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Lecture 1

Introduction
Welcome to the course of Advanced Computer Architecture.
This course of Advanced Computer Architecture has been developed with the
assumption that the students have basic knowledge of: digital logic design, computer
organization and design, programming model of microprocessor; memory and
input/output interfacing with the microprocessor and fundamentals of Computer
Architecture
My name is Muhammad Ashraf Chughtai, After completing my Bachelor's and Masters
degrees from the University of Engineering and Technology, Lahore in 1974 and 1978,
respectively | completed my Ph.D. from the University of Manchester (UMIST) UK in
1986. After spending 32 years at UET Lahore, as lecturer through professor, presently |
am associated with COMSATS.

Computer System
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Computer system is a collection of Central Processing Unit, memory system and
peripheral devices, all interconnected by groups of conductors called buses
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Computer Architecture Verses Organization

Architecture refers to those attributes of a computer visible to a programmer or compiler
writer such as: instruction set, addressing techniques, I/O mechanisms etc. The
members of each family (say Intel x86 family and IBM family) share the same basic
architecture and have code compatibility,

Organization refers to how the features of a computer are implemented; i.e., control
signal generation as FSM or microprogramming, memory technology-SRAM, DRAM etc,
hardware or software based realization of operation-multiplication by hardware or
algorithmically. Moreover, the organization of same architecture may differ between
different versions; i.e., different versions of Intel x86 family may have different
organizations

Academic History:

In 1944, John von Neumann introduced the concept of stored-program computer,
referred to as Electronic Discrete Variable Automatic Computer — EDVAC.
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» In 1945/46, the world’s first operational electronic general-purpose computer, Electronic
Numerical Integrator And Calculator- ENIAC, built at the Moore School of University of
Pennsylvania and became operational in the World War-Il. ENIAC used 18,000 vacuum
tubes and was 80 feet long, several orders of magnitude bigger than today’s machines
and could perform 1900 additions per second.

» In 1946, Institute for Advanced Study-ISA at Princeton, introduced IAS machine which
was roughly 10 times faster than ENIAC.

* In 1948, a small prototype stored-program machine, Mark-I (the name adopted from first
electromechanical computer built at Harvard), was built at the University of Manchester.
At Harvard, the Mark-1 was followed by the relay machine Mark-Il; and a pair of vacuum
tube computers - Mark-1ll and Mark-I1V, terms as Harvard Architecture. These computers
had separate memories for instructions and data.

* In 1949, Maurice Wilkes of Cambridge University, built the world’s first full-scale,
operational stored program computer, Electronic Delay Storage Automatic Calculator —
EDSAC.

* In 1949, Eckert-Mauchly Computer Corporation built first machine BINAC. The company
was acquired by Remington-Rand, where first general-purpose Universal Automatic
Computer UNIVAC-I was produced in 1951, which was sold for $1 million.

* In 1952, IBM® produced its first stored-program computer IBM-701.

* In 1963, Seymour Cray announced first supercomputer CDC 6600 from Control Data
Corporation — CDC; in 1964 announced a series of System/360; and introduced models
40, 50, 65 and 75. These models varied in clock rate (1.6-5.1 MHz), memory size (32KB-
1 MB), cost $(0.225M — 1.900M) and performance.

» In 1965, Digital Equipment Corporation — DEC introduced first low-cost computer,
minicomputer PDP-8, for under $0.02M.

» In 1976, Cray Research Inc. (formed by Seymour Cray left in 1970 when he left CDC)
announced the world’s fastest, most expensive and with best cost verses performance
supercomputer Cray-I.

Microprocessors 1971 — 2006:

« In 1971, while Cray was creating the World’'s most expensive machines, Intel introduced
first cheep microprocessor 4004

+ In 1977, personal computer Apple-1l was introduced by Steve Jobs and Steve Wozniak.

* In 1981, IBM announced personal computers employing the Intel's microprocessor
80x86 and running Microsoft operating system.
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1995 and onwards: With the introduction of personal computers, the era of
supercomputer could not last for more than two decades, as:

In 1996, Cray Research was handed over to Silicon Graphics

In 1998, more than 350 million microprocessors with different instruction set
architectures were in use.

In 2006, his number has risen to more than a billion

Course Focus: Quantitative principle of computer design

The primary aim of this course is to have an in-depth study of the concepts of computer
architecture, which have already been introduced to you; and the concepts which are
relevant for professional computer scientist, engineers and architects.

The emphasis will be given to expose the advances in the field through cost-
performance-power trade-offs and good engineering design.

The course gives:

- quantitative principles of computer design

- instruction set architecture

- datapath and control: implementation and performance

- advanced pipelining concepts

- memory hierarchy design, Main memory, Cache, Hard drives

- multiprocessor architecture

- storage and input/output systems

- computer clusters

Textbook:
Hennessy J. L and Petterson D. A, Computer Architecture: A quantitative approach, 3rd Edition,
Morgan Kaufmann publishers, 2003

» Fundamentals of Computer Design (Review) 03 Lectures Ch. 1

» Instruction Set Principles 02 Lectures Ch. 2

» Pipelining Basics 05 Lectures  (App. A)
* Instruction Level Parallelism 15 Lectures Ch.3&4
* Memory Hierarchy Design 06 Lectures Ch.5

* Multiprocessors 04 Lectures Ch.6

* 1/O and Storage System 04 Lectures Ch.7

» Interconnection Networks 6 Lectures Ch. 8

References:

Hennessy J. L and Petterson D. A, Computer Organization and Design: The
hardware/software interface, 2nd Edition, Morgan Kaufmann publishers, 1998

Stalling W, Computer Organization and Architecture, 6th Edition, Prentice Hall, 2003
Relevant research papers on Computer Architecture from conferences, transactions and
journals of IEEE and ACM etc.
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Course Style: Research in the small
+ We wants you to succeed, but you need to show initiative
«  We will provide you opportunity to do “research in the small’ to help make
transition from good student to research colleague

Research Project:
» pick topic for 3 weeks work full time
* meet 3 times with faculty/TA
» give online presentation
«  Submit written report like conference paper

Four Perspective of Computer Architecture

Input/Output
and Storage \
Multiprocessor
and
Network
/ Interconnection
Memory
Hierarchy

|

Processor
Design

Computer Architecture can be considered from four perspectives
» Processor Design
* Memory Hierarchy
» Input/output and storages
» Multiprocessor and Network interconnection

Processor Design:

Inputhutput‘
and Storage \ Multiprocessor
T and Network
Interconnection
Memory —
Hierarchy
l L1 Cache Cache design, block
size and associativity
Processor
Design VLS

Addressing modes

Instruction Set and Protection

Architecture

Pipelining, Instruction Level Parallelism, Hazard Resolution,
Superscalar, Reordering, Prediction, Speculation, Vector, DSP
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» Instruction set architecture: Addressing modes and protections
« Datapath designs: Multiple cycles and pipelines, ILP, Hazards etc.
» L1 Caches: design, blocks and associativity

Memory Hierarchy:

Input/Output e Multiprocessor
and Storage and Network
Interconnection

4 |

Virtual Memory
Emerging Technologies

DRAM Interleaving

Bus protocols

Memory
Hierarch Coherence,
y L2 Cache Bandwidth,
Latency
P L1 Cache
> rocessor
Design Instruction Set Arch. |
[Pipelining, ILP etc. |

» L2 Caches: Coherence, bandwidth and latency
« Main memory: DRAM, interfacing and protocols
« Virtual memory: Interfacing and protocols

I/O and Storage:

------------------------------------------------------------------

Multiprocessor
and Network
Interconnection

| Disks and Tape | ~——

Input/Output
and Storage

Memory

Hierarchy L2 Cache

L1 Cache
Processor
Design Instruction Set Arch. ‘

|Pipelining, ILP etc. |

» Disks and taps
* Redundant Array of Inexpensive Disks-RAID
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Multiprocessor and Networks:

| Disks, WORM, Tape |

Multiprocessor and Network

Input/Output 4—. Interconnection

and Storage

,,,,,,,,,,,, i Shared memory

it

Hierarchy | |/| 5> Cache Interconnecting network

Network switches

4
w

Routing, bandwidth, latency

L1 Cache
Processor
Design Instruction Set Arch. ‘

[Pipelining, ILP etc. |

» Shared memory

* Interconnecting networks

» Network switches

» Routing, bandwidth and latency

Computer Design cycle

The computer design and developments have been under the influence of:
» Technology
+ Performance
+ Cost

The new trends in technology have been
used to reduce the cost and enhance the
performance

» The computer design evaluated for bottlenecks using certain benchmarks to achieve the
optimum performance.

« Time is the key measurement of performance: a desktop user may define the
performance of his/her machine in terms of time taken by the machine to execute a
program; whereas a computer center manager running a large server system may define
the performance in terms of the number of jobs completed in a specified time.

» The desktop user is interested in reducing the response time or execution time — time
between the start and completion of an event; while a data processing center in
increasing the throughput.
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Benchmarks are the programs which try to average frequency of operation and
operands of a large set of programs.

Standardized benchmarks tools are available from Standard Performance Evaluation
Corporation — SPEC at www.spec.org

Hardware: Cost, delay, area, power estimation

Simulation at different levels of design abstraction, such as: ISA, RT, Gate, Circuit
Queuing Theory: to calculate the response time and throughput of entire I/O system
Rules of Thumb

Fundamental “Laws”/Principles

The new designs are simulated to evaluate the performance for different levels of
workloads.

Simulation helps in keeping the result verification cost minimum.

The cost-performance is optimized for workloads

1: Technology Trends: Computer Generations

Vacuum tube 1946-1957 1* Gen.
Transistor - 1958-1964 2™ Gen.
Small scale integration 1965-1968
v" Up to 100 devices/chip
Medium scale integration 1969-1971 3" Gen.
v/ 100-3,000 devices/chip
Large scale integration 1972-1977
v 3,000 - 100,000 devices/chip
Very large scale integration 1978 on.. 4" Gen.

v/ 100,000 - 100,000,000 devices/chip
Ultra large scale integration
v/ Over 100,000,000 devices/chip

The technology trends at different times in the history of the computer development have played
major role in the journey of computers form uniprocessor to multiprocessor mainframe systems;
and from super structure to desktop computing.

Usually identified by dominant implementation technologies, the length of first three generations
spreads over a period of 8 to 10 years.

The first generation, 1950-59, is the era of commercial electronic computers employing
vacuum tube technology.

The second generation, 1960-68, is the period of cheaper computers made using
transistor or discrete component technology.

The third generation, 1969-77, is the age of minicomputers developed employing
integrated circuit technology.

The fourth generation, 1978 to date, the eon of personal computers and workstations, is
the result of VLSI and ULSI technology.

The gateway to the fifth and higher generations is not clear as no revolutionary
technology has been proclaimed.
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The present transistor technology has developed to an extent where up to 15 millions
transistors are integrated on one VLSI chip to make PowerPC and Pentium Processors

Performance of

1000 Microprecessor
s morethian
Supercomputers supercomputer
s 100
2 Hdzinframes|
g
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[
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0.1
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In 1980, the performance of supercomputers was 50 times that of microprocessor, 20
times of minicomputers and 10 time that of mainframe computers.

The performance of microprocessors was equivalent to that of supercomputer in 1992
and it was much higher in 1995 and onwards

3: Cost

The systems are implemented using the latest technology to obtain cost effective high
performance solution
Implementation complexities are given due consideration
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Price Verses Cost
» The relationship between cost and price is complex one
» The cost is the total amount spends to produce a product
» The price is the amount for which a finished good is sold.
» The cost passes through different stages before it becomes price.
» A small change in cost may have a big impact on price

Component Costs
» Direct Costs (add 25% to 40%) recurring costs: labor, purchasing, scrap, warranty
» Gross Margin (add 82% to 186%) nonrecurring costs: R&D, marketing, sales, equipment
maintenance, rental, financing cost, pretax profits, taxes
» Average Discount to get List Price (add 33% to 66%): volume discounts and/or retailer
markup

Summary:

1: A Computer systems development is viewed with reference to computer architecture and
computer system organization.

Architecture refers to those attributes of a computer visible to a programmer or compiler writer;
e.g. instruction set, addressing techniques, 1/0 mechanisms etc. Organization refers to how the
features of a computer are implemented? i.e., control signals are generated using the principles
of finite state machine (FSM) or microprogramming

The architecture of the members of a processor family are same whereas organization of same
architecture may differ between different members of the family

2: Computer development has been discussed with academic and commercial perspectives.
Academically, modern computer developments have their infancy in 1944-49, when John von
Neumann introduced the concept of stored-program computer, referred to as Electronic Discrete
Variable Automatic Computer — EDVAC and Maurice Wilkes of Cambridge University, built the
world’s first full-scale, operational stored program computer, Electronic Delay Storage Automatic
Calculator — EDSAC.

Commercially, the first machine BINAC was built by Eckert-Mauchly Computer Corporation in
1949; and Universal Automatic Computer UNIVAC-I by Remington-Rand, in 1951, which was
sold for $1 million. In 1976, Cray Research Inc. (formed by Seymour Cray announced the
world’s fastest, most expensive and with best cost verses performance supercomputer Cray-I.

Microprocessor and PCs: In 1971, while Cray was creating the World’s most expensive
machines, Intel introduced first cheep microprocessor 4004 and then 80 x 86 series, which was
used by IBM in personal computers.

In 1998, more than 350 million microprocessors with different instruction set architectures were
in use; this number has risen to more than a billion in 2006
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3: Decisive Factors for rapid changes in the computer development are performance
enhancements price reduction and functional improvements.

4: Technological developments, from vacuum tubes to VLSI circuits, dynamic memory and
network technology gave birth to four different generations of computers. However, at present
no revolutionary technology has been proclaimed, hence the gateway to the fifth and higher
generations is not clear.

5: Computer Architecture have been viewed from four perspectives
Processor Design

Memory Hierarchy

Input/output and storages

Multiprocessor and Network interconnection

6: Course Focus and Topics Coverage: The course is focused to have in-depth study of the
concepts of computer architecture. The topics covered give emphasis to expose the advances
in the field through cost-performance-power trade-offs and good engineering design.

7: Computer Design Cycle: Computer design and development has been under the influence of
technology, performance and cost; and the new trends in technology are used to enhance the
performance and reduce the cost
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Lecture 2
Quantitative Principles
Detailed discussion on the computer Performance
The key to quantitative design and analysis

Today’s Topics

» After a quick review of the previous lecture we will continue with the discussion on the
growth in processor performance.

» An introduction to the computer hardware performance will be given because it is the
key to the quantitative analysis in determining the effectiveness of an entire computing
system — the hardware and software. Today we will talk about:

» Price-performance design

+ CPU performance metrics

» CPU benchmark suites

1: Architecture refers to those attributes of a computer visible to a programmer or compiler
writer; e.g. instruction set, addressing techniques, I1/O mechanisms etc.

Organization refers to how the features of a computer are implemented? i.e., control signals are
generated using the principles of finite state machine (FSM) or microprogramming

2: Computer development was discussed with academic and commercial perspectives.
Academically, modern computer developments have their infancy in 1944-49, when John von
Neumann introduced the concept of stored-program computer, referred to as Electronic Discrete
Variable Automatic Computer — EDVAC and Maurice Wilkes of Cambridge University, built the
world’s first full-scale, operational stored program computer, Electronic Delay Storage Automatic
Calculator — EDSAC.

Commercially, the first machine BINAC was built by Eckert-Mauchly Computer Corporation in
1949; and Universal Automatic Computer UNIVAC-I by Remington-Rand, in 1951, which was
sold for $1 million. In 1976, Cray Research Inc. (formed by Seymour Cray announced the
world’s fastest, most expensive and with best cost verses performance supercomputer Cray-I.
Technological developments, from vacuum tubes to VLSI circuits, dynamic memory and
network technology gave birth to four different generations of computers. However, at present
no revolutionary technology has been proclaimed, hence the gateway to the fifth and higher
generations is not clear.

Microprocessor and PCs: In 1971, while Cray was creating the World’'s most expensive
machines, Intel introduced first cheep microprocessor 4004 and then 80 x 86 series, which was
used by IBM in personal computers.

In 1998, more than 350 million microprocessors with different instruction set architectures were
in use; this number has risen to more than a billion in 2006
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3: Computer Architecture was viewed from four perspectives
» Processor Design
» Memory Hierarchy
» Input/output and storages
» Multiprocessor and Network interconnection

4: Computer Design Cycle: We concluded our discussion last time with the computer design
cycle. We found that the computer design and development has been under the influence of
technology, performance and cost; the decisive factors for rapid changes in the computer
development have been the performance enhancements, price reduction and functional
improvements. The new trends in technology are used to enhance the performance and reduce
the cost.

Growth in Processor Performance:

1600 HntelP-H—a
521400
= 1200
o] '-"390110
= 1000 w
z DEC
= 600
o — —— e
E 400 | iBm  HP 9000
£ Powert 5 g DEC
5 MIPS e
T ﬂ R2000—= Alpha -

| 1984§ §1986 1988 1990551992;1994 1996§ 1998 éoo
Year :

« The supercomputers and mainframes, costing millions of dollars and occupying
excessively large space, prevailing form of computing in 1960s were replaced with
relatively low-cost and smaller-sized minicomputers in 1970s

* In 1980s, very low-cost microprocessor-based desktop computing machines in the form
of personal computer (PC) and workstation were introduced.

» The growth in processor performance since mid-1980s has been substantially high than
in earlier years

» Prior to the mid-1980s microprocessor performance growth was averaged about 35%
per year

» By 2001 the growth raised to about 1.58 per year
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Price-Performance Design:
+ Technology improvements are used to lower the cost and increase performance.
» The relationship between cost and price is complex one
» The cost is the total amount spends to produce a product
» The price is the amount for which a finished good is sold.
» The cost passes through different stages before it becomes price.
+ A small change in cost may have a big impact on price

Price vs. Cost:

100%
80% + [ Average Discou
60% T B Gross Margi
40% + M Direct Cost
20% T B component Co
0% -

Mini WIS PC

* Manufacturing Costs: Total amount spent to produce a component
v' Component Cost: Cost at which the components are available to the designer. It
ranges from 40% to 50% of the list price of the product.
v' Recurring costs: Labor, purchasing scrap, warranty — 4% - 16 % of list price
v' Gross margin — Non-recurring cost: R&D, marketing, sales, equipment, rental,
maintenance, financing cost, pre-tax profits, taxes
« List Price:
v" Amount for which the finished good is sold;
v it includes Average Discount of 15% to 35% of the as volume discounts and/or
retailer markup

Cost-effective IC Design: Price-Performance Design

» Yield: Percentage of manufactured components surviving testing

» Volume: increases manufacturing hence decreases the list price and improves the
purchasing efficiency

» Feature Size: the minimum size of a transistor or wire in either x or y direction

* Reduction in feature size from 10 microns in 1971 and 0.18 in 2001has resulted in:
- Quadratic rise in transistor count
- Linear increase in performance
- 4-bit to 64-bit microprocessor
- Desktops have replaced time-sharing machines
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Cost of Integrated Circuits

Manufacturing Stages: The Integrated circuit manufacturing passes through many stage:
v' Wafer growth and testing

Wafer chopping it into dies

Packaging the dies to chips

Testing a chip.

URNIN

Die: is the square area of the wafer containing the integrated circuit
v See that while fitting dies on the wafer the small wafer area around the periphery
goes waist
Cost of a die: The cost of a die is determined from cost of a wafer; the number of dies fit
on a wafer and the percentage of dies that work, i.e., the yield of the die.

The cost of integrated circuit can be determined as ratio of the total cost; i.e., the sum of
the costs of die, cost of testing die, cost of packaging and the cost of final testing a chip;
to the final test yield.

Costof IC =
v die cost + die testing cost + packaging cost + final testing cost / final test yield

The cost of die is the ratio of the cost of the wafer to the product of the dies per wafer
and die yield
v' Cost of die = Cost of wafer / dies per wafer x die yield

The number of dies per wafer is determined by the dividing the wafer area (minus the
waist wafer area near the round periphery) by the die area
v Dies per wafer =
[ T (wafer diameter/2)? / die area ] — [ T (wafer diameter) / V(2 x die area) |

Example Calculating Number of Dies
For die of 0.7 Cm on a side, find the number of dies per wafer of 30 cm diameter

Answer:

[Wafer area / Die Area] - Wafer Waist area
= 11 (30/2)2 / 0.49 - 7 (30) / \ (2 x 0.49)
= 1347 dies
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Calculating Die Yield
« Die yield is the fraction or percentage of good dies on a wafer number
» Wafer yield accounts for completely bad wafers so need not be tested
» Wafer yield corresponds to on defect density by a which depends on number of
masking levels
» Good estimate for CMOS is 4.0 and
« Dieyield = Wafer yield x (1 + defects per unit area x die area) ™/ a
« Example: The yield of a die, 0.7cm on a side, with defect density of 0.6/cm?
= (1+[0.6x0.47]/4.0) * = 0.75

Price-Performance Design

+ Time to run the task:

« Execution time, response time, latency

»  Throughput or bandwidth:

» Tasks per day, hour, week, sec, ns ...

« Time is the key measurement of performance. However, the throughput - number of
tasks completed in specified time cannot be ignored.

» For example, where the task in hand is to move 2400 employees of a company from
Lahore to Islamabad in minimum overall time at minimum cost, the cost-performance of
the train verses plane has to be evaluated.

» Train takes 4:00 Hrs per trip and carries 2400 passengers/trip, i.e., 6:00 sec/person,
while the airplane with a capacity of 300 passengers, flying 10 times faster than the train,
takes 45 min/trip, will require 6:00 Hrs, i.e., 9.00 sec. per person to complete the task.
Thus the throughput of the train and hence its performance is 50% more than the
airplane. Moreover the traveling cost per person by train is 10 times less than the
airplane, thus the cost-performance per person by train verses airplane is 1:15.

Example:

» To carry 2400 passengers from Lahore to Islamabad —

« Train completes the task in 4:00 hrs while airplane completes the same task in 6.00 hrs.;

+ .e. 66.67% of the task in same time — throughput and hence performance of train is 50%
more than airplane

Vehicle Time Passengers/ Time to | Execution Cost / | Cost-performance
Lah to Isb | trip complete time /person | person
job
Train 4.0 hours | 2400 4.0 hours 6.0 sec 300 Rs 300x6=1,800

Rs-sec/person

Plane 45 min. 300 45x8 min. = | 9.0 sec 3000 Rs 3000x9=27,000
6.0 Hr Rs-sec/person

Plane 10 time faster but takes 50% more time to complete the job; i.e., lesser throughput — thus
performance of train is 50%better than plane

The time per person and cost person of train is less than that of plane Thus the cost-
performance of plane is 1:15
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Metrics of Performance

Answers per month
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The execution time or latency to complete a task includes everything - the processing
activities, disk access, memory access, input/output activities, operating system
overheads and etc. In other words, it is the total execution time which is also regarded
as the wall-clock time, elapsed time or response time.

With the multiprogramming CPU may be working for another program while waiting for
I/O activities of one program to complete; thus the CPU time is different from the
response time.

The CPU time can further be divided in to the user CPU time — the time spent is the
program and system CPU time — the time spent in operating system.

UNIX command time reports four measurements of time as: 99.4u 28.1s 2:50 75%; i.e.,
the user time, system time, elapsed time and percent of the elapsed time that is CPU
time

Aspects of CPU Performance
CPU time = Seconds / Program

= (Instructions / Program) x (Cycles / Instruction) x (Seconds / Cycle)

Inst Count CPI Clock Rate
Program \
Compiler N
Inst. Set. \ \
Organization \ N
Technology N

All computers run at a constant rate which is determined by the discrete time events
called ticks, clock ticks, clock periods, clocks, cycles or clock cycles, define as time
(sec.) or rate (Hz).

The CPU clocks of a program and the number of instructions executed or instruction
count — IC is a useful measure to find the number of clock cycles per instruction —
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CPI = CPU clock cycles for program / Instruction count
+ The CPU time of a program is equal to the product of CPU clock cycles for program and
clock cycle-time; where the cycle-time = 1/clock rate. Hence the
» CPU Time = CPU clock cycles for program / clock rate or
+ CPU time = instruction count x clock cycle time x cycles per instruction sec. / program
= (instructions/program) x (clock cycles/instructions) x (seconds/clock cycles)

Cycles Per Instruction

» Cycles per Instruction — CPI
= CPU Clock Cycles for program / Instruction Count
= (CPU Time * Clock Rate) / Instruction Count

» Instruction Frequency — For instruction mix, the relative frequency of occurrence of

different types of instructions is given as:

FIC,= IC of i instruction / Total Instruction count

»  Average Cycles per Instruction —
CPI = [1/ Instruction count] Y =110 n ICiX CPli = Yiz10n FIC; X CPIi

Example: Calculating average CPI
Base Machine (Reg / Reg)

Op Freq Cycles CPI (i) (% Time)

ALU 50% 1 0.5 (33%)

Load 20% 2 0.4 (27%)

Store 10% 2 0.2 (13%)

Branch 20% 2 04 (27%)
1.5

Cycles Per Instruction
The total execution time of n programs running on a machine may be computed as:
« Arithmetic mean time: Time; is the execution time of i th program, and it is assumed that
each program in the workload runs once (or for equal number of times).
v o 1n Yis10n Time,

+ Weighted arithmetic mean time: For unequal mix of programs in the workload, i.e.,
individual programs running for different number of times, a weighting factor w; is
assigned to each program that indicates the relative frequency of a program in the
workload. The weighted arithmetic mean is determined by summing the product of
weighting factor and program execution time as:

V' Y100 W X Time

+ Geometric mean time: is the second approach to unequal mix of programs in the
workload. Here, the execution time is normalized to a reference machine and then
average of the normalized execution time is taken, which is expressed by geometric
mean as:

v ™( =11 n Execution time ratio; )
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Where execution time ratio; is the execution time, normalized to the reference machine,
for the i th program of total of n in the workload.

Summary: Price-Performance Design

Cost of a Computer: The total cost of manufacturing a computer is distributed among different
parts of the system such as the cost of cabinet, processor board and 1/0O devices. The cabinet
cost lies close to 6% of the total cost whereas the cost of other two parts is around 37% each.
However, the major cost at the component level is of the processor, which is approximately 22%
of the total cost.

Performance: Time is the key measurement of performance: a desktop user may define the
performance of his/her machine in terms of time taken by the machine to execute a program;
whereas a computer center manager running a large server system may define the performance
in terms of the number of jobs completed in a specified time. The desktop user is interested in
reducing the response time or execution time — time between the start and completion of an
event; while a data processing center in increasing the throughput. The performance of two
designs, say X and Y; is often compared by the factor n, which determines how much lower
execution time machine Y takes as compared to X or how much faster is machine Y than X, i.e.,
v" n = Execution time Y / Execution time X

as performance is inverse of execution time, therefore
v" n = Performance X / Performance Y

Cost-Performance: The issue of cost-performance is complex one. At one extreme, high-
performance computers designer may not give importance to the cost in achieving the
performance goal. At the other end, low-cost designer may sacrifice performance to some
extent. The price-performance design lies between these extremes where the designer
balances cost and hence price verses performance. The PCs, workstations and servers market
operates in this region.

Instruction Execution Rate — MIPS

« MIPS specify performance inversely to execution time; For a given program:

v MIPS = (instruction count) / (execution time x 10°)
* MIPS could not be calculated from the instruction mix
» Relative MIPS for a machine ‘M’ is defined based on some reference machine as:

v" RMIPS = [Performance M / Performance reference] X MIPS (eterence

or
= [Time reference / Time M] X MIPS reference
+ MFLOPS defined for Floating-point-intensive programs as millions of floating-point
operations per second

CPU Benchmark Suites
» Performance Comparison: the execution time of the same workload running on two
machines without running the actual programs
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SPEC:

Benchmarks: the programs specifically chosen to measure the performance.
Five levels of programs: in the decreasing order of accuracy

— Real Applications

— Modified Applications

— Kernels

— Toy benchmarks

— Synthetic benchmarks

In order to compare the performance of two machines, a user can simply compares the

execution time of the same workload running on both the machines.

In practice users want to know, without running their own programs, that how well the

machine will perform on their workload.

This is accomplished by evaluating the machine using a set of benchmarks — the

programs specifically chosen to measure the performance.

The following five levels of programs, given in the decreasing order of accuracy of

prediction, are used as benchmarks:

1. Real Applications — scientific programs such as Mat Lab used by engineers, C
language compiler used by program developer or Photoshop used by a graphic
designer are the most suitable benchmarks to evaluate the performance of a
machine as the users can select input, output and options according to their own
needs.

2. Modified Applications — the real applications are used as the building blocks with
certain blocks modified to focus desired aspects of application, e.g., I/O may be
restructured or removed to minimize its impact on execution time and to simulate real
application

3. Kernels — the small key pieces extracted from the real program, run exclusively to
evaluate the performance by isolating the performance of individual features of a
machine.

4. Toy benchmarks — small codes, say 10 to 100 lines, which produce a result already
known to the user, normally used as beginning programming assignments.

5. Synthetic benchmarks — the small section of program created artificially to match
the average frequency of operations and operands of a large set of programs.
Synthetic benchmarks are rarely used because they are not even the pieces of a real
program as the Kernels and they don’t produce anything that may be needed the
user.

System Performance Evaluation Cooperative

First Round 1989: 10 programs yielding a single number — SPECmarks

Second Round 1992: SPECInt92 (6 integer programs) and SPECfp92 (14 floating point
programs)
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Third Round 1995
— new set of programs: SPECIint95 (8 integer programs) and SPECfp95 (10 floating
point)
—  “benchmarks useful for 3 years”
— Single flag setting for all programs: SPECint_base95, SPECfp_base95

In late 1980s, System Performance and Evaluation Cooperation — SPEC was founded to
improve the state of benchmarking and to provide more valid basis of comparison.

First Round: In 1989, SPEC made its first release, SPEC89 to measure CPU performance. In
1990, concept of throughput, which provided benchmark for timeshared usage of uniprocessor
or a multiprocessor, was included to define performance.

Second Round: In 1992, the SPEC92 provided separate means for integer (SPEC Int 92 — 6

Integer) and floating-point (SPECfp92 — 14 floating point) programs.

Third Round: The SPEC95 added new integer and floating point benchmarks and also changed
the base machine for normalization to a Sun SPARC-station 10/40 as the operating versions of
the original base machines were difficult to find. SPEC offers verity of benchmark versions; a
few typical benchmarks are as follows:

Desktop benchmarks can be divided into two classes: CPU-intensive and Graphic-
intensive benchmarks. The SPEC89, SPEC92, SPEC95 and SPEC2000 are CPU
intensive benchmarks. The SPEC2000 has portability with minimum role of 1/O in overall
benchmark performance. SPECviewperf is used for benchmarking systems supporting
OpenGL graphic library and SPECapc contains application for graphic use.

Server benchmarks are of multiple classes: SPEC CPU2000 is a throughput
benchmarks capable of measuring throughput and converting it into processing rate of
multiprocessor, considering the I/O activities which is the significant feature of servers.
The SPECsfs is a fileserver benchmark capable of measuring network file system (NFS)
performance; it test the performance of I/O systems (disk and network). The SPECweb
is a server benchmark that simulates multiple clients requesting both the static and
dynamic pages from the server, as well as client posting data to the server.

Summary: Designing and performance comparison

Designing to Last through Trends

Capacity Speed
Logic 2x in 3 years 2x in 3 years
DRAM 4x in 3years 2x in 10 years
Disk 4x in 3 years 2x in 10 years

6yrs to graduate => 16X CPU speed, DRAM/Disk size
Time to run the task

— Execution time, response time, latency
Tasks per day, hour, week, sec, ns, ...
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— Throughput, bandwidth
+ “Xis ntimes faster than Y” means
ExTime(Y) / ExTime(X) = Performance(X) / Performance(Y)

+ CPIl Law:
v" CPUqye = Seconds / Program
= (Instructions / Program) x (Cycles / Instruction) x (Seconds / Cycle)

« Execution time is the REAL measure of computer performance!
» Good products created when have:
v' Good benchmarks, good ways to summarize performance
« Die Cost goes roughly with die area®
* “For better or worse, benchmarks shape a field”
» Good products created when have:
— Good benchmarks
— Good ways to summarize performance
» Given sales is a function in part of performance relative to competition, investment in
improving product as reported by performance summary
» If benchmarks/summary inadequate, then choose between improving product for real
programs vs. improving product to get more sales; Sales almost always wins!
» Execution time is the measure of computer performance!
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Lecture 3
Quantitative Principles
Design for Performance
Today’s Topics

* Recap

* 1/O performance

» Laws and Principles

+ Performance enhancement

» Concluding: quantitative principles

* Home work

*  Summary

Computer I/O System
» Producer-Server model
— Producer: the device that generates request to be serviced
— Queue: the area where the tasks accumulate waiting to be serviced
— Server: the device performing the requested service
— Response Time: the time a task takes from the moment it is placed in the buffer
to the time server finishes the task

Producer Queue Server

T 1..\ ///-_7_‘\‘-\
( “ —— I/O device/
L‘ controller
" J contoller
\\\__\_ _p/// \\H-_i_/

I/O Performance Parameters
« Diversity: Which I/O device can connect to the CPU
» Capacity: How many I/O devices can connect to the CPU
« Latency: Overall response time to complete a task
« Bandwidth: Number of task completed in specified time - throughput

I/O Transaction Time
» The interaction time or transaction time of a computer is sum of three times:

— Entry Time: the time for user to enter a command — average 0. 25 sec; from
keyboard 4.0 sec.

—  System Response Time: time between when user enters the command and
system responds

—  Think Time: the time from reception of the command until the user enters the
next command
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Throughput verses Response time: Performance Measures .. Cont'd
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Response time and throughput calculation

Departures

Arrivals

If the system is in steady state, then the number of tasks entering the system must be
equal to the number of tasks leaving the system
Little’s Law:

v' Mean number of tasks in system = Mean response time x Arrival rate

Little’s Law — A Little queuing theory

Mean number of tasks in the system
v o= (Tlme accumulated) / (T|me observe)

Mean response time
Vo= (T|me accumulated) / (Number tasks)

Arrival rate A
v o= (Number tasks) / (T|me observe)

The expression for mean number of task may be written as:
(Time accumulated / Time observe) = (Timeaccumulated / Number tasks) X (Number tasks / Time observe)

Mean number of tasks = mean response time x Arrival rate
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Amdahl's Law

Suppose that enhancement E accelerates a fraction F of the task by a factor S, and the
remainder of the task is unaffected

Time for Fraction F to be

Enhanced by factor S Execution time of the

Fraction Enhanced

—
Original _ . n Execution N
Execution Time
Time of Task after fraction F
Enhanced by factor S

Speedup due to enhancement E:
v' Speedup (E) = Ex Time without E / Ex Time with E
= Performance with E / Performance without E

EX Time new = EX Time g9 X [(1 — Fraction gnpanced) + Fraction ennanced / Speedup ennanced |

Speedupoverar = EXTimegq/ EXTiMenew
=1/ [(1 — Fraction enhanced) + Fraction enhanced / Speedup enhanced]

Floating point instructions improved to run 2X; but only 10% of actual instructions are FP
v EXTimenew = EXTimeyg X (0.9 + .1/2) = 0.95 x EXTimeyq
v' Speedupoyerar= 1/ 0.95 = 1.053
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Lecture 4
Instruction Set Principles

Today’s Topics

Recap

ISA Taxonomy

Memory Addressing modes
Types of operands

Types of operations
Summary

Recap: Lec. 1-3 Chapter 1

In the computer design cycle, the decisive factors for rapid changes in the computer
development have been the performance enhancements, price reduction and functional
improvements

The processor performance of two designs is often compared by the factor n, which
determines how much lower execution time one machine takes as compared to the other
or how much faster the other machine is than first.

Price-Performance Design: The relationship between cost and price is complex one;

and computer designers must understand this relationship as it effects the selling of their

design.

v' The cost is the total amount spends to produce a product and the price is the
amount for which a finished good is sold and it is controlled by the die yield and
volume.

Growth in Processor Performance: The supercomputers and mainframes, costing
millions of dollars and occupying excessively large space, prevailing have been replaced
with very low-cost microprocessor-based desktop computing machines in the form of
personal computer (PC) and workstation.

Benchmark is a program developed to evaluate the performance of a computer. Good
products created when have: proficient benchmarks and expert ways to summarize
performance

An 1/O system works on the principle of producer-server model, which comprises an
area, called queue, where the tasks accumulate waiting to be serviced and the device
performing the requested service, called server.

Producer creates tasks to be processed and place them in a FIFO buffer — queue. The
server takes the task form buffer and perform them

The response time is the time task takes from the moment it arrives in the buffer to the
time the server finishes the task
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Changing Definitions of Computer Architecture

Three Pillars of Computer Architecture

]
software o~ -/
instruction set

The three pillars of computer architecture are: hardware, instruction set and software. Hardware
facilitates to run the software and instruction set is the interface between the hardware and
software.

» 1950s to 1960s: The focus of the Computer Architecture Courses has been Computer
Arithmetic

+ 1970s to mid 1980s: The focus of Computer Architecture Course has been Instruction
Set Design, the portion of the computer visible to programmer and compiler writer

» 1990s to date: The focus of the Computer Architecture Course is the Design of CPU,
memory system, /O system, Multiprocessors based on the quantitative principles to
have price - performance design; i.e., maximum performance at minimum price

From the academic point of view, during the period 1950s - 1960s, the focus of computer
architecture studies has been on the Computer arithmetic; i.e., the methodologies for the
optimal solutions to arithmetic and logical problems.

Soon the researchers realized that the principles of instruction set, the portion visible to
programmer and compiler writer, must be given importance to enhance the performance of the
computer and reduce the complexity of hardware and hence optimize the price-performance.
Thus, ISA design has been the focus of researchers during 1970s — 1980s.

The focus of the computer architecture studies, in 1990s is multi-dimensional and emphasis is
given to CPU design, memory system, 1/0O system and multi-processor systems based on the
guantitative principles to optimize the price-performance.

Instruction Set Architecture — ISA
» Our focus in couple of lectures will be the Instruction Set Architecture — ISA which is
the interface between the hardware-software
+ It plays a vital role in understanding the computer architecture from any of the above
mentioned perspectives
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» The design of hardware and software can’t be initiated without defining ISA
» It describes the instruction word format and identifies the memory addressing for data

manipulation and control operations

Our focus in couple of lectures will be the Instruction Set Architecture — ISA which is the
interface between the hardware-software as it plays a vital role in understanding the computer
architecture from any of the above mentioned perspectives

The design of hardware and software can’t be initiated without defining ISA. It describes the
instruction word format and identifies the memory addressing for data manipulation and control

operations

What is an interface?
A good interface:
» Lasts through many implementations
(portability, compatibility)
» Is used in many different ways
(generality)
» Provides convenient functionality to
higher levels
» Permits an efficient implementation
at lower levels

Taxonomy of Instruction Set

use

use| —/

use

Y

imp1

N

imp 2

imp 3

 Major advances in computer architecture are typically associated with landmark
instruction set designs — stack, accumulator, general purpose register etc.

» Design decisions must take into account:
v technology

machine organization

programming languages

compiler technology

operating systems

YRR NEN

» Basic Differentiator: The type of internal storage of the operand

* Major Choices of ISA:
v' Stack Architecture:
v" Accumulator Architecture

v" General Purpose Register Architecture

— Register — memory
— Register — Register (load/store)

— Memory — Memory Architecture (Obsolete)
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Stack Architecture

Both the operands are implicitly on
the TOS

Thus, it is also referred to as Zero-
Address machine

The operand may be either an input
(orange shade) or result from the
ALU (yellow shade)

All operands are implicit (implied or
inherited)

The first operand is removed from
the stack and the second operand is
replaced by the result

Example:

To execute: C=A+B

ADD instruction has implicit operands for
the stack — operands are written in the stack
using PUSH instruction

PUSH A
PUSH B
ADD
POP C

Accumulator Architecture

An accumulator is a special register
within the CPU that serves both as
both the as the implicit source of one
operand and as the result
destination for arithmetic and logic
operations.

Thus, it accumulates or collect data
and doesn’t serve as an address
register at any time

Limited number of accumulators -
usually only one — are used

The second operand is in the
memory, thus accumulator based
machines are also called 1-address
machines

They are useful when memory is
expensive or when a limited number
of addressing modes is to be used

Processor

mocessor
TOS
ALU
Me:mory
TOS
\ ‘ ‘/. /.,
\\ .\\ ‘,r'! /'.
‘ /

ALU
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To execute: C=A+B J{ ‘

ADD instruction has implicit operand A for

the accumulator, written using LOAD U
instruction; and the second operand B is in ALU

memory at address B

Load A
ADD B
Store C

General Purpose Register Architecture

» Many general purpose registers are available within CPU

» Generally, CPU registers do not have dedicated functions and can be used for a variety
of purposes — address, data and control

» Avrelatively small number of bits in the instruction is needed to identify the register

» In addition to the GPRs, there are many dedicated or special-purpose registers as well,
but many of them are not “visible” to the programmer

» GPR architecture has explicit operands either in register or memory thus there may
exist:
v' Register — memory architecture
v' Register — Register (Load/Store) Architecture
v" Memory — Memory Architecture

One explicit operand is in a register and one Register — Memory Architecture
in memory and the result goes into the SR RS RO 1
register | —

R2
The operand in memory is accessed directly Ewessor . R1 .
To execute: C=A+B

ADD instruction has explicit operand A
loaded in a register and the operand B is in
memory and the result is in register

Load R1, A
ADD R3,R1,B
Store R3, C

» The explicit operands in memory are first loaded into registers temporarily and
+ Are transferred to memory by Store instruction
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To execute: C=A+B Register — Register (Load/store)
ADD instruction has implicit operands Aand Architecture. |

B loaded in registers

Load R1, A | Processor |

Load R2, B
ADD R3, R1, R2
Store R3, C

Both the explicit operands are not accessed :
from memory directly, i.e., Memory — | Memory
Memory Architecture is obsolete

Comparison of three GPR Architectures
Regqister-Reqister
» Advantages
v' Simple, fixed-length instruction decoding
v' Simple code generation
v" Similar number of clock cycles / instruction
+ Disadvantages
v Higher Instruction count than memory reference
v' Lower instruction density leads to larger programs

Register- Memory
» Advantages
v Data can be accessed without separate Load first
v Instruction format is easy to encode
» Disadvantages
v' Operands are not equivalent since a source operand (in a register) is destroyed
in operation
v" Encoding a register number and memory address in each instruction may restrict
the number of registers
v' CPl vary by operand location

Memory- Memory
» Advantages
v" Most compact
v' Doesn’t waste registers for temporary storages
» Disadvantages
v’ Large variation in instruction size
v Large variation in work per instruction
v" Memory bottleneck by memory access
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Evolution of Instruction Sets

| Single Accumulator (EDSAC 1950) |
\

Accumulator + Index Registers (Manchester Mark |, IBM 700 series 1953)

\
|Separation of Programming Model from Implementation 1963-64 |

|High-level Language Based (B5000 1963) | |[Concept of a Family (IBM 360 1964) |

| General Purpose Register Machines |

Complex Instruction Sets Computer |Load/Store Architecture ‘
(Vax, Intel 432 1977-80) \(CDC 6600, Cray 1 1963-76) |

Reduced Instruction Set Computer
(Mips,Sparc,HP-PA,IBM RS6000, . . .1987)

Types and Size of Operands
* Types of an Operand
v Integer
v Single-precision floating point
v Character
» Size of Operand

v Character 8-bit
v Half word 16-bit
v Single precision FP or Word 32-bit
v Double precision FP or 64-bit
v double word

Categories of Instruction Set Operations
All computer provide a full set of following operational instructions for:
« Arithmetic and Logic
v Integer add, sub, and, or, multiply, divide
» Data Transfer
v' Load, store and
v" Move instructions with memory addressing
« Control
v" Branch, Jump, procedure call and return
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The following support instructions may be provided in computer with different levels
+ System
v operating system call, Virtual Memory Management
» Floating point
v Add, multiply, divide and compare

» Decimal

v' BCD add, multiply and Decimal to Character Conversion
+ String

v/ String move, compare and search
+ Graphics

v" Pixel and vertex operations, compression / de-compression operations

Operand Addressing Modes
» An “effective address” is the binary bit pattern issued by the CPU to specify the location
of operands in CPU (register) or the memory
» Addressing modes are the ways of providing access paths to CPU registers and memory
locations
+ Commonly used addressing modes are:
v' Immediate
v' Register
v Direct or Absolute
v Indirect

» Data for the instruction is part of the instruction itself
v Immediate ADD R4, # 24H Reg[R4] « Reg[R4]+24 H

» Used to hold source operands only; cannot be used for storing results
v Register ADD R4, R3 Reg[R4] — Reg[R4] + Reg[R3]

» Operand is contained in a CPU register
» No memory access needed , therefore it is fast
v Direct (or absolute) ADD R1,(1000) Reg[R1] « Reg[R1]+ Mem[1000]

» The address of the operand is specified as a constant, coded as part of the instruction
Limited address space (2°Pe"" field sizey |5 cations

Indirect Addressing modes
+ The address of the memory location where the data is to be found is stored in the
instruction as the operand, i.e., the operand is the address of an address
+ Large address space ( 2 MmOV wordsizey gyailable
« Two or more memory accesses are required
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Types of Indirect addressing modes:
* Register Indirect
» Register Indirect Indexed
v’ Effective memory address is calculated by adding another register (index
register) to the value in a CPU register (usually referred to as the base register)
v Useful for accessing 2-D arrays
» Register Indirect plus displacement
v Similarly, “based” refers to the situation when the constant refers to the offset
(displacement) of an array element with respect to the first element. The address
of the first element is stored in a register
* Memory Indirect

Meanings of Indirect Addressing Modes
» Register Indirect
v ADD R4, (R1) Reg[R4] <« Reg[R4] + Mem[Reg[R1]]

» Register Indirect Indexed
v ADD R4, (R1+R2) Reg[R4] <« Reg[R4] + Mem[Reg[R1]+Reg[R2]]

» Register Indirect plus displacement
v ADD R4,100(R1) Reg[R4] « Reg[R4] + Mem[100+Reg[R1]]

* Memory Indirect
v ADD R4,@(R1) Reg[R4] « Reg[R4] + Mem[Mem[Reg[R1]]

Special Addressing Modes
Used for stepping within loops; R2 points to the start of the array; each reference increments /
decrements R2 by ‘d’; the size of the elements in the array

- Auto-increment ADD R1, (R2)+
(i) Reg[R1] <« Reg[R1] + Mem[Reg [R2]]
(i) Reg[R2] «— Reg[R2] +d

- Auto-decrement ADD R1, (R2)-
(i) Reg[R2] «— Reg[R2]-d
(i) Reg[R1] « Reg[R1] + Mem[Reg [R2]]

- Scaled ADD R1, 100(R2)[R3]
Reg[R1] « Reg[R1]+ Mem[100+Reg [R2] + R3]*d]
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Addressing Modes of Control Flow Instructions

« Branch (conditional): a sort of displacement, in number of instructions, relative to PC
« Jump (Unconditional): jump to an absolute address, independent of the position of PC
» Procedure call / return: control transfer with some state and return address saving, some

times in a special link register or in some GPRs

Summary

* ISA Taxonomy

v

Stack Architecture:

v" Accumulator Architecture

— General Purpose Register Architecture

— Register — memory

— Register — Register (load/store)

— Memory — Memory Architecture (Obsolete)

» Memory Addressing modes

v

ANANENENEN

Immediate

Register

Direct or Absolute
Indirect

Special

Control Flow Instruction
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Lecture 5
Instruction Set Principles
(Encoding instructions and MIPS Instruction format)

Today’s Topics

* Recap Lecture 4

» Instruction Set Encoding

* MIPS Instruction Set

*  Summary

After a quick review of the previous discussion on quantitative principles of Computer
Architecture we will have a detailed discussion on the instruction set principles and their
examples. The Instruction set is an interface between the hardware and software design of
computer

Recap: Lecture 4
» Three pillars of Computer Architecture
v Hardware, Software and Instruction Set
* Instruction Set
v Interface between hardware and software
+ Taxonomy of Instruction Set:
v/ Stack, Accumulator and General Purpose Register
» Types and Size of Operands:
v' Types: Integer, FP and Character
v" Size: Half word, word, double word
» Classification of operations
v' Arithmetic, data transfer, control and support
» Operand Addressing Modes
v' Immediate, register, direct (absolute) and  Indirect
» Classification of Indirect Addressing
v Register, indexed, relative (i.e. with displacement) and memory
» Special Addressing Modes
v' Auto-increment, auto-decrement and scaled
» Control Instruction Addressing modes
v' Branch, jump and procedure call/return

Instruction set Encoding
Essential elements of computer instructions
1. Type of the operation to be performed
— This information is encoded in the “operation code”, or the op-code, field of the
machine language instruction
— Examples: add, mov etc.
2. Place to find the source operand (s)
— Possible locations are: CPU registers, memory cells, I/O locations, part of the
instruction itself
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3. Place to store the results

— Possible locations are:
— CPU registers, memory cells and I/O locations

4. Place to find the next instruction from

— Address of the next instruction in sequence (this is the default case)
— Address of the instruction at the branch target location

Instruction Word Types
» Variable Length

v Operation is specified in one field, Op-code
v' Can support any number of operands

v Each address specifier determines the addressing mode and

specifier for the operand

v' Generally, it generates the smallest code

need not be included

» Typical Examples: VAX, Intel 80x86

Operation and
number of
operands

Address
Specifier# 1

Address
field# 1

length of

representation as unused

Address
Specifier#n

Address
Field#n

the

fields

« The decision regarding the length depends upon the range of addressing modes and
degree of independence between op-code and mode
» For example: immediate addressing requires one or two address field whereas indexed
addressing requires 3 or 4 fields
» The length of Intel 80x86 varies between 1 byte and 17 byte and is generally smaller
than RICS architecture which uses fixed length format

Based on the previous discussion, we can classify instructions according to the format shown in

this slide.

Strictly speaking, this classification is based on arithmetic and logic instructions in the instruction

set. In this case, there are generally two operands and one result.

The distinction is based on the fact that some operands are accessed from memory, and
therefore require a memory address, while others may be in the registers within the CPU or they
are specified implicitly. The discussion given in the book assumes that all operands are

memory operands.

If alarge number of CPU registers is available, a few bits in the instruction are used to encode

one out of those registers
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Fixed Length Format
» Always has same number of operands
» Addressing modes (if option exist) is specified in Op-code
» It generally generates the largest code size
» Fields may be used for different purposes, if necessary
» Typical Examples: Alpha, MIPS, PowerPC, SPARC

Operation Address Address Address
code field# 1 field# 2 field# 3

Third Alternative: Hybrid Length
* Multiple formats are specified by the op-code
» One or two fields are added to specify addressing mode
« Similarly, one or two fields specify operand address
» It generally generates the optimum code size
» Typical Examples: IBM 360/370, MIPS16, TI-TMS320c54x

Operation Address Address
code specifier field
Operation Address Address Address
code Specifier# 1 Specifier# 2 field
Operation Address Address Address
code specifier field# 1 field# 2

Hybrid Length Taxonomy
« Based on number of Address Fields

v' 4-address instructions: Specifies the two source operands, the destination
operand and the address of the next instruction

op code destination source 1 source 2 next address

v 3-address instructions: Specifies addresses for both operands as well as the
result

op code destination source 1 source 2
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v/ 2-address instructions
— Overwrites one operand with the result
— One field serves two purposes

op code

destination
source 1

source 2

v' 1-address instructions:

— Dedicated CPU register, accumulator, to hold one operand and the result
— The address of other operand is specified

op code

source 2

v'  0-address instructions:

— Uses a stack to hold both operands and the result

— Operations are performed between the value on the top of the stack
(TOS) and the second value on the stack (SOS) and the result is stored
on the TOS

op code

Example

Evaluate the expression: F = (B + C)*D — E, using 0- address through 3-address format

0-Address
PUSH B
PUSH C
ADD
PUSH D
MUL
PUSH E
SUB
POP F
Number of
Instructions: 8

1-Address
LDA B
ADD C
MUL D
SUB E
STAF

2-Address
LOADF, B
ADDF, C
MUL F, D
SUBF, E

3-Address

ADDF, B, C
MULF, F, D
SUBF, F E
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Example: Using different instruction formats, write pseudo-code to evaluate the following
expression: Z = 4(A+B) — 16(C+58) : Your code should not change the source operands

3-Address 2-Address 1-Address 0-Address
ADD x,A, B LOAD vy, B ; order changedto | PUSH C
MUL vy, x4 MUL v, 4 reduce code size PUSH 58
ADD r,C,58 LOAD s, C LDA C ADD
MUL s,r, 16 ADD s, 58 ADDA 58 PUSH 16
SUB Z,y,s MUL s, 16 MULA 16 MUL
SUB vy,s STA S PUSH A
STORE Z,y LDA A PUSH B
ADDA B ADD
MULA 4 PUSH 4
SUBA s MUL
STA Z SUB
POP Z

Comparison of instruction formats
Assume that
» Asingle byte is used for the op code
» The size of the memory address space is 16 Mbytes
+ A single addressable memory unit is a byte
» Size of operands is 24 bits
» Data bus size is 8 bits
Use the following two parameters and compare the five instruction formats (O-4
address) mentioned earlier
v Code size: Its effect on the storage requirements
v" Number of memory accesses: It's effect on execution time

A single byte, or an 8-bit, op code can be used to encode up to 256 instructions.

A 16-Mbyte memory address space will require 24-bit memory addresses. We will assume a
byte wide memory organization to make this example different from the example in the book.
The size of the address bus will be 24 bits and the size of the data bus will be 8-bits.

4-address instruction

op code destination source 1 source 2 next address

1 byte 3 bytes 3 bytes 3 bytes 3 bytes

+ Code size = 1+3+3+3+3 = 13 bytes

» # of bytes accessed from memory
13 bytes for instruction fetch + 6 bytes for source operand fetch + 3 bytes for storing
destination operand = 22 bytes
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3-address instruction

op code destination source 1 source 2

1 byte 3 bytes 3 bytes 3 bytes

+ Code size = 1+3+3+3 = 10 bytes

» # of bytes accessed from memory
10 bytes for instruction fetch + 6 bytes for source operand fetch + 3 bytes for storing
destination operand = 19 bytes

2-address instruction

op code destination source 2
source 1
1 byte 3 bytes 3 bytes

» Code size = 1+3+3 = 7 bytes

» # of bytes accessed from memory
7 bytes for instruction fetch + 6 bytes for source operand fetch + 3 bytes for storing
destination operand = 16 bytes

1-address instruction

op code source 2

1 byte 3 bytes

+ Code size = 1+3= 4 bytes

» # of bytes accessed from memory
4 bytes for instruction fetch + 3 bytes for source operand fetch + 0 bytes for storing
destination operand = 7 bytes

O-address instruction

op code

1 byte

+ Code size = 1 bytes

» # of bytes accessed from memory
1 bytes for instruction fetch + 6 bytes for source operand fetch + 3 bytes for storing
destination operand = 10 bytes
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Result Summary
A single byte is used for the op code, 16 MB memory address space, single addressable
memory unit: byte, 24 bits operands is 24 bits and 8-bit data bus

Instruction Format Code size Number of memory bytes
4-address instruction 13 22
3-address instruction 10 19
2-address instruction 7 16
1-address instruction 4 7
0-address instruction 1 10

RISC and MIPS ISA

* RISC and MIPS is a fixed length, 64-bit LOAD/STORE Architecture

» Contains 32 GPR each of 32-bit

* Supports:

v/ 3-address, reg-reg arithmetic instruction
displacement instructions with address offset 12-16 bits
immediate data 8-bit and 16-bit and
register indirect
data size 8-, 16-, 32- and 64-bit integer
v' 64-bit IEEE 754 floating point

* Instructions:

AN NEANEAN

v Data Transfer: load, store,
register-register move

v Simple Arithmetic: add, subtract, and shift

v' Compare: equal, not-equal, less

v' Branch: PC-relative, jump and
call/return

» Designed for pipelining efficiency

MIPS Instruction Word format
Recap: MIPS types and size of operands

» Types of an Operand
v Integer
v" Single-precision floating point
v' Character

» Size of Operand

v' Character 8-bit
v Half word 16-bit
v Single precision FP or Word 32-bit
v Double precision FP or 64-bit
v" double word
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Register-Register (R-Type)
[31]  [26]25] [27po] [6]15] [11fo0] [6]5] [0]
[ (oo [[Rs] | [RR] [[Rd] |ISM | [Func] |

Op-code = 000000

Rs and Rt : source operand registers
Rd : Result carrying register

Sht: Number of bit-shift —(left/right)

Func: ALU function to encode the data path operation
Execution: Rd <- Rs func Rt

Example Encoding MIPS64

R-Type Arithmetic / Logical Instructions

Arithmetic Instructions

Instruction Name Meaning
DADD R1, R2,R3  Add word (signed) Reg[R1] < Reg[R2] + Reg[R3]
DADDU R1, R2, R3 Add unsigned Reg[R1] <« Reg[R2] + Reg[R3]

3] [26]25] [2fpo] [16]15] [1{f0] [6]5] 0]
[oooooo] [R2] | [Re] | [R1] |**| | [DaApDIU]

Shift Instruction
DSLL R1, R2, # 30 Shift Left Logical Reg[R1] < Reg[R2] << 30

31 [26]25] [21Bo] [16]15] [1110] [6]5] 0]
sit] | [R2] | [RT] | [x] |20 oo |

Register-Immediate (I- Type)
[31]  [26]25] [2f%0] [46]15] | 0
| ©p] |[rs] [[R [ [immediate] |

Rt is the destination field for immediate data instructions
Rt € Rs op immediate; all immediate

Same format is used for Load/Store instructions

Rt < Mem [ immediate + [Rs]]; Load

Mem [ immediate + [Rs]]<Rt; Store
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MIPS Operations
* Immediate Arithmetic / Logical Instructions

Instruction Name Meaning
DADDIU R1, R2, # 30 Add unsigned Imm  Reg[R1] < Reg[R2] + Reg[R3]
31 [26[25] [2120] [16]15] 0

DADDIU]| [R2] | [RT] [ =

» Load/Store Instructions

Instruction Name Meaning

LW R1, 30 (R2) Load word Reg[R1] « Mem [30+Reg[ R2]

SW R1, 30(R2) Store word Mem [30+Reg[R2] < Reg[R1]
31 [26[25] [21%0] [f6]i5] 0]

WsW] | [Re] | [R1] [

Branch /Jump Register
31 [28]25] [2{%0] [d6]i5] 0]
[Op] Rs| [ RY immediate

i.  Conditional Branch Instructions:
used after the compare or test BEQZ:

Rs is the register and Rt is unused;
Condition test the register for Zero or non-zero

ii. Condition with the Branch; BNE
Rs and Rt are compared

iii.  Jump Register; Jump and Link Register
Rt=0, Rs = Destination and immediate = 0

MIPS Operations
» Branch/Jump Register

Instruction Name Meaning
BEQZ R4, name Branch equal zero  If Reg[R4] = 0 then PC «— name

31] _ [26]25] [2{#0] [%6[ts] [0

IBEQZ|| [R4| | xxxx ||(PC+4)-2"" <= name< (PC+4)-2"" |

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



DTN Cs-704 Advanced Computer Architecture

Instruction Name Meaning
BNE R4, R3, name Branch not equal zero If Reg[R4]!=Reg[R3] then PC <- name
31]  [26]25] [230] [16]15] 0]
\BNE ‘ \R4 ‘ ‘Rg | |[(PC+4)-2"7 <= name< (PC+4)-2" |
Instruction Name Meaning
JR R4 jump register PC — Reg[R4]
JALR R4 Jump and Link Register Reg [R31] « PC+4; PC «— Reg[R4]
(31]__ [26]25] [27%0] [46]15] [0]
JR/IJALR || [R4 (0000 | 0000....0 |
Jump / Call
[31] 26]25 [0]
%] | [target |

Jump: uses 26-bit offset; shifted 2-bit then replace the lower 28 bits of PC [ of the instruction
following the jump

Jump and Link (Procedure Call) place the return address; the address of the next instruction in
R31 used for Return from procedure

MIPS Operations

« Jump/Call
Instruction Name Meaning
J name Jump PC36..63 «<— nName
JAL R4 Jump and Link Reg [R31] « PC+4; PCgss 63 < Nname;
Summary

» Instruction encoding
v Essential elements of computer instructions: type of operands, places of source
and destinations and place of next instruction
v Instruction word length
— Variable, fixed length and hybrid
v Hybrid length taxonomy
— 4,3, 2,1and 0 address format
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v' Comparison of hybrid instruction word format
— Minimum number of memory bytes are required in case of 1 address
(accumulator) format and maximum for 4-address format

* MIPS Instruction word format
v' RISC and MIPS is a fixed length, 64-bit LOAD/STORE Architecture
v" It supports: Size of Operand
— Character (8-bit)
— Half word (16-bit)
— Single precision FP or Word (32-bit)
— Double precision FP or double word (64-bit)
v"Instruction word formats
o R-type, I-type and J-type
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Lecture 6
Instruction Set Principles
(ISA Performance Analysis, Fallacies and Pitfalls)

* Welcome to the sixth lecture of the series on Advanced Computer Architecture.

» Today we will conclude our discussion on the Instruction Set Architecture

+  We will be talking about the ISA performance, role of compiler writer, media and signal
processing operations and fallacies and pitfalls

Today’s Topics
*+ Recap Lecture 5
+ DSP Media Operations
* ISA Performance
» Putting it all Together
Summary

Recap: Lecture 5
* Instruction encoding
v' Essential elements of computer instruction word:
o Type of operands
o Places of source and destinations
o Place of next instruction
v Instruction word length
o Variable Length
o Fixed length
o Hybrid — variable fixed
v' Categories of Hybrid length
o 4,3,2,1and 0 address format
v' Comparison of hybrid instruction word format
o Minimum number of memory bytes are required in case of 1 address
(accumulator) format
o Maximum for 4-address format
v' MIPS Instruction word format
o RISC and MIPS a fixed length, 64-bit LOAD/STORE
o Architecture
v’ It supports:
8-, 16-, 32- and 64-bit operand
R-type, I-type and J-type
Arithmetic and logic operation
data transfer operations
Control flow operations

O O O O O
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Media and Signal Processing Operands

Graphic applications deal with 2D and 3D images
3D data type is called vertex
Vertex structure has 4-components
v x- coordinate v’ z- coordinate
v y- coordinate v' w-coordinate
The three vertices specify a graphic primitive, such as a triangle; and the fourth to help
with color and hidden surfaces
Vertex values are usually 32-bit Floating point values
DSP adds fixed point to the data types — binary point just to the right of the sign-bit

3D Data Type

A triangle is visible when it is depicted as filled with pixels
Pixels are typically 32-bits, usually consisting of four 8-bit channels
v R-red
v G-green
v' B-blue
v A: Transparency of pixel
when it is depicted

Media and Signal Processing Operations

Data for multimedia operations is usually much narrower than the 64-bit data word of
modern processors

Thus, 64-bit may be partitioned in to four 16-bit data values so that the 64-bit ALU to
perform four 16-bit operations (say add operation) in a single clock cycle

Here, extra hardware is added to prevent the ‘CARRY’ between the four 16-bit partitions
of 64-bit ALU

These operations are called Single-Instruction Multiple-Data (SIMD) or vector operations

Multimedia Operations

Most graphic multimedia applications use 32-bit floating point operations allowing a
single instruction to launch two 32-bit operations on operands found side-by-side in
double precision register
The table shown here summarizes SIMD instructions found in recent computers
You may note that there is very little common across the five architectures
All are fixed-width operation , performing multiple narrow operations on either 64-bit or
128-bit ALU
The narrow operation are shown as

v' B-byte, v" W-word and

v H-half word v 8B double word

Summary of SIMD instructions in recent computers

Insert Table given in Fig. 2.17 from page 110
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Digital Signals Processing Issues
+ Saturating Add/Subtract
v" Too Large Result and Overflow
* Result Rounding
v" Choose from IEEE 754 mode algorithms
*  Multiply Accumulate
v Vector and Matrix dot product operations

DSP Operations
+ Saturating Add/Sub
v" DSP cannot ignore results of overflow otherwise it may miss an event, therefore,
it uses saturating arithmetic.
v Here, if the result is too large to be presented it is set to the largest representable
number, based on the sign of the number
* Result Rounding
v' |EEE 754 has several algorithms to round the wider accumulator into narrower
one, DSPs select the appropriate mode to round the result
»  Multiply-Accumulate (MAC)
v MAC operations are the key to dot product operations of vector and matrix
multiply which need to accumulate a series of product

ISA Performance
Role of Compiler

» The interaction of compiler and high-level languages significantly effects how program

uses an ISA
» Optimizations performed by the compilers can be classified as follows:
v' High-level optimization: is often done on the source with the output fed to the

later optimization passes.
Local Optimization: is done within a straight-line code fragment (basic block)
Global Optimization: extends the optimization across branches
Register Allocation: associate registers with operands
Processor-dependent optimization: using the specific architecture

AN N NN

Impact of Compiler Technology
» Interaction of compiler and high-level language affects how a program uses an ISA
» Here, two important questions are:
1. How are variables allocated?
2. How many registers are needed to allocate variables appropriately?

+ These questions are addressed by using three areas in which high-level language
allocates data
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Three areas of data allocation
1. Local Variable area — Stack
v Itis used to allocate local variable
v’ it grows or shrinks on procedure call or return
v Objects on stack are primarily scalar — single variable rather than arrays and are
addressed by stack-pointer
v Register allocation is much more effective for stack-allocated objects
2. Global Data Area
v' It is used to allocate statically declared objects such as global variables and
constants
v" These objects are mostly arrays and other aggregate data structures
v Register allocation is relatively less effective for global variables
v Global variables are aliased — there are multiple way to address so make it illegal
to put on registers
3. Dynamic Object Allocation: Heap
v ltis used to allocate the objects that do not adhere to stack
v' The objects in heap are accessed with pointer but are not scalars
v" Most heap variable are aliased so register allocation is almost impossible for
heap

ISA Performance ... Cont’d
* MIPS Floating-point Operations
v' The instructions manipulate the floating-point registers
v' They indicate whether the operation is to be performed on single precision or
double precision
o MOV.S copies a single precision register to another of the same type
o MOV.D copies a Double precision register to another of the same type
« To get greater performance for graphic routines, MIPS64 offers Paired-Single
Instructions
» These instructions perform two 32-bit floating point operations on each half of the 64-bit
floating point register
+ Examples:
v ADD.PS v" MUL.PS
v SUB.PS v DIV.PS

Putting it All Together

» The earliest architectures were limited to instruction sets by the hardware technology of
that time

» In the 1960s, stack architecture became popular, viewed as being good match of high-
level language

+ In the 1970s, the main concern of the architectures was to reduce the software cost,
thus produced high-level architectures such as VAX machine

» In the 1980s, return to simpler architecture took place due to sophisticated compiler
technology
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» Inthe 1990s, new architectures were introduced; these include:
» 1990s Architectures
1. Address size doubles — 32-bit to 64-bit
2. Optimization of conditional branches via conditional execution e.g.; conditional
move
3. Optimization of Cache performance via pre-fetch that increased the role of
memory hierarchy in performance of computers
4. Multimedia support
5. Faster Floating point instructions
6. Long Instruction Word

Concluding the Instruction set Principles
» Three pillars of Computer Architecture
v Hardware, Software and Instruction Set

» Instruction Set
v' Interface between hardware and software

» Taxonomy of Instruction Set:
v’ Stack, Accumulator and General Purpose Register

» Types and Size of Operands:
v' Types: Integer, FP and Character
v" Size: Half word, word, double word

» Classification of operations
v Arithmetic, data transfer, control and support

» Operand Addressing Modes
v' Immediate, register, direct (absolute) and Indirect

» Classification of Indirect Addressing
v Register, indexed, relative (i.e. with displacement) and memory

» Special Addressing Modes
v" Auto-increment, auto-decrement and scaled

» Control Instruction Addressing modes
v" Branch, jump and procedure call/return

Explanation:
+ Hardware, software and Instruction set are the three pillars of Computer architecture
» During the period 1950s - 1960s, the focus of computer architecture studies has been on
the Computer arithmetic; i.e., the methodologies for the optimal solutions to arithmetic
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and logical problems.

»+ 1970s to mid 1980s: The focus of Computer Architecture has been Instruction Set
Design

» Soon the researchers realized that the principles of instruction set, the portion visible to
programmer and compiler writer, must be given importance to enhance the performance
of the computer and reduce the complexity of hardware and hence optimize the price-
performance. Thus, ISA design has been the focus of researchers during 1970s —
1980s.

» The focus of the computer architecture studies, in 1990s is multi-dimensional and
emphasis is given to CPU design, memory system, /O system and multi-processor
systems based on the quantitative principles to optimize the price-performance.

Concluding the Instruction set Principles... Cont’d
» Instruction encoding
v Essential elements of computer instructions:
o type of operands, places of source and destinations and place of next
instruction
v Instruction word length
o Variable, fixed length and hybrid
v Hybrid length taxonomy
o 4,3, 2,1 and 0 address format
v' Comparison of hybrid instruction word format
o Minimum number of memory bytes are required in case of 1 address
(accumulator) format and maximum for 4-address format
* MIPS Instruction word format
v' RISC and MIPS a fixed length, 64-bit LOAD/STORE Architecture
v It supports:
o 8-, 16-, 32- and 64-bit operand
o R-type, I-type and J-type
o Arithmetic and logic operation
o data transfer operations
o Control flow operations
» Multimedia and Digital Signal Processing Operands
v' Graphic applications deal with 2D and 3D images
v' DSP adds fixed point to the data types — binary point just to the right of the sign-
bit
» Multimedia and Digital Signal Processing operations
v All are fixed-width operation, performing multiple narrow operations on either 64-
bit or 128-bit ALU
v" The narrow operation B-byte, H-half word, W-word and 8B double word
» Multimedia and Digital Signal Processing issues
v Saturating Add/Subtract
v" Result Rounding
v" Multiply Accumulate
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* ISA Performance
v Role of Compiler: The interaction of compiler and high-level languages
significantly effects how program uses an ISA

Practice Problems: Quantitative Principles [Lecture 2-3]

1. Computer hardware is designed using ISA having three types (Type A, B and C) of
instructions. The clock cycles per instruction (CPI) for each type of instruction is as
follows:

Type — A 2 CPI
Type — B 3 CPI
Type — C 4 CPI

A compiler writer has written two different code sequences with different instruction count to
execute an expression as given below.

Code Sequence Instruction count for instruction type
A B C
1 2 1 4
2 3 2 1
a) What is the instruction count of each sequence?
b) Which of the sequence is faster?
c) What is the CPI (average) for each instruction?

Solution to Practice Problem 1
a): The instruction count of
Sequence 1 =2+4+1 =7
Sequence 2 = 1+1+4=6
Result: Sequence 2 executes fewer instructions

b): To find which sequence is faster, we have to find the CPU clock cycles for each sequence
CPU Clock Cycles for sequence 1 = 2x2 + 3x4 + 4x1 = 20 cycles
CPU Clock Cycles for sequence 1 = 2x3 + 3x2 + 4x4 = 28 cycles
Result: Sequence 1 is faster

¢): To find the CPI [ CPU Cycles/Instruction Count) of each sequence
CPI for sequence 1 = 20/7 = 2.85
CPI for sequence 2 = 28/6 = 4.67
Result: Sequence 2 which has fewer instructions has higher CPI, thus is slower
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Lecture 7
Computer Hardware Design
(Single Cycle Data path and Control Design)

+ Welcome to the seventh lecture of the series on Advanced Computer Architecture.
» Today we will start with the review discussion on the hardware design of computer

Today’s Topics
» Recap: Instruction Set Principles
» Basics of Computer Hardware Design (Review)
» Single Cycle Design
v Data Path design
v Control Design
*«  Summary

Recap: Instruction Set Principles
» Three pillars of Computer Architecture
* Instruction encoding
v Instruction word length: Fixed, variable and Hybrid length
v" MIPS Instruction word format
» Multimedia and Digital Signal Processor Operands and Operations
v Digital Signal Processing Issues
v Saturating Add/Subtract
v" Result Rounding
v Multiply Accumulate
« Instruction Set Performance
v" Role of Compiler
v Impact of Compiler Technology
v' Two ways the interaction of compiler and high-level language affects the use of
ISA by a program
1. How are variables allocated?
2. How many registers are needed to allocate variables appropriately?
» Three areas of data allocation
v Local Variable area — Stack
v Global Data Area
v Dynamic Object Allocation: Heap

Basics of Hardware Design
We will be talking about!
» Basic building blocks of a computer
* Sub-systems of CPU
» Processor design steps
» Processor design parameters
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Basic building blocks of a computer

* Central Processing Unit
*  Subsystems:

*+  Memory
* Input/ Qutput (Peripherals)
* Buses

Sub-systems of Central Processing Unit

Memory
Subsytem

/0

Subsystem
(Peripherals)

CPU
(uP)

+ At a “higher level” a CPU can be viewed as consisting of two sub-systems
v' Datapath: the path that facilitates the transfer of information from
(register/memory/ 10) to the other part of the system
v' Control: the hardware that generates signals to control the sequence of steps and

direct the flow of information through the datapath

£\

Memory |
Subsytem

1o

‘ Subsystem K
(Peripherals)

Block Diagram of Computer Sy

Design Process
Design is a "creative process," not a simple
method. Design Finishes as Assembly
+ Design understood in terms of
components and how they have
been assembled
« Top Down of complex functions
(behaviors) into more primitive
functions
+ Bottom-up composition of primitive
building blocks into more complex
assemblies

CPU

one part

[Daapath| [Conrol]
/ ‘H‘"‘"“Hﬁ,

|
|ALU| |Regs| |[Shifter|

I

Nand
Gate
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Processor Design Steps
» Design the Instruction Set Architecture
» Use RTL to describe the behavior of the processor
v/ Static as well as dynamic
v"Includes the functional description of each instruction in the ISA
» Select a suitable implementation (internal organization) of the data path
+ Map the behavioral RTL description of each instruction on to a set of structural RTL,
based on the chosen implementation
v Implies the existence of suitable timing intervals provided by synchronous
clocking signals
» Prepare a list of “control signals” to be activated corresponding to each structural RTL
statement
» Develop logic circuits to generate the necessary control signals
» Tie every thing together — datapath and control signals
» Other things which should be minimized
v" Amount of control hardware
v' Development time

Performing an Operation
« Each instruction of a program is performed in two phases:
v Instruction Fetch
v Instruction Execute
+ Each phase is divided into number of steps, called Micro-operation
» A micro-operation is completed in a fixed time interval
« The number of micro-operations is determined by the datapath implementation

Datapath Implementations
« The datapath is the arithmetic organ of the Von- Neumann’s stored-program
organization
« Typically, the datapath may be implemented as:
v Unibus structure
v 2-bus structure
v’ 3-bus structure
» It consists of registers, internal buses, arithmetic units and shifters
» Each register in the register file has:
v" Aload control line that enables data load to register
v A set of tri-state buffers between its output and the bus
v' A read control line that enables its buffer and place the register on the bus
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A Typical Unibus Datapath Implementation

31 0 <31..0>
RO A
R T General T 32 lines
—  purpose
—  registers 1
M
T T A
(32-bits each) I l

|
R31 \/
3 0 ALU and Shift
| PC [« -
| IR +

— | MAR [«

Other ALU/Shift
functions

_c 1 |

To external CPU bus

Internal processor bus

Typical Unibus Datapath Structure

» It consists of a register file having 32 registers each of 32-bit and internal bus connecting
the arithmetic and shifter unit to the register file

» Other registers (PC, IR, MAR, MBR, A, C) have a load control line too

» Registers PC and MBR also have a set of tri-state buffers between their output and the
internal CPU bus

» Additionally, registers MAR and MBR have other circuitry connecting them to the
external CPU bus

RTL micro-operations of Unibus structure
» Instruction Fetch:
Completed in the following three steps (time intervals):

TO MAR € PC, C € PC +4;
T1 MBR < M[MAR], PC < C;
T2 IR ¢« MBR

» Instruction Execute:
Instructions of different classes are Completed in the different number of steps (time
intervals):
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Execution Phase micro-operations of Unibus
* R-type Arithmetic/Logical Instructions (Add/Sub/And/OR ra, rb, rc) or immediate
T3 A < R[rb];
T4 C <€ AopRjrc]; orT4 C < A op Const(sign extended)
T5 R[ra] € C;

* R-type 2-address instructions (e.g. NOT ra, rb)
T3 C €< NOT(R[rb]);
T4 Rra] € C;

RTL micro-operations of Unibus structure
» Load/store Instructions (Id/st ra, c2(rb)
T3 A< ((rb=0):0, (rb#0): R[rb]);
T4 C <A + (sign extended and shifted c2);
T5 MAR < C;
T6 MBR < M[MAR]; (load) MBR < R [ra]; (store)
T7 R[ra] € MBR; (load) M[MAR] €< MBR; (store)

» Branch instructions (e.g. : brzrrb, rc)
T3 CON < cond(R(rc));
T4 CON: PC <« R[rb];

A 2-bus implementation

A bus 31 0 — B bus
i RO “Outbus”
Cin sy = 5
General Purpose
Registers
R31
g IR
g PC
I
g MBR |
—| A | |
A B
- To External
ALU CPU Bus
C
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Typical 2-bus Datapath Structure
* Registers and arithmetic and logic unit are identical to uni-bus structure
» The structure contains two internal buses called the in-bus and out-bus
» The in-bus carries data to be written into registers and out-bus carries data read out from
the registers
» The output of ALU is directly connected to the in-bus instead of through register C as in
Uni-bus structure

Fetch/Execution Phase micro-operations of 2-bus
» Three micro-operations (steps) of the Fetch Phase are identical to Uni-bus structure
except C& PC+4instep TO
* R-type Arithmetic/Logical Instructions are completed in two steps instead of three
(Add/Sub/And/OR ra, rb, rc) or immediate
T3 A € R[rb];
T4 R[ra] € A op RJrc];

* R-type 2-address instructions (e.g. NOT ra, rb)
T3 R[ra] € NOT(R][rb]);

31 0
C bus ) RO A bus Blbus
r'y 32 |
A 3-bus 32 General

implementation Purpose
Registers

All three buses
are “Internal
processor buses”

The register file >
must have 2 read
ports and one b

write port A / B
ALU
C

To External
CPU Bus
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Typical 3-bus Datapath Structure

Registers and arithmetic and logic unit are identical to uni-bus and 2-bus structure

The structure contains three internal buses called the A-bus, B-bus and C-bus

The register file contains two read ports connected to A-bus and B- bus and one write
port connected to C-bus

The registers A and C are not provided as the A input and C output of ALU are
connected the bus A and C respectively

Fetch Phase is completed in two steps and Execute phase of R-type instructions in one
step

Fetch and Execute of sub instruction
using the 3-bus data path implementation
Format: subra, rb, rc

Step RTL

TO  MAR<PC; MBR « M[MAR], PC « PC + 4;

Instructic.'>|_1<
Fetch T1 IR« MBR:

Instruction|| T2 R[ra] « R[rb] - R[rc];
Execute

At the end of each sequence, the timing step cannot _use edge-triggered
generator is initialized to TO FFs to implement MAR as

done before

Processor Design Parameters

Recall:

Execution time (ET) = ICXCPI X T

v Instruction Count = IC

v Clock Cycles per Instruction = CPI

v" Clock cycle or time period =T

Note that Implementation affects CPland T

Single and Multi cycle Datapaths

The datapath where an instruction is fetched and executed in one clock cycle, e.g.,

CPI =1, is referred to as SINGLE CYCLE datapath

The datapath where different classes of instruction are fetched and executed in variable
number of cycles is referred to as MULTI-CYCLE datapath
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Single cycle Datapath

The instruction fetch and execute phases are completed in one clock cycle

A clock cycle is divided in to number of steps to complete the operations

The cycle length is constant whereas number of steps (or micro operation) may be
variable

The timing step generator returns to TO on the completion of a cycle

Worst Case Timing (Load)

Clk I I |_
— Clk-to- |
PC [T I New Value 1 X
Value ! T - ] ; 1
| ™ * Instruction Memoey Access Time I
Rs,Rt, Rd, ' o1d X" Newvalue '
Op, Func | Value |
[ Delay through ControlLogic
+ — +
ALUectr | | old I ) New Value |
| Value | i |
| ExtOp_] ; Old ' [ [ NewValue | '
| Value , [} I
—— T
| ALUSIc ] [ old ) { \{] [ New Value | [
| Value | |
T —— = T
‘ MemtoReg | i Pld | )I’ New Value Register —| I
Value ! Write Occurs
RegWr | old J { New Value +
Te 1
Value * t ! > Register File Access Time \

old ! New Value \

| |

‘ busA | 1 1
: DelEv tfﬂigh E.xtender&Mux : o \:

‘ busB | ! old *I | New Value | \!
| Value - :4—|- ALU Dela%

Address | | Old ) New Value |

| Value Data Memory Access Time I

‘ busw | I old I * Ny |
! Value ' . N

Single cycle Timing

This timing diagram shows the worst case timing of single cycle datapath (which occurs
at the load instruction).
Clock-to-Q time after the clock tick, PC will present its new value to the Instruction
memory.
After a delay of instruction access time, the instruction bus (Rs, Rt, ...) becomes valid.
Then three things happens in parallel:

a) First the Control generates the control signals (Delay through Control Logic).

b) Secondly, the regiser file is access to put Rs onto busA.

c) Thirdly, in case of memory reference or immediate data instructions, we have to

sign extended the immediate field to get the second operand (busB)
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» Here we assume register file access takes longer time than doing the sign extension so
we have to wait until busA valid before the ALU can start the address calculation (ALU
delay).

» With the address ready, we access the data memory and after a delay of the Data
Memory Access time, busW will be valid.

» And by this time, the control unit would have set the RegWr signal to one so at the next
clock tick, we will write the new data coming from memory (busW) into the register file.

Single cycle Memory Structure
* As clear from the timing diagram, the memory address (from PC) for instruction fetch;

and from ALU for the data read/write; are available on the bus simultaneously — thus
gives rise to structural hazard
» To overcome this problem memory unit is partitioned in to parts
v Instruction memory
v' Data memory

Single Cycle Instruction Fetch Unit
» Fetch the instruction from Instruction memory:
Instruction € Mem[PC]
v This is the same for all instructions

Inst
T . —
thil.‘l-llUI_}'
E23ily Instruction<31:0=>
nstruction
nPC sel
4 IE.
S lE
=
I_—.'t“a g I g
]“’ CIk

imm1lé
XH Dd
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A Single Cycle Datapath

‘ Instruction<31 :.0} ‘

sd Instruction .{\J A A é >
m m Fetch Unit = o i =
K1l Clk o > t 2 | |
RegDst g x| 0 7 7 = z 7
\ 1, Mux | ‘ |
; Rs Rt Rt | | Rs || Rd || Imm16
e} 5]/ e
g busA . Z 7 MemtoRe
- Rw | Ra [Rb — N ero | | MemWr | M g
busW — 32 1
> 32 32-bit | )
32

32

32 Registers busB } =
CI d
\;-o> 32 55 | 1 m
o WiEn| [Aar
1 Datal
imm16 To > ‘ﬁ' M Data

Memory

JOPUIXY

ALUSrc

ExtOp

The Single Cycle Datapath during Add

ol [ [l lel [l L] L
|funct

(Lol [ [ol T o] 1 [wa] [[mamt]]

(3 R[rd] <- R[rSJLRDﬂ Instruction<31:0> ‘
[REC seE 2 T nstruction ANTTATTA A !
m Rt Fetch Unit SII2TIE] =
RegDst —1 | g1 Clk o> RN AN E7RE k1
]
e | ALUctr=Add || [Re[[Rs [ Ra ][ 1mm1s |
RegWr = 1))/ 5 E ingl during Add MemtoReg =0 ‘
: R ” Ra||Rb [ Zero |(|[MemWr =0
busw 32 32-bit n
N _
Registers 0 32 4; |
\éo> _E_l Y Y 32 E
- — [ WrEd Jaar 4! ﬂ
z 1/ | Dataly 3,
c Memory
= Clk A
ALUSrc =0 =

ExtOp =x
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The Single Cycle Datapath during Add

This picture shows the activities at the main datapath during the execution of the Add or
Subtract instructions.
The active parts of the datapath are shown in different color as well as thicker lines.
First of all, the Rs and Rt of the instructions are fed to the Ra and Rb address ports of
the register file and cause the contents of registers specified by the Rs and Rt fields to
be placed on busA and busB, respectively.
With the ALUctr signals set to either Add or Subtract, the ALU will perform the proper
operation and with MemtoReg set to 0, the ALU output will be placed onto busW.
The control we are going to design will also set RegWr to 1 so that the result will be
written to the register file at the end of the cycle.
Notice that ExtOp is don’t care because the Extender in this case can either do a
SignExt or ZeroExt. We DON'T care because ALUSrc will be equal to 0--we are using
busB.
The other control signals we need to worry about are:

v MemWTr has to be set to zero because we do not want to write the memory.

v" And Branch and Jump, we have to set to zero. Let me show you why.

Instruction Fetch Unit at the End of Add

PC <- PC + 4; This is the same for all instructions except: Branch and Jump

Inst

Memory _klnstruction<31:0> ‘

! Adr

|=
]
wn
2

PPV

Ny

PPV

i

This picture shows the control signals setting for the Instruction Fetch Unit at the end of
the Add or Subtract instruction.

Both the Branch and Jump signals are set to O.

Consequently, the output of the first adder, which implements PC plus 1, is selected
through the two 2-to-1 mux and got placed into the input of the Program Counter
register.
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» The Program Counter is updated to this new value at the next clock tick.

» Notice that the Program Counter is updated at every cycle. Therefore it does not have a
Write Enable signal to control the write.

» Also, this picture is the same for or all instructions other than Branch andJjump.

» Therefore | will only show this picture again for the Branch and Jump instructions and
will not repeat this for all other instructions.

e 42 =17 min. (X:57)

Summary of Today's Lecture
» Basic building blocks of a computer
* Sub-systems of CPU
* Processor design steps
» Processor design parameters
» Hardware design process
« Timing signals
» Uni-bus, 2-bus and 3-bus structures
» 3-bus based single cycles data path
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Lecture 8
Computer Hardware Design
(Multi Cycle Datapath and Control Design)

+ Welcome to the seventh lecture of the series on Advanced Computer Architecture.
» Today we will start with the review discussion on the hardware design of computer

Today’s Topics
» Recap: Single cycle datapath and control
« Example of Single Cycle Design
» Multi Cycle Design - Datapath
*  Summary

Recap: Lecture 7
» Basic building blocks of a computer:
» CPU, Memory and I/O sub-systems and Buses
» CPU sub-system: Datapath and control
» Phases of instruction performing: Fetch and Execute
» Datapath Designs: Uni-, 2- and 3-bus structures
» Micro-operations of Fetch and execute phases:
« Fetch: MBR €« M[PC]; PC< PC+4; IR €MBR
v' Exe: ID, operand read; exe; mem; WB
v 3-bus based single cycles data path — MIPS datapath
» Control signals for single cycles data path — Add Instruction

A critical review of single cycle datapath and control signals
» Fetch Circuit

Instruction

Memory Address ———
‘ Instruction<31:0>

A
nPC sel
= |
I H||
L, g g
= >—‘ }
E = St address alignment at
2= g Clk .
c the boundary of 4
)
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Instruction<31:0=>
nPC sel ‘ — R
»|| Instruction .{\_, A A é
m Fetch Unit N N o
RegDst | L = Clk o > a2 17 |?
N 1 [Mux||0
=1 | Rs|Rt [Rt| [Rs|[ra ]| 1mmas |
RegWr{|s} |53 ALUctr
hegwry s E B2 | ALUctr| MemtoRegs
| busA | Zero | MemWr

’m |Rw|Ra||Rb| ‘ > ) \
732 32.bit 32 - RS
32 32-hit Al OT

> =
Registers busB/l' m- = ‘32 ‘ |
k 2] = =
= I L)
?’l ——] WiEn| |Adr [F=—{ T}
g 1 DataIn 5 Data

Clk

ALUSrc

Control Signals for Add rd,rs,rt
* R[rd] € R[rs] + R]r]

Instruction<31:0> ‘
=+
LPC_sel- 4 I tastruction S22 AT ]a
RegDst =1 m W_O‘Fetch[}nit E § E =
1_| N T/ = v v vV
[ \

ALUctr= Add Tmmt6
RegWr = 1[4 E@ ctr |Rt|[Rs | Ra s

’f Rw | Ra||Rb Zero |MemWr= 0
busW t——t
32 32-bit

C |

> »0
Registers 0 ﬂ
. =
\-Ej@> 32 ?J | ;‘ [E
JWiEd [adr
§ 1§ | patary j_; 2| DauA !
:’; ﬂ p Memory B
~ [—=
ALUSrc = 0] 0=

ExtOEI= X

» This picture shows the activities at the main datapath during the execution of the Add or
Subtract instructions.

» The active parts of the datapath are shown in different color as well as thicker lines.

» First of all, the Rs and Rt of the instructions are fed to the Ra and Rb address ports of
the register file and cause the contents of registers specified by the Rs and Rt fields to
be placed on busA and busB, respectively.

» With the ALUctr signals set to either Add or Subtract, the ALU will perform the proper
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operation and with MemtoReg set to 0, the ALU output will be placed onto busW.

» The control we are going to design will also set RegWr to 1 so that the result will be
written to the register file at the end of the cycle.

» Notice that ExtOp is don’t care because the Extender in this case can either do a
SignExt or ZeroExt. We DON’'T care because ALUSrc will be equal to 0--we are using
busB.

» The other control signals we need to worry about are:

o MemWTr has to be set to zero because we do not want to write the memory.
o And Branch and Jump, we have to set to zero. Let me show you why.
¢ +3 =15 min. (X:55)

Instruction Fetch Unit at the End of Add
+ PC <- PC +4; This is the same for all instructions except: Branch and Jump

Inst

Memory Hlnstructiondl:[b‘

} Adr

|=
™
73
1)

Ety

PPy

i~

» This picture shows the control signals setting for the Instruction Fetch Unit at the end of
the Add or Subtract instruction.

» Both the Branch and Jump signals are set to 0.

» Consequently, the output of the first adder, which implements PC plus 1, is selected
through the two 2-to-1 mux and got placed into the input of the Program Counter
register.

» The Program Counter is updated to this new value at the next clock tick.

» Notice that the Program Counter is updated at every cycle. Therefore it does not have a
Write Enable signal to control the write.

» Also, this picture is the same for or all instructions other than Branch andJjump.

» Therefore | will only show this picture again for the Branch and Jump instructions and
will not repeat this for all other instructions.

e 42 =17 min. (X:57)
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The Single Cycle Datapath during Or Immediate

[RIt] < RIrs] or ZeroExtlimm16][31] | [26] [21]  |16] @

op | | Is | | | rt| || immediate |

nPC sel=+4 Instruction<31:0=> ‘

—] Instruction
Fetch Unit

(RegDst =0\ Clk =

13, 0 /-__‘-\
RegWr = 1 E i@]m )

<ST: 11>

E <STI1T>
L <0T91>

R

Rs \E‘ Imm16

MemtoReg = 0
MemWr =0 |

5
- Rw || Ra||Rb
busW i "
»| [3232bit
\_Fijo Registers o)
k
ml16 , WrEn| Adr
mm 1 )| Datalf }, Data
# | |

pa ALUSrc= =

ExtOp =0

‘ Zero

v

32

i -

JOpUXY

X
W

» Now let’s look at the control signals setting for the Or immediate instruction.

+ The OR immediate instruction OR the content of the register specified by the Rs field to
the Zero Extended Immediate field and write the result to the register specified in Rt.

« This is how it works in the datapath. The Rs field is fed to the Ra address port to cause
the contents of register Rs to be placed on busA.

» The other operand for the ALU will come from the immediate field. In order to do this,
the controller need to set ExtOp to O to instruct the extender to perform a Zero Extend
operation.

» Furthermore, ALUSrc must set to 1 such that the MUX will block off bus B from the
register file and send the zero extended version of the immediate field to the ALU.

» Of course, the ALUctr has to be set to OR so the ALU can perform an OR operation.

» The rest of the control signals (MemWr, MemtoReg, Branch, and Jump) are the same as
theAdd and Subtract instructions.

+ One big difference is the RegDst signal. In this case, the destination register is specified
by the instruction’s Rt field, NOT the Rd field because we do not have a Rd field here.

« Consequently, RegDst must be set to 0 to place Rt onto the Register File’s Rw address
port.

» Finally, in order to accomplish the register write, RegWr must be set to 1.

e 43 =20 min. (X:60)
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The Single Cycle Datapath during OR Immediate

Now let’s look at the control signals setting for the OR immediate instruction.

The OR immediate instruction OR the content of the register specified by the Rs field to
the Zero Extended Immediate field and write the result to the register specified in Rt.
This is how it works in the datapath. The Rs field is fed to the Ra address port to cause
the contents of register Rs to be placed on busA.

T he other operand for the ALU will come  from the immediate field.

In order to do this, the controller need to set ExtOp to 0 to instruct the extender to
perform a Zero Extend operation.

ALUSrc must set to 1 such that the MUX will block off bus B from the register file and
send the zero extended version of the immediate field to the ALU.

The ALUctr has to be set to OR so the ALU can perform an OR operation.

The rest of the control signals (MemWr, MemtoReg, Branch, and Jump) are the same as
the Add and Subtract instructions.

One big difference is the RegDst signal. In this case, the destination register is specified
by the instruction’s Rt field, NOT the Rd field because we do not have a Rd field in the
instruction word

Consequently, RegDst must be set to 0 to place Rt onto the Register File’s Rw address
port.

Finally, in order to accomplish the register write, RegWr must be set to 1.

The Single Cycle Datapath during Load

R[rt] <- Data Memory {R[rs] + SignExt[imm216]}

| 31 26| 21| [16] @
I op | @ | m || | immediate ‘

Instruction<31:0= ‘

Iﬂiﬂo- Instruction A A A A >
m Rt Fetch Unit ; g N P
_Reg!!st =0 ‘—| — Clk = ,\,} ? l\? %_
q- - t Rt | [Rs || Rd
RegWr =1 5 E%’}R—‘ Immi6 |
] | Re[RallRof Zero || MemWr =0
busW — X
> 32 32-bit N T
. _ o
Registers busB A 32 . = |
(W]
\;0> [32] EJ | :
= 1} ‘ 4 WI'EII‘ }Adr —Du@l
= P Data I
16 < Memory
Clk A
——( lacusie-1 =
ExtOp =1

+3 =28 min. (Y:08)
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The Single Cycle Datapath during Store

‘31 26 ‘ 21 ‘ ‘ 16 ‘ @
I op | | rs | m | | immediate |

| Data Memory {RIrs] + SignExtfimm16]} <- Rf] |

Instruction<31:0> ‘

‘ DPC sel- +4 Instruction A A A A

|Rd | |Rt Fetch Unit A RHIEIE

3 ] th

I vtag 0 L s il ki Kk

ALUct | Rt | [Rs | R || 1mm16 |
_ }E emtoReg = x

Rw | Ra||Rb ———= [Zer (]| Memwr =1

32 32-bit

\_@0 Registers N 32 ; ‘
k
> H ‘ 1 IE
= o[ WrEd Jaar %ﬂ
- p|1J Dataln||32
st & [T e IL
16 2 Memory
= CIk
o g

ExtOp =1

» The store instruction performs the inverse function of the load. Instead of loading data
from memory, the store instruction sends the contents of register specified by Rt to data
memory.

« Similar to the load instruction, the store instruction needs to read the contents of register
Rs (points to Ra port) and add it to the sign extended verion of the immediate filed
(Imm16, ExtOp = 1, ALUSrc = 1) to form the data memory address (ALUctr = add).

« However unlike the Load instructoion where busB is not used, the store instruction will
use busB to send the data to the Data memory.

« Consequently, the Rt field of the instruction has to be fed to the Rb port of the register
file.

* In order to write the Data Memory properly, the MemWr signal has to be set to 1.

» Notice that the store instruction does not update the register file. Therefore, RegWr
must be set to zero and consequently control signals RegDst and MemtoReg are don’t
cares.

+ And once again we need to set the control signals Branch and Jump to zero to ensure
proper Program Counter updataing.

+ Well, by now, you are probably tied of these boring stuff where Branch and Jump are
zero so let’s look at something different--the bracnh instruction.

e +3=31min. (Y:11)
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The Single Cycle Datapath during Branch

Re

|31 26 | 21 [16] 0
| op | lé | lr=t‘ | immediate

|w if (R[rs]-Rrt] == 0) then Zero <- 1; else Zero <- 0 |

| Instruction<31:0> ‘
‘ nPC sel= “Br Br’ |Instructi0n N A A A >
Rt Fetch Unit ; % : =
= ok —o> dIRIEIE
—g—\ = ALUctr= (I [Re] |Rs [ Ra |[1mm16 ]
RegWr =0 ALUClr =
E}E S | MemtoRe—‘ g=x
busA e
- Rw || Ra||Rb i MemWr =0 ‘
busW ——
> 32 32-bit -fg
Registers busB 70 |
Cl =
\;'°> 32 :
A J 32
o J| WiEn| Adr ﬁl
=
L]
-immlﬁ s |32 Data | |
3 Memory
ALUSrc =0

ExtOp =x

So how does the branch instruction work?

As far as the main datapath is concerned, it needs to calculate the branch condition.
That is, it subtracts the register specified in the Rt field from the register specified in the
Rs field and set the condition Zero accordingly.

In order to place the register values on busA and busB, we need to feed the Rs and Rt
fields of the instruction to the Ra and Rb ports of the register file and set ALUSrc to O.
Then we have to instruction the ALU to perform the subtract (ALUctr = sub) operation
and set the Zero bit accordingly.

The Zero bit is sent to the Instruction Fetch Unit. | will show you the internal of the
Instruction Fetch Unit in a second.

But before we leave this slide, | want you to notice that ExtOp, MemtoReg, and RegDst
are don’t cares but RegWr and MemWr have to be ZERO to prevent any write to occur.
And finally, the controller needs to set the Branch signal to 1 so the Instruction Fetch
Unit knows what to do. So now let’s take a look at the Instruction Fetch Unit.

+2 =33 min. (Y:13)
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Instruction Fetch Unit at the End of Branch
« if (Zero==1) then PC =PC + 4 + SignExt[imm16]*4 ;
- else PC=PC+4

‘31 26 ‘ 21 ‘ ‘ 16 ‘ @
I op | | rs | m | ‘ immediate

Inst

Memory Hlnstructionﬂ%l:lb‘

| Adr

|H
@}
w
®,

O\
)/

y

o
Ead

+ Let’s look at the interesting case where the branch condition Zero is true (Zero = 1).

* Well, if Zero is not asserted, we will have our boring case where PC + 1 is selected.

« Anyway, with Branch = 1 and Zero = 1, the output of the second adder will be selected.

« That is, we will add the segential address, that is output of the first adder, to the sign
extended version of the immediate field, to form the branch target address (output of 2nd
adder).

» With the control signal Jump set to zero, this branch target address will be written into
the Program Counter register (PC) at the end of the clock cycle.

¢« +2=35min. (Y:15)
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Step 4: Given Datapath: RTL -> Control

‘ Instruction<31:0> ‘

Instruction —
. A
: A A A
Memory N A A A A A A
address P by @ = = | En et
ooy BB (BRI 2
p Y v [
i A nfmlo6
Shtam | Fun
(R R {Ra TS | [t

nPC_sel RegWr ExtOp || ALUSrc MemWr
W LUctr J'

l l‘RestllJ’u |

DATA PATH

S

A Summary of the Control Signals

See > func | 10 0000{[10 0010| We Don’t Care :-)
Appendix A |—' op | 00 0000§ 00 000000 1101|[10 0011][10 1011]00 0100} 00 0O10|
add sub ori Iw SW beq jump

RegDst 1 1 0 0 X X X
ALUSrc ol ffol [ lal [ la] [la] [ To] | [x]
MemtoReg T T T T T Y T
RegWrite T T T T T T T
MemWrite T T T T T T T
nPCsel T T T T T T T
Jump T T T T T T T
ExtOp HEINEINEINEINEENEEN
ALUctr<2:0> | | Add ||Subtract| | or Add Add Subtract XXX
31 26 21 16 11 ’? ﬂ

R-type | op || rs || rt || rd || shamf funct Aadd, sub

I-type | op “ rs H rt H immediate I ori, Iw, sw, beq

J-type | op “ target address I jump
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Here is a table summarizing the control signal setting for the seven (add, sub, ...
instructions we have looked at.

Instead of showing you the exact bit values for the ALU control (ALUctr), | have used the
symbolic values here.

The first two columns (add and sub) are unique in the sense that they are R-type
instructions; and in order to uniquely identify them, we need to look at BOTH the op field
as well as the func field.

Ori, lw, sw, and branch on equal are I-type instructions and Jump is J-type. They all
can be uniquely identified by looking at the op- code field alone.

Now let’s take a more careful look at the first two columns. Notice that they are identical
except the last row.

So we can combine these two columns here if we can “delay” the generation of ALUctr
signals.

This lead us to something called “local decoding.”

The Concept of Local Decoding

op 00 0000 00 1101}{10 0011}[10 1011}|00 0100400 0010,
R-type ori lw SW beq jump
RegDst 1 0 0 X X X
ALUSrc 0| NEIREIREIDEEn
MemtoReg T F T ? ? ?
RegWrite 1] 1] 1 0| 0 0
MemWrite 0| 0] 0| 1] 0| 0|
Branch 0] 0] 0] 0] 1] 0]
Jump ? T T T F T
ExtOp x| ol | [ [l | Ix] ] K]
ALUop<N:0> “R-_typ e” or Add Add ||[subtract ]| xxx
fune ALUctr
op »|| Main i Ciittjol Icﬂ
M Control ALUOIiT o | (Local) EL

)=
p..
+3 = 45 min. (Y:25)

The local decoding concept is where instead of asking the Main Control to generates the
ALUctr signals directly ; the main control will generate a set of signals called ALUop.
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« For all I and J type instructions, ALUop will tell the ALU Control exactly what the ALU
needs to do (Add, Subtract, ...) .

» But whenever the Main Control sees a R-type instructions, it simply throws its hands up
and says: “Wow, | don’t know what the ALU has to do but | know it is a R-type
instruction” and let the Local Control Block, ALU Control to take care of the rest.

» Notice that this save us one column from the table we had on the last slide. But let’s be
honest, if one column is the ONLY thing we save, we probably will not do it.

« But when you have to design for the entire MIPS instruction set, this column will used
for ALL R-type instructions, which is more than just Add and Subtract | showed you here.

* Another advantage of this table over the last one, besides being smaller, is that we can
uniquely identify each column by looking at the Op field only.

Putting it All Together: A Single Cycle Processor

ALUop

,
[op | —Regpt] 3] fmc )
pﬁ Ctl:tl:']ol [ ALUSrc | [ nstr<s:034]

Instr 126> M ' .
\— * 1 1:
2 nPC sel . - ‘ >
— Instruction

m Rt Fetch Unit

ALU
Control

<X
=
=
~
=
=]
=
ly

<ST1Z> ‘
<0T:91>] \
<S1:0>

\

- TRt ‘Rt‘ Rs H RdHImmlﬁ ‘
} S]T Ei ALU“l
o] [ el frer [en | penistes
busW P 32
o | 3232bit Z {lo
: Registers busB }ﬁ' <)l 32 f =
\g-o> [32] EJ VB
- —— | Wik [adr @
= 1 Datal
m g 2 Data | |
W F cik | JLMemory
=
ExtOp

A Single Cycle Processor

+ OK, now that we have the Main Control implemented, we have everything we needed for
the single cycle processor and here it is.

» The Instruction Fetch Unit gives us the instruction. The OP field is fed to the Main
Control for decode and the Func field is fed to the ALU Control for local decoding.

+ TheRt, Rs, Rd, and Imm16 fields of the instruction are fed to the data path.

+ Based on the OP field of the instruction, the Main Control will set the control signals
RegDst, ALUSIc, .... etc properly
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» Furthermore, the ALUctr uses the ALUop from the Main conrol and the func field of the
instruction to generate the ALUctr signals to ask the ALU to do the right thing

How Effectively are we utilizing our hardware?

IR <- Mem[PC]

|
[ A<-Rirs]; B<—RI] |
|
] | | ]
| s<<A+B || s<-Aorzx || s<-A+sx || s<A+sx |

y y

[ M <~mems] | [ mem[s]<-B |

| ! | }

R[rd] <— S; R[rt] < S; R[rd] =— M;
PC <—PC+4; PC <—PC+4; PC <—PC+4; PC <—PC+4; PC <PC+4; PC < PC+SX;

h 4

« Example: memory is used twice, at different times
v" Average mem access per inst =1 + Flw + Fsw ~ 1.3
v If CPl is 4.8, imem utilization = 1/4.8, dmem =0.3/4.8

*  We could reduce HW without hurting performanc extra control

Alternative datapath: Multiple Cycle Datapath
* Immunizes Hardware: 1 memory, 1 adder

|Pcsre| | Brwr)

Wr | [IRWr | | Regbst | | RegWr |
= | Rs
g |E| Ra
Rt Rb | busal
=Y e (5] [RegFile
ANE : 0
= 1 Rw ‘ .
|2 busWy HusH| |32 | ,
2 3
<= ) L
Imm Extend| ‘ A | ’A_LUO
| ExtOp | | MemtoReg | | ALUSelB

» Putting it all together, here it is: the multiple cycle datapath we set out to built.
e 41 =47 min. (Y:47)
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Controller FSM Spec

e —
(ﬁ:{ <= MEM[PCI “instruction fetch”
» N\ PC R B+ 4
(/A <= R[rs] ) “decode”
B <=Rir]

s, Fa¥a¥aWl

~ 000

T ggC NN

—

) ¥ —
3 TN N ¢
(s s=Asuq B)|(S r=A0p 2Y ( <= A+ SX) (Sq—n...c;x) (s<=A-B
L NOT00 L7 0110 L~ 000 7" NI0TT IU|| "\ 0010 |
b‘ L
B /L\ //—\ Equa| 1 . Equal
& <= I'\M:I'\MSD MEM[S] <= B\ <
g \"--1-9.2-1-—'/ \ / C<:VP|C:.~+

/""_‘ kA 1100 SAT] 90
C[rdl S) RIn ) RIn) <= D <

0101 0111

Sequencer-based control unit

Control Logic | Multicvele
———— | Datapath
Outputs
| Inputs Types of “branching™
1 * Set state to 0
* Dispatch (state 1)
L / State Reg * Use mcremented state
Adder I
N number
| Address Select Logic

Opcode

Wirite-back
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Two Types of Exceptions
* Interrupts
v'caused by external events
v asynchronous to program execution
v"may be handled between instructions
v" simply suspend and resume user program

v caused by internal events
o exceptional conditions (overflow)
o errors (parity)
o faults (non-resident page)
v synchronous to program execution
condition must be remedied by the handler
v instruction may be retried or simulated and program continued or program may
be aborted

<

Precise Interrupts
» Precise => state of the machine is preserved as if program executed upto the offending
instruction
v' Same system code will work on different implementations of the architecture
v" Position clearly established by IBM
v Difficult in the presence of pipelining, out-ot-order execution, ...
v" MIPS takes this position
» Imprecise => system software has to figure out what is where and put it all back together
+ Performance goals often lead designers to forsake precise interrupts
v' system software developers, user, markets etc. usually wish they had not done
this

Summary of Today's Lecture
» 3-bus based single cycles data path
« Control signals generation for single cycles data path
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Lecture 9
Computer Hardware Design
(Multi Cycle and Pipeline - Datapath and Control Design)

Today’s Topics

» Recap: multi cycle datapath and control

» Features of Multi cycle design

»  Multi Cycle Control Design

» Introduction to Pipeline datapath

*  Summary

Recap: Lecture 8
+ Information flow and Control signals for single cycles data path to execute:
v Add/Subtract Instruction
v" Immediate Instruction
v Load/Store Instructions
v Control Instructions
» Analysis of single cycle data path
» How effectively are different sections used?
v" Memory is used twice, at different times
(i.e., Instruction Fetch and Load or Store)
v' Adders in IF section are used once for fraction of time (Fetch Phase)
v ALU is used for the execution of R-type instructions and memory address
calculation
» Conclusion: We can reduce H/W without hurting performance by using extra control

Multiple Cycle Approach

| |

Clk —_
‘ I fetch ‘ ‘ ID/Reg ‘ ‘ Exec ‘ || ‘ Mem ‘ || ‘ Wr ‘
‘ Cycle 1 ‘ ‘ Cycle 2 ‘ ‘ Cycle 3 ‘ ‘ Cycle 4 ‘ ‘ Cycle 5 ‘
R S S e S e

» The single cycle operations are performed in five steps:
v"Instruction Fetch

Instruction Decode and Register Read

Execute (R- I-type or address for Load/store/Branch)

Memory (Read/write)

Write (to register file)

AN N NI
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Multiple Cycle Approach

In the Single Cycle implementation, the cycle time is set to accommodate the longest
instruction, the Load instruction.

In the Multiple Cycles implementation, the cycle time is set to accomplish longest step,
the memory read/write

Consequently, the cycle time for the Single Cycle implementation can be five times
longer than the multiple cycle implementation.

As an example, if T = 5 p Sec. for single cycle then T= 1 p Sec. for multi cycle
implementation

Single Cycle vs. Multiple Cycle

Single Cycle Implementation:

Cycle 1 [ cyele 2 fF———

Clk ] | |

| ‘ Load | | Store | l Waste

Multiple Cycle Implementation:

Cycle IE‘CyCIe ZE‘Cycle 3E‘Cycle 4E‘Cycle 5 ‘Cycle 6E‘Cycle 7E‘Cycle SE‘CYCIG Et’ﬂ',‘ycle 10 ‘

Clk

e

|1 fetch ] | ]D"REEI} Exec ||| Mem [| | wr [ || 1 fetch | PR<e || Exec |} Mem []| 1fetch |

For different classes of instructions, Multi Cycle implementation may take 3, 4 or 5
cycles to fetch and execute an instruction

Now in order to compare the performance of single cycle and multi cycle
implementations, let us consider a program segment comprising three instructions, given
in the sequence: Load, Store, R-type (say Add)

The execution time for these three instructions using single cycle implementation with
cycle length equals 5 u Secis: T e = 3 X5 4 Sec = 15 psec.

Note that here the cycle time is long enough for the load instruction, but it is too long for
the Store and R-type instruction

So the last part of the cycle, in case of the store and 4™ (memory) part in case of R-type
instruction is wasted.

In Multi cycle implementation, Load is completed in 5 Cycles, and store and R-type each
takes 4 cycles to complete.

Thus, these three instructions take 5+4+4 = 13 cycles, if the cycle length is 1 p Sec then
the execution time for the three instructions is: T ¢ = 13 x 1 g Sec = 13 psec.
Conclusion: The multi cycle is 15/13 = 1.24 times faster
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High Level View of Multiple Cycle Datapath

Data \
Inst. A
LY

Memory Reg. —{Rreg #
| Rreg # EN
P Address Inst. 9 ‘)ALU ')I_MI_)
c Or data

Register
Data [ File
5
Data | Wreg#

» Here, a shared memory is used, as the instruction fetch and data read/write are
performed in different cycles

» The single ALU is shared among the instruction fetch, execute arithmetic and logic
instructions and address calculation in different cycles

» The use of shared function unit (ALU) requires additional multiplexers or widening of
multiplexers

» New temporary registers, Instruction register, Data memory, operand A and B and
ALUout, are included to hold the information for use in later cycle

+ E.g.; Memory read in cycle 4 is written in cycle 5 (Load), operand registers A and B read
in cycle 2 may be used in cycle 3 or 4, and so on

Multiple Cycle Datapath Design

PCWrCo ‘ PC8rc ‘ Brwr i
Zero || RWr | i
Target

MemWr ‘ ‘ RegDst ‘ ‘ RegWr ‘ ALUSelA z -
uk 2

[0 [

< T T 1

~ \31' Rs 1O | ir \\Z-ero‘
I-{O.. Ra‘ busA ‘ Mufs N
“”2 facl‘ RAdr‘ IR 321;‘ Rb| A ' 32‘ ? ?
32 4 Ideal -: Ree Filel 32 ™~ - c
L= N —— |'| 2 ‘ %m » Rw H?. . FO . 32 Jg
= 1
‘32| » Din Dout —11 | I_'bus us H32 | ‘MJX 2
Y4
2] [ SR
<2 L= | Control
=
.X =1 \ﬂ ALUOp
ALUSeIB

MemtoReg
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Multiple Cycle Datapath Architecture

Immunized Hardware: 1 memory, 1 adder

Cycle 1 - [Instruction Fetch]:

firstly, MUX-1 select input lorD =0 and the PC is connected to the Memory Read address
input RAdr; instruction is fetched from the memory at Dout and is placed in the
Instruction Register by inserting IRWr [Yellow Path]

Secondly, the select input ALUSelA to MUX-3, is made equal to 0,, ALUSelB to MUX-5
is made equal to 00 to add 4 to PC; then PCSrc of MUX-2 is made 0 and PCWr is
asserted to load PC+4 to the PC as address of the next instruction

Cycle 2 —[ID and Reg. Rd.]

Firstly the Instruction is decoded; the Rs, Rt, Rd and Imm16 fields are made available on
respective lines (Shown in orange)

Secondly the registers at Rs and Rt are read at buses A and B, respectively

Cycle 3 - [Exe]
The select inputs ALUSelA and ALUSelB to the MUX-3 and MUX-5, respectively for the
instruction in hand; available at ALUop input to the ALU Control Unit
v" For R-type instructions:
ALUSelA = 1 and ALUSelB = 01 to connect bus A and bus B to ALU to perform
the operation [Green Path]
v' For I-type and Memory Instructions:
ALUSelA = 1 and ALUSelB = 11 to connect bus A and Sign Extended Imm16 to
ALU to perform the operation on immediate data [Red Path]. The ALU output is
kept in ALU OUT Register as result of ALU OP execution in case of I-type
operation and as Memory address in case of memory instructions Load/store
v' For J- type Instructions:
1: Condition Test: ALUSelA = 1 and ALUSelB = 01; ALUop=SUB If ALU output
Zero =1 then assert PCWrCond and
2: PC & PC+4+ [Sign Extend Imm16 and Shift left 2 bits] ALUSelA = 0;
ALUSelB = 10 Assert BrWr ; and PCSrc of MUX-2 = 1 to pass the target address
to PC [Blue Path]

Cycle 4 - [Memory Instruction Load/Store]
v Load instruction: lorD=1 to pass the ALUout Register as RAdr (Read
Address) input to the memory to read data at the Dout [Dark Green Path]
v Store instruction: MemWr is asserted; as the ALUout Register output is wired to
WrAdr (Write address input) [Dark Green Path] and bus B of the register file is
wired to Din (Data In) [Dark blue] of the memory

Cycle 5 - [Write Back]
v" R-type instruction: RegDest of MUX-4 = 1 to select Rd as the destination
address; MemToReg = 0 to connect ALUout to Bus-W and RegWr is asserted
memory
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v I-type instruction: RegDest of MUX-4 = 0 to select Rt as the destination address;

MemToReg = 0 to connect ALUout to Bus-W and RegWr is asserted memory
v' Load instruction: RegDest of MUX-4 = 0 to select Rt as the destination address;

MemToReg = 1 to connect Dout of the memory to Bus-W or the register file and
RegWr is asserted

Multi Cycle Control design

« Control may be designed in the following steps using the initial representation as:

Finite State Machine: Here, the sequence control is defined by explicit next state
functions, logic is represented by logic equations and usually PLAs are used to
implement the machine

Micro-program: Here, micro-program counter and a dispatch ROM defines the sequence
control, logic is represented by truth table and control is implemented using ROM

Multi Cycle Controller FSM Specifications

e

el

(|’R <= MEM[PCT\, i strocio et
2 \PC <ﬁ{||-’d'h+ 4/ Instruction retc
4 =
("A <= R[rs]‘ “‘decode”
B <= R[]
M, A
000
2 N\ -
(s s=Atuq B)|(S r=A0p,ZY) ( <—.A.+sx) (s<—A+csx) (S<=A-B
1 NL0100 7 00 7 N1000 ] IUII "\ 0010 |
}. —
S /‘L\ //,——-\ Equal [} - Equal
E = MEMs])| ( MEM[S] <= B) N
< | | \ 1001 7 "Cioo / Cc <éXPICCB)
T~ o~ —— <o
Ctrd] S) RIrt] ) Rirt] <= M |8
Um 0111 1010 =
S

‘_/ i ‘__/
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Micro program Controller

Control Logic ‘ Multicycle

Datapath

‘ Outputs |

Inputs
@ | Inputs |
. C‘i / Sta
Adder tate Reg

| | Address Select Logic H—

| Opcode |

Il

“Macroinstruction” Interpretation

User program
ADD plus Data

SUB .
AND this can change!

Main
Memory

d

- one of these is
M mapped into one
of these

execution
unit

CPU control AND microsequence

memory

e.g., Fetch
Calc Operand Addr
Fetch Operand(s)
Calculate
Save Answer(s)

i

Designing a Microinstruction Set

1.
2.
3.

Start with list of control signals
Group signals together that make sense (vs. random): called “fields”
Places fields in some logical order (e.g., ALU operation & ALU operands first and
microinstruction sequencing last)
Create a symbolic legend for the microinstruction format, showing name of field values
and how they set the control signals
a. Use computers to design computers
To minimize the width, encode operations that will never be used at the same time
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Microprogramming
» Specialize state-diagrams easily captured by micro sequencer
v'simple increment & “branch” fields
v datapath control fields
» Control design reduces to Microprogramming
» Microprogramming is a fundamental concept
v implement an instruction set by building a very simple processor and interpreting
the instructions
v/ essential for very complex instructions and when few register transfers are
possible
v overkill when ISA matches datapath 1-1

Microprogramming: inspiration for RISC

» If simple instruction could execute at very high clock rate...

» If you could even write compilers to produce microinstructions...

» If most programs use simple instructions and addressing modes...

» If microcode is kept in RAM instead of ROM so as to fix bugs ...

+ If same memory used for control memory could be used instead as cache for
“macroinstructions”...

« Then why not skip instruction interpretation by a micro-program and simply compile
directly into lowest language of machine? (microprogramming is overkill when ISA
matches datapath 1-1)

Summary
» Single cycle verses multi cycle datapath
» Key components of multi cycle data path
» Design and information flow in multi cycle data path
»  Multi cycle control unit design
» Finite State Machine —based control Unit
» Micro program- based controller

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

Lecture 10
Computer Hardware Design
(Pipeline Datapath and Control Design)
Recap: Lecture 9
» Single cycle verses multi cycle datapath
» Key components of multi cycle data path
» Design and information flow in multi cycle data path
«  Multi cycle control unit design
» Finite State Machine—based control Unit
* Microprogram-based controller

What is pipelining?
» Pipelining is a fundamental concept
» It utilizes capabilities of the Datapath by

Pipelining is Natural!

* Laundry Example! 6666

* Fourloads: A, B,C,D
» Four laundry operations:
Wash, Dry, fold and place into drawers

« Washer takes 30 minutes — ﬁ
» Dryer takes 30 minutes — a

« “Folder” takes 30 minutes —

« “Stasher” takes 30 minutes —
to put clothes into drawers

Sequential Laundry

ePm| 7] [8] [o] [10] 11| [12] [1][2AM

7] 30/30]30/30130/30139(30]30"30]30730{30/30]30}30'
| solar -

“||l &

. Ofe A

é iy ™Y
:

.
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Pipelined Laundry: Start work ASAP

6PM|[7] o] [10] [11] [12] [1] [2AM
Pt |

7] 30[30 30'30ﬁ30' Time
: A

. A

: A

‘| a4

» Pipelined laundry takes 3.5 hours for 4 loads!

Features of Pipelined Processor
» All the functional units operate independently
» Multiple tasks operating simultaneously using different resources
» Pipelining doesn’t help latency of single task, it helps throughput of entire workload
» Potential speedup = Number pipe stages

Pipelining Lessons
» Pipeline rate limited by:
v Slowest pipeline stage
v' Time to “fill” pipeline and time to “drain” it reduces speedup
v" Unbalanced lengths of pipe stages reduces speedup
v If washer takes longer time than the dryer then dryer has to wait!
» Stall for Dependences

Five Steps of Datapath

1. Ins. Fetch,
2. 1Dec/Reg,
3. Exec,

4, Mem,

5 Wr
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Pipelined Processor Design

Instruction ID/Register | | Execute/ | | Memory | | Write Back
Fetch Read Address Rd/Wrt i | (Reg. Wrt)
— 1 ml ] ] \
] — <! ‘ : i =¥ | (—\
G K . 1|0 | |12E
15— S| <=0 | & | 2| |&— |23
12 i [ Hi = I i Q ] H
L= PN ()] ; LLU =1 ! = N
N Ny . =3 N i
o
i S— — Ll
o) _
& [Io] v
E
@
pa
o e
Pipeline Control
Instruction Fetch IR <- Mem[PC];
PC <—PC+4;
ID/Reg. Rd A <-Rirs];
B<—R[r]
S <- S<-Aor S <- S < If“;lond
Exe/Address A+B; pa'e A+ SX: A+ SX; o<
Memory Rd/Wirt [ M <~ Mem[s][f Mem[s]<-B |
Reg. Wrt (WB) [Rird]<-s; | [RIMI<=S; | [RIrdl<-m; |
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Pipelined Registers Included

Instruction ID/Register Execute/ Memory Write Back
Fetch Read Address Rd/Wrt (Reg. Wrt)
i = FEY mn —
~I| = — O (é) E——-b —~ |20
@ 3 o
EJQ = A i
B ! N @©
' S
| LA
¥ ' yy \ i — o L
O —| > : D=
a-flo L?EJ S i & L
= o w 2 : ===
[} T H
\E/’ \\_h E w :
o &
Q
<C | Datg
Men
/\
Five Steps as Stages of Pipeline
‘ Cycle 1 ‘ ‘ Cycle 2 ‘ ‘ Cycle 3 ‘ ‘ Cycle 4 ‘ ‘ Cycle 5 ‘

‘ Load ‘ ‘ Ifetch ‘ || ‘ Reg/Dec ‘ || Exec || Mem || \Vu_r‘
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Multiple Cycle verses Pipeline — Pipeline enhances performance

Cycleﬂz 30F 4lb s 6F 7|F s|pofff 10f{11f12ff 13F 141

Multiple Cygcle Imp ementaition:

Load Store 'R-type :
Ifetchy [Reg||Exec Meml Wr [JIfetch] Reg|JExec I]Meml[fetck Reg|JExec IMem

'Pipeline Implemen'tation:

Load Ifetckl Reg||Exec IMem I‘ wr ||
Store Ifetchl Reg||Exec INETHI]] Wr |
R-type Ilfetc}l Reg |[|Exec Meml] Wr I

3 Instructions program reconsidered
1. Load
2. Store
3. R-type (ADD)

Example 1: The cycle time of a single cycle machine is 45 ns, and of multi cycle and pipelined
machines is 10 ns; and average CPI due to instruction mix on multi cycle machine is 4.6.
What is the execution time on each type of machine?
Solution:
» Single Cycle Machine
v' 45 ns/cycle x 1 CPI x 100 inst = 4500 ns
» Multi Cycle Machine
v" 10 ns/cycle x 4.6 CPI x 100 inst = 4600 ns
» Pipelined machine
v' 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

Example 2: Consider a multicycle, unpiplined processor requires 4 cycles for the ALU and
Branch operations and 5 cycles for the memory operation. Assume the relative frequency of
these operations is 40%, 25% and 35% respectively; and the clock cycle is of 1 n sec.

In pipelined implementation, due to clock skew and setup processor adds 0.2 n sec. to the clock
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Solution:

* Unpiplined Processor:
» Average Execution Time / Instruction = Clock Cycle x Average CPI
= 1 nsec. x[{(0.4 +.25)} x4 + 0.35 x 5]
= 1nsecx(0.65x4+0.35x5)
= 1 nsec. x(2.60+1.75) =4.35 n sec
+ Pipelined Processor:

» Average Execution Time/ Instruction = Clock cycle + overhead

= 1 nsec.+0.2n.sec
= 1.2 nsec
» Speedup=4.35/1.2=3.62times

Pipelined Execution Representation
» Conventional Representation
v Helps showing the program flow viz-a-viz time

Program Flow

A4

15 Inst.
2nd |nst.
3 |nst

4 |nst

5 Inst.

[1Fetch]Ded T JExec [Jmem | |] we | |

Graphical Representation

['Fetcn]Dca T JExec [ [Mem | I]WB ]

|| IFetchl‘Dcd | |Exec | |Mem \ |\ WB| |

|||Fetch||Dcd\ |Exec ||Mem H WB |

[1Fetch]Dca | [Exec | [mem | |] we] |

Time
(clock cycles) CC1||CC2||CC3||CC4||cc5||CC6||ccr| |cC8| cco
1] || Instr 1 IMem | Reo [ 2NER Reg
s : i i
t Instr 2 i 1Mem | Reg Z i D_Man_Hi_ Reg
" j E E E E
o Instr 3 IMem | ] Reo 2N {ore _Ir— Reg
, bz I} =i E
91 |l nstr 4 ’ >
e nstr E IM R : I D._\-Iem_lr:_ Reg E
; : i : :
4 Instr 5 El:l'mm H Ree =3 Ir' Reg
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Why Pipeline? Because the resources are there!

Time (clock cycles)

Can pipelining get us into trouble?
e Structural hazards
v' Data hazards
v' Control hazards

How Stall degrades the performance?
* The pipelined CPI with stalls =
v Ideal CPI + Stall clock cycles per instruction

How Stall degrades the performance?
1. Speedup w.r.t unpiplined

= CPI Unpiplined / 1 + stall cycles per instruction

2. Speedup w.r.t. pipeline depth

= pipeline depth / 1 + stall cycles per instruction

Summary
» Multi cycle datapath verses pipeline datapath
+ Key components of pipeline data path
» Performance enhancement due to pipeline
» Hazards in pipelined datapath

:? Inst O | ™ [l Reg :_E | Dm | Ll Reg

s = =

tlnst 1 Im | L[| Reg _E - {{Dm . Reg

r T | =

olllnst 2 Im | L[| Reg __E Dm || | Reg

r = T—'

g Inst 3 Im | L Reg '_E }r_Dm | I Reg

r = =

“Inst 4 - iReng}r om 1] [Ree

=
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Lecture 11
Computer Hardware Design
(Pipeline and Instruction Level Parallelism)
Today’s Topics

* Recap Lecture 10

» Structural Hazards

« Data Hazards

» Control Hazards

Recap: Lecture 10
» Multi cycle datapath verses pipeline datapath
+ Key components of pipeline data path
» Performance enhancement due to pipeline
» Introduction to hazards in pipelined datapath

Structural Hazards
» Attempt to use the same resource two different ways at the same time, e.g.,
» Single memory port is accessed for instruction fetch and data read in the same clock
cycle would be a structural hazard

Single Memory is a Structural Hazard

Time (clock cycles)
/ , i
n | |[instr 1 Load |[Mem{Ree M IRee
S :

=

t Instr 2 MempHReg || Mem Iﬁ- Reg ‘
r : 4
0 Instr 3 Mem -[F Reg Mem +Reg ‘
; Instr4 _ 'i Reg i -MemH!-- Reg
e i
rll Instr 5 MemH{ Reg r—\-Mem Reg

«  Two memory read operations in the 4™ cycle:
«  The LOAD instruction accesses memory to read data and the 4" instruction fetched from
the same memory
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Time (clock cycles)
/ .
n | |[nstr 1 Load||Mem{Ree VdiERee
S :
t || Instr2 ADD MempfIReg [1 Mem [HiReg |
r. i :
Instr 3 Mem +Re2 ‘
O :
o || [stai
i | Instr 4 .Mem-nf Reg I@'Mﬂn + Reg ‘

» Insert stall (bubble) to avoid memory structural hazard

Structural hazard exists when
» Single write port of register accessed for two WB operations in same clock cycle —
» This situation does not exist in 5-stage pipeline
« Butit may exist in 4 and 5 stage multi-cycle pipeline

Pipelining the Load Instruction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 EC}'cle 5 ECycle 6 ECycle 7
Clock |1 L L L1 LJ LJ LI 1

Ist lwl Ifetch Regf’Decl Exec I Mem I Wr I

2nd Iw||| Ifetch || Reg/Dec]| | Exec I Mem I Wr |

3rd Iw || Ifetch || Reg/Dec] | Exec I Mem | Wr |

» The five independent functional units in the pipeline datapath are: Inst. Fetch, Dec/Reg.
Rd, ALU for Exec, Data Mem and Register File’s Write port for the Wr stage

» Here, we have separate register’s read and write ports so registers read and write is
allowed at the same time

» Each functional unit is used once

Explanation:

For the load instructions, the five independent functional units in the pipeline datapath are:
a) Instruction Memory for the Ifetch stage.
b) Register File’s Read ports for the Reg/Decode stage.
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c)
d)
e)

ALU for the Exec stage.
Data memory for the Mem stage.
And finally Register File’s write port for the Write Back stage.

Notice that | have treat Register File’s read and write ports as separate functional units
because the register file we have allows us to read and write at the same time.

Notice that as soon as the 1st load finishes its Ifetch stage, it no longer needs the
Instruction Memory. Consequently, the 2nd load can start using the Instruction Memory
(2nd Ifetch).

Furthermore, since each functional unit is only used ONCE per instruction, we will not
have any conflict down the pipeline (Exec-Ifet, Mem-Exec, Wr-Mem) either.

I will show you the interaction between instructions in the pipelined datapath later. But
for now, | want to point out the performance advantages of pipelining.

If these 3 load instructions are to be executed by the multiple cycle processor, it will
take 15 cycles. But with pipelining, it only takes 7 cycles. This (7 cycles), however, is not
the best way to look at the performance advantages of pipelining.

A better way to look at this is that we have one instruction enters the pipeline every
cycle so we will have one instruction coming out of the pipeline (Wr stages) every cycle.
Consequently, the “effective” (or average) number of cycles per instruction is now ONE
even though it takes a total of 5 cycles to complete each instruction.

+3 = 14 min. (X:54)

The Four Stages of R-type

‘ Cycle 1 ‘ ‘ Cycle 2 ‘ ‘ Cycle 3 ‘ ‘ Cycle 4 ‘
[ I
‘ R-type ‘ ‘ Ifetch | | Reg/Dec | ‘ Exec | |Wr |

R-type instruction does not access data memory, so it only takes 4 clocks, or say 4
stages to complete

Here, the ALU is used to operate on the register operands

The result is written in to the register during WB stage

Explanation:

Well, so far so good. Let’s take a look at the R-type instructions.

The R-type instruction does NOT access data memory so it only takes four clock cycles,
or in our new pipeline terminology, four stages to complete.

The Ifetch and Reg/Dec stages are identical to the Load instructions. Well they have to
be because at this point, we do not know we have a R-type instruction yet.

Instead of calculating the effective address during the Exec stage, the R-type instruction
will use the ALU to operate on the register operands.
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» The result of this ALU operation is written back to the register file during the Wr back
stage.
« +1=15min. (55)

Pipelining the R-type and Load Instruction

‘ Cycle IE‘Cycle 2 H Cycle 3E‘Cycle 4 E Cycle 5 E Cycle 6 E Cycle 7 E Cycle 8 E Cycle 9 ‘

IIIIIIIIIIIIIIIIII

‘ R-rype||| Ifetch ‘IRengecIH Exec || ‘ Wr | | ‘ Ops! We have aproblem!

‘ R-type ||| Ifetch ‘IRGWDGCIH Exec || ‘Wr | |

‘ Load || Ifetch ‘IReg/DeCIH Exec ‘I | Mem |” Wr | \

‘ R-Iypel” Ifetch ‘IReg/DeclH Exec ‘ Wr

‘ R-typel” Ifetch ||Reg/Dec||| Exec ‘I ‘ Wr | |

» We have pipeline conflict or structural hazard:
v" Two instructions try to write to the register file at the same time!
v Only one write port
» What happened if we try to pipeline the R-type instructions with the Load instructions?
+ Well, we have a problem here!!!
» We end up having two instructions trying to write to the register file at the same time!
* Why do we have this problem (the write “bubble”)?
* Well, the reason for this problem is that there is something | have not yet told you.
¢+ +1 =16 min. (X:56)

Important Observation
« Each functional unit can only be used once per instruction
» Each functional unit must be used at the same stage for all instructions:
v' Load uses Register File’s Write Port during its 5th stage
v R-type uses Register File’s Write Port during its 4th stage

» | already told you that in order for pipeline to work perfectly, each functional unit can
ONLY be used once per instruction.

«  What | have not told you is that this (1st bullet) is a necessary but NOT sufficient
condition for pipeline to work.

» The other condition to prevent pipeline hiccup is that each functional unit must be used
at the same stage for all instructions.

+ For example here, the load instruction uses the Register File’s Wr port during its 5th
stage but the R-type instruction right now will use the Register File’s port during its 4th
stage.

+ This (5 versus 4) is what caused our problem. How do we solve it? We have 2
solutions.
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Solution 1: Insert “Bubble” into the Pipeline

Cycle 1 Cycle 2 Cycle 3 Cycle 4 EC}'cleS ECycle 6 ECycle 7 ECycle 8 ECycle 9
cock L J O J L J 4 J JI
Ifetch || Reg/Dec]|| Exec Wr
Load || Ifetch |J Reg/Dec]| Exec |] | Mem || | Wr
R-type Ifetch || Reg/Dec]|| Exec /\ Wr
R-type Ifetch || Reg/Dec || Pipeline ‘ Exec Wr
R-type || Ifetch ||| Bubble | Reg/Dec]| | Exec Wr
U lietch || Reg/Dec]|| Exec

+ Insert a “bubble” into the pipeline to prevent 2 writes at the same cycle

v" The control logic can be complex.

v Lose instruction fetch and issue opportunity.
» No instruction is started in Cycle 6!

» The first solution is to insert a “bubble” into the pipeline AFTER the load instruction to
push back every instruction after the load that are already in the pipeline by one cycle.
» At the same time, the bubble will delay the Instruction Fetch of the instruction that is

about to enter the pipeline by one cycle.
* Needless to say, the control logic to accomplish this can be complex.
« Furthermore, this solution also has a negative impact on performance.

* Notice that due to the “extra” stage (Mem) Load instruction has, we will not have one

instruction finishes every cycle (points to Cycle 5).

» Consequently, a mix of load and R-type instruction will NOT have an average CPI of 1

because in effect, the Load instruction has an effective CPI of 2.
» So this is not that hot an idea Let’s try something else.
e 42 =19 min. (X:59)

Solution 2: Delay R-type’s Write by One Cycle
» Delay R-type’s register write by one cycle:

v" Now R-type instructions also use Reg File’s write port at Stage 5

v' Mem stage is a NO-OP stage: nothing is being done.
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1] [2]

5]

[5]

‘ R-typel” Ifetch ||Re£f'Dec||

Exec I

| we] |

‘ Cycle IE‘Cycle 2 H Cycle 3E‘Cycle 4 E Cycle 5 E Cycle 6 E Cycle 7 E Cycle 8 E Cycle 9 ‘

clock [ L1 L1 1 L1 L1

‘ R-rypel” Ifetch || RengeclH Exec || | Mem || | Wr | |

R-type | Ifetch lRegf’DecIH Exec || | Mem |I |Wr | I

‘ Load || Ifetch ||Regf’Decl|| Exec || | Mem |I |Wr | |

‘ R-typel” Ifetch ||Rengecl|| Exec || | Mem |I |Wr | |

‘ R-typel” Ifetch ||Regf’Decl|| Exec || | Mem |I |Wr | |

» Well one thing we can do is to add a “Nop” stage to the R-type instruction pipeline to

delay its register file write by one cycle.

* Now the R-type instruction ALSO uses the register file’s witer port at its 5th stage so we

eliminate the write conflict with the load instruction.

« This is a much simpler solution as far as the control logic is concerned. As far as
performance is concerned, we also gets back to having one instruction completes per

cycle.

» This is kind of like promoting socialism: by making each individual R-type instruction
takes 5 cycles instead of 4 cycles to finish, our overall performance is actually better off.
« The reason for this higher performance is that we end up having a more efficient

pipeline.

Eliminating Structural Hazards

« Structural hazards can be eliminated or minimized by either using the stall operation or

adding multiple functional units

Time >
Program Flow |
Load IFeth'{II)cd Exec [[Mem || WB
ond Inst. IFetchDcd | [Exec []Mem WB
3% nst IFetchDcd [ [Exec [[Mem [JwB
4 |nst stall | || IFetcH Dcd ﬂExec [vem ||| WB
51 Inst. FetcH[Ped [ [[Exec [[viem [ W8
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Example: Dual-port vs. Single-port
* Machine A: Dual ported memory
» Machine B: Single ported memory, but its pipelined implementation has a 1.05 times
faster clock rate
» Ideal CPI = 1 for both
» Loads are 40% of instructions executed
SpeedUp, = Pipeline Depth / (1 + 0) X (cloCKynpipe / ClOCK,ipe) = Pipeline Depth

SpeedUpg = Pipeline Depth / (1 + 0.4 x 1) X (clocKnpipe/ (ClOCKynpipe / 1.05)
= (Pipeline Depth / 1.4) x 1.05
= 0.75 x Pipeline Depth

SpeedUp, / SpeedUpg = Pipeline Depth / (0.75 x Pipeline Depth) = 1.33
+ Machine A is 1.33 times faster

Stall degrades the performance
* Here, is an example: Suppose data reference instructions constitute 40% of mix, and
processor with structural hazard has clock rate 1.05 times higher than the processor
without hazard
» The Average Instruction time = CPI x Clock Cycle Time
=(1+ 0.4 x 1) x clock cycle time ges / 1.05
=1.4/1.05 x clock cycle time |gea
= 1.3 x clock cycle time 4ea
The processor without structural hazard is 1.3 times faster than with Structural hazard

Additional Functional Units increase cost
* Memory structural hazard is removed by using two Cache memory units:
v Instruction memory
v' Data Memory
« Two write ports in register file allow 4-stage and 5-stage pipe mix

Data Hazards
Attempt to use item before it is ready; e.qg.,
+ One sock of pair in dryer and one in washer; can’t fold until get sock from washer
through dryer
» Instruction depends on result of prior instruction still in the pipeline
» Pipelining changes the relative timing of instruction by overlapping their execution
» This overlap introduces the Data and Control Hazard
» Data Hazard occurs when order of operand read/write is changed viz-z-viz sequential
access to the operands, which gives rise to data dependency
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Example Data Hazard on R1
« Add R1,R2,R3 « Or R8, R1 ,R9
« Sub R4,R1,R3 « Xor R10,R1,R
« And R6,R1,R7

Data Hazard due to Dependencies backwards in time are hazards

Time (clock cycles)

11

Data Hazard Solution #1 — Stall

stall cycles after next IF and
decode, before the register read

‘ Time (clock cycles)

IF |(ID/RFE [EX|IMBM
add r1.r2,r3 m@' : l
ETEETI . Y] o

S~ 0 3~

and ré,r1,r7

IE |iID/R ME
JAdd R1,R2,R3 T [lr& DoV
"l Im | R . R
s |Bub R4, R1,R3 m | Hfr! m fRee
t : :
r. |[And R6,R1 R7 Im : Reg i Dm =-|-Reg
oflbr R8.R1,R9 ir P [pjRes
r : : : H
d||Kor R10,R1,R11 {1 | Hres|l: pm |L]Ree
€ : :
©

or r8,r1,r9

xorr10,r1,r11

=0 Q=0

]
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XOR: No Data Hazard here, as register is read after being written

Time (clock cycles)

= [ ioREEX [MEM] wB
7][[2dd rLr23 (1] Fﬁe'jé}ﬁmg\
°||lsub r4,r1,r3 ElE > o] Ree
“Iland 18,r1,17 |‘i_ [ e e
E or r8,r1,r9 |‘£_ '?_rDm e
iuxorr‘IO,ﬂ,rﬂ i | 1 R Yo [

Data Hazard Solution — Forwarding

No forwarding

Forward” result from one stage to another As register is written in the

From the EX/MEM pipeline register to Sub ALU stage, first half and read in the
MEM/WB pipeline register to AND }‘\LU st‘age second half cycle
Time (clock cycles) ‘ \ /
IF [iDR \B{ MEM \WB/

- ladd r1,r2,r3 [ Ko e

s [sub 401,03 e AR NP el

’: and ré.r1,17 IR o) e ‘

llor rsrtre m ] = >A'Dm§RegE

; xor r10,r1,r11 im ] ffree [ %ﬁm\
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Forwarding (or Bypassing): What about Loads?
» Dependencies backwards in time are hazards
* Inthis case, we Can’t solve with forwarding:

» Must delay/stall instruction dependent on loads

Time (clock cycles)

I ID/R:

w r1,0(2) | [l iﬂReET

sub r4,r1,r3 -

Control Hazards

= [N
N

ME

Control hazard occurs when one attempt to take action before condition is evaluated

* When Branch instructions is executed it may or may not change the PC to something

other than PC+4

« Branch Taken: Branch changes the PC+4 to new target
» Branch Not Taken: Branch does not change the PC+4

The simple way to deal with the branch is:

» Freeze the pipeline holding any instruction after the branch instruction and

» Flush the pipeline to delete the instructions after the branch if condition is evaluated, and

branch is to take

Example BEQ Taken

Time (clock cycles) ‘

]
n
s : |
f ADD IF [ Reg | %
o| BEQ 7| R
d

LOAD Bl
e /

Mem |_,_ Reg
I
= Mem |: | Reg
Reg [ Mem I__ Reg

Instruétion Fetched
At the begin of ID stage
of BEQ instruction

Condition Evaluated

at the end of EXE stage
of BEQ instruction
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Explanation Branch Hazard
Here, If the BEQ is taken then
» The next instruction address is determined after evaluating the branch condition in the
EX stage;
« But the next instruction (LOAD) is fetched in the ID stage, i.e., before the PC+4 is
changed to new target address
» This gives rise to Branch or Control Hazard

Dealing with Branches
« Stall
» Redo Fetch after branch
» Delayed branching
« Branch prediction
* Multiple Streams

Solution#1 Stall
» Result of the condition evaluation is available after the EXE stage and the target address
is available in the next stage
» Thus 3 stall cycles

/ Time (clock cycles)

n = >

s H i : .

t ||| ADD IF i|Reg

O || BeQ N Fem [Regt

r : i i

d : NG

i Target Inst. | el | sttt [Tswan 4l | Reelf Mem||fReg
; i i i ./
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Reducing number of Stall

! Time (clock cycles)
n >
s
t | | ADD I
r
BEQ
O Lo S
r
g Target Inst Z Mem || Ree
r

Extra H/W to evaluate condition at the end of ID stage
of BEQ instruction

Reducing number of Stall

Here, you can see that if we move up decision to the end of ID stage (2nd stage) by
adding hardware to compare the registers being read. The number of stalls reduces to 2
clock cycles per branch instruction

It can further be reduced to 1 in case of BEQZ or BNEZ if zero register is tested after
Instruction Fetch

Solution# 2 Redo Fetch after Branch

Branch | Mem
Branch IFetch | | [ Ded Mem

sSUCCessor

| |Fetch | | Ded | | Exec | Mem

Branch
successor + 1

We know that once a branch has been detected during the Instruction decode /Register
read stage, the next instruction fetch cycle should essentially be a stall, if we assume
that branch is taken

However, the instruction fetched in this cycle never performs useful work, and is ignored
Therefore, re-fetch the Branch successor instruction will is provide the correct
instruction.

Indeed, the second fetch is not essential branch is not taken

Impact: 1 clock cycles per branch instruction if branch is un-taken
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Solution# 3 Delayed Branch — S/W method

| Time (clock cycles)

n . . ' . .

*[ada] L= t \rf[emE-Regi

r f —rr
Beg enfResl] |

ol— | H—H—g=—

; Misc IF -qReg :: e F-IReg

e P T

r || Load P HE [HReglITE v[ej-Regi

» Redefine branch behavior to take place after the next instruction by introducing other
instruction (may be No-OP) which is always executed

» Impact: 0 clock cycles per branch instruction if can find instruction to put in “slot” ( 50%
of time)

Solution#4 Prediction
» This techniques suggest that for a branch instruction we guess one direction of the
branch, to begin, then back up if wrong
» The two possible predictions are:
v" Predict Branch not-taken
v Predict branch taken

Branch Prediction Flowchart

Read next Reoxd next
o condition=al > conditiom=al
branch instr branch instr
l Fredict taken I I Fredict not taken I

Read next Reaxd next
conditional conditiomnal
branch instr branch instr

I FPredict taken I I Predict not taken I
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1. Predict — Branch not taken

» This scheme is implemented assuming every branch as branch Not-taken
» So the processor continues to fetch branch as normal instructions

Sequence when branch is not-taken

Branch Inst i’ IF ID EX MEM WB
Inst. ‘i+1° IF ID EX MEM WB
Inst. ‘i+2’ IF ID EX
Inst. ‘i+2’ IF ID EX

MEM WB
MEM WB

» We the decision has been made, and the branch is taken, then fetch operations are
turned into NO-OP and fetch is restarted at the target address

Sequence when branch is taken

Taken Branch Inst i’ IF ID EX MEM WB
Inst. ‘i+1’ IF Idle Idle Idle
Branch target IF ID EX
Branch target +1’ IF

2. Predict - Branch taken

MEM WB
MEM WB

An alternative way is to treat every branch as Branch taken

As soon as the target address is computed, we assume that the branch is to be taken
and start fetching and executing at the target

In a five stage pipeline the target address and condition evaluation are available at the
same time, so this technique is of no use.

Let us consider this example of a LOOP to explain the concept:

Loop: |
....... |
i=i+l |
IFi# 1001 THEN Loop |

Here, the branch is taken for 1000 time, so the prediction “Branch Taken” fails 1 in 1000,
hence no stall for 1000 times

Further, the compiler can improve performance by organizing the code so that the most
frequent path matches the hardware choice

Solution #5 Multiple Streams

Have two pipelines
Pre-fetch each branch into a separate pipeline
Use appropriate pipeline
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Results
* Leads to bus & register contention
» Multiple branches lead to further pipelines being needed
» Target of branch is pre-fetched in addition to instructions following branch
» Keep target until branch is executed
» Used by IBM 360/91

Summary

» Type of hazards in pipelined datapath

» Structural hazards occur when same resource is accessed by more than one
instructions

« One memory port or one register write port

» It can be removed by using either multiple resources or inserting stall

» Stall degrades the pipeline performance

» Data Hazards occur when attempt is made to read invalid data

» Data hazard can be removed by using stall and forwarding techniques

» Control hazards occur when an attempt is made to branch prior to the evaluation of
the condition

» Four ways to handle control hazards
1. Stall until branch direction is clear
2. Predict Branch Not Taken
o Execute successor instructions in sequence
o “Squash” instructions in pipeline if branch actually taken
o PC+4 already calculated, so use it to get next instruction
Predict Branch Taken
4. Delayed Branch
o Define branch to take place AFTER a following instruction
o 1 slot delay allows proper decision and branch target address in 5 stage
pipeline

w
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Lecture 12
Instruction Level Parallelism
(Introduction to multi cycle pipelined datapath)

Today’s Topics

» Recap: Pipelining Basics

» Longer Pipelines — FP Instructions

* Loop Level Parallelism

* FP Loop Hazards

*  Summary

Recap: Pipelined datapath and control
» In the previous lecture we reviewed the pipelined datapath to understand the basics of
ILP — overlap among the instruction execution to enhance performance
» Key components of pipeline data path
+ Performance enhancement due to pipeline:
v Pipelining helps instruction bandwidth but not latency
* Pipeline Hazards
v' Structural hazards
v' Data Hazards

Three Generic Data Hazards
» Read After Write (RAW): (dependence)
v instr; tries to read operand before instr; writes it;
i add r1,r2,r3
j:subrd,rl,r3
» Write After Read (WAR): anti-dependence
v' Also called Name dependence(renaming)
i: subrd,rl,r3
j:add r1,r2,r3
»  Write After Write (WAW)
i: sub r1,r4,r3
j:add r1,r2,r3

Pipeline Hazards
e Control hazards
« How to overcome Hazards?

Stall

How to remove Hazards?
e Structural Hazard:
*  Multiple functional units
« Data Hazard
+ Forwarding or bypassing

Control Hazards:
Predict, delay branch
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Instruction Level Parallelism

clock speed

number of instructions that can execute in parallel, i.e., increasing ILP

How to achieve Instruction Level Parallelism?
» A superscalar processor:
v' Pre-fetch and decode
v' Start several branch instruction streams
v" Finally, discard all but the correct stream

MIPS Longer Pipelines — FP Instructions
+ For example to ADD two FP minimum four steps are performed in the following
sequence:

Flow diagram of MIPS FP Adder
» Draw flow diagram of pp284

Steps for FP Addition
» Step 1. Exponents of two numbers are compared, the smaller number is shifted to the
right to till its exponent matches to the larger exponent
» Step 2: Add the significands
» Step 3: Normalize the sum — shift right and increment or shift left and decrement
» Step 4: If no overflow or underflow then round the significand to number of bits
» Stop if further normalization is not required, otherwise go to step 3

Latency of Functional Unit:
« The latency of functional unit is defined as: the number of cycles between the
instructions that produces a result and the one that uses the result of the operation
» The initiation or repeat interval is defined as: the number of cycles that must elapse
between issuing two operations (repeat of an operation) of the same type

Latency Initiation (repeat) Interval
Integer ALU =0 1
Data Memory (Int/ FP Load) =1 1
FP ADD =3 1
FP/ Integer Multiply =6 1
FP/Integer Divide =24 25
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Typical MIPS FP Pipeline
» Let us consider a typical MIPS FP pipeline with three un-pipelined FP functional units

EX

Integer unit

EX

FP/integer
multiply

IF ID MEM WB
EX

FP adder

EX
FP/integer
divider

MIPS FP Pipeline with Pipelined FUs

+ The previous FP pipeline can be extended by adding additional pipeline stages in the
functional units

Integer unk

FPinteger muitiply
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Working of extended FP Pipeline

Note that additional pipeline register have been inserted between intervening stage, e.g.,
A1/A2, A2/A3, .....

Furthermore, ID/EX register must be expanded to connect ID to Al, M1, EX and DIV
Function Units

Here, the FP divide FP is not pipelined but it requires 24 clock cycles to complete

Hazards in Longer Latency Pipeline

All the functional units are not fully pipelined. So structural hazard may occur.
Instructions have varying running time, so more than one register write may occur.
Instructions are no longer reaching WB stage in order so WAW data hazard may occur.
WAR hazards are not possible since registers are read in ID stage.

Stall for RAW data hazard may be more frequent because of longer latency of
operations.

FP Pipeline Hazards — RAW

Clock Cycle Number

INST 1 2 3 4 5 6 7 8 9
L.D F4, 0(R2) IF ID EX WB

MUL.D FO,F4,F6 IF ID st M1 M2 M3 M4 M5
ADD.D F2,FO,F8 IF st ID st st st st
S.DF2, 0(R2) IF st st st st
INST 10 11 12 13 14 15 16 17

L.D F4, O(R2)

MUL.D FO,F4,F6 M6 Me WB

ADD.D F2,FO,F8 st st Al A2 A3 Me WB

S.DF2, 0(R2) st st ID st st st EX Me

FP Pipeline Structural Hazard

Clock Cycle Number

INST 1 2 3 4 5 6 7 8 9 10 11
MUL.D FO,F4,F6 IF ID M1 M2 M3 M4 M5 M6 Me WB
........ IF ID EX Me WB

......... IF ID EX Me WB

ADD.D F2,FO,F8 IF ID Al A2 A3 WB
......... IF ID EX Me WB

......... IF ID EX Me WB

L.D F4, 0(R2) IF ID EX WB
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Conclusion about FP Pipeline
1. Structural Hazard — wait until required functional unit is available
2. Check for RAW data hazard : wait until the source registers are not listed as pending
destinations register that will not be available
3. Check for WAW: determine if any instruction in A1, A2, ...D, M1, M2 , .... has same
destination as this instruction

Precise Exceptions: Out-of-order Completion!
* Inthe program:
DIV.D FO,F2,F4
ADD.D F10,F10,F8
SUB.D F12,F12,F14
Overcoming the Data Hazard by Scheduling
» Static Scheduling — Compiler based
» Dynamic Scheduling — Hardware based

Dynamic Scheduling (Overcoming the Data Hazard)
Advantages:
» Allows to handle cases where dependence is unknown at the compile time
» Allows code compiled for one pipeline to run on other pipe line
* Inthe program:
DIV.D FO,F2,F4
ADD.D F10,FO,F8
SUB.D F12,F8,F14

Problems of Out-of-order execution WAR and WAW
* Inthe program:
DIV.D FO,F2,F4
ADD.D F6,F0,F8
SUB.D F8,F10,F14
MUL.D F6,F10,F8

Exception due to out of order execution
» Already completed instructions
» Not Yet completed instructions

Overcoming Exceptions
Split the ID pipe stage into two:
* Issue:
v" Decode instructions and check for structural hazard
* Read Operand:
v' Wait until no data hazards, then read

Summary: We have talked about longer FP pipelines
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Lecture 13
Instruction Level Parallelism
(Dynamic Scheduling - Scoreboard Approach)

Today's Topics

Recap - Lecture 11-12
Out-of-Order Execution

Problems of Out-of-order execution
Dynamic Scheduling

Scoreboard Technique

Summary

Recap: Lecture 12

FP and Integer Multiplier
FP and Integer Divider
Here, we observed that :
v" Only one instruction is issued on every clock cycle
v' The integer ADD instructions go through the FP pipeline as they go through in
standard pipeline — as the integer ALU operations have ZERO latency
v' The FP add and FP/integer multiply and divide instructions enter into loop when
they reach EX-stage due to longer latencies of these operations — thus increases
the number of stalls before the instruction is issued to EX stage
RAW and WAR hazards may occur because the instruction are of varying length and
may reach WB out-of-order
There are different ways to RAW hazard:
WAW hazard
v (The j™ instruction writes prior to the i" instruction; the i instruction overwrites
the result of j" instruction)
Two ways to resolve WAW hazard
v Delay the issue of j"™ instruction until the i instruction enters the MEM stage
v' Stamp out the i" instruction by detecting the hazard and changing the control
(WB) so that the i" instruction does not write.
v' Hence, the j" instruction can be issued right-away.

In-Order Execution

Simple Pipelined datapath facilitates only the In-order instruction execution, i.e.,
Instructions are fetched, decoded and issued in the sequence of the program and no
later instruction can proceed if an instruction is stalled due to hazard — structural or data
dependence

For example: in the code

DIV.D FO. F2,F4

ADD.D FlC}FO, F8

SUB.D F12, F8, F14
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In-order Execution: MIPS 5-stage Pipeline
+ The MIPS 5-stage pipeline, both the structural and data hazards are checked during the
Instruction Decode (ID) stage; and
» The instruction is issued from ID stage, if it could execute properly
* Here, the issue process, at ID stage, is separated into two parts:
» Checking the structural hazard
» Waiting for the absence of data hazard

Out-of-order Execution: MIPS 5-stage pipeline

DIV.D FO, F2,F4
ADD.D F10, FO, F8
SUB.D F12, F8, F14

Basic Problems of Out-of-order Execution
Consider the example FP code

DIVD FO, F2, F4 N
ADD.D F6, FO, F8

SUB.D F8, F10, F14 &«
MUL.D F6, F10, F8

Scheduling for out-of-order execution
» Static Scheduling:
v' Rearrangement of the instruction execution by the compiler
» Dynamic Scheduling:
v" Rearrangement of the instruction execution by the hardware

Dynamic Scheduling
* Issue:
* Read Operand:

Dynamic Scheduling: Score boarding Technique
+ CDC 6600 contains:
v' 4 FP units
v' 5 Memory Reference Units
v’ 7 integer operation units
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MIPS Processor with Scoreboard

Data Buses
1 FP Mul
+ FP Mul :’

FP Divide ——-f

Registers

Al

FP Afider ——I

Integer Unit |

Control/status

e Features of Scoreboard
v' The Scoreboard:
» Components of Scoreboard
v Instruction Status
v" Functional Unit Status
v' Register Result Status

Instruction Status
These four stages are:

« Issue: If a functional unit for instruction is free and no other active instruction has the
same destination register, the score board issues the instruction to the functional unit
and updates the internal data structure — Thus guarantees that WAW cannot be present

+ Read Operand: The score board monitors availability of the source operand, i.e.,
checks if no earlier issued active instruction is going to write — Thus, it resolves RAW
hazard

» Execute: The FU begins the execution and notify the scoreboard when it has completed
the execution. The scoreboard then updates the data structure

* Write Result: Once the score board is aware that the FU has completed execution then
checks for the WAR hazard , it stalls if necessary and writes the result

Instruction Status Data structure

Instruction Issue Read Execution Write Operands complete result
MUL.D v v

ADD.D v v v v
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Functional Unit Status
+ Busy: A single bit field which indicates if the FU is busy or not
* OP: 2 or 3 bit field specifying the operation being berformed by FU (ADD or SUB etc.)
* Registers: Fi — Destination register Number
Fj, Fk — Source registers number
*  Qjand Qk: The FU (ADD, MUL, ....) producing source register Fj and Fk
* Rj, Rk: Flags indicating source registers Rj, Rk are ready and not yet read — Set to NO
when operand are read

Typical Functional Unit Status table
FU name Busy OP Fi Fj Fk Qj Qk Rj Rk
MUL1 Y Mul  FO F2 F4 - - No No

DIVIDE Y Div F10 FO F6 MUL1 -- No Yes

Register Result Status

Format of the Table:

FO F2 F4 F6 F8 F10 F12...... F30
FU Mull Add Divide

Detailed Scoreboard Pipeline Control

Busy(FU)« yes; Op(FU)« op;
Fi(FU)— 'D’; Fj(FU)«— "S17;
FK(FU)« "S2’; Qj« Result('S1’);
Qk« Result("S2’), Rj« not Qy;
Rk« not Qk; Result('D")« FU;

Rj and Rk Rj«— No; Rk« No

Mot busy (FU)
and not result(D)

Functional unit
done

TH((Fj( f )=Fi(FU)
or Rj( f }=No) &
(Fk( f) =Fi(FU) or
RK( f )=No))

7f(if Qj(f)=FU then Rj(f)« Yes):
Z(if Qk(f)=FU then Rj(f)« Yes);
Result(Fi(FU))«— 0; Busy(FU)< No
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Instruction status

LD F6&
LD F2
MULT FO
SUBD F8
DIVD F10
ADDDF&

Instruction j kK

Functional unit status

Read ExecutiWrite
Issue operamcomple Resuit

34+ R2
45+ R3
F2 F4
F6 F2
FO  F6&
Fg F2

Time Name

S1
Ff

dest
Fi

52
FK

FU for_FU for kFj?
Qf Qk Ri

FK?
RK

Integer
Mult
Mult2
Add
Divide

“The Scoreboard”

Reqister result status

Clock

F4

F6 F8 F10 F12

F30

Scoreboard Example 1

Instruction status_

Instruction j K

LD F6&
LD F2
MULT FO
SUBD F8

DIvD F10

ADDDFB

34+
45+
F2
F&
FO
Fe

R2
R3
F4
F2
F&
F2

Functional unit status

Road  Executi Write
Issue | operanc comple: Result
1

dest S1

Time Name

Integer
Muit1
Mult2
Add
Divide

Register result status

E Yes

Fi FiI__FK

:

S2 FU for FU for kFj?

Fk?
QM—

Load F6 R2

Yes

e
No
No
No

Fu

FO F2

F4 |F6 F$ F10 F12 ..

F30

| l rnteger]
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Scoreboard Example Cycle 3

Instruction status
Instruction j K

Read

Executi|Write
Issue operandcompleilRes it

LD F6
LD Fz
MULT FO
SUBD F&
DIVD F10 FO FB
ADDDFE F8 F2

34+ R2 1
45+ R3
FZ2 F4
F& F2

5

Functional unit status
Time Name

Busy Op

dest
Fi

S1
Fi

$2 FU for FU for kEj?
Fk_Q _ak R

FE?
RK

Yes
No
No

Mo
No

Integer
Mult1
Mult2
Add
Divide

Load F6& R2

Yes

Register result status
Clock

FO F2

F4 F6 F8 F10 F12

F30

3 FU |
e |ssue MULT?

Integer

Note: Scoreboard Example Cycle 3

Instruction status
Instruction j K

Issue

Read  Executh Write
gperanccomple Resuit

LD  F&
LD F2

MULT FO
SUBD FB

DIVD F10 FO FB6
ADDDF& FB8 F2

34+ R2 1
45+ R3
FZ F4
F& F2

2 3

Functional unit status

Time Name Busy

dest
Fi

51
Fi

S2 FU for_FU for kEj?

op Fk_Q __Qk___Rj

FK?
RK

Yes
No
No

No
No

Integer
Mule
Mulc2

Add
Divide

Load F& R2

Yes

Reqister result status

Clock

FO

F2 F4 F6 F8 F10 F12

F30

3 FU |

Inteqger

* |Issue MULT? No, stall on structural hazard

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com




CS-704 Advanced Computer Architecture

Scoreboard Example Cycle 4

Instruction status Read Executi Write
Instruction kK Issue operanccomplel Result
LD F& 34+ R2 1 2 3 4

LD F2 45+ R3
MULTFO F2 F4
SUBDFE Fe& F2
DIVD F10 FO F6

ADDDFE F8 F2

Functional unit status dest S1 52 FUfor FUfor kFj?  Fk?
Time Name Busy Op Fi Ff Fk qf Ok R Rk

Integer |Yes Load F6 R2 Yes
Mult No
Muit 2 No
Add No
Divide No

Reqgister result status

Clock FO FZ2 F4 F6 F8 F10 F12 .. F30

4 Fu | Integer

Scoreboard Example Cycle 5

Instruction status Read  Executi Write
Instruction Kk Issue operanccomplei Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5

MULT FO F2 F4
SUEBDFB F6 F2
DIVD F10 FO F6
ADDDF6 Fg& F2

Functional unit status dest 51 S2 FUfor FUffor kFj?  FK?
Time Name Busy Op Fi FI Fk  Qj Qk Ry RK
Integer |Yes Load F2 R3 Yes
Mult1 No
Mult2 No
Add No
Divide No
Register result status
Clock FO F2 F4 F6 F8 F10 F12 .. F30
5 Fu | Integer
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Scoreboard Example Cycle 6

Instruction status Read  Executi Write
Instruction f k Issue operanccomple Resuit
LD F6 34+ R2 1 2 3 4

LD F2 45+ R3 5 6
MULTFO F2 F4 6

SUEDF8 F6 F2
DIVD F10 FO FB
ADDDF6 F8 F2

Functional unit status dest S1 52 FUfor FUTforkFj? FK?
Time Name Busy Op Fi Fi Fk Qk Rj RK
Integer |[Yes Load F2 R3 Yes
Mult 1 Yes Mult FO F2 F4 Integer No Yes
Mult2 No
Add No
Divide No
Register result status
Clock FO F2 F4 F6 F8 F10 Fi12 .. F30
6 FU  |Mult1 Integer

Scoreboard Example Cycle 7

Instruction status Read ExecuthWrite

Instruction | Kk Issue operarnc complelResult

LD F&6 34+ RZ 1 2 3 4

LD F2 45+ R3 5 6 7

MULTIFO F2 F4 6

SUBDFE2 F6 F2 7

DIVD F10 FO F6

ADDDFE FB8 F2

Functional unit status dest 51 52 FUfor FUfor kFj?  FK?

Time Name Busy Op Fi Fi  Fk of Ok Rj Rk

Integer |Yes Load F2 R3 Yes
Mult1 Yes Mult FO F2 F4 Integer No Yes
Muilt2 No
Add Yes Sub  F8 F6 F2 Integer Yes No
Divide No

Reqister result status

Clock FO F2 F4 F6 F8 F10 F12 .. F30

7 FU  [Mult1 Integer Add

* Read multiply operands?
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Scoreboard Example Cycle 8a

(First half clock cycle)

Instruction status

Read  ExocutiWrite
Instruction j k Issue operanc complei Result

LD F&6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7
MULTIFO F2 F4 B
SUBDFe8 F& F2 7
DIVD F10 FO F6 a8
ADDDF& F8 F2
Functional unit status dest S1 S2 FUfor FUforkFj? FK?
Time Name Busy Op Fi Fji Fk Qj QK R Rk
Integer |Yes Load F2 R3 Yes
Mult Yes  Mult FO F2 F4 Integer NO Yes
Multz No
Add Yes Sub  FB8 F6E F2 Integer Yes No
Divide Yes  Div F10 FO  F6 Multl No Yes
Register result status
Clock FO F2 F4 F6 F8 F10 F12 F30
8 Fu |Mult1 Integer Add Divide
Scoreboard Example Cycle 8b
(Second half clock cycle)
Instruction status Kead ExecutiiWrite
Instruction j k Issue operanccomplei Result
LD  F& 34+ RZ 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULT FO F2 F4 &
SUBDF28 F& F2 7
DIVD F10 FO F6 8
ADDDF6 F8 F2
Functional unit status dest 51 S2 FUfor FUforkFj? FK?
Time Name Busy Op Fi Fj  Fk Qi QK R RK
Integer |No
Mult Yes Mult FO F2 F4 Yes Yes
Mult2 No
Add Yes Sub F8 F6 F2 Yes Yes
Divide Yes  Div F10 FO__F6  Multl NO Yes
Register result status
Clock FO F2 F4 F6 F8 F10 Fi12 F30
8 Fu |Mult1 Add Divide
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Scoreboard Example Cycle 9

Instruction status Read Executi Write
Instruction f K Issue operanccomple Result

LD FB 34+ R2 1 2 3 4
LD F2 45+ R3 & G 7 8
MULT FO F2 F4 6 9
SUBDF8 Fe& F2 7 9
DIVD F10 FO FB 8
ADDDFE F28 F2
Functional unit status dest 51 52 FUfor FUforkFj? Fk?
Time Name Busy Op Ei Ei  Fk Qf Qk Ri Rk
Integer |No
Note: s 10 Mult Yes Mult  FO F2 F4 Yes  Yes
. Muit2 No
time FU , 4 Yes Sub FB  F6 F2 Yes Yes
Divide Yes Div F10 FO  F&  Multi No Yes
Reqister result status
Clock FO FZ2 F4 F6 F8 F10 F12 .. F30
9 FU  [Mult? Add Divide

* Read Operands for MULT & SUBD? Issue ADDD?

Scoreboard Example Cycle 11

Instruction status Read Executi Write

Instruction J K Issue operanc comple Result

LD FB 34+ R2 1 2 3 4

LD F2 45+ R3 5 & 7 8

MULT FO  F2 F4 G 9

SUBD F8 F&6 F2 7 9 11

DIVD F10 FO F6 8

ADDDFe Fg8 F2

Functional unit status dest ST 52 FUfor FUTforkFj? Fk?

Time Name Busy Op Fi Ff Fk Q Qk Ri Rk

Integer |No
8 Mult1 Yes  Mult  FO F2 F4 Yes  Yes
Mult2 No
O Add Yes Sub Fe F6 F2 Yes Yes
Divide Yas  Div F10 FO F&6 Nult? No Yes

Register result status

Clock FO FZ2 F4 F6 F8 F10 Fi12 .. F30

11 FU |I"u"IuIt‘I Add Divide
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Scoreboard Example Cycle 12

Instruction status Read  Executi Write
Instruction j k Issue gperanccomple Result
LD F& 34+ R2 1 2 3 4
LD F2 45+ R3 5 & 7 g
MULTFO F2 F4 & 9
SUBDF8 F6 F2 7 9 11 12
DIVD F10 FO F6 8
ADDDF& F8 F2
Functional unit status dest 571 52 FUffor FUfor kEj?  FK?
Time Name Busy Op Fi Fi  Fk Qj QK Ry Rk
Integer  |No
7 Mult1 Yes  Mult FO FZ F4 Yes Yes
Multz No
Add No
Divide Yes  Div F10  FO  F& Mult? No  Yes
Register result status
Clock FO F2 F4 F6 F8 F10 F12 .. F30
12 FU  |[Muit1 Divide
* Read operands for DIVD?
Scoreboard Example Cycle 13
Instruction status Read  Executi Write

Instruction j  k Issue operanc comple Resuit

LD F& 34+ R2 1 2 3 A

LD F2 45+ R3 5 6 7 8

MULTFO F2 F4 6 9

SUBDF8 FB F2 7 9 11 12

DIVD F10 FO F6 8

ADDDF6 F&8 F2 13

Functional unit status dest 571 S2 FUfor FUTforkFj?  Fk?

Time Name Busy Op Fi Fi  Fk Qj Qk Ry Rk

Integer |No
6 Mult Yes  Mult  FO F2 F4 Yes  Yes
Mult2 No
Add Yes Add F& F8 F2 Yes  Yes
Divide Yes  Div F10 FO F&  Multl No Yes

Register result status

Clock FO F2 F4 F6 F8 F10 F12 .. F30

13 FU |Mult1 Add Divide
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Scoreboard Example Cycle 14

Instruction status Read  Executh Write
Instruction j k Issue operanccomplei Resuit
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTFO F2 F4 & 9
SUBDFB F6 F2 7 9 11 12
DIVD F10 FO F8& 8
ADDDF6 F8 F2 13 14
Functional unit status dest S1 S2 FUTfor FUfor kFj?  Fk?
Time Name Busy Op Fi Fi  Fk Qf QK Rf RK
Integer |No
5 Mult1 Yes Mult FO F2 F4 Yes  Yes
Mult2 Mo
2 Add Yes  Add FG FB F2 Yes  Yes
Divide Yes Div F10 FO F& Multl No Yes
Register result status
Clock FO F2 F4 F6 F8 F10 F12 .. F30
14 FU  [Mult1 Add Divide
Scoreboard Example Cycle 15
Instruction status Read Executh Write
Instruction J kK Issue operanccomplei Result
LD F& 34+ RZ 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTFO F2 F4 5] 9
SUBDF& F&6 F2 7 9 11 12
DIVD F10 FO FB 8
ADDDF& F8 F2 13 14
Functional unit status dest S1 S2 FUfor FUfor kFj? FK?
Time Name Busy Op Fi Fi  Fk Q) QK Rj RK
Integer [No
4 Multl Yes Mult  FO F2 F4 Yes Yes
Mult2 No
1 Add Yes Add F6 F8 F2 Yes Yes
Divide Yes  Div F10 FO F6  Multl No Yes
Register result status
Clock FO F2 F4 F6 F8 F10 F12 .. F30
15 FU  [Mult? Add Divide
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Scoreboard Example Cycle 16

Instruction status Read ExecuthWrite
Instruction Kk Issue operanccomplei Result

LD  F& 34+ RZ 1 2 3 4
LD F2 45+ R3 5 & 7 8
MULTFO F2 F4 6 9
SUBDF8 F& F2 7 9 11 12
DIVD F10 FO FB6 8
ADDDFE F8 F2 13 14 16
Functional unit status dest S1 S2 FUTfor FUTorbFj7?  FKk7
Time Name Busy Op Fi Fi Fk _Qj Qk Rj Rk
Integer |No
3 Mult Yes  Mult FO FZ F4 Yes  Yes
Mult2 No
O Add Yes Add Fé F8 F2 Yes Yes
Divide Yes  Div F10 FO F6 Multi NO Yes
Register result status
Clock FO FZ2 F4 F6 F8 F10 F12 .. F30
16 FU  [Mult? Add Divide
Scoreboard Example Cycle 17
Instruction status Read Executh Write

Instruction K Issue gperanc comple: Resuit

LD F& 34+ R2 1 2 3 4
LD F2 45+ R3 5 = 7 8
MULTIFO F2 F4 [ 9
SUBDFE F& F2 7 9 11 12
DIVD F10 FO F& B
ADDDFE  FB  F2 13 14 16 [—
Functional unit status dest 51 S§2 FUror FUTror kFj7?  Fk?
Time Name Busy Op Fi i Fk qf QK R RE
Integer |No
2 Mult Yes  Mult FO FZ2 F4 Yes Yes
Mult2 MNo
Add Yes  Add F& Fa8 F2 Yes Yes
Divide Yes Div F10 FO  F&  Multi No Yes
Register result status
Clock FO FZ2 F4 F6 F8 F10 F12 .. F30
17 Fu |Mutt1 Add Divide

*  Write result of ADDD?
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Scoreboard Example Cycle 18

Instruction status

Read  Executh Write

Instruction | Kk Issue operanccomple: Result
LD F& 34+ R2 1 2 3 4
LD F2 45+ R3 5 & 7 =}
MULTFO F2 F4 B 9
SUBDFE F& F2 7 9 11 12
DIVD F10 FO F6 8
ADDDF& F8 F2 13 14 16
Functional unit status dest S1 52 FU for FUffor kFf7  Fk?
Time Name Busy Op Fi Fi  Fk Qj 0K Rj Rk
Integer |No
1 Multi Yes Mult  FO F2 F4 Yes  Yes
Mult2 No
Add Yes  Add F& F8 F2 Yes  Yes
Divide Yes  Div F10 FO  F& Multl No Yes
Reqgister result status
Clock FO FZ2 F4 F6 F8 F10 F12 F30
18 FU  Mult1 Add Divide
Scoreboard Example Cycle 19
Instruction status Read  ExecutiWrite
Instruction K Issue operanc comple Result
LD F& 34+ R2 1 2 3 4
LD F2 45+ R3 5 B 7 8
MULTFO F2 F4 & 9 19
SUBDFE F6 F2 7 9 11 12
DIWVD F10 FO F6 g
ADDDFE FB F2 13 14 16
Functional unit status dest S1 S2 FUTfor FUTorbFj?  FK?
Time Name Busy Op Fi Ff  Fk qQj QK R RK
Integer [No
0 Muit Yes  Mult FO FZ F4 Yes Yes
Muilt2 MNo
Add Yes  Add F& F& F2 Yes  Yes
Divide Yes  Div F10 FO  F& Mult1 No Yes
Register result status
Clock FO F2 F4 F6 F8 F10 F12 F30
19 Fu |Mult1 Add Divide
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Scoreboard Example Cycle 20

Instruction status Read  ExecutiWrite

Instruction k Issue operanccomple Result

LD F6 34+ RZ2 1 2 3 4

LD  F2 45+ R3 5 6 7 2]

MULTFO F2 F4 ] 9 19 20

SUBDF8 F& F2 7 9 11 12

DIVD F10 FO F6 8

ADDDF6 F8 F2 13 14 16

Functional unit status dest 51 S2 FUfor FUTforkEj?  FK?

Time Name Busy Op Fi - FK4Qf QK Rj RK

Integer |No
Mult? No
Mult2 No
Add Yes Add F6& F8 F2 Yes Yes
Divide Yes  Div F10 FO F6 Yes Yes

Register result status

Clock FO F2 F4 F6 F8 F10 F12 F30

20 FU | Add Divide
Scoreboard Example Cycle 21

Instruction status Read  ExecutiWrite

Instruction j k Issue operanccompleiResult

LD F5 34+ REZ 1 2 3 4

LD F2 45+ R3 5 & 7 8

MULTFO F2 F4 6 9 19 20

SUBDF8 FB F2 7 g 11 12

DIVD F10 FO F6 8 21

ADDDFe F2  F2 13 14 16

Functional unit status dest S1 52 FUfor FUforbEj?  FK?

Time Name Busy Op Fi Fji Fk Qf QK Rf Rk

Integer  |No
MUl No
Multz hNo
Add Yes  Add F& F8 F2 Yes  Yes
Divide Yes  Div F10 FO __FG6 Yes  Yes

Register result status

Clock FO FZ2 F4 F6 F8 F10 F12 F30

21 Fu | Add Divide
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Scoreboard Example Cycle 22

Instruction status
Instruction

Read  ExecutihWrite

k Issue operanccompleiResult

LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTFO F2 F4 ] 9 19 20
SUBDF8 F6 F2 7 9 11 12
DIVD F10 FO Fé6 8 21
ADDDF6 F8 F2 13 14 16 22 |
Functional unit status dest S1 S2 FUfror FU forbEj?  FK?
Time Name Busy Op Fi Ff Fk Qf QK Rf RK
Integer |No
Muit1 No
Mult2 MNo
Add No
40 Divide Yes Div F10 FO F6 Yes Yes
Register result status
Clock FO F2 F4 F6 F8 F10 F12 F30
22 FU | Divide
Scoreboard Example Cycle 61
Instruction status Read  ExecutiWrite
Instruction J k Issue operanccomple Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTFO F2 F4 6 9 19 20
SUBDFE F6 F2 7 9 11 12
DIWVD F10 FO  F& 8 21 51
ADDDF6 F8 F2 13 14 16 22
Functional unit status dest S1 S2 FUfor FUforkFj?  Fk?
Time Name Busy Op Fi Fi _Fk qQj Qk Ri Rk
Integer [No
MuIt MNo
Mult2 MNo
Add No
O Divide Yes Div F10 FO F6 Yes Yes
Register result status
Clock FO FZ2 F4 F6 F8 F10 F12 F30
61 FU | Divide
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Scoreboard Example Cycle 62

Instruction status Read ExecutiWrite

Instruction j K

Issue operanc complel Resuit

LD F& 34+ R2 1 2 3 4
LD F2 45+ R3 5 = 7 a8
MULTFO F2 F4 B g 19 20
SUBDFE F& F2 7 g 11 12
DIVD F10 FO F6& 8 21 61 62
ADDDFe F8 F2 13 14 16 22
Functional unit status dest S1 52 FUTfor_FUTfor bFf?7  FKk?
Time Name Busy Op Fi Fji Fk Qf QK Rj Rk
Integer  |No
Mult1 Mo
Mult2 Mo
Add Mo
0 Divide Mo
Register result status
Clock FO F2 F4 F6 F8 F10 F12 F30
62 FU |
Review: Scoreboard Example Cycle 62
Instruction status Read  ExecuthWrite
Instruction Jj K Issue operanc complel Result
LD F& 34+ R2Z2 1 2 3 4
LD FZ 45+ R3 5 G 7 8
MULTFO F2 F4 6| (9 19] |20
SUBDFE F& F2 7 9 11 12
DIVD F10 FO  F& g 21 &1 62
ADDDFE F&8 F2 13 14 16) | 22
Functional unit status dest SV 52 FUfor FUTor FFf?  FK?
Time Name Busy Op Fi Fi  Fk Qk R RK
Integer  |No
Muit1 No
Mult2 Mo
Add No
0 Divide Mo
Reqgister result status
Clock FO FZ2 F4 F6 F8 F10 F12 F30
62 FU |

* In-order issue; out-of-order execute & commit

Summary
» Problems of Out-of-order execution
+ Dynamic Scheduling
» Scoreboard Technique
*  Summary

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com




CS-704 Advanced Computer Architecture

Lecture 14
Instruction Level Parallelism
(Dynamic Scheduling — Tomasulo’s Approach)
Today's Topics
* Recap - Lecture 13
» Dynamic Scheduling
» Tomasulo’s Approach
*  Summary

Recap: Summary
» Instruction Level Parallelism in Hardware or Software
+ SW parallelism dependencies defined by program result in hazards if HW cannot resolve
+ HW exploiting ILP works when dependence cannot be determined at run time
» Key idea of Scoreboard —
» Allow instructions behind stall to proceed
» Itis accomplished by dividing the ID stage into two parts
» Issue the instruction in-order
» Read operand out-of-order
» Structural and data dependencies are checked at ID stage
+ It facilitates out-of-order execution which results in out-of-order completion

Review: Three Parts of the Scoreboard
1. Instruction status — which of 4 steps the instruction is in
2. Functional unit status — indicates the state of the functional unit(FU). 9 fields for each
functional unit

Busy — Indicates whether the unit is busy or not

Op - Operation to perform in the unit (e.g., + or -)

Fi — Destination register

Fj, Fk — Source-register numbers

Qj, Qk — Functional units producing source registers Fj, Fk
Rj, Rk — Flags indicating when Fj, Fk are ready

~0o o0 o

3. Register result status — Indicates which functional unit will write each register, if one
exists. Blank when no pending instructions will write that register.
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Review: Scoreboard Example Cycle 3

Instruction status Resd Executhvnte
Instruction j Kk ISSue Qpersnc conpie Resuit

Lo 6 34eR2 [ 1 2 3
LD F2 45+ R3
MULTFO F2 Fa |[ |
SuBDF8 F6 F2 |
DIVD F10 FO  F6
ADDDF6 F8 F2

Functional unit status aest  S1 S2 FU for FUTor bFj?  Fx?
Time Kame Busy p A H kO ok Ri  Rx
integer [Yes Load 6 R2 Yes
Muit1 No
Mur 2 o
A No
Divide  |NO
ef result status
Clock FO F2 F4 F6 F8 F10 F12 .. F30
3 U Integer

e |ssue MULT? No, stall in structural hazard

Review: Scoreboard Example Cycle 9

Instruction status Resd Executiwnte
Instruction § Kk ISswe opersnc conpis Resust

D F& 34« R2 | 1 2 3 4
LD F2 45+ R3 | 5 6 7 8
MULTFO F2 Fa | 6 79
SUBDF2 F6 F2 7 9
OIVD F10 FO F& | 8
apcoFe F2 f2 ||
Functional unit status oest S1 S2 FUfor FUTforkFj?  Fx?
Time Name Busy o F i af QK R R
Integer
10 Mult 1 Yes MUt FO  F2 F4 Yes  Yes
Mult2  [No
2 aad Yes Sub  Fg 6 F2 Yes Yes
Diide |Yes Div_ F10  FO  F6  Mult NO  Yes
Mstﬁl result status
Clock FO F2 F4 F6 F8 F10 Fi12 .. F30
o FU  [Murtt A1 Divide

* Read operands for MULT & SUBD? Issue ADDD?
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Review: Scoreboard Example Cycle 17

Instruction status Res0  Executhwnte

Instruction j Kk Issue gpersnc Resuit

LD F6 24+ R2 1 2 3 4

LD F2 45+ R3 5 6 7 8

MULTFO F2 F4 6 a

SUBDF8 F6 F2 7 o "2

DIVD F10 FO  F6 8 p—

ADDDF6 F8 F2 |13 14 18 |

Functional unit status st  S1  S2 FU for FUTor sFj?  Fx?

Time Name Busy o A M~ Qi oK Ri  Rx

Integer  [NO
2 Murt1 Yas Mut RO F2 F4 Yes  Yes
Mult 2 N
A Yes Add F6 F8 F2 Yes  Yes
Divide Yes Div F10 O F6  Mult1 NO Yes

Reqister result status

Clock FO F2 F4 F6 F8 Fi0o Fi2 .. F30

17 FU Mty Al Divide

Write resulf of ADDD? No, WAR hazard

Review: Scoreboard Example Cycle 62

Instruction status Res0  Executiwnte
Instruction j Kk Issue QoersncompisResuit
LD F6 34+ R2 [ 2 3 4
LD F2 45+ R3 |5 3 7 8
MULTIFO F2 F4 | 8| (9 19) | 20|
QUeDF8 F6 F2 || 7 9 1" 12
DIVD F10 FO F6 |8 | |21 61 |62
ADDDF6 F8 F2 |13, 14 16
Functional unit status 08k S1 S2 FUTfor FUTforsFj?  Fk?
TimeName Busy ® Fi Fi K O Ok R R
Integer  [Wo
Mult T
Mtz (w
Add T
O Divige  |Wo
Mstenewtstaus
Clock FO F2 F4 F6 F8 Fi0 Fi12 .. F30
62 U

In-order issue; out-of-order execute & commit
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Review: Scoreboard Summary
* Speedup 1.7 from compiler; 2.5 by hand
v' But slow memory (no cache)
» Limitations of 6600 scoreboard
v No forwarding(First write register then read it)
Limited to instructions in basic block(small window)
Number of functional units(structural hazards)
Wait for WAR hazards
Prevent WAW hazards

AN N NN

Another Dynamic Scheduling Approach: Tomasulo's Algorithm
* Introduced by Tomasulo for IBM 360/91 about 3 years after CDC 6600 (1966)
» Goal: High Performance without special compilers

Tomasulo's Algorithm Vs. Scoreboard
» Differences between IBM 360 & CDC 6600 ISA is:
v" IBM has only 2 register specifiers / instr vs. 3 in CDC 6600
v" IBM has 4 FP registers vs. 8 in CDC 6600

Tomasulo's Organization For Dynamic Scheduling

FP Op Queue FP

Fi - peli REgiEters
Mz non
Load  ase por ! '
" Ik egele
Ellﬁe_rmdhlr't B —

b

g

]

Ed

3 .

I ; tore
Comn, - [Buffe
Data penibie b
Bus _ —

P Agl
BT T WHas 01— 1FP Mul
tatl EE T RES'
Station
T =Tl e TS

Components of Tomasulo's Structure
» FP Operation Queue: Instruction are sent from instruction unit into the instruction Queue
in FIFO order
» FP Adder Reservation Station
» FP Multiplier Reservation Station
» The reservation stations include
v Operations, actual operands and information to resolve hazards
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Load Buffers have three functions:
v Hold components of effective address until it is computed
v' Track outstanding Loads waiting on memory
v" Hold the result of completed load waiting for CDB
Store Buffers also have three functions:
v" Hold components of effective address until it is computed
v Hold the destination memory address of outstanding store instructions
v Hold the address and value of store until the memory unit is available
Common Data Bus: The difference between CDB and Normal bus is
Normal data bus: The data and destination (“go to” bus)
Common data bus: The data + source (“come from” bus)
v Does the broadcast
v’ 64 bits of data + 4 bits of Functional Unit source address

Sequence of operations

All the results from the FP units or the Load unit are placed on the Common Data Bus,
which goes to the FP register file as well as to the RS and store buffers

Tomasulo's Algorithm Vs. Scoreboard

Control & buffers distributed with Function Units (FU) in Tomasulo vs. centralized in
scoreboard
FU buffers called “reservation stations”; have pending operands
Registers in instructions are replaced by values or pointers to reservation stations(RS)
This is called register renaming

v' avoids WAR, WAW hazards
More reservation stations than registers, so can do optimizations which compilers can’t
Tomasulo: Results to FU from RS, over Common Data Bus that broadcasts results to all
FUs
Scoreboard: Result to FU through registers

Components of Reservation Station

Op— Operation to perform in the unit (e.g., add, sub, ...)
Busy— Indicates reservation station or FU is busy
Vj, Vk— Value of Source operands

v'Store buffers has V field to store the result
Qj, Qk— Reservation stations producing source registers value to be written
Note: No ready flags as in Scoreboard; Qj,Qk=0 => ready
Qi — Store buffers only have Qi for RS producing result
Register result status — indicates which functional unit will write each register, if one
exists.

v Blank when no pending instructions that will write that register.
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Three Stages of Tomasulo’s Algorithm
1. Issue — getinstruction from FP Op Queue
v' If reservation station is free, i.e., no structural hazard then control issues
instruction and send operands to the RS (renames registers).
2. Execution — operate on operands (EX)
v" When both operands ready then execute; if not ready, watch Common Data Bus
for result
3. Write result — finish execution (WB)
v" Write on Common Data Bus to all awaiting units;
v" mark reservation station available

Tomasulo Example Cycle 0

Instruction status Ewcuton  IWite
Instruction  f k lsme comphte  Resuk
LD F& . R2 Load]
LD F2 45%. R3 Load2
MULTIFO  F2 Fd Loadd
SUBD FB Fa F2
oD F10 (RO Fi
ADCOFE F8 F2
Reservation Stations 1) 52 RSfor] RSPrk
Time Mame BusyOp V) vk o Ok
0 Al |No
0 Ada2 Mo
0 Ag31 N0
O Mult1 e
O Munt2 o
lﬁgtw resuit status
Clock FO F2 F4 Fé F8 F10 F12 .. F30
0 |

5y Address

&8 5%

Tomasulo Example Cycle 1

etruction Status Ewcuton  Write
retruction k Esue comphte Rewult Buzy _Address
D FE&  34. R2 ! Loadl  Yes  34.R2
D F2 45. R3 Lood2 o
MWLTFO F2 Fa Loadd Mo
SLIBDF8 F6 F2
DND F10 FO Fé
ALCOFE  FB F2
Rezérvation Stations s? s2 RSfar) RSfurk
Tme Name Susy@®@ V) VX 9! N
0 Add) |0
0 Add2 |No
Add3 |No
O Mt [he
O M2 [ No
Register roault status
Clock FO__F2 F4 Fé F8 F10 F12 .. F30

1 LT | Load!
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Tomasulo Example Cycle 2

Dotruction Ztatus

retruction
o Fe
o F
MLT FO
SuBD Fa
DND F10
ALCOFE

J
3‘.
45.
F2
Fé
FO
F8

Roservation Stations

Tme Name
0 Add)

0 Agaz
Ada3d

O Mt
0 M2

Ewcuton
k Esw Ve
R2 |
R3 2
Fa
F2
Fé
F2

Write
Rosu't

RS for )
ol

Loadt
Looda2 |Yes

Address

J4.R2
45.R3

Yes

Loadd [No

RS for k

X

No

No
No

Register result status

Clock
2

FO  F2

Fd4

F6

F8

F10 F12 .. F30

fu | Looad2

Loadl

* Note: Unlike 6600, can have multiple loads outstanding

Tomasulo Example Cycle 3

retruction
o Fe
o F2
MLT FO
sSueDFe
DND F10
ALCOFE

J
34.
45.
F2
F6
FO
Fe

Rozervation Stations

Tme Name
0 Add)

0 Ada2
Adad3

O Mt

Ewcuton
X

Write
Rosu't

Esue compbte
R2 1 3
R3 2
Fa 3
F2
Fé
F2

RS for )

Loadt
Looa2
Load3

RS for k

Yes MULTD

O M2

No

R(F4)

Loaa2

.Ogﬂ.’ reault status

Clock
3

FO F2

Fd

F6

F8

F10

F12 .. F30

FU  Munlt! Lood2

Loadl

* Note: Registers names are removed(“renamed”) in Reservation Stations; MULT issued
Vs. scoreboards
* Loadl completing: What is waiting for Load1?
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Exocution

ratruction lexuo & 9

CS-704 Advanced Computer Architecture

Write
Result

LD Fs
Lo F2
MILT FO
SUBD F8
VD Fi10
ALODFS

3
B

W N -

4

Razeration Statcos s?

v

s2
VX

&S for |

Load)

By Address
|
(54 45.R3
Load: [No

Lo 2

RSrork

0r SUED M(34.R2)

MULTD

R(F4) Load2

Lo 2

QQQC_SW rezult status

Clock FO F2

F4 F6

F8 F10 F12 .. F30

Rl FU  Multl Loaa2

M(34.R2)

Add)

» Load2 completing: what is waiting for it?

Tomasulo Example Cycle 5

Exocution

rotruction complote

Write
Rosu't

L0 s 34
L0 F2  45.

MILTFO  F2
SUBDF8  F6

VD FI10 FO
ACODFS  FB

4
5

Razervation Statiens
Nime Name

s?
vl

52
vk

RS for |
ol

Address
Loxd)
Loxd2
Load3

sSE|®

RSfork
ox

2 Add)
0 Add2

Add3
10 Muk )

SUED M(34-R2)

MULTOM(45.R3)
VD

MA45.R3)

R(F4)

M 34.R2) Mut)

lOQStOl rosulit status

Clock FO F2

F4 F6

F8 F10 F12 ... F30

5 FV |Munl M454R3)

M(34.R2)

Addl Wl
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Tomasulo Example Cycle 6

netruction statgs Exocution  Write
ratruction k  Jsmue complote Resu't By Address
L0 F6 34. R2 1 3 i Load) [No
LD F2 45. R2 2 B s Loxd2 |No
MULT FO  F2 F4 3 Load3 [No
SUBDFS  F6 F2 N
OIVD F10 FO  F§ 5
ACODFS  FB8 K2
Rezervation Stators s? s2 RSfoar) RSfork
ime Name Bus v vk 9! Sk
1 Add) SUED M(34.R2) M 45.R3)
0 Add2 [Yes ACOD MA45.R2)  Add)
Add3 [No
2 MUEY [Yor MULTOM46.RT) R(F4)
O MUR2 [Yer CAVD M 34.R2) M)
Reqistar result status
Clock FO F2 F4 F6 F8 F10 F12 .. F30
6 FU [Mult] M(45.R3) Ada2 Ada) el
* Issue ADDD here vs. scoreboard?
Tomasulo Example Cycle 7
natruction statgs Exocution  Write
ratruction k Is=w ¢ 0 Rosut By Address
L0 FS 34. R2 1 3 i Loadl N0
L0 F2 45. R3 2 Rl 5 Load2 N0
MLT FO  F2 F4 3 Load3 [No
SUBDF8  F6 F2 N
OIVD FI10 FO  F§ 5
ACODFS  FB8
Rezeration Statem s2 RSfor) RSfork
ime Name Bus vk 9! ok
1 Add) M45.RT)
0 Add2 |Ye: ACOD MA5.RT)  Add)
Add3 [No
O MUED [Yor MULTOM(45.R1) R(F4)
OMUR2 |Yer CAVD M 34.R2) M)
Reqgistar result status
Clock FO F2 F4 F6 F8 F10 F12 .. F30
6 FU [Mult] M{45.R3) Add2 Add) el

+ Addl completing; what is waiting for it?
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Tomasulo Example Cycle 9

reyucion sins Evecuton Vive
reyuction J Kk issye complefe  Resut Busy Ad¥ess
Lo M N =82 1 3 < Losat N0
D F2 48« R3 P < H 2 INo
MULTFD R s 3 Loss? [No
SUBOFE 5% 2 - 7 H
ONVD(FI0 RO £3 §
ADDOFE 78 F2 B
Reser/aton Siysors S1 82 RE%r) RSferk
Tme Nome BusyOp W) VA ) Qv

0 ASSt INe

e A3 |Ye: ADDD M) MaseR2

0 AS22 INe

7 Mut! |Yes MULTOMES-RI) R(F4)

oMU |Yes OV M(3=RD) 1At
o AT A
Clock F0 F2 F4 F& F8 F10 F12 .. F30

8 FU [MuRT MiaSeR3) A2 MO | a2
Tomasulo Example Cycle 10
Exocution Write
ratruction ) Rosu't By Address
LD F5 34. 4 Loadl [No
LD F2 4S. 5 Load2
MILT FO  F2 Load3 |[No
SUBDFS  F6 El
oIVD F10 FO
ALODFS  FB
Razervation Statioos s2 RSfor) RSfork
ime MName Bus vk o) ox

0 Add [No

0 Add2 |Yes ACOD M)-M)  M45.RI)

0 Add3 |No

SMUET [Ye:r MULTOM45.R) R(F4)

OMUR2 |Yer CivD M 34.R2) W)
R.!SQOI result status
Clock FO F2 Fd F6 F8 F10 F12 .. F30

10 Fv IMunl M(45.R1) Ada2 MO e .

+ Add2 completing; what is waiting for it?
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Tomasulo Example Cycle 11

royocton 313 Evecuton vave
rsyucion J Kk issye complete Resye Bus Adress
Lo F e /2 1 3 ) Losgt [No
O F2 iEe |3 P < g Loacs2 INe
MULT FD 2 53 3 Loaa? No
SUBDFE  ® F2 - 7 3
OVD [F10 (RO £g g
ADODOFE 78 F2 < 10 11
Reser/3ton Stysors S1 S2 RS %rj RSferk
Tme Neme Busy Op \) v Q [~
0 Adet INe
0 ASC2 INo
0 A2 |No
& Mutt [Ye: NULTOM&E-RS) RIF4)
oMU |Ye: OO M(3L-R2)  Mhut!
Baginecrant 2z
Clock F0 F2 F4 F& FS F10 F12 .. F30
" U [\-u: M&E-R3) (L N Y e U
*  Write result of ADDD here vs. scoreboard?
Tomasulo Example Cycle 12
etouction SLates Evocution  Write
Fatruction k  le=ue complote  Rasu't Eu Address
LD F6 34« R2 1 3 4 Load1 [Mo
LD F2 45. R2 2 4 g Losd2 Mo
MILT FO  F2 Fd a Lasdd [Mo
SUBDFE FE& F2 4 [] 7
OIVD F10 FO F& 5
ACODFS FE F2 ] 10 11
Razsrvation Statiens 51 52 RSfor|] RSfork
Mma Name Vi Wk (1] Ok
0 Add1
0 Add2
0 Ada3
I NUED [Ye: MULTDM[45-R1) R{F4)
O NuE2 |Ye: DIVD M I4R2E Mt
Reqgistar rasult status
Clock FO F2 F4 F& F8 F10 F12 .. F30
12 FU [Mult] M{45.R3) (MMM M)-M) Muse2

Note: all quick instructions complete already
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Tomasulo Example Cycle 13

rotuction S1onE Erocution  Write
Iswe ¢

Fatruction  § k& omplote  Resu't Busy Address
LD Fs 34« R2 1 3 4 Load 1
LD F2 45. R3 2 4 5 Load2
MILT FO F2 F4 3 Loadd |MNo
SUBCF8 Fe F2 4 7 8
OIVD F10 FO F& 5
ACODFS  FB F2 5 10 11
Razervation Statiors 57 52 RSfor] RSfork
Nme Mame Bus v Wk o) Ok
0 Add1 [No
0 AddZ2 |No
Add3 |No

2 MUk [Yor MULTOM(45-R1) R(F4)

O Muk2 |Yo: DIVD M 34.R2) Mt
Reqister result status
Clock FO F2 Fd Fé6 F8 F10 F12 .. F30

13 FU [Mult] M(454R3) (MDY M) M2
Tomasulo Example Cycle 14
atruction sLates Erocution  Write
rotruction | k  Isue complete  Result . Busy Address
LD Fs 34« K2 1 k | 4 Loadl [No
LD F2 45. R2 2 L) 5 Load2 [No
MILTFO F2 F4 3 Loadd [MNo
SUBD'FE  F& F2 4 7 8
DIVD F10 FO Fé 5
ACODFs  FB F2 5 10 11
Rorcarvation Staticors 51 52 RS for | RSfork
Time NMame Vi Vi (2]} Ok

0 Add

0 Add2

0 Add3

1 MUED [Yer MULTDM(45.R3) R(F4)

O Muk2 |Yez DIVD M 34.R2) Muit]
Registar result status
Clock FO F2 Fd4 Fé6 F8 F10 F12 .. F30
14 FU [Mult] M(45-R3) (MMM MO M
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Tomasulo Example Cycle 14

xutnuction status Exocution  Write
rotruction  J ks

w ¢ 0 Resu't By Address
L0 F6 34. R2 1 3 4 Load) [No
LD F2 45. R) 2 ] H Loa2 INo
MWLT FO  F2 F4 3 15 Load3 |No
SUBD F8  FE F2 4 7 8
VD F10 FO s 5
ALODFS  FB F2 5 10 11
Razervation Stations s? s2 RSfor) RSfork
v vk ] ox
O MUK [Yor MULTOM(45.R3) R(F4)
OMUR2 |Yer VD M 34.R2) WMt
Registar result status
Clock FO F2 F4 F6 F8 F10 F12 .. F30
15 FU [Mutl M45.R3) (MMM MO e
*  Multl completing; what is waiting for it?
Tomasulo Example Cycle 16
Fotruclion <1ane Evecution Write
rotruction | k  lmue complate Resit Eu Address
LD Fs 34. R2 1 E | 4 Losdl [N
LD F2 45. R3 2 4 £ Losd2 [Ne
MILTFO F2 F4 3 18 16 Loadd [No
SUBD:FE  FE F2 4 7 8
OivD F10 FO Fea &
ACODFs  FB F2 10 11
Raservation Stations s? 52 RSfor) RSfork
Vi Wk aJ el
40 MUR2 |Yo: DIVD  M*F4 M 3d.R2)
Reqgistar rewuht status
Clock FO F2 F4 Fé6 F8 F10 F12 ... F30
16 FU AEFE MESRD) (MM M) M)A e

* Note: Just waiting for divide
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Tomasulo Example Cycle 55

Evecution Write

otruction SIanE
rstruction  f & lsue complote  Result
LD Fs 34. R2

LD F2 45. R1

MILT FO F2 F4
SUBDFE  Fe F2
OvD FI10 FO F&
ACODFS FB F2
Razervation Statiors 5! 52 RSfar) RSfork
nme Mame vl v (4] o
0 Add
0 Add2
Add3
0 Mkl
T MuR2 |Yoe: DIVD M*F4 M 34.R2)
Registar result status
Clock FO F2 F4 Fé6 F8 F10 F12.. F30

Address

s55|®

15 16 Load®

i i e B =
wl
@

55 [ 41] |u'|=-| M{45.R3) (MDD e 2

Tomasulo Example Cycle 56

atuction status Execution _ Write
ratruction | 3 <

Lb Fs 34. R2

Address

1 3 4 Load
LD F2 45. R31 Fr 4 4 & Loy 2
MWLT FO F2 F4 3 15 16 Load3
SuBDF8 Fe F2 4 7 8

5

]

558

OIVD FI10 FO Fa 113
ACODFSs FE F2 10 11
Razarvation Staters 57 52 RS for | RSfork
Nme Mame Busydp Vi Vi a ox
O Add1 [No
O Add2 [No
Add3 |No
0 MUkl [No
OMUE2 |Yo: DIWVD M*F4 M 3d.R2)
Reqistar result status
Clock FO F2 F4 Fé6 F8 F10 F12 .. F30

56 FU [M*F4 M{45.R3) (MMM MO e

+  Mult 2 completing; what is waiting for it?
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Tomasulo Example Cycle 57

natnuction S1anges.

rutruction |k
L0 F6  34. R2
LD F2 45. R1
MULTFO  F2  F4
SUBDF  F6  F2
VD FI1O FO  FS
ACODFS FB  F2

N N W N -

Exocution  Write
_complote Resu't

3 4

Kl 5
15 16
7 8
t 56 [ 57

10 L1

Razervation Stations
me Name Bus

s?
v

RS for )

=)
Load)
Load2 N0
Loadd [MNo

Address

RSrfork

ok

0 Add) |No
0 Add2 |No

Add3 [No
O MUkl [No
O MuE2 |No

Registor result status
Clock

FO__F2

F4 F6

F8

F10 Fi12 ..

F30

57

FU IM‘FJ M(45.R3)

(MM}« M)

MO Fa M

* Again, in-order issue, out-0Of-order execution, completion

Compare to Scoreboard

Instruction status
Instruction j &
LD F6 34+ R2
LD F2 45+ R3
MULTIFO F2 F4
SUBDFE F6 F2
DIVD F10 FO F6

ADDDF6 F8 F2

Functicnal unit status

Time Name
Integer
Mult 1
Mult 2
Acd

Cycle 62

Res0  Execuliwnte

gest
Fi

S1
Ei

S2 FUTror FU for §Fj?
ko

o RJ

O Diige

Regist er recult status

Clock

F6 F8 F10 Fi2 ..

F30

62

+ Why takes longer on scoreboard/66007?
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Tomasulo v. Scoreboard
(IBM 360/91 v. CDC 6600)

Pipelined Functional Units  Multiple Functional Units
(6 load, 3 store, 3+, 2 x/+}) (1load/store, 1+,2x,1+)

window size: = 14 instructions < 5 instructions
No issue on structural hazard same
WAR: renaming avoids stall completion
WAW: renaming avoids stall completion
Broadcast results from FU Write/read registers
Control: reservation stations central scoreboard

Tomasulo Drawbacks

+ Complexity
- delays of 360131, MIPS 10000, IBM 620
+ Many associative stores (CDB) at high speed

+ Performance limited by Common Data Bus
- Multiple COBs == more FU logic for parallel assoc stores

Another Example: Loop Unrolling

» Let us consider another example to understand WAW and WAR are eliminated by
register renaming

» Here, is an example of multiplying an array (FO) by a scalar F2
Tomasulo Loop Example

Loop: LD FO 0 R1
MULTD F4 F0 F2
sD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

+ Assume Multiply takes 4 clocks

» Assume first load takes 8 clocks (cache
miss?), second load takes 4 clocks (hit)

« To be clear, will show clocks for SUBI, BNEZ
+ Reality, integer instructions ahead BaP Spr o eca 3

Another Example: Loop Unrolling

» Here, we predict the branches are taken, thus the RSs allow multiple executions of the
loop by dynamic unrolling

+ The unrolling can be shown by two active iterations, based on prediction branch taken
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Loop Example Cycle O

Instruction status Executioownte
Instructin K ftersbon Issue ¢ Resust Busy Address
L0 FO oORrR1 1 Loadl |No
MULT F4 FO F2 1 Load2 |[No
SO F4 oRrl 1 Loadl [No o
L0 FO oR 2 Storel |No
MULT F4 FO F2 2 Store2 |No
SO F4 OR1 2 Stered [No
Ressrvation Stations s1 S2 RS FOr RS for k
TimeName BusyOp Vi VK QJ ok Cooe:
0 Addl [No LD FO oRrm
0 Agd2 |No MULT F4 FO F2
0 Add3 [No SD F4 oRrRl
0 Mult1 |No SUBI R1 R1 28
0 Muit2 [No BNEZ R1 Locp
Register result status
Clock R1 FO F2 F4 F6 F8 F10Fiz... F30
0 8 o |
Loop Example Cycle 1
Instruction status ExecutionWwnte
Instructin K iterslion Issue ¢ Resut
LD FO oR 1 1 Loadl
MULT F4 FO F2 1 Load2
SO F4 oORm 1 Load
L0 FO oRl 2 Storel
MULT F4 FO F2 2 Store2
SO F4 oR 2 Stored
Reservation Stations ST s2 RS fOr RS for k
TimeName Busy(p Vi vk QJ Ox Cooe:
0 Adal |No 0 FO orm
0 Add2 |No MULT F4 FO F2
0 Ada3 |No S0 F4 om
0 Murt1 [No SUBI R1 R1 28
0 Muit2 |No BNEZ R1  Loop
Reqister result status
Clock R1 FO F2 F4 F6 F8 FiOFiz... F30
1 80 O | Load)
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CS-704 Advanced Computer Architecture

Instruction status ExecutionWwnte
Instructin K fterstion Issue ¢ Resust Busy Address
LD FO oRr 1 1 Loadl |ves 80
MULT F4 FO F2 1 2 Load2 [No
SO F4 OR1 1 Load3 [No o
LD FO oRrR 2 Storel [No
MULT F4 FO F2 2 Store2 [No
SO F4 oRr 2 Stcred [No
Resecvation Stations S1 $2 RS fOr RS for k
TimeName Busy Vi VK QJ oK Cooe:
0 Adal |No LD FO om
0 Ada2 |[No MULT F4 FO F2
0 Add3 |[No S0 F4 OR1
0 Multl |Yes MULTD R(FZ) Loam SUBI R1 R1 28
0 Munt2 [No BNEZ R1  Loop
Reqgister result status
Clock R1 FO F2 F4 F6 F8 FiOFiz... F30
2 80 Of | Loadl Murt
Loop Example Cycle 3
Instruction status ExecutionWwnte
Instruction K fteralion Issue ¢ Resust Busy Address
L0 FO oRr 1 1 Yés 80
MULT F4 FO F2 1 2 Load2 |No
SO F4 oRrl 1 3 Loadl [No o
LD FO oRrl 2 Storel [yes 80 [Mut)
MULT F4 FO F2 2 Store2 [No
SD F4 oRm 2 Stored (No
Ressrvation Stations ST $2 RS FOr RS for k
Time Name Busy(p Vi VK QJ Oox Coge:
0 Adal |No LD FO OR1
0 Ada2 |No MULT F4 FO F2
0 Ada3 |No S0 F4 ORY
0 Mult! |[Yes MULTD R(F2) Loam SUBI R1 R1 28
0 MuRrt2 [No BNEZ R1  Locp
er result status
Clock R1 FO F2 F4 F6 F8 Fi10Fis... F30
3 80 O | Load) Murt

Note: MULT1 has no registers names in RS
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Loop Example Cycle 4

Instruction status ExecuboWnte

Instruction K jtersbon issue ¢ Resust

L0 FO oRrRl 1 1

MULT F4 FOF2 1 2

SO F4 oRm 1 3

LD FO oORrl 2

MULT F4 FO F2 2

SO F4 oORm 2

Ressrvation Stations S1 S2 RS FOr RS for k

TimeName Busy(o Vi VK Q -

0 Adadl |No D FO OR1
0 Ada2 |No MULTF4 FO F2
0 Ada3 |No S0 F4 OR1
0 Mult! |Yes MULTD R(FZ) Loam SUBI R1 R1 28
0 Muit2 |No BNEZ R1  Loop

Reqgister result status

Clock m FO F2 F4 F6 F8 Fi10Fiz... F30

4 72 O | Loadt Muit

Loop Example Cycle 5

Instruction status Execubonwnte

Instructin J K fterabon Issue compiete Resust Busy Address

L0 FO oRm 1 1 Yées 80

MULT F4 FO F2 1 2 Load2 [No

SO F4 oRrR 1 3 Loadl [No o

L0 FO oRm 2 Storel [yes 80 [Mut)

MULT F4 FO F2 2 Store2 [No

SD F4 oRrl 2 Stored [No

Ressqvation Stations ST S2 RS FOr RS for k

TimeName Busy(p Vi VK Q ox Coge:

0 Aadl [No L0 FO OoR1
0 Ada2 [No MULT F4 FO F2
0 Add3 [No SD F4 OR1
0 Mult! |Yes MULTD R(F2) Loadl SUBI R1 R1 28
0 Muit2 [No BNEZ R1  Locp

Register result status

Clock R1 FO F2 F4 F6 F8 FiOFi1z... F30

5 72 O | Load) Muit)
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Instruction status Execulorwrite
Instruction kK teration Issue compels Resut Busy Address
b O O R1 1 1 Loadl [ves 80
MULT F4 FO F2 1 2 Load2 |ves 72
SD F4 o Rl 1 3 Load3 |No o
LD FO OR1 2 6 orel |ves 20 MUt
MULT F4 FO F2 2 ore2 |No
SD F4 OR1 2 Store3 |[No
Ressrvation Stations ST s2 RS FOr RS for Kk
TimeName BusyOp Vi VK Qj oK Cooe:
0 Adadl |[No LD FO ORI
0 Agaz2 |No MULT F4 FO F2
0 Ad0a3 NS SD F4 ORrR1
O Mult! |ves MULTD R(F2) Loam SUBI R1 R1 28
0 Muit2 | Mo BNEZ R1 Loop
Register result status
Clock  R1 FO F2 F4 F6 F8 F10F1Z.. F30
6 72 OF | Load2 Muit 1
* Note: FO never sees Loadl result
Loop Example Cycle 7
Instruction status Execulionwrite
Instructikn K fterstion Issue CcOmpelERes st Busy Address
w0 F OR1 1 1 Loadl |ves 80
MULT F4 FOF2 1 2 Load2 |yes 72
SO F4 O R 1 3 Load3 [No o
o O R1 2 6 orel [yes 90 [Mut)
MULT F4 FO F2 2 7 ore2 |[No
SD |F4 OR1 2 ora3 |No
Reservation Stations §1 S2 RS FOr RS for k
TimeName BusyOp Vi VK QJ Ok Cooe:
0 Addl |No LD FO OoR1
0 Adaz |No MULT F4 FO F2
0 Add3 |No SD F4 ORr1
0 Multl |Yes MULTD R(F2) LoaM SUBI R1 R1 28
0 MuRt2 |Yes MULTD R(F2) Load2 BNEZ R1 Loop
ar rasult status
Clock  Ri FO F2 F4 F6 F8 F10F1Z.. F30
7 72 O | Load2 Murt2

+ Note: MULT2 has no registers names in RS
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Loop Example Cycle 8

Instruction status ExecutionWnte
Instruction  J kK fterstion Issue compiete Resut Busy Address
LD FO oRrl 1 1 Loadl |ves 80
MULT F4 FO F2 1 2 Load2 |yes 72
SO F4 oORrl 1 3 Loadl |No o
L0 FO oRrl 2 () Storel [Yes 80 [Mut)
MULT F4 FO F2 2 7 Store2 [vyes 72 [Mut2
SO F4 oRm 2 a Stored [No
Ressrvation Stations 3 S2 RS FOr RS for Kk
TimeName Busy® Vi VK QJ oK Coge:
0 Adal |No LD FO oRrl
0 Ada2 |No MULT F4 FO F2
0 Ada3 |No SD F4 om
0 Mult! |Yes MULTD R(F2) Loadl SUBI R1 R1 28
0 Mult2 |Yes MULTD R(F2) Load2 BNEZ R1  Loop
Reqgister result status
Clock R1 FO F2 F4 F6 F8 Fi10OFiz... F30
8 72 O | Load2 Munr2
Loop Example Cycle 9
Instruction status ExecutionWnte
Instructkn  J K iterslion Issue compiete Resut Busy Address
LD FO oRrm 1 1 =) Loadl |ves 80
MULT F4 FO F2 1 2 Load2 |Yes 72
SO F4 oRrm 1 3 Loadl |[No o
LD FO oRrm 2 & Storel [Yes 80 [Mut)
MULT F4 FO F2 2 7 Store2 [Yyes 72 [Mut2
SO F4 om 2 a Stored [No
Ressrvation Stations S7 $2 RS fOr RS for k
TimeName Busy (o Vi VK Qj oK Coge:
0 Adadl |No o FO oRr
0 Ada2 |No MULT F4 FO F2
0 Ada3 [No SD F4 oRm
0 Mult! |Yes MULTD R(F2) Loal SUBI R1 R1 28
0 Mult2 |Yes MULTD R(F2) Load2 BNEZ R1  Loop
Reqister result status
Clock R1 FO F2 F4 F6 F8 Fi10OFis... F30
9 64 O | Load2 Mumr2

+ Loadl completing; what is waiting for it?
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Loop Example Cycle 10

Instruction status ExecutionWnte
Instruction kK iterstion lIssue ¢ Resut Busy Address
L0 FO - O R1 1 1 2 10 |Load! o — ]
MULT F4 FO F2 1 2 Load2 |ves 72
SO F4 ORI 1 3 Load3 [No of
LD FO O R1 2 3 10 storel [Yes 80 [Muti
MULT F4 FO F2 2 7 StoreR [ves 72 [Mut2
SO F4 O R1 2 a Stored |No
Ressrvation Stations ST s2 RS TOr RS for K
TimeName Busy (D Vi vk Qf 0k cooe:
0 aad1 [No D FO ORI
0 Ada2 |No MULT F4 FO F2
0 4dd3 |No SD F4 ORI
4 MURY [Yes MULTD  M(80) R(F2) SUBI R1 R1 28
0 Mult2 |Yes MULTD R(F2)  Load2 BNEZ R1  Loop
Register result status
Clock r1 FO F2 F4 F6 F8 Fi10OFi1z... F30
10 64 O [ Load2 MU2

+ Load2 completing; what is waiting fo it?

Loop Example Cycle 11

Instruction status Executionwrite
Instructin  J K fterstion Issue compeleReswst Address
b FO OR1 1 1 = 10
MULT F4 FO F2 1 2
SO F4 O R 1 3 of
b FO O R1 2 6 10 " MUt
MULT F4 FOF2 2 7 Mut2
SO F4 O R1 2 2
Reservation Stations $1 S2 RS FOr RS for k
TimeName Busy Op Vi VK ) oK Cooe:
0 Adal [No LD FO oRrR1
0 Ada2 |No MULT F4 FO F2
0 Aad3 |No SO F4  OR1
3 Mult! |Yes MULTD M(80) R(F2) SUBI R1 R1 28
4 Mult2 |Yes MULTD M(72) R(F2) BNEZ R1  Loop
Register rasult status
Clock r1 FO F2 F4 F6 _F8 FI0Fii.. F30
1" 64 O | Loaa3 Muit2
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Loop Example Cycle 12

Instruction status Execuliorwrite
Instructin  J K Iterstion Issue compielsResut Address
b FO oOR1 1 1 E) 10
MULT F4 FO F2 | 2
SO F4 oRl 1 3 o
W 0 R1 2 6 10 " Wat |
MULT F4 FO F2 2 7 Mut2
SO F4 OR1 2 8
Ressrvation Stations §1 S2 RS FOr RS for k
TimeNsme BusyOp Vi VK QJ Oox Cooe:
0 Agdl |No LD FO ORrR1
0 Aga2 |No MULT F4 FO F2
0 Ada3 [No SO (F4 ORI
2 Mult! |Yes MULTD M(90) R(F2) SUBI R1 R1 28
3 MuR2 |Yes MULTD M(72) R(F2) BNEZ R1 Loop
Register result status
Clock R1 FO F2 F4 F6 F8 Fi10Fi1s... F30
12 64 OF | Loaa3 Mur2
Loop Example Cycle 13
Instruction status Execulioiwrite
Instructkn kK fterstion Issue compileRes st Busy Address
W R oORl 1 1 9 10 |Load! |No
MULT F4 FO F2 1 2 Load2 |No
SO F4 oRrl 1 3 Load3 [Yes 64 |0
b R OR1 2 6 10 " orel |[Yes 90 [Mut)
MJULT F4 FO F2 2 7 ore2 |yes 72 [Mut2
SO F4 oRl 2 3 ore3 (No
Reservation Stations §1 82 RS FOr RS for k
TimeName BusyOp Vi VK Q/ oK Cooe:
0 Addl |No LD FO ORI
0 Ada2 (N MULT F4 FO F2
0 Ada3 (N0 SO F4 ORI
1 MuRt! |Yes MULTD M(80) R(F2) SUBI R1 R1 28
2 Muit2 |Yes MULTD M(72) R(F2) BNEZ R1 Loop
Register rasult status
Clock r1 FO F2 F4 F6 F8 Fi10Fi1i... F30
13 64 O | Loand Munt2
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Loop Example Cycle 14

Instruction status
Instruction K
W [FO O R1
MULT F4 FO F2
SO F4 O R1
0 FO O R1
MULT F4 FO F2
SD | F4 O R1
Resecvation Stations
TimeName Busy Op Vi

(MUt
Mut2

NN - - -

$2
VK /]

RS or RS for K
ox Cooe:

0 Aadl
0 Adgaz

0 Adga3s

No
NO

No

LD FO
MULT F4
SO F4

ORI
FO F2
ORIl

0 Mult! |yes

1 Muit2 |ves

Register result status
Clock R1

14 64 o |

MULTD
MULTD

Fo

Loaas

M(80D) R(F2)
M(72) R(F2)

F2 F4

Mut2

SUBI R1
BNEZ R1

R1 28
Loop

F10 F12... F30

F6__F8

*  MULT1completing; what is waiting for it?

Loop Example Cycle 15

Instruction status_ Executionwrite

Instructin K fterstion Issue compets Res st Busy Address

o kR ORm 1 1 < 10 |Loadt |No

MULT F4 FO F2 | 2 14 15 |Load2 |No

SO F4 ORm 1 3 Load3 |Yes 64 |0

LD O oORm 2 6 10 1" orel |yes 90 [M(B0)"R(

MULT F4 FO F2 2 7 15 ore2 |yes 72 [Mut2

SD F4 OR1 2 8 ora3 [No

Reservation Stations §1 S2 RS FOr RS for k

TimeNsme BusyOp Vi VK Qf oK Cooe:

0 Adal [N LD FO OR
0 Add2 [No MULT F4 FO F2
0 Add3 [No SD F4 ORI
0 Muit1 [N SUBI R1 R1 28
O MuRrt2 |ves MULTD M(72) R(F2) BNEZ R1 Loop

Register result status

Clock  Ri FO F2 _F4 _F6 _F8 F10F1Z.. F30

18 64 O | Loaa3 Munt2

*  MULTZ2 completing; what is waiting for it?
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Loop Example Cycle 16

re

Instruction status Executiorwrite
Instructin  J K fterstion Issue compeleReswst Busy Address
Wb RO O Rl 1 1 9 10 |Lwoadt |[ho
MULT F4 FO F2 1 2 14 15 |Load2 |No
SO F4 oRl 1 3 Load3 |Yes 64 |04
L0 FO oRl 2 6 10 " orel [yes 90 [M(80)"R(
MULT F4 FO F2 2 7 15 16 ore2 [yes 72 |M(72)'R(
SD F4 OR1 2 8 ore3 |No
Reservation Stations S1 S2 RS FfOr RS for k
TimeNsme BusyOp Vi VK QJ oK Coge:
0 Addl [No LD FO OR
0 Ada2 |No MULT F4 FO F2
0 Aga3 |No SO F4 ORI
0 Multl |Yes MULTD R(F2) Loaad SUBI R1 R1 28
0 MuRrt2 |No BNEZ R1 Loop
Reqister result status
Clock  ri FO F2 F4 F6 F8 F10F1Z.. F30
16 64 O | Loaas Murt)
Loop Example Cycle 17
Instruction status Executionwrite
Instructin  J K fterstion Issue coOmpeléResut Busy Address
b F ORr 1 1 =] 10 |Loadl |No
MULT F4 FO F2 1 2 14 15 |Load2 |No
SO F4 oOR1 1 3 Load3 |Yes 64 |4
L0 RO O R1 2 6 10 11 [Storel [Yes = 80 [M(80)"R(
MULT F4 FO F2 2 7 15 16 ore2 |yes 72 |M(72)"R(
SD F4 OR1 2 3 ore3 |Yes 64 |Mut)
Reservation Stations $1 82 RS FOrRS for k
TimeName BusyOp Vi VK QJ ox Cooe:
0 Adadl |No LD FO ORI
0 Adaz [N MULT F4 FO F2
0 Ada3 |No SD F4 ORI
0 Mult! |Yes MULTD R(FZ) Loaad SUBI R1 R1 28
0 Murt2 o BNEZ R1 Loop
Register result status
Clock  R1 FO F2 F4 F6 F8 F10F1Z.. F30
17 64 O | Lowa3 Murt1
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Loop Example Cycle 18

Instruction status Executiolwrite
Instruction K terstion issue compelsResust Busy Address
w0 oORrl 1 1 ] 10 |Loadl |No
MULT F4 FO F2 1 2 14 15 |Load2 |No
SO F4 oORrl 1 3 18 Load3 |Yes 64 |0
o R O R1 2 6 10 " orel |yes 90 [M(80)"R(
MULT F4 FO F2 2 7 15 16 ore2 [vyes 72 [M(72)'R(
SO F4 OR1 2 2 ore3 |Yes 64 [Mutd
Reservation Stations §1 S2 RS FOr RS for k
TimeNsme BusyOp Vi VK Q/ ox Cooe:
0 Adadl |No LD FO ORI
0 Ada2 [No MULT F4 FO F2
0 Add3 |No SD F4 OR1
0 Mult! |Yes MULTD R(F2Z) Load3d SUBI R1 R1 28
0 Muit2 |No BNEZ R1 Loop
Register result status
Clock R1 FO F2 F4 F6 F8 Fi10Fi1s... F30
18 §6 O | Loao3 Muit
Loop Example Cycle 19
Instruction status Execuliorwrite
Instruction K fterstion Issue compelsResust Busy Address
b R o R 1 1 o 10 |Loadl |No
MULT F4 FO F2 1 2 14 15 |Load2 |No
SO F4 o Rl 1 3 18 19 |Load3 |Yes 64 |0
b FO O R 2 6 10 " orel |No
MULT F4 FO F2 2 7 15 16 ore2 |yes 72 [M(72)'R(
SO F4 O R1 2 8 ored |Yes 64 [Mut)
Reservation Stations $1_|S2 RS FOr RS for k
TimeNsme BusyOp Vi VK Q oK Cooe:
0 Agdl |No L0 FO ORY
0 Add2 |No MULT F4 FO F2
0 Ada3 |No SO F4 ORr1
0 Mult! |Yes MULTD R(F2Z) Load3d SUBI R1 R1 28
0 Muit2 | BNEZ R1 Loop
Rgﬂ“ result status
Clock  Ri FO F2 F4 F6 F8 F10F1Z.. F30
19 §6 OF | Loaa3 Muit
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Loop Example Cycle 20

Instruction status Executiorwrite

Instruction K fterstion issue compieleResust Busy Address

Wb R oORrl 1 1 =] 10 |Loadt |[no

MULT F4 FO F2 1 2 14 15 |Load2 |No

SO F4 ORr1 1 3 18 19 |Load3 |Yes 64 |0

b RO oRrl 2 6 10 " oral |No

MULT F4 FO F2 2 7 15 16 [Store2 |yes 72 [M(72)"R(

SO F4 OR1 2 3 20 ored |Yes 64 [Muti

Reservation Stations ) S2 RS FOr RS for k

TimeNsme BusyOp Vi VK Qf oK Cooe:

0 Addl [N LD FO ORY
0 Ada2 |No MULT F4 FO F2
0 Add3 [No SO F4 OR1
0 Mult! |[Yes MULTD R(F2Z) Loaal SUBI R1 R1 28
0 Muit2 (o BNEZ R1 Loop

Rgﬁt@l’ result status

Clock R FO F2 F4 _F6 F8 FIOF1Z.. F30

20 56 O/ | Loaa3 Muit

Loop Example Cycle 21

Instruction status Execulbolwrite

Instructikn  J K Rterstion issue COmMpBlERes st Busy Address

0 R ORI 1 1 o 10 |Loadt |No

MULT F4 FO F2 1 2 14 15 |Load2 |No

SO F4 O R 1 3 18 19 |Load3 |Yes 64 |0

o R oORrl 2 6 10 n orel |No

MULT F4 FO F2 2 7 15 16 |Store2 |No

SO F4 OR1 2 8 20 21 |Store3 |Yes 64 |Mut)

Resscvation Stations $1 S22 RS FOr RS for k

TimeNsme BusyOp Vi VK QJ oK Cooe:

0 Adal |No LD FO OoRr1
0 Add2 |No MULT F4 FO F2
0 Ada3 [No SD F4 OR1
0 Mult! |Yes MULTD R(F2) Loaa3 SUBI R1 R1 28
0 Muit2 Mo BNEZ R1 Loop

Reqgister result status

Clock  R1 FO F2 F4 _F6__F8 F10FiZ.. F30

21 56 O | Loaas Murt
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Tomasulo Summary

« Reservations stations: renaming to larger set
of registers + buffering source operands

— Prevents registers as bottleneck
— Avoids WAR, WAW hazards of Scoreboard
— Allows loop unrolling in HW
« Not limited to basic blocks
(integer units gets ahead, beyond branches)
» Helps cache misses as well

« Lasting Contributions
— Dynamic scheduling
— Register renaming
— Loadistore disambiguation

= 360/91 descendants are Pentium 1l; PowerPC
604; MIPS R10000; HP-PA 8000; Alpha 21264 =
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Lecture 15
Instruction Level Parallelism
(Dynamic Branch Prediction)
Today's Topics

* Recap - Lecture 14

» Dynamic Branch Prediction

» Branch Prediction Buffer

« Examples of Branch Predictor

*  Summary

Recap: Lecture 14
+ Tomasulo 's Approach for IBM 360/91 to achieve high Performance without special
compilers
» Here, the control and buffers are distributed with Function Units (FU)

» Registers in instructions are replaced by values or pointers to reservation stations(RS) ;
i.e., the registers are renamed

» Unlike Scoreboard, Tomasulo can have multiple loads outstanding
» These two properties allow to issue an instruction having name dependence ; e.g.,
MULT is issued which has name dependence of register F2

Tomasulo Example Cycle 3

I Enp o UL Wrica
Festruction  § k Esue ocomolca Fasulr By Addrass
L FE Hd RE 1 il Loadl |Ves 34 +R2
L F2 455 R=E 2 Load? |'vVes 45 R3
FALLT Fz F4a 3 Loads  |Ha
SUED FA FE Fz
O F1O Fi& FE
Anon FE FE F2
Roserwation Stathons 5] 57 RS For | RS for k
Tma Mome BusyOo L) " jn ] o
O dSdd 1 | Ko
O BddZ | Ko
BddZ | Ko
O KU1 | Ves FULTLC: R F4] Load=

O B | R
Registier result siatus
Clock FO FZ2 Fq F& F8 __F10_F12 .. F30

= FL'  Multl LoadZz Lomdl
« Mote: registers names are removed (“renamed™) in

Reservation Stations; MULT issued vs. scoreboard
- Load1 completing; what is waiting for Load1? ™™™ *="

+ Tomasulo eliminates the WAR hazard as in this example ADD.D writes the result in
Cycle 11 even if the DIV.D will start execution in Cycle 16
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Tomasulo Example Cycle 11

Irsruction siatus Everufion | Wdte
Irsfruction i E | isToe | oorodhers Sesyit Eusy | Address
LD |F& 34+ A2 1 3 1 Load1 [Mo
D |Fz |4E+ |"z 2 4 5 Load2 |Mao |
MIULTFD  |F2 Fi E] Loac2  [mo
EUBOFE  |FE Fz & 7 E]
DivD [Fi0_|Fo Fi £
ADDDFE  F2 F2 g 10 11
Resarsaion Siafions ST ot RS oy o=
Time |Name | Susy O i Wiy = o

0/ Mgt [

0 Az Mo

0 Ade3 Mo

&Mull |Yes | MULTDMi£S=R3) | RIF4)

0/Mut2 |ves CovD WH34-RZ) | Mut
Sagigarrasut shalag
Clock F0 | F2 F4 FE F& Fi10_ F12 F30

11 FU [WuET [Ma5+Rz) Rl bl [ I | Bl

«  Write result of ADDD here vs. scoreboard?

+ Tomasulo issues in-order and may execute out-of-order

Tomasulo Example Cycle 57

otnuciion stahis

Istruction | f &
LD (FS§ 4+ R2
LD (F2 45. |R3
MILT FO  FZ F4
SUBLC F3_ |FE FZ
CivD F1D |Fi FS
ACODFS  FE Fz2

Raservatlon Staibons e
Busy O

Time Aoma

Exwaourion
comolaca

Writa

Ol e b=

TE
a
=X
11

3
4
1=
7
55
10
57
)

RS for |

Loasd 1
Liowsd 2
Liosds

ESrfork

0 &dd1
0 &ddz

&Ldd =
O KUKET Mo
O KWUKEZ Mo

Mo
Mo
Mo

Registsr result status

Clock
=7

FL!

[

F2

4

(=]

g

1o Fra ..

D S pr ol Tl T

Eux Luddrass
[ =]
=]
Fdoi

F20

|F.-I "F4 Mi4=-R3)

« Again, in-oder issue,

out-of-order execution, completion

WP WA

KEG-REE WSF4 M

(st T = b S e Y
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Tomasulo Loop Example

Loop: LD FO 0 R1
MULTD F4 FO F2
SD F4 0 R1
SuBI R1 R1 #8
BNEZ R1 Loop

- Assume Multiply takes 4 clocks

- Assume first load takes 8 clocks (cache
miss?), second load takes 4 clocks (hit)

* Here, the integer instructions SUBI and BNEZ are executed out-of-order to evaluate the
condition

* The perdition Branch-Taken is implemented by repeating the loop instruction as shown

Loop Example Cycle 0
+ The perdition -l Cmoita e

iteration Issue ¢ lete Rosust

Branch-Taken is PRI
implemented by o f  om 2
- - MULT F4 FO F2 2
two iterations of O F4  OR1 2
Reservation Stations 51 52 RS ror RS for k
the code TimeName Busy (D Vi vk 0 0k Cooe
0 Add1 |No D FO OR1
0 Add2 |No MULT F4 FO F2
0 Add3 |No S0 F4 ORI
0 Mult1 [No SURI R1 R1 28
0 Muit2 (No BNEZ R1  Loop
* R1 has been Reqgister resuit status
i x. Clock R Fo F2 F4 F6 F8 F10F1Z.. F30
initialized to 80 —s3 © o | _
Loop Example Cycle 6
. LD iS iSSUEd in Gth :ﬁ:ﬁ'&“}m K iterstion fssue fo‘g::::::t Busy Address
LD FO O R1 1 1 Load1 [ves 80
clock cycle, prior w5 23 1 |3 oos2 |reo 72|
=gm LD Fo O R1 2 6 Storel [ves | 80 [Mutl
to the condltlch_.u R I — storez [ |
. SD F4 O R1 2 Store3 |No
evaluation — s el O el e com T
Pl’ediCt BranCh 3%5 ::: ILtEJLT:-I r-:l-'.E;I-
0 Add3 Hc- . t F‘-i -:-r-‘-ll
Taken oMz o TP RE2) Losdt SRCIIR T Tton
Register result status

Clock R1 FO F2 _F4 F6__H 10 F1z... F30

 R1 is updated in 6 a 72 0 [ (=T R
Clock 6, by el

i . « SUBY and BNZE aregésued in Clock
executing SUB in cle 4 and 5 respectivel
Clock cycle 5 P y

* FO never sees th
result
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Loop Example Cycle 3

Instruction status Execulion Wnite
Instruction kK iterstion Issue ¢ Resust Busy Address
LD FO oRrR1 1 1 Loadl |[Yes B0
. . MULT F4 FO F2 1 2 Load2 (Mo
S0 F4 oOR1 1 3 Loadl [No o
* MUL1 issued in koM ‘ i
MULT F4 FO F2 2 Store2 |No
clockcycle2does « o - stee o
. Ressrvation Stations §1 52 RS for RS for k
not start execution THERE Maycp ¥ v g o oow =
0 Aad1 [No LD FO O R1
H 0 Add2 [No MULT F4 FO F2
till Wr to FO by LD 0 233 Mo S0 Fa ORY
- I t t g:::; ;flif, MULTD R(F2) Loadl ;lr_:E E: il 28
' 4 oop
Is complete to o 2 o ‘
aV0|d WAR Hazard Cloack :; o |RJ|.-:aa| F2 ;:‘u . F8@ Fi10Fi:.. FJO‘

*Note: MULT1 has no registers names in RS

CAP Spr 08 OUCE a3

Loop Example Cycle 3

Instruction status Execulion write
Instruction k  iterstion issue ¢ Resut Busy Address
LD FO oOR1 1 1 Loadl |ves BO
MULT F4 FOF2 1 2 Load2 |
+ MUL1 issued in SgU-L Moom 1 |3 koeas, i 3
L 2 el [Ves 0
CIOCk Cyclez dOQS MULT F4 FO F2 2 Store2 |No
SD F4 oRm 2 Stoeed [N
. Reservation Stations 51 52 RS ror.ﬂsqror K >
not start execution TimeRame Busy Cp g Vg o oom =
till Wr to FO by LD 0 4403 o S0 F4 oR1
- I OH::.;'I! Yes MULTD Ri{F 2} Loadi SUBI R1 R1 28
oM No BNEZ R1 Loo
Is comp ete to L Mz o o
avoid WAR Hazard cm;x Ef, N IRJL_M F2 lfu : F8 FI10FiZ.. F30

MUL1 execution started

*Note: MULT1 has no registers names in RS

CAP Spe 08 OLUCE a3

Loop Example Cycle 15

Instruction status Execulionrite
in cycle 11 completes Mmoo 1 P o [
- - L QF2 1
cycle 14 writeresultin %75 T0 LN TN
- LD FO O R1 6 10 11 [Storel [ves B0 [M{80)*R({
F4incycle15 MULT Fd FO/F2 718 Store2 [ves 72 [Mut2
g 2 Stora3 [No
. . RS for RS for k
+ SD1issuedin cycle 3, o ok com:
- - - 0 Add1 [N LD FO Rl
will start executionin 0 Addz |i> WULTIF4 FO F2
T SD F4 oRr1
Cycle 16 avoiding WAR 0 Mut1 [wo SUBl R1 |R1 /28
0 Mult2 |Yes MULTD BNEZ R1  Loop
hazard Regster result status
Clock R1 FO F6 F8 FI10Fiz.. F30
15 64 O | Load3 Murt2 .

» Mult2 completing; what is waiting for it?

LA Spr 00 0UCE 55
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¢ MUL1 execution StartEd Loop Example Cycle 18
incycle 11 f:omplete:s. in_____ —
gcsle 14 \;vr!Itg resultin nsweten - R; rrera:tm .lssi.'e m:{mna:s{ - %" Adaress
In ey le S e i [ e e
* SD1issuedincycle3, ' T Le " " foreslves ot mars

will start execution i!1 B et S L .
Cycle 16 compl 0 Ada2 [ WOLTIFA 7O F2
cycle 18 EEEEE Er?r, MULTD R(F2)  Loadd gEE' E? EI?
R - . Registar result status
SBlissuedincycle16 GRG0 o 0 o 5w FoFiz. 0
update R1 for next 2‘9 56 o [t R :
iterationincycle 18
« MUL2 execution Loop Example Cycle 21
started incycle 12 [ETEER™ © ionion ssue competresse  ousy saoress
. ) FO O R1 1 No
completed incycle 15 e o 1 | 2 aa e losse |n
. . . SO F4 O R1 1 3 18 19 |Load3 |Yes 64 [0
write result in F4 in w [f o R 2 6 10_ 11 [storel [®
MULT F4 FO F2 2 - 16 [Store2 |No
CyCIe 16 F.!;ﬁt\:;duonhzlat.l:)rg 5 ) : 220 gsz:or_gt{ ;:3“:; S
ime Nsme  Busy 0p L3 i) :
« SD2 issued in cycle E%é MULTIFS (£ 2
. . 4ada S0 |F4 O R1
8, start s execution in REZ)  Loatd sumvie a1 )se
Cycle 17 after MUL2 B F2 F4 IF6 [P FIOFIZ.. F30
56 O Load3 Murt 1 )

writes result in cycle
16 to avoid WA
hazard

Introduction to Dynamic Branch Prediction
» In the last lecture, we considered a loop-based example, to discuss the Tomasulo’s
approach to overcome the WAW and WAR hazards
» Here, we observed that dynamically scheduled pipeline can yield high performance
provided branches are predicted accurately

Branch History Table
» If the prediction is wrong, then invert prediction-bit
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FC

T branches predictad a5 taken

1-bit Dynamic Branch Prediction

» Problem:
v In aloop, 1-bit BHT will cause two mispredictions in a row
v 1-bit predictor mispredict at twice the rate that the branch is not-taken
v Let us consider an example of loop-branch (For i=1 to 10); i.e., the branch is taken 9

times and not-taken once

» As the Performance = f (accuracy, cost of mispredictions)

« The accuracy of the predictor is expected to match the taken-branch frequency, which in
the previous example is 9 out of 10 (90%)

« But the 1-bit prediction has 8 out of 10 (80%)

2-bit Dynamic Branch Prediction
» 2 bits are used to encode 4-states in the system (counter) Say:
v States 00 and 01 for Predict Not-Taken
v States 10 and 11 for Predict Taken

NT
Predict Taken " )

- Predict Taken
................... State 10
----------- T

NT

Predict Not ! -t Prodict Not T
Taken State 01 : .- ' Taken State 00
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» In a saturating counter implementation: 2-bit counter saturates at:

v 00 (Predict Taken) or
v' 11 (Predict Not taken)

« The counter is incremented when a branch is taken and decremented when it is not

taken; e.g.,
v" 00 to 01 for Taken when predicted not taken
v 10 to 11 for Taken when predicted taken

» Here, when the counter is greater than or equal to %2 of its maximum value (>=10; i.e.,

state 01 and 11) branch is predicted as taken;

» Otherwise (i.e., <10: state 10 and 00) the branch is predicted as untaken

» Let us try the example of loop For i=1,10
* Let us try the example of loop For i=1,10

Iteration P.S. Branch NS Prediction
0 -- not Taken 11 Taken
1 11 Taken 11 Taken
2 11 Taken 11 Taken
9 11 Taken 11 Taken
10 11 Not taken 10 Taken

Prediction fails once only
Branch Prediction Buffer (BPB) or BHT Implementation

If Prediction is wrong
Then prediction bits are changed —
In case
Predicted Taken:
State changes 11> 10)
Predicted not taken:
State changes 00>01

Branch History Table Accuracy
» For example Place Fig. 3.8 pp 200 here
» Here, for SPEC89 benchmark
A branch prediction buffer with 4096 entries results in:
v Prediction accuracy ranging from: 99% to 82 %
v Mispredictions rate of 1% - 18%

Branch History Table Accuracy wrt size
» Insert Fig. 3.9 pp 201

or
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Impact of size on accuracy of BHT
+ As we try to exploit more ILP, the accuracy of the Branch Predictor becomes critical
» Here, the accuracy of the predictor is shown by increasing the size of the buffer as
v' 4096 Entries 2-bit BHT
v Unlimited Entries 2-bit BHT
» Simply increasing the number of bits per predictor without changing the predictor
structure has little impact — so we have to look at other methods to increase the
accuracy of the predictors

Correlating Branches

» The 2-bit predictor scheme uses only the recent behavior of the single branch to predict
the future behavior of branch

» In practice, the behavior of other branches, rather than only a single branch, we are
trying to predict, may also influence the prediction accuracy

» Let us consider the worst case of SPEC92 benchmark for 2-bit predictor

» SPEC92 benchmark for 2-bit predictor example:
Assume aa is assigned R1 and bb the register R2

IF (aa==2) DSUBUI R3, R1, #2

aa=0; BNEZ R3, L1 ; branch bl (aa!=2)
DADD R1, RO, RO ; aa=0 Not Branch

IF (bb==2) L1 DSUBUI R3, R2, #2

bb=0; BNEZ R3, L2 ; branch b2 (bb!=2)
DADD R2, R0, RO ; bb=0 Not Branch

IF (aa!l=bb) L2 DSUBU R3, R1,R2

{ BEQZ RS3,L3 ; branch b3 (aa=bb)

* Here, the behavior of b3 (L2) is correlated with the behavior of bl and b2

* Here, if bl and b2 are both not-taken (aa=0; bb=0) then b3 is taken

» A predictor that uses the behavior of a single branch to predict the behavior of that
branch cannot capture this behavior

* So we need a correlating branch predictor

Correlating Branch Predictors
* Hypothesis: Recent branches are correlated; that is, behavior of recently executed
branches affects prediction of current branch
* In general, (m,n) predictor means record last m branches to select between 2™ history
tables each with n-bit counters
v' Old 2-bit BHT is then a (0,2) predictor
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Example
Let us consider an illustrative code:
(d is assigned to R1)
IF (d==0) BNEZ R1,L1 ; branch b1l (d!=0)
d=1; DADDIU R1,R0,#1 ; branch not taken, d=1
IF (d==1) L1 DADDIU R3, R1, #-1
BNEZ R3, L2 ; branch b2 — (d!=1)

The working of correlating predictor is as follows

Initial d d==07? bl d before b2 d==17 b2
0 yes NT 1 yes NT
1 No T 1 yes NT
2 No T 2 no T

Here, if bl is not taken b2 will not be taken —
We write the pair of prediction bits as: Prediction if last branch in the program is not-taken/
Prediction if the last branch is taken

Therefore, the 4 possible combinations are:

Prediction bits New Prediction if last New Prediction if last
branch Not Taken Branch Taken

NT / NT NT NT

NT/T NT T

TINT T NT

T/T T T

» The action of the 1-bit predictor with 1-bit of correlation, written as (1,1) for the above
example is shown here (Fig. 3.13 .... pp 203)

* In this case the only misprediction is on the first iteration, when d=2 as this is not
correlated with the previous perdition

Correlating Branches

* (2,2) branch prediction buffer uses

2-bit global history to choose from

among 4 predictors for each branch 2-bits per branch predictors

address
« Then behavior of recent branches -
selects between, say, four ——| | | )| |- E

predictions of next branch, updating
just that prediction

| 2-hit global branch history |
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Accuracy of Different Schemes

18%

4096 Entries 2-bit BHT

Frequency of Mi

nasa’
matrix300
tomecaty
doducd
spice
fpppp
gee
espresso
eqntott

M 4,096 entries: 2-bits per entry B Unlimited entries: 2-bits/entry M 1,024 entries (2.2)

Branch History Table or Branch Target Buffer

, « PC instruction to Fetch l

Lookup Predicted PC
L

Number
of
entries .
in
Branch
target
Buffer

6 No: Inst. Is not predicted

off . tobebranch Proceed v
Normally Branch
Predicted
’ Taken or
Yes: Inst. Is branch and predicted PC Not
should be used as the next PC Taken

Dynamic Branch Prediction Summary
» Branch History Table: 2 bits for loop accuracy

» Correlation: Recently executed branches correlated with next branch
» Branch Target Buffer: include branch address & prediction

» Predicated Execution can reduce number of branches, number of mispredicted branches
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Lecture 16
Instruction Level Parallelism
(Dynamic Branch Prediction .... Cont’d)

Today's Topics

* Recap

» Correlating Branch Predictors

+ Tournament Predictor

» High Performance Instruction Delivery — Branch Target Buffer

*  Summary

Recap: Dynamic Scheduling and Branch Prediction
« Static: rely on the software (compiler)
« Dynamic: hardware intensive approaches

Important questions: Branch-Prediction Buffer
Q1: What is the impact of increasing the size of branch-prediction buffer on two branches in a
program?
» A single predictor predicting a single branch is generally more accurate than is that
same predictor serving more than one instructions; and
» ltisless likely that two branches in a program share a single predictor
» Therefore, increasing the size of predictor buffer does not have significant effect on two
branches in a program

Q2: How sharing a predictor effects the misprediction rate?
» This is explained with the help of following example: Consider two sequences of branch-
taken and not-taken , sharing 1-bit predictor; and identify the sequence that
v" Reduces the misprediction rate
v Increases the misprediction rate

Example: Sequence 1

P BT P B2P B1T P B2 P B1 PB2 P B1 P B2
NTT T NTNTT T NT NTT T NT NT T T NT

Predcion - NO - No - No - No - No - No - No - No

Correct?

« Here, the columns B1 and B2 show the branches B1 and B2
+ Blis always TAKEN
+ B2is always Not-TAKEN
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P BT P B2P B1 P B2 P B1 B2 P B1 P B2
NTT T NTNTT T NT NTT NT NT T T NT
prediion - NO - No -  No - No No - No - No -
Correct?
P B1T P B2P B1 P B2 P B1 B2 P B1 P B2
NTT T NITNTT T NT NTT NT NT T T NT
prediion - NO - No - No - No No - No - No -
Coarrect?

Example: Sequence 2
P BT P B2P B1 P B2 P B1 B2 P B1 P B2
NTT T NITNTNT NTT T T NT NT NT NT T
predicion - NO - No - yes - No yes - no - yes -
Correct?
P B1T P B2P B1 P B2 P B1 B2 P B1 P B2
NTT T NTNTNT NTT T T NT NT NT NT T
predicion - No - No - yes - No yes - no - yes -
Carrect?
P B1T P B2P B1T P B2 P B1 B2 P B1 P B2
NTT T NTNTNT NTT T T NT NT NT NT T
pedicion - No - No - yes - No yes - no - yes -
Correct?

Example: Conclusion
Why sharing of predictor increases misprediction rate?
It is clear from the above example that:
if a predictor is shared by a set of branch instructions
then  the members of the set of branch instruction may change, over the course of
execution of long program
Hence, the branch action history changes and predictor is likely to mispredict more often
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Correlating Branch Predictors Re-visited

We have observed that in program segment

IF (d==0) Branch b1l for d!=0
d=1;

IF (d==1) Branch b2 for b!=1
d=2;

This problem may be resolved in Correlating-Branch Predictor by recording m most
recently executed branches as taken or not taken (in 2™ branch-history tables for 1-, 2-,
... or n-bit predictor), and using branch-pattern to select the proper branch history table
for the current branch

In general, (m, n) predictor means record last m branches to select between 2™ history
tables each with n-bit counters (2™ n-bit predictor)

A 2-bit BHT is regarded as (0,2) correlating predictor;

Example

1-bit predictor with 1-bit correlation is written as (1,1) predictor
Here, we have two (2') separate prediction bits (i.e., two 1-bit BHTSs)
v" One prediction bit is used if the last branch executed was not-taken
v Other prediction bit is used if the last branch executed was taken
And is denoted as: (New prediction when last NT / New prediction when last T)
v' E.g., T/NT stands for: New prediction is TAKEN if previous was NOT-TAKEN and
is NOT-TAKEN if previous was TAKEN
In an (m,n) predictor, the global history of most recent m branches is recorder in an m-bit
shift register
Here, each bit records whether the branch was taken or not taken
The branch-prediction buffers is indexed using concatenation of low-order bits from
branch-address with m-bit global history
(2, 2) Correlating Branches Predictor

——{ 4-bit Branch address

22, 2 -bits per branch predictors with
- 16 entries each

(4]

0 16 3 48
1 17 B3 49
e e
2 B s
Forms the lower
part of 6-bit
address

15 31 . h7 63

170 2-hit global branch history —

the upper 2-bits of 6-bit address
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» Here, the buffer is drawn as 2-dimensional object, each buffer is 2 bit wide, in reality they
are arranged linearly

* (2, 2) branch prediction buffer uses 2-bit global history to choose from among 4

predictors, for each branch address of 4-bit (among the 16 entries in each of the 4
predictors

» Behavior of recent branches selects between, say, four predictions of next branch,
updating just that prediction

* Indexing is done by concatenation of 4 lower-order address bits of the branch (word

address) and 2 global bits to form 6-bit address to select 2-bit prediction from 64 entries
in 4 buffers each of 16 entries

Comparison of (0,2) and (2,2) predictors

18% T

16% T

18%
we + 4096 Entries 2-bit BHT

R 12 1 Unlimited Entries 2-bit
: 1024 Entries (2,2) BHT

10% 7

8%

6% A

F o
==
2 %
«b}
=
0% +
g =3 = B z o 2 o = =
T i = 3z 3 & & = & Z
) = % = _g o = z o
0% = s @ @
..':E @
£
. entries: 2-bits per ent nlimited entries: 2-bits/ent . entries (2,
B 4.096 entries: 2-bits per entry B Unlimited entries: 2-bits/entry B 1.024 entries (2.2

Multilevel Branch Predictors (Tournament Predictors)
» Multilevel branch prediction (Nested Branches) involve information at local and global
levels to predict correctly
» Several levels of Branch-Prediction Tables and
» An algorithm to choose among different predictors

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

State Transition Diagram of Tournament Predictor
* Modify as Fig. 3.16 pp 204

NT
FTe— | ’ _._.: ............................... it
IE:::::::: UsePredictor2 ;77
y o State 10
) NT NT 2 .
= uin 1|'I'I'I B -
Use predictor 1 ™ % Use predictor2
State 00 )' T, - State 11
T s

Multilevel Branch Predictors (Tournament Predictors)
» The transition for predicted predictor is specified by:
v' Correct=1
v" Incorrect =0
» The state transition diagram shows that from the saturating state
v' The counter is incremented whenever predicted predictor is correct and other is
incorrect (i.e., for 1/0) and
v' The counter is decremented in the reverse direction (i.e., for 0/1)
» The counter does not change for all other predictions for non-saturating present state
» For the saturating state 00 (Use predictor 1)
v It increments to the state 01 (use predictor 1) for 1/0
v'and decrements to state 11 (use predictor 2) for 0/1
» For the saturating state 11 (Use predictor 2)
v It increments to the state 00 (use predictor 1) for 1/0
v/ and decrements to state 10 (use predictor 2) for 0/1

High Performance Instruction Delivery
* In MIPS 5-stage pipeline, we need to know the address of the next-instruction-fetch at
the end of current IF cycle
« That is, for ZERO branch penalty, we need to know whether the as-yet un-decoded
instruction is branch; and
if yes then what is the next-PC?

Branch Target Buffer
» This is accomplished by introducing a Cache that contains the address of the next
instruction if branch is taken as well as not-taken
» This cache is known as the Branch-Target Cache or Branch-Target Buffer (BTB)
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Branch-Prediction Buffer vs. Branch-Target Buffer

Recall from our discussion last time that branch-prediction buffer is accessed during the
ID stage, after the instruction decode, i.e.,

We know the branch-target address at the end of ID stage to fetch the next predicted
instruction

Branch Target Buffer

I PC instruction to Fetch ‘

Predicted PC Prediction

State

Number
of
entries |
in
Branch
target
Buffer

E | NO: Inst. Is not predicted to Branch
be branch Proceed Normally Predicted

Taken or
Not Taken

Yes: inst. Is branchJ/and predicted PC
should be used as the next PC

» Branch Target Buffer has three fields:

v" Lookup: addresses of the known branch instructions (predicted as taken)
v Predicted PC: PC of the fetched instruction predicted taken-branch
v Prediction State: Optional- extra prediction state bits

+ Complications?

v/ Complication arise in using 2-bit predictor because it uses information for both
the branches taken and not-taken

v" This complication is resolved in PowerPC processors by using both the Target-
buffer and Prediction-buffer

» Steps involved in using Branch Target Buffer at IF, ID and EXE pipeline stages
i. IF

i. ID
i. EXE
iv.  (insert flow chart of Fig. 3.20)
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Branch-Target Buffer — Flow Chart Explanation

3
Sand PC to memory and
branch-target buffer
IF
Entry found in
branch-target
buffer?
y
} ]
Is
instruction
a taken
branch?
1D
Mo Taken ‘fes
Mormal branch?
instruction
axecution
i J 1 J;
Enter Mispredicted branch, Branch correcty
branch instruction kill fetched instruction; predicted,
EX addrezs and nesxt restart fetch at other |8 continue execution
PC into branch- target; delete antry with no stalls
target buffer from target buffer

IF Stage: The PC of an instruction is compared with the contents of the buffer

if it is found

then the instruction must be a branch instruction predicted taken

Else It may be a branch predicted not-taken or normal instruction
» |D Stage

i Decode the instruction and

If in the IF Stage, entry was found in the Target-buffer as predicted-
branch
then  begin fetching immediately from the predicted PC

Check the decoded instruction
If it is Taken-branch
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» EX Stage performs one of the four possible functions
i.  Where in the IF stage entry was not found in the target buffer and in the ID stage
If it is found to be Taken-branch
(i-a) then  Enter branch-instruction address and next PC into branch-target buffer
(i-b) Else  Proceed as normal instruction execution

ii.  Where in the IF stage the entry was found in the target-buffer and in the ID stage
If it is found to be Taken-branch
(i-a) then correctly predicted , so execute normally without stall
(ii-b) Else it is mispredicted, so kill the fetched instruction, restart fetching at an
other address and delete entry from the target-buffer

» If —the correctly predicted branch entry is found in the buffer

» Then —there will be no branch penalty

+ Else - It suffers at least 2 clock cycle delay as misprediction penalty
v" One clock delay for fetching the wrong instruction and
v" One clock cycle to restart the fetch

Branch-Target Buffer — Examples

Inst. in Buffer Prediction Actual Branch Penalty Cycles
Yes Taken Taken 0
Yes Taken Not-Taken 2
No - Taken 2
No - Not Taken 0

Branch-Target Buffer — Solution
We can compute the penalty by looking at the probability of two events:
i) Branch predicted taken but end up not take
= % buffer hit rate x % incorrect prediction
=0.95x0.1 =0.095
ii) Branch is taken but is not found in the buffer
= % incorrect prediction
=0.1
The penalty in both the cases is 2 cycles, therefore
Branch Penalty = (0.095 + 0.1)x2 = 0.195 x 2 = 0.39

Example: Branch-Target Buffer

Problem:

Consider a branch-target buffer implemented for conditional branches only for pipelined
processor
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* Assuming that:

v Misprediction penalty =4 cycles
v Buffer miss-penalty = 3cycles
v/ Hit rate and accuracy each = 90%
v Branch Frequency =15%

Solution
+ The speedup with Branch Target Buffer verses no BTB is expressed as:
Speedup = CPI no BTB / CPI BTB
= (CPI base +Stalls no BTB ) / ( CPI base T Stalls BTB)

* The stalls are determined as:
Stalls = 2Frequency x Penalty
s ¢ stall S S

» The sum over all the stall cases as the product of frequency of the stall cases and the
stall-penalty
i. Stalls noers=0.15x2=0.30
ii. To find Stalls grg We have to consider each output from BTB

» There exist three possibilities:
a) Branch misses the BTB:
frequency = 15 % x 0.1 = 1.5% = 0.015
Penalty = 3
Stalls = 0.045
b) Branch can hit and correctly predicted:
frequency = 15 % x 0.9 (hit) x 0.9 (prediction) = 12.1% = 0.121
Penalty = 0
Stalls =0

¢) Branch can hit but incorrectly predicted:
frequency = 15 % x 0.9 (hit) x 0.1 (misprediction) = 1.3% = 0.013
Penalty = 4
Stalls = 0.052

Stalls grg = 0.045 + 0 + 0.052 = 0.097

Speedup = (CPI pase + Stalls o518 ) / ( CPI pase + Stalls 1)
=(1.0+0.3)/ (1.0 + 0.097)
=1.2
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Improvement in BTB
* In order to achieve more instruction delivery, one possible variation in the Branch Target

Buffer is:
* To store one or more target instructions, in stead of or in addition to, the predicted

Target Address

* Advantages:
v It possibly allows larger BTB as it permits access to take longer than the time

between successive instruction fetches
v Buffering the actual Target-Instructions allow Branch Folding, i.e.,
o ZERO cycle Unconditional Branching or some times ZERO Cycle

conditional Branching
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Lecture 17
Instruction Level Parallelism
(High-performance Instructions delivery - Multiple Issue)

Reducing branch penalties for High-Performance Processors
* Branch Target Buffer
* Integrated Instruction Fetch Units
* Return Address Predictors

Integrated Instruction Fetch Units

* Integrated Branch Prediction
v The Branch-predictor is included in the Instruction Fetch Unit
v S0, it predicts and drive the fetch-pipe

* Instruction Prefetch
v" An instruction pre-fetch queue is part of IIFU
v' The queue holds multiple instructions and deliver more than one instructions in

one cycle

* Instruction memory access and buffering

v' Fetching multiple instructions per clock cycle may require accessing multiple

cache lines, which is a complex operation
v 1IFU facilitates to overcome these complexities and hides the cost of crossing

cache-blocks
v 1IFU also provides instruction buffering and on-demand issue

Return Address Predictors
* The Return-Address predictor predicts the indirect jumps, i.e., the jumps whose address

varies at rum time
* High-level language programs generate such jumps for indirect procedure calls and

select or case statements

Summary: Minimizing Control Hazard Penalties

Branch taken
Branch not taken
Branch delay slot(s)

N-bit predictors (2-bit predictors; a few K entries)

ZO=HO~DOMmMAY
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BTB (Branch Target Buffer) can be combimed with prediction cache

Multiple Instruction-Issue Processors
» All of the schemes described so far can at best achieve 1 instruction/cycle
* There exist two variations to these schemes:
v Superscalar processors
v" Very Long Instruction Word (VLIW) processors

Superscalar
* The statically scheduled processors use in-order execution
* The dynamically scheduled use out-of-order execution
» Superscalar concept has been used in:

IBM Power2

Sun Ultra SPARC

Pentium 111/4

DEC Alpha

HP 8000

DN NI NI NN

Very Long Instruction Words — VLIW processor

lri=Lr4 [r2=Addri,M |[fil=Mulfif2 |[r5=Addr54 |

VLIW Processors

* VLIW includes new features for:
v’ predication,
v’ rotating registers and
v speculations, etc.

+ Typical implementations are:
v i860, Trimedia, Itanium

+  We will talk about statically scheduled superscalar today and about compiling for

VLIW/EPIC later

Statically Scheduled Superscalar Processor
» Instruction Issue Process:
v" The multiple instruction issue is a complex process
v" During instruction fetch, the pipeline receives all the instruction that could
potentially issue, called Issue-packet (it may have say from 1 to 4 instructions)
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Example: Statically Scheduled Superscalar MIPS Processor

As an example let us consider a MIPS superscalar that has:
v" Number of Instructions issue/clock:
2 instructions - 1 FP operation, 1 Integer operations
(The integer operations include Load/store to integer or FP register, branch and
Integer ALU operation)
Issuing two instructions per cycle would require Fetch and Decode 64-bits/clock cycle
Fetching two instructions need careful handling of the cache, as either the first
instruction may be at end of the cache block or the second instruction my be at the
beginning of the cache block
Hazard detection: The restriction of one FP and one Integer makes the hazard checking
simple.
We simply have to determine the likelihood of hazards between two instructions in an
issue-packet
If this situation exist then the Simple solution is to treat this as a structural hazard (issue
only 1 of them)
However, the only difficulties arise when Integer Instruction is a FP load/store/move
instruction
v/ it may create contention of the FP port and create RAW hazard when second
instruction of the pair depends on the first

Example

Issuing: If placement is not a problem, then fetch and issue is completed in three steps”
* Fetch Two instructions from the cache
» Determine whether 0, 1 or 2 instructions can issue
» Issue them to the correct functional unit

Example superscalar pipeline in operation
» Let us see how the instructions look like when the go in pair in a pipe

Instruction Type Pipe Stages

Integer IF ID EX MEM | WB

FP IF ID EX MEM | WB

Integer IF ID EX MEM |WB

FP IF ID EX MEM |WB

Integer IF ID EX MEM |WB

FP IF ID EX MEM | WB
Integer IF ID EX MEM |[WB
FP IF ID EX MEM (WB
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Dynamic Scheduling in Superscalar Processors

1. Extending Tomasulo’s concept to support two instruction-issue superscalar pipeline

v Here, we do not want to issue instruction to reservation station out of order, as
this may lead to the violation of program semantics.

v Further, to gain full advantage of Dynamic scheduling remove the constraints of
issuing one FP and integer instruction in a clock.

2. Alternatively, Separate the data structure of FP and integer registers and simultaneously
issue both instructions to their respective reservation stations, as long as two issued
instructions do not access same registers.

v" One approach is: to run this step (assigning a reservation station and update
control) in half a clock cycle, so that two instructions can be processed in one
clock cycle.

v" Second approach is: to build logic necessary to handle two instructions at once,
including any dependence between the instructions.

v" Modern superscalar processors issue four or more instructions per clock cycle

v/ Often included both approaches. In addition it is speculated that the Branch
prediction is integrated into a dynamically scheduled pipeline. This referred to as
Hardware-based speculation

Example
Let us consider a most general 2-issue dynamically scheduled processor and see how a simple
loop, which we considered for single-issue Tomasulo, executes on this processor

Recall that our example loop adds a scalar in F2 to each element of a vector in memaory

Loop: L.D FO,0(R1) ; FO=array element
ADD.D F4,FO,F2 : add scalar in F2
S.D F4,0(R1) : store result
DADDUI R1,R1,#-8 ; decrement pointer
; 8 bytes (per DW)
BNE R1,R2,LOOP ; branch R1!=R2

» Let us create a table showing when each instruction issues, begins execution, and write
its result to CDB for first three iterations using 2-issue version of Tomasulo’s pipeline
using single issue processor

» Assume that Both FP and integer operation can be issued on every clock cycle, even if
they are dependent

+ One integer functional unit is used for both ALU operations and effective address
calculations and a separate pipeline FP functional until for each operation type

» Issue and write result take one cycle each.

» There is dynamic branch prediction hardware and a separate functional unit to evaluate
branch conditions

» There is one clock for integer ALU, two cycles for load, and three cycles for FP add.

» Les us have a look on he clock cycle of issue, execution, and writing result for a dual
version of Tomasulo’s pipeline
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Iteration Memory Write

number Instructions Issues at Executes access at CDBat Comment
1 L.D  FO,0(R1) 1 2 3 4 First issue
1 ADD.D F4,FO0,F2 1 8 Wait for L.D
1 S.0  F4,0(R1) 2 3 9 Wait for ADD.D
1 DADDIU R1,R1,#-8 3 4 5 Wait for ALU
1 BNE  RI,R2,Loop 3 6 Wait for DADDIU
2 L.D  F0,0(R1) 4 7 8 9 Wait for BNE complete
2 ADD.D F4,FO,F2 4 10 13 Wait for L.D
2 S.D  F4,0(R1) 5 8 14 Wait for ADD.D
2 DADDIU R1,R1,#-8 5 9 10 Wait for ALU '
2 BNE  RI1,R2,Loop 6 1 Wait for DADDIU
3 L.D  FO,0(R1) 7 12 13 14 Wait for BNE c@ !
3 ADD.D  F4,F0,F2 7 1S 18 Wait for L.D
3 s.D  F4,0(R1) 8 13 19 Wait for ADD.D l}
3 DAADIU R1,R1,#-8 8 14 15 WaitforALU |
3 BNE  R1,R2,Loop 9 16 Wait for DADDIU

» Thus, sustaining one iteration every three cycles would lead to an IPC of 5/3=1.67 (5
instructions in 3 clocks)
+ completion rate is: 15/16=0.94
v 15 instructions execute in 16 cycles

Resource usage table

Clock number Integer ALU FP ALU Data cache cDB
2 1/L.D
3 1/S.D 1/L.D
4 1 / DADDIU I/L.D
5 1/ADD.D 1 / DADDIU
6
7 2/L.D
8 2/S.D 2/L.D 1/ADD.D
9 2 /DADDIU 1/S.D 2410
10 2/ADD.D 2/ DADDIU
11
12 3/L.D
13 3/S.D 3/L.D 2/ ADD.D
14 3 /DADDIU 2/5.D 3/L.D
15 3/ADD.D 3 /DADDIU
16
17
18 3/ADD.D
19 3/5.D
20
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Another example: Overcoming the single integer pipe bottleneck
Now let us consider another example with 2-issue version of the Tomasulo's pipeline to

overcome single-integer unit pipe bottleneck

Example 2

In this example, we consider the execution of the same loop, as used in the previous
example, but using 2-issue version of Tomasulo’s pipeline with 2-issue processor that

has wider CDBs (2 CDBs)

Similar to the previous example, the activities table, similar to the previous table, shows
the clock cycles of issue, execution and writing result for the dual-issue version of the
Tomasulo’s pipeline

Notice that dual-issue Tomasulo pipe has:
v’ separate functional units for Integer ALU and effective address calculation; and

v' wider CDB
» Activity Table for Example 2
Iteration Memory Write N
number Instructions Issues at Executes access at CDB at Comment
i LD FO,0(R1) E . b o h v a Firstissue
1 ADD.D F4,FO,F2 Bl e T i WaitforL.D
. T (R i Wait for ADD.D
1 _ DADDIU RI,RI,#-8 2 - 4 Executes earlier
! _ BNE_ RI,R2,Loop 3 5 - Wait for DADDIU
2 L.D  FO,0(R1) 4 6 7 ‘ Wait for BNE complete
2 ADD.D F4,FO,F2 4 9 12 Waitfor L.D
2 S.D__ F4,0(R1) 5 U -=iay 13 Wait for ADD.D
2 DADDIU R1,R1,#-8 5 6 7 Executes earlier
2 BNE_ RI,R2,Loop 6 Wait for DADDIU
3 L.D  FO,0(RI) 7 9 10 T Wait for BNE complete
3 ADD.D F4,FO,F2 7 12 15 Waitfor L.D
3 S.D  F4,0(R1) 8 10 16 Wait for ADD. D
3 DADDIU R1,R1,#-8 8 9 10 Executes earlier
3 BNE  RI,R2,Loop 9 1 Wait for DADDIU
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Lecture 18
Instruction Level Parallelism
(Hardware-based speculations and exceptions)
Today's Topics
+ Hardware-based Speculations
» Speculating on the outcome of branches
+ Extension in the Tomasulo’s hardware
« Handling Exceptions
*  Summary

Recap: Lecture 17
Last time we discussed three basic concepts to accomplish multiple instructions issue:
« Branch Target Buffer
v' Branch Target-buffer provides the target branch address at the IF stage
v Its variation, branch folding, buffers the actual target-instruction instead of or
along with target address
v' Both facilitate to minimize branch-hazard stalls allowing multiple instruction issue
in one clock cycle
» Integrated Instruction Fetch Units
v Integrated Instruction Fetch Unit (IIFU) integrates the following three functions
into a single step
o Branch Prediction
o Instruction Prefetch
o Instruction memory access and buffering
* Return Address Predictors
v Is one that predicts the indirect jumps, i.e., the jumps for indirect procedure calls
and select or case statements

Then we discussed the features of:

» Superscalar processors

* VLIW processors

» Inthe superscalar pipeline processors the multiple instructions issued in one clock cycle
can be scheduled using both the static as well as dynamic scheduling techniques

* Whereas, the VLIW-based processors schedule multiple instruction issues in one clock
cycle using only the static scheduling approaches

» Then we discussed the performance enhancement and factors limiting the performance
in superscalar pipes

v’ statically scheduled and dynamically scheduled

Today’s Focus
» Last time, in the loop-based example, we observed that the control hazards, which
prevent us from starting the next iteration before we know whether the branch was
correctly predicted or not, causes one-cycle penalty, on every loop iteration
+ Today we will focus on the hardware-based speculation to address this limitation
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Hardware-based Speculation: Introduction

+ Hardware-based speculation offers many advantages
v' Can incorporate hardware-based branch prediction
v" Does not require additional bookkeeping code
v Does not depend on a compiler

» This approach has been implemented in the :
v" PowerPC 620 v Intel P6, and
v" MIPS R10000 v AMD K5

Hardware Based Speculation: Basics
»  We have observed that exploiting more instruction level parallelism, increases the
burden of maintaining control dependence
» Where, the branch prediction reduces the direct stall attributable to branches, a multiple-
issue processor may need to execute a branch every clock cycle to maintain maximum
performance
» Hence, exploiting more parallelism requires that we must overcome the limitations of
control dependence
+ These limitations are overcome by the speculation on the outcome of branches and
executing the program for speculations
* Here, we:
v" Fetch, Issue and
v' Execute instructions
as if our branch predictions were always correct.
» We know that dynamic scheduling without speculation fetches and issues but does not
execute such instructions until prediction is checked and found correct

Hardware Support: Speculative Execution

» Main idea: allow execution of an instruction dependent on a predicted-taken branch such
that there are no consequences (including exceptions such as memory violation) if
branch is not actually taken

» Further, we don’'t want a speculative instruction to cause exceptions that stop programs
(i.e. memory violation)

« This can be achieved: If hardware support for speculation buffers the results and
exceptions from instructions, until it is known that the instruction would execute

Hardware Based Speculation: Basics
» This shows that: Hardware based speculation combines three key ideas:
v Dynamic Branch Prediction
o Dynamic branch prediction facilitates to choose which instruction to
execute; i.e., next in sequence or branch
v' Speculation
o Speculate to allow the execution of the instructions before the control
dependence is resolved. Here, the hardware has the ability to undo the
instructions hard to do if there are exceptions
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v" Dynamic scheduling
o Dynamic scheduling to deal with the scheduling of different combinations
of basic blocks
Thus, the hardware based speculation follows the predicted flow of data values to
choose when to execute
To do so, we must separate the bypassing of results among instructions, which (i.e.,
bypassing) is needed to execute an instruction speculatively, from the actual completion
of an instruction
By making this separation we can allow an instruction:
v’ to execute and
v to bypass its result to other instructions without allowing the instruction to perform
any update that cannot be undone, until we know that the instruction is no longer
speculative
When the instruction is no longer speculative, we allow it to update the register file or
memory
This additional step in the instruction execution sequence is called instruction commit
This shows that the basic idea behind implementing the speculation is to allow
instructions to execute out-of- order but force them to commit in-order

Hardware Based Speculation: Implementation

In a single issue five stage pipeline: we can ensure that instructions are committed in-
order, simply by moving writes to the end of the pipeline. Because when we add
speculation, we need to separate the process of completing execution and instruction-
commit, as the instructions may finish execution considerably before they are ready to
commit

Adding this commit phase to the instruction execution sequence requires some changes
to the sequence as well as an additional set of hardware buffers that holds the result of
instructions that have finished execution but have not committed

Modified hardware including ROB

¥
Reorder
EP Buffer
Op T
ueue
Q “=1 FP Regs
Y
l Res Stations I I Res Stations I
| FP Adder | FP Adder
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Here, the reorder buffer can be operand source, if value not yet committed
Once operand commits, result is found in register file

Mechanism

At issue time, allocate an entry in the ROB to hold result

As each value has a location in the ROB, therefore, use ROB entry number instead of
reservation station to rename

However, we can use additional registers for renaming, and ROB only for tracking
commits

Instruction results commit to register set in- order

If ROB is implemented as a queue then it is simple to Undo speculated instructions on
mispredicted branches or on

exceptions just requires throwing away uncommitted entries

Extended Tomasulo’s Pipe

Exceptions are not recognized until an instruction becomes ready to commit
The figure shows the Tomasulo’s hardware structure including the ROB

Racirdar buttar
From instreciion wnt

I|I..h.."""'---_ — ]
b
Reg # Cale
Imsinucton 1
qusasa
FP regisiers
Lioad-shona
aparabions
Oiparand
Floating port buses
ap=erabons
¢ Loed buiftars

<_'> J Diparation bus

Sloars 3

add rags 2 1 1 Fl-n-nn_ Maleon 1 3
Share 1 stations

daia Addreess

LW FP acders
and
data Caommon data bus (COE)

Here, the basic structure of a MIPS FP unit, using Tomasulo’s algorithm is extended to
handle speculation.

The mechanism may be further extended to multiple issue by making CDB wider to allow
for multiple completions per clock.

Here, the reorder buffer(ROB) provides additional buffer, same way as in reservation
station in Tomasulo’s, that extend the register set.
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» The ROB holds the result of an instruction between the time operation associated with
the instruction completes and the time instruction commit.

» Hence, ROB is a source of operands for instructions just an in reservation station
provided operands in Tomasulo’s algorithm.

* In Tomasulo’s approach, once an instruction writes its result, any subsequently issued
instructions will find the result in the register file.

* Whereas, in speculation the register file is not updated until the instruction commits —
Thus the ROB supplies operands in the interval between completion of instruction
execution and instruction commit.

+ The ROB is similar to the store buffer in the Tomasulo’s algorithm.

« ROB consists of four fields,

v"instruction type field v' the value field
v' destination field v' the ready field

Reorder Buffer Fields
1. Instruction Type field: It indicates whether:
v" The instruction is a branch and has no destination,
v' The instruction is a store, which has a memory address destination) , or
v' The instruction is a register operation, ALU operation or load, which has register
destinations.
2. Destination field: It supplies
v’ the register number ( for load and ALU operation) or
v the memory address (for stores) where the instruction result should be written.

3. Value field
v' It is used to hold the value of the instruction result until the instruction
commits.
4. Ready field

v Itindicates that the instruction has completed execution and the value is ready.

Speculative Tomasulo’s Algorithm
There are Four Steps of Speculative Tomasulo’s Algorithm
1. Issue
v Get instruction from the head of the instruction queue
v' If reservation station and ROB slot free, Then allocate and issue instruction
v If not free then stall issue
v'If operands are available then send them to the reservation station
v Else keep track of ROB entry that will produce the operands
2. Execute
v' Operate on operands (EX)
If both operands ready then execute
If not ready, the watch CDB for result
This checks for RAW hazards
Instructions may take multiple clock cycles here

AN NI NN
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3. Write result

v Finish execution (WB)
v" Write on CDB, mark reservation station available
v" Result picked up by ROB entry
v If the value to be stored is available, then it is written to the value field of the ROB
entry for the store.
v If the value to be stored is not available yet, then the CDB must be monitored
until that value is broadcast,
v' At which time the value field of the ROB entry of the store is updated.
4. Commit
v" Commit can occur when an instruction reaches the head of the ROB and its
result is present in the buffer.
v' Commit update register or store to memory with ROB result and free up ROB
slot
v" If ROB head is an incorrectly predicted branch, then flush ROB
v If the branch was correctly predicted, then the branch is finished
Example 1
+ Using the same code segment, as we considered explaining in the Tomasulo's

approach, earlier show that what the status table look like when the MUL.D is ready to
go to commit.

Assume the same latencies as earlier

v
v

add is 2 clock cycles,
multiply is 10 clock cycles, and
divide is 40 clock cycles.

LD  F6,34(R2)
LD  F2,45(R3)
MUL.D FO,F2,F4
SUB.D F8,F6,F2
DIV.D F10,FO,F6
ADD.DF6,F8,F2
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The above example illustrates the key important difference between a proces-
sor with speculation and a processor with dynamic scheduling, Compare the con:
tent of Figure 3,30 with that of Figure 3.4, which shows the same code sequence
in operation on a processor with Tomasulo’s algorithm, The key difference 15 that,
in the example above, no instruction after the ecarliest uncompleted Instruction
(MUL.D above) is allowed 1o complete. In contrast, in Figure 3.4 the SUB.D and
ADD, D instructions have also completed,

Reservation stations

Name Busy Op Vi vk Q) Qk Dest A
Loadl no I T == e
l-nu—(l:'—v : no e

Addl  no === S i R ) :
Add2  no = o == ce st
Addd  no T = g

Multl  no  MUL.D Mem[4S + Regs[R3])  Regs(Fd) = D
Mol yew OO Mem(34 + Regs[R2)) %\ "

Reorder buffer

v

Entry Busy Instruction State Destination Value

.—l._— ,__..;”‘ - 5 I— D“ F6,34(R2) {'Iwmnm l-:h- : Mrml._\*-t:_ 55;:({!_1_2_])
0 no L.D _ F2,45(R3) Commit ¥2 Mem|[45 + Regs(R3))
V\— yc: ] MU(D— ;0_,??,!:4_——— = W;ole.rﬁ-;;ll FO ys e W) = k«p:lftl
T Ty SUB.D FB.FG.72  Wrheresult P8 -,

48 yes __ DIV.D F10,F0,F6 ~ Execute F10 = -
€y “ADD.D_ F6,F8,F2 Write result_____ F6 T WA w2

FP register status

Fleld Fo F1 F2 Fs Fa FS e F7 F8 Fi10
Reordor W '4—_ e 6 4 -
Busy yox o no no no no yes o yes yes

Figure 3,30 At the time the MUL.D is ready to commit, only the two L. D instructions have committed, although
several others have completed execution. The MUL.D is at the head of the ROB, and the two L.D Instructions are
there only to ease understanding, The SUB. D and ADD.D instructions will not commit until the MUL, D instruction com:-
mits, although the results of the instructions are available and can be used as sources for other instructions. The
DIV.D is In execution, but has not completed solely due to its longer latency than MUL ., D, The Value column Indicates
the value being held; the format #X is used o refer 1o a value field of ROB entry X, Reorder buffers 1 and 2 are actually

completed, but are shown for informational purposes. We do not show the entries for the load-store queue, but
these entrles are kept in order,

* The table shows that

v Although the SUB.D instruction has completed execution, it does not commit until
the MUL.D commits

v' The reservation station and the register status field contains the same basic

information as they contain for the Tomasulo’s algorithm.
« Also note that at the time

v' MUL.D is ready to execute and only two L.D instructions have committed,
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although several other have completed execution.

v' The SUB.D and ADD.D will not commit until the MUL.D instruction commits,
although the results of the instructions are available and can be used as source
for other instructions

* Further, here
v' The DIV.D is in execution, but has not completed solely due to its longer latency
than MUL.D.
* The value column indicates the value being held.
* The format #X is used to refer to a value field of ROB entry X.
» Reorder buffers 1 and 2 are actually completed but are shown for informational purposes

Answer & re " T
l" € result is shown iy the three tables in Figure 1.3 The numbers appended 1o
Ihe names add, mult, and load stand for e tag for 1hat rescrvation stabon Add i
In the tag for the result from the first add unit In addition we have ncluded &

sructon status table, This table s Included only 10 el you Undes tand the
Ugonthm, it is aor actually a parnt of the hardware. Instead. the reser ALIOR station

Keeps the state of cach operation that has issued

INstruction status

nstruction miue Execule Write Result
A (RS
Fg. 4 ) '
- ) Fo . F2.7a
] 8. 12.1¢
¥ 510 -» -‘ll

Reservation stations

Name Susy Op Vi Vi Q Ok a
b 4
Loed)
Loadl yeo Lo 4% « Mepn[RD
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Figure 3.3 Reservation stations and register tags shown when all of the instructions have issued, but only the
st load instruction has completed and written s result to the COB. The second load has compileted eMectve
sddeess calculation, but iy waiting on the Memory unit. We use the array Regil ] 10 refer to the register ’;ﬁe and the
atfay Mem| | to refer 10 the memory. Bemember that an operand i specified by oither a Q Neld o a V field at any
time. Notice that the ADD. D instroction whith has a WAR hazad at the W s1age. has issued and could complete
before the DIV, D initiates ¢

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

The table below shows the same example for Tomasulo's approach without speculation,
discussed earlier.
Let us discuss the key important difference between a processor with speculation and a
processor with dynamic scheduling.
Comparing the two tables we can see that
In the non-speculation case, the ADD.D and SUB.D instructions completed out-of-order,
i.e., before the MUL.D completed
The in case of speculative hardware:

v' The reservation stations numbers are replaced with the ROB entry numbers in

Qj, Qk and in register status fields
v And, the DEST. Destination Field is added to reservation station
v The destination field designates the ROB number that is destination for result

Multiple issue with speculation

A speculative processor can be extended to multiple issue using the same techniques
we employed when extending Tomasulo-based processor
There are two challenges for multiple issue with Tomasulo’s algorithm

1. Instruction issue and monitoring the CDBs for instruction completion

2. Maintaining throughput of greater than one instruction per cycle
To show how speculation can improve performance in a multiple issue processor. Let
us consider an example.

Example
Consider the execution of the following loop, which searches an array, on two- issue processor,
once without speculation and once with speculation.

Loop:

LD R2,0(R1) ; R2= array element
DADDUI R2,R2,#1 ;increment R2

SD R2,0(R1) ; store result

DADDUI R1,R1,#4 ; increment pointer

BNE R2,R3,LOOP : branch if not last element

Assume that

v There are separate integer functional units for the effective address calculations,

for ALU operations, and for branch condition evaluation.

v" Up to two instructions of any type can commit per clock
Let us consider two tables, for the first three iterations of this loop, for machines with and
without speculations
The first table shows time of issue, execution, and writing result for two - issue
dynamically scheduled processor, without speculation.
Note that the L.D following the BNE cannot start execution earlier, because it must wait
until the branch outcome is determined.
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» This type of program with data dependent branches that cannot be resolved earlier,
shows evaluation allow multiple instructions to execute in the same clock cycle.
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* The second table shows the time of issue, execution and writing result for a dual-issue

version of our pipeline with speculation.
* Note that the L.D following the BNE can start execution early because it is speculative.
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Comparing the two tables, note that the third branch in the speculative processor
executes in 13 clock cycle, while in non-speculative processor it executes in 19 clock
cycle. That is, the non-speculative pipelines are falling behind the issue rate rapidly

Exceptions to Hardware-based speculation: Extended discussion

So far, we have been discussing the performance-enhancement using the structure of
Tomasulo’s Algorithm extended to handle speculations for ILP in single-issue and
multiple-issue processors
Here, we observed that the store-buffer of the Tomasulo’s structure is eliminated and a
Re-Order Buffer is included that incorporates the function of store-buffer
The structure is then further extended to handle multiple-issue by making the CDB wider
Now, we will talk about the exceptional situations which may arise when executing a
program using dynamic scheduling and how the structure with hardware-based
speculation considers these exceptions
We know that the dynamic scheduling without speculation, allows to complete execution
out-of-order, where as the structure with speculating-hardware commits in-order
Therefore, if an exceptional situation occurs while exacting an instruction, the ROB in
structure with speculation doesn’t commit and handle exceptions
Let us reconsider the execution of our first example program using Tomasulo’s structure
with speculation and without speculation
Here, the instructions SUB.D and ADD.D, occurring after the incomplete instruction
MUL.D, but executed earlier, don’t commit until the instruction MUL.D completes and
commit
v'in an exceptional case, if MUL.D causes an interrupt, then it is handled as follows
we can wait until this interrupt reaches the head of ROB and any pending
instruction is flushed out, the speculation is un-done
v Whereas, in case of dynamic scheduling without speculation, the results in
registers F8 (for SUB.D) and in register F6 (for ADD.D) could be overwritten out-
of-order, thus the interrupt could not be handled
Furthermore, the exceptions are handled not recognizing then until it is ready to commit.
This may be explained by considering our earlier example of the execution of a loop

Loop:

L.D FO0,0(R1)

MUL.D F4,FO,F2

S.D F4,0(R1)

DADDUI R1,R1,# -8

BNE R1,R2, LOOP :branch if R1=R2

Here, if the an exception arises, say due to interrupt from MUL.D, the exception is recorded in
the ROB. At the same time, if misprediction arises from the speculated instruction (i.e., BNE)
then the exception is flushed out along with the speculated instruction that should not have been
executed when the ROB is cleared
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Summary

The focus of our today’s discussion has been the Tomasulo’s hardware modification to
handle execution using speculation, i.e.,
Speculating on the outcome of branches to avoid control hazards, which prevent us
from starting the next operation before we know whether the branch was correctly
predicted or not
The Main idea is to allow execution of a branch instruction, predicted taken, such that
there are no consequences if branch is not actually taken
Further, we don’t want a speculative instruction to cause exceptions which stop
programs
Software generated interrupt or memory violation are typical examples of exceptions
We found that this can be achieved:

v by including a buffer that holds the results and exceptions from instructions, until

it is known that the instruction would execute

v Such a buffer is called Re-Order Buffer - ROB

v" ROB is used only to track commits

v' The ROB is flushed out if the speculation does not hold or exception is found
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Lecture 19
Instruction Level Parallelism
(Limitations of ILP and Conclusion)

Today's Topics

Recap
Limitations of ILP
v" Hardware model
v’ Effects of branch/jumps
v finite registers
Performance of Intel P6 Micro-Architecture-based processors
v" Pentium Pro, Pentium Il, Il and IV
Thread-level Parallelism
Summary

Recap: ILP- Dynamic Scheduling

In the last few lectures we have been discussing the concepts and methodologies, which
have been introduced during the last decade, to design high-performance processors
Our focus has been the hardware methods for instruction level parallelism to execute
multiple instructions in pipelined datapath

These hardware techniques are referred to as Dynamic Scheduling techniques

These techniques are used to ovoid structural, data and control hazards and minimize
the number of stalls to achieve better performance

We have discussed dynamic scheduling in integer pipeline datapath and in floating-point
pipelined datapath

We discussed the score-boarding and Tomasulo’s algorithm as the basic concepts for
dynamic scheduling in integer and floating-point datapath

The structures implementing these concepts facilitate out-of-order execution to minimize
data dependencies thus avoid data hazards without stalls

We also discussed branch-prediction techniques and different types of branch-
predictors, used to reduce the number of stalls due to control hazards

The concept of multiple instructions issue was discussed in details

This concept is used to reduce the CPI to less that one, thus, the performance of the
processor is enhanced

Last time we talked about the extensions to the Tomasulo’s structure by including
hardware-based speculation

It allows to speculate that branch is correctly predicted, thus may execute out-of-order
but commit in-order having confirmed that the speculation is correct and no exceptions
exist

Today’s topics ILP- Dynamic Scheduling

Today we will conclude our discussion on the dynamic scheduling techniques for
Instruction level parallelism by introducing an ideal processor model to study the:

v Limitations of ILP; and

v" Implementation of these concepts in Intel P6 Micro-architecture
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Limitations of the ILP — Ideal Processor
« To understand the limitations of ILP, let us first define an ideal processor.
a) An ideal processor is one which doesn’t have artificial constraints on ILP; and
b) The only limits in such a processor are those imposed by the actual data flows
through either registers or memory

Assumptions for an Ideal processor
* Anideal processor is, therefore, one wherein:
a) all control dependencies and
b) all but true data dependencies
are eliminated
» The control dependencies are eliminated by assuming that the: branch and Jump
predictions are perfect, i.e., all conditional branches and jumps (including indirect jumps
used for return etc.,) are predicted exactly; and the processor has perfect speculation
and an unbounded buffer of instructions for execution
» All but true data dependencies are eliminated by assuming that:
a) There are infinite number of virtual registers available facilitating:
— register renaming thus avoiding WAW and WAR hazards); and
— Simultaneous execution of an unlimited number of instructions
b) All memory addresses are known exactly facilitating: to move a load before a
store, provided that the addresses are not identical

Ideal hardware model
» Hence, by combining these assumptions, we can say that in an ideal processor:

v' Can issue unlimited number of instructions, including the load and store
instructions, in one cycle

v'All functional units have latencies of one cycle, so the sequence of dependent
instruction can issue on successive cycles

v/ any instruction, in the execution of a program, can be scheduled on the cycle
immediately following the execution of the predecessors on which it depend; and

v the last dynamically executed instruction in the program, can be scheduled on
the very first cycle

Performance of a Nearly Ideal Processor
* Now let us examine the ILP in one of the most advanced superscalar processor Alpha
21264
* Alpha 21264 has the following features:
v’ Issues up to 4 instructions/cycle
v Initiates execution on up to 6 instructions
v Supports large set of renaming registers
(41-integer and 41 floating-point)
v Uses large tournament type predictor
* In order to examine the ILP in this processor a set of six (6) SPEC92 benchmarks
(programs), compiled on MIPS optimizing compiler are run.
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The features of theses benchmarks are:
The three of these benchmarks are floating point benchmarks:

v" Fpppp, Doduc, Tomcatv
The integer programs are given as follows,

v'gcc, espresso, li
Now let us have a look on the performance Alpha 21264 for average amount of
parallelism defined as number of instruction-issues per cycle for these benchmarks
Fig 3.35
Here, you can see that fpppp and tomcatv have extensive parallelism so have high
instruction-issues
Where as the doduc parallelism doesn't occur in simple loop as it does in fpppp and
tomcatv
The integer program li is a LISP interpreter that has many short dependences so offers
lowest parallelism
Now let us discuss how the parameters which define the performance of a realizable
processor are limited in ILP
The important parameters to be studied are:

v" Window Size and Issue Count

v' Branch and Jump predictors

v Finite number of registers

Window size and Issue count

In dynamic scheduling, every pending instruction must look at every completing
instruction for either of its operand.
A window in ILP processor is defined as:
“a set of instructions which is examined for simultaneous execution”
Start of the window is the earliest uncompleted instruction and the last instruction in the
window determines its size
As each instruction in the window must be kept in the processor till the completion of
execution, therefore the total window size is limited by the storage, number of
comparisons and issue rate
The number of comparisons required every clock cycle is equal to the product:

maximum completion rate x

window size x

number of operands per instruction
For example, if

maximum completion rate =6IPC

window size = 80 instructions

number of operands per instruction = 2 operands
then

maximum comparisons required =6x80x2=960

In real processors, maximum number of instructions that may issue, execute and commit
in the same clock cycle, is smaller than the window size
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Now let us see the effect of restricting window size on the instruction-issues per cycle

Fig 3.36...

Here, we assume that the instructions in the window are obtained by perfectly predicting
branches and selecting instructions until the window is full.

Here, you can see that the amount of the parallelism uncovered falls sharply with
decreasing window size — e.g.;

for the benchmark gcc, when window size decreases from 2K to 512 parallelism falls
from 35 to 10 IPC and parallelism reduces to almost zero when window size is 4

Also note that the parallelism in the integer and FP program is almost similar for a
specific window size

Branch and jump prediction

Now let us discuss effect of realistic branch and jump prediction

Our ideal processor assumes that the branches can be perfectly predicted but no real
processor can achieve this

Let us have a look on to this graph which shows the effect of realistic prediction
schemes, which we have already discussed

Realistic branch and jump prediction
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This graph shows the parallelism for five different levels of predictions
1) Perfect
o At the start of execution all the branches and jumps are perfectly
predicted and its gives highest parallelism
2) Tournament based branch predictor
o The second step tournament based branch predictor is considered
This scheme uses 2-bit correlating and 2-bit non-correlating predictor with a selector
Predictor buffer consists of 8K entries, each consists of three 2-bit fields, that is, 48K
bits, both the correlating and non correlating
It achieves the average accuracy of 97% of the six SPEC92 benchmark
The graph shows the extensive difference among the programs:
v with loop-level parallelism (tomcatv and fpppp) and
v those without, i.e., integer programs and doduc
The 3" level using Standard 2 bit predicator with 512 2-bit entries and
4™ level using profile history of the program give almost identical results
The 5™ level — None - where no branch prediction is used, though jumps are still
predicted, the parallelism is largely limited to within a basic look

The effect of finite registers

Another important limiting factor on the Instruction-issues per cycle is the finite registers.
Ideal processor eliminates all name dependences among the register references
assuming an infinite set of physical registers

To date, the Alpha 21264 has provided the largest number of extended registers i.e. 41
integer and 41 FP registers

In addition 32 integer and 32 FP registers are provided

The graph shows the effect of finite number of registers available for renaming using the
same six SPEC 92 benchmarks. Fig 3.41...

Both the number of FP registers and the number of GP registers are increased

Although, having only 32 extra FP and 32 extra GP registers has a significant impact on
all the programs.

But, the effect is most dramatic on the FP programs — (fpppp and tomcatv) — the
instruction-issues increases from 10 to 45 IPC when registers increases from 32 to 128
Note that the reduction in available parallelism is significant when fewer than an
unbounded number of renaming registers ( here, less than 32) are available

For the integer programs the impact of having more than 64 registers is not seen here
This is because of limitation in the window size.

Performance of realizable processors with realistic hardware

Let us consider a processor with the following attributes
1) up to 64 instructions per clock with no issue restriction,
2) A tournament predictor with 1K entries return predictors
3) Perfect memory references done dynamically or through a memory dependence
predictors
4) register renaming with 64 additional integer and 64 additional FP registers
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Limitations on ILP for realizable processors

Fig 3.45...

This configuration is more complex and expensive then any existing implementations,
especially in terms of number of instructions issue.

The fig shows the results of the configuration as we vary the window size up to 64 issue
per clock

Here, we assume that although there are fewer rename registers than the window size,
the number of rename registers equals the issue width.

All the operations have zero latency

The fig shows the effect of the window size for the integer programs is not as severe as
for the FP programs.

Putting it all together

The Intel p6 micro-architecture forms the basis for the Pentium pro, Pentium Il and
Pentium Il

These three processors differ in clock rate, cache architecture, and memory interface
The Pentium pro, the processor and specialized cache SRAM’s were integrated into
multichip module

In the Pentium Il standard SRAM’s are used as caches

In the Pentium Ill, there is either an on chip 256 KB L2 cache or an off chip 512 KB
cache.

The P6 micro architecture is dynamically scheduled processor that:

translates each 1A-32 instruction to a series of micro-operations (uops) that are
executed by the pipeline;

The maximum number of uops that may be generated per clock cycle is six, with four
allocated to the first IA-32 instructions

The uops are executed by an out of order speculative pipeline using register
remaining and a ROB

Performance of the Pentium pro implementation

The Pentium pro has the smallest set of primary caches among the p6 based
Microprocessors.
It has high bandwidth interface to the secondary caches.

Branch performance and speculation costs

Branch target addresses are predicted with a 512 entry branch target buffer (BTB).

If the BTB does not hit, a static prediction is used.

Backward branches are predicted taken (and have a one cycle penalty if correctly
predicted ).

Forward branches are predicted not taken and have no penalty if correctly
predicted).

Branch mispredicts have both a direct performance penalty, which is between 10 and
15 cycles.

Also indirect penalty due to the overhead of incorrectly speculated instructions.
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» Which is essentially impossible to measure.

« Fig 3.54...

» It shows the fraction of the branches mispredicted either because of BTB misses or
because of incorrect predictions.

» On average about 20% of the branches either miss or are mispredicted and use the
simple static predictors rule.

Overall Performance of P6 Pipeline

» Overall performance depends on the rate at which instructions actually complete and
commit.

» Fig 3.56...

» The fig shows the fraction of the time in which zero, one, two or three uops commit.

» On the average, one uop commits per cycle.

» Here, 23% of the time, three uops commit in a cycle.

» This distribution demonstrates the ability of a dynamically scheduled pipeline to fall
behind on 55% of the cycles, no uops commit) and later catch up (31% of the cycles
have two or three uops committing)

The Pentium Il versus Pentium 4

» The micro architecture of the Pentium 4, which is called Net Burst, is similar to that of
the Pentium Ill, called the P6 micro architecture.

» Both fetch up to three IA-32 instructions per cycle, decode them into micro-ops.

« Then sends the uops to an out-of-order execution engine that executes up to three
uops per cycle.

» There are, however, many differences which allow Net Burst micro architecture to
operate at a significantly higher clock rate than the P6 micro architecture

« These differences also help to maintain, or close to maintain, the peak to sustained
execution throughput.

Differences in Pentium Ill versus Pentium 4
1) NetBurst has a much deeper pipeline than P6, P6 requires about 10 clock cycles time
for a simple add instruction, from fetch to the availability of its results
v' In comparison, Net Burst takes about 20 clock cycles, including 2 cycles
reserved simply to drive results across the chip,
2) Net Burst uses register renaming (as in the MIPS R10K and the Alpha 21264) rather
than the reorder buffer, which is used in P6.
v' Use of register renaming allows many more outstanding results i.e., potentially
up to 128 results versus the 40 permitted in P6.
3) There are seven integer execution units in the Net Burst versus five in P6.
v In addition an additional integer ALU and an additional address computation unit.
v" An aggressive ALU (operating at twice the clock rate) and an aggressive data
cache lead to lower latencies.
o The latency for the basic ALU operations is effectively one half of a clock
cycle in Net Burst versus one in P6)
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o The latency for data loads is effectively two cycles in Net Burst versus
three cycles in P6)
v' These high-speed functional units are critical to lowering the potential increase in
stalls from the very deep pipeline.
4) Net Burst uses a sophisticated trace cache to improve instruction fetch performance,
while P6 uses a conventional Prefetch buffer and instruction cache.
5) Net Burst has a branch target buffer that is eight times larger and has an improved
prediction algorithm
6) Net Burst has 8 KB Level-I data cache as compared to P6 that has16KB Level-l data
cache.
v" However, the Net Burst has larger Level-2 cache (256KB) with higher bandwidth
7) Net Burst implements the new SSE2 FP instructions that allow two FP operations per
instruction
v' These operations are structured as 12-bit SIMD or short-vector structure.
v This gives Pentium 4 a considerable advantage over Pentium-Ill on FP code.
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Lecture 20
Instruction Level Parallelism
(Static Scheduling)

Today’s Topics

Recap: Dynamic Scheduling in ILP
Software Approaches to exploit ILP
v Basic Compiler Techniques
v Loop unrolling and scheduling
v Static Branch Prediction
Summary

Recap: Dynamic Scheduling

Our discussions in the last eight (8) lectures have been focused on to the hardware-
based approaches to exploit parallelism among instructions
The instructions in a basic block , i.e., straight-line code sequence without branches, are
executed in parallel by using a pipelined datapath
Here, we noticed that:

v" The performance of pipelined datapath is limited by its structure and data and

control dependences, as they lead to structural, data and control hazards

These hazards are removed by introducing stalls
The stalls degrade the performance of a pipelined datapath by increasing the CPI to
more than 1
The number of stalls to overcome hazards in pipelined datapath are reduced or
eliminated by introducing additional hardware and using dynamic scheduling techniques
The major hardware-based techniques studied so far are summarized here:

Technique Hazards type stalls Reduced

Forwarding and bypass Potential Data Hazard Stalls

Delayed Branching and Branch Scheduling

Control Hazard Stalls

Basic Dynamic Scheduling

Data Hazard Stalls  from

boarding)true dependences

(score

Dynamic Scheduling with renaming

Stalls from: data hazards from anti-
dependences and (Tomasulo’s Approach)
fromoutput dependences

Dynamic Branch Prediction

Control Hazard stalls

Speculation

Data and Control Hazard stalls

Multiple Instructions issues per cycle

Ideal CPI > 1

Introduction to Static Scheduling in ILP
The multiple-instruction-issues per cycle processors are rated as the high- performance

processors

These processors exist in a variety of flavors, such as:

v Superscalar Processors
v" VLIW processors
v" Vector Processors
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» The superscalar processors exploit ILP using static as well as dynamic scheduling
approaches

* The VLIW processors, on the other hand, exploits ILP using static scheduling only

* The dynamic scheduling in superscalar processors has already been discussed in detail;

* And, the basics of static scheduling for superscalar have been introduced

* In the today’s lectures and in a few following lectures our focus will be the detailed study
of ILP exploitation through static scheduling

» The major software scheduling techniques, under discussion, to reduce the data and
control stalls, will be as follows:

Technique Hazards type stalls Reduced

Basic Compiler scheduling Data hazard stalls

Loop Unrolling Control hazard stalls

Compiler dependence Ideal CPI, Data hazard stalls

Trace Scheduling Ideal CPI, Data hazard stalls

Compiler Speculation Ideal CPI, Data and control hazard stalls

Basic Pipeline scheduling
* In order to exploit the ILP, we have to keep a pipeline full by a sequence of unrelated
instructions which can be overlapped in the pipeline
 Thus, a dependent instruction in a sequence, must be separated from the source
instruction by a distance equal to the latency of that instruction, for example, ...
* A FP ALU operation that is using the result of earlier EP_ALU operation
v" must be kept 3 cycles away from the earlier instruction; and
A FP ALU operation that is using the result of earlier Load double word operation
v"must be kept 1 cycles away from it
» For our further discussions we will assume the following average latencies of the
functional units
v Integer ALU operation latency =0
v' FP Load latency to FP store =0;
(here, the result of load can be
bypassed without stalling to store)
v' Integer Load latency =1; whereas
v" FP ALU operation latency to FP store =2
A compiler performing scheduling to exploit ILP in a program, must take into
consideration the latencies of functional units in the pipeline
* Let us see, with the help of our earlier example to add a scalar to a vector, how a
compiler can increase parallelism by scheduling

Execution a Simple Loop with basic scheduling
Let us consider a simple loop:
for (i=1000; i>0; i=i-1)
X[i] = x[i] + scalar
Where, a scalar is added to a vector in 1000 iterations; and the body of each iteration is
independent at the compile time
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MIPS code without scheduling
* The MIPS code without any scheduling look like,

L.D FO, O(R1) ;FO array element

ADD.D F4, FO, F2 ;add scalar in F2

S.D F4, O(R1) :store result

DADDU R1, R1, #-8 ;decrement pointer 8 bytes
BNE R1, R2, LOOP ;branch R1! =R2

* Notice the data dependencies in ADD and STORE operation which lead to data-
hazards; and control hazard due to BNE instruction

Loop execution without Basic Scheduling
» Let us assume that the loop is implemented using standard five stage pipeline with
branch delay of one clock cycle
» Functional units are fully pipelined
« The functional units have latencies as shown in the table

Stalls of FP ALU and Load Instruction
* Here, the First column shows originating instruction type
» Second column is the type of consuming instruction
» Last column is the number of intervening clock cycles needed to avoid a stall

Instruction producing | Instruction using | Latency in clock
result result cycle

FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

Load double Store double 0

Single Loop execution (without scheduling for the latencies and stalls for originating viz-a-viz
consuming instructions)

Instructions clock cycles
L.D FO, O(R1) 1
Stall 2 ; L.D followed by FP ALU op has latency=1
ADD.D F4, FO, F2 3
Stall 4 ; FP ALU op followed by STORE double
Stall 5 ; has latency =2
S.D F4, O(R1) 6
DADDUI R1,R1,#8 7
Stall 8 ; Double ALU has latency = 1
BNE R1,R2,LOOP 9
Stall 10 ; Branch has latency = 1
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This code requires 10 clock cycles per iteration.
We can schedule the loop to reduce the stall to 1

Single loop execution With Compiler scheduling

Loop clock cycles

L.D FO, O(R1) 1

DADDUI R1,R1, #-8 2

ADD.D F4, FO, F2 3

Stall 4

BNE R1, R2, LOOP 5 (delayed branch)

S.D F4, 8(R1) 6 (altered & interchanged with DADDUI)
Explanation

To schedule the delay branch, complier had to determine that it could swap the DADDUI
and S.D by changing the destination address of S.D instruction

You can see that the address O(R1) and is replaced by 8(R1); as R1 has been
decremented by DADDUI

Note that the chain of dependent instructions from L.D to the ADD.D and then ADD.D to
S.D determines the clock cycles count; which is for this loop = 6, and for unscheduled
execution = 10

In this example, one loop iteration and store back is completed in one array element
every 6 clock cycles

but the actual work of operating on the array element takes 3 clock cycles ( load, add,
and store)

The remaining 3 clock cycles per iteration are the loop-overhead (to evaluate the
condition, stall and branch); i.e., the loop over-head is 100% in this example

Loop Unrolling

To eliminate or reduce the impact the loop-overhead, here 3 clock cycles per loop, we
have to get more operations within the loop, relative to the number of overhead
instructions

A simple way to increase the number of instructions per loop can be to replicate the loop
body for number of iterations and adjusting the loop termination code

This approach is known as loop unrolling

Loop Unrolling without scheduling

Let us reconsider our earlier example of loop; and unroll the loop so that there are four
(4) copies of the loop body

Assume that R1 is initially a multiple of 32

i.e., the number of loop iterations is a multiple of 4 and R1 contains 8-byte double word
Also, assume that redundant computations are eliminate and registers are not reused
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Example: Loop Unrolling without scheduling

LOOP

L.D FO, O(R1)

ADD.D F4, FO, F2

S.D F4, O(R1) - drop ADDUI &BNE
L.D F6,-8(R1)

ADD.D F8, F6, F2 L

S.D F8, -8(R1) - drop ADDUI &BNE
L.D F10,-16(R1)

ADD.D F12, F10, F2

S.D F12,-16(R1)  ;drop ADDUI &BNE
L.D F14,-24(R1)

ADD.D F16, F14,

S.D F16 , -24(R1)

DADDUI R1, R1, #-32

BNE R1, R2, LOOP

Loop Unrolling and scheduling

Loop

Note that simply replicating the instructions, when the loop is unrolled, results in the use
of the same register that could prevent us from effectively scheduling the loop

Here, the DADDUI instruction is merged into the LOAD instruction of the 2" and 3™
iteration codes; and

BNE is dropped in the first three (3) iterations, i.e., 3 branches and 3 decrement R1
operations are dropped here

The R2 in the instruction BNE R1, R2, Loop must now be set so that 32(R2) is the
starting address

Let us have a look on to execution without scheduling

clock cycles
L.D FO, O(R1) 1
stall 2
ADD.D F4, FO, F2 3
Stall 4
stall 5
S.D F4, 0(R1) ;drop ADDUI &BNE 6
L.D F6,-8(R1) 7
Stall 8
ADD.D F8, F6, F2 9
Stall 10
stall 11
S.D F8, -8(R1) ;drop ADDUI &BNE 12
L.D F10,-16(R1) 13
Stall 14
ADD.D F12, F10, F2 15
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Stall 16
stall 17
S.D F12,-16(R1) ;drop ADDUI &BNE 18
L.D F14,-24(R1) 19
Stall 20
ADD.D F16, F14, 21
Stall 22
stall 23
S.D F16 -24(R1) 24
DADDUI R1, R1, #-32 25
Stall 26
BNE R1, R2, LOOP 27
Stall 28

* Note that, here without scheduling, every operation in the unrolled loop is followed by
dependent operations e.g., L.D followed by ADD.D has data dependence; therefore L.D
has 1 stall similarly, 2 stalls are for ADD.D, 1 stall for DADDUI and 1 stall for branch

» This loop is, therefore, executed in 28 clock cycles (14 for instruction issue and 7 stalls)

» This unrolled version is currently slower than the scheduled version, discussed earlier,
where one iteration completes in 6 cycles so 24 cycles for the 4 iterations

Unrolling with scheduling
* Now let us see the performance of unrolled loop with scheduling
» As the instructions within a loop from different iterations, can be re-ordered, therefore,
Loop Unrolling can also be used to improve scheduling

Example 3: Unrolling with scheduling

Loop clock cycles
L.D FO, O(R1) 1
L.D F6,-8(R1) 2
L.D F10,-16(R1) 3
L.D F14,-24(R1) 4
ADD.D F4, FO, F2 5
ADD.D F8, F6, F2 L 6
ADD.D F12, F10, F2 7
ADD.D F16, F14, 8
S.D F4, 0(R1) 9
S.D F8, -8(R1) 10
DADDUI R1, R1, #-32 11
S.D F12, -16(R1) 12
BNE R1, R2, LOOP 13
S.D F16, -24(R1) 14

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

Here, the unrolled loop of the previous example is scheduled, assuming the same
latencies as earlier

After unrolling, the LOAD and ADD operation don’t have any data dependence, so they
are scheduled in sequence

Here, the 4 LOAD instructions of four iterations are executed in sequence with in 4 cc.
The STORE instruction of first iteration is issued in the 5" clock cycle, without any stall,
as it does not have dependence on the prior 3 LOAD instructions

The branch condition evaluation instruction DADDUI is issued in the 11" clock cycle to
avoid stall prior to the BNE, which is issued in the 13" clock cycle

The STORE instruction of the 4™ iteration is issued in 14™ clock cycle eliminating stall
after a branch

Note that the execution time of the unrolled loop has dropped to a total of 14 cycles, i.e.,
14/4=3.5 clocks per element, compared with 7 cycles per iteration before scheduling the
loop in this way

Loop unrolling and scheduling: Conclusion

Our discussion so far reveals that the key to the key to perform loop unrolling and
scheduling is to know when and how the ordering among instructions be changed
Furthermore, to make the final decision we must:
v' Determine that it was legal to move S.D after the DADDUI and BNE and find the
amount to adjust the S.D offset.
v' Determine that unrolling the loop would be useful by finding that the loop
iterations were independent except for the loop maintenance code
v'Use different registers to avoid unnecessary constraints that would be focused by
using the same registers for different computations
v' Eliminate the extra test and branch instruction and adjust the loop termination
and iteration code
v Determine that the loads and stores in the unrolled loop can be interchanged by
observing that the loads and stores from different iterations are independent
v' Schedule the code, preserving any dependencies needed to yield the same
result as the original code.

Limits to the gains of Loop unrolling and scheduling

From our discussion on loop unrolling so far, we have observed the following limits to the
gains which could be achieved
1. Loop overhead — When we unrolled the loop, it generated sufficient parallelism
among instructions that motivated the loop to be scheduled with no stalls. The
scheduling resulted in 14 clock cycles to issue all instruction with the overhead
was only 2 cycles
— One for DADDUI or DSUBI which maintains the index value; and
— The other one for BNE which terminates the loop i.e., the overhead per
iteration was 2/4 or %2 cycles. This overhead could be reduced to 2/8 or %
cycles per iteration if the loop is unrolled 8 times and to 2/16 or 1/8 if
unrolling is for 16 times and so on
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2. Growth in code size — For larger loops the code size growth may be of concern
if larger size causes decrease in the cache miss rate

3. Register Pressure — (Shortfall in Registers)-The aggressive unrolling and
scheduling of large code size may result in shortfall of registers, which is referred
to as the Register Pressure. This is due to the facts that after aggressive
scheduling of instructions it may not be possible to allocate registers to live
values. Therefore, while unrolling and scheduling the compiler takes care of
these limitations

Loop unrolling and scheduling with MULTIPLE ISSUES in Superscalar

Let us see how the loop unrolling and scheduling enhances the performance in case of
multiple instructions issue per cycle — case already discussed with dynamic scheduling
Here, let us consider the same loop example with two-issues per cycle

One of the instruction may be load/store/branch or integer ALU and the other is FP

The unrolled and scheduled code is as given here

Here, to schedule the loop without delay it is unrolled 5 times — (for 5 stage Superscalar
pipeline)

After unrolling the loop contains 5 L.D, ADD.D and S.D and one each DADDUI and BNE
Two issues take place in 3" through 7™ cycles as the first L.D with next FP ALU has
latency of 2

Loop Unrolling in Superscalar

Integer instruction FP instruction Clock cycle

Loop: LD F R1 1
LD F:fé(?l)\g 2
LD F10,-16(R1) ADDD F4,F0,F2 3
LD F14,-24(R1) ADDD F8,F6,F2 4
LD F18,-32(R1) D F12,F10,F2 5
SD O0O(R1),F4AADDEF16,F14,F2 6
SD -8(R1),F8 ADDD F20,F18,F2 7
SD -16(R1),F12 8
SD -24(R1),F16 9
SUBI R1,R1,#40 10
BNEZ R1,LOOP 11
SD -32(R1),F20 12

The unrolled superscalar (SS) loop runs in 12 clocks, or

12/5 = 2.4 clocks per iteration

against 14/4 = 3.5 for scheduled and unrolled on simple 5-stage MIPS pipeline. Thus, it
exhibits an improvement factor of 1.5
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In the earlier lectures, while introducing the concept of Dynamic scheduling we discussed
Dynamic Branch Predictors
+ The dynamic branch predictors predict the branch to be taken or not taken by
considering the run time behavior of the code
*+ We also introduced the concept of Delayed Branch as the static branch prediction
technique
» Delayed branches expose a pipeline hazard so that compiler can reduce the penalty
associated with the hazard
* However, static branch predictors are used in processors where the expectation is that
branch behavior is highly predictable at compile time
» Being able to accurately predict a branch at compile time, it is also helpful for scheduling
data hazards e.g. loop unrolling
+ Example: Static branch prediction
Let us consider an example that arises from conditional selection branches

LD R1, O(R2)
DSUBU R1, R1, R3
BEQZ R1, L

OR R4, R5, R6
DADDU R10, R4, R3

L: DADDU R7, R8, R9

* Explanation:
v Here, note the dependence of the DSBU and BEQZ on the L.D instruction
v This shows that a stall will be needed after the L.D.
v If it is predicted that the branch (BEQZ) was almost always taken; and that the
value of R7 was not needed on the fall-through path
v' Then the speed of the program could be improved by moving the instruction
L: DADDU R7, R8, R9
to the position after the L.D.
v" On the other hand, if it is predicted that branch (BEQZ) was rarely taken and that
the value of R4 was not needed on the taken path, then we could also consider
moving the OR instruction after the L.D
v Furthermore, we can also use the information to better schedule any branch
delay as
v" Scheduling depends on knowing the branch behavior
* To perform optimization we need to predict the branch statically when the program is
complied.
* There are several methods to statically predict the branch behavior
A. The simplest scheme is to predict a branch as taken
— This scheme has an average misprediction rate that is equal to the
untaken branch frequency, which for the SPEC is 34%
— However, the misprediction rate ranges from not very accurate (59%) to
highly accurate (9%)
B. To predict on the basis of the branch direction
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— Choosing backward going branches to be taken and forward going
branches to be not taken branches
— For SPEC programs, more than half of the forward going branches are
taken.
— Hence, predicting all the branches as taken is a better approach.
C. To predict branches on the basis of the profile information
— This is more accurate technique where the branches are predicted on the
basis of the profile information collected from earlier runs
— The behavior of these branches is often bi-modal distributed i.e. an
individual branch is often highly biased toward taken or untaken.
We can derive the prediction accuracy of a predicted taken strategy and measures the
accuracy of the profile scheme
The fig below shows the misprediction rate on SPEC 92 for a profile based predictor
Here, you can see that the misprediction rate varies widely
Fig..4.3
It is generally better for the FP programs than the integer programs
For FP benchmarks the misprediction rate varies from 4% to 9% and
For the integer programs it varies from 5% to 15%

Summary

Today we started with the discussion on the static scheduling techniques to exploit the
ILP in pipeline datapath

Here we discussed the basic compiler approach to used to avoid hazards, specially the
data and control hazards by inserting stalls

The number of stall are reducing by scheduling the instructions by the compiler

In case of loops, the loops are unrolled to enhance the performance and reduce stalls
The number of stalls are further reduced when stalls unrolled loop is scheduled by
repeating each instruction for the number of iteration, but using additional registers
Finally we discussed the impact of static branch prediction on the performance on the
scheduled and unrolled loops

We observed that static branch prediction result in decrease in the misprediction rate
ranging between 4% to 15%, thus greatly enhances the performance of superscalar
processor
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Lecture 21
Instruction Level Parallelism
(Static Scheduling — Multiple Issue Processor)

Today’s Topics

Recap: Static Scheduling and Branch Prediction
Static Multiple Issue: VLIW Approach

Detecting and enhancing loop level parallelism
Software pipelining

Summary

Recap: Static Scheduling

Last time we started discussion on to the static scheduling techniques to exploit the ILP
in pipeline datapath

We noticed that inserting stalls is the basic compiler approach used to avoid the data
and control hazards

However, as the number of stalls degrade the performance so compiler schedule the
instructions to avoid hazards and to reduce or eliminate stalls

Furthermore, we observed that in case of loops, the loops are unrolled to enhance the
performance and reduce stalls

The number of stalls are further reduced when unrolled loop is scheduled by repeating
each instruction for the number of iteration, but using additional registers

Finally, we discussed the impact of static branch prediction on the performance on the
scheduled and unrolled loops

We also observed that in superscalar processor, with multiple issues, the static branch
prediction results in decrease in the misprediction rate better than the dynamic branch
prediction

Here, the misprediction rate ranges between 4% to 15%

Today’s Discussion - Scheduling in VLIW processor

We know that the Very Long Instruction Word or VLIW-based processors schedule
multiple instruction issues using only the static scheduling

Today we will extend our discussion on the Static Scheduling as used in VLIW
processors

Review of VLIW format

A VLIW contains a fixed set of instructions, say 4-16 instructions
A VLIW is formatted: Either as one large instruction Or a fixed instruction packet with
explicit parallelism among instructions in a set

[rl=Lr4 [r2=Addrl,M |fl=MulfL, 2 [r5=Addr5, 4
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VLIW / EPIC Processor

Since there exist explicit parallelism among instructions; VLIW is also referred to as:
Explicitly Parallel Instruction Computing — EPIC
It can initiate multiple instructions in a cycle by putting operations into wide template or
packet by the compiler
A packet may contain 64 — 128 bytes
Multiple-Issue overheads - VLIW vs. Superscalar
v"In superscalar processor Overhead grows with issue-width

o Fortwo-issue processor the overhead for is minimal

o For four-issue processor the overhead for is manageable
v" For VLIW the over-head does not grow with the issue-width
The early VLIW machines were rigid in their instruction formats and required
recompilation of programs for different versions of the hardware
Certain innovations are made in recent architectures to eliminate the need for
recompilation; hence results in performance enhancement
Here, the wider processors are used which employ multiple number of independent
functional units; and
The compiler does most of the work in finding and scheduling instructions for parallel
execution
Compiler schedules and packs multiple operations into one very long instruction word,;
and
Hardware simply issues the complete packet given to it by the compiler
Thus, maximum issue-rate is increased
Compiler schedules and packs multiple operations into one very long instruction word;
Hardware simply issues the complete packet given to it by the compiler
Thus, maximum issue-rate is increased

Example: VLIW Processor

Let us consider an example of VLIW processor which can perform maximum five
operations in one cycle
These operations include:

v/ One integer operation

v Two floating point operations; and

v Two memory reference operations
Here, we assume that: the instructions have set of 16-bit to 24-bit fields for each unit
with an instruction length ranging from 112 and 168 bits; and
To keep functional unit busy, there must be enough parallelism in the code sequence to
fill the available operation slots.

Example: VLIW Loop unrolling

Now let us see how a loop is to be unrolled to execute using multiple-issue with VLIW
processor

Here, If unrolling the loop generates straight line code then local scheduling techniques,
which operates on single basic block, can be used

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

* Where as If parallelism is required across the branches then complex global scheduling
is used to uncover the parallelism

* In order to explain these concepts let us reconsider our earlier example MIPS code to
add scalar to a vector; i.e., X[i] = x[i] + s

Loop L.D FO, O(R1) ;FO array element
ADD.D F4, FO, F2 ;add scalarin  F2
S.D F4, O(R1) ;store result
DADDU R1, R1, #-8 ;decrement pointer 8 bytes
BNE R1, R2, LOOP ;branch R1! =R2

* In order to execute this code using multi-issue VLIW, we may unroll the loop as many
times as necessary to eliminate any stalls, ignoring the branch delay, if any

Assumptions
Let us assume that:
» The compiler can generate long straight line code using local scheduling to build up
VLIW instructions
* VLIW processor has sufficient registers and function units to issue up to 5 instructions in
one cycle; i.e., 15 registers verses 6 in Superscalar
* The loop is unrolled in order to make seven copies of the body, which eliminates all
stalls and avoid delays

Loop Unrolling for VLIW Processor

Clock

LD FO,0(R1) LD F6,-8(R1) 1
LD F10,-16(R1) LD F14,-24(R1) 2
LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3
LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5
SD O(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6
SD -16(R1),F12 SD -24(R1),F16 7
SD -32(R1),F20 SD -40(R1),F24 SUBI R1,R1,#48 8
SD -0(R1),F28 BNEZ R1,LOOP 9
Assumptions

» The table shows the VLIW instructions that occupy the copies of the loop instructions in
unrolled sequence

 Here, we assume that R1 has been initialized to #48 for 7 iterations
[each memory location is 8 byte apart, starting with first value at #48, the 7™ value is at
#0]
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Explanation

Here, the loop has been unrolled for seven (7) iterations to completely empty issue
cycles, thus eliminate the stalls

Each instruction comprises two (2) memory reference operations [L.D or S.D], two (2)
FP operations [ADD.D] and one (1) integer operation [SUBI]

The multiple-issues per cycle are depicted here showing type of operation in each
instruction

Operation types in VLIW
Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 operation 2 branch

LD FO,0(R1) LD F6,-8(R1) 1
LD FlO,-lG(IM\ 2
LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3
LD F26,-48(R1) ADDD F12F10F2  ADDDF16,F14F2 4

DD F20,F18F2  ADDD F24F22,F2 5
SD O(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6
SD -16(R1),F12 SD -24(R1),F16 7
SD -32(R1),F20 SD -40(R1),F24 SUBI R1,R1,#48 8
SD -0(R1),F28 BNEZ R1,LOOP 9
Explanation

As our example VLIW processor can handle two memory operation, therefore two (2)
L.D operations, which don’t have dependence, corresponding to 1% and 2™ iteration; are
issued in the 1% clock cycle; and the

two (2) L.D operations for 3" and 4™ iterations, having no dependence, are issued in 2"
clock cycles

Furthermore, our VLIW processor can handle two (2) FP operations; and

two (2) ADD.D operation of the 1% and 2™ iterations have dependence on the L.D
instructions of the respective two iterations; and

the L.D instruction has latency of 2 cycles, therefore, the two ADD.D instructions of 1%
and 2" iteration are scheduled in 3™ cycle to eliminate stalls (identified by yellow arrows)
Similarly as the FP ADD and following STORE of the same iteration have latency of 3,
therefore, the STORE operation of 1% and 2" iterations are scheduled in 6" cycle
Moreover, the branch evaluation operation SUBI R1,R1,#48 and the branch instruction
BNEZ R1,LOOP have latency of one cycle when branch delay slot is ignored,
therefore these two operations are performed in 8" and 9" cycles, respective

Performance Analysis based on Issue Rate

Note that all the 23 instructions of 7 iterations

i.e., 7x3 =21 loop instructions and 1 condition evaluation and 1 branch instruction) are
issued in 9 cycles

Thus, average issue rate is 23/9 = 2.5 operations per cycle as compared to 3.5 in case
of superscalar discussed earlier
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VLIW Processor Efficiency Based on available slots
+ However, note that here each Instruction World (VLIW) may have up to 5 operations,
thus in 9 instructions 45 slots are available
» Therefore, the efficiency of the VLIW processor, which is defined as, the percentage of
available slots containing an operation, is 23/45 = 0.51 or 51%

Performance Analysis Speed of operation
» Moreover, the VLIW code runs in 9 cycles resulting in 9/7 = 1.29 cycles per iteration
» This result shows that VLIW is twice as fast as superscalar schedules code

Advanced Compiler Support
» Our discussion so far has been focused on the study of basic compiler techniques to
exploit ILP
» Here, we studied how dependence prevent a loop from being executed in parallel i.e.,
how Loop Level Parallelism is limited?

LLP vs IVP Loop Level Parallelism (LLP) Verses Instruction Level Parallelism (ILP)
» LLP emphasizes more on determining the type of dependence among the operands in a
loop across the iterations of loop
* ILP emphasis more on dependence among the instructions in a loop

Detecting dependence and enhancing LLP

* Ingeneral, LLP is analyzed at the source level (i.e., at the higher level)

» Whereas the ILP analysis is performed after the complier has generated the instructions

» At the loop level there may exist data and hame dependences

« Data dependency basically occurs when operand is written at some point and read at a
later point

» Name dependency can also occur and it can be eliminated by simply renaming
technique

» Therefore, we will discuss only data dependency

Loop Carried Dependence - Data Dependence in LLP
* While dealing LLP we have to consider the data dependency that occurs when:
v/ The data accessed in later iteration depends upon the data value produced in the
previous iteration
» This is referred to as loop carried dependence - LCD

Distinction between LLP and LCD
» The examples we have discussed so far had LLP but not LCD
* Now let us consider two examples to distinguish between LLP and LCD
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Example 1 — LLP: Adding a constant to a vector
For (i=1000; i>0; i=i-1)
X[i] = x[i] +s;

* Here, you can see that here two dependences occurs

» First, there exist dependence between the two uses of x[i] within the same iteration, so
this is loop-level dependency but not loop carried

« Second, dependency occurs between the successive uses of i in different iterations,
which is loop-carried

LLP and LCD
» Here, there exist induction variable x][i]
» Therefore, dependence can be identified through compiler analysis near source level;
and
+ Can be eliminated easily by loop unrolling, as discussed last time

Example 2: LCD Preventing ILP
* Now consider another example of loop
For (i=1; i<=100; i=i+1) {
A[i+1] = A[i] + C[i]; /Is1
B[i+1] = B[i] + A[i+1] //s2
}

» Here, let us assume that A, B, and C are distinct, non-overlapping arrays
» There exist two dependences between the statements of the loop
For (i=1; i<=100; i=i+1)
{
A[i+1] = A[i] + C[il; //s1
B[i+1] = B[i] + A[i+1] //s2
}

+ The statements S1 and S2, use the value computed by each statement in earlier
iteration i.e., Afi+1] computed in i" iteration and read in iteration (i+1) but is to be used in
the same i iteration

v' The second statement S2 uses the value A[i+1] computed by first statement S1
in the same " iteration

» Here, the first dependence is loop-carried because:

+ dependence of each statement S1 or S2 is on the earlier iteration of the same
statement.

» Thus, if this were the only dependence, the successive iterations are in a sequence

» Second dependence is not loop carried as S2 depends on S1 which is within the same
iteration.

» Thus, if this were the only dependence, the multiple iterations of the loop could be
executed in parallel by unrolling, as long as each pair of the statements in an iteration is
kept in order

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

LCD not preventing ILP
» Now let us consider another example of loop in which loop carried dependence does not
prevent parallelism.

For (i=1; 1<=100; i=i+1)

{

Al = A[i]+BJi];/S1
B[i+1] = CJ[i] + DJi]; /S2

}

» In order to analyze this example we have to find:
v' The dependence between S1 and S27?
v' Is this loop parallel?

» If not, show how to make it parallel

Step 1: Identifying dependence
For (i=1; 1<=100; i=i+1)
{
Alil = A[i]+BJiJ;/S1
B[i+1] = CJi] + DI[i]; /S2
}

* Note that firstly there exist loop carried dependence between S1 and S2.
» As S1 uses the value BJi] assigned in the previous iteration by S2.
» Thus, S1 depends on S2 but S2 doesn’t depend on S1.

Step 2: Determining parallelism
* Note that a loop is said to be in parallel, if it can be written without cycle in dependence
v i.e., one statement depends of the previous iteration of a an earlier statement of
the loop

Detecting loop level parallelism: Step 2
» Our example loop does not have circular dependence
For (i=1; 1<=100; i=i+1)
{
Alil = Ali]+BJiJ;/S1
B[i+1] = CJi] + DJ[i]y/S2
}

« This is due to the reason that S2 (next statement) doesn’t have dependence on the
previous iteration of S1

» Thus, this loop can be re-organized by partial ordering to expose the Loop Level
parallelism

» However, in order to obtain this reorganization, the following two observations must be
taken in to consideration
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Observations to expose parallelism
1) Here, in the first iteration the statement S1 depends on the value B[1], which is to be
computed prior to initiating the loop
2) There is no dependence from S1 to S2, therefore, there would be no cycle in the
dependences and loop would be parallel

* In order to remove this dependence, identified in the first observation, interchange the
two statements such that execution of S2 is not effected
» Considering these two observations we can replace the loop with the code given below.

Code enhancing parallelism
A[1] = A[1] + B[1];
for (i=1; i<99; i=i+1)
{
B[i+1] = C[i] + DIil;
Ali+1] = A[i+1] + BJ[i+1];
}
B[101] = C[100] + D[100];

» Note here that S1 does not have dependence on S2, so the two statements are not loop-
carried, hence the iterations of the loop can be overlapped

Finding Dependences: Greatest Common Divisor Test
+ So far we have been taking about the impact of data dependence on the loop level
parallelism
» We also noticed that Loop Carried dependence is crucial in this case; and is removed to
enhance parallelism
» Now we will discuss how compiler determines the dependence to enhance parallelism
» We know that finding of dependence in a program is important to:
1. Have good scheduling of code.
2. Determine which loop might contain parallelism
3. Eliminate name dependence

How compiler finds dependences
» The complier detects the dependence using dependence analysis algorithm
» The dependence analysis algorithm works on assumptions that:
v Array indices are affine; and
v' There exist Greatest Common Divisor (GCD) of the two affine indices

Finding Dependences
» An affine index is defined as follows
An array index is affine if it can be written in the form of an expression:
axi+hb
Here, a and b are constant; and i is the loop index variable
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E.g. in the loop
for (i=1; i<=100; i=i+1)
{
X[2*i+3] = X[2*i]] * 5.0;
}

Here, the index value [2*i+3] is affine with a=2 and b=3

Multi dimensional array

1. A multi-dimensional array index is affine if index of each dimension is affine
For example x[y[i]] the index [i] of y is non-affine
Algorithm: to find dependences
There exists dependence between two references to the same array in the loop. If two
affine functions can have the same value for different indices between the bounds of the
loop
For example, consider an array element stored with index value a x i +b and loaded from
the same array with index value ¢ x i + d, where i is the for loop index variable that runs
m to n, then
A dependence occurs if the following two conditions hold where:

1. Two iterations indices, j and k, are both within the limits of the for loop

e, m<=j<=n,m<=k<=n

2. the loop stores into an array element indexed by a x j + b and later fetches from
that same array element when it is indexed by ¢ x k + d, then Dependence exist
if: axj+b=cxk+d

As the dependence, in reality is very complex, therefore, Greatest Common Divisor
(GCD) is a simple test for the absence of a dependence
That is, if a loop-carried dependence exists, then GCD (c,a) must divide (d-b)

Example:
Find whether dependences exist in the following loop

for (i=1; i<=100; i=i+1)
{

X[2*i+3] = X[2*i] * 5.0;
}

Solution

Here in X[2*i+3]
a=2 and b=3
and in X[2*i]
c=2 and d=0
Thus GCD (a,c) =2 and d-b =-3
Here, as 2 does not divide -3 so, No dependence is possible
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Conclusion GCD Test

The GCD test is sufficient to guarantee that no dependence exist

However there are cases when GCD test succeeds but no dependence exists
This arises, in case the GCD test does not take the loop bounds into account
Please see the class notes for examples

Classifying Dependences

In addition to detecting the presence of a dependence, a compiler wants to classify the
type of dependence

That is, the compiler recognize name dependence and eliminate them at compile time by
renaming and copying

Enhancing ILP

To achieve more ILP, compliers can reduce the impact of dependent computations
The key technique for this is to eliminate or reduce dependent computations by back
substitution

Summary

Today we have introduced the concept of loop-carried dependence

We notice that in most of the cases Loop carried dependence prevent parallelism

Then we discussed techniques to find dependence

Here, we define affine indices and introduced greatest common divisor test to determine
the loop-carried dependence

Following this we discussed techniques to eliminate dependent computation

These technigues are employed in compiler based scheduling

Assignment

Detecting and enhancing loop level parallelism

In this example, dependence information is inexact, as it tells that such a dependence
occur.
Now consider one more example,
for (i=1; i<=100; i=i+1)
{
Ali] = Bli] + CIil;
D[i] = Ali] * E[i;
}
Here the second reference to A need not to be translated to a load instruction.
As the value is computed and stored by the previous statement.
The second reference to A is a reference to register in which A was computed.
In general, data dependence analysis tells that one reference may depend on another.

But a complex analysis requires to determine that two reference must be to the exact
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same address.
In this example a simple version of this analysis suffices.
As the two references are on the same basic block.
Loop carried dependence occurs most of the time in the form of recurrence.
for (i=2; i<=100; i=i+1)
{

Y[i] = Y[i-1] +Y[i];
}
Recurrence exists, when the variable is defined based on the value of that variable in the
earlier iteration.
Recurrence detection is important for two reasons.

1. Some architectures have special support for executing recurrences.
2. Some recurrence can be the source of a reasonable amount of parallelism.

Now consider one more loop,
for(i=6; i<=100; i=i+1)
{

Y[i] = Y[i-5] + VIi];
}
Here in ith iteration, the loop reference element is i-5.
This loop have a dependence distance of 5.
Loop carried dependences have a data dependence of 1.
With large dependence distance, more potential of parallelism is obtained by loop
unrolling.
Longer distances may provide the enough parallelism to keep the processor busy.

Back Substitution

Back Substitution increases the amount of parallelism, but sometimes it also increases
the amount of computation required
These techniques can be applied both:

v" Within a basic block; and

v" Within a loop

Eliminating dependent computations

Within a basic block: Here, algebraic simplifications of expressions and an optimization
is used.

This called copy propagation, it eliminates operations that copy values

For example; copy propagation of

DADDUI R1,R2,#4

DADDUI R1,R1,#4
Results into

DADDUI R1,R2,#8

Here, computations are eliminated to remove dependence
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Eliminating dependent computations:
Tree-Height Reduction Technique
1. Optimization:

It is also possible to increase the parallelism of the code by possibly increasing
the number of operations.

Such optimization is called tree height reduction

For example, the code sequence

ADD R1,R2,R3
ADD R4,R1,R6
ADD R8,R1,R7

Requires three cycles for execution
Because, here all the instructions depend on immediate predecessor and cannot
be issued in parallel

2. Associatively:

Now taking the advantage of the associatively, the code can be transformed and
written in the from shown as below,

ADD R1,R2,R3
ADD R4,R6,R7
ADD R8,R1,R4

This sequence can be computed in two execution cycles by issuing first 2
instruction in parallel

3. Recurrences:

Recurrences are expressions whose value in one iteration is given by a function
that depends on the previous iteration.

Common type of recurrence occurs in: sum = sum + x;

Assuming an unroll loop with the recurrence of five times.

If the value of x of these five iterations be given by x1, x2, x3, x4 and x5.
Then we can write the value of sum at the end of each unroll as,

Sum = sum + X1 + X2 + X3 + x4 + X5;

Unoptimizing the expressions requires five dependent operations.

And it can be rewritten as,

Sum = ((sum + x1) + ( x2 + x3)) + ( x4 + x5);

This can be evaluated in only three dependent operations.

Recurrence also occurs from implicit calculations.

With unrolling the dependent computations can be minimised.
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Lecture 22
Instruction Level Parallelism
(Software pipelining and Trace Scheduling)

Today’s Topics

* Recap:

» Eliminating Dependent Computations

» Software pipelining

» Trace Scheduling

» Superblocks

*  Summary

Recap: Lecture 21

+ Last time we extended our discussion on the Static Scheduling to VLIW processors

+ A VLIW is formatted as one large instruction or

« A fixed instruction packet with explicit parallelism among instructions in a set
» The multiple operations are initiated in a cycle by the compiler which place them in a a

packet

» Wider processors having multiple independent functional units are used to eliminate

recompilation

Recap: Scheduling in VLIW processor

» Compiler finds dependence and schedule instructions for parallel execution
» Itresulted in the improvement, compared to the superscalar processor in respect of:

v' Average issue rate, i.e., operations issued per cycle; and
v Execution speed, i.e., the time to complete execution of code

» However, the efficiency of VLIW, measured as the percentage of available slots

containing an operation, ranges from 40% to 60%

» Following this we also distinguished between Instruction Level Parallelism — ILP and

Loop Level Parallelism — LLP

» While talking about LLP we found that loop carried dependence prevents LLP but not

ILP

« At the end we studied the affine-based Greatest Common Divisor (GCD) algorithm to

detect dependence in a loop

« Continuing our discussion we will exploit how a compiler reduces the dependent

computations

Reducing Dependent Computations

» In order to achieve more ILP, compiler reduces the dependent computation by using

Back Substitution technique

» This results in algebraic simplification and optimization which eliminates operations that

copy values to simplify the sequence
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Copy Propagation
+ The approach of simplification and optimization is also referred to as the Copy

Propagation
» For example, in the sequence:
DADDUI R1,R2,#4
DADDUI R1,R1,#4

» Here, the net use of R1 is to hold the result of second DADDUI operation, therefore,

Substituting the result of first DADDUI operation in to the second results into
DADDUI R1,R2,#8

Here, we have eliminated the multiple use of the register R1 during loop un-rolling

Conclusion:
« Particularly, in case of memory access, this technique of reducing computations
eliminates:

» The multiple increments of array indices
v During the loop un-rolling; and
v" To move increments across the memory addresses

Tree-Height Reduction — Optimization
» The copy-propagation technique reduces the number of operations or code length
+ The Optimization to increase parallelism of the code, however, is possible by
restructuring the code that may ......

Tree-Height Reduction (Restructuring)
* Increase the number of operations while the execution cycles are reduced
» Such optimization is called tree- height reduction since
» It reduces the height of tree structure representing a computation, making it wider but
shorter

Optimization - Tree height reduction
» For example, the code sequence

ADD R1,R2,R3
ADD R4,R1,R6
ADD R8,R1,R7

» Requires three cycles for execution

» Because, here all the instructions depend on immediate predecessor and cannot be
issued in parallel

» Now taking the advantage of the associatively, the code can be transformed and written
in the from shown as below,

ADD R1,R2,R3
ADD R4,R6,R7
ADD R8,R1,R4

« This sequence can be computed in two(2) execution cycles by issuing first two
instruction in parallel
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Conclusion: Detecting and Enhancing LLP
» The analysis of LLP focuses on determining data dependence of:
v' Some later iteration on to an earlier iteration
» Such dependence is referred to as the Loop-Carried Dependence
+ Greatest Common Divisor test is defined to find the existence of dependence
» Compiler techniques, such as:
v" Copy propagation and
v Tree-Height Reduction
are discussed to eliminate dependent computations

Uncovering Instruction Level Parallelism .......... Contd
» We have already discussed Loop Unrolling as the basic compiler technique to uncover
ILP

 We have observed that Loop unrolling with compiler scheduling enhances the overall
performance of Superscalar and VLIW processors

Loop Unrolling: Review
» Loop unrolling generates a sequence of straight line code uncovering parallelism among
instructions
» Here, to avoid a pipeline stall, the dependent instructions are separated from source
instructions, by a distance in clock cycles equal to the pipeline latency of that source
instruction
* To perform this scheduling, complier determines both:
v' The amount of ILP available in the program; and
v' The latencies of the functional units in the pipeline.

Advanced Compiler Techniques
» Today will discuss two new compiler techniques to uncover the ILP
» Software pipelining
* Global Code Scheduling
v' Trace scheduling
v Superblock

Software pipelining
» Software pipelining is a technique where the loop is reorganized such that the code for
each iteration is made by choosing instructions from different iterations of the original
loop
» A software pipelined loop interleaves instructions from different iterations without
unrolling the loop
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Software-pipelined Loop Formation

Iteration

0 Iteration

1 Iteration

[teration

Iteration

Software-
pipelined
iteration

» The instructions are chosen from different loop iterations, separating the dependent
instructions within one iteration of the original loop

Example Code:
» Let us reconsider our earlier loop unrolling and scheduling example of adding a constant
F2 to an array R1

Loop L.D FO,0(R1)
ADD.D F4,FO,F2
S.D O(R1),F4
DADDUI R1,R1,#8
BNE R1,R2, LOOP

» For software pipelining, the compiler symbolically unroll the loop and schedule them

» It selects the instructions from each iteration that do not have dependence among each
other

» The overhead instructions (DADDUI and BNE) are not replicated

Symbolic Loop Unrolling
» The body of the symbolically unrolled loop for three iterations is as follows:
« The instructions selected from each iteration are shown in yellow color

» lteration i: L.D FO,0(R1)
ADD.D F4,FO,F2
S.D F4,0(R1)
» lterationi+1l: L.D FO,0(R1)
ADD.D F4,FO,F2
S.D F4,0(R1)
* lterationi+2: L.D FO0,0(R1)
ADD.D F4,FO,F2
S.D F4,0(R1)
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Software pipeline

Loop:

The selected instructions from different iterations are put together in a loop with the loop
control instructions as shown below

S.D F4,16(R1) stores in M[i]
ADD.D F4,FO,F2 adds to M[i-1]
L.D F0.0(R1) loads M[i-2]
DADDUI R1, R1, #-8

BNE R1, R2, Loop

Here, note that for start-up and finish-up we need some code that will not be executed
For start-up we need to run L.D and ADD.D instructions for iteration 1 and L.D for
iteration 2

Similarly, for finish-up we need to execute the S.D instruction for iteration 2 and ADD.D
and S.D for iteration 3

This loop takes 5 clock cycles to execute per result.

L.D and ADD.D are separated by offset of 16 to run the loop for three iterations (i.e., two
iterations less then simple loop unrolling and scheduling case)

Here registers F4,FO and R1 are reused as there is no data dependence in this case,
thus WAR hazard is avoided.

Software pipelining vs. Loop unrolling

Software pipelining can be thought of as symbolic loop unrolling because here, some
algorithms use loop unrolling technigues to software-pipeline loops

v Software pipelining consumes less space code as compared to loop unrolled
Software unrolling reduces the time, when the loop is not running at peak speed, to once
per loop at the beginning and end. E.g.; if a loop is to do 100 iterations with 4 iteration
symbolically unrolled; then we pay overhead for 100/4 = 25 times instead of 100 times
This is shown in the fig. below

SW Pipeline
Startup code

‘ Celan up code

W

Time

‘ overlapped opgl‘

Loop Unrolled

Time

Symbolic Loop Unrolling Fill & drain pipe only once per loop vs. once per each unrolled
iteration in loop unrolling
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Global Code Scheduling

We have observed that:
v" Loop unrolling and code scheduling works well when the loop-body is straight
line code
v Software pipelining works well when the body is a single basic block, as it is
easier to find repeatable schedules
Global Code is one where loop body has with internal control flow; i.e., a loop comprises
conditional blocks such as if-then-else
The effective scheduling of such a code is complex, since it involves moving instructions
across branches into the shortest possible sequence to compact a code fragment
A global code involves both the data dependence and control dependence
In order to enhance the ILP in global code, the loop unrolling and scheduling or software
pipeline approaches do not work efficiently
These approaches are suitable to enhance ILP in straight-line or single basic block
codes
where internal code of the loop have data dependence and the control dependence of
the loop is overcome by loop unrolling
The most commonly used compiler —based approaches, to schedule global code, are:
v' Trace scheduling or critical path approach
v Superblock approach

Complexities of Global code scheduling

Before discussing the Global Code Scheduling techniques, let us first familiarize: the
complexities of scheduling assignment instructions internal to a loop in condition
branches of a global code

Let us consider a typical global - code fragment that represents an iteration of an
unrolled inner loop

Here, moving (scheduling prior to condition evaluation) B or C requires more complex

analysis
A[i]=Al[i]+Bi]
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» Effective scheduling of this code may require moving assignments to B and C prior to
condition evaluation

» Particularly, before movement of B, we must ensure that both the data flow and
exception behavior is changed

!

Clil=.....

» To see, how compiler ensures data flow, let us have a look on the code sequence for
this flow-chart fragment

LD R4, 0(R1) ;Load A Ali=AfT+ Bl
LD R4,0(R1)  ;LoadB
DADDU R4, R4, R5 ; A+B
SD R4, 0(R1) ‘A=A+B -
BNEA R4, Else_part ;ls A=07?
; T part
SD ... O(R2) ‘store to B e ERE
J Join ;jumpto F
Else_part ..... l
X : X code o
Join: ... ;after_if
SD ..., O(R3) ; store c[i]
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Complexities of Global code scheduling

LD R4, 0(R1) ;Load A
LD R4, 0(R1) ;Load B
DADDU R4,R4,R5 ;A+B

SD R4, 0(R1) :A=A+B
BNEA R4, Else_part ;IF A=07?

: : ; T part

SD ...., O(R2) ;Store to B
J Join ;jumpto F
Else_part .....

X : X code
Join: ;after_if
SD ...., O(R3) ; store cli]

Let us see the effect of moving assignment to B before BNEA

Here, if B is referenced in X or after the IF statement, then moving B before IF will
change the data flow

This can be overcome, however, by making a shadow copy of B before IF statement and
use the shadow copy in x

However, such a copy is avoided as it slow down the program

LD R4, 0(R1) ;Load A
LD R4, 0(R1) ;Load B
DADDU R4,R4,R5 ;A+B

SD R4, O(R1) :A=A+B
BNEA R4, Else_part ;IF A=07?

: : ; THEN part
SD ..., O(R2) ;Store to B
J Join ;jumpto F
Else_part

X ; X code
Join: ... ;after_if
SD ...., O(R3) ; store ci]

Similarly, moving assignment to C before the first branch is more complex
It required two steps:

1. Assignment is moved over the join point of the ELSE part; i.e, in the portion of
the THEN part. This movement makes instructions for C control dependent and
is not executed of the ELSE path is chosen. Hence, to ensure correct execution,
a copy of instruction is made in ELSE part

2. If C assignment is moved to before the IF Test provided it does not affect any
data flow In this case the copy of instruction in ELSE part is be avoided

Our above discussion reveals that global code scheduling is an extremely complex
problem
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Global code scheduling

To simplify the complexities of Global-Code scheduling, we will discuss two methods
These methods rely on the simple principle: Focus the attention of the compiler on a
straight line code segment that is estimated to be representing the most frequently
executed code path.

Trace scheduling

Trace is a sequence of basic blocks whose operation could be put together into smaller
number of instructions
Trace scheduling is a way to organize global code motion process such that the cost of
code motion is incurred by the less frequent paths
It is useful for processors with a large number of issues per clock, where:
v Conditional or predicted execution is inappropriate or unsupported; and
v" Simple loop unrolling is not sufficient to uncover ILP to keep processor busy
Trace scheduling is carried in two steps:
1. Trace selection - to find likely sequence of basic blocks whose operation could
be put together into smaller number of instructions
2. Trace compaction: to squeeze the trace into a small number of wide instructions
Trace Generation:
v Since the probability of loop branches-taken is usually high, so trace is generated
by loop unrolling
v/ Additionally static branch prediction is employed as taken or not-taken to obtain
straight-line code by concatenating many basic blocks
In our earlier global code fragment, if we take the true path as most frequent, then
primary trace could be generated by unrolling the true path n- (say 4-) times Here, trace
exit is jump-off the frequent path and Trance Enter is return to trace
| An=All+BL] |

)\ F (Trace Exit)

(Trace Enter)
\lf W

| An=All+BL |

F (Trace Exit)

= (Trace Enter)
L
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» Code Compaction is the code scheduling, hence, compiler attempts to:
v' Move operations as early as it can in a sequence (trace); and
v" Pack the operations into as few wide instructions (or issue packets) as possible.
* Advantages of Trace scheduling
v Trace scheduling simplifies the decision concerning global code motion
v' Branches are viewed as jumps into [Trace Entrance] or jump out of [Trace Exit]
selected trace which the most probable path
* Overhead of Trace scheduling
v" Note that when code is moved across trace additional book keeping code is
needed on entry or exit point
v' Furthermore, when an entry or exit point is in the middle of a trace, significant
overheads of compensation code may make trace scheduling an unattractive
approach.

Superblocks

« The draw back of Trace is that he entries into and exit out of a trace, in the middle of the
trace cause significant complications; and

« Complier requires to generate and track the compensation code

» This draw back is overcome by using Superblocks

» Superblocks are a form of extended basic blocks, which have a single entry point but
allow multiple exits

» Therefore it is easier to compact superblocks as compared to a trace

* In our earlier example Global Code, superblocks with one entrance can be easily

constructed by moving C as shown
Alil=AL]1+B[i

F (Superblock exit) n=4 ‘

M1

Residual Loop

A[]=A[i]+B[i]

’ Z ‘ F (Superblock exit) n=1 |

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

Here, Tail Duplication is used to create a separate block that corresponds to portion of
the trace after the entry

Here, each unrolling of the loop creates an exit from the superblock to the residual loop
that handles the remaining iterations

The residual loop handles the iterations that occur when the unpredicted path is selected
Advantages of Superblocks

This approach reduces the cost of book keeping and scheduling verse the more general
trace generation

However, its code size may enlarge more than a trace based approach.

Like trace scheduling, superblocks scheduling may be most appropriate when other
techniques fail.

Conclusion — Enhancing ILP

All the four approaches

Loop unrolling,

Software pipelining,

Trace scheduling and

Superblocks

aim at trying to increase the amount of ILP, which can be exploited by a processor
issuing more than one instruction on every clock cycle.

Numerical problems

In the following code:
1. List all dependences (output,anti,and true) in the
2. Indicate whether the true dependences are loop carried or not?
3. Why the loop is not parallel?

Example 1:
For (i=2; i<100; i= i+1)
{
afij = b[i] + ali]; [*s1*/
c[i-1] = a[i] + dfi]; [*s2*/
afi-1] = 2* bli]; [*s3*/
b[i+1] = 2*b[i]; [*s4*/
}
Solution:

There are six dependences in the loop.
1. There is antidependence from sl to s1 on a.

al] = b[i] + ali]; /*s1*/

2. There is true dependence from s2 to s1.
afj = b[i] + ali]; /*s1*/
cli-1] = a[i] + d[i]; /*s2*/

Here, the value of a in s2 is dependent on the result of a in s1.

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

o Ok~ W

There is loop carried true dependence from s4 to s1 on b.
There is loop carried true dependence from s4 to s3 on b.
There is loop carried true dependence from s3 to s3 on b.
There is loop carried output dependence from s3 to s3 on a

Part b) Indicate whether the true dependences are loop carried or not?

We know that for loops to be parallel, each iteration must be independent of all others.
Here in this case, as dependences 3, 4, 5 are true dependences

They cannot removed by renaming or any such technique

These dependence are loop carried as the iterations of the loop are not independent.
These factors imply the loop is not parallel as the loop is written.

Loop can be made parallel by rewriting the loop to find a loop that is functionality
equivalent to the original loop that can be made parallel

Example 2:

Part a)

The loop given below is a dot product (assuming the running sum in F2 initially 0) and
contains a recurrence.

Assume the pipeline latencies from the table shown below, and a 1 cycle delayed
branch.

Considering single issue pipeline.

Instruction producing result

Instruction using result

Latency in clock cycle

FP ALU op

Another FP ALU op

3

FP ALU op

Store double

Load double

FP ALU op

Load double

Store double

2
1
0

Unroll the loop sufficient number of time to schedule it without delay.
Show the schedule after eliminating any redundant overhead instruction.

Foo:

L.D FO0,0(R1);

L.D F4,0(R2);

MUL.D FO,FO,F4;

ADD.D F2,FO,F2;

DADDUI R1,R1,#-8;
DADDUI R2,R2,#-8;
BNEZ R1,foo;

Solution:
» This code has loop carried dependence from iteration i to i+1.
» It also has high latency dependence within and between loop bodies.

Nload X[i]
/load YTi]
/multiply X[i]*YTi]

/add sum=sum + X][i] * y[i]

/decrement X index i
/decrement Y index i
/loop if not done
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Now if we unroll the loop twice in order to avoid any delay, we will get the following
result.

foo

L.D FO0,0(R1)

L.D F4,0(R2)

L.D F6,#-8(R1)

MUL.D FO,FO,F4 ;1 from L.D F4,0(R2)
L.D F8,#-8(R2)

DADDUI R1,R1,#-16

MUL.D F6,F6,F8 ;1 from L.D F8,-8(R2)
ADD.D F2,FO,F2 :3 from MUL.D FO,F0,F4
DADDUI R2,R2#-16

Stall

BNEZ R1,foo

ADD.D F2,F6,F2 ;in slot, and

3 from ADD.D F2,F0,F2
Here the dependences chain from one ADD.D to the next ADD.D forces the stall.
Next part: In order to unroll further to schedule eliminating the stall (overhead) we
take advantage of commutativity and associativity of dot product of two running
sums in the loop
One for even elements and one for odd elements, and combine the two partial sums

outside the loop body:

foo

L.D FO0,0(R1)
L.D F6,-8(R1)
L.D F4,0(R2)
L.D F8,-8(R2)
MUL.D FO,FO,F4
MUL.D F6,F6,F8
DADDUI R1,R1,#-16
DADDUI R2,R2.#-16
ADD.D F2,FO,F2
BNEZ R1,foo
ADD.D F2,FO,F2
ADD.D F2,FO,F2

* Result discussion:

:1 from L.D F4,0(R2)
;1 from L.D F8,-8(R2)

;3 from MUL.D FO,FO,F4
;3 from MUL.D F6,F6,F8

;and fill the branch delay slot
:combine even and odd elements

* Here, the code assumes that the loop executes a non zero, even number of times.
+ The loop itself is stall free, but there are three stalls when the loop exists.
» The loop body takes 11 clock cycles.

Part b)

» The unrolled and scheduled code for the transferred code - Loop body takes 10 cycles
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integer Inst FP Inst Clock Cycles
Foo
L.D FO,0(R1) 1
L.D F6,-8(R1) 2
L.D F4,0(R2) 3
L.D F8,-8(R2) 4
DADDUI R1,R1,#16 MUL.DFO,FO,F4 5
DADDUI R2,R2,#16 MUL.DF6,F6,F8 6
stall 7
stall 8
BNEZ R1,foo ADD.D F2,FO,F2 9
ADD.D F2,F0,F2 10
Bar: ADD.D F2,F0O,F2 14
Example 3:

» Consider a code
For (i=2; i<=100; i+=2)
afi] = a[50*i+1]
» Using GCD test, normalize the loop.
« Startindex at 1 and increment it by 1 on every iteration.
» Write the normalized version of the loop then use GCD test to see if there is
dependence.
Solution:
+ By normalizing the loop it leads to a modified C code as shown below,
» For (i=1; i<=50; i++) { ;divide i by 2
a[2*i] = a[(100*)+1] ; multiple constant by 2
}
« The GCD test shows the potential for dependences within an array indexed by the
function, ai +b and cj + d
» If the condition (d-b) mod gcd (c,a) = 0 is satisfied
» Applying GCD test, in that case we will get,
 a=2,b=0; ¢c=100,d=1
» allows us to determine dependence in loop.
» Thus gcd will be, gcd(2,100) = 2
 And:d-b=1
« Here, as 1 is factor of 2.
» Thus, GCD test indicates that there is a dependence in the code.
* Inreality, there is no dependence in the code.
» Since the loop load its value from

. a[101], a[201]...... a[5001] and
» again these values to
. a[2], a[4], ..... a[100]
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Lecture 23
Instruction Level Parallelism
(Hardware Support at Compile Time)
Today’s Topics

* Recap
* H/W Support at Compile Time

— Conditional/Predicated Instructions

— H/W based Compiler Speculation

—  Summary

Recap: H/W and S/W Exploitation
* We have studied both the Dynamic and Static scheduling techniques to exploit ILP for
single or multiple instructions issue per clock cycle and to enhance the processor
performance
» The dynamic approaches use hardware modification which results in superscalar and
VLIW processors
» Furthermore, the pipeline structure enhancement such as
1. Tomasulo’s pipeline facilitates to overcome the structural and data hazards and
2. Branch predictors minimize the stalls due the control hazards

» The static scheduling approaches include
1. Loop unrolling
2. Software Pipelining
3. Trace Scheduling
4. Superblock Scheduling

« These techniques are focused to increase ILP by exploiting processor issuing more than
one instruction every cycle
« These techniques give better performance when the behavior of the branches is
correctly predictable at the compile time
« Otherwise, the parallelism could not be completely exposed at the compile time
» This is due to the following two reasons
1. Control dependences limits the amount of the parallelism that can be exploited;
and
2. Dependence between memory reference instructions could prevent code
movement necessary to increase parallelism

Hardware Support for VLIW
+ These limitations, particularly for VILW processor, could be overcome by providing
hardware support at the compile time
» Today, we will introduce some hardware support-based techniques to help:
— overcoming these limitations; and
— to expose more parallelism at the compile time
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» The most commonly used such techniques are:

« Extension of the Instruction Set by including Conditional or Predicated (base something
on something) Instructions

» Hardware speculation to enhance the ability of compiler to move code over branches,
while preserving exceptional behavior

» To allow the compiler to reorder load/store instruction when no conflict is suspected but
not certain

1: Instruction Set Extension
» The extended instruction set including Conditional or Predicated Instructions
v allow the compiler to group instructions across branches
v eliminate branches
v’ convert control dependence into data dependence

+ These approaches are equally useful for hardware-intensive as well as software-
intensive scheme, i.e., the dynamic as well as static scheduling

» As discussed earlier, Predicate registers are included, in the structure of IA64 processor,
to implement predicated instructions to improve performance

Conditional Instructions
» Now let us discuss the concept behind introducing the conditional instructions in the
instruction set
v' The conditional instructions have an extra operand — a one-bit predicate register
v' A condition is evaluated as part of instruction execution to set the value of
predicate-register

Conditional or predicted Instructions
+ In HPL-PD from HP Lab, the value of the predicate register is typically set to “Compare-
to-predicate operation;
pl =CMPP <=1r1, r2
Here the predicate register plissetifr2is<=rl

« If condition is true (p1=1), the instruction is executed normally

« If the condition is false (p1=0), the instruction execution continues as if the instructions
were a no-operation

» Typical conditional instructions for pipeline processors are:

« Conditional Move — CMOVZ R1, R2, R3;
v it moves the value from one register to another if the condition is true; i.e., third
operand — the predicate register R3 is Zero
v Such instructions are used to eliminate branch code sequence
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» Conditional ADD — (R8) ADD R1, R2, R3
v' assumes that the R1= R2 + R3 occurs if the predicate register — R8 is 1

» Conditional Load — LWC R1, 0(R2),
v" R3 assumes that the load occurs unless the third operand — R3 is Zero

« The LW instruction, or a short block of code, following the branch can be converted to
LWC and moved up to second issue slot to improve the execution time for several cycles

Example 1: Conditional or predicated Instructions

Let us consider the conditional statement: If (A==0) { S=T;}
i.e., the value S is to be replaced by T if the value A is zero

« Assuming the register R1, R2, R3 holds the value of A, S and T respectively.
» The code to implement this conditional statements can be written as:

BNEZ R1,L ; No-op if A (R1)!=0

ADDU R2, R3, RO ; Elsereplace S (R2) by T (R3)L

» The IF statement can be implemented by the conditional move as:
CMOVZ R2,R3,R1
Move R3 to R2
if the third operand R1=0

» Here, notice that using the Conditional instruction CMOVZ, the next operation is
determined by the contents of the third register instead of condition evaluation i.e., the
control dependence has been converted to data dependence.

« This transformation has moved the place to resolve dependence in a pipelined
processor

+ We know that, in a pipelined processor the dependence for branches is resolved near
the front of the pipe

» Whereas, the conditional instruction resolve the dependence where the register-write
occurs

« This transformation is also used for vector computers, where it is called if-conversion

» The if-conversion replaces conditional branches with predicated operations

» For example: Let see the code generated for the following two if-then-else statements

If (a<b) then c=a; else c=Db;
If (d<e) then f=d; else f=¢;

* might be written as two VLIW instructions as
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Pl

CMPE.< a,b |P2 = CMPP.>= a,b |F3 = CMPP.< d,2 |P4 = CMPP.>=d e

(%]
]

a ifpl | ¢

* Alternatively two CWN the form:

01p2 = CMPP.W. < UN. UC 1,12

b ifp? | f

d ifp3 | f=e if pd

pl,p2 = CMDD.W.<.UK.UC a,b|p3,p4 = CMDD.W.<.UN.UC d,e|

Example 2: Absolute Value Function
» Conditional move is also used to implement the absolute value function: A= abs (B)
*  Which is implemented as:
if B<O {A=-B;} else {A=B;}
* Where this statement can be implemented as
— pair of conditional moves
CMOVZz R2, -R3, R1
CMOVvZz R2, R3, R4
— or one unconditional move A=B
— and one conditional move A= -B

Conditional MOVE Instruction

» The Conditional moves enables us to eliminate the branch and improves the pipeline
behavior

» Itis useful for short sequences.

* It has certain limitations

* When predication is used to eliminate branches that guard the execution of large blocks
of code, many conditional moves are needed

+ To remedy this inefficiency, some architectures supports full predication, i.e.; the
execution of all the instructions is controlled by a predicated move

» Full predictions allows to convert the large blocks of code that are branch dependent.

» For example, if-then-else statement within a loop converted to predicated execution.

* Where code executes only if the value of the condition is true.

» The code in the else case executes only if the value of the condition is false.

Predicated LOAD Instructions
* Now let us consider another example code sequence for a two-issue superscalar
» The superscalar can issue a combination of one memory reference and one ALU
operation or a branch by itself, every cycle.
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2-Issue Instruction Code

First instruction slot Second instruction
slot

LW R1, 40(R2) ADD R3,R4,R5
ADD RG6,R3,R7

BEQZ R10,L
LW RS, 0(R10)
LW RO, O(R8)

v" How the code can be improved using a predicated form LW? And
v' We can say that the transformation is speculative
» Here, the second LW after the branch LW R9, 0(R8), depends on the prior load LW
R8, O(R10)
» Therefore, this sequence wastes a memory operation slot in second cycle; and will
incur a data dependence stall if the branch (BEQZ R10, L) is not taken.

» Let us consider the predicated version load word LWC:
LWC R8, 0(R10), R10
and assume the load occurs unless the third operand R10 is 0

» The LW instruction, LW R8, 0(R10), immediately following the branch, can be
converted to an predicated load:
LWC R8, 0(R10), R10 and

» moved up to the second issue slot; i.e.; prior to the BEQZ R10, L
First instruction slot Second instruction

slot
LW R1,40 R2) ADD R3,R4,R5
LWC RS8,0(R10),R10 ADD RG6,R3,R7

BEQZ R10,L
LW  R9,0 (R8)

* Note that it improves the execution time by:
v eliminating the one instruction issue slot; and
v reducing the pipeline stall for last instruction in the sequence
» Furthermore, note that if compiler mispredicated the branch, the mispredicated
instruction will have no effect and will not improve the running time
» Therefore we can say that the transformation of conditional load is speculative.

Advantages of predicated Code
» Predicated or conditional instructions are extremely useful:
v' for implementing short alternative control flows
v for eliminating some unpredictable branches; and
v for reducing the overhead of global code scheduling
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Limitations on the conditional Instructions

« To move an instruction across a branch and making it conditional will: slow the program
whenever the move instruction would not have been normally executed

» Predicating a control dependent and eliminating a branch may slow down the processor
if that code would not have been executed

» Predicated instructions are useful when predicate could be evaluated early

« Conditional instruction results in a stall for data hazard, if the condition evaluation and
predicated instructions are not separated

» Conditional instruction may have some speed penalty compared to unconditional
instructions

» The use of Conditional instruction is limited when the control flow involves more than a
simple alternative sequence

» For example, moving an instruction across multiple branches requires making it
conditional on both the branches

» Thus, it requires to specify additional instructions to compute the controlling predicate

Architectures with Conditional Instructions
» For these limitations most of the architectures include only a few, mostly CMOV,
conditional instructions
+ The MIPS, Alpha, PowerPC, SPARC and Intel (Pentium) all support Conditional Move
» |1A-64 Micro Architecture supports full predication of all the instructions

Introduction to Compiler Speculation

» Inour earlier discussion, we have noticed that: where the programs have branches,
which may be predicted at the compile time, either from the program structure or from
program profile

» Here, the compiler speculates to: either improve the scheduling and/or to increase the
issue rate. However, the predicated instructions may help to speculate

» These instructions are more useful when they can eliminate control dependence by if-
conversion

Hardware support Speculation
» Furthermore, in most of the cases we would have to move the speculated instructions
before the condition evaluation
» But, this cannot be done by predication
» Rather, it motivates to have the following capabilities to speculate ambitiously

Compiler speculation with hardware support
1) The ability to find instruction can be speculatively moved and not affect the program data
flow
2) The ability to ignore exceptions in speculated instructions, until we know such exception
would really occur
3) The ability to speculatively interchange loads and stores, or stores and stores, which
may have address conflicts.
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Note the first one is the compiles capability where as the other two can be achieved by
Hardware support

Hardware speculation approach supports reordering loads and stores.

Hardware based speculative movement of instructions is done by checking for potential
address conflicts at runtime; and

It allows the compiler to reorder loads and stores when it suspects they do not conflict.

Methods to preserve exceptions

The following are four hardware methods to support more ambitious speculation without
introducing erroneous exception behavior

The key to these methods is to observe that the results of speculated sequence that is
mispredicted will not be used in the final computation, for this purpose the exceptions
are preserved

Methods to provide Hardware support

1)

The hardware and operating system cooperatively ignores the exception for speculative
instructions for the incorrect program

Here, the exception behavior for the correct program is preserved and for incorrect one
is ignored
This approach is used as a “fast mode” under the program control

Methods to Preserve exceptions

2)

3)

The examples of exceptions that indicate a program error and normally cause
termination are memory protection violation

The examples of exceptions that handle the program error and normally resumed are
page fault

Speculative instructions that never raise exception are used; and checks are introduced
to determine when exception should occur

A set of bits called “poison bits” are attached to the result register. These bits are written
by speculated instructions when the instruction causes exceptions.

The poison bits cause a fault when a normal instruction attempts to use the register

This approach suggest to track the exceptions as they occur but postpone any
terminating exception until a value is actually used

The scheme adds a poison pit to every register and another bit to every instruction to
indicate if whether the instruction is speculative

The poison bit of the destination register is set whenever a speculative instruction results
in terminating exception

And all other exceptions are handled immediately

If the speculative instruction uses a register with poison bit on; the destination register
has its poison bit on
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» Now if the normal instruction attempts a register source with poison bit on, the instruction
causes a fault

4) A mechanism is provided to indicate: that an instruction is speculative; and the hardware
buffers the instruction result until it is certain that the instruction is no longer speculative.

Summary
» Both the hardware and software mechanisms provides approaches to exploit ILP.

« There are certain limitation on both mechanisms
We will discuss these limitations next time
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Lecture 24
Instruction Level Parallelism
(Concluding Instruction Level Parallelism)

Today’s Topics

Recap
Compile Time H/W Support:
v" To Preserve Exceptions - Typical Examples
v" For memory Reference Speculation
Speculation Mechanism: H/W Vs. S/W
Summary

Recap: Compile Time H/W Support

Last time we discussed the methods to provide H/W support for exposing more
parallelism at the compile time
We introduced the concept of extension in the Instruction set by including Conditional or
predicated instructions
We found that such instructions can be used to eliminate branches and to convert
control dependence to data dependence which is relatively simple to handle
Thus, it improves the processing performance
We also introduced the hardware and software-based abilities required to: move the
speculated instructions before the branch condition evaluation while preserving the
exception behavior
We further introduced four methods to support speculation; and, move of instruction
such that the miss-predicted speculated sequence is not used in the final execution;
But, the exception behavior is preserved to take care of the exceptions that may be used
later
However, in order to study these methods we distinguish between the exceptions that
indicate program error and:

v' normally cause termination; or

v handle the error to resume normally
Typical example of the behavior-exception that indicate the program error and
terminates is memory protection violation
The result of a program that gets such an exception is not well defined , therefore if such
an exception arise in speculated instructions, we cannot take the exception, hence need
not preserve such an instruction
The example of the behavior-exception that indicates the program error, which could be
handled and program normally resumes is Page Fault in virtual memory
Such exceptions are preserved and are processed for speculative instruction as if they
were normal instructions when the instruction is no longer speculative

Methods to preserve exception behavior

Let us study in details, the methods to preserve exceptions.
The four methods which we introduced last time are:
1. Fast mode approach
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2. Speculative-instructions method
3. Poison-bit Register method
4. Hardware (Re-order) buffering

Methods 1: Fast Mode

» The simplest approach to preserve exceptions is one where hardware works
cooperatively with the operating system and: handle presumable exceptions under the
program control

» This approach is referred to as the “fast mode” to preserve exceptions

» Here, the H/w and S/w preserves the exception behavior for the correct program, but
ignores the exception behavior for the incorrect programs

+ Before we proceed further, let us define a correct and an incorrect program

+ Correct Program
v' A program may be correct if the instruction generating the terminating exception
is speculative; and the speculative result is simply unused
v i.e., the speculative instruction returns a value that is not harmful to the program

* Incorrect Program
v Alincorrect program is one which previously have received a terminating
exception, and
v will get an incorrect result in the present instruction
v Thus, the exception behavior is mispredicted

» Fast Mode to preserve exception
v" Hence, the exception behavior as a result of speculated instruction will not be
used in the final computation if mispredicted,;
v" Now let us consider a typical correct code fragment for the if-then-else statement

of the form:
+ Example Code fragment for Fast Mode
If (A==0) A = B;
Else A=A+ 4;

» And see how this code can be modified to preserve behavior exceptions
« Assuming that A is at 0(R3) and B is at O(R2); the code based on the speculation that
the THEN clause is almost always executed, can be written as follows:

Speculate that THEN

LD R1,0(R3) ;load A
clause is almost

BNEZ R1,L1 ;test A I i
LD R1,0(R2) then clause always executed I..,
T program will rarely
J L2 Skip else branch to else clause
L1: DADDUI R1,R1,#4 :else clause
L2: SD R1,0(R3) ;store A
LD R1,0(R3) ;load A
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BNEZ R1,L1 test A therefore the value B
LD R1,0(R2) ;then clause at O(R2) must be
J L2 ;Skip else preserved

L1: DADDUI R1,R1,#4 :else clause

L2: SD R1,0(R3) ;store A

Revised Code fragment with Exceptions preserved
* Now in order to preserve the speculation we use a temporary register — say R14, to
avoid destroying R1 when B is being loaded as in initial code

The speculative value

LD R1,0(R3) ;load A .
LD R14,0(R2) :speculative load B Sresef\t,ed 0(R2) -
BEQZ R1.L3 ;other branch of if temporary register
DADDUI R14,R1 #4 :else clause R14 to be used in
L3: SD R14,0(R3) ;non-speculative store THEN clause
L2: SD R1,0(R3) ;store A

+ Example Code fragment
v' Here, is a new code that preserve the speculation in a temporary register R14, to
avoid destroying R1 when B is loaded

LD R1,0(R3) ;load A
LD R14,0(R2) ;speculative load B
BEQZ R1,L3 :other branch of IF
DADDUI R14, R1,#4 ;else clause
L3: SD R14,0(R3) ;THEN clause: non-speculative store A

Method 2: Speculative Instructions
» This approach introduces speculative version of instructions, such as
v' Speculative Load — sLD
v Speculative Check — SPECCK
« These instructions are used to preserve exception behavior exactly rather than
speculatively
» These instructions
v" Don’t generate terminating exception; rather these instructions check for such
exceptions
+ The combined used of two or more speculative instructions, such as sLD and SPECCK,
preserve the exception behavior exactly

Example 2
* Now let us reconsider our earlier example of IF-THEN-ELSE statement to see how it can
be coded, using speculative load and check instructions to preserve exception behavior
exactly
* Here, we assume that the temporary register R14 is unused and available
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Speculate Branch
taken/not-taken (in this
example Not-Taken) and
save value B at O(R2) in

Revised code using speculative instructions

LD R1,0(R3) ;load A i _

. temporary register R14;

sLD R14,0(R2) ;speculative, i.e., the basic block for

no termination THEN (in this case the
BNEZ R1 L1 test A value B) is maintained

SPECCK 0(R2) ;speculative check

J L2 ;skip else Check if  the
L1: DADDUI R1,R1,#4 :else clause igﬁ%‘i‘f‘g?:ot ,e's
. . , 1.e.,
L2: SD R1,0(R3) ;store A Branch has taken

or otherwise

» Here, the load instruction speculate in respect of the branch instruction whether it will be
taken or not-taken

» The speculation check requires to maintain a basic block for THEN clause, thus
preserve the exception behavior

* Notice that extra code is required to check for possible exception — thus, result in
overhead

Method 3: Poison Bit
» The basic concept behind this approach is that the speculative movement of instructions,
before branch or before reordering of load/store, must not cause exceptions
» If an exceptional condition occurs during a speculative operation, the exception is not
raised
» Here, a set of bits called “poison-bits” is attached to every instruction and to every result
register to indicate whether the instruction is speculative
+ These bits are used to track exceptions as they occur; but postpones any terminating
exception until a value is actually used
» The speculative bits are simply propagated by speculative instructions
«  When a bit is set in the result register it indicates that an exceptional condition has
occurred
* When non-speculative operation encounters a register with speculative bit being set, an
exception is raised
» The poison-bits cause a fault when a normal instruction attempts to use the register
» Sequence of steps to preserve exception behavior using poison bits
1. The poison bit of the destination register is set whenever a speculative instruction
results in terminating exception
2. All other exceptions are handled immediately
3. IF the speculative instruction uses a register with poison-bit turned ON; the
destination register of the instruction simply has its poison-bit turned ON
4. IF the normal instruction attempts to use a register source with poison-bit turned
ON, the instruction causes a fault
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Resulting Behavior: Poison-bits Approach
» Thus, any program that would have generated an exception still generates one;
» Although, at the first instant where a result is used by an instruction that is not
speculative
» Furthermore, STORES are never speculative as the poison-bits exist on registers only

Example 3: Poison Bits Approach
« Let us once again consider our earlier example and:
v' See how it would be compiled with speculative instructions SLD and register R14
with poison-bit; and
v Show where an exception for the speculative memory reference would be
recognized
» |IF-THEN-ELSE Statement Reconsidered
IF (A==0) THEN A = B;
ELSEA=A+4;
+ Assume Ais at O(R3) and B is at 0(R2); and
« that R14 is unused and available

Value B at O(R2) is
speculatively loaded in R14
The poison bit of R14 is
turned on if terminating
exception is generated by
speculative LOAD

LD R1,0(R3) :load A
sLD R14, 0(R2) ;
BEQZ R1,L3
DADDUI R14,R1#4
L3: SD R14,0(R3);

When non-speculative SW
occurs, exception for
speculative LW is raised if
poison bit for R14 is ON

» Note here, If the speculative sLD generates a terminating exception, the poison bit of the
R14 will be turned on

* When the non-speculative SW instruction occurs, it will raise an exception if the poison
bit for R14 is turned on

« Furthermore, to facilitate the operating system to save the user register on a context
switch if the poison bit is set,

» a special instruction is included in the instruction-set to set/save the state of the poison-
bit

Method 4: Hardware Buffering

1. A hardware buffer, such as the reorder buffer, is provided and the compiler:

2. Marks instructions as speculative

3. Includes an indicator of how many branches the instruction was moved speculatively
o What branch action (Taken / not-taken) is assumed by the compiler?
o The compiler accomplishes this by using either of the following two approaches:
o For single branch: only 1 bit is used to tell whether the speculated instruction

has come from the branch taken or not-taken path
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e

o Alternatively: The original location of the speculative instruction is marked by a
sentinel; i.e., looked out or guarded. It tells the hardware that the earlier
speculative instruction is no longer speculative, so the values may be committed

The instructions marked as speculative are placed in the re-order buffer
The re-order buffer tracks when instructions are ready to commit and delays the “Write-
back”
The speculative instructions are not allowed to commit until:

o Either the branches have been speculatively moved and are ready to commit;

o Or corresponding sentinel is reached
At this stage, we should know whether the speculated instruction should have been
executed or not
If it has been executed and has generated terminating exception then the program
should be terminated

o If not yet executed then exception is ignored

Memory Reference Speculation

With so much discussion in respect of preserve exception behavior of speculated
instructions using hardware support, let us extend our discussion on the compile time
hardware support for memory reference speculation

H/W support for Memory Disambiguation (Address Certainty)

While reducing the critical path length of the code, i.e., to optimize codes, it may be
desirable to move the LOAD(s) across STORE(S)

For example, in the following code segment if the latency of LOAD is high, it may be
desirable to move LOAD before STORE

In order to optimize codes with memory reference instructions, the critical path length of
the code is reduced

This is accomplished mostly by moving memory reference instructions with longer
latency, such as the LOAD across the instruction which has relatively lesser latency, i.e.,
STORE instruction

For example, in the following code segment;

if the latency of LOAD is high, it may be desirable to move LOAD before STORE for
desirable optimization

LD R3,0(R4) WP ...
ADD R3, R3. #20 SD R1,0(R2)

ADD R3, R3, #20
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» However, this optimization is not valid if LOAD and STORE reference the same location;
i.e., if R2 and R4 contain the same address

» And, the compiler is not certain about this at the compile time

« This issue can be resolved by providing rum-time memory address (certainty)
disambiguation

» In order to resolve this issue, two special instructions are included in the ISA

» These instructions are ....

« LDS R1,0(R2) ;Load Speculatively
o This instruction initiates a load a normal load instruction
o Alog entry is made in a table to store the memory location

..... LD R3, O(R4)
SD R1, O(R2
(R2) |y
LD R3, 0(R4) SD R1, O(R2)
ADD R3, R3, #20 ADD R3, R3, #20
« LDV R2, 0(R2) ;Load Verify
o This instruction checks to see if store to memory location has occurred since the
LDS

o If so, the new load is issued and pipeline stalls, otherwise it's a NO-OP

_____ LD R3,0(R4) LDS R3, 0(R4)

SD R1,0(R2) | | o | |l
LD R3,0(R4) ™ SD R1,0(R2) mmmh SpD  R1, O(R2)
ADD R3, R3, #20

» Here, LOAD is speculatively moved across the STORE, and
« The LDV instruction is left at the original place of LOAD instruction (i.e., after the STORE
instruction, in this example) which acts like a guardian and checks for the address
conflict
* When the speculated load LDS is executed, the hardware saves the address of the
accessed memory location in log table and finds ....
1. If the subsequent STORE changes the location before the check instruction LDV,
then speculation has failed; whereas ......
2. If the subsequent STORE doesn’t touch the location before the check instruction
LDV, then speculation is successful
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Now, let us see how the speculation failure is handled?
It is handled in one of the two ways!
1. If only the load instruction was speculated then it is sufficient to redo the load
o This is accomplished by using LDV instruction, which supplies target register
in addition to memory address
2. If the additional instruction (LDV) is also speculated then
o re-execute all the speculated instruction, starting with the LOAD, using a fix-
up sequence
o Here, the check instruction (LDV) specifies the address of the fix-up code
We have discussed the use hardware-intensive support with software—intensive
approaches to achieve ILP
Here, we observed that the improvement of code by using predicted version of load-
word (LWC) instructions, which facilitate to move load instruction before branch

Example: Conditional Moving up the Branch

This approach improves the execution time
However, such transformations are speculative and no improvement in the run-time is
possible if the compiler mispredict the branch
This motivates to use conditional move instruction to:

o eliminate branch; and to

o guard against the memory access violation that may terminate the program
In order to explain the use of conditional move instruction, let us reconsider the example
code sequence for a 2-issue superscalar, which we discussed last time
Here, the second LW after the branch depends of the prior load, therefore, this
sequence wastes a memory operation slot and incur a data dependence stall if branch is
not taken

second instruction slot
ADD R3,R4,R5
ADD RG6,R3,R7

First instruction slot
LW R1,40R2)

BEQZ R10,L
LW  R8,0(R10)
LW  R9,0 R8)

Here, we discussed that if the LW immediately following the Branch is converted to
predicted version of load-word (LWC) instruction, move it up by two slot, and assume
load occurs unless third operand (R10) is ZERO, then it improve the execution time

First instruction slot second instruction slot
LW R1,40R2) ADD R3,R4,R5

LW C R8,0(R10), R10 ADD R6,R3,R7

BEQZ R10,L

BEQZ R10,L

LW  R9,0 R8)
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» Here, the branch is written to skip the LW instruction if R10 = 0; and this instruction
LW R8, 0(R10) is executed unconditionally
» This is likely to cause a protection exception which should not occur
* Now let us see how we can re-write the code using conditional move instruction
* The code should be written assuming that the loads, which are no longer control
dependent, cannot raise an exception if they should not have been executed, i.e.,
* The branch must guards against a memory access violation
» As in this example code, a violation would terminate the program, therefore, while re-
writing the program we must consider that “If the instruction LW R8, 0(R10) is moved
before the branch, the effective address must not be zero”
» Here, in order to guard the load by conditional move instruction, we need two
unassigned registers;
o One of the register must contain a safe address for the load (Let us use register
R(29) instruction [LW R8, 0(R10) ]
o The other register must save the original contents of R8 (Let us use the register
R30 for this purpose)

Example Cont’d: Revised code
DADDI R29,R0,#1000 :initialize R29 to a safe address

LW R1,40(R2) ;first load instruction of original code
MOV R30,R8 :save R8 in unused R30

CMOVNZ R29,R10,R10

LW R8,0(R29) ;speculative load

CMOVZ  R8,R30,R10
BEQZ R10,L
LW R9,0(R8)

* R29is unused and contain a safe address
R29<R10 if R10 contains a safe address #0

» If R10=0 load is incorrectly speculated so restore R8

» Here, the Load after the branch can be speculated using one more conditional move,
and for this one more unused register will be needed

» However, there is a significant conditional instruction overhead

» Using R31 as the unused register, the branch free code is as follows

ADDI R29,R0,#1000

LW R1,40(R2)

MOV R30,R8

MOV R31,R9 ;save R9 in unused R31
CMOVNZ R29,R10,R10

LW R8,0(R29)

LW R9,0(R8) ;load speculated

CMOVZ R8,R30,R10
CMOVZz R9,R31,R10 restore R9, if needed
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Summary: Hardware versus software speculation
* Now while concluding our discussion on exploiting the ILP using hardware and software
techniques we can say that both the approaches have certain limitations
» These limitations can be summarized as follows:
1. To speculate extensively, we must able to ascertain the memory references,
which is difficult to do at the compile time
o In a hardware based schemes, dynamic run time certainty of memory
address is done using the Tomasulo’s pipelined structure, which allows
us to move loads past/before stores at run time
2. Hardware based speculation works better when:
o when control flow is unpredictable
o And when hardware-based branch prediction is superior to software-
based branch prediction, which is done at compile time
3. Hardware based speculation maintains a completely precise exception model for
speculated instructions
4. Hardware based speculation does not require compensation which is needed by
ambitious software speculation mechanism
5. Compiler based approaches have the ability to see further in the code sequence,
Thus, may provide better code scheduling than a purely hardware driven
approach; for example, use of conditional move instruction
6. Hardware based speculation with dynamic scheduling does not require different
code sequences to achieve good performance for different implementation of
architecture. However, the major disadvantage of hardware support for
speculation is the extra hardware resources and Complexity of the structure
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Lecture 25
Memory Hierarchy Design
(Storage Technologies Trends and Caching)
Today’s Topics
* Recap: Processor Performance
» What is outside the processor
» Storage Technologies
+  RAM and Enhanced DRAM
» Disk Storage
*  Summary

Recap: Processor Performance
» Data path and control design of processor
» Hardware-based and software-based techniques to expose the ILP

What is outside processor?
» Performance of a computer
v' what is outside the processor?
v" how the outside systems influence the performance of processors?
* Whatever is outside the processor is referred to as the I/O system
» The I/O systems include:
v Memory System
v Buses and controllers
Memory System: An introduction
* Memory system design for high performance computers
» Design goal of memory system for high performance computers is to present the user
with as much memory as is available
+ Fast memory is expensive and cheap memory is slow, therefore a memory hierarchy is
organized into several levels
v’ cost as low as of the cheapest memory and
v speed as fast as of the fastest memory

Processor
/ Memory
f_% f_% Memory
| Speed: | Fastest | Slowest
| Size: ‘ Smallest | Biggest
| Cost: ‘ Highest ‘
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Principle of Memory hierarchy
+ “The principle of locality”, where each type of the module is located in the memory
system?

Principle of Locality
» Advantage of the principle of locality
» An average access speed that is very close to the speed that is offered by the fastest
technology and
v' Cost that is very close to the cheapest technology

Storage Type in Memory System
+ The semiconductor memories such as registers, Static RAM and Dynamic RAM fast in
access speed but are expensive
» Used in small size and placed either inside or closest to the processor
« Secondary storage devices which offer huge storage at lowest cost per bit are placed
farthest away from the processor

Levels of the Memory Hierarchy

Upper Level

[

| Capacity, Access Time, Cost | Staging
Transfer Unit
'-

100s Bytes, <1 ns/

$.1-.01/bit [Registers|

‘.‘ instr. Operands| prc;g_;g’cboyrﬂapsller
K Bytes, 1-10 ns !
$.01-.001/bit Cache
cache control

A

' 8-128 bytes

M Bytes, 10ns- .
100ns | Main Memory |
$.001-.0001 oS
512-4K bytes
G Bytes, 1-10ms Disk
1-0.1 1 cents - ; :
— usehagptzr: or ¥
o " :
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Memory Hierarchy Pyramid

F 3

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Larger,
slower,
and
cheaper
(per byte)
storage
devices

CPU registers hold words retrieved

L‘/ on-chip L1
tache (SRAM)

}egisterg\ from L1 cache.

L1 cache holds cache lines
retrieved from the L2 cache
memory.

off-chip L2
cache (SRAM)

L2:

L3 main memory

L4:

L5:

(DRAM)

L2 cache holds cache
lines retrieved from main

memory.

Main memory holds disk
blocks retrieved from local

local secondary storage
(local disks)

disks.

Local disks hold

files retrieved from
disks on remote

remote secondary storage

(distributed file systems, Web servers)

network servers.

Storage Systems
» Classification of memory systems based on different attributes and their design

« Attributes:
v' Material — Semiconductor, magnetic, optical

v" Accessing — Random, Sequential, Hybrid

v'  Store/Retrieve — ROM, RMM and RWM

Random-Access Memory (RAM)

+ Key features

v RAM is packaged as a chip.

v Basic storage unit is a cell (one bit per cell).

v" Multiple RAM chips form a memory
+ Types of RAM

v' Static RAM (SRAM)

v" Dynamic RAM (DRAM)
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Static RAM: Basic Cell
6-Transistor SRAM Cell \

word
(row select)

replaced with pullup
to save area

*  Write:
1. Drive bit lines (bit=1, bit=0)
2. Select row
* Read:
1. Pre-charge bit and bit to vVdd
2. Select row
3. Caell pulls one line low
4. Sense amp on column detects difference between bit and bit

SRAM Organization: 16-word x 4-bit

Din 3 Din 2 Din 1 Din 0
in in in in | —
L | W 1 [ ] 1 L ] | |
M—\,\;r Driver 't Driver &} Nt Driver & M—\,\;r Driver
- fF‘f‘hﬂfﬂF‘ - T'F‘("h A1 a2T + - fF‘("h AT + - fF‘f‘hﬂf(’TF‘
[T L=l ., =] [T [l N I [ | —
[ I I I I I I I 7| A0
| | SRAM | | | | SRAM || | | | SRAM || | | | SRAM | | g
Call sl (all (all % Al
[ I I I I I I L ~Wordl ; A2
| | SRAM | | | | SRAM || | | | SRAM || | | | SRAM | | o
(=1l (=l (=l (=l DQ A3
H B ] ] :
[ I I I I I I T Word 15 ‘
|| sram || _SRAM"_ [ srav ] L sram |
{"all {"all (=1l {sll } ; [
g - Which is longer:
|' Sepse Anlp - [Sense Aqip |' Sepnse Amlp I' Sepse Amip Q ) &
word line or
birt line?
Dout 3 Dout 2 Dout 1 Dout 0
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Dynamic Random Access Memory (DRAM)
» Each cell stores bit with a capacitor and transistor.
» Value must be refreshed every 10-100 ms.
» Sensitive to disturbances.
» Slower and cheaper than SRAM.

Basic DRAM Cell

Write:
v" Drive bit line and Select row
« Read:

v' Pre-charge bit line to Vdd and Select row
v Cell and bit line share charges
o Here, very small voltage changes occurs on the bit line therefore Sense
amplifier is used to detect changes
v Apply Write to restore the value
* Refresh
v' Just do a dummy read to every cell.

row select

I___I

« The state of the art DRAM cell only has one transistor. The bit is stored in a tiny
transistor.

« The write operation is very simple. Just drive the bit line and select the row by turning
on this pass transistor.

+ For read, we will need to precharge this bit line to high and then turn on the pass
transistor.

» This will cause a small voltage change on the bit line and a very sensitive amplifier will
be used to measure this small voltage change with respect to a reference bit line.

+ Once again, the value we stored will be destroyed by the read operation so an automatic
write back has to be performed at the end of every read.
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DRAM Organization 16 words x 8bit

< memory

controller
(to CPU)

2 bits

16 x 8 DRAM chip

addr

Reading DRAM Supercell (2,1)
+ Step 1(a): Row access strobe (RAS) selects row 2.
+ Step 1(b): Row 2 copied from DRAM array to row buffer.

rows |

supercell
(2,1)

16 x 8 DRAM chip

internal row
—huffer

cols
RAS = 2 E L ; @-
—~ |
addr
! 1
" | rows
memory |
controller | 21 _ — —
< . Ir >
da’tai \/ \/ v
internal now buffer

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com




CS-704 Advanced Computer Architecture

» Step 2(a): Column access strobe (CAS) selects column 1.
+ Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to the

CPU.

16x8DRAMcchip |

— —gols—  —

0 1 2 3 ’

CAS = 1 — ;

A T

To CPU 9L

memory rows | |

controller ! 2 !
supercell ) 8| _ 3] supercell
2.1) data \_——1\\W L @21

internal row buffer

64 MB DRAM Memory Module [8x8MB DRAM Chips]

addr (row = i, col = 7j)

O : supercell (i,j)

Yy v v v ¥
LE‘S [ 54 |45 | 4ha‘1h [ 44 |i9 ||312|3|1 | 2h|2h||1ds‘i5 | d‘i’ | [0

64-bit double word at main memory addresgﬁ\

controller

64-bit doubleword

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

Enhanced DRAMs
1. Fast Page Mode DRAM (FPM DRAM)
v"In normal DRAM, we can only read and write M-bit at time because only one row
and one column is selected at any time by the row and column address
v In other words, for each M-bit memory access, we have to provide a row address
followed by a column address.

Page Mode DRAM: Motivation Column

« Regular DRAM Organization: Address |,_ _.|

v" N rows x N column x M-bit
v' Read & Write M-bit at a time T
v' Each M-bit access requires a DRAM
RAS / CAS cycle ' Row
« Fast Page Mode DRAM Egl Address
v N x M “register” to save a
row _L / |/

/1 M bits
M-bit Output

N rows

k——— 15t M-bit Access ! k——— 2nd M-bit Access ™!
RAS L "I\ J‘I "\I J‘I
| I | I
CAS L | 1 \ A | \ A
| | |

l
A X| Row!Address Col Address x_ Junk ! Row'Address Col Address x_ Junk ><

—f

2. Extended data out DRAM (EDO DRAM)
v ltis the Enhanced FPM DRAM with more closely spaced CAS signals
3. Synchronous DRAM (SDRAM)

v’ It is driven with rising clock edge instead of asynchronous control signals.
4. Double Data Rate synchronous DRAM (DDR SDRAM)
v Itis Enhancement of SDRAM that uses both clock edges as control signals.
Video RAM (VRAM)
v ltis like FPM DRAM, but output is produced by shifting row buffer; and is
v Dual ported to allow concurrent reads and writes

o

Nonvolatile Memories
+  DRAM and SRAM are volatile memories
v Lose information if powered off.
» Nonvolatile memories retain value even if powered off.
v" Generic name is read-only memory (ROM).
v Misleading because some ROMs can be read and modified.
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* Types of ROMs
v" Programmable ROM (PROM)
v' Erasable programmable ROM (EPROM)
v Electrically erasable PROM (EEPROM)
v Flash memory
* Firmware
v" Program stored in a ROM
o Boot time code, BIOS (basic input/output system)
o graphics cards, disk controllers

Disk Geometry

tracks

surface

|Uackk1 gaps

sectors

Disk Geometry (Muliple-Platter View)
» Aligned tracks form a cylinder.

cylinder k

surface 0

platter 0
surface 1
surface 2

platter 1
surface 3
surface 4
surface 5 platter 2

spindle

Disk Capacity
+ Capacity: maximum number of bits that can be stored.
v" Recording density (bits/in): number of bits that can be squeezed into a 1 inch
segment of a track.
v' Track density (tracks/in): number of tracks that can be squeezed into a 1 inch
radial segment.
v Arial density (bits/in2): product of recording and track density.

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

Disk Operation (Multi-Platter View)

read/write heads
move in unison
from cylinder to cylinder

arm

Disk Access Time

» Average time to access some target sector approximated by :
v' Taccess = Tavg seek + Tavg rotation + Tavg transfer
Seek time (Tavg seek)
v' Time to position heads over cylinder containing target sector
v' Typical Tavg seek =9 ms
Rotational latency (Tavg rotation)
v' Time waiting for first bit of target sector to pass under r/w head.
v' Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
» Transfer time (Tavg transfer)
v' Time to read the bits in the target sector.
» Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

Disk Access Time Example
« Given:
v' Rotational rate = 7,200 RPM
v Average seek time = 9 ms.
v' Avg # sectors/track = 400.
» Derived:
v/ Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.
v' Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
v' Taccess =9 ms +4 ms+0.02ms
* Important points:
v Access time dominated by seek time and rotational latency.
v' First bit in a sector is the most expensive, the rest are free.
v" SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
o Disk is about 40,000 times slower than SRAM,
o 2,500 times slower then DRAM.
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Logical Disk Blocks
» The set of available sectors is modeled as a sequence of b-sized logical blocks (0, 1, 2,
o)
» Mapping between logical blocks and actual (physical) sectors
v Maintained by hardware/firmware device called disk controller.
v' Converts requests for logical blocks into (surface, track, sector) triples.

CPU-Memory Gap

100,000,000 - —
10,000,000 T, - —+— Disk seek ime
1,000,000
100,000 —#% DRAM access
e 10,000 time
1,000 #— SRAM access
10 —8— CPU cycle time
1

1980 1985 1990 1995 2000
year

Summary
» Memory hierarchy organization
» Design of basic memory modules of DRAM and SRAM
» Design and working of disk storages
» Gap between the speed of processor and the storage devices - DRAM, SRAM and Disk

is increasing with time
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Lecture 26
Memory Hierarchy Design
(Concept of Caching and Principle of Locality)

Today’s Topics
» Recap: Storage trends and memory hierarchy
» Concept of Cache Memory
» Principle of Locality
» Cache Addressing Techniques
* RAM vs. Cache Transaction
*  Summary

Recap: Storage Devices
» Design features of semiconductor memories
+ SRAM
« DRAM
» Magnetic disk storage

Speed and Cost per byte
+ DRAM is slow but cheap relative to SRAM
» Main memory of the processor to hold moderately large amount of data and instructions
» Disk storage is slowest and cheapest
« Secondary storage to hold bulk of data and instructions

CPU-Memory Access-Time
« The gap between the speed of DRAM and Disk with respect to the speed of processor,

as compared to that of the SRAM, is increasing very fast with time

CPU-Memory Gap

100,000,000 * \
10,000,000

* —- ——Disk seek time
1,000,000
100,000 IZ_)RAM access
@ 10,000 fime
1,000 —&— SRAM access
100 - time
10 —8—CPUcycle time

1

1980 1985 1990 1995 2000
year
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Memory Hierarchy Principles
The speed of DRAM and CPU complement each other

1: Concept of Caching

Organize memory in hierarchy, based on the Concept of Caching; and

v" Principle of Locality

staging area or temporary-place to:

v store frequently-used subset of the data or instructions from the relatively

cheaper, larger and slower memory; and

v" To avoid having to go to the main memory every time this information is needed

Caching and Memory Hierarchy
Memory devices of different type are used for each value k — the device level

Examples of Caching in the Hierarchy

the faster, smaller device at level k, serves as a cache for the larger, slower device at

level k+1

The programs tend to access the data or instructions at level k more often than they

access the data at level k+1
Storage at level k+1 can be slower, but larger and cheaper per bit

A large pool of memory that costs as much as the cheap storage at the highest level

(near the bottom in hierarchy)

serves data or instructions at the rate of the fast storage at the lowest level (near the top

in hierarchy)

Cache Type What Cached Where Cached Latency Managed
(cycles) By
Registers 4-byte word CPU regqisters 0 | Compiler
TLB Address On-Chip TLB 0 | Hardware
translations
L1 cache 32-byte block On-Chip L1 1 | Hardware
L2 cache 32-byte block Off-Chip L2 10 | Hardware
Virtual Memory | 4-KB page Main memory 100 | Hardware+
(ON]
Buffer cache Parts of files Main memory 100 | OS
Network buffer | Parts of files Local disk 10,000,000 | AFS/NFS
cache client
Browser cache | Web pages Local disk 10,000,000 | Web
browser
Web cache Web pages Remote server 1,000,000,000 | Web proxy
disks server
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2: Principle of Locality
+ Programs access a relatively small portion of the address space at any instant of time
» E.g.; we all have a lot of friends, but at any given time most of us can only keep in touch
with a small group of them

e
Phy,: Literatur
%C”em' \echron®
sty Civil Engg Electrical Engg. Computers  E
—_— ‘ﬁf’
- | I
_ I
‘_-_-_*_‘—-—-_
L_‘_‘_‘_‘_\_‘_‘_‘_‘——_
/ [N

We select 4 books;

2 each of Electronics and T [ U LH ]

Computers; place themon a
small table for fast access

Types of Locality
« Temporal locality is the locality in time which says if an item is referenced, it will tend to
be referenced again soon.
» Spatial locality is the locality in space. It says if an item is referenced, items whose
addresses are close by tend to be referenced soon

* A well-written program tends to reuse data and instructions which are:
v’ either near those they have used recently
v or that were recently referenced themselves

« Spatial locality: Items with nearby addresses (i.e., nearby in space) be located at the
same level, as they tend to be referenced close together in time

» Temporal locality: Recently referenced items (i.e., referenced close in time) be placed at
the same memory level, as they are likely to be referenced in the near future

» Locality Example: Program
sum = 0;
for (i=0;i<n;i++)
sum + = a[i];
return sum;
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» Spatial Locality: All the array-elements a]i] or data, reference in succession at each loop
iteration, so all the array elements be located at the same level. All the instructions of the
loop are referenced repeatedly in sequence therefore be located at the same level

» Temporal Locality: The data, sum is referred each iteration; i.e., recently referred data is
referred in each iteration. The Instructions of a loop, sum += a[i] Cycle through loop
repeatedly

Based on Locality Principle How Memory Hierarchy works?
+ The memory hierarchy will keep the more recently accessed data items closer to the
processor because chances are the processor will access them again soon
« NOT ONLY do we move the item that has just been accessed closer to the processor,
but we ALSO move the data items that are adjacent to it

Hierarchy List

» Register File Level 0 Datapath

- L1 Level 1 Cache on Chip

e L2 Level 2 External Cache

* Main memory Level 3 System Board DRAM

+ Diskcache Level4 Disk drive

» Disk Level 5 Magnetic disk

» Optical Level 6 CDs etc- bulk storage

+ Tape Level 7 Huge cheapest Storage

Intel Processor Cache

+ 80386 — no on chip cache

+ 80486 — 8k byte lines

» Pentium (all versions)
v' two on chip L1 caches
v' Data & instructions

+ Pentium 4

» L1 caches Two 8k bytes

* L2 cache 256k
v' Feeding both L1 caches

Cache Devices
» Cache device is a small SRAM which is made directly accessible to the processor; and
» DRAM, which is accessible by the cache as well as by the user or programmer, is placed
at the next higher level as the Main-Memory
» Larger storage such as disk, is placed away from the main memory
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Address

Conitrol

Processor Cache

Control

JB_.

Address
buffer

n Bus

huffer

Sys

Data

Data

Caching in a Memory Hierarchy

=

Main
Memory

N

Smaller, faster, more expensive
device at level k caches a subset
of the blocks (say 4 blocks) from
level k+1

Block Transfer

Level k:
9 3
Data is copied between
levels in block-sized transfer
units
Lo Jl 1 J[ 2 |[ 3
L4 | 5 |[ 6 || 7
| 8 J| o J[ 10 J[ 1
12 || 13 || 14 || 15
Cache Organization
Word Transfer r~i-1
~A
Cache

Larger, slower, cheaper

partitioned into blocks (say 16
blocks)

|
|
‘ \ storage device at level k+1 is
|

Main Memory
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Cache Addressing — Direct Addressing

00 01 10 11 GG | Level k: 4 blocks

addressed by
2-bit code: zz
The nth block from k+1 level

0000 0001 0010| | 0011 LS placed at n MOD 4 at level

B
(o]

0100 § 0101 0110 0111
1000 K 1001 1010 1011
1100 § 1101 1110 1111

xx00 xx01 xx10 xx‘l‘l

00yy 0 1 2 [ M3

O1yy 4 5 6 7 Level k+1: 16 blocks
1 Oyy 8 9 L 1 addressed by 4-bit
11yy 12 13 14 15 code: xxyy

A I

Memory Hierarchy Terminology

Lower Level

To Processor Upper Level Memory
N Memory

Bk X B i
From Processor R Blk Y

« Hit: the data the processor wants to access appears in some block in the upper level
(example: Block X)
v/ Hit Rate: the fraction of memory access that are found in the upper level (i.e.,
HIT)
v/ Hit Time: Time to access the upper level which consists of
i. RAM access time
ii.  Time to determine if this is hit or miss

» Miss: data needed by the processor is not found in the upper level and has to be
retrieved from a block in the lower level (Block Y)
v' Miss Rate =1 - (Hit Rate)
v Miss Penalty is the sum of the time:
i. toreplace a block in the upper level
ii. todeliver the block the processor
+ Recommendation: Hit Time must be much much smaller than Miss Penalty, otherwise
no need for memory hierarchy
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Cache Hit CPU
+ CPU needs object d, which is stored d
in some block b, say 14 of the (k+1) Reguest
memory and corresponding block 2 0 ’ 5
of the cache at level k evel [ 4 | 9 [ 14 | 3
v Program finds block b (14) in
the cache at level k.
v" Object d is transferred to
CPU 0 1 2 3
Level 4 5
ket 8 9 10 M
12 | 13 | 14 15
Cache Miss "
« Program needs object A, which is Re;“z‘e’“
stored in some block C say block 12 0 ] )
at level K+1 Lek\(r_el @B 9 14 | 3
« Cache miss '
12 Request
v" Block C (12 from K+1) is not 12
at level k- It is cache Miss
v" Hence, level k cache must
fetch it from level k+1; and 0 ! 2 3
v transfer object A to the CPU Level o BEEN NN
ket 8 | 9 10| 1

12 13 14 15

Placement and Replacement Policies
» If level k cache is full, then some current block must be replaced (evicted), which one is
the “victim”? It depends upon:
v/ Cache design that defines the relationship of cache addresses with the higher
level memory addresses
v" Placement policy that determines where can the new block go? and
v" Replacement policy that defines which block should be evicted?

Types of misses
» Cold (compulsory) miss: Occurs when the cache is empty; at the beginning of the cache

access.
» Capacity miss: Occurs when the set of active cache blocks (working set) is larger than

the cache.
» Conflict miss: Occurs when the level k cache is large enough, but multiple data objects

all map to the same level k block.
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Example: Conflict Miss
+ If the placement policy is based on the direct addressing, then:
v" Block n at level k+1 must be placed in block (n mod 4) at level k
» In thisd case, referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time as 8 mod 4 =
0, as both the blocks 0 and 8 of level k+1 are placed at the location 00 at level k

Cache Design
+ We have observed that more than one blocks from the level k+1 memory (say of the
main memory), having N blocks, may be placed at the same location (given by N MOD
M) in the level-k memory (say cache) having M blocks
» Hence, a tag must be associated with each block in the level-k (cache) memory to
identify its position in the level k+1 memory (Main memory)

Direct Mapping Example
+ The 16 MB main memory has 24 address bus
» Itis organized in 32-bit blocks
» 16 K word (64 KB) cache requires 16-bit address and 8-bit tag

g Word It
[sYsTsTs 137092386 fF — — — =
DOoOO4a ]
N
oo i i :
M
N
FEES .
= E .
=
- : §imves
- a T aag 1 >zata Numboer
oc0oaQaQ ¥ AT AT A S _—_—— — — OO T s 709-46 oc0oO0aQ
co0Oo4 11235813 b — — — —m — — — 4 16 11235813 o001
— Ly Y - Loy
1 e IzoC FECBAE b — — — - - — — 4 1 s FEDCBASS DCET7
— — — —1
—— — — — FE 11223344 3 FEE
FEEC 1z3ass7s8 — — — —+— — — — 4 5 & 1=ase78 ES o
- N
- ' N -
- . = bits 32 bits
‘ I.JE_:JT : 16 Kword Cachoe
M
N
=E D e T .
.
.
FEES 112235449 B~ — — — 12
FEEC 24682468
32 bits
1 MEByie Main Mormmory
Direct Mapping Address Structure
Tag s-r Line or Slot r Word w

» 24 bit address
» 2 bit word identifier (4 byte block)
» 22 bit block identifier — for the main memory
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v' 8 hittag (=22-14)
v 14 bit slot or line or index value for cache
» No two blocks in the same line have the same Tag field
» Check contents of cache by finding line and checking Tag

Direct Mapping Cache Organization

W

Cache Main Memory

Memory Address Tag Dhla Wil

[ Tac | Ling | wird | | W1
I W2 By

5T r w ! W3

|
¥ N } : ;)—ﬁén- W
. “l Widj+1) B
? - y

ey

Compare - w Widi+2)
L I Widj+3)
(hit in cache) I . I

- I I L]
| |

. | | -
o |
-l

{miss in cache)

Cache Design: Another Example
» Let us consider another example with realistic numbers:
+ Assume we have a 1 KB direct mapped cache with block size equals to 32 bytes
* In other words, each block associated with the cache tag will have 32 bytes in it (Row 1).

Line Number

Valid Bit ~ Cache Tag Cache Data or Index
H Byte 31| * |Byte 1 |Byte 0 |0
[ | 22 bit address Byte 63 ** | Byte 33 |Byte 32| 1
o 2
o 3
| Byte 1023 “* Byte 992 |31
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Address Translation — Direct Mapped Cache
* Assume the k+1 level main memory of 4GB, with Block Size equals to 32 bytes, and a k
level cache of 1Kbyte

31 9 4 0
Cache Tag | Cache Index | Byte Select
Exr0x01 Ex:0x00

Stored as part

of the cache “state™
Valid Bit __ Cache Tag Cache Data
|| Byte 311 " |Byte 1 |Byte]0 |0
|| Byte 63| " |Byvte 33 |Byte'32] 1+
|| 2
|| 3
|| Byte 1023 . Byte 992 |31

Cache Design
» With Block Size equals to 32 bytes, the 5 least significant bits of the address will be used
as byte select within the cache block.
» Since the cache size is 1K byte, the upper 32 minus 10 bits, or 22 bits of the address will
be stored as cache tag
» The rest of the address bits in the middle, that is bit 5 through 9, will be used as Cache
Index to select the proper cache block entry
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Lecture 27
Memory Hierarchy Design
(Cache Design Techniques)

Today’s Topics
» Recap: Caching and Locality
« Cache Performance Metrics
» Cache Designs
» Addressing Techniques
*  Summary

Recap: Memory Hierarchy Principles
» High speed storage at the cheapest cost per byte
» Different types of memory modules are organize in hierarchy, based on the:
v Concept of Caching
v Principle of Locality

Recap: Concept of Caching
» A small, fastest and most expensive storage be used as the staging area or temporary-
place
v’ Store frequently-used subset of the data or instructions from the relatively
cheaper, larger and slower memory; and
v" To avoid having to go to the main memory every time this information is needed

Recap: Principle of Locality
+ To obtain data or instructions of a program, the processor access a relatively small
portion of the address space at any instant of time
» There are two different types of locality
v' Temporal locality
v Spatial locality

Recap: Working of Memory Hierarchy
+ The memory hierarchy will keep the more recently accessed data items closer to the
processor because chances are the processor will access them again soon.
+ NOT ONLY do we move the item that has just been accessed closer to the processor,
but we ALSO move the data items that are adjacent to it

Recap: Cache Devices
» Cache device is a small SRAM which is made directly accessible to the processor
+ Cache sits between normal main memory and CPU as data and instruction caches and
may be located on CPU chip or as a module
» Data transfer between cache - CPU, and cache- Main memory is performed by the
cache controller
» Cache and main memory is organized in equal sized blocks
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Recap: Cache/Main Memory Data Transfer

An address-tag is associated with each cache block that defines the relationship of the
cache block with the higher-level memory (say main memory)

Data Transfer between CPU and Caches takes place as the word transfer

Data transfer between Cache and the Main memory takes place as the block transfer

Recap: Cache operation

CPU requests contents of main memory location

Controller checks cache blocks for this data

If present, i.e., HIT, it gets data or instruction from cache - fast

If not present, i.e., MISS, it reads required block from main memory to cache, then
deliver from cache to CPU

Cache Memory Performance

Miss rate, Miss Penalty, and Average access time are the major trade-off of Cache
Memory performance
Miss Rate: is the fraction of memory accesses that are not found in the level-k memory
or say the cache
v/ Miss Rate = number of misses / total memory accesses
As, Hit rate is defined as the fraction of memory access that are found in the level-k
memory or say the cache, therefore Miss Rate = 1 — Hit Rate
Miss Penalty is the memory stall cycles — i.e., the number of cycles CPU is stalled for a
memory access; and is determined by the sum of:
1. The Cycles (time) to replace a block in the cache, upper level and
2. The Cycles (time) to deliver the block to the processor
Average Access Time = Hit Time x (Hit Rate) + Miss Penalty x Miss Rate
The performance of a CPU is the product of clock cycle time and sum of CPU clock
cycles and memory stall cycles
CPU Execution Time = (CPU Clock Cycles + Memory Stall Cycles) x clock cycle time
Where,
Memory stall cycles =
= Number of Misses x Miss Penalty
= IC x (Misses / Instructions)x Miss Penalty
= IC x [(Memory Access / Instructions)] x Miss Rate x Miss Penalty
Number of cycles for memory read and for memory write may be different,
Miss penalty for read may be different from the write
Memory Stall Clock Cycles = Memory read stall cycles + Memory Write stall cycles

Cache Performance Example

Assume a computer has CPI=1.0 when all memory accesses are hit; the only data
accesses are load/store access; and these are 50% of the total instructions

If the miss rate is 2% and miss penalty is 25 clock cycles, how much faster the computer
will be if all instructions are HIT

Execution Time for all Hit = IC x 1.0 x cycle time
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CPU Execution time with real cache = CPU Execution time + Memory Stall time

Memory Stall Cycles =

= IC x (Instruction access + data access) per instruction X miss rate X miss penalty

=IC (1+ 0.5) x 0.02 x 25
=1Cx0.75
CPU Execution time (with cache) =

= (ICx 1.0 +1C x 0.75) x clock time

=1.75 x IC x Cycle time

Computer with no cache misses is 1.75 times faster

Block Size Tradeoff: Miss Rate

Miss rate probably will go to infinity.
It is true that if an item is accessed,
it is likely that it will be accessed
again soon.

This is called the ping pong effect
The data is acting like a ping pong
ball bouncing in and out of the
cache.

MISS RATE is not the only cache
performance metrics, we have to
worry about the miss penalty

Block Size Tradeoff: Miss Penalty

Block Size Tradeoff: Average Access Time

Block size passes a certain point,
the miss rate actually goes up.

Block size passes a certain point,
the miss rate actually goes up.
Average Access Time

Performance metric than the miss
rate or miss penalty

Miss || Miss
Rate || Penalty

~—

Miss

Rate | Exploits Spatial Locality

Average
Access
Time

Fewer blocks:
compromises
temporal locality

/

Block Size

Miss
Penalty

Block Size'

Increased Miss Penalty
& Miss Rate

Block Size

Block Size Tradeoff: Average Access Time
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* Not only is the miss penalty is increasing,
» Miss rate is increasing as well

How do you Design a Cache?

Inside it has:
Physical Address — Tag-Data Storage,
Memory Muxes,
Read/Write —
“Black Box” Comparators, . ..
Data «—
* read: data <= Mem [Physical Address]
» write: Mem [ Physical Address] <= Data
Control
Points
Cache
DataPath
Cache —— AR{W
Controller ctive
Address ——»
Data In > "
wait
Data Out «——| Signals

Categories of Cache Organization
» Cache can be organized in three different way based on the block placement policy
» The block placement policy defines where a block from main (Physical) memory be
placed in the cache

» There exist three block placement policies namely:
v Direct Mapped
v Fully Associative
v Set Associative
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Direct Mapped Cache Organization
» Direct mapped cache organization is one where each block has only one place it can
appear in the cache.

limae =
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16 MByie Main Momaory

Direct Mapping Example

» For example, a computer uses 16 MB main memory and IMB cache.

+ These memories are organized in 4-byte blocks

« That is, the main memory has IM Blocks and the cache is organized in 256K blocks
each of 4-byte

» Each block in the main as well as in cache is address by a line-number

* Now in order to understand the placement policy, the main memory is logically divided
into 16 sections each of 256K blocks (lines)

« Each section is represented by a Tag number

Direct Mapping Characteristics
« Each block of main memory maps to only one cache line
* e.g., the block number at line 339CH from any of the 16 sections must be place at line
number OCE7 with corresponding tag in the cache
» This shows that the direct mapping is given by: (Block address) MOD (Number of Blocks
in the cache)
(00339C) MOD (3FFF) = 0OCE7
(16339C) MOD (3FFF) = 0CE7
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Direct Mapping Address Structure
Tag s-r Line or Slot r Word w

8 14 2

e 24 bit address
» 2 bit word identifier (4 byte block)
» 22 bit block identifier — for the main memory
v' 8 bittag (=22-14)
v 14 bit slot or line or index value for cache
* No two blocks in the same line have the same Tag field
» Check contents of cache by finding line and checking Tag

Direct Mapping Cache Organization
» Least Significant w bits identify unique word
» Next Significant s bits specify one memory block
» The MSBs are split into a cache line field r and a tag of s-r (most significant)

S+,

Cache Main Memory

ﬁl*ﬁc?uf—\ Tag Dhala Wi
| Tag | Ling | word | [ W1

: W2 By
§-r r w ! W3

|
¥ " : > Wi
. - -y L w Widj+1) B
Compare Widj+2) 1

I Widj+3)
(hit in cachel

[ % = =
['nl-L
Cache Design: Another Example
» Let us consider another example with realistic numbers:
+ Assume we have a 1 KB direct mapped cache with block size equals to 32 bytes
» In other words, each block associated with the cache tag will have 32 bytes in it (Row 1).

(miss in cache)
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Line Number

Valid Bit  Cache Tag Cache Data or Index
H Byte 31| ** |Byte 1 |Byte 0 |0
[ | 22 bit address Byte 63| °° |Byte 33 |Byte 32| 1
| 2
|| 3
| Byte 1023 ** Byte 992 |31

Address Translation — Direct Mapped Cache
+ Assume the k+1 level main memory of 4GB, with Block Size equals to 32 bytes, and a k
level cache of 1Kbyte
31 9 4 0
Cache Tag I Cache Index I Byte Select

BEXI0OX01 bBX:0x00
Stored as part |
of the cache “state”

Valid Bit __ Cache Tag Cache Data
| Byte 31| ~° |Byte 1 |Byte]0 | O
|| Byte 63| °° |Byte 33|Byte'32] 1+—
|| 2
| 3
|| Byte 1023 T Byte 992 |31

Direct Mapping pros & cons
» Simple, Inexpensive
» Fixed location for given block
v' If a program accesses 2 blocks that map to the same line repeatedly, cache
misses are very high
« Valid bit is included to see if the cache contents are valid ... explanation

Associative Mapping
* A main memory block can load into any line of cache
* Memory address is interpreted as tag and word
» Tag uniquely identifies block of memory
« Everyline’s tag is examined for a match

Fully Associative Cache Organization
» Forget about the Cache Index
» Place any block of the main memory any where in the cache
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» Store all the upper bits of the address (except Byte select) that is associated with the
cache block as the cache tag and have one comparator for every entry.

W,
Fd
Cache Main Memory
Memory Adidress Tag Dala Wi
l Tag | Ward | | W1
W2 By
o Ly w3
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W
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Compare . %Lh Widj+2) B
| | Widj+3)
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|
| |
5 | y . |
e ‘- I
o 1
| [

(miss in cache)

Associative Mapping Example
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Associative Mapping: Address Structure

20

22 bit tag stored with each 32 bit block of data

Compare tag field with tag entry in cache to check for hit

Least significant 2 bits of address identify which 16 bit word is required from 32 bit data
block

e.g.
Address Tag Data Cache line
FFFFC 3FFFFC 24682468 3FFF

Fully Associative

31 4 0
Cache Tag (27 bits long) Byte Select
Ex: 0x01
Cache Tag Valid Bit  Cache Data

4.@._ Byte 31| -- [Byte 1 |Byte 0
_.@, Byte 63| -- | Byte 33| Byte 32

While the direct mapped cache is on the simple end of the cache design spectrum, the
fully associative cache is on the most complex end.

It is the N-way set associative cache carried to the extreme where N in this case is set to
the number of cache entries in the cache.

In other words, we don’t even bother to use any address bits as the cache index.

We just store all the upper bits of the address (except Byte select) that is associated with
the cache block as the cache tag and have one comparator for every entry.

Fully Associative Cache Organization

The address is sent to all entries at once and compared in parallel and only the one that
matches are sent to the output.

This is called an associative lookup.

Hardware intensive.
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Fully associative cache is limited to 64 or less entries.

Conflict miss is zero for a fully associative cache. Assume we have 64 entries here. The
first 64 items we accessed can fit in.

But when we try to bring in the 65th item, we will need to throw one of them out to make
room for the new item.

This bring us to the cache misses of type Capacity Miss

Set Associative Mapping Summary

Address length = (s + w) bits

Number of addressable units = words or bytes
Block size = line size = 2" words or bytes

Number of blocks in main memory = 2°

Number of lines in set = k

Number of sets = v = 2¢

Number of lines in cache = kv = k * 2¢

Size of tag = (s — d) bits

25+W

Set Associative Mapping

Cache is divided into a number of sets

Each set contains a number of lines

A given block maps to any line in a given set

e.g. Block B can be in any line of set i

e.g. 2 lines per set

2 way associative mapping

A given block can be in one of 2 lines in only one set

Set Associative Cache

This organization allows to place a block in a restricted set of places in the cache, where
a set is a group of blocks in the cache at each index value

Here a block is first mapped onto a set (i.e., mapped at an index value and then it can be
placed anywhere within that set

The set is usually chosen by bit-selection; i.e.,

(block address) MOD (Number of sets in cache)

If there are n-blocks in a set, the cache placement is referred to as the n-way set
associative

This is called a 2-way set associative cache because there are two cache entries for
each cache index. Essentially, you have two direct mapped cache works in parallel.
This is how it works: the cache index selects a set from the cache. The two tags in the
set are compared in parallel with the upper bits of the memory address.

If neither tag matches the incoming address tag, we have a cache miss.

Otherwise, we have a cache hit and we will select the data on the side where the tag
matches occur.

This is simple enough. What is its disadvantages?
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Set Associative Mapping Address Structure

Tag 9 bit

Word

Set 13 bit 2 bit

* Use set field to determine cache set to look in
» Compare tag field to see if we have a hit, e.g

Address Tag Data Set number
1FF 7FFC IFF 12345678  1FFF
001 7FFC 001 11223344 1FFF
Two Way Set Associative Mapping Example
T Mo Waoard Iaria
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Two-way Set Associative Cache
» Let us consider this example 2-way set Associative Cache
» Here, two cache entries are possible for each index
* i.e., two direct mapped caches are working in parallel

Valid

Cache Tag

Cache Index

Cache Data

A s

Cache Block

Cache Data
Cache Block

Cache Tag Valid

D

y Cache Block
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Working of Two-way Set Associative Cache

Let us see how it works?
v The cache index selects a set from the cache. The two tags in the set are
compared in parallel with the upper bits of the memory address.
v" If neither tag matches the incoming address tag, we have a cache miss
v Otherwise, we have a cache hit and we will select the data on the side where the
tag matches occur.
This is simple enough. What are its disadvantages?

Disadvantage of Set Associative Cache

First of all, a N-way set associative cache will need N comparators instead of just one
comparator (use the right side of the diagram for direct mapped cache).

A N-way set associative cache will also be slower than a direct mapped cache because
of this extra multiplexer delay.

Finally, for a N-way set associative cache, the data will be available AFTER the hit/miss
signal becomes valid because the hit/miss is heeded to control the data MUX.

For a direct mapped cache, that is everything before the MUX on the right or left side,
the cache block will be available BEFORE the hit/miss signal (AND gate output) because
the data does not have to go through the comparator.

This can be an important consideration because the processor can now go ahead and
use the data without knowing if it is a Hit or Miss.

If it assumes that it is a hit; it will be ahead by 90% of the time as cache hit rate is in the
upper 90% range, and for other 10% of the time that it is wrong, just make sure that it
can recover

We cannot play this speculation game with a N-way set - associative cache because as
we said earlier, the data will not be available to until the hit/miss signal is valid.
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Lecture 28
Memory Hierarchy Design
(Cache Design and policies)

Today’s Topics

+ Recap: Cache Addressing Techniques

» Placement and Replacement Policies

« Cache Write Strategy

» Cache Performance Enhancement

*  Summary

Recap: Block Size Trade off
» Impact of block size on the cache performance and categories of cache design
» The trade-off of the block size verses the Miss rate, Miss Penalty, and Average access
time , the basic CPU performance matrices
v The larger block size reduces the miss rate, but If block size is too big relative to
cache size, miss rate will go up; and
v' Miss penalty will go up as the block size increases; and
v' Combining these two parameters, the third parameter, Average Access Time

Recap: Cache Organizations
» Cache organizations
» Block placement policy, we studied three cache organizations.

Recap: Cache Organizations
» Direct Mapped where each block has only one place it can appear in the cache —
Conflict Miss
« Fully Associative Mapped where any block of the main memory can be placed anywhere
in the cache; and
» Set Associative Mapped which allows to place a block in a set of places in the cache

Memory Hierarchy Designer’s Concerns
1. Block placement: Where can a block are placed in the upper level?
2. Block identification: How is a block found if it is in the upper level?
3. Block replacement: Which block should be replaced on a miss?
4. Write strategy: What happens on a write?

Block Placement Policy
» Fully Associative: Block can be placed anywhere in the upper level (Cache)
v' E.g. Block 12 from the main memory can be place at block 2, 6 or any of the 8
block locations in cache
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» Set Associative: Block can be placed any where in a set in upper level (cache)
» The set number in the upper level given as:
* (Block No) MOD (number of sets)
+ E.g., an 8-block, 2-way set associative mapped cache, has 4 sets [0-3] each of two
blocks; therefore and block 12 or 16 of main memory can go anywhere in
set#0 as (12 MOD 4 =0) and
(16 MOD 4 =0)
« Similarly, block 14 can be placed at any of the 2 locations in set#2 (14 MOD 4 = 2)

DROCck TR s e

- -
- ST ass e

o . > »

- Direct Mapped: (1 way associative) Block can be placed at only one specific location in
upper level (Cache)

« The location in the cache is given by:

» Block number MOD No. of cache blocks

« E.g., the block 12 or block 20 can be place at location 4 in cache having 8 blocks as:

+ 12MOD8=4
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Block Identification
* How a block is found if it is in the upper level? Tag/Block
+ A TAG is associated with each block frame
+ The TAG gives the block address
» All possible TAGS, where a block may be placed are checked in parallel
« Valid bit is used to identify whether the block contains correct data
» No need to check index or block offset
» Direct Mapped:
v" Lower Level (Main) memory: 4GB — 32-bit address
31 9 4 0
Cache Tag (22-bits) Cache Index 5bits | Byte Select
Ex: 0x00 Ex: 0x00
| 31
Valid Bit Cache Tag Cache Data l
22 bit Byte 31| .. |Byte 1 | Byte 0 | Oe—u
Byte 63 .. | Byte 33| Byte 32| 1
31
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31 9 8
Cache Tag

v 4
|Cache Index 4bits| Byte Select

(23-bits)

Byte 31| ** | Byte1 |
Byte 63

Byte 0 |

| 23bit |
Byte 33| Byte 32|

,_
E—-=| =]

[ -]

Byte 31 Byte 1

Byte 33

Byte0 | 0
Byte 32| 1

Byte 63

15—

Block Replacement Policy

In case of cache miss, a new block needs to be brought in
If the existing block locations, as defined by Block placement policy, they are filled,
then an existing block has to be fired based on

v' Cache mapping; and

v" some block replacement policy

Random: replace any block
v' it is simple and easiest to implement
v' The candidate for replacement are randomly selected
v" Some designers use pseudo random block numbers

Least Recently Used (LRU): replace the block either never used of used long ago

v It reduces the chances of throwing out information that may be needed soon
Here, the access time and number of times a block is accessed is recorded
The block replaced is one that has not been used for longest time
E.g., if the blocks are accessed in the sequence 0,2,3,0, 4,3,0,1,8,0 the victim to
replace is block 2

A NERNERN

First-in, First-out (FIFO): the block first place in the cache is thrown out first; e.g., if the
blocks are accessed in the sequence 2,3,4,5,3,4
v' then to bring in a new block in the cache, the block 2 will be thrown out as it is
the oldest accessed block in the sequence
v' FIFO is used as approximation to LRU as LRU can be complicated to calculate

Conclusion:

Associativity 2-way 4-way 8-way

Size LRU Random | LRU Random | LRU Random
16 KB 5.0% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
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Write Strategy

Must not overwrite a cache block unless main memory is up to date

Multiple CPUs may have individual caches

I/O may address main memory directly

Memory is accessed for read and write purposes

The instruction cache accesses are read

Instruction issue dominates the cache traffic as the writes are typically 10% of the cache
access

Furthermore, the data cache are 10%-20% of the overall memory access are write

In order to optimize the cache performance, according to the Amdahl’s law, we make the
common case fast

Fortunately, the common case, i.e., the cache read, is easy to make fast as:

Read can be optimized by making the tag-checking and data-transfer in parallel

Thus, the cache performance is good

However, in case of cache-write, the cache contents modification cannot begin until the
tag is checked for address-hit

Therefore the cache-write cannot begin in parallel with the tag checking

Another complication is that the processor specifies the size of write which is usually a
portion of the block

Therefore, the write needs consideration

v Write back — the information is written only to the block in the cache. The
modified cache block is written to main memory only when it is replaced

o Pros and Cons

o No write to the lower level for repeated writes to cache

o adirty bit is commonly used to indicate the status as the cache block is
modified (dirty) or not modified (clean)

o Reduce memory-bandwidth requirements, hence the reduces the memory
power requirements

v' Write through_—The information is written to both the block in the cache and to
the block in the lower-level memory

o Pros and Cons

o Simplifies the replacement procedure

o the block is always clean, so unlike write-back strategy the read misses
cannot result in writes to the lower level

o always combined with write buffers so that don’'t wait for lower level
memory

o Simplifies the data-coherency as the next lower level has the most recent
copy (we will discuss this later)

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

Write Buffer for Write Through

Cache
Processor DRAM

T —

Write Buffer

Write buffer is just a FIFO: Typical number of entries: 4

Once the data is written into the write buffer and assuming a cache hit, the CPU is done
with the write.

The memory controller will then move the write buffer's contents to the real memory
behind the scene

DRAM cycle time sets the upper limit on how frequent you can write to the main
memory.

The write buffer works as long as the frequency of store, with respect to the time, is not
too high, i.e.,

Store frequency << 1/ DRAM write cycle

If the stores are too close together or the CPU time is so much faster than the DRAM
cycle time, you can end up overflowing the write buffer and the CPU must stop and wait.

A Memory System designer’s nightmare is when the Store frequency with respect to
time approaches 1 over the DRAM Write Cycle Time, i.e.,

The CPU Cycle Time <= DRAM Write Cycle Time

We call this Write Buffer Saturation

Write Buffer Saturation

In that case, it does NOT matter how big you make the write buffer, the write buffer will
still overflow because you are simply feeding things in it faster than you can empty it
There are two solutions to this problem:

The first solution is to get rid of this write buffer and replace this write through cache with
a write back cache

Cache

12
Processor Cache DRAM

Write Buffer

Write-Miss Policy

In case of write-miss, two options are used, these options are :

Write Allocate: A block is allocated on a write-miss, followed by the write hit action
No-write Allocate: Usually the write-misses do not affect the cache, rather the block is
modified only in the lower level memory, i.e.,
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» Let’'s look at our 1KB direct mapped cache again.

+ Assume we do a 16-bit write to memory location 0x000000 and causes a cache miss in
our 1KB direct mapped cache that has 32-byte block select.

» After we write the cache tag into the cache and write the 16-bit data into Byte 0 and Byte
1, do we have to read the rest of the block (Byte 2, 3, ... Byte 31) from memory?

» If we do read the rest of the block in, it is called write allocate. But stop and think for a
second. Is it really necessary to bring in the rest of the block on a write miss?

» True, the principle of spatial locality implies that we are likely to access them soon.

» But the type of access we are going to do is likely to be another write.

+ Soif even if we do read in the data, we may end up overwriting them anyway so it is a
common practice to NOT read in the rest of the block on a write miss.

« If you don’t bring in the rest of the block, or use the more technical term, Write Not
Allocate, you better have some way to tell the processor the rest of the block is no longer
valid.

» This brings us to the topic of sub-blocking.

» The blocks stay out of the cache in no-write allocate until the program tries to read the
blocks, but

» The blocks that are only written will still be in the cache with write allocate

» Let us discuss it with the help of example

+ Let’'s look at our 1KB direct mapped cache again

» Assume we do a 16-bit write to memaory location 0x000000 and causes a cache miss in
our 1KB direct mapped cache that has 32-byte block select.

31 9 1 0
| Cache Tag ~ Example: 0x00 | Cache Index I Byte Select
Ex: 0x00 Ex: 0x00

Valid Bit  Cache Tag Cache Data |
| 0x00 A Byte 31| " |Byte 1 |Byte 0 | 0
|| Byte 63| °° |Byte 33| Byte 32| 1
| 2
| 3
|| Byte 1023 CC Byte 992 | 31

* Assume we do a 16-bit write to memory location 0x000000 and causes a cache miss in
our 1KB direct mapped cache that has 32-byte block select

» After we write the cache tag into the cache and write the 16-bit data into Byte 0 and Byte
1, do we have to read the rest of the block (Byte 2, 3, ... Byte 31) from memory?

« |f we do read the rest of the block in, it is called write allocate.

» True, the principle of spatial locality implies that we are likely to access them soon.

» But the type of access we are going to do is likely to be another write.
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So if even if we do read in the data, we may end up overwriting them anyway so it is a
common practice to NOT read in the rest of the block on a write miss.

If you don’t bring in the rest of the block, or use the more technical term, Write Not
Allocate, you better have some way to tell the processor the rest of the block is no longer
valid.

This bring us to the topic of sub-blocking.

As the principle of spatial locality implies that we are likely to access them soon.

But the type of access we are going to do is likely to be another write.

So even if we do read in the data, we may end up overwriting them anyway so it is a
common practice to NOT read in the rest of the block on a write miss.

If you don’t bring in the rest of the block, or use the more technical term, Write Not
Allocate, you better have some way to tell the processor the rest of the block is no longer
valid.

Example: No write-allocate verses write allocate

Let us consider a fully associative write-back cache with cache entries that start empty
Consider the following sequence of five memory operations and find
The number of hits and misses when using no-write allocate verses write allocate
Write Mem [100]
Write Mem [100]
Read Mem [200]
Write Mem [200]
Write Mem [100]

For no-write allocate, the address [100] is not in the cache (i.e., its tag is not in the cache
So the first two writes will result in MISSES
Address [200] is also not in the cache, the reed is also miss
The subsequent write [200] is a hit
The last write [100] is still a miss
The result is 4 MISSes and 1 HIT
For the write-allocate policy
The first access to 100 and 200 are MISSES
The rest are HITS as [100] and [200] are both found in the cache
The result is 2 MISSes and 3 HITs
Conclusion
v Either write miss policy could be used with the write-through or write-back
v" Normally
v' Write-back caches use write-allocate, hopping that the subsequent write to the
block will be captured by the cache
v Write-through caches often use No Write Allocate, the reason is that even if there
is a subsequent write to the block, the write must go to the lower level memory
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Lecture 29
Memory Hierarchy Design
Cache Performance Enhancement by:
Reducing Cache Miss Penalty

Today’s Topics

» Recap: Cache Design

+ Cache Performance

* Reducing Miss Penalty

*  Summary

Recap: Memory Hierarchy Designer’s Concerns
+ Block placement: Where can a block be placed in the upper level?
» Block identification: How is a block found if it is in the upper level?
» Block replacement: Which block should be replaced on a miss?
»  Write strategy: What happens on a write?

Recap: Write Buffer for Write Through
» cache write strategies
» write back
» write through
» use of write-buffer

Recap: Write Buffer for Write Through
» level-2 cache is introduce in between the Level-1 cache and the DRAM main memory
v" Write Allocate and
v" No-Write Allocate

Recap: Write Miss Policies
»  Write Allocate:
v" A block is allocated in the cache on a write miss, i.e., the block to be written is
available in the cache
* No-Write Allocate:
v' The blocks stay out of the cache until the program tries to read the blocks; i.e.,
the block is modified only in the lower level memory

Impact of Caches on CPU Performance
» CPU Execution Time equation
* CPU (eX'Time) = (CPU Exe. clock cycle + MemOfy Stall cycles) X CIOCk Cycle Time

Example
» Assumptions
v’ the cache miss penalty of 100 clock cycles
v all instructions normally take 1 clock cycle
v' Average miss rate is 2%
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v' Average memory references per instruction = 1.5
v Average number of cache misses per 1000 inst. = 30
» Find the impact of cache on performance of CPU considering both the misses per
instruction and miss rate
+ CPUTime=
(CPU Exe. clock cycle + Memory st cyces) X Clock Cycle Time
*  CPU Time it cache (including cache miss)
= (IC x (1.0 + (30/1000 x 100) x clock cycle time
= IC x 4.00 x clock cycle time
*  CPU Time yjn cache (including miss rate)
= (IC x (1.0 + (1.5 x 2% x 100) x clock cycle time
=IC x 4.00 x clock cycle time

Cache Performance (Review)
*  Number of Misses or miss rate
» Cost per Miss or miss penalty
» Memory stall clock cycles equal to the sum of
v" IC x Reads per inst. x Read miss rate x Read Miss Penalty; and
v'IC x writes per inst. x Write Miss Rate x Write Miss Penalty
v (Number of reads x read miss rate x read miss penalty)
+
(Number of write x write miss rate x write miss penalty)
» Averaging the read and write miss rate
» Memory stall clock cycles =

. Number of memory access x Misses rate x miss penalty
« Average Memory Access Time =
. Hit Time x Misses rate x miss penalty

* Note that the average memory access time is an indirect measure of the CPU
performance and is not substitute for the Execution Time

» However, this formula can decide about the split caches (i.e., instruction cache and data
cache) or unified cache

 E.g., if we have to find out which of these two types of caches has lower miss rate we
can use this formula as follows:

Example:
» Statement: Let us consider 32KB unified cache with misses per 1000 instruction equals
43.3 and instruction/data split caches each of 16KB with instruction cache misses per
1000 as 3.82 and data cache as 40.9; Assume that
v 36% of the instructions are data transfer instructions;
74% of memory references are instruction references; and
hit takes 1 clock cycle where the miss penalty is 100 cycles and
a load or store takes one extra cycle on unified cache

A NERNERN
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» Assuming write-through caches with write-buffer and ignore stalls due to write buffer —
Find the average memory access time in each case

» Note to solve this problem we first find the miss rate and then average memory access
time

Solution:
1. Miss Rate = (Misses/1000) / (Accesses/ inst.)
v' Miss Rate 16k inst = (3.82/1000) /1.0 = 0.0038
v' Miss Rate 16¢g data = (40.9/1000) /0.36 = 0.114
v' As about 74% of the memory access are instructions therefore overall miss rate
for split caches = (74% x 0.0038) + (26% x 0.114) = 0.0324
v Miss Rate 35kg unified = (43.3/1000) /(1+0.36) = 0.0318
v i.e., the unified cache has slightly lower miss rate

2. Average Memory Access Time
= %inst x (Hit time + Inst. Miss rate x miss penalty)
+

%data x (Hit time + data Miss rate x miss penalty)

v Average Memory Access Time gy
=74% x (1 + 0.0038 x 100) + 26% x (1 + 0.114 x 100) = 4.24
v' Average Memory Access Time ynified
= 74%x (1 + 0.0.0318 x 100) + 26% x (1+1+0.0318 x 100) = 4.44
v i.e., the split caches have slightly better average access time and also avoids
Structural Hazards

Improving Cache Performance
* Average memory access time gives framework to optimize the cache performance
« The Average memory access time formula:
» Average Memory Access time = Hit Time + Miss Rate x Miss Penalty

Four General Options
1. Reduce the miss penalty,
2. Reduce the miss rate,
3. Reduce miss Penalty or miss rate via Parallelism
4. Reduce the time to hit in the cache

Reducing Miss Penalty
1. Multilevel Caches
2. Critical Word first and Early Restart
3. Priority to Read Misses Over write Misses
4. Merging Write Buffers
5. Victim Caches
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1: Multilevel Caches (to reduce Miss Penalty)
» This technique ignores the CPU but concentrates on the interface between cache and
maim memory
» Multiple levels of caches
» Tradeoff between cache size (cache effectiveness and cost (access time) a small fastest
memory is used as level-1 cache
+ Performance Analysis
» Average access Time is:
» Access Time ayerage
= Hit Time ., + Miss Rate ; x Miss Penalty |,
Where, Miss Penalty | ;
= Hit Time ., + Miss Rate |, x Miss Penalty |,

» The Average memory access time
= Hit Time ; + Miss Rate ; x (Hit Time |, + Miss Rate |, x Miss Penalty )

Stall/instruction ayerage
= Misses per instruction,; x Hit Time |, + Misses per instruction , x Miss Penalty,,

» Local Miss Rate: Measure of misses in a cache divided by the total number of misses in
this cache.

+ Global Miss Rate: Measure of the number of misses in the cache divided by the total
number of memory access generated by the CPU
v’ 1% level cache = Miss Rate |;
v 2" |evel cache = Miss Rate ,; x Miss Rate |,

+ Example: Find the local and global miss rates, the Average Memory Access Time and
Average memory stall cycles per instruction, given that for 1000 reference with 40
misses in L1 cache and 20 in L2 Cache;

+ Assume:

v/ miss penalty for L2 cache-memory = 100 clock cycles
v' hit time for L2 cache is 10 clock cycle

v/ Hit time for L1 cache is 1 Clock cycle

v" Memory Reference per instruction = 1.5

+ Solution:

» Miss rate for either local or global

» L1 cache is same = 4% [(40/1000)x100]

» Local Miss Rate for L2 = 50% [20/40]

» Global Miss Rate for L2 cache = 2% [(20/1000)x100]

» Average Memory Access time

= Hit Time L1 + Miss Rate L1 x Miss Penalty L1 ..(1)
» where, Miss Penalty L1
= Hit Time L2+Miss Rate L2 x Miss Penalty L2 .. (2)
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» Substituting 2 in 1 we get,

» Average Memory Access time
= Hit Time L1 + Miss Rate L1 x (Hit Time L2 + Miss Rate L2 x Miss Penalty L2)
=1 + 4% x (10 +50% x 100) = 3.4 cycles

» Average Memory Stalls per instruction (i.e., miss penalty)
= Misses per instruction L1 x Hit Time L2
+ Misses per instruction L2 x Miss Penalty L2

» For Memory references per instruction = 1.5
v' Misses per instruction for L1 = 40 x 1.5 = 60 per 1000 instructions
v Misses per instruction for L2 = 20 x 1.5 = 30 per 1000 instructions

» Average Memory Stalls per instruction
= (60/1000) x10 + 30/1000) x 100
= 0.6 +3.0 = 3.6 clock cycles
» i.e., the average miss penalty using multi level caches reduces by a factor of 100/3.6 =
28 relative to the single level cache

100%
99% 099% 98%
o —o— Local miss rate
80% 8- Global miss rate
—a&— Single cache miss rate
70%
60% |
Miss rate ¢, | 64 KB L1 caches for
instruction, data
40% | :
Unified L2 cache
0% | 34%
20%
10% [ 0% -~ 5% 49g -~ 496 4% " 9% 2% 2% T 2% je i
0% L 4% _1 4% )

4 8 16 32 64 128 256 512 1024 2048 4096
Cache size (KB)

» Miss rate verses cache size for multilevel caches

» The miss-rate of single level cache verses size is plotted against the local and global
miss rates of 2™ level cache using 32 KB 1% level cache — L2 unified cache is 2-way set
associative with LRU replacement
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2: Critical word first and early restart

Don’t wait for full block to be loaded before restarting CPU

The CPU normally needs one word of a block at a time, thus it doesn’t have to wait for
full block to be loaded before sending the requested word and restarting the CPU

Early Restart: Request the words in a block in normal order . As soon as the requested
word of the block arrives, send it to the CPU and let the CPU continue execution

Critical Word First: “Request the missed word from memory first; and the memory sends
it to the CPU as soon as it arrives”

The CPU continues filling the rest of the words in the block afterwards

Example:

Consider a computer using 64-byte [8 word] cache blocks

An L2 cache takes 11 clock cycles to get first 8-byte (critical word) and then 2 clock

cycles per 8- byte word to get the rest of the block (and 2 issues per cycle)

1. with critical word first (assuming no other access to the rest of the block)

2. without critical word first (assuming following instructions read data sequentially 8-
byte words at a time from the rest of the block; i.e., block load is required in this
case)

Solution:

1. With Critical word first:
Average miss penalty
= Miss Penalty of critical word + Miss penalty of the remaining words of the block
=11x1+(8-1)x2=11+ 14 = 25 clock cycles

2. Without critical word first (it requires block load)
= [Miss Penalty of first word + miss penalty of the remaining words of the block]
+ clock cycles to issue the load
=[11x 1+ (8-1)x2]+8/4 =25+ 4= 29 clock cycles
2 issues/cycle so 4cycles for 8 issues

Merit: The merit of this technique is that it doesn’t require extra hardware

Drawback: This technique is generally useful only in large blocks, therefore the
programs exhibiting spatial locality may face a problem is accessing the data or
instruction from the memory, as the next miss is to the remainder of the block

3: Priority to Read Miss over the Write misses

This technique reduces the average miss penalty by considering the overlap between
the CPU and cache miss-penalty

We have already discussed how the write-buffer reduces the write stalls in write-through
caches

The write-buffers ensure that write to memory does not stall the processor;

Furthermore, write-buffer may hold the updated value of a locations needed on a read
miss and the processor is blocked till read returns

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

» Thus, the write buffers do complicate memory access and needs consideration

» Let us consider an example program segment and discuss how the complexities of write
buffer can be simplified by giving priority to read misses over the write misses

» Consider the code:

SW R3, 512 (Ro) ; M[512]¢ R3 Cache index 0
LW R1, 1024 (RO) ;R1<-M[1024] Cache index O
LW R2, 512(R0) ;R2<- M[512] Cache index O

» Assuming that the code is implemented using a direct mapped, write-through cache that
maps 512 and 1024 to same block and a 4-word write buffer
» Findif value in R2 always be equal to value in R3
* Note that this is case of RAW data hazard
» Let us see how the cache access is performed
« The Data in R3 is placed in write-buffer after first instruction; i.e., after the store
instruction using the index 512
«  The following load instruction (i.e., the 2" instruction) uses the same index 512; and is
therefore a miss
v" The second load instruction (i.e., the 3™ instruction is sequence) tries to put the
value in location 512 into register R2; this also results into a miss
v If the write buffer hasn’t completed writing to location 512 in memory, the read of
location 512 will put the old value into the cache and then into R2.
v" Thus R3 would not equal to R2, this is because the reads are served before write
have been completed, i.e.,

»  Write through with write buffers offer RAW conflicts with main memory reads on cache
misses; and
» If processor simply waits for write buffer to empty, it might increase read miss penalty
(say for old MIPS 1000) by 50% )
» The simplest way to come of this dilemma is to give priority to read miss; i.e.,
v’ either Wait for write buffer to empty
v or Check write buffer contents on a read miss; and if there are no conflicts and
memory system is available then let the memory access continue for read

* Note that by giving priority to Read Miss the cost (penalty) of write by the processor in
the write-back register can also be reduce
» In Write-back caches, the read miss may require replacing a dirty block, which is
v" Normally done by Writing dirty block to memory, and then do the read
v Better alternative is to Copy the dirty block to a write-buffer, then do the read,
and then do the write
* |n this case, the CPU stall less since it restarts as soon as read is done, hence reduces
the miss-penalty
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4: Merging Write Buffer

Write-through cache rely on write-buffer as all stores must be sent to the lower level of
hierarchy
Even the write back caches use a simple buffer when a block is replaced
In Normal mode of operation, the write buffer absorbs write from CPU; and commit it to
memory in the background
However, here the problem, particularly in write-through caches, is that small write-buffer
may end up stalling processor if they fill up; and the Processor needs to wait till write
committed to memory
This problem is resolved by Merging cache-block entries in the write buffer, because:

v" Multiword writes are usually faster than writes performed one at a time

v Writes usually modify one word in a block; Thus .....
If a write buffer already contains some words from the given data block we will merge
current modified word with the block parts already in the buffer
That is, If the buffer contains other modified blocks the address can be checked to see if
the address of this new data matches the address of valid write buffer entry
Then the new data are combined with the existing entry - it is called Write Merge
Note that here, the CPU continues to work while the write-buffer prepares to write the
word to memory
This technique, therefore, reduces the number of stalls due to write-buffer being full;
hence
reduces the miss penalty through improvement in efficiency of write-buffer

Wree address WV v v v
100 1 |Mem[100] | 0 0 0
108 1 [Mem[108] | 0 0 0
118 1 (Mem[116] | 0 ] 0
124 1 |Mem([124] | o 0 0

100 1 |Mem{100] | 1 |Mem[108])| 1 |Mem{116)| 1 |Mem[124]

0 o 0 o
1] 0 0 ]
0 0 0 o
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5: Victim Caches: Reducing Miss Penalty

Another way to reduce the miss penalty is to remember what was discarded as it may
need again.

This method reduces the miss penalty since the discarded data has already been
fetched so it can be used again at small cast

The victim cache contains only discarded blocks because of some earlier miss; and are
checked on another miss to see if they have the desired data before going to the next
lower-level memory

If the desired data (or instruction) is found then the victim block and cache block are
swapped

This recycling requires small fully associative cache between a cache and its refill path -
called the victim cache as shown in the following figure

» Placement of victim cache in memory

hierarchy CPU
e ———— | arxvress
' ; Deta Dot
] i ! [ - - (=¥ |
™ Tag ’
| Yicam cache
- Ouasa
.'_
. -l" i
- ’ .
Wrie
bufar
777777777 »

Cache [

Loww enw ™ rrory .

Summary

The first approach, ‘multi level caches’ is: ‘the more the merrier — extra people are
welcome to come along’

The second technique, “ Critical Word First and Early Restart’, is the intolerance

The third method, ‘priority to read miss over the write miss’, is the favoritism The fourth
technique, ‘merging write-buffer,”is acquaintance

Combining sequential writes into a single block for fast memory transfer

The fifth technique, victim cache’ is: salvage

All these methods help reducing

Miss penalty; however, the first one — multi level caches, are the most important and
efficient

However, reducing miss rate and hit rate to improve the memory hierarchy performance
are also important metrics

We will take up these metrics next time — till then
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Lecture 30
Memory Hierarchy Design
Cache Performance Enhancement
(Reducing Miss Rate)

Today’s Topics

» Recap: Reducing Miss Penalty

» Classification of Cache Misses

* Reducing Cache Miss Rate

*  Summary

Recap: Improving Cache Performance
* The miss penalty
* The miss rate
» The miss Penalty or miss rate via Parallelism
» The time to hit in the cache

Recap: Reducing Miss Penalty

1. Multilevel Caches
v" ‘The more the merrier

2. Critical Word first and Early Restart
v' Reduces miss-penalty

3. Priority to Read Misses Over writes
v Favoritism

4. Merging Write Buffers
v Acquaintance

5. Victim Caches
v’ Salvage

Cache Misses
» Compulsory Misses (cold start or first reference misses)
v Block must be brought into the cache
» Capacity Misses
v/ Capacity misses occur in Fully Associative cache
» Conflict Misses(collision or interference misses)
v" Many blocks map to the same address or set
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Reducing Miss Rate
1. Larger Block Size
2. Larger Caches
3. Higher Associativity
4. Way Prediction and Pseudo-associativity
5. Compiler Optimization

1. Larger Block Size
* Reduce the miss rate
+ Spatial locality
» Larger block have maximum number of data or instructions
* In small cache , larger blocks may increase
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Block Size (bytes)

» Assumption

» 80 clock cycles of over head

» Delivers 16 bytes every 2 clock cycle

» Hit time of 1 clock cycle

» Solution:

» Average memory access time = Hit time + Miss Rate x Miss Penalty
« 4KB cache, the miss rate = 7.24%

» Miss penalty = 80 +4 = 84 clocks

20% +--
159 Cache:1
Miss ¢ "\d’__
Rate
10%
V.l — Y—.
5%
x
00/0 §
= S 3 w0 0
™= ™ & g

Block Size (bytes)
« Average Memory Access Time = 1 +(7.25% x 84) = 7.082 Clock cycles
« Copy table 5.18 pp 428
« Latency and bandwidth of the lower level memory
« High latency and high bandwidth
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2: Large Cache Size
* Reduce Capacity misses
+ In2001
«  2"_level and 3"-level caches
« Drawback
* Longer hit time
» Higher cost (access time)

3: Higher Associativity

0.14
0.12

0.1
0.08
0.06
0.04
0.02

1-‘way\

Conflict misses

2-way

Capacity

Cache Size (KB) Compulsory

+ The CCT for 2 way to 8-way associative
CCT 2way = 1.36 x CCT l1lway
CCT 4way = 1.44 x CCT 1way
CCT 8way =1.56 x CCT 1lway

Size (KB) Azsociativin
1-way 2-way 4-way 8-way

4 3.44 3.25 3.22 3.28

S 2.69 2.58 2.55 262
16 223 2.40 246 2.53
32 2.06 2.30 237 245
64 1.92 2.14 2.18 2.25
128 1.52 1.86 1.92 200
256 1.32 1.66 1.74 182
512 1.20 1.55 1.59 166
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4: Way Prediction and Pseudo-associativity
» Fast hit time of direct-mapped caches
e Lower conflict misses of set-associative caches
* Reduces the conflict misses
+ Way Prediction
v" Block in a set

v Steps
1. Extra bits
o 2-way prediction
o 4-way prediction
2. Multiplexer

o Single tag
» Other blocks for matches in subsequent clock cycles
« Alpha 21264
« Latency of 1 clock cycle
» 3clock cycles
e Pseudo-associative
v" Column associative caches
v Miss
v “Pseudo-set”
e Pseudo Associative caches
v' Performance
v' “Slower hit”

5: Compiler Optimization
* Reduce both the data caches misses and instruction cache misses
« Instruction
« Code optimization
v' Reordering the Procedures
v Using Cache-line Alignment
» The code reordering
v Determines conflicts
» The code-line alignment method:
v' Decreases cache miss
v Entry point is at the beginning of a cache block
» Data misses are reduced
» Spatial locality
» Temporal locality
* Array calculation
v loop interchange v blocking
» program having nested loops that access data in non-sequential order for j (0->100) and
in sequential order for i (0—>5000)
» Using Loop Interchange
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« First Version:
for (k = 0; k < 100; k = k+1)
for (j=0;j<100;j=j+1)
for (i=0; i< 5000;i=i+1)
X[i] ] = 2 * x[i] O;
« Reorderd version:
for (k = 0; k < 100; k = k+1)
for (i=0;1<5000;i=i+1)
for (j=0;j<100;j=j+1)
X[i0] = 2 * x[il0;

» Using Blocking
v" Example of improving Temporal Locality
program to perform matrix multiplication
‘Row major order’ (row-by-row) ‘Column maijor order’
Iteration for matrix multiplication

A NERNERN

/* Initial version of matrix multiplication code */
for(i=0;i<N;i=i+l)
for =0;j<N;j=j+1)
{r=0;
for (k =0; k < N; k =k+1) {
r=r+y[ilkPzK[: +

(il =r;
Yo

Cfor (- =0; - <N = {8
HE"E',_ for (kk = 0; kk < H; kk = kk+B)

for (i =0; i< H; £ = itl)

vBa Tt L= <mini #B-LE: = 4
+ =10
NB ) for (k = kk:;k<min(kk+B-1,H) ;k = k+1) {
B r=rz+ylal[kl*sIkl[1:};

I-. x[1][°] = =[2]1 [ ] + =

}:

1 -

Summary

» Large block size to reduce compulsory misses

» Large cache size to reduce capacity misses

» Higher associativity to reduce conflict misses

» The way-prediction techniques checks a section of cache for hit and then on miss it
checks the rest of the cache

» The final technique — loop interchange and blocking, is a software approach to optimize
the cache performance

» Next time we will talk about the way to enhance performance by having processor and
memory operate in parallel — till then
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Example: Avg. Memory Access Time vs. Miss Rate
+ Example: assume CCT = 1.10 for 2-way, 1.12 for 4-way, 1.14 for 8-way vs. CCT direct
mapped
* (Red means A.M.A.T. not improved by more associativity)

Cache Size Associativity

1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 148 | 147 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20
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Lecture 31
Memory Hierarchy Design
Cache Performance Enhancement by
(Miss Penalty/Rate Parallelism and Hit time)

Today’s Topics

Recap: Reducing Miss Rate

Reducing Miss Penalty or Miss Rate using Parallelism
Reducing Hit Time

Summary — Cache Optimizatio

Recap: 3 C Model and Reducing Miss Rate

Large block size to reduce compulsory misses
Large cache size to reduce capacity misses
Higher associativity to reduce conflict misses
In addition we discussed the way-prediction technique that checks a section of cache for
hit first; and then on miss, it checks the rest of the cache
At the end we discussed the compiler based techniques, namely the loop interchange
and blocking, to optimize the cache performance
Today, we will talk about the other ways to enhance cache performance
These methods include:
1. Reducing Miss Penalty or Miss Rate via parallelism — Overlapping the execution
of instructions with activities in the memory hierarchy
2. Reducing the hit time

Reducing Miss Penalty or Rate via Parallelism

The basic idea is to reduce miss penalty or miss rate by performing multiple outstanding
memory operations through overlapping the memory activities and the instruction
execution activities which take place in the processor
This can be accomplished by using three different techniques

1. Non-blocking Caches: reduces stall on misses

2. Hardware Prefetch: reduces number of misses

3. Software (compiler controlled) Prefetch: reduces number of misses

Non-blocking Caches

Memory hierarchy

Instruction and data caches are decoupled
Out-of-order execution CPU

Non-blocking or lockup-free

The “hit under miss”

“Hit under multiple miss”

“Miss under miss”

Complexity

1000 and later a miss to address 1032
Complexity of the cache controller increases
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* Memory system can service multiple misses
* Pentium Pro
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%
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Hardware Prefetch: Reduces Misses
» 2 blocks
* Requested block
» “Stream buffer”
* Available in the stream buffer
1. Original cache request is cancelled
2. Block is read from the stream buffer and
3. Next pre-fetch request is issued
¢ ‘Demand misses’
« Jouppiin 1990
1. 15% - 25% of misses
2. 4 blocks stream buffer
3. 43% for stream fetching
4. 50% at the same address
5. 16-block stream buffer
6. 72% misses
+ Efficiently for data caches
« Hardware identifies stream of accesses
» Palacharla & Kessler in 1994
« 8 stream buffers
e 50% to 70%
» 64KB, 4-way set associative caches
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+ Example: For UltraSPARC lll, 64 KB data cache and 256 KB cache has average miss
per 1000 instruction of 36.9 and 326 respectively, assuming
1. prefetching hit rate equals 20%
2. hittime is 1 clock cycle,
3. miss penalty is 15 cycles
4. 1 extra clock cycle if the data misses the cache but are found in prefetch buffer
5. data references equal 22%
» solution:
1. Miss rate prefetch
= [Misses/1000] / data references
=[36.9/1000] / [22 /100]
= 36.9/220 = 16.7%

2. Average memory access time prefeich
= Hit Time + Miss rate x Prefetch hit time x 1
+ Miss rate x (1-prefetch hit time) x miss penalty

Average memory access time prefetch
= 1+ (16.7% x 20% x 1) + (16.7% (1-20%) X 15)
= 3.046

a) Effective Miss rate pre feiched 64k
= [Average memory access time — Hit time] / Miss Penalty
=[3.064 — 1]/[15] = 2.064/ 15 = 13.6%

b) From the given data, 256KB data cache yields miss rate:
Miss rate,sexg = 33.6/ (22% x 1000) =14.8 %

Software (Compiler Controlled) Prefetch:
« Two variants of prefetch
v Register Prefetch: Load data into register (HP RISC)
v/ Cache Prefetch: Load data only into cache and not the register (MIPS IV,
PowerPC, SPARC v. 9)

» Issues and limitations of compiler prefetching
1. Register or Cache prefetching
o Faulting prefetch
o Non-Faulting prefetch
2. Compiler prefetching
o Semantically Invisible,
o Cannot cause virtual memory faults
3. Caches do not stall
4. Issuing the prefetch instructions
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Summary reducing Cache Miss Penalty or miss rate via parallelism

The non-blocking caches
Bandwidth behind the cache Instruction-level parallelism
Hardware and Software prefetching

Final Component to reduce Average memory Access Time- Hit Time

five techniques to reduce the miss penalty

five methods to reduce the miss rate

three approaches to reduce the miss penalty

miss rate in parallel to reduce the average memory access time
Hit time

Reducing Hit Time
1. Clock rate of the processor
2. Cache Access time

The four commonly used techniques
1. Small and Simple Caches
2. Avoiding Address translation during Indexing
3. Pipelined Cache Access
4. Trace Cache

Small and Simple Caches

While discussing the cache design, we have observed the most time consuming
operation in cache hit is to compare long address tag

This operation definitely require bigger circuit which is always slow as compared to
smaller circuits

Thus an obvious approach to keep the hit time small is to keep the cache Smaller and
simpler

The cache be kept small to fit it on the same chip as the processor to avoid the time
penalty going off chip; and

Simpler, such as the direct-mapped the tag comparison can be overlapped with the data
transmission

The impact of cache size and complexity, i.e., associativity and number of read/write
ports is shown in this graph

e

14 [ 1wy
W Sy
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5
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O
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 Size of L1 caches
« The 16KB L1 cache on Pentium Il
«  8KB on Pentium IV

Avoiding Address Translation during Indexing
» Small and simple cache
« Translation Look-aside Buffer (TLB)
* Virtual address from CPU
» Virtual memory system
+ Two levels of address mapping
» Address of the virtual memory to main memory and
v" Main memory to cache
» Virtual address for the cache
» Directly mapped
» Virtual caches
» Physical cache
» Eliminated from cache hit
« Amdahl's rule
» Virtual caches we have to consider two issues
+ Limitation
v Virtually addressed caches
*» Reasons are
v Protection
Page address
Physical Address difference
virtual address refers to different physical address
Aliasing/synonyms
Two different virtual addresses
Two processes
The hardware solution to synonym
v/ 2-way set associative cache
» The software solution is to share some address bit

AN N NN

Pipelined Cache Access

» Cache hit time

» Pipelining the cache access

» Latency of the first level cache-hit

» Fast cycle time which increases the bandwidth of instructions
v for Pentium | takes 1 clock-cycle to access the instruction cache;
v for Pentium Pro through Pentium Il its takes 2 clock cycles, and
v for Pentium IV it takes 4 clock cycles
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Trace Caches

Multiple-issue processors

Trace caches

Dynamic sequence

Load into the cache block

Branch prediction

Instruction prefetching

No wasted words and no conflicts

Conflicts are avoided

Complicates the address mapping

No longer aligned to power 2 multiples of words
Requirement for address mapping

Demerit

Same instruction may be stored multiple times

Summary — Cache Optimization

5 methods to reduce the miss penalty

7 ways to reduce 3Cs

3 methods for reducing miss rate and miss penalty via parallelism; and
4 techniques to reduce hit time

Technique Miss MR  HT Complexity Comments
Penalty Rate Time

Miss Penalty

Multilevel caches + 2 Costly H/W

Early Restart & + 2 Widely Used

Critical Word 1st

Priority to Read

Misses

Merging write buffer

+
=

+
=

Victim Caches + + 2

Technique Miss MR  HT Complexity Comments
Penalty Rate Time

Miss Rate

Larger Block Size - + 0 Trivial

Larger Cache Size - + 1 Widely Used

Higher Associativity + - 1 Widely Used

Pseudo-Associative  + 2 Used in L2

Way Predicted + 2 Used in I-Cache

Compiler Reduce + 0 S/W approach

Misses
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Technique Miss MR  HT Complexity Comments
Penalty Rate Time

Parallelism

Non-Blocking + 3 out-of-order CPU

HW Prefetching + + 2inst

of Instr/Data 3 data

Compiler Cont- + + 3 need non- blocking cache

rolled Prefetching

Hit Time

Avoiding Address + 2 Widely Used

Translation

Trace Cache + 3 Used in P
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Lecture 32
Memory Hierarchy Design
(Main and Virtual Memories)

Today’s Topics

Recap: Memory Hierarchy and Cache performance
Main Memory Performance

Virtual Memory Performance

Summary

Recap: Memory Hierarchy

design goal of memory system
Low cost as of cheapest memory fast speed as of fastest memory
The fastest, smallest and most costly memories
The slowest, biggest and cheapest memories
v Average access speed
v' Cost
v' Cheapest technology
Semiconductor memories
Static and Dynamic RAMs
Upper levels in the memory hierarchy

Recap: Caches Design

The Caches use Static Random Access Memory

Main Memory is Dynamic Random Access Memory (DRAM)
(~8 ms, <5% time)

The magnetic, optical or other medias

virtual memory

Cache and main memory are organized in equal sized blocks
Word transfer

Bock transfer

The CPU requests contents of main memory

Word transfer is fast

Recap: Cache Performance

If misses v Miss rate
Miss penalty v' Miss penalty
Cache design and the performance v' Hit time
Techniques

Main Memory Organization

Organizations of main memory
Source for Caches
Destination virtual memory
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DRAM logical organization (4 M Bit)
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Storage Cell

Main Memory Performance
+ Performance of DRAM
1. Fast page mode DRAM
2. Synchronous DRAM
3. Double Data Rate DRAM

+ Fast page mode: Optimizes sequential access
» Synchronous DRAM (SDRAM): Avoid handshaking
» Double Data Rate (DDR) DRAM: Transmit data
« Latency: Average memory access time
« Bandwidth: Number of bytes read/write per unit time
v" Access Time
v' Cycle Time

* Inputs/outputs and multiprocessors

« Low-latency memory

» Multiprocessor demand higher bandwidth
« 2" Jevel caches with larger block size

Improving Main Memory Performance
» The most commonly used techniques are
v" Wider Main Memory
v" Simple Interleaved Memory
v Independent Memory Banks
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1: Wider Main Memory: Example
» 4 words (i.e. 32 byte) block

v' Time to send address = 4 clock cycles
v' Time to send the data word = 4 clock cycles
v Access time per word = 56 clock cycles

v' Miss Penalty =
No. of words x [time to: send address + send data word + access word]

JO EA AT

For 1 word organization R

Miss Penalty = 4 x (4 +4+56) = 4 x (64) | &V |
= 256 Clock Cycles; . 1
The memory bandwidth = bytes/clock cycle L1
= 32/256 = 1/8 byte /cycle cache
T I
For 4-word organization B e OO
Miss Penalty = 1 x (4 +4+56) = 64 Clock il ... ... "
Cycles; and S S W i S = N -
Memory bandwidth = 32/64 = 1/2 L Widekl2 Cache
bytes/cycle; ] tus [ ~
v
Main
Memory b
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2: Interleaved Memory
* bank 0 has all word whose:
e bank 1 has all word whose:
¢ bank 2 has all word whose:
* bank 3 has all word whose:

Address MOD 4 =0
Address MOD 4 =1
Address MOD 4 =2
Address MOD 4 =3

Bank 3

cPU
Cache
Bus
Memory Memory || Mamory Memory
dank O bank 1 bank 2 bank 3
F:
Word Word Word
address Bank 0 a\é\;c::i Bank 1 address Bank 2 address
4 I < R A | 6 | 1 7
8 9 10 11
12 13 14 152
Example:

« Bandwidth Calculation:

» bandwidth of 4 words interleaved memory using the time model as used in case of wider

memory
» The miss penalty for 4-word interleave memory is:

time to send address + time to access +
number of banks x time to send data
4 +56 + 4 x4 =76 clock cycles

Bandwidth = 32/76 = 0.4 byte per clock
Bandwidth = 32/256= 1/8 = 0.125 byte per clock

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

3: Independent Memory Banks
« Memory banks offer independent accesses
* Multiprocessors
« /O
« CPU with Hit under n Misses
» Non-blocking Caches

Sweerbank | L L L L L L L]

Bank — —A — — -

v" An input device may use one controller and one bank
v' The cache read may use another and
v The cache write still another

Summary: Main Memory Bandwidth
» Using memory banks
» Making memory and its bus wider
» Doing both
» How many the banks should be there?

Summary: Main Memory Bandwidth Enhancement
« This decision is essential to ensure that

o f memory is being accessed sequentially
(e.g. when processing an array)
+ then by the time you try to read a second word from a bank,
the first access has finished
» Otherwise it will return to original bank before it has the next word ready

» 8 banks, each of 64-bit
» Access time of 10 clock cycle
v Clock cycle 1

CPU cannot start fetching
Clock cycle 20

v" Bank 0 after 10 clock cycles

v After 10 clock cycles,

v" The bank 0 would fetch the next desired word
v' 7 banks sequentially till the 18" clock cycle

v' 18" clock

v Bank 0

v

v
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v 10 clock cycles again
v" Number of bank = Number of clock cycles to access word in bank

Virtual Memory

» Multiple processes

» Single process

» Exceed physical memory available

» Increasing gap

» High cost of main memory

» Physical DRAM as a cache for the disk
» Single level store

» Single level storage

» Virtual Memory System

+ Manages two levels of memory hierarchy
» Main memory and secondary storage

» Segments, named as a page

« Page

« Block

« Contiguous pages

Physical
Virtual Memory . Main Memory
Address space Aohysical
Virtual 0
Addresses 4k
8k D
\, :
B
o 20k
8k C
24k
12k D
CPU 16k 28k A
20k 32k
: 36k
' 40k B
Di L L

« Attributes
v" Protection
v" Relocation
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Protection
» Operate in different address space
» Different permissions
» Cannot access privileged information

VP: Valid Page Page Tables Memory
Read? Write? Physical Addr 0
vPol Yes || No ||  PPO 1
Processi: |vp 1 Yes |[ Yes || PP4 I~
vP 2 No || No || xxoxxxxx | >
Read? Write? Physical Addr A
v ol ves || Yes |[ PP ] /
Process]. [vp 1] Yes |[ Nno ||  PP9 -7 No-

vP2f No || No || xxooxxxx | '

» Relocation

v' Simplifies loading of program

v Allows to place a program anywhere
+ Hardware
+ Software

Cache verses Virtual memory
« Page or segment is used for block
» Page fault or address fault is used for miss
» CPU produces virtual address
» The virtual addresses are translated to the main memory or physical addresses
» Address translation
» Mapping of virtual address to the physical address
+ Page table
» Physical address of the segment or the page
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Virtual Address

Virtual Page No. Page offset N
Main
Memory
Page Table >
Physical Address
» Replacement on cache miss
» Page fault
* The size of processor address
» Cache size is independent of the processor address
» Secondary storage
» Lower-level backing store for main memory
» File system occupies the space on secondary storage
Issues of Virtual Memory Design
+ Line size
» Large, since disk better at transferring large blocks
» Associativity
» High, (fully associative) to minimize miss rate
» Write Strategy
»  Write through or write back
* miss rate: Extremely low. << 1%
« hit time: Must match cache/maim memory performance
* miss latency: Very high. ~20ms
« tag storage overhead: Low, relative to block size
Memory
0:
) Page Table 1
Virtual L Physical
Addresses 0 Addresses
1:
e
CPU
“
P-1:
—_—
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Typical System with Virtual Memory
+ The CPU generates the Virtual Address
» Operating system manages a lookup table
» Location of the page or segment
» Virtual addresses to physical addresses

Page Faults (like “Cache Misses”)
* Indicates virtual address not in memory
» OS exception handler invoked
« Current process suspends
» OS has full control over placement

Before fault

_| Memory
| Page Table
Virtual '
Addresses Ath rg;%aés —
CPU el
~S= U BNA »
|
1=|| 1L
Disk =

After fault

| Memory i
| Page Table
Virtual '
Addresses A’Z*h rgéc;aés T
CPU | B {9
“\‘ ] A
Disk
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Processor

(1) Initiate Block Read

Cache I

Memory-l/O bus I

l/O

Memory

i

controller

(1) Initiate Block Read

Processor

Cache

N

N\

I Memory-l/O bus

|

(2) DMA
Transfer

Memory

i
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1) Initiate Block

Processor

Read

Reg

(3) Read

Done

Cache

Ademory-tfO-bus_

(2) DMA
Transfer 1o

Memory

"‘ cohtrol

=TT

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com




CS-704 Advanced Computer Architecture

Lecture 33
Memory Hierarchy Design
(Virtual Memory System)
Today’s Topics

* Recap: Main memory and Virtual memory Design

» Virtual Memory Address Translation

« Virtual Memory Performance

» Protection of multiple processes sharing memory

*  Summary

Recap: Memory Hierarchy
+ Main memory organization
« Organized using banks of memory arrays
» Dual Inline Memory Modules - DIMMs
* Fast page mode
»  Synchronous
« Double Data Rate DRAMs

Recap: Main Memory Performance
* Fast page mode
» Synchronous DRAM (SDRAM)
» Double Data Rate (DDR) DRAM
+ latency and bandwidth

Recap: Main Memory Performance
« concern of caches
» bandwidth
* Inputs/outputs and multiprocessors
* Wider Main Memory
» Simple Interleaved Memory
* Independent Memory Banks

Recap: Virtual Memory

* Multiple processes Virtual vs physical address space
» Dedicate a full address space
«  Virtual Memory s .

*  Fix-sized fragment .

[
-

« Variable-sized fragment = il
» Contiguous pages in virtual memory Pl vy '
» Physically available on the main

memory

» Protection and Relocation
* Protection
+ Relocation
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Recap: Cache verses Virtual memory

« Page fault or address fault v’ Bit

» CPU produces virtual address v' Resets the reference bit

» Mapping of a virtual address v' Page with a reference bit

+ Replacement * VM Write strategies may be:

» The size of processor address »  Write Back

+ Secondary storage *  Write Through

» The page replacement strategies »  Write through is impossible because:
*  FIFO — First —in-First Out v" Too long access to disk

* LRU - Least recently Used v The write buffer

» Approximation to LRU v' The I/0 system

Recap: Virtual Memory operation

» The CPU generates the Virtual Address

» Lookup table

» Location of the page or segment

» Virtual addresses to physical addresses

+ page fault

v" The OS has full control over placement

v' OS exception handler is invoked

v’ current process suspends the data is to the main memory by the OS
The contents of the page table are updated

VM Address Translation Concept
» Assume that Virtual Address space V comprises a set of N pages V = {0, 1, ..., N-1}
* And, Physical Address space P comprises a set of M pages P ={0, 1, ..., M-1}
where M <N
» Assuming n-bit virtual address, m-bit physical address and p-bit page offset, the virtual
and physical address limits and the page size can be expressed as

v Virtual address limit = N = 2"
v Physical address limit = M = 2"
v page size (bytes) = PS = 2°

* page offset
* page number

VM Address Translation Concept

n—1 p p-1 0
| virtual page number page offset virtual address

address translation
mechanism

m-—1 v» p p-1 0
| physical page number || page offset | physical address
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Page Table
Virual Page Memory resident page table
Number (physical page or disk address) -
L 1 Physical Memory
Valid
4 @______
4 e
0, Q @ ]
| oy —
- |1 Cal—
1 e -
0 N N
o~ <
0 :‘«{\ . |Disk Storage (swap file or
So o N regularfile system file)
\\\ \\ ~
"‘\..\ ~
<~ D> I I
~
~ I |

Page Table Operation: 3 steps
1. Translation
2. Computing Physical Address
3. Checking Protection

Address Translation via Page Table

virtual address

page table base register

n—1 p | p-1 0
VPN acts as ‘ virtual page number (VPN) H page offset

table index /

valid | access |physical page number (PPN)
if valid=0
then page
not in memory m—1

+ p|p-1 1 0
thysical page number (PPN) page offset

physical address
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Simple Memory System Example
+ Addressing
v’ 14-bit virtual addresses
v' 12-bit physical address
v' Page size = 64 bytes

13 (12|11 |10 | 9 8 7 6 5 4 3 2 1

LW}

VPN VPO

(Virtual Page Number) (Virtual Page Offset)

11 (10| 9 8 7 6 5 4 3 2 1

= W

PPN PPO
(Physical Page Number)  (Physical Page Offset)

Simple Memory System Page Table
*  Only show first 16 entries

VPN PPN Valid VPN PPN Valid
00 28 1 08 13 1

01 - 0 09 17 1
02 33 1 OA 09 1
03 02 1 0B - 0
04 - 0 0C - 0
05 16 1 0D 2D 1
06 - 0 OE 11 1
07 - 0 OF 0D 1

Fast Address Translation
» large and in the main memory
* miss penalty
* Oone memory access to obtain the physical address
» second to get the data
* Miss penalty can be reduced

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

Fast Translation with a TLB

PA
Cache Main
Memory
Trans-
lation
—
Virtual Address Physical Address |Dirty |Ref Malid Access

Address Translation with a TLB

n—1

[p][p=1]

p
virtual page number_

0
' page offseg |virtua| address |'\

‘valiti | | physica

nage number|

cache hit j«——

TLB hit*—@ﬂ
|

v

Y
physical address

EEl

tag
valid | @ data
v|data

[ope o]

TLB

N

Cache
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* Fully associative placement policy
+ Violation against protection information in the TLB
* The physical address
* The page offset
+ Afull physical address
* Merits of TLB:
v Fully associative, set associative, or direct mapped
v’ 128 - 256 entries
v" Mid-range machines use small n-way set associative organizations.

Address Translation Example
+ virtual address of 64 bits
v Physical Address: 41 bits
v' TLB — direct mapped with 256 entries
v' First Level Caches: direct mapped with 8KB entries, block size 64 byte
v' Second Level Cache: direct mapped 4MB direct mapped; block size 64 bytes

Address Translation Example VA - L2

s T =S

“wral pmge rermas sLia I Fogm ofbam o ils
z a - -1
||-|l-g.'.'.-rﬁ.|u-i.1ﬂ-|-.i:|..||.lﬁ'|-..u.- ||1u.r-.ﬂ.'.|u.r. |l|-'-|1l|-|.|.-l|.-|
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g | L -'_’:I-
L] -
Py peirgs o0 I
§ ; L
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e Lot

o el Gy TR L o <20

Tl s o LD
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VM Protection Process

Srooean 0

FMypaial
TRl

VM Protection Mechanisms
* The address translation mechanis
» Protection attribute bits
(PTE) and TLB
v" Protection
v Does not have permission
v" An exception is raised
» Protection mechanism
* The address is said to be valid if
+ Base <= address <= Bound
» Base and Bound register
+ Page tables each pointing to the distinct pages of memory
» Prevented from modifying these tables

Summary
Cache memories:
«  HW-management
+ Separate instruction and data caches permits simultaneous instruction fetch and data
access
* Four questions:
v Block placement
v Block identification
v Block replacement
v' Write strategy
+ Virtual memory:
v' Software-management
v Very high miss penalty
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v/ =>miss rate must be very low
» Also supports:

v' program loading

v" memory protection

v" Multiprogramming
» Memory hierarchy organization
* Modules of DRAM and SRAM
» design and working of disk storages
DRAM, SRAM and Disk

Recap: Memory Hierarchy Principles
» Concept of Caching
» Principle of Locality

Recap: Principle of Locality
« Data or instructions
» Processor access a relatively small portion of the address space
+ Fastest memory closet to the processor

Recap: Types of Locality
» Temporal locality
» Spatial locality

Recap: Improving Cache Performance
* The miss penalty
* The miss rate
» The miss Penalty or miss rate via Parallelism
» The time to hit in the cache

Recap: Reducing Miss Penalty
* Multilevel Caches
» Critical Word first and Early Restart
» Priority to Read Misses Over writes
« Merging Write Buffers
» Victim Caches

Recap: Reducing Miss Penalty

» ‘Multi level caches’
v the more the merrier

« “Critical Word First and Early Restart’,

» ‘priority to read miss over the write miss’,
v Favoritism

* ‘merging write-buffer,’
v/ acquaintance
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e “victim cache’
v salvage
» Reducing miss penalty
» Reducing miss rate
» Cache-misses and methods to reduce the miss rate

Summary — Cache Optimization
» 5 methods to reduce the miss penalty
» 7 ways to reduce 3Cs
+ 3 methods for reducing miss rate and miss penalty via parallelism; and
* 4 techniques to reduce hit time
» The performance of these methods is summarized here
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Lecture 34
Multiprocessors
(Shared Memory Architectures)

Today’s Topics

* Recap:

» Parallel Processing

» Parallel Processing Architectures

* Symmetric Shared Memory

» Distributed Shared Memory

» Performance of Parallel Architectures

*  Summary

» So far our focus have been to study the performance of a single instruction stream
computers; and methodologies to enhance the performance of such machines

»  We studied how

» the Instruction Level Parallelism is exploited among the instructions of a stream; and

» the control, data and memory dependencies are resolved

Recap: ILP
» These characteristics are realized through:
» Pipelining the datapath
» Superscalar Architecture
» Very Long Instruction Word (VLIW) Architecture
»  Out-of-Order execution

Parallel Processing and Parallel Architecture
» However, further improvements in the performance may be achieved by exploiting
parallelism among multiple instruction streams, which uses:
» Multithreading, i.e., number of instruction streams running on one CPU
» Multiprocessing, i.e., streams running on multiple CPUs where each CPU can itself be
multithreaded

Parallel Computers Performance: Amdahl’s Law
» Furthermore, while evaluating the performance enhancement due to parallel processing
two important challenges are to be taken into consideration
v Limited parallelism available in program
v High cost of communication
» These limitations make it difficult to achieve good speedup in any parallel processor
+ For example, if a portion of the program is sequential, it limits the speedup; this can be
understood by the following example:
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Example: What fraction of original computation can be sequential to achieve speedup of 80
with 100 processors?

Answer: The Amdahl’s law states that:
Speedup =1/ (Fraction Enhanced / Speedup Enhanced) + (1' Fraction Enhanced)
Here, the fraction enhanced is the fraction in parallel, therefore speedup can be
expressed as
80 = 1/ [(Fraction paane/100 + (1-Fractionyaaier )]

Simplifying the expression, we get
0.8*Fraction paraiel + 80*(1-Fraction paraier) = 1
80 - 79.2* Fraction parael = 1
Fraction paraier = (80-1)/79.2 =0.9975

i.e., to achieve speedup of 80 with 100 processors only 0.25% sequential allowed!

The second major challenge in parallel processing is the communication cost that
involves the latency of remote access

Now let us consider another example to explain the impact of communication cost on the
performance of parallel computers

Example: Consider an application running on 32-processors multiprocessor, with 40 nsec. time
to handle remote memory reference

Assume instruction per cycle for all memory reference hit is 2 and processor clock rate is
1GHz, and find:

How fast is the multiprocessor when there is no communication versus 0.2% of the
instructions involve remote access?

Solution: The effective CPI for multiprocessor with remote reference is:

CPI = Base CPI + Remote request rate x remote access cost

Introduction to Parallel Processing
Substituting the values we get:

CPI = [1/Base IPC] + 0.2% x remote request cost
[1/2] + 0.2% x (400 cycle)
05+0.8=1.3
And, CPI without remote reference

= 1/Base IPC=0.5
Hence, the multiprocessor with all local reference is 1.3/0.5 = 2.6 times faster as
compare to that with no remote reference
Considering these limitations let us explore how improvement in computer performance
can be accomplished using Parallel Processing Architecture
Parallel Architecture is a collection of processing elements that cooperate and
communicate to solve larger problems fast
Parallel Computers extend the traditional computer architecture with a communication
architecture to achieve synchronization between threads and consistency of data in
cache
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Parallel Computer Categories
» In 1966, Flynn proposed simple categorization of computers that is still valid today
» This categorization forms the basis to implement the programming and communication
models for parallel computing
» Flynn looked at the parallelism in the instruction and in the data streams called for by the
instructions and proposed the following four categories:
1. SISD (Single Instruction Single Data)
v This category is Uniprocessor
2. SIMD (Single Instruction Multiple Data)
v/ Same instruction is executed by multiple processors using different data streams
v' Each processor has its own data memory (i.e., multiple data memories) but there
is a single instruction memory and single control processor
v llliac-1V and CM-2 are the typical examples of SIMD architecture, which offer:

i. Simple programming iii. Flexibility
model iv. All custom integrated
ii. Low overhead circuits

3. MISD (Multiple Instruction Single Data)
v' Multiple processors or consecutive functional units are working on a single data
stream
v" (However, no commercial multiprocessor of this type is available till date)

4. MIMD (Multiple Instruction Multiple Data)
v' Each processor fetches its own instructions and operates on its own data
v' Examples: Sun Enterprise 5000, Cray T3D, SGI Origin. The characteristics
these machines are:
i. Flexibility: it can function as Single-user multiprocessor or as multi-
programmed multiprocessor running many programs simultaneously
ii. Use of off-the-shelf microprocessors

MIMD and Thread Level Parallelism
»  MIMD machines have multiple processors and can be used as:
v' Either each processor executing different processes in a multi-program
environment
v' Or multiple processors execute a single program sharing the code and most of
their address space
» In the later case, where multiple processes share code and data, such processes are
referred to as the threads
* Threads may be
v either large-scale independent processes, such as independent programs,
running in multi-programmed fashion
v' Or parallel iterations of a loops having thousands of instructions, automatically
generated by a compiler
» This parallelism in the threads in called Thread Level Parallelism
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MIMD Classification

Based on the memory organization and interconnect strategy, the MIMD machines are
classified as:

v' Centralized Shared Memory Architecture

v Distributed Memory Architecture

Centralized Shared-Memory

The Centralized Shared Memory design, shown here, illustrates the interconnection of
main memory and I/O systems to the processor-cache subsystems

In small-level designs, with less than a dozens processor-cache, subsystems share the
same physical centralized memory connected by a bus; while

In larger designs, i.e., the designs with a few dozens processor- cache subsystems, the
single bus is replaced with multiple buses or even a switch are used.

Frocessor Processor Processor Processor
] ] | |
Caches Caches Caches Caches
Blain Bemory

However, the key architectural property of the Centralized Shared Memory design is the
Uniform Memory Access — UMA,;

i.e., the access time to all memory from all the processors is same

Furthermore, the single main memory has a symmetric relationship to all the processors
These multiprocessors, therefore are referred to as the Symmetric (Shared Memory)
Multi-Processors (SMP)

This style of architecture is also sometimes called the Uniform Memory Access (UMA)
as it offers uniform access time to all the memory from all the processors

Decentralized or Distributed Memory

The decentralized or distributed memory design style of multiprocessor architecture is
shown here

It consists of number of individual nodes containing a processors, some memory and 1/0O
and an interface to an interconnection network that connects all the nodes

The individual nodes contain a small number of processors which may be
interconnected by a small bus or a different interconnection technology

Furthermore, it is a cost effective way to scale the memory bandwidth if most of the
accesses are to the local memory in the node
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Processor Prooessoc' Prooessof Processor
& Caches
Interconnection network

Processor Processor Processor Processor
& Caches & Caches & Caches & Caches

T T T T

* Thus, the distributed memory provides more memory bandwidth and lower memory
latency

» This makes the design more attractive for small number of processors

» The disadvantage of the distributed memory is that the data communication between the
processors is complex as there doesn’t exist direct connection between the processors

Parallel Architecture Issues
* While studying parallel architecture we will be considering the following fundamental
issues that characterize parallel machines:
v" How large is a collection of processor?
How powerful are processing elements?
How do they cooperate and communicate?
How are data transmitted?
What type of interconnection?
What are HW and SW primitives for programmer? And
How does it translate into performance?

AN NN N Y

Issues of Parallel Machines
* These issues can be classified as:
1. Naming 3. Latency and Bandwidth
2. Synchronization

Fundamental Issue #1: Naming
» Naming deals with:
v" How to solve large problem fast?
v" What data is shared?
v" How it is addressed?
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v' What operations can access data?
v" How processes refer to each other?
» The segmented shared address space locations are named uniformly for all processes
of the parallel program as: <process humber, address>
» Choice of naming affects:
v' Code produced by a compiler as for message passing via load, the compiler just
remembers address or keep track of processor number and local virtual address
v" Replication of data, because in case of cache memory hierarchy the replication
and consistency through load or via SW is affected by naming
v Global Physical and Virtual address space, as naming determines if the address
space of each process can be configured to contain all shared data of the
parallel program

Issue #2: Synchronization
» In parallel machines to achieve synchronization between two processes, the processes
must coordinate:
v' Message passing implicitly coordinates with transmission or arrival of data
v' Shared addresses explicitly coordinate through additional operations, e.g., write
a flag, awaken a thread, interrupt a processor

Issue #3: Latency and Bandwidth
» Bandwidth
v" Need high bandwidth in parallel communication; however, bandwidth cannot be
scaled, but stays close to the requirements
v" Match limits in network, memory, and processor
v' Overhead to communicate is a problem in many machines
+ Latency
v Affects performance, since processor may have to wait
v’ Affects ease of programming, since requires more thought to overlap
communication and computation
+ Latency Hiding
v. As the latency increases the programming system burden, therefore
mechanisms are found to help hide latency
+ Examples:
v overlap message send with computation
v’ prefetch data
v switch to other tasks

Framework for Parallel processing
» The framework for parallel architecture is defined as a two layer representation
» These layers define Programming and Communication Models
+ These models present sharing of address space and message passing in parallel
architecture

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

» The shared address space model at:
v" The communication layer, defines the communication via memory to handle load,
store, and etc.; and at
v The programming layer, it defines handling several processors operating on
several data sets simultaneously; and to exchange information globally and
simultaneously
+ Message passing model at the:
v' communication layer defines sending and receiving messages and library calls;
and at the
v programming layer provides a multiprogramming model to conduct lots of jobs
without /O communication simultaneously

Shared Address Space Architecture (for Decentralized Memory Architecture)

» Shared Address space is referred to as the Distributed Shared Memory — DSM; where,
each processor can name every physical location in the machine; and each process can
name all data it shares with other processes

» Data transfer takes place via load and store

» Data size is defined as: byte, word, ... or cache blocks

» Uses virtual memory to map virtual to local or remote physical

» Processes on multiple processors are time shared

» Multiple private address spaces offer message passing multicomputer via separate
address space

Shared Address Space Architecture Programming Model
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« The programming model defines how to share code, private stack, some shared heap,
some private heap
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Here, Process is defined as virtual address space plus one or more threads of control
Multiple processes can overlap, but ALL threads share a process address space, i.e.,
portions of address spaces of processes are shared; and

Writes to shared address space by one thread are visible to reads of all threads in other
processes as well

There exist number of shared address space architectures

The most popular architectures are:

Main Frame Computers

Minicomputers — Symmetric Multi Processors (SMP)

Dance Hall

Distributed Memory — Non-Uniform Multiprocessor Architecture (NUMA)

PwnNpE

1: Main Frame Architecture — Shared Address Space Architecture

The main frame architecture was motivated by multiprogramming

As shown here, it extends crossbar for processor interface to memory modules and I/O
Initially this architecture was limited by processor cost; but, later by the cost of crossbar
IBM S/390 (now z-Server) is typical example of cross-bar architecture

2: Minicomputers (SMP) Architecture

The minicomputer architecture was also motivated by multiprogramming and multi-
transaction processing

As shown here, as all the components are on shared bus and all memory locations have
equal access time so this architecture is referred to as the Symmetric Multi Processors
(SMPs)

)
-d—i—_rh-
7 [

L e
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» However, the bus is bandwidth bottleneck as sharing is limited by Bandwidth when we
add processors, 1/0

» Furthermore, caching is key to the coherence problem — we will talk about this later

» The typical example of SMP architecture is Intl Pentium Pro Quad

Intel Pentium Pro Quad
* Here, all the coherence and multi-processing is glued in processor module
» ltis highly integrated and have low latency and bandwidth

cPU
P-2ro 2-Pro P-Fro
Interrupt 256-KB moduie moduie module
controlier LS
Sus Interface

;

< P-Pro bus (£4-Dit Jata, 36-Dit 3odress, 56 MHZ) >

NI R

PC Memory
priage controler
= |
o j g h‘l‘d ]
caras
1-, 2-, Of 4-way
Nntereaved
DRAM

3: Dance Hall Architecture
» All processors are on one side of the network and all memories on the other side

H M m W .

v v ¥
BEN L 5
& F P

* As we have notice that in the cross-bar architecture the major cost is of interconnect and
in SMPs bus bandwidth is the bottleneck

» This architecture offers solution to both the problems through its scalable interconnect
network where the bandwidth is scalable

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

» However, the interconnect network has larger access latency; and
« caching is key to the coherence problem

4: Distribute Memory Architecture
» ltis alarge scale multiprocessor architecture where Memory is distributed with Non-
Uniform Access Time
» This architecture is therefore referred to as Non Uniform Memory Access (NUMA)
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» Cray T3E is a typical example of NUMA architecture
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« Cray T3E is a typical example of NUMA architecture which scales up to 1024 processors
with 480 MB/sec. links

» Here, the non-local references are accessed using communication requests generated
automatically by the memory controller in the external I/Os

» Here no hardware coherence mechanism is employed rather directory based cache-
coherence protocols are used — We will discuss this in detail later

Message Passing Architecture
+ So far we have been talking about the programming and communication models of
shared-memory address space architecture and their evolution
* Now let us discuss the programming and communication models of Message passing
Architecture
+ The programming model depicted here illustrates that the whole computers (CPU,
memory, 1/O devices) communicate as explicit I/O operations
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Message Passing Architecture: Programming Model
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* Note that the message passing is essentially NUMA but it is integrated at 1/0O devices vs.
memory system
» Here, the local memory is directly accessed, i.e., it directly accesses the private address
space (e.g., the processor P directly access the local address X); and
« Communication takes place via explicit message passing, i.e., via send/receive
» Send specifies local buffer and the receiving process on remote computer
* Receive specifies sending process on remote computer and local buffer to place data
(i.e., address Y on Processor Q)
v" Usually send includes process tag and receive has rule on tag: match 1, match
any
« Send and receive is memory-memory copy, where each supplies local address,
AND does pair-wise synchronization
» The synchronization is achieved as follows:
* receive wait for send when
v' send completes
v’ buffer free and
v request accepted

Message Passing Architecture: Communication Model
» The high-level block diagram for complete computer as a building block, similar to the
distributed memory spared address space is shown here to describe the communication

abstraction
( Hehwork -H'l
1 3 ’
” * ” 3 e ” *
F F 2
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Here, the communication is
integrated at 10 level, and not into pe=p ki S
memory system

It has networks of workstations
(clusters), but tighter integration

It is easier to build than scalable
shared address space machines
Typical example of Message
Passing Machines are IBM SP
shown here

IBM SP: Message Passing Machine
Made out of essentially complete
RS6000 workstations

Network interface integrated in 1/O
bus
Bandwidth is limited by I/O bus

Summary

Today we have explored how further improvement in computer performance can be
accomplished using Parallel Processing Architectures

Parallel Architecture is a collection of processing elements that cooperate and
communicate to solve larger problems fast

Then we described the four categories of Parallel Architecture as: SISD, SIMD, MISD
and MIMD architecture

We noticed that based on the memory organization and interconnect strategy, the MIMD
machines are classified as:

v Centralized Shared Memory Architecture and Distributed Memory Architecture
We also introduced the framework to describe parallel architecture as a two layer
representation: Programming and Communication models
These models present sharing of address space and message passing in parallel
architecture
The advantages of Shared-Memory Communication model are as follows:

v’ Ease of programming when communication patterns are complex or vary

dynamically during execution

v" Lower communication overhead, better use of BW for small items

v" HW-controlled caching to reduce remote comm. by caching of all data, both

shared and private
The advantages of message passing communication model are as follows:

v/ Communication is explicit and simpler to understand where as in shared memory

it can be hard to know when communicating and when not, and how costly it is

v Easier to use sender-initiated communication, which may have some advantages

in performance

v Synchronization is associated with sending messages
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Lecture 35
Multiprocessors
(Cache Coherence Problem)

Today’s Topics

* Recap:

» Multiprocessor Cache Coherence

« Enforcing Coherence in:

* Symmetric Shared Memory Architecture

» Distributed Memory Architecture

» Performance of Cache Coherence Schemes

*  Summary

Recap: Parallel Processing Architecture
» Last time we introduced the concept of Parallel Processing to improve the computer
performance
» Parallel Architecture is a collection of processing elements that cooperate and
communicate to solve larger problems fast
» We discussed Flynn’s four categories of computers which form the basis to implement
the programming and communication models for parallel computing
* These categories are:
v' SISD (Single Instruction Single Data)
v' SIMD (Single Instruction Multiple Data)
v" MISD (Multiple Instruction Single Data)
v' MIMD (Multiple Instruction Multiple Data)
The MIMD machines implement Parallel processing architecture

Recap: MIMD Classification
» We noticed that based on the memory organization and interconnect strategy, the MIMD
machines are classified as:
v Centralized Shared Memory Architecture
v Here, the subsystems share the same physical centralized memory connected by
a bus. The key architectural property of this design is the Uniform Memory
Access — UMA,; i.e., the access time to all memory from all the processors is
same

Recap: MIMD Classification
» Distributed Memory Architecture
v" It consists of number of individual nodes containing a processors, some memory
and 1/0 and an interface to an interconnection network that connects all the
nodes
v" The distributed memory provides more memory bandwidth and lower memory
latency
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Recap: Framework for Parallel processing

Last time we also studied a framework for parallel architecture

The framework defines the programming and communication Models for centralized
shared-memory and distributed memory parallel processing architectures

These models present address space sharing and message passing in parallel
architecture

Here, we noticed that the shared-memory communication model has compatibility with
the SMP hardware; and

offers ease of programming when communication patterns are complex or vary
dynamically during execution

While the message-passing communication model has explicit Communication which is
simple to understand; and is easier to use sender-initiated communication

Multiprocessor Cache Sharing

Today, we will look into the sharing of caches for multi-processing in the symmetric
shared-memory architecture

The symmetric shared memory architecture is one where each processor has the same
relationship to the single memory

Small-scale shared-memory machines usually support caching of both the private data
as well as the shared data

The private data is used by a single processor, while the shared data is replicated in the
caches of the multiple processors for their simultaneous use

It is obvious that the program behavior for caching of private data is identical to the that
of a Uniprocessor, as no other processor uses the same data,

i.e., no other processor cache has copy of the same data

Multiprocessor Cache Coherence

Whereas when shared data are cached the shared value may be replicated in multiple
caches
This results in reduction in access latency and fulfill the bandwidth requirements,
but, due to difference in the communication for load/store and strategy to write in the
caches, values in different caches may not be consistent, i.e.,
There may be conflict (or inconsistency) for the shared data being read by the multiple
processors simultaneously
This conflict or contention in caching of sheared data is referred to as the cache
coherence problem
Informally, we can say that memory system is coherent if any read of a data item
returns the most recently written value of that data item
This definition contains two aspects of memory behavior:

v" Coherence that defines what value can be returned by a read?

v Consistency that determines when a written value will be returned by a read?
Let us explain the cache coherence problem with the help of a typical shared memory
architecture shown here!
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Cache Coherency Problem?

* Note that here the processors P1, P2, P3 see old values in their caches as there exist
several alternative to write to caches!

» For example, in write-back caches, value written back to memory depends on which
cache flushes or writes back value (and when);

» i.e., value returned depends on the program order, program issue order or order of
completion etc.

+ The cache coherency problem exists even on uniprocessors where due interaction
between caches and I/O devices the infrequent software solutions work well

» However, the problem is performance-critical in multiprocessors where the order among
multiple processes is crucial and needs to be treated as a basic hardware design issue

Order among multiple processes?
» Now let us discuss what does order among multiple processes means!
» Firstly, let us consider a single shared memory, with no caches
v' Here, every read/write to a location accesses the same physical location and the
operation completes at the time when it does so
» This means that a single shared memory, with no caches, imposes a serial or total order
on operations to the location, i.e.,
v'the operations to the location from a given processor are in program order; and
v' the order of operations to the location from different processors is some
interleaving that preserves the individual program orders
* Now, let us discuss the case of a single shared memory, with caches
» Here, the latest means the most recent in a serial order with operations to a location
from a given processor in program order
» Note that for the serial order to be consistent, all processors must see writes to the
location in the same order

Formal Definition of Coherence!
«  With this much discussion on the cache coherence problem, we can say that
* A memory system is coherent if the results of any execution of a program are such that
for each location, it is possible to construct a hypothetical serial order of all operations to
the location that is consistent with the results of the execution
» In a coherent system
v’ the operations issued by any particular process occur in the order issued by that
process, and
v the value returned by a read is the value written by the last write to that location
in the serial order

Features of Coherent System
» Two features of a coherent system are:
v write propagation: value written must become visible to others, i.e., any write
must eventually be seen by a read
v write serialization: writes to a location seen in the same order by all
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Cache Coherence on buses
» Bus transactions and Cache state transitions are the fundamentals of Uniprocessor

systems
» Bus transaction passes through three phases: arbitration, command/address, data

transfer
» Cache State transition deals with every block as a finite state machine
» The write-through, write no-allocate caches have two states: valid, invalid
» write-back caches have one more state: modified (“dirty”)

Multiprocessor cache Coherence
» Multiprocessors extend both the bus transaction and state transition to implement cache

coherence

° Bus snoop

1
‘\ "’/ .
— =~
S — \\
£ Cache-rmemaony
f i devices transaciion

Coherence with write-through caches!
» Here, the controller snoops on bus events (write transactions) and invalidate / update
cache
* As in case of write-through, the memory is always up-to-date therefore invalidation
causes next read to miss and fetch new value from memory, so the bus transaction is
indeed write propagation
« The Bus transactions impose write serialization as the writes are seen in the same order

Cache Coherence Protocols
« In a coherent multiprocessor, the caches provide both the relocation (migration) and
replication (duplication) of shared data items
« There exist protocols which use different techniques to track the sharing status to
maintain coherence for multiprocessor
* The protocols are referred to as the Cache Coherence Protocols

Potential HW Coherency Solutions
+ The two fundamental classes of Coherence protocols are:
v" Snooping Protocols: All cache controllers monitor or snoop (spy) on the bus to
determine whether or not they have a copy of the block that is requested on the
bus
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v Directory-Based Protocols: The sharing status of a block of physical memory is
kept in one location, called directory
» The Snoopy solutions:
v" Send all requests for data to all processors
v" Processors snoop to see if they have a copy and respond accordingly
v" Requires broadcast, since caching information is at processors
v" Works well with bus (natural broadcast medium)
v" Dominates for small scale machines (most of the market)
» Directory-Based Schemes
v Keep track of what is being shared in one centralized place
v Distributed memory employs distributed directory for scalability and to avoids
bottlenecks
v' Send point-to-point requests to processors via network
v/ Scales better than Snooping
v Actually existed BEFORE Snooping-based schemes

Basic Snooping Protocols
 There are two ways to maintain coherence requirements using snooping protocols.
These technigues are: write invalidate and write broadcast
1. Write Invalidate Method
= This method ensures that processor has exclusive access to the data
item before it write that item and all other cached copies are invalidated or
canceled on write
= Exclusive excess ensures that no other readable or writeable copies of an
item exist when the write occurs

1. Write Invalidate Protocol
» Uses Multiple readers and single writer
» For Write to shared data:
v an invalidate information is sent to all caches
v Considering this information, the controller snoop and invalidate any copies
 For Read Miss, in case of:
v Write-through: memory is always up-to-date, so no problem; and
v' Write-back: it snoop in caches to find most recent copy
+ Example: The following table shows the working of invalidation protocol for snooping
bus with write-back cache

Processor | Bus Contents of

Actlvity Activity CPU A's cache| CPU B’s cache | Mem. loc. x
0

A reads X cache miss for x 0 0

B reads X cache miss for x 0 0 0

A writes a Invalidation for x 1 0

1tox

B reads X cache miss for x 1 1 1
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Here, we assume that both the caches of CPU A and B do not initially hold X, and that
the value of X in the memory is 0 (First row)

Here, to see how this protocol ensures coherence, we consider a write followed by a
read by another processor

As the write requires exclusive access, any copy held by the reading processor must be
invalidated; thus

When the read occurs it misses in the cache and is forced to a new copy of data
Furthermore, the exclusive write access prevents any other processor from being writing
simultaneously

In the table, the CPU and memory contents show the value after the processor activity

A blank indicates no activity or no copy cached and bus activity have completed

When 2™ miss by B occurs, the CPU A responds with the value cancelling the response
from memory

In addition, both the contents of B’s cache and memory contents of x are updated

The values given in the 4™ row show the invalidation for the memory location x when A
attempts to write 1

This update of the memory, which occurs when block becomes shared, simplifies the
protocol

2: Write Broadcast Protocol

The alternative to Write Invalidate protocol is the write update or write broadcast protocol
Instead of invalidating this protocol updates all the cached copies of a data item when
that item is written

This protocol is particularly used for write through caches, here for

Write to shared data the processors snoop, and update any copies by broadcasting on
bus

Example: The following table shows the working of write update protocol for snooping
bus with write-back cache

Processor — Contents of

Activity ctivity CPUA's cache CPU B's cache hhem. loe. x
0

Areads X ecache miss for x 0 0

Breads X (ache miss for x 0 0 0

Awritesa |nvalidation for x 1 1 0

1tox

Breads X cache miss for x 1 1 1

Here, we assume that both the caches of CPU A and B do not initially hold X, and that
the value of X in the memory is O (First row)

The CPU and memory contents show the value after the processor and bus activity have
both completed

As shown in the 4" row, when CPA writes a 1 to memory X it update the value in caches
of A and B and the memory
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Write Invalidate versus Broadcast

Invalidate requires one transaction for multiple writes to the same word

Invalidate uses spatial locality: one transaction for write to different words in the same
block

Broadcast has lower latency between write and read

An Example Snooping Protocol

A bus based protocol is usually implemented by incorporating a finite state machine
controller in each node
This controller responds to the request from the processor and from the bus based on:
v the type of the request
v" Whether it is hit or miss in the cache
v State of the cache block specified in the request
Each block of memory is in one of the three states:
v (Shared) Clean in all caches and up-to-date in memory
v" OR (Exclusive) Dirty in exactly one cache
v OR Not in any caches
Each cache block is in one of the three state (track these):
v Shared : block can be read
v" OR Exclusive : cache has only copy, its writeable, and dirty
v" OR Invalid : block contains no data
Read misses: cause all caches to snoop bus
Writes to clean line are treated as misses

Finite State Machine for Write Invalidation Protocol and write Back Caches

Now let discuss the finite-state Transition for a single cache block using a write
invalidation protocol and write back caches
The state machine has three states:

v Invalid

v' Shared (read only) and

v Exclusive (read/write)
Here, the cache states are shown in circles where access permitted by the CPU without
a state transition shown in parenthesis
The stimulus causing the state transition is shown on the transition arc in yellow and the
bus action generated as part of the state transition is shown in orange
The state in each cache node represents the state of the selected cache block specified
by the processor or bus request
In reality there is only one state-transition diagram but for simplicity the states of the
protocol are duplicated here to represent:

v Transition based on the CPU request

v Transition based on the bus request
Now let us discuss the state-transition based on the actions of CPU associated with the
cache, shown state machine -I
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Snoopy-Cache State Machine-I: for CPU requests for each cache block

Note that a read miss in the
exclusive or shared state and a write
miss in the exclusive state occurs
when the address requested by the
CPU does not match the address in
the cache block

Further an attempt to write a block in
the shared state always generates
miss even if the block is present in
the cache, since the block must be
made exclusive

Here, note that in case of read hit,
the shared and exclusive states read
data in cache and address the
conflict miss

The invalid state places the read
miss on the bus;

For write hit, the exclusive state
writes the data in cache and shared
state place write miss on bus

In case of write miss, the invalid
state places the miss on the bus
shared and exclusive states address
the conflict miss;

the shared state places write miss
on the bus, while

the exclusive state write-back block
and then places write miss on the
bus

CPU Readhit

CPU Read Shared

(read/only)

Place read miss

CPU Write

Place Write
Miss on bus

CPU Read miss
Place read miss
on bus

Write back jfock

CPU Write
Place Write Miss on Bus

Exclusive
(readfwrite) CPU Write Miss
Write back cache black

Place write miss on bus

CPU read hit
CPU write hit

Snoopy-Cache State Machine-I

Write miss
for this block Shared

Invalid (read/only)

/

Write Back
Block; (abort
memory access)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Exclusive
(read/write)

Snoopy-Cache State Machine-II

Finite State Machine for Write Invalidation Protocol and write Back Caches
Now let us discuss the state-transition based on the actions of bus request associated

with the cache, shown as state machine-I|

Here, when ever a bus transaction occurs, all caches that contain the cache block
specified in the bus transaction take the action as shown in this state machine

Here, the protocol assumes that

Memory provides data on a read miss for a block that is clean in all caches
Note that read miss, the stared state take no action, and allows the memory to service

read miss;

where as the exclusive state, attempts to share the data, places the cache block on the

bus and change the state to shared.
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» For the write miss, the shared state attempts to write shared block and invalidates the
block

» Whereas, the exclusive state attempts to write block that is exclusive elsewhere; write
back the cache block and make the state invalid

Summary

» Today, we talked about sharing of caches for multi-processing in the symmetric shared-
memory architecture

» We studied the cache coherence problem and studied two methods to resolve the
problem

» Here, we discussed the write invalidation and write broadcasting schemes

+ At the end we discussed the finite state machine for the implementation of snooping
algorithm

«  We will further explain the snooping protocol with the help of example next time.
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Lecture 36
Multiprocessors
(Cache Coherence Problem ... Cont’d)

Today’s Topics

Recap:

Example of Invalidation Scheme

Coherence in Distributed Memory Architecture
Performance of Cache Coherence Schemes
Summary

Recap: Cache Coherence Problem

Last time we discussed the sharing of caches for multi-processing in the symmetric
shared-memory architecture, wherein each processor has the same relationship to the
single memory
Here, we distinguished between the private data and shared data, i.e.,

v the data used by a single processor and

v’ the data replicated in the caches of the multiple processors for their simultaneous

use

Then we discussed cache coherence problem in symmetric shared memory which
results due to inconsistency or conflict in caching of shared data, being read by the
multiple processors simultaneously
We studied the cache coherence problem with the help of a typical shared memory
architecture where each of the processor contained write-back cache
In write-back caches, values written back to memory depend on which cache flushes or
writes back the value and when?
We noticed that the cache coherency problem exists even on uniprocessors due
interaction between caches and I/O devices
However, in multiprocessors the problem is performance-critical where the order among
multiple processes is crucial, i.e.,

Recap: Order among multiple processes

For single shared memory, with no caches, a serial or total order is imposed on
operations to the location; and for
single shared memory, with caches, the serial order be consistent, i.e., all processors
must see writes to the location in the same order
Considering this we can say that in a coherent system:
v’ the operations issued by any particular process occur in the order issued by that
process, and
v’ the value returned by a read is the value written by the last write to that location
in the serial order
Then we talked about write propagation and write serialization as the two features of the
coherent system
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Recap: Multiprocessor cache Coherence
+ We also noticed that to implement cache coherence the multiprocessors extend both the
bus transaction and state transition
» The cache controller snoops on bus events (write transactions) and invalidate / update
cache
» Then we discussed the cache coherence protocols, which use different techniques to
track the sharing status and maintain coherence for multiprocessor

Recap: Coherency Solutions
» The two fundamental classes of Coherence protocols are:

v" Snooping Protocols: All cache controllers monitor or snoop (spy) on the bus to
determine whether or not they have a copy of the block that is requested on the
bus

v Directory-Based Protocols: The sharing status of a block of physical memory is
kept in one location, called directory

Recap: Basic Snooping Protocols

» The snooping protocols are implemented using two techniques: write invalidate and write
broadcast

+ The Write Invalidate method ensures that processor has exclusive access to the data
item before it write that item and all other cached copies are invalidated or canceled on
write

» The write broadcast approach, on the other hand, updates all the cached copies of a
data item when that item is written

Recap: Write Invalidate versus Broadcast
« We noticed that
v Invalidate requires one transaction for multiple writes to the same word; and it
uses spatial locality, i.e., one transaction for write to different words in the same
block; and
v' Broadcast has lower latency between write and read
« Then we discussed the finite state machine controller implementing the snooping
protocols

Recap: An Example Snooping Protocol
» This controller responds to the request from the processor and from the bus based on:
v the type of the request
v'Its hit or miss status in the cache; and
v State of the cache block specified in the request
» Furthermore, each block of memory is in one of the three states: Shared, Exclusive or
Invalid (Not in any caches) and each cache block tracks these three states
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Example: Working of Finite State Machine Controller

Today we will continue our discussion on the finite state machine controller for the
implementation of snooping protocol;
and will try to understand its working with the help of example
Here, we assume that two processors P1 and P2 each having its own cache, share the
main memory connected on bus
The status of the processors, bus transaction and the memory is depicted in a table for
each step of the state machine
Here, the state of the machine for each processor and cache address and value cached,
the bus action and shared-memory status is shown for each step of operation
Initially the cache state is invalid (i.e., the block of memory is not in the cache); and
memory blocks A1 and A2 map to the same cache block where the address Al is not
equal to A2
At Step 1 — P1 writes 10 to Al
[.  write miss on bus occurs and the state transition from invalid to exclusive takes
place

Example: Step 1

=1 Fa Hus Bi=mory
shen Shak= S0dr |Vaiu= ) Sime= Aods Vaue |Scion |Proc. |Aoar Lo T e = S THE -
Fi: Wik 010 & cerl | a7 | a0 B | P1o | ad
F1: Read A
F7 Fead &1
F \Wirhe 2010 A
FZ Wi 40 1 AZ
Assumes initial cache state  memots Write CFU Read hit
is invafid and A1 and A2 map £y
but A1 1= A2 iy
4 : =- ,mlterr'ls-s on bus
Actwe arrow = 2emets| |mise on bus CPU wr,:l:
Wrin Flaos Wr
Ramobs Esa
Wil Back Mics on Eus
CPU raad hit CPU Writs Mics
JILREEE CPU wrHs BH W= BEsCk 44

At Step 2 — P1 reads Al
I.  CPU read HITs occurs, hence the FSM Stays in exclusive state
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= i Bus Mmooy
stai Sigte  [Adar |vas [sfas |ader Jvaivs |Acton [Proc légdr [vake [Adar| e

B ik 10 50 A Evci | A1 | 10 iz | P n

EL s Al Excl | &7 il

F2: R A
F2: k= 20 %0 A
F2: Wik £ i A2
#ssumes initial cache state - CFLU Raad hit

is invatd and A1 and A2 map
to same cache block,

bui &1 1= A2
l'I'r":I:.I'I'IlI-'I on bus
'-'.bml:ﬂﬂ ml“ o hu‘ DPU II'IIrrtE'
Wria Plaos Writs
Wirile BEack Mlee on Euc
41t CEU wrHs RH Wil Elack 41

» At Step 3: P2 reads Al
[. As P2 is initially in invalid state, therefore, read miss on the bus occurs; the
controller state changes from invalid to Shared

Example: Step 3

=1 Fg g'.lr [ e
o Shte | S0 | Lgiees | Sade  [&go0r |veioe lAoion |[Froc |Aoor | Vel | S| Lais
P Wi 10 1o A Exr! 21 e pprids P1 A
F1: Read & Exzl. A 10
F2: Read Ad 1 A1 S s 2 it
Tr L A g [ Vel P1 A [ At 1o
Shar. Can I ] Eotin 2 A1 10 Al 10
F2: Wiribe 20 1o Ad |
F2: Wirite 40 1o AS

fssumes initial cache state CFU Resad hit

is inwatd and A1 and A2 map
to same cache block,

Semods Wrie

CFU Read Mice

|A=ad

but &1 1= AZ_ i f
':l':lrltemIH on bus

Remcild| |mice on bus CFU Wt

WrHa Flaos Wris

Wirlle Back Mise on Bus

CEU read hit CPLU Wirths Mice
280 CFU wris BH i Bacik 44

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

P1 being in Exclusive state, remote read write-back is asserted and the state
changes from exclusive to Shared; and

the value (10) is read 1 from the shared-memory at address Al, into P1 and P2
caches at Al; and both P1 and P2 controllers are in shared state

» At Step 4: P2 write 20 to A2

P1 find a remote write, so the state of the controller changes from shared to
Invalid

P2 find a CPU write, so places write miss on the bus and changes the state from
shared to exclusive and writes value 20 to Al

The memory address to A1 with value Al

Example: Step 4

e | o2 Eus | demony
sTan ciare  |Aoor vsiue |Srare  |Acar |Vakee |Acton | Proc. |Adoy | Vaue |Aoar) Vae
- Wil 10 B Ad £t Aaf el el i = M
P1: Seaid A1 ExiCL Ad il
F2: Fead Al =0ge | Al Egiis | F2 A
= A 1] ErEE = - Ta) 21 | 10
Ekar A 12 15ccg | F2 M 10 Al il
P2 Sriie 20 o Al Forl' Euiei &1 e 1 T F2 A A1 10
E il ) be A2
Assumes inifial cache state I rE—— CFLU Read hit
is invafd and A1 and A2 map N
but A11= A2 Fead
wmﬂmlu on bus
Rematd| |mice on bus CFU '\ribe
WrHa Plaos Wris
Ramobs Raa
Wiz Back Mlec om Bus
CPU read hit CPU \Writs Mt
12slie CPL wris kH Wil Elacik &

» At Step 5: P2 write 40 to A2
v" P2 being in Exclusive state, CPU write Miss occurs, and initiates write-back to P2
at A2
v P2 remains in Exclusive state, with address A2 and value 40
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Example: Step 5

£ | M Eiurg | M=mory
siED Shate  |Adar [Vave |Sfade  |Ador | Vaise |Acfon |[Proc LAod- |k |Acdr| Valoe
F b= 10 B0 A el A4 i) faa ] F 5
Fi: Rexg & Excl & 10
F2: Ren A1 snge | a1 Eanis | P2 a7
Siiar A 10 s F 5 0 laflia
Srear. | &1 | i | gdog | Pz & 1] Al | 40
P2 Wik 22 o Ad e E e A iy i FZ A &1 10
P2 Wib= &0 3o A2 i FZ A & ] 10
Excl. | AZ a7 | wwEk | P2 A 20 a2 | 20
Assumes initial cache state Ramats Wri CPU Road hit

iz imva®td and A1 and A2 map
to same cache block

-

CFU Read Mice
Fomad

but &1 1= A2 rmizs on bus
Wirlks
F::-n':-:d-u mileE on bus CPLU \Wrie
Wris| |oemois Raa Plags Wribs
\wrile Back| | ainpe gac Mice on Bus
CPU read hik CFL Write Micc
HLite CPU wris mH Wirli= Eiscl L)

Implementation Complications
+  With this example, we have observed that the finite state machine implementation of the
snooping protocols works well
However, the following implementation complications have been observed
v" Write Races
v Interventions and invalidations
+ Write Races occur when one processor wants to update the cache but another
processor may get bus first and then write the same cache block!
» We know that bus transaction is a two step process:
v' Arbitrate for bus
v" Place miss on bus and complete operation
» If miss occurs to block while waiting for bus, handle miss, i.e. invalidate, and then restart.
« Furthermore, to overcome the write races, split transaction bus, so that
v it can have multiple outstanding transactions for a block
v' Multiple misses can interleave, allowing two caches to grab block in the
Exclusive state
v" Must track and prevent multiple misses for one block

Snooping Cache Conflict
* In snooping cache method, the CPU assess the cache and the bus transaction checks
the cache tags
» Processors continuously snoop on address bus and if the address matches tag, it either
invalidate or update
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» Since every bus transaction checks cache tags; therefore there could be interference
with CPU
» There are two ways to reduce the interference; the methods are:
1. Duplicate set of tags for L1 caches
o CPU uses a different set of tags
o The CPU gets stalled during cache access when snoop has detected a
copy in the cache and tags need to be updated
2. Multi-level caches with inclusion: i.e., L2 cache already duplicate, provided L2
obeys inclusion with L1 cache; here
o Content of primary cache (L1) is in secondary cache (L2)
o Most CPU activity directed to L1
o Snoop activity directed to L2
o If snoop gets a hit then it arbitrates L1 to update and possibly get data;
this will stall CPU
o Can be combined with “duplicate tags” approach to further reduce
contention

Snooping Cache Variations

» MESI Protocol:

» This protocol contains four (4) states
v" Modified
v' Exclusive
v' Shared
v" Invalid

» Exclusive now means exclusively cached but clean upon loading

Four State Machine
» Bus serializes writes, getting bus ensures no one else can perform memory operation
+ On amiss in a write back cache, may have the desired copy and its dirty, so must reply
» Add extra state bit to cache to determine shared or not
* Add 4th state Modify that Modifies for exclusive writes

Snooping Cache Variations: Berkeley Protocol
« The main idea is to allow cache to cache transfers on the shared bus
» It adds the notion of “owner”
» the cache that has the block in a Dirty state is the owner of that block:
 The last one who writes, is the owner
» The owner responsible to transfer data if read occurs and to update main memory; If a
block is not owned by any cache, memory is the owner
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Summary Snooping Cache Variations: Summary

Basic
Protocol Berkeley Protocol
Exclusive 1 Owned Exclusive
Shared Owned Shared
Invalid Shared
Invalid
Owner can update via bus invalidate
operation
Owner must write back when replaced in
cache
» lllinois Protocol  MESI Protocol
v Private Dirty v' Modfied (private,’Memory)
v Private Clean v eXclusive (private,=Memory)
v' Shared v' Shared (shared,=Memory)
v" Invalid v" Invalid
» If read sourced from memory, then Private Clean
» if read sourced from other cache, then Shared
» Can write in cache if held private clean or dirty
Snoop Cache Extensions
CPU Read hit

Remote Write or
Miss due to
address conflict

Invalid

CPU Read

= Place read

Remote

Write

or Miss due to
address conflict
Write back block

Place Write
Miss on bus

CPU Write

Place Write
Mi
Modified i i
(read/write) ’

Shared
(read/only)

on Bus?

Exclusive
(read/only)

CPU read hit
CPU write hit

Place Write
Miss on Bus?

CPU Read hit
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Extensions:
A. Berkeley Protocol:
v" Fourth State: Ownership
v' Shared-> Modified, need invalidate only (upgrade request), don’t read memory
B. MESI Protocol:
v" Clean exclusive state (no miss for private data on write)
C. lllinois Protocol:
v' Cache supplies data when shared state (no memory access)

Larger Microprocessors
+ Use separate Memory per Processor
» Local or Remote access via memory controller
+ 1 Cache Coherency solution is using non-cached pages
» Alternative is to use: directory containing information for every block in memory that
tracks state of every block in every cache, which caches have a copies of block, dirty vs.
clean, etc
» The use of information per memory block vs. per cache block has some plus and minus
points
v" PLUS: In memory => simpler protocol as compared to centralized/one location
v" MINUS: In memory => directory is function of memory size) as compared to
simple protocol where director is function of cache size

Directory Based Protocol: Distributed Shared Memory

Processor Frocessor Processor Processor
& Caches & Caches & Caches & Caches

Memory —. Memaory . Mermory —. WMemony —.

Interconmechion network

Directory Based Protocol
+ The director base protocol is similar to Snoopy Protocol:
» The Three states of the protocol are:
v' Shared: > 1 processors have data, memory up-to-date
v" Uncached (no processor has it; not valid in any cache)
v' Exclusive: = 1 processor (owner) has data; memory out-of-date
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In addition to cache state, must track which processors have data when in the shared
state (usually bit vector, 1 if processor has copy)
Keep it simple(r):

v" Writes to non-exclusive data => write miss

v Processor blocks until access completes

v' Assume messages received and acted upon in order sent
No bus and don’t want to broadcast:

v"interconnect no longer single arbitration point

v all messages have explicit responses
Typically 3 processors involved

v' Local node where a request originates

v" Home node where the memory location of an address resides

v" Remote node has a copy of a cache block, whether exclusive or shared
Example messages are as follows: Here P is used for processor number, A for address

Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

Processor P reads data at address A; make P a read sharer and arrange to send data back

Write miss Local cache Home directory P, A
Processor P writes data at address A; make P the exclusive owner and arrange to send data
back

Invalidate Home directory Remote caches A
Invalidate a shared copy at address A.

Fetch Home directory Remote cache A
Fetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A
Fetch the block at address A and send it to its home directory; invalidate the block in the cache

Data value reply Home directory Local cache Data
Return a data value from the home memory (read miss response)

Data write-back Remote cache Home directory A, Data
Write-back a data value for address A (invalidate response)

State Transition Diagram for an Individual Cache Block in a Directory Based System

States identical to snoopy case;

Transactions very similar.

Transactions are caused by read misses, write misses, invalidates, data fetch requests
Generates read miss & write miss messages to home directory.
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» Write misses that were broadcast on the bus for snooping results in explicit invalidate &

data fetch requests.
» Note: on a write, a cache block is bigger, so need to read the full cache block

CPU - Cache State Machine
» State machine for CPU requests for each memory block
* Invalid state if in memory
CPU Read hit

Invalidate
or Miss due to
address conflict:

Invalid | J
CPU Read

Shared
(read/only)

— Send Read Miss
message
) CPU Write: L
Fetc:\‘/l/_'”"ec‘j“date Send Write Miss Cpsuem”te'
or Miss due to
msg to h.d. Write Miss message

address conflict:
send Data Write Back message
to home directory

to home directory

Fetch: send
Data Write Back message
to home directory

Exclusive
(read/write

)

CPU read hit
CPU write hit

State Transition Diagram for the Directory
* Here, the same states & structure is shown as the transition diagram for an individual
cache
+ Two actions performed are:
1. update of directory state and

2. send messages to satisfy requests
» The controller tracks all copies of memory block; and also indicates an action that

updates the sharing set, called Sharers, as well as sending a message

Directory State Machine
» State machine for Directory requests for each memory block

* Un-cached state if in memory
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Read miss:
Sharers += {P};
Read miss: send Data Value Reply
Sharers = {P}
send Data Value

Uncached Reply

Shared
(read only)

f—
Write Miss: Write Miss:
Data Write Back: Sr;i?és[)zg’}; send Invalidate
’ Sharers = {} Value Reply, to Sharers_; _
(Write back block) ms then Sharers = {P};
9 send Data Value
Reply msg
Read miss:
i i Sharers += {P};
Write Miss: Exclusive send Fetch:

Sharers = {P};
send Fetch/Invalidate;
send Data Value Reply

msg to remote cache

(read/write

) send Data Value Reply

msg to remote cache
(Write back block)

Example Directory Protocol
» Message sent to directory causes two actions:
v' Update the directory
v" More messages to satisfy request
» Block is in Uncached state: the copy in memory is the current value; only possible
requests for that block are:

v' Read miss: requesting processor sent data from memory & requestor made only
sharing node; state of block made Shared

v" Write miss: requesting processor is sent the value & becomes the Sharing node.
The block is made Exclusive to indicate that the only valid copy is cached.
Sharers indicates the identity of the owner.

» Block is Shared state => the memory value is up-to-date; the read miss and write miss
activities are:

v Read miss: requesting processor is sent back the data from memory &
requesting processor is added to the sharing set.

v" Write miss: requesting processor is sent the value. All processors in the set
Sharers are sent invalidate messages, & Sharers is set to identity of requesting
processor. The state of the block is made Exclusive.

» Block is Exclusive: Current value of the block is held in the cache of the processor
identified by the set Sharers (the owner), three possible directory requests:

v" Read Miss

v Data Write back

v' Write Miss
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+ Read miss:

v" Owner processor sent data fetch message, causing state of block in owner’s
cache to transition to Shared; and

v' Causes owner to send data to directory, where it is written to memory & sent
back to requesting processor

v ldentity of requesting processor is added to set Sharers, which still contains the
identity of the processor that was the owner (since it still has a readable copy).
State is shared.

+ Data write-back:
v" Owner processor is replacing the block and hence must write it back, making
memory copy up-to-date
v" The block is now Uncached, and the Sharer set is empty.

*  Write miss:

v Block has a new owner.

v A message is sent to old owner causing the cache to send the value of the block
to the directory from which it is sent to the requesting processor, which becomes
the new owner.

v' A sharer is set to identity of new owner, and state of block is made Exclusive.

Summary
» Caches contain all information on state of cached memory blocks
» Snooping and Directory Protocols are similar;
* However, bus makes shooping easier because of broadcast
» Directory has extra data structure to keep track of state of all cache blocks
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Lecture 37
Multiprocessors
(Performance and Synchronization)
Today’s Topics

» Performance of Multiprocessors with

v' Symmetric Shared-Memory

v Distributed Shared Memory
» Synchronization in Parallel Architecture
» Conclusion

Recap: Cache Coherence Problem
» So far we have discussed the sharing of caches for multi-processing in the:
v' Symmetric shared-memory architecture
v Distributed shared memory architecture
» We have studied cache coherence problem in symmetric and distributed shared-memory
multiprocessors; and have noticed that this problem is indeed performance-critical

Recap: Multiprocessor cache Coherence
» Last time we also studied the cache coherence protocols, which use different techniques
to track the sharing status and maintain coherence without performance degrading
» These protocols are classified as:
v" Snooping Protocols v Directory-Based Protocols
» These protocols are implemented using a FSM controller

Recap: Snooping Protocols
* Snooping protocols employ write invalidate and write broadcast techniques
» Here, the block of memory is in one of the three states, and each cached-block tracks
these three states; and the controller responds to the read/write request for a block of
memory or cached block, both from the processor and from the bus

Recap: Implementation Complications of snoopy protocols
« The three states of the basic FSM are: Shared, Exclusive or Invalid
+ However, the complications such as: write races, interventions and invalidation have
been observed in the implementation of snoopy protocols; and
» to overcome these complications humber of variations in the FSM controller have been
suggested
» These variations are: MESI Protocol, Barkley Protocol and Illinois Protocol

Recap: Variations in snoopy protocols
» These variations resulted in four (4) states FSM controller
v' The states of MESI Protocol are: Modify, Exclusive, Shared and Invalid
v' The sates of Barkley Protocol are: Owned- Exclusive, Owned-Sheared, Shared
and Invalid; and of
v lllinois Protocol are: Private Dirty, Private clean, shared and Invalid
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Recap: Directory based Protocols

The larger multiprocessor systems employ distributed shared-memory ,
memory per processor is provided

Here, the Cache Coherency is achieved using non-cached pages or directory containing
information for every block in memory

The directory-based protocol tracks state of every block in every cache and finds the
caches having copies of block being dirty or clean

The directory-based protocol tracks state of every block in every cache and finds the
caches having copies of block being dirty or clean

Similar to the Snoopy Protocol, the directory-based protocol are implemented by FSM
having three states: Shared, Uncached and Exclusive

i.e., a separate

. d miss:

» Smare machine for Eﬁa %= [P
each mamory Mock s2n 53ta 'Japiie Reply
Uncached state i.t".um&mu:nr-‘ll/-"_ JEHHEIEE{J

| \ Data alue (/fh
Q:’amid/ { (read u:-jry
Wirite Miss: Write Miss:
Data FIIZE" Eacﬁb 5"'?;*@? = 5e" nvalidate
"l"l-'i'.‘tnf:la-:k b I AL tﬁen gl:leirers =[P
' I msg Dat 'ih'ilui: k
e-p ¥ Msg
Ye s, Sharers = 7}
arers = (P el — sengegztn )
. i lus Repl
mgata ar;:" -:L acﬁp Bxcluzive msg to Temate ache |

{readfwrit) fWrte back Block

AT 13

Recap: Directory Based Protocols

These protocols involve three processors or nodes, namely: local, home and remote
nodes

v Local node originates the request

v' Home node stores the memory location of an address

v' Remote node holds a copy of a cache block, whether exclusive or shared
The transactions are caused by the messages such as: read misses, write misses,
invalidates or data fetch requests
These messages are sent to the directory to cause actions such as: update directory
state and to satisfy requests
The controller tracks all copies of memory block; and indicates an action that updates
the sharing set

Example: Working of Finite State Machine Controller

Now are going to discuss the state transition and messages generated by FSM
controller in each state to implement the directory-based protocols.
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« We consider an example distributed shared-memory multiprocessor having two
processors P1 and P2 where each processor has its own cache, memory and directory

» Here, if the required data is not in the cache and is available in memory associated with
the respective processor, then the state machine is said to be in Uncached state; and
transition to other states is caused by messages such as: read miss, write miss,
invalidates and data fetch request

» Dealing with read/write misses

Processor 1 Processor 2 Interconnect Directory Memory

P1 P2 Bus Dir
step State |Addr | Value | State | Addr | Value | Action | Proc. | Addr | Value
P1: Write 10 fo A1

Memory|
rocs) | Value

|8}
(]
h)

>

P1. Read A1
P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

Al and A2 map to the same cache block
» Let us assume that the initially the cache states are Uncached (i.e., the block of data is
in memory); and at the first step P1 write 10 to address Al, here the following three
activities take place
1. The bus action is write miss and the processor P1 places the address Al on the
bus;
2. the data value reply message is sent to the controller, P1 is inserted in the
directory sharer-set {P1}; and
3. the state transition from Uncached to exclusive takes place, these operations are

shown here in the red color
4 A
// \

/ \ .
Proces;@r Pro&‘gs Interconnect Directory Memory
AY

P1 P2 \ us Directory Memon|
step State JAddr| Valud State| Addr| Value Astion| Proc. | Adar| Value| Adar| State | Procs) | value
P1: Write 10 to A1 N\ WrMs | P1 | A1 Al | Ex | {P1}
Excl. |[A1 [ 10 “paro [ P1 A1 | ©
P1: Read A1
P2: Read A1

| P2: Write 20 to A1

+ At Step 2: P1reads Al; CPU read HITs occurs, hence the FSM Stays in exclusive state
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P1 P2 __{Bus Directory Memor
step State | Addr | Value | State | Addr| Value | Action | Proc. | Addr | Value |Addr | State {Procs} |Value
P1: Write 10 to A1 Wrids | P1 | Al Al Ex | {P1}
Excl. |A1—10 DaRp [ P1 [A1 | 0
P1: Read A1 Excl-] A1 10

P2: Read A1

P2: Write 2010 A1

P2: Write 40 fo A2

» At Step 3: P2 reads Al

i.  Read miss occurs on the bus as P2 is initially in Uncached state; the controller
states of P1 and P2 change from Uncached to Shared

ii. P1 being in Exclusive state, remote read write-back is asserted and the state
changes from exclusive to Shared; and

iii. Thevalue (10) is read 1 from the shared-memory at address Al, into P1 and P2
caches at Al; and both P1 and P2 controllers are inserted in sharer-set {P1,P2}

» Working of FSM Controller

Processor 1 Processor 2

Interconnect

Directory Memory

P1 P2 Bus Directory Memo
step Statg Addi Valud Statg Add| Valu{Action Proc|Addi| Valug Add)| State {FProcs| Value
P1: Write 10 to A1 WriMs| P1 | A1 Al | Ex | {P1}
Excl.|A1 |10 DaRp| P1 |A1| O
P1: Read A1 Excl.| A1 | 10
P2: Read A1 Shar.|A1 RdMs| P2 | A1
Shar.| A1 | 10 AFteh | P1 A1 ] 10 10
Shar| A1 L#D |DaRp| P2 | A1 | 10 | A1 Bhar.P1.P2}] 10
P2: Write 20 to A1 /| 10
Pt 10
P2: Write 40 to A2 P 10
Write b@r
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» At Step 4: P2 write 20 to A2
i.  As Al and A2 maps to the same cache block; P1 find a remote write, so the state

of the controller changes from shared to Invalid

i. P2finda CPU write, so places write miss on the bus and changes the state from
shared to exclusive and writes value 20 to Al

iii. The director addresses to Al with sharer-set containing {P2}

Processor 1 Interconnect - Memory
Processor 2 Directory
P1 P2 Bus Directory Memory|
step State |Addr |Value |State |Addr | Value |Action |Proc. |Addr | Value |Addr | State |{Procs} |Value
P1: Write 10 to A1 Wrids P1 Al Al Ex {P1}
Excl. |A1 10 DaRp P1 Al 0
P1: Read A1 Excl. | A1 10
P2: Read A1 Shar. |A1 RdMs | P2 | A1
Shar. | Al 10 Ftch P1 | Al 10 10
Shar. | A1 | 10 DaRp | P2 | A1l 10 Al [shar. P1.P2} 10
P2: Write 20 to A1 Excl. | A1 |20 |Wrvs | P2 | A1l 10
Inv. Inval. P1 | Al Al [Excl. | {P2} 10
P2: Write 40 to A2 10

Al and A2 map to the same cache block

» At Step 5: P2 write 40 to A2
i. P2 being in Exclusive state, P2 write Miss at A2 occurs

ii. Director of A2 is in exclusive state and places P2 in the sharer-set {P2}
ii. P2 write-back 20 at A1 completes; the directory at Al is in Uncached state; the
sharer-set is empty and value 20 is placed in the memory

iv. P2 remains in Exclusive state, with address A2 and value 40

Processor 1 Processor 2 Interconnect Directory Memory
P1 | P2 | Bus Directory Memon
step State |Addr|Valud State| Addr Vafue|Acﬁon Proc.|Addr| Value| Addr| State | {Procs} | Value
P1:. Write 10 to A1 WrMs | P1 | A1l Al | Ex | {P1}
Excl. |A1 |10 lparp [ P1 [A1 [ ©
P1. Read A1 Excl. | A1 | 10
P2: Read A1 Shar. (A1 RdMs | P2 | A1
Shar. | A1 | 10 Ftch | P1 | A1 | 10 10
Shar.|A1 |10 |DaRp| P2 | A1 | 10 | A1 Bhar. P1.P2} | 10
P2: Write 20 to A1 Excl. [A1 |20 WrMs | P2 | A1 10
Inv. Inval. | P1 | A1 Al Excl. | {P2} 10
P2: Write 40 to A2 WrMs | P2 | A2 A2 Excl. | {P2} 0
WrBk | P2 | A1 | 20 |A? Unca.| {} 20
Excl. [42 [40 |parp| P2 [ A2 0 A2 |Excl. |{P2} 0

Al and A2 map to the same cache block
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Performance of Multiprocessors: Symmetric Shared-Memory Architecture
In bus-based multiprocessor using an invalidation protocols, several phenomenon combine to
determine performance:

» Overall cache performance is combination of the behavior of the Uniprocessor cache
miss-traffic and the traffic caused by the communication due to invalidation and
subsequent cache miss

» Changing processor count, cache size and block size effect these two components of
miss rate
v' The misses arising from inter-processor communication, called coherence misses,

can be from two sources true sharing and false sharing.

« True Sharing: The so-called true sharing misses arise from communication of data
through cache-coherence mechanism
v' The first write by processor to a shred cache-block caused an invalidation to
establish ownership of that block
v" When another processor attempts to read modified word, a miss occurs and the
resultant block is transferred
v' Both the misses are classified as true-sharing misses, as they arise from the
sharing of data

» False Sharing: it arise from the use of invalidation-base coherence algorithm with a
single valid bit per cache block

v' False sharing occurs when a block is invalidated and a subsequent reference
causes a miss. i.e.,

v the word being written and the word read are different and the invalidation does not
cause a new value to be communicated, but only causes an extra cache miss

v" Here, the block is shared but no word in the block is shared and the miss would not
occur is the block size were a single word

Example of True and False Sharing:
» Considering the previous example, assume the words Al and A2 are in the same cache
block, which is in the shared state in the caches of P1 and P2
» Let us identify the true-sharing miss and false sharing miss for the following sequence of

events
Time P1 P2
1 Write Al
2 Read A2
3 Write Al
4 Read A2
5 Write A2

+ Event 1: P1 Write A1 —is true sharing miss, since A1 was read by P2 and needs to be
invalidated from P2

+ Event 2: P2 Read A2 — is false sharing miss, since A2 was invalidated by the write of Al
in P1, but the value of Al is not used in P2
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Event 3: P1 Write Al — is false sharing miss; since the block containing Al is marked
shared due to read in P2; but P2 did not read Al

Event 4: P2 Write A2 — is false sharing miss; since the block containing A2 is marked
shared due to read in P2 (event 2); but P2 did not Write A2

Event 5: P1 Read A2 — is true sharing miss; since the value being read by P2 was
written by P2 (in event 4)

Performance of Multiprocessors
Distributed Shared-Memory Architecture

The performance of directory-based multiprocessors depends on many of the same
factors (such as processor count, cache size and block size etc.) that influence the
performance of bus-based multiprocessor

In addition, the location of requested data item which depends on both the initial
allocation and sharing pattern also influence the performance of distributed shared-
memory architecture

Here, the distribution of memory requests between local memory and remote memory is
key to the performance, because it affects both the consumption of both global
bandwidth and latency seen by the requests

This can be visualized from these figures

Here the cache misses are separated into the local and remote requests

The graphs for data miss rate vs. cache size, obtained using same benchmarks, show
that miss rate decrease as cache size grow

Note that there is a steady decrease in the local miss rate while the decline in the remote
miss rate depend on coherence misses

In all cases shown here, the decrease in the local miss rate is larger than the decrease
in the remote miss rate

The graphs for data miss rate vs. block size, obtained using same benchmarks, show
that miss rate decrease as block size increases

Synchronization

Why Synchronization?

v" While using multiprocessor architecture, we need to know when it is safe for

different processes to use shared data

v This is accomplished by using the synchronization mechanisms
These mechanisms are built with user-level software routines that rely on the hardware
supplied synchronization instructions
For small multiprocessors Uninterruptable instruction are used to fetch and update
memory which is referred to as the atomic operation
For large scale multiprocessors, synchronization can be a bottleneck
Several techniques have been proposed to reduce contention and latency of
synchronization
Here, we will examine the hardware primitives to implement synchronization and then
construct synchronization routines
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Hardware Primitives: Uninterruptable Instructions

The basic requirement to implement synchronization in a multiprocessor is the set of
hardware primitives with the ability to atomically read and modify a memory location,

v i.e., read and modify are performed in one step
One typical operation that interchanges a value in a register for a value in memory is
referred to as Atomic exchange
There are number of other atomic primitives that can be used to implement
synchronization
The key property of these atomic primitives is that they read and update a memory value
atomically
The other such operations used in many old multiprocessors is Test-and-Set and fetch-
and-increment etc.
Now let us understand how the atomic operation work?

Atomic Exchange: To see how we can use this primitive to build synchronization, let us
assume we want to build a simple lock where

v" 0 indicates that lock is free; and

v 1indicates that lock is unavailable
To implement synchronization, a processor tries to set the lock by exchange of 1, which
is in the register, with the memory address corresponding to the lock
The value returned from the exchange instruction is 1 if some other processor had
already claimed access, otherwise the value returned is O; i.e.,
The synchronization is locked and unavailable if some other processor had already
claimed access; otherwise the value returned is 0
In the later case, where the value returned is O, the value is changed to 1, preventing
any competing exchange from also retrieving 0

Example:
Consider two processors trying to exchange simultaneously
This race is broken when one of the processor exchange first and returns 0, and the
second processor will return 1 when it does the exchange
Test-and-set: tests a value and sets it if the value passes the test
Fetch-and-increment: it returns the value of a memory location and atomically
increments it
Key to the atomic operations is that each operation is indivisible
Implementing a single atomic instruction in hardware is complex and is hard to have
read & write in one instruction; therefore
In the recent multiprocessor pair of instructions is used — the two instructions are:

v Load linked (or load locked) and

v’ Store conditional
Here, the second instruction returns a value from which it can be deduced as if the
instruction were executed as atomic
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Note that:
v Load linked (LL) returns the initial value
v' Store conditional (SC) returns 1 if it succeeds (no other store to same memory
location since proceeding load) and 0 otherwise

These instructions are used in sequence:
v If the contents of memory location, specified by the LL are changed before the
before the SC to the same address occurs, then the SC fails
v' The store conditional returns a value 1 or O indicating whether the SC was
successful or not
Let us consider an example program segment showing implementation of atomic
exchange on memory location specified by the contents of register R1
Example doing atomic swap with LL & SC:

try: MOV R3,R4 ; mov exchange value

Il R2,0(R1) : load linked

scC R3,0(R1) : store conditional

beqz RS3,try ; branch store fails (R3 = 0)
mov R4,R2 ; put load value in R4

At the end of this sequence, the contents of R4 and memory location specified by R1
have been atomically exchanged

The LL —SC primitive can be used to build other primitives, e.g., the atomic fetch and
increment can be constructed as:

Example doing fetch & increment with LL & SC:

try: Il R2,0(R1) ; load linked
addi R2,R2,#1 ; increment (OK if reg—reQ)
sC R2,0(R1) : store conditional
beqz R2try ; branch store fails (R2 = 0)

As the SC instruction simply checks that its address matches that in the link register,
therefore, register-register instructions can safely be place after the LL instruction;
however, the number of instructions in between LL and SC must be kept small

Summary:

In this series of four lectures on multiprocessors we have studied how improvement in
computer performance can be accomplished using Parallel Processing Architectures
Parallel Architecture is a collection of processing elements that cooperate and
communicate to solve larger problems fast

Then we described the four categories of Parallel Architecture as: SISD, SIMD, MISD
and MIMD architecture
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» We noticed that based on the memory organization and interconnect strategy, the MIMD

machines are classified as:
v' Centralized Shared Memory Architecture
v Distributed Memory Architecture

+ We also introduced the framework to describe parallel architecture as a two layer
representation: Programming and Communication models

+ We talked about sharing of caches for multi-processing in the symmetric shared-memory
architecture in details

» Here, we studied the cache coherence problem and introduced two methods, write
invalidation and write broadcasting schemes, to resolve the problem

» We also discussed the finite state machine for the implementation of snooping algorithm

+ Today we have discussed FSM controller to implement Directory Based Protocols which
involve three processors or nodes, namely: local, home and remote nodes

» We discussed the state transition and messages generated by FSM controller in each
state to implement the directory-based protocols

« We have also discussed in details the performance of distributed and centralized
shared-memory architecture

» Concluding our discussion on the multiprocessor, we can say that multiprocessors are
highly effective for multi-programmed work loads

* More recently, multiprocessors have proved very effective for commercial workloads
such as web searching

» The centralized memory architecture, also known as Symmetric Multiprocessors (SMPs)
maintain a single centralized memory with uniform access time; while......

» In contrast, the Distributed Shared-Memory Multiprocessor (DSMs) have non uniform
memory architecture and can achieve greater scalability

« The advantages of these two architecture, i.e., maximizing uniform memory access while
allowing greater scalability can be partially combined in the Sun Microsystems's Wildfire
architecture, shown here

» Here, note that large SMPs (such as E6000) are used as nodes to maximize uniform
memory access and greater scalability is achieved by using Wildfire Interface (WFI)

+ Each E6000 can accept up to 15 processors or /O Boards on Giga-plane bus
interconnect

 WHFI can connect 2 or 4 E6000 multiprocessors by replacing one 1/O board with WFI
board

* You may look into further details of the Sun Microsystems's Wildfire architecture from
literature and study its performance
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Lecture 38
Input Output Systems
(Storage and I/0O Systems)

Today’s Topics

Recap:

Disk Storage Systems
Interfacing Storage Devices
Conclusion

Recap: Multiprocessing

In last four lectures we discussed how the computer performance can be improved by
Parallel Architectures
Parallel Architecture is a collection of processing elements that cooperate and
communicate to solve larger problems fast
Parallel architectures are implemented as: SIMD, MISD and MIMD machines, where the
MIMD machines facilitate complete parallel processing
The MIMD machines are classified as:

v Centralized Shared Memory Architecture

v Distributed Memory Architecture
The centralized memory architecture, maintain a single centralized memory with uniform
access time
In contrast, the distributed Shared-Memory multiprocessors have non uniform memory
architecture but offer greater scalability
The sharing of caches for multi-processing introduces cache coherence problem
In Centralized shared-memory architecture, the cache coherence problem is resolved by
using write invalidation and write broadcasting schemes those implement Snooping
algorithm
In Distributed shared-memory architecture, the cache coherence problem is resolved by
using Directory Based Protocols

Recap: outside processor

Today the :

v Processing Power doubles every 18 months

v' Memory Size doubles every 18 months; and

v Disk positioning rate (Seek + Rotate) doubles every 10 Years
Recall the 2™ lecture, where we discussed the quantitative principles to define the
computer performance, we noticed that the execution time of CPU is not the only
measure of computer performance

Introduction: outside the processor

The overall performance of a computer is measured by its throughput, which is very
much influenced by the systems external to the processor

As we have already pointed out in 25" lecture that measuring the overall performance of
a powerful Uni-processor or a parallel processing architecture without considering the
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I/O devices and their interconnection, is just like trying to determine the road
performance of a car, which is fitted with powerful engine but is without wheels
The effect of neglecting the 1/0s on the overall performance of a computer system can
best be visualized by Amdahl's Law which identifies that: system speed-up limited by the
slowest part!
Let us consider computer whose response time is 10% longer than the CPU time
If the CPU time is speeded up by a factor of 10 then neglecting the 1/Os, the overall
speed up as determined using the Amdahl's Law is 5; i.e.,
Half of what we would have achieved if both the CPU time and I/O time were sped up 10
times
In other words we can say 50% lose in the speed-up
Similarly, if the CPU time is speeded up 100 times and neglecting the I/Os, the overall
speed up is 10; i.e.,
10% of what we would have achieved if both the CPU time and I/O time were sped up
100 times
In other words we can say that ignoring the 1/Os there is 90% lose in the speed-up
Thus, I/0 performance increasingly limits the system performance and efficiency
After having detailed discussion on the performance enhancement of:

v instruction Set Architecture

v' computer hardware

v’ instruction level parallelism

v" memory hierarchy systems and

v’ parallel processing architecture
We are, now, going to focus our discussion on the study of the systems outside
processor, i.e., /0 systems

I/O System

An 1/O system comprises storage I/Os and Communication 1/0Os

interrupts

Processor

|
Cache

-

| Memory - I/O Bus |

Main I/O I/O I/O
Memory Controller Controller Controller

I I |
@ @ Graphics /m(
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The Storage 1/Os consist of Secondary and Tertiary Storage Devices; and

The communication 1/O consists of /O Bus system which interconnect the
microprocessor and memory with the 1/O devices

Today we will talk about the storage 1/10

The secondary and tertiary storages include: magnetic disk, magnetic tape automated
tape libraries, CDs, and DVDs

These devices offer bulk data storage, but on the contrary are too large for embedded
applications

Disk Storages: Technology Trends

» As you can see from the plot shown here that extensive improvement have been made
in the disk capacity;
» before 1990 disk capacity doubled every 36 months; and now every 18 months;
First Law in Dizk Density
54 v - £ ’a " "
53 N S T W W D W B T U W B S B R
£ EM190E)
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Storage Technology Drivers

This improvement in the technology trend is driven by the prevailing computing paradigm
In 1950s computing observed migration from batch to on-line processing where as
In 1990s on-line processing migrated to ubiquitous computing; i.e.,
v/ computers in phones, books, cars, video cameras, ...
v nationwide fiber optical network with wireless tails
This development in processing effected the storage industry and motivated to develop:
v' the smaller, cheaper, more reliable and lower power embedded storages for
ubiquitous computing
v"high capacity, hierarchically managed storages as data utilities
Before discussing the storage technologies, let us perceive the historical perspective of
magnetic storages
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Historical Perspective
* 1956 - early 1970s
v IBM Ramac and Winchester were developed for mainframe computers as
proprietary interfaces
v Steady shrink in form factor: 27 in. to 14 in.
» 1970s developments
v 5.25 inch floppy disk form-factor (microcode into mainframe)
v early emergence of industry standard disk interfaces
o ST506, SASI, SMD, ESDI

Disk History
+ Capacity of Unit Shown Megabytes; and
« Data density: M bit/sq. in.

Model 3340 hard disk Model 3370
1973 1979

1973: 1979:

Capacity: 140 MBytes ::> 2,300 MBytes
Density: 1. 7 Mbit/sq. in 7.7 Mbit/sq. in

Historical Perspective
» Early 1980s: Era of PCs and first generation workstations; and
« Mid 1980s: Era of Client/server computing and Centralized storage on file server
« This voyage of computing from first generation to client/server resulted in end of
proprietary interfaces and:
v Accelerated disk downsizing: 8 inch to 5.25 inch
v' Mass market disk drives become a reality
v industry standards: SCSI, IPI, IDE
v" 5.25 inch drives for standalone PCs,
» Late 1980s - Early 1990s: Era of Laptops, note-books, (palmtops)
v' 3.5inch, 2.5 inch, (1.8 inch form factors)
v" Form factor plus capacity drives market,
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* Challenged by DRAM, flash RAM in PCMCIA cards
v’ still expensive, Intel promises but doesn’t deliver
v unattractive M Bytes per cubic inch
* Optical disk failed on performance but found slot (CD ROM)

Disk History

Travelstar VP Travelstar 8GS
1997 1997 . R
1,450 3,000 @ ;
1.600 8.100 y ;
1989: 1997: 1997:
63 Mbit/sq. in 1450 Mbit/sq. in 3090 Mbit/sqg. in
60,000 MBytes 2300 MBytes 8100 MBytes

A huge disk drive changed to palm-drive

DRAM as % of Disk over time MBits per square inch:
* In 1974, the use of DRAM was only 10% of the disk storage
» Itreached to the peak in 1986 when DRAM was 40% of the disk storage
« This trend once again started reducing and was up to 15% in 1998

DRAM/Disk

50.00%
9 v. 22 Mb/si

40.00%

30.00% //\\

20.00% ——— DRAM]/Disk
? / ™~

0.2 v. 1.7 Mb/si 470 v. 3000 Mb/si

10.00%

0-00% T T T T 1
1975 1980 1985 1990 1995 2000
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Alternative Data Storage Technologies: Early 1990s

Technology Cap (MB) | BPI TPI BPI*TPI Data Xfer | Access
(Million) (KBytels) Time

Conventional Tape:

Cartridge (.25") 150 12000 | 104 1.2 92 min
IBM 3490 (.5") 800 22860 | 38 0.9 3000 sec
Helical Scan Tape:

Video (8mm) 4600 43200 | 1638 71 492 45 secs
DAT (4mm) 1300 61000 | 1870 114 183 20 secs
Magnetic & Optical Disk:

Hard Disk (5.25") 1200 33528 | 1880 63 3000 18 ms
IBM 3390 (10.5") 3800 27940 | 2235 62 4250 20 ms
Sony MO (5.25") 640 24130 | 18796 454 88 100 ms

Devices: Magnetic Disks
* Purpose:
v' Long-term, nonvolatile storage
v’ Large, inexpensive, slow level in the storage hierarchy
» Characteristics:
v" Seek Time (~8 ms avg)
o positional latency
o rotational latency
» Transfer rate
v' About a sector per ms (5-15 MB/s)
v Blocks
+ Capacity
v' Gigabytes
v" Quadruples every 3 years (aerodynamics)

Devices: Magnetic Disks

Track
Response time
= Queue + Controller + Seek + Rot + Xfer Sector
—_— =
Service time
Cylinder
—__ Platter

Head
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Speed: 7200 RPM = 120 RPS => 8 ms per rev
Ave rot. latency =4 ms

128 sectors per track => 0.25 ms per sector

1 KB per sector=>16 MB /s

Tape vs. Disk

Longitudinal tape uses same technology as hard disk; tracks its density improvements
Disk head flies above surface, tape head lies on surface

Disk fixed, tape removable

Inherent cost-performance based on geometries: disk Vs. Tape

Disk: fixed rotating platters with gaps

(random access, limited area, 1 media / reader)

Current Drawbacks to Tape

Tape wear out:

v Helical 100s of passes to 1000s for longitudinal
Head wear out:

v 2000 hours for helical
Both must be accounted for in economic / reliability model
Long rewind, eject, load, spin-up times; not inherent,
just no need in marketplace (so far)

I/0 Performance Parameters

Diversity: Which I/O device can connect to the CPU

Capacity: How many 1/O devices can connect to the CPU

Latency: Overall response time to complete a task

Bandwidth: Number of task completed in specified time - throughput

The parameters diversity that refers to which I/O device and capacity means how many
I/O devices can connect to the CPU are the I/O performance measures having no
counterpart in CPU performance metrics.

In addition, the latency (response time) and bandwidth (throughput) also apply to the I/O
system.

An |/O system is said to be in equilibrium state when the rate at which the 1/O requests
from CPU arriving, at the input of I/O queue (buffer) equals the rate at which the
requests departs the queue after being fulfilled by the 1/0 device.

CPU Performance

The parameters diversity refers to I/O device and capacity

It identifies how many I/O devices can connect to the CPU

Note that the I/O performance measures have no counterpart in CPU performance
metrics

In addition, the latency (response time) and bandwidth (throughput) also apply to the I/O
system
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Recall from our discussion in the 3™ lecture, where we studied that an I/O system works
on the principle of producer-server model

This model comprises an area called queue, wherein the tasks accumulate waiting to be
serviced and the device performing the requested service, called server.

Producer creates tasks to be processed and place them in a FIFO buffer — queue.
Server takes the task form buffer and perform them

Producer Queue Server

Arrivals departures

— I/O device/

controller

The response time is the time task takes from the moment it arrives in the buffer to the
time the server finishes the task

Disk I/0O Performance Measure

The metrics of disk 1/0O performance are:

v" Response Time is the time to Queue + Device Service time

v Throughput: the percent of the total bandwidth

The graph shows the relationship between the response time and throughput of disk 1/O
system

Here, the minimum response time achieves only 10% of the throughput

The response time of 100% throughput takes 7-8 times the minimum response time

20Q_ |--+eeeesssm e

150

100

50

Response time — latency ms

|
| I
20%  40% 60% 80% 100%

%o of maximum throughput - bandwidth

I/O Transaction Time: Performance parameters

The interaction time or transaction time of a computer is sum of three times:
v' Entry Time: the time for user to enter a command — average 0. 25 sec; from
keyboard 4.0 sec.
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e R
/

v' System Response Time: time between when user enters the command and

system responds

v" Think Time: the time from reception of the command until the user enters the

next command

Response Time vs. Productivity

Example: Let us see what happens to transaction time as system response time shrinks

from 1.0 sec to 0.3 sec?

Assume:
v with Keyboard the entry time is 4.0 sec and think time is 9.4 sec; and
v' With Graphics: 0.25 sec entry, 1.6 sec think time

The upper part of graph showing the response time for conventional use (keyboard)

depicts that:

conventional
0.3s

conventional
1.0s
graphics
0.3s

[ | entry [ | resp M think

graphics
1.0s

0.00 5.00 10.00 15.00

Time

1.0 — 0.3 = 0.7sec off response saves 4.9 sec (34%)
And, lower graphs for graphics saves 2.0 sec (70%) of total time per transaction;
i.e., shrinkage in the response time results in greater productivity

Processor Interface Issues

Processor interface * 1/O Control Structures
v' Isolated I/O v" Polling
v" Memory mapped I/0 v Interrupts
v Interrupts v" DMA
v" 1/0 Controllers
v" 1/0 Processors

+ Capacity, Access Time, Bandwidth

* |Interconnections
v' Busses
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I/O - Processor Interface
* Isolated I/O Bus is implemented as:
v Independent I/O bus
v' common memory & I/O bus
It requires separate I/O instructions (in, out)

Independent I/0O Bus

|

memory
bus

Separate /O instructions
[Interface |  [Interface | (in, out)

[Peripheral|  |Peripheral |

Common Memory & I/0 Bus

CPU
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Memory Mapped I/O

Single Memory & IO Bus
cPuU No Separate 7O Instructions
ROM
[Memory | |Interface | [Interface |
Periph | Periph |
=0 | Peripheral| [Peripheral|
[=]
= o
| L2% |
1 Memory Bus /O bus
| Me;':ﬁory | | Bu;Adapto;rl
Programmed 1/O (Polling)
CPU
1l Is the busy wait loop
data not an efficient
ready? |, way to use the CPU
hd v l_lﬁ’. unless the device
== ves < Very fast
read
4 data
| device | but checks for I1O
completion can be
t" dispersed among
%otre computationally
ata intensive code
done? no
yes ¥
Interrupt Driven Data Transfer
CPU \<s- 2dd
Sfsub user
_ 3 (o and program
interrupt or
| / nop
5] @) save PC
- (3) interrupt
@I service addr__|
——_read .
store interrupt
. service
[(4) i ___routine
memory
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Direct Memory Access

+ CPU sends a starting address, direction, and length count to DMAC. Then issues "start".

CPU

|

r

[Memory] [DMAC | [10C]

| device | Peripherals
DMAC
n

ROM

Memory
Mapped I/O RAM

»+  DMAC provides handshake signals for Peripheral Controller, and Memory Addresses
and handshake signals for Memory.

Input / Output Processors

* 1/O Processor looks in memory for commands

[OP]——
| |

| main memory
bus

Mem

e

— [o7]
— [02]

— o]

bus

Input / Output Processors

(1)

CPU

target device
where ¢mnds are

[ OP| Device |Address |

|OP| Addr [Cnt |Other |

what / \special

to do requests
where how
to put much
data

"\ (4)
IOP P

<

memory
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1. CPU issues instruction to IOP
2-3 IOP steals memory cycles.

Device to/from memory transfers are controlled by the IOP directly.
4 IOP interrupts CPU when done

Summary
» Disk industry growing rapidly, improves:
v'bandwidth 40%/yr ,
v areal density 60%/year, $/MB faster?
* queue + controller + seek + rotate + transfer
» Advertised average seek time benchmark much greater than average seek time in
practice
* Response time vs. Bandwidth tradeoffs
» Value of faster response time:
v' 0.7sec off response saves 4.9 sec and 2.0 sec (70%) total time per transaction
=> greater productivity
v/ everyone gets more done with faster response, but novice with fast response =
expert with slow
» Processor Interface: today peripheral processors, DMA, 1/O bus, interrupts
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Lecture 39
Input Output Systems
(Bus Structures Connecting I/O Devices)

Today’s Topics

Recap:

I/O interconnect Trends
Bus-based Interconnect
Bus Standards
Conclusion

Recap: 1/0 System

Last time we noticed that the overall performance of a computer is measured by its
throughput, which is very much influenced by the systems external to the processor
The effect of neglecting the 1/0Os on the overall performance of a computer system can
best be visualized by Amdahl's Law which identifies that: system speed-up limited by the
slowest part!
We noticed that an I/O system comprises storage 1/0Os and Communication I/Os
The Storage 1/0Os consist of Secondary and Tertiary Storage Devices; and
The communication 1/O consists of /O Bus system which interconnect the
microprocessor and memory with the 1/0 devices
The development in processing effected the storage industry and motivated to develop:
v' The smaller, cheaper, more reliable and lower power embedded storages for
ubiquitous computing; and high capacity, hierarchically managed storages as
data utilities
We noticed that diversity, capacity, latency and bandwidth are the most important
parameters of I/O performance measurement
I/0 system works on the principle of producer-server model, which comprises an area
called queue, wherein the tasks accumulate while waiting to be serviced
The metrics of disk I/O performance are:
v" Response Time, which is the time to Queue + Device Service time; and
v Throughput, which is the percent of the total bandwidth

Example:
Comparing the performance of different I/Os. Assume the following parameters, and compare
the time to read and write a 64Kbyte block to flash memory and disk

Flash memory takes:

v' 65 nstoread 1 byte

v" 1.5 psec. to write 1 byte and

v" 5 msec. to erase 4KB
Disk Storage has:

v Average seek time = 4.0 msec.
Average rotational delay = 8.3 msec.
Transfer time = 4.2 MB/sec;
Controller overhead = 0.1 msec.

A NERANERN
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» Average read or write time for disk is same and is calculated as:
= Average seek time + Average rotational delay + Transfer time + Controller overhead
= 4.0 ms+ 8.3 ms + 64KB/4.2 MB/sec + 0.1 ms
= 27.3 msec.

 Read time for flash is the ratio of the flash size to the read bandwidth:
= 64KB/1B/65ns = 4.3 ms

» Flash is about 6 times faster than the disk for reading 64KB

+ Write time for flash is sum of the erase time and the ratio of the flash size to the write
bandwidth:
= (64KB/4KB/5ms) + (64KB/1B/1.5us)
=178.3ms

» The disk is about 6 times faster than the flash for writing 64KB

Interconnect Trends
« The I/O interconnect is the glue that interfaces computer system components
+ 1/O interconnects are facilitated using High speed hardware interfaces and logical
protocols
+ Based on the desired communication distance, bandwidth, latency and reliability,
interconnects are classified as used:
» Backplanes, channels, Networks

Network Channel Backplane

Distance >1000 m 10 - 100 m I m

Bandwidth 10 - 100 Mb/« 40 - 1000 Mb/320 - 1000+ M

Latency high (>ms) medium low (<ps)

Reliability low medium high
Extensive CRt  Byte Parity =~ Byte Parity
message-based memory-mapped
narrow pathways wide pathways

distributed centralized

Bus-Based Interconnect
« Communication on different interconnects is done via buses
* Bus is a shared communication link between subsystems
» The advantages of using buses are:
v" Low cost: a single set of wires is shared multiple ways
v Versatility: Easy to add new devices & peripherals may even be ported between
computers using common bus
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Disadvantage
v" The major disadvantage of a bus is that it creates a communication bottleneck,
possibly limiting the maximum 1/O throughput
v' In server systems, where /O is frequent, design a bus-system capable of
meeting the demand of the processor is a real challenge

Bus speed is limited by physical factors, such as:
v' the bus length
v the bus loading, i.e., number of devices connected to a bus

These physical limits prevent arbitrary bus speedup, which make the bus design difficult
Buses are classified into Two generic types as:

v' 1/0O busses: are lengthy, facilitate to connect many types of devices, offer wide
range in the data bandwidth, and follow a bus standard (/O bus is sometimes
called a channel)

v' CPU-memory buses: high speed, matched to the memory system to maximize
memory —CPU bandwidth, single device (sometimes called a backplane)

Bus Transactions

Bus transactions are usually defined with reference to the memory, i.e., what they do
with memory — memory read or memory write
Bus transaction includes two parts: Sending the address and Receiving the data
Read Transaction:
v/ Address is first sent down the bus to the memory together with asserting the read
signal; and ....

The memory responds by sending the data and de-asserting the wait signal
Write Transaction:
v' Address and data are sent down the bus to the memory together with asserting
the write signal
v' The memory stores the data and de-asserting the wait signal

Bus Transition Protocols

Bus transition or bus Communication Protocols specify the sequence of events and
timing requirements in transferring information

Synchronous Bus Transfers: follows a sequence of operations relative to a common
clock

Asynchronous Bus Transfers is not clocked and uses control lines (req., ack.) which
provide handshaking among the devices having bus transition
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Synchronous Bus Protocols

Clock I | I | | |

Address _X P
Data
Read —x |~
Wait /

begin r¢ad

« The address transmitted in the 1% clock, using control lines to indicate the type of
request; the read begins when NOT READ is asserted

Clock | | | | I |

] ~

Address >< /><

Data ‘><

Read \—,/

P Read complete
e N ¥
Wait Ne— |
begin r¢ad

« The data are not ready until the wait signal is reasserted

Asynchronous Handshake
» The asynchronous bus is not clocked, rather it is self timed
« Hand shaking protocols are used between the bus sender and receiver

Write Transaction

|

Address > _Makter Asserts Addkess | >K __Next Address
Data > _Makter Alsserts Daté ). @

— [
Read == —

— 1 ¥ N
Req. \/ // X 4 Cycle Handshake
Ack.

to t1 t2 t3 t4 t5

« t0: Master has obtained control and asserts address, direction, data; Waits a specified
. amount of time for slaves to decode target

tl: Master asserts request line

t2: Slave asserts ack, indicating data received
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t3: Master releases req
t4: Slave releases ack

Read Transaction

Address /" Masfer Assdrts Address >/ Next Address
>\ ™\
Data
%
Read N
Y )
Ack
N
__// NN
\ ; / \ 4 Cycle Handshake
N N
to 1 i3 13| t4 tp

Read Transaction

t0 : Master has obtained control and asserts address, direction, data; Waits a specified
amount of time for slaves to decode target\

tl: Master asserts request line

t2: Slave asserts ack, indicating ready to transmit data

t3: Master releases req, data received

t4: Slave releases ack

Bus Arbitration Protocols

Having understood the bus transactions, the most important is to understand how is a
bus reserved by a device that wishes to communicates when multiple devices need the
bus access?

This is accomplished by introducing one or more bus masters into the system

A Bus Master has ability to control the bus requests and initiate a bus transaction

Bus Slave is module activated by the master for transaction

In a simple system processor is a bus master as it initiates a bus request; and memory is
usually a slave

Alternately, a system may have multiple bus masters, each of which may initiate a bus
transfer to the same slave

This will create chaos; as it is similar to when number of students (masters) in a class
room start asking questions to the instructor (slave)

How the instructor will overcome this situation?

The instructor must have a protocol to decide who is the next (master) to talk

Similarly, the protocol to manage the bus transaction by more than one masters is
referred to as Bus Arbitration Protocol

Bus Arbitration Protocol provide the mechanism for arbitrating (deciding) access to the
bus so that it is used in a cooperative manner
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» Here, a device or processor (master) wanting to use the bus signals a bus-request and
is later granted the bus

» Once the bus is granted the master uses the bus and when finished the transaction
signals the arbiter that bus is ho more required

» The arbiter then may grant the bus to another master

Master Slave 000

l l Grant
Request
Release

« The multiple-master bus have a set of three control lines for performing the request,
grant and release operation
» The bus arbitration schemes usually try to balance two factors:
v' Bus-priority: every device has certain priority; the device with highest priority
should be serviced first
v Fairness: every device that want to use the bus is guaranteed to get the bus
eventually
» The bus arbitration schemes can be classified as:
v' Daisy Chain Arbitration
v' Centralized Parallel Arbitration
v Distributed Arbitration

Bus Arbitration Schemes
« The bus-grant line is run through the devices from highest-to-lowest priority
« If the device has requested bus access, it uses the grant line to determine access has
been given to it

Parallel (Centralized) Arbitration

T Bus Request
1 | 11 1] Bus Grant

VI o BV O

Serial Arbitration (daisy chaining)

BG BGi BGo BGi BGo BGi BGo
AU M M M
- PR o i
BI\ I I I
Polling
AU M M M
BR A C BR A BR A C
BR I I |
A
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Bus Arbitration Schemes
» Sequence of Daisy Chain Arbitration

1.
2.

3.

4.
5.

Signal the request line

Wait for a transition on the grant line from low-to-high (it indicates that bus is
being reassigned)

Intercept the grant signal, and do not allow the lower priority devices to see it.
(stop asserting the request line)

Use the bus

Signal that the bus is no longer required by asserting the release line

« Centralized Parallel Arbitration

v
v
v

This scheme uses multiple request lines

The devices independently request the bus

A centralized arbiter chooses from among the devices, request the bus access
and notify the selected device that is now the bus-master

« Distributed Arbitration schemes are classified as:

v

Distributed arbitration by self-selection

o This scheme also uses multiple request line

o The devices requesting the bus access determine who will be granted the
access

o Here, each device wanting the access places a code indicating its
identity on the bus

o By examining this code, the devices can determine the highest priority
device that has made request

v' Distributed arbitration by Collision Detection

o In this scheme each device independently request the bus

o Multiple simultaneous requests result is collision

o A device is selected among the collided devices based on the priority
Bus Options: Design Decisions
Option High performance Low cost
Bus width Separate address & data lines Multiplex address & data lines
Data width Wider is faster (e.g., 32 bits) Narrower is cheaper (e.g., 8 bits)
Transfer size | Multiple words has less bus overhead Single-word transfer is simpler
Bus masters | Multiple (requires arbitration) Single master (no arbitration)
Split Yes—separate No—continuous
transaction? Request and Reply connection is cheaper and has lower latency

packets gets higher bandwidth (needs multiple masters)

Clocking Synchronous Asynchronous
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Bus Design Decisions

The decisions regarding design of a bus system depend on:

1. Bus Bandwidth

2. Data width

3. Transfer size
Based on the bus bandwidth; separate address and data buses are used for high
performance while the multiplexed address and data line are used for low cost design
Based on the data width; wider (64-bit) data bus is recommended for high performance
systems and narrow (8-bit) offers cheap solution
Based on the transfer size, multiple word are transferred for high performance
computing as it offers less overhead while single word transfer is used for low cost
design as it is simples
Split transition, Bus masters, and clocking are other important parameters in bus design
decisions
Based on the bus masters, multiple master are used in high performance computing;
and single master that involve no arbitration is used for low cost systems
Split transition is used for high performance design where separate requests and reply
packets get higher bandwidth; it involves multiple masters
The synchronous multiple masters protocols are described hereafter

Synchronous Bus Protocols- Multiple Masters

Pipelined/Split transaction Bus Protocol

Address _>< addr 1 addr2 addr ] %

Data

Wait

>< wait ><: oK 1 ><’\ H

Where as bus has multiple masters, the multiple processors or 1/O devices can initiate
bus transaction

Here, the bus can offer higher bandwidth using packets as opposed to holding the bus
for full transaction

This technique is called a split transaction or pipelined bus

Here, the bus events are divided into number of requests and replies; so the bus can be
used in time between request and reply

The split transaction makes the bus available for other masters while the memory reads
the word from requested address
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Bus Standards

Clock rate: 5 MHz / 10 MHz (fast) / 20 MHz(ultra)

Width: n = 8 bits / 16 bits (wide);

up to n — 1 devices to communicate on a bus or “string”

Devices can be slave (“target”) or master (“initiator”)

SCSI protocol: a series of “phases”, during which specific actions are taken by the
controller and the SCSI disks

SCSI: Small Computer System Interface

Bus Free: No device is currently accessing the bus

Arbitration: When the SCSI bus goes free, multiple devices may request (arbitrate for)
the bus; fixed priority by address

Selection: informs the target that it will participate (Reselection if disconnected)
Command: the initiator reads the SCSI command bytes from host memory and sends
them to the target

Data Transfer: data in or out, initiator: target

Message Phase: message in or out, initiator: target (identify, save/restore data pointer,
disconnect, command complete)

Status Phase: target, just before command complete

1993 I/0 Bus Survey (P&H, 2nd Ed)

Bus S Bus TurboChannel MicroChannel PCI
QOriginator Sun DEC IBM kel
Clock Rate (MHz) 16-25 125-25 async 33
Addressing Virtual Physical Physical Physical
Data Sizes (bits) 8,16,32 8,16,24,32 8,16,24,32,64 8,16,24,32,64
Master Mt Single Mt Multi
Arbitration Ceniral Ceniral Ceniral Ceniral
32 bit read (MB/s) 33 25 20 33
Peak (MBJs) 89 84 75 111 (222)
Max Power (W) 16 26 13 25

1993 MP Server Memory Bus Survey

Bus Sunmnmit Challenge XDBus
QOriginator HP SGlI Sun
Clock Rate (MHZz) 60 48 66

Split transaction? Yes Yes Yes?
Address lines 48 40 ?7?

Data lines 128 256 144 (parity)
Data Sizes (bits) 512 1024 512
Clocks/transfer 4 5 47

Peak (MB/s) 960 1200 1056
Master Multi Multi Multi
Arbitration Central Central Central
Addressing Physical Physical Physical
Slots 16 9 10
Busses/system 1 1 2

Length 13 inches 127 inches 17 inches
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Lecture 40
Input Output Systems
(RAID and I/0O System Design)

Today’s Topics

Recap:

Redundant Array of Inexpensive Disks
I/0 Benchmarks

I/O System Design

Conclusion

Recap: I/0 device’s performance

Last time we compared the performance of disk storage and flash memory

We noticed that flash is six times faster than the disk for read and the disk is six time
faster than the flash for data write

Then we discussed the trends in I/O inter-connects as: the networks, channels and
backplanes

The networks offer message-based narrow-pathway for distributed processors over long
distance

Recap: I/O Interconnects

The backplanes offer memory-mapped wide pathway for centralized processing over
short distance

The interconnects are implemented via buses

The buses are classified in two major categories as the 1/0 bus and CPU-Memory bus
The channels are implemented using 1/0O buses and backplanes using CPU-Memory
buses

Recap: I/O buses

Then we discussed the bus transition protocols which specify the sequence of events
and timing requirements in transferring information as synchronous or asynchronous
communication

We also discussed bus arbitration protocols — the protocols to reserve the bus by a
device that wishes to communicates when multiple devices need the bus access

Here, we noticed that the bus arbitration schemes usually try to balance two factors:

Recap: I/O System

Bus-priority: the device with highest priority should be serviced first
Fairness: every device that want to use the bus is guaranteed to get the bus eventually
The three bus arbitration schemes are:

v Daisy Chain Arbitration

v' Centralized Parallel Arbitration

v' Distributed Arbitration
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Storage I/O Performance

Now having discussed the basic types of storage devices and the ways to interconnect
them to the CPU, we are going to look into the ways to evaluate the performance of
storage I/O systems

We know that if a storage device crashes then prime objective of a storage device
should be to remember the original information to make storage device reliable

The reliability of a system can be improved by using the following four methods

Reliability Improvement

Fault Avoidance — prevent fault occurrence by construction

Fault Tolerance — providing service complying with the service specification by
redundancy

Error Removal — minimizing the presence of errors by verification

Error Forecasting — to estimate the presence, creation and consequence of errors by
evaluation

Reliability, availability and dependability

The performance of storage 1/0Os is measured in terms of its reliability, availability and
dependability

These terminologies have been defined by Laprie; in the paper entitled

‘Dependable Computing and Fault Tolerance: Concepts and Terminology;

Published in the Digest of papers of 15" Annual Symposium on Fault Tolerant
Computing (1985)

Dependability

Laprie defined dependability as the quality of delivered service such that reliance can
justifiably be placed on this service;
Where the service delivered by a system is its observed actual behavior and the system
failure occurs when actual behavior deviates from the specified behavior
Note that a user perceives a system alternating between two states of delivered service;
these states are:

v/ Service Accomplishment — service is delivered as specified and

v Service Interruption — delivered service is different from the specified service

Quantifying the transitions between service accomplishment and service interruption is
the measure of the dependability
The dependability is measured in terms of the measure of:
v" module reliability, which is the measure of the continuous service
accomplishment;
v' and, module availability, which is the measure of the swinging between the
accomplishment and interruption states of delivered service
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Measuring Reliability

Now before we discuss the reliable and dependable designs of the storage 1/O let us
understand the terminologies used to measure reliability, availability and dependability
The reliability of a module is the measure of the time to failure from a reference initial
instant

In other words we can say the Mean Time To Failure (MTTF) of a storage module, a
disk, is the measure of reliability; and

The reciprocal of the MTTF is the rate of failure; and

The service interruption is measured as the Mean Time To Repair (MTTR)

Now let us understand, with the help of an example, how can we use these
terminologies to measure the availability of a disk subsystem

Example

Consider a disk subsystem comprising the following component
v' 10 disks
1SCSI controller
1 SCSI cable
1 power supply
1 fan
For the given values of MTTF of each component; find the system failure rate and
hence the system MTTF
10 disks, each with MTTF = 1,000,000 Hrs
1SCSI controller with MTTF = 500,000 Hrs

SR

« 1 SCSI cable with MTTF = 1,000,000 Hrs

» 1 power supply with MTTF = 200,000 Hrs

« 1 fan with MTTF = 200,000 Hrs
Solution:

System Failure Rate
=10 (1/2,000,000) +1/500,000 + 1/1,000,000 + 1/200,000 +1/200,000
= 23/1,000,000 Hrs

System MTTF = 1/Failure Rate = 1,000,000/23
= 43,500 Hrs =5 years

Availability

The availability of a module is the measure of the service accomplishment with respect
to the swinging between the two states of accomplishment and interruption
The module availability, therefore can be quantified as the ratio of the MTTF and Mean
Time Between Failure — MTBF (which is equal to the sum of MTTF and MTTR); i.e.,
Availability = MTTF / (MTTF +MTTR)

= MTTF / MTBF
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Network Attached Storages and Reliability
« Last time we discussed the disk storages and their interface with the processor using
channel and backplane interconnects; and talked about the impact of disk storages and
interconnects on the overall performance of the complete computing system

» Today we will discuss the network interconnects to interface multiple processers located
at a long distance and need high performance storage service

* A network provides well defined physical and logical interfaces; i.e., interconnect
separate CPU and storage system

» The networks are capable of sustaining high bandwidth transfer and their file-server
Operating system supports remote file access

* Hence, the network attached storages are more vulnerable to the reliability and their
dependability is very high

Network Attached Storage

Decreasing Disk Diameters

14" » 10" » 8™ 525" » 3.5"»25"» 1.8"» 1.3" » . ..
high bandwidth disk systems based on arrays of disks

Network provides
well defined physical
and logical interfaces:
separate CPU and
storage system!

. Network File Services

| OS structures
supporting remote
file access

3 Mb/s » 10Mb/s » 50 Mb/s » 100 Mb/s » 1 Gb/s » 10 Gb/s
networks capabie of sustaining high bandwidth transfers

Increasing Network Bandwidth

Network Attached Storages and Reliability
* So to improve both the availability and performance of storage system, disk arrays are
introduced, which contain many low cost disks
» The throughput of disk arrays is improved by having high bandwidth disk system which
employ many small disk drives; and
» The throughput of a disk array is increased by having many small arms on small (3.00” —
1.8”) disk drives rather than one long arm on a larger disk (14" — 24”); and
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Manufacturing Advantages of Disk Arrays
Disk Product Families

Conventional: 4 disk designs
—a [
35 525" 10”

| Low End { =[1 High End

14”

Disk Array: 1 disk design

35 b == ==

Replace Small # of Large Disks with Large # of Small Disks! (1988 Disks)

IBM 3390 (K) IBM 3.5" 0061 Xx70

Data Capacity 20 GBytes 320 MBytes 23 GBytes
Volume 97 cu. ft. 0.1 cu. ft. 11 cu. ft.
Power 3 KW "MW 1T KW
Data Rate 15 MB/s 1.5 MB/s 120 MB/s
1/O Rate 600 I/Os/s 55 1/Osls 3900 IOs/s
MTTF 250 KHrs 50 KHrs ??? Hrs
Cost $250K $2K $150K

large data and I/O rates
Disk Arrays have potential for < high MB per cu. ft., high MB per KW

reliability?

Network Attached Storages and Reliability
» Simply spreading the data over many disk forces access to may several disks and hence
improve the throughput

large data and I/O rates
Disk Arrays have .
: high MB per cu. ft,,
potential for < high MB per KW
reliability?

+ The drawback to an array with more devices is that dependability and hence the
reliability decreases — generally N devices have 1/N reliability
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Array Reliability: Example
* Reliability of N disks = Reliability of 1 Disk + N
» Disk system MTTF = 50,000 Hours + 70 disks
. = 700 hours
» Drops from 6 years to 1 month!
» However, the dependability can be improved by adding redundant disks to the array to
tolerate faults
* Arrays (without redundancy) too unreliable to be useful!

Subsystem Organization

) > | single board
host | host | | array disk 6
adapter controller |+ controller
manages interface / single board
to host, DMA L/ ot 6
/ controller
control, buffering,
parity logic _ ©
single board
: : > disk 6
Eggfrglal device controller
striping software off-loaded from single board 6
host to array controller - disk
controller
no applications modifications often piggy-backed ©
no reduction of host performance in small format devices

Redundant Arrays of Disks
* Inadisk array, files are "striped" across multiple spindles
» Adding redundant disk to achieve high fault tolerance yields high data availability
» Here, if Disks fails, the contents are reconstructed from data redundantly stored in the
array
» However the drawbacks of redundant disk are:
v Capacity penalty to store it
v' Bandwidth penalty to update
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System-Level Availability

host I I host
/O Controller | Fully dual redundant | /0 Controller

| N

r/_::
Array Controller Array Controller

{-Neyngle.

|~ 1 5 I

Group | == 3 U ed
1 1 | 1 1
with duplicated paths, higher performance can be
obtained when there are no failures

Redundant Arrays of Disks
» These systems are known as RAID:
v' Redundant Array of Inexpensive Disks or
v' Redundant Array of Independent Disks
» There exist several different approaches to include redundant disks in the disk array
» These approaches are usually classified by numerical value which identifies the RAID
level
» Each of these techniques have different overheads and performance
« The fault tolerance and overhead in redundant disk for RAID having 8 disks of user data
is as given below:

RAID Level No. of disk Corresponding
faults survived check disks

. No Redundancy 0

. Mirrored

. Memory —Style ECC

. Bit Interleaved Parity

. Block Interleaved Parity

. Block interleaved distributed parity

~N|o|h|w|N|Rk|o
(SITE TR TR TR
NP (R kA~ o|lo

. P+Q Redundancy
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RAID 0 — Non Redundant Striped

RAID 0 is the disk array without any redundant disk

However, here the data is stripped across a set of disks which makes the collection
appears to the software as a single large disk

Note that the taxonomy RAID 0 is a misnomer as there is no redundant disk; but as the
data stripping is used here, so it is normally referred to as the RAID

RAID 1: Disk Mirroring/Shadowing

recovery
/7group
e 0 ¢

Each disk is fully duplicated onto its "shadow"
Targeted for high I/O rate
Whenever data are written to one disk those data are also written to redundant disk
If a disk fails, the system just goes to the mirror, so there are 8 survivals in this example
provided one disk of mirrored pair fails
It is the most expensive solution: 100% capacity overhead
One Logical write = two physical writes
If the data worth 4 disk is to be striped and stored on 8 disks, there are two way to strip
the data
1. RAID 1+0
Create 4 pairs of disks, each organized as RAID 1
and then strip data across the 4 RAID pairs
2. RAID 0+1
Create two sets of 4-disks, each organized as RAID 0
and Mirror write to both RAID 0
Note that since 2001, as there is no commercial implementation of RAID 2, we will not
discuss this technique

RAID 3: Bit-Interleaved Parity Disk

Rather than having a complete copy of the original disk, we can achieve desired
dependability by adding enough redundant information to restore the lost information on
failure

RAID 3 uses one extra disk, called Parity disk, that holds the check information in case
of failure

RAID 3 act logically as single high capacity, high transfer rate disk

The arms are synchronized logically and spindles rotationally
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logical record
10010011 E
11001101
10010011 T T T o
0 1 0 0
Striped Q 0 0 1
physical | —— | 0 1 1
records 0 1 0 0
0 1 0 0
1 0 1 0
l 1 1 0

Here, every read or write access goes to all the disk

For every read access, the parity is computed across recovery group to protect against
hard disk failures

Note that for the RAID 3 shown here, there is 33% capacity cost for parity

However, the wider arrays reduce capacity costs, but decreases expected availability
and increases reconstruction time

RAID 4: Block-Interleaved Parity and
RAID 5: Distributed Block-Interleaved Parity

Both the RAID 4 and RAID 5 levels use the same ratio of data disk to parity disk as
RAID 3, but they access data differently

The distribution of data in RAID 4 verses RAID 5 is shown here.

In the Block-Interleaved Parity RAID 4, the parity disk is associated to each data block,
identical to RAID 3

So it supports a mixture of small read and small writes and large read and large writes
However, one drawback of this system is that the parity disk must be uploaded on every
write, which is bottleneck for back-to-back write

This bottleneck is resolved in Block interleaved parity RAID 5, where the parity disk is
distributed among the blocks

Note from the RAID 5 organization shown here that the parity associated each row of the
data block is no longer restricted to a single disk

Hence, this organization allows multiple writes to occur simultaneously as long as the
stripe-units are not located in the same disk

For example:

1% write to block 8 must also access its parity block P2 (i.e., two reads from two disks —
the 1% and 3" disks) and
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RAID 4: Block-Interleaved Parity

T o e ) |
‘\ \\ Increasin
Disk
Addresses
D4 D5 D6 D7 i

In
F?% $§e0£f
I \t D8 D9 D10 D11
_ i %']
%ﬁ el D12 D13 D14 D15
atection dyrin
reconstricton.

D16 D17 D18 D19 ™ Stripe
Unit
D20 D21 D22 D23
|| Disk|Columns | :
- - = L]
RAID 5: Distributed Block-Interleaved Parity
] |
'\ N\ Increasin
V¥/!? DO D1 D2 D3 Logical ?
Disk
Addresses
I D4 D5 D6 D7 i
i
%%‘E e
D8 D9 D10 D11

D13 D14 D15 ||~

int
%ﬁ{%si%r D12
e [ =

D20 D21 D22 D23

D16 D17 D18 D19 ™ Stripe
Unit

Disk|Columns 1
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RAID 4 and RAID
2" write to block 5 imply an update in P1 (i.e., two reads from two disks — the 2" and 4"
disks)
» Thus, the two write could occur at the same time in parallel
* Where as we you look into the organization of RAID 4, both the P1 and P2 are on the
same disk (5" disk) so it would be bottleneck and could not be written simultaneously

RAID 4 and RAID 5

* In RAID 4 and RAID 5, the parity is stored as blocks and is associated with a set of data
blocks

» In RAID 3 every access goes to all the disks while the levels 4 and 5 use smaller
accesses which allow independent access to occur in parallel

* In RAID 4 and RAID 5 error detection information in each sector is checked
independently for ‘small reads’ to see if the data are correct in one sector

»  While each ‘small write’ would demand that all other disks be accessed to read the rest
of information needed to recalculate the parity

» Let us compare the recalculation of parity on small write for RAID level 3, 4 and 5

» Let us assume that we have 4 blocks of data and block of parity

» The parity calculation of RAID 3, shown here, is straightforward

Small Writes update on RAID 3

Old data
New data 1.Read 2Read 3.Read
DO’ DO D1 D2 D3
new
data
XOR

Do’ D1 || D2 D3 | [
(4. Write) (5. Write)

RAID 3 verses RAID 4 and RAID 5

« The parity calculation reads blocks D1, D2, and D3 before adding Block DO’ to calculate
the new parity P’

» Note that here the new data DO comes directly from CPU, so disk are not involved in
reading it

» The small writes in case of RAID 4/5 are as shown here

+ Here, the old value of DO is read (1: Read) and compared with new value DO’ to see
Which bit will change
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RAID 4/RAID 5: Small Writes

new
data

Do

DO

D1

D2

D3

RAID 3 verses RAID 4 and RAID 5

Once it has been checked, then the old parity P is read and corresponding bits are

changed to form P’
This is accomplished by the logical EX-ORs

In this example, the 3 disk reads (D1, D2, D3) and 2 disk writes (DO’ and P’) involving all
the disks, are replaces with the 2 disk reads (DO,P) and 2 disk writes (DO’, P’), each

involving just 2 disks

Hence we can say that one (1) Logical Write in RAID 4 and RAID 5 is equivalent to 2

old
data (1. Read)

Physical Reads and 2 Physical Writes

System Availability: Orthogonal RAIDs

Array
Controller

(4. Write)

(2. Read)

String
Controller

String
Controller

String
Controller

String
Controller

String
Controller

String
Controller

B O O N O
2o} (L G L

JIE O O N

Data Recovery Group: unit
of data redundancy

g {1 A

End to End Data Integrity: internal parity
protected data paths

Redundant Support Comanents: fans,
power supplies, controller, cables
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Lecture 41
Networks and Clusters
(Networks: Interconnection and Topology)

Today’s Topics

Recap:

A Simple Network
Network Topology
Internetworking
Summary

Recap: I/O Systems and Storages

Last time we concluded our discussion on the storage 1/0s and communication I/Os
Here, we noticed that the dependability, reliability, availability of the storage I/0Os mostly
influence the overall performance of computer systems

Dependability is the quality of delivered service such that confidence can be placed on
this service; and measured by quantifying the transitions between service
accomplishment and service interruption

Recap: Dependability, reliability and Availability

The dependability is measured in terms of the reliability and availability of a module

The reliability of a module is the measure of the continuous service accomplishment or
the measure of the time to failure, from a reference initial instant

The availability of a module is the measure of the service accomplishment with respect
to the swinging between the accomplishment and interruption states

Recap: I/0O and Storage Systems & Network Attached Storages

The storages are interfaced with the processor using channel and backplane and
network interconnects

The networks are capable of sustaining high bandwidth transfer and their file-server
operating system supports remote file access

Hence, the network attached storages have very high dependability, but are more
vulnerable to the reliability, so to improve the availability and performance of network
attached storage system, disk arrays are introduced

Here, the data is stripped across a set of disks which makes the collection appears to
the software as a single large disk

The throughput of disk arrays is improved due many small disk drives having high
bandwidth

The drawback to an array with more devices is that dependability of the device
increases, hence, the reliability decreases; as generally N devices have 1/N reliability

Recap: Redundant Arrays of Disks

The dependability of disk array is improved by adding redundant disks to the array to
tolerate faults
Such a disk array is called Redundant Array of Inexpensive Disk — RAID
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There exist several different approaches to include redundant disks in the disk array
These approaches are usually classified by numerical value which identifies the RAID
level

RAID 0 is the disk array without any redundant disk, but employs the stripping of data
across a set of disks

RAID 1 or disk Mirror array is one where each disk is fully duplicated onto its "shadow*
RAID 3 or Bit-Interleaved Parity Disk employs a parity disk for each group of data; the
parity computed across recovery group to protect against hard disk failures

RAID 4 or Block Interleaved Parity and the RAID 5 or Block Interleaved Distributed
Parity, both use the same ratio of data disk to parity disk as RAID 3, but they access
data differently

In RAID 4 level, the parity disk is associated to each data block, identical to it is
associated to each data group in RAID 3, so it supports a mixture of both the small and
large reads and writes

In RAID 5 level, the parity disk is associated to each data block

The data blocks are distributed among different disks in each row;

i.e., the stripped data units are not located in the same disk

This allows simultaneous read and write of more than one block

Interconnection Networks

Till now the focus of our studies has been the architecture of the components of a single
computer and their performance

Now today and in the following a few lectures we will talk about how to connect
computers together forming network of computers

The formation of a generic interconnection network is depicted here

Node Node
Hardware Interface —— Hardware Interface
Software Interface Software Interface

Link Link

Interconnection Network
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The standard components of a computer network are:

v" Computer nodes (also called host or end system)

v' H/W and S/\W interface

v Links to the interconnection network

v"Interconnection networks (also called network or communication subnet)
The coordinated use of interconnected computers in a machine room is referred to as
the cluster
The connection of two or more interconnec-tion networks is called Internetworking
The typical example of Internetworking is the Internet
Internetworking relies on the communication standards to convert information from one
kind of network to another
Depending on the number of nodes and their proximity or nearness the interconnections
are designated as:
Local Area Network-LAN: Hundreds of computer distributed in a building within a
distance of up to a few kilometers
Wide Area Network-WAN: Interconnection of thousands of computers distributed
throughout the world at a maximum distance of thousands of kilometer — Automatic
Teller Machine (ATM) is a typical example
System Area Network-SAN: Interconnection network of hundreds of nodes within the
machine room; so the distance of the link is less than 100 meters
SAN is basically the cluster
However, the Moor’'s Law have contracted the definition of network to an extent that it
defines the interconnection of components within a single computer
In order to discuss the complexities and performance of networks, let us consider a
simple interconnection model of two computers and understand the implications of
network parameters

Networks Communication Model

The communication model depicted here shows that two machines are connected via
two unidirectional wires with a FIFO (queue) at the end to hold the data
Here, each machine wants receive a word or message from the other

Al e ~[11 g

The machine A to get data from B, it sends a request to B, which responds by sending a
reply along with the data

In order to send a request and reply a message contains extra information beyond data,
as shown in the example message format
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Networks Message Format

Header [1 bit] Payload [32 bits]
\E Address

Header [1 bit] Payload [32 bits]
1 Data

» Here, a 1 bit header specifies the message as a request (header=0) or reply (header=1)
» The request carries the address of the data word and the reply the data word

Networks Interconnection Software
» Interconnection networks involve software to establish communication
» For the simple network considered here, the software is invoked to translate the request
and reply messages
» The network software:
v cooperate with the operating system to distinguish between the processes on the
other networks
v’ protect the processes running on networks
v' Ensures reliable delivery of message, i.e., to ensure that the message is neither
distorted nor lost in transit
« It is worth mentioning here that reliability the message format is modified by adding an
error detection code (checksum or CRC) and using 2-bit header as shown here
» This information is calculated at the sending-end and is added to the message;
« then at the receiving-end this message is checked; and the receiver sends an ack-
nowledgment if the message passes the test

Header [2 bits] Payload [32 bits] Trailer [4
bits] (Checksum)

Data

— 00: Request 01: Reply
10: Acknowledge Request 11: Acknowledge Reply

» Furthermore, to ensure reliable deliver of message, the sender activates a timer each
time a message is sent;

» The sender copies the data into an operating system buffer to resend the message if
acknowledgement doesn't arrive by time the timer expires, as it is presumed to be lost

» At the receiving end the message is copied into the operating system buffer

» The checksum is checked, if it passes the test acknowledgment is sent other wise the
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message is deleted from the buffer
Networks Interconnection Protocol
« So far we have been talking about the acknowledgment - protocol for reliable
communication on a simple network
+ However, there are many more issues of reliable communication; e.g.

v Two machines from two different manufacturers might be using different byte-
order within a word (Big Endean or Little Endean) — so the software must have to
reverse the order accordingly

v' The duplicate delivery of message should be guarded against the late delivery of
the original message, if it was stuck in the network

v' The order or the sequence of the message should not change; so sequence
number should be included in the message

v It must also work when the receiver’s FIFO is full; so some feedback mechanism
be incorporated

Networks Performance Model
» Having discussed the issues of protection, reliability and network protocols, let us
understand the performance model of networks
» The performance of a network can be modeled at any level, i.e., inside a chip, between
chips on PCB and between computers in a cluster, through the interconnection
performance parameters
» These parameters are:
v' Bandwidth: the maximum rate at which the network can propagate information
v' Time of Flight: time of the first bit of the message from time departed to the time
it arrives at the receiver
v' Transmission Time: The time of the message to pass through the network not
including the time of flight; in other words, it is the time between the first and the
last bit of the message arrives at the receiver
v' Transport Latency: The sum of time of flight and transmission time
v" Sender Overhead: time for the processor to inject the message into the network,
including both the hardware and software components
v' Receiver Overhead: the time for the receiver processor to pull the message from
the interconnection network, including both the hardware and software
components
» Based on the network performance parameters, the
Total Latency of a message =
Sender overhead + time to flight + (message size / bandwidth) + Receiver overhead

Interconnection Network Media Hierarchy
» Just as the memory hierarchy, there is hierarchy of media to interconnect computer
» The interconnect media varies in cost, performance and reliability based on the
maximum distance between nodes
» The three most popular media are:
v" Twisted Pair (of Copper wire)
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v' Coaxial Cable v Fiber Optics

Twisted Pair of Copper Wire

Two insulated copper wires, about 1mm thick twisted together to reduce the electrical
interference

The original twisted pair telephone line gives the data transfer rate of a few mega-bits
per sec and is referred to as Level-1 or Category-1 UTP (Unshielded Twisted Pair)

Level 3 or Cat-3 UTP is good for 10M bits/sec Ethernet and Cat-5 for 100M bits/sec and
up to 1000 M bits/sec when distance is limited to 100 meters

(Insert fig. 8.11 (a) pp 802)

Coaxial Cable

Coaxial Cable is a stiff single copper wire surrounded by insulating material which is
covered by cylindrical sheath woven as a braided mesh

A 50 ohm base-band coaxial cable can deliver 10 M bits/sec over a kilometer

Coaxial cable can deliver higher rate over a few kilometers and offers high bandwidth
and good noise immunity. (Insert fig. 8.11 (b) pp 802)

Fiber Optics

Unlike the twisted par or coaxial cable, Fibers are one-way of simplex media
Two fibers are used for 2-way or full-duplex connections
Fiber Optics contains a glass fiber core surrounded by cladding to confine light, which is
covered by a protecting buffer. (Insert fig. 8.11 (c) pp 802)
A light source (LED or laser) and a light detector (photo diode) are employed as
transmitter and receiver
As we know that light bends or refracts at interfaces and can spread slowly as it travels
down the cable
However, if the diameter of the cable is equal to or less than one wavelength, then it is
transferred into straight line (here the angle of refraction is more than the critical angle
and total reflection takes palace)
Fiber Optic Cables are of two forms: Single-mode and Multimode Fiber:
Multimode Fiber:
v It uses inexpensive light source with wavelength larger than that of light, and
v’ offers wider dispersion where some wave frequencies have different propagation
velocities
v' lts dispersion is therefore limited to a few hundred meters at 1000 M bit/sec or up
to a few kilo-meters at 100 M bit/sec
Single-mode Fiber:
v It uses more expensive lasers with single wavelength
v It can transmit G bits/sec for hundreds of kilo-meters
v" The drawbacks of single mode fiber are:
It is more difficult to attach connecters
It is less reliable and more expensive and has restrictions on the degree it
can be bent
o The cost, distance and bandwidth are affected by the power of light
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source

Interconnection Networks

So far we have discussed connecting two computers over private lines

However, interconnecting hundreds of computers is more interesting and challenging
The bus-based LAN or Ethernet is the simplest way to interconnect more than two
computers sharing a single media

s A
=T = R

Bus Based Networks Interconnection

Here, the processors and memory units are connected through a “bus”

It is Simple and cost-effective for small-scale multiprocessors

However, the bus bandwidth limits the number of processors

The bus-based interconnect is more challenging also as it requires coordination and
arbitration as more than one computer may need the same media simultaneously

Interconnection Networks

However, if the network is small, spread over a few hundred meters, centralized
arbitration may be used

The centralized arbitration doesn’'t work when the network nodes spread over kilometers
so we have to go for distributed arbitration

However, as the arbitration works on the principle: “Look before you leap”; but looking
first doesn’t guarantee success; as

If two nodes get hold of the media and transmit simultaneously, it leads to collision

So to avoid collision, different techniques such as collision detection and token passing
are used

Alternative to sharing media is to use switching

Switch have a dedicated line which it provides in turns to all destinations

Switching allow point-to-point communication much faster than the shared media
Switches are also called data switching exchanges, multistage interconnection networks
or interface message processor (IMPs)

Network Topology

With this much discussion regarding sharing of media using buses and switches, let us
discuss the topologies used to construct computer networks
There exist numerous topologies of SANs, LANs and WANSs, however, the most popular
switch-based topologies are classified as: at present are:

v' Centralized Switch Topologies

v Distributed Switch Topologies
Today we will be talking about

v' The basic Centralized Switch Topologies as:
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o Crossbar o Multistage
v" And, the Distributed Switch Topologies as:

o 2D Grid or mesh

o 2D Torus

o Hypercube tree

Crossbar Switch Topology

A crossbar switch is a non-blocking switch that facilitate unidirectional interconnection of
all the inputs (any processor) to any output to the other processor

The interconnection of 2x2 crossbar switch are shown here [Fig. 8.13 c]

As you can see that 2 nodes A, B can pass information equally to outputs C and D

i.e., here no connections block any connection between other processor or memory units
The organization of a crossbar topology for 8-nodes (processors) is shown here

[}

Note that a crossbar uses n” switches where n is the number of processors

Here, the links are unidirectional, i.e., the data comes in at one (left) link and goes out at
other (right) link

The routing depends on the style of addressing

In source-based routing where message specifies the path to the destination, the
message includes the sequence of out-bound arcs to teach the destination

Thus, once an outgoing link (arc) is picked, the portion of the routing sequence is
dropped from the packet

In destination-based routing the message simply contains the destination address; and

a program running in the switch decides from routing table which port to take for a given
address

A crossbar switch offers low latency and high throughput

Multistage Interconnection Topology

An intermediate class of networks which lies between crossbar and bus based networks
v Performance: more scalable than bus
v'  Cost: more scalable than crossbar
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» Built from small (e.g., 2x2 crossbar) switch nodes, with a regular interconnection pattern
» The Omega Topology, depicted here Is a typical implementation of Multistage Topology
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e Here each switch is a 2x2 crossbar
» It haslog, nidentical stages
» Here, the switches used are n/2 log, n verses nZin crossbar

Omega Interconnection Topology
» Here, the connection occur between the messages and depend on the pattern of
communication and may give rise to blocking
« For example, for the Omega network shown, a message from P1 to P7 blocks while
waiting for a message from PO to P6 as has to follow the same path
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Fully Connected Switching Network
» So far we have been discussing centralized switching topologies
» The distributed switching network is one where the switching is distributed throughout
the network
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» Anideal situation may be when the distributed switching allows to interconnect all nodes
to each other, as shown here
» Such a network is called fully connected network

Terminology of Distributed Network
» Degree: Number of link to each node
« Diameter: Number of hodes between source and destination
» For fully connected Network
v" Diameter =1
v' Deg= K-1 where K is the number of nodes
v' Links = K * (K-1)/2
v' Bisects = K * K/5

Distributed Switch Topologies
» The simplest possible, low cost alternative to the fully interconnected network topology,
is a distributed switch ring network, shown here

« As shown, a small switch is placed at every computer connected to the ring
» Here, as only two node are connected to a particular node, therefore the message will
have to hop along intermediate node until the arrive at the final destination

Ring Network
«  For example, where the 1% node is to connect to the 4™ node, it hops the 2™ and 3™
nodes
+ A variation to the Ring Network, to simplify the arbitration, is the Token Ring
* Here, a single slot (token) goes around the ring to determine which node is allowed to
send the message — a node can send a message it gets a token
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» The ring network has the following measure
v Degree: 2
v Diameter : N/2
v Bisect: 2
v' Bandwidth = N
v' Latency = N/2
«  For example, where the 1% node is to connect to the 4™ node, it hops the 2™ and 3™
nodes
» Avariation to the Ring Network, to simplify the arbitration, is the Token Ring
* Here, a single slot (token) goes around the ring to determine which node is allowed to
send the message — a node can send a message it gets a token

2D Grid and 2D Torus Mesh
» Connecting the switches associated with each node to the switches on the left and right

and up and down and also connecting the switches to the of the top and bottom rows
gives a grid structure

» Also connecting the switches of left and right columns give 2D Torus Mesh
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Lecture 42
Networks and Clusters
(Networks Topology and Internetworking ... Cont’d)

Today’s Topics

Recap:
Switch Topologies.. Cont'd
v Centralized Switch Topology
v Distributed Switch Topology
Cluster
Summary

Recap: Lecture 41

Last time we discussed:

v' The formation of generic interconnection networks and their categorization;

v' The networks communication model, performance, media, software, protocols,

subnet and networks topologies

Here, we noticed that a generic interconnection network comprises:

v" Computer nodes (host or end system)

v' H/W and S/W interface

v" Links to the interconnection network and

v' Communication subnet
The interconnections are classified based on the number of processors or nodes and the
distance between them as:

v' Local Area Network-LAN v' System Area Network-SAN

v" Wide Area Network-WAN
The interconnect communication model shows that two machines are connected via two
unidirectional wires with a FIFO (queue) at the end to hold the data
The communication software separates the header and trailer from the message and
identifies the request, reply, their acknowledgments and error checking codes
The communication protocols suggest the sequence of steps to reliable communication
The network performance that defines the latency of the message as the sum of the:
Sender overhead, time to flight, receiver overhead and the ratio of the message size to
the bandwidth
We also discussed the properties and performance of interconnect network media or link
the unshielded twisted pair (UTP), coaxial cable and fiber optics
At the end we discussed the formation of bus-based and switch-based communication
subnets and introduced the network topologies
Here, we observed that the bus-based LAN or Ethernet is the simplest way to
interconnect more than two computers sharing a single media
However, the interconnect sharing media are challenging as it requires coordination and
arbitration when more than one computer needs the same media simultaneously
Alternative to sharing media is to use a switch to provide a dedicated line to all
destinations in order; and facilitates point-to-point communication much faster than the
shared media
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A switch provides unidirectional inter-connection of input to any one of multiple output
terminals

The switch that facilitates unidirectional inter-connection of every processor to all the
processors in the network is referred to as the non-blocking switch

The Crossbar switch is typical example of non-blocking switch; an is employed in the
centralized switching topology

Last time we discussed the crossbar topology in detail and noticed that a crossbar uses
n’ switches to interconnect n processors in a network

Here the routing, to establish interconnection between two node at a time, depends on
the addressing style

i.e., source-based routing where message specifies the path to the destination or
destination-based routing where the message simply contains the destination address
and a program running in the switch selects the port to take for a given destination

Multistage Interconnect Network

Today, continuing our discussion on the centralized switching topologies, we will discuss
an intermediate class of network interconnect which lies between crossbar and bus-
based networks

This interconnect topology is referred to as the Multistage network topology

A centralized multistage network, shown here, is built from number of large switch
boxes, placed at multiple stages to interconnect all of the nodes

Multistage Interconnection Topology

e e e e
A EEEE

Geaps Taps

Each stage contains number of
small crossbar switches and allows
the straight or cross connections y
through the switch, as shown W
The number of stages are related to '
the number of nodes and the size of
the crossbar switch

Smght — Cros
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» Consequently, its performance and cost are more scalable than bus-based networks
+ The number of identical stages (Ns) in the network having n nodes and switches of size

m X m, in each stage, is given as:
Ns=logmn

* And, the number of switches per stage is n/m

» Thus, the total number of switches used in multistage network of n nodes is n/m log ,, n

i.e., its cost is

O(n log n) as compared O(n?) for crossbar

» To understand the design and working of multistage networks, let us consider Omega
Network, depicted here, as a typical implementation of multistage network

Omega Topology

» Here, 8 nodes (processors), are addressed using 3-bit code and 3 stages of 2x2

crossbar switches
o Nenh

000 - -

001~ AN, AN
o0 ~ /R /NN /
011 l ol |  ‘."

100 /) NV X NN
101 " \ o ¢ :1t . -
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111

» number of identical stages [log, 8] = 3
» And, switches per stage [n/m] = 8/2 =4

Omega Topology: Multistage Interconnect
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» let us see how the switches at each stage operate to establish connection
* Note that for the 8-nodes Omega Network the node address is of 3 bits, which is equal
to number of stages of the switch

Omega Network: Example
» Here, the 3-bit code a,a;a, represents 3 stages of the network, as stage S,S;Sg, from left
to right
» To find the connection pattern XOR the source and destination, e.g.,
* Src (010) > dest (110) then XOR results
* 100 - Cross (S2) Straight (S1) Straight (S0)
The switch connections are shown Green Circles

» Thus, the generalized rule to find the switch connection can be summarized as
v' Forthe stage i
IF the source and destination differ in i" bit
THEN  Connection Cross the switch in the i stage”
ELSE Connection is Straight in the i stage”

Characteristics of Omega
» There exist an single path from source to destination, thus contrary to the non-blocking
crossbar network, the omega network is blocking network
» This is shown here as:
v the path 010 - 110 (red) and
v the path 110 - 100 (blue)

Have blockage as the S2 for 110 has to wait till 010 has passed otherwise it results in
collision

001

000 -} I - = 000
o ~ S FSTARSHE

010" ™ /,/' e B 010
011 7\, | T 011
100 '~ "~ 100
101 < 101
110 " 110
11 LS L) - 111

» However, in order to minimize collisions and to improve fault tolerance to achieve high
reliability and dependability extra pathways can be added
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Butterfly Network

Alternative to the Omega Topology of multistage switching, is Butterfly Network shown
here

METATIN WAOATC

000 '~ -§2—S1 P~ ~ 000
001 N {1 R0~ - oot
010 * , 010
011 1\ 's\—%—on
100 '~ - [ e, = 100
101 L7 L5 T 101
110 "™\~ 1 -+ 110
1M1 = = 17 111

Here, irrespective of the source address, for the destination asa;a,, the i stage switch
sends to:

Upper port if a;= 0 and to

Lower portifa; =1

Distributed Switch Networks

So far we have been discussing the B
Centralized switching topologies
The distributed switching network is
one where the switches are
distributed throughout the network
and they allow interconnection of
one node to: D

v' either all the nodes

v or to a limited number of

nodes

A network where each node interconnects all nodes of the network is called, Fully
connected network
There exist different interconnects for distributed switch networks
Before discussing these interconnects, let us understand the parameters of interconnect
performance measure

Interconnect Performance Measure Criteria

Latency: Number of Links and must be small

Bandwidth: The number of messages or the length of massages; it should be large

Node Degree: Number of links connected to a node

Diameter: Maximum distance between any two processors, i.e., the number of nodes
between source and destination; this is indeed the measure of maximum latency
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» Bisect: The imaginary line that divides the interconnect into roughly two equal parts,
each having half the nodes

» Bisection Bandwidth: Sum of the bandwidth of lines crossing the imaginary bisection line

» It measures the volume of communication allowed between any two halves of network
with equal number of nodes

Parameters of Interconnect Performance Measure
* Note that the bisect is not clear in non-symmetric networks, therefore, in order to draw
the bisect line the bisection band-width is considered
» Furthermore, it is to be noted that the bisection bandwidth is the worst-case metric of
non-symmetric interconnect
» Therefore, the division or the bisect line that makes the bandwidth worst is chosen

Distributed Switch Topologies
+ Based on the concept of distributed-switch interconnects, there exist numerous

topologies
» The most popular and commercially available are:
v Linear Array and Ring v' Hypercube
v" Fully Connected v Tree

v 2D Mesh and Torus

Linear Array / Ring
« The simplest possible, low cost distributed switch network topology, is a linear array and
ring network

P P PP P

» As shown here, the Linear Array networks is one where a small switch is placed at every
node (processor)
«  The switch at the i ™ node connects the i node to the:
v" (i-1)"™ node except for i=1, and
v' (i+1) ™ node except for i =n

+ In the linear array, as the i ™ node is connected to (i-1) " and (i+1) " node, therefore the
message will have to hop along intermediate node until it arrives at the final destination
at (i £ m) where m>1

+  For example, where the message is to pass from 1% node is to the 4™ node, it hops the
2" and 3" nodes

« The ring network is established by establishing an interconnect between the 1* and the
n"™ nodes in the linear array network

P P77
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Ring /Token Ring
» Like linear array, in Ring network some massages hop along the intermediate nodes
until they reach destination
« However, it allows many transfers simultaneously; the 1% node can send to the 2" at the
same time as the 3™ can send to 4™ and so on.
» A variation called Token Ring is used in the Ring Network, to simplify the arbitration in
the ring topology

Ring Network
» Here, a single slot (token) goes around the ring to determine which node is allowed to
send the message — a hode can send a message if it gets a token
+ The common performance of an n - node linear array and ring network are as follows:
v' Cost: Cheap as the cost is O(n)
v' Bandwidth: Overall bandwidth is high
v Latency: High as it is of O(N)

Performance: Array verses Ring

* Linear Array * Ring
v' Degree: 2 v' Degree: 2
v' Diameter : N v' Diameter : N/2
v/ Bisection width = 1 v/ Bisection Width = 2
v' Bandwidth = N-1 v' Bandwidth = N
v" Mean Latency = N/2 v' Latency = N/2
v' Asymmetric v’ Symmetric
v' Heterogeneous v' Homogeneous
Fully Connected
» A straight forward, symmetric but
expensive distributed network,
equivalent of the crossbar network,
is Fully connected network
» Here, very node has a direct link
with all the other nodes of the D

network
» As shown here the node A is interconnected with the nodes B, C, and D
» Its performance metrics are as follows:
v' Diameter =1
Degree = n-1
Links =n * (n-1)/2
Bisects = n * n/5 and
Bisection bandwidth is
proportional to (n/2)?

DN NI NI NN
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2D Mesh and 2D Torus

Two dimensional Mesh or Grid is an example of asymmetric network topology and uses
bisection bandwidth as the performance metric

Here, the nodes (processors) are arranged in a array structure forming 2D Grid or Mesh
An example 3x4 mesh structure is shown here

o o B ¢
" 8 B R
R R R

A switch is associated to each (processor) node [shown as blue circle]

Each switch has one port for the processor and four ports to interconnect the processor
to the four nearest-neighbor nodes, i.e., the nodes to the left - right and up - down
position

This structure is sometimes also referred to as NEWS communication pattern,
representing North, East, West and South communication

Note that here the switches associated with the top/bottom rows or left/right columns
don’t connect among themselves, thus have unused ports

M
P

FH[P

PHH P PI’—,—P)

= L.WJ

Connecting the unused ports of switches of the top/bottom rows and the left/right
columns forms 2D Torus, using wraparound links, as shown here
The performance metrics of n-node 2D Mesh / Torus are as follows
v' Degree = 4
Diameter = 24N
Bisection width =N
Bandwidth = N
Asymmetric

o
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Tree Network Topology
* Another example of distributed switch network is the Tree Topology
» Here, the switches associated with each node have the number of ports equal to the
number of braches of the tree plus one for the processor

AN
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* A Binary Tree structure shown here has two branches of the root node and branch
nodes
» The performance metrics of N-nodes Tree Network are as follows
v' Cost: Itis cheap as cost is O(N)
Degree: Number of branches 1, 2, 3 ...
Latency: O(log geg N)
Diameter: 2109 geg N
Bisection Width: 1

AN NI NN

Tree Network: Bottlenecks

» The root node and the branch nodes LL1 5
of the leaf-nodes are the bottleneck k

« For example, leaf-nodes 1, 2 of the 13°Y 14
branch nodes 9 and 3,4 of branch : ™
node 10, may be interconnect-ed 9. M1 11, \12
simultaneously, but the leaf-nodes \ \(’ C W

|
\

1,3 and 2,4 cannot, as the there may , |\
be collision at branch nodes 13, 9 O

A N AN Ak
and 10 wW¥34asg 78

Fat Tree Network
« To avoid root being the bottleneck, multiple paths are provided between any two nodes,
as shown here. This structure is called the Fat Trees

dodd b N bl
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Here, the black dots show the processor-memory nodes connected through the multiple
stages of 2x2 crossbar, 4x (2+2) crossbar and 8 x (4+4) crossbars switches and so on
This 3D switching increase the bandwidth via extra links at each level over simple tree

In CM-5 the concept of Fat Tree is used as Centralized switching Network

Hypercube Network Topology

Another example of distributed switch network is the Hypercube topology which is also
called binary n-cubes, as it has 2 nodes of n-cubes
It is an n-dimensional interconnect for 2" nodes
As can be seen from the figure here, that for 16 nodes; the hyper cube is a 4D structure
as

N=16 = 2*therefore n=4

.z B BH

.0 . :

It requires n ports per switch plus one for the processor this have n nearest neighbors
nodes
Thus, it minimizes hops and have latency of O(log, N); the other performance metrics
are:
Nodes = N= 2"
Degree = n; Diameter = n
Links = n * 20"

v’ Bisection width = 20
The other topologies, such as tree, mesh etc., can be embedded in hypercube
Note that the bisection bandwidth is good but it is difficult to layout in 3D space
Hypercube has been popular in early message passing machines, e.g., Intel iPSC,
NCUBE etc

AR

K-ary n-cube Network Topology

Rather than having just 2 nodes of n-cubes in the binary hypercube, the generalization
of hypercube is to interconnect k nodes of n-cubes in a string

The total number of nodes: N=k "

A 64 node, where 64 = 43 [4 ary 3 cube) structure is shown here

This structure allows for wider channel but requires more hops

64 = 42 [4-ary 3-cube)
(3 cube is a 16 nodes binary hypercube)
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Comparing Network Topologies

The relative cost and performance of topologies discussed, based on the bisection
bandwidth and number of links for 64 nodes network is given in the table here

Evaluation Bus Ring 2D Torus Fully
Category Connected
Performance:

Bisection 1 2 16 1024
Bandwidth

Cost

Ports/switch N/A 3 5 64
Total Links 1 128 192 2080

Here, bus is used as the standard reference at unit cost, all transfers are done by taking
the time units equal to the number of messages

Where as the fully connected network has all nodes at equal distance therefore the
number of links and ports per switch are maximum and all transfers are done in parallel
taking only unit time

The nodes for ring topology are differing distances

Here, bus is used as the standard reference at unit cost, all transfers are done by taking
the time units equal to the number of messages

Where as the fully connected network has all nodes at equal distance therefore the
number of links and ports per switch are maximum and all transfers are done in parallel
taking only unit time

The nodes for ring topology are differing distances

Internetworking

Internetworking deals with the communication of computers on independent and
incompatible networks reliably and efficiently

The software standards are the basic enabling technologies of internetworking
(Transmission Control Protocol/Internet Protocol) TCP/IT is the most popular
internetworking standard

The detailed discussion on Internetworking is beyond the scope of this course
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Cluster

Internetworking deals with the communication of computers on independent and
incompatible networks reliably and efficiently

The software standards are the basic enabling technologies of internetworking
(Transmission Control Protocol/Internet Protocol) TCP/IT is the most popular
internetworking standard

The detailed discussion on Internetworking is beyond the scope of this course

Summary

Today, we discussed an intermediate class of network interconnect which lies between
crossbar and bus-based networks, referred to as the Multistage Switch network topology
A multistage centralized switch is built from number of large switch boxes, placed at
number of stages to interconnect all of the nodes
Here, The number of identical stages (Ns) in the network having n nodes and switches in
each stage are of size m x m is as given as:

Ns=logmn
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Lecture 43
Networks and Clusters
(Internetworks and Clusters)

Today’s Topics

Recap:

Recap:

Internetworks

Cluster

Case Studies

Summary

In our last two lectures on Networks and Cluster we discussed:

v" The formation of generic interconnection networks and their categorization, the
networks communication model, performance, media, software, protocols,
subnet and networks topologies

v' Here, we noticed that a generic interconnection network comprises: Computer

nodes, HW and S/W interface, Links to the interconnection network and
Communication subnet

The interconnect communication model shows that two machines are connected via two
unidirectional wires with a FIFO (queue) at the end to hold the data

The communication software separates the header and trailer from the message and
identifies the request, reply, their acknowledgments and error checking codes

The communication protocols suggest the sequence of steps to reliable communication
We also discussed:

v

v

v

v

v

The properties and performance of interconnect network media or link — the
unshielded twisted pair (UTP), coaxial cable and fiber optics

The formation of bus-based and switch-based communication subnets and
introduced the network topologies

The bus-based communication subnets share the common media where
arbitration is the bottleneck

Alternative to sharing media is to use a switch to provide a dedicated line to all
destinations in order; and facilitates point-to-point communication much faster
than the shared media

The switch-based networks are classified as the centralized and distributed
switch networks

Here the routing, to establish interconnection between two node at a time, depends on
the addressing style: source-based routing and destination-based routing
The performance of a distributed network is measured in terms of:

v

A NERNERN

Latency - number of Links between source and destination

Bandwidth — number or length of messages passing per sec.

Degree - number of links connected to a node

Diameter - number of nodes between source and destination; this is indeed the
measure of maximum latency
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v Bisection - the imaginary line that divides the interconnect into roughly two equal
parts, each having half the nodes
v' Bisection Bandwidth: the volume of communication allowed between any two
halves of network with equal number of nodes
Last time, we discussed an intermediate class of network interconnect — Multistage
Switch network
It is built from number of large switch boxes each containing number of small crossbar
The performance of Multi-stage switch lies between performance of non-locking
crossbar and bus-based networks
Following the discussion on centralized switch topologies we studied the distributed-
switch interconnects; which are categorized as the fully-connected and partially-
connected, symmetric or asymmetric interconnects
The distributed-switch interconnect topologies, such as: linear array, ring, 2D mesh/torus
and hypercube were studied
We also discussed the relative cost and performance of these topologies, based on the
bisection bandwidth and number of links for 64 nodes network; which is shown in the
following table

Evaluation Category Bus Ring 2D Torus Fully Connected
Performance:

Bisection B/W 1 2 16 1024

Cost:

Ports/switch N/A 3 5 64

Total Links 1 128 192 2080

Internetworking

So far we have been talking about the design styles, topologies and performance of
interconnection networks

Now we are doing to talk about the connection of two or more interconnection networks,
called Internetworking; the Internet is typical example of Internetworking

Internetworking deals with the communication of computers on independent and
incompatible networks reliably and efficiently

Internetworking relies on the communication standards to convert information from one
kind of network to another

These standards are composed of hierarchy of layers, where each layer is responsible
for a portion of overall communication

Each computer, network and switch implements its layer of standards, called the
Protocol Families or Protocol suites, and facilitates applications to work with any inter-
connection
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OSI: 7- Layer Model

The Open Systems Interconnect — OSI developed a 7-layer model, which describes a
network as the series of layers; with

Application layer at the top (i.e., layer 7) and Physical layer at the bottom (layer 1) and
presentation, session, transport, network and data link layers in between the top to
bottom layers, as layer-6 down to layer-2, respectively

The OSI model, layer-7, the Application layer is used for applications specifically written
to run over the network, e.g., Network File System (NFS) etc.

The layer-6, Presentation layer translates from application to network format and vice
versa

The layer-5, Session Layer, establishes maintains and ends the sessions across the
network

The layer-4, Transport Layer, facilitates additional connection below the session layer;
the protocol is referred to as the Transmission Control Protocol - TCP

The layer-3, Network Layer, translates the network address and names to their physical
address; e.g., computer name to Media Access Control —MAC; the layer-3 protocol is
referred to as Internet Protocol or IP

The layer-2, Data Link layer, turns packets into raw bits and at the receiving end turns
bits into packets; the example protocol is Ethernet

The layer-1, Physical Layer, transmits raw bit-stream over physical cable/media; IEEE
802 is typical example physical layer protocol

TCP/IP Families

The protocol family divides the responsibilities among the layers, with each layer offering
services needed by the layer above

The Transmission Control Protocol/Internet Protocol - TCP/IP is the most popular
internetworking standard

TCP/IP is the basis of Internet, which connect the tens of millions of computers around
the world

The protocol at each level is implemented by adding headers and trailers at the sending
layer and removing at the receiving layer

The original message, from the top layer, includes a header and trailer sent by the lower-
level protocol

The next-lower protocol in turn adds its own header (and possibly trailer) to the message
and so on

If the message is too large for a particular layer, then it is broken into smaller messages;
this division of message and addition of header and trailer continues till the message
descends to the physical transmission media

The message is then sent to the destination

Each level of protocol family at the receiving end, from bottom to the top layer, checks
the message at its level and remove its header and trailer, and pass it on to the next
higher level

The message is rebuilt by putting the pieces together
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This nesting of protocols layers is referred to as the Protocol Stack as it reflects the Last-
in First out nature of addition and removal of the header and trailer

A typical TCP/IP datagram, containing header and message, is depicted here

Fig. 8.27 pp 835 Text book

The standard IP and TCP headers are 20 byte each, stacked as shown

However, the length can optionally be increased which is specified by the length field (L)
The length of the whole datagram is identified by a separate field ‘Length’ in IP header,
while the TCP header includes this information in the ‘sequences number field’

Internetworking

As the detailed discussion on the TCP / IP is beyond the scope of this course on
Computer Architecture, therefore

we are leaving this discussion here and are going to talk about ‘cluster’, the last topic of
our study of the ‘Networks and Cluster’;

rather the last topic of this course on Advance Computer Architecture

However, the students interested in further study of Internetworks may consult literature
and books on Computer Networks and Internetworking

Clusters — System Area Networks

The coordinated use of interconnected computers in a machine room is referred to as
the cluster or System Area Network
Massively parallel machine providing high bandwidth can be built from off-the-shelf
components, instead of depending on the custom machines or networks
A cluster , i.e., a collection or bunch of desk-top computer and disk offers low cost
computing infrastructure that could tackle very large problems and applications, such as:
databases, file servers, Web servers, simulation and multiprogramming and batch
processing
The clusters face some performance confront such as:

v" Non-standard connections v" Division of memory
Let us talk about these confronts one by one
Non-Standard Confront: As you know that the multiprocessors are usually connected
memory bus which offers high bandwidth and low latency; and
Contrary to this, the clusters are connected using I/O bus of the computer, thus have
large conflicts at high speed
Division of Memory: A large single program running on a cluster of N machines requires
N independent memory units and N copies of operating system; on the other hand,
A shared address multiprocessor allows to use almost all memory in the computer
However, contrary to these challenges, clusters have advantages in respect of
dependability and scalability
The weakness of separate memories for program size in case of cluster, as discussed
earlier, is indeed a strength in terms of system availability and expandability (or say the
scalability)
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Furthermore, as the cluster consists of independent computers connected through LAN,
and cluster software is a layer that runs on top of the local operating system, therefore,

it is easier as compared to the multiprocessor, to replace any computer without bringing
down the all computer of the cluster, hence a cluster offers high dependability and
scalability

Furthermore, it is easier to expand a cluster, therefore, it is attractive to the world wide
web service providers

Cluster Design Examples

In order to study practical aspects of cluster designs, we are going to discuss different
cluster design comprising: 32 processors, 32 GB DRAM, and 32 or 64 disks
For different cluster designs let us consider P-lll processors operating at clock rate of
700 MHz and 1000 MHz include large L2 cache ranging from 256 KB to 1MB
However, note that due to larger die size, the processor chip price with 1 MB cache is
double as compared to that of with 256KB Cache chip
In cluster design, the higher chip price of chip matters little; but the objective is to
minimize cost for desired performance target
We are considering following four cases:

1. Cost of cluster hardware with local disk

2. Cost of cluster hardware with disk over SAN (system or storage area network)

3. Cost of cluster options that is more realistic

4. Cost and Performance of a cluster for transaction processing

Example 1: (Cluster Design Examples)

In order to discuss the first case, Cost of cluster hardware with local disk, let us consider
three logical organizations of clusters:

a. Uniprocessor Cluster

b. 2-way SMP (Symmetric Shared Memory Processor) cluster

c. 8-way SMP cluster

Uniprocessor Cluster Design

The Uniprocessor cluster organization, shown here, consists of 32 xSeries 300 computer
(for 32 processors). Fig 8.34 a pp 846

As the maximum memory for this computer is 1.5 GB, so it easily allows desired 32 GB
(1 x 32) memory

As each computer has 2 disk drives each of 36.4 GB so it yield 32 x 2 36.4 = 2330 GB
The organization uses the built-in slots for storage, so computer can accept its own G-bit
hot adopter, hence 32 cables are available for the IGB Ethernet switch

However, as the switch has 30 ports, therefore 2 switches are used

These two switches are connected together with 4 cables, leaving 56 ports for 32
computers

The standard rack is 19" x 30" x 72 [W x D x H] and can accommodate 32
uniprocessors computers, 34 rack units (32 for computers and 2 for switches)

This design is cost effective

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



CS-704 Advanced Computer Architecture

2-way SMP Cluster Design
In we use the 2-processor computer of xSeries 330, as shown here, every thing is
halved

Fig 8.34 (b) pp 846
Here, 32 processor need only 16 computers, a single 30-port switch can work as there
are 16 cables to be interfaced
Furthermore, the rack size 18 RU instead of 44 RU which is less than half the standard
size

8-way SMP Cluster Design
The 8-processor computer of xSeries 370, as shown here, only 4 computer are used at
they contain 4 x 8 =32 processors

Fig 8.34 (c) pp 846
The maximum memory is 32 GB but we need only 8 GB per computer and for 4
computers only 8-port switch is sufficient
However, at 2 disk per computer, the 4 computers can hold 8 disks with maximum
capacity per disk 73.4 GB; hence we need expansion storage box which can hold up to
14 disks; and 2 racks are needed in place of 1 in the previous cases

Comparison of 3-Cluster Designs

The price of three clusters with a total of 32 processors, 32 GB memory and 2.3 Tetra-
byte disk is shown here

Fig 8.35 848
Note that the network cost decreases as the size of the SMP increases; because the
memory buses supply more of the inter-processor communication
Furthermore, the 4 of the 8-way SMP cost more than 32 Uniprocessor computers
The price of three clusters with a total of 32 processors, 32 GB memory and 2.3 Tetra-
byte disk is shown here

Fig 8.35 848
Note that the network cost decreases as the size of the SMP increases; because the
memory buses supply more of the inter-processor communication
Furthermore, the 4 of the 8-way SMP cost more than 32 Uniprocessor computers

Example 2: (Cluster Design Examples)

Now let us discuss the 2" case, Cost of cluster hardware using SAN (storage area
network) for disks
In the previous we set the disks local to the computer which reduces the cost and space
However, it offers the following problems for the operator

1. No protection against single disk failure

2. State in each computer must be manages separately;
This results in system-down state on the disk failure
To overcome this problem, a RAID controller and Fiber Channel Arbitrated Loop (FC-
AL), is used as the storage area network (SAN)
In this case all the SCSI disks are replaced FC-AL disk behind the RAID storage server
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Note that FC-AL can be connected in a loop with up to 127 devices
The price comparison for the three clusters, using SAN, show here
Fig. 8.37 pp 850
lllustrates that the cost of SAN also shrinks as the servers increase in number of the
processors per computer

Example 3: (Cluster Design Examples)

Now let us discuss the 3™ case, cluster design considering other costs
In the first two design we considered the cost of hardware only
However, the software (data base) cost and hardware maintenance cost ( cost of
operator to keep the machine running) has not been considered
The other costs include the cost of backup tapes, cost of space to house the servers
A complete comparison of the earlier three clusters including the other cost is shown
here

Fig. 8.39 pp 852
It shows that 2-way SMP using SAN is lowest in total price
However, over the 3 years, the cost of operator will be more than the cost of the
hardware; so we must reduce the purchase cost of the old computers to reduce the
overall cost

Example 4: (Cluster Design Examples)

Now let us discuss the 4™ case, cluster design for transaction processing, shown here
Fig. 8.40 pp 853
The cluster has 32 P-Ill processors, using the same IBM computer as the basic building
block which was employed in earlier design
The key differences are:
v Disk Size: Small and fast disks are used as this structure cares more about 1/0Os
per second (IOPS)
v" RAID: No RAID is required as this as the performance benchmark doesn't
include the human cost
v" Memory: Maximum DRAM is packed into the servers, so each of the four 8-way
SMPs is stuffed with maximum of 32 GB, yielding 128 GB
v Processor: 900 MHz P-IIl with 2 MB L2 cache is used
The cost performance analysis of this structure shows that almost half of the cost is in
software, installation and maintenance
Summarizing the cluster design examples we conclude that as the cost of purchase is
less than half the cost of the ownership, therefore, the cost of hardware solves only a
part of the problem

Summary
In this module on the Networks and clusters we studied that:

The formation of a generic interconnection network that comprises
v" Computer nodes (host or end system)
v' H/W and S/W interface
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v Links to the interconnection network and
v' Communication subnet
The interconnections are designated as:
v" Local Area Network-LAN
v" Wide Area Network-WAN
v' System (or Storage) Area Network-SAN
While talking about the interconnect model, software and protocols we studied that:
v" The interconnect communication model shows that two machines are connected
via two unidirectional wires with a FIFO (queue) at the end to hold the data
v" The communication software separates the header and trailer from the message
and identifies the request, reply, their acknowledgments and error checking
codes
v The communication protocols suggest the sequence of steps to reliable
communication
Then we studied the network performance that defines the latency of the message as
the sum of Sender overhead, time to flight, receiver overhead and the ratio of the
message size to the bandwidth
We also discussed the properties and performance of interconnect network media or link
— the unshielded twisted pair (UTP), coaxial cable and fiber optics; and
the formation of bus-based and switch-based communication subnets and introduced
the network topologies

We also studied an intermediate class of network interconnect, which lies between
crossbar and bus-based networks, referred to as the Multistage Switch that is built from
number of large switch boxes each containing small crossbar switches; here

The number of identical stages (Ns) of large switch boxes each having m x m crossbar
switches, in the network having n nodes, is equal to log , n; and, the switches per stage
is n/m

The cost of multistage switch network is of O(n log n) which is considerable small as
compared to that of crossbar network that is of O(n®) when n is large

The typical examples of multistage switching topologies discussed are Omega and
Butterfly networks

Following the discussion on centralized switch topologies we considered the distributed-
switch interconnects where the switches are distributed among the nodes (processor)
We classified the distributed switch interconnects as the fully and partially connected,
symmetric and asymmetric interconnects

Then we discussed the linear array, ring, 2D mesh/torus and hypercube topologies and
their performance measures

The relative cost and performance of these topologies, based on the bisection
bandwidth and number of links for 64 nodes network is as follows

Today we discussed Internetworking, i.e., the connection of two or more interconnection
networks to communicate reliably and efficiently

Internetworking relies on the communication standards composed of hierarchy of layers
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The internet communication Protocol Families facilitates applications to work with any
inter-connection

The Transmission Control Protocol/Internet Protocol - TCP/IP is the most popular
internetworking standard

The protocol at each level is implemented by adding headers and trailers at the sending
layer and removing at the receiving layer

Have introduced the basic concept of internetworking we discussed the computer cluster
which is coordinated use of interconnected computers in a machine room

Here, we studied Non-standard connections and Division of memory as the performance
confront of clusters; furthermore

Contrary to these challenges, clusters have advantages in respect of dependability and
scalability

At the end we studied the practical aspects of cluster designs through four examples

Conclusion

Today we have completed our discussion on almost all topics related to this course on
Advanced Computer Architecture

In the following last two lecture we will review the complete course following some case
studies
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Lecture 44
Putting It All Together
(Case Studies)

Today’s Topics

Case Studies

v" Power PC 750 Architecture

v" Power PC 970 Architecture

v" Intel Pentium — VI Architecture
Summary

PowerPC 750 - General

PowerPC 750 is an implementation of PowerPC microprocessor family of reduced
instruction set computer (RISC) microprocessors
750 implements the 32-bit portion of the PowerPC architecture
It provides 32-bit effective addresses for:

v Integer data types of 8, 16, and 32 hits

v Floating-point data types of 32 and 64 bits
It is high-performance, superscalar micro-processor architecture that has Six execution
units and two register files. It can:

v’ fetch from the instruction cache as many as four instructions per cycle

v dispatch as many as two instructions per clock

v/ execute as many as six instructions per clock

PowerPC Instructions

Instructions are encoded as single-word (32-bit)
Instruction formats are consistent among all instruction types, permitting efficient
decoding to occur in parallel with operand accesses
This fixed instruction length and consistent format greatly simplifies instruction pipelining
Integer instructions are:
v Integer arithmetic, Integer compare, logical, rotate and shift
Floating-point instructions are:
v Floating-point arithmetic, multiply/add, rounding and conversion, compare, status
and control instructions
Load/store instructions are:
v Integer and Floating-point load and store; and atomic memory operations (lwarx
and stwcx) instructions
Flow control instructions are:
v branching, condition register logical, trap, and other instructions that affect the
instruction flow
Processor control instructions are:
v' used for synchronizing memory accesses and management of caches, TLBs,
and the segment registers
Memory control instructions are:
v provide control of caches, TLBs, and SRs
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PowerPC 750 Block Diagram
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PowerPC 750 — Instruction Flow
Now let discuss the instruction flow in PowerPC 750, which includes:

v"Instruction fetch,
v"Instruction decode and

v Instruction dispatch
The instruction flow in PowerPC 750 is illustrated here with the help of block diagram

PowerPC 750 allows maximum four instruction fetch per clock cycle

PowerPC 750: Instruction Flow (decode/dispatch)
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> - - - -

- - s - — : Fetch: Maximum 4 inst
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Instruction Queue

- - - - - o -

* 1 Branch N " . .
Processing Unit Dispatch Unit
BPU) Max. 2 Inst/cycle; | Inst/unit
Completion Queue — . m—  — 3
Assignment
Reservation
Stations - 9
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.
Store Queue shtnnsstbsshabantdtitsssbhonnnnnsn
Complete == = Completion Queue

PowerPC 750 — Instruction Fetch
However, the number of clock cycles necessary to request instructions from the memory

system depends on where exactly is the:
1. branch target instruction cache
2. on-chip instruction L1 cache

3. L2 cache
Having understood the instruction let us discuss how the PowerPC decodes and

dispatch the instruction

PowerPC 750 — Decode/Dispatch
» Refer to the instruction flow diagram again and note that:
v Instructions can be dispatched only from the two lowest instruction queue entries,

IQ0 and 1Q1
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v' A maximum of two instructions can be dispatched per clock cycle (although an
additional branch instruction can be handled by the Branch Processing Unit-BPU

v" Only one instruction can be dispatched to each execution unit per clock cycle

* Note that to facilitate dispatch:

v' There must be a vacancy in the specified execution unit

v" A rename register must be available for each destination operand specified by
the instruction

v' There must be an open position in the completion queue; If no entry is available,
the instruction remains in the 1Q.

PowerPC 750: Superscalar Pipeline

- [ Maximum four instruction
fetch per clock cycle

L Maximum three instructions

.{ S dispatch per clock cycle
] - N
1 Loneit Jhuye
|
»
s i
—_— -
' PR ' ' ol
- rrd i . hil ]
| 1 |
| L ' '
. Maximum three instructions
| Lot Prd-Sad completion per cycle

PowerPC 750 — Execution Units
» Refer to the PowerPC 750 superscalar pipeline shown here and note that it contains two
integer units (1Us),
v" 1U1 can execute any integer instruction
v 1U2 can execute all integer instructions except multiply and divide
« Which share thirty-two GPRs for integer operands and a Single-entry reservation station
for each
» Furthermore, there exist
v" One three-stage floating point unit (FPU) that allows both single- and double-
precision operations
v" Hardware support for demoralized numbers and Single-entry reservation station
are provided
v Thirty-two 64-bit FPRs for single- or double-precision operands

» Two-stage LSU (Load/Store Unit) contains
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v' Two-entry reservation station
v Single-cycle, pipelined cache access
v' Three-entry store queue
» Supports both big- and little-endian modes
+ It's dedicated adder performs (extended addition) EA calculations
» It performs alignment and precision conversion for floating-point data and sign extension
for integer data

PowerPC 750: Completion Unit
+ Completion unit retires an instruction from the six-entry reorder buffer (completion
gueue) when:
1. Allinstructions ahead of it have been completed, and
2. The instruction has finished execution, and
3. No exceptions are pending
+ The completion unit guarantees sequential programming model (precise exception
model)
* Monitors all dispatched instructions and retires them in order
» Tracks unresolved branches and flushes instructions from the mispredicted branch
» Retires as many as two instructions per clock

PowerPC 750 Rename Buffers

» 750 provides rename registers for holding instruction results before the completion
commits them to the architected register

» Refer to the instruction flow diagram again and note that there are six GPR rename
registers, six FPR rename registers, and one each for the CR, LR, and CTR

« When an instruction is dispatched to its execution unit, a rename register for the results
of that instruction is assigned

» Dispatcher also provides a tag to the execution unit identifying the rename register that
forwards the required data for an instruction

* When the source data reaches the rename register, execution can begin

* Results are transferred from the rename registers to the architected registers by the
completion unit when an instruction is retired from completion queue

» Results of squashed instructions are flushed from the rename registers

PowerPC 750 Branch Prediction Unit
» Featuring both static and dynamic branch predictions, only one is used at any given time
» Static branch prediction
v It is defined by the PowerPC architecture and involves encoding the branch
instructions
v" The PowerPC architecture provides a field in branch instructions (the BO field) to
allow software to hint whether a branch is likely to be taken
v" Rather than delaying instruction processing until the condition is known, the 750
uses the instruction encoding to predict whether the branch is likely to be taken
and begins fetching and executing along that path
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Dynamic branch prediction:
v 750 use the 512-entry Branch history table (BHT) with two bits per entry
v Allows prediction as: Not-taken, strongly not-taken, taken, strongly taken

PowerPC 750 Branch Target Cache - BTC

750 uses the BTC to reduce time required for fetching target instructions when branch is
predicted to be taken
Branch Target Instruction Cache (BTIC)
v' 64-entry (16-set, four-way set-associative)
v' Cache of branch instructions that have been encountered in branch/loop code
sequences
v BTIC hit: instructions are fetched into the instruction queue a cycle sooner than it
can be made available from the instruction cache

PowerPC 750 Multiple Branch Prediction

The 750 executes through two levels of prediction

Instructions from the first unresolved branch can execute, but they cannot complete until
the branch is resolved.

If a second branch instruction is encountered in the predicted instruction stream, it can
be predicted

Instructions can be fetched, but not executed, from the second branch

No action can be taken for a third branch instruction until at least one of the two previous
branch instructions is resolved

PowerPC 750 Cache

Separate on-chip instruction and data caches
v' 32-Khyte, eight-way set-associative instruction
Pseudo least-recently-used (PLRU) replacement
32-byte (eight-word) cache block
Physically indexed/physical tags
Cache write-back or write-through operation per-block basis
Caches can be disabled in software
Caches can be locked in software
Data cache coherency (MEI) maintained in hardware
The critical double word is made available to the requesting unit
The cache is non-blocking

AN N N N N NN
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PowerPC 750: Data and Instruction Cache Organization
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+ Data Cache: * Instruction Cache

v' 32-word blocks (5 hits) v' 32-word blocks (5 bits)

v' 128 sets (7 bits) v’ 128 sets (7 bits)

v Tags (20 bits) v" Tags (20 bits)

v’ State: MEI v" Valid/Not valid

v" Not snooped

PowerPC 750: Multiprocessing
» 750 Multiprocessing support features include:
v' Hardware-enforced, three-state cache coherency protocol (MEI) for data cache.
v' Load/store with reservation instruction pair for atomic memory references,
semaphores, and other multiprocessor operations
+ The 750’s three-state cache-coherency protocol (MEI) supports the Modified, Exclusive,
and Invalid states

PowerPC 750
» Three states:
v'Invalid
v' Modified
v' Exclusive
* No shared state
» Caching-Inhibited Reads
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PowerPC 970 FX
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PowerPC 970 FX: Organization

*  64-bit implementation of the PowerPC® AS Architecture (version 2.01)

* Vector/SIMD Multimedia eXtension

» Deeply pipelined design consisting:
v 16 stages for most fixed-point register-register operations
v 18 stages for most load and store operations (assuming an L1 D-cache hit)
v' Up to 25 stages for floating point operations
v' The VALU.
v 19 stages for vector permute operations

« Dynamic instruction cracking
v' Some complex instructions are broken into two simpler, more RISC-like

instructions!

v Allows for simpler inner core dataflow

PowerPC 970 FX: General
» Aggressive branch prediction
v Prediction for up to two branches per cycle
v Support for up to 16 predicted branches in flight
v Prediction support for branch direction and branch addresses
» In-order dispatch of up to five operations into distributed issue queue structure
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Out-of-order issue of up to 10 operations into 10 execution pipelines
v" Two load or store operations
Two fixed-point register-register operations
Two floating-point operations
One branch operation
One condition register operation
One vector permute operation
v One vector ALU operation
Register renaming
Cache coherency protocol: MERSI (modified/exclusive/recent/shared/invalid)
Large number of instructions in flight (theoretical maximum of 215 instructions)
Up to 16 instructions in the instruction fetch unit (fetch buffer and overflow buffer)
Up to 32 instructions in the instruction fetch buffer in instruction decode unit
Up to 35 instructions in three decode pipe stages and four dispatch buffers
Up to 100 instructions in the inner-core (after dispatch)
Up to 32 stores queued in the store queue (STQ) (available for forwarding)
Fast, selective flush of incorrect speculative instructions and results
Specific focus on storage latency management
Out-of-order and speculative issue of load operations
Support for up to eight outstanding L1 cache line misses
Hardware initiated instruction prefetching from L2 cache
Software initiated data stream prefetching with support for up to eight active streams
Critical word forwarding / critical sector first
New branch processing / prediction hints for branch instructions

ASENENENEN

PowerPC 970 FX: Instruction Fetch

64KB, direct-mapped instruction cache (I-cache)
v 128-byte lines (broken into four 32-byte sectors)
v' Dedicated 32-byte read/write interface from L2 cache — critical sector first reload
policy
Four-entry, 128-byte, instruction prefetch queue above the I-cache; hardware-initiated
prefetches
Fetch 32-byte aligned block of eight instructions per cycle

PowerPC 970 FX: Branch Prediction

Scan all eight fetched instructions for branches each cycle
Predict up to two branches per cycle
Three-table prediction structure
v" Local (16K entries, 1-bit each); Taken/Not taken
v" Global (16K entries, 1-bit each) 11-bit history XORed with branch instruction
address; Taken/ Not taken
v' Selector (16K entries, 1-bit each) indexed as above; Use local predictor/Use
global predictor
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» This combination of branch prediction tables has been shown to produce very accurate
predictions on a wide range of workload types.

« 16-entry link stack for address prediction (with stack recovery)- predict the target
address for a branch to link instruction that it believes corresponds to a subroutine return
(pushed into the stack earlier)

» 32-entry count cache for address prediction (indexed by the address of Branch
Conditional to Count Register (bcctr) instructions)

PowerPC 970 FX: Instruction Decode and Preprocessing

» Three cycle pipeline to decode and preprocess instructions; Cracking one instruction into
two internal operations

» Cracked and micro-coded instructions have access to four renamed emulation GPRs
(eGPRs), one renamed emulation FPR (eFPR), and one renamed emulation CR (eCR)
field (in addition to architected facilities)

+ 8-entry (16 bytes per entry) instruction fetch buffer (up to eight instructions in, five
instructions out each cycle)

PowerPC 970 FX: Instruction Dispatch and Completion Control
» Four dispatch buffers which can hold up to four dispatch groups when the global
completion table (GCT) is full
» 20-entry global completion table
v' Group-oriented tracking associates a five operation dispatch group with a single
GCT entry
Tracks internal operations from dispatch to completion for up to 100 operations
Capable of restoring the machine state for any of the instructions in flight
Very fast restoration for instructions on group boundaries (i.e., branches)
v Slower for instructions contained within a group
» Supports precise exceptions

ASRNIN

PowerPC 970 FX: Branch and Condition Register Execution Pipeline
» One branch execution pipeline
v Computes actual branch address and branch direction for comparison with
prediction
v' Redirects instruction fetching if either prediction was incorrect
v’ Assists in training/maintaining the branch table predictors, the link stack, and the
count cache
» One condition register logical pipeline
v" Executes CR logical instructions and the CR movement operations
v' Executes some Move to/from Special Purpose Register (mtspr and mfspr)
instructions also
» Out-of-order issue with bias towards oldest operations first
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PowerPC 970 FX: Data Stream Prefetch
« Eight (modeable) data prefetch streams supported in hardware.
» Eight hardware streams are only available if vector prefetch instructions are disabled
» Four vector prefetch streams supported using four of the eight hardware streams.
» The vector prefetch mapping algorithm supports the most commonly used forms of
vector prefetch instructions

Intel P-VI: General
» The P6 family of processors is the generation of processors that succeeds the Pentium®

line of Intel processors
» This processor family implements Intel’s dynamic execution micro-architecture

v Multiple branch prediction
v Data flow analysis
v' Speculative execution

Intel P-VI: Three Engines and Interface with Memory
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Intel P-VI: Major Units
+ The FETCH/DECODE unit:
v" An in-order unit that takes as input the user program instruction stream from the
instruction cache, and
v" Decodes them into a series of p-operations (uops) that represent the dataflow of
that instruction stream
» The pre-fetch is speculative
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* The DISPATCH/EXECUTE unit:

v An out-of-order unit that accepts the dataflow stream, schedules execution of the
pops subject to data dependencies and resource availability and temporarily
stores the results of these speculative executions

« The RETIRE unit:

v" An in-order unit that knows how and when to commit (“retire”) the temporary,

speculative results to permanent architectural state
« The BUS INTERFACE unit:

v' The bus interface unit communicates directly with the L2 (second level) cache
supporting up to four concurrent cache accesses.

v The bus interface unit also controls a transaction bus, with MESI snooping
protocol, to system memory

Intel P-VI: Inside Fetch
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« The L1 Instruction Cache fetches the cache line corresponding to the index from the
Next_IP and presents 16 aligned bytes to the decoder.

« The decoder converts the Intel Architecture instructions into triadic pops (two logical
sources, one logical destination per pop)

» Most Intel Architecture instructions are converted directly into single pops, some
instructions are decoded into one-to-four pyops and the complex instructions require
microcode

« The pops are queued, and sent to the Register Alias Table (RAT) unit, where

» the logical Intel Architecture-based register references are converted into references to
physical registers in P6 family processors physical register references

* Mopa are entered into the instruction pool

» The instruction pool is implemented as an array of Content Addressable Memory called
the Re-Order Buffer (ROB).
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Intel P-VI: Inside Dispatch /Execute
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» The Dispatch unit selects yops from the instruction pool depending upon their status

» If the status indicates that a yop has all of its operands then the dispatch unit checks to
see if the execution resource needed by that pop is also available

« If both are true, the Reservation Station removes that yop and sends it to the resource
where it is executed

» The results of the pop are later returned to the pool

» There are five ports on the Reservation Station, and the multiple resources are accessed
as shown

» The P6 family of processors can schedule (in an out-of-order fashion) at a peak rate of 5
Mops per clock, one to each resource port, but a sustained rate of 3 pops per clock is
more typical

* Note that many of the pops are branches

« The Branch Target Buffer (BTB) will correctly predict most of these branches

» Branch pops are tagged (in the in-order pipeline) with their fall-through address and the
destination that was predicted for them

+ But if mispredicted, then the Jump Execution Unit (JEU) changes the status of all of the
pops behind the branch to remove them from the instruction pool

» In that case the proper branch destination is provided to the BTB which restarts the
whole pipeline from the new target address
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Intel P-VI: Inside Retire

The Retire Unit is also checking the status of pops in the instruction pool

Once removed, the original architectural target of the yops is written as per the original
Intel Architecture instruction.

The Retire Unit must also re-impose the original program order on them

The Retire Unit must first read the instruction pool to find the potential candidates for
retirement and determine which of these candidates are next in the original program
order

Then it writes the results of this cycle’s retirements to the Retirement Register File
(RRF).

The Retire Unit is capable of retiring 3 pops per clock.

Intel P-VI: Bus Interface Unit

Syam hhll-.":;
hsmary e ey ——
| NI | P |'|1E|T|':f:|'
SpeSpe———1 T lIF
LI Celw —_— Chthe
i

From Address f ToFrom
Ganeraien Ued bres Fructeon Poo
(Aelrder Bt

Loads are encoded into a single pop.
Stores therefore require two pops, one to generate the address and one to generate the
data. These pops must later re-combine for the store to complete.
Stores are never performed speculatively since there is no transparent way to undo
them
Stores are also never re-ordered among themselves
A store is dispatched only when both the address and the data are available and there
are no older stores awaiting dispatch
A study of the importance of memory access reordering concluded:
v Stores must be constrained from passing other stores, for only a small impact on
performance.
v' Stores can be constrained from passing loads, for an inconsequential
performance loss.
v Constraining loads from passing other loads or stores has a significant impact on
performance.
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» The Memory Order Buffer (MOB) allows loads to pass other loads and stores by acting
like a reservation station and re-order buffer

» It holds suspended loads and stores and re-dispatches them when a blocking condition
(dependency or resource) disappears

Summary
+ Today we have studied four advance computer architecture:
v" PowerPC 750 and 970 FX
v Intel P-VI

» With this we have completed our discussion on all topic of Advanced Computer
Architecture

* Next time, in the last lecture we will review all concepts we have studied in our earlier
lectures
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Lecture 45
Putting It All Together
(Review: Lecture 1 - 43)

Today’s Topics

Module 1: Introduction

Module 2: Instruction Set Architecture

Module 3: Computer hardware design

Module 4: Instruction Level Parallelism —Dynamic
Module 5: Instruction Level Parallelism — Static
Module 6: Memory Hierarchy system

Module 7: Multiprocessing

Module 8: 1/0 Systems

Module 9: Networks and Clusters

Module 1: Introduction and Quantitative Principles

We started this course distinguishing the computer organization and computer
architecture

Architecture refers to those attributes of a computer visible to the programmer or
compiler writer; e.g., instruction set, memory addressing techniques, I/0O mechanisms
Organization refers to how the features of a computer are implemented; e.g., control
signals are generated using the principles of FSM or microprogramming

The architecture of the members of a processor family are same whereas organization
of same architecture may differ between different members of the family

Module 1: Introduction Computer Development

We also introduced the computers developments with academic and commercial
perspectives

Academically, modern computer developments have their infancy in 1944-49, when
John von Neumann introduced the concept of stored-program computer, referred to as
Electronic Discrete Variable Automatic Computer — EDVAC

Commercially, the first machine was built by Eckert-Mauchly Computer Corporation in
1949

In 1971, Intel introduced first cheep microprocessor 4004 and then 80 x 86 series

In 1998, more than 350 million microprocessors with different instruction set
architectures were in use; this number has risen to more than a billion in 2006
Technological developments, from vacuum tubes to VLSI circuits, dynamic memory and
network technology gave birth to four different generations of computers

This course has viewed the Computer Architecture from four perspectives

Processor Design

Memory Hierarchy

Input/output and storages

Multiprocessor and Network interconnection

AN N NI
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Module 1: Quantitative Principles

The key to the quantitative analysis in determining the effectiveness of the entire
computing system is the computer hardware and software performance
In this respect , we discussed:

v Price-performance design

v' CPU performance metrics

v" CPU benchmark suites

Module 1: Price-Performance Design

The issue of cost-performance is complex one

At one extreme, high-performance computers designer may not give importance to the
cost in achieving the performance goal.

At the other end, low-cost designer may sacrifice performance to some extent.

The price-performance design lies between these extremes where the designer
balances cost and hence price verses performance.

Modulel: CPU Benchmark Suites

In order to compare the performance of two machines, a user can simply compare the
execution time of the same workload running on both the machines.
In practice users want to know, without running their own programs, that how well the
machine will perform on their workload.
This is accomplished by evaluating the machine using a set of benchmarks — the
programs specifically chosen to measure the performance.
Five levels of programs are used as benchmarks:
v Real Applications — scientific programs evaluate the performance of a machine
v" Modified Applications — the real applications with certain blocks modified to focus
desired aspects of application,
v' Kernels — the small key pieces extracted from the real program
v Toy benchmarks — small codes normally used as beginning programming
assignments.
v Synthetic benchmarks — the small section of Atrtificially created program

Modulel: Quantitative Principles of Performance Measurement

Quantitatively the performance of a system can be enhanced by speedup of a fraction of
system based on the concept of the common case first

Amdahl's Law is the basis of the measure of the performance enhancement, which
defines the Speedup due to enhancement E that accelerates a fraction F of the task as:

Module 1: Amdahl's Law

Speedup (E) = Ex Time without Enhancement / Ex Time with Enhancement
= Performance with Enhancement / Performance without Enhancement
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Module 2: Instruction Set Architecture

» The three pillars of computer architecture are:
v" hardware,
v'instruction set
v' software

« Hardware facilitates to run the software and instruction set is the interface between the

hardware and software

«  While talking about the Instruction set architecture the focus of our discussion has been:
v" ISA Taxonomy
v' Types of operands
v" Types of operations
v" Memory Addressing modes

Module 2: Taxonomy of Instruction Set
» The taxonomy of Instruction set was defined as:

v Stack Architecture:

v" Accumulator Architecture

v' General Purpose Register Architecture
o Register — memory
o Register — Register (load/store)
o Memory — Memory Architecture (Obsolete)

Module 2: Types of Operands and Operations
» Operands Types:
v Integer, FP and Character
« Operand Size:
v" Half word, word, double word
»  Classification of operations:
v" Arithmetic, data transfer, control
v'and support operations

Module 2: Types of Operands addressing modes
» Operand Addressing Modes:
v' Immediate, register, direct (absolute) and Indirect
»  Classification of Indirect Addressing:
v Register, indexed, relative (i.e. with displacement) and memory
»  Special Addressing Modes:
v’ Auto-increment, auto-decrement and scaled
+  Control Instruction Addressing modes:
v" Branch, jump and procedure call/return
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Module 3: Computer Hardware design
+ Basic building blocks of a computer
*  Sub-systems of CPU: Datapath and Control
* Processor design steps
» Processor design parameters
* Hardware design process
+ Timing signals
* Uni-bus, 2-bus and 3-bus structures
» 3-bus based single cycles data path

Sub-systems of Central Processing Unit
« At a “higher level” a CPU can be viewed as consisting of two sub-systems
v' Data path: The path that facilitates the transfer of information from one part
(register/memory/ 10) to the other part of the system
v' Control: the hardware that generates signals to control the sequence of steps
and direct the flow of information through the data path

£

Memory
Subsytem

1o

Subsystem
(Peripherals)

Module 3: Datapath Implementations
» The datapath is the arithmetic organ of the Von- Neumann’s stored-program
organization
* Typically, the datapath may be implemented as:
v Unibus structure
v’ 2-bus structure
v’ 3-bus structure
+ Based on the concepts of single cycle, multiple cycle and pipelined architecture
» It consists of registers, internal buses, arithmetic units and shifters
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Each register in the register file has:

a load control line that enables data load to register

a set of tri-state buffers between its output and the bus

a read control line that enables its buffer and place the register on the bus

Module 3: Single/Multiple Cycle Approach

In the Single Cycle implementation, the cycle time is set to accommodate the longest
instruction, the Load instruction.

In the Multiple Cycles implementation, the cycle time is set to accomplish longest step,
the memory read/write

Consequently, the cycle time for the Single Cycle implementation can be five times
longer than the multiple cycle implementation.

Module 3: Pipelined Datapath

Pipelining is a fundamental concept
Where an instructions is completed in multiple steps using distinct resources
It utilizes capabilities of the Datapath by
Starting next instruction while working on the current one
The pipelined datapath may encounter three types of hazards
v" Structural, Data and Control

Module 3: Pipeline Hazards

Structural hazards occur when same resource is accessed by more than one
instructions; e.g., One memory port or one register write port

It can be removed by using either multiple resources or inserting stall

Stall degrades the pipeline performance

Data Hazards occur when attempt is made to read invalid data

Data hazard can be removed by using stall and forwarding techniques

Control hazards occur when an attempt is made to branch prior to the evaluation of the
condition

Four ways to handle control hazards

Module 3: 4 ways to handle control hazard

1.
2.
3.

Stall until branch direction is clear
Predict Branch Not Taken
Execute successor instructions in sequence
v Predict Branch Taken
Delayed Branch
v Define branch to take place AFTER a following instruction
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Module 4: Instruction Level parallelism

Simple pipeline facilitates in-order execution
Whereas, in order to enhance the performance of the pipeline, we want to begin
execution as soon as the data operands are available, i.e., out-of-order execution
Out-of-order execution may introduce data hazards of type WAR and WAW
Instruction Level Parallelism can be achieved by Hardware or Software
In SW parallelism, the dependencies are defined by program result in hazards if HW
cannot resolve
HW exploiting ILP works when dependence cannot be determined at run time
These hardware techniques to exploit ILP are referred to as Dynamic Scheduling
techniques
Dynamic scheduling is accomplished by dividing the ID stage into two parts

v" Issue the instruction in-order

v" Read operand out-of-order
Structural and data dependencies are checked at ID stage
It facilitates out-of-order execution which results in out-of-order completion
We discussed the score-boarding and Tomasulo’s algorithm as the basic concepts for
dynamic scheduling in integer and floating-point datapath
The structures implementing these concepts facilitate out-of-order execution to minimize
data dependencies thus avoid data hazards without stalls
Tomasulo's Approach for IBM 360/91 to achieve high Performance without special
compilers. Here, the control and buffers are distributed with Function Units (FU)
Registers in instructions are replaced by values or pointers to reservation stations(RS) ;
i.e., the registers are renamed
Unlike Scoreboard, Tomasulo can have multiple loads outstanding
We also discussed branch-prediction techniques and different types of branch-
predictors, used to reduce the number of stalls due to control hazards
The concept of multiple instructions issue was discussed in details
This concept is used to reduce the CPI to less that one, thus, the performance of the
processor is enhanced
We studied extensions to the Tomasulo’s structure by including hardware-based
speculation. It allows to speculate that branch is correctly predicted, thus may execute
out-of-order but commit in-order having confirmed that the speculation is correct and no
exceptions exist. The major hardware-based techniques studied are summarized here:

Technique

Hazards type stalls Reduced

Forwarding and bypass

Potential Data Hazard Stalls

Delayed Branching and Branch Scheduling

Control Hazard Stalls

Basic Dynamic Scheduling (score boarding)

Data Hazard Stalls from true dependences

Dynamic Scheduling with renaming
(Tomasulo’s Approach)

Stalls from: data hazards
from anti-dependences and
from output dependences

Dynamic Branch Prediction

Control Hazard stalls

Speculation

Data and Control Hazard stalls

Multiple Instructions issues per cycle

Ideal CPI > 1
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Module 5: Static Approach for ILP

The multiple-instruction-issues per cycle processors are rated as the high- performance
processors
These processors exist in a variety of flavors, such as:

v Superscalar Processors

v" VLIW processors

v Vector Processors
The superscalar processors exploit ILP using static as well as dynamic scheduling
approaches
The VLIW processors, on the other hand, exploits ILP using static scheduling only
The major software scheduling techniques, under discussion, to reduce the data and
control stalls, are as follows:

Technique Hazards type stalls Reduced

Basic Compiler scheduling Data hazard stalls

Loop Unrolling Control hazard stalls

Compiler dependence Ideal CPI, Data hazard stalls

Trace Scheduling Ideal CPI, Data hazard stalls

Compiler Speculation Ideal CPI, Data and control hazard stalls

Module 6: Memory Hierarchy System

Here, we discussed how the gap between the speed of processor and the storage
devices - DRAM, SRAM and Disk is increasing with time
We studied that in order to obtain high speed storage at the cheapest cost per byte,
different types of memory modules are organize in hierarchy, based on the:

v Concept of Caching and

v Principle of Locality
The principle of locality states that to obtain data or instructions of a program, the
processor access, at any instant of time, a relatively small portion of the address space
of the fastest memory closet to the processor
There are two different types of locality:

v' Temporal locality is the locality in time

v Spatial locality is the locality in space
Concept of caching states that a small, fastest and most expensive storage be used as
the staging area or temporary-place to:

v' Store frequently-used subset of the data or instructions from the relatively

cheaper, larger and slower memory; and

v" To avoid having to go to the main memory every time this information is needed
The performance of cache is limited by different types of penalties
Then we that talked four options to improve the cache performance
These options are used to reduce:

v' the miss penalty v the miss rate

v the miss Penalty or miss rate v the time to hit in the cache

via Parallelism
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Module 7: Multiprocessing

In this series of four lectures on multiprocessors we have studied, how improvement in
computer performance can be accomplished using Parallel Processing Architectures?
Parallel Architecture is a collection of processing elements that cooperate and
communicate to solve larger problems fast
Then we described the four categories of Parallel Architecture as: SISD, SIMD, MISD
and MIMD architecture
We noticed that based on the memory organization and interconnect strategy, the MIMD
machines are classified as:

v Centralized Shared Memory Architecture

v Distributed Memory Architecture
We also introduced the framework to describe parallel architecture as a two layer
representation: Programming and Communication models
We talked about sharing of caches for multi-processing in the symmetric shared-memory
architecture in details
Here, we studied the cache coherence problem and introduced two methods, write
invalidation and write broadcasting schemes, to resolve the problem
We also discussed the finite state machine for the implementation of snooping algorithm

Module 8: I/0O Systems

The overall performance of a computer is measured by its throughput, which is very
much influenced by the systems external to the processor

The effect of neglecting the 1/0Os on the overall performance of a computer system can
best be visualized by Amdahl's Law which identifies that: system speed-up limited by the
slowest part!

Then we discussed the trends in I/O inter-connects as: the networks, channels and
backplanes

The networks offer message-based narrow-pathway for distributed processors over long
distance

The backplanes offer memory-mapped wide pathway for centralized processing over
short distance

The interconnects are implemented via buses

The buses are classified in two major categories as the 1/0 bus and CPU-Memory bus
The channels are implemented using /O buses and backplanes using CPU-Memory
buses

We discussed the bus transition protocols which specify the sequence of events and
timing requirements in transferring information as synchronous or asynchronous
communication

We also studied bus arbitration protocols — the protocols to reserve the bus by a device
that wishes to communicates when multiple devices need the bus access

Here, we noticed that the bus arbitration schemes usually try to balance two factors:
Bus-priority: the device with highest priority should be serviced first

Fairness: every device that want to use the bus is guaranteed to get the bus eventually
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» The three bus arbitration schemes are:
v" Daisy Chain Arbitration
v Centralized Parallel Arbitration
v" Distributed Arbitration
» Having discussed the basic types of storage devices and the ways to interconnect them
to the CPU, we studied the ways to evaluate the performance of storage I/O systems
» Here, we noticed that the reliability of a system can be improved by using the following
four methods

Fault Avoidance | Prevent fault occurrence by construction

Fault Tolerance | providing service complying with the service specification
by redundancy

Error Removal minimizing the presence of errors by verification

Error to estimate the presence, creation and consequence of

Forecasting errors by evaluation

Module 9: Networks and Clusters
» The formation of a generic interconnection network that comprises
v' Computer nodes (host or end system)
v" H/W and S/W interface
v Links to the interconnection network and
v' Communication subnet
« The interconnections are designated as:
v Local Area Network-LAN
v' Wide Area Network-WAN
v/ System (or Storage) Area Network-SAN
« While talking about the interconnect model, software and protocols we studied that:
v The interconnect communication model shows that two machines are connected
via two unidirectional wires with a FIFO (queue) at the end to hold the data
v' The communication software separates the header and trailer from the message
and identifies the request, reply, their acknowledgments and error checking
codes
v The communication protocols suggest the sequence of steps to reliable
communication
» We classified the distributed switch interconnects as the fully and partially connected,
symmetric and asymmetric interconnects
+ Then we discussed the linear array, ring, 2D mesh/torus and hypercube topologies and
their performance measures
+ We also discussed Internetworking, i.e., the connection of two or more interconnection
networks to communicate reliably and efficiently
» Internetworking relies on the communication standards composed of hierarchy of layers
» The internet communication Protocol Families facilitates applications to work with any
inter-connection

Dr. M Ashraf Chughtai| Virtual University of Pakistan | www.vumultan.com



