the system, N , is specified, the expected cumulative
number of faults debugged imperfectly up to time t is given by

M(t) = q

p

N∑

n=1

n−1∑

i=0

Ai,n(1 − exp[−pDki t]), (1.19)

where Ai,n is

18 1 Introduction to Software Reliability Modeling and Its Applications

A0,1 ≡ 1

Ai,n = k(1/2)n(n−1)−i

n−1∏

j = 0
j �= i

(k j − ki)

, n = 2, 3, . . . ; i = 0, 1, 2, . . . , n − 1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (1.20)

1.4.2 Imperfect Debugging Model for Introduced Faults

Besides the imperfect debugging factor above in fault-correction activities, we con-
sider the possibility of introducing new faults in the debugging process. It is assumed
that the following two kinds of software failures exist in the dynamic environment [36,
37], i.e. the testing or user operation phase:

(F1) software failures caused by faults originally latent in the software system prior
to the testing (which are called inherent faults),

(F2) software failures caused by faults introduced during the software operation
owing to imperfect debugging.

In addition, it is assumed that one software failure is caused by one fault and that
it is impossible to discriminate whether the fault that caused the software failure
that has occurred is F1 or F2. As to the software failure-occurrence rate due to F1,
the inherent faults are detected with the progress of the operation time. In order to
consider two kinds of time dependencies on the decreases of F1, let ai (t)(i = 1, 2)

denote the software failure-occurrence rate for F1. On the other hand, the software
failure-occurrence rate due to F2 is denoted as constant λ(λ > 0), since we assume
that F2 occurs randomly throughout the operation. When we consider the software
failure-occurrence rate at operation time t is given by

hi (t) = λ + ai (t), i = 1, 2. (1.21)

From (1.21), the expected cumulative number of software failures in the time-interval
(0, t] (or the expected cumulative number of detected faults) is given by

Hi (t) = λt + Ai (t),

Ai (t) =
∫ t

0
ai (x)dx, i = 1, 2

⎫
⎬

⎭ . (1.22)

Then, we have two imperfect debugging models based on an NHPP discussed in
Sect. 1.3, where hi (t) in (1.21) and Hi (t) in (1.22) are used as the intensity functions
and the mean value functions (i = 1, 2) for an NHPP, respectively. Especially,
exponential and delayed S-shaped software reliability growth models are assumed
for describing software failure-occurrence phenomena attributable to the inherent
faults as (see Table 1.1)

1.4 Imperfect Debugging Modeling 19

a1(t) = abe−bt , a > 0, b > 0, (1.23)

a2(t) = ab2te−bt , a > 0, b > 0, (1.24)

where a is the expected number of initially latent inherent faults and b the software
failure-occurrence rate per inherent fault. Therefore, the mean value functions of
NHPP models for the imperfect debugging factor are given by

H1(t) = λt + a(1 − e−bt), (1.25)

H2(t) = λt + a[1 − (1 + bt)e−bt]. (1.26)

From these imperfect debugging models we can derive several software reliability
measures for the next software failure-occurrence time interval X since current time t ,
such as the software reliability function Ri (x |t), the software hazard rate zi (x |t), and
the mean time between software failures Ei [X |t](i = 1, 2):

Ri (x |t) = exp[Hi (t) − Hi (t + x)], t ≥ 0, x ≥ 0, (1.27)

zi (x |t) = − d

dx
Ri (x |t)/Ri (x |t) = hi (t + x), (1.28)

Ei [X |t] =
∫ ∞

0
Ri (x |t)dx . (1.29)

1.5 Software Availability Modeling

Recently, software performance measures such as the possible utilization factors
have begun to be interesting for metrics as well as the hardware products. That is, it
is very important to measure and assess software availability, which is defined as the
probability that the software system is performing successfully, according to the spec-
ification, at a specified time point [38–40] (see Fig. 1.16). Several stochastic models
have been proposed so far for software availability measurement and assessment.
One group [41] has proposed a software availability model considering a reliability
growth process, taking account of the cumulative number of corrected faults. Oth-
ers [42–44] have constructed software availability models describing the uncertainty
of fault removal. Still others [45] and [46] have incorporated the increasing difficulty
of fault removal.

The actual operational environment needs to be more clearly reflected in soft-
ware availability modeling, since software availability is a customer-oriented metrics.
In [46] and [47] the development of a plausible model is described, which assumes
that there exist two types of software failure occurring during the operation phase.
Furthermore, in [48] an operational software availability model is built up from the
viewpoint of restoration scenarios.

20 1 Introduction to Software Reliability Modeling and Its Applications

Fig. 1.16 Comparison between software reliability and availability

The above models have employed Markov processes for describing the stochas-
tic time-dependent behaviors of the systems which alternate between the up state,
operating regularly, and the restoration state (down state) when a system is inopera-
ble [49]. Several stochastic metrics for software availability measurement in dynamic
environment are derived from the respective models.

We discuss a fundamental software availability model [44] below.

1.5.1 Model Description

The following assumptions are made for software availability modeling:

1. The software system is unavailable and starts to be restored as soon as a soft-
ware failure occurs, and the system cannot operate until the restoration action is
complete (see Fig. 1.17).

2. The restoration action implies debugging activity, which is performed perfectly
with probability a(0 < a ≤ 1) and imperfectly with probability b(= 1 − a). We
call a the perfect debugging rate. One fault is corrected and removed from the
software system when the debugging activity is perfect.

3. When n faults have been corrected, the time to the next software failure-
occurrence and the restoration time follow exponential distributions with means
of 1/λn and 1/μn , respectively.

4. The probability that two or more software failures will occur simultaneously is
negligible.

Consider a stochastic process {X (t), t ≥ 0} with the state space (W , R) where
up state vector W = {Wn; n = 0, 1, 2, . . .} and down state vector R = {Rn; n

1.5 Software Availability Modeling 21

= 0, 1, 2, . . .}. Then, the events {X (t) = Wn} and {X (t) = Rn} mean that the
system is operating and inoperable, respectively, due to the restoration action at time
t , when n faults have already been corrected.

From assumption 2, when the restoration action has been completed in {X (t) =
Rn},

X (t) =
{

Wn, with probability b,

Wn+1, with probability a.
(1.30)

We use the Moranda model discussed in Sect. 1.3 to describe the software failure-
occurrence phenomenon, i.e. when n faults have been corrected, the software hazard
rate λn (see Fig. 1.14) is given by

λn = Dkn, n = 0, 1, 2, . . . ; D > 0, 0 < k < 1. (1.31)

The expression of (1.31) comes from the point of view that software reliability
depends on the debugging efforts, not the residual fault content. We do not note how
many faults remain in the software system.

Next, we describe the time-dependent behavior of the restoration action. The
restoration action for software systems includes not only the data recovery and
the program reload, but also the debugging activities for manifested faults. From
the viewpoint of the complexity, there are cases where the faults detected during the
early stage of the testing or operation phase have low complexity and are easy to cor-
rect/remove, and as the testing is in progress, detected faults have higher complexity
and are more difficult to correct/remove [8]. In the above case, it is appropriate that
the mean restoration time becomes longer with the increasing number of corrected

Fig. 1.17 Sample behavior of the software system alternating between up and down states

22 1 Introduction to Software Reliability Modeling and Its Applications

Fig. 1.18 Behavior of restoration rate

faults. Accordingly, we express μn as follows (see Fig. 1.18):

μn = Ern, n = 0, 1, 2, . . . ; E > 0, 0 < r ≤ 1, (1.32)

where E and r are the initial restoration rate and the decreasing ratio of the restoration
rate, respectively. In (1.32) the case of r = 1, i.e. μn = E , means that the complexity
of each fault is random.

Let Tn and Un(n = 0, 1, 2, . . .) be the random variables representing the next
software failure-occurrence and the next restoration time-intervals when n faults have
been corrected, in other words the sojourn times in states Wn and Rn , respectively.
Furthermore, let Y (t) be the random variable representing the cumulative number of
faults corrected up to time t . The sample behavior of Y (t) is illustrated in Fig. 1.19. It
is noted that the cumulative number of corrected faults is not always coincident with
that of software failures or restoration actions. The sample state transition diagram
of X (t) is illustrated in Fig. 1.20.

1.5 Software Availability Modeling 23

Fig. 1.19 A sample realization of Y (t)

Fig. 1.20 A state transition diagram for software availability modeling

1.5.2 Software Availability Measures

We can obtain the state occupancy probabilities that the system is in states Wn and
Rn at time point t as

PWn (t) ≡ Pr{X (t) = Wn}
= gn+1(t)

aλn
+ g′

n+1(t)

aλnμn
, n = 0, 1, 2, . . . , (1.33)

PRn (t) ≡ Pr{X (t) = Rn}
= gn+1(t)

aμn
, n = 0, 1, 2, . . . , (1.34)

24 1 Introduction to Software Reliability Modeling and Its Applications

respectively, where gn(t) is the probability density function of random variable Sn ,
which denotes the first passage time to state Wn , and g′

n(t) ≡ dgn(t)/dt . gn(t) and
g′

n(t) can be given analytically.
The following equation holds for arbitrary time t :

∞∑

n=0

[PWn (t) + PRn (t)] = 1. (1.35)

The instantaneous availability is defined as

A(t) ≡
∞∑

n=0

PWn (t), (1.36)

which represents the probability that the software system is operating at specified
time point t . Furthermore, the average software availability over (0, t] is defined as

Aav(t) ≡ 1

t

∫ t

0
A(x)dx, (1.37)

which represents the ratio of system’s operating time to the time-interval (0, t]. Using
(1.33) and (1.34), we can express (1.36) and (1.37) as

A(t) =
∞∑

n=0

[
gn+1(t)

aλn
+ g′

n+1(t)

aλnμn

]

= 1 −
∞∑

n=0

gn+1(t)

aμn
, (1.38)

Aav(t) = 1

t

∞∑

n=0

[
Gn+1(t)

aλn
+ gn+1(t)

aλnμn

]

= 1 − 1

t

∞∑

n=0

Gn+1(t)

aμn
, (1.39)

respectively, where Gn(t) is the distribution function of Sn .
Figures 1.21 and 1.22 show numerical illustrations of A(t) and Aav(t) in (1.38)

and (1.39), respectively.

1.6 Application of Software Reliability Assessment 25

Fig. 1.21 Dependence of perfect debugging rate a on A(t)

Fig. 1.22 Dependence of perfect debugging rate a on Aav(t)

1.6 Application of Software Reliability Assessment

It is very important to apply the results of software reliability assessment to manage-
ment problems with software projects for attaining higher productivity and quality.
We discuss three software management problems as application technologies of soft-
ware reliability models.

1.6.1 Optimal Software Release Problem

Recently, it is becoming increasingly difficult for the developers to produce highly
reliable software systems efficiently. Thus, it has been necessary to control a software
development process in terms of quality, cost, and release time. In the last phase of the
software development process, testing is carried out to detect and fix software faults

26 1 Introduction to Software Reliability Modeling and Its Applications

introduced by human work, prior to its release for the operational use. The software
faults that cannot be detected and fixed remain in the released software system after
the testing phase. Thus, if a software failure occurs during the operational phase,
then a computer system stops working and it may cause serious damage in our daily
life.

If the duration of software testing is long, we can remove many software faults
in the system and its reliability increases. However, this increases the testing cost
and delays software delivery. In contrast, if the length of software testing is short, a
software system with low reliability is delivered and it includes many software faults
which have not been removed in the testing phase. Thus, the maintenance cost during
the operation phase increases.

It is therefore very important in terms of software management that we find the
optimal length of software testing, which is called an optimal software release prob-
lem [50–57]. These decision problems have been studied in the last decade by many
researchers. We discuss optimal software release problems which consider both a
present value and a warranty period (in the operational phase) during which the
developer has to pay the cost for fixing any faults detected. It is very important with
respect to software development management, then that we solve the problem of an
optimal software testing time by integrating the total expected maintenance cost and
the reliability requirement.

1.6.1.1 Maintenance Cost Model

The following notations are defined:

c0 the cost for the minimum quantity of testing which must be done,
ct the testing cost per unit time,
cw the maintenance cost per one fault during the warranty period,
T the software release time, i.e. additional total testing time,

T ∗ the optimum software release time.

We discuss a maintenance cost model for formulation of the optimal release
problem. The maintenance cost during the warranty period is considered. The concept
of a present value is also introduced into the cost factors. Then, the total expected
software maintenance cost WC(T) can be formulated as:

WC(T) ≡ c0 + ct

∫ T

0
e−αt dt + Cw(T), (1.40)

where Cw(T) is the maintenance cost during the warranty period. The parameter α

in (1.40) is a discount rate of the cost. When we apply an exponential software relia-
bility growth model based on an NHPP with mean value function m(t) and intensity
function hm(t) discussed in Sect. 1.3 (see Table 1.1), we discuss the following three
cases in terms of the behavior of Cw(T) (see Fig. 1.23):

1.6 Application of Software Reliability Assessment 27

Fig. 1.23 Software reliability growth aspects during the warranty period

(Case 1)
When the length of the warranty period is constant and the software reliability growth
is not assumed to occur after the testing phase, Cw(T) is represented as:

Cw(T) = cw

∫ T +Tw

T
hm(T)e−αt dt. (1.41)

(Case 2)
When the length of the warranty period is constant and the software reliability growth
is assumed to occur even after testing, Cw(T) is given by:

Cw(T) = cw

∫ T +Tw

T
hm(t)e−αt dt. (1.42)

(Case 3)
When the length of the warranty period obeys a distribution function W (t) and the
software reliability growth is assumed to occur even after the testing phase, Cw(T)

is represented as:

Cw(T) = cw

∫ ∞

0

∫ T +Tw

T
hm(t)e−αt dtdW (Tw), (1.43)

where we assume that the distribution of the warranty period is a truncated normal
distribution:

dW (t)

dt
= 1

A
√

2πσ
exp[−(t − μ)2/(2σ 2)], t ≥ 0, μ > 0, σ > 0, (1.44)

A = 1√
2πσ

∫ ∞

0
exp[−(t − μ)2/(2σ 2)]dt. (1.45)

28 1 Introduction to Software Reliability Modeling and Its Applications

Let us consider the optimal release policies for minimizing WC(T) in (1.40) with
respect to T of Case 1, which is a typical case for optimal software release problems.
Substituting (1.41) into (1.40), we rewrite it as:

WC(T) = c0 + c1

∫ T

0
e−αt dt + cwhm(T)

∫ T +Tw

T
e−αt dt. (1.46)

Differentiating (1.46) in terms of T and equating it to zero yields:

hm(T) = ct

cwTw(b + a)
. (1.47)

Note that WC(T) is a convex function with respect to T because d2WC(T)/dT 2 >

0. Thus, the equation dWC(T)/dT = 0 has only one finite solution when the con-
dition hm(0) > ct/[cwTw(b + α)] holds. The solution T1 of (1.47) and the optimum
release time can be shown as follows:

T ∗ = T1 = 1

b
ln

[
abcwTw(b + α)

ct

]
, 0 < T1 < ∞. (1.48)

When the condition hm(0) ≤ ct/[cwTw(b+α)] holds, WC(T) in (1.46) is a monoton-
ically increasing function in terms of the testing time T . Then, the optimum release
time T ∗ = 0. Therefore, we can obtain the optimal release policies as follows:

[Optimal Release Policy 1]

(1.1) If hm(0) > ct/[cwTw(b + α)], then the optimum release time is T ∗ = T1.
(1.2) If hm(0) ≤ ct/[cwTw(b + α)], then the optimum release time is T ∗ = 0.

Similarly, we can obtain the optimal release policies for Case 2 and Case 3 [55,
58].

1.6.1.2 Maintenance Cost Model with Reliability Requirement

Next, we discuss the optimal release problem with the requirement for software
reliability. In the actual software development, the manager must spend and control
the testing resources with a view to minimizing the total software cost and satisfying
reliability requirements rather than only minimizing the cost. From the exponential
software reliability growth model, the software reliability function can be defined
as the probability that a software failure does not occur during the time interval
(T, T + x] after the total testing time T , i.e. the release time. The software reliability
function is given as follows:

R(x |T) = exp[−{m(T + x) − m(T)}]. (1.49)

1.6 Application of Software Reliability Assessment 29

From (1.49), we derive the software reliability function as follows:

R(x |T) = exp[−e−bT · m(x)]. (1.50)

Let the software reliability objective be R0(0 < R0 ≤ 1). We can evaluate
optimum release time T = T ∗ which minimizes (1.40) while satisfying the software
reliability objective R0. Thus, the optimal software release problem is formulated as
follows:

minimize WC(T) subject to R(x |T) ≥ R0. (1.51)

For the optimal release problem formulated by (1.51), let TR be the optimum release
time with respect to T satisfying the relation R(x |T) = R0 for specified x . By
applying the relation R(x |T) = R0 into (1.50), we can obtain the solution TR as
follows:

TR = 1

b

{
ln m(x) − ln ln

(
1

R0

)}
. (1.52)

Then, we can derive the optimal release policies to minimize the total expected
software maintenance cost and to satisfy the software reliability objective R0.

For Case 1, the optimal release policies are given as follows:

[Optimal Release Policy 2]

(2.1) If hm(0) > ct/[cwTw(b + α)] and R(x |0) < R0, then the optimum release
time is T ∗ = max{T1, TR}.

(2.2) If hm(0) > ct/[cwTw(b + α)] and R(x |0) ≥ R0, then the optimum release
time is T ∗ = T1.

(2.3) If hm(0) ≤ ct/[cwTw(b + α)] and R(x |0) < R0, then the optimum release
time is T ∗ = TR .

(2.4) If hm(0) ≤ ct/[cwTw(b + α)] and R(x |0) ≥ R0, then the optimum release
time is T ∗ = 0.

Similarly, we can obtain the optimal release policies for Case 2 and Case 3 [58].
Figure 1.24 shows numerical illustrations of the optimum release time in [Optimal
Release Policy 2], where T ∗ = max{T1, TR} = max{92.5, 122.8} = 122.8.

1.6.2 Statistical Software Testing-Progress Control

As well as quality/reliability assessment, software-testing managers should assess
the degree of testing-progress. We can construct a statistical method for software
testing-progress control based on a control chart method as follows [6, 59]. This
method is based on several instantaneous fault-detection rates derived from software

30 1 Introduction to Software Reliability Modeling and Its Applications

Fig. 1.24 Optimal software release time for optimal release policy 2 (c0 = 1000.0, ct = 5.0, cw =
20.0, a = 1000, b = 0.05, μ = 100, ω = 10, α = 0.001, x = 1.0, R0 = 0.9)

reliability growth models based on an NHPP. For example, the intensity function
based on the delayed S-shaped software reliability growth model in Sect. 1.3 (see
Table 1.1) is given by

hM (t) = d M(t)

dt
= ab2te−bt , a > 0, b > 0. (1.53)

From (1.53), we can derive

ln Z M (t) = ln a + 2 · ln b − bt, (1.54)

Z M (t) = hM (t)

t
. (1.55)

1.6 Application of Software Reliability Assessment 31

The mean value of the instantaneous fault-detection rate represented by (1.55) is
defined as the average-instantaneous fault-detection rate. Equation (1.54) means
that the relation between the logarithm value of Z M (t) and the testing time has a
linear property. If the testing phase progresses smoothly and the reliability growth
is stable in the testing, the logarithm of the average-instantaneous fault-detection
rate decreases linearly with the testing time. From (1.54), we can also estimate the
unknown parameters a and b by the method of least-squares, and assess the testing
progress by applying a regression analysis to the observed data. It is assumed that the
form of the data is (tk, Zk)(k = 1, 2, . . . , n) where tk is the kth testing time and Zk

is the realization of average-instantaneous fault-detection rate Z M (t) at testing-time
tk . Letting the estimated unknown parameters be â and b̂, we obtain the estimator of
Y (= ln Z M (t)) as follows:

Ŷ = ln Ẑ M (t) = ln â + 2 · ln b̂ − b̂t = Ȳ − b̂(t − t̄), (1.56)

where

Ȳ = 1

n

n∑

k=1

Yk, Yk = ln Zk, t̄ = 1

n

n∑

k=1

tk, k = 1, 2, . . . , n.

The variation, which is explained as the regression to the dependent variable, Y ,
is

Sb =
n∑

k=1

(Ŷk − Ȳ)2 = b̂2
n∑

k=1

(tk − t̄)2. (1.57)

On the other hand, the error-variation not explained as the regression is represented
as the summation of residual squares. That is,

Se =
n∑

k=1

(Yk − Ŷk)
2. (1.58)

The unbiased variances from (1.57) and (1.58) are:

Vb = Sb, Ve = Se

n − 2
. (1.59)

With reference to (1.56), we discuss the logarithm of average-instantaneous fault-
detection rate Y0 = ln Z M (t0) at t = t0(t0 ≥ tn) by using the results of the analysis
of variance. The 100(1 − α) percent confidence interval to Ŷ0 is given by

32 1 Introduction to Software Reliability Modeling and Its Applications

Ŷ0 ± t
(

n − 2, 1 − α

2

)√
Var[Ŷ0],

Var[Ŷ0] =
{

1 + 1

n
+ (t0 − t̄)2

∑n
k=1(tk − t̄)2

}
Ve. (1.60)

Var[Ŷ0] in (1.60) is the variance of Ŷ0. t (h, p) in (1.60) is 100p percent point of
t-distribution at degree of freedom h. We now make the control chart which consists
of the center line by the logarithm of the average-instantaneous fault-detection rate,
and the upper and lower control limits which are given by (1.60). We can assess the
testing-progress by applying a regression analysis to the observed data.

The testing-progress assessment indices for the other NHPP models are given by
the following intensity function:

• hm(t) = abe−bt with relation ln hm(t) = (ln a + ln b) − bt (for the exponential
software reliability growth model),

• hμ(t) = λ0/(λ0θ t +1) with relation ln hμ(t) = ln λ0 −θμ(t) (for the logarithmic
Poisson execution time model),

• hλ(t) = λβtβ−1 with relation ln hλ(t) = (ln λ + ln β) + (β − 1) ln t (for the
Weibull process model [6, 8]).

The procedure of testing-progress control is shown as follows:

Step 1: An appropriate model is selected to apply and the model parameters are
estimated by the method of least-squares.

Step 2: To certify goodness-of-fit of the estimated regression equation for the
observed data, we use the F-test.

Step 3: Based on the result of the F-test, the central line and upper and lower control
limits of the control chart are calculated. The control chart is drawn.

Step 4: The observed data are plotted on the control chart and the stability of the
testing-progress is judged.

Figure 1.25 shows examples of the control chart for the testing-progress control
based on the delayed S-shaped software reliability growth model.

1.6.3 Optimal Testing-Effort Allocation Problem

We discuss a management problem to achieve a reliable software system efficiently
during module testing in the software development process by applying a testing-
effort-dependent software reliability growth model based on an NHPP (see Table 1.1).
We take account of the relationship between the testing-effort spent during the module
testing and the detected software faults where the testing-effort is defined as resource
expenditures spent on software testing, e.g. manpower, CPU hours, and executed
test cases. The software development manager has to decide how to use the specified
testing-effort effectively in order to maximize the software quality and reliability [60].

1.6 Application of Software Reliability Assessment 33

Fig. 1.25 Examples of the control chart for the testing-progress control

That is, to develop a quality and reliable software system, it is very important for
the manager to allocate the specified amount of testing-effort expenditure for each
software module under some constraints. We can observe the software reliability
growth in the module testing in terms of a time-dependent behavior of the cumulative
number of faults detected during the testing stage.

Based on the testing-effort dependent software reliability growth model, we con-
sider the following testing-effort allocation problem [61, 62]:

1. The software system is composed of M independent modules. The number of
software faults remaining in each module can be estimated by the model.

2. The total amount of testing-effort expenditure for module testing is specified.
3. The manager has to allocate the specified total testing-effort expenditure to each

software module so that the number of software faults remaining in the system
may be minimized.

34 1 Introduction to Software Reliability Modeling and Its Applications

The following are defined:

a the expected initial fault content,
r the fault-detection rate per unit of testing-effort expenditure (0 < r < 1),
i the subscript for each software module number i = 1, 2, . . . , M ,
wi the weight for each module (wi > 0),
ni the expected number of faults remaining in each module,

qi , Q the amount of testing-effort expenditure for each module to be allocated and
the total testing-effort expenditure before module testing (qi ≥ 0, Q > 0).

From (1.8) and Table 1.1, i.e. n(t) = a · exp[−r W (t)], the estimated number of
remaining faults for module i is formulated by

ni = ai · exp[−ri qi], i = 1, 2, . . . M. (1.61)

Thus, the optimal testing-effort allocation problem is formulated as:

minimize
M∑

i=1

wi ni =
M∑

i=1

wi ai · exp[−ri qi], (1.62)

so that
M∑

i=1

qi ≤ Q, qi ≥ 0, i = 1, 2, . . . , M, (1.63)

where it is supposed that the parameter ai and ri have already been estimated by the
model.

To solve the problem above, we consider the following Lagrangian:

L =
M∑

i=1

wi ai · exp[−ri qi] + λ

(
M∑

i=1

qi − Q

)
, (1.64)

and the necessary and sufficient conditions [63] for the minimum are

∂L

∂qi
= −wi airi · exp[−ri qi] + λ ≥ 0,

qi · ∂L

∂qi
= 0, i = 1, 2, . . . , M,

M∑

i=1

qi = Q,

qi ≥ 0, i = 1, 2, . . . , M,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (1.65)

where λ is a Lagrange multiplier.
Without loss of generality, setting Ai = wi airi (i = 1, 2, . . . , M), we can assume

that the following condition is satisfied for the tested modules:

1.6 Application of Software Reliability Assessment 35

A1 ≥ A2 ≥ · · · ≥ Ak−1 ≥ Ak ≥ Ak+1 ≥ · · · ≥ AM . (1.66)

This means that it is arranged in order of fault detectability for the tested modules.
Now, if Ak > λ ≥ Ak+1, from (1.65) we have

qi = max

{
0,

1

ri
(ln Ai − ln λ)

}
,

i.e.

qi = 1

ri
(ln Ai − ln λ), i = 1, 2, . . . , k,

qi = 0, i = k + 1, . . . , M,

⎫
⎬

⎭. (1.67)

From (1.65) and (1.67), ln λ is given by

ln λ =
∑k

i=1
1
ri

ln Ai − Q
∑k

i=1
1
ri

, k = 1, 2, . . . , M. (1.68)

Let λk denote the value of the right-hand side of (1.68). Then, the optimal Lagrange
multiplier λ∗ exists in the set {λ1, λ2, . . . , λM }. Hence, we can obtain λ∗ by the
following procedures:

(1) Set k = 1.
(2) Compute λk by (1.68).
(3) If Ak > λk ≥ Ak+1, then λ∗ = λk(stop). Otherwise, set k = k + 1 and go back

to (2).

The optimal solutions q∗
i (i = 1, 2, . . . , M) are given by

Table 1.2 Example of the optimal testing-effort allocation problem (M = 10, Q = 5300)

Software module i ai wi ri q∗
i zi

1 1000 1.0 1.0 (×10−2) 191.7 147.0
2 1000 1.0 1.0 191.7 147.0
3 1000 1.0 1.0 191.7 147.0
4 500 1.0 0.5 106.2 294.0
5 500 1.0 0.5 106.2 294.0
6 500 1.0 0.5 106.2 294.0
7 500 1.0 0.5 106.2 294.0
8 100 1.0 0.1 0.0 100.0
9 100 1.0 0.1 0.0 100.0
10 100 1.0 0.1 0.0 100.0
Total 5300 1917.0

36 1 Introduction to Software Reliability Modeling and Its Applications

q∗
i = 1

ri
(ln Ai − ln λ∗), i = 1, 2, . . . , k,

q∗
i = 0, i = k + 1, . . . , M,

}
, (1.69)

which means that the amount of testing-effort expenditure is needed more for the
tested modules containing more faults.

Table 1.2 shows numerical examples of the optimal testing-effort allocation prob-
lem.

References

1. Kanno, A. (1992). Introduction to software production engineering (in Japanese). Tokyo:
JUSE Press.

2. Matsumoto, Y., & Ohno, Y. (Eds.). (1989). Japanese perspectives in software engineering.
Singapore: Addison-Wesley.

3. Lyu, M. R. (Ed.). (1996). Handbook of software reliability engineering. Los Alamitos, CA:
IEEE Computer Society Press.

4. Pham, H. (2006). System software reliability. London: Springer.
5. Yamada, S., & Ohtera, H. (1990). Software reliability: Theory and practical application (in

Japanese). Tokyo: Soft Research Center.
6. Yamada, S. (1994). Software reliability models: Fundamentals and applications (in Japanese).

Tokyo: JUSE Press.
7. Yamada, S. (2011). Elements of software reliability—modeling approach (in Japanese). Tokyo:

Kyoritsu-Shuppan.
8. Musa, J. D., Iannino, A., & Okumoto, A. (1987). Software reliability: Measurement, prediction,

application. New York: McGraw-Hill.
9. Ramamoorthy, C. V., & Bastani, F. B. (1982). Software reliability–status and perspectives.

IEEE Transactions on Software Engineering, SE-8, 354–371.
10. Jelinski, Z., & Moranda, P. B. (1972). Software reliability research. In W. Freiberger (Ed.),

Statistical computer performance evaluation (pp. 465–484). New York: Academic Press.
11. Wagoner, W. L. (1973). The final report on a software reliability measurement study. Report

TOR-0074(4112)-1, Aerospace Corporation.
12. Moranda, P. B. (1979). Event-altered rate models for general reliability analysis. IEEE Trans-

actions on Reliability, R-28, 376–381.
13. Ascher, H., & Feingold, H. (1984). Repairable systems reliability: Modeling, inference, mis-

conceptions, and their causes. New York: Marcel Dekker.
14. Yamada, S. (1991). Software quality/reliability measurement and assessment: software relia-

bility growth models and data analysis. Journal of Information Processing, 14, 254–266.
15. Yamada, S., & Osaki, S. (1985). Software reliability growth modeling: Models and applica-

tions. IEEE Transactions on Software Engineering, SE-11, 1431–1437.
16. Goel, A. L., & Okumoto, K. (1979). Time-dependent error-detection rate model for software

reliability and other performance measures. IEEE Transactions on Reliability, R-28, 206–211.
17. Goel, A. L. (1980). Software error detection model with applications. Journal of Systems and

Software, 1, 243–249.
18. Yamada, S., & Osaki, S. (1984). Nonhomogeneous error detection rate models for software

reliability growth. In S. Osaki & Y. Hatoyama (Eds.), Stochastic models in reliability theory
(pp. 120–143). Berlin: Springer.

19. Yamada, S., Osaki, S., & Narihisa, H. (1985). A software reliability growth model with two
types of errors. R. A. I. R. O. Operations Research, 19, 87–104.

20. Yamada, S., Ohba, M., & Osaki, S. (1983). S-shaped reliability growth modeling for software
error detection. IEEE Transactions on Reliability, R-32, 475–478, 484.

References 37

21. Yamada, S., Ohba, M., & Osaki, S. (1984). S-shaped software reliability growth models and
their applications. IEEE Transactions on Reliability, R-33, 289–292.

22. Ohba, M. (1984). Inflection S-shaped software reliability growth model. In S. Osaki & Y.
Hatoyama (Eds.), Stochastic models in reliability theory (pp. 144–162). Berlin: Springer.

23. Ohba, M., & Yamada, S. (1984). S-shaped software reliability growth models. In Proceedings
of the 4th International Conference on Reliability and Maintainability (pp. 430–436).

24. Yamada, S., Ohtera, H., & Narihisa, H. (1986). Software reliability growth models with testing-
effort. IEEE Transactions on Reliability, R-35, 19–23.

25. Yamada, S., Hishitani, J., & Osaki, S. (1993). Software-reliability growth with a Weibull
test-effort function. IEEE Transactions on Reliability, R-42, 100–106.

26. Ohtera, H., Yamada, S., & Ohba, M. (1990). Software reliability growth model with testing-
domain and comparisons of goodness-of-fit. In Proceedings of the International Symposium
on Reliability and Maintainability (pp. 289–294).

27. Yamada, S., Ohtera, H., & Ohba, M. (1992). Testing-domain dependent software reliability
growth models. Computers & Mathematics with Applications, 24, 79–86.

28. Musa, J. D., & Okumoto, K. (1984). A logarithmic Poisson execution time model for soft-
ware reliability measurement. In Proceedings of the 7th International Conference on Software
Engineering (pp. 230–238).

29. Okumoto, K. (1985). A statistical method for software quality control. IEEE Transactions on
Software Engineering, SE-11, 1424–1430.

30. Kanno, A. (1979). Software engineering (in Japanese). Tokyo: JUSE Press.
31. Mitsuhashi, T. (1981). A method of software quality evaluation (in Japanese). Tokyo: JUSE

Press.
32. Shoomam, M. L. (1983). Software engineering: Design, reliability, and management. New

York: McGraw-Hill.
33. Ohba, M., & Chou, X. (1989). Does imperfect debugging affect software reliability growth?

In Proceedings of the 11th International Conference on Software Engineering (pp. 237–244).
34. Shanthikumar, J. G. (1981). A state- and time-dependent error occurrence-rate software relia-

bility model with imperfect debugging. In Proceedings of the National Computer Conference
(pp. 311–315).

35. Ross, S. M. (1996). Stochastic processes. New York: Wiley.
36. Yamada, S., & Miki, T. (1998). Imperfect debugging models with introduced software faults

and their comparisons (in Japanese). Transactions of IPS Japan, 39, 102–110.
37. Yamada, S. (1998). Software reliability growth models incorporating imperfect debugging

with introduced faults. Electronics and Communications in Japan, 81, 33–41.
38. Xie, M. (1991). Software reliability modeling. Singapore: World Scientific.
39. Laprie, J.-C., Kanoun, K., Béounes, C., & Kaániche, M. (1991). The KAT (Knowledge-Action-

Transformation) approach to the modeling and evaluation of reliability and availability growth.
IEEE Transactions on Software Engineering, 17, 370–382.

40. Laprie, J.-C., & Kanoun, K. (1992). X-ware reliability and availability modeling. IEEE Trans-
actions on Software Engineering, 18, 130–147.

41. Tokuno, K., & Yamada, S. (1995). A Markovian software availability measurement with a
geometrically decreasing failure-occurrence rate. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E78-A, 737–741.

42. Okumoto, K., & Goel, A. L. (1978). Availability and other performance measures for system
under imperfect maintenance. In Proceedings of the COMPSAC ’78 (pp. 66–71).

43. Kim, J. H., Kim, Y. H., & Park, C. J. (1982). A modified Markov model for the estimation of
computer software performance. Operations Research Letters, 1, 253–257.

44. Tokuno, K., & Yamada, S. (1997). Markovian software availability modeling for performance
evaluation. In A. H. Christer, S. Osaki, & L. C. Thomas (Eds.), Stochastic modeling in innov-
ative manufacturing (pp. 246–256). Berlin: Springer.

45. Tokuno, K., & Yamada, S. (2007). User-oriented and -perceived software availability mea-
surement and assessment with environment factors. Journal of Operations Research Society
of Japan, 50, 444–462.

38 1 Introduction to Software Reliability Modeling and Its Applications

46. Tokuno, K., & Yamada, S. (2011). Codesign-oriented performability modeling for hardware-
software systems. IEEE Transactions on Reliability, 60, 171–179.

47. Tokuno, K., & Yamada, S. (1997). Markovian software availability modeling with two types of
software failures for operational use. In Proceedings of the 3rd ISSAT International Conference
on Reliability and Quality in Design (pp. 97–101).

48. Tokuno, K., & Yamada, S. (2001). Markovian modeling for software availability analysis
under intermittent use. International Journal of Reliability, Quality and Safety Engineering,
8, 249–258.

49. Tokuno, K., & Yamada, S. (1998). Operational software availability measurement with two
kinds of restoration actions. Journal of Quality in Maintenance Engineering, 4, 273–283.

50. Cho, B. C., & Park, K. S. (1994). An optimal time for software testing under the user’s require-
ment of failure-free demonstration before release. IEICE Transactions on Fundamentals of
Electronics, Communications, and Computer Sciences, E77-A, 563–570.

51. Foreman, E. H., & Singpurwalla, N. D. (1979). Optimal time intervals for testing-hypotheses
on computer software errors. IEEE Transactions on Reliability, R-28, 250–253.

52. Kimura, M., & Yamada, S. (1995). Optimal software release policies with random life-cycle
and delivery delay. In Proceedings of the 2nd ISSAT International Conference on Reliability
and Quality in Design (pp. 215–219).

53. Koch, H. S., & Kubat, P. (1983). Optimal release time for computer software. IEEE Transac-
tions on Software Engineering, SE-9, 323–327.

54. Okumoto, K., & Goel, A. L. (1980). Optimum release time for software system based on
reliability and cost criteria. Journal of Systems and Software, 1, 315–318.

55. Yamada, S. (1994). Optimal release problems with warranty period based on a software main-
tenance cost model (in Japanese). Transactions of IPS Japan, 35, 2197–2202.

56. Yamada, S., Kimura, M., Teraue, E., & Osaki, S. (1993). Optimal software release problem
with life-cycle distribution and discount rate (in Japanese). Transactions of IPS Japan, 34,
1188–1197.

57. Yamada, S., & Osaki, S. (1987). Optimal software release policies with simultaneous cost and
reliability requirements. European Journal of Operational Research, 31, 46–51.

58. Kimura, M., Toyota, T., & Yamada, S. (1999). Economic analysis of software release problems
with warranty cost and reliability requirement. Reliability Engineering and System Safety, 66,
49–55.

59. Yamada, S., & Kimura, M. (1999). Software reliability assessment tool based on object-
oriented analysis and its application. Annals of Software Engineering, 8, 223–238.

60. Kubat, P., & Koch, H. S. (1983). Managing test procedures to achieve reliable software. IEEE
Transactions on Reliability, R-32, 299–303.

61. Ohtera, H., & Yamada, S. (1990). Optimal allocation and control problem for software testing-
resources. IEEE Transactions on Reliability, R-39, 171–176.

62. Yamada, S., Ichimori, T., & Nishiwaki, N. (1995). Optimal allocation policies for testing-
resource based on a software reliability growth model. Mathematical and Computer Modeling,
22, 295–301.

63. Bazaraa, M. S., & Shetty, C. M. (1979). Nonlinear programming: Theory and algorithms.
New York: Wiley.

Chapter 2
Recent Developments in Software Reliability
Modeling

Abstract Management technologies for improving software reliability are very
important for software TQM (Total Quality Management). The quality characteris-
tics of software reliability is that computer systems can continue to operate regularly
without the occurrence of failures on software systems. In this chapter, we describe
several recent developments in software reliability modeling and its applications as
quantitative techniques for software quality/reliability measurement and assessment.
That is, a quality engineering analysis of human factors affecting software reliability
during the design-review phase, which is the upper stream of software development,
and software reliability growth models based on stochastic differential equations and
discrete calculus during the testing phase, which is the lower one, are discussed. And,
we discuss quality-oriented software management analysis by applying the multi-
variate analysis method and the existing software reliability growth models to actual
process monitoring data. Finally, we investigate an operational performability evalu-
ation model for the software-based system, introducing the concept of systemability
which is defined as the reliability characteristic subject to the uncertainty of the field
environment.

Keywords Human factor analysis · Design-review experiment · OSS reliability ·
Stochastic differential equation ·Discrete modeling ·Difference equation · Software
management · Software project assessment · Software performability modeling ·
Systemability assessment

2.1 Introduction

At present, it is important to assess the reliability of software systems because of
increasing the demands on quality and productivity in social systems. Moreover,
they may cause serious accidents affecting people’s lives. Under the background
like this, software reliability technologies for the purpose of producing quality soft-

S. Yamada, Software Reliability Modeling, SpringerBriefs in Statistics, 39
DOI: 10.1007/978-4-431-54565-1_2, © The Author(s) 2014

40 2 Recent Developments in Software Reliability Modeling

ware systems efficiently, systematically, and economically have been developed and
researched energetically. Especially, comprehensive use of technologies and method-
ologies in software engineering is needed for improving software quality/reliability.

A computer-software is developed by human work, therefore many software faults
must be introduced into the software product during the development process. Thus,
these software faults often cause break-downs of computer systems. Recently, it be-
comes more difficult for the developers to produce highly-reliable software systems
efficiently because of the diversified and complicated software requirements. There-
fore, it is necessary to control the software development process in terms of quality
and reliability. Note that software failure is defined as an unacceptable departure of
program operation caused by a software fault remaining in the software system.

First, we focus on a software design-review process which is more effective than
the other processes in the upper stream of software development for elimination
and prevention of software faults. Then conducting a design-review experiment, we
discuss a quality engineering approach for analyzing the relationships among the
quality of the design-review activities, i.e. software reliability, and human factors to
clarify the fault-introduction process in the design-review process.

Basically, software reliability can be evaluated by the number of detected faults
or the software failure-occurrence time in the testing phase which is the last phase
of the development process, and it can be also estimated in the operational phase.
Especially, software reliability models which describe software fault-detection or
failure-occurrence phenomena in the system testing phase are called software reli-
ability growth models (SRGM’s) . The SRGM’s are useful to assess the reliability
for quality control and testing-progress control of software development. Most of
the SRGM’s which have been proposed up to the present treat the event of fault-
detection in the testing and operational phases as a counting process. However, if the
size of the software system is large, the number of faults detected during the testing
phase become large, and the change of the number of faults which are detected and
removed through debugging activities becomes sufficiently small compared with the
initial fault content at the beginning of the testing phase.

Then, we model the fault-detection process as a stochastic process with a continu-
ous state space for reliability assessment in an open source solution developed under
several open source softwares (OSS’s) to consider the active state of the open source
projects and the collision among the open source components. And we propose a new
SRGM describing the fault-detection process by applying a mathematical technique
of stochastic differential equations of Itô-type.

Further, based on discrete analogs of nonhomogeneous Poisson process models as
SRGM’s, which have exact solutions in terms of solving the hypothesized differential
equations, we propose two discrete models described by difference equations derived
by transforming the continuous testing-time into discrete one. Then, we can show that
such a difference calculus enables us to assess software reliability more accurately
than conventional discrete models.

And, we discuss quality-oriented software management through statistical analy-
sis of process monitoring data. Then, based on the desired software management
models, we obtain the significant process factors affecting QCD (Quality, Cost, and

2.1 Introduction 41

Delivery) measures. At the same time, we propose a method of software reliabil-
ity assessment as process monitoring evaluation with actual data for the process
monitoring progress ratio and the pointed-out problems (i.e. detected faults).

Finally, we investigate an operational performability evaluation model for the
software-based system, introducing the concept of systemability which is defined
as the reliability characteristic subject to the uncertainty of the field environment.
Assuming that the software system can process the multiple tasks simultaneously
and that the arrival process of the tasks follows a nonhomogeneous Poisson process,
we analyze the distribution of the number of tasks whose processes can be completed
within the processing time limit with the infinite-server queueing theory. Here we
take the position that the software reliability characteristic in the testing phase is
originally different from that in the operation phase. Then, the software failure-
occurrence phenomenon in the operation phase is described with the Markovian
software reliability model with systemability, i.e. we consider the randomness of the
environmental factor which is introduced to bridge the gap between the software
failure-occurrence characteristics during the testing and the operation phases. We
derive several software performability measures considering the real-time property;
these are given as the functions of time and the number of debugging activities.
Finally, we illustrate several numerical examples of the measures to investigate the
impact of consideration of systemability on the system performability evaluation.

2.2 Human Factors Analysis

In this section, we discuss an experiment study to clarify human factors [1–3] and
their interactions affecting software reliability by assuming a model of human fac-
tors which consist of inhibitors and inducers. In this experiment, we focus on the
software design-review process which is more effective than the other processes in
the elimination and prevention of software faults. For an analysis of experimental
results, a quality engineering approach base on a signal-to-noise ratio (defined as
SNR) [4] is introduced to clarify the relationships among human factors and software
reliability measured by the number of seeded faults detected by review activities, and
the effectiveness of significant human factors judged by the design of experiment
[5] is evaluated. As a result, applying the orthogonal array L18(21 × 37) to the hu-
man factor experiment, we obtain the optimal levels for the selected inhibitors and
inducers.

2.2.1 Design-Review and Human Factors

The inputs and outputs for the design-review process are shown in Fig. 2.1. The
design-review process is located in the intermediate process between design and
coding phases, and have software requirement-specifications as inputs and software

42 2 Recent Developments in Software Reliability Modeling

(input)

(input)

Review feed-back

Design-review results

(output)

User requirement
 Requirement-specification

Intermediate product
 Design-specification

Design oversights
Design faults are detected()

Requirement Analysis

Design

Coding Testing

Requirement-specification
Design-specification

Design-Review

Fig. 2.1 Inputs and outputs in the software design process

Human Factors

Inhibitors

(Attributes of the design reviewers)

Inducers

(Attributes of environment for the design-review)

Input

 Requirement-specification

Output

 Design-specification

 Detected faults

Development Activities

(Design-Review)

Fig. 2.2 A human factor model including inhibitors and inducers

design-specifications as outputs. In this process, software reliability is improved by
detecting software faults effectively [6].

The attributes of software designers and design process environment are mutually
related for the design-review process (see Fig. 2.1). Then, influential human factors
for the design-specifications as outputs are classified into two kinds of attributes in
the followings [7–9] (see Fig. 2.2):

(i) Attributes of the design reviewers (Inhibitors)

Attributes of the design reviewers are those of software engineers who are re-
sponsible for design-review work. For example, they are the degree of under-
standing of software requirement-specifications and software design-methods,
the aptitude of programmers, the experience and capability of software design,
the volition of achievement of software design, etc. Most of them are psycho-
logical human factors which are considered to contribute directly to the quality
of software design-specification.

(ii) Attributes of environment for the design-review (Inducers)

In terms of design-review work, many kinds of influential factors are considered
such as the education of software design-methods, the kind of software design
methodologies, the physical environmental factors in software design work,

2.2 Human Factors Analysis 43

Table 2.1 Human factors in the design-review experiment

Human factor Level
1 2 3

A(ii) BGM of classical music the review
work environment

A1: yes A2: no -

B(ii) Time duration of software design work
(minute)

B1: 20 min B2: 30 min B3: 40 min

C (i) Degree of understanding of the design
method (R-Net Technique)

C1: high C2: common C3: low

D(i) Degree of understanding of require-
ment specifications

D1: high D2: common D3: low

E (ii) Check list (indicating the matters that
require attention in review work)

E1: detailed E2: common E3: nothing

(i) Inhibitor, (ii) Inducers

e.g., temperature, humidity, noise, etc. All of these influential factors may affect
indirectly to the quality of software design-specification.

2.2.2 Design-Review Experiment

In order to find out the relationships among the reliability of software design-
specification and its influential human factors, we have performed the design of
experiment by selecting five human factors as shown in Table 2.1.

In this experiment, we conduct an experiment to clarify the relationships among
human factors affecting software reliability and the reliability of design-review work
by assuming a human factor model consisting of inhibitors and inducers as shown in
Fig. 2.2. The actual experiment has been performed by 18 subjects based on the same
design-specification of a triangle program which receives three integers representing
the sides of a triangle and classifies the kind of triangle such sides form [10]. We
measured the 18 subjects’ capability of both the degrees of understanding of design-
method and requirement-specification by the preliminary tests before the design of
experiment. Further, we seeded some faults in the design-specification intentionally.
Then, we have executed such a design-review experiment in which the 18 subjects
detect the seeded faults.

We have performed the experiment by using the five human factors with three
levels as shown in Table 2.1, which are assigned to the orthogonal-array L18(21 ×37)

of the design of experiment as shown in Table 2.3. We distinguish the design parts as
follows to be pointed out in the design-review as detected faults into the descriptive-
design and symbolic-design parts.

44 2 Recent Developments in Software Reliability Modeling

• Descriptive-design faults
The descriptive-design parts consist of words or technical terminologies which
are described in the design-specification to realize the required functions. In this
experiment, the descriptive-design faults are algorithmic ones, and we can improve
the quality of design-specification by detecting and correcting them.

• Symbolical-design faults
The symbolical-design parts consist of marks or symbols which are described
in the design-specification. In this experiment, the symbolical-design faults are
notation mistakes, and the quality of the design-specification can not be improved
by detecting and correcting them.

For the orthogonal-array L18(21 × 37) as shown in Table 2.3, setting the clas-
sification of detected faults as outside factor R and the human factors A, B, C, D,
and E as inside factors, we perform the design-review experiment. Here, the outside
factor R has two levels such as descriptive-design parts (R1) and symbolical-design
parts (R2).

2.2.3 Analysis of Experimental Results

We define the efficiency of design-review, i.e. the reliability, as the degree that the
design reviewers can accurately detect correct and incorrect design parts for the
design-specification containing seeded faults. There exists the following relationship
among the total number of design parts, n, the number of correct design parts, n0,
and the number of incorrect design parts containing seeded faults, n1:

n = n0 + n1. (2.1)

Therefore, the design parts are classified as shown in Table 2.2 by using the fol-
lowing notations:

Table 2.2 Input and output tables for two kinds of error

(i)Observed values (ii)Error rates
Output 0 (true) 1 (false) Total Output 0 (true) 1 (false) Total
Input Input

0 (true) n00 n01 n0 0 (true) 1 − p p 1
1 (false) n10 n11 n1 1 (false) q 1 − q 1
Total r0 r1 n Total 1 − p + q 1 − q + p 2

2.2 Human Factors Analysis 45

Table 2.3 The orthogonal array L18(21 × 37) with assigned human factors and experimental data

Human factors Observed values SNR (dB)
No. A B C D E R1 R2 R1 R2

n00 n01 n10 n11 n00 n01 n10 n11

1 1 1 1 1 1 52 0 2 12 58 1 0 4 7.578 6.580
2 1 1 2 2 2 49 3 8 6 59 0 2 2 −3.502 3.478
3 1 1 3 3 3 50 2 12 2 59 0 4 0 8.769 2.342
4 1 2 1 1 2 52 0 2 12 59 0 0 4 7.578 8.237
5 1 2 2 2 3 50 2 4 10 57 2 0 4 1.784 4.841
6 1 2 3 3 1 45 7 8 6 59 0 3 1 −7.883 0.419
7 1 3 1 2 1 52 0 2 12 59 0 2 2 7.578 3.478
8 1 3 2 3 2 47 5 6 8 59 0 2 2 −3.413 3.478
9 1 3 3 1 3 52 0 10 4 58 1 1 3 0.583 4.497
10 2 1 1 3 3 52 0 10 4 58 1 1 3 0.583 4.497
11 2 1 2 1 1 47 5 1 13 59 0 3 1 3.591 0.419
12 2 1 3 2 2 46 6 8 6 59 0 4 0 6.909 2.342
13 2 2 1 2 3 46 6 10 4 59 0 0 4 −10.939 8.237
14 2 2 2 3 1 49 3 11 3 59 0 4 0 8.354 2.342
15 2 2 3 1 2 46 6 10 4 59 0 0 4 −10.939 8.237
16 2 3 1 3 2 50 2 2 12 59 0 0 4 4.120 8.237
17 2 3 2 1 3 50 2 4 10 57 2 0 4 1.784 4.841
18 2 3 3 2 1 44 8 6 8 59 0 3 1 −5.697 0.419

n00 = the number of correct design parts detected accurately as correct design
parts,

n01 = the number of correct design parts detected by mistake as incorrect design
parts,

n10 = the number of incorrect design parts detected by mistake as correct design
parts,

n11 = the number of incorrect design parts detected accurately as incorrect design
parts,

where two kinds of error rate are defined by

p = n01

n0
, (2.2)

q = n10

n1
, (2.3)

Considering the two kinds of error rate, p and q, we can derive the standard error
rate, p0, [4] as

p0 = 1

1 +
√(

1
p − 1

) (
1
q − 1

) . (2.4)

46 2 Recent Developments in Software Reliability Modeling

Then, the signal-to-noise ratio based on (2.4) is defined by (see [4])

η0 = −10log10

{
1

(1 − 2p0)2 − 1

}
. (2.5)

The standard error rate, p0, can be obtained from transforming (2.5) by using the
signal-to-noise ratio of each control factor as

p0 = 1

2

⎧
⎨

⎩1 − 1√
10

(− η0
10

)
+ 1

⎫
⎬

⎭ . (2.6)

The method of experimental design based on orthogonal-arrays is a special one
that require only a small number of experimental trials to help us discover main
factor effects. On traditional researches [7, 11], the design of experiment has been
conducted by using orthogonal-array L12(211). However, since the orthogonal-array
L12(211) has only two levels for grasp of factorial effect to the human factors ex-
periment, the middle effect between two levels can not be measured. Thus, in order
to measure it, we adopt the orthogonal-array L18(21 × 37) can lay out one factor
with 2 levels (1, 2) and 7 factors with 3 levels (1, 2, 3) as shown in Table 2.3, and
dispense with 21 × 37 trials by executing experimental independent 18 experimental
trials each other. For example, as for the experimental trial No. 10, we executed the
design-review work under the conditions A2, B1, C1, D3, and E3, and obtained the
computed SNR’s as 0.583 (dB) for the descriptive-design faults from the observed
values n00 = 52, n01 = 0, n10 = 10, and n11 = 4, and as 4.497 (dB) for the
symbolical-design faults from the observed values n00 = 58, n01 = 1, n10 = 1, and
n11 = 3.

2.2.4 Investigation of Analysis Results

We analyze simultaneous effects of outside factor R and inside human factors A, B,
C, D, and E. As a result of the analysis of variance by taking account of correlation
among inside and outside factors discussed in Sect. 2.2.2, we can obtain Table 2.4.
There are two kinds of errors in the analysis of variance: e1 is the error among
experiments of the inside factors, and e2 the mutual correlation error between e1 and
the outside factor. In this analysis, since there was no significant effect by performing
F-test for e1 with e2, F-test for all factors was performed by e2. As the result, the
significant human factors such as the degree of understanding of the design-method
(Factor C), the degree of understanding of requirement-specification (Factor D), and
the classification of detected faults (Factor R) were recognized. Figure 2.3 shows the
factor effect for each level in the significant factors which affect design-review work.

As a result of analysis, in the inside factors, only Factor C and D are significant and
the inside and outside factors are not mutually interacted. That is, it turns out that the

2.2 Human Factors Analysis 47

Si
gn

al
-t

o-
N

oi
se

 R
at

io
 (

dB
)

10.0

0.0

-2.0

-4.0

-6.0

-8.0

2.0

4.0

6.0

8.0

C1 C2 C3 D1 D2 D3 R1 R2

Fig. 2.3 The estimation of significant factors with correlation among inside and outside factors

Table 2.4 The result of analysis of variance by taking account of correlation among inside and
outside factors

Factor f S V F0 ρ(%)

A 1 37.530 37.530 2.497 3.157
B 2 47.500 23.750 1.580 3.995
C 2 313.631 156.816 10.435∗∗ 26.380
D 2 137.727 68.864 4.582∗ 11.584
E 2 4.684 2.342 0.156 0.394
A×B 2 44.311 22.155 1.474 3.727
e1 6 38.094 6.460 0.422 3.204
R 1 245.941 245.941 16.366∗∗ 20.686
A×R 1 28.145 28.145 1.873 2.367
B×R 2 78.447 39.224 2.610 6.598
C×R 2 36.710 18.355 1.221 3.088
D×R 2 9.525 4.763 0.317 0.801
E×R 2 46.441 23.221 1.545 3.906
e2 8 120.222 15.028 3.870 10.112
T 35 1188.909 100.0
∗:5 % level of significant
∗∗:1 % level of significant

reviewers with the high degree of understanding of the design-method and the high
degree of understanding of requirement-specification exactly can review the design-
specification efficiently regardless of the classification of detected faults. Moreover,
the result that outside factor R is highly significant, and the descriptive-design faults
are detected less than the symbolic-design faults, can be obtained. That is, although it
is a natural result, it is difficult to detect and correct the algorithmic faults which lead

48 2 Recent Developments in Software Reliability Modeling

to improvement in quality rather than the notation mistakes. However, it is important
to detect and correct the algorithmic faults as an essential problem of the quality
improvement for design-review work. Therefore, in order to increase the rate of
detection and correction of the algorithmic faults which lead to the improvement of
quality, it is required before design-review work to make reviewers fully understand
the design techniques used for describing design-specifications and the contents of
requirement-specifications.

2.3 Stochastic Differential Equation Modeling

Software development environment has been changing into new development para-
digms such as concurrent distributed development environment and the so-called
open source project by using network computing technologies. Especially, such
OSS (Open Source Software) systems which serve as key components of critical
infrastructures in the society are still ever-expanding now [12].

The successful experience of adopting the distributed development model in such
open source projects includes GNU/Linux operating system, Apache Web server,
and so on [12]. However, the poor handling of the quality and customer support
prohibit the progress of OSS. We focus on the problems in the software quality,
which prohibit the progress of OSS.

Especially, SRGM’s [6, 13] have been applied to assess the reliability for qual-
ity management and testing-progress control of software development. On the other
hand, the effective method of dynamic testing management for new distributed de-
velopment paradigm as typified by the open source project has only a few presented
[14–17]. In case of considering the effect of the debugging process on entire system
in the development of a method of reliability assessment for OSS, it is necessary to
grasp the situation of registration for bug tracking system, degree of maturation of
OSS, and so on.

In this chapter, we focus on an open source solution developed under several
OSS’s. We discuss a useful software reliability assessment method in open source
solution as a typical case of next-generation distributed development paradigm.
Especially, we propose a software reliability growth model based on stochastic dif-
ferential equations in order to consider the active state of the open source project and
the component collision of OSS. Then, we assume that the software failure intensity
depends on the time, and the software fault-reporting phenomena on the bug track-
ing system keep an irregular state. Also, we analyze actual software fault-count data
to show numerical examples of software reliability assessment for the open source
solution. Moreover, we compare our model with the conventional model based on
stochastic differential equations in terms of goodness-of-fit for actual data. Then, we
show that the proposed model can assist improvement of quality for an open source
solution developed under several OSS’s.

2.3 Stochastic Differential Equation Modeling 49

2.3.1 Stochastic Differential Equation Model

Let S(t) be the number of detected faults in the open source solution by testing time
t (t ≥ 0). Suppose that S(t) takes on continuous real values. Since latent faults in
the open source solution are detected and eliminated during the operational phase,
S(t) gradually increases as the operational procedures go on. Thus, under common
assumptions for software reliability growth modeling, we consider the following
linear differential equation:

d S(t)

dt
= λ(t)S(t), (2.7)

where λ(t) is the intensity of inherent software failures at operational time t and is
a non-negative function.

Generally, it is difficult for users to use all functions in open source solution,
because the connection state among open source components is unstable in the
testing-phase of open source solution. Considering the characteristic of open source
solution, the software fault-report phenomena keep an irregular state in the early
stage of testing phase. Moreover, the addition and deletion of software components
are repeated under the development of an OSS system, i.e. we consider that the
software failure intensity depends on the time.

Therefore, we suppose that λ(t) and μ(t) have the irregular fluctuation. That is,
we extend (2.7) to the following stochastic differential equation (SDE) [18, 19]:

d S(t)

dt
= {λ(t) + σμ(t)γ (t)}S(t), (2.8)

where σ is a positive constant representing a magnitude of the irregular fluctuation,
γ (t) a standardized Gaussian white noise, and μ(t) the collision level function of
open source component.

We extend (2.8) to the following stochastic differential equation of an Ito type:

d S(t) =
{
λ(t) + 1

2
σ 2μ(t)2

}
S(t)dt + σμ(t)S(t)dω(t), (2.9)

where ω(t) is a one-dimensional Wiener process which is formally defined as an
integration of the white noise γ (t) with respect to time t . The Wiener process is a
Gaussian process and it has the following properties:

Pr[ω(0) = 0] = 1, (2.10)

E[ω(t)] = 1, (2.11)

E[ω(t)ω(t ′)] = Min[t, t ′]. (2.12)

By using Ito’s formula [18, 19], we can obtain the solution of (2.8) under the initial
condition S(0) = ν as follows [20]:

50 2 Recent Developments in Software Reliability Modeling

S(t) = ν · exp

(∫ t

0
λ(s)ds + σμ(t)ω(t)

)
, (2.13)

where ν is the number of detected faults for the previous software version. Using
solution process S(t) in (2.13), we can derive several software reliability measures.

Moreover, we define the intensity of inherent software failures, λ(t), and the
collision level function, μ(t), as follows:

∫ t

0
λ(s)ds = (1 − exp[−αt]), (2.14)

μ(t) = exp[−βt], (2.15)

where α is an acceleration parameter of the intensity of inherent software failures,
and β the growth parameter of the open source project.

2.3.2 Method of Maximum-Likelihood

In this section, the estimation method of unknown parameters α, β and σ in (2.13)
is presented. Let us denote the joint probability distribution function of the process
S(t) as

P(t1, y1; t2, y2; · · · ; tK , yK) ≡ Pr[S(t1) ≤ y1, · · · , S(tK) ≤ yK | S(t0) = ν],
(2.16)

where S(t) is the cumulative number of faults detected up to the operational time
t (t ≥ 0), and denote its density as

p(t1, y1; t2, y2; · · · ; tK , yK) ≡ ∂K P(t1, y1; t2, y2; · · · ; tK , yK)

∂y1∂y2 · · · ∂yK
. (2.17)

Since S(t) takes on continuous values, we construct the likelihood function l for the
observed data (tk, yk)(k = 1, 2, · · · , K) as follows:

l = p(t1, y1; t2, y2; · · · ; tK , yK). (2.18)

For convenience in mathematical manipulations, we use the following logarithmic
likelihood function:

L = log l. (2.19)

The maximum-likelihood estimates α∗, β∗, and σ ∗ are the values making L in (2.19)
maximize. These can be obtained as the solutions of the following simultaneous
likelihood equations [20]:

∂L

∂α
= ∂L

∂β
= ∂L

∂σ
= 0. (2.20)

2.3 Stochastic Differential Equation Modeling 51

2.3.3 Expected Number of Detected Faults

We consider the expected number of faults detected up to operational time t . The
density function of ω(t) is given by:

f (ω(t)) = 1√
2π t

exp

{
−ω(t)2

2t

}
. (2.21)

Information on the cumulative number of detected faults in the OSS system is impor-
tant to estimate the situation of the progress on the software operational procedures.
Since it is a random variable in our model, its expected value and variance can be
useful measures. We can calculate the expected number of faults detected up to time
t from (2.13) as follows [20]:

E[S(t)] = ν · exp

(∫ t

0
λ(s)ds + σ 2μ(t)2

2
t

)
. (2.22)

2.3.4 Numerical Illustrations

We focus on a large scale open source solution based on the Apache HTTP Server
[21], Apache Tomcat [22], MySQL [23] and JSP (JavaServer Pages). The fault-count
data used in this chapter are collected in the bug tracking system on the website of
each open source project. The estimated expected cumulative number of detected
faults in (2.22) is shown in Fig. 2.4. Also, the sample path of the estimated numbers
of detected faults in (2.13) is shown in Fig. 2.5, approximately.

We show the reliability assessment results for the other SDE model in terms of the
performance evaluation of our model. The sample path of the estimated cumulative
numbers of detected faults in the conventional SDE model for OSS [24] are shown
in Fig. 2.6. Also, Fig. 2.7 is the sample path of the estimated numbers of remaining
faults in the conventional SDE model [25]. From Figs. 2.6 and 2.7, we have found that
the magnitude of the irregular fluctuation in the early phase of the proposed model is
larger than those of the conventional SDE models, i.e. the irregular fluctuation in the
proposed model depends on the time. Then, for the large scale open source solution
[26, 27], we may utilize the proposed model for assisting improvement of quality,
in which it can describe actual fault-detection phenomena.

2.4 Discrete NHPP Modeling

In recent researches, Satoh [28] proposed a discrete Gompertz curve model, and Satoh
and Yamada [29] suggested parameter estimation procedures for software reliability
assessment of a discrete logistic curve model, and compared the these models by

52 2 Recent Developments in Software Reliability Modeling

Fig. 2.4 The estimated cumulative number of detected faults, E[S(t)]

Fig. 2.5 The estimated path of the estimated number of detected faults

using a new proposed criterion. They reported that the discrete models as statistical
data analysis models enable us to obtain accurate parameter estimates even with a
small amount of observed data for particular applications.

In this section, we discuss the discrete nonhomogeneous Poisson process (NHPP)
models [6] derived by employing a difference method which conserves the gauge
invariance from above results and high applicability of NHPP models point of view.

2.4 Discrete NHPP Modeling 53

Fig. 2.6 The sample path of the estimated cumulative number of detected faults for the conventional
SDE model for OSS

Fig. 2.7 The sample path of the estimated number of remaining faults for the conventional SDE
model

The discrete NHPP models, that is, the discrete exponential SRGM and the discrete
inflection S-shaped SRGM, have exact solutions. The difference equations and their
exact solutions tend to the differential equations and their exact solutions. Therefore,
the proposed models conserve the characteristics of the continuous NHPP models.

54 2 Recent Developments in Software Reliability Modeling

The proposed models can be easily applied to regression equations to get accurate
parameter estimates, and have more advantages in terms of numerical calculations
than the maximum-likelihood estimation [30].

We assume a discrete counting process {Nn, n ≥ 0}(n = 0, 1, 2, · · ·) representing
the cumulative number of faults detected by nth period from the test beginning. Then,
the NHPP model with mean value function Dn representing the expected cumulative
number of faults is formulated by

Pr{Nn = x} = [Dn]x

x ! exp[−Dn] (n, x = 0, 1, 2, · · ·). (2.23)

We employ a difference method which conserves the gauge invariance because the
proposed discrete NHPP models have to conserve the characteristic of the continuous
NHPP models, i.e. the continuous NHPP models have exact solutions. With regard
to parameter estimations, the difference equations can be easily applied to regression
equations to get accurate parameter estimates, and this models have some advantages
in terms of numerical calculations. Therefore, we can estimate unknown parameters
by adopting the method of ordinary least-square procedures from the regression
equations.

2.4.1 Discrete Exponential SRGM

We propose a discrete analog of the original exponential SRGM of which mean
value function is the simplest form in the SRGM’s. This difference equation for
this model has an exact solution. Let Hn denote the expected cumulative number
of software faults detected by nth period from the test beginning. Then, we derive
a discrete analog of the exponential SRGM from the hypotheses of the continuous
NHPP model as follows:

Hn+1 − Hn = δb(a − Hn). (2.24)

Solving the above equation, an exact solution Hn in (2.24) is given by

Hn = a[1 − (1 − δb)n] (a > 0, 0 < b < 1), (2.25)

where δ represents the constant time-interval, a the expected total number of potential
software failures occurred in an infinitely long duration or the expected initial fault
content, and b the fault-detection rate per fault. As δ → 0, (2.25) converges to an
exact solution of the original exponential SRGM which is described by the differential
equation.

We can derive a regression equation from (2.24) to estimate the model parameters.
The regression equation is obtained as

2.4 Discrete NHPP Modeling 55

Yn = A + B Hn, (2.26)

where
⎧
⎨

⎩

Yn = Hn+1 − Hn

A = δab
B = −δb.

(2.27)

Using (2.26), we can estimate Â and B̂ by using the observed data, which are the
estimates of A and B. Therefore, we can obtain the parameter estimates â and b̂ from
(2.27) as follows:

{
â = − Â/B̂
b̂ = −B̂/δ.

(2.28)

Yn in (2.26) is independent of δ because δ is not used in calculating Yn in (2.26).
Hence, we can obtain the same parameter estimates of â and b̂, respectively, when
we choose any value of δ.

2.4.2 Discrete Inflection S-Shaped SRGM

We also propose a discrete analog of the original inflection S-shaped SRGM which
is the continuous one. Let In denote the expected cumulative number of software
faults detected by nth period from the test beginning. Then, we can derive a discrete
analog of the inflection S-shaped SRGM from the hypotheses of the continuous
NHPP model as follows:

In+1 − In = δabl + δb(1 − 2l)

2
[In + In+1] − δb(1 − l)

a
In In+1. (2.29)

Solving the above difference equation, an exact solution In in (2.29) is given by

In =
a

[
1 −

(
1− 1

2 δb

1+ 1
2 δb

)n]

1 + c

(
1− 1

2 δb

1+ 1
2 δb

)n (a > 0, 0 < b < 1, c > 0, 0 ≤ l ≤ 1), (2.30)

where δ represents the constant time-interval, a the expected total number of poten-
tial software failures occurred in an infinitely long duration or the expected initial
fault content, b the fault-detection rate per fault, and c the inflection parameter. The
inflection parameter is specified as follows: c = (1 − l)/ l where l is the inflection
rate which indicates the ratio of the number of detectable faults to the total number of

56 2 Recent Developments in Software Reliability Modeling

faults in the software system. As δ → 0, (2.30) converges to an exact solution of the
original inflection S-shaped SRGM which is described by the differential equation.

Defining the difference operator as

�In ≡ In+1 − In

δ
. (2.31)

We show that the inflection point occurs when

n̄ =
{

< n∗ > (i f �I<n∗> ≥ �I<n∗>+1)

< n∗ > +1 (otherwise),
(2.32)

where

n∗ = − logc

log

(
1− 1

2 δb

1+ 1
2 δb

) − 1, (2.33)

< n∗ > = {n|max(n ≤ n∗), n ∈ Z}. (2.34)

Moreover, we define t∗ as

t∗ = n∗δ. (2.35)

When n∗ is an integer, we can show that t∗ converges the inflection point of the
inflection S-shaped SRGM which is described by the differential equation as δ → 0
as follows:

t∗ = −δ
logc

log

(
1− 1

2 δb

1+ 1
2 δb

) − δ → logc

b
as δ → 0. (2.36)

By the way, the inflection S-shaped SRGM is regarded as a Riccati equation. Hirota
[31] proposed a discrete Riccati equation which has an exact solution. A Bass model
[32] which forecasts the innovation diffusion of products is also a Riccati equation.
Satoh [33] proposed a discrete Bass model which can overcome the shortcomings of
the ordinary least-square procedures in the continuous Bass model.

We can derive a regression equation to estimate the model parameters from (2.29).
The regression equation is obtained as

Yn = A + BKn + C Ln, (2.37)

where

2.4 Discrete NHPP Modeling 57

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Yn = In+1 − In

Kn = In + In+1
Ln = In In+1
A = δabl
B = δb(1 − 2l)/2
C = −δb(1 − l)/a.

(2.38)

Using (2.37), we can estimate Â, B̂, and Ĉ by using the observed data, which are
the estimates of A, B, and C , respectively. Therefore, we can obtain the parameter
estimates â, b̂, and l̂ from (2.38) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

â = Â/(
√

B̂2 − ÂĈ − B̂)

b̂ = 2
√

B̂2 − ÂĈ/δ

l̂ = (1 − B̂/
√

B̂2 − ÂĈ)/2.

(2.39)

Yn , Kn , and Ln in (2.37) are independent of δ because δ is not used in calculating
Yn , Kn , and Ln in (2.37). Hence, we can obtain the same parameter estimates â, b̂,
and l̂, respectively, when we choose any value of δ.

2.4.3 Model Comparisons

We show the result of goodness-of-fit comparisons in this section. We compare the
four discrete models by using four data sets (DS1–DS4) observed in actual software
testing. The four discrete models are as follows: two discrete NHPP models that
were discussed in Sects. 2.4.1 and 2.4.2, a discrete logistic curve model [29, 30],
and a discrete Gompertz curve model [28]. The data sets of DS1 and DS2 indicate
exponential growth curves, and those of DS3 and DS4 indicate S-shaped growth
curves, respectively. We employ the predicted relative error [6], the mean square
errors (MSE) [6], and Akaike’s Information Criterion (AIC) [6] as criteria of the
model comparison in this section.

The predicted relative error is a useful criterion for indicating the relative errors
between the predicted number of faults discovering by termination time of testing by
using the part of observed data from the test beginning and the observed number of
faults discovering by the termination time. Let Re[te] denote the predicted relative
error at arbitrary testing time te. Then, the predicted relative error is given by

Re[te] = ŷ(te; tq) − q

q
, (2.40)

where ŷ(te; tq) is the estimated value of the mean value function at the termination
time tq by using the observed data by the arbitrary testing time te(0 ≤ te ≤ tq),

58 2 Recent Developments in Software Reliability Modeling

and q is the observed cumulative number of faults detected by the termination time.
We show Figs. 2.8, 2.9, 2.10 which are the results of the model comparisons based
on the predicted relative error for DS1 and DS3. MSE is obtained by using the
sum of squared errors between the observed and estimated cumulative numbers
of detected faults, yk and ŷ(tk) during (0, tk], respectively. Getting N data pairs
(tk, yk)(k = 1, 2, · · · , N), MSE is given by

MSE = 1

N

N∑

k=1

[yk − ŷ(tk)]2, (2.41)

where ŷ(tk)denote the estimated value of the expected cumulative number of faults by
using exact solutions of each model by the arbitrary testing time tk(k = 1, 2, · · · , N).
Table 2.5 shows the result of model comparison based on MSE for the each model.
From Table 2.5, we conclude that the discrete inflection S-shaped SRGM fits better
to all data sets except for DS2. However, the result of model comparison based on
MSE depends on the number of model parameters of each models, e.g., the dis-
crete exponential SRGM has two parameters and the discrete inflection S-shaped
one has three parameters. Therefore, as a criterion of goodness-of-fit comparison for
the two discrete models, i.e. the discrete exponential SRGM and the discrete inflec-
tion S-shaped one, we adopt the value of AIC. Table 2.6 shows the result of model
comparison based on AIC. From Table 2.6, we can validate the above evaluation for
MSE.

From these three results of goodness-of-fit comparison, we conclude that the
discrete exponential SRGM is more useful model for software reliability assessment
for the observed data which indicate an exponential growth curve, and the discrete

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

Pr
ed

ic
te

d
R

el
at

iv
e

E
rr

or
s

Ratio of Testing Progress (%)

Discrete exponential SRGM
Discrete inflection S-shaped SRGM

Discrete logistic curve model
Discrete Gompertz curve model

Fig. 2.8 The predicted relative for DS1

2.4 Discrete NHPP Modeling 59

0 10 20 30 40 50 60 70 80 90 100

Ratio of Testing Progress (%)

-1

-0.5

0

0.5

1

Pr
ed

ic
te

d
R

el
at

iv
e

E
rr

or
s

Discrete exponential SRGM
Discrete inflection S-shaped SRGM

Discrete logistic curve model
Discrete Gompertz curve model

Fig. 2.9 The predicted relative error for DS3

-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

40 50 60 70 80 90 100

Pr
ed

ic
te

d
R

el
at

iv
e

E
rr

or
s

Ratio of TestingProgress (%)

Discrete inflection S-shaped SRGM
Discrete Gompertz curve model

Fig. 2.10 The model comparison based on the predicted relative error for DS3 focusing on the
discrete Gompertz curve model and the discrete inflection S-shaped SRGM

inflection S-shaped SRGM is more useful one for assessment after 60 % of the testing
progress ratio for the observed data which indicate an S-shaped growth curve.

60 2 Recent Developments in Software Reliability Modeling

Table 2.5 The result of model comparison based on MSE

Data set Discrete Discrete Discrete logistic Discrete Gompertz
exponential SRGM inflection S-shaped SRGM curve model curve model

DS1 39.643 12.141 101.92 72.854
DS2 1762.5 2484.0 27,961 13,899
DS3 25,631 9598.1 1,49,441 19,579
DS4 11,722 438.59 4,9741 27,312

Table 2.6 The result of model comparison between the discrete exponential SRGM and discrete
inflection S-shaped SRGM based on AIC

Data set Discrete expo-nential SRGM Discrete inflection
S-shaped SRGM

Absolute value of
difference

DS1 110.031 109.195 0.836
DS2 115.735 118.752 3.017
DS3 617.434 606.132 11.30
DS4 315.069 274.818 40.25

Table 2.7 The estimated parameters of Ĥn for DS1 and În for DS3

â b̂ (δ = 1) ĉ n∗ < n∗ > n̄

Hn 139.956 0.113
In 5217.88 0.0906 2.350 8.385 8 9

2.4.4 Software Reliability Assessment

We show useful quantitative measures for software reliability assessment by using
the discrete NHPP models proposed in this section. We adopt DS1, i.e. the observed
25 pairs (tk, yk)(k = 1, 2, · · · , 25 ; t25 = 25, y25 = 136) for the discrete exponen-
tial SRGM, and DS3, i.e. the observed 59 pairs (tk, yk)(k = 1, 2, · · · , 59 ; t59 =
59, y59 = 5186) for the discrete inflection S-shaped SRGM, where yk is the cumu-
lative number of faults detected by the execution of testing time tk . The observation
time unit of DS1 is CPU hours, and that of DS3 the number of weeks. We show the
estimated mean value functions of Hn in (2.25) and In in (2.30) in Figs. 2.11 and
2.12, respectively, where several quantities are shown in Table 2.7.

We can derive the software reliability function which is a useful measure for
software reliability assessment. The software reliability function is obtained by (2.23)
as follows:

R(n, h) ≡ Pr{Nn+h − Nn = 0|Nn = x}
= exp[−{Dn+h − Dn}]. (2.42)

2.4 Discrete NHPP Modeling 61

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
um

ul
at

iv
e

N
um

be
r

of
 D

et
ec

te
d

Fa
ul

ts

Testing Time (CPU hours)

Actual
Fitted

Fig. 2.11 The estimated discrete mean value function, Ĥn , for DS1.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 10 20 30 40 50 60 70

C
um

ul
at

iv
e

 N
um

be
r

of
 D

et
ec

te
d

Fa
ul

ts

Testing Time (number of test weeks)

Actual
Fitted

Fig. 2.12 The estimated discrete mean value function, În , for DS3

Letting δ = 1, the software reliability function for Hn after the termination time
n = 25 (CPU hours), and for In after the termination time n = 59 (weeks), are
shown in Figs. 2.13 and 2.14, respectively. After releasing the software systems at
these time points, assuming that the software users operate these software systems
under the same environment as the software testing one, we can estimate the software
reliability R̂(25, 1.0) for Hn to be about 0.46. Also, we can estimate one R̂(59, 0.1)

for In to be about 0.48.

62 2 Recent Developments in Software Reliability Modeling

0

0.2

0.4

0.6

0.8

1

25 26 27 28 29 30

So
ft

w
ar

e
R

el
ia

bi
lit

y

Operation Time (CPU hours)

Discrete exponential SRGM

Fig. 2.13 The estimated software reliability function, R̂(25, h), for DS1

0

0.2

0.4

0.6

0.8

1

59 60 61 62 63

So
ft

w
ar

e
R

el
ia

bi
lit

y

Operation Time (weeks)

Discrete inflection S-shaped SRGM

Fig. 2.14 The estimated software reliability function, R̂(59, h), for DS3

2.5 Quality-Oriented Software Management Analysis

In this section, firstly, we conduct multivariate linear analyses by using process mon-
itoring [34] data, derive effective process factors affecting the final products’ quality,
and discuss the significant process factors with respect to software management mea-
sures of QCD [35, 36]. Then, we analyze actual process monitoring data, based on the
derivation procedures of a process improvement model, i.e. software management
model [37, 38] (as shown in Fig. 2.15). Then, we discuss project management on
the significant process factors affecting the QCD measures, and show their effect on
them. Secondly, we analyze the process monitoring data in a viewpoint of software
reliability measurement and assessment in the process monitoring activities.

2.5 Quality-Oriented Software Management Analysis 63

Fig. 2.15 Derivation procedures of software management model

2.5.1 Process Monitoring Data

We predict software management measures of QCD by using the process monitoring
data as shown in Table 2.8. Five variables measured in terms of the number of faults
(QCD problems) detected through the process monitoring, i.e. the contract review,
the development planning review, the design completion review, the test planning
review, and the test completion review phases are used as explanatory variables. The
observed values of these five factors are normalized by each project development
size (KLOC) in this section. Three variables, i.e. the number of faults detected during
customer acceptance testing, the cost excess rate, and the number of delivery-delay
days, are used as objective variables.

64 2 Recent Developments in Software Reliability Modeling

2.5.2 Factor Analysis Affecting QCD

Based on the canonical correlation analysis and the correlation analysis in Fig. 2.15,
X3 is selected as an important factor for estimating a software quality prediction
model. Then, a single regression analysis is applied to the process monitoring data
as shown in Table 2.8. Then, using X3, we have the estimated single regression
equation predicting the number of software faults, Ŷq , given by (2.43) as well as the
normalized single regression expression, Ŷ N

q , given by (2.44):

Ŷq = 11.761 · X3 + 0.998, (2.43)

Ŷ N
q = 0.894 · X3, (2.44)

where the squared multiple correlation coefficient adjusted for degrees of freedom
(adjusted R2) is given by 0.758, and the derived linear quality prediction model is
significant at 1 % level.

In a similar discussion to factor analysis affecting the number of faults above,
as the result of canonical correlation analysis, correlation analysis, and principal
component analysis, we can select X1 and X5 as the important factors for estimating
the cost excess rate and delivery-delay days. Then, using X1 and X5, we have the
estimated multiple regression equation predicting cost excess rate, Ŷc, given by (2.45)
as well as the normalized multiple regression expression, Ŷ N

c , given by (2.46):

Ŷc = 0.253 · X1 + 1.020 · X5 + 0.890, (2.45)

Ŷ N
c = 0.370 · X1 + 0.835 · X5, (2.46)

where the adjusted R2 is given by 0.917, and the derived cost excess prediction model
is significant at 1 % level.

By the same way of the cost excess rate, using X1 and X5, we have the estimated
multiple regression equation predicting the number of delivery-delay days, Ŷd , given
by (2.47) as well as the normalized multiple regression expression, Ŷ N

d , given by
(2.48):

Ŷd = 24.669 · X1 + 55.786 · X5 − 9.254, (2.47)

Ŷ N
d = 0.540 · X1 + 0.683 · X5, (2.48)

where the adjusted R2 is given by 0.834, and the derived delivery-delay prediction
model is significant at 5 % level.

2.5 Quality-Oriented Software Management Analysis 65

Ta
bl

e
2.

8
Pr

oc
es

s
m

on
ito

ri
ng

da
ta

Pr
oj

ec
tn

o
C

on
tr

ac
t

re
vi

ew
(
X

1
)

N
um

be
r

of
fa

ul
ts

pe
r

de
ve

lo
pm

en
t

si
ze

D
ev

el
op

m
en

t
pl

an
ni

ng
(
X

2
)

N
um

be
r

of
fa

ul
ts

pe
r

de
ve

lo
pm

en
t

si
ze

D
es

ig
n

co
m

pl
et

io
n

re
vi

ew
(
X

3
)

N
um

be
r

of
fa

ul
ts

pe
r

de
ve

lo
pm

en
t

si
ze

Te
st

pl
an

ni
ng

re
vi

ew
(
X

4
)

N
um

be
r

of
fa

ul
ts

pe
r

de
ve

lo
pm

en
t

si
ze

Te
st

co
m

pl
et

io
n

re
vi

ew
(
X

5
)

N
um

be
r

of
fa

ul
ts

pe
r

de
ve

lo
pm

en
t

si
ze

Q
ua

lit
y

(Y
q
)

N
um

be
r

of
fa

ul
ts

de
te

ct
ed

du
ri

ng
ac

ce
pt

an
ce

te
st

in
g

C
os

t(
Y

c)

C
os

te
xc

es
s

ra
te

D
el

iv
er

y
(Y

d
)

N
um

be
r

of
de

liv
er

y-
de

la
y

da
ys

1
0.

59
1

1.
18

1
0.

29
5

0.
39

4
0.

39
4

4
1.

45
6

28
2

0.
32

3
0.

64
5

0
0.

10
8

0.
10

8
1

1.
01

8
3

3
0.

69
0

0.
34

5
0

0.
34

5
0

0
1.

01
8

4
4

0.
17

0
0.

17
0

0
0.

08
5

0
2

0.
95

3
0

5
0.

15
0

0.
45

1
0.

30
1

0.
07

5
0.

07
5

5
1.

00
3

0
6

1.
18

6
0.

14
9

0
0.

03
7

0.
03

7
0

1
−8

7
0.

70
9

0
0

0
0

2
1.

11
9

12

66 2 Recent Developments in Software Reliability Modeling

2.5.3 Analysis Results of Software Management Models

We have derived software management models by applying the methods of mul-
tivariate linear analysis to actual process monitoring data. Quantitative evaluation
based on the derived prediction models about final product quality, cost excess, and
delivery-delay, has been conducted with high accuracy. Then, it is so effective to
promote software process improvement under PDCA (Plan, Do, Check, Act) man-
agement cycle by using the derivation procedures of software management models
as shown in Fig. 2.15.

Further, the design completion review has an important impact on software quality.
Then, it is possible to predict software product quality in the early-stage of software
development project by using the result of the design completion review in process
monitoring activities.

Next, the contract review and the test completion review processes have important
impact on the cost excess rate and the delivery-delay days. That is, it is difficult
to predict cost excess and delivery-delay measures at the early-stage of software
development project, and it is found that the cost excess and delivery-delay measures
can be predicted according to the same process monitoring factors.

2.5.4 Implementation of Project Management

2.5.4.1 Continuous Process Improvement

From the result of software management model analyses and factor analyses, it is
found that the contract review has an important relationship with cost and delivery
measures. Then, in order to improve the cost excess and delivery-delay, we perform
suitable project management for the problems detected in the contract review.

The project management practices to be performed for the important problems
detected in the contract review are:

• Early decision of the specification domain.
• Improvement of requirement specification technologies.
• Early decision of development schedule.
• Improvement of project progress management.
• Improvement of testing technology.

As a result of carrying out project management and continuous process improve-
ment, the relationship between the risk ratio measured at the initial stage of a project
and the amount of problem solving effort (man-day) in the contract review become as
shown in Fig. 2.16 where Projects 8–21 were monitored under process improvement
based on the analysis results for Projects 1–7, and the risk ratio is given by

R =
∑

i

{risk i tem(i) × weight (i)}. (2.49)

2.5 Quality-Oriented Software Management Analysis 67

Fig. 2.16 Relationship between risk ratio and problem solving effort

In (2.49), the risk estimation checklist has weight(i) in each risk item(i), and the risk
ratio ranges between 0 and 100 points. Project risks are identified by interviewing
based on the risk estimation checklist. From the identified risks, the risk ratio of a
project is calculated by (2.49).

From Fig. 2.16, it is found that by performing suitable project management for
the important problems in the contract review from Projects 8–15, the problem can
be solved at the early stage of software project even if the risk ratio is high.

2.5.4.2 Implementation of Design Quality Evaluation

In a similar fashion to cost and delivery measures, it is found that the design com-
pletion review has an important relationship with software quality. Then, in order to
improve software quality, we decide to perform suitable project management called
design evaluation in the design completion review.

The design evaluation assesses the following items based on the risk estimation
checklist by the project manager, the designer, and the members of quality con-
trol department. Through the following design evaluation, we have to judge if the
development can proceed to the next stage:

• After the requirements analysis, how many requirements are included in the re-
quirement specifications? Are the requirements (function requirements and non-
function requirements) suitably-defined?

• After the elementary design, has the requirements (function requirements and
non-function requirements) been taken over from the user requirements to the
design documents without omission about the description items in the requirement
specification?

• As for elementary design documents, is the elementary design included?

68 2 Recent Developments in Software Reliability Modeling

After implementation of the design evaluation, we have found that by performing
design evaluation in the design completion review from Projects 17–21, software
quality has improved, and the cost excess rate and the delivery-delay days are also
stable.

2.5.5 Software Reliability Assessment

Next, we discuss software reliability measurement and assessment based on the
process monitoring data. A software reliability growth curve in process monitoring
activities shows the relationship between the process monitoring progress ratio and
the cumulative number of faults (QCD problems) detected during process monitor-
ing. Then, we apply SRGM’s based on an NHPP [6]. Table 2.9 shows the process
monitoring data which are analyzed to evaluate software reliability, where Table 2.8
is derived from Table 2.9 for Projects 1–7, and Projects 8–21 were monitored under
process improvement based on the analysis results for Projects 1–7. However, the
collected process monitoring data have some missing values in metrics. Therefore,
we apply collaborative filtering to the observed data to complement the missing
values for assessing software reliability. The under-lined values in Table 2.9 are the
metrics values complemented by collaborative filtering.

We discuss software reliability growth modeling based on an NHPP because an
analytic treatment of it is relatively easy. Then, we choose the process monitoring
progress ratio as the alternative unit of testing-time by assuming that the observed
data for testing-time are continuous.

In order to describe a fault-detection phenomenon at processing monitoring
progress ratio t (t ≥ 0), let {N (t), t ≥ 0} denote a counting process representing the
cumulative number of faults detected up to progress ratio t . Then, the fault-detection
phenomenon can be described as follow:

Pr{N (t) = n} = {H(t)}n

n! exp[−H(t)] (n = 0, 1, 2, · · ·), (2.50)

where H(t) represents the expected value of N (t) called a mean value function of
the NHPP. Pr{A} in (2.50) means the probability of event A. In this section, we apply
three NHPP models [6], i.e. the exponential SRGM, the delayed S-shaped SRGM,
and the logarithmic Poisson execution time model.

Software reliability assessment measures play an important role in quantitative
software reliability assessment based on an SRGM. The expected number of re-
maining faults, n(t), represents the number of faults latent in the software system by
arbitrary testing-time t, and is formulated as

n(t) ≡ E[N (∞) − N (t)] = E[N (∞)] − H(t), (2.51)

2.5 Quality-Oriented Software Management Analysis 69

Ta
bl

e
2.

9
Pr

oc
es

s
m

on
ito

ri
ng

da
ta

fo
r

ap
pl

yi
ng

SR
G

M
’s

Pr
oj

ec
tn

o
C

on
ta

ct
re

vi
ew

(
X

1
)

D
ev

el
op

m
en

tp
la

nn
in

g
re

vi
ew

(
X

2
)

D
es

ig
n

co
m

pl
et

io
n

re
vi

ew
(
X

3
)

Te
st

pl
an

ni
ng

re
vi

ew
(
X

4
)

Te
st

co
m

pl
et

io
n

re
vi

ew
(
X

5
)

N
um

be
r

of
de

te
ct

ed
fa

ul
ts

To
ta

ld
ay

s
fo

r
de

so
lv

in
g

fa
ul

ts
N

um
be

r
of

de
te

ct
ed

fa
ul

ts

To
ta

ld
ay

s
fo

r
de

so
lv

in
g

fa
ul

ts
N

um
be

r
of

de
te

ct
ed

fa
ul

ts

To
ta

ld
ay

s
fo

r
de

so
lv

in
g

fa
ul

ts
N

um
be

r
of

de
te

ct
ed

fa
ul

ts

To
ta

ld
ay

s
fo

r
de

so
lv

in
g

fa
ul

ts
N

um
be

r
of

de
te

ct
ed

fa
ul

ts

To
ta

ld
ay

s
fo

r
de

so
lv

in
g

fa
ul

ts

1
6

18
4

12
22

3
3

10
9

4
49

4
13

2

2
3

75
6

97
0

0
1

7
1

5

3
4

26
2

14
0

0
2

47
0

0

4
2

51
2

14
0

0
1

8
0

0

5
2

41
6

15
8

4
39

1
6

1
5

6
5

36
4

12
2

0
0

1
27

1
5

7
1

7
0

0
0

0
0

0
0

0

8
3

12
9

18
8

0
0

3
20

0
0

9
3

42
7

16
1

1
21

4
43

2
25

10
4

4
3

15
1

24
3

3
4

4

11
2

15
3

15
1

20
4

8
1

18

12
5

27
5

40
1

20
6

30
1

18

13
6

32
5

51
1

20
6

33
1

18

14
3

15
4

25
1

20
4

22
1

18

15
2

13
2

20
1

18
3

12
0

0

16
6

10
7

4
10

4
1

19
2

39
0

0

17
3

12
5

10
0

1
20

2
22

1
6

18
2

30
3

42
1

22
0

0
1

6

19
1

56
1

2
1

18
0

0
0

0

20
3

54
3

6
3

20
0

0
0

0

21
1

1
4

8
0

0
0

0
0

0

70 2 Recent Developments in Software Reliability Modeling

where E[A] represents the expected value for random variable A. And an instanta-
neous MTBF (mean time between software faults) is formulated as

MT B FI (t) = 1

d H(t)/dt
, (2.52)

which is one of the substitute measures of the MTBF for the NHPP model.
Further, a software reliability function represents the probability that a software

failure does not occur in the time-interval (t, t + x] (t ≥ 0, x ≥ 0) given that the
testing or the user operation has been going up to time t . Then, if the counting process
{N (t), t ≥ 0} follows the NHPP with mean value function H(t), the software
reliability function is derived as

R(x | t) = exp[−{H(t + x) − H(t)}]. (2.53)

We have found that the logarithmic Poisson execution time model shows the
best goodness-of-fit in Projects 11–14 in which the test completion review’s missing
values are complemented by collaborative filtering. We have also found that the
delayed S-shaped SRGM shows suitability in all projects. Therefore, if we select the
process monitoring progress ratio as the unit of testing-time for SRGM’s based on an
NHPP, then the delayed S-shaped SRGM becomes very useful one for quantitative
software reliability assessment based on the process data derived from software
process monitoring activities.

Further, we show numerical illustration of software reliability assessment by using
the delayed S-shaped SRGM for Project 1. Figure 2.17 shows the estimated mean
value function and its 95 % confidence limits, where the parameter estimates are

Fig. 2.17 The estimated mean value function for Project 1

2.5 Quality-Oriented Software Management Analysis 71

Fig. 2.18 The estimated instantaneous MTBF for Project 1

Fig. 2.19 The estimated software reliability function for Project 1

obtained as â = 39.67 and b̂ = 0.0259. We can find that there are 10 remaining
faults at the end of test completion review phase. Figure 2.18 shows the estimated
instantaneous MTBF in (2.52). From Fig. 2.18, we can estimate the instantaneous
MTBF at the finishing test completion review phase to be about 5 days. Figure 2.19
shows the estimated software reliability at process monitoring progress ratio t =
100 (%). From Fig. 2.19, if the process monitoring progress ratio is 120 %, we can
find that a software failure will occur with high probability.

72 2 Recent Developments in Software Reliability Modeling

2.6 Operational Software Performability Evaluation

Recently, the software-conscious approaches to the study on the mathematical mod-
eling for computer-based system performability evaluation have increased. For ex-
ample, there are the researches paying attention to the phenomenon of software
aging [39, 40], and the impact of preventive maintenance-named software rejuvena-
tion on system performability evaluation is investigated. However these approaches
are discussed on the basis of performability measures in steady states and assume that
the probabilistic or stochastic characteristic in system failure does not change even
though the system is debugged or refreshed. As to this point, the analytical frame-
work in the above studies is basically similar to the hardware-conscious approach.
As another approach, Tokuno and Yamada [41] developed the software performa-
bility evaluation model, using the Markovian software reliability model (MSRM) to
describe the dynamic software reliability growth process. Tokuno et al. [42] also
discussed the software performability modeling with the nonhomogeneous Poisson
process (NHPP)-based SRM. On the other hand, it has been often reported that soft-
ware reliability characteristic emerging in the field operation after release are quite
different from the original predictions in the testing phase of the software develop-
ment process, which are conducted with the SRMs [43, 44]. One of the main causes
of this prediction gap is thought to be the underlying assumption for constructing
SRMs that the software failure-occurrence phenomenon in the testing phase is simi-
lar to that in the user operation phase. Therefore, there exist some negative opinions
about the above assumption, and several studies on field-oriented software reliability
assessment have been conducted. Okamura et al. [45], Morita et al. [46], and Tokuno
and Yamada [47] discussed the operation-oriented software reliability assessment
models by introducing the concept of the accelerated life testing model which is
often applied to the reliability assessment for hardware products. They characterized
the difference between the testing and field-operation environments by assuming that
the software failure time intervals are different generally from the viewpoint of the
severities of both usage conditions. They have called the proportional constant the
environmental factor.

However, the practical and reasonable estimation of the environmental factor
remains the outstanding problem even in [45–47]. Originally it is impossible to apply
the usual procedure for estimating the environmental factor since the software failures
data in the operation phase observed from the software system in question are never
obtained in advance. Accordingly, in the present circumstance, we have to decide the
value of the environmental factor empirically and subjectively based on the similar
software systems developed before. On the other hand, Pham [48, 49] presented
the new mathematical reliability function, called systemability . The systemability
function is defined as the probability that the system will perform its intended function
for a specified mission time subject to the uncertainty of the operating environment.
References [48, 49] assume that the hazard rate function in the field operation is
proportional to one in the controlled in-house testing phase, and then considers
the variation of the field environment by regarding the environmental factor as a

2.6 Operational Software Performability Evaluation 73

random variable. As to the case of the software system, the operating environment
in the testing phase is well-controlled one with less variation compared with the
field operation environment [50]. In other words, the field operation environment
includes the more uncertain factors than the testing environment in terms of the
pattern of the execution load, the compatibility between the software system and the
hardware platform, the operational profile, and so on [51]. It is almost impossible
to prepare the test cases assuming all possible external disturbances. Therefore, the
consideration of the randomness of the environmental factor can not only describe the
actual operating environment more faithfully, but also reflect the subjective value of
the environmental factor to the field operational software performability evaluation
with a certain level of rationality.

In this section, we expand the meaning of systemability from the definition of
Pham [49] into the system reliability characteristic considering the uncertainty and
the variability of the field operating environment. Then we discuss the stochastic
modeling for operational software performability measurement with systemability.
We use the Markovian imperfect debugging model [52, 53] to describe the software
reliability growth phenomena in the testing and the operation phases as the based
model. We assume that the software system can process multiple tasks simultaneously
and that the task arrival process follows an NHPP [41]. The stochastic behavior of
the number of tasks whose processes can be completed within the processing time
limit is modeled with the infinite-server queueing model [54]. Since performability
is one of the operational-oriented characteristics, the consideration of systemability
is meaningful in the system performability evaluation.

2.6.1 Markovian Software Reliability Model

2.6.1.1 Model Description

The following is the assumption for the generalized MSRM:

(A1) The debugging activity is performed as soon as the software failure occurs.
The debugging activity for the fault having caused the corresponding software
failure succeeds with the perfect debugging probability a (0 ≤ a ≤ 1), and
fails with probability b(= 1 − a). One perfect debugging activity corrects and
removes one fault from the system and improves software reliability.

(A2) When n faults have been corrected, the next software-failure time-interval, Un ,
follows the exponential distribution with the hazard rate λn which is denoted
as FUn (t) ≡ Pr{Un ≤ t} = 1 − e−λn t . λn is a non-increasing function of n.

(A3) The debugging time of a fault is not considered.

Let {W (t), t ≥ 0} be a counting process representing the cumulative number of
faults corrected up to the time t . Then W (t) forms the Markov process whose state
transition probability is given by perfect debugging probability a. From assumption
A1, when i faults have already been corrected, after the next software failure occurs,

74 2 Recent Developments in Software Reliability Modeling

Fig. 2.20 State transition
diagram of W (t)

W (t) =
{

i + 1 (in case of perfect debugging with probability a)

i (in case of imperfect debugging with probability b)
. (2.54)

Let Qi, j (t) (i, j = 0, 1, 2, . . .) denote the one-step transition probability which
represents the probability that after making a transition into state i , the process
{W (t), t ≥ 0} next makes a transition into state j (possibility i = j) in an amount of
time less than or equal to t (see Osaki [55] for the more strict definition of Qi, j (t)).
The expressions for Qi, j (t)’s are given by

Qi,i+1(t) ≡ Pr{Ui ≤ t, W (Ui) = i + 1|W (0) = i}
= a(1 − e−λi t), (2.55)

Qi,i (t) ≡ Pr{Ui ≤ t, W (Ui) = i |W (0) = i}
= b(1 − e−λi t), (2.56)

respectively. Figure 2.20 illustrates the state transition diagram of W (t), where the
integer in the circle denotes the number of corrected faults (i.e. the state of W (t)).

2.6.1.2 Distribution of Transition Time of W(t)

Let Si,n (i ≤ n) be the random variable representing the first passage time of W (t)
from state i to state n, and Gi,n(t) ≡ Pr{Si,n ≤ t} be the distribution function of Si,n .
First we consider the distribution function Gi,i+1(t) and have the following renewal
equation of Gi,i+1(t):

Gi,i+1(t) = Qi,i+1(t) + Qi,i ∗ Gi,i+1(t) (i = 0, 1, 2, . . .), (2.57)

where ∗ denotes the Stieltjes convolution and Gi,i (t) ≡ 1(t) (the unit function,
i = 0, 1, 2, . . .). From (2.55) and (2.56), the Laplace-Stieltjes (L-S) transform [55]

2.6 Operational Software Performability Evaluation 75

of Gi,i+1(t) is obtained as

G̃i,i+1(s) = aλi

s + aλi
(i = 0, 1, 2, . . .), (2.58)

where the L-S transform of Gi,i+1(t) is defined as

G̃i,i+1(s) ≡
∫ ∞

0
e−st dGi,i+1(t). (2.59)

On the other hand, the following relationship between Si,i+1 and Si,n holds:

Si,n =
n−1∑

j=i

S j, j+1. (2.60)

Since Si,i+1’s are mutually independent, Gi,n(t) can be expressed as

Gi,n(t) = Gi,i+1 ∗ Gi+1,i+2 ∗ · · · ∗ Gn−1,n(t). (2.61)

Therefore, the L-S transform of Gi,n(t) is obtained as

G̃i,n(s) =
n−1∏

j=i

aλ j

s + aλ j
. (2.62)

Inverting (2.62), we obtain the solution of Gi,n(t) as

Gi,n(t) ≡ Pr{Si,n ≤ t}
=

n−1∑

m=i

Ai,n
m (1 − e−aλm t) (t ≥ 0; n = 0, 1, 2, . . . ; i ≤ n)

⎛

⎜⎜⎜⎝

An−1,n
n−1 ≡ 1 (i = n − 1)

Ai,n
m =

n−1∏

j = i
j �= m

1

1 − λm/λ j
(i < n − 1; m = i, i + 1, . . . , n − 1)

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(2.63)

(see Tokuno et al. [53] for the detail of the above analysis).

2.6.1.3 State Occupancy Probability

Since {W (t), t ≥ 0} is the counting process, the following equivalence relation holds:

76 2 Recent Developments in Software Reliability Modeling

{Si,n ≤ t} ⇐⇒ {W (t) ≥ n|W (0) = i} (i, n = 0, 1, 2, . . . ; i ≤ n). (2.64)

Therefore, the following equation is obtained:

Pr{Si,n ≤ t} = Pr{W (t) ≥ n|W (0) = i}. (2.65)

The state occupancy probability that the system is in state n at the time point t on
the condition that the system was in state i at time point t = 0, Pi,n(t), is given by

Pi,n(t) ≡ Pr{W (t) = n|W (0) = i}
= Pr{W (t) ≥ n|W (0) = i} − Pr{W (t) ≥ n + 1|W (0) = i}
= Pr{Si,n ≤ t} − Pr{Si,n+1 ≤ t}
= Gi,n(t) − Gi,n+1(t). (2.66)

2.6.2 Consideration of Systemability

Hereafter, we discriminate the time domains between the testing and the operation
phase. Let the superscript O and no superscript refer to the operation phase and the
testing phase, respectively. Then, we assume the following relationship between Ui

and U O
i :

Ui = αU O
i (α > 0), (2.67)

where α is called the environmental factor. From the viewpoint of the software
reliability assessment, 0 < α < 1 (α > 1) means that the testing phase is severer
(milder) in the usage condition than the operation phase, and α = 1 means that the
testing environment is equivalent to the operational one. Then the distribution of U O

i
in the case where the environmental factor is treated as a constant is given by

FU O
i

(t |α) ≡ Pr{U O
i ≤ t} = Pr{Ui ≤ αt}

= 1 − e−αλi t . (2.68)

Based on (2.68), we obtain the distribution function of SO
i,n as

G O
i,n(t |α) ≡ Pr{SO

i,n ≤ t}

=
n−1∑

m=i

Ai,n
m (1 − e−αaλm t), (2.69)

where we should note that the coefficient Ai,n
m in (2.69) is equivalent to Ai,n

m in (2.63)
(i.e. identical to the testing phase), and has no bearing on the environmental factor.

2.6 Operational Software Performability Evaluation 77

In general, the actual operating environment in the field is quite different from the
controlled testing environment, and it is natural to consider that the external factors
affecting software reliability characteristics fluctuate. Therefore, it is not appropriate
that the environmental factor, α, introduced to bridge the gap between the software
failure characteristics in the testing and the operation phases, is constant. Hereafter,
we treat α as a random variable [48–50]. In this section, we consider the following
two cases: the first is the model whose α follows the gamma distribution (G-model)
and the second is the beta distribution (B-model).

2.6.2.1 G-Model

The G-model is assumed that the environmental factor α follows the gamma distri-
bution whose density function is denoted as

fα(x) ≡ f G
α (x) = θη · xη−1 · e−θx

Γ (η)

(x ≥ 0; θ > 0, η ≥ 1), (2.70)

where Γ (η) ≡ ∫∞
0 xη−1e−x dx is the gamma function, and θ and η are called the

scale and the shape parameters, respectively. The G-model can be used to evaluate
and predict the software reliability characteristic in the operation phase where the
usage condition is severer than (α > 1), equivalent to (α = 1), or milder than
(0 < α < 1) the testing environment. Then the mean and variance of α are given by

E[α] = η

θ
, Var[α] = η

θ2 , (2.71)

respectively.
The posterior distribution of U O

i is given by

FG
U O

i
(t) =

∫ ∞

0
FU O

i
(t |x) f G

α (x)dx = 1 − 1

(λi t/θ + 1)η
, (2.72)

which is called the Pareto distribution. Assuming that the relationship between Si,n

and SO
i,n can be described as Si,n = αSO

i,n approximately, we can obtain the posterior

distribution of SO
i,n as

G OG
i,n (t) =

∫ ∞

0
G O

i,n(t |x) f G
α (x)dx

=
n−1∑

m=i

Ai,n
m

[
1 − 1

(aλmt/θ + 1)η

]
. (2.73)

78 2 Recent Developments in Software Reliability Modeling

2.6.2.2 B-Model

The B-model is assumed that the environmental factor follows the beta distribution
whose density function is denoted as

fα(x) ≡ f B
α (x) = xβ1−1(1 − x)β2−1

B(β1, β2)

(0 < x < 1;β1 > 0, β2 > 0), (2.74)

where β1 and β2 are the shape parameters, and B(β1, β2) ≡ ∫ 1
0 tβ1−1(1−t)β2−1dt =

Γ (β1)Γ (β2)/Γ (β1 + β2) is the beta function. A beta-distribution random variable
ranges between 0 and 1. Therefore, the B-model is appropriate to describe the opera-
tional software reliability characteristic only where the usage condition is estimated
to be milder than the testing environment. Then the mean and the variance of α are
given by

E[α] = β1

β1 + β2
, Var[α] = β1β2

(β1 + β2)2(β1 + β2 + 1)
, (2.75)

respectively.
The posterior distribution of U O

i based on the B-model is given by

F B
U O

i
(x) =

∫ 1

0
FU O

i
(t |x) f B

α (x)dx

= 1 − e−λi t · M(β2, β1 + β2; λi t), (2.76)

where

M(c1, c2; x) ≡
∞∑

k=0

(c1)k

(c2)kk! xk (
(c1)k ≡ Γ (c1 + k)/Γ (k)

)
, (2.77)

is the Kummer function which is a kind of confluent hypergeometric functions [56].
Treating the relationship between Si,n and SO

i,n in the same way as the case of the

G-model, we can obtain the posterior distribution of SO
i,n as

G O B
i,n (t) =

∫ 1

0
G O

i,n(t |x) f B
α (x)dx

=
n−1∑

m=i

Ai,n
m [1 − e−aλm t · M(β2, β1 + β2; aλmt)]. (2.78)

2.6 Operational Software Performability Evaluation 79

2.6.3 Model Description and Analysis for Task Processing

We make the following assumptions for system’s task processing:

(B1) The number of tasks the system can process simultaneously is sufficiently
large.

(B2) The process {N (t), t ≥ 0} representing the number of tasks arriving at the
system up to the time t follows the NHPP with the arrival rate ω(t) and the
mean value function Ω(t) ≡ E[N (t)] = ∫ t

0 ω(x)dx .
(B3) Each task has a processing time limit, Tr , which follows a general distribution

whose distribution function is denoted as FTr (t) ≡ Pr{Tr ≤ t}.
(B4) The processing times of a task, Y is distributed generally; its distribution

function is denoted as FY (t) ≡ Pr{Y ≤ t}. Each of the processing times is
independent.

(B5) When the system causes a software failure in task processing or the processing
times of tasks exceed the processing time limit, the corresponding tasks are
canceled.

Figure 2.21 illustrates the relationship among the task completion/cancellation
and the random variables U O

n , Tr , and Y . Hereafter, we set the time origin t = 0 at
the time point when the debugging activity is completed and i faults are corrected.

Let {X1
i (t), t ≥ 0} be the stochastic process representing the cumulative number

of tasks whose processes can be completed within the processing time limit out of the

process complete

process canceled

Processing Time Limit
(Random Variable)

Processing Time
(Random Variable)

Tr

Y

Un

ω(τ)
Arrival Rate

Gateway

Time

Software failure Time
(Random Variable)

O

Fig. 2.21 Relationship between task completion/cancellation and U O
n , Tr , Y

80 2 Recent Developments in Software Reliability Modeling

tasks arriving up to the time t . By conditioning with {N (t) = k} (k = 0, 1, 2, . . .),
we obtain the probability mass function of X1

i (t) as

Pr{X1
i (t) = j} =

∞∑

k=0

Pr{X1
i (t) = j |N (t) = k} × e−Ω(t) [Ω(t)]k

k!
(j = 0, 1, 2, . . .). (2.79)

From Fig. 2.21, the probability that the process of an arbitrary task is completed,
given {W (t) = n}, is given by

γ O
n ≡ Pr{Y < U O

n , Y < Tr |W (t) = n}
=

∫ ∞

0
FU O

n
(y)FTr (y)dFY (y), (2.80)

where we denote F(·) ≡ 1− F(·). Furthermore, from the property of the NHPP [54],
given {N (t) = k}, the arrival time of an arbitrary task out of ones arriving up to the
time t is the random variable having the following probability density function:

f (x) =
⎧
⎨

⎩

ω(x)

Ω(t)
(0 ≤ x ≤ t),

0 (x > t).
(2.81)

Therefore, the probability that the process of an arbitrary task having arrived up to
the time t is completed within the processing time limit is obtained as

pO
i (t) = 1

Ω(t)

∞∑

n=i

∫ t

0
γ O

n P O
i,n(x)ω(x)dx . (2.82)

Then from assumption (B4), the conditional distribution of X1
i (t) is given by

Pr{X1
i (t) = j |N (t) = k}

=
{(k

j

)[pO
i (t)] j [1 − pO

i (t)]k− j (j = 0, 1, 2, . . . , k),

0 (j > k).
(2.83)

Equation (2.83) means that, given {N (t) = k}, the number of tasks whose process
can be completed within the processing time limit follows the binomial process with
mean kpO

i (t). Accordingly, from (2.79) the distribution of X1
i (t) is given by

2.6 Operational Software Performability Evaluation 81

Pr{X1
i (t) = j} =

∞∑

k= j

(
k

j

)
[pO

i (t)] j [1 − pO
i (t)]k− j e−Ω(t) [Ω(t)]k

k!

= e−Ω(t)pO
i (t) [Ω(t)pO

i (t)] j

j ! (j = 0, 1, 2, . . .). (2.84)

Equation (2.84) means that {X1
i (t), t ≥ 0} follows the NHPP with the mean value

function Ω(t)pO
i (t).

Let {X2
i (t), t ≥ 0} be the stochastic process representing the cumulative number

of canceled tasks. By applying a similar discussion on X1
i (t), we have the distribution

of X2
i (t) as

Pr{X2
i (t) = j} = e−Ω(t)q O

i (t) [Ω(t)q O
i (t)] j

j !
q O

i (t) = 1 − pO
i (t)

⎫
⎬

⎭ . (2.85)

Equation (2.85) means that {X2
i (t), t ≥ 0} follows the NHPP with the mean value

function Ω(t)q O
i (t).

2.6.4 Derivation of Software Performability Measures

The expected number of tasks completable out of the tasks arriving up to the time t
is given by

ΛO
i (t) ≡ E[X1

i (t)] =
∞∑

n=i

∫ t

0
γ O

n P O
i,n(x)ω(x)dx . (2.86)

Furthermore, the instantaneous task completion ratio is obtained as

μO
i (t) ≡ dΛO

i (t)

dt

/
ω(t) =

∞∑

n=i

γ O
n P O

i,n(t), (2.87)

which represents the ratio of the number of tasks completed within the processing
time limit to one arriving at the system per unit time at the time point t . We should
note that (2.87) has no bearing on Ω(t), i.e. the task arrival process. As to pO

i (t) in
(2.82), we can give the following interpretations:

pO
i (t) = E[X1

i (t)]
E[N (t)] . (2.88)

82 2 Recent Developments in Software Reliability Modeling

That is, pO
i (t) is the cumulative task completion ratio up to the time t which represents

the expected proportion of the cumulative number of tasks completed to one arriving
at the system in the time interval (0, t].

We should note that it is too difficult to use (2.86)–(2.88) practically since this
model assumes the imperfect debugging environment and the initial condition i
appearing in the above equations, which represents the cumulative number of faults
corrected at time point t = 0, cannot be observed immediately. However, the numbers
of software failures or debugging activities can be easily observed. Furthermore, the
cumulative number of faults corrected when l debugging activities are performed,
Cl , follows the binomial distribution whose probability mass function is given by

Pr{Cl = i} =
(

l

i

)
ai bl−i (i = 0, 1, 2, . . . , l). (2.89)

Accordingly, we can convert (2.86)–(2.88) into the functions of the number of de-
bugging, l, i.e. we obtain

ΛO(t, l) =
l∑

i=0

(
l

i

)
ai bl−iΛO

i (t), (2.90)

μO(t, l) =
l∑

i=0

(
l

i

)
ai bl−iμO

i (t), (2.91)

pO(t, l) =
l∑

i=0

(
l

i

)
ai bl−i pO

i (t), (2.92)

respectively. Equations (2.90)–(2.92) represent the expected cumulative number of
tasks completable, the instantaneous and the cumulative task completion ratios at
the time point t , given that the lth debugging was completed at time point t = 0,
respectively.

2.6.4.1 In Case of G-Model

By substituting G OG
i,n (t) in (2.73) into G O

i,n(t) in (2.90)–(2.92), we can obtain the
cumulative number of tasks completable, the instantaneous and the cumulative task
completion ratios at the time point t as

ΛOG(t, l) =
l∑

i=0

(
l

i

)
ai bl−i

∞∑

n=i

∫ t

0
γ OG

n P OG
i,n (x)ω(x)dx, (2.93)

μOG(t, l) =
l∑

i=0

(
l

i

)
ai bl−i

∞∑

n=i

γ OG
n P OG

i,n (t), (2.94)

2.6 Operational Software Performability Evaluation 83

pOG(t, l) = 1

Ω(t)

l∑

i=0

(
l

i

)
ai bl−i

∞∑

n=i

∫ t

0
γ OG

n P OG
i,n (x)ω(x)dx, (2.95)

respectively, where

P OG
i,n (t) = G OG

i,n (t) − G OG
i,n+1(t), (2.96)

γ OG
n =

∫ ∞

0

1

(λn y/θ + 1)η
FTr (y)dFY (y). (2.97)

2.6.4.2 In Case of B-Model

By substituting G O B
i,n (t) in (2.78) into G O

i,n(t) in (2.90)–(2.92), we can obtain the
cumulative number of tasks completable, the instantaneous and the cumulative task
completion ratios at the time point t as

ΛO B(t, l) =
l∑

i=0

(
l

i

)
ai bl−i

∞∑

n=i

∫ t

0
γ O B

n P O B
i,n (x)ω(x)dx, (2.98)

μO B(t, l) =
l∑

i=0

(
l

i

)
ai bl−i

∞∑

n=i

γ O B
n P O B

i,n (t), (2.99)

pO B(t, l) = 1

Ω(t)

l∑

i=0

(
l

i

)
ai bl−i

∞∑

n=i

∫ t

0
γ O B

n P O B
i,n (x)ω(x)dx, (2.100)

respectively, where

P O B
i,n (t) = G O B

i,n (t) − G O B
i,n+1(t), (2.101)

γ O B
n =

∫ ∞

0
e−λn y · M(β2, β1 + β2; λn y)FTr (y)dFY (y). (2.102)

2.6.5 Numerical Examples

We present several numerical examples on system performability analysis [57] based
on the above measures. Here we apply λn ≡ Dcn (D > 0, 0 < c < 1) to the hazard
rate [58]. For the distributions of the processing times, FY (t), and the processing
time limit, FTr (t), we apply the gamma distribution with the shape parameter of two
denoted by

FI (t) ≡ H(t |σI) = 1 − (1 + σI t)e−σI t

(t ≥ 0; σI > 0; I ∈ {Y, Tr }). (2.103)

84 2 Recent Developments in Software Reliability Modeling

 0.7742

 0.7743

 0.7744

 0.7745

 0.7746
μ (t,l)

OG

κ=8
κ=4
κ=2
κ=1

μ (t ,26 | 0.5)
O

0 20 40 60 80 100 120 140 160 180 200

Operation Time t

Fig. 2.22 Dependence of μOG(t, l) in G-model on κ in case of E[α] = 0.5 (a = 0.9, l = 26;
D = 0.202, c = 0.950, σY = 900, σTr = 400)

 0.7742

 0.7743

 0.7744

 0.7745

 0.7746

0 20 40 60 80 100 120 140 160 180 200

μ (t,l)
OB

Operation Time t

κ=8
κ=4
κ=2
κ=1

μ (t ,26 | 0.5)
O

Fig. 2.23 Dependence of μO B(t, l) in B-model on κ in case of E[α] = 0.5 (a = 0.9, l = 26;
D = 0.202, c = 0.950, σY = 900, σTr = 400)

Figure 2.22 shows the dependence of the instantaneous task completion ratio,
μOG(t, l) in G-model, in (2.94) on the value of κ , along with μO(t, l|0.5), which
designates the instantaneous task completion ratio in the case where α is treated as
a constant and α = 0.5, where we set θ = κθ0, η = κη0; and θ0 = 2.0, η0 = 1.0.
Similarly, Fig. 2.23 shows the dependence of μO B(t, l) in B-model, in (2.99) on κ ,
where we set β1 = κβ10, β2 = κβ20; and β10 = 1.0, β20 = 1.0. In any value of

2.6 Operational Software Performability Evaluation 85

 0.7742

 0.7743

 0.7744

 0.7745

 0.7746
p (t,l)

OG

4
2
1

p (t,26 | 1.0)
O

0 20 40 60 80 100 120 140 160 180 200

Operation Time t

Fig. 2.24 Dependence of pOG(t, l) in G-model on κ in case of E[α] = 1.0 (a = 0.9, l = 26;
D = 0.202, c = 0.950, ξ = 1.0, φ = 2.0, σY = 900, σTr = 400, θ0 = 1.0, η0 = 1.0)

 0.7742

 0.7743

 0.7744

 0.7745

 0.7746

0 20 40 60 80 100 120 140 160 180 200

p (t,l)
OG

4
2
1

Operation Time t

p (t,26 | 2 .0)
O

Fig. 2.25 Dependence of pOG(t, l) in G-model on κ in case of E[α] = 2.0 (a = 0.9, l = 26;
D = 0.202, c = 0.950, ξ = 1.0, φ = 2.0, σY = 900, σTr = 400, θ0 = 1.0, η0 = 2.0)

κ , E[α] = η0/θ0 = β10/(β10 + β20) = 0.5 is constant in both models, whereas
Var[α] = η0/(κθ0

2) in G-model and Var[α] = β10β20/[(β10 +β20)
2(κβ10 +κβ20 +

1)] in B-model, i.e. Var[α] is set as a decreasing function of κ in both models. From
these setting, the larger value of κ means that the degree of conviction in terms of
information on the environment factor is higher. These figures tell us that the higher
degree of conviction of prior information on the environmental factor brings in more

86 2 Recent Developments in Software Reliability Modeling

accurate performability prediction in the operation phase, and that the lower degree
of conviction gives more pessimistic evaluation.

For the mean value function of {N (t), t ≥ 0}, we apply the Weibull process, i.e.
E[N (t)] ≡ Ω(t) = ξ tφ (t ≥ 0; ξ > 0, φ > 0). Figures 2.24 and 2.25 show the
dependence of κ on pOG(t, l) in G-model in the cases of E[α] = 1.0 (i.e. the case
where the testing environment is considered to be equivalent to the operational one
on average) along with pO(t, l|1.0) and E[α] = 2.0 (i.e. the case where the oper-
ation phase is severer than the testing phase) along with pO(t, l|2.0), respectively.
These figures also indicate the similar tendency to Figs. 2.22 and 2.23. Especially
in Fig. 2.24, it is an interesting tendency that the consideration of the uncertainty of
the environmental factor gives the optimistic evaluation even when the testing and
pessimistic phases are considered to be the same environment on average.

References

1. Basili, V. R., & Reiter, R. W, Jr. (1979). An investigation of human factors in software devel-
opment. IEEE Computer Magazine, 12, 21–38.

2. Curtis, B. (Ed.). (1985). Tutorial: Human factors in software development. Los Alamitos: IEEE
Computer Society Press.

3. Nakajo, T., & Kume, H. (1991). A case history analysis of software error cause-effect relation-
ships. IEEE Transactions on Software Engineering, 17, 830–838.

4. Taguchi, G. (Ed.). (1998). Signal-to-noise raito for quality evaluation (in Japanese). Tokyo:
Japanese Standards Association.

5. Taguchi, G. (1976). A method of design of experiment (2nd ed., Vol. 1). Tokyo: Maruzen.
6. Yamada, S. (2011). Elements of software reliability -modeling approach (in Japanese). Tokyo:

Kyoritsu-Shuppan.
7. Esaki, K., Yamada, S., & Takahashi, M. (2001). A quality engineering analysis of human factors

affecting software reliability in software design review process (in Japanese). Transactions of
IEICE Japan, J84-A, 218–228.

8. Yamada, S. (2008). Early-stage software product quality prediction based on process mea-
surement data. In K. B. Misra (Ed.), Springer handbook of performability engineering (pp.
1227–1237). London: Springer.

9. Yamada, S. (2006). A human factor analysis for software reliability in design-review process.
International Journal of Performability Engineering, 2, 223–232.

10. Miyamoto, I. (1982). Software engineering -current status and perspectives (in Japanese).
Tokyo: TBS Publishing.

11. Esaki, K., & Takahashi, M. (1997). A software design review on the relationship between
human factors and software errors classified by seriousness (in Japanese). Journal of Quality
Engineering Forum, 5, 30–37.

12. E-Soft Inc., Internet Research Reports. Available: http://www.securityspace.com/s_survey/
data/index.html

13. Yamada, S. (2002). Software reliability models. In S. Osaki (Ed.), Stochastic models in relia-
bility and maintenance (pp. 253–280). Berlin: Springer.

14. MacCormack, A., Rusnak, J., & Baldwin, C. Y. (2006). Exploring the structure of complex
software designs: An empirical study of open source and proprietary code. Informs Journal of
Management Science, 52, 1015–1030.

15. Kuk, G. (2006). Strategic interaction and knowledge sharing in the KDE developer mailing
list. Informs Journal of Management Science, 52, 1031–1042.

http://www.securityspace.com/s_survey/data/index.html
http://www.securityspace.com/s_survey/data/index.html

References 87

16. Zhou, Y., & Davis, J. (2005). Open source software reliability model: An empirical approach.
In Proceedings of the Fifth Workshop on Open Source Software Engineering (WOSSE) (pp.
67–72).

17. Li, P., Shaw, M., Herbsleb, J., Ray, B., & Santhanam, P. (2004). Empirical evaluation of defect
projection models for widely-deployed production software systems. Proceedings of the 12th
International Symposium on Foundations of, Software Engineering (FSE-12) (pp. 263–272).

18. Arnold, L. (1974). Stochastic differential equations-theory and applications. New York: John
Wiley & Sons.

19. Wong, E. (1971). Stochastic Processes in Information and Systems. New York: McGraw-Hill.
20. Yamada, S., Kimura, M., Tanaka, H., & Osaki, S. (1994). Software reliability measurement

and assessment with stochastic differential equations. IEICE Transactions on Fundamentals
of Electronics, Communications, and Computer Sciences, E77-A, 109–116.

21. The Apache HTTP Server Project, The Apache Software Foundation. Available: http://httpd.
apache.org/

22. Apache Tomcat, The Apache Software Foundation. Available: http://tomcat.apache.org/
23. PostgreSQL, PostgreSQL Global Development Group. Available: http://www.postgresql.org/
24. Tamura, Y., & Yamada, S. (2007). Software reliability growth model based on stochastic dif-

ferential equations for open source software. Proceedings of the 4th IEEE International Con-
ference on Mechatronics, CD-ROM (ThM1-C-1).

25. Tamura, Y., & Yamada, S. (2006). A flexible stochastic differential equation model in distributed
development environment. European Journal of Operational Research, 168, 143–152.

26. Tamura, Y., & Yamada, S. (2009). Optimisation analysis for reliability assessment based on
stochastic differential equation modeling for open source software. International Journal of
Systems Science, 40, 429–438.

27. Tamura, Y., & Yamada, S. (2013). Reliability assessment based on hazard rate model for an
embedded OSS porting phase. Software Testing, Verification and Reliability, 23, 77–88.

28. Satoh, D. (2000) A discrete Gompertz equation and a software reliability growth model. IEICE
Transactions on Information and Systems, E83-D, 1508–1513.

29. Satoh, D., & Yamada, S. (2001). Discrete equations and software reliability growth models.
Proceedings of the 12th International Symposium on Software Reliability Engineering (IS-
SRE’01) (pp. 176–184).

30. Inoue, S., & Yamada, S. (2007). Generalized discrete software reliability modeling with effect
of program size. IEEE Transactions on System, Man, and Cybernetics (Part A), 37, 170–179.

31. Hirota, R. (1979). Nonlinear partial difference equations. V. Nonlinear equations reducible to
linear equations. Journal of Physical Society of Japan, 46, 312–319.

32. Bass, F. M. (1969). A new product growth model for consumer durables. Management Science,
15, 215–227.

33. Satoh, D. (2001). A discrete Bass model and its parameter estimation. Journal of Operations
Research Society of Japan, 44, 1–18.

34. Kasuga, K., Fukushima, T., & Yamada, S. (2006). A practical approach software process
monitoring activities (in Japanese). Proceedings of the 25th JUSE Software Quality Symposium
(pp. 319–326).

35. Yamada, S., & Fukushima, T. (2007). Quality-oriented software management (in Japanese).
Tokyo: Morikita-Shuppan.

36. Yamada, S., & Takahashi, M. (1993). Introduction to software management model (in
Japanese). Tokyo: Kyoritsu-Shuppan.

37. Yamada, S., & Kawahara, A. (2009). Statistical analysis of process monitoring data for software
process improvement. International Journal of Reliability, Quality and Safety Engineering, 16,
435–451.

38. Yamada, S., Yamashita, T., & Fukuta, A. (2010). Product quality prediction based on software
process data with development-period estimation. International Journal of Systems Assurance
Engineering and Management, 1, 69–73.

39. Pfening, A., Garg, S., Puliafito, A., Telek, M., & Trivedi, K. S. (1996). Optimal software
rejuvenation for tolerating soft failures. Performance Evaluation, 27–28, 491–506.

http://httpd.apache.org/
http://httpd.apache.org/
http://tomcat.apache.org/
http://www.postgresql.org/

88 2 Recent Developments in Software Reliability Modeling

40. Garg, S., Puliafito, A., Telek, M., & Trivedi, K. S. (1998). Analysis of preventive maintenance
in transactions based software systems. IEEE Transactions on Computers, 47, 96–107.

41. Tokuno, K., & Yamada, S. (2008). Dynamic performance analysis for software system con-
sidering real-time property in case of NHPP task arrival. Proceedings of 2nd International
Conference on Secure System Integration and Reliability Improvement (SSIRI 2008) (pp. 73–
80).

42. Nagata, T., Tokuno, K., & Yamada, S. (2011). Stochastic performability evaluation based
on NHPP reliability growth model. International Journal of Reliability, Quality, and Safety
Engineering, 18, 431–444.

43. Jeske, D. R., Zhang, X., & Pham, L. (2005). Adjusting software failure rates that are estimated
from test data. IEEE Transactions on Reliability, 54, 107–114.

44. Pham, H. (2006). System software reliability. London: Springer.
45. Okamura, H., Dohi, T., & Osaki, S. (2001). A reliability assessment method for software

products in operational phase: Proposal of an accelerated life testing model. Electronics and
Communications in Japan, 84, 25–33.

46. Morita, H., Tokuno, K., & Yamada, S. (2005). Markovian operational software reliability mea-
surement based on accelerated life testing model. Proceedings of the 11th ISSAT International
Conference on Reliability and Quality in Design (pp. 204–208).

47. Tokuno, K., & Yamada, S. (2007). User-oriented and -perceived software availability measure-
ment and assessment with environmental factors. Journal of Operations Research Society of
Japan, 50, 444–462.

48. Pham, H. (2005). A new generalized systemability model. International Journal of Performa-
bility Engineering, 1, 145–155.

49. Pham, H. (2010). Mathematical systemability function approximations. Proceedings of the
16th ISSAT International Conference on Reliability and Quality in Design (pp. 6–10).

50. Teng, X., & Pham, H. (2006). A new methodology for predicting software reliability in the
random field environments. IEEE Transactions on Reliability, 55, 458–468.

51. Lyu, M. R. (Ed.). (1996). Handbook of software reliability engineering. Los Alamitos:
McGraw-Hill, IEEE Computer Society Press.

52. Tokuno, K., & Yamada, S. (2000). An imperfect debugging model with two types of hazard rates
for software reliability measurement and assessment. Mathematical and Computer Modeling,
31, 343–352.

53. Tokuno, K., Kodera, T., & Yamada, S. (2009). Generalized markovian software reliability
modeling and its alternative calculation. International Journal of Reliability, Quality and Safety
Engineering, 16, 385–402.

54. Ross, S. M. (2007). Introduction to probability models (9th ed.). San Diego: Academic Press.
55. Osaki, S. (1992). Applied stochastic system modeling. Heidelberg: Springer.
56. Oldham, K. B., Myland, J. C., & Spanier, J. (2008). An atlas of functions, with equator, the

atlas function calculator (2nd ed.). New York: Springer.
57. Tokuno, K., Fukuda, T., & Yamada, S. (2012). Operational software performability evalua-

tion based on markovian reliability growth model with systemability. International Journal of
Reliability, Quality and Safety, Engineering, 19, 1240001.

58. Moranda, P. B. (1979). Event-altered rate models for general reliability analysis. IEEE Trans-
actions on Reliability, R-28, 376–381.

Index

A
AIC, 57
Akaike’s Information Criterion, 57
Analysis of variance, 46
Average-instantaneous fault-detection rate, 31
Average software availability, 24

B
Beta distribution, 77, 78
B-model, 78

C
Canonical correlation analysis, 64
Collaborative filtering, 68
Control chart, 29
Correlation analysis, 64
Cumulative MTBF, 12
Cumulative task completion ratio, 82

D
Delayed S-shaped software reliability growth

model, 10, 30
Delayed S-shaped SRGM, 68
Descriptive-design faults, 44
Design evaluation, 67
Design-review, 41
Difference equations, 53
Discrete exponential SRGM, 53

Discrete inflection S-shaped SRGM, 53
Discrete nonhomogeneous Poisson process, 52

E
Environmental factor, 72, 76, 86
Exponential software reliability growth model,

10, 26, 32
Exponential SRGM, 54, 68

G
Gamma distribution, 77, 83
G-model, 77
Gompertz curve, 15

H
Hazard rate, 7
Human factors, 41

I
Imperfect debugging, 16
Inducers, 42
Infinite-server queueing model, 73
Inflection S-shaped software reliability growth

model, 10, 55, 56
Inhibitors, 42
Instantaneous availability, 24
Instantaneous MTBF, 12

S. Yamada, Software Reliability Modeling, SpringerBriefs in Statistics,
DOI: 10.1007/978-4-431-54565-1, � The Author(s) 2014

89

Instantaneous task completion ratio, 81
Intensity function, 10
Ito type, 49

J
Jelinski-Moranda model, 8

K
Kummer function, 78

I
Least-square procedures, 54
Logarithmic Poisson execution time model,

10, 32, 68
Logistic curve, 15

M
Maintenance cost model, 26
Management cycle, 66
Markovian imperfect debugging model, 73
Markovian software reliability model, 72
Markov process, 16, 73
Maximum-likelihood estimates, 50
Mean square errors, 57
Mean value function, 10
Modified exponential software reliability

growth model, 10
Moranda model, 8
MSE, 57
MTBF, 11
Multiple regression expression, 64
Multivariate linear analyses, 62
Must-be quality, 4

N
NHPP, 10
Nonhomogeneous Poisson process, 10, 72
Normalized multiple regression expression, 64

O
Open Source Software, 48
Optimal software release problem, 26
Optimal testing-effort allocation problem, 34
Orthogonal array, 41, 43

P
PDCA, 66
Performability, 73
Principal component analysis, 64
Process monitoring, 62

S
SDE model, 49, 51
Signal-to noise ratio, 41
Software availability model, 5
Software availability, 19
Software bug, 3
Software complexity model, 4
Software error, 3
Software failure, 3, 40
Software failure-occurrence time model, 5
Software failure rate, 7
Software fault, 3, 40
Software fault-detection count model, 5
Software management model, 62
Software reliability, 4, 11
Software reliability growth model (SRGM), 5,

6, 40
Software reliability model (SRM), 2, 4, 40
Software system, 3
Software TQM, 2
Standard error rate, 45, 46
Stochastic differential equation, 49
Symbolical-design faults, 44
Systemability, 41, 72

T
Task completion ratios, 82, 83
Testing-domain-dependent software reliability

growth model, 10
Testing-effort dependent software reliability

growth model, 10, 33
Total quality management (TQM), 1
Truncated normal distribution, 27

W
Wagoner model, 8
Weibull process, 86
Weibull process model, 32
Wiener process, 49

90 Index

	Preface
	Acknowledgments
	Contents
	1 Introduction to Software Reliability Modeling and Its Applications
	1.1 Introduction
	1.2 Definitions and Software Reliability Model
	1.3 Software Reliability Growth Modeling
	1.4 Imperfect Debugging Modeling
	1.4.1 Imperfect Debugging Model with Perfect Correction Rate
	1.4.2 Imperfect Debugging Model for Introduced Faults

	1.5 Software Availability Modeling
	1.5.1 Model Description
	1.5.2 Software Availability Measures

	1.6 Application of Software Reliability Assessment
	1.6.1 Optimal Software Release Problem
	1.6.2 Statistical Software Testing-Progress Control
	1.6.3 Optimal Testing-Effort Allocation Problem

	References

	2 Recent Developments in Software Reliability Modeling
	2.1 Introduction
	2.2 Human Factors Analysis
	2.2.1 Design-Review and Human Factors
	2.2.2 Design-Review Experiment
	2.2.3 Analysis of Experimental Results
	2.2.4 Investigation of Analysis Results

	2.3 Stochastic Differential Equation Modeling
	2.3.1 Stochastic Differential Equation Model
	2.3.2 Method of Maximum-Likelihood
	2.3.3 Expected Number of Detected Faults
	2.3.4 Numerical Illustrations

	2.4 Discrete NHPP Modeling
	2.4.1 Discrete Exponential SRGM
	2.4.2 Discrete Inflection S-Shaped SRGM
	2.4.3 Model Comparisons
	2.4.4 Software Reliability Assessment

	2.5 Quality-Oriented Software Management Analysis
	2.5.1 Process Monitoring Data
	2.5.2 Factor Analysis Affecting QCD
	2.5.3 Analysis Results of Software Management Models
	2.5.4 Implementation of Project Management
	2.5.5 Software Reliability Assessment

	2.6 Operational Software Performability Evaluation
	2.6.1 Markovian Software Reliability Model
	2.6.2 Consideration of Systemability
	2.6.3 Model Description and Analysis for Task Processing
	2.6.4 Derivation of Software Performability Measures
	2.6.5 Numerical Examples

	References

	Index

