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Lecture	01	 What,	Why	and	Where	Algorithms	.	.	.	
What is algorithm? 

 A computer algorithm is a detailed step-by-step method for solving a problem by using 
a computer. 

 An algorithm is a sequence of unambiguous instructions for solving a problem in a 
finite amount of time.  

 An Algorithm is well defined computational procedure that takes some value, or set of 
values, as input and produces some value, or set of values as output. 

 More generally, an Algorithm is any well defined computational procedure that takes 
collection of elements as input and produces a collection of elements as output. 

 

Popular Algorithms, Factors of Dependence 

Most basic and popular algorithms are sorting algorithms & Searching algorithms 

Which algorithm is best?  

 Mainly, it depends upon various factors, for example in case of sorting  

 The number of items to be sorted 

 The extent to which the items are already sorted 

 Possible restrictions on the item values 

 The kind of storage device to be used etc. 

One Problem, Many Algorithms 

Problem: The statement of the problem specifies, in general terms, the desired input/output 
relationship. 
Algorithm: The algorithm describes a specific computational procedure for achieving 
input/output relationship. 
Example: One might need to sort a sequence of numbers into non-decreasing order. 
Algorithms: Various algorithms e.g. merge sort, quick sort, heap sorts etc. 

Important Designing Techniques 

 Brute Force: Straightforward, naive approach, mostly expensive 

 Divide-and-Conquer: Divide into smaller sub-problems 

 Iterative Improvement: Improve one change at a time 

Algorithm Input output 
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 Decrease-and-Conquer: Decrease instance size 

 Transform-and-Conquer: Modify problem first and then solve it 

 Space and Time Tradeoffs: Use more space now to save time later 

Greedy Approach 

 Locally optimal decisions; cannot change once made. 

 Efficient 

 Easy to implement 

 The solution is expected to be optimal 

 Every problem may not have greedy solution 

Dynamic programming 

 Decompose into sub-problems like divide and conquer 

 Sub-problems are dependant 

 Record results of smaller sub-problems 

 Re-use it for further occurrence 

 Mostly reduces complexity exponential to polynomial 

Problem Solving Phases 

Analysis 

 How does system work? 

 Breaking a system down to known components 

 How components (processes) relate to each other 

 Breaking a process down to known functions 

Synthesis 

 Building tools 

 Building functions with supporting tools 

 Composing functions to form a process  

 How components should be put together? 

 Final solution 

Problem Solving Process 

• Problem 
• Strategy 
• Algorithm 

– Input 
– Output 
– Steps 

• Analysis 
– Correctness 
– Time & Space  
– Optimality 
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• Implementation 
• Verification 

Model of Computation (Assumptions) 
• Design assumption 

– Level of abstraction which meets our requirements 
– Neither more nor less e.g. [0, 1] infinite continuous interval 

• Analysis independent of the variations in  
– Machine  
– Operating system  
– Programming languages 
– Compiler etc.  

• Low-level details will not be considered 
• Our model will be an abstraction of a standard generic single-processor machine, called 

a random access machine or RAM. 
• A RAM is assumed to be an idealized machine 

– Infinitely large random-access memory  
– Instructions execute sequentially 

• Every instruction is in fact a basic operation on two values in the machines memory 
which takes unit time. 

• These might be characters or integers. 
• Example of basic operations include 

– Assigning a value to a variable  
– Arithmetic operation (+, - , × , /) on integers 
– Performing any comparison e.g. a < b 
– Boolean operations  
– Accessing an element of an array. 

• In theoretical analysis, computational complexity 
– Estimated in asymptotic sense, i.e. 
– Estimating for large inputs  

• Big O, Omega, Theta etc. notations are used to compute the complexity 
• Asymptotic notations are used because different implementations of algorithm may 

differ in efficiency 
• Efficiencies of two given algorithm are related 

– By a constant multiplicative factor 
– Called hidden constant. 

Drawbacks in Model of Computation 

Poor assumptions 
• We assumed that each basic operation takes constant time, i.e. model allows adding, 

multiplying, comparing etc. any two numbers of any length in constant time 
• Addition of two numbers takes a unit time!  

– Not good because numbers may be arbitrarily 
• Addition and multiplication both take unit time! 

– Again very bad assumption  

Model of Computation not so Bad 

Finally what about Our Model? 
• But with all these weaknesses, our model is not so bad because we have to give the  
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– Comparison not the absolute analysis of any algorithm. 
– We have to deal with large inputs not with the small size 

• Model seems to work well describing computational power of modern nonparallel 
machines 

Can we do Exact Measure of Efficiency? 
• Exact, not asymptotic, measure of efficiency can be sometimes computed but it 

usually requires certain assumptions concerning implementation 

Summary: Computational Model 
• Analysis will be performed with respect to this computational model for comparison 

of algorithms 
• We will give asymptotic analysis not detailed comparison i.e. for large inputs  
• We will use generic uni-processor random-access machine (RAM) in analysis 

– All memory equally expensive to access 
– No concurrent operations 
– All reasonable instructions take unit time, except, of course, function calls 
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Lecture	02	 Mathematical	Tools	for	Design	and	Analysis	of	
Algorithms	
Set: A set is well defined collection of objects, which are unordered, distinct, have same type 
and possess with common properties  

Notation: 
 Elements of set are listed between a pair of curly braces 
S1  = {R, R, R, B, G} = {R, B, G} = {B, G, R}  

Empty Set 

 S3 = { } = , has not elements, called empty set 
 
Representation of Sets 
Three ways to represent a set 

• Descriptive Form 
• Tabular form 
• Set Builder Form (Set Comprehension) 

Example 

 Descriptive Form:  S = set of all prime numbers 
 Tabular form:  {2, 3, 5, ...} 
 Set Builder Form: {x : N| ( i  {2, 3, . . ., x-1}   (i / x))  x}   

 
Set Comprehension 

 Some More Examples 

 {x : s | p  x} = {x : s | p} = all x in s that satisfy p   
1.  {x : Z | x2= x  x} = {0, 1} 
2.  {x : N | x  0 mod 2  x} = {0, 2, 4, . . . } 
3.  {x : N | x  1 mod 2  x} = {1, 3, 5, . . . } 
4.  {x : Z | x ≥ 0  x ≤ 6  x} = {0, 1, 2, 3, 4, 5, 6} 
5.  {x : Z | x ≥ 0  x ≤ 6  x2} = {0, 1, 4,  . . ., 25, 36} 
6.  {x : N | x  1 mod 2  x3} = {1, 27, 125, . . . } 

 
All collections are not sets 

• The prime numbers 

  Primes == {2, 3, 5, 7, . . . }  
• The four oceans of the world 

  Oceans == {Atlantic, Arctic, Indian, Pacific} 
• The passwords that may be generated using eight lower-case letters, when repetition 

is allowed 
• Hard working students in MSCS class session 2007-09 at Virtual University 
• Intelligent students in your class 
• Kind teachers at VU 

 

Operators Over Sets 

Membership Operator 
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• If an element e is a member of set S then it is denoted as  
e  S and read e is in S. Let S is sub-collection of X 

 X  =  a set 

 S  X 

Now 

  : X x P X Bool  

   (x, S) = = 1  if x is in S 

         0  if x is not in S 

Subset:  

 If each element of A is also in B, then A is said to be a subset of B, A  B and B is 
superset of A, B  A.  

 Let X  =  a universal set,  A  X, B  X, Now 

  : X  x X  Bool  

  (A, B) = = 1,  if  x : X, x  A  x  B 

        0  if  x : X, x  A   x  B  

Operators Over Sets 
Intersection 
  : X  x X  X  
   (A, B) = = {x : X | x  A and x  B  x}  
Union 
  : X  x X  X  
    (A, B) = = {x : X | x  A or x  B  x}  
Set Difference 
 \ : X  x X  X  
  \ (A, B) = = {x : X | x  A but x  B  x} 

Cardinality and Power Set of a given Set 
• A set, S, is finite if there is an integer n such that the elements of S can be placed in a 

one-to-one correspondence with {1, 2, 3, …, n}, and we say that cardinality is n. We 
write as: |S| = n 

Power Set 
• How many distinct subsets does a finite set on n elements have? There are 2n subsets. 
• How many distinct subsets of cardinality k does a finite set of n elements have?  

 There are  

!
( , )

( )! !
n

k

n n
C n k C

k n k k

 
     

 

Partitioning of a set 

 A partition of a set A is a set of non-empty subsets of A such that every element x in 
A exactly belong to one of these subsets.  
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 Equivalently, set P of subsets of A, is a partition of A  
1. If no element of P is empty 
2. The union of the elements of P is equal to A. We say the elements of P cover A. 
3. The intersection of any two elements of P is empty. That means the elements of P are 

pair wise disjoints  
 

Partitioning of a set 

A partition of a set A is a set of non-empty subsets of A such that every element x in 
A exactly belong to one of these subsets.  

 Equivalently, set P of subsets of A, is a partition of A  
4. If no element of P is empty 
5. The union of the elements of P is equal to A. We say the elements of P cover A. 
6. The intersection of any two elements of P is empty. That means the elements of P are 

pair wise disjoints  
 
Mathematical Way of Defining Partitioning 

A partition P of a set A is a collection {A1, A2, . . ., An} such that following are satisfied 
1.  Ai P, Ai  ,  
2. Ai  Aj = ,  i, j  {1, 2, . . ., n} and i  j 
3. A = A1  A2  . . . An 

Example: Partitioning of Z Modulo 4 

 {x : Z | x  0 mod 4} = {. . .-8, -4, 0, 4, 8, . . . } = [0] 

 {x : Z | x  1 mod 4} = {. . .-7, -3, 1, 5, 9, . . . } = [1] 

 {x : Z | x  2 mod 4} = {. . .-6, -2, 2, 6, 10, . . . } = [ 2] 

 {x : Z | x  3 mod 4} = {. . .-5, -1, 3, 7, 11, . . . } = [3] 

 {x : Z | x  4 mod 4} = {. . .,-8, -4, 0, 4, 8, . . . } = [4] 
 

Sequence 
• It is sometimes necessary to record the order in which objects are arranged, e.g., 

• Data may be indexed by an ordered collection of keys 
• Messages may be stored in order of arrival 
• Tasks may be performed in order of importance. 
• Names can be sorted in order of alphabets etc.  

Definition 
• A group of elements in a specified order is called a sequence.  
• A sequence can have repeated elements.  
• Notation: Sequence is defined by listing elements in order, enclosed in parentheses. 

e.g.  

  S = (a, b, c), T = (b, c, a), U = (a, a, b, c) 
• Sequence is a set 

  S = {(1, a), (2, b), (3, c)} = {(3, c), (2, b), (1, a)} 
• Permutation: If all elements of a finite sequence are distinct, that sequence is said to 

be a permutation of the finite set consisting of the same elements. 
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• No. of Permutations: If a set has n elements, then there are n! distinct permutations 
over it.  

 
Operators over Sequences 

• Operators are for manipulations 

Concatenation  
• (a, b, c ) ( d, a ) = ( a, b, c, d, a )  

Other operators 
• Extraction of information: ( a, b, c, d, a )(2) = b  
• Filter Operator: {a, d}  ( a, b, c, d, a ) = (a, d, a)  

Note: 
• We can think how resulting theory of sequences falls within our existing theory of 

sets 
• And how operators in set theory can be used in case of sequences 

Tuples and Cross Product 
• A tuple is a finite sequence.  

• Ordered pair (x, y), triple (x, y, z), quintuple 
• A k-tuple is a tuple of k elements. 

Construction to ordered pairs 
• The cross product of two sets, say A and B, is 

A  B = {(x, y) | x  A, y  B} 

 | A  B | = |A| |B| 
• Some times, A and B are of same set, e.g., 

 Z  Z, where Z denotes set of Integers 

Binary Relations 

Definition: If X and Y are two non-empty sets, then 

 X × Y = {(x, y) | x X and y  Y}  

Example: If X = {a, b}, Y = {0,1} Then 

  X × Y = {(a, 0), (a, 1), (b, 0), (b, 1)} 

Definition: A subset of X x Y is a relation over X x Y  

Example: Compute all relations over X × Y, where 

 X = {a, b}, Y = {0,1}  

 R1 = 0, R2 = {(a, 0)}, R3 = {(a, 1)}  

 R4 = {(b, 0)}, R5 = {(b, 1)}, R6 = {(a, 0), (b, 0)}, . . . 

There will be 24
 

 = 16 number of relations 

Equivalence Relation 

A relation R  X  X, is 
Reflexive:   (x, x)  R,  x  X  
Symmetric:   (x, y)  R  (y, x)  R,  x, y  X 
Transitive:  (x, y)  R  (y, z)  R  (x, z)  R 
Equivalence:  If reflexive, symmetric and transitive 
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Applications : Order Pairs in Terms of String 

Definition 
• A relation R over X, Y, Z is some subset of X x Y x Z and so on 

Example 1 
• If  = {0, 1}, then construct set of all strings of length 2 and 3 
• Set of length 2 =  x  = {0,1} x {0,1} = {(0,0), (0,1), (1,0), (1,1)}        

= {00, 01, 10, 11} 
• Set of length 3 =  x  x  = {0, 1} x {0, 1} x {0,1} 

  = {(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)}  

  = {000, 010, 100, 110, 001, 011, 101, 111} 

Example 2 
• If  = {0, 1}, then construct set of all strings of length ≤ 3 
• Construction = {}     x    x  x   

Similarly we can construct collection of all sets of length n  

Partial Function: A partial function is a relation that maps each element of X to at most 
one element of Y. X↛Y denotes the set of all partial functions. 

Function: If each element of X is related to unique element of Y then partial function is a 
total function denoted by X ↛ Y. 

Following are not good algorithms.  

 

 

 

 

  

Input1 

Input2 

Input3 

output1 

output2 

output3 
X Yf

Input1 

Input2 

output1 

output2
X Yf 
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Lecture	03	 Logic	and	Proving	Techniques	
Tools used for proving algorithms   

• Propositional Logic 
• Predicate Logic 
• Proofs using  

• Truth Tables 
• Logical Equivalences 
• Counter Example 
• Contradiction 
• Rule of Inference 

• Probability as Analysis Tool 
• Series and Summation etc. 

 

Propositional and Predicate Logic 

Logical Connectives 
• Proposition: Simplest statements also called atomic formula 
• Propositions may be connected based on atomic formula.  
• Logical connectives, in descending order of operator precedence 
 

 

 

 

 

 

Negation: The negation of p is true if p is false and vice versa. 

Conjunction 

• The conjunction p  q is true only if p and q both are true otherwise false 
• The conjunction follows the commutative property, i.e. p  q  = q  p  

Disjunction  
• The disjunction p  q is false if both p and q are false otherwise true 
• The disjunction follows the commutative property as well, i.e. p  q  = q  p  

 

Implication 

• The p is antecedent and q is consequent 
• The antecedent is stronger than consequent.  
• Commutative property does not hold, i.e. (p  q)   (q  p)  

 

Symbol  Name  Pronunciation 

  negation  not  

  conjunction  and  

  disjunction  or  

  implication  implies  

  equivalence  if and only if  
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p  q  p  q q  p  p q

t  t  t  t  t  

t  f  f  t  f  

f  t  t  f  t  

f  f  t  t  t  

 

Bi-implication 

The equivalence p  q means p  q & q  p  

Commutative property does hold, i.e. (p  q)  = (q  p)  

 
 

 

 

 

 

 

Predicates and Quantifiers 

Predicate: P(x)  x < 5 

Example:  x : N | x2 = x  x < 2  

For all quantifier 
•  x, P(x) is true  P(x) is true for all x.  

Existential Quantifier 
•  x, P(x) is true  P(x) is true for some value of x.  

Logical Equivalences 
•  x, P(x) is logically equivalent to  ( x, P(x)) 
•  x, P(x) is logically equivalent to ( x, P(x)) 
•  x, (P(x)  Q(x)) means x, P(x)  Q(x) 

 

Proving Techniques 
 
Proof using Truth Table: (p  q  r)   (p  (q  r))  
 

p  q  p  q q  p p  q & 
q  p 

t  t  t  t  t  

t  f  f  t  f  

f  t  t  f  f  

f  f  t  t  t  
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p  q  r  (p  q  r)   (p  (q  r)) 

t  t  t  t      t        t        t         t t  

t  t  f  t      f        t        f         f t  

t  f  t  f      t        t        t         t t  

t  f  f  f      t        t        t         t t  

f  t  t  f      t        t        t         t t 
f  t  f  f      t        t        t         f t  

f  f  t  f      t        t        t         t t 
f  f  f  f      t        t        t         t t 

 

De Morgan’s Laws 
1. (p  q)  =  p   q  

p  q  p  q  (p  q)  p q p  q 

t  t  t  f  f  f f 

t  f  f  t  f  t t 

f  t  f  t  t  f  t  

f  f  f  t  t  t t 

 

2. (p  q)  =  p   q 

p  q  p  q  (p  q)  p q p  q 

t  t  t  f  f  f f 

t  f  t  f  f  t f 

f  t  t  f  t  f  f  

f  f  f  t  t  t t 

Proof using Counter Example, Contraposition 

Counter Example  
To prove  x (A(x)  B(x)) is false, we show some object x for which A(x) is true and 
B(x) is false. 

Proof 

 ( x (A(x)  B(x)))      
 x, (A(x)  B(x)))   

 x, (A(x)  B(x))   

 x, A(x)  B(x)) 
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Contraposition  
To prove A  B, we show ( B)  ( A) 

• x is divisible by 4  x is divisible by 2   

 x is not divisible by 2  x is not divisible by 4   
 

Proof by Contradiction 

Contradiction 
To prove A  B,  

Steps in Proof 
• We assume A and to prove that B 
• On contrary suppose that  B and  
• Then prove B, it will be contradiction 

Further analysis 
•  A  B      (A  B)  B Contradiction 
•  A  B      (A   B)  is false 
• Assuming (A   B) is true,  

and discover a contradiction (such as A  A),  
then conclude (A   B) is false, and so A  B.  

 

Problem: Proof by Contradiction 

Prove:  

 [B  (B  C)]  C, by contradiction 

Proof: 

Suppose [B  (B  C)], to prove C 

On contrary, assume C 

     C  [B  (B  C)]  must be true 

 C  [B  ( B  C)] 

 C  [(B   B)  (B  C)] 

 C  [f  (B  C)] 

 C  B  C = C  C  B = f  B = f 

 False, Contradiction  C 
 

Rules of Inference 
A rule of inference is a general pattern that allows us to draw some new conclusion from a set 
of given statements. If we know P then we can conclude Q. 

Modus ponens 

 If {B  (B  C)} then {C} 

Proof: 

 Suppose B  (B  C) then  

 B  
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 B  C 

Syllogism  

 If {A  B  B  C} then {A  C} 

Proof 
• Suppose A  B  B  C, To prove A  C  
• B 
• C 

Rule of cases 

 If {B  C  B  C} then {C} 

 B, true, implies C true 

 B, true, implies C true 
 

Two Valued Boolean Logic 
1. Boolean values = B = {0, 1}, there are two binary operations: 
• +  = or  =   
• · = and =   

2. Closure properties:  
•  x, y  B, x + y  B 
•  x, y  B, x . y  B 

3. Identity element:  
•  x + 0 = 0 + x = x 
• x · 1 = 1 . x =  x  

4. Commutative:  
• x + y = y + x  
• x · y = y · x 

5. Distributive:  
• x · (y + z) = (x · y) + (x · z) 
• x + (y · z) = (x + y) · (x + z) 

6. Complement:  
•  x  B,   x’  B such that  

 x + x’ = 1,  x · x’ = 0 
 

Tautologies and Truth Table 

Tautology: Any statement which is always true is called a tautology 

Example 
Show [B  (B  C)]  C is a tautology: 

Proof 

B C (B  C) (B  (B  C)) (B  (B  C))  C

0 0 1 0 1

0 1 1 0 1
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1 0 0 0 1

1 1 1 1

 
For every assignment for B and C, the statement is True, hence the above statement is a 
tautology. 

 

Probability as Analysis Tool  

Elementary events  
• Suppose that in a given situation an event, or an experiment, may have any one, and 

only one, of k outcomes, s
1
, s

2
, …, s

k
. Assume that all these outcomes are mutually 

exclusive. 

Universe  
The set of all elementary events is called the universe of discourse and is denoted  

  U = {s1, s2, …, sk}.  

Probability of an outcome si 
• Associate a real number Pr(s

i
), such that 

   0  Pr(si)  1   for 1  i  k; 

   Pr(s1) + Pr(s2) + … + Pr(sk) = 1 

Event  
• Let S  U. Then S is called an event, and Pr( ) Pr( )

i

i
s S

S s


  

Sure event  
• U = {s1, s2, …, sk}, if S = U Pr( ) Pr( ) 1

i

i
s S

S s


   

Impossible event   
• S = , Pr() = 0 

 
Arithmetic and Geometric Series 

1

( 1)

2

n

i

n n
i




   

3 2
2

1

( 1)(2 1) 2 3

6 6

n

i

n n n n n n
i



   
   

2

1

( 1)
...

1

nn
k n

k

i i
i i i i

i


    

  

1

2 2 1
n

i n

i

    

  1

1

2 1 2 2
k

i k

i

i k 



    
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Lecture	04	 Mathematical	Induction	
What is Mathematical Induction? 

• Mathematical induction is a powerful, yet straight-forward method of proving 
statements whose domain is a subset of the set of integers.  

• Usually, a statement that is proven by induction is based on the set of natural 
numbers.  

• This statement can often be thought of as a function of a number n, where n = 1, 2, 3,. 
. . 

• Proof by induction involves three main steps 
– Proving the base of induction  
– Forming the induction hypothesis  
– Proving that the induction hypothesis holds true for all numbers in the domain.  

 Let P(n) be the predicate defined for any positive  integers n, and let n
0
 be a fixed 

integer. Suppose the following two statements are true 
1. P(n

0
) is true. 

2. For any positive integers k, k  n
0
, if P(k) is true then P(k+1)is true. 

 If both of the above statements are true then the statement: 

       n  N, such that n  n
0
, P(n) is also true  

Steps in Proving by Induction 

Claim: P(n) is true for all n  Z+, for n  n0 
1. Basis 

– Show formula is true when n = n0 
2. Inductive hypothesis 

– Assume formula is true for an arbitrary n = k  

    where, k  Z+ and k  n0 
3. To Prove Claim 

– Show that formula is then true for k+1 

Note: In fact we have to prove  
1) P(n0) and 
2) P(k)  P(k+1)  

 

Mathematical Way of Expressing Induction 

• Basis step.  

 Show that proposition P(1) is true. 
• Inductive step.  

  Show that for every positive integer n, the  implication P(n)  P(n+1) is 
true. 

 P(n) for a fixed n is called inductive hypothesis. 
• [P(1)   n, (P(n)  P(n+1))]     n, P(n)  

 

Definition (Well-Ordering Principle) 
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• The Well-ordering Principle is the following statement   
“every nonempty set of positive integers contains a least element”   

• In a mathematical way we can define this Principle as:  

  there is a in S such that a  b for all b in S i.e.   

   a  S, such that a  b,  b  S  
• And we say that set S is well-ordered with respect to . 

Modus Ponens Principal 

     p  q 

     p 

 Hence, q  
 

Why Mathematical Induction is Valid? 

• Let us suppose that P(1) is true, and that 

 n (P(n)  P(n+1)) is also true.  
• Claim: n P(n) is true  

– Assume proposition  n, P(n) is false, i. e, there are some positive integers for 
which P(n) is false.  

– Let S be the set of those n’s. By well-ordering property, S has a least element, 
suppose, k.  

– As 1S, so 1< k, so k-1 is a positive 
– Since k-1 < k, hence k-1 S.  So P(k-1) is true. 
– By modus ponens, P((k-1) + 1) = P(k) is true.  
– Contradiction, hence n, P(n) 

Another Reason for Validity? 

Basis Step 

 First suppose that we have a proof of P(0). 

Inductive Hypothesis 

  k  > 0, P(k)   P(k + 1)  

How it is proved  n  > 0? 

  P(0)   P(1)  

  P(1)   P(2) 

  P(2)   P(3) 

  . . . 

 Iterating gives a proof of  n, P(n). This is another way of proving validity of 
mathematical Induction. 

Example 1: 

Prove that n2 n + 100   n  11 

Solution 
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Initially, base case  

 Solution set = {11}  

By, P(k)  P(K+1) - P(11)  P(12), taking k = 11  

 Solution set = {11, 12} 

Similarly, P(12)  P(13), taking k = 12  

 Solution set = {11, 12, 13} 

And, P(13)  P(14), taking k = 13  

 Solution set = {11, 12, 13, 14} 

And so on 
 

Example 2: 

Use Mathematical Induction to prove that sum of the first n odd positive integers is n2 

Proof: 

Let P(n) denote the proposition that 2

1

(2 1)  
n

i

i n


   

Basis step : P(1) is true , since 1 = 12 

Inductive step : Let P(k) is true for a positive integer k, i.e.,  1+3+5+…+(2k-1) = k2 

• Note that: 1+3+5+…+(2k-1)+(2k+1) = k2+2k+1= (k+1)2 

      ∴ P(k+1) true, by induction, P(n) is true for all n  Z+ 

Another Proof: 2

1 1

(2 1) 2 ( 1)
n n

i i

i i n n n n n
 

         

Example 3: 

Use mathematical Induction to prove that the inequality n < 2n for all n  Z+ 

Proof: 

Let P(n) be the proposition that n < 2n  

Basis step : P(1) is true since 1 < 21. 

Inductive step : 

Assume that P(n) is true for a positive integer n = k,          
       i.e., k < 2k. 

Now consider for P(k+1) :  

Since, k + 1 < 2k
 

+ 1  2k
 

+ 2k
 

= 2.2k
 

= 2k+1  

∴ P(k+1) is true. 

It proves that P(n) is true for all n  Z+. 
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Harmonic Numbers: 

Now consider 

1 12

1 1 1 1 1 1
1

2 3 2 2 1 2 2 2 2 2
k k k k k k k

H          
   

   

12

1 1 1

2 1 2 2 2
k k k k

H     
 

  

1

1 1 1
(1 )

2 2 1 2 2 2k k k

k
     

 
  

1 1 1
(1 )

2 2 2 2 2 2 2k k k k k k

k
     

  
  

2
(1 )

2 2 2

k

k k

k
  


1 1

1 1
2 2 2

k k 
      

∴P(k+1) is true.  
Hence the statement is true for all n  Z+. 

Strong Mathematical Induction 

Let P(n) be a predicate defined for integers n, and a and b are fixed integers with a ≤ b. 
Suppose the following statements are true: 

 1. P(a), P(a + 1), … , P(b) are all true  

       (basis step) 

 2. For any integer k > b,  

    if P(i) is true for all integers i with a ≤ i < k, 

   then P(k) is true.    (inductive step) 
Then P(n) is true for all integers n ≥ a. 
 
Example 1: Divisibility by a Prime 

Theorem:  
• For any integer n ≥ 2, n is divisible by a prime. 

Proof  

(by strong mathematical induction): 
• Basis step:  

 The statement is true for n = 2. This is because  2 | 2  and 2 is a prime number. 

Inductive step: 

 Assume the statement is true for all i with 2 ≤ i <k (inductive hypothesis) ;  

To show that it is true for k . 
• We know that  i  Z, with 2 ≤ i < k, P(i),  i.e. i is divisible by a prime number. (1)  
• Now we show P(k), i.e., k is divisible by a prime. 

 Take two cases: 

 Case 1: k is prime.  



20 
 

 Then k is divisible by itself. And nothing to prove 

 Case 2: k is composite.  

 Then k = a·b, where 2 ≤ a <k and 2 ≤ b <k 

 Based on (1), p|a for some prime p.  (2) 

 Based on Case 2, a|k    (3)   

 By transitivity, p|a and a|k  p|k  
 Thus, P(n) is true by strong induction. 

Example 2: Another Example in Number Theory 

   If n  Z, n >1, then n can be written as product of primes. 
Proof :  
       Let P(n)   n can be written as the product of primes. 
 Basis : P(2) is true, since 2 is the first prime number 
 Inductive : Assume that the statement is true for n = k, i.e. 
     P(2), P(3), …, P(k) can be written as product of primes.  
 Prove that: true for n = k, i.e. P(k + 1) is product of primes. 
     Case 1 : k + 1 is prime, then nothing to prove 
     Case 2 : k + 1 is composite, then  

 k + 1 = xy, where 2  x  y ＜ k+1 
     Inductive hypothesis, a and b are product of primes.  
     Hence P(k+1) can be written as product of primes.  
 

Any Amount Limited Coins: More Steps in Basis 
Statement 
Show that any amount in cents ≥ 8 cents can be obtained using 3 cents and 5 cents coins only. 
Proof 
We have to prove that, amount = 3.m + 5.n, m  0, n  0 
Basis Step 
This time check for a five particular values: 
 8 = 1.3  + 1.5 
 9 = 3.3 
 10 = 2.5 
 11 = 2.3 + 1.5 
 12 = 4.3 
Now we generalize it? 
Let P(n) be the statement that: 
 “n cents can be obtained using 3 and 5 cents”. 
Inductive Hypothesis 
We want to show that  
  P(k) is true  P(k+1),  k ≥ 8 
There are two cases now 
Case 1  
 P(k) is true and k cents contain at least one 5 coin. 
Case 2 
 P(k) true, k cents do not contain any coin of 5 cent. 
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Case 1 
P(k) is true and k cents contain at least one 5 coin. 

Since P(k) is true   k  8  

Hence k can be expressed as  
  k = 3.m + 5.n  m  0 and n  1  
  k + 1= 3.m + 5.n + 1 
  k + 1= 3.m + 5.(n - 1) + 1 + 5 

  k + 1= 3.(m + 2) + 5.(n - 1),  m  2 and n  0  
Hence the statement is true for n = k + 1 
Case 2 

• P(k) is true and k cents do not contain any coin of 5 cent.  for k  8  

 Hence k can be expressed as  
  k = 3.m     m  3  
  k + 1= 3.(m – 3) + 9 + 1 
  k + 1= 3.(m – 3) + 2.5  
  k + 1= 3.m’ + 5.n    m’  0 and n = 2  
Hence the statement is true for n = k + 1 
Hence P(k + 1) is true 
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Lecture	05	 Strong	Mathematical	Induction	
Generalized Demargon’s Law by Induction 

Prove 
1

1

nn

j j
j

j

A A
 

   when n2, i.e.,  1 2 1 2... ...n nA A A A A A        

Proof: 

Basis step:   Since,    1 2 1 2A A A A    true for n = 2 

Induction Step: Assume the result is true n = k and then prove for n = k+1 

1

1
1 1

k k

j j k
j j

A A A


 
     

11

11

1

1

  (by induction hypothesis)

k

j kj

k

j kj

k

jj

A A

A A

A









  

  

 

 

Postage Ticket: Again More Steps in Basis 
Prove that postage ticket of amount  12 cents can be formed using only 4 cent and 5 cent 
stamps. 
Proof  
Let P(n)  n cents can be formed using only 4 and 5 cent  
P(n)  n = 4s + 5t s  0, and t  0  n  12  
 Basis : P(12) is true, since 12 = 4  3; 
                      P(13) is true, since 13 = 4  2 + 5  1; 
                      P(14) is true, since 14 = 4  1 + 5  2; 
                      P(15) is true, since 15 = 5  3; 
       Inductive : Assume P(12), P(13), …, P(k) are true.  
       Now prove for P(k + 1) 
       Suppose k-3 = 4  s + 5  t.                   
       Then k +1 = 4  (s + 1) + 5  t. true for n = k + 1.    
       By Strong Induction, P(n) is true if n  Z and n 12. 
 

Proving a Property of a Sequence 

Proposition:  

 Suppose a0, a1, a2, … is defined as follows: 

   a0
 
= 1, a1

 
= 2, a2

 
= 3, 

   ak
 
= ak-1

 
+ ak-2

 
+ ak-3

  
for all integers k ≥ 3. 

 Then an≤ 2n for all integers n≥0.            P(n) 
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Proof (by strong induction) 

Basis step:  

 The statement is true  

 for n = 0: a0
 
= 1

 
≤ 1 = 20

  

P(0) 

    for n = 1: a1
 
= 2

 
≤ 2 = 21

     

P(1) 

    for n = 2: a2
 
= 3

 
≤ 4 = 22

     

P(2) 
 

Inductive step:   

For any k > 2, assume P(i) is true for all i with 0 ≤ i < k, i.e., ai ≤ 2i
   

for all 0 ≤ i < k  (1) 

Show that  

 P(k) is true:    ak ≤ 2k

 

           (2)    

 Now consider  

  ak = ak-1
 
+ ak-2

 
+ ak-3 

       ≤ 2k-1
 

+2k-2
 

+ 2k-3
  

based on (1)  

       ≤ 20
 

+ 21
 

+ … + 2k-3
 

+ 2k-2
 

+ 2k-1 
  

     = 2k
 

- 1 ≤ 2k 

Thus, P(n) is true by strong mathematical induction. 

Hence it proves the result 
 

Existence of Binary Integer Representation  

Theorem  

 Given any positive integer n, there exists a unique representation of n in the form: 
1 1

1 1 02 2 ... 2r r
r rn c c c c

         

where r is non-negative integer, cr= 1, and cj
 
= 0 or 1,  j = 0, 1, 2, . . . , r-1 

Proof (by strong induction) 

 Let P(n) be the statement that n can be written in the form  

 1 1
1 1 02 2 ... 2r r

r rn c c c c
         

Basis step:  

 If n = 1, then n = cr.2r = c0, where r = 0,  and c0 = 1 

 Hence the statement is true for n = 1, i.e. P(1) is true  

Inductive Hypothesis:   

 Let us suppose that statement is true for all i, 1 ≤ i < k,  

  i = ck.2k + ck-1.2k-1 +  . . . + c1.21 + c0  
cr.= 1, and ci

 
= 0 or 1,  j = 0, 1, 2, . . . , r-1  

Show that  
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 Now we prove that statement is true for k 

Case 1  

 Suppose k is even, k/2 is an integer and k/2 < k, hence 

   k/2 = cr.2r + cr-1.2r-1 +  . . . + c1.21 + c0  

 where r is non-negative integer and 

 cr= 1, and ci
 
= 0 or 1,  j = 0, 1, 2, . . . , r-1  

  k = 2.cr.2r + 2.cr-1.2r-1 +  . . . + 2.c1.21 + 2.c0 

  k = cr.2r+1 + cr-1.2r +  . . . + c1.22 + c0.21, true  

 which is the required form 

Case 2  

 Let k ≥ 3, is odd, (k-1)/2 is an integer and 1 ≤ (k-1)/2 < k,  

  (k-1)/2 = cr.2r + cr-1.2r-1 +  . . . + c1.21 + c0 

 where r is non-negative integer and 

 cr= 1, and cj
 
= 0 or 1,  j = 0, 1, 2, . . . , r-1  

 Now, k – 1 = cr.2r+1 + cr-1.2r +  . . . + c1.22 + c0.21 

 And,  k = cr.2r+1 + cr-1.2r +  . . . + c1.22 + c0.21 + 1, true 
Hence by strong mathematical induction, P(n) is true 

Uniqueness 

Uniqueness  

 Now we prove that n has a unique representation  

 1 1
1 1 02 2 ... 2r r

r rn c c c c
         

where r is non-negative integer, cr= 1, and cj
 
= 0 or 1,  j = 0, 1, 2, . . . , r-1 

 On contrary, suppose that n has two different representations, i.e.  

 1 1
1 1 02 2 ... 2r r

r rn c c c c
         (1) and 

 1 1
1 1 02 2 ... 2r r

r rn c c c c
       

  
(2)  

 Now subtract (2) from (1) we get 

        1 1
1 1 1 1 0 00 2 2 ... 2r r

r r r rb c b c b c b c
            

 1 1 1 1 0 0 ,  , ... , b  , r r r rb c b c c b c      proved 

 

More Complicated Example 

Problem     


0 1 0

1
Let f ,  and f f f , 0.

2 n nx n
x

 

Find an expression for fn  and prove it by induction 
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Solution 

0 n 1 o 0

1 0 0 0

1
Since f and f f f  therefore 

2
1 1 2

f ( )  f f (x) f ( )
12 3 22

2

x
x

x
x x

x

 



   

 





 

2 0 1 0

2 1 3 2
And, f ( )  f f (x) f ( )

23 2 4 32
3 2

x x
x

xx x
x

 
   

 


  

3 0 2 0

3 2
And, f ( )  f f (x) f ( )

4 3
1 4 3

                                  
3 2 5 42
4 3

x
x

x
x

x x
x


 




 
 




 

And so on 

n 0 n-1 0

( 1)
f ( )  f f (x) f ( )

( 1)

1 ( 1)
                                     

( 1) ( 2) ( 1)2
( 1)

n n x
x

n nx

n nx
n n x n n x
n nx

 
 

 
 

 
    
 



 

Now generalized function is 

n

( 1)
f ( )  

( 2) ( 1)

n nx
x

n n x

 


  
 

Now we prove this guess by mathematical Induction 

Basis case:  take n = 0 

0

1
f , which is true

2 x



 

Inductive hypothesis: assume that statement is true  n = k 

k

( 1)
f ( )  

( 2) ( 1)

k kx
x

k k x

 


  
 

Claim: Claim: Now we have to prove that statement is true  n = k + 1 

k 1

( 1 1) ( 1) ( 2) ( 1)
f ( )   

( 1 2) ( 1 1) ( 3) ( 2)

k k x k k x
x

k k x k k x

      
 

       
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By definition: 1 0 1 0      k 0n n k kf f f f f f        

k 1 0

( 1) 1
f ( )  f ( )  

( 1)( 2) ( 1) 2
( 2) ( 1)

k kx
x

k kxk k x
k k x



 
 

    
  

 

k 1

( 2) ( 1)
After simplification, f ( )   ,  proved.

( 3) ( 2)

k k x
x

k k x

  


  
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Lecture	06	 Fibonacci	Sequences	
Fibonacci Sequence 

By studying Fibonacci numbers and constructing Fibonacci sequence we can imagine how 
mathematics is connected to apparently unrelated things in this universe. Even though these 
numbers were introduced in 1202 in Fibonacci’s book Liber abaci, but these numbers and 
sequence are still fascinating and mysterious to people of today. Fibonacci, who was born 
Leonardo da Pisa gave a problem in his book whose solution was the Fibonacci sequence as 
we will discuss it today. 

Statement: 

Start with a pair of rabbits, one male and one female, born on January 1.  

Assume that all months are of equal length and that rabbits begin to produce two months after 
their own birth. After reaching age of two months, each pair produces another mixed pair, one 
male and one female, and then another mixed pair each month, and no rabbit dies. 

 How many pairs of rabbits will there be after one year?  

Answer: The Fibonacci Sequence! 

  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . 

Construction of Mathematical Model 

 

Total pairs at level k = Total pairs at level k-1 + Total pairs born at level k         (1) 

Since 

Total pairs born at level k = Total pairs at level k-2      (2) 
Hence  by equation (1) and (2) 
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 Total pairs at level k = Total pairs at level k-1 + Total pairs at level k-2 
Now let us denote  

  F
k
 = Total pairs at level k  

Now our recursive mathematical model will become 1 2k k kF F F    

Computing Values using Mathematical Model 

Since  Fk = Fk-1 + Fk-2   F0 = 0, F1= 1 
F2 = F1 + F0= 1 + 0 = 1 
F3 = F2 + F1= 1 + 1 = 2 
F4 = F3 + F2= 2 + 1 = 3 
F5 = F4 + F3= 3 + 2 = 5 
F6 = F5 + F4= 5 + 3 = 8 
F7 = F6 + F5= 8 + 5 = 13 
F8 = F7 + F6= 13 + 8 = 21 
F9 = F8 + F7= 21 + 13 = 34 
F10 = F9 + F8= 34 + 21 = 55 
F11 = F10 + F9= 55 + 34 = 89 
F12 = F11 + F10= 89 + 55 = 144 . . . 
 
Explicit Formula Computing Fibonacci Numbers 
Theorem:  
The Fibonacci sequence F0,F1, F2,…. Satisfies the recurrence relation 

  1 2 

0 1

       2

with initial condition  1
k k kF F F k

F F
    

 
 

Find the explicit formula for this sequence. 
Solution: 
The given Fibonacci sequence 

 1 2k k kF F F    

Let tk is solution to this, then characteristic equation 

 2 1 0t t    

1 2

1 1 4

2

1 5 1 5
,   

2 2

t

t t

 


 
 

 

For some real C and D Fibonacci sequence satisfies the relation 
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 

0 0

0

0

0

1 5 1 5
          0

2 2

      0

1 5 1 5
       

2 2

F

0  .......... 1      0

n n

nF C D n

n

F C D

C D

C D F

    
         

   


    
       

   
  

   

 

 

 

 

1

1

Now    1

1 5 1 5
     F  

2 2

1 5 1 5
1  ........... 2     1

2 2

n

C D

C D F



    
       

   

 
     

 

 

   

n

Solving 1  and 2  simultaneously we get

1 1
C ,

5 5
Hence

1 1 5 1 1 5
F

25 5 2 5

n n

D  

       
                

 

After simplifying we get 

n

1 1 5 1 1 5
F

2 25 5

n n
    

       
   

 

which is called the explicit formula for the Fibonacci sequence recurrence relation. 

n n
n

1 5 1 5
Let  and  then 

2 2

1 1
F     

5 5

    
         

   

   



 

Verification of the Explicit Formula 
Example: Compute F3. 

n n
n

1 1 1 5 1 5
Since F    where  and  then

2 25 5

    
             

   
  

3 3

3

1 1 5 1 1 5
F

2 25 5

    
       

   
 

2 2

3

1 1 3.1 . 5 3.1.5 5 5 1 1 3.1 . 5 3.1.5 5 5
Now, F

8 85 5

        
       

   
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   3

1 1
F 1 3.1. 5 3.1.5 5 5 1 3.1. 5 3.1.5 5 5

8. 5 8. 5
         

 3

3

1
F 1 3.1. 5 3.1.5 5 5 1 3.1. 5 3.1.5 5 5

8. 5
2F

       


 

Recursive Algorithm Computing Fibonacci Numbers 
Fibo-R(n)

if n=0

then 0
 Terminating conditions

if n=1

then 1

else Fibo-R(n 1)+Fibo-R(n 2) Recursive calls








 

 

Running Time of Recursive Fibonacci Algorithm 

Least Cost: To find an asymptotic bound of computational cost of this algorithm, we can use 
a simple trick to solve this recurrence containing big oh expressions 

Simply drop the big O from the recurrence, solve the recurrence, and put the O back. Our 
recurrence  

(1)                    if   2
( )       

( 1) ( 2)    n  2

O n
T n

T n T n


     

 

will be refined to  

1                    if   2
( )       

( 1) ( 2)    n  2

n
T n

T n T n


     

 

Guess that Fn+1 is the least cost to solve this recurrence. Why this guess? 

   n  0, T(n)  Fn+1  

 then F
n+1

 will be minimum cost for this recurrence  

We prove it by mathematical induction  

Base Case  

There are two base cases 

   For n = 0,  T(0) = 1 and F1 = 1,  hence T(0)  F1 

 For n = 1,  T(1) = 1 and F2 = 1,  hence T(1)  F2 
Inductive Hypothesis  

 Let us suppose that statement is true some k  1 

T(k)  Fk+1 , for k =0, 1, 2,. . .  and k  1 
Now we show that statement is true for k + 1 
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Now, T(k + 1) = T(k) + T(k -1)      By definition on T(n) 

 T(k + 1) = T(k) + T(k -1)  Fk+1 + Fk = Fk+2 Assumption 

 T(k + 1)  Fk+2  
Hence the statement is true for k + 1.  
We can now say with certainty that running time of this recursive Fibonacci algorithm 

is at least (Fn+1).  

 

Now we have proved that  

  T(n)  Fn+1 , n  0  ……….(1) 
We already proved in solution to recursive relation that 

n n
n

1 1 1 5 1 5
F     w   and    ..........(2)

2 25 5
here

    
             

   
  

It can be easily verified that F
n
   n/5  (3/2)n 

 From the equations (1) and (2), T(n)  Fn+1  Fn  (3/2)n 

 Hence we can conclude that running time of our recursive Fibonacci Algorithm is:  

  T(n) =  (3/2)n 
 

Golden Ratio 

W say that two quantities, x and y, (x < y), are in the golden ratio if the ratio between the 
sum, x + y, of these quantities and the larger one, y, is the same as the ratio between the 
larger one, y, and the smaller one x.  

1.62
x y y

y x


   

Mathematicians have studied the golden ratio because of its unique and interesting properties. 
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2

1 5
1.62

2
1 0.62,  

1

of course x  y and 

x y 1
 i.e. 

y 1 1

1 0

x

y

y

x


  

   



 

 
 

   

 

 

Drawback in Recursive Algorithms 

 

Generalization of Rabbits Problem 

Statement: 

Start with a pair of rabbits, one male and one female, born on January 1.  

Assume that all months are of equal length and that rabbits begin to produce two months after 
their own birth. After reaching age of two months, each pair produces two other mixed pairs, 
two male and two female, and then two other mixed pair each month, and no rabbit dies. 

 How many pairs of rabbits will there be after one year?  

Answer: Generalization of Fibonacci Sequence! 

  0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, . . . 

Construction of Mathematical Model 
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Total pairs at level k =  
 Total pairs at level k-1 + Total pairs born at level k       ………..(1) 
Since 
 Total pairs born at level k =  2 x Total pairs at level k-2      …………. (2) 
By (1) and (2), Total pairs at level k =  Total pairs at level k-1 + 2 x Total pairs at level k-2 
Now let us denote  
  Fk = Total pairs at level k  
Our recursive mathematical model:  
  Fk = Fk-1 + 2.Fk-2 
General Model (m pairs production): Fk = Fk-1 + m.Fk-2 

 

Generalization 
Recursive mathematical model for one pair production 
  Fk = Fk-1 + Fk-2 
Recursive mathematical model for two pairs production 
  Fk = Fk-1 + 2.Fk-2 
Recursive mathematical model for m pairs production 
  Fk = Fk-1 + m.Fk-2 
 
Computing Values using Mathematical Model 
 
Since  Fk = Fk-1 + 2.Fk-2  F0 = 0, F1 = 1 
F2 = F1 + 2.F0= 1 + 0 = 1 
F3 = F2 + 2.F1= 1 + 2 = 3 
F4 = F3 + 2.F2= 3 + 2 = 5 
F5 = F4 + 2.F3= 5 + 6 = 11 
F6 = F5 + 2.F4= 11 + 10 = 21 
F7 = F6 + 2.F5= 21 + 22 = 43 
F8 = F7 + 2.F6= 43 + 42 = 85 
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F9 = F8 + 2.F7= 85 + 86 = 171 
F10 = F9 + 2.F8= 171 + 170 = 341 
F11 = F10 + 2.F9= 341 + 342 = 683 
F12 = F11 + 2.F10= 683 + 682 = 1365 . . . 

Another Generalization of Rabbits Problem  

Statement: 
• Start with a different kind of pair of rabbits, one male and one female, born on 

January 1.  
• Assume all months are of equal length and that rabbits begin to produce three months 

after their own birth.  
• After reaching age of three months, each pair produces another mixed pairs, one male 

and other female, and then another mixed pair each month, and no rabbit dies. 

 How many pairs of rabbits will there be after one year?  

Answer: Generalization of Fibonacci Sequence!  

  0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, . . . 

Construction of Mathematical Model  

 
 

Total pairs at level k = Total pairs at level k-1 + Total pairs born at level k     ……….(1) 

Since 
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 Total pairs born at level k = Total pairs at level k-3      ……….(2) 
By (1) and (2) 

 Total pairs at level k =  Total pairs at level k-1 + Total pairs at level k-3 
Now let us denote  

  Fk= Total pairs at level k  
This time mathematical model: Fk = Fk-1 + Fk-3 

Computing Values using Mathematical Model  
Since  Fk = Fk-1 + Fk-3   F0 = 0, F1= F2= 1 
F3 = F2 + F0= 1 + 0 = 1   
F4 = F3 + F1= 1 + 1 = 2 
F5 = F4 + F2= 2 + 1 = 3 
F6 = F5 + F3= 3 + 1 = 4 
F7 = F6 + F4= 4 + 2 = 6 
F8 = F7 + F5= 6 + 3 = 9 
F9 = F8 + F6= 9 + 4 = 13 
F10 = F9 + F7= 13 + 6 = 19 
F11 = F10 + F8= 19 + 9 = 28 
F12 = F11 + F9= 28 + 13 = 41 . . . 
More Generalization 
Recursive mathematical model for one pair, production after three months 
  Fk = Fk-1 + Fk-3 
Recursive mathematical model for two pairs, production after three months 
  Fk = Fk-1 + 2.Fk-3 
Recursive mathematical model for m pairs, production after three months 
  Fk = Fk-1 + m.Fk-3 
Recursive mathematical model for m pairs, production after n months 
  Fk = Fk-1 + m.Fk-n 
 
Applications of Fibonacci Sequences 

Fibonacci sequences are used 

 in trend analysis 
 By some pseudorandom number generators 
 The number of petals is a Fibonacci number.  
 Many plants show the Fibonacci numbers in the arrangements of the leaves around 

the stems. 
 Seen in arrangement of seeds on flower heads  
 Consecutive Fibonacci numbers give worst case behavior when used as inputs in 

Euclid’s algorithm.  
 As n approaches infinity, the ratio F(n+1)/F(n) approaches the golden ratio: 

   =1.6180339887498948482... 

 The Greeks felt that rectangles whose sides are in the golden ratio are most pleasing 
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 The Fibonacci number F(n+1) gives the number of ways for 2 x 1 dominoes to cover a 
2 x n checkerboard.  

 Sum of the first n Fibonacci numbers is F(n+2)-1.  
 The shallow diagonals of Pascal’s triangle sum to Fibonacci numbers.  
 Except n = 4, if F(n) is prime, then n is prime.  
 Equivalently, if n not prime, then F(n) is not prime.  
 gcd( F(n), F(m) ) = F( gcd(n, m) )  
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Lecture	07	 Recurrence	Relations	
What is Recursion? 

 Some times problems are too difficult or too complex to solve because these are too 
big.  

 A problem can be broken down into sub-problems and find a way to solve these sub-
problems  

 Then build up to a solution to the entire problem. 

 This is the idea behind recursion 

 Recursive algorithms break down problem in pieces which you either already know 
the answer, or can be solved applying same algorithm to each piece 

 And finally combine the results of these sub-problems to find the final solution 

 More concisely, a recursive function or definition is defined in terms of itself. 

 Recursion is a computer algorithm that calls itself in a steps having a termination 
condition. 

 The successive repetitions are processed up to the critical step where the condition is 
met. 

 In recursive algorithms, each repetition is processed from the last one called to the 
first.  

 Recursion is a wonderful technique for dealing with many problems where problems 
and sub-problems have same mechanism to solve it. 

Merits and Demerits of Recursion 

 Recursive solutions are much easier to conceive of and code than their iterative 
counterparts. 

 Every problem is not solvable using this approach 

 What kinds of problems are solved with recursion?  

 Generally, problems which are defined in terms of themselves are usually good 
candidates for recursive techniques. 

Example 
Finding factorial of a number is an easiest example one can think using recursion 
Recursive Mathematical Model 
Since n! can be computed as: 5! = 5*4*3*2*1.  
If we have a close look at this, we notice that 
  5! = 5*4!.  
Now if denote F(n) = n! then it can be written as  
  F(n) = n.F(n-1) 
Assume 0! = 1 i.e. F(0) = 1, and solve till termination 
 F(n) = n.F(n-1) = n.(n-1).F(n-2) = n.(n-1).(n-2).F(n-3) 
      . . . 
  F(n) = n.(n-1).(n-2). . . 2.1.F(0) = n.(n-1).(n-2). . . 2.1.1 

1                    if 0
( )       

. ( 1)    otherwise

n
F n

n F n


  

 

Solving Recurrence 
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• The indispensable last step when analyzing an algorithm is often to solve a recurrence 
equation.  

• With little experience recurrence equation can be solved by intelligent guesswork.  
• However, there exist a powerful techniques that can be use to solve certain classes of 

recurrence almost automatically.  

First Order Linear Homogenous Recurrence Relations with Constant Coefficients 
(FOLHRRCC) 
Definition and Examples of FOLHRRCC 

1      1k k

Definition

a A a k   
 

where  is a real numbers and A 0A   

22.   k ka a  NO k 1b 5 kb   YES 

1 1   k k ka a a  NO 
k 1

1
c   

2 kk c   NO 

 
Solving First Order Recurrences 

Solve the recurrence k 1b . ka b   if b0 = c 

Solution 

 
 

1

2

2
3

0

b .

. .

. .

. .

.

k k

k k

k k

k k
k k k

k
k

a b

b a a b

b a a b

b a b a b

b a c















 




 

Now the explicit formula is c.ak  which is a geometric sequence. 
Hence first order recurrence is nothing but G.S. 
Example 

Solve the recurrence k 1b 5 kb   if b0 = 3 

Solution 

1

2
2 2

3
3 3

0

0 1 2 3 4 k

  5.

  5.(5. )  5 .  

  52.(5. )  5 .  

. . . 

  5 .   5 .   5 .3 

Now the solution sequence becomes

3.5 , 3.5 , 3.5 , 3.5 , 3.5 , . . , 3.5 , . . .

3, 15, 75, 375, 

k k

k k k

k k k

k k
k k k

b b

b b b

b b b

b k b b



 

 





 

 

  

. . .geometric sequence

 

Second Order Linear Homogenous Recurrence Relations with Constant Coefficients 
(SOLHRRCC) 
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1 2

:

       2k k k

Definition

a A a B a k      
 

where  and  are real numbers with 0A B B   

1 23 2   k k ka a a    

YES 
k 1 2 3b k k kb b b      

NO 
k 1 2

1 3
c   

2 7k kc c    

YES 
2

k 1 1 2d k k kd d d      

NO 
k 2e 2  ke   

YES 
k 1f 2 1 kf    

NO 

k 1 k-2g kg g   

YES 
k 1 2h ( 1) ( 1)k kh k h      

NO 
 

 
Theorem 

Let A and B are real numbers. A recurrence of the form 1 2k k ka Aa Ba    is satisfied by the 

sequence 21, , ,.... ,.... 0nt t t t  where  is a non-zero real no, if and only if  satisfies thet t

equation 2 0t At B    
Proof: 

Let us suppose that the sequence 21, , ,..., ,..., , 0nt t t where t   satisfies the recurrence relation 

1 2k k ka Aa Ba   . It means each form of sequence is equal to A times the previous form plus 

B times the form before it. 

Hence 1 2k k kt At Bt    
2since  0 0kt t     

Dividing both sides by 2kt  , we get 
2 0t At B    

Conversely suppose that 2 0t At B    
1 2k k kt At Bt     

Hence 2 31, , , ..., ...nt t t t  satisfies the above recurrence relation. 

Characteristic Equation 

Given a second order linear homogeneous recurrence relation with constant coefficients 

1 2        2k k ka A a B a k        

The characteristic equation of the relation is 2 0t At B    
Example: Using characteristic equation, find solution to a recurrence relation 

1 22        2k k ka a a k       

Find all sequences that satisfy relation and have the form 21, , ,..., ,..., 0nt t t t   

Solution: Above recurrence relation is satisfied by a sequence 21, , ,..., ,..., 0nt t t t 
2if and only if, 2 0t t    

  2 1 0     2, 1t t t        

Hence 
0 2 32 ,2,2 ,2 ,..., 2 ,...n   and        0 1 2 3

1 , 1 , 1 , 1 ,...     
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are both particular solutions for this recurrence relation 
Repeated Roots: 

Theorem: Let A and B be real numbers, and suppose that the characteristic equation 
2 0t At B    has a single root r, then the sequences 

2 2 31, , ,...,    and   0, , 2 ,3 ,..., ...n nr r r r r r nr  both satisfy the recurrence relation 

1 2k k ka Aa Ba    

Proof: 
2if 0t At B    has a single repeated root r, then 

 22

2 2 2

2

     

 2

2     and     

t At B t r

t At B t rt r

A r B r

   

     

   

 

We know that rn is a solution. Now we prove that n
nS nr is also a solution, i.e.  

nS  satisfies the recurrence relation 1 2k k ka Aa Ba    

1 2. .,     S k
k k ki e AS BS kr     

1 2

In fact we have to prove that 

. . . k
k kA S B S k r  

 

   1 2
1 2

1 2 2

Consider the left hand side 

  ( 1) ( 2)

                       2 ( 1) ( 2)

                       2( 1) ( 2)

                       (2 2 2)    

    

k k
k k

k k

k k

k

AS BS A k r B k r

r k r r k r

k r k r

k k r

 
 

 

      

       

    

   
k                    k.r    RHS,     hence proved 

 

Example 1: Single Root case 

Suppose sequence, b0, b1, b2,. . .  satisfies recurrence relation 

1 2

0 1

4 4      2

with initial condition:    b 1   and    3
k k kb b b k

b
    

 
 

then find the explicit formula for b0, b1, b2, . . . 

Solution: Characteristic equation is 2 4 4 0t t    

 2

n

2 0 2,is repeated root

2   and  .2    are sequences which satisfy the same 

recurrence relation, but do not satisfy the initial conditions

n

t t

n

   

 

n 

0 1

0

Suppose general solution: b .2 . .2  

which satisfies the original recurrence , C and D are constants

Since   1,    3

or 0,       0 2 1   1

n nC D n

b b

F n C D C

 

 

      
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1 1
1For 1,     2 1 2

3 2 1
 2 2 3 2 1 2 3  

2 2
1

Hence, 1 2 2 2 1
2 2

               1 2  is the required solution for repeated roots.
2

n n n
n

n

n b C D

C D D D

n
b n

n

     


         

        
 

   
 

 

Checking explicit formula: 

 bn = (1 + n/2).2n 
First term  b0 = (1 + 0/2).20 = 1.1 = 1 
Second term  b1 = (1 + 1/2).21  = 3/2.2 = 3 
Third term  b2 = (1 + 2/2).22  = 2.4 = 8 
Fourth term  b3 = (1 + 3/2).23  = 5/2.8 = 20, and so on 
Theorem (Linear Combination is also a Solution) 

If 0 1 2, , ,...r r r  and 0 1 2, , ,...s s s  are sequences that satisfy the some second order linear 

homogeneous recurrence relation with constant coefficients, and if C and D are any numbers 

then the sequence 0 1 2, , ,...a a a  defined by the formula         0n n na Cr Ds n     also 

satisfies the same recurrence relation.  

Proof: 

Since 0 1 2, , ,...r r r  and 0 1 2, , ,...s s s  satisfy the same second order LHRRWCC 

    and  constants real numbers such thatA B   

1 2k k kr Ar Br    and 1 2k k ks As Bs    

If           0n n na Cr Ds n     

Then we have to prove that 1 2k k ka Aa Ba    

Consider R.H.S. 

   
   
 

1 2 1 1 2 2

1 2 1 2

1 2

( )  

  

k k k k k k

k k k k

k k k

k k k

Aa Ba A C r D s B Cr Ds

C Ar Br D As Bs

C r D s a

a Aa Ba

     

   

 

      

   

  

  

 

It proves that n n na Cr Ds   satisfies same recurrence. 

Example 1: Find a sequence that satisfies the recurrence relation 

1 22        2k k ka a a k       and that also satisfies the initial condition 0 11  and   8a a   

Solution: The characteristic equation of the relation 1 22        2k k ka a a k       is  

  2 2 0     2 1 0t t t t        

1, 2t    
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0 1 22 , 2 , 2 ,...nr    and       0 1 2
1 , 1 , 1 ,...ns      

Are both sequences which satisfy above relation but neither one is having 0 11  and   8a a   

Now since   n n na Cr Ds   also satisfies the same recurrence relation and 

For n  0 we get o o oa Cr Ds    1       (1)C D    

1 1 1For n  1 we get a Cr Ds   8 2       (2)C D    

Solving equation (1) and (2) we get, 3  D  2C and    

Now   n n na Cr Ds     3 2 2 1  
n n

na      

is the required sequence which satisfies the given conditions  

K order: General Homogenous Recurrence  
 
We extend technique of recurrence equation with resolution of homogeneous linear 
recurrence with constant coefficient that is recurrence of the form 

0 1 1 ... 0 (1)n n k n ka t a t a t      

where ti are value we are looking for 
In equation (1), values of t

i
 such that (1 < i < k) are need to determine a sequence. 

Equation 1 typically has infinite many solutions, because linear combination is also a 
solution. 
 

k = 1: General Homogenous Recurrence 

0 1 1 ... 0 (1)n n k n ka t a t a t      

If we put k = 1, then above equation becomes  

 
0 1 1

1 0 1

0

/
n n

n n

a t a t

t a a t




 

 
 

The resultant equation becomes a recurrence relation which is first order, linear, 
homogenous, with constant coefficients. 

k = 2: General Homogenous Recurrence 

0 1 1 ... 0 (1)n n k n ka t a t a t      

If we put k = 2, then above equation becomes 

   
0 1 1 2 2

1 0 1 2 0 2 1 1 0 2

0

/ /
n n n

n n n n n

a t a t a t

t a a t a a t c t c t
 

   

  

    
 

This time we have a recurrence relation which is second order, linear, homogenous, with 
constant coefficients. 
k = 3: General Homogenous Recurrence 

0 1 1 ... 0 (1)n n k n ka t a t a t      

If we put k = 3, then above equation becomes 
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     
0 1 1 2 2 3 3

1 0 1 2 0 2 3 0 3 1 1 0 2

0

/ / /
n n n n

n n n n n n

a t a t a t a t

t a a t a a t a a t c t c t
  

    

   

     
 

This is a recurrence relation which is third order, linear, homogenous, with constant 
coefficients. 
Similarly we can have fourth order and higher order recurrence relations. 
Characteristics of General Recurrence  

0 1 1 ... 0 (1)n n k n ka t a t a t      

The recurrence is: 

 Linear because it does not contain terms of the form tn-i .tn-j ,t2
n-i and so on. 

 Homogeneous because the linear combination of the tn-i equal to zero 

 This is kth order because current term is linear combination of previous k number of 
terms  

 Constant coefficients because all ai are constants 

Example: 

 Consider Fibonacci sequence:  fn = fn-1 + fn-2 
This recurrence fits Eq. (1) after obvious rewriting. 
  fn - fn-1 - fn-2 = 0 
Observation of Homogenous Recurrence 

  fn - fn-1 - fn-2 = 0 
The Fibonacci sequence corresponds to a second homogeneous linear recurrence relation 
with constant coefficient, where 
  k = 2,  a0 =1,  a1 = -1 , a2 = -1 
Before we even start to look for solutions to Equation 1, it would be interesting to note that 
any linear combination of solutions is itself a solution. 
Theorem: 

Statement: Prove that any linear combination of solutions of equation given below is also a 
solution. 

 0 1 1 ... 0n n k n ka t a t a t      

Proof: Assume that fn and gn are solutions of above equation and hence satisfy it, i.e. 

0 0

0 and 0
k k

i n i i n i
i i

a f a g 
 

    

If we set tn = c.fn + d.gn for arbitrary constants c and d, we have to prove that tn is also 
solution, i.e., 0 1 1 ... 0n n k n ka t a t a t      
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0 1 -1 -

0 -1 -1 - -

0 1 -1 - 0 1 -1 -

0 1 1

...    

 ( ) 1( + ) . . . ( ) 

(     . . .   ) (  . . . ) 

 .0  .0  0

Hence ... 0

n n k n k

n n n n k n k n k

n n k n k n n k n k

n n k n k

a t a t a t

a cf dg a cf dg a cf dg

c a f a f a f d a g a g a g

c d

a t a t a t 

   
     
       

  
   

 

Note: It is to be noted that this rule can be generalized to linear combinations of any number 
of solutions. 
 

More Generalized Results: 

If fn, gn and hn are solutions to recurrence below then their linear combination is also a 

solution of 0 1 1 ... 0n n k n ka t a t a t      

Proof: 
As fn, gn and hn are solutions of above, hence 

0 0 0

0,   0,  and 0
k k k

i n i i n i i n i
i i i

a f a g a h  
  

      

Let tn = c.fn + d.gn + e.hn for arbitrary constants c, d and e, now we prove that tn is also 

solution, i.e. 0 1 1 ... 0n n k n ka t a t a t      (easy to prove) 
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Lecture	08	 Recurrence	Relations	
Solution to Generalized Recurrence with Distinct Roots 

Statement: 

Find the general solution of the kth order recurrence given below assuming that all roots are 
distinct 
  a0 tn  + a1 tn-1 + …..+ak tn-k  = 0   
Solution: Let Tn = xn, x is a constant as yet unknown.  
If we assume that Tn is a solution of equation 
  a0 tn  + a1 tn-1 + …..+ak tn-k  = 0  
 Then,  a0xn + a1xn-1 +…….+ akxn-k =  0 
Equation satisfied if x = 0, trivial solution, no interest.  
Otherwise, the equation is satisfied if and only if  
  a0 + a1x1 +…….+ akxk =  0 
This equation of degree k in x is called the characteristic equation of above recurrence and   
  P(x) = a0 + a1x1 +…….+ akxk  
 is called its characteristic polynomial 
Fundamental theorem of algebra states that polynomial P(x) of degree k has k roots, not 
necessarily distinct 
It means that it can be factorized  as a product of k terms 
  P(x) = (x-r1) (x-r2) (x-r3). . .(x-rk) 
 where ri may be complex numbers.  
Moreover, these ri are only solutions of equation P(x) = 0 
Consider any root ri of the characteristic polynomial 

P(x) = a0 + a1x1 +…….+ akxk 
1

( )
k

i
i

x r


   

Since, p(r1) = 0, p(r2) = 0, p(r3) = 0, . . ., p(rk) = 0 

Hence all x = ri , for i  {1, 2, . . .,k} are solutions to above characteristic polynomial.  
Therefore, r1

n, r2
n, . . ., rk

n are solution to our original recurrence relation. 
Since linear combination of solutions is also a solution to recurrence, therefore below is a 
solution. 

1

( )
k

n
i i

i

T n c r


   

where, c1, c2, . . ., ck are all constants to be determined finding particular solution 
The remarkable fact is that this equation has only solutions of this form provided all ri are 
distinct. 
Constants can be determined from k initial conditions by solving system of k linear equations 
in k unknowns 

Problem: 

Consider the recurrence 

 tn = n      if n = 0, 1, 2 
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 tn  = 7.tn-2
 
 +  6.tn-3

  
     otherwise 

Find the general solution of the recurrence above. 

Solution: First we rewrite the recurrence. 

 tn  = 7.tn-2
 
 +  6.tn-3

  
      

The characteristic equation becomes  x3 – 7x - 6 =  (x + 1) (x + 2)(x - 3) 
The roots are: r1 = -1, r2 = - 2 and r3 = + 3  

 tn = c1 (-1)n  + c2 (-2)n +  c3 (3)n 

The initial conditions give  

 c1 + c2  + c3 = 0           for n = 0 

       - c1 - 2c2  + 3c3 = 1      for n = 1 

        c1 + 4c2  + 9c3  = 2     for n = 2 

 Solving these equations, we obtain  

  c1 = -1/4, c2 = 0 and c3 = 1/4 

Therefore, tn = (-1/4)(-1)n  + (1/4).(3)n 

 
Solution to Generalized Recurrence with One Repeated Root 

Statement:  

 If the characteristic polynomial    
  P(x) = a0 + a1x1 +…….+ akxk 

 then conclude that if r is a double root then tn
 
= rn

 
and tn

 
= n rn are both solutions to 

recurrence.  

Solution:  
It can be found as in case of second order linear homogenous recurrence relation. 
Since r is a multiple root. By definition of multiple roots, there exists a polynomial q(x) of 
degree k-2 such that the following holds 

 p(x) = (x –r)2q(x), for every n  k  

 Consider the kth degree polynomials 

 un (x) = a0 xn + a1 xn-1 + . . . + ak xn-k
 

  and 

 vn (x) = a0
 
n xn + a1 (n-1)xn-1 + . . . + ak (n-k)xn-k  

It is to be noted that vn(x) = x.un’ (x), where  un’
 

(x) denotes the derivative of  un (x) with respect 
to x .  
But un (x) can be written as 

 un (x)  =  xn-k p(x) = xn-k
  

(x-r)2q(x) = (x-r)2(xn-k q(x)) 
Using rule for computing the derivative of a product of functions, we obtain that derivative of 
un(x) with respect to x is given by 

un’(x)  =  2 (x-r) xn-k
   

q(x) +(x-r)2(xn-k q(x))’  

 therefore un’(r)  =  
 
0, which implies that  vn (r)  = r .  un’ (r) = 0   for all n  k.  

It means: a0 n rn  +  a1
 
(n-1) rn-1

 

+. . .+ ak (n-k) rn-k = 0 
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Hence, tn
 
= n rn is also solution to the recurrence. 

Now we conclude that if r is a double root then tn
 
= rn

 
and tn

 
= n rn are both solutions to the 

recurrence.  
Rest of k-2 are all distinct roots hence general solution 

1 2 1 1 2 2 2 2...n n n n n
n k kt c r c nr b r b r b r        

 where c1, c2, b1, b2,. . ., and bk-2 are all real constants 
Higher Order Homogenous Recurrence with k-multiplicity of a Root 

 Now if we have to solve recurrence order k, then to solve polynomial, degree k, given 
below is sufficient 
Statement:  
 If the characteristic polynomial    
  P(x) = a0 + a1x1 +…….+ akxk  

 has r as double root then it can be written as 
    p(x) = (x –r)2q(x), for every n ≥ k  
   and solutions are: rn and nrn  

 has r as triple root then it can be written as 
    p(x) = (x –r)3q1(x), for every n ≥ k  
   and solutions are: rn, nrn and n2rn 

 r has multiplicity k then it can be written as 
    p(x) = (x –r)k, for every n ≥ k  
   and solutions are: rn, n.rn, n2.rn,. . ., nk-1.rn  
 then general solution is 

1
1 2 ...n n k n

n kt c r c nr c n r     

1

1

k
j n

n j
j

t c n r



  

 where b1, b2,. . ., bk are all real constants 

 
Multiplicity of Roots: More General Result 

If there are I roots, r1, r2, . . ., rl with multiplicities m1, m2, . . ., mI respectively, of the 
polynomial: 
   P(x) = a0 + a1x1 +. . .+ akxk   such that m1 + m2 + . . .+ mI = k 
 then the general solution to the recurrence is 

1

1

2

2

12
11 1 12 1 13 1 1 1

12
21 2 22 2 23 2 2 2

12
1 2 3

...

       ...

                   . . .

       ... l

l

mn n n n
n m

mn n n n
m

mn n n n
l l l l l l lm l

t c r c nr c n r c n r

c r c nr c n r c n r

c r c nr c n r c n r







     

    

   

 

1 2
1 1 1

1 1 2 2
1 1 1

...
lmm m

j n j n j n
n j j lj l

j j j

t c n r c n r c n r  

  

       
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1

1 1

iml
j n

n ij i
i j

t c n r

 

   where all ci, j are constants 

Problem: 

Statement: Consider the recurrence 
 tn = n        if n = 0, 1, 2 
 tn  = 5tn-1  - 8tn-2  +  4tn-3      otherwise 
Find general solution of the recurrence above. 
Solution: First we rewrite the recurrence. 
 tn  - 5tn-1  + 8tn-2  -  4tn-3   = 0 
The characteristic equation become. 
  x3 – 5x2 + 8x -4 =  (x-1) (x-2)2 
The roots are: r1 = 1 of multiplicity m1 = 1 and r2 = 2 of multiplicity m2 = 2, and hence the 
general solution is   tn = c1 1n  + c2 2n + c3 n 2n 
The initial conditions give  
 c1 + c2 = 0          for n = 0 
           c1 + 2c2  +   2c3 = 1     for n = 1 
           c1 + 4c2  + 8c3  = 2    for n = 2 
 Solving these equations, we obtain  
  c1 = -2, c2 = 2 and c3 = -1/2 
 Therefore, 
  tn = c1 1n  + c2 2n + c3 n 2n 
        = -2 + 2.2n – ½.n.2n  = 2n+1 – n.2n-1 - 2 
Non-homogeneous Recurrence of Higher Order 

Solution of a linear recurrence with constant coefficients becomes more difficult when the 
recurrence is not homogeneous 
That is when linear combination is not equal to zero 
In particular, it is no longer true that any linear combination of solutions is a solution.  
Consider the following recurrence 
  a0 tn + a1 tn-1 + . . .+ ak tn-k  = bn p(n) 
The left-hand side is the same as before, but on the right-hand side we have bnp(n) where b is 
a constant and p(n) is a polynomial in n of degree d. 
Generalization: Non-homogeneous Recurrences 

If a recurrence is of the form 0 1 1 1 1. . . ( )n
n n k n ka t a t a t b p n      

Then the characteristics polynomial is 1 1
0 1 1( . . . )( )k k d

ka x a x a x b      

which contains one factor for the left hand side 
And other factor corresponding to the right hand side, where d is degree of polynomial   
Characteristics polynomial can be used to solve the above recurrence 
Problem 1: 

Consider the recurrence below. Find its solution 
   tn – 2tn-1 = 3n 
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Solution: 
   Compare the above recurrence with 
  a0 tn + a1 tn-1 + . . .+ ak tn-k  = bn p(n)  
Here: b = 3, p(n) = 1, a polynomial of degree 0. 
Reducing to homogeneous case, we are given  
  tn – 2tn-1 = 3n    (1)  
 Replace n by n - 1 and multiply by 3, we obtain 

tn-1 – 2tn-2  = 3n-1           
3tn-1 – 6tn-2 = 3n       (2) 

From (1) and (2) 
 tn – 2tn-1             = 3n   (1) 

     + 3tn-1 – 6tn-2 = 3n     (2) 
 Subtracting 2 from equation 1, we get  
    tn - 5tn-1 + 6tn-2 = 0 

The characteristic equation is  x2 - 5x + 6 = 0  
Roots of this equation are: x = 2 and x = 3 
And therefore general solution is tn  = c1 2n  + c2 3n   
It is not always true that an arbitrary choice of c1 and c2 produces a solution to the recurrence 
even when initial conditions are not taken into account.  
Note:  
 It is to be noted that solutions 
  tn = 2n and  
  tn = 3n   
 which are solutions to reduced recurrence, are not solution to original one. 
 What is the reason? 
Problem 2: 

 Find general solution of the following recurrence. 
  tn   - 2tn-1 = (n + 5) 3n   ; n ≥  1 
Solution:  
 The manipulation needed to transform this into a homogeneous recurrence is slightly 
more complicated than with first example.  
 tn   - 2tn-1 = (n + 5) 3n   ; n ≥  1  (1) 
 replace n by n-1, n-2, we get 
 tn-1   - 2tn-2 = (n + 4) 3n-1  ;  n ≥  2  (2) 
 tn-2   - 2tn-3 = (n + 3) 3n-2   ; n ≥  3  (3) 
Above equations can be written as 
 tn   - 2tn-1 = 9(n + 5) 3n-2  ;  n ≥  1  (4) 
 tn-1   - 2tn-2 = 3(n + 4) 3n-2   ; n ≥  2  (5) 
 tn-2   - 2tn-3 = (n + 3) 3n-2  ;  n ≥  3  (6) 
Our objective is to eliminate the right hand side of the above equations to make it 
homogenous. 
Multiply (5) by -6, and (6) by 9 we get 
      tn   - 2tn-1     =  9(n + 5) 3n-2 
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      - 6tn-1 + 12tn-2              = -18(n + 4) 3n-2 
       + 9tn-2   - 18tn-3 =  9(n + 3) 3n-2 
After simplification, the above equations can be written as 
 tn   - 2tn-1    = (9n + 45) 3n-2 
      - 6tn-1 + 12tn-2  = (-18n – 72) 3n-2 
    + 9tn-2 - 18tn-3  = (9n + 27) 3n-2 
Adding these equation, we get homogenous equation, which can be solved easily 
 tn   - 8tn-1 +  21tn-2  - 18tn-3 = 0 
 The characteristics equation of the above homogenous equation is:  
  x3 – 8x2 +21x -18 = 0 
     ( x-2) (x-3)2 = 0  
 and hence, x = 2, 3, 3 
General solution is:  tn  = c1 2n  + c2 3n  + c3  n 3n  
For n = 0, 1, 2 
 We can find values of c1, c2, c3 and then 
  tn  = (t0 - 9) 2n  + (n + 3)3n+1 
Problem 3: Tower of Hanoi 

 Tower of Hanoi is a mathematical game or puzzle. It consists of three towers, a 
number of disks of different sizes which can slide onto any tower. The puzzle starts 
with disks stacked in order of size on one tower, smallest at top, making a conical 
shape. 

 Objective is to move entire stack to another tower, obeying following rules: 
 Only one disk may be moved at a time.  
 Each move consists of taking upper disk from one of towers and sliding it onto 

another tower 
 You can put on top of other disks already present  
 No disk may be placed on top of a smaller disk. 
 If a recurrence is of the form 0 1 1 1 1 2 2. . . ( ) ( ) ...n n

n n k n ka t a t a t b p n b p n        

 Then the characteristics polynomial is 
1 21 11

0 1 1 2( . . . )( )( )...,d dk k
ka x a x a x b x b       

 Which contains one factor for the left hand side 
 And other factor corresponding to the each term on right hand side.  
 Once the characteristics polynomial is obtained the recurrence can be solved as 

before. 
Problem 4 : Non-homogeneous Recurrences 

Consider  the recurrence  
  tn = 2tn-1  + n + 2n     otherwise 
Solution: Compare the recurrence: tn - 2tn-1  =  n + 2n   with  

0 1 1 1 1 2 2. . . ( ) ( ) ...n n
n n k n ka t a t a t b p n b p n        

Here, b1 = 1,  p1(n) = n, b2 = 2, and p2(n) = 1.  
Degree of p1(n) = d1 = 1,  
Degree of p2(n) = d2 = 0. 
The characteristic polynomial:  (x-2) (x-1)2 (x-2) 
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The roots are, x = 1, 2, both of multiplicity 2.  
All solutions of recurrence therefore have form 
 tn = c1 1n  + c2  n1n +  c3 2n + c4 n 2n 
  n + 2n  = (2c2  - c1 ) – c2 n + c4 2n   
For n = 0, 1, 2, 3 c1, c2, c3 and c4 can be solved and hence solution is  
  tn= n.2n +2n+1 – n -2 
Conclusion: 

 Recursive relations are important because used in divide and conquer, dynamic 
programming and in many other e.g. optimization problems 

 Analysis of such algorithms is required to compute complexity   
 Recursive algorithms may not follow homogenous behavior, it means there must be 

some cost in addition to recursive cost 
 Solution to homogenous recursive relations is comparatively easy, but not so easy in 

case of non-homogenous recursive relations 
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Lecture	09	 Further	Techniques	Solving	Recurrence	Relations	
Assumption in Solving Recurrence Relation 

 Neglect certain technical details solve recurrences 

 Assume integer arguments to functions because running time T (n) is always defined 
when n is an integer 

 Consequently, for convenience, we shall omit statements of boundary conditions of 
recurrences and assume that T (n) is constant for small n  

 Recurrence for worst-case time of MERGE-SORT 

(1)                    if 1

( )       
( )    otherwise

2 2

n

T n n n
T T n

 
             

 

Assumption in Solving Recurrence Relation 

 We do not give any explicit value for small n 

 Because changing n, T (1) changes solution to recurrence. Solution typically 
doesn’t change by more than a constant factor, so order of growth is unchanged 

 Solve recurrences; often omit floors, ceilings, etc.  

 First analyze without these details and later determine whether such assumptions 
matter or not.  

 Usually it does not matter but it is important to know when it does and when it 
does not 

(1)                    if 1
( )       

2. ( ) ( )    otherwise
2

n
T n n

T n

 
 



 

Methods Solving Recurrence Relation 

The Substitution Method 

• Substitution method has two steps 
• Guess the form of the solution 
• Use mathematical induction to find constants and show that the solution does 

work 
• The name Substitution comes from the substitution of guessed answer for the function 

when the inductive hypothesis is applied to smaller values.  
• Method is powerful, but it can be applied only in cases when it is easy to guess the 

form of answer 
• The substitution method can be used to establish either upper or lower bounds on a 

recurrence. 
Some Important Rules used in this Section 

Prove that log log loga b ab c c   
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Proof: Let us suppose that logb
a s and logc

b t  

       and    s ta b b c    

   ,tNow b c   ( )s ta c  

,sta c  logc
a s t   

log ,c
as t    log log log    provedb c c

a b a   

Prove that 
3

4 4log log3
n

n  

Proof:  
3

4 4log log3
n

n  

 
3

4 4log log
3 3   log (3 ) log ( )

n

n   

 3 3
4 3 4 3   log log log logn n     

 3
4 4 3   log log logn n    

 4 4   log logn n   

The Substitution Method 

Solve the recurrence relation given below. 

1                    if 1
( )       

3 ( )     otherwise
4

n
T n n

T n


 
 

 

Solution: (1)   ( ) 3 ( )
4

n
T n T n    

replace the value of  by n 4  in (1)n  

2
(2)   ( ) 3 ( )

4 4 4

n n n
T T    

2 3 2
(3)   ( ) 3 ( )

4 4 4

n n n
T T    and so on 

1 1
(4)   ( ) 3 ( )

4 4 4k k k

n n n
T T

 
    

Now substitute the value of ( ) from (2) to (1)
4

n
T  

2

2
2

(5)   ( ) 3 3 ( )
4 4

3
               3 ( ) ( )

4 4

n n
T n T n

n
T n n

     

    

 

2
substitute the value of ( ) from (3) to (5) equation, we have

4

n
T  

2
3 2

3
( ) 3 3 ( ) ( )

4 4 4

n n
T n T n n

       
 

After continuing this process  

1 2 03 3 3 3
( ) 3 ( ) ( ) ( ) ( ) ( )

4 4 4 4 4
k k k

k

n
T n T n n n             
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Let us suppose that  can be expressed as 4kn n   

2 13 3 3
( ) 3 ( ) 1 ( ) ( ) .... ( )

4 4 4
k kn

T n T n
n

         
 

2 1

3
1 ( ) 14( ) 3 (1) 1 ( )       1 ... 1 ( )

3 11
4

k
k

k k x
T n T n x x x

x


   
            

 

  

3
( ) 3 1 4 (1 )          (1) 1

4

k
k

k
T n n T      

3 3
( ) 3 4 (1 ) 3 4 (1 )

4

k k
k k

k
T n n n

n
         

3
3 4 ( )

k
k n

n
n


   

3 4( 3 )k kn   1 3 4 4 3k kn      

4 3 3kn    4log4 3 3
n

n     44 ,       logk nn k   

4log( ) 4 3 3
n

T n n    
3
4log( ) 4 3T n n n    

( ) 4 3     0 1T n n n       

 ( ) 4 3T n n n     

   ( ) ( )Hence T n n   3
4  loglet    

A Hard Example 

1          if  1
( )        

( )    otherwise

n
T n n

aT n
b


 



where    0 a b   

Solution: 

( ) ( )
n

T n aT n
b

 
2

( )
n n

a a T a n
b b

       

2
2

( ) ( )
n a

a T n n
b b

    2
3 2

( ) ( )
n n a

a aT n n
b b b

      
 

3 2
3

( ) ( ) ( )
n a a

a T n n n
b b b

     

Continuing this process, we get 

1 2 1( ) ( ) ( ) ( ) .... ( )k k k
k

n a a a
T n a T n n n n

b b b b
        

2 1( ) 1 ( ) ( ) .... ( )k k
k

n a a a
a T n

b b b b
        

 

Let us suppose that, kn b  
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1( ) (1) 1 ( ) .... ( )k ka a
T n a T n

b b
        

 

1 ( )
(1)

1

k

k

a

ba T n
a

b

  
   

 
 

(1) ( )(1 )
k

k
k

b a
a T n

b a b
   


 

1 ( )( )
k k

k
k

b b a
a n

b a b


  


 

( )( )
k k

k b b a
a n

b a n


 


  kn b  

( )( )k k kb
a b a

b a
  


 

k k kb b
a b a

b a b a
    

 
 

( )k kb b a b
b a

b a b a

 
  

 
 

log( ) ( )
n
bkb a

T n b a
b a b a

   
 

 

loga
bkb a

b n
b a b a

   
 

  let    loga
b   

log 1a
ba b    0 1    

( )
b a

T n n n
b a b a

    
 

( ) ( )T n n   

More Hard Example using Substitution Method 

Solve the recurrence relation given below. 

2

1                    if 1
( )       

3 ( )     otherwise
4

n
T n n

T cn


 
 

 

Solution:  

2(1)   ( ) 3 ( )
4

n
T n T cn    

2
2

(2)   ( ) 3 ( ) ( )
4 4 4

n n n
T T c    

2
2 3 2

(3)   ( ) 3 ( ) ( )
4 4 4

n n n
T T c    

2
3 4 3

(4)   ( ) 3 ( ) ( )
4 4 4

n n n
T T c    

and so on 
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2
1 1

(5)   ( ) 3 ( ) ( )
4 4 4k k k

n n n
T T c     

Now substitute the value of ( ) from (2) to (1)
4

n
T  

2 2
2

2 2 2
2

 (6)     ( ) 3 3 ( ) ( )
4 4

                   3 ( ) 3 ( )
4 4

n n
T n T c cn

n n
T c cn

     

  

 

2
substitute the value of ( ) from (3) to (6), we have

4

n
T  

2 2 2 2
3 2

( ) 3 3 ( ) ( ) 3 ( )
4 4 4

n n n
T n T c c cn

       
 

3 2 2 2 2
3 2

3 ( ) 3 ( ) 3 ( )
4 4 4

n n n
T c c cn      

3 2 2 1 2 2
3 2 2

3 3
3 ( ) ( ) ( )

4 4 4

n
T cn cn cn     

After continuing this process, we get  

1 2 0 2
2 2 2

3 3 3
( ) 3 ( ) ( ) ( ) ( )

4 4 4 4
k k k

k

n
T n T cn           

 

Let us suppose that  can be expressed as 4kn n   

2 2 13 3 3
( ) 3 (1) 1 ( ) ( )

16 16 16
k kT n T cn            

 

2

3
1 ( )

16( ) 3 1 ( )       
3

1
16

k

kT n cn

  
    

 
 

 

2 16 3
3 (1 )     

13 16

k
k

k
cn     

since   4k n 2 2(4 )k n   
2 2(4 )k n   216k n   

2 16 3
( ) 3 (1 )

13 16

k
k

k
T n cn     

2
2

2

16 3
3 ( )

13

k
k n

cn
n


   216

3 ( 3 )
13

k kc n     216 16
(1 )3

13 13
kc n c     

2 log
4

16 16
( ) (1 )3

13 13
nT n cn c    

2 log 3
4

16 16
(1 )

13 13
cn c n    

3
4let    log    where    0 1   
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216 16
( ) (1 )

13 13
T n cn c n    

2Hence    ( ) ( )T n n  

Observations: 

1                    if 1
( )       

( )     otherwisek

n
T n n

a T cn
b


 

 

 

logk a
ben fn    1suppose kb a  

 
1log kk b

ben fn   

 1 1.log. .k kk b k
ben f n en f n     

 1max( , )( )k kn   

Recursion Tree Method 

• Although substitution method can provide a sufficient proof that a solution to a 
recurrence is correct, sometimes difficult to give a good guess. 

• Drawing out a recursion tree, is a straight forward way to devise a good guess.  
• In recursion tree, nodes represent costs of a sub-problems in the set of recursive 

function invocations.  
• We sum costs within each level of the tree to obtain a set of per-level costs. 
• And then we sum all per-level costs to determine the total cost of all levels of the 

recursion.  
• Recursion trees are particularly useful when recurrence describes running time of 

divide and conquer algos. 
• Recursion tree is best one used to generate a good guess, which is then verified by 

substitution method 
• When using a recursion tree to generate a good guess, we can often tolerate a small 

amount of sloppiness since we have to verify it later on. 
• If we are careful when drawing out a recursion tree and summing costs, then we can 

use a recursion tree as a direct proof of a solution to any recurrence of any problem. 
• Here, we will use recursion trees directly to prove theorem that forms the basis of the 

master method. 
 

Example: 

Solve the following recurrence using recurrence tree method. 

2

(1) 1
( )

3. ( ) ( )
4

if n
T n n

T n if otherwise

  




 

Solution: 

The above recurrence can be written in the form 
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2

  1     1
( )

  3. ( )
4

if n
T n n

T cn if otherwise

  




 

Assumption: We assume that n is exact power of 4. 
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Now the total computation cost would be = Cost of Childs + Cost of tree excluding childes 
= Cost of Child x total number of Childs + Cost of all levels excluding childes level  
= total number of Childs + sum of costs at each level excluding childes level. 

4log( ) 3   cost at Levels above child level
n

T n    

4
3log 0 1 1 2

2 2 2

3 3 3
( ) ( ) ( ) ( ) ( )

4 4 4
kT n n cn            

 

Now total computational cost can be calculated as 
4

3log 0 1 1 2
2 2 2

3 3 3
( ) ( ) ( ) ( ) ( )

4 4 4
kT n n cn            

 

where 44 logk n k n    

4
3log 0 1 2

2 2

3 3
( ) ( ) ( ) ( )

4 4
T n n cn

          
 

4 4
3 3log log2 21 16

( ) ( ) ( ) ( )
3 131 ( )

16

T n n cn n cn     


 

Hence 2( ) ( )T n n   

Master Theorem 

Lemma 1: 

Let a  1, b > 1 be constants, f(n) a non-negative function defined on exact power of b by 
recurrence 
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(1) 1
( )

. ( ) ( ) i

if n
T n n

a T f n if n b
b

  
 



 

where i is a positive integer. Then 
log 1

log

0

( ) ( ) . ( )
n

b

b a j
j

j

n
T n n a f

b





     

Lemma 2: 

Let a  1, b > 1 be constants, let f(n) be a non-negative function defined on exact power of b. 
A function g(n) defined over exact powers of b by 

log 1

0

( ) . ( )
n

b
j

j
j

n
g n a f

b





   

can be bounded asymptotically for exact powers of b as 

1. If log log( ) ( ), for some constants  0, then ( ) ( )
a a

b bf n n g n n





      

2. If log log( ) ( ),  then ( ) ( .lg  n)
a a

b bf n n g n n     

3. If a.f(n/b) ≤ c.f(n), for some constant c < 1 and for all n  b, then g(n) = (f(n)) 
Proof: 

Case 1: log( ) ( )
a

bf n n


   

Which implies that log( ) (( ) )
a

b

j j

n n
f

b b



    (1) 

We are given that: 
log 1

0

( ) . ( )
n

b
j

j
j

n
g n a f

b





    (2) 

Substituting value from Equation (1) in Equation (2) 
log 1

log

0

( ) ( .( ) )
n

b a
bj

j
j

n
g n a

b






    

Consider 
log 1

log

0

.( )
n

b a
bj

j
j

n
a

b





 log

log 1
log

0

.
. ( )

n
ba

b
a

b

j

j

a b
n

b









   

Assume that 
log a

b

a
x

b
  

taking log on both sides 
log

log ( ) loga
b

b b

a
x

b
  

log

log log log
a

b
a b

b b b x   log log .log loga a b
b b b b x   

log log log 0 log 1a a
b b b bx x x       

log 1
log

0

.( )
n

b a
bj

j
j

n
a

b





 log

log 1
log

0

.
. ( )

n
ba

b
a

b

j

j

a b
n

b









 
log 1

log

0

. ( )
n

ba
b j

j

n b
 





   

log log 10 1.(( ) ( ) ... ( ) )
a n

b bn b b b
         
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It is a geometric series with first term 1, common ratio b  and number of terms as logbn. 
Hence g(n), 

log .log
log log( ) 1 1

( ) ( )
1 1

n
b b

a a
b b

nb b
n n

b b

 


 

  
 

 

.log
log 1

( )
1

b
a

b

bn
n

b






 



 

log log log log1
( ) . . ( )

1

a a a a
b b b b

n
n c n c n n

b

 




 
    


 Hence proved 

Case 2: log( ) ( )
a

bf n n   

Which implies that log( ) (( ) )
a

b

j j

n n
f

b b
    (3) 

We are given that 
log 1

0

( ) . ( )
n

b
j

j
j

n
g n a f

b





    (4) 

Substituting value from Equation (3) in Equation (4) 
log 1

log

0

( ) ( .( ) )
n

b a
bj

j
j

n
g n a

b





    

log 1
log

0

( ) ( .( ) )
n

b a
bj

j
j

n
g n a

b





   log

log 1
log

0

( . ( ) )
n

ba
b

a
b

j

j

a
n

b





    

We have already proved that 
log

1a
b

a

b
  

log 1
log

0

( ) ( . 1)
n

ba
b

j

g n n




   log

log  number of terms

( . (1 1 ... 1 )
a

b

n
b

n   


 

log( .log )
a

b n
bn   case is proved 

Case 3:  

Given that  

. ( ) . ( )
n

a f c f n
b

 ( ) . ( )
n c

f f n
b a

   

2
2

( ) . ( ) ( ) . ( )
n c n c

f f f n
b a b a

  2
2

( ) ( ) . ( )
n c

f f n
b a

   

2 3
3

( ) ( ) . ( ) ( ) . ( )
n c n c

f f f n
b a b a

  3
3

( ) ( ) . ( )
n c

f f n
b a

   

In general ( ) ( ) . ( )j

j

n c
f f n

b a
  

Equivalently . ( ) . ( )j j
j

n
a f c f n

b
  

We are given that 
log 1

0

( ) . ( )
n

b
j

j
j

n
g n a f

b





    (5) 

We have proved that . ( ) . ( )j j
j

n
a f c f n

b
   (6) 
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From equation (5) and (6) 
log 1

0

( ) . ( )
n

b
j

j
j

n
g n a f

b





 
log 1

0

. ( )
n

b
j

j

c f n




 
0

. ( )j

j

c f n




  

1
( ) ( )( ) ( ( ))

1
g n f n f n

c
  


   (7) 

Since f(n) appears in definition of g(n) and all terms of g(n) are non-negative, we can 
conclude easily that 

( ) ( ( ))g n f n     (8) 

We have already proved, equation (7), that 
( ) ( ( ))g n f n    (9) 

From Equations (8) and (9) ( ) ( ( ))g n f n   

Hence it proves lemma 
Lemma 3: 

Let a  1, b > 1 be constants, let f(n) be a non-negative function defined on exact power of b. 
Define T(n) on exact powers of b by the recurrence 

(1) 1
( )

. ( ) ( ) i

if n
T n n

a T f n if n b
b

  
 



 

where is a positive integer. Then T(n) can be bounded asymptotically for exact powers of b as 

1. If log log( ) ( ), for some constants  0, then ( ) ( )
a a

b bf n n T n n





      

2. If log log( ) ( ),  then ( ) ( .lg  n)
a a

b bf n n T n n     

3. If log( ) ( )
a

bf n n


   for some  > 0, and a.f(n/b) ≤ c.f(n) for some constant c < 1and 

sufficiently large n, then T(n) = (f(n)) 
Proof Case 1: 

Given that  

(1) 1
( )

. ( ) ( ) i

if n
T n n

a T f n if n b
b

  
 



 

By lemma 4.2: 
log 1

log

0

( ) ( ) . ( )
n

b

b a j
j

j

n
T n n a f

b





     

By lemma 4.3: log log( ) ( ) ( )b ba aT n n n    

Hence for case 1 it is proved 
Proof Case 2: 

Again given that  
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(1) 1
( )

. ( ) ( ) i

if n
T n n

a T f n if n b
b

  
 



 

By Lemma 4.2: 
log 1

log

0

( ) ( ) . ( )
n

b

b a j
j

j

n
T n n a f

b





     

By lemma 4.3: log log( ) ( ) ( .lg )b ba aT n n n n    

Hence for case 2 it is also proved 
Proof Case 3: 

By Lemma 4.2: 
log 1

log

0

( ) ( ) . ( )
n

b

b a j
j

j

n
T n n a f

b





     

By Lemma 4.3: log( ) ( ) ( ( ))b aT n n f n    

Since log( ) ( )
a

bf n n


   

Hence ( ) ( ( ))T n f n   

This proves the lemma 3. 
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Lecture	10	 Time	Complexity	of	Algorithms	(Asymptotic	
Notations)	
What is Complexity? 

The level in difficulty in solving mathematically posed problems as measured by 

– The time  (time complexity) 
– number of steps or arithmetic operations (computational complexity) 
– memory space required (space complexity)  

Major Factors in Algorithms Design 

1. Correctness 

An algorithm is said to be correct if  
• For every input, it halts with correct output. 
• An incorrect algorithm might not halt at all OR 
• It might halt with an answer other than desired one. 
• Correct algorithm solves a computational problem 

2. Algorithm Efficiency 

Measuring efficiency of an algorithm,  
• do its analysis i.e. growth rate.  
• Compare efficiencies of different algorithms for the same problem.  

Algorithms growth rate: 

Algorithm Growth Rates 

It measures algorithm efficiency 

What means by efficient? 

If running time is bounded by polynomial in the input. 

Notations for Asymptotic performance 

 How running time increases with input size 
 O, Omega, Theta, etc. for asymptotic running time 
 These notations defined in terms of functions whose domains are natural numbers 
 convenient for worst case running time 
 Algorithms, asymptotically efficient best choice 

Complexity Analysis: 
Algorithm analysis means predicting resources such as computational time, memory, 
computer hardware etc. 
Worst case analysis: 

 Provides an upper bound on running time 
 An absolute guarantee 

Average case analysis: 

 Provides the expected running time 
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 Very useful, but treat with care: what is “average”? 
 Random (equally likely) inputs 
 Real-life inputs 

Worst case analysis: 
Let us suppose that  
Dn = set of inputs of size n for the problem 
I = an element of Dn.  
t(I) = number of basic operations performed on I  
Define a function W by 

  W(n) = max{t(I) | I  Dn} 
 called the worst-case complexity of the algorithm 
W(n) is the maximum number of basic operations performed by the algorithm on any input of 
size n.  
Please note that the input, I, for which an algorithm behaves worst, depends on the particular 
algorithm. 
Average Complexity: 

Let Pr(I) be the probability that input I occurs.  

Then the average behavior of the algorithm is defined as 

  A(n) = Pr(I) t(I),  summation over all I  Dn
 
 

We determine t(I) by analyzing the algorithm, but Pr(I) cannot be computed analytically.  

Average cost = A(n) = Pr(succ)Asucc(n) + Pr(fail)Afail(n) 

An element I in Dn may be thought as a set or equivalence class that affects the behavior of 
the algorithm 

Worst Analysis computing average cost 
Take all possible inputs, compute their cost, and take average 

Asymptotic Notations Properties 

• Categorize algorithms based on asymptotic growth rate e.g. linear, quadratic, 
polynomial, exponential  

• Ignore small constant and small inputs  
• Estimate upper bound and lower bound on growth rate of time complexity function 
• Describe running time of algorithm as n grows to . 
• Describes behavior of function within the limit. 

Limitations 
• not always useful for analysis on fixed-size inputs.  
• All results are for sufficiently large inputs. 

Asymptotic Notations 

Asymptotic Notations , O, , o,   
 We use  to mean “order exactly”,  
 O to mean “order at most”,  
  to mean “order at least”, 
 o to mean “tight upper bound”,  
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•  to mean “tight lower bound”,  

  

 Define a set of functions: which is in practice used to compare two function sizes.  
 

Big-Oh Notation (O) 

If  f, g: N  R+, then we can define Big-Oh as  

    
    
    

      

For a given function 0,  denoted by  the set of functions,

: there exist positive constants  and  such that  

0  , for all 

 means function  is an asymptotically upper bound

o

o

g n g n

g n f n c n

f n cg n n n

f n g n g n

 

 

  

   for .f n

 

We may write f(n) = O(g(n)) OR f(n)  O(g(n)) 
 
Intuitively:  
Set of all functions whose rate of growth is the same as or lower than that of g(n). 

Example 1: 

Prove that 2n2  O(n3) 

Proof: 

Assume that f(n) = 2n2 , and g(n) = n3  

 Now we have to find the existence of c and n0 

 f(n) ≤ c.g(n)  2n2 ≤ c.n3  2 ≤ c.n  

 if we take, c = 1 and n0= 2   OR  

 c = 2 and n0= 1 then  

  2n2 ≤ c.n3  

 Hence f(n)  O(g(n)), c = 1 and n0= 2 

 

Example 2: 

Example 2: Prove that n2  O(n2) 

Proof:  

 Assume that f(n) = n2 , and g(n) = n2  

 Now we have to show that f(n)  O(g(n)) 

 Since  

 f(n) ≤ c.g(n)  n2 ≤ c.n2  1 ≤ c, take, c = 1, n0= 1  

 Then  

  n2 ≤ c.n2  for c = 1 and n  1 

 Hence, 2n2  O(n2), where c = 1 and n0= 1 



67 
 

Example 3: 

Prove that 1000.n2
 

+ 1000.n  O(n2) 
Proof:  
Assume that f(n) = 1000.n2

 

+ 1000.n, and g(n) = n2  
We have to find existence of c and n

0
 such that  

0 ≤ f(n) ≤ c.g(n) A n  n0  
 
 

1000.n2
 

+ 1000.n ≤ c.n2
 

= 1001.n2,  for c = 1001  
1000.n2

 

+ 1000.n ≤ 1001.n2  
1000.n ≤ n2

 


 

n2  1000.n
 

 n2 - 1000.n  0  

 n (n-1000)  0, this true for n  1000  

f(n) ≤ c.g(n) A n  n0 and c = 1001   

Hence f(n)  O(g(n)) for c = 1001 and n0 = 1000 

Example 4: 

Prove that n3
 

 O(n2) 

Proof:  
 On contrary we assume that there exist some positive constants c and n0 such that  
  0 ≤ n3 ≤ c.n2  A n  n0  
  0 ≤ n3 ≤ c.n2

 

 n ≤ c 
 Since c is any fixed number and n is any arbitrary constant, therefore n ≤ c is not 

possible in general. 
 Hence our supposition is wrong and n3 ≤ c.n2,  
 A n  n0 is not true for any combination of c and n0. And hence, n3

 

 O(n2) 
 
Some more Examples: 

 n2 + n3  = O(n4) 
 n2 / log(n) = O(n . log n) 
 5n + log(n) = O(n) 
 n log n = O(n100)  
 3n = O(2n . n100) 
 n! = O(3n) 
 n +1 = O(n) 
 2n+1 = O(2n) 
 (n+1)! = O(n!) 
 1 + c + c2

 

+…+ cn = O(cn) for c > 1 
 1 + c + c2

 

+…+ cn = O(1) for c < 1 

Big-Omega Notation () 
If  f, g: N  R+, then we can define Big-Omega as 
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    
    
    

      

For a given function  denote by  the set of functions,

: there exist positive constants  and  such that  

0   for all 

, means that function  is an asymptotically lower boun

o

o

g n g n

g n f n c n

cg n f n n n

f n g n g n



 

  

   d for .f n

 

We may write f(n) = (g(n)) OR f(n)  (g(n)) 
Intuitively:  
Set of all functions whose rate of growth is the same as or higher than that of g(n). 

Example 1: Prove that 5.n2  (n) 

Proof:  
Assume that f(n) = 5.n2 , and g(n) = n  
We have to find the existence of c and n0

 
such that  

 c.g(n) ≤ f(n)  for all n  n0  
  c.n ≤ 5.n2  c ≤ 5.n 
if we take, c = 5 and n0= 1 then  
 c.n ≤ 5.n2  A n  n0 
And hence f(n)  (g(n)), for c = 5 and n0= 1 
 

Example 2: Prove that 100.n + 5  (n2) 

Proof:  
 Let f(n) = 100.n + 5, and g(n) = n2  

 Assume that f(n)  (g(n)) 
 Now if f(n)  (g(n)) then there exist c and  n0 such that  
 c.g(n) ≤ f(n)  for all n  n0 

c.n2 ≤ 100.n + 5   
 c.n ≤ 100 + 5/n   
 n ≤ 100/c, for a very large n, which is not possible 
 And hence f(n)  (g(n)) 

Theta Notation () 
 
If  f, g: N  R+, then we can define Big-Theta as 

    
    

      
        

1 2

1 2

For a given function  denoted by  the set of functions,

: there exist positive constants ,  and  such that  

0   for all 

 means function  is equal to  to within 

o

o

g n g n

g n f n c c n

c g n f n c g n n n

f n g n f n g n



 

   

 

   
a constant 

factor, and   is an asymptotically tight bound for .g n f n

 

We may write f(n) = (g(n)) OR f(n)  (g(n)) 
Intuitively: Set of all functions that have same rate of growth as g(n). 
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Example 1: Prove that ½.n2 – ½.n = (n2) 

Proof: 

Assume that f(n) = ½.n2 – ½.n, and g(n) = n2  

 We have to find the existence of c1, c2 and n0
 
such that  

 c1.g(n) ≤ f(n) ≤ c2.g(n)  for all n  n0 

  Since, ½ n2 - ½ n ≤ ½ n2  n ≥ 0   if  c2= ½ and  

½ n2 - ½ n ≥ ½ n2 - ½ n . ½ n ( n ≥ 2 ) = ¼ n2,  c1= ¼  

 Hence ½ n2 - ½ n ≤ ½ n2 ≤ ½ n2 - ½ n 

 c
1
.g(n) ≤ f(n) ≤ c2.g(n)  n ≥ 2, c1= ¼, c2 = ½ 

 Hence f(n)  (g(n))  ½.n2 – ½.n = (n2)  

Example 2: Prove that a.n2 + b.n + c = (n2) where a, b, c are constants and a > 0 

Proof 

 If we take c1 =  ¼.a, c2 =  7/4. a and 0 2.max(( / ), ( / ))n b a c a   

 Then it can be easily verified that  

 0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n),n ≥ n0, c1= ¼.a, c2 = 7/4.a 

 Hence f(n)  (g(n))  a.n2 + b.n + c = (n2)  

 Hence any polynomial of degree 2 is of order (n2) 

 

Example 3: Prove that 2.n2 + 3.n + 6 = (n3) 

Proof: 

Let f(n) = 2.n2 + 3.n + 6, and g(n) = n3  

 we have to show that f(n) ä (g(n))  

 On contrary assume that f(n)  (g(n)) i.e. 

 there exist some positive constants c1, c2 and n0 such that:  c1.g(n) ≤ f(n) ≤ c2.g(n)  

 c1.g(n) ≤ f(n) ≤ c=.g(n)  c1.n3 ≤ 2.n2 + 3.n + 6 ≤ c2. n3  

 c1.n ≤ 2 + 3/n + 6/n2 ≤ c2. n    

 c1.n ≤ 2 ≤ c2. n, for large n   

 n ≤ 2/c1 ≤ c2/c1.n  which is not possible 

 Hence f(n) = (g(n))  2.n2 + 3.n + 6 = (n3) 

 

Little-Oh Notation 
o-notation is used to denote a upper bound that is not asymptotically tight. 
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    

  
 

    

For a given function 0,  denoted by  the set of functions,

: for any positive constants , there exists a constant  

such that 0   for all 

o

o

g n o g n

f n c n
o g n

f n cg n n n



 
  

 

f(n) becomes insignificant relative to g(n) as n approaches infinity 

   2 2 2e.g., 2n  but 2 ..o n n o n 
 
 n

lim 0
f n

g n
  

g(n) is an upper bound for f(n), not asymptotically tight  
 
Example 1: Prove that 2n2  o(n3) 

Proof:  

 Assume that f(n) = 2n2 , and g(n) = n3  

 Now we have to find the existence n0
 
for any c 

 f(n) < c.g(n) this is true  
 2n2< c.n3  2 < c.n  
 This is true for any c, because for any arbitrary c we can choose n0

 
such that the above 

inequality holds. 
Hence f(n)  o(g(n)) 

 

Example 2: Prove that n2  o(n2) 
Proof:  
 Assume that f(n) = n2 , and g(n) = n2  
 Now we have to show that f(n)  o(g(n)) 
 Since  
 f(n) < c.g(n)  n2 < c.n2  1 ≤ c,  
  
 In our definition of small o, it was required to prove for any c but here there is a 

constraint over c. Hence, n2  o(n2), where c = 1 and n0= 1 
 

Example 3: Prove that 1000.n2
 

+ 1000.n  o(n2) 

Proof:  

Assume that f(n) = 1000.n2
 

+ 1000.n, and g(n) = n2  

we have to show that f(n)  o(g(n)) i.e. 

We assume that for any c there exist n0 such that  

0 ≤ f(n) < c.g(n) for all n  n0  
 
 

1000.n2
 

+ 1000.n < c.n2  

If we take c = 2001, then,1000.n2
 

+ 1000.n < 2001.n2  

1000.n < 1001.n2
  

which is not true  

Hence f(n)  o(g(n)) for c = 2001 
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Little-Omega Notation  
Little- notation is used to denote a lower bound that is not asymptotically tight. 

    
    
    

For a given function ,  denote by  the set of all functions.

: for any positive constants , there exists a constant  such that  

0   for all 

o

o

g n g n

g n f n c n

cg n f n n n



 

  

 

f(n) becomes arbitrarily large  relative to g(n) as n approaches infinity  

   
2 2

2n
e.g.,  but ..

2 2

n
n n      

 
 n

lim
f n

g n
   

Example 1: Prove that 5.n2  (n) 

Proof:  
 Assume that f(n) = 5.n2 , and g(n) = n  
 We have to prove that for any c there exists n0

 
such that, c.g(n) < f(n) for all n  n

0
  

  c.n < 5.n2  c < 5.n 

 This is true for any c, because for any arbitrary c e.g. c = 1000000, we can choose n0 = 
1000000/5 = 200000 and the above inequality does hold. 

And hence f(n)  (g(n)),  

Example 2: Prove that 5.n + 10  (n) 

Proof:  
Assume that f(n) = 5.n + 10, and g(n) = n  
We have to find the existence n

0 
for any c, s.t. 

 c.g(n) < f(n)  for all n  n0  
  c.n < 5.n + 10, if we take c = 16 then  
 16.n < 5.n + 10  11.n < 10 is not true for any positive integer.  
 Hence f(n)  (g(n)) 
 

Example 3: Prove that 100.n  (n2) 

Proof:  

 Let f(n) = 100.n, and g(n) = n2  

 Assume that f(n)  (g(n)) 

 Now if f(n)  (g(n)) then there n0 for any c such that  

 c.g(n) < f(n)  for all n  n0  this is true  

  c.n2 < 100.n  c.n < 100    

 If we take c = 100, n < 1, not possible 

Hence f(n)  (g(n)) i.e. 100.n  (n2) 

 

Usefulness of Notations 
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• It is not always possible to determine behaviour of an algorithm using Θ-notation.  
• For example, given a problem with n inputs, we may have an algorithm to solve it in 

a.n2 time when n is even and c.n time when n is odd. OR 
• We may prove that an algorithm never uses more than e.n2  time and never less than 

f.n time.  
• In either case we can neither claim (n) nor (n2) to be the order of the time usage of 

the algorithm. 
• Big O and  notation will allow us to give at least partial information  
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Lecture	11	 Relations	Over	Asymptotic	Notations	
Reflexive Relation: 

Definition: 
Let X be a non-empty set and R is a relation over X then R is said to be reflexive if  
   (a, a)  R,  a  X,  
Example 1: 
Let G be a graph. Let us define a relation R over G as if node x is connected to y then (x, y)  
G. Reflexivity is satisfied over G if for every node there is a self loop. 
Example 2: 
Let P be a set of all persons, and S be a relation over P such that if (x, y)  S then x has same 
birthday as y. 

Of course this relation is reflexive because  
  (x, x)  S,  a  P,  
 

Reflexivity Relations over , , O 

Example 1 

Since, 0  f(n)  cf(n)    n  n0
 
= 1, if c = 1    

Hence  f(n) = O(f(n)) 

Example 2 

Since, 0  cf(n)  f(n)    n  n0
 
= 1,  if c = 1    

Hence f(n) = (f(n)) 

Example 3 

Since, 0  c1f(n)  f(n)  c2f(n)    n  n0 = 1,if c1= c2 = 1   

Hence  f(n) = (f(n)) 

Note: All the relations, Q, W, O, are reflexive 

 

Little o and  are not Reflexivity Relations 

Example 

 As we can not prove that f(n) < f(n), for any n, and for all c > 0    

 Therefore 

1.    f(n)   o(f(n)) and  
2.  f(n)   (f(n)) 

Hence small o and small omega are not reflexive relations 

 

Symmetry 

Definition: 
Let X be a non-empty set and R is a relation over X then R is said to be symmetric if  
  a, b  X, (a, b)  R  (b, a)  R 
Example 1: 
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Let P be a set of persons, and S be a relation over P such that if (x, y)  S then x has the same 
sign as y. 

This relation is symmetric because  

  (x, y)  S  (y, x)  S 
Example 2: 
Let P be a set of all persons, and B be a relation over P such that if (x, y)  B then x is 
brother of y. 

This relation is not symmetric because  

 (Anwer, Sadia)  B  (Sadia, Brother)  B 

 

Symmetry over   

Property: prove that f(n) = (g(n))  g(n) = (f(n))  

Proof 

Since f(n) = (g(n)) i.e. f(n)  (g(n))   

  constants c1, c2  > 0 and n0  N such that  

 0  c1g(n)  f(n)  c2g(n)  n  n0   (1) 

(1)  0  c1g(n)  f(n)  c2g(n)  0  f(n)  c2g(n) 

  0  (1/c2)f(n)  g(n)    (2) 

(1)  0  c1g(n)  f(n)  c2g(n)  0  c1g(n)  f(n) 

  0  g(n)  (1/c1)f(n)    (3) 

From (2),(3): 0  (1/c2)f(n)  g(n)  0  g(n)  (1/c1)f(n) 

  0  (1/c2)f(n)  g(n)  (1/c1)f(n) 

Suppose that 1/c2 = c3, and 1/c1 = c4,  

Now the above equation implies that  

 0  c3f(n)  g(n)  c4f(n),  n  n0  

  g(n) = (f(n)),  n  n0  

Hence it proves that,  

 f(n) = (g(n))  g(n) = (f(n)) 

 

Transitivity  
Definition: 
Let X be a non-empty set and R is a relation over X then R is said to be transitive if  
  a, b, c  X, (a, b)  R  (b, c)  R  (a, c)  R 
Example 1: 
Let P be a set of all persons, and B be a relation over P such that if (x, y)  B then x is 
brother of y. 
This relation is transitive this is because  
 (x, y)  B  (y, z)  B  (x, z)  B 
Example 2: 
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Let P be a set of all persons, and F be a relation over P such that if (x, y)  F then x is father 
of y. 
Of course this relation is not a transitive because if  (x, y)  F  (y, z)  F  (x, z)  F 
Transitivity Relation over Q  

Property 1  

f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n))  

Proof 

Since f(n) = (g(n)) i.e. f(n)  (g(n))   

  constants c1, c2  > 0 and n01  N such that  

 0  c1g(n)  f(n)  c2g(n)  n  n01   (1) 

Now since g(n) = (h(n)) i.e. g(n)  (h(n))   

  constants c3, c4  > 0 and n02  N such that  

 0  c3h(n)  g(n)  c4h(n)   n  n02   (2) 

Now let us suppose that n0  = max (n01, n02) 

Now we have to show that f(n) = (h(n)) i.e. we have to prove that  

  constants c5, c6  > 0 and n0  N such that  

 0  c5h(n)  f(n)  c6h(n) 

(2)  0  c3h(n)  g(n)  c4h(n) 

  0  c3h(n)  g(n)    (3) 

(1)  0  c1g(n)  f(n)  c2g(n)  

  0  c1g(n)  f(n) 

  0  g(n)  (1/c1)f(n)   (4) 

From (3) and (4), 0  c3h(n)  g(n)  (1/c1)f(n)   

   0  c1c3h(n)  f(n)    (5) 

(1)  0  c1g(n)  f(n)  c2g(n)  

  0  f(n)  c2g(n)  0  (1/c2)f(n)  g(n) (6) 

(2)  0  c3h(n)  g(n)  c4h(n) 

  0  g(n)  c4h(n)     (7) 

From (6) and (7), 0  (1/c2)f(n)  g(n)  (c4)h(n)   

   0  (1/c2)f(n)  (c4)h(n)  

   0  f(n)  c2c4h(n)     (8) 

From (5), (8), 0  c1c3h(n)  f(n)  0  f(n)  c2c4h(n)  

 0  c1c3h(n)  f(n)  c2c4h(n)  

 0  c5h(n)  f(n)  c6h(n)  

 And hence f(n) = (h(n))     n  n0  

 

Transitivity Relation over Big O  

Property 2  

 f(n) = O(g(n)) & g(n) = O(h(n))  f(n) = O(h(n)) 
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Proof 

Since f(n) = O(g(n)) i.e. f(n)  O(g(n))   

  constants c1 > 0 and n01  N such that  

 0  f(n)  c1g(n)   n  n01    (1) 

Now since g(n) = O(h(n)) i.e. g(n)  O(h(n))   

  constants c2  > 0 and n02  N such that  

 0  g(n)  c2h(n)   n  n02    (2) 

Now let us suppose that n0  = max (n01, n02) 

Now we have to two equations  

 0  f(n)  c1g(n)   n  n01    (1) 

 0  g(n)  c2h(n)   n  n02    (2) 

(2)  0  c1g(n)  c1c2h(n)   n  n02   (3) 

From (1) and (3)  

 0  f(n)  c1g(n)  c1c2h(n)  

Now suppose that c3= c1c2  

 0  f(n)  c1c2h(n)  

And hence f(n) = O(h(n))     n  n0 

 

Transitivity Relation over Big   

Property 3  

f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n))  

Proof 

Since f(n) = (g(n))   

  constants c1 > 0 and n01  N such that  

 0  c1g(n)  f(n)     n  n01   (1) 

Now since g(n) = (h(n))   

  constants c2 > 0 and n02  N such that  

 0  c2h(n)  g(n)     n  n02   (2) 

Suppose that n0  = max (n01, n02) 

We have to show that f(n) = (h(n)) i.e. we have to prove that  

  constants c3 > 0 and n0  N such that  

 0  c3h(n)  f(n)    n  n0   

(2)  0  c2h(n)  g(n)  

(1)  0  c1g(n)  f(n)   

  0  g(n)  (1/c1)f(n)   (3) 

From (2) and (3), 0  c2h(n)  g(n)  (1/c1)f(n)   

   0  c1c2h(n)  f(n) hence f(n) = (h(n)),  n  n0  

 



77 
 

Transitivity Relation over little o  

Property 4  

 f(n) = o(g(n)) & g(n) = o(h(n))  f(n) = o(h(n)) 

Proof 

Since f(n) = o(g(n)) i.e. f(n)  o(g(n))   

  constants c1 > 0 and n01  N such that  

 0  f(n) < c1g(n)   n  n01    (1) 

Now since g(n) = o(h(n)) i.e. g(n)  o(h(n))   

  constants c2  > 0 and n02  N such that  

 0  g(n) < c2h(n)   n  n02    (2) 

Now let us suppose that n0  = max (n01, n02) 

Now we have to two equations  

 0  f(n) < c1g(n)   n  n01    (1) 

 0  g(n) < c2h(n)   n  n01    (2) 

(2)  0  c1g(n) < c1c2h(n)   n  n02   (3) 

From (1) and (3)  

 0  f(n)  c1g(n) < c1c2h(n)  

Now suppose that c3= c1c2  

 0  f(n) < c1c2h(n)  

And hence f(n) = o(h(n))     n  n01  

 

Transitivity Relation over little   

Property 5  

f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n))  

Proof 

Since f(n) = (g(n))   

  constants c1 > 0 and n01  N such that  

 0  c1g(n) < f(n)     n  n01   (1) 

Now since g(n) = (h(n))   

  constants c2 > 0 and n02  N such that  

 0  c2h(n) < g(n)     n  n02   (2) 

Suppose that n0  = max (n01, n02) 

We have to show that f(n) = (h(n)) i.e. we have to prove that  

  constants c3 > 0 and n0  N such that  

 0  c3h(n)  f(n)    n  n0   

(2)  0  c2h(n) < g(n)  

(1)  0  c1g(n) < f(n)   
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  0  g(n) < (1/c1)f(n)   (3) 

From (2) and (3), 0  c2h(n)  g(n) < (1/c1)f(n)   

   0  c1c2h(n) < f(n) hence f(n) = (h(n)),  n  n0  

 

Transpose Symmetry  

Property 1  

 Prove that f(n) = O(g(n))  g(n) = (f(n)) 

Proof 

 Since f(n) = O(g(n))   

  constants c > 0 and n0  N such that  

  0  f(n)  cg(n)   n  n0  

 Dividing both side by c 

  0  (1/c)f(n)  g(n)   n  n0 

 Put 1/c = c’ 

  0  c’f(n)  g(n)   n  n0 

 Hence, g(n) = (f(n)) 

 

Property 2  

 Prove that f(n) = o(g(n))  g(n) = f(n)) 

Proof 

 Since f(n) = o(g(n))   

  constants c > 0 and n0  N such that  

  0  f(n) < cg(n)    n  n0  

 Dividing both side by c 

  0  (1/c)f(n) < g(n)    n  n0 

 Put 1/c = c’ 

  0  c’f(n) < g(n)    n  n0 

 Hence, g(n) = (f(n)) 

 

Relation between Q, W , O 

Trichotmy property over real numbers  
 For any two real numbers a and b, exactly one of the following must hold: a < b,a = b, or a > 
b.  

The asymptotic comparison of two functions f and g and the comparison of two real numbers 
a and b. 

Tracheotomy property over Q, W and O  
1. f (n) = O(g(n))    a ≤  b 
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2. f (n) =  (g(n))     a   b 
3. f (n) =   (g(n))     a = b 
4. f (n) = o (g(n))     a < b 
5. f (n) = (g(n))     a > b 

 

Some other Standard Notations 

Monotonicity  
• monotonically increasing if m  n  f(m)  f(n). 
• monotonically decreasing if m  n  f(m)  f(n). 
• strictly increasing if m < n  f(m) < f(n). 
• strictly decreasing if m < n  f(m) > f(n).  

Polynomials 
Given a positive integer d, a polynomial in n of degree d is a function of the form given 
below, a

i
 are coefficient of polynomial. 

 
0

  
d

i
i

i

p n a n


   

Standard Logarithms Notations 

Some Definitions 

Exponent: logbx a x = logba is the exponent for bx a  

Natural log: ln logsa a ln a = log
e
a  

Binary log: 2lg loga a  

Square of log:  22lg lga a  

Log of Log:  lg lg lg lga a  

b b

log

n
b b

c
b

c

b b

b
a

log c log a

log ( ) log log

log a nlog a

log a
log a

log b

log (1/a) log a

1
log a

log b

a c

b a

c c c

a b

ab a b


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



 



  
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Lecture	12	 Design	of	Algorithms	using	Brute	Force	Approach	

Primality Testing 

(given number is n binary digits) 

Brute Force Approach 

Prime (n)         

    for i  2 to n-1   

           if n  0 mod i then  

   “number is composite”     

    else          

  “number is prime”  
The computational cost is (n) 

The computational cost in terms of binary operation is (2n) 
Refined Algorithm for Testing Primality 

Prime (n)         

    for i  2 to n/2   

           if n  0 mod i then  

   “number is composite”     

    else          

  “number is prime”  
The computational cost is (n/2) 

The computational cost in terms of binary operation is (2n-1), not much improvement 

Algorithm for Testing Primality   

• We are not interested, how many operations are required to test if the number n is 
prime 

• In fact, we are interested, how many operations are required to test if a number with n 
digits is prime. 

• RSA-128 encryption uses prime numbers which are 128 bits long. Where 2128 is: 

  340282366920938463463374607431768211456 
• Therefore, to prime test a number with n binary digits by brute force, we need to 

check 2n numbers. 
• Thus brute-force prime testing requires exponential time with the n number of digits.  
• Which is not accepted in this case 

 

Lemma: 

Statement 
•  If n  N, n > 1 is not prime then n is divisible by some prime number p ≤ square root 

of n.  
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Proof 
• Since n is not prime hence it can be factored as  

  n = x.y  where 1 <x ≤ y <n 
• x or y is a prime, if not it can be further factored out. 
• Also suppose without loss of generality that x ≤ y 
• Now our claim is that x ≤ sq(n) 
• This is because otherwise x.y > n, a contradiction 
• We only require to check till sqr(n) for primality test.  

Refined Algorithm for Testing Primality 

Prime (n)         

    for i  2 to sqr(n)   

           if n  0 mod i then  

   “number is composite”     

    else          

  “number is prime”  
• The computational cost is (sqr(n)), much faster 
• The computational cost in terms of binary operation is ( 2 n ), still exponential  

 

Sorting Sequence of Numbers: 

An example of Algorithm: 

Input : A sequence of n numbers (distinct) 1 2, ,..., na a a   

Output : A permutation, 1 2, ,..., na a a     of the input sequence such that 1 2 ... na a a      

 

Sorting Algorithm: Brute Force Approach  

Sort the array [2, 4, 1, 3] in increasing order 

s1 = [4,3,2,1], s2 = [4,3,1,2], s3 = [4,1,2,3]  

s4 = [4,2,3,1], s5 = [4,1,3,2], s6 = [4,2,1,3]  

s7 = [3,4,2,1], s8 = [3,4,1,2], s9 = [3,1,2,4]  

s10 = [3,2,4,1], s11 = [3,1,4,2], s12 = [3,2,1,4]  

s13 = [2,3,4,1], s14 = [2,3,1,4], s15 = [2,1,4,3]  

s16 = [2,4,3,1], s17 = [2,1,3,4], s18 = [2,4,1,3]  

s19 = [1,3,2,4], s20 = [1,3,1,4], s21 = [1,4,2,3]  

 2,5,1,6,0,3
Sorting Algorithm 

 6,5,3,2,1,0
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s22 = [1,2,3,4], s23 = [1,4,3,2], s24 = [1,2,4,3] 

There are 4! = 24 number of permutations.  

For n number of elements there will be n! number of permutations. Hence cost of order n! for 
sorting.  

 

Generating Permutations 

Permute (i)        \\initial call Permute(1) 

    if i == N   

           output A[N]      

    else         

           for j = i to N do            

                    swap(A[i], A[j])            

                    permute(i+1)            

                    swap(A[i], A[j])  
• There are 4! = 24 number of permutations.  
• For n number of elements there will be n! number of permutations. Hence cost of 

order n! for sorting.  

Theorem 
Prove, by mathematical induction, that computational cost of generating permutations is n!.  

Proof 
• If n = 1, then the statement is true, because 1! =1 
• If there are k elements in set then no. of permutation = k! 
• If we add one more element in any of the permutations, there will be k+1 number of 

ways to add it, resulting k+1 no. of permutations. 
• Now total no. of permutations = k!(k+1) = (k+1)! 
• Hence true for all n. 

 

0-1 Knapsack Problem 

Statement: 

 The knapsack problem arises whenever there is resource allocation with no 
financial constraints 

Problem Statement 
You are in Japan on an official visit and want to make shopping from a store (Best Denki). 
You have a list of required items. You have also a bag (knapsack), of fixed capacity, and only 
you can fill this bag with the selected items. Every item has a value (cost) and weight, and 
your objective is to seek most valuable set of items which you can buy not exceeding bag 
limit. 

0-1 Knapsack Algorithm 
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Knapsack-BF (n, V, W, C) 

 Compute all subsets, s, of S = {1, 2, 3, 4} 

 For all s  S 

  weight = Compute sum of weights of these items 

   if weight > C, not feasible 

  new solution = Compute sum of values of these items 

  solution = solution  {new solution} 

 Return maximum of solution 

0-1 Knapsack Algorithm Analysis 

Approach 
• In brute force algorithm, we go through all combinations and find the one with 

maximum value and with total weight less or equal to W = 16 

Complexity 
• Cost of computing subsets O(2n) for n elements 
• Cost of computing weight = O(2n) 
• Cost of computing values = O(2n) 
• Total cost in worst case: O(2n)  

 

The Closest Pair Problem 

Finding closest pair 

Problem  
Given a set of n points, determine the two points that are closest to each other in terms of 
distance. Furthermore, if there are more than one pair of points with the closest distance, all 
such pairs should be identified.  

Input:  

 is a set of n points  

Output  
• is a pair of points closest to each other,  
• there can be more than one such pairs 

 

Brute Force Approach: Finding Closest Pair in 2-D 

ClosestPairBF(P) 
1. mind  ∞  
2. for i  1 to n  
3. do 

4. for j  1 to n  
5. if i  j 
6. do  
7. d  ((xi − xj)2 + (yi − yj)2) 
8. if d < minn then 
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8. mind  d 
9. mini  i  
10. minj  j 

11. return mind, p(mini, minj) 
 
Time Complexity: 
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Improved Version: Finding Closest Pair in 2-D 

ClosestPairBF(P) 
1. mind  ∞  
2. for i  1 to n − 1  
3. do 

4. for j  i + 1 to n  
5. do 
6. d  ((xi − xj)2 + (yi − yj)2) 
7. if d < minn then 

8. mind  d 
9. mini  i  
10. minj  j 

11. return mind, p(mini, minj) 
 

Time Complexity: 
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Brute Force Approach: Finding Closest Pair in 3-D 

ClosestPairBF(P) 
1. mind  ∞  
2. for i  1 to n − 1  
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3. do 
4. for j  i + 1 to n  
5. do 
6. d  ((xi − xj)2 + (yi − yj)2 + (zi − zj)2) 
7. if d < minn then 

8. mind  d 
9. mini  i  
10. minj  j 

11. return mind, p(mini), p(minj) 

Time Complexity 
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Maximal Points 

• Dominated Point in 2-D 

 A point p is said to be dominated by q if  

  p.x ≤ q.x and p.y ≤ q.y  
• Dominated Point in n-D  

 A point p is said to be dominated by q if 

   p.xi ≤ q.xj  i = 1,. . ., n  
• Maximal Point  

 A point is said to be maximal if it is not dominated by any other point.  
Example: Maximal Points in 2-Dimension 
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Example: Buying a car 

Suppose we want to buy a car which is fastest and cheapest. Fast cars are expensive. We want 
cheapest. We can’t decide which one is more important, Speed or Price. Of course fast and 
cheap dominates slow and expensive car. So, given a collection of cars, we want the car 
which is not dominated by any other. 

Formal Problem: Problem can be modeled as: 
• For each car C, we define C (x, y) where  

  x = speed of car and 

  y = price of car  
• This problem cannot be solved using maximal point algorithm. 

Redefine Problem:  
• For each car C’, we define C’ (x’, y’) where  

  x’ = speed of car and 

  y’ = negation of car price  
• This problem is reduced to designing maximal point algorithm  
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Problem Statement: 

Given a set of m points, P = {p1, p2, . . . , pm}, in n- dimension. Our objective is to compute 
a set of maximal points i.e. set of points which are not dominated by anyone in the given list. 

Mathematical Description: 

Maximal Points = { p  P |  i  {1,. . . , n} & p.xi
 
≥ q.xj,  , q  {p1, p2, . . . , pm} 

 

Brute Force Algorithm in n-dimension 

MAXIMAL-POINTS (int m, Point P[1. . . m]) 
0 A = ; 
1 for i 1 to m \\ m used for number of points 
2 do maximal  true 
3  for j  1 to m 
4  do  
5   if (i  j) & 
6   for k  1 to n  \\ n stands for dimension 
7   do    
8    P[i].x[k]  P[j].x[k] 
9     then maximal  false; break  
10  if maximal 
11   then A = A  P[i] 
 

Plane Sweep Algorithm in n-dimension 

MAXIMAL-PINTS (int m, int n, Point P[1. . . m]) 
1 sort P in increasing order by first component 
2 stack s; 
3 for i 1 to m \\ m used for number of points 
4 do  
5  while (s.noEmpty() & 
6  for j  2 to n \\ n stands for dimension 
7  do  
8   s.top().x[j]  P[i].x[j]) 
9  do s.pop(); 
10  s.push(P[i]); 
11 output the contents of stack s;   
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Lecture	13	 Designing	Algorithms	using	Brute	Force	and	
Divide	&	Conquer	Approaches	
The Closest Pair Problem 

Given a set of n points, determine the two points that are closest to each other in terms of 
distance. Furthermore, if there are more than one pair of points with the closest distance, all 
such pairs should be identified.  

Input: is a set of n points  

Output: is a pair of points closest to each other. There can be more than one such pairs. 

Distance  
In mathematics, particular in geometry, distance on a given set M is a function d: M × 
M → R, where R denotes the set of real numbers that satisfies the following conditions: 

1. d(x, y) ≥ 0,  
2. d(x, y) = 0 if and only if x = y. 
3. Symmetric i.e.  

 d(x, y) = d(y, x). 
4. Triangle inequality:  

 d(x, z) ≤ d(x, y) + d(y, z). 
 

Closest Pair Problem in 2-D 
• A point in 2-D is an ordered pair of values (x, y). 
• The Euclidean distance between two points           

       Pi = (xi, yi) and Pj = (xj, yj) is 

  d(pi, pj) = sqr((xi − xj)2 + (yi − yj)2) 
• The closest-pair problem is finding the two closest points in a set of n points. 
• The brute force algorithm checks every pair of points. 
• Assumption: We can avoid computing square roots by using squared distance.  

– This assumption will not lose correctness of the problem. 

ClosestPairBF(P) 
4. mind  ∞  
5. for i  1 to n − 1  
6. do 

4. for j  i + 1 to n  
5. do 
6. d  ((xi − xj)2 + (yi − yj)2) 
7. if d < minn then 

8. mind  d 
9. mini  i  
10. minj  j 

12. return mind, p(mini, minj) 
 

Time Complexity 
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Finding Closest Pair in 3-D 

ClosestPairBF(P) 
4. mind  ∞  
5. for i  1 to n − 1  
6. do 

4. for j  i + 1 to n  
5. do 
6. d  ((xi − xj)2 + (yi − yj)2 + (zi − zj)2) 
7. if d < minn then 

8. mind  d 
9. mini  i  
10. minj  j 

12. return mind, p(mini), p(minj) 

Time Complexity 
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Finding closest pair in n-D 

ClosestPairBF(P) 
1. mind  ∞  
2. for i  1 to n − 1  
3. do 

4. for j  i + 1 to n  
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5. do 
6. d  ((xi1 – xj1)2 + (xi2 – xj2)2 + . . .+(xin − xjn)2) 
7. if d < minn then 

8. mind  d 
9. mini  i  
10. minj  j 

11. return mind, p(mini), p(minj) 
 

Finding Maximal in n-dimension 
 

• Maximal Points in 2-D 

 A point p is said to be dominated by q if  

  p.x ≤ q.x and p.y ≤ q.y  

 A point p is said to be maximal if  

  p.x > q.x OR p.y  >  q.y   
• Maximal Points in n-D  

 A point p is said to be dominated by q if 

   p.xi ≤ q.xi  i = 1,. . ., n  

 A point p is said to be maximal if 

    i = 1,. . ., n, p.xi > q.xi
  

  

 A point is said to be maximal if it is not dominated by any other point.  
 
Example: Maximal Points in 2-Dimension 

 

Problem Statement: 

 Given a set of m points, P = {p1, p2, . . . , pm}, in n- dimension. Our objective is to 
compute a set of maximal points i.e. set of points which are not dominated by anyone in the 
given list.  
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Mathematical Description: 

Maximal Points = { p  P |  q  {p1, p2, . . . , pm}, q  p,  i  {1,. . . , n} & p.xi
 
≥ q.xj} 

 

Brute Force Algorithm in n-dimension  
MAXIMAL-POINTS (int n, Point P[1. . . m]) 
0 A = ; 
1 for i 1 to m \\ m used for number of points 
2 do maximal  true 
3  for j  1 to m 
4  do  
5   if (i  j) & 
6   for k  1 to n  \\ n stands for dimension 
7   do    
8    P[i].x[k]  P[j].x[k] 
9     then maximal  false; break  
10  if maximal 
11   then A = A  P[i] 
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Lecture	14	 Designing	Algorithms	using	Divide	&	Conquer	
Approach	
Divide and Conquer Approach 

A general Divide and Conquer Algorithm 

Step 1: If the problem size is small, solve this problem directly otherwise, split the original 
problem into 2 or more sub-problems with almost equal sizes. 

Step 2: Recursively solve these sub-problems by applying this algorithm. 

Step 3: Merge the solutions of the sub- problems into a solution of the original problem. 

Time Complexity of General Algorithms 

Time Complexity: 
2 ( / 2) ( ) ( ),

( )
,

T n S n M n n c
T n

b n c

  
  

 

 where S(n) is time for splitting 

M(n) is time for merging 

B and c are constants 

Examples are binary search, quick sort and merge sort. 

Merge Sort: 

Merge-sort is based on divide-and-conquer approach and can be described by the following 
three steps: 

Divide Step:  
• If given array A has zero or one element, return S. 
• Otherwise, divide A into two arrays, A1 and A2,  
• Each containing about half of the elements of A. 

Recursion Step:  
• Recursively sort array A1,  A2 

Conquer Step:  
• Combine the elements back in A by merging the sorted arrays A1 and A2 into a sorted 

sequence.  
 

Visualization of Merge-sort as Binary Tree 

• We can visualize Merge-sort by means of binary tree where each node of the tree 
represents a recursive call 

• Each external node represents individual elements of given array A. 
• Such a tree is called Merge-sort tree.  
• The heart of the Merge-sort algorithm is conquer step, which merge two sorted 

sequences into a single sorted sequence 
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Sorting Example: Divide and Conquer Rule 
Sort the array [14, 10, 4, 8, 2, 12, 6, 0] in the ascending order 

Solution: 

Divide 

 

Recursion and Conquer 

 

Merge-sort Algorithm 

Merge-sort(A, f, l) 
1.  if f < l 
2.   then m = (f + l)/2 
3.   Merge-sort(A, f, m) 
4.   Merge-sort(A, m + 1, l) 
5.   Merge(A, f, m, l) 

 

Merge-sort Algorithm 

Merge(A, f, m, l) 
1. T[f..l]       \\declare temporary array of same size 
2. i  f; k  f; j  m + 1   \\initialize integers i, j, and k  
3. while (i  m) and (j  l) 
4. do if (A[i]  A[j])        \\comparison of elements  
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5.       then T[k++]  A[i++] 
6.       else   T[k++]  A[j++] 
7. while (i  m) 
8. do   T[k++]  A[i++]   \\copy from A to T  
9. while (j  l) 
10. do   T[k++]  A[j++]   \\copy from A to T  
11. for i  p to r 
12. do A[i]  T[i]    \\copy from T to A  

 

Analysis of Merge-sort Algorithm 

• Let T(n) be the time taken by this algorithm to sort an array of n elements dividing A 
into sub-arrays A

1 
and A

2
.  

• It is easy to see that the Merge (A1, A2, A) takes the linear time. Consequently,  
   

  T(n) = T(n/2) + T(n/2) + θ(n)  

  T(n) = 2T (n/2) + θ(n) 
• The above recurrence relation is non-homogenous and can be solved by any of the 

methods 
– Defining characteristics polynomial 
– Substitution 
– recursion tree or   
– master method 

Analysis: Substitution Method 
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Searching: Finding Maxima in 1-D 
Finding the maximum of a set S of n numbers 

 

Time Complexity 

2 ( / 2) 1 , 2
( )

1 , 2

T n n
T n

n

 
  

 

2 2

2 3

3 3 2 1

k-1 k-1 k-2 2 1

k-1 k-2 2

Assume n = 2k, then

T(n) = 2T(n/2) + 1 = 2(2T(n/4) + 1) + 1

 = 2 T(n/2 ) + 2 + 1

 = 2 (2T(n/2 ) + 1) + 2 + 1

 = 2 T(n/2 ) + 2  + 2  + 1

:

 = 2 T(n/2 )+2  +....+ 2  + 2  + 1

 = 2 T(2) + 2  +...+ 2  1

k-1 k-2

+ 2  + 1

 = 2  + 2  +...+ 4 + 2 + 1 = 2k - 1 = n  1 = (n) 

 

Finding Maxima in 2-D using Divide and Conquer 
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{P1, P2} both maximal in SL and {P3} only maxima in SR 

Merging SL and SR 

 

After Merging Maximal in SL and SR we get {P2, P3} only maximal 

Divide and Conquer for Maxima Finding Problem 
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Algorithm: Maxima Finding Problem 
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Input: A set S of 2-dimensional points. 

Output: The maximal set of S. 

Maxima(P[1..n]) 
1. Sort the points in ascending order w. r .t. X axis 
2. If |S|  = 1, then return it, else  

 find a line perpendicular to X-axis which separates S into SL and SR, each of which 
consisting of n/2 points. 

3. Recursively find the maxima’s SL and SR  
4. Project the maxima’s of SL and SR onto L and sort these points according to their y-

values.  
5. Conduct a linear scan on the projections and discard each of maxima of SL if its y-value 

is less than the y-value of some maxima’s of SR. 
 

Time Complexity 

2 ( / 2) ( ) ( ) , 2
( )

1 , 2

T n O n O n n
T n

n
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2 2

2 2

2 3

3 3

Assume n = 2k, then

 T(n)  = 2T(n/2) + n + n 

= 2(2T(n/4) + n/2 + n/2) + n + n

= 2 T(n/2 ) + n + n + n + n 

= 2 T(n/2 ) + 4n

= 2 (2T(n/2 ) + n/4 + n/4) + 4n

= 2 T(n/2 ) + n + n + 6n

 

3 3

k k

k k k k

k

T(n) = 2 T(n/2 ) + n + n + 6n

.

.

T(n) = 2 T(n/2 ) + 2kn

  = 2 T(2 /2 ) + 2kn  Since n = 2  

Hence

T(n) = 2k + 2kn

T(n) = 2k + 2kn n = 2   k = log(n)

T(n) = n + 2n.logn = ( .log )n n




 

Necessary Dividing Problem into two Parts? 

Maximal Points: Dividing Problem into four Parts 

Maximal points in S11 = {P1} 
Maximal points in S12 = {P3, P4} 
Maximal points in S21 = {P5, P6} 
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Maximal points in S22 = {P7, P8} 

 

Merging S12, S12  
A1 = {P3, P4} 
 
Merging S21, S22  
A2 = {P7, P8} 
 
Merging A1, A2  
A = {P3, P7, P8} 
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Merging S12, S12  

A1 = {P3, P4} 

 

Merging S21, S22  

A2 = {P7, P8} 

 

Merging A1, A2  

A = {P3, P7, P8} 

 

Closest pair problem in 2-D using Divide and Conquer 

The closest pair problem is defined as follows:  

 Given a set of n points 
 Determine the two points that are closest to each other in terms of distance.  
 Furthermore, if there is more than one pair of points with the closest distances, all 

such pairs should be identified. 
First we sort the points on x-coordinate basis, and divide into left and right parts 

p1 p2 ... pn/2 and  pn/2+1 ... Pn 

Solve recursively the left and right sub-problems 

How do we combine two solutions? 

Let d = min {di, dr} where d is distance of closest pair where both points are either in left or 
in right something is missing. We have to check where one point is from left and the other 
from the right. Such closest-pair can only be in a strip of width 2d around the dividing line, 
otherwise the points would be more than d units apart. 

Combining Solutions 

Finding the closest pair in a strip of width 2d, knowing that no one  in any two given pairs is 
closer than d 

For a given point p from one partition, where can there be a point q from the other partition, 
that can form the closest pair with p? 
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 How many points can there be in this square?
  At most 4  

Algorithm for checking the strip: 

– Sort all the points in the strip on the y-
coordinate 

– For each point p only 7 points ahead 
of it in the order have to be checked to 
see if any of them is closer to p than d  

 

 

1. Partition the strip into squares of length d/2 
as shown in the picture. 

2. Each square contains at most 1 point by 
definition of d. 

3. If there are at least 2 squares between points 
then they cannot be the closest points. 

4. There are at most 8 squares to check. 

 

Closest Pair: Divide and Conquer Approach 

Closest-Pair(P, l, r)   
01 if r – l < 3 then return ClosestPairBF(P)  
02 q ¬ é(l+r)/2ù 
03 dl ¬ Closest-Pair(P, l, q-1) 
04 dr ¬ Closest-Pair(P, q, r) 
05 d ¬ min(dl, dr)   
06 for i ¬ l to r do 
07   if P[q].x - d £    P[i].x  £ P[q].x + d then  
08       append P[i] to S 
09 Sort S on y-coordinate 
10 for j ¬ 1 to size_of(S)-1 do 
11  Check if any of d(S[j],S[j]+1), ..., d(S[j],S[j]+7) is smaller than d, if so set d to the smallest 

of them 
12 return d 
 

Running Time 

Running time of a divide-and-conquer algorithm can be described by a recurrence 
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– Divide = O(1) 
– Combine = O(n lg n) 
– This gives the recurrence given below 
– Total running time: O(n log2 n) 

                                         n 3 
( )

2 ( ) log                    otherwise
2

n
T n n

T n n


 



 

Improved Version: Divide and Conquer Approach  
 

• Sort all the points by x and y coordinate once 
• Before recursive calls, partition the sorted lists into two sorted sublists for the left and 

right halves, it will take simple time O(n) 
• When combining, run through the y-sorted list once and select all points that are in a 

2d strip around partition line, again time O(n) 
• New recurrence: 

                                        n 3 
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Lecture	15	 Dynamic	Programming	for	Solving	Optimization	
Problems	
Optimization Problems 

If a problem has only one correct solution, then optimization is not required. For example, 
there is only one sorted sequence containing a given set of numbers. Optimization problems 
have many solutions. We want to compute an optimal solution e. g. with minimal cost and 
maximal gain. There could be many solutions having optimal value. Dynamic programming 
is very effective technique. Development of dynamic programming algorithms can be broken 
into a sequence steps as in the next. 

Steps in Development of Dynamic Algorithms 

1. Characterize the structure of an optimal solution  
2. Recursively define the value of an optimal solution 
3. Compute the value of an optimal solution in a bottom-up fashion 
4. Construct an optimal solution from computed information 

 Note: Steps 1-3 form the basis of a dynamic programming solution to a problem. Step 
4 can be omitted only if the value of an optimal solution is required. 

Why Dynamic Programming? 

• Dynamic programming, like divide and conquer method, solves problems by 
combining the solutions to sub-problems. 

• Divide and conquer algorithms: 
• partition the problem into independent sub-problem 
• Solve the sub-problem recursively and 
• Combine their solutions to solve the original problem 

•  In contrast, dynamic programming is applicable when the sub-problems are not 
independent. 

• Dynamic programming is typically applied to optimization problems. 

Time Complexity in Dynamic Algorithms 

If there are polynomial number of sub-problems and each sub-problem can be computed in 
polynomial time then the solution of whole problem can be found in polynomial time. 

Remark: Greedy also applies a top-down strategy but usually on one sub-problem so that the 
order of computation is clear. 

Catalan Numbers 

Objective: Find C(n), the number of ways to compute product x1 . x2 …. xn. 

n multiplication order 

2 (x1 • x2) 
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3 (x1 • (x2 • x3)) 

  ((x1 • x2) • x3) 

4 (x1 • (x2 • (x3 • x4))) 

  (x1 • ((x2 • x3) • x4)) 

  ((x1 • x2) • (x3 • x4)) 

  ((x1 • (x2 • x3)) • x4) 

  (((x1 • x2) • x3) • x4) 

Multiplying n Numbers – small n 

n C(n) 

1 1 

2 1 

3 2 

4 5 

5 14 

6 42 

7 132 

Recursive Equation: 

where is the last multiplication? 

 
1

( ) ( ) ( )
1

n
C n C k C n k

k


  
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Catalan Numbers: 
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Asymptotic value: 
3/2

4
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n

C n
n

  

   
C(n)

4   for n
C(n-1)

   
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Chain-Matrix Multiplication 

Given a chain of [A1, A2, . . . , An] of n matrices where for i = 1, 2, . . . , n, matrix Ai has 
dimension pi-1 x pi, find the order of multiplication which minimizes the number of scalar 
multiplications. 

Note: 

Order of A1 is p0 x p1,  

Order of A2 is p1 x p2,  

Order of A3 is p2 x p3, etc.  

Order of A1 x A2 x A3 is p0 x p3,  

Order of A1 x A2 x  . . . x An is p0 x pn 

Objective is to find order not multiplication 

• Given a sequence of matrices, we want to find a most efficient way to multiply these 
matrices 

• It means that problem is not actually to perform the multiplications, but decide the 
order in which these must be multiplied to reduce the cost. 

• This problem is an optimization type which can be solved using dynamic 
programming. 

• The problem is not limited to find an efficient way of multiplication of matrices, but 
can be used to be applied in various purposes. 

• But how to transform the original problem into chain matrix multiplication, this is 
another issue, which is common in systems modeling.  

Why this problem is of Optimization Category? 

• If these matrices are all square and of same size, the multiplication order will not 
affect the total cost.  

• If matrices are of different sizes but compatible for  multiplication, then order can 
make big difference.  

• Brute Force approach 
– The number of possible multiplication orders are exponential in n, and so 

trying all possible orders may take a very long time.  
• Dynamic Programming  

– To find an optimal solution, we will discuss it using dynamic programming to 
solve it efficiently. 

Assumptions (Only Multiplications Considered) 

We really want is the minimum cost to multiply. But we know that cost of an algorithm 
depends on how many number of operations are performed i.e. we must be interested to 
minimize number of operations, needed to multiply out the matrices. As in matrices 
multiplication, there will be addition as well multiplication operations in addition to other. 
Since cost of multiplication is dominated over addition therefore we will minimize the 
number of multiplication operations in this problem. In case of two matrices, there is only 
one way to multiply them, so the cost fixed.  
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Brute Force Approach 

• If we wish to multiply two matrices: A = a[i, j]p, q and B = b[i, j]q, r  
• Now if C = AB then order of C is p x r.  
• Since in each entry c[i, j], there are q number of scalar of multiplications  
• Total number of scalar multiplications in computing C = Total entries in C x Cost of 

computing a single entry = p . r . q  

• Hence the computational cost of AB = p . q . r will be      
1

, , ,
q

k

C i j A i k B k j


  

Example 
• Given a sequence [A1, A2, A3, A4] 
• Order of A1

 
=  10 x 100 

• Order of A2 =  100 x 5 
• Order of A3

 
=  5x 50 

• Order of A4
 
=  50x 20 

  
 Compute the order of the product 1 2 3 4. . .A A A A

 
in such a way that minimizes the total 

number of scalar multiplications. 

• There are five ways to parenthesize this product 
• Cost of computing the matrix product may vary, depending on order of parenthesis. 
• All possible ways of parenthesizing 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

( · ( . ( . ))) 

( · (( . ). )) 

(( · ). ( . )) 

(( · ( . )). ) 

((( · ). ). )

A A A A

A A A A

A A A A

A A A A

A A A A

 

Kinds of problems solved by algorithms 

 

First Chain: 1 2 3 4( · ( . ( . ))) A A A A  
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Second Chain:  1 2 3 4( · (( . ). )) A A A A  

 

Third Chain: 1 2 3 4(( · ). ( . )) A A A A  

 

Fourth Chain: 1 2 3 4(( · ( . )). ) A A A A  
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Fifth Chain: 1 2 3 4((( · ). ). )A A A A  

Chain Matrix Cost 

First Chain  35,000 

Second Chain 145,000 

Third Chain 11,000 

Fourth Chain 85,000 

Fifth Chain 17,500 

Generalization of Brute Force Approach 

If there is sequence of n matrices, [A1, A2, . . . , An]. Ai has dimension pi-1 x pi, where for i = 
1, 2, . . . , n. Find order of multiplication that minimizes number of scalar multiplications 
using brute force approach 

Recurrence Relation: After kth matrix, create two sub-lists, one with k and other with n - k 
matrices i.e. (A1 A2 A3 A4 A5 . . . Ak) (Ak+1Ak+2…An) 

Let P(n) be the number of different ways of parenthesizing n items 

 
   1

1

1 if 1

if 2
n

k

n
P n

P k P n k n




 
 

 

If n = 2  
 P(2) = P(1).P(1) = 1.1 = 1 

If n = 3 
 P(3) = P(1).P(2) + P(2).P(1) = 1.1 + 1.1 = 2 
 (A1 A2 A3) = ((A1 . A2). A3) OR (A1 . (A2. A3)) 
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If n = 4 
 P(4) = P(1).P(3) + P(2).P(2) + P(3).P(1) = 1.2 + 1.1 + 2.1 = 5 

 

 
   1

1

1 if 1

if 2
n

k

n
P n

P k P n k n




 
 

 

Why Brute Force Approach is not Economical? 

This is related to a famous function in combinatorics called the Catalan numbers. Catalan 
numbers are related with the number of different binary trees on n nodes.  

P(n)   (4n/n3/2) 

The dominating term is the exponential 4n thus P(n) will grow large very quickly and hence 
this approach is not economical. 
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Lecture	16	 Chain	Matrix	Multiplication	Problem	using	
Dynamic	Programming	
Problem Statement: Chain Matrix Multiplication 

Given a chain of [A1, A2, . . . , An] of n matrices where for i = 1, 2, . . . , n, matrix Ai has 
dimension pi-1 x pi, find the order of multiplication which minimizes the number of scalar 
multiplications. 

Note: 

Order of A1 is p0 x p1,  
Order of A2 is p1 x p2,  
Order of A3 is p2 x p3, etc.  
Order of A1 x A2 x A3 is p0 x p3,  
Order of A1 x A2 x  . . . x An is p0 x pn 

Why Dynamic Programming in this problem? 
• Problem is of type optimization 
• Sub-problems are dependent 
• Optimal structure can be characterized and 
• Can be defined recursively 
• Solution for base cases exits 
• Optimal solution can be constructed 
• Hence here is dynamic programming 

Dynamic Programming Formulation 

• Let i..j i i+1 jA  = A  . A  . . . A  

• Order of i i-1 iA  = p  x p  and order of j j-1 jA  = p  x p  

• Order of i..j i j i-1 jA  = rows in A  x columns in A  = p  × p  
• At the highest level of parenthesisation,  

i.. j i..k k 1.. jA   A   A                  i  k  j     

• Let m[i, j] = minimum number of multiplications needed to compute i..jA , for 1 ≤ i  ≤ j  ≤ 
n 

• Objective function = finding minimum number of multiplications needed to compute 

1..nA  i.e. to compute m[1, n] 

• Ai..j = (Ai. Ai+1….. Ak). (Ak+1. Ak+2….. Aj) = Ai..k × Ak+1..j      i ≤ k < j 

• Order of Ai..k = pi-1 x pk, and order of Ak+1..j = pk x pj,  

• m[i, k] = minimum number of multiplications needed to compute Ai..k 

• m[k+1, j] = minimum number of multiplications needed to compute Ak+1..j 

Mathematical Model 

 
      1

, 0

, min , 1, i k j
i k j

m i j

m i j m i k m k j p p p 



   
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Example: Compute optimal multiplication order for a series of matrices given below 

2050
.

505
.

5100
.

10010
4321


AAAA

 

m[1,1] m[1,2] m[1,3] m[1,4] 
  m[2,2] m[2,3] m[2,4] 
    m[3,3] m[3,4] 
      m[4,4] 

 

P0 = 10 
P1 = 100 
P2 = 5  
P3 = 50  
P4 = 20 

)..],1[],[(],[

4,...,1,0],[

1min jki
jki

pppjkmkimjim

iiim







 

Main Diagonal: 

m[1, 1] = 0 , m[2, 2] = 0 
m[3, 3] = 0 , m[4, 4] = 0 
Computing m[1, 2] 

)..],1[],[(],[ 1min jki
jki

pppjkmkimjim 


  

)..]2,1[],1[(]2,1[ 20
21

min pppkmkmm k
k




 

)..]2,2[]1,1[(]2,1[ 210min pppmmm   

 m 1,  2   0  0  10 . 100 . 5       5000     

 s 1,  2   k  1   

Computing m[2, 3] 

1[ , ] ( [ , ] [ 1, ] . . )min i k j
i k j

m i j m i k m k j p p p
 

     

1 3
2 3

[2,3] ( [2, ] [ 1,3] . . )min k
k

m m k m k p p p
 

     

1 2[2,3] ( [2, 2] [3,3] . . 3)minm m m p p p    

 m 2,  3   0  0  100 . 5 . 50       25000     

  s 2,  3   k  2   

Computing m[3, 4] 
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)..],1[],[(],[ 1min jki
jki

pppjkmkimjim 


  

)..]4,1[],3[(]4,3[ 42
43

min pppkmkmm k
k




 

)..]4,4[]3,3[(]4,3[ 432min pppmmm   

 m 3,  4   0  0  5 . 50 . 20       5000     

 s 3,  4   k  3   

Computing m[1, 3] 

)..],1[],[(],[ 1min jki
jki

pppjkmkimjim 


  

)..]3,1[],1[(]3,1[ 30
31

min pppkmkmm k
k




 

))..]3,3[]2,1[

,..]3,2[]1,1[(]3,1[

320

310min
pppmm

pppmmm




 

   
 

 

 m 1,  3   min 0 25000 10.100.50,  5000 0 10.5.50     

 min 75000,  2500   2500

s 1,  3   k  2

    

 

 

 

Computing [2,4] 

)..],1[],[(],[ 1min jki
jki

pppjkmkimjim 


  

)..]4,1[],2[(]4,2[ 41
42

min pppkmkmm k
k




 

))..]4,4[]3,2[

,..]4,3[]2,2[(]4,2[

431

421min
pppmm

pppmmm




 

   
 

 

 m 2,  4   min 0 5000 100.5.20,  25000 0 100.50.20

       min 15000,  35000   15000   

s 2,  4   k  2

    

 

 

 

Computing m[1,4] 

)..],1[],[(],[ 1min jki
jki

pppjkmkimjim 


  

)..]4,1[],1[(]4,1[ 40
41

min pppkmkmm k
k




 

)..]4,4[]3,1[,..]4,3[]2,1[

,..]4,2[]1,1[(]4,1[

430420

410min
pppmmpppmm

pppmmm




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   
 

 

 m 1,  4   min 0 15000 10.100.20,  5000 5000 1 0.5.20,  2500 0 10.50.20

        min 35000,  11000,  35000   11000   

s 1,  4   k  2

      

 

 

 

Final Cost Matrix and Its Order of Computation 

Final 
cost 
matrix 

0 5000 2500 11000 
  0 25000 15000 
    0 5000 
      0 

 

Order of 
Computation 

1 5 8 10 
  2 6 9 
    3 7 
      4 

 

k's Values 
Leading 

Minimum 
m[i, j] 

0 1 2 2 
  0 2 2 
    0 3 
      0 

 

Representing Order using Binary Tree 

• The above computation shows that the minimum cost for multiplying those four 
matrices is 11000. 

• The optimal order for multiplication is ((A1 . A2) . (A3 . A4))  
for, m(1, 4) 

k = 2 
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Chain-Matrix-Order(p) 

1. n  length[p] – 1 

2. for i  1 to n 

3.     do m[i, i]  0 

4. for l   2 to n,      

5.     do for i  1 to n-l+1   

6.         do j  i+l-1 

7.             m[i, j]   

8.             for k  i to j-1 

9.                 do q  m[i, k] + m[k+1, j] + pi-1 . pk . pj 
10.                     if q < m[i, j] 
11.                         then m[i, j] = q 
12.                             s[i, j]  k  
13. return m and s,  “l is chain length” 

Computational Cost 






 


n

i

in

k

n

i

n

ij

kijnnT
1 11 1

)()(  







n

i

inin
nnT

1 2

)1)((
)(  

)2(
2

1
)( 22

1

inininnnT
n

i

 


 

)2(
2

1
)(

111

2

11

2 



n

i

n

i

n

i
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i

n
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1
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


nn

n
nnn
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1
)( 2223233 nnnnnnnnnnnT   

)5(
6

1
)210(

12

1
)2212(

12

1
)( 333 nnnnnnnnT   

Cost Comparison Brute Force Dynamic Programming 

A simple inspection of the nested loop structure yields a running time of 3( )O n for the 
algorithm. The loops are nested three deep, and each loop index (l , i, and k) takes on at most 
n-1 values.  

Brute Force Approach:  P(n) = C(n - 1) C(n)   (4n/n3/2) 
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Generalization: Sequence of Objects 

Although this algorithm applies well to the problem of matrix chain multiplication. Many 
researchers have noted that it generalizes well to solving a more abstract problem 

• given a linear sequence of objects 
• an associative binary operation on those objects hold 
• the objective to find a way to compute the cost of performing that operation on 

any two given objects 
• and finally computing the minimum cost for grouping these objects to apply 

the operation over the entire sequence. 
It is obvious that this problem can be solved using chain matrix multiplication, because there 
is a one to one correspondence between both problems. 

Generalization: String Concatenation 

One common special case of chain matrix multiplication problem is string concatenation. 

• For example, we are given a list of strings.  

 The cost of concatenating two strings of length m and n is for example 
O(m + n) 

 Since we need O(m) time to find the end of the first string and O(n) time to 
copy the second string onto the end of it. 

 Using this cost function, we can write a dynamic programming algorithm to 
find the fastest way to concatenate a sequence of strings  

 It is possible to concatenate all in time proportional to sum of their lengths, but 
here we are interested to link this problem with chain matrix multiplication. 

Generalization: Parallel Processors 

• Another generalization is to solve the problem when many parallel processors are 
available. 

• In this case, instead of adding the costs of computing each subsequence, we just take 
the maximum, because we can do them both simultaneously.  

• This can drastically affect both the minimum cost and the final optimal grouping 
• But of course more balanced groupings that keep all the processors busy is more 

favorable solution 
• There exists some more sophisticated approaches to solve this problem 
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Lecture	17	 Assembly‐Line	Scheduling	Problem	
• There are two assembly lines each with n stations 
• The jth station on line i is denoted by Si, j  
• The assembly time at that station is ai,j.  
• An auto enters factory, goes into line i taking time ei  
• After going through the jth station on a line i, the auto goes on to the (j+1)st station on 

either line 
• There is no transfer cost if it stays on the same line 
• It takes time ti,j to transfer to other line after station Si,j  
• After exiting the nth station on a line, it takes time xi for the completed auto to exit the 

factory.  
• Problem is to determine which stations to choose from lines 1 and 2 to minimize total 

time through the factory. 

Notations: Assembly-Line Scheduling Problem 

 

Stations Si,j: 
2 assembly lines, i = 1,2 
n stations, j = 1,...,n. 
ai,j = assembly time at Si,j 
ti,j = transfer time from Si,j (to Si-1,j+1 OR Si+1,j+1) 
ei = entry time from line i 
xi = exit time from line i 

Brute Force Solution 

Total Computational Time = possible ways to enter in stations at level n x one way Cost  
Possible ways to enter in stations at level 1 = 21 
Possible ways to enter in stations at level 2 = 22 . . .  
Possible ways to enter in stations at level 2 = 2n   
Total Computational Time = n.2n 

Dynamic Programming Solution 

• Let fi[j] = fastest time from starting point station Si, j  
• f1[n] = fastest time from starting point station S1 n  
• f2[n] = fastest time from starting point station S2 n  
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• li[j] = The line number, 1 or 2, whose station j-1 is used in a fastest way through station 
Si, j . 

• It is to be noted that li[1] is not required to be defined because there is no station before 1 
• ti[j-1] = transfer time from line i to station Si-1, j or Si+1, j  
• Objective function = f* = min(f1[n] + x1, f2[n] + x2) 
• l*  = to be the line no. whose nth station is used in a fastest way. 

Notations: Finding Objective Function 

 

Mathematical Model: Finding Objective Function 

 
f1[1] = e1 + a1,1; 
f2[1] = e2 + a2,1. 
f1[j] = min (f1[j-1] + a1,j, f2[j-1] + t2,j-1 + a1,j) for j ≥ 2; 
f2[j] = min (f2[j-1] + a2,j, f1[j-1] + t1,j-1 + a2,j) for j ≥ 2; 

Complete Model: Finding Objective Function 

Base Cases 
• f1[1] = e1 + a1,1  
• f2[1] = e2 + a2,1  

Two possible ways of computing f1[j] 
• f1[j] = f2[j-1] + t2, j-1 + a1, j OR f1[j] = f1[j-1] + a1, j   

 For j = 2, 3, . . ., n 
  f1[j] = min (f1[j-1] + a1, j, f2[j-1] + t2,  j-1 + a1, j) 
Symmetrically  
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 For j = 2, 3, . . ., n 
  f2[j] = min (f2[j-1] + a2, j, f1[j-1] + t1, j-1 + a2, j)  
Objective function = f* = min(f1[n] + x1, f2[n] + x2) 

Computation of f1[2] 

 

f1[1] = e1 + a1,1 = 2 + 7 = 9 
f2[1] = e2 + a2,1 = 4 + 8 = 12 
f1[j] = min (f1[j-1] + a1, j, f2[j-1] + t2,  j-1 + a1, j) 
f2[j] = min (f2[j-1] + a2, j, f1[j-1] + t1, j-1 + a2, j) 
j = 2 
f1[2] = min (f1[1] + a1, 2, f2[1] + t2,  1 + a1, 2) 
= min (9 + 9, 12 + 2 + 9) = min (18, 23) = 18, l1[2] = 1 

Computation of f2[2] 

 

f1[1] = e1 + a1,1 = 2 + 7 = 9 
f2[1] = e2 + a2,1 = 4 + 8 = 12 
f1[j] = min (f1[j-1] + a1, j, f2[j-1] + t2,  j-1 + a1, j) 
f2[j] = min (f2[j-1] + a2, j, f1[j-1] + t1, j-1 + a2, j) 
j = 2 
f2[2] = min (f2[1] + a2, 2, f1[1] + t1, 1 + a2, 2)  
= min (12 + 5, 9 + 2 + 5) = min (17, 16) = 16,   l2[2] = 1 

Computation of f1[3] 
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f1[j] = min (f1[j-1] + a1, j, f2[j-1] + t2,  j-1 + a1, j) 
f2[j] = min (f2[j-1] + a2, j, f1[j-1] + t1, j-1 + a2, j) 
j = 3 

f1[3] = min (f1[2] + a1, 3, f2[2] + t2,  2 + a1, 3) 
   = min (18 + 3, 16 + 1 + 3)  
   = min (21, 20) = 20,   l1[3] = 2 

Computation of f2[3] 

 

f1[j] = min (f1[j-1] + a1, j, f2[j-1] + t2,  j-1 + a1, j) 
f2[j] = min (f2[j-1] + a2, j, f1[j-1] + t1, j-1 + a2, j) 
j = 3 
 f2[3] = min (f2[2] + a2, 3, f1[2] + t1, 2 + a2, 3)  
   = min (16 + 6, 18 + 3 + 6)  
   = min (22, 27) = 22,   l2[3] = 2 

Computation of f1[4] 

 
f1[j] = min (f1[j-1] + a1, j, f2[j-1] + t2,  j-1 + a1, j) 
f2[j] = min (f2[j-1] + a2, j, f1[j-1] + t1, j-1 + a2, j) 
j = 4 
 f1[4] = min (f1[3] + a1, 4, f2[3] + t2, 3 + a1, 4) 
   = min (20 + 4, 22 + 1 + 4)  
   = min (24, 27) = 24,   l1[4] = 1 

Computation of f2[4] 

 
f1[j] = min (f1[j-1] + a1, j, f2[j-1] + t2,  j-1 + a1, j) 



120 
 

f2[j] = min (f2[j-1] + a2, j, f1[j-1] + t1, j-1 + a2, j) 
j = 4 
 f2[4] = min (f2[3] + a2, 4, f1[3] + t1, 3 + a2, 4)  
   = min (22 + 4, 20 + 1 + 4)  
   = min (26, 25) = 25,     l2[4] = 1 

Computation of f1[5] 

 
f1[j] = min (f1[j-1] + a1, j, f2[j-1] + t2,  j-1 + a1, j) 
f2[j] = min (f2[j-1] + a2, j, f1[j-1] + t1, j-1 + a2, j) 
j = 5 
 f1[5] = min (f1[4] + a1, 5, f2[4] + t2, 4 + a1, 5) 
   = min (24 + 8, 25 + 2 + 8)  
   = min (32, 35) = 32,   l1[5] = 1 

Computation of f2[5] 

 
f1[j] = min (f1[j-1] + a1, j, f2[j-1] + t2,  j-1 + a1, j) 
f2[j] = min (f2[j-1] + a2, j, f1[j-1] + t1, j-1 + a2, j) 
j = 5 
 f2[5] = min (f2[4] + a2, 5, f1[4] + t1, 4 + a2, 5)  
   = min (25 + 5, 24 + 3 + 5)  
   = min (30, 32) = 30,    l2[5] = 2 

Computation of f1[6] 

 
f1[j] = min (f1[j-1] + a1, j, f2[j-1] + t2,  j-1 + a1, j) 
f2[j] = min (f2[j-1] + a2, j, f1[j-1] + t1, j-1 + a2, j) 
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j = 6 
 f1[6] = min (f1[5] + a1, 6, f2[5] + t2, 5 + a1, 6) 
   = min (32 + 4, 30 + 1 + 4)  
   = min (36, 35) = 35,   l1[6] = 2 

Computation of f2[6] 

 
f1[j] = min (f1[j-1] + a1, j, f2[j-1] + t2,  j-1 + a1, j) 
f2[j] = min (f2[j-1] + a2, j, f1[j-1] + t1, j-1 + a2, j) 
j = 6 
 f2[6] = min (f2[5] + a2, 6, f1[5] + t1, 5 + a2, 6)  
   = min (30 + 7, 32 + 4 + 7)  
   = min (37, 43) = 37,   l2[6] = 2 

Keeping Track Constructing Optimal Solution 

 f* = min (f1[6] + x1, f2[6] + x2) 
    = min (35 + 3, 37 + 2)  
    = min (38, 39) = 38 
l* = 1 
l*     = 1 => Station S1, 6 
l1[6] = 2 => Station S2, 5 
l2[5] = 2 => Station S2, 4 
l2[4] = 1 => Station S1, 3 
l1[3] = 2 => Station S2, 2 
l2[2] = 1 => Station S1, 1 

Entire Solution Set: Assembly-Line Scheduling 
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Fastest Way: Assembly-Line Scheduling 

 

l*     = 1 => Station S1, 6 
l1[6] = 2 => Station S2, 5 
l2[5] = 2 => Station S2, 4 
l2[4] = 1 => Station S1, 3 
l1[3] = 2 => Station S2, 2 
l2[2] = 1 => Station S1, 1 
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Lecture	18	 2‐Line	Assembly	Scheduling	Problem	
• There are two assembly lines each with n stations 
• The jth station on line i is denoted by Si, j  
• The assembly time at that station is ai,j.  
• An auto enters factory, goes into line i taking time ei  
• After going through the jth station on a line i, the auto goes on to the (j+1)st station on 

either line 
• There is no transfer cost if it stays on the same line 
• It takes time ti,j to transfer to other line after station Si,j  
• After exiting the nth station on a line, it takes time xi for the completed auto to exit the 

factory.  
• Problem is to determine which stations to choose from lines 1 and 2 to minimize total 

time through the factory. 
Mathematical Model Defining Objective Function 

Base Cases 
• f1[1] = e1 + a1,1  
• f2[1] = e2 + a2,1  

Two possible ways of computing f1[j] 
• f1[j] = f2[j-1] + t2, j-1 + a1, j OR f1[j] = f1[j-1] + a1, j   

 For j = 2, 3, . . ., n 
  f1[j] = min (f1[j-1] + a1, j, f2[j-1] + t2,  j-1 + a1, j) 
Symmetrically  
 For j = 2, 3, . . ., n 
  f2[j] = min (f2[j-1] + a2, j, f1[j-1] + t1, j-1 + a2, j)  
Objective function = f* = min(f1[n] + x1, f2[n] + x2) 

Dynamic Algorithm 

FASTEST-WAY(a, t, e, x, n) 
1 ƒ1[1] = e1 + a1,1 
2 ƒ2[1] = e2 + a2,1 
3 for j = 2 to n 
4      do if ƒ1[ j - 1] + a1, j ≤ ƒ2[ j - 1] + t2, j - 1 + a1, j 
5              then ƒ1[ j] = ƒ1[ j - 1] + a1, j 
6                      l1[ j] = 1 
7              else ƒ1[ j] = ƒ2[ j - 1] + t2, j - 1 + a1, j 
8                      l1[ j] = 2 
9           if ƒ2[ j - 1] + a2, j ≤ ƒ1[ j - 1] + t1, j - 1 + a 2,  j 
10 then ƒ2[ j] = ƒ2[ j - 1] + a2, j 
11                      l2[ j] = 2 
12              else ƒ2[  j] = ƒ1[  j - 1] + t1, j - 1 + a2, j 
13                      l2[  j] = 1 
14  if ƒ1[n] + x1 ≤ ƒ2[n] + x2 
15    then ƒ*

 = ƒ1[n] + x1  
16            l* = 1 
17    else ƒ*

 = ƒ2[n] + x2 
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18            l* = 2 

Optimal Solution: Constructing The Fastest Way 

1. Print-Stations (l, n) 
2.     i ← l* 
3.     print “line” i “, station” n 
4.     for j ← n downto 2 
5.             do i ← li[j] 
6.                     print “line” i “, station” j - 1  

n-Line Assembly Problem 

• There are n assembly lines each with m stations 
• The jth station on line i is denoted by Si, j  
• The assembly time at that station is ai,j.  
• An auto enters factory, goes into line i taking time ei  
• After going through the jth station on a line i, the auto goes on to the (j+1)st station on 

either line 
• It takes time ti,j to transfer from line i, station j to line i’ and station j+1  
• After exiting the nth station on a line i, it takes time xi for the completed auto to exit 

the factory.  
• Problem is to determine which stations to choose from lines 1 to n to minimize total 

time through the factory. 

n-Line: Brute Force Solution 

 

Total Computational Time = possible ways to enter in stations at level n x one way Cost  
Possible ways to enter in stations at level 1 = n1 
Possible ways to enter in stations at level 2 = n2 . . .  
Possible ways to enter in stations at level m = nm   
Total Computational Time = (m.mn) 

Dynamic Solution 

Notations: n-Line Assembly 
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• Let fi[j] = fastest time from starting point to station Si, j  
• f1[m] = fastest time from starting point to station S1 m  
• f2[m] = fastest time from starting point to station S2,m  
• fn[m] = fastest time from starting point to station Sn,m  
• li[j] = The line number, 1 to n, whose station j-1 is used in a fastest way through 

station Si’, j  
• ti[j-1] = transfer time from station Si, j-1 to station Si,, j  
• a[i, j] = time of assembling at station Si, j  
• f* = is minimum time through any way 
• l* = the line no. whose mth station is used in a fastest way 

Possible Lines to reach Station S(i, j) 

 

Time from  Line 1, f[1, j-1] + t[1, j-1] + a[i, j] 
Time from  Line 2, f[2, j-1] + t[2, j-1] + a[i, j] 
Time from  Line 3, f[3, j-1] + t[3, j-1] + a[i, j] 
. . .  
Time from  Line n, f[n, j-1] + t[n, j-1] + a[i, j] 

Values of f(i, j) and l* at Station S(i, j) 

f[i, j] = min{f[1, j-1] + t[1, j-1] + a[i, j], f[2, j-1] + t[2, j-1] + a[i, j], . . , f[n, j-1] + t[n, j-1] + 
a[i, j]} 
f[1, 1] = e1 + a[1, 1]; f [2, 1] = e2 + a[2, 1], … ,f [n, 1] = en + a[n, 1] 
f* = min{f[1, n] +x1, f[2, n] + x2, . . , f[n, m] + xn} 
l* = line number of mth station used 

n-Line Assembly: Dynamic Algorithm 

FASTEST-WAY(a, t, e, x, n, m) 

1 for i ← 1 to n  
2  ƒ[i,1] ←e[i] + a[i,1] 
3 for j ← 2 to m 
4       for i ← 1 to n  
5  ƒ[i, j]  f[1, j-1] + t[1, j-1] + a[i, j]  
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6   L[1, j] = 1 
7  for k  2 to n 
8                  if f[i,j] > f[k, j-1] + t[2, j-1] + a[i, j]  
9       then f[i,j]  f[k, j-1] + t[2, j-1] + a[i, j] 
                      L[i, j] = k 
10                 end if 
11 ƒ*  ƒ[1, m] + x[1]  
12 l* = 1 
13 for k  2 to n 
14             if f* > f[k, m] + x[k] 

15 then ƒ*  ƒ[k, m] + x[k]  
16 l* = k 

Constructing the Fastest Way: n-Line 

1. Print-Stations (l*, m) 
2.     i ← l* 
3.     print “line” i “, station” m 
4.     for j ← m downto 2 
5.             do i ← li[j] 
6.                     print “line” i “, station” j - 1  

Generalization: Cyclic Assembly Line Scheduling  

Title: Moving policies in cyclic assembly line scheduling 

Source: Theoretical Computer Science, Volume 351,  Issue (February 2006)  

Summary: Assembly line problem occurs in various kinds of production automation. In this 
paper, originality lies in the automated manufacturing of PC boards. 

• In this case, the assembly line has to process number of identical work pieces in a 
cyclic fashion. In contrast to common variant of assembly line scheduling. 

• Each station may process parts of several work-pieces at the same time, and parts of a 
work-piece may be processed by several stations at the same time. 

Application: Multiprocessor Scheduling 

• The assembly line problem is well known in the area of multiprocessor scheduling.  
• In this problem, we are given a set of tasks to be executed by a system with n identical 

processors. 
• Each task, Ti, requires a fixed, known time pi to execute. 
• Tasks are indivisible, so that at most one processor may be executing a given task at 

any time  
• They are un-interruptible, i.e., once assigned a task, may not leave it until task is 

complete. 
• The precedence ordering restrictions between tasks may be represented by a tree or 

forest of trees 
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Lecture	19	 0‐1	Knapsack	Problem	using	Dynamic	
Programming	
General Knapsack Problem 

• Given a set of items, each with a cost and a value, then determine the items to include 
in a collection so that the total cost is less than some given cost and the total value is 
as large as possible. 

• Knapsack problem is of combinatorial optimization 

• It derives its name from the maximization problem of choosing possible essentials 
that can fit into one bag, of maximum weight, to be carried on a trip.  

• A similar problem very often appears in business, complexity theory, cryptography 
and applied mathematics. 

0-1 Knapsack Problem Statement 

 The knapsack problem arises whenever there is resource allocation with no financial 
constraints 

Problem Statement 

A thief robbing a store and can carry a maximal weight of W into his knapsack. There are n 
items and ith item weight is wi and worth is vi dollars. What items should thief take, not 
exceeding the bag capacity, to maximize value? 

Assumption:  

The items may not be broken into smaller pieces, so thief may decide either to take an item or 
to leave it, but may not take a fraction of an item. 

0-1 Knapsack Problem (Another Statement) 

Problem Statement 

You are in Japan on an official visit and want to make shopping from a store (Best Denki). A 
list of required items is available at the store. You are given a bag (knapsack), of fixed 
capacity, and only you can fill this bag with the selected items from the list. Every item has a 
value (cost) and weight and your objective is to seek most valuable set of items which you 
can buy not exceeding bag limit. 

Assumption: Each item must be put entirely in the knapsack or not included at all that is why 
the problem is called 0-1 knapsack problem  

Remarks: Because an item cannot be broken up arbitrarily, so it is its 0-1 property that makes 
the knapsack problem hard. If an item can be broken and allowed to take part of it then 
algorithm can be solved using greedy approach optimally 

Notations: 0-1 Knapsack Problem Construction 
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• You have prepared a list of n objects for which you are interested to buy, The items 
are numbered as i1, i2, . . ., in 

• Capacity of bag is W 
• Each item i has value vi, and weigh wi 
• We want to select a set of items among i1, i2, . . ., in which do not exceed (in total 

weight) capacity W of the bag 
• Total value of selected items must be maximum   
• How should we select the items? 

Model: 0-1 Knapsack Problem Construction 

Formal Construction of Problem 

• Given a list: i1, i2, . . ., in, values: v1, v2, . . ., vn and  weights: w1, w2, . . ., wn 

respectively 

• Of course W  0, and we wish to find a set S of items such that S  {i1, i2, . . ., in} that 

maximizes 
Si

iv subject to 



Si

i Ww . 

Brute Force Solution 

• Compute all the subsets of {i1, i2, . . ., in}, there will be 2n number of subsets. 
• Find sum of the weights of total items in each set and list only those sets whose sum 

does not increase by W (capacity of knapsack) 
• Compute sum of values of items in each selected list and find the highest one  
• This highest value is the required solution 
• The computational cost of Brute Force Approach is exponential and not economical 
• Find some other way! 

Divide and Conquer Approach 

Approach 

• Partition the knapsack problem into sub-problems 
• Find the solutions of the sub-problems 
• Combine these solutions to solve original problem 

Comments 

• In this case the sub-problems are not independent 
• And the sub-problems share sub-sub-problems 
• Algorithm repeatedly solves common sub-sub-problems and takes more effort than 

required 
• Because this is an optimization problem and hence dynamic approach is another 

solution if we are able to construct problem dynamically 

Steps in Dynamic Programming 

Step1 (Structure):  
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• Characterize the structure of an optimal solution 
• Next decompose the problem into sub-problems 
• Relate structure of the optimal solution of original problem and solutions of sub-

problems 

Step 2 (Principal of Optimality)  

• Define value of an optimal solution recursively 
• Then express solution of the main problem in terms of optimal solutions of sub-

problems. 

Step3 (Bottom-up Computation):  

In this step, compute the value of an optimal solution in a bottom-up fashion by using 
structure of the table already constructed. 

Step 4 (Construction of an Optimal Solution)  

Construct an optimal solution from the computed information based on Steps 1-3. 

Note: Sometime people combine the steps 3 and 4. Step 1-3 form basis of dynamic problem. 
Step 4 may be omitted if only optimal solution of the problem is required 

Mathematical Model: Dynamic Programming 

Step1 (Structure): 

• Decompose problem into smaller problems 
• Construct an array V[0..n, 0..W] 
• V[i, w] = maximum value of items selected from {1, 2,. . ., i}, that can fit into a bag 

with capacity w, where 1 ≤ i ≤ n, 1 ≤ w ≤ W 
• V[n, W] = contains maximum value of the items selected from {1,2,…,n} that can fit 

into the bag with capacity W storage 
• Hence V[n, W] is the required solution for our knapsack problem 

Step 2 (Principal of Optimality)  

• Recursively define value of an optimal solution in terms of solutions to sub-problems 
 Base Case: Since 

• V[0, w] = 0, 0 ≤ w ≤ W, no items are available 
• V[0, w] = -, w < 0, invalid 
• V[i, 0] = 0, 0 ≤ i ≤ n, no capacity available 

 Recursion:   
 V[i, w] = max(V[i-1, w], vi + V[i-1, w - wi])  
    for 1 ≤ i ≤ n, 0 ≤ w ≤ W  

Proof of Correctness 

Prove that: V[i, w] = max(V[i-1, w], vi + V[i-1, w - wi]) for 1 ≤ i ≤ n, 0 ≤ w ≤ W 
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Proof: 

To compute V[i, w], we have only two choices for i 
1. Do not Select Item i 
 Items left = {1,2,. . . , i - 1} and  
 storage limit = w, hence 
 Max. value, selected from {1,2, …,i} = V[i-1,w], (1) 

2. Select Item i (possible if wi ≤ w) 

 In this way, we gain value vi but use capacity wi  
 Items left = {1,2,. . . , i-1}, storage limit = w - wi,  
 Max. value, from items {1,2, …,i-1} = V[i-1,w – wi] 
 Total value if we select item i = vi + V[i-1,w – wi] 
 Finally, the solution will be optimal if we take the maximum of  

V[i-1,w] and  
vi + V[i-1,w – wi] 

 Hence V[i, w] = max(V[i-1,w], vi + V[i-1,w – wi] 

Problem: Developing Algorithm for Knapsack 

i 1 2 3 4
vi 10 40 30 50
wi 5 4 6 3

Capacity: 10 

V[1, 1] = 0,  V[1, 2] = 0, V[1, 3] = 0,  V[1, 4] = 0 

V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
V[1, 5] = max(V[0, 5], v1 + V[0, 5 – w1]); 

         = max(V[0, 5], 10 + V[0, 5 - 5]) 
          = max(V[0, 5], 10 + V[0, 0]) 
          = max(0, 10 + 0) = max(0, 10) = 10 
Keep(1, 5) = 1 

V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
V[1, 6] = max(V[0, 6], v1 + V[0, 6 – w1]); 
          = max(V[0, 6], 10 + V[0, 6 - 5]) 
          = max(V[0, 6], 10 + V[0, 1]) 
          = max(0, 10 + 0) = max(0, 10) = 10,  

V[1, 7] = max(V[0, 7], v1 + V[0, 7 – w1]); 
          = max(V[0, 7], 10 + V[0, 7 - 5]) 
          = max(V[0, 7], 10 + V[0, 2]) 
          = max(0, 10 + 0) = max(0, 10) = 10 
Keep(1, 6) = 1; Keep(1, 7) = 1 
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V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 

V[1, 8] = max(V[0, 8], v1 + V[0, 8 – w1]); 
          = max(V[0, 8], 10 + V[0, 8 - 5]) 
          = max(V[0, 8], 10 + V[0, 3]) 
          = max(0, 10 + 0) = max(0, 10) = 10 

V[1, 9] = max(V[0, 9], v1 + V[0, 9 – w1]); 
          = max(V[0, 9], 10 + V[0, 9 - 5]) 
          = max(V[0, 7], 10 + V[0, 4]) 
          = max(0, 10 + 0) = max(0, 10) = 10 

Keep(1, 8) = 1; Keep(1, 9) = 1 
V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
V[1, 10] = max(V[0, 10], v1 + V[0, 10 – w1]); 
          = max(V[0, 10], 10 + V[0, 10 - 5]) 
          = max(V[0, 10], 10 + V[0, 5]) 
          = max(0, 10 + 0) = max(0, 10) = 10 
Keep(1, 10) = 1 

V[2, 1] = 0;  V[2, 2] = 0;  V[2, 3] = 0;  

V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
V[2, 4] = max(V[1, 4], v2 + V[1, 4 – w2]); 
          = max(V[1, 4], 40 + V[1, 4 - 4]) 
          = max(V[1, 4], 40 + V[1, 0]) 
          = max(0, 40 + 0) = max(0, 40) = 40 

V[2, 5] = max(V[1, 5], v2 + V[1, 5 – w2]); 
          = max(V[1, 5], 40 + V[1, 5 - 4]) 
          = max(V[1, 5], 40 + V[1, 1]) 
          = max(10, 40 + 0) = max(0, 40) = 40 
Keep(2, 4) = 1; Keep(2, 5) = 1 

V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 

V[2, 6] = max(V[1, 6], v2 + V[1, 6 – w2]); 
          = max(V[1, 6], 40 + V[1, 6 - 4]) 
          = max(V[1, 6], 40 + V[1, 2]) 
          = max(10, 40 + 0) = max(10, 40) = 40 

V[2, 7] = max(V[1, 7], v2 + V[1, 7 – w2]); 
          = max(V[1, 7], 40 + V[1, 7 - 4]) 
          = max(V[1, 7], 40 + V[1, 2]) 
          = max(10, 40 + 0) = max(10, 40) = 40 

V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
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V[2, 8] = max(V[1, 8], v2 + V[1, 8 – w2]); 
          = max(V[1, 8], 40 + V[1, 8 - 4]) 
          = max(V[1, 8], 40 + V[1, 4]) 
          = max(10, 40 + 0) = max(10, 40) = 40 

V[2, 9] = max(V[1, 9], v2 + V[1, 9 – w2]); 
          = max(V[1, 9], 40 + V[1, 9 - 4]) 
          = max(V[1, 9], 40 + V[1, 5]) 
          = max(10, 40 + 10) = max(10, 50) = 50 

V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
V[2, 10] = max(V[1, 10], v2 + V[1, 10 – w2]); 
          = max(V[1, 10], 40 + V[1, 10 - 4]) 
          = max(V[1, 10], 40 + V[1, 6]) 
          = max(10, 40 + 10) = max(10, 50) = 50 
 

V[3, 1] = 0;  V[3, 2] = 0; V[3, 3] = 0; 

V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
V[3, 4] = max(V[2, 4], v3 + V[2, 4 – w3]); 
          = max(V[2, 4], 30 + V[2, 4 - 6]) 
          = max(V[2, 4], 30 + V[2, -2])  = V[2, 4] = 40 

V[3, 5] = max(V[2, 5], v3 + V[2, 5 – w2]); 
          = max(V[2, 5], 30 + V[2, 5 - 6]) 
          = max(V[2, 5], 30 + V[2, -1]) 
          = V[2, 5] = 40 

V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
V[3, 6] = max(V[2, 6], v3 + V[2, 6 – w3]); 
          = max(V[2, 6], 30 + V[2, 6 - 6]) 
          = max(V[2, 6], 30 + V[2, 0])  
          = max(V[2, 6], 30 + V[2, 0])  
          = max(40, 30) = 40 

V[3, 7] = max(V[2, 7], v3 + V[2, 7 – w3]); 
          = max(V[2, 7], 30 + V[2, 7 - 6]) 
          = max(V[2, 7], 30 + V[2, 1])  
          = max(V[2, 7], 30 + V[2, 1])  
          = max(40, 30) = 40 

V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
V[3, 8] = max(V[2, 8], v3 + V[2, 8 – w3]); 
          = max(V[2, 8], 30 + V[2, 8 - 6]) 
          = max(V[2, 8], 30 + V[2, 2])  
          = max(V[2, 8], 30 + V[2, 2])  
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          = max(40, 30 + 0) = 40 

V[3, 9] = max(V[2, 9], v3 + V[2, 9 – w3]); 
          = max(V[2, 9], 30 + V[2, 9 - 6]) 
          = max(V[2, 9], 30 + V[2, 3])  
          = max(V[2, 9], 30 + V[2, 3])  
          = max(50, 30 + 0) = 50 

V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
V[3, 10] = max(V[2, 10], v3 + V[2, 10 – w3]); 
          = max(V[2, 10], 30 + V[2, 10 - 6]) 
          = max(V[2, 10], 30 + V[2, 4])  
          = max(V[2, 10], 30 + V[2, 4])  
          = max(50, 30 + 40) = 70 

V[4, 1] = 0; V[4, 2] = 0; 

V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
V[4, 3] = max(V[3, 3], v4 + V[3, 3 – w4]); 
          = max(V[3, 3], 50 + V[3, 3 - 3]) 
          = max(V[3, 3], 50 + V[3, 3 - 3])   
          = max(V[3, 3], 50 + V[3, 0])  = max(0, 50) = 50 

V[4, 4] = max(V[3, 4], v4 + V[3, 4 – w4]); 
          = max(V[3, 4], 50 + V[3, 4 - 3]) 
          = max(V[3, 4], 50 + V[3, 4 - 3])   
          = max(V[3, 4], 50 + V[3, 1])   
          = max(40, 50) = 50 

V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
V[4, 5] = max(V[3, 5], v4 + V[3, 5 – w4]); 
          = max(V[3, 5], 50 + V[3, 5 - 3]) 
          = max(V[3, 5], 50 + V[3, 5 - 3])   
          = max(V[3, 5], 50 + V[3, 2])   
          = max(40, 50) = 50 

V[4, 6] = max(V[3, 6], v4 + V[3, 6 – w4]); 
          = max(V[3, 6], 50 + V[3, 6 - 3]) 
          = max(V[3, 6], 50 + V[3, 6 - 3])   
          = max(V[3, 6], 50 + V[3, 3])   
          = max(40, 50) = 50 

V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
V[4, 7] = max(V[3, 7], v4 + V[3, 7 – w4]); 
          = max(V[3, 7], 50 + V[3, 7 - 3]) 
          = max(V[3, 7], 50 + V[3, 7 - 3])   
          = max(V[3, 7], 50 + V[3, 4])   
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          = max(40, 50 + 40) = 90 

V[4, 8] = max(V[3, 8], v4 + V[3, 8 – w4]); 
          = max(V[3, 8], 50 + V[3, 8 - 3]) 
          = max(V[3, 8], 50 + V[3, 8 - 3])   
          = max(V[3, 8], 50 + V[3, 5])   
          = max(40, 50 + 40) = 90 

V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
V[4, 9] = max(V[3, 9], v4 + V[3, 9 – w4]); 
          = max(V[3, 9], 50 + V[3, 9 - 3]) 
          = max(V[3, 9], 50 + V[3, 9 - 3])   
          = max(V[3, 9], 50 + V[3, 6])   
          = max(50, 50 + 40) = 90 

V[4, 10] = max(V[3, 10], v4 + V[3, 10 – w4]); 
          = max(V[3, 10], 50 + V[3, 10 - 3]) 
          = max(V[3, 10], 50 + V[3, 10 - 3])   
          = max(V[3, 10], 50 + V[3, 7])   
          = max(70, 50 + 40) = 90;  Keep(4, 10) = 1 
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Lecture	20	0‐1	Knapsack	Problem’s	Algorithm	(using	Dynamic	
Programming)	and	Optimal	Weight	Triangulation	
Optimal Value: Entire Solution 

i 1 2 3 4
vi 10 40 30 50
wi 5 4 6 3

 

Let W = 10 

Final Solution: V[4, 10] = 90 

Items selected  = {2, 4} 

V[i, w] 
W = 

0 
1 2 3 4 5 6 7 8 9 10 

i = 0 0 0 0 0 0 0 0 0 0 0 0 
i = 1 0 0 0 0 0 10 10 10 10 10 10 
i = 2 0 0 0 0 40 40 40 40 40 50 50 
i = 3 0 0 0 0 40 40 40 40 40 50 70 
i = 4 0 0 0 50 50 50 50 90 90 90 90 

Constructing Optimal Solution 

V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
i = 4 
  V[4, 10] = max(70, 50 + 40) = 90;   Keep(4, 10) = 1 
i = 3 
  V[3, 10 - 3] = V[3, 7] = max(40, 30) = 40 Keep(3, 7) = 0 
i = 2 
  V[2, 7] = max(10, 40) = 40    Keep(2, 7) = 1 
i = 1 
  V[1, 7-4] = V[1, 3] = 0   Keep(1, 3) = 0 

Algorithm: Dynamic Programming 

KnapSack (v, w, n, W) 
for (i = 1 to n), V[i, 0] = 0; 
for (j = 0 to W), V[0, j] = 0; 
 for (i = 1 to n) 
  for (j = 1 to W) 
  if (w(i) ≤ j) 
   V[i, j] = max(V[i-1, j], vi + V[i-1, j – wi]); 
  else  
   V[i, j] = V[i-1, j]; 
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Return V[n, W] 

Time Complexity: O(n.W) 

Output Elements: Knapsack Algorithm 

How do we use all values keep[i, w], to determine a subset S of items having the maximum 
value? 

• If keep[n, w] is 1, then n  S, and we can repeat for  keep[n-1, W - wn] 

• If keep[n, w] is 0, then n S  and we can repeat for  keep[n-1, W]  

• Following is a partial program for this output elements 

  K = W; 
  for (i = n down to 1) 
   if keep[i, K] = = 1 
    output i 
    K = K – wi 

Complete: Dynamic Programming Algorithm 

KnapSack(v, w, n, W) 
for (w = 0 to W), V[0, w] = 0;  for (i = 1 to n), V[i, 0] = 0; 
for (i = 1 to n) 
  for (w = 1 to W) 
  if ((w(i) ≤ w) and (vi + V[i-1,w – wi] > V[i-1,w]))  
    V[i, w] = (vi + V[i-1,w – wi]; 
   keep[i, w] = 1; 
  else  
   V[i, w] = V[i-1,w]; 
   keep[i, w] = 0; 
K = W; 
  for (i = n down to 1) 
   if keep[i, K] = = 1 
    output i 
    K = K – wi 
Return V[n, W] 
 

1. Generalizations (xi  {0, 1}) 

• Common to all versions are a set of n items, with each item 1 ≤ j ≤ n having an 
associated profit pj and weight wj.  

• The objective is to pick some of the items, with maximal total profit, obeying that 
maximum total weight limit W.  
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• Generally, coefficients are scaled to become integers, and they are almost always 
assumed to be positive. 

• The knapsack problem in its most basic form: 

 maximize  


n

i
ii xp

1

 

   subject to Wxw
n

i
ii 

1

 

      xi  {0, 1},   1 ≤ i ≤ n 
2.  Specialization (weight = profit) 

• If for each item the profit and weight are identical, we get the subset sum problem  
• Often called the decision problem 

 maximize  


n

i
ii xp

1

 

   subject to Wxp
n

i
ii 

1

 

      xi  {0, 1},   1 ≤ i ≤ n 
3.  Generalizations (more than one objects)  

• If each item can be chosen multiple times, we get the bounded knapsack problem.  
• Suppose, weight of each item is at least 1 unit, then we can never choose an item 

more than W times. 
• This is another variation in the basic form 
• Now the problem will become  

 maximize  


n

i
ii xp

1

 

   subject to Wxw
n

i
ii 

1

 

    xi  {0, 1,  . . ., W},   1 ≤ i ≤ n 

4.  Generalizations (K Classes) 

• If the items are subdivided into k classes denoted Ni  
• And exactly one item must be taken from each class 
• We get the multiple choice knapsack problem 
• In this case our optimized mathematical model is 

 maximize  
 

k

i
ijij

Nj
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i1
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iNj

ij
1

 
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Wxw
n

i
ijij

Nj i

 

              1 ≤ i ≤ k 

   xij  {0, 1},   1 ≤ i ≤ k, j  Ni 

5.  Generalizations (more than one knapsacks) 
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• If there are n items, m knapsacks with capacities Wi  
• We get the multiple knapsack problem 

  

 maximize  


n

j
ijj

m

i

xp
11

 

   subject to  mi1                           
1




i

n

j
ijj Wxw  

                 1 ≤ j ≤ n 
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  xij  {0, 1},  1 ≤ i ≤ m and 1 ≤ j ≤ n 

6. Item’s Different Weight in Different  Knapsack) 

• If in the multiple knapsack problem, the weights are not the same in every container  
• We are allowed to choose each item multiple times, we get multiple constrained 

knapsack problem 

 maximize  


n

j
jj xp

1

 

   subject to  mi1                 
1




i

n

j
jij Wxw  

   Zx  jj    0,x  

Optimal Weight Triangulation 

Why Polygon Triangulation? 

• Finite element method is a technique for solving numerical problems e.g.  stress or 
heat flow simulations of any kind of systems 

• It involves dividing a shape into simple elements for example triangles 

• Then formulating a set of linear equations describing relations between simulated 
quantities in each element, and solving these equations.  

• The time and accuracy both, in solution, depend on the quality of dividing into 
triangles 

• Generally, it is desired that triangles must be as close to equilateral as possible 

Similarity: Optimal Polygon Triangulation, other Problem 

• Optimal triangulation problem is very similar to matrix chain multiplication 

• It is an excellent approach to make one to one corresponding between two problems 
and  

• Then solving one problem based on the approach already used in the solution of the 
other problem 
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• This is what we are going to do in solving an optimal solution of the triangulation 
problem which is very popular in computational geometry  

• Applications of this problem can be observed in many other areas where division of 
structures is required before performing computation over it. 

Basic Concepts 

Polygon: A set of finite piecewise-linear, closed curve in a plane is called a polygon 

Sides: The pieces of the polygon are called its sides 

Vertex: A point joining two consecutive sides is called a vertex 

Interior: The set of points in the plane enclosed by a simple polygon forms interior of the 
polygon 

Boundary: The set of point on the polygon forms its boundary 

Exterior: The set of points surrounding the polygon form its exterior 

Simple Polygon: A polygon is simple if it does not cross itself, i.e., if its sides do not intersect 
one another except for two consecutive sides sharing a common vertex.  

Subdivision of Polygon: A simple polygon subdivides the plane into its interior, its boundary 
and its exterior. 

Convex Polygon: A simple polygon is convex if given any two points on its boundary or in 
its interior, all points on the line segment drawn between them are contained in the polygon’s 
boundary or interior. 

Polygons 
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Labeling Convex Polygons 

For a convex polygon, it is assumed that its vertices are labeled in counterclockwise order 

0 1 2 1, , ,..., nP v v v v   

We assume that indexing is done modulo n, so 0 nv v  and the above polygon P has n number 

of vertices  

 

Chords in Polygons 

• Given two non-adjacent vertices vi,vj of a convex polygon (i < j), the line segment vivj 
is called a chord. 

• For two non-adjacent vertices vi and vj of a simple polygon (i < j), line segment vivj is 
a chord if interior of the segment lies entirely in the interior of polygon 

• Any chord subdivides a polygon into two polygons 

 

Optimal Weight Triangulation Problem 

• A triangulation of a convex polygon is a maximal set T of pair-wise non-crossing 
chords, i.e., every chord not in T intersects the interior of some chord in T  

• It is easy to see that such a set subdivides interior of  polygon into a collection of 
triangles, pair-wise disjoint 

Problem Statement 
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 Given a convex polygon, determine a triangulation that minimizes sum of the 
perimeters of its triangles 
Analysis 

• Given three distinct vertices, vi, vj and vk.  
• Define a weight of associated triangle by a function 

 w(vi, vj, vk) =  |vi vj | + |vj vk | + |vk vi |, 
   where |vi vj | denotes length of line segment (vi, vj). 

Brute Force Triangulation: Triangulation 

• In general, given a convex polygon, there are exponential number of possible 
triangulations. 

• There are many criteria that are used depending on application. For example, you 
have to minimize the value of cable in designing such triangulation 

• This suggests the optimal solution to this problem 

 

Dual Graphs 

• Dual graph of a triangulation is a graph whose vertices are the triangles, and in which 
two vertices are adjacent if the corresponding both triangles share a common chord 

• It is to be noted that dual graph is a tree. And hence algorithms for traversing trees can 
be used for traversing the triangles of that triangulation 

 

Observations in Dual Graph 

• Each internal node corresponds to one triangle 
• Each edge between internal nodes corresponds to one chord of triangulation. 
• Now for given n-vertex polygon 

 n-2 internal nodes which are in fact triangles and  
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 n-3 edges which are chords 

Proof of Lemmas 

Lemma 1:  A triangulation of a simple polygon, with n vertices, has n-2 number of 
triangles. 

Proof: Proof is done using mathematical induction 

Basis Step 

Suppose that there three vertices, polygon will be a triangle, i.e. there are 3 - 2 = 1 number of 
triangles. Hence statement is true for n = 3  

If there are 4 vertices, polygon will be in fact a rectangle, divide it into two triangles. The 
result is true. Hence statement is true for n = 4 

Inductive Hypothesis 

Let us suppose that statement is true for n = k, i.e., if there are k vertices then there are k-2 
number of triangles 

Claim: Now we have to prove that if there are k+1 vertices there must be k+1-2 = k-1, 
number of triangles. 

Since for k vertices there are k-2 triangles. Insert one more point at boundary of polygon 

In fact point will be inserted at boundary of one of the triangles. So the triangle will become 
rectangle. Divide it into two triangles. It will increase one more triangle in the division. 
Hence it becomes;               k – 2 + 1 = k - 1, number of triangles.  

It proves the claim. Hence by mathematical induction it proves that for n number of vertices 
there are n - 2 number of triangles. 

Lemma 2: A triangulation of a simple polygon, with n vertices, has n-3 chords. 

Proof 

If there are three points, it will be triangle. To make a chord in a polygon, it requires at least 
four points. So we have to give proof for n ≥ 4. 

Basis Step 

Suppose that there are four number of vertices, in this case polygon will be a rectangle, there 
must be 4 - 3 = 1 number of chords. Hence statement is true for n = 4 

Inductive Hypothesis 

Let us suppose that the statement is true for n = k, i.e., if there are k vertices then there are k - 
3 number of chords of the polygon.  
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Claim 

Now we have to prove that if there are k+1 vertices there must be k+1-3 = k-2, number of 
chords. 

Since for k vertices there are k-3 chords. Insert one more point at boundary of polygon 

In fact point will be inserted at boundary of one of the triangles. So the triangle will become 
rectangle. Divide it into two triangles. It will increase one more chord in the division. Hence 
it becomes k – 3 + 1 = k - 2, number of chords. Proved.  

Correspondence to Binary Trees 

Relationship between optimal triangulation and chain matrix multiplication problem 

 

• In chain matrix multiplication, associated binary tree is the evaluation tree for the 
multiplication, where the leaves of the tree correspond to the matrices, and each node 
of the tree is associated with a product of a sequence of two or more matrices. 

• Now let us consider an (n+1) sided convex polygon, P = <v0, v1, . . ,vn> and fix one 
side of it as (v0 ,vn)  

• Consider a rooted binary tree whose: 
root node = is the triangle containing side (v0 ,vn),  
internal nodes = are nodes of the dual tree, and  
leaves = are remaining sides of the tree.   

• This partitioning of polygon is equivalent to a binary tree with n-1 leaves, and vice 
versa. 

Dynamic Programming Solution 

• Let t[i, j] = minimum weight triangulation for the sub-polygon <vi-1, vi ,…, vj>, for 1  
i  j  n 
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• We have start with vi-1 rather than vi, to keep the structure as similar as matrix chain 
multiplication 

• It is to be noted that if we can compute t[i, j] for all i  and  j (1  i  j  n), then the 
weight of minimum weight triangulation of the entire polygon will be t[1, n]. Hence it 
is our objective function.  

• For the base case t[i, i] = 0, for line (vi-1, vi). 

Optimal Substructure 

t[i, j] = weight of an optimal triangulation of polygon <vi-1,vi,…,vj>. 
t[i, j] = mink { t[i, k] + t[k+1, j] + w(∆vi-1 vk vj) }, i < j  
t[i, i] = 0 

i  k   j-1 

 

• In general, to compute t[i, j], consider the sub-polygon <vi-1, vi ,…, vj>, where i  j.   
• One of the chords of this polygon is the side (vi-1, vj). 
•  We may split this sub-polygon by introducing a triangle whose base is this chord, and 

whose third vertex is any vertex vk, where i  k   j-1.   
• This subdivides the polygon into 2 sub-polygons <vi-1,...vk> and <vk+1,... vj>, whose 

minimum weights are t[i, k] and t[k+1, j]. 
• It leads to following recursive rule computing t[i, j] 

      t[i, i] = 0 

 t[i, j] = mini  k  j-1 (t[i, k] + t[k+1, j] + w(vi-1vkvj )) for i < j   
 
Algorithm 

t[1,1] t[1,2] . . . t[1,n] 
  t[2,2] . . . t[2,n] 
    . . . . . . 
      t[n, n] 

t[i, j] = mini < k < j (t[i, k] + t[k, j] + w(vi vj vk))        if i < j; 
t[i, j] = 0 if i = j. 
function min_weight_tri(p[ ], n) 
1.   for i ←� 1 to n do 
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2.              t[i, i] ← 0; 
3.   for l ← 2 to n do 
4.              for i ← 1 to n – l+1 do 
5.                           j ← i + l-1; 
6.                          t[i, j] ← ∞; 
7.                          for k ← i  to j - 1 do 
8.                                        q ← t[i, k] + t[k+1, j] + w(vi vj vk); 
9.                                        if (q < t[i, j]) then 
10.                                                   t[i, j] ← min(t[i, j], q); 
11.                                                   v[i, j] ← k; 
12.   return( t(1, n) ); 

Computational Cost 
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Lecture	21	 Optimal	Weight	Triangulation	
Longest Common Subsequence Problem 

In biological applications, we often want to compare the DNA of two (or more) different 
organisms. A part of DNA consists of a string of molecules called bases, where the possible 
bases are adenine, guanine, cytosine, and thymine. Represent each of the bases by their initial 
letters. A part of DNA can be expressed as a string over the finite set {A, C, G, T}. 

For example, the DNA of one organism may be 

S1= CCGGTCGAGTGCGCGGAAGCCGGCCGAA, while the DNA of another organism 
may be  

S2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA.  

One goal of comparing two parts of DNA is to determine how “similar” two parts are, OR 
measure of how closely related two organisms are. As we know that similarity is an 
ambiguous term and can be defined in many different ways. Here we give some ways of 
defining it with reference to this problem. 

An Introduction: Similarity 

For example, we can say that two DNA parts are similar if one is a substring of the other. In 
our case, neither S1 nor S2 is a substring of the other. This will be discussed in string 
matching. Alternatively, we could say two parts are similar if changes needed to turn one to 
other is small. Another way to measure similarity is by finding third part S3 in which bases in 
S3 appear in both S1, S2. Bases must preserve order, may not consecutively. Longer S3 we 
can find, more similar S1 and S2 are.  In above, S3 is GTCGTCGGAAGCCGGCCGAA. 

What is a Subsequence? 

In mathematics, a subsequence of some sequence is a new sequence which is formed from 
original one by deleting some elements without disturbing the relative positions of the 
remaining elements. 

Examples: < B,C,D,B > is a subsequence of  
< A,C,B,D,E,G,C,E,D,B,G > , with corresponding index sequence <3,7,9,10>. 

< D, E, E, B > is also a subsequence of the same < A,C,B,D,E,G,C,E,D,B,G > ,  
 with corresponding index sequence <4,5,8,10>. 

Longest Common Subsequence 

The sequence Z = (B, C, A) is a subsequence of X = (A, B, C, B, D, A, B). 
The sequence Z = (B, C, A) is also a subsequence of Y = (B, D, C, A, B, A). 
Of course, it is a common subsequence of X and Y. But the above sequence is not a longest 
common subsequence  This is because the sequence Z’ = (B, D, A, B) is a longer 
subsequence of X = (A, B, C, B, D, A, B) and Y = (B, D, C, A, B, A) 
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Statement: 

In the longest-common-subsequence (LCS) problem, we are given two sequences  
  X = <x1, x2, . . . , xm> and  
  Y = <y1, y2, . . . , yn>  
And our objective is to find a maximum-length common subsequence of X and Y.  

Note: 
This LCS problem can be solved using brute force approach as well but using dynamic 
programming it will be solved more efficiently. 

Brute Force Approach 

First we enumerate all the subsequences of X = <x1, x2, . . . , xm>. There will be 2m such 
subsequences. Then we check if a subsequence of X is also a subsequence of Y. In this way, 
we can compute all the common subsequences of X and Y. Certainly, this approach requires 
exponential time, making it impractical for long sequences. 

Note: Because this problem has an optimal sub-structure property, and hence can be solved 
using approach of dynamic programming 

Dynamic Programming Solution 

Towards Optimal Substructure of LCS: Prefixes 

As we shall see, the natural classes of sub-problems correspond to pairs of “prefixes” of the 
two input sequences.  

To be precise, given a sequence X = <x1, x2, ..., xm>, we define the ith prefix of X, for i = 0, 
1, ..., m, as Xi = <x1, x2, ..., xi>.  

 Examples: 

 If X = <A, B, C, B, D, A, B> then  
X4 = <A, B, C, B> and  
X0 is the empty sequence = < > 
If  X = (x1, x2,. . ., xm), and Y = (y1, y2, . . ., yn) be sequences and let us suppose that Z = (z1, z2, 
. . ., zk) be a longest common sub-sequence of X and Y 
Let, Xi = (x1, x2, …, xi), Yj = (y1, y2, …, yj) and Zl = (z1, z2, …, zl) are prefixes of X, Y and Z 
respectively. 

1. if xm = yn, then zk = xm and Zk – 1 is LCS of Xm – 1, Yn-1. 
2. If xm  yn, then zk  xm implies that Z is LCS of Xm – 1 and Y  
3. If xm  yn, then zk  yn implies that Z is LCS of X and Yn – 1 

Proof of Theorem 

Case 1 

On contrary suppose that xm = yn but zk ≠ xm,  



148 
 

Then we could append xm = yn to Z to obtain a common subsequence of X and Y of length k 
+ 1, contradicting the supposition that Z is a LCS of X and Y.  
Thus, we must have zk = xm = yn.  
Now, the prefix Zk-1 is a length-(k - 1) common subsequence of Xm-1 and Yn-1.  
Now we wish to show that it is an LCS. 
Suppose, there is a common subsequence W of Xm-1 and Yn-1 with length greater than k - 1.  
Appending xm = yn to W gives common subsequence of X and Y whose length is greater than 
k, a contradiction. 

Case 2 

If zk ≠ xm, then Z is a common subsequence of Xm-1 and Y.  
If there were a common subsequence W of Xm-1 and Y with length greater than k, then W 
would also be a common subsequence of Xm and Y, contradicting the assumption that Z is an 
LCS of X and Y. 

Case 3 

The proof is symmetric to (2) 
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Lecture	22	 Review	of	Lectures	01‐21	
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Lecture	23	 Longest	Common	Subsequence	(Dynamic	
Algorithm)	&	Optimal	Binary	Search	Trees	
Theorem: Optimal Substructure of an LCS 

If  X = (x1, x2,. . ., xm), and Y = (y1, y2, . . ., yn) be sequences and let us suppose that Z = (z1, z2, 
. . ., zk) be a longest common sub-sequence of X and Y 

1. if xm = yn, then zk = xm and Zk – 1 is LCS of Xm – 1, Yn-1. 
2. If xm  yn, then zk  xm implies that Z is LCS of Xm – 1 and Y  
3. If xm  yn, then zk  yn implies that Z is LCS of X and Yn – 1 
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Problem 

 If X = <A, B, C, B, D, A, B>, and Y = <B, D, C, A, B, A> are two sequences then 
compute a maximum-length common subsequence of X and Y.  

Solution: 

Let c(i, j) = length of LCS of Xi and Yj, now we have to compute c(7, 6). 

The recursive mathematical formula computing LCS is given below 
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If X = <A, B, C, B, D, A, B>, Y = <B, D, C, A, B, A> 

c(1, 1) = max (c(0, 1), c(1, 0)) = max (0, 0) = 0 ; b[1, 1] =  

c(1, 2) = max (c(0, 2), c(1, 1)) = max (0, 0) = 0 ; b[1, 2] =  

c(1, 3) = max (c(0, 3), c(1, 2)) = max (0, 0) = 0 ; b[1, 3] =  

c(1, 4) = c(0, 3) + 1 = 0 + 1 = 1    ; b[1, 4] =  

c(1, 5) = max (c(0, 5), c(1, 4)) = max (0, 1) = 1 ; b[1, 5] =  

c(1, 6) = c(0, 5) + 1 = 0 + 1 = 1   ; b[1, 6] =  

c(2, 1) = c(1, 0) + 1 = 0 + 1 = 1   ;  b[2, 1] =  

c(2, 2) = max (c(1, 2), c(2, 1)) = max (0, 1) = 1 ; b[2, 2] =  

c(2, 3) = max (c(1, 3), c(2, 2)) = max (0, 1) = 1 ; b[2, 3] =  
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c(2, 4) = max (c(1, 4), c(2, 3)) = max (1, 1) = 1 ; b[2, 4] =  

c(2, 5) = c(1, 4) + 1 = 1 + 1 = 2   ;  b[2, 5] =  

c(2, 6) = max (c(1, 6), c(2, 5)) = max (1, 2) = 2 ; b[2, 6] =  

c(3, 1) = max (c(2, 1), c(3, 0)) = max (1, 0) = 1   b[3, 1] =  

c(3, 2) = max (c(2, 2), c(3, 1)) = max (1, 1) = 1 ; b[3, 2] =  

c(3, 3) = c(2, 2) + 1 = 1 + 1 = 2   ;  b[3, 3] =  

c(3, 4) = max (c(2, 4), c(3, 3)) = max (1, 2) = 2 ; b[3, 4] =  

c(3, 5) = max (c(2, 5), c(3, 4)) = max (2, 2) = 2  ; b[3, 5] =  

c(3, 6) = max (c(2, 6), c(3, 5)) = max (2, 2) = 2 ; b[2, 6] =  

c(4, 1) = c(3, 0) + 1 = 0 + 1 = 1   ;  b[4, 1] =  

c(4, 2) = max (c(3, 2), c(4, 1)) = max (1, 1) = 1 ; b[4, 2] =  

c(4, 3) = max (c(3, 3), c(4, 2)) = max (2, 1) = 2 ; b[4, 3] =  

c(4, 4) = max (c(3, 4), c(4, 3)) = max (2, 2) = 2 ; b[4, 4] =  

c(4, 5) = c(3, 4) + 1 = 2 + 1 = 3    ; b[4, 5] =  

c(4, 6) = max (c(3, 6), c(4, 5)) = max (2, 3) = 3 ; b[4, 6] =  

c(5, 1) = max (c(4, 1), c(5, 0)) = max (1, 0) = 1 ; b[5, 1] = ↑ 

c(5, 2) = c(4, 1) + 1 = 1 + 1 = 2   ; b[5, 2] =  

c(5, 3) = max (c(4, 3), c(5, 2)) = max (2, 2) = 2 ; b[5, 3] =  

c(5, 4) = max (c(4, 4), c(5, 3)) = max (2, 2) = 2 ; b[5, 4] =  

c(5, 5) = max (c(4, 5), c(5, 4)) = max (3, 2) = 3 ; b[5, 5] = ↑ 

c(5, 6) = max (c(4, 6), c(5, 5)) = max (3, 3) = 3 ; b[5, 6] =  

c(6, 1) = max (c(5, 1), c(6, 0)) = max (1, 0) = 1 ; b[6, 1] = ↑ 

c(6, 2) = max (c(5, 2), c(6, 1)) = max (2, 1) = 2 ; b[6, 1] = ↑ 

c(6, 3) = max (c(5, 3), c(6, 2)) = max (2, 2) = 2 ; b[6, 3] =  

c(6, 4) = c(5, 3) + 1 = 2 + 1 = 3   ; b[6, 4] =  

c(6, 5) = max (c(5, 5), c(6, 4)) = max (2, 3) = 3 ; b[6, 5] =  
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c(6, 6) = c(5, 5) + 1 = 3 + 1 = 4   ; b[6, 6] =  

c(7, 1) = c(6, 0) + 1 = 0 + 1 = 1   ; b[7, 1] =  

c(7, 2) = max (c(6, 2), c(7, 1)) = max (2, 1) = 2 ; b[7, 2] = ↑ 

c(7, 3) = max (c(6, 3), c(7, 2)) = max (2, 2) = 2 ; b[7, 3] =  

c(7, 4) = max (c(6, 4), c(7, 3)) = max (3, 2) = 3 ; b[7, 4] = ↑ 

c(7, 5) = c(6, 4) + 1 = 3 + 1 = 4    ; b[7, 5] =  

c(7, 6) = max (c(6, 6), c(7, 5)) = max (4, 4) = 4 ; b[7, 6] =  

Results: 

 

Computable Tables: 
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Table size:  O(n.m) 
Every entry takes O(1) time to compute. 
The algorithm takes O(n.m) time and space. 
The space complexity can be reduced to 
2 · min(m, n) + O(1). 
 

 

Longest Common Subsequence Algorithm 

c[i, j] = c(i-1,  j-1) + 1                            if xi = yj; 
c[i, j] = max( c(i-1,  j), c(i,  j-1))        if xi ≠ yj; 
c[i, j] = 0                                          if (i = 0) or (j = 0). 
function LCS(X, Y) 

1 m ←  length [X] 
2 n ←  length [Y] 
3 for i ← 1 to m  
4     do c[i, 0] ← 0; 
5 for j ← 1 to n  
6     do c[0, j] ← 0; 
7 for i ← 1 to m 
8     do for j ← 1 to n 
9         do if (xi = = yj)  
10             then c[i,  j] ← c[i-1,  j-1] + 1 
11                      b[i,  j] ← “   ” 
12             else if c[i-1, j]  c[i,  j-1] 
13                        then c[i,  j] ← c[i-1,  j] 
14                                 b[i,  j] ← “↑” 
15                         else  c[i,  j] ← c[i,  j-1] 
16                                 b[i,  j] ← “” 
17 Return c and b; 

Construction of Longest Common Subsequence 

c[i, j] = c(i-1,  j-1)                             if xi = yj; 
c[i, j] = min( c(i-1,  j), c(i,  j-1))        if xi ≠ yj; 
c[i, j] = 0                                            if (i = 0) or (j = 0). 
procedure PrintLCS(b, X, i, j) 
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1. if (i == 0) or (j == 0)  
2.     then return 
3. if b[i,  j] == “ ” 
4.     then PrintLCS(b, X, i-1, j-1) 
5.              Print xi  
6. else if b[i,  j] ← “↑” 
7.     then PrintLCS(b, X, i-1, j) 
8. else PrintLCS(b, X, i, j-1) 

Relationship with shortest common supper-sequence  

Shortest common super-sequence problem is closely related to longest common subsequence 
problem  

Shortest common super-sequence  

Given two sequences:  X = < x1,...,xm > and Y = < y1,...,yn > 

A sequence U = < u1,...,uk > is a common super-sequence of X and Y if U is a super-sequence 
of both X and Y. The shortest common supersequence (scs) is a common supersequence of 
minimal length. 

Problem Statement 

The two sequences X and Y are given and task is to find a shortest possible common 
supersequence. Shortest common supersequence is not unique. Easy to make SCS from LCS 
for 2 input sequences. 

Example: 

• X[1..m] = abcbdab 
 Y[1..n] = bdcaba 
 LCS = Z[1..r] = bcba 

• Insert non-lcs symbols preserving order, we get 
 SCS = U[1..t] = abdcabdab. 

Optimal Binary Search Trees 

Binary search tree (BST) is a binary data structure which has the following properties: 
• Each node has a value.  
• An order is defined on these values.  
• Left sub-tree of node contains values less than node value 
• Right sub-tree of a node contains only values greater than or equal to the node’s 

value.  

Optimal Binary Search Trees 

Example:  A translator from English to, say, Urdu. 
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• Use a binary search tree to store all the words in our dictionary, together with their 
translations. 

• The word “the” is much more likely to be looked up than the word “ring” 
• So we would like to make the search time for the word “the” very short, possibly at 

the expense of increasing the search time for the word “ring.” 

Problem Statement:  We are given a probability distribution that determines, for every key in 
the tree, the likelihood that we search for this key. The objective is to minimize the expected 
search time of the tree. 

We need what is known as an optimal binary search tree. 

Formally, we are given a sequence K = <k1, k2, ..., kn> of n distinct keys in sorted order i.e. k1 
< k2 < ··· < kn, and we wish to build a binary search tree from these keys. For each ki, we 
have a probability pi that search is for ki. Some searches may not be successful, so we have n 
+ 1 “dummy keys” d0, d1, d2, ..., dn representing values not in K. 

In particular 

d0 = represents all values less than k1,  

dn = represents all values greater than kn, and  

di = represents all values between ki and ki+1,  

     i = 1, 2, ..., n -1  

For each dummy key di, we have a probability qi that a search will correspond to di.  

Each ki is an internal node, each dummy key di is a leaf. 

Every search is either successful (finding some key ki) or failure (finding some dummy key 
di), and so we have 

1 0

1
n n

i i
i i

p q
 

    
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Total Cost: Optimal Binary Search Trees 

1 0

1 1 0 0

Total cost (depth(( ) 1) (depth(( ) 1)

.depth( ) depth( )

n n

i i i i
i i

n n n n

i i i i i i
i i i i

p k q d

p k p q d q

 

   

   

   

 

   
 

1 0

1 0

Since we know that:       1 

Hence Total Cost .depth( ) depth( ) 1

n n

i i
i i

n n

i i i i
i i

p q

p k q d

 

 

 

  

 

 
 

Example: 

Let   

pi = probability of searching k1  

qi = probability representing di 

i 0 1 2 3 4  5 

pi  0.15 0.10 0.05 0.10 0.20 

qi 0.05 0.10 0.05 0.05 0.05 0.10 

Define cost of a search is as number of nodes examined in a search  

Cost of a key = depth of the key + 1 
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Brute Force Solution 

Total number of binary trees will be exponential as in case of chain matrix problem. Brute 
force approach is not economical. 
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Constructing Dynamic Programming 

Optimal Substructure 

Observation:  Any subtree of a BST contains keys range ki, 
..., kj for some 1 ≤ i ≤ j ≤ n.  

Lemma 

If T is an optimal BST and             T 
contains subtree T’ with keys ki, ... ,kj ,  
 then T’ must be an optimal BST for keys ki, ..., kj. 

Proof:  

Cut and paste method.  

Limitations of Dynamic Programming 

• Dynamic programming can be applied to any problem that observes the principle of 
optimality.  

• Generally, it means that partial solutions can be optimally extended with regard to the 
state after the partial solution instead of the partial solution itself.  

• The biggest limitation using dynamic programming is number of partial solutions we 
must keep track of  

• For all examples we have seen, partial solutions can be described by stopping places 
in the input. 

• This is because combinatorial objects e.g. strings, numerical sequences, and polygons 
etc., all have an implicit order defined upon their elements.  

• This order cannot be changed without completely changing the original problem. 
• Once order fixed, there are relatively few possible stopping places, and we get an 

efficient algorithms.  
• If objects are not firmly ordered then we have an exponential number of possible 

partial solutions 
• And we get an infeasible amount of memory resulting an infeasible solution. 
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Lecture	24	 Optimal	Binary	Search	Trees	(Constructing	
Dynamic	Programming)	
Construction: Optimal Substructure 

• One of the keys in ki, …,kj, say kr, i ≤ r ≤ j, must be the root of an optimal subtree for 
these keys. 

• Left subtree of kr contains ki,..., kr-1. 
• Right subtree of kr contains kr+1, ...,kj. 
• To find an optimal BST: 

• Examine all candidate roots kr , for i ≤ r ≤ j 
• Determine all optimal BSTs containing ki,...,kr-1 and containing kr+1,...,kj

 
 

• Find optimal BST for ki,...,kj, where i ≥1, j ≤ n, j ≥ i1 
• When j = i1, the tree is empty. 
• Define e[i, j ] = expected search cost of optimal BST for ki,...,kj.  
• If j = i1, then e[i, j ] = qi-1. 
• If j ≥ i, 

– Select a root kr, for some i ≤ r ≤ j . 
– Recursively make an optimal BSTs  

• for ki,..,kr-1 as the left subtree, and 
• for kr+1,..,kj as the right subtree. 

Lemma: Prove that when OPT tree becomes a sub-tree of a node then expected search 

cost increases by 
1

( , )
j j

l l
l i l i

w i j p q
  

    

Proof: 

1

1 1

cos  when a tree becomes subtree

( (( ) 1 1) ( (( ) 1 1)

.( ( ) 1) ( ( ) 1)

.( ( ) 1) ( ( ) 1)

j j

l l l l
l i l i

j j j j

l l l l l l
l i l i l i l i

j j

l l l l l l
l i l i l

Total t

p depth k q depth d

p depth k p q depth d q

p depth k q depth d p q

  

     

 

     

     

     

 

   

 
1 1

1

 cost when tree was not subtree  

j j

l i i

j j

l l
l i l i

total p q

   
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  

 

 

 

• When OPT subtree becomes a subtree of a node: 
– Depth of every node in OPT subtree goes up by 1. 

– Expected search cost increases by 
1

( , )
j j

l l
l i l i

w i j p q
  

    

– If kr is the root of an optimal BST for ki,..,kj  
– e[i, j ] = pr + (e[i, r1] + w(i, r1))+(e[r+1, j] + w(r+1, j)) 

–               = e[i, r1] + e[r+1, j] + w(i, j). 
– But, we don’t know kr. Hence, 
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

 
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Algorithm: Optimal Binary Search 

OPTIMAL-BST(p, q, n) 
for i ← 1 to n + 1 
    do e[i, i 1] ← qi-1 
         w[i, i 1] ← qi-1.  
for l ← 1 to n 
    do for i ← 1 to nl + 1 
         do j ←i + l1 
             e[i, j ]←∞ 
             w[i, j ] ← w[i, j1] + p

j
 + q

j 
 

             for r ←i to j 
                  do t ← e[i, r1] + e[r + 1, j ] + w[i, j ] 
                       if t < e[i, j ] 
                            then e[i, j ] ← t 
                                     root[i, j ] ←r 
  return e and root 

 
Greedy Algorithms 

Why Greedy Algorithm? 

 The algorithms we have studied in dynamic programming are relatively inefficient, for 
example 

• Cost of 0-1 knapsack problem: O(nW) 
• Cost of matrix chain multiplication: O(n3) 
• Cost in longest common subsequence: O(mn) 
• Optimal binary search trees: O(n3) 

 This is because 
• We have many choices computing optimal solution. 
• We check all of them in dynamic programming. 
• We must think which choice is the best or  
• At least restrict the choices we have to try. 

What are Greedy Algorithms? 

• In greedy algorithms, we do the same thing 
• Mostly optimization algorithms go through a sequence of steps, with a set of choices 

at each step.  
• In dynamic programming best choices is ignored 
• Sometimes a simpler and efficient algorithm required.  
• Greedy algorithms make best choice at a moment.  
• It makes a locally optimal choice in the hope that this choice will lead to a globally 

optimal solution.  
• Greedy algorithms do not always yield an optimal solutions, but mostly they do 
• They tend to be easier to implement. 
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Where Greedy Algorithms do not work? 

• Greedy choice: 
• We make the choice that looks best at a moment. 
• Every time make a choice, greedily maximize value 

• An example where this does not work 
• Find longest monotonically increasing subsequence 
• Given sequence <3 4 5 17 7 8 9> 
• Longest such subsequence is <3 4 5 7 8 9>. 
• The greedy choice after choosing <3 4 5> is to choose 17, which is an 

unwanted element, results in the sequence <3 4 5 17> which is suboptimal. 
 

Activity Selection Problem 

Some Definitions: 

Closed Interval = [a, b] = {x R | a ≤ x ≤ b} 

Open Interval = (a, b) = {x R | a < x < b} 

Left Semi Open = (a, b] = {x R | a < x ≤ b} 

Right Semi Open = [a, b) = {x R | a ≤ x < b} 

Activity Selection Problem 

The problem involves scheduling of several competing activities that require exclusive use of 
common resource 

Problem Statement 
• The problem can be stated as, suppose we have a set: S = {a1, a2, ..., an} of n proposed 

activities. 
– Each activity wishes to use a resource which can be used by only one activity 

at a time.  
– Each activity ai has starting time si, finishing time fi  

    where, 0 ≤ si < fi < ∞ 
• Objective in activity-selection problem is to select a maximum-size subset of 

mutually compatible activities.  

Steps in Designing Activity Selection Algorithm 

Steps to solve the problem 

• We will formulate the dynamic-programming solution in which 
• Combine optimal solutions to two subproblems to form an optimal solution to 

original problem  
• Check several choices when determining which subproblems to use in an 

optimal solution 
• Then needed to make a greedy choice in which 

• One of the subproblems guaranteed empty, so that only one nonempty 
subproblem remains 

• Then a recursive greedy algorithm is developed and converted to an iterative one 
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Application: Scheduling Problem 

• A classroom can be used for one class at a time. 
• There are n classes that want to use the classroom. 
• Every class has a corresponding time interval Ij = [sj, fj) during which the room would 

be needed for this class. 
• Our goal is to choose a maximal number of classes that can be scheduled to use the 

classroom without two classes ever using the classroom at the same time. 
• Assume that the classes are sorted according to increasing finish times; that is, f1 < f2 

< … < fn.  

 

Designing Activity Selection Problem 

Compatible Activity 

If a selected activity ai is required to take place during the half-open time interval [si, fi). And 
activity aj is required to take place during the half-open time interval [sj, fj). Then the 
activities ai and aj are compatible if the intervals [si, fi) and [sj, fj) do not overlap i.e  

si ≥ fj or sj ≥ fi 

Compatible Activities 

 

Not Compatible Activities 

 

Compatible not Maximal 

i  1 2 3 4 5 6 7 8 9 10 11 

si 1 3 0 5 3 5 6 8 8 2 12 

fi 4 5 6 7 8 9 10 11 12 13 14 
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A set S of activities sorted in increasing order of finish time 

• The subset consisting of mutually compatible activities are  
– {a3, a9, a11} but it is not a maximal subset,  
– {a1, a4, a8, a11} is larger.  
– {a2, a4, a9, a11} is another largest subset.  

Optimal Substructure of Activity Selection Problem 

The first step is to find optimal substructure and then use it to construct an optimal solution to 
the problem from optimal solutions to subproblems. 

Let us start by defining sets 

     {  e :    }ij k i k k jS a S f s f s     

 ijS  is the subset of activities in S that can start after activity ai finishes and finish before 
activity aj starts.  

The fictitious activities a0 and an+1 are added and adopt the conventions that f0 = 0 and

1ns    . Then 0. 1nS S  , and the ranges for i and j are given by  

0 ,   1i j n    

Let us assume that ijA  is a solution to ijS  

Let us assume that the activities are sorted in monotonically increasing order of finish times 
of the activities: 

 0 1 2 1         n nf f f f f        

Assuming that we have sorted set of activities, our space of subproblems is  

– to select a maximum-size subset of mutually compatible activities from ijS S
ij
, 

for 0 ≤ i < j ≤ n + 1,  
– knowing that all other ijS are empty.  

Decomposition: Optimal Substructure of Problem 

Suppose that a solution to ijS is non-empty and includes some activity ka , so that 

    i k k jf s f s     

After choosing activity ak, it decomposes ijS into two subproblems, ikS and kjS  

ikS = activities that start after a
i
 finishes and finish before a

k
 starts and  

kjS = activities that start after a
k
 finishes and finish before a

j
 starts,  

Each of ikS and kjS  are subset of the activities in ijS  

Solution to Si.j: Optimal Substructure of Problem 
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Our solution to Sij is the union of the solutions to Sik and Skj, along with the activity ak.  
Thus, the number of activities in our solution to Sij is the size of our solution to Sik, plus the 
size of our solution to Skj , plus ak.  

 Solution(Sij) =  Solution(Sik)  Solution(Skj) {ak} 

 Aij =  Aik  Akj {ak} 
Suppose we now that an optimal solution Aij includes activity ak, then the solutions Aik and Akj 
used within this optimal solution must be optimal. 
Why Aik and Akj are Optimal? 

Proof: Why Aik and Akj are Optimal? 

If we had a solution 'ikA  to ikS that included more activities than ikA , we could cut out ikA

from ijA and paste 'ikA
 
in

 
ijA , thus producing another solution 'ijA  to ijS with more activities 

than ijA .  

Because we assumed that ijA is an optimal solution, we have derived a contradiction.  

Similarly, if we had a solution 'kjA  to kjS with more activities than kjA , we could replace kjA

by 'kjA  to produce solution to ijS with more activities than ijA  

Further Decomposition to Find S0, n+1  

Now we can build a maximum-size subset of mutually compatible activities in ijS  

– by splitting the problem into two subproblems, mutually compatible activities 
in ikS and kjS  

– finding maximum-size subsets ikA and kjA of these activities for these 

subproblems and then 
– forming maximum-size subset ijA as  

    ij ik k kjA A a A    

Optimal solution to entire problem is: A0,n+1 

A Recursive Solution 

Let c[i, j] = number of activities in a maximum-size subset of mutually compatible activities 
in ijS  

We have c[i, j] = 0 whenever ijS = Ø;  

 In particular we have, c[i, j] = 0 for i ≥ j. 
Since     ij ik k kjA A a A    

 Therefore the recurrence relation for the problem is  

c[i, j ] = c[i, k] + c[k, j ] + 1. 
Since value of k varies between i + 1, ..., j – 1, and hence there are (j - 1) - (i - 1) + 1 possible 
values of k, i.e., j - 1 –  i - 1 + 1 = j – i - 1 
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Since maximum-size subset of ijS must use one of these values for k, we check them all to 
find the best.  
Thus, our full recursive definition of c[i, j] becomes  

  
0

[ , ]
max{ [ , ] [ , ] 1}

ij

ij
i k j

if S
c i j

c i k c k j if S




 

    
 

Lecture	25	 Greedy	Algorithms	
Statement:  Consider any nonempty subproblem Sij, and let am be the activity in Sij with 
the earliest finish time: fm = min {fk : ak  Sij}, then 

1. Activity am is used in some maximum-size subset of mutually compatible 
activities of Sij. 

2. The subproblem Sim is empty, so that choosing am leaves the subproblem Smj as 
the only one that may be nonempty. 

Note:  After proving these properties, it is guaranteed that the greedy solution to this problem 
does exist. 

Theorem: 

Proof (Part B) 

First we prove second part because it is bit simpler 
Suppose that Sim is nonempty 
It means there is some activity ak such that:   fi ≤ sk < fk ≤ sm < fm.  fk < fm.  
Then ak is also in Sij and it has an earlier finish time than am, which contradicts our choice of 
am. Hence Sim is empty, proved 

 

Part A 

To prove first part, suppose that Aij is a maximum-size subset of mutually compatible 
activities of Sij,  

Order Aij monotonic increasing order of finish time 

Let ak be the first activity in Aij.  
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Case 1 

If ak = am, then we are done, since we have shown that am is used in some maximal subset of 
mutually compatible activities of Sij.  

Case 2 

If ak ≠ am, then we construct the subset  

A’ij = Aij \ {ak} � {am}  

Since activities in Aij are disjoint, so is true for A’ij. 

As ak is first activity in Aij to finish, and fm ≤ fk.  

Noting that A’ij has same number of activities as Aij 

We see that A’ij is a maximal subset of mutually compatible activities of Sij that includes am. 

Hence proves the theorem. 

 

Why is this Theorem Useful? 

 
Dynamic 
programming 

Using the theorem 

Number of subproblems in the 
optimal solution 

2 subproblems: 

Sik, Skj 

1 subproblem: Smj 

Sim =  

Number of choices to consider j – i – 1 choices  

1 choice: the activity 

with the earliest  

finish time in Sij 

 

A Recursive Greedy Algorithm 
Recursive-Activity-Selector (s, f, i, j) 



168 
 

1    m ← i + 1 
2    while m < j and sm < fi     Find the first activity in Sij. 
3            do m ← m + 1 
4    if m < j 

5 then  
    return {am}  Recursive-Activity-Selector (s, f, m, j) 
6      else return Ø 
Example: A Recursive Greedy Algorithm 

i 0 1 2 3 4 5 6 7 8 9 10 11 

si - 1 3 0 5 3 5 6 8 8 2 12 

fi 0 4 5 6 7 8 9 10 11 12 13 14 

For the Recursive Greedy Algorithm, the set S of activities is sorted in increasing order of 
finish time 

 

i = 0,  
j = n + 1 = 12 
m ← i + 1 ← 0 + 1 = 1 
m < j (1 < 12) and s1 < f0 (But 1>0) 
if m < j (1 < 12)  
return {a1} � Recursive-Activity-Selector (s, f, 1,12) 

 

i = 1,  
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m ← i + 1 ← 1 + 1 = 2 

m < j (2 < 12) and s2 < f1 (3 < 4) 

 m ← m + 1 ← 2 + 1 = 3 

 

m < j (3 < 12) and s3 < f1 (0 < 4) 

 m ← m + 1 ← 3 + 1 = 4 

 

m < j (4 < 12) and s4 < f1 (But 5 > 4) 

if m < j (4 < 12)  

  return {a4} � Recursive-Activity-Selector(s, f, 4,12) 

 

i = 4,  
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m ← i + 1 ← 4 + 1 = 5 

m < j (5 < 12) and s5 < f4 (3 < 7) 

 m ← m + 1 ← 5 + 1 = 6 

 

m < j (6 < 12) and s6 < f4 (5 < 7) 

 m ← m + 1 ← 6 + 1 = 7 

 

m < j (7 < 12) and s7 < f4 (6 < 7) 

 m ← m + 1 ← 7 + 1 = 8 

 

m < j (8 < 12) and s8 < f1 (But 8 > 7) 

if m < j (8 < 12)  
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   return {a8} � Recursive-Activity-Selector (s, f, 8,12) 

 

i = 8,  

m ← i + 1 ← 8 + 1 = 9 

m < j (9 < 12) and s9 < f8 (8 < 11) 

 m ← m + 1 ← 9 + 1 = 10 

 

m < j (10 < 12) and s10 < f8 (2 < 11) 

 m ← m + 1 ← 10 + 1 = 11 

 

m < j (11 < 12) and s11 < f8 (But 12 > 11) 

if m < j (11 < 12)  
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     return {a11} � Recursive-Activity-Selector (s, f, 11,12) 

 

i = 11,  

m ← i + 1 ← 11 + 1 = 12 

m < j (But 12 = 12) 

An Iterative Greedy Algorithm 

Iterative-Activity-Selector (s, f) 
1    n ← length[s] 
2    A ← {a1} 
3    i ← 1 
4    for m ← 2 to n 
5           do if sm ≥ fi 
6                    then A ← A ∪ {am} 
7                             i ← m 
8    return A 
Summary 

• A greedy algorithm obtains an optimal solution to a problem by making a sequence of 
choices.  

• For each decision point in the algorithm, the choice that seems best at the moment is 
chosen at that time.  

• This strategy does not always produce an optimal solution, but as we saw in the 
activity-selection problem, sometimes it does.  

• Now we give a sequence of steps designing an optimal solution of using greedy 
approach 

Summary: Steps Designing Greedy Algorithms 

We went through the following steps in the above problem: 
1. Determine the suboptimal structure of the problem. 
2. Develop a recursive solution. 
3. Prove that at any stage of the recursion, one of the optimal choices is the greedy 

choice. Thus, it is always safe to make the greedy choice. 
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4. Show that all but one of the sub-problems induced by having made the greedy choice 
are empty. 

5. Develop a recursive algorithm that implements the greedy strategy. 
6. Convert this recursive algorithm to an iterative one. 

Checks in Designing Greedy Algorithms 

• In the beneath every greedy algorithm, there is almost always a dynamic 
programming solution. 

 How can one tell if a greedy algorithm will solve a particular optimization problem?  
• There is no way in general, but there are two key ingredients  

– greedy choice property and  
– optimal sub-structure  

• If we can demonstrate that the problem has these properties, then we are well on the 
way to developing a greedy algorithm for it. 

The Knapsack Problem 

• The 0-1 Knapsack Problem 
– A thief robbing a store finds n items: i-th item worth vi and weight wi, where 

vi and wi integers 
– The thief can only carry weight W in his knapsack 
– Items must be taken entirely or left behind 
– Which items should the thief take to maximize the value of his load? 

• The Fractional Knapsack Problem 

– Similar to 0-1 can be solved by greedy approach 

– In this case, the thief can take fractions of items.  

 

(Figure) The greedy strategy does not work for the 0-1 knapsack problem. (a) THe thief must 
select a subset of the three items shown whose weight must not exceed 50 pounds. (b) The 
optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though 
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item 1 has the greatest value per pound. (c) For the fractional knapsack problem, taking the 
items in order of greatest value per pound yields an optimal solution. 

Developing Algorithm: Fractional Knapsack 

• Pick the item with the maximum value per pound vi/wi 
• If the supply of that element is exhausted and the thief can carry more then take as 

much as possible from the item with the next greatest value per pound 
• Continue this process till knapsack is filled 
• It is good to order items based on their value per pound 

n

n

w

v

w

v

w

v
 ...

2

2

1

1  

Algorithm: Fractional Knapsack Problem 

Fractional-Knapsack (W, v[n], w[n]) 
1.  While w > 0 and as long as there are items remaining 
2.   pick item with maximum vi/wi 
3.   xi  min (1, w/wi) 
4.   remove item i from list 
5.   w  w – xiwi 
w the amount of space remaining in the knapsack (w = W) 
Running time: (n) if items already ordered; else (nlgn)  

Making Change 

Someone comes to your store and makes a purchase of 98.67. He/she gives you 100. You 
want to give back change using the least number of coins. 
• INPUT: The values of coins: C1, C2, . . . , Ck, and an integer N. Assume that some 

coin has value 1. 
• GOAL: To find a multi-set of coins S whose sum is N where the total number of 

coins is minimized. 
• A greedy approach is to add the highest value coin possible. 

Making Change (Greedy Algorithm) 

 Greedy algorithm (C, N) 

1.  sort coins so C1   C2  . . .  Ck  
2.  S = ;  
3.  Change = 0 
4.  i = 1     \\ Check for next coin 
5.  while Change  N do  \\ all most valuable coins 
6.   if Change + Ci ≤ N then 
7.   Change = Change + Ci 
8.   S = S  {Ci} 
9.  else i = i+1  

In Pakistan, our currency notes are  
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 C1 = 5000, C2 = 1000, C3 = 500, C4 = 100,  C5 = 50, C6 = 20 , C7 = 10 
Applying above greedy algorithm to          N = 13,660, we get 
 S = {C1, C1, C2, C2, C2, C3 , C4 , C5 , C7} 
Does this algorithm always find an optimal solution? For Pakistani currency.  
It does but does not hold always 

Dynamic Programming vs. Greedy Algorithms 

• Dynamic programming 
– We make a choice at each step 
– The choice depends on solutions to subproblems 
– Bottom up solution, smaller to larger subproblems 

• Greedy algorithm 
– Make the greedy choice and THEN 
– Solve subproblem arising after the choice is made  
– The choice we make may depend on previous choices, but not on solutions to 

subproblems 
– Top down solution, problems decrease in size 
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Lecture	26	 Huffman	Coding	
Using ASCII Code: Text Encoding 

Our objective is to develop a code that represents a given text as compactly as possible. A 
standard encoding is ASCII, which represents every character using 7 bits 

Example  

Represent “An English sentence” using ASCII code 
1000001 (A) 1101110 (n) 0100000 ( ) 1000101 (E)   1101110 (n)   1100111 (g)  1101100 (l)  
1101001 (i) 1110011 (s)    1101000 (h)   0100000 ( )   1110011 (s) 1100101 (e) 1101110 (n)   
1110100 (t)   1100101 (e)  1101110 (n) 1100011 (c) 1100101 (e) 

 = 133 bits ≈ 17 bytes 
 

Refinement in Text Encoding 

Now a better code is given by the following encoding: 

 ‹space› = 000,  A = 0010,   E = 0011,  s = 010, c = 0110, g = 0111,    h = 1000,  i = 
1001, l = 1010,  t = 1011,   e = 110,     n = 111 

Then we encode the phrase as 

 0010 (A)   111 (n)   000 ( )   0011 (E)   111 (n)   0111 (g)   1010 (l)   1001 (i)      010 (s)   
1000 (h)   000 ( )    010 (s)   110 (e)     111 (n)   1011 (t)      110 (e)   111 (n)   0110 (c)   
110 (e) 

This requires 65 bits ≈ 9 bytes. Much improvement! 

Major Types of Binary Coding 

There are many ways to represent a file of information. 

Binary Character Code (or Code)  
– each character represented by a unique binary string.  

Fixed-Length Code  

– If  = {0, 1} then  
– All possible combinations of two bit strings 

   x  = {00, 01, 10, 11} 
– If there are less than four characters then two bit strings enough 
– If there are less than three characters then two bit strings not economical 
– All possible combinations of three bit strings 

  x  x  = {000, 001, 010, 011, 100, 101, 110, 111} 
– If there are less than nine characters then three bit strings enough 
– If there are less than five characters then three bit strings not economical and can 

be considered two bit strings 
– If there are six characters then needs 3 bits to represent, following could be one 

representation. 

  a = 000, b = 001, c = 010, d = 011, e = 100, f = 101 
Variable Length Code 
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– better than a fixed-length code  
– It gives short code-words for frequent characters and  
– long code-words for infrequent characters 

• Assigning variable code requires some skill 
• Before we use variable codes we have to discuss prefix codes to assign variable codes 

to a set of given characters 
 

Prefix Code (Variable Length Code) 

A prefix code is a code typically a variable length code, with the “prefix property”. Prefix 
property is defined as no codeword is a prefix of any other code word in the set.  

Examples  
1. Code words {0,10,11} has prefix property 
2. A code consisting of {0, 1, 10, 11} does not have, because “1” is a prefix of both “10” 

and “11”. 

Other names 
Prefix codes are also known as prefix-free codes, prefix condition codes, comma-free codes, 
and instantaneous codes etc.  

Why prefix codes? 

• Encoding simple for any binary character code;  
• Decoding also easy in prefix codes. This is because no codeword is a prefix of any 

other.  

Example 1 
If a = 0, b = 101, and c = 100 in prefix code then the string: 0101100 is coded as 0·101·100  

Example 2  
In code words: {0, 1, 10, 11}, receiver reading “1” at the start of a code word would not know 
whether 

– that was complete code word “1”, or  
– prefix of the code word “10” or of “11”  

 

Prefix codes and Binary Trees 

Tree representation of Binary trees  

A 00 
B 010 
C 0110 
D 0111 
E 10 
F 11 
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Huffman Codes: 

• In Huffman coding, variable length code is used  
• Data is considered to be a sequence of characters. 
• Huffman codes are a widely used and very effective technique for compressing data 

– Savings of 20% to 90% are typical, depending on the characteristics of the 
data being compressed.  

• Huffman’s greedy algorithm uses a table of the frequencies of occurrence of the 
characters to build up an optimal way of representing each character as a binary 
string.  

Example: 

 a b c d e f 

Frequency (in thousands) 45 13 12 16 9 5 

Fixed-length codeword 000 001 010 011 100 101 

Variable-length codeword 0 101 100 111 1101 1100 

 

A data file of 100,000 characters contains only the characters a–f, with the frequencies 
indicated above. 

If each character is assigned a 3-bit fixed-length codeword, the file can be encoded in 
300,000 bits.  

Using the variable-length code  

(45 · 1 + 13 · 3 + 12 · 3 + 16 · 3 + 9 · 4 + 5 · 4) · 1,000 = 224,000 bits 

which shows a savings of approximately 25% 
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Binary Tree: Variable Length Codeword 

The tree corresponding to the variable-length code is shown for the data in table. 

 Frequency  

(in thousands) 

Variable-length codeword 

a 45 0

b 13 101

c 12 100

d 16 111 

e 9 1101

f 5 1100

 

Cost of Tree Corresponding to Prefix Code 

• Given a tree T corresponding to a prefix code. For each character c in the alphabet C,  
– let f (c) denote the frequency of c in the file and  
– let dT(c) denote the depth of c’s leaf in the tree.  
– dT(c) is also the length of the codeword for character c.  
– The number of bits required to encode a file is ( ) ( ) ( )T

c C

B T f c d c


 which we 

define as the cost of the tree T. 
 

Algorithm: Constructing a Huffman Codes 

Huffman (C)  
1    n ← |C|  
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2    Q ← C  
3    for i ← 1 to n - 1  
4          do allocate a new node z  
5               left[z] ← x ← Extract-Min (Q)  
6               right[z] ← y ← Extract-Min (Q)  
7               f [z] ← f [x] + f [y]  
8               Insert (Q, z)  
9    return Extract-Min(Q)  t Return root of the tree. 

Example: 

 

The initial set of n = 6 nodes, one for each letter.  

Number of iterations of loop are 1 to n-1 (6-1 = 5) 

 

for i ← 1  
       Allocate a new node z 

left[z] ← x ← Extract-Min (Q) = f:5 

right[z] ← y ← Extract-Min (Q) = e:9 

f [z] ← f [x] + f [y]  (5 + 9 = 14) 

Insert (Q, z) 
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for i ← 2  
      Allocate a new node z 

left[z] ← x ← Extract-Min (Q) = c:12 

right[z] ← y ← Extract-Min (Q) = b:13 

f [z] ← f [x] + f [y]  (12 + 13 = 25) 

Insert (Q, z) 

 

 

for i ← 3  
       Allocate a new node z 

left[z] ← x ← Extract-Min (Q) = z:14 

right[z] ← y ← Extract-Min (Q) = d:16 

f [z] ← f [x] + f [y]  (14 + 16 = 30) 

Insert (Q, z) 
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for i ← 4  
       Allocate a new node z 

left[z] ← x ← Extract-Min (Q) = z:25 

right[z] ← y ← Extract-Min (Q) = z:30 

f [z] ← f [x] + f [y]  (25 + 30 = 55) 

Insert (Q, z) 
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for i ← 5  
       Allocate a new node z 

left[z] ← x ← Extract-Min (Q) = a:45 

right[z] ← y ← Extract-Min (Q) = z:55 

f [z] ← f [x] + f [y]  (45 + 55 = 100) 

Insert (Q, z) 
 

Lemma 1: Greedy Choice 

There exists an optimal prefix code such that the two characters with smallest frequency are 
siblings and have maximal depth in T. 

Proof:  
Let x and y be two such characters, and let T be a tree representing an optimal prefix code. 

Let a and b be two sibling leaves of maximal depth in T, and assume without loss of 
generality that f(x) ≤  f(y) and f(a) ≤ f(b). 

This implies that f(x) ≤ f(a) and f(y) ≤ f(b). 

Let T' be the tree obtained by  exchanging a and x and b and y. 
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The cost difference between trees T and T' is 
   

               
               
                   

'

' '

' '

' ( ) ( ) ( ) ( )

0

T T
c C c C

T T T T

T T T T

T T T T

B T B T f c d c f c d c

f x d x f a d a f x d x f a d a

f y d y f b d b f y d y f b d b

f a f x d a d x f b f y d b d y

 

  

    

  

     



 

 

Hence B(T’) ≤ B(T) 

Since B(T) ≤ B(T’) 

Hence B(T) = B(T’) 
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Lecture	27	 Huffman	Coding	Problem	and	Graph	Theory	
Algorithm: Constructing a Huffman Codes 

Huffman (C)  
1    n ← |C|  
2    Q ← C  
3    for i ← 1 to n - 1  
4          do allocate a new node z  
5               left[z] ← x ← Extract-Min (Q)  
6               right[z] ← y ← Extract-Min (Q)  
7               f [z] ← f [x] + f [y]  
8               Insert (Q, z)  
9    return Extract-Min(Q)  t Return root of the tree. 

Lemma 2: Optimal Substructure Property 

Let C be a given alphabet with frequency f[c] defined for each character c  C.  

Let x, y (characters)  C with minimum frequency. 
Let C′ be alphabet C with characters x, y removed, new character z added, so that C′ = C - {x, 

y}  {z}; 
Define f for C′ as for C, except that f[z] = f[x] + f[y]. 
Let T′ be any tree representing an optimal prefix code for the alphabet C′.  
Then tree T, obtained from T′ by replacing leaf node for z with an internal node having x, y as 
children, represents an optimal prefix code for alphabet C. 

Proof: 
Since C′ = C - {x, y}  {z}; where f(z) = f(x) + f(y),  
We are give that T' is an optimal tree for C'. 
Let T be tree obtained from T' by making x, y children of z. 
We prove: B(T) = B(T') + f(x) + f(y) 

     

           
 

           
 

           
 

       
 

     

\ ,

' '
'\

' '
'\

'
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1

'

T
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T T T
c C x y

T T
c C z
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c C z

T
c C z

B T f c d c

f c d c f x d x f y d y

f c d c f x f y d z

f c d c f z d z f x f y

f c d c f x f y

B T f x f y













  

   

   

  

  











 

B(T’) = B(T) - f(x) - f(y) 

If T' is optimal for C', then T is optimal for C? 

Assume on contrary that there exists a better tree T'' for C, such that B(T’’) < B(T)  
Assume without loss of generality T’’ has siblings x and y. 
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Let tree T''' be a tree T'' with the common parent of x and y replaced by vertex z with 
frequency f[z] = f[x] + f[y]. Then  

 B(T’’’) = B(T'') – f(x) – f(y)  

        < B(T) – f(x) – f(y)  Since, B(T’’) < B(T)  

        = B(T'). 
This contradicts the optimality of B(T'). 
Hence, T must be optimal for C. 
 
Road Trip Problem 
 
You purchase a new car. On your semester break, you decide to take a road trip from 
Peshawar to Karachi. Your car has a tank of some capacity such that only a distance k km can 
be traveled before refilling the tank. 

Suppose there are filling stations at distances of 0 1 2 ... nd d d d    where nd  is the total 

distance of your trip.  
Your goal is to find the smallest number of stops required i.e. shortest subsequence of

0  · · · nd d  , given that you start at 0d and end at nd . 

INPUT: The max distance k, along with the distances: 0 1, ,..., nd d d . 

GOAL:  To find a smallest sub sequence of 0 1, ,..., nd d d  so that you can start from 0d  and 

end at nd . 

Note:  
• Greedy approach is considered each id in order.  

• We stop to refuel at id  only if the tank will finish before we get to 1id  . 

Road Trip Problem (Greedy algorithm) 

 
1.  for i = 1 to n do 
2.   if di – di-1 > k then “do not use this car” 
3.  S = d0 
4.  last = d0 (the distance of the last item in S) 
5.  dn+1 = ∞ (forces dn to be in S) 
6.  for i = 1 to n do 
7.   if di+1 - last > k then 
8.    S := S  di

 
 

9.    last := di
 
 

 

Graph Theoretic Concepts 

Definitions: 

Graph G consists of two finite sets V(G) and E(G) 

Endpoints a set of one or two vertices of an edge  
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Loop an edge with just one endpoint 

Edge-endpoint function: End-Point-Function: E Set of V 

Parallel edges two distinct edges with same endpoints 

Adjacent vertices vertices connected by an edge 

Vertex adjacent to itself vertex endpoint of a loop 

Adjacent edges two edges incident on the same endpoint 

Isolated a vertex on which no edge is incident  

Empty a graph with no vertices, otherwise nonempty. 

Examples: 

1. Vertex set =  1 2 3 4 5 6, , , , ,v v v v v v  

2. Edge set =  1 2 3 4 5 6 7, , , , , ,e e e e e e e  

3. e1, e2, and e3 are incident on v1 
4. v2 and v3 are adjacent to v1 
5. e2

,
, e3 and e4 are adjacent to e1 

6. e6 and e7 are loops 
7. e2 and e3 are parallel 
8. v5 and v6 are adjacent to 

themselves
 
 

9. v4 is an isolated vertex 
10. Endpoint(e5) = (v5, v6) 

 

 

Directed, Simple and Complete Graph  

Directed graph (digraph) in which each edge is associated with an ordered pairs of 
vertices 

Simple graph does not have any loop or parallel edge 

Subgraph H is subgraph of G if and only if, every vertex in H is also vertex in G, and every 
edge in H has the same endpoints as in G. 

Complete graph on n vertices, (Kn) is a simple graph in which each pair of vertices has 
exactly one edge. 
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Complete Graph 

Example 1:  Find a recursive formula to compute number of edges in a complete graph on 
n vertices. 

Solution:  

Let Sk = total number of edges of a complete graph with k vertices 

Sk = total number of edges of a complete graph with k - 1 vertices +  total number of edges 
connected kth  node 

   = total number of edges of a complete graph with k - 1 vertices +  k-1 number of edges 

Sk = Sk-1 + (k – 1) 

 

 

Example 2:  

 Find an explicit formula to compute number of edges in complete graph on n 
vertices. 

Solution:  

 Since, Sk = Sk-1 + (k – 1)  Sk-1 = Sk-2 + (k – 2) and so on   

     By back substitution 

 Sk = Sk-2 + (k – 2) + (k - 1) = Sk-3 + (k – 3) + (k - 2) + (k - 1) 

 Sk = S1 + 1 + 2 + . . . + (k - 2) + (k - 1) = (k-1)k/2 

 Sk = (k-1)k/2 

 Sn = (n-1)n/2 
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Complete Bipartite Graph  
 

A complete bipartite graph on (m, n) vertices, denoted Km,n  , is a simple graph with vertices 
v1, v2, …,vn and  w1, w2, …,wn that satisfies the following properties: 

 for all i, k = 1, 2, …, m and for all j, l = 1, 2, …, n 
1. there is an edge from each vertex vi to each vertex wj

 
; 

2. there is not an edge from any vertex vi to any other vertex vk
 
; 

3. there is not an edge from any vertex wj to any other vertex wl
 
 

 

 

Degree of Graph: 

Definition degree of v is number of edges incident on v  

Theorem:  

 In a graph G, sum of degrees of all vertices equals twice the number of edges of G. 
Specifically, if the vertices of G are v1, v2, …,vn where n is a positive integer, then 

 Total degree of G  =  deg(v1
 
)+ deg(v2 ) + … + deg(vn ) 

      =  2 . (the number of edges of G) 

Note: Total degree of an undirected graph, G, is even. 
 

Proposition  

In a graph there are even numbers of vertices of odd degree. 

Solution:  

Let us suppose that: V = all vertices of a graph  

 1 1 2, ,..., kV v v v  = set of all vertices of odd degree 

 2 1 2  ,  ,  . . .,  mV w w w  = set of all vertices of even degree 

Now we have to prove that k is even? 

On contrary, suppose that k is odd 

Degree (graph) = deg(v1) + deg(v2) + , . . ., deg(vk) + deg(V2) 

       = odd + even = odd, contradiction.  

Hence k must be even.  



191 
 

That is there even number of vertices of odd degree. 
 

Walk of Graph  

Walk from v to w is a finite alternating sequence of adjacent vertices and edges of G. It has 

the form 0 1 1 2 1  . . .  ,n n nv v e v e v e v w   

 for all i = 1, 2, . . . n, vi-1 and vi are endpoints of ei
 
. 

Trivial walk from v to v consists of single vertex v. 

Closed walk starts and ends at the same vertex 

Path a walk that does not contain a repeated edge.  

0 1 1 2 1  . . .  ,n n nv v e v e v e v w   

  where all the ei are distinct (that is, ei ≠ ek for any i ≠ k). 
Simple path a path that does not contain a repeated vertex. Thus a simple path is a walk of 
the form 

   0 1 1 2 1  . . .  ,n n nv v e v e v e v w   

 all ei and vj are distinct (vi
 
≠ vj, ei

 
≠ ej for any i ≠ j). 

Circuit of Graph 

A circuit is a closed walk that does not contain a repeated edge. Thus a circuit is a walk of 

the form  0 1 1 2 1. . . n n nv e v e v e v  

 
where v0 = vn and all the e

i
 are distinct. 

A simple circuit is a circuit that does not have any other repeated vertex except the first and 

last. Thus a simple circuit is walk of the form 0 1 1 2 1. . . n n nv e v e v e v  

 where all the ei are distinct and all the vj are distinct except that v0 = vn  

Euler Circuit 

An Euler circuit for G is a circuit that contains every vertex and every edge of G. That is, an 
Euler circuit is a sequence of adjacent vertices and edges in G that starts and ends at the same 
vertex, uses every vertex of G at least once, and every edge exactly once. 

Theorem  If a graph has an Euler circuit, then every vertex of the graph has even degree. 

Theorem  A graph G has an Euler circuit if, and only if, G is connected and every vertex 
of G has even degree.  

 

Euler Path 

Let G be a graph and let v and w be two vertices of G. An Euler path from v to w is a 
sequence of adjacent edges and vertices that starts at v, ends at w, passes through every vertex 
of G at least once, and traverses every edge of G exactly once. 
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Corollary 
Let G be a graph and let v and w be two vertices of G. There is an Euler path from v to w if, 
and only if, G is connected, v and w have odd degree, and all other vertices of G have even 
degree.  

Hamiltonian Circuit  

Given a graph G, a Hamiltonian circuit for G is a simple circuit that includes every vertex of 
G. That is, a Hamiltonian circuit of G is a sequence of adjacent vertices and distinct edges in 
which every vertex of G appears exactly once. 

If a graph G has a Hamiltonian circuit then G has a sub-graph H with the following 
properties: 

1.  H contains every vertex of G; 
2.  H is connected; 
3.  H has the same number of edges as vertices; 
4.  every vertex of H has degree 2. 

 

Connected Graph 

Two vertices v and w of G are connected if, and only if, there is a walk from v to w. 

G is connected if, and only if, for any two vertices v and w in G, there is a walk from v to w. 
symbolically: 

 G is connected Û A v, w e V(G), E a walk from v to w 

Lemma 
a. If G is connected, then any two distinct vertices of G can be connected by a 

simple path. 
b. If v, w are in circuit and one edge is removed from the circuit, then there still 

exists a path from v  to w  
c. If G is connected and contains a circuit, then an edge of circuit can be 

removed without disconnecting G.  

Connected Component 

A graph H is a connected component of a graph G if, and only if, 

1.  H is a subgraph of G; 
2.  H is connected; 
3.  No connected subgraphs of G has H as a subgraph and  contains vertices or 

edges that are not in H.  



193 
 

 

Isomorphism 

Let G and G’ be graphs with vertex sets V(G) and V(G’) and edge sets E(G) and E(G’), 
respectively. G is isomorphic to G’ if, and only if, there exist one-to-one correspondence             
g : V(G) f V(G’) and h : E(G) f E(G’)  that preserve the edge-endpoint functions of G and G’ 
in the sense that 

 for all v e V(G) and e e E(G) , 

v is an endpoint of e Û g(v) is an endpoint of h(e) 
 

Isomorphism Invariants  

A property P is called an isomorphic invariant if, and only if, given any graphs G and G’, if 
G has property P and G’ is isomorphic to G, then G’ has property P. 

If G and G’ are simple graphs then G is isomorphic to G’ if, and only if, there exists a one-
to-one correspondence g from the vertex set V(G) of G to the vertex set V(G’) of G’ that 
preserves the edge-endpoint functions of G and G’ in the sense that 

 for all vertices u and v of G, 

{u, v} is an edge in G Û{g(u), g(v)} is an edge in G’  
 

Theorem 
Each of following properties is an invariant for graph isomorphism, n, m, and k are all 
nonnegative integers: 

1. has n vertices; 
2. has m edges; 
3. has a vertex of degree k; 
4. has m vertices of degree k; 
5. has a circuit of length k; 
6. has a simple circuit of length k;  
7. has m simple circuits of length k; 
8. is connected; 
9. has an Euler circuit; 
10. has a Hamiltonian circuit. 
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Trees 

• Graph is circuit-free  it has no nontrivial circuits. 
• A graph is a tree  it is circuit-free and connected. 
• A trivial tree is a graph that consists of a single vertex 
• Empty tree that does not have any vertices or edges. 
• Forest a graph if circuit-free. 
• Terminal vertex (Leaf) a vertex of degree 1in T  
• Internal vertex a vertex of degree greater than 1 in T  

Lemma 1  Any tree having more than one vertices has at least one vertex of degree 1. 

Lemma 2  If G is any connected graph, C is any nontrivial circuit in G, and one of the edges 
of C is removed form G’, then the graph that remains is connected.  

Theorem For any positive integer n, if G is a connected graph with n vertices and n – 1 
edges, then G is a tree 

 

Theorem 

Statement  

 For positive integer n, any tree with n vertices has n – 1 edges. 

Solution 

We prove this theorem by mathematical induction 

Basis 

 n = 1, tree has no edge and hence true 

Inductive hypothesis  

 Suppose that id n = k then tree has k – 1 edges 

Claim  

 Now if we add one more vertex to the tree then exactly one edge will be added 
otherwise it will not remain tree. And hence it will become k edges in the tree. 
Proved! 

 

Rooted Trees  

Rooted tree a distinguished vertex 

Level of a vertex is the number of edges along the unique path between it and the root.  

Height of a rooted tree is maximum level to any vertex  

Children of v are all those vertices that are adjacent to v and are one level farther away from 
the root than v. 

Parent if w is child of v, then v its parent 

Siblings vertices that are children of same parent 

Ancestor and Descendent given vertices v and w, if v lies on the unique path between w and 
the root, then v is an ancestor of w and w is a descendent of v 
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Binary Trees 

A binary tree is a rooted tree in which every internal vertex has at most two children. Each 
child in a binary tree is either left child or a right child (but not both), an internal vertex has 
at most one left and one right child.  

Full binary tree is a binary tree in which each internal vertex has exactly two children. 

 

Theorem 
If k is a positive integer and T is a full binary tree with k internal vertices, the T has a total of 
2k + 1 vertices and has k + 1 terminal vertices.  

Theorem 

If T is a binary tree that has t number of terminal vertices and height is h, then t ≤ 2k OR 

2log t h  



196 
 

Spanning Trees 

A spanning tree for a graph G is a subgraph of G that contains every vertex of G and is a 
tree. 

Proposition  
1. Every connected graph has a spanning tree. 
2. Any two spanning trees for a graph have the same number of edges. 

 

Minimal Spanning Trees 

A weighted graph is a graph for which each edge has an associated real number weight. The 
sum of the weights of all the edges is the total weight of the graph.  

A minimal spanning tree for a weighted graph is a spanning tree that has the least possible 
total weight compared to all other spanning trees for the graphs. 

If G is a weighted graph and e is an edge of G then w(e) denotes the weight of e and w(G) 
denotes the total weight of G. 
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Lecture	28	 Breadth	First	Search	
Representations of Graphs 

• Two standard ways to represent a graph 
– Adjacency lists,  
– Adjacency Matrix 

• Applicable to directed and undirected graphs. 

Adjacency lists  

• A compact way to represent sparse graphs. 
• |E| is much less than |V|2 

• Graph G(V, E) is represented by array Adj of |V| lists 
• For each u   V, the adjacency list Adj[u] consists of all the vertices adjacent to u in G 
• The amount of memory required is: (V + E) 

Adjacency Matrix 

• A graph G(V, E) assuming the vertices are numbered 1, 2, 3, … , |V| in some arbitrary 
manner, then representation of G  consists of: |V| × |V| matrix A = (aij) such that 

 1 if ,

0 otherwise
ij

i j E
a

 
 


 

• Preferred when graph is dense 
– |E| is close to |V|2 

Adjacency matrix of undirected graph 

 

 



198 
 

The amount of memory required is Θ(V2) 

For undirected graph to cut down needed memory only entries on and above diagonal are 
saved. In an undirected graph, (u, v) and (v, u) represents the same edge, adjacency matrix A 
of an undirected graph is its own transpose A = AT 

It can be adapted to represent weighted graphs. 

Breadth First Search 

• One of simplest algorithm searching graphs 
• A vertex is discovered first time, encountered 
• Let G (V, E) be a graph with source vertex s, BFS 

– discovers every vertex reachable from s. 
– gives distance from s to each reachable vertex 
– produces BF tree root with s to reachable vertices 

• To keep track of progress, it colors each vertex 
– vertices start white, may later gray, then black 
– Adjacent to black vertices have been discovered 
– Gray vertices may have some adjacent white vertices 

• It is assumed that input graph G (V, E) is represented using adjacency list. 
• Additional structures maintained with each vertex v  V are 

– color[u] – stores color of each vertex 
– π[u] – stores predecessor of u 
– d[u] – stores distance from source s to vertex u 

Algorithm 

   BFS(G, s) 
    1     for each vertex u ← V [G] – {s} 
    2         do color [u] ← WHITE 
    3            d [u] ← ∞ 
    4            π[u] ← NIL 
    5     color[s] ← GRAY 
    6     d [s] ← 0 
    7     π[s] ← NIL 
    8     Q ← Ø    /* Q always contains the set of GRAY vertices */ 
    9     ENQUEUE (Q, s) 
   10    while Q ≠  Ø 
   11        do u ← DEQUEUE (Q) 
   12            for each v  Adj [u] 
   13                  do if color [v] = WHITE         /* For undiscovered vertex. */ 
   14                           then color [v] ← GRAY   
   15                                    d [v] ← d [u] + 1 
   16                                    π[v] ← u 
   17                                   ENQUEUE(Q,  v) 
   18            color [u] ← BLACK 
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• Each vertex is enqueued and dequeued atmost once 

– Total time devoted to queue operation is O(V) 

• The sum of lengths of all adjacency lists is Θ (E) 

– Total time spent in scanning adjacency lists is O(E) 

• The overhead for initialization O(V) 

Total Running Time of BFS = O(V+E) 

From CLRS Textbook: The operations of enqueuing and dequeuing take O(1) time, and so the 
total time devoted to queue operations is O(V). Because the procedure scans the adjacency list 
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of each vertex only when the vertex is dequeued, it scans each adjacency list at most once. 
Since the sum of the lengths of all the adjacency lists is Θ(E), the total time spent in scanning 
adjacency lists is O(E). The overhead for initialization is O(V) and thus the total running time 
of the BFS procedure is O(V + E). Thus, breadth-first search runs in time linear in the size of 
the adjacency-list representation of G. 

Shortest Paths 

• The shortest-path-distance δ (s, v) from s to v as the minimum number of edges in 
any path from vertex s to vertex v. 

– if there is no path from s to v, then δ (s, v) = ∞ 
• A path of length δ (s, v)  from s to v is said to be a shortest path from s to v. 
• Breadth First search finds the distance to each reachable vertex in the graph G (V, E) 

from a given source vertex s   V.  
• The field d, for distance, of each vertex is used 

Algorithm 

BFS-Shortest-Paths (G, s) 
 1     v  V 
 2        d [v] ← ∞ 
 3   d [s] ← 0 
 4   ENQUEUE (Q, s) 
 5   while Q ≠ φ 
 6          do v ← DEQUEUE(Q) 
 7               for each w in Adj[v] 
 8                     do if d [w] = ∞ 
 9                              then d [w] ← d [v] +1  
10                                       ENQUEUE (Q, w) 

Lemma 1: Let G = (V, E) be a directed or undirected graph, and let s  V be an arbitrary vertex. 
Then, for any edge (u, v)  E, 

δ(s, v) ≤ δ(s, u) + 1  

Proof: If u is reachable from s, then so is v. In this case, the shortest path from s to v cannot 
be longer than the shortest path from s to u followed by the edge (u, v), and thus the 

inequality holds. If u is not reachable from s, then  ,s u   , and the inequality holds. 

Lemma 2: Let  ,G V E  be a directed or undirected graph, and suppose that BFS is run on 

G from a given source vertex s V . Then upon termination, for each vertex v V , the value 
.v d  computed by BFS satisfies d[v] ≥ δ(s, v). 

Proof: 

– Induction on number of ENQUEUE operations.  
 To prove d[v] ≥ δ(s, v) for all v   V 
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– The basis of the induction is situation immediately after s is enqueued in line 9 
of BFS algorithm. 

– Base case holds, because d[s] = 0 = δ(s, s) and d[v] = ∞ ≥ δ(s, v) for all v   V - 
{s}  

– Inductive hypothesis: d[u] ≥ δ(s, u). Here white vertex v is discovered during 
search from a vertex u.  

– By line 15 of BFS we have d[v] = d[u] + 1        (1) 
– By Inductive hypothesis d[u] ≥ δ(s, u)        (2) 
– By previous Lemma, δ(s, u) + 1 ≥ δ(s, v)        (3) 
– Now by (1), (2) and (3),  

 d[v] = d[u] + 1 ≥ δ(s, u) + 1 ≥ δ(s, v) 
–  Hence d[v] ≥ δ(s, v). Vertex v is then enqueued, and never enqueued 

again because it is also grayed. 
– Hence it prove the theorem 

Lemma 3: Suppose that during execution of BFS on a graph G = (V, E), the queue Q contains 
the vertices <v1, v2,..., vr>, where v1 is the head of Q and vr is the tail. Then, d[vr] ≤ d[v1] + 1 
and d[vi ] ≤ d[vi+1] for i = 1, 2,..., r - 1 

Proof 

– Proof is done by induction on queue operations 
– Initially, when queue contains s, lemma holds. 
– For inductive step, we must prove that lemma holds after dequeuing and 

enqueuing a vertex. 

Dequeuing a vertex.  

– If head v1 of queue is dequeued, v2 becomes new head. (If queue is empty, 
lemma holds vacuously.) 

– Now d[v1] ≤ d[v2]  (by inductive hypothesis) 
– To prove that d[vr] ≤ d[v2] + 1  
– We have d[vr] ≤ d[v1] + 1 ≤ d[v2] + 1  
– And remaining inequalities are unaffected. 

Enqueuing a vertex.  

– When we enqueue vertex vr+1 

– At time of enqueuing vr+1, let u was removed. Hence, by inductive hypothesis, 
d[v1] ≥ d[u] i.e.   

  d[u] ≤ d[v1].    (1) 

– Since vr+1 is adjacent to u 

  d[vr+1] = d[u] + 1   (2) 

– By (1) and (2), d[vr+1] = d[u] + 1 ≤ d[v1] + 1 

– By inductive hypothesis we have d[vr] ≤ d[u] + 1 
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– Now d[vr] ≤ d[u] + 1 = d[vr+1],  and the remaining inequalities are unaffected. 

– Thus, the lemma is proved when vr+1 is enqueued 

Corollary: Suppose that vertices vi and vj are enqueued during execution of BFS, and that vi 
is enqueued before vj. Then d[vi] ≤ d[vj] at the time that vj is enqueued. 

Proof:  

– Immediate from above Lemma and  

– the property that each vertex receives a finite d value at most once during the 
course of BFS  

Theorem (Correctness of BFS) 

Let G = (V, E) be a directed or undirected graph, and suppose that BFS is run on G from a 
given source vertex s  V. Then, during its execution, BFS discovers every vertex v  V that 
is reachable from the source s, and upon termination              

  d[v] = δ(s, v) for all v   V.  

 Moreover, for any vertex v ≠ s that is reachable from s, one of the shortest paths from 
s to v is a shortest path from s to π[v] followed by edge (π[v], v).  

Proof: 

– Assume, for the purpose of contradiction, that some vertex receives a d value not 
equal to its shortest path distance.  

– Let v be the vertex with minimum δ(s, v) that receives such an incorrect d value; 
clearly v ≠ s.  

– By Lemma 22.2, d[v] ≥ δ(s, v), and thus we have that d[v] > δ(s, v). Vertex v must 
be reachable from s, for if it is not, then δ(s, v) = ∞ ≥ d[v].  

– Let u be the vertex immediately preceding v on a shortest path from s to v, so that  
   δ(s, v) = δ(s, u) + 1. 

– Because δ(s, u) < δ(s, v), and because of how we chose v, we have d[u] = δ(s, u).  
– Putting these properties together, we have  

d[v] > δ(s, v) = δ(s, u) + 1 = d[u] +1       (22.1) 
– Now consider the time when BFS chooses to dequeue vertex u from Q in line 11.  
– At this time, vertex v is, white, gray, or black.  
– We shall show that in each of these cases, we derive a contradiction to inequality 

(22.1). 
– If v is white, then line 15 sets d[v] = d[u] + 1, contradicting inequality (22.1). 
– If v is black, then it was already removed from the queue and, by Corollary 22.4, 

we have d[v] ≤ d[u], again contradicting inequality (22.1).  
– If v is gray, then it was painted gray upon dequeuing some vertex w, which was 

removed from Q earlier than u and, d[v] = d[w] + 1.  
– By Corollary 22.4, however, d[w] ≤ d[u], and so we have d[v] ≤ d[u] + 1, once 

again contradicting inequality (22.1).  
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– Thus we conclude that d[v] = δ(s, v) for all v  V . All vertices reachable from s 
must be discovered, if they were not, they would have infinite d values.  

– To conclude the proof of the theorem, observe that if π[v] = u, then d[v] = d[u] + 
1.  

– Thus, we can obtain a shortest path from s to v by taking a shortest path from s to 
π[v] and then traversing the edge (π[v], v)  

Lemma: When applied to a directed or undirected graph G = (V, E), procedure BFS 
constructs π so that the predecessor subgraph Gπ = (Vπ, Eπ) is a breadth-first tree. 

Proof:  

– Line 16 of BFS sets π[v] = u if and only if (u v)  E and δ(s, v) < ∞ that is, if v is 
reachable from s and thus Vπ consists of the vertices in V reachable from s.  

– Since Gπ forms a tree, it contains a unique path from s to each vertex in Vπ .  
– By applying previous Theorem inductively, we conclude that every such path is a 

shortest path. 
– The procedure in upcoming slide prints out the vertices on a shortest path from s to v, 

assuming that BFS has already been run to compute the shortest-path tree.  

Print Path 

PRINT-PATH (G, s, v) 
1    if v = s 
2       then print s 
3       else if π[v] = NIL 
4                 then print “no path from s to v exists 
5                 else PRINT-PATH (G, s, π[v]) 
6                         print v 
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Lecture	29	 Proof	(Breadth	First	Search	Algorithm)	and	Depth	
First	Search	
Theorem (Correctness of BFS) 

Let G = (V, E) be a directed or undirected graph, and suppose that BFS is run on G from a 
given source vertex s V . Then, during its execution, BFS discovers every vertex v V that 
is reachable from the source s, and upon termination, [ ]  ( , )d v s v for all v V . 

Moreover, for any vertex v ≠ s that is reachable from s, one of the shortest paths from s to v is 
a shortest path from s to π[v] followed by edge (π[v], v). 

Proof: 

Assume, for the purpose of contradiction, that some vertex receives a d value not equal to its 
shortest-path distance. Let v be the vertex with minimum δ(s, v) that receives such an 
incorrect d value; clearly v ≠ s. By Lemma 22.2, d[v] ≥ δ(s, v), and thus we have that d[v] > 
δ(s, v). Vertex v must be reachable from s, for if it is not, then δ(s, v) = ∞ ≥ d[v].  

Let u be the vertex immediately preceding v on a shortest path from s to v, so that   
 δ(s, v) = δ(s, u) + 1. 

Because δ(s, u) < δ(s, v), and because of how we chose v, we have d[u] = δ(s, u).  

Putting these properties together, we have  

d[v] > δ(s, v) = δ(s, u) + 1 = d[u] +1       (22.1) 

Now consider the time when BFS chooses to dequeue vertex u from Q in line 11.  

At this time, vertex v is, white, gray, or black.  

We shall show that in each of these cases, we derive a contradiction to inequality (22.1). 

If v is white, then line 15 sets d[v] = d[u] + 1, contradicting inequality (22.1). 

If v is black, then it was already removed from the queue and, by Corollary 22.4, we have 
d[v] ≤ d[u], again contradicting inequality (22.1).  

If v is gray, then it was painted gray upon dequeuing some vertex w, which was removed 
from Q earlier than u and, d[v] = d[w] + 1.  

By Corollary 22.4, however, d[w] ≤ d[u], and so we have d[v] ≤ d[u] + 1, once again 
contradicting inequality (22.1).  

Thus we conclude that d[v] = δ(s, v) for all v  V . All vertices reachable from s must be 
discovered, if they were not, they would have infinite d values.  

To conclude the proof of the theorem, observe that if π[v] = u, then d[v] = d[u] + 1.  
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Thus, we can obtain a shortest path from s to v by taking a shortest path from s to π[v] and 
then traversing the edge (π[v], v)  

Depth First Search 

• The predecessor subgraph of a depth-first search forms a depth-first forest composed 
of several depth-first trees defined as 

                 Gπ = (Vπ, Eπ), where 
                 Eπ = {(π[v], v) : v V and  π[v] ≠ NIL}  
 the edges in Eπ are called tree edges. 

• Each vertex is initially white 
– It is grayed when it is discovered in the search, and  
– It is blackened when it is finished, that is, when its adjacency list has been 

examined completely.  

Discovery and Finish Times 

• It guarantees that each vertex ends up in exactly one depth-first tree, so that these 
trees are disjoint. 

• It timestamps each vertex  
– the first timestamp d[v] records when v is first discovered (and grayed), and  
– the second timestamp f [v] records when the search finishes examining v's 

adjacency list (and blackens v).  
• For every vertex u d[u] < f[u] 

Algorithm: Depth First Search 

DFS(G) 
1    for each vertex u  V [G] 
2    do color [u] ← WHITE 
3          π[u] ← NIL 
4    time ← 0 
5    for each vertex u  V [G] 
6          do if color [u] = WHITE 

7                  then DFS-Visit (u) 

DFS-Visit(u) 
1    color [u] ← GRAY 

2  time ← time + 1 
3  d [u] ← time 

4    for each v  Adj [u] 
5         do if color [v] = WHITE 
6                then π[v] ← u 
7                        DFS-Visit (v) 
8    color [u] ← BLACK 
9    f[u] ← time ← time + 1 
 

 

Running Time: Θ(V + E) 
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Properties of Depth First Search 

• It yields valuable information about structure of a graph.  
– Predecessor subgraph Gπ does indeed form a forest of trees, since the structure 

of the depth-first trees exactly mirrors the structure of recursive calls of DFS-
VISIT.  

• Discovery and finishing times have parenthesis structure.  
– If we represent the discovery of vertex u with a left parenthesis “(u” and 

represent its finishing by a right parenthesis “u)”, then  
– history of discoveries and finishing makes well-formed expression in a sense 

that parentheses properly nested.  

Parenthesis Structure 

 



213 
 

 

Parenthesis Theorem 

 In any depth-first search of a (directed or undirected) graph G = (V, E), for any two 
vertices u and v, exactly one of the following three conditions holds: 

1. the intervals [d[u], f[u]] and [d[v], f[v]] are entirely disjoint, and neither u nor v 
is a descendant of the other in the depth-first forest, 

2. the interval [d[u], f[u]] is contained entirely within the interval [d[v], f[v]], and 
u is a descendant of v in a depth-first tree, or 

3. the interval [d[v], f[v]] is contained entirely within the interval [d[u], f[u]], and 
v is a descendant of u in a depth-first tree. 

Proof 

– We begin with case in which d[u] < d[v].  

– There are two sub-cases, either  

   d[v] < f[u] or d[v] > f[u] . 

Case 1 

– d[v] < f[u]  v discovered while u was still gray.  

– This means v is a descendant of u.  

– Since v was discovered more recently than u, all of its outgoing edges are 
explored, and v is finished, before search finishes u.  

– Hence d[u] < d[v] < f(v) < f(u) (part 3 is proved)  
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Case 2 

– d[u] < d[v]   (supposed) 

– and f[u] < d[v] (by case 2)  

– Hence intervals [d[u], f[u]] and [d[v], f[v]] disjoint.  

– Because intervals are disjoint, neither vertex was discovered while the other 
was gray, and so neither vertex is a descendant of the other.  

– Now if we suppose d[v] < d[u], then again either 

– Intervals will be disjoint OR 

– Interval of v will contain interval of u. 

Corollary (Nesting of Descendants’ Intervals) 

 Vertex v is a proper descendant of vertex u in the depth-first forest for a (directed or 
undirected) graph G if and only if d[u] < d[v] < f[v] < f[u]  

Proof 

– Immediate from the above Theorem  

Classification of Edges 

The depth-first search can be used to classify the edges of the input graph G = (V, E).  

1. Tree edges  

– These are edges in the depth-first forest Gπ. 

– Edge (u, v) is a tree edge if v was first discovered by exploring edge (u, v). 

2. Back edges 

– those edges (u, v) connecting a vertex u to an ancestor v in a depth first tree. 

– Self-loops, which may occur in directed graphs, are considered to be back 
edges. 

3. Forward edges 
– Those nontree edges (u, v) connecting a vertex u to a descendant v in a 

depth-first tree. 

4. Cross edges  
– These are all other edges.  

– They can go between vertices in the same depth-first tree, as long as 
one vertex is not an ancestor of the other, or  

– they can go between vertices in different depth-first trees. 

Theorem 
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 In a depth-first search of an undirected graph G, every edge of G is either a tree edge 
or back edge. 

Proof 

–  Let (u, v) be an arbitrary edge of G, and suppose without loss of generality 
that d[u] < d[v].  

– Then, v must be discovered and finished before we finish u (while u is gray), 
since v is on u's adjacency list.  

– If the edge (u, v) is explored first in direction from u to v, then v is 
undiscovered (white) until that time, for otherwise we would have explored 
this edge already in the direction from v to u.  

– Thus, (u, v) becomes a tree edge.  

– If (u, v) is explored first in the direction from v to u, then (u, v) is a back edge, 
since u is still gray at the time the edge is first explored. 
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Lecture	30	 Proof	(White	Path	Theorem)	&	Applications	of	
Depth	First	Search	
Algorithm: Depth First Search 

DFS(G) 
1    for each vertex u   V [G] 
2    do color [u] ← WHITE 
3          π[u] ← NIL 
4    time ← 0 
5    for each vertex u  V [G] 
6          do if color [u] = WHITE 

8                  then DFS-Visit (u) 

DFS-Visit(u) 
1    color [u] ← GRAY 

4  time ← time + 1 
5  d [u] ← time 

4    for each v   Adj [u] 
5         do if color [v] = WHITE 
6                then π[v] ← u 
7                        DFS-Visit (v) 
8    color [u] ← BLACK 
9    f[u] ← time ← time + 1 
 

Running Time: Θ(V + E) 

Theorem: White-Path Theorem 

In a depth-first forest of a (directed or undirected) graph G = (V, E), vertex v is a descendant 
of vertex u if and only if at the time d[u] that the search discovers u, vertex v can be reached 
from u along a path consisting entirely of white vertices. 

Proof: 

– Assume that v is a descendant of u.  
– Let w be any vertex on the path between u and v in depth-first tree, so that w 

is a descendant of u.  
– As d[u] < d[w], and so w is white at time d[u]. 

Second part is proved by contradiction 
– Suppose that vertex v is reachable from u along a path of white vertices at 

time d[u], but v does not become a descendant of u in the depth-first tree. 
– Without loss of generality, assume that every other vertex along the path 

becomes a descendant of u.  
– (Otherwise, let v be the closest vertex to u along the path that doesn't become a 

descendant of u.)  
– Let w be predecessor of v in the path, so that w is a descendant of u (w, u may 

be same) by Corollary above 
  f[w] ≤ f[u].   (1) 

– Note v must be discovered after u is discovered,  
 d[u] < d[v]   (2) 

– but v must be discovered before w is finished.  
 d[v] < f[w]  (3) 

– Therefore, by (1), (2) and (3)  
 d[u] < d[v] < f[w] ≤ f[u].  



217 
 

– Above Theorem implies that interval [d[v], f[v]] is contained entirely within 
interval [d[u], f[u]].  

– By Corollary above, v must be a descendant of u. 

Topological Sort 

• A Topological Sort of a directed acyclic graph, or a “dag” G = (V, E) is a linear 
ordering of all its vertices such that  

– if G contains an edge (u, v), then u appears before v in the ordering.  
• It is ordering of its vertices along a horizontal line so that all directed edges go from 

left to right 
• The depth-first search can be used to perform a topological sort of a dag. 

Algorithm 

TOPOLOGICAL-SORT (G) 
1. Call DFS(G) to compute f [v] of each vertex v  V. 
2. Set an empty linked list L = Ø. 
3. When a vertex v is colored black, assign it f (v). 
4. Insert v onto the front of the linked list, L = {v}.L. 
5. return the linked list.  
6. The rank of each node is its position in the linked list started from the head of the list. 

Running Time: Θ(V + E) 

Example: 

 

 

Lemma:  A directed graph G is acyclic if and only if a depth-first search of G yields no 
back edges. 
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Proof 

 : G is acyclic.  
– Suppose that there is a back edge (u, v).  
– Then, vertex v is an ancestor of u in DF forest.  
– There is thus a path from v to u in G, and the back edge (u, v) completes a 

cycle. 
– G is cyclic and hence a contradiction,  
– Our supposition is wrong and  
– Hence G has no back edge 

  : If DFS yields no back edges G has no cycle 

We prove it by contra positive 

– We prove that if G contains a cycle c the DFS of G yields a back edge.  
– Let G has a cycle c. 
– Let v be the first vertex to be discovered in c, and let (u, v) be the preceding 

edge in c. 
– At time d[v], the vertices of c form a path of white vertices from v to u.  
– By the white-path theorem, vertex u becomes a descendant of v in the depth-

first forest.  Therefore, (u, v) is a back edge.  

Theorem 

 TOPOLOGICAL-SORT (G) produces a topological sort of a directed acyclic graph G 
. 

Proof 

• Let DFS is run on G to determine finishing times.  
• It sufficient to show that for any two distinct u, v  V, if there is an edge in G from u 

to v, then f[v] < f[u] 
• Consider any edge (u, v) explored by DFS(G). 
• When (u, v) is explored, v is gray, white or black 

Case 1  

• v is gray. v is ancestor of u. (u, v) would be a back edge. It contradicts the above 
Lemma.  

Case 2 

• If v is white, it becomes a descendant of u, and hence f[v] < f[u].  

Case 3 

• If v is black, it has already been finished, so that f[v] has already been set. 

• Because we are still exploring from u, we have yet to assign a timestamp to f[u] to u, 
and so once we do, we will have f[v] < f[u] as well.  
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Thus, for any edge (u, v) in the dag, we have  f[v] < f[u]. It proves the theorem. 
 SCC 

Strongly Connected Components 

A strongly connected component of a directed graph G = (V, E) is a maximal set of vertices 
C   V such that for every pair of vertices u and v in C, we have 

– u ↝ v, v is reachable from u.  

– v ↝ u; u is reachable from v.  

– The depth-first search can be used in decomposing a directed graph into its 
strongly connected components. 

Transpose of a graph 

• The strongly connected components of a graph G = (V, E) uses the transpose of G, 
which is defined as  

                        GT = (V, ET), where  

                        ET ={(u, v) : (v, u)  E} 

 ET consists of the edges of G with reversed directions.  

• G and GT have exactly the same strongly connected components 

– u and v are reachable from each other in G if and only if they are reachable 
from each other in GT.  

Algorithm: Strongly connected components 

STRONGLY-CONNECTED-COMPONENTS (G) 

1. call DFS(G), to compute the finish time f [u] of each vertex u 
2. compute GT. 
3. call DFS (GT), but in the main loop of DFS, consider the vertices in order of 

decreasing f[u]. (as computed in line 1) 
4. Output of the vertices of each tree in the depth-first forest formed in line 3 as a 

separate strongly connected component. 

Running Time: Θ(V + E) 

Example: Strongly connected components 
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Lecture	31	 Backtracking	and	Branch	&	Bound	Algorithms	
Component Graph 

 

The component graph GSCC = (VSCC, ESCC) 

VSCC = {v1, v2, …, vk}, where vi corresponds to each  strongly connected component Ci 

There is an edge (vi, vj)  ESCC if G contains a directed edge (x, y) for some x  Ci and y  
Cj 

The component graph is a DAG 

Lemma 1: Let C and C’ be distinct SCC’s in G 

 Let u, v  C, and u’, v’  C’ 
 Suppose there is a path u ↝ u’ in G 
Then there cannot also be a path v’ ↝ v in G. 

Proof:  
Suppose there is path v’ ↝  v  
There exists u ↝  u’ ↝  v’  
There exists v’ ↝  v ↝  u 
u and v’ are reachable from each other, so they are not in separate SCC’s: contradiction! 

 

Notations: Vertices to SCC 
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• d and f times of vertices of SCC 
• Let U  V, a SCC 

– d(U) = minuU { d[u] } (earliest discovery time) 
– f(U) = max uU { f[u] } (latest finishing time) 

 

Lemma 2: 

• Let C and C’ be distinct SCCs in a directed graph G = (V, E). If there is an edge (u, v) 
 E, where u  C and v  C’ then f(C) > f(C’). 

 

Proof 

• Consider C1 and C2, connected by edge (u, v) 

• There are two cases, depending on which strongly connected component, C or C′, had 
the first discovered vertex during the depth-first search  

Case 1  
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• If d(C) < d(C′), let x be the first vertex discovered in C. At time d[x], all vertices in C 
and C′ are white.  

• There is a path in G from x to each vertex in C consisting only of white vertices. 
• Because (u, v)  E, for any vertex w  C′, there is also a path at time d[x] from x to w 

in G consisting only of white vertices: x ↝ u ↝ v ↝ w.  
• By the white-path theorem, all vertices in C and C′ become descendants of x in the 

depth-first tree. By Corollary, f[x] = f(C) > f(C′). 

Case 2 

• d(C) > d(C′)   (supposition)  
• Now (u, v)  E, where u  C and v  C’ (given) 
• Let y be the first vertex discovered in C′.  
• At time d[y], all vertices in C′ are white and there is a path in G from y to each vertex 

in C′ consisting only of white vertices.  
• By the white-path theorem, all vertices in C′ become descendants of y in the depth-

first tree, and by Corollary, f[y] = f(C′).  
• At time d[y], all vertices in C are white. Since there is an edge (u, v) from C to C′, 

Lemma implies that there cannot be a path from C′ to C.  
• Hence, no vertex in C is reachable from y.  
• At time f[y], therefore, all vertices in C are still white. 
• Thus, for any vertex w   C, we have f[w] > f[y], which implies that f(C) > f(C′). 

Corollary 

 Let C and C′ be distinct strongly connected components in directed graph G = (V, E). 
Suppose that there is an edge (u, v)  ET, where u  C and v  C′. Then f(C) < f(C′) 

Proof 

– Since (u, v)  ET, we have (v, u)  E.  

– Since strongly connected components of G and GT are same, Lemma implies 
that f(C) < f(C′).  

Theorem: Correctness of SCC Algorithm  

 STRONGLY-CONNECTED-COMPONENTS (G) correctly computes SCCs of a 
directed graph G. 
Proof 

• We argue by induction on number of DF trees of GT that “vertices of each tree form a 
SCC”.  

• The basis for induction, when k = 0, is trivial. 
• Inductive hypothesis is that, first k trees produced by DFS of GT are strongly 

connected components. 
• Now we prove for (k+1)st tree produced from GT, i.e. vertices of this tree form a SCC. 
• Let root of this tree be u, which is in SCC C. 
• Now, f[u] = f(C) > f(C′),  C′ yet to be visited and  C 
• By inductive hypothesis, at the time search visits u, all other vertices of C are white. 
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• By white-path theorem, all other vertices of C are descendants of u in its DF tree. 
• Moreover, by inductive hypothesis and by Corollary above, any edges in GT, that 

leave C must be, to SCCs that have already been visited. 
• Thus, no vertex in any SCC other than C will be a descendant of u during the DFS of 

GT.  
• Thus, vertices of DF tree in GT rooted at u form exactly one SCC. 

Why BackTracking? 

When the graph is too large then Depth and breadth-first techniques are infeasible. 

In this approach if node searched for is found out that cannot exist in the branch then return 
back to previous step and continue the search to find the required node. 

What is backtracking? 

• Backtracking is refinement of Brute Force approach  
• It is a technique of constraint satisfaction problems 
• Constraint satisfaction problems are with complete solution, where elements order 

does not matter. 
• In backtracking, multiple solutions can be eliminated without examining, by using 

specific properties 
• Backtracking closely related to combinatorial search 
• There must be the proper hierarchy in produces 
• When a node is rejected, whole sub-tree rejected, and we backtrack to the ancestor of 

node.  
• Method is not very popular, in the worst case, it takes an exponential amount of time 

to complete. 

Solution Spaces  

• Solutions are represented by vectors (v1, ..., vm) of values. If Si is the domain of vi, 
then S1 × ... × Sm is the solution space of the problem.   

• Approach 

– It starts with an empty vector.  

– At each stage it extends a partial vector with a new value 

– Upon reaching a partial vector (v1, ..., vi, v) which can’t represent a partial 
solution, the algorithm backtracks by removing the trailing value from the 
vector, and then proceeds by trying to extend the vector with alternative 
values. 

General Algorithm: Solution Spaces 

ALGORITHM try(v1,...,vi)      
         IF (v1,...,vi) is a solution  
                  THEN RETURN (v1,...,vi)      
         FOR each v DO         
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                  IF (v1,...,vi,v) is acceptable vector   
                       THEN           
   sol = try(v1,...,vi,v)           
  THEN RETURN sol     
Knapsack: Feasible Solutions 

Partial solution is one in which only first k items have been considered.  
– Solution has form Sk = {x1, x2,…, xk}, 1 ≤ k < n. 
– The partial solution Sk is feasible if and only if  

Cxw i

k

i
i 

1

 

– If Sk is infeasible, then every possible complete solution containing Sk is also 
infeasible.  

Knapsack Example: Backtracking 

Maximum Capacity = 8 

i 1 2 3 4 

vi 3 5 6 10 

wi 2 3 4 5 

 

(2,2,3;11) means that two elements of each weight 2 and one element of weight 3 is with total 
value 11 

 

Knapsack Algorithm: Backtracking  
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BackTrack(i, r)   \\ BackTrack(1, C) 

b  0 
{try each kind of item in tern} 

for k  i to n 
 do  
 if w(k) ≤ r then 
  b  max (b, v[k] + BackTrack(k, r - w[k])) 
return b 
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Lecture	32	 Minimal	Spanning	Tree	Problem	
Minimum Spanning Tree 

Given a graph G = (V, E) such that 
– G is connected and undirected 
– w(u, v) weight of edge (u, v) 
– T is a Minimum Spanning Tree (MST) of G if  
– T is acyclic subset of E (T   E) 
– It connects all the vertices of G and 
– Total weight,  

( , )

( , )
u v T

w T w u v


   is minimized. 

Example of MST 

• Minimum spanning trees are not unique 
– If we replace (b, c) with (a, h), get a different spanning tree with the same cost 

• MST have no cycles 
– We can take out an edge of 
– a cycle, and still have the  
– vertices connected while reducing the cost 

 

Generic Solution to Compute MST 

Minimum-spanning-tree problem: Find a MST for a connected, undirected graph, with a 
weight function associated with its edges 

A generic solution: 

Build a set A of edges (initially empty) 

Incrementally add edges to A such that they would belong to a MST 

An edge (u, v) is safe for A  A  {(u, v)} is also a subset of some MST 
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How to Find Safe Edge? 

 

Let us look at edge (h, g) 

• Is it safe for A initially? 
• Let S  V be any set of vertices that includes h but not g (so that g is in V - S) 
• In any MST, there has to be one edge (at least) that connects S with V - S  
• Why not choose edge with minimum weight (h, g) 

Generic Algorithm: Minimum Spanning Tree 

GENERIC-MST(G, w) 
1    A ← Ø 
2    while A does not form a spanning tree 
3            do find an edge (u, v) that is safe for A 
4                 A ← A   {(u, v)} 
5    return A 

Strategy: Growing Minimum Spanning Tree 

• The algorithm uses greedy strategy which grows MST one edge at a time. 
• Given a connected, undirected graph G = (V, E) with a weight function w : E → R 
• Algorithm manages a set of edges A, maintaining loop invariant 

Prior to each iteration, A is a subset of some MST 

• An edge (u, v) is a safe edge for A such that A   {(u, v)} is also a subset of some 
MST. 

Algorithms, discussed here, to find safe edge are Kruskal’s Algorithm and Prim’s Algorithm. 

Definitions (Kruskal’s Algorithm) 

• A cut (S, V-S) of an undirected graph is a partition of V 
• An edge crosses the cut (S, V-S) if one of its endpoints is in S and the other is in V-S. 
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• A cut respects set A of edges if no edge in A crosses cut. 
• An edge is a light edge crossing a cut if its weight is the minimum of any edge 

crossing the cut. 

 

Theorem (Kruskal’s Algorithm) 

 

 Let G = (V, E) be a connected, undirected graph with a real-valued weight function w 
on E. Let A be a subset of E that is included in some minimum spanning tree for G, let (S, V -
S) be any cut of G that respects A, and let (u, v) be a light edge crossing (S, V - S). Then, edge 
(u, v) is safe for A. 

Proof 

• Let T be a minimum spanning tree that includes A (edges of A are shaded) 

• Assume that T does not contain the light edge (u, v), since if it does, we are done.  

Construction of another MST 
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• For (u, v)  T 
• We construct another MST T′ that includes A ∪ {(u, v)} by cut-and-paste, and 

showing that (u, v) is a safe A. 
• Since (u, v) crosses cut set (S, V-S) and  
• (u, v)  T,  
• Hence there must be an edge (x, y)  T which crosses the cut set 
• By removing (x, y) breaks T into two components. 
• Adding (u, v) reconnects them to form a new spanning tree T′ = T - {(x, y)} � {(u, 

v)}. 
Show that T′ is a minimum spanning tree.  

• Since (u, v) is a light edge crossing (S, V - S) and (x, y) also crosses this cut, w(u, v) ≤ 
w(x, y).  

• Hence, w(T′) = w(T) - w(x, y) + w(u, v) ≤ w(T). 
• But T is a MST, so that w(T) ≤ w(T′); thus, T′ must be a minimum spanning tree also. 

Show that (u, v) is safe for A: (u, v) can be part of MST 
• Now (x, y) is not in A, because the cut respects A. 
• Since A  T and (x, y)  A  A T- {(x, y)} 
• A  {(u, v)}  T- {(x, y)}  {(u, v)} = T’ 
• Since T’  is an MST  (u, v) is safe for A 

Kruskal’s Algorithm 

MST-KRUSKAL (G, w) 
1  A ← Ø 

2  for each vertex v V[G] 
3            do MAKE-SET(v) 

4 sort edges in non-decreasing order by weight w 
5 for each (u, v) in non-decreasing order by weight 

6            do if FIND-SET(u) ≠ FIND-SET(v) 
7                     then A ← A   {(u, v)} 
8                             UNION (u, v) 

9 return A 

Total Running time = O (E lg V),   

Kruskal’s Algorithm 
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Edges Weight 
(g, h) 1 
(c, i) 2 
(f, g) 2 
(a, b) 4 
(c, f) 4 
(g, i) 6 
(c, d) 7 
(h, i) 7 
(a, h) 8 
(b, c) 8 
(d, e) 9 
(e, f) 10 
(b h) 11 
(d, f) 14 

 

Initial sets = {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i} 

 

Initial sets = {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i} 
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Final sets = {a}, {b}, {c}, {d}, {e}, {f}, {g, h}, {i} 

 

Initial sets = {a}, {b}, {c}, {d}, {e}, {f}, {g, h}, {i} 

Final sets = {a}, {b}, {c, i}, {d}, {e}, {f}, {g, h} 

 

Initial sets = {a}, {b}, {c, i}, {d}, {e}, {f}, {g, h} 

Final sets = {a}, {b}, {c, i}, {d}, {e}, {f, g, h} 

 

Initial sets = {a}, {b}, {c, i}, {d}, {e}, {f, g, h} 

Final sets = {a, b}, {c, i}, {d}, {e}, {f, g, h} 
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Initial sets = {a, b}, {c, i}, {d}, {e}, {f, g, h} 

Final sets = {a, b}, {c, f, g, h , i}, {d}, {e} 

 

Initial sets = {a, b}, {c, f, g, h, i}, {d}, {e} 

Final sets = {a, b}, {c, f, g, h, i}, {d}, {e} 

 

Initial sets = {a, b}, {c, f, g, h, i}, {d}, {e} 

Final sets = {a, b}, {c, d, f, g, h, i}, {e} 
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Initial sets = {a, b}, {c, d, f, g, h, i}, {e} 

Final sets = {a, b, c, d, f, g, h , i}, {e} 

 

Initial sets = {a, b}, {c, d, f, g, h, i}, {e} 

Final sets = {a, b, c, d, f, g, h , i}, {e} 

 

Initial sets = {a, b, c, d, f, g, h , i}, {e} 

Final sets = {a, b, c, d, f, g, h , i}, {e} 
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Initial sets = {a, b, c, d, f, g, h , i}, {e} 

Final sets = {a, b, c, d, e, f, g, h , i} 

 

Initial sets = {a, b, c, d, e, f, g, h , i} 

Final sets = {a, b, c, d, e, f, g, h , i} 

 

Initial sets = {a, b, c, d, e, f, g, h, i} 

Final sets = {a, b, c, d, e, f, g, h, i} 
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Initial sets = {a, b, c, d, e, f, g, h, i} 

Final sets = {a, b, c, d, e, f, g, h , i} 

Correctness of Kruskal’s Algorithm 

• Used to determine the safe edge of GENERIC-MST 
• The algorithm manages set of edges A which always form a single tree. 
• The tree starts from an arbitrary vertex r and grows until tree spans all the vertices in 

V. 
• At each step, a light edge is added to the tree A that connects A to an isolated vertex of 

GA = (V, A) 
• It is a greedy algorithm 

– At each step tree is augmented with an edge that contributes least possible 
amount to tree’s weight 

• Since vertices, of each edge considered, are in different sets hence no cycle is created. 

Prim’s Algorithm 

MST-PRIM (G, w, r) 
 1    for each u  V [G] 
 2           do key[u] ← ∞ 
 3                π[u] ← NIL 
 4    key[r] ← 0 
 5    Q ← V [G] 
 6    while Q ≠ Ø 
 7           do u ← EXTRACT-MIN(Q) 
 8                for each v  Adj[u] 
 9                      do if v  Q and w(u, v) < key[v] 
10                             then π[v] ← u 

11     key[v] ← w(u, v) 

Prim’s Algorithm 

• The performance depends on the implementation of min-priority queue Q. 
• Using binary min-heap 

Total Running time = O (E lg V) 
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• Using fibonacci heaps 

Total Running time = O (E + V lg V) 

Prim’s Algorithm 
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Importance of Minimal Spanning Trees 

 There are various applications of Minimal Spanning Trees (MST). Let us consider a 
couple of real-world examples 

1. One practical application would be in designing a network.  
• For example, a group of individuals, separated by varying distances, are to be 

connected in a telephone network.   
• Although MST cannot do anything about distance from one connection to another, but 

it can reduce connecting cost. 
2. Another useful application of it is finding airline routes.  
• The vertices of the graph would represent cities, and the edges would represent routes 

between the cities.  
• Obviously, more traveling require more cost 
• Hence MST can be applied to optimize airline routes by finding the least costly paths 

with no cycles.  
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Lecture	33	 Single‐Source	Shortest	Path	
Road Map Problem 

We are given a road map on which the distance between each pair of adjacent cities is 
marked, and our goal is to determine the shortest route from one city to another. The number 
of possible routes can be huge. How do we choose which one routes is shortest? This 
problem can be modelled as a graph and then we can find the shortest path from one city to 
another using graph algorithms. How to solve this problem efficiently? 

Linking Road Map with Graph Theory 

This problem can be modeled as a graph problem 
• Road map is a weighted graph where 

  set of vertices = set of cities 
  set of edges = road segments between cities 
  edge weight = length between two cities 
Our goal is to find a shortest path between two vertices i.e. between two cities. 

Weight of a Path 

In a shortest path problem, a weighted, directed graph G = (V, E) is given with weight 
function w: E → R mapping edges to real-valued weights. 

The weight of path 0 1, ,..., kp v v v    is the sum of the weights of its constituent edges. 
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Shortest Path 

A shortest path from vertex u to v is denoted by δ (u, v) and is defined as 




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otherwise
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Weight of edges can represent any metric such as Distance, time, cost, penalty, loss etc. 

Variants of Shortest Path 

• Single-source shortest path 

– G = (V, E)  find a shortest path from a given source vertex s to each vertex 
v  V 

• Single-destination shortest path 

– Find a shortest path to a given destination vertex t from each vertex v 
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– Reverse the direction of each edge  single-source 

• Single-pair shortest path 

– Find a shortest path from u to v for given vertices u and v 

– Solve the single-source problem 

• All-pairs shortest-paths 

– Find shortest path for every pair of vertices u and v of G 

Lemma: subpath of a shortest path, a shortest path 

Given a weighted, directed graph G = (V, E) with weight function w : E → R, let p = < v1, 
v2,..., vk > be a shortest path from vertex v1 to vertex vk, for any i, j such that 1 ≤ i ≤ j ≤ k, let 
pij = < vi, vi+1,..., vj > be subpath of p from vi to vertex vj. Then, pij is a shortest path from vi to 
vj. 

Proof: We prove this lemma by contradiction. If we decompose path p into 

଴ݒ ↝
௣଴௜ ௜ݒ ↝

௣௜௝ ௝ݒ ↝
௣௝௞ )௞, then we have that 0ݒ ) ( ) ( ) ( )i ij jkw p w p w p w p   . Now, assume 

that there is a path p’ij from vi to vj with weight w(p’ij) < w(pij). That is there is a subpath 'ijp

from vi to vertex vj which is shortest than ijp . Then, ݒ଴ ↝
௣଴௜ ௜ݒ ↝

௣ᇱ௜௝ ௝ݒ ↝
௣௝௞  ௞,  is a path fromݒ

vertices v1 to vk whose weight w(p1i)  + w(p’ij) + w(pjk) is less than w(p). It contradicts the 
assumption that p is a shortest path from v1 to vk. Hence subpath of a given shortest path is 
also a shortest path. 

Why Positive Cycle Not? 

 

• s  a: only one path 
 (s, a) = w(s, a) = 3 

• s  b: only one path 
 (s, b) = w(s, a) + w(a, b) = -1 
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• s  c: infinitely many paths 
 s, c, s, c, d, c, s, c, d, c, d, c 

• cycle has positive weight (6 - 3 = 3) 
 s, c shortest path with weight (s, c) = w(s, c) = 5, 

• Positive cycle increases length of paths 

Why Negative Cycle Not? 

 

s  e: infinitely many paths:  

– s, e, s, e, f, e, s, e, f, e, f, e etc. 
– cycle e, f, e has negative weight: 3 + (- 6) = -3  
– paths from s to e with arbitrarily large negative weights 
– (s, e) =-   no shortest path exists between s and e 

Similarly:  
 (s, f) = - , (s, g) = -  

Removing cycles from shortest paths 

If 0 1, ,..., kp v v v    is a path and 1, ,...,i i jc v v v    is a positive weight cycle on this path 

then the path 0 1 1 2' , , ..., , , , ...,i j j kp v v v v v v     has weight w(p’) = w(p) – w(c) < w(p), and 

so p cannot be a shortest path from v0 to vk 
As long as a shortest path has 0-weight cycles, we can repeatedly remove these cycles from 
path until a cycle-free shortest path is obtained. 
When is no shortest path? 

• There may be edges with negative weight. 
• A cycle p = v0,v1,…,vk,v0 is a negative cycle such that w(p) < 0 
• If a graph G = (V, E) contains no negative weight cycle reachable from the source s, 

then for all v  V, shortest path δ(s, v) remains well defined. 
• If there is a negative weight cycles reachable from s, then shortest path weight are not 

well defined. 
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• If there is a path from u to v that contains a negative cycle, then shortest path is 
defined as 

  (u, v) = - 

Summary of cycles in SPP 

• Can shortest paths contain cycles? 
• Negative-weight cycles: NO 
• Positive-weight cycles: NO 

– By removing the cycle we can get a shorter path  
• Zero-weight cycles 

– No reason to use them 
– Can remove them to obtain a path with similar weight 

Note: We will assume that when we are finding shortest paths, the paths will have no cycles 

Representing Shortest Paths 

For a graph G=(V, E) , a predecessor π[v] is maintained for each vertex v  V 
– Either vertex or NIL 
– We are interested in predecessor subgraph Gπ=(Vπ , Eπ ) induced by π values, 

such that 
         Vπ  = {v  V : π[v] ≠ NIL}   {s} 
          Eπ = {(π[v], v)  E : v  Vπ - {s}} 

Shortest Path Rooted Tree 

Let G = (V, E) be a weighted, directed graph with weight function w : E → R and assume that 
G contains no negative weight cycles reachable from the source vertex s  V, so that shortest 
paths are well defined. 
A shortest path tree rooted at s is a directed subgraph G’=(V’, E’), where V’  V and E’    E 

Shortest path are not necessarily unique and neither are shortest path trees. 

Shortest path not unique 

• Shortest path are neither necessarily  

– unique and  

– nor shortest path trees 
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Initialization and Relaxation 

Initialization  

• All the shortest-paths algorithms start with initialization of vertices. 

Relaxation 

• For each vertex v  V, an attribute d[v] is defined and called a shortest path 
estimate, maintained 

– which is in fact, an upper bound on the weight of a shortest path from source s 
to v 

• Process of relaxing an edge (u, v) consists of testing whether we can improve shortest 
path to v found so far, through u, if so update d[v] and π[v]. 

• Relaxing edge (u, v), testing whether we can improve shortest path to v found so far 
through u 

–  If d[v] > d[u] + w(u, v)  
–  we can improve the shortest path to v  
–    update d[v] and [v] 

 

INITIALIZE-SINGLE-SOURCE (G, s) 
1   for each vertex v  V[G] 
2           do d[v] ← ∞ 
3                π[v] ← NIL 
4   d[s] → 0 
RELAX (u, v, w) 
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1   if d[v] > d[u] + w(u, v) 
2       then d[v] ← d[u] + w(u, v) 
3      π[v] ← u 

Running Time: Θ (V) 

Note: All the single-source shortest-paths algorithms, start by calling INIT-SINGLE-
SOURCE then relax edges. The algorithms differ in the order and how many times they relax 
each edge 

The Bellman-Ford Algorithm 

Input: 

• Weighted, directed graph G, edges may be negative with weight function w : E → R,  

Output 

• It returns Boolean value indicating whether or not there is a negative-weight cycle 
reachable from source. 

• If there is such a cycle, it indicates no solution exists 
• Else it produces shortest paths and their weights. 

Note: It uses relaxation progressively decreasing estimate d[v] on weight of a shortest path 
from source s to each vertex v  V until it achieves actual SP weight δ(s, v). 

BELLMAN-FORD (G, w, s) 
1   INITIALIZE-SINGLE-SOURCE (G, s) 
2   for i ← 1 to |V [G]| - 1 
3        do for each edge (u, v)  E[G] 
4                   do RELAX (u, v, w) 
5   for each edge (u, v)  E[G] 
6           do if d[v] > d[u] + w(u, v) 
7                    then return FALSE 
8   return TRUE 

Total Running Time = O(E) 
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Lemma 1 

Let G = (V, E) be a weighted, directed graph with source s and weight function w : E → R, 
and assume that G contains no negative-weight cycles that are reachable from s. Then, after 
the |V| - 1 iterations of the for loop of lines 2-4 of BELLMAN-FORD, we have d[v] = δ(s, v) 
for all vertices v that are reachable from s. 

Proof: We prove the lemma by appealing to the path-relaxation property.   

• Consider any vertex v that is reachable from s, and let p = < v0, v1,..., vk >, where v0 = 
s and vk = v, be any acyclic shortest path from s to v.  

• Path p has at most |V| - 1 edges, and so k ≤ |V| - 1.  
• Each of the |V| - 1 iterations of the for loop of lines 2-4 relaxes all E edges. 
• Among the edges relaxed in the ith iteration, for i = 1, 2,..., k, is (vi-1, vi).  
• By the path-relaxation property, therefore, d[v] = d[vk] = δ(s, vk) = δ(s, v). 

Theorem: Correctness of Bellman-Ford algorithm 

 Let BELLMAN-FORD be run on weighted, directed graph G = (V, E), with source 
vertex s, and weight function w : E → R.  
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• If G contains no negative-weight cycles that are reachable from s, then 
– d[v] = δ(s, v) for all vertices v  V, and  
– the algorithm returns TRUE 
– the predecessor subgraph Gπ is shortest-paths tree rooted at s.  

• If G does contain a negative weight cycle reachable from s, then the algorithm returns 
FALSE.  

Proof 

Case 1 

Suppose graph G contains no negative-weight cycles that are reachable from the source s.  

• We first prove the claim that at termination, d[v] = δ(s, v) for all vertices v  V .  
– If v is reachable from s, Lemma above proves it.  
– If v is not reachable from s, then the claim follows from the no-path property. 

Thus, the claim is proven.  
• The predecessor subgraph property, along with the claim, implies that Gπ is a shortest-

paths tree.  
• Now we use the claim to show that BELLMAN-FORD returns TRUE.  

– At termination, for all edges (u, v)  
– d[v] = δ(s, v) ≤ δ(s, u) + w(u, v) = d[u] + w(u, v), 
– It therefore returns TRUE 

Case 2 

• Suppose that graph G contains a negative-weight cycle that is reachable from the 
source s 

• Let this cycle be c = <v0, v1,..., vk>, where v0 = vk,  

 Then, 0),(
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• Assume for the purpose of contradiction that the Bellman-Ford algorithm returns 
TRUE. 

• Thus, d[vi] ≤ d[vi-1] + w(vi-1, vi) for i = 1, 2,..., k.  
• Summing the inequalities around cycle c gives us 
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• Since v0 = vk, each vertex in c appears exactly once in each of the summations and, 

and so 
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• Of course d[vi] is finite for i = 1, 2,..., k. Thus, 

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• Which contradicts inequality (A). And hence it proves the theorem 

Different applications of shortest path 
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• Transportation problems   

– finding the cheapest way to travel between two locations 

• Motion planning   

– what is the most natural way for a cartoon character to move about a simulated 
environment 

• Communications problems   

– How look will it take for a message to get between two places which two 
locations are furthest apart i.e.  

– what is the diameter of network 
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Lecture	34	Proof:	Bellman‐Ford	Algorithm	&	Shortest	Paths	in	
Directed	Acyclic	Graphs	
Lemma 1 

Let G = (V, E) be directed, with source s, a weighted, with weight function w : E → R, and 
contains no negative-weight cycle reachable from s. Then, after the |V| - 1 iterations of the 
for loop of lines 2-4 of BELLMAN-FORD, we have d[v] = δ(s, v) for all vertices v that are 
reachable from s. 

Path relaxation property 

If p = < v0, v1,..., vk >, be a shortest path from s = v0 to vk and edges of p are relaxed in the 
order (v0, v1), (v1, v2) . . . (vk-1, vk), then d(vk) = δ(s, vk)  

Proof 

We prove it using path-relaxation property.  Consider any vertex v that is reachable from s 
and let p = < v0, v1,..., vk >, be any acyclic shortest path from s to v, where v0 = s and vk = v. 
As there are k+1 vertices in the path p, hence there must be k edges in p. Because Graph has 
|V| vertices and path p contains no cycle, hence path p has at most |V| - 1 edges, and therefore, 
k ≤ |V| - 1. Each of the |V| - 1 iterations of the for loop of lines 2-4 relaxes all E edges. 

At i = 1, edge (v0, v1) is relaxed, and d[v1] = δ(s, v1). At i = 2, edge (v1, v2) is relaxed, and 
d[v2] = δ(s, v2). 

By mathematical induction we can prove that at i = k, edge (vk-1, vk) is relaxed, d[vk] = δ(s, 
vk). Hence all the edges (vi-1, vi) will be relaxed after the iterations, i = 1, 2,..., k. By the path-
relaxation property, after kth iteration, d[v] = d[vk] = δ(s, vk) = δ(s, v). Hence we have proved 
the required result using path relaxation property. 

Theorem: Correctness of Bellman-Ford algorithm 

 Let BELLMAN-FORD be run on weighted, directed graph G = (V, E), with source 
vertex s, and weight function w: E → R.  

• If G contains no negative-weight cycles that are reachable from s, then 
– d[v] = δ(s, v) for all vertices v   V, and  
– the algorithm returns TRUE 
– the predecessor subgraph Gπ is shortest-paths tree rooted at s.  

• If G does contain a negative weight cycle reachable from s, then the algorithm returns 
FALSE.  

Proof: 

Case 1 

 Suppose graph G contains no negative-weight cycles that are reachable from the 
source s.  
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• We first prove the claim that at termination, d[v] = δ(s, v) for all vertices v  V .  
– If v is reachable from s, Lemma above proves it.  
– If v is not reachable from s, then claim follows from no-path property.  

• The predecessor subgraph property, along with the claim, implies that Gπ is a shortest-
paths tree. 

 (Once d[v] = δ(s, v) for all v  V, the predecessor sub-graph is a shortest paths tree 
rooted at s) 

• Now we use the claim to show that BELLMAN-FORD returns TRUE.  
– At termination, for all edges (u, v)  
– d[v] = δ(s, v) ≤ δ(s, u) + w(u, v) = d[u] + w(u, v), 
– It therefore returns TRUE 

Case 2 

• Suppose that graph G contains a negative-weight cycle that is reachable from the 
source s 

• Let this cycle be c = <v0, v1,..., vk>, where v0 = vk,  

 Then, 0),(
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• Assume for the purpose of contradiction that the Bellman-Ford algorithm returns 
TRUE. 

• Thus, d[vi] ≤ d[vi-1] + w(vi-1, vi) for i = 1, 2,..., k.  
• Summing the inequalities around cycle c gives us 
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• Since v0 = vk, each vertex in c appears exactly once in each of the summations and, 

and so 
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• Of course d[vi] is finite for i = 1, 2,..., k. Thus, 
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• Which contradicts inequality (A). And hence it proves the theorem 

Shortest Paths in Directed Acyclic Graphs 

• By relaxing edges of Directed Acyclic Graph (dag) G = (V, E) according to 
topological sort of vertices single source shortest path can be computed in  

 Θ (V + E) time 
• Shortest paths are always well defined in a dag 

– Since even if there are negative-weight edges no negative weight cycle exists. 
• It starts topologically sorting dag, to impose linear ordering of vertices. 

– If there is path from u to v then u precedes v. 
• Each vertex and each edge that leaves the vertex is processed that is why this 

approach is well defined 



254 
 

Algorithm: Topological Sort 

TOPOLOGICAL-SORT (G) 
1. Call DFS(G) to compute f [v] of each vertex v  V. 
2. Set an empty linked list L = Ø. 
3. When a vertex v is colored black, assign it f (v). 
4. Insert v onto the front of the linked list, L = {v}.L. 
5. return the linked list.  
6. The rank of each node is its position in the linked list started from the head of the list. 

Total Running Time = Θ (V + E) 

Algorithm: Shortest Path (dag) 

DAG-SHORTEST-PATHS (G, w, s) 
1    topologically sort the vertices of G 

2 INITIALIZE-SINGLE-SOURCE (G, s) 
3    for each vertex u, taken in topologically sorted order 
4            do for each vertex v   Adj[u] 

5   do RELAX (u, v, w) 

SSSP in Directed Acyclic Graphs 
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Theorem: Proof of Correctness 

 If a weighted, directed graph G = (V, E) has source vertex s and no cycles, then at the 
termination of the DAG-SHORTEST-PATHS procedure, d[v] = δ(s, v) for all vertices v   V, 
and the predecessor subgraph Gπ is a shortest-paths tree. 

Proof 

We first show that d[v] = δ(s, v) for all vertices v  V at termination.  

Case 1 

If v is not reachable from s, then d[v] = δ(s, v) = ∞ by the no-path property.  

Case 2 

• Now, suppose that v is reachable from s, so that there is a shortest path p = <v0, v1,..., 
vk>, where v0 = s and vk = v. 

• Because we process the vertices in topologically sorted order, the edges on p are 
relaxed in the order (v0, v1), (v1, v2),..., (vk-1, vk).  

• The path-relaxation property implies that d[vi] = δ(s, vi) at termination for i = 0, 1,..., 
k. 

• Hence it proves the theorem 
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Lecture	35	 Dijkstra’s	Algorithm	
Problem Statement: 

• Given a graph G = (V, E) with a source vertex s, weight function w, edges are non-
negative, i.e., w(u, v) ≥ 0,  (u, v)   E 

• The graph is directed, i.e., if (u, v)  E then (v, u) may or may not be in E. 
• The objective is to find shortest path from s to every vertex u  V. 

Approach 

• A “cloud S” of vertices, beginning with s, will be constructed, finally covering all 
vertices of graph  

• For each vertex v, a label d(v) is stored, representing distance of v from s in the 
subgraph consisting of the cloud and its adjacent vertices 

• At each step 
– We add to the cloud the vertex u outside the cloud with the smallest distance 

label, d(u) 
– We update labels of the vertices adjacent to u  

Mathematical Statement of Problem 

Input Given graph G(V, E) with source s, weights w 

Assumption 

• Edges non-negative, w(u, v) ≥ 0,  (u, v)  E 
• Directed, if (u, v)  E then (v, u) may be in E 

Objective: Find shortest paths from s to every u  V 

Approach 

• Maintain a set S of vertices whose final shortest-path weights from s have been 
determined 

• Repeatedly select, u  V – S with minimum shortest path estimate, add u to S, relax 
all edges leaving u. 

• Greedy, always choose light vertex in V-S , add to S 

Edge Relaxation 
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• Consider edge e = (u, z) such that 
• u is vertex most recently added to the cloud S 
• z is not in the cloud 

• Relaxation of edge e updates distance d(z) as  
 d(z) = min {d(z), d(u) + weight(e)} 

Dijkstra’s Algorithm 

DIJKSTRA(G, w, s) 
1   INITIALIZE-SINGLE-SOURCE(G, s) 
2   S ← Ø 
3   Q ← V[G] 
4   while Q ≠ Ø 
5          do u ← EXTRACT-MIN(Q) 
6       S ← S   {u} 
7       for each vertex v  Adj[u] 
8             do RELAX (u, v, w) 
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Example: Dijkstra’s Algorithm 
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Analysis: Dijkstra’s Algorithm 

 Cost depends on implementation of min-priority queue 

Case 1:  

 Vertices being numbered 1 to |V| 
• INSERT, DECREASE-KEY operations takes O(1) 
• EXTRACT-MIN operation takes O(V) time 
• Sub cost is O(V2) 
• Total number of edges in all adjacency list is |E| 
• Total Running time = O (V2 + E) = O(V2) 

Case 2:  

 Graph is sufficiently spare, e.g., E = O (V2 /lgV) 
 Implement min-priority queue with binary min heap 
 Vertices being numbered 1 to |V| 

• Each EXTRACT-MIN operation takes O(lgV) 
• There |V| operations, time to build min heap O(V) 
• Sub cost is O(V lgV) 
• Each DECREASE-KEY operation takes time O(lgV), and there are |E| such 

operation.   
• Sub cost is O(E lgV) 

 Hence Total Running time = O (V + E) lgV = E lgV 

Case 3:  

 Implement min-priority queue with Fibonacci heap 
 Vertices being numbered 1 to |V| 

• Each EXTRACT-MIN operation takes O(lgV) 
• There |V| operations, time to build min heap O(V) 
• Sub cost is O(V lgV) 
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• Each DECREASE-KEY operation takes time O(1), and there are |E| such operation.   
• Sub cost is O(E) 

 Hence Total Running time = O (V.lgV + E) = V lgV 

Case 1: Computation Time 

1. INITIALIZE-SINGLE-SOURCE(V, s)  ← (V) 
2.  S ←    
3.  Q ← V[G]  ← O(V) build min-heap 
4.  while Q    ← O(V) 
5.       do u ← EXTRACT-MIN(Q)  ← O(V) 
6.            S ← S  {u}  
7.            for each vertex v  Adj[u]  ← O(E) 
8.                  do RELAX(u, v, w) 

Running time: O(V2 + E) = O(V2) 
Note: Running time depends on Implementation Of min-priority (Q) 

Case 2: Binary min Heap 

1. INITIALIZE-SINGLE-SOURCE(V, s)   ← (V) 
2.  S ←    
3.  Q ← V[G]   ← O(V) build min-heap 
4.  while Q     ← Executed O(V) times 
5.       do u ← EXTRACT-MIN(Q) ← O(lgV) 
6.            S ← S  {u}  
7.            for each vertex v  Adj[u] 
8.                  do RELAX(u, v, w)  ← O(E) times O(lgV) 

Running time: O(VlgV + ElgV) = O(ElgV) 

Case 3: Fibonacci Heap 

1. INITIALIZE-SINGLE-SOURCE(V, s)  ← (V) 
2.  S ←    
3.  Q ← V[G]  ← O(V) build min-heap 
4.  while Q    ← Executed O(V) times  
5.       do u ← EXTRACT-MIN(Q)  ← O(lgV) 
6.            S ← S  {u}     
7.            for each vertex v  Adj[u] 
8.                  do RELAX(u, v, w)  ← O(E) times O(1) 

Running time: O(VlgV + E) = O(VlgV) 
Theorem: Correctness of Dijkstra’s Algorithm 

 Dijkstra’s algorithm, runs on a weighted, directed graph G = (V, E) with non-negative 
weight function w and source s, terminates with d[u] = δ(s, u) for all vertices u   V. 

Proof 

• We use the following loop invariant: 



263 
 

– At start of each iteration of the while loop of lines 4-8, d[v] = δ(s, v) for each 
vertex v  S. 

• It suffices to show for each vertex u  V, we have d[u] = δ(s, u) at the time when u is 
added to set S.  

• Once we show that d[u] = δ(s, u), we rely on the upper-bound property to show that 
the equality holds at all times thereafter. 

Initialization:  

• Initially, S = Ø, and so the invariant is trivially true 

Maintenance:  

• We wish to show that in each iteration, d[u] = δ(s, u), for the vertex added to set S.  
• On contrary suppose that d[u] ≠ δ(s, u) when u is added to set S. Also suppose that u 

is the first vertex for which the equality does not hold.  
• We focus on situation at beginning of while loop in which u is added to S and derive a 

contradiction. 
• First of all, u ≠ s because s is the first vertex added to set S and d[s] = δ(s, s) = 0 at 

that time. 
• Secondly S ≠ Ø just before u is added to S, this is because s is at least in S.  
• There must be some path from s to u, otherwise d[u] = δ(s, u) = ∞ by no-path 

property, which would violate our assumption that d[u] ≠ δ(s, u).  
• Because there is at least one path, there must be a  shortest path p from s to u.  
• Prior to adding u to S, path p connects a vertex in S, namely s, to a vertex in V - S, 

namely u.  

 
• Let us consider the first vertex y along p such that y   V - S, and let x   S be y's 

predecessor.  

• Thus, path p can be decomposed: s �↝
௣ଵ  x  y �↝

௣ଶ   u (either of paths p1 or p2 may 
have no edges.) 

• We claim that d[y] = δ(s, y) when u is added to S. 

Proof of Claim: observe that x  S.  
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• Because u is chosen as the first vertex for which d[u] ≠ δ(s, u) when it is added to S, 
we had d[x] = δ(s, x) when x was added to S. 

• Edge (x, y) was relaxed at that time, and hence d[y] = δ(s, y) (convergence property). 
• Because y occurs before u on a shortest path from s to u and all edge weights are 

nonnegative (on path p2), we have δ(s, y) ≤ δ(s, u), 
• Now d[y] = δ(s, y) ≤ δ(s, u) ≤ d[u]  d[y] ≤ d[u]  (1) 
• But because both vertices u and y were in V - S when u was chosen, we have d[u] ≤ 

d[y].       (2) 
• From (1) and (2), d[u] = d[y] 
• Now, d[y] = δ(s, y) ≤ δ(s, u) = d[u] = d[y]   δ(s, y) = δ(s, u) . 
• Finally, d[u] = δ(s, u), it contradicts choice of u 
• Hence, d[u] = δ(s, u) when u is added to S, and this equality is maintained at all times 

after that 
Termination:  

•  At termination, Q = Ø which, along with our earlier invariant that Q = V - S, implies 
that S = V.  

• Thus, d[u] = δ(s, u) for all vertices u  V. 

Lemma 1 

Statement  

Let G = (V, E) be a weighted, directed graph with weight function w: E → R, let s  V be a 
source vertex. Assume that G contains no negative-weight cycles reachable from s. Then, 
after the graph is initialized by INITIALIZE-SINGLE-SOURCE(G, s), the predecessor sub-
graph Gπ forms a rooted tree with root s, and any sequence of relaxation steps on edges of G 
maintains this property as an invariant. 

Proof  

• Initially, the only vertex in Gπ is the source vertex, and the lemma is trivially true. 
• Let Gπ be a predecessor subgraph that arises after a sequence of relaxation steps.  

(a) First we prove that Gπ is a rooted tree. 

1. Gπ is acyclic 
• On contrary suppose that some relaxation step creates a cycle in the graph Gπ.  
• Let c = <v0, v1,..., vk> be cycle, where vk = v0.  
• Then, π[vi] = vi-1 for i = 1, 2,..., k  
• Now, without loss of generality, we can assume that it was the relaxation of edge (vk-

1, vk) that created the cycle in Gπ. 

Claim: all vertices on cycle c reachable from s.  

• Because each vertex has non-NIL predecessor, and it was assigned a finite shortest-
path estimate when it was assigned non-NIL π value 

• By upper-bound property, each vertex on c has a finite shortest-path weight, and 
reachable from s. 

Shortest-path on c just prior RELAX(vk-1, vk, w) 
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• Just before call, π[vi] = vi-1 for i = 1, 2,..., k - 1.  
• Thus, for i = 1, 2,..., k - 1, last update to d[vi] was d[vi] ← d[vi-1] + w(vi-1, vi).  
• It is obvious that, d[vk] > d[vk-1] + w(vk-1, vk). 
• Summing it with k - 1 inequalities,  
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1 1
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• Thus, sum of weights around cycle c is negative, which provides the contradiction. 
• We have proved that Gπ is a directed, acyclic. 
2. To show that it forms a rooted tree with root s 
• Sufficient to prove that  v  Vπ, there is a unique path from s to v in Gπ. 
• On contrary, suppose there are two simple paths from s to some vertex v, and (x ≠ y) 

  p1:  s �↝
௣ଵ u �↝

௣ଶ x  z   v  

  p2:  s �↝
௣ଵ u �↝

௣ଵ y  z  v  

• π[z] = x and π[z] = y,  x = y, a contradiction.  
• Hence there exists unique path in Gπ from s to v. 

 Thus Gπ forms a rooted tree with root s. 
b. Now by predecessor subgraph property  

• d[v] = δ(s, v) for all vertices v   V. Proved 

Lemma 2 

If we run Dijkstra's algorithm on weighted, directed graph G = (V, E) with nonnegative 
weight function w and source s, then at termination, predecessor subgraph Gπ is a shortest 
paths tree rooted at s. 

Proof:  

• Immediate from the above lemma. 
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Lecture	36	 All	Pairs	Shortest	Paths	
All-Pairs Shortest Path (APSP): Approach 

• In all-pair shortest path problems, graph G given as   
– Directed, weighted with weight function w : E → R 
– where w is a function from edge set to real-valued weights 

• Our objective is to find shortest paths, for all pair of vertices u, v  V,  

Approach 

• All-pair shortest path problem can be solved by running single source shortest path in 
|V| times, by taking each vertex as a source vertex.  

• Now there are two cases. 

Edges are non-negative 

Case 1 

• Then use Dijkstra’s algorithm 
• Linear array of min-priority queue takes O(V 3) 
• Binary min-heap of min-priority queue, O(VE lg V) 
• Fibonacci heap of min-priority queue takes O(V 2 lg V+VE) 

Negative weight edges are allowed 

Case 2  

• Bellman-Ford algorithm can be used when negative weight edges are present 
• In this case, the running time is O(V 2E)  
• However if the graph is dense then the running time is O(V 4) 

Note  

• Unlike single-source shortest path algorithms, most algorithms of all pair shortest 
problems use an adjacency-matrix representation 

• Let us define adjacency matrix representation. 

Adjacency Matrix Representation 

Assumptions 

• Vertices are numbered from 1, 2,. . ., |V| 
• In this way input is an n × n matrix 
• W represents edges weights of n-vertex directed weighted graph G i.e., W = (wij), 

where 





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


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
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Shortest Path and Solution Representation 
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• For a moment we assume that negative-weight edges are allowed, but input 
graph contains no negative-weight cycle 

• The tabular output of all-pairs shortest-paths algorithms will be presented an n × n 
matrix            D = (dij), where entry dij contains the weight of a shortest path from 
vertex i to vertex  j. And the 

• A Predecessor Matrix Π  = (πij), where 
  πij = NIL,  if either i = j or no path from i to j 
πij  = predecessor of j on some shortest path from i, otherwise 

Example: All-Pairs Shortest Path 

 

• Given 

– Directed graph G = (V, E) 
– Weight function w : E → R 

• Compute 

– The shortest paths between all pairs of vertices in a graph 
– Representation of result:  

• 5 × 5 matrix of shortest-path distances δ(u, v) 
• 5 × 5 matrix of predecessor sub-graph 

Structure of Output: Sub-graph for each row 

• For each vertex i   V the Predecessor Subgraph of G for i is defined as 

Gπ, i = (Vπ, i, Eπ.i), where 

Vπ.i = {j  V : πij ≠ NIL}   {i} and Eπ.i = {(i, j) : j   Vπ.i – {i}} 

• Gπ, i is shortest pat tree as was in single source shortest path problem 

Printing Output 

PRINT-ALL-PAIRS-SHORTEST-PATH (Π, i, j) 
1   if i = j 
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2      then print i 
3      else if πij = NIL 
4             then print "no path from" i "to" j "exists" 
5             else PRINT-ALL-PAIRS-SHORTEST-PATH(Π, i, πij) 
6                        print j 

Shortest Paths and Matrix Multiplication 

• Here we present a dynamic-programming algorithm for all-pairs shortest paths on a 
directed graph G = (V, E).  

• Each major loop of dynamic program will invoke an operation very similar to 
multiplication of two matrices, and algorithm looks like repeated matrix 
multiplication 

• At first we will develop Θ(V4)-time algorithm and then improve its running time to 
Θ(V3 lg V).  

• Before we go for dynamic solution, let us have a review of steps involved in dynamic-
programming algorithms. 

Steps in Dynamic Programming 

Steps on dynamic-programming algorithm are  

1. Characterize the structure of an optimal solution. 
2. Recursively define value of an optimal solution 
3. Computing value of an optimal solution in bottom-up 
4. Constructing optimal solution from computed information 

Note: Steps 1-3 are for optimal value while step 4 is for computing optimal solution 

1. Structure of an Optimal Solution 

• Consider shortest path p from vertex i to j, and suppose that p contains at most m 
edges 

– If i = j, then p has weight 0 and no edges 
– If i and j are distinct, then decompose path p into i �↝

௣ᇱ  k → j, where path p′ 
contains at most m - 1 edges and it is a shortest path from vertex i to vertex k, 
and  

Hence δ (i, j) = δ (i, k) + wkj. 

2. A Recursive Solution 

Let )(m
jil  = minimum weight of path i to j at most m edges  

– m = 0, there is shortest path i to j with no edges     i = j, thus 









jiif

jiif
l ji

0)0(  

– m ≥ 1, compute using )1( m
jil  and adjacency matrix w 
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The actual shortest-path weights are therefore given by 

...),( )1()()1(   n
ji

n
ji

n
ji lllji  

3. Compute Shortest Path Weights Bottom-up 

• Input matrix W = (wij),  
• Suppose that, L(m) = (lij

(m)), where,    m = 1, 2,..., n – 1 
• Compute series of matrices L(1), L(2),..., L(n-1),  
• Objective function, L(n-1) , at most n-1 edges in each path 

Note 

• Observe that lij
(1), = wij, for all i, j  V , and so L(1) = W 

• Heart of the algorithm is : given matrices L(m-1) and W, and compute the matrix L(m) 
• That is, it extends shortest paths computed so far by one more edge. 

Algorithm: Extension from L(m-1) to L(m) 

EXTEND-SHORTEST-PATHS (L, W) 
1   n ← rows[L] 

2   let L′ = )( '
jil  be an n × n matrix 

3   for i ← 1 to n 
4           do for j ← 1 to n 

5               do '
jil  ← ∞ 

6                     for k ← 1 to n 
7                          do  

8   return L′   jkkijiji wlll  ,min ''  

Total Running Time = Θ (n3) 

Algorithm is Similar to Matrix Multiplication 

MATRIX-MULTIPLY (A, B) 
1   n ← rows[A] 
2   let C be an n × n matrix 
3   for i ← 1 to n 
4        do for j ← 1 to n 
5                  do cij ← 0 
6                       for k ← 1 to n 
7                            do cij ← cij + aik · bkj 
8   return C 
Running Time = Θ (n3) 
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Complete but Slow Algorithm 

SLOW-ALL-PAIRS-SHORTEST-PATHS (W) 
1   n ← rows [W] 
2   L(1) ← W 
3   for m ← 2 to n - 1 
4        do L(m) ← EXTEND-SHORTEST-PATHS (L(m-1), W) 
5   return L(n-1) 
Total Running Time = Θ(n4) 

Example: 
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The reader may verify that L(4) = L(5) = L(6) = . . .  
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Improving Running Time 

• Running time of previous algorithm is very high and needs improvement. 
• The goal is not to compute all the L(m) matrices but only computation of matrix L(n-1) 

is of interest 
• As Matrix multiplication associative, L(n-1) can be calculated with only ڿlg(n - 1)ۀ 

matrix products as. 

                                    

  L(1) = W,       L(2) = W 2 = W · W, 

    L(4) = W 4 = W 2 · W 2,  L(8) = W 8 = W 4 · W 4, 

)]1(lg[)]1(lg[ 221 

 nn

WLLn


 

Improved Algorithm 

FASTER-ALL-PAIRS-SHORTEST-PATHS (W) 
1   n ← rows[W] 
2   L(1) ← W 
3   m ← 1 
4   while m < n - 1 
5           do L(2m) ← EXTEND-SHORTEST-PATHS (L(m), L(m)) 
6        m ← 2m 
7   return L(m) 
Total Running Time = Θ (n3 lg n) 
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Lecture	37	 The	Floyd‐Warshall	Algorithm	and	Johnson’s	
Algorithm	
Intermediate Vertices 

• Vertices in G are given by V = {1, 2, …, n} 

• Consider a path p = v1, v2, …, vl 

– An intermediate vertex of p is any vertex in set {v2, v3, …, vl-1} 

Example 1 
If p = 1, 2, 4, 5 then 
Intermediate vertex = {2, 4} 

 

Example 2 
If p = 2, 4, 5 then 
Intermediate vertex = {4} 

 

The Floyd Warshall Algorithm 

Structure of a Shortest Path 

• Let V = {1, 2,..., n} be a set of vertices of G 
• Consider subset {1, 2,..., k} of vertices for some k 
• Let p be a shortest paths from i to j with all intermediate vertices in the set {1, 2,..., 

k}.  
• It exploits a relationship between path p and shortest paths from i to j with all 

intermediate vertices in the set {1, 2,..., k - 1}.  
• The relationship depends on whether or not k is an intermediate vertex of path p. 
• For both cases optimal structure is constructed 

k not an Intermediate vertex of path p 

• Shortest path i to j with I.V. from {1, 2, …, k} is shortest path i to j with I.V. from  
{1, 2, …, k - 1} 

k an intermediate vertex of path p 

• p1 is a shortest path from i to k 
• p2 is a shortest path from k to j 
• k is neither intermediate vertex of p1 nor of p2 
• p1, p2 shortest paths i to k with I.V. from: {1, 2, …, k - 1} 
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A Recursive Solution 

• Let )(k
jid   = be the weight of a shortest path from vertex i to vertex j for which all 

intermediate vertices are in the set {1, 2,. . ., k}.  
• Now D(n) = (di, j

(n)),  
• Base case di, j

(0)) = wi, j 
• D(0) = (wi, j) = W 
• The recursive definition is given below  
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The Floyd Warshall Algorithm 

FLOYD-WARSHALL (W) 
1   n ← rows[W] 
2   D (0) ← W 
3   for k ← 1 to n 
4        do for i ← 1 to n 
5                  do for j ← 1 to n 

6                            do  )1()1()1()( ,min   k
jk

k
ki

k
ji

k
ji dddd  

7   return D (n) 
Total Running Time = Θ (n3) 

Constructing a Shortest Path 

• One way is to compute matrix D of SP weights and then construct predecessor matrix 
Π from D matrix.  

– It takes O(n3) 

• A recursive formulation of )(k
ji  

– k = 0, shortest path from i to j has no intermediate vertex 
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– For k ≥ 1  
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Example: Floyd Warshall Algorithm 
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Adjacency matrix of above graph is given below. 
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Existence of Shortest Paths between any Pair 

Transitive Closure  
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• Given a directed graph G = (V, E) with vertex set V = {1, 2,...,n}, we may wish to find 
out whether there is a path in G from i to j for all vertex pairs i, j  V.  

• The transitive closure of G is defined as the graph G* = (V, E*), where E*= {(i, j) : 
there is a path from vertex i to vertex j in G}.  

• One way is to assign a weight of 1 to each edge of E and run the Floyd-Warshall 
algorithm.  

– If there is a path from vertex i to j, then dij < n 
– Otherwise, we get dij = ∞. 
– The running time is Θ(n3) time 

Substitution 

• Substitute logical operators,   (for min) and   (for +) in the Floyd-Warshall 
algorithm 

– Running time: Θ(n3) which saves time and space 
– A recursive definition is given by 

– k = 0  








Ejiorjiif

Ejiandjiif
t ji ),(1
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– For k ≥ 1  )1()1()1()(   k
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k
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k
ji dttt  

Transitive Closure 

TRANSITIVE-CLOSURE(G) 
 1    n ← |V [G]| 
 2    for i ← 1 to n 
 3        do for j ← 1 to n 
 4                 do if i = j or (i, j)  E[G] 

 5                         then )0(
jit  ← 1  

 6                            else )0(
jit  ← 0 

 7    for k ← 1 to n 
 8         do for i ← 1 to n 
 9                   do for j ← 1 to n 

10                           do  )1()1()1()(   k
jk

k
ki

k
ji

k
ji dttt  

11   return T(n) 

Total Running Time = Θ (n3) 

Transitive Closure 
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Johnson’s Algorithm 

• For sparse graphs, Johnson’s Algorithm is asymptotically better than  
– Repeated squaring of matrices and  
– The Floyd-Warshall algorithm.  

• It uses as subroutines both  
– Dijkstra’s algorithm and  
– The Bellman-Ford algorithm. 

• It returns a matrix of shortest-path weights for all pairs of vertices OR 
• Reports that the input graph contains a negative-weight cycle.  
• This algorithm uses a technique of reweighting. 

Re-weighting 

• The technique of reweighting works as follows. 
– If all edge weights are nonnegative, find shortest paths by running Dijkstra’s 

algorithm, with Fibonacci heap priority queue, once for each vertex. 
– If G has negative-weight edges, we simply compute a new set of nonnegative 

edges weights that allows us to use the same method. 
• New set of edge weights must satisfy the following 

– For all pairs of vertices u, v  V, a shortest path from u to v using weight 
function w is also a shortest path from u to v using weight function w’. 

– For all (u, v ), new weight w’ (u, v) is nonnegative 

δ, δ’ Preserving Shortest Paths by Re-weighting 
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• From the lemma given below, it is easy to come up with a re-weighting of the edges 
that satisfies the first property above.  

• We use δ to denote shortest-path weights derived from weight function w  
• And δ’ to denote shortest-path weights derived from weight function w’. 
• And then we will show that, for all (u, v ), new weight w’ (u, v) is nonnegative. 

Re-weighting does not change shortest paths 

Lemma Statement 

• Given a weighted, directed graph G = (V, E) with weight function w : E → R, let h : 
V → R be any function mapping vertices to real numbers.  

• For each edge (u, v)  E, define 
  w’(u, v)  = w(u, v) + h(u) – h(v) 

• Let p = <v0, v1,. . ., vk> be any path from vertex v0 to vertex vk. Then p is a shortest 
path from v0 to vk with weight function w if and only if it is a shortest path with 
weight function w’. 

• That is, w(p) = δ(v0, vk) if and only if w’(p) = δ’(v0, vk).  
• Also, G has a negative-weight cycle using weight function w if and only if G has a 

negative-weight cycle using weight function w’. 
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Therefore, any path p from v0 to vk has w’(p) = w(p) + h(v0) – h(vk).  

If one path from v0 to vk is shorter than another using weight function w, then it is also 
shorter using w’.  

Thus,  

 w(p) = δ(v0, vk,)  w’(p) = δ’(v0, vk,). 

Finally, we show that G has a negative-weight cycle using weight function w if and only if G 
has a negative-weight cycle using weight function w’.  
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Consider any cycle c = <v0, v1,..., vk>, where v0 = vk.  

Now w’(c) = w(c) + h(v0) - h(vk) = w(c), and thus c has negative weight using w if and only 
if it has negative weight using w’. It completes the proof of the theorem 

Producing nonnegative weights by re-weighting 

Next we ensure that second property holds i.e. w’(u, v) to be nonnegative for all edges (u, v)  
 E.  

• Given a weighted, directed graph G = (V, E) with weight function w : E → R, we 
make a new graph G′ = (V′, E′), where V′ = V  {s} for some new vertex s ∉ V and  

• E′ = E   {(s, v) : v  V}.  
• Extend weight function w so that w(s, v) = 0 for all v  V. 
• Note that because s has no edges that enter it, no shortest paths in G′, other than those 

with source s, contain s. 
• Moreover, G′ has no negative-weight cycles if and only if G has no negative-weight 

cycles. 

Producing nonnegative weights by re-weighting 

Now suppose that G and G′ have no negative-weight cycles.  

• Let us define h(v) = δ(s, v) for all v  V′.  

By triangle inequality, we have  

 h(v) ≤ h(u) + w(u, v),    (u, v)  E′.    (1) 

Thus, if we define the new weights w’, we have  w’(u, v)  = w(u, v) + h(u) – h(v)  0.  
 by (1) 

And the second property is satisfied. 

Johnson’s Algorithm 
JOHNSON (G) 
 1    compute G′, where V [G′] = V [G]   {s}, 
                    E [G′] = E [G]   {(s, v) : v   V [G]}, and 
                    w(s, v) = 0 for all v  V [G] 
 2    if BELLMAN-FORD(G′, w, s) = FALSE 
 3        then print “the input graph contains a negative-weight cycle” 
 4        else for each vertex v  V [G′] 
 5                     do set h(v) to the value of δ(s, v) 
                                   computed by the Bellman-Ford algorithm 
 6               for each edge (u, v)  E [G′] 
 7                     do w(u, v) = w(u, v) + h(u) - h(v) 
 8               for each vertex u  V [G] 
 9                     do run DIJKSTRA(G, w, u) to compute δ(u, v) for all v  V [G] 
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10                         for each vertex v  V [G] 
11                               do duv = δ(u, v) + h(v) - h(u) 
12              return D 
Total Running Time = O(V 2 lgV + VE) 

Johnson’s Algorithm 
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Lecture	38	 Number	Theoretic	Algorithms	
Applications of number theoretic algorithms 

Electronic commerce 

• Electronic commerce enables goods and services to be negotiated and exchanged 
electronically. 

• The ability to keep information such as credit card numbers, passwords, and bank 
statements private is essential if electronic commerce is used widely. 

• Public-key cryptography and digital signatures are among the core technologies used 
and are based on numerical algorithms and number theory. 

Congruency equations modulo n 

• For example, if we are given an equation ax ≡ b (mod n), where a, b, and n are 
integers, and we wish to find all the integers x, modulo n, that satisfy the equation.  

• There may be zero, one, or more solution. 
• Using brute force approach, we can simply try x = 0, 1, ..., n - 1 in order, and can find 

the solution 
• But our objective is not to find a solution only, in fact we want an efficient, of course 

this problem can be solved using number theory. 

Numbers 

• Z = set of all integers = . . .,-3, -2, -1, 0, +1, +2 +3, . . . 
• Set of all even integers = { 2k | k  Z } 
• Set of all odd integers = { 2k + 1| k  Z } 
• Q = Set of all rational numbers  

– p/q 
– p, q  Z 
– q  0  

• I = set of all irrational numbers: which are not irrationals i.e. 
– ~p/q  OR 
– ~(p, q  Z) OR 
– ~(q  0)  

Definitions 

Divisibility  

Let a, b  Z with a  0 then we say that 

 a|b   a divides b |  c  Z : b = ac 
It means that a|b if and only if there exists an integer c such that c times a equals b. 

Example 1:  

 3(12), because if we assume that a = 3, b = -12 then there exists c = -4 such that b = 
ac 



284 
 

Example 2:  

 3 does not divide 7, because if we assume that a = 3, b = 7 then there does not exists 
any integer c such that b = ac 

Some Facts 

Statement:  Prove that if a|b then a|(-b) 

Proof  

 Since a|b hence there exist an integer x such that b = ax,   
 Now -b = -ax = a(-x) 

 Since if x  Z then (-x)  Z, Hence, a|(-b) 
Note:  Because of the above lemma why not choose divisors as only positive. Hence if d is a 
divisor of b, then 1 ≤ d ≤  |b|,  

Example:  Only divisors of 24 are: 1, 2, 3, 4, 6, 8, 12,and 24. 

Statement: Prove that a|0  a  Z 

Proof    

As we know that a|b means there is an integer s such that b = as,  and since 0 = a.0, where 0 
is an integer, hence a|0 

Statement: If a|b, a|c then a | (b + c)  a, b, c  Z 

Proof   

As we know that a|b means there is an integer s such that b = as, and a|c means that there is a 
t such that c = at.  Now b + c = as + at = a(s + t), and hence a|(b + c). 

Statement:  If a|b, a|c then a | (b - c)  a, b, c  Z 

Proof  

If a|b means then there is an integer s such that b = as,  and if a|c then there is an integer t 
such that c = at. Now b - c = as - at = a(s - t). Since if s, t  Z  s - t  Z. Hence a|(b - c). 

Statement:  

If a|b and b|a then prove that a =  b 

Proof 

Since a|b hence there is an integer x such that b = ax,    (1)  
Since we are given that b|a therefore there is an integer t such that a = bt,    (2) 

From (1) and (2), a = axt  xt = 1 

Since x and t are both integers hence x = t =  1  
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Hence a = b 

Generalized Result 

Statement: Prove that if a|b then a|bc  a, b, c  Z 

Proof 

As we know that a|b means there is an integer s such that b = as, and now bc = asc = a(sc) 
and hence a|bc 

Statement: Prove that if a|b, b|c then a|c,  a, b, c  Z 

Proof:   

Since a|b, it means  s  Z such that b = as, and since b|c, it means  t  Z such that c = bt. 
Now c = bt = ast = a(st) and hence a|c 

Statement:  

  a, b, c  Z, if a|b and a|c then  a | (bx + cy),   x, y  Z 

Proof 

As we know that a|b means there is an integer s such that b = as  bx = asx. If a|c means that 

there is a t such that c = at  cy = aty. Now bx + cy = asx + aty = a(sx + ty), and hence a|(bx 

+ cy), this is because (sx + ty)  Z 

Statement:  

  a, b, c  Z, if a|b and a|c then a | (bx - cy),   x, y  Z 

Proof 

As we know that a|b therefore there is an integer s such that b = as  bx = asx, and since a|c 

therefore there is an integer t such that c = at  cy = aty. Now bx - cy = asx - aty = a(sx - ty), 

and hence a|(bx - cy), this is because (sx - ty)  Z 

Prime Numbers 

Definition: 

A number p is prime if and only if it is divisible 1 and itself. OR A number p is prime if it can 
not be written as p = x.y  where x, y  Z and x, y > 1. 

Note: 1 is prime, but is generally not of interest so we do not include it in set of primes 

Examples: 2, 3, 5,7 etc. are all prime. 4, 6, 8, 9, 10 are not primes 

• Prime numbers are central to number theory 
• We will study some algorithms on prime numbers 
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• List of prime number less than 200 
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 
97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 
193, 197, 199 

• There are infinitely many primes.  
• Any positive integer that is not prime is composite. 
• 1 is the “unit” for multiplication and we assume that it is neither prime nor composite. 

The Division Algorithm 

Statement: 

• For any integer dividend a and divisor d ≠ 0, there is a unique quotient q and 
remainder r  N such that  

  a = dq + r, where 0  r < |d|  

• In other way:  a, d  Z, d > 0,  q, r  Z such that  0  r < |d|, and a = d.q + r 
• We can find q by: q = ad, and  
• We can find r by: r = (a mod d) = a  dq 

Example: 

• a = 21; d = 4 then  

 q = ad = 214 = 5, and r = a - dq = 21 - 4.5 = 1  

Classification of Integers 

When an integer is divided by 2 remainder is 0 or 1 

1.  C1 = { 2k | k  Z } and  
2.  C2 = { 2k + 1| k  Z } 

When an integer is divided by 3 remainder is 0, 1 or 2 

1.  C1 = { 2k | k  Z },  
2.  C2 = { 2k + 1 | k  Z } and  
3.  C3 = { 2k + 2 | k  Z } 

When an integer divided by 4 remainder, 0, 1, 2 or 3 

1.  C1 = { 2k | k  Z },  
2.  C2 = { 2k + 1 | k  Z }  
3.  C3 = { 2k + 2 | k  Z }  
4.  C4 = { 2k + 3 | k  Z }   . . . 

Congruencies and Remainder 

Remainder 

• When a is divided by n then we can write (a mod n) as remainder of this division. 
• If, remainder when a is divisible by n = remainder when b is divisible by n then 
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 (a mod n) = (b mod n) e.g. (8 mod 3) = (11 mod 3) 

Congruency 

• If (a mod n) = (b mod n) we write it as a ≡ b (mod n) 
    “a is equivalent to b modulo n.” 

• Thus, a and b have same remainder, w.r.t. n then 
      a = qan + r,  for some qa  Z 

  b = qbn + r,   for some qb  Z 

Lemma  

If a ≡ b (mod n) then prove that n|(b − a) 

Proof:  

Since a ≡ b (mod n) hence (a mod n) = (b mod n)  

Let (a mod n) = (b mod n) = r  

By division theorem,  q1, q2  Z such that   

 a = q1n + r,  0 � r <n  

         b = q2n + r,   0 � r <n  

Now, b − a = (q2 − q1)n + r − r = (q2 − q1)n  

Hence, n|(b − a) because (q2 − q1)  Z  

Congruencies and Remainder 
The equivalence of b class modulo n:  

  . Z}, e. g kn : k  {b  b n   

[3]7   = {...,−11, −4, 3, 10, 17, ...} 
[−4]7  = . . . 
[17]7  = . . . 
Zn = {[a]n : 0 ≤ a ≤ n − 1} and we often write 
Example  
Z4 = {[0]4, [1]4, [2]4, [3]4} 
  Usually we write Z4 = {0, 1, 2, 3} 
Zn = {0, 1, 2, 3, ..., n − 1}, we associate a with [a]n.  

Prime Factorization 

• By factorization of a number n, we mean that n = a × b × c, where a, b, c  Z 

• By a prime factorization of a number n, we mean that n = a × b × c, where a, b, c  
Z and all factors are prime number 

Example:  
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• 3600 = 24 × 32 × 52 factorization 
• 3600 = 210 × 31 × 131 prime factorization 
• 91 = 7×13 prime factorization 


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1

21 .... 21  

Relatively Prime Numbers 

Definition 

Two numbers a, b are relatively prime if they have no common divisors except 1 

Example 

 15, 23 are relatively prime, this is because  
• Factors of 15 are 1, 3, 5, 15 and  
• Factors of 23 are 1, 23 and  
• Common factor is only 1 
• Hence 15 and 23 are relatively prime 

Some More Results 

Definition: The greatest common divisor of a and b, not both zero, is the largest common 
divisor of a and b 
Some elementary gcd properties 
 gcd(a, b) = gcd(b, a), gcd(a, b) = gcd(-a, b) 
 gcd(a, b) = gcd(|a|, |b|), gcd(a, 0) = |a| 
Examples 
gcd(24, 30) = 6, gcd(5, 7) = 1 
gcd(0, 9) = 9, gcd(0, 0) = 0 by definition 

 Z.y k |a| for an(a, ka) gcd  

Note: 1 ≤ gcd(a, b) ≤ min(|a|, |b|) 

Example: Greatest Common Divisor 

GCD of two integers can be obtained by comparing their prime factorizations and using least 
powers 

Example 

• 600 = 2 x 2 × 2 x 3 × 5 x 5 = 23 x 31 x 52  
• 36 = 2 x 2 × 3 x 3 = 22 x 32 
• Rearrange the factorization of 600 and 36 
• 600 = 2 x 2 × 2 x 3 × 5 x 5 = 23 x 31 x 52  
• 36 = 2 x 2 × 3 x 3 = 22 x 32 x 50 
• GCD(36, 600)  = 2min(3,2) x 3min(1,2) x 5min(2,0) 

    = 22 x 31 x 50  
    = 4 x 3  
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    = 12 

Brute Force Approach Finding GCD 

Statement:  

• Given two integers a and b. Find their greatest common divisor 

Method: 

• Compute prime factorization of a 
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• Compute prime factorization of b 
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• Let p1, p2, . . ., pt be the set of all prime numbers both in the factorization of a and b 
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• Now the prime factorization of a is rearranged as 
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• Similarly the prime factorization of b is rearranged as 
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• Finally GCD of a and b can be computed as 
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Methods of Proof 

Direct Method: 

• Express the statement to be proved in the form: 
  x  D, P(x)  Q(x)  
• Suppose that P(x) is true for an arbitrary element x of D 
• Prove that Q(x) is true for the supposed above value x of D. 

Parity:  

 Two integers have same parity if both are either odd or even, otherwise opposite 
parity. 

Direct Proof 

Lemma:  
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Prove that m + n and m – n have same parity, for all m, n  Z    

Proof:  There are three cases  

Case 1: 

Both m, n are even i.e.,  

 m = 2k1 and n = 2k2 for some k1, k2  Z 
 Now, m + n = 2k1 + 2k2 = 2(k1 + k2) an even   
 And, m - n = 2k1 - 2k2 = 2(k1 - k2) an even   

Case 2: 

Both m, n are odd i.e.,  

 m = 2k1 + 1 and n = 2k2 + 1 for some k1, k2  Z 
 Now, m + n = 2k1 + 1 + 2k2 + 1 = 2(k1 + k2 + 1) = 2k’ 
 And, m - n = 2k1 + 1 - 2k2 – 1 = 2(k1 - k2) = 2k’’ 
Hence m + n and m - n both are even 

Case 3: 

m is even and n is odd i.e.,  

 m = 2k1 and n = 2k2 + 1 for some k1, k2  Z 
 Now, m + n = 2k1 + 2k2 + 1 = 2(k1 + k2) + 1 = 2k’ + 1, odd  
 And, m - n = 2k1 - 2k2 – 1 = 2(k1 - k2 – 1) +1 = 2k’’ + 1, odd 
Hence m + n and m - n both have the same parity. 

An Alternate Method of Direct Proof 

We can formulate the same problem as   

Notations 

• Let S-EVEN (m, n)  m + n is even 
• Let S-ODD (m, n)  m + n is odd 
• Let D-EVEN (m, n)  m - n is even 
• Let D-ODD (m, n)  m - n is odd 

Mathematical Statement of the problem 

• S-EVEN (m, n)  D-EVEN (m, n),  m, n  Z    
• S-ODD (m, n)  D-ODD (m, n),  m, n  Z 

Proof 

Case 1 

• Suppose that S-EVEN (m, n),  m, n  Z 
• Now, m – n = m + n – 2n = even - even = even integer 
• Hence D-EVEN (m, n),  m, n  Z  
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Case 2 

• Suppose that D-EVEN (m, n),  m, n  Z 
• Now, m + n = m - n + 2n = even + even = an even integer,  m, n  Z 
• Hence S-EVEN (m, n),  m, n  Z  

Case 3 

• Suppose that S-ODD (m, n),  m, n  Z 
• Now, m – n = m + n – 2n = odd – even = odd  
• D-ODD (m, n),  m, n  Z 

Case 4 

• Suppose that D-ODD (m, n),  m, n  Z 
• Now, m + n = m - n + 2n = odd + even = odd  
• S-ODD (m, n),  m, n  Z 

Hence  

• S-EVEN (m, n)  D-EVEN (m, n),  m, n  Z    
• S-ODD (m, n)  D-ODD (m, n),  m, n  Z 

Disproof by Counter Example 

 To disprove a statement of the form:  

  x  D, P(x)  Q(x)  
• Find a value of x in D for which P(x) is true and Q(x) is false. 
• Such an example is called counter example. 

Example: Prove or disprove 

    a, b  Z, a2 = b2  a = b  

Disproof: 

Let P(a, b)  a2 = b2, Q(a, b)  a = b,  

Now P(1, -1)  (1)2 = (-1)2 true but Q(1, -1)  1  -1 

Method of Proof by Contradiction 

Steps in proving by contradiction 
• Suppose the statement to be proved is false 
• Show that this supposition leads logically to a contradiction 
• Conclude that the statement to be proved is true 

Example: Prove that sum of an irrational and a rational number is irrational 

 Proof: Suppose a is a rational, b is an irrational number and their sum is also rational 

• Since a is rational, a = p/q, p, q  Z and q  0 
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• Now according to our supposition a + b is rational and hence it can be written as  
  a + b = m/n, where m, n  Z and n  0 

• Now consider a + b = m/n 
 b = m/n – a = m/n – p/q = (mp – nq)/nq = r/s, where r, s  Z and s  0  
 b is a rational number, which is contradiction. 
 Hence sum of an irrational and a rational number is always irrational. 

Lemma  

For any integer n and any prime number p, if p divides n then p does not divide n + 1 

Proof 

• Express the statement in the form:  x  D, P(x)  Q(x)  
• Let, Z = set of all integers, and P = set of all primes 
• D(p, n)  p divides n 
• DN(p, n)  p does not divide n 
• Now our problem becomes 

   n  Z, p  P, D(p, n)  DN(p, n + 1)  

• Suppose that for some integer n and prime p, p divides n  D(p, n) 
• Now we have to prove that p does not divide n + 1 
• On contrary we suppose that p divide n + 1 
• It means that there exists an integer q1 such that n + 1 = pq1 
• Since p divides n. Hence there exists an integer q2 such that n = pq2 
• Now, n + 1 – n = pq1 – pq2 

 1 = pq1–pq2 = p(q1– q2)  p = 1 or -1 contradiction 

• Hence p does not divide n + 1  DN(p, n) 
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Lecture	39	 Number	Theoretic	Algorithms	
Method of Proof by Contraposition 

Steps in proving by contraposition 

• Express the statement to be proved in the form:  x  D, P(x)  Q(x)  
• Rewrite the statement in the contrapositive form:  x  D,  Q(x)   P(x)  
• Prove the contrapositive by direct proof 

– Suppose that x is an arbitrary but particular element of D such that Q(x) is 
false  

– Show that P(x) is false 

Examples: Proof by Contraposition 

Example 1: Prove that for all integers n, if n2 is even then n is also even   

Proof 

Express the above statement in the form:  x  D, P(x)  Q(x)  
Suppose that  
  D = Z,  
  Even(n, 2)  n2 is even  

  Even(n)  n is even  

• We have to prove that  n  Z, Even(n, 2)  Even(n) 
• Contraposition of the above statement 

   n  Z,  Even(n)   Even(n, 2) is even 
• Now we prove above contrapositive by direct proof 
• Suppose that n is an arbitrary element of Z such that,  Even(n) (n is not even) i.e., n 

is odd 
• n2 = n.n = odd. odd = odd  
• n2 is odd  
•  Even(n, 2) is even 
• Hence,  n  Z,  Even(n)   Even(n, 2) is even 
• Therefore,  n  Z, Even(n, 2)  Even(n) is even 
• Hence  n  Z, if n2 is even then n is even   

Example 2:  Prove that for all integers n, if n2 is divisible by 7 then n is divisible by 7.   

Proof 

• Express the above statement in the form:  x  D, P(x)  Q(x)  
• Suppose that  

  D = Z,  

  Div(n, 2, 7)  n2 is divisible by 7  

  Div(n, 7)  n is divisible by 7 

• We have to prove that  n  Z, Div(n, 2, 7)  Div(n, 7)  
• Contraposition of the above statement 

   n  Z,  Div(n, 7)   Div(n, 2, 7)  
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• Now we prove above contrapositive by direct proof 
• Suppose that n is an arbitrary element of Z such that,  Div(n, 7) (n is not divisible by 

7)  
• n does contain any factor of 7 
• n2 does contain any factor of 7 
• Hence,  n  Z,  Div(n, 7)   Div(n, 2, 7)  
• Therefore,  n  Z, Div(n, 2, 7)  Div(n, 7)  
• Hence,  n  Z, if n2 is divisible by 7 then n is divisible by 7. 

Lemma 1: Statement : The square of an odd integer is of the form 8m + 1 for some 
integer m. 

Proof: 

• Suppose n is an arbitrary odd integer. 
• By quotient remainder theorem any integer has the form  

  4m, 4m + 1, 4m + 2 OR 4m+3 
• Now since n is an odd integer, hence n can be represented as 

  4m + 1 OR 4m+3 
• Now we have to prove that squares of 4m + 1 and 4m + 3 are of the form 8m + 1. 

Case 1 

Square of 4m + 1 
 (4m + 1)2 = 16m2 + 8m + 1 = 8(2m2 + m) + 1  
                      = 8m’ + 1, where m ‘ = (2m2 + m) 

Case 2 

Square of 4m + 3 
 (4m + 3)2 = 16m2 + 24m + 9 = 8(2m2 + 3m + 1) + 1                  
                      = 8m’’ + 1, where m’’ = (2m2 + 3m + 1) 

• Hence any odd integer has the form 8m + 1 for some m 

Theorem 1 

Statement: If a and b are any integers, not both zero, then gcd(a, b) is the smallest positive 

element of the set {ax + by : x, y  Z} of linear combinations of a and b. 

Proof  

 Let s be the smallest positive such linear combination of a and b, i.e. 

 s = ax + by, for some x, y  Z 
 By quotient remainder theorem 
 a =  qs + r =  qs + a mod s, where q = ہa/sۂ.  
 a mod s = a – qs = a - q(ax + by) = a (1 - qx) + b(-qy) 

• Hence a mod s is a linear combination of a and b.  
• But, since a mod s < s, therefore, a mod s = 0  
• Now a mod s = 0  s | a  
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• Similarly we can prove that, s | b.  
• Thus, s is a common divisor of both a and b,  
• Therefore, s  gcd(a, b)  (1) 
• We know that if d | a and d | b then d | ax + by for all x, y integers. 
• Since gcd(a, b)| a and gcd(a, b) | b, hence gcd(a, b) | s and s > 0 imply that  

 gcd(a, b) ≤ s.     (2) 
• By (1) and (2), gcd(a, b) = s 

Corollary 

Statement: For all integers a and b and any nonnegative integer n, gcd(an, bn) = n gcd(a, b). 

Proof  

• If n = 0, the corollary is trivial.  
• If n > 0, then gcd(an, bn) is the smallest positive element of the set {anx + bny}, i.e. 

 gcd(an, bn) = min {anx + bny} = min{n.{ax + by}}  
       = n. min{ax + by}  
 n times smallest positive element of set {ax + by}. 

• Hence gcd(an, bn) = n.gcd(x, y) 

Relatively Prime Integers 

• Two integers a, b are said to be relatively prime if their only common divisor is 1, i. e, 
if gcd(a, b) = 1.  

Generalized Form of Relatively Prime Integers  

• We say that integers n1, n2, ..., nk are pairwise relatively prime if, whenever i ≠ j, we 
have     gcd(ni, nj) = 1. 

Lemma 2 

Statement: For any integers a, b, and p, if both gcd(a, p) = 1 and gcd(b, p) = 1, then gcd(ab, 
p) = 1. 

Proof  

• As, gcd(a, p) = 1, there exist integers x, y such that  
  ax + py = 1    (1) 

• gcd(b, p) = 1, there exist integers x’, y’ such that  bx’ + py’ = 1   (2) 
• Multiplying equations (1) and (2) and rearranging, ab(x x′) + p(ybx′ + y′ax + pyy′) = 1, 

abx’’ + py’’ = 1 
• Since 1 is a positive linear combination of ab and p,  
• Hence gcd(ab , p) = 1,which completes the proof 

Lemma 3 

Statement: For all primes p and all integers a, b, if p | ab, then p | a or p | b (or p divides both 
and b). 
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Proof  

• Let P =  set of all primes; Z = set of all integers 
• P(p, ab)  p | ab; Q(p, a, b)  p | a or p | b  
• Express above statement to be proved in the form: 

   a, b, p, P(p, ab)  Q(p, a, b) 

•  p  P, a, b  Z, p | ab  (p | a or p | b)  
• Assume for the purpose of contradiction that p | ab but that p ∤ a and p ∤ b. 
• Now p ∤ a  gcd(a, p) = 1  
• And, p ∤ b  gcd(b, p) = 1  
• Since only divisors of p are 1 and p, and by assumption p divides neither a nor b.  
• Above Lemma 2, states that for any integers a, b, and p, if both gcd(a, p) = 1 and 

gcd(b, p) = 1, then gcd(ab, p) = 1. 
• Now, gcd(ab, p) = 1, contradicts our assumption that p | ab, since p | ab implies 

gcd(ab, p) = p.  
• This contradiction completes the proof. 

Theorem 2: GCD Recursion Theorem 

Statement 

• For any nonnegative integer a and any positive integer b, gcd(a, b) = gcd(b, a mod b). 

Proof  

• If we will be able to prove that gcd(a, b) and gcd(b, a mod b) divide each other, It will 
complete the proof of the theorem. This is because both are nonnegative. 

Case 1 

• We first show that gcd(a, b) | gcd(b, a mod b).  
• If we let d = gcd(a, b).  
• By quotient remainder theorem: 

 (a mod b) = a - qb,  where q = ہa/bۂ.  
• Now d = gcd(a, b)   

– d | a and  
– d | b,  

• Hence, d | (a – qb),  
 (this is because, a – qb is a linear combination of a and b, where x = 1, y = -q) 

• And consequently d | (a mod b),  
 this is because (a mod b = a – qb)  

• Now, d | b and d | (a mod b), implies that: 
  d | gcd(b, a mod b) 

• Hence gcd(a, b) | gcd(a, a mod b).   (A) 

Case 2 

• We now show that: gcd(a, a mod b) | gcd(a, b).  
• If we let, d = gcd(b, a mod b), then  



297 
 

  d | b and  
  d | (a mod b).    

• By quotient remainder theorem 
  a = qb + (a mod b), where q = ہa/bۂ,  

• a is a linear combination of b and a mod b,  d | a 
• Now, d | a and d | b  d | gcd(a, b) 
• Hence, gcd(a, a mod b) | gcd(a, b)  (B) 
• By (A) and (B):  

  gcd(a, b) = gcd(b, a mod b). 

Example: Compute gcd (1970, 1066) 

a = 1970, b = 1066 
1970 = 1 x 1066 + 904 = gcd(1066, 904), R = 904 
1066 = 1 x 904 + 162   = gcd(904, 162),   R = 162 
904 = 5 x 162 + 94      = gcd(162, 94),     R = 94 
162 = 1 x 94 + 68      = gcd(94, 68),       R = 68 
94 = 1 x 68 + 26      = gcd(68, 26),       R = 26 
68 = 2 x 26 + 16      = gcd(26, 16),        R = 16 
26 = 1 x 16 + 10      = gcd(16, 10),        R = 10 
16 = 1 x 10 + 6      = gcd(10, 6),          R = 6 
10 = 1 x 6 + 4       = gcd(6, 4),            R = 4 
6 = 1 x 4 + 2       = gcd(4, 2),            R = 2 
4 = 2 x 2 + 0       = gcd(2, 0),            R = 0 
Hence gcd(1970, 1066) = 2 

Euclid’s Algorithm 

EUCLID(a, b) 
1  if b = 0 
2   then return a 
3   else return EUCLID(b, a mod b) 
Example:  Compute the gcd of 30 and 21 

Solution 

EUCLID(30, 21) = EUCLID(21, 9) = EUCLID(9, 3) = EUCLID(3, 0) = 3 
• Here, there are three recursive invocations of EUCLID. 
• The correctness of EUCLID follows from Theorem 2  
• And the fact that if the algorithm returns a in line 2, then b = 0, and so gcd(a, b) = 

gcd(a, 0) = a 

Note: 

• The algorithm cannot recurse indefinitely 
• This is because the second argument strictly decreases in each recursive call  
• And this second argument is also always nonnegative.  
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• Hence it must be 0 after some number of calls 
• Therefore, EUCLID always terminates with the correct answer. 

Running Time of Euclid’s Algorithm 

• We analyze the worst-case running time of EUCLID as a function of the size of a and 
b.  

• We assume without loss of generality that a > b ≥ 0.  
• This assumption justified because if b > a ≥ 0, then EUCLID(a, b) makes recursive 

call EUCLID(b, a).  
• That is, if first argument is less than second one, EUCLID spends one recursive call 

swapping a, b 
• Similarly, if b = a > 0, the procedure terminates after one recursive call, since a mod b 

= 0. 
• The overall running time of EUCLID is proportional to the number of recursive calls 

it makes.  
• Our analysis makes use of the Fibonacci numbers Fk, defined earlier in the first part of 

our course 

Running Time of Euclid’s Algorithm 

Statement 

If a > b ≥ 1 and the invocation EUCLID(a, b) takes k ≥ 1 recursive calls, then a  ≥ Fk+2 and b 
≥ Fk+1. 

Proof  

The proof is by induction on k.  

Case 1 

• For base case, let k = 1. Then, b ≥ 1 = F2, and since a > b, we must have a  ≥ 2 = F3.  
• Hence the statement is true for k = 1 
• Please note that, b > (a mod b), in each recursive call, i.e., first argument is strictly 

larger than the second and hence the assumption that a > b therefore holds for each 
recursive call. 

Case 2 

• Now suppose that the lemma is true for k – 1 i.e., if a > b ≥ 1 and invocation 
EUCLID(a, b) takes k-1  ≥ 1 recursive calls, then a  ≥ Fk+1 and b ≥ Fk. 

Case 3  

• Now we have to prove that statement is true for k i.e. if a > b ≥ 1 and invocation 
EUCLID(a, b) takes k ≥ 1 recursive calls, then a  ≥ Fk+2 and b ≥ Fk+1. 

• Since k > 0, and b > 0, and EUCLID(a, b) calls EUCLID(b, a mod b) recursively, 
which in turn makes k - 1 recursive calls.  

• Since we know that statement is true for k-1, hence b ≥ Fk+1, and (a mod b) ≥ Fk. 
• Now we have 
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 b + (a mod b) = b + (a - ہa/bۂ b)   (1) 
• Since, a > b > 0, therefore, ہa/b1 ≤ ۂ  

    ہa/bۂ b ≥ b  

     b - ہa/bۂ b  0  

    a + b - ہa/bۂ b  0 + a  

    b + (a - ہa/bۂ b)  a  
• By (1), b + (a mod b) = b + (a - ہa/bۂ b) ≤ a  
• b + (a mod b) ≤ a  
• Thus, a ≥ b + (a mod b) ≥ Fk+1 + Fk = Fk+2 . 
• Hence, a ≥ Fk+2, It completes proof of the theorem 

Extended Euclid’s Algorithm 

EXTENDED-EUCLID(a, b) 
1  if b = 0 

2       then return (a, 1, 0) 
3 (d’, x’, y’)  EXTENDED-EUCLID(b, a mod b) 
4 (d, x, y)  (d’, y’, x’ -  a/b y’) 
5 return (d, x, y) 

Proof of Correctness 

d’ = bx’+ (a mod b)y’ 

d = bx’+ (a -  a/bb)y’        gcd(a, b) = gcd(b, a mod b) 

d = ay’ + b(x’ -  a/by’) 

Reduced set of residues mod n 

• Complete set of residues is: 0 . . . n-1  
• Reduced set of residues consists of all those numbers (residues) which are relatively 

prime to n  
• And it is denoted by  

 Zn*  = {k : gcd(k, n) = 1, 0  k < n} 
• The number of elements in reduced set of residues is called the Euler Totient 

Function (n)  

Example 

• For n = 10, find reduced list of residues of n 
• All residues: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 
• Reduced residues (primes) = {1, 3, 7, 9}, (n) = 4 

Group 

Definition of a Group 

  Group is a set, G, together with a binary operation : G * G  G, usually denoted by 
a*b, such that the following properties are satisfied : 
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• Associativity :  
  (a*b)*c = a*(b*c) for all a, b, c  G  

• Identity :  
  e  G, such that e*g = g = g*e for all g  G.  

• Inverse :  
 For each g  G, there exists the g’, inverse of g, such that g’*g = g*g’ = e 

The Multiplicative Group Z*
n 

 Zn* = {k : gcd(k, n) = 1, 1 ≤ k < n} 

 For any positive integer n, Zn* forms a group under multiplication modulo n. 

Proof:  

• Binary Operation 
 Let a, b Zn*, gcd(a, n) = 1; gcd(b, n) = 1 
 gcd(ab, n) = gcd(a, n)*gcd(b,n) = 1*1 = 1 

• Associativity holds,  
• 1 is the identity element. 
• inverse of each element exits 

 Hence (Zn* ,*) forms a group. 

Rings 

Definition 

 A ring is a set R with two binary operations + : R × R → R and · : R × R → R (where 
× denotes the Cartesian product), called addition and multiplication, such that: 

• (R, +) is an abelian group with identity element 0  
1. (a + b) + c = a + (b + c)  
2. 0 + a = a + 0 = a  
3. For every a in R, there exists an element denoted −a, such that a + −a = −a + a 

= 0 
4. a + b = b + a  

• (R, ·) is a monoid with identity element 1:  
1. (a·b)·c = a·(b·c)  
2. 1·a = a·1 = a  

• Multiplication distributes over addition:  
1. a·(b + c) = (a·b) + (a·c)  
2. (a + b)·c = (a·c) + (b·c)  

Note 

• Ring addition is commutative so that a + b = b + a 
• But ring with multiplication is not required to be commutative i.e. a·b need not equal 

b·a.  
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• Rings that satisfy commutative property for multiplication are called commutative 
rings.  

Not all rings are commutative. 

• Rings need not have multiplicative inverses either. 
• An element a in a ring is called a unit if it is invertible with respect to multiplication 
• An element a is called invertible under multiplication if there is an element b in the 

ring such that a·b = b·a = 1,  
• This b is uniquely determined by a and we write a−1 = b.  

Lemma: The set of all units in R forms a group under ring multiplication 

Example: Rings 

Example:  Prove that Z (+, *) ( the set of integers) is a ring. 

Solution:  + and * are binary operation on Z because sum and product of two integers are 
also an integer 

• Now,   a, b, c  Z 
1. (a + b) + c = a + (b + c),   
2. 0 + a = a + 0 = a  
3. a + (−a) = (−a) + a = 0 
4. a + b = b + a  

 Hence (Z, +) is an abelian group with identity element 0 

• Since,   a, b, c  Z 
1. (a·b)·c = a·(b·c)  
2. 1·a = a·1 = a  

 Hence (Z, ·) is a monoid with identity element 1  

• Finally   a, b, c  Z 
1. a·(b + c) = (a·b) + (a·c)  
2. (a + b)·c = (a·c) + (b·c)  

 i.e., multiplication is distributive over addition  

Hence we can conclude that Z (+, *) is a ring 
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Lecture	40	 Chinese	Remainder	Theorem	and	RSA	
Cryptosystem	
Addition: Modulo 8 

 0 1 2 3 4 5 6 7 
0 0 1 2 3 4 5 6 7 
1 1 2 3 4 5 6 7 0 
2 2 3 4 5 6 7 0 1 
3 3 4 5 6 7 0 1 2 
4 4 5 6 7 0 1 2 3 
5 5 6 7 0 1 2 3 4 
6 6 7 0 1 2 3 4 5 
7 7 0 1 2 3 4 5 6 

 

Multiplication: Modulo 8 

 0 1 2 3 4 5 6 7 
0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 
2 0 2 4 6 0 2 4 6 
3 0 3 6 1 4 7 2 5 
4 0 4 0 4 0 4 0 4 
5 0 5 2 7 4 1 6 3 
6 0 6 4 2 0 6 4 2 
7 0 7 6 5 4 3 2 1 

 

Reduced set of residues mod n 

• Complete set of residues is Zn = {0, 1, . . ., n-1}  
• Reduced set of residues consists of all those numbers (residues) which are relatively 

prime to n  
• And it is denoted by  

 Zn*  = {k : gcd(k, n) = 1, 0  k < n} 
• The number of elements in reduced set of residues is called the Euler Totient 

Function (n)  

Example 1 

• For n = 10, find reduced list of residues of n 
• All residues: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 
• Reduced residues (primes) = {1, 3, 7, 9}, (n) = 4 

Group 
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Definition of a Group 

  Group is a set, G, together with a binary operation: G * G  G, usually denoted by 
a*b, such that the following properties are satisfied : 

• Associativity :  
  (a*b)*c = a*(b*c) for all a, b, c  G  

• Identity :  
  e  G, such that e*g = g = g*e for all g  G.  

• Inverse :  
 For each g  G, there exists the g’, inverse of g, such that g’*g = g*g’ = e 

Result: The Multiplicative Group Zn* 

Statement:  Zn* = {k : gcd(k, n) = 1, 1 ≤ k < n}. For any positive integer n, Zn* forms a 
group under multiplication modulo n. 

Proof:  

• Binary Operation 
 Let a, b Zn*, gcd(a, n) = 1; gcd(b, n) = 1 
 gcd(ab, n) = gcd(a, n)*gcd(b,n) = 1*1 = 1 

• Associativity holds,  
• 1 is the identity element. 
• inverse of each element exits 

 Hence (Zn* ,*) forms a group. 

Rings 

Definition 

 A ring is a set R with two binary operations + : R × R → R and · : R × R → R (where 
× denotes the Cartesian product), called addition and multiplication, such that: 

• (R, +) is an abelian group with identity element 0  
1. (a + b) + c = a + (b + c)  
2. 0 + a = a + 0 = a  
3. For every a in R, there exists an element denoted −a, such that a + −a = −a + a 

= 0 
4. a + b = b + a  

• (R, ·) is a monoid with identity element 1:  
1. (a·b)·c = a·(b·c)  
2. 1·a = a·1 = a  

• Multiplication distributes over addition:  
1. a·(b + c) = (a·b) + (a·c)  
2. (a + b)·c = (a·c) + (b·c)  

Definition: 
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An element a in a ring R is called unit if there exists b in R such that a·b = b·a = 1  

Lemma: Set of all units in R forms a group under ring multiplication 

Example 2: Prove that Z (+, *) ( the set of integers) is a ring. 

Solution: + and * are binary operation on Z because sum and product of two integers are 
also an integer 

• Now,   a, b, c  Z 
1. (a + b) + c = a + (b + c),   
2. 0 + a = a + 0 = a  
3. a + (−a) = (−a) + a = 0 
4. a + b = b + a  

 Hence (Z, +) is an abelian group with identity element 0 

• Since,   a, b, c  Z 
1. (a·b)·c = a·(b·c)  
2. 1·a = a·1 = a  

 Hence (Z, ·) is a monoid with identity element 1  

• Finally   a, b, c  Z 
1. a·(b + c) = (a·b) + (a·c)  
2. (a + b)·c = (a·c) + (b·c)  

 i.e., multiplication is distributive over addition  

Hence we can conclude that Z (+, *) is a ring 

Modular Arithmetic 

Modular arithmetic for integer n: Zn = {0, 1, . . ., n-1} forms a commutative ring for addition 
with a multiplicative identity 

Lemma 1  

 For a, b, c  Z 
 If (a + b) ≡ (a + c) mod n then b ≡ c mod n 

Lemma 2  

 For a, b, c  Z 
If (a*b) ≡ (a*c) mod n then b ≡ c mod n only if a is relatively prime to n i.e. gcd(a, n) = 1. 

Solving Modular Linear Equations 

Definition: A congruence of the form ax ≡ b (mod m) is called a linear congruence.  

Solving: 
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• To solve this congruence, objective is to find the x that satisfy the given equation. 
• An inverse of a, modulo m is any integer a′ such that, a′a ≡ 1 (mod m). 
• If we can find such an a′, then we can solve ax ≡ b by multiplying throughout by it, 

giving a′ax ≡ a′b,  
• Thus, 1·x ≡ a′b,  x ≡ a′b (mod m). 

Theorem: If gcd(a, m) = 1 and m > 1, then a has a unique inverse a′ (modulo m). 

Proof:  

• Since gcd(a, m) = 1,  
 hence  s, t such that, sa + tm = 1 

• So, sa + tm ≡ 1 (mod m). 
• Since tm ≡ 0 (mod m), sa ≡ 1 (mod m).   
• Thus s is an inverse of a (mod m). 
• Hence this Theorem guarantees that if ra ≡ sa ≡ 1 then r ≡ s, thus this inverse is 

unique mod m. 

Chinese Remainder Theorem 

Theorem: 

Let m1,…,mk > 0 be relatively prime.  Then the system of equations: 
 x ≡ a1 (mod m1) 
 x ≡ a2 (mod m2) 
 . 
 . 
 .  
 x ≡ ak (mod mk) 
has a unique solution modulo m = m1·…·mk. 

Proof:  

• We are given that, m = m1·…·mk. 
• Let Mi = m/mi. for i = 1, . . . , k 
• Since gcd(mi, Mi) = 1, hence by above Theorem,     

  yi = Mi′ such that yiMi ≡ 1 (mod mi) for i = 1, . . . , k  
• Let x = a1y1M1 + a2y2M2 + . . .+ akykMk = ∑ aiyiMi  
• Now m1 does don’t divide M1 
• But m2|M1, m3|M1,  . . ., mk|M1  
• Similarly m2 does don’t divide M2 
• But m1|M2, m3|M2, m4|M2, . . ., mk|M2 and so on 
• Hence mi does don’t divide Mi,  i  {1, 2, . . . , k}  
• But mi|Mj,  i  j, i, j  {1, 2, . . . , k} 
• Therefore, Mj ≡ 0 (mod mi)  j ≠ i,  
• Now we show that x is simultaneous solution 
• x ≡ a1 (mod m1) 
• Since x = a1y1M1 + a2y2M2 + . . .+ akykMk  
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• Hence x ≡ a1y1M1 ≡ 1.a1 = a1 (mod m1).   
• x ≡ a2y2M2 ≡ 1.a2 = a2 (mod m2).   
•                                  . . .  
• x ≡ akykMk ≡ 1.ak = ak (mod mk).   
• Thus, x is the solution 

Application: Example 3 

 Solve the given system of linear modular equations using Chinese Remainder 
Theorem. 

  x ≡ 2 (mod 3),  a1 = 2 
  x ≡ 3 (mod 5),  a2 = 3 
  x ≡ 2 (mod 7) ,  a3 = 2 

Solution 

• As m1 = 3, m2 = 5, m3 = 7, hence m = 3.5.7 = 105 
• Now M1 = m/m1 = 105/3 = 35, M2 = m/m2 = 105/5 = 21 and M3 = m/m3 = 105/7 = 15 
• Inverse of M1 (modulo 3) = y1 = 2 
• Inverse of M2 (modulo 5) = y2 = 1 
• Inverse of M3 (modulo 7) = y3  = 1 
• Now, x, solution to this systems is 

 x ≡ a1y1M1 + a2y2M2 + a3y3M3  
   = 2.35.2 + 3.21.1 + 2.15.1 = 233 (mod 105) 
   ≡ 23 (mod 105)  

• Thus 23 is the smallest positive integer that is a simultaneous solution. 
Verification 
  23 ≡ 2 (mod 3)  
  23 ≡ 3 (mod 5)  
  23 ≡ 2 (mod 7) 

Unique Representation of a Number by CRT 

Let m1,…,mk are pair-wise relatively prime integers, let m = m1·…·mk. Then by CRT it can 
be proved that any integer a, 0 ≤ a ≤ m can be uniquely represented by n-tuple consisting of 
its remainders upon division by mi    (i = 1, 2, . . ., k). That is we can uniquely represent a by  

 (a mod m1, a mod m2, . . . , a mod mk) = (a1, a2 ,…, ak ) 

Example 4 

Pairs to represent non-negative integers < 12, first component is result of division by 3, 
second by 4 
 0 = (0, 0); 1 = (1, 1); 2 = (2, 2); 3 = (0, 3);  
 4 = (1, 0); 5 = (2, 1); 6 = (0, 2); 7 = (1, 3);   
 8 = (2, 0); 9 = (0, 1); 10 = (1, 2); 11 = (2, 3) 

Example 5 
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Compute (1, 2) if m1 = 3 and m2 = 4 

Solution 

 x ≡ 1 (mod 3)  
 x ≡ 2 (mod 4) 

• m1 = 3, m2 = 4, hence m = 12  
• Now M1 = m/m1 = 4, M2 = m/m2 = 3 
• Inverse of M1 (modulo 3) = y1 = 1 
• Inverse of M2 (modulo 4) = y2 = 3 

Now x ≡ a1y1M1 + a2y2M2 = 1.1.4 + 2.3.3 = 22 mod 12 = 10 

Example 6: Chinese Remainder Theorem 

Let m1 = 99, m2 = 98, m3 = 97 and  m4 = 95 
Now any integer < 99.98.97.95 = 89,403,930 can be uniquely represented by its remainders 
when divided by 99, 98, 97 and 95 respectively. 
If a = 123,684, b = 413,456 then compute a + b. 

Solution 

Now 123,684 mod 99 = 33; 123,684 mod 98 = 8 
123,684 mod 97 = 9; 123,684 mod 95 = 89 
Hence a = 123,684 = (33, 8, 9, 89) 

Similarly  

413,456 mod 99 = 32; 413,456 mod 98 = 92 
413,456 mod 97 = 42; 413,456 mod 95 = 16 
Hence b = 413,456 = (32, 92, 42, 16) 
Now a + b = 123,684 + 413,456  
     = (33, 8, 9, 89) + (32, 92, 42, 16) 
= (65 mod 99, 100 mod 98, 51 mod 97, 105 mod 99) 
Now we want to find a number x satisfying following 
 x ≡ 65 (mod 99) 
 x ≡ 2 (mod 98) 
 x ≡ 51 (mod 97) 
 x ≡ 10 (mod 95) 
This can be solved using CRT,  

Answer = 537,140 

The RSA Public Key Cryptosystem 

• RSA involves a public key and a private key.  
• The public key can be known to everyone and is used for encrypting messages.  
• Messages encrypted with the public key can only be decrypted using the private key.  
• The keys for the RSA algorithm are generated by the following way: 
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1. Choose two distinct large random prime numbers p and q such that p  q 
2. Compute n by the equation n = pq, n is used as the modulus for both the public and 

private keys  
3. Compute the totient function (n) 
4. Choose an integer e such that 1 < e < (n) and e and (n) share no factors other than 1 

(co-prime), e is released as the public key exponent 
5. Compute d to satisfy the congruence relation;     de ≡ 1 mod (n) i.e.  

 de = 1 + k(n) for some integer k 
 d is kept as the private key exponent  

6. Publish the pair P  =(e, n) as his RSA public Key 
7. Keep secret pair S  =(d, n) as his RSA secret Key 

Property: Totient Function 

Prove that (p.q) = (p-1).(q-1), where p and q are prime numbers 

Proof 

If n = p, a prime number, then (p) = (p-1);  e.g., ((7) = 6 because 7 is prime) 
If n = p * q where p and q are both prime then  

(n) = (p*q)  

As above (p) = p - 1 

Similarly (q) = q - 1  

For (n) = (p*q), the residues will be 
S1 = {0, 1, 2,. . ., (pq-1)} 

Out of S1, residues that are not relatively prime to n: 
S2 = {p, 2p, ….(q-1)p}, S3 = {q, 2q,……(p-1)q}, S4 = {0}  

The number of elements of S1 = pq 
The number of elements of S2 = q-1 
The number of elements of S3 = p-1 
The number of elements of S4 = 1 
Hence number of relatively prime elements in S1 is 
(n) = pq – [(q-1)+(p-1)+1] 

= pq – q + 1 – p + 1 -1  

= pq – q – p + 1 = (p-1)(q-1)  = (p) * (q) 
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Lecture	41	 RSA	Cryptosystem	and	String	Matching	
Fermat Theorem 

Statement: If p is prime, a is positive integer not divisible by p,  

 ap-1 = 1 mod p  OR ap = a mod p  

Proof 

Consider the set, Zp = {0,1,…, p –1} 
Multiplying each element of Zp by “a mod p”, the result is a set, A, of all the elements of Zp 
with a different sequence, where A = Zp 
 A = {0, a mod p, 2a mod p……(p-1)a mod p} 
{0, a mod p, 2a mod p……(p-1)a mod p} =  {0,1,…, p –1}  Since A = Zp 
If all the elements are multiplied together, except 0, on both sides we should 
{a mod p * 2a mod p… *(p-1) a mod p} mod p      = 1.2. . . .(p-1) mod p   OR  
 a p-1 (p-1)! mod p = (p-1)! mod p 
Since (p-1)! is relatively prime to p. So It can be cancelled from both sides 
ap-1  mod p ≡ 1  OR 
ap-1 ≡ 1 mod p OR 
ap ≡ a mod p  

Euler’s Theorem: Generalization of Fermat’s 

Statement: If a and n are relatively prime then  

  a(n) + 1 = a mod n OR a(n) = 1 mod n 

Proof 

If n = prime, then (n) = n – 1  

By Fermat’s Theorem an-1 = a(n) = 1 mod n 

If n is a positive integer, then (n) = number of positive integers less than n, relatively prime 
to n. 
Consider such positive integers as follows: 

 S1 = {x1, x2, . . ., x(n) } 
Now multiply each element with a mod n 
 S2 = {a x1 mod n, a x2 mod n, . . ., a x(n) mod n} 
The set S2 is a permutation of S1 because: 

1. a is relatively prime to n.  
2. xi is relatively prime to n.   
3. Therefore axi is also relatively prime to n.   

Hence each axi mod n has value less than n 
Hence every element of S2 is relatively prime to n and less than n. 
The number of elements of S2 equal to that of S1 
Moreover S2 contains no duplicates. It is because if axi mod n = axj mod n,  then xi = xj 
But S1 has no duplicates 
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Euler’s Theorem 

On multiplying the terms of S1 and S2 
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Corollary:  

Given primes p and q. Let m and n are integers such that n = p*q and 0 < m < n then 

 m(n)+1 = m mod n OR m(n) = 1 mod n 

RSA Cryptosystem 

Encryption:  

Any number m, (m < n), can be encrypted. 

ciphertext  c = me mod n 

Decryption:  

cd mod n gives us back m. 

Proof 

To prove that cd mod n is equal to m: 
cd mod n = (me)d mod n 
                     = mde mod n 
Since de = 1 mod (n)  de = k(n) + 1 

  cd = mde = mk(n) +1 
By the above corollary to Euler’s theorem,              
  cd = mde = mk(n) +1  = m mod n  = m,   since m < n 

Example 7: RSA Cryptosystem 

Encrypt message STOP using RSA cryptosystem with p = 43, q = 59 and e = 13, n = pq = 
2537,  

Solution 

gcd(e, (p-1)(q-1)) = 1, encryption can be done 

Translate STOP in numerical values, blocks of 4 

  1819  1415 
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Encrypt  

 C = Me mod 2537 = M13 mod 2537 
After computing using fast modular multiplication  
181913 mod 2537 = 2081;141513 mod 2537 = 2181 
The encrypted message is:     2081 2182 

Example 8: RSA Cryptosystem 

Decrypt 0981  0461 if encrypted using RSA 
Public key = (e, n) = (13, 43.59 = 2537)  

Solution 

p = 43, p-1 = 42, q = 59, q-1 = 58, e = 13  
d = e-1 mod (p-1).(q-1) = 13-1 mod 42.58 = 937  
Decrypt  
 M = C937 mod 2537 = C937 mod 2537 
After computing using fast modular multiplication  
0981937 mod 2537 = 0704;0461937 mod 2537 = 1115 
The decrypted message is:     0704 1115 
Translating back to English: HELP  

String Matching 

String Matching Problem 

• We assume that the text is an array T [1 .. n] of length n and that the pattern is an 
array P[1 .. m] of length m ≤ n.  

• We further assume that the elements of P and T are characters drawn from a finite 
alphabet Σ.  

– For example, we may have Σ = {0, 1} or Σ = {a, b, . . . , z}.  
• The character arrays P and T are often called strings of characters. 
• We say that pattern P occurs with shift s in text T (or, equivalently, that pattern P 

occurs beginning at position s + 1 in text T) if  
 0 ≤ s ≤ n - m and T [s + 1 .. s + m] = P[1 .. m] i.e.   T [s + j] = P[ j], for 1 ≤ j ≤ m).  

– If P occurs with shift s in T, we call s a valid shift; 
– otherwise, we call s an invalid shift.  

String Matching Problem 

The string-matching problem is “finding all valid shifts with which a given pattern P occurs 
in a given text T”.  

Example: String Matching Problem 
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Definitions and Notations 

Notation Terminology  

Σ* The set of all finite-length strings formed using characters from the alphabet Σ.  

ε The zero-length empty string, also belongs to Σ*.  

|x| The length of a string x. 

xy The concatenation of two strings x and y has length |x| + |y| and consists of the 
characters from x followed by the characters from y. 

w ⊏ x A string w is a prefix of a string x, if x = wy for some string y   Σ*. If w ⊏ x, 
then |w| ≤ |x|.  

w ⊐ x A string w is a suffix of a string x, if x = yw for some y  Σ*. If w ⊐ x that |w| 
≤ |x|.  

1. Naïve Approach 

The idea is based on Brute Force Approach.  
The naive algorithm finds all valid shifts using a loop that checks the condition P[1 .. m] = 
T[s + 1 .. s + m] for each of the n - m + 1 possible values of s. 
It can be interpreted graphically as sliding a “template“ containing the pattern over the text, 
noting for which shifts all of the characters on the template equal the corresponding 
characters in the text. 

Naive String Matching Algorithm 

NAIVE-STRING-MATCHER(T, P) 
1    n ← length[T] 
2    m ← length[P] 
3    for s ← 0 to n - m 
4          do if P[1 .. m] = T[s + 1 .. s + m] 
5                   then print "Pattern occurs with shift" s  

Worst case Running Time 

– Outer loop: n – m + 1 
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– Inner loop: m 

– Total Θ((n - m + 1)m) 

Best-case: n-m 

Note: 

• Not an optimal procedure for String Matching problem. 
• It has high running time for worst case. 
• The naive string-matcher is inefficient because information gained about the text for 

one value of s is entirely ignored in considering other values of s.  

2. The Rabin-Karp Algorithm 

Let us assume that Σ = {0, 1, 2, . . . , 9}, so that each character is a decimal digit.  
A string of k consecutive characters is viewed as representing a length-k decimal number.  
Given a pattern P[1 .. m], let p denote its corresponding decimal value and a text T [1 .. n], we 
let ts denotes the decimal value of the length-m substring T[s + 1 .. s + m], for s = 0, 1, ..., n - 
m.  
Now, ts = p if and only if T [s + 1 .. s + m] = P[1 .. m]; thus, s is a valid shift if and only if ts = 
p.  
We can compute p in time Θ(m) using Horner's rule  
 p = P[m] + 10 (P[m - 1] + 10(P[m - 2] + · · · + 10(P[2] + 10P[1]) )). 

Example: Horner's rule  

“345” = 5 + 10(4 + 10(3)) = 5 + 10(4 + 30)  = 5 + 340 = 345 
The value t0 can be similarly computed from T [1 .. m] in time Θ(m). 
To compute the remaining values t1, t2, . . . , tn-m in time Θ(n - m), it suffices to observe that 
ts+1 can be computed from ts in constant time.  
Subtracting 10m-1 T[s + 1] removes the high-order digit from ts, multiplying the result by 10 
shifts the number left one position, and adding T [s + m + 1] brings in the appropriate low-
order digit.  
 ts+1 = (10(ts – T[s + 1] 10m-1 ) + T[s + m + 1])  
The only difficulty with this procedure is that p and ts may be too large to work with 
conveniently.  
Fortunately, there is a simple cure for this problem compute p and the ts's modulo a suitable 
modulus q.  
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Lecture	42	 String	Matching	
String Matching Problem 

Given a text T [1 .. n] of length n, a pattern P[1 .. m] of length m ≤ n, both as arrays.  
Further assume that elements of P and T are characters drawn from a finite set of alphabets Σ. 
Now for 0 ≤ s ≤ n - m if  
 T [s + j] = P[ j],  j {1, 2,. . ., m}  
then p occurs in T with shift s, and we call s as a valid shift; otherwise, s an invalid shift.  
Our objective is “finding all valid shifts with which a given pattern P occurs in a text T”.   

Naive String Matching Algorithm 

NAIVE-STRING-MATCHER(T, P) 
1    n ← length[T] 
2    m ← length[P] 
3    for s ← 0 to n - m 
4          do if P[1 .. m] = T[s + 1 .. s + m] 

5 then print "Pattern occurs with shift" s  

Worst case Running Time 

– Outer loop: n – m + 1 
– Inner loop: m 
– Total Θ((n - m + 1)m) 

Best-case: n-m 

Example: Naive String Matching Algorithm 
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The operation of the naive string matcher for the pattern P = aab and the text T = acaabc. We 
can imagine the pattern P as a template that we slide next to the text. (a) – (d). The four 
successive alignments tried by the naive string matcher. In each part, vertical lines connect 
corresponding regions found to match (shown shaded), and a jagged line connects the first 
mismatched character found, if any. The algorithm finds one occurrence of the pattern, at 
shift s = 2, shown in part (c). 

The Rabin-Karp Algorithm 

Special Case 
Given a text T [1 .. n] of length n, a pattern P[1 .. m] of length m ≤ n, both as arrays.  
Assume that elements of P and T are characters drawn from a finite set of alphabets Σ. 
Where Σ = {0, 1, 2, . . . , 9}, so that each character is a decimal digit.  
Now our objective is “finding all valid shifts with which a given pattern P occurs in a text T”.   

Notations: The Rabin-Karp Algorithm 

Let us suppose that  
• p denotes decimal value of given a pattern P[1 .. m] 
• ts = decimal value of length-m substring T[s + 1 .. s + m], of given text T [1 .. n], for s 

= 0, 1, ..., n - m.  
• It is very obvious that, ts = p if and only if  

 T [s + 1 .. s + m] = P[1 .. m];  
 thus, s is a valid shift if and only if ts = p.  

• Now the question is how to compute p and ts efficiently 
• Answer is Horner’s rule  

Horner’s Rule 

Example: Horner’s rule  
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[3, 4, 5] = 5 + 10(4 + 10(3)) = 5 + 10(4 + 30) = 5 340 = 345 

p = P[3] + 10 (P[3 - 1] + 10(P[1])). 

Formula 

• We can compute p in time Θ(m) using this rule as 
 p = P[m] + 10 (P[m-1] + 10(P[m-2] + … + 10(P[2] + 10P[1]) )) 

• Similarly t0 can be computed from T [1 .. m] in time Θ(m). 
• To compute t1, t2, . . . , tn-m in time Θ(n - m), it suffices to observe that ts+1 can be 

computed from ts in constant time.  

Computing ts+1 from ts in constant time 

 

Text = [3, 1, 4, 1, 5, 2]; t0 = 31415 
m = 5; Shift = 0 
Old higher-order digit = 3  
New low-order digit = 2 
t1   = 10.(31415 – 104.T(1)) + T(5+1) 
      = 10.(31415 – 104.3) + 2 
         = 10(1415) + 2 = 14152   
ts+1 = 10(ts – T[s + 1] 10m-1 ) + T[s + m + 1])  
t1 = 10(t0 – T[1] 104) + T[0 + 5 + 1])  
Now t1, t2, . . . , tn-m can be computed in Θ(n - m) 

Procedure: Computing ts+1 from ts 

1. Subtract T[s + 1]10m-1 from ts, removes high-order digit  
2. Multiply result by 10, shifts the number left one position 
3. Add T [s + m + 1], it brings appropriate low-order digit.  

 ts+1 = (10(ts – T[s + 1] 10m-1 ) + T[s + m + 1])  

Another issue and its treatment  

• The only difficulty with the above procedure is that p and ts may be too large to work 
with conveniently.  

• Fortunately, there is a simple cure for this problem, compute p and the ts modulo a 
suitable modulus q.  

Computing ts+1 from ts Modulo q = 13 
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A window of length 5 is shaded. 
The numerical value of window = 31415  
31415 mod 13 = 7 

Spurious Hits and their Elimination 

m = 5. 
p = 31415,  
Now, 31415 ≡ 7 (mod 13)  
Now, 67399 ≡ 7 (mod 13)  
Window beginning at position 7  = valid match; s = 6 
Window beginning at position 13 = spurious hit; s = 12 
After comparing decimal values, text comparison is needed. 

 

The Rabin-Karp Algorithm 

Generalization   

• Given a text T [1 .. n] of length n, a pattern P[1 .. m] of length m ≤ n, both as arrays.  
• Assume that elements of P and T are characters drawn from a finite set of alphabets Σ 

= {0, 1, 2, . . . , d-1}. 
• Now our objective is “finding all valid shifts with which a given pattern P occurs in a 

text T”.  

Note: 

ts+1 = (d(ts – T[s + 1]h) + T[s + m + 1]) mod q 
 where h = dm-1 (mod q) is the value of the digit “1” in the high-order position of an m-
digit text window. 
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Sequence of Steps Designing Algorithm 

1. Compute the lengths of pattern P and text T 
2. Compute p and ts under modulo q using Horner’s Rule 
3. For any shift s for which ts ≡ p (mod q), must be tested further to see if s is really valid 

shift or a spurious hit.  
4. This testing can be done by checking the condition: P[1 .. m] = T [s + 1 .. s + m]. If 

these strings are equal s is a valid shift otherwise spurious hit. 
5. If for shift s, ts ≡ p (mod q) is false, compute ts+1 and replace it with ts and repeat the 

step 3. 

Note: As ts ≡ p (mod q) does not imply that ts = p, hence text comparison is required to find 
valid shift 

The Rabin-Karp Algorithm 

RABIN-KARP-MATCHER(T, P, d, q) 
1    n ← length[T] 
2    m ← length[P] 
3    h ← dm-1 mod q 
4    p ← 0 
5    t0 ← 0 
6    for i ← 1 to m                              (Preprocessing) 
7         do p ← (dp + P[i]) mod q 
8              t0 ← (dt0 + T[i]) mod q 
9    for s ← 0 to n - m                        (Matching) 
10        do if p = ts 
11                then if P[1 .. m] = T [s + 1 .. s + m] 
12                            then print "Pattern occurs with shift" s 
13             if s < n - m 
14                 then ts+1 ← (d(ts - T[s + 1]h) + T[s + m + 1]) mod q  

Analysis: The Rabin-Karp Algorithm 

• Worst case Running Time 
– Preprocessing time: Θ(m) 
– Matching time is Θ((n – m + 1)m) 

• If P = am, T = an, verifications take time Θ((n - m + 1)m), since each of the n - m + 1 
possible shifts is valid. 

• In applications with few valid shifts, matching time of the algorithm is only O((n - m 
+ 1) + cm) = O(n + m), plus the time required to process spurious hits. 

String Matching with Finite Automata 

• A finite automaton M is a 5-tuple (Q, q0, A, Σ, δ), where 
– Q is a finite set of states, 
– q0  Q is the start state, 
– A   Q is a distinguished set of accepting states, 
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– Σ is a finite input alphabet, 
– δ is a function from Q × Σ into Q, called the transition function of M. 

• String-matching automata are very efficient because it examines each character 
exactly once, taking constant time.  

• The matching time used-after preprocessing the pattern to build the automaton-is 
therefore Θ(n). 

Some Results 

1. Empty string is both a suffix and a prefix of every string.  
2. For any strings x and y and any character a, we have x ⊐ y if and only if xa ⊐ ya.  
3. Also it can be proved that ⊏ and ⊐ are transitive relations.  

Proof: Property 3 

• Suppose that x ⊏ y and y ⊏ z, we have to prove that x � z.  
• x ⊏ y   w1  Σ* such that y = xw1  (A) 
• y ⊏ z   w2  Σ* such that z = yw2   (B) 
• From (A) and (B) 

 z = yw2 = xw1w2 
• And hence x ⊏ z, this is because w1w2  Σ* 

Example: Transition Table and Finite Automata 

Q = {0, 1},  ,a b  and transition function is shown below 

A simple two-state finite automaton which accepts those strings that end in an odd number of 
a’s. 

 

Final State Function φ 

A finite automaton M induces a function φ, called the final-state function, from Σ* to Q such 
that φ(w) is the state of M that ends up in after scanning the string w.  
Thus, M accepts a string w if and only if φ(w)  A. 
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The function φ is defined by the recursive relation 
                 φ(ε) = q0, 
                 φ(wa) = δ(φ(w), a)        for w  Σ*, a  Σ. 
There is a string-matching automaton for every pattern P; constructed in a preprocessing step. 

Suffix Function σ 

An auxiliary function σ, called the suffix function is defined corresponding to given pattern 
P.  
Function σ is a mapping from Σ* to {0, 1, . . . , m} such that σ(x) is length of the longest 
prefix of P that is a suffix of x i.e. 
          σ(x) = max {k : Pk ⊐ x}. 
The suffix function σ is well defined since the empty string P0 = ε is a suffix of every string. 
For a pattern P of length m, we have σ(x) = m if and only if P ⊐ x.  
It follows from the definition of the suffix function that if x ⊐ y, then σ(x) ≤ σ(y). 

String Matching Automata 

The string-matching automaton that corresponds to a given pattern P[1 .. m] is defined as 
–  The state set Q is {0, 1, . . . , m}. The start state q0 is state 0, and state m is the 

only accepting state. 
– The transition function δ is defined by the following equation, for any state q 

and character a: 
               δ (q, a) = σ(Pqa) 
The machine maintains as an invariant of its operation 
          φ(Ti) = σ(Ti) 

String Matching Automata for given Pattern 
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 Pattern string P = ababaca.  
 Edge towards right shows matching 
 Edge towards is for failure 
 No edge for some for state and some alphabet means that edge hits initial state    

Finite Automata for Pattern P = ababaca 

Text T = abababacaba.  

 

Algorithm 

FINITE-AUTOMATON-MATCHER(T, δ, m) 
1    n ← length[T] 
2    q ← 0 
3    for i ← 1 to n 
4          do q ← δ(q, T[i]) 
5               if q = m 

6 then print "Pattern occurs with shift" i - m  

Matching time on a text string of length n is Θ(n). 

Memory Usage: O(m|Σ|),  
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Preprocessing Time: Best case: O(m|Σ|). 

Algorithm 

COMPUTE-TRANSITION-FUNCTION(P, Σ) 
1    m ← length[P] 
2    for q ← 0 to m 
3         do for each character a  Σ 
4              do k ← min(m + 1, q + 2) 
5                   repeat k ← k - 1 
6                      until Pk ⊐ Pqa 
7                   δ(q, a) ← k 
8    return δ 

Running Time = O(m3 |Σ|)  

Summary 

Algorithm Preprocessing Time Matching Time 
 

Naive 0 O((n-m+1)m)
Rabin-Karp Θ(m) O((n-m+1)m)
Finite Automaton O(m|Σ|) Θ(n) 
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Lecture	43	 Polynomials	and	Fast	Fourier	Transform	
Field:  A Field is a set F with two binary operations + : F × F → F and * : F × F → F such 
that 

1. (F, +) is an abelian group with identity element 0 
2. (F\{0}, *) is an abelian group with identity element 1 
3. Multiplication distributes over addition 

 a*(b + c) = (a*b) + (a*c)  
 (a + b)*c = (a*c) + (b*c) 

Polynomial 

A polynomial in the variable x over an algebraic field F is a representation of a function A(x) 
as a formal sum 
  A(x) = a0 + a1x1 + a2x2 +  . . .+ anxn 

Coefficients  

Values a0, a1,..., an are coefficients of polynomial, and drawn from a field F, typically set of 
complex numbers. 

Degree 

A polynomial A(x) is said to have degree n if its highest coefficient an is nonzero  

Degree Bound 

Any integer strictly greater than the degree of a polynomial is a degree-bound of that 
polynomial. 

Addition of two Polynomials: Brute Force 

Addition of two polynomials of degree n takes Θ(n) time,  

Example 1 

  A (x) = a0 + a1x1 + a2x2 +  . . .+ anxn 

  B (x) = b0 + b1x1 + b2x2 +  . . .+ bnxn 

  C (x) = (a0 + b0) + (a1 + b1) x1 +  . . .+(an + bn)xn 
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Multiplication of Two Polynomial: Brute Force 

Multiplication of two polynomials of degree n takes Θ(n2) 

Example 2 

A (x) = a0 + a1x1 + a2x2 +  . . .+ anxn 

B (x) = b0 + b1x1 + b2x2 +  . . .+ bnxn 

 a0b0 + a1b0x1 +  . . .+ (anb0)xn 

  a0b1x1 + a1b1x2 +  . . .+ (anb1)xn+1 

                   . . . 

   a0bn xn + a1bnxn+1 +  . . .+ (anbn)xn+n 

 C (x) = (a0b0) + (a1b0 + a0b1)x1 +  . . . + (anbn)xn+n 

Polynomial Representation 

1. The Coefficient Representation     
2. Point Value Presentation 

Note 

• The method for multiplying polynomials equations as above take (n2) time when the 
polynomials are represented in coefficient form 

• But (n) time when represented in point value form 
• We can multiply using coefficient representation in only (n log n) time converting 

between two forms 
• This lecture make much use of complex numbers, the symbol i has same meaning, 

you know sqr(-1) 

Coefficient Representation 

A coefficient representation of a polynomial degree bound n is a vector of coefficients: a = 
(a0, a1,…, an-1) 

Vectors as Column 

• In this lecture, we will treat vector as column vector 

Convenient Way 

• The coefficients representation is convenient for certain operations on polynomials 

Example:  

 Computing A(x) at x0 
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• Operation of evaluating polynomials A(x) at given point x0 consists of computing 
value of A(x0). 

• Evaluation takes time (n) using Horner’s rule 

Evaluation and Addition using Coefficient Form 

Operation 1: Horner’s Rule 

   A(x0)=  a0 + x0( a1 + x0( a2 +…x 0(an-2 +x0(an-1))… )  

Operation 2: Addition of Two Polynomials 

• Similarly adding two polynomials represented by the coefficient vectors: 
 a = (a0, a1 ,…, an-1 ) and  
 b = (b0, b1, … ,bn-1) takes (n) times  

• We just produce the coefficient vector: 
 c = (c0, c1,…, c n-1) where  

       cj = aj  + bj,    j = 1 ,…, n - 1 

Multiplication using Coefficient Representation 

Operation 3: Multiplication of Two Polynomials 

• Consider multiplication of A(x) and B(x), with degree bounds n, represented in 
coefficient form 

• If we use the method described above polynomials multiplication takes time O(n2). 
• Since each coefficient in vector a must be multiplied by each coefficients in the vector 

b. 
• Operation of multiplying polynomials in coefficient form seems to be considerably 

more difficult than that of evaluating or adding two polynomials. 
• The resulting coefficient vector c, also called the convolution of the input vectors a 

and b. 

Point–value Representation 

• A point value representation of a polynomial A(x) of degree bound n is a set of n 
point value pairs. 

 { (x0, y0), (x1, y1),. . . ,(x n-1, y n-1) },  
 all of the x k are distinct and y k = A(x k),  for k = 0,1, . . ., n-1. 

• Polynomial has various point value representations, since any set of n distinct points 
x0 ,x1 ,…,x n-1 can be used as a basis for the representation. 

Conversion: From a Coefficient Form to Point Value Form 

• Computing a point value representation for a polynomials given in coefficient form is 
in principle straight forward , 

• This is because select n distinct points x0 ,x1 ,…,x n-1 and then evaluate A(x k) for k = 
0,1 ,…, n-1. 
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• With Horner’s rule, n-point evaluation takes q(n2).  
• This is because for x = x0, evaluation cost is q(n). And since there are n number of 

points, hence there will be q(n2) cost for evaluating all of the n number of points using 
Horner’s rule.  

Clever Choose of xk  

• We shall see that if we choose xk cleverly, this computation can be accelerated to run 
in q(n log n) 

• Inverse of evaluating coefficient form of polynomial from point value representation 
called interpolation. 

Theorem 

Uniqueness of an interpolating polynomial  

For any set { (x0, y0),(x1, y1),. . ., (x n-1, y n-1) } of n point–value pairs such that all xk values 
distinct, there is a unique polynomial A(x) of degree bound n such that yk = A(xk)  for k = 0,1, 
. . ., n-1. 

Proof 

• Proof is based on existence of inverse of a matrix.  
• Let us suppose that A(x) is required polynomial 

 A(x) = a0 + a1x1 + a2x2 +. . .+ anxn 
• Equation: yk = A(xk) is equivalent to the matrix equation given in the next slide. 

2 1
0 00 0 0

2 1
1 11 1 1

2 1
1 11 1 1

1

1

1

n

n

n
n nn n n

a yx x x

a yx x x

a yx x x






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    
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    
    
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
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

 

This matrix on the left side is called vander-monde matrix and is denoted V(x0, x1, …..xn-1) 

– The determinant of this this matrix is 
0 1

( )k j
j k n

x x
   

  

If xk are distinct then it is nonsingular. The coefficient aj can be uniquely determined a = 
V(x0, x1, …..xn-1)-1 y 

Solving the Equation in Proof of Theorem 

• Using LU decomposition algorithms, we can solve these equation in O(n3) 
• A faster algorithm, in Θ(n2), for n-point interpolation is based on Lagrange's formula:  

 
 

1

0

jn
j k

k
k k j

j k

x x

y
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
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Addition using Point Value Form 

• The point-value representation is quite convenient for many operations on 
polynomials.  

• For addition: 
  C(x) = A(x) + B(x)  C(xk) = A(xk) + B(xk) 

• More precisely, if point value representation for A 
– {(x0, y0), (x1, y1),. . ., (xn-1, yn-1)}, 

• And for B: {(x0, y’0), (x1, y’1),. . ., (xn-1, y’n-1)}, 
• Then a point-value representation for C is 

 {(x0, y0+y’0), (x1, y1+y’1),. . ., (xn-1, yn-1+y’n-1)}, 
• Thus, the time to add two polynomials of degree-bound n in point-value form is Θ(n). 

Multiplication using Point Value Form 

• Similarly, point-value representation is convenient for multiplying polynomials as 
well.  

C(x) = A(x) B(x)  C(xk) = A(xk)B(xk) for any xk,  
• We can multiply a point value representations for A and B to obtain a point-value 

representation for C. 
• A standard point-value representation for A and B consists of n point-value pairs for 

each polynomial 
• Multiplying these, we must extended point-value representations for A and B of 2n 

point-value each. 
• Given an extended point-value representation for A, 

  {(x0, y0), (x1, y1),..., (x2n-1, y2n-1)}, 
• And extended point-value representation for B, 

  {(x0, y’0), (x1, y’1),..., (x2n-1, y’2n-1)},  
• Then a point-value representation for C is 

  {(x0, y0 y’0), (x1, y1 y’1),..., (xn-1, yn-1 y’n-1)} 
• Finally, we consider how to evaluate a polynomial given in point-value form at a new 

point. 
• Apparently no simpler approach than converting polynomial to coefficient form, and 

then evaluating it 

Discrete Fourier Transform 

• We can use any points as evaluation points, but by choosing evaluation points 
carefully, we can convert between representations in only Θ(n lg n) time. 

• If we take “complex roots of unity” evaluation points, we can produce a point-value 
representation taking Discrete Fourier Transform of coefficient vector. 

• The inverse operation, interpolation, can be performed by taking “inverse DFT” of 
point-value pairs, yielding a coefficient vector.  

• We will show how FFT performs the DFT and inverse DFT operations in Θ(n lg n) 
• Multiplication procedure is shown in the next slide 

Fast multiplication of polynomials in coefficient form  
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Procedure: Multiplication of Polynomials in n lg n 

 We assume n is a power of 2; this requirement can always be met by adding zero 
coefficients. 

1. Double degree-bound:  

 Create coefficient representations of A(x) and B(x) as degree bound 2n polynomials by 
adding n high-order zero coefficients to each. 

2. Evaluate:  

 Compute point-value representations of A(x) and B(x) of length 2n through two 
applications of FFT of order 2n. These representations contain the values of the two 
polynomials at the (2n)th roots of unity. 

3. Point wise multiply:  

 Compute point-value form for polynomial C(x) = A(x)B(x) by multiplying these 
together point wise. This representation contains the value of C(x) at each (2n)th root of 
unity. 

4. Interpolate:  

 Create coefficient representation of C(x) through a single application of an FFT on 2n 
point-value pairs to compute inverse DFT. 

 Steps (1) and (3) take time Θ(n), and steps (2) and (4) take time Θ(n lg n).  
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Complex Roots of Unity and Their Properties 

• We claimed that if we use complex roots of unit we can evaluate and interpolate 
polynomials in Θ(nlgn) time.  

• Here, we define complex roots of unity and study their properties.  
• Define the DFT,and then show how the FFT computes the DFT and its inverse in just 

Θ(nlgn) time. 

 Complex root of unity 

A complex nth root of unity is a complex number ω such that 

  ωn =1 

There are exactly n complex nth roots of unity: e2πik/n for k=0,1,…,n-1 

   eiu =cos(u) + isin(u). 

 

Values of ω0
8 , ω1

8 ,. . ., ω7
8  in complex plane are shown where ω8 = e2πi/8 is the principal 8th 

root of unity. Complex roots of unity form a cyclic group. Complex roots of unity have 
interesting properties. 

Properties: Complex Roots of Unity 

Lemma 1 (cancellation lemma) 

For any integers n ≥ 0,k ≥0,and d > 0, 

ωdk
dn = ωk

n . 

Proof : the lemma follows directly from ωn =e2πi/n ,since 

 ωdk
dn = (e2πi/dn)dk 
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            =(e2πi/n)k 

             = ωk
n 

Corollary 1 (cancellation lemma) 

For any even integer n  > 0, 

  ωn/2
n = -1 

Proof: We know that ωn =e2πi/n 

 Now ωn/2
n = ωn/2

2.n/2 = ω2 = ωn =e2πi/2 = ωn =eπi = -1 

Lemma 2 (Halving Lemma) 

 If n > 0 is even, then squares of n complex nth root of unity are the n/2 complex 
(n/2)th root of unity. 

Proof: 

• By the cancellation lemma, we have: (ωn
k )2 = ωk

n/2 
• For any nonnegative integer k, note that if we square all of complex nth root of unity, 

then each (n/2)th root of unity is obtained exactly twice, since 
  (ωn

k +n/2)2 =   ω2k+n
n/2 

        =   ω2k
nωn

n  =   ω2k
n 

Halving Lemma is Essential in Reducing Cost 

• Thus ωk
n and ωk+n/2

n/2 have the same square.  
• This property can also be proved using corollary, 

  ωn
n/2 = ω2 = -1 

• Since ωn/2
n = -1 implies ωk+n/2

n = - ωk
n and thus  

  (ωn
k +n/2)2  = (ωn

k)2 
• As we shall see, the halving lemma is essential to our divide-and-conquer approach of 

converting between coefficient and point-value representation of polynomials 
• Since it guarantees that the recursive sub problems are only half as large. 

Lemma 3 (Summation Lemma) 

For any integer n ≥ 1 and nonnegative integer k not divisible by n,  
1

0

0
n jk

n
j






  

Proof: 
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Requiring that k not be divisible by n ensures that the denominator is not 0, since ωn
k = 1 

only when k is divisible by n. 

The DFT 

Recall that we wish to evaluate a polynomial  
1

0

( )
n

j
j

j

A x a x




  

of degree-bound n at ωn
0 ,ωn

1, ωn
2, ……..ωn

n-1  ( that is, at the n complex nth roots of unity)  
Without loss of generality, we assume that n is a power of 2, since a given degree-bound can 
always be raised we can always add new high-order zero coefficients as necessary.  
We assume that A is given in coefficient form a = ( a0, a1,. . ., an-1).  
Let us define the results yk for k = 0,1,. . ., n-1, by  

  
 
1

0

k
k n

n
k

j n
j

y A

a j









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The vector y = (y0, y1,. . ., yn-1) is Discrete Fourier Transform (DFT) of the coefficient vector  
 a = ( a0, a1,. . ., an-1).   
We can also write y = DFTn(a) 

[0] 2 /2 1
0 2 4 2

[1] 2 /2 1
1 3 5 1

( ) .....

( ) .....

n
n

n
n

A x a a x a x a x
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And hence [0] 2 [1] 2( ) ( ) ( )A x A x xA x    (A) 

0 1 1

[0] [1]

0 2 1 2 1 2

Thus evaluating A(x) at , ,.....,  reduce to

1.  evaluating ( ) and ( ) at

                    ( ) , ( ) ,....., ( )

2.  combining the results according to (A)  

n
n n n

n
n n n

A x A x





  
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FFT Recursive Algorithm 

2 /
n

[0]
0 2 2

[1]
1 3 1

[0] [0]

[1]

Recursive-FFT(a)

{  n=length[a];    /* n: power of 2  */

    if n=1 the return a;

    ;

    =1

    a ( , ,....., );

    a ( , ,....., );

    y Recursive-FFT(a );
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Lecture	44	 NP	Completeness	
Polynomial Time Algorithms 

• On any inputs of size n, if worst-case running time of algorithm is O(nk), for constant 
k, then it is called polynomial time algorithm 

• Every problem can not be solved in polynomial time 
• There exists some problems which can not be solved by any computer, in any amount 

of time, e.g. Turing’s Halting Problem  
• Such problems are called un-decidable 
• Some problems can be solved but not in O(nk) 

Polynomial Time (Class P)  

• These problems are solvable in polynomial time 
• Problems in class P are also called tractable 

Intractable Problems  

• Problems not in P are called intractable 
• These problems can be solved in reasonable amount of time only for small input size 

Decision problems 

The problems which return yes or no for a given input and a question regarding the 
same problem 

Optimization problems 

• Find a solution with best value, it can be maximum or minimum. There can be more 
than one solutions for it 

• Optimization problems can be considered as decision problems which are easier to 
study. 

• Finding a path between u and v using fewest edges in an un-weighted directed graph 
is O. P. but does a path exist from u to v consisting of at most k edges is D. P.? 

NP: Nondeterministic Problems 

Class NP  

• Problems which are verifiable in polynomial time. 
• Whether there exists or not any polynomial time algorithm for solving such problems,  

we do not know. 
• Can be solved by nondeterministic polynomial 
• However if we are given a certificate of a solution, we could verify that certificate is 

correct in polynomial time 
• P = NP? 

Nondeterministic algorithm: break in two steps 

1) Nondeterministic step  
generates a candidate solution called a certificate. 
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1) Deterministic (verification) Step 
 It takes certificate and an instance of problem as input, returns yes if certificate 
represents solution 
In NP problems, verification step is polynomial  

Example: Hamiltonian Cycle 

 

Given: a directed graph G = (V, E), determine a simple cycle that contains each vertex in V, 
where each vertex can only be visited once 

• Certificate: 

– Sequence: v1, v2, v3, …, vn 
– Generating certificates 

• Verification: 

1) (vi, vi+1)  E for i = 1, …, n-1 
2) (vn, v1)  E  

It takes polynomial time 

Reduction in Polynomial Time Algorithm 

Given two problems A, B, we say that A is reducible to B in polynomial time (A p B) if 

1. There exists a function f  that converts the input of A to inputs of B in 
polynomial time 

2. A(x) = YES  B(f(x)) = YES 

where x is input for A and f(x) is input for B 

Solving a decision problem A in polynomial time 

• Use a polynomial time reduction algorithm to transform A into B 
• Run a known polynomial time algorithm for B 
• Use the answer for B as the answer for A 
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NP Complete 

• A problem A is NP-complete if 
  1) A  NP 

  2) B p A for all B  NP 
• If A satisfies only property No. 2 then B is NP-hard 
• No polynomial time algorithm has been discovered for an NP-Complete problem 
• No one has ever proven that no polynomial time algorithm can exist for any NP-

Complete problem 

Reduction and NP Completeness 

• Let A and B are two problems, and also suppose that we are given 
– No polynomial time algorithm exists for problem A 
– If we have a polynomial reduction f  from A to B 

• Then no polynomial time algorithm exists for B 

 

Relation in Between P, NP, NPC 

 

• P  NP  (Researchers Believe)  
• NPC  NP (Researchers Believe) 
• P = NP (or P  NP, or P  NP) ??? 
• NPC = NP (or NPC  NP, or NPC  NP) ??? 
• P  NP 
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• One of the deepest, most perplexing open  research problems in theoretical computer 
science since 1971 

Problem Definitions: Circuit Satisfiability 

Boolean Combinational Circuit 

• Boolean combinational elements wired together 
• Each element takes a set of inputs and produces a set of outputs in constant number, 

assume binary 
• Limit the number of outputs to 1 
• Logic gates: NOT, AND, OR 
• Satisfying assignment: a true assignment causing the output to be 1. 
• A circuit is satisfiable if it has a satisfying assignment. 

Two Instances: Satisfiable and Un-satisfiable 

 

Two instances of the circuit-satisfiability problem. (a) The assignment <x1 = 1, x2 = 1, x3 = 
0> to the inputs of this circuit causes the output of the circuit to be 1. The circuit is therefore 
satisfiable. (b) No assignment to the inputs of this circuit can cause the output of the circuit to 
be 1. The circuit is therefore satisfiable. 

Problem: Circuit Satisfiability 

Statement: Given a boolean combinational circuit composed of AND, OR, and NOT, is it 
satisfiable? 

Intuitive solution 

• For each possible assignment, check whether it generates 1. 
• Suppose the number of inputs is k, then the total possible assignments are 2k.   
• So the running time is (2k).  
• When the size of the problem is (k), then the running time is not polynomial 

Lemma 2: CIRCUIT-SAT is NP Hard 

Proof:  

• Suppose X is any problem in NP 
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• Construct polynomial time algorithm F that maps every instance x in X to a circuit C 
= f(x) such that x is YES  C  CIRCUIT-SAT (is satisfiable). 

• Since  X  NP, there is a polynomial time algorithm A which verifies X.  
• Suppose the input length is n and Let T(n) denote the worst-case running time.  
• Let k be the constant such that T(n) = O(nk) and the length of the certificate is O(nk). 

Circuit Satisfiability Problem is NP-complete 

• Represent computation of A as a sequence of configurations, c0, c1,…,ci,ci+1,…,cT(n), 
each ci can be broken into various components 

• ci is mapped to ci+1 by the combinational circuit M implementing the computer 
hardware. 

• It is to be noted that A(x, y) = 1 or 0. 
• Paste together all T(n) copies of the circuit M. Call this as, F, the resultant algorithm 
• Please see the overall structure in the next slide   
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The sequence of configurations produced by an algorithm A running on an input x and 
certificate y. Each configuration represents the state of the computer for one step of the 
computation and, besides A, x, and y, includes the program counter (PC), auxiliary machine 
state, and working storage. Except for the certificate y, the initial configuration c0 is constant. 
A Boolean combinational circuit M maps each configuration to the next configuration. The 
output is a distinguished bit in the working storage. 

• Now it can be proved that: 

1. F correctly constructs reduction, i.e., C is satisfiable if and only if there exists 
a certificate y, such that A(x, y) = 1. 

2. F runs in polynomial time 
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• Construction of C takes O(nk) steps, a step takes polynomial time 
• F takes polynomial time to construct C from x. 

NP-completeness Proof Basis 

Lemma 3 

If X is problem such that P‘ p X for some P'NPC, then X is NP-hard. Moreover, X  NP 

X NPC. 

Proof:  

• Since P’ is NPC hence for all P” in NP, we have 
   P” p P’     (1) 

• And P‘ p X given    (2) 
• By (1) and (2) 
•   P” p P’ p X    P” p X  hence X is NP-hard 
• Now if X  NP X NPC 

Formula Satisfiability: Notations and Definitions 

• SAT Definition  
– n boolean variables: x1, x2,…, xn. 
– m boolean connectives: ,,,,, and 
– Parentheses. 

• A SAT  is satisfiable if there exists a true assignment which causes  to evaluate to 
1. 

In Formal Language 

• SAT={< >:  is a satifiable boolean formula}. 

SAT is NP Complete 

Theorem: SAT is NP-complete. 

Proof: 

• SAT belongs to NP. 
– Given a satisfying assignment 
– Verifying algorithm replaces each variable with its value, and evaluates 

formula in polynomial  time. 
• SAT is NP-hard  

– Sufficient to show that CIRCUIT-SATp SAT 
• CIRCUIT-SATp SAT, i.e., any instance of  circuit satisfiability can be reduced in 

polynomial time to an instance of formula satisfiability. 
• Intuitive induction:  

– Look at the gate that produces the circuit output.  
– Inductively express each of gate’s inputs as formulas.  
– Formula for circuit is obtained by writing an expression that applies gate’s 

function to its input formulas.  
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Unfortunately, this is not a polynomial time reduction. This is because the gate whose output 
is fed to 2 or more inputs of other gates, cause size to grow exponentially. 

Example of Reduction of CIRCUIT-SAT to SAT 

 

Reducing circuit satisfiability to formula satisfiability. The formula produced by the 
reduction algorithm has a variable for each wire in the circuit. 

= x10(x10(x7 x8 x9)) 

          (x9(x6  x7))  

          (x8(x5  x6)) 

           (x7(x1 x2 x4)) 

           (x6 x4)) 

           (x5(x1  x2)) 

           (x4x3) 
INCORRECT REDUCTION: 

= x10= x7 x8 x9=(x1 x2 x4)  (x5  x6) (x6  x7) 

=(x1 x2 x4)  ((x1  x2)  x4) (x4  (x1 x2 x4)) =…. 

NPC Proof: 3 CNF Satisfiability 

Definitions: 

A literal in a boolean formula is an occurrence of a variable or its negation.  

Clause, OR of one or more literals.  

CNF (Conjunctive Nornal Form) is a boolean formula expressed as AND of clauses.  

3-CNF is a CNF in which each clause has exactly 3 distinct literals.  

  (a literal and its negation are distinct) 
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3-CNF-SAT: whether a given 3-CNF is satiafiable? 

3-CNF-SAT is NP Complete 

Proof:   

3-CNF-SAT  NP 

• 3-CNF-SAT is NP-hard.  
• SAT p3-CNF-SAT? 

– Suppose  is any boolean formula, Construct a binary ‘parse’ tree, with literals 
as leaves and connectives as internal nodes. 

– Introduce yi for output of each internal node. 
– Rewrite formula to ‘: AND of root and conjunction of clauses describing 

operation of each node.  
– In ', each clause has at most three literals. 

• Change each clause into conjunctive normal form as: 
– Construct a true table, (at most 8 by 4) 
– Write disjunctive normal form for items evaluating 0 
– Using DeMorgan law to change to CNF. 

• Result: '' in CNF but each clause has 3 or less literals. 
• Change 1 or 2-literal clause into 3-literal clause as: 

– Two literals: 
  (l1 l2), change it to (l1 l2 p)  (l1 l2 p). 

– If a clause has one literal l, change it to (lpq)(lpq) (lpq) 
(lpq). 

Binary parse tree for  =((x1 x2) ((x1 x3)  x4))x2 
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The tree corresponding to the formula      1 2 1 3 4 2x x x x x x         

Example of Converting a 3-literal clause to CNF format 

 

Disjunctive Normal Form: 

i'=(y1y2x2)(y1y2x2)(y1y2x2) (y1y2x2) 



343 
 

Conjunctive Normal Form: 

i''=(y1y2x2)(y1y2x2)(y1y2x2)(y1y2x2) 

CLIQUE: NPC Proof 

Definition:  

• A clique in an undirected graph G = (V, E) is a subset V‘  V, each pair of V’ is 
connected by an edge in E, i.e., clique is a complete subgraph of G. 

• Size of a clique is number of vertices in the clique. 
• Optimization problem: Find maximum size clique. 
• Decision problem: whether a clique of given size k exists in the graph?  
• CLIQUE = {<G, k>: G is a graph with a clique of size k.} 

CLIQUE is NP Complete 

Theorem: CLIQUE problem is NP-complete. 

• Proof: 

– CLIUEQE NP: given G = (V, E) and a set V‘  V as a certificate for G. The 
verifying algorithm checks for each pair of u, v  V', whether <u, v>  E. 
time: O(|V'|2|E|). 

– CLIQUE is NP-hard:  
• Show 3-CNF-SAT pCLUQUE. 
• Surprise: from boolean formula to graph. 

• Reduction from 3-CNF-SAT to CLUQUE. 
– Suppose  = C1 C2… Ck be a boolean formula in 3-CNF with k clauses.  
– We construct a graph G = (V, E) as follows: 

• For each clause Cr =(l1
r l2

r l3
r), place triple of  v1

r, v2
r, v3

r  into V 
• Put edge between vertices vi

r and vj
s when: 

• r  s, i.e. vi
r and vj

s are in different triples, and 
• corresponding literals are consistent, i.e, li

r is not negation of  lj
s  

– Then  is satisfiable  G has a clique of size k. 

=(x1x2x3)(x1x2x3)(x1x2x3) and its reduced graph G 
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NP-completeness proof structure 
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