

Software Requirement Engineering
Course Code – CS-708

Course Instructor

Dr. Ghulam Ahmad Farrukh

Ph.D Software Engineering

 George Mason University, USA

Reference Books:
1. Software Quality: Analysis and Guidelines for Success by Capers Jones

2. Software Assessments, Benchmarks, and Best Practices by Capers Jones

3. Customer-oriented Software Quality Assurance by Frank P. Ginac

4. Software Engineering by Sommerville

5. Software EŶgiŶeeriŶg: A PraĐtitioŶer’s ApproaĐh ďy Roger S. PressŵaŶ
6. Requirements Engineering: Processes and Techniques by Kotonya and Sommerville

7. Inroads to Software Quality by Alka Jarvis and Vern Crandell

8. Software Requirements: Objects, States, and Functions by Alan M. Davis

9. Software Engineering Quality Practices by Ronald K. Kandt

10. High Quality Low Cost Software Inspections by Ronald A. Radice

Video Links: http://www.vumultan.com/CS708Video.aspx

Published By: www.vumultan.com

http://www.vumultan.com/CS708Video.aspx
http://www.vumultan.com/

Software Requirement Engineering

Course Code – CS708

Chapter Table of Contents Lectures Page No

01 Software Requirements 01 – 04 01

02

Process and Process Models

• Software Process and Process Model

• RE Process – Input and Output

• RE Activates

• Capability Maturity Model

• Social and Cultural Issues in RE

• Requirement Elicitation

• Requirement Analysis and Negotiation

• Requirement Validation

• Requirement Management

• Writing Requirement Document

• Use Case Modeling

• Bank System Case Study

05 – 28

10

10

13

16

19

21

24

35

46

53

66

74

83

 03

Software Modeling

• Object Oriented Modeling

• Function Oriented Modeling

• Dynamic Modeling

29 – 39

87

89

106

117

04 Requirements Document for the Banking System 40 132

05 Other Topics

• Requirements Engineering for Agile Methods

• Internet & Requirement Engineering

• Requirements Engineering for Product Lines

• Requirements Prioritization

41

42

43

44

151

156

159

163

Presented by:
Dr. Ghulam Ahmad Farrukh
Ph.D Software Engineering

George Mason University, USA

Published by: http://www.vumultan.com/

http://www.vumultan.com/

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Software Requirements

Introduction

• Requirements form the basis for all software products

• Requirements engineering is the process, which enables us to systematically determine

the requirements for a software product

Requirement

• Something required, something wanted or needed

– Webster‟s dictionary

• There is a huge difference between wanted and needed and it should be kept in mind all

the time

Software Requirements

• A complete description of what the software system will do without describing how it will

do it is represented by the software requirements

• Software requirements are complete specification of the desired external behavior of the

software system to be built

• They also represent External behavior of the system

• Software requirements may be:

 Abstract statements of services and/or constraints

 Detailed mathematical functions

• Software requirements may be:

 Part of the bid of contract

 The contract itself

 Part of the technical document, which describes a product

IEEE Definition

• A condition or capability that must be met or possessed by a system...to satisfy a

contract, standard, specification, or other formally imposed document

– IEEE Std 729

Sources of Requirements

• Stakeholders

– People affected in some way by the system

• Documents

• Existing system

• Domain/business area

Levels of Software Requirements

• Stakeholders describe requirements at different levels of detail

– “What versus How”
– “One person‟s floor is another person‟s ceiling”

What versus How

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

User needs What

How

Product space What

How

Actual product‟s behavior What

How

Architecture/data flow What

How

Module specifications What

How

Algorithms What

How

Code

Importance of Software Requirements

• The hardest single part of building a software system is deciding what to build...No other

part of the work so cripples the resulting system if done wrong. No other part is difficult

to rectify later

– Fred Brooks

Examples of Requirements

• The system shall maintain records of all payments made to employees on accounts of

salaries, bonuses, travel/daily allowances, medical allowances, etc.

• The system shall interface with the central computer to send daily sales and inventory

data from every retail store

• The system shall maintain records of all library materials including books, serials,

newspapers and magazines, video and audio tapes, reports, collections of

transparencies, CD-ROMs, DVDs, etc.

• The system shall allow users to search for an item by title, author, or by International

Standard Book Number

• The system‟s user interface shall be implemented using a web browser
• The system shall support at least twenty transactions per second

• The system facilities which are available to public users shall be demonstrable in ten

minutes or less

Kinds of Software Requirements

1. Functional requirements

2. Non-functional requirements

3. Domain requirements

4. Inverse requirements

5. Design and implementation constraints

1: Functional Requirements

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

• Statements describing what the system does

• Functionality of the system

• Statements of services the system should provide

 Reaction to particular inputs

 Behavior in particular situations

• Sequencing and parallelism are also captured by functional requirements

• Abnormal behavior is also documented as functional requirements in the form of

exception handling

• Functional requirements should be complete and consistent

• Customers and developers usually focus all their attention on functional requirements

Functional Requirements Examples:

• The system shall solve a quadratic equation using the following formula

 x = (-b+sqrt(b2 – 4*a*c))/2*a

• The user shall be able to search either the entire database of patients or select a subset

from it (admitted patients, or patients with asthma, etc.)

• The system shall provide appropriate viewers for the user to read documents in the

document store

• Every order shall be allocated a unique identifier (ORDER_ID) which the user shall use

to access that order

• The system shall allow customers to return non-perishable items within fifteen days of

the purchase. A customer must present the original sale receipt to return an item

Comments on Examples

• Notice the level of detail in different requirements described above. Some are very

detailed compared to others

• Notice the ambiguity in the requirement, which uses the term „appropriate viewers‟
• This requirement does not mention the formats of documents and types of viewers,

which can be used

• Notice the ambiguity in the requirement for solving the quadratic equation. The

requirement does not speak about the possibility when the value of „a‟ is zero

 x = (-b + sqrt(b2 – 4*a*c)) / 2*a

• Incomplete and ambiguous requirements are open to multiple interpretations and

assumptions

• This can lead to the development of poor quality, or faulty, software products

2: Non-Functional Requirements

• Most non-functional requirements relate to the system as a whole. They include

constraints on timing, performance, reliability, security, maintainability, accuracy, the

development process, standards, etc.

• They are often more critical than individual functional requirements

• Capture the emergent behavior of the system, that is they relate to system as a whole

• Must be built into the framework of the software product

• Failure to meet a non-functional system requirement may make the whole system

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

unusable

• For example, if an aircraft system does not meet reliability requirements, it will not be

certified as „safe‟
• If a real-time control system fails to meet its performance requirements, the control

functions will not operate correctly

• Non-functional requirements arise through user needs, because of budget constraints,

because of organizational policies, because of the need of interoperability with other

software and hardware systems, or because of external factors such as safety

regulations, privacy legislation, etc.

Product Requirements:

Product Requirements Examples

• The system shall allow one hundred thousand hits per minute on the website

• The system shall not have down time of more than one second for continuous execution

of one thousand hours

Organizational Requirements:

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Organizational Requirements Examples

• The system development process and deliverable documents shall conform to the MIL-

STD-2167A

• Any development work sub-contracted by the development organization shall be carried

out in accordance with Capability Maturity Model

External Requirements:

External Requirements Examples

• The system shall not disclose any personal information about members of the library

system to other members except system administrators

• The system shall comply with the local and national laws regarding the use of software

tools

Observations on Non-Functional Requirements

• Non-functional requirements can be written to reflect general goals for the system.

Examples include:

– Ease of use

– Recovery from failure

– Rapid user response

• Goals are open to misinterpretation

• Objective verification is difficult

• Distinction between functional and non-functional is not always very clear

• Non-functional requirements should be written in a quantitative manner as much as

possible, which is not always easy for customers

• For some goals, there are no quantitative measures, e.g., maintainability

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

• Goals can be useful to designers and developers, as they give clues to them about

priorities of the customers

• Chances of conflicts within non-functional requirements are fairly high, because

information is coming from different stakeholders. For example, different stakeholders

can give different response times or failure tolerance levels, etc.

• Some negotiations must be done among different stakeholders, to achieve an

agreement in these situations

• Non-functional requirements should be highlighted in the requirements document, so

that they can be used to build the architecture of the software product

Non-Functional Requirements Discussion

• NFRs are very important to capture the emergent behavior of the system in these there

major dimensions

• Product

– Usability, reliability, portability, efficiency (performance, space)

• Organizational

– Standards, implementation, delivery

• External

– Interoperability, ethical, legislative (privacy, safety)

NFRs as Goals

• Non-functional requirements are sometimes written as general goals, which are difficult

to verify

• They should be expressed quantitatively using metrics (measures) that can be

objectively tested

Example: Goal converted into an NFR

• Goal (unverifiable)

– The system should be easy to use by experienced controllers and should be

organized in such a way that user errors are minimized

• Non-functional requirement (verifiable)

– Experienced controllers shall be able to use all the system functions after a total

of two hours‟ training. After this training, the average number of errors made by
experienced users shall not exceed two per day

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Software Metrics for Non-Functional Requirements (NFRs)

 Property Measure
1 Speed

• Processed transactions/second
• Response time
• Screen refresh time

2 Size

• K bytes
• Number of function points

3 Ease of use

• Training time
• Number of help frames

4 Reliability

• Mean time to failure
• Probability of unavailability
• Rate of failure occurrence
• Availability

5 Robustness

• Time to restart after failure
• Percentage of events causing failure
• Probability of data corruption on failure

6 Portability

• Percentage of target-dependent statements
• Number of target systems

• With the help of these measures the NFRs can be verified quantitatively

• It should also be noted that the cost of quantitatively verifying each NFR may be very

high

3: Domain Requirements

• Requirements that come from the application domain and reflect fundamental

characteristics of that application domain

• These can be both the functional or non-functional requirements

• These requirements, sometimes, are not explicitly mentioned

• Domain experts find it difficult to convey domain requirements

• Their absence can cause significant dissatisfaction

• Domain requirements can impose strict constraints on solutions. This is particularly true

for scientific and engineering domains

• Domain-specific terminology can also cause confusion

• Example: In a commission-based sales businesses, there is no concept of negative

commission. However, if care is not taken novice developers can be lured into

developing systems, which calculate negative commission

• Banking domain has its own specific constraints, for example, most banks do not allow

over-draw on most accounts, however, most banks allow some accounts to be over-

drawn

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

4: Inverse Requirements

• They explain what the system shall not do. Many people find it convenient to describe

their needs in this manner

• These requirements indicate the indecisive nature of customers about certain aspects of

a new software product

• Example: The system shall not use red color in the user interface, whenever it is asking

for inputs from the end-user

5: Design and Implementation Constraints

• They are development guidelines within which the designer must work

• These requirements can seriously limit design and implementation options

• Can also have impact on human resources

Design and Implementation Constraints Examples

• The system shall be developed using the Microsoft .Net platform

• The system shall be developed using open source tools and shall run on Linux operating

system

Another view

• There also exists another view of requirements apart from different kinds of

requirements we have studied so far.

– Another view of requirements

– There are some problems which occur in requirements, that are necessary to be

identified and properly attended.

– Problems in requirements

Another View of Requirements

• In general requirements can be viewed as

– User/customer requirements OR System contract requirements

User/Customer Requirements

• Functional and non-functional requirements should be stated in natural language with

the help of forms or simple diagrams describing the expected services of a system by

the User under certain constraints

• These are understandable by users, who have no, or little, technical knowledge

• System design characteristics should be avoided as much as possible

• It is a good practice to separate user requirements from more detailed system

requirements in a requirements document

• Including too much information in user requirements, constraints the system designers

from coming up with creative solutions

• The rationale associated with requirements is very important. It helps in managing

changes to requirements

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

System Contract Requirements

• Sets out the system services and constraints in detail

• May serve as the basis of contract for implementation of the system

• Should be complete and consistent

• They are used by the designers and developers as the starting point for system design

• They should be understood by technical staff of the customer organization and the

development team

• In principle, these requirements should also state „what‟ the system does, rather than
„how‟ it is implemented

• However, with the level of details needed to specify the system completely, it is not

possible to exclude all design information

• An initial architecture of the system may be defined to help structure the requirements

specification

• In most cases, systems interoperate with other systems

• Use of specific design may be included as an external requirement

• Natural language is often used to describe system requirements

• Some specification languages may be used with natural language, which add structure

to specifications and reduce ambiguity

• Unified Modeling Language (UML) is a specification language, which has become the

de-facto standard for modeling requirements

Requirements Problems

• The requirements don‟t reflect the real needs of the customer for the system

• Requirements are inconsistent and/or incomplete

• It is expensive to make changes to requirements after they have been agreed upon

• There are misunderstandings between customers, those developing the system

requirements, and software engineers developing or maintaining the system

Problems with Natural Languages

• Requirement specification in natural language pose some problems which include

 Lack of clarity

 Requirements confusion

 Requirements amalgamation

• Natural language understanding relies on the specification readers and writers using the

same words for same concept

• A natural language requirements specification is over-flexible. “You can say the same
thing in completely different ways”

• It is not possible to modularize natural language requirements. It may be difficult to find

all related requirements

 To discover the impact of a change, every requirement have to be examined

Impact of Wrong Requirements

• When requirements are wrong, systems are late, unreliable and don‟t meet customers
needs

• his results in enormous loss of time, revenue, market share, and trust of customers

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Processes and Process Models

Process

• A process is an organized set of activities, which transforms inputs to outputs

• We can use synonyms of process such as: procedure, method, course of action, etc.

• Processes are essential for dealing with complexity in real world

• Processes document the steps in solving a certain problem

• They allow knowledge to be reused

• They Allow people to apply the process in their peculiar but similar problems

• Examples of Processes

 An instruction manual for operating a microwave oven

 An instruction manual for assembling a computer or its parts

 A procedure manual for operating a motor vehicle radio and CD player

 A quality manual for software development.

 Such a manual describes the processes, which should be used to assure the

quality of the software

Software Processes

• Software engineering, as a discipline, has many processes

• These processes help in performing different software engineering activities in an

organized manner

1. Requires creativity

2. Provides interactions between a wide range of different people

3. Helps in engineering judgment

4. Requires background knowledge

5. Experiences

• Examples of Software Processes

 Software engineering development process (SDLC)

 Requirements engineering process

 Design process

 Quality assurance process

 Change management process

Software Requirements Engineering Process

• Before discussing different aspects of requirements engineering process, let us discuss

the concept of process models

Process Models

• A process model is a simplified description of a process presented from a particular

perspective

• There may be several different models of the same process

• No single model gives a complete understanding of the process being modeled

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Variations in Process Models

• A process model is produced on the anticipated need for that model. We may need

– A model to help explain how process information has been organized

– A model to help understand and improve a process

– A model to satisfy some quality management standard

Types of Process Model

• Coarse-grain activity models

• Fine-grain activity models

• Role-action models

• Entity-relation models

Coarse-grain Activity Model

• This type of model provides an overall picture of the process

• Describes the context of different activities in the process

• It doesn‟t document how to enact a process

Context of Requirements Engineering

• Software requirements follow the “system requirements” and “system design”
• The primary goal is understanding

• Software requirements are followed by software design in a software development life

cycle

Context of RE Process in Waterfall Model

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Another Perspective on Context of RE Process

Coarse-grain Activity Model of the Requirements Engineering Process

• Requirements engineering process is an example of coarse-grain activity model

Spiral Model of RE Process

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Fine-grain Activity Models

• These are more detailed models of a specific process, which are used for understanding

and improving existing processes

• We‟ll discuss some fine-grain processes within the general requirements engineering

processes in later lectures

Role-action Models

• These are models, which show the roles of different people involved in the process and

the actions which they take

• They are useful for process understanding and automation

Entity-relation Models

• The models show the process inputs, outputs, and intermediate results and the

relationships between them

• They are useful in quality management systems

Requirements Engineering Process

• The process(es) involved in developing system requirements is collectively known as

Requirements Engineering Process

RE Process - Inputs and Outputs

RE Process – Inputs

It includes existing system information

• Information: It include the information about the functionality of systems to be replaced

and the Information about other systems, which interact with the system being specified

• Stakeholder needs: Description of what system stakeholders need from the system to

support their work

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

• Organizational standards: Standards used in an organization regarding system

development practice, quality management, etc.

• Regulations: External regulations such as health and safety regulations, which apply to

the system

• Domain information: General information about the application domain of the system

• Agreed requirements: A description of the system requirements, which is

understandable by stakeholders and which has been agreed by them

• System specification: This is a more detailed specification of the system, which may be

produced in some cases

• System models: A set of models such as a data-flow model, an object model, a process

model, etc., which describes the system from different perspectives

RE Process Variability

• RE processes vary radically from one organization to another, and even within an

organization in different projects

• Unstructured process rely heavily on the experience of the people, while systematic

processes are based on application of some analysis methodology , but they still require

human judgment

• RE processes vary radically from one organization to another, and even within an

organization in different projects

• Unstructured process rely heavily on the experience of the people, while systematic

processes are based on application of some analysis methodology , but they still require

human judgment

Variability Factors

• There are four factors which count towards the variability of the Requirements

Engineering Process

1. Technical maturity: The technologies and methods used for requirements

engineering vary from one organization to other

2. Disciplinary involvement: The types of engineering and managerial disciplines

involved in requirements vary from one organization to another

3. Organizational culture: The culture of an organization has important effect on all

business and technical processes

4. Application domain: Different types of application system need different types of

requirements engineering process.

RE Process

• Requirement Engineering Process has a formal starting and ending point in the overall

software development life cycle.

• Begins

 There is recognition that a problem exists and requires a solution

 A new software idea arises

• Ends

 With a complete description of the external behavior of the software to be built

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

• It is a continuous process in which the related activities are repeated until requirements

are of acceptable quality

• It is one of the most critical processes of system development

• Based on the need of individual software projects and organizational needs,

requirements engineering processes are tailored

• An important point to remember is that

• “There is no ideal requirements engineering process!”

Two Main Tasks of RE

• There are two main tasks which need to be performed in the requirements engineering

process.

1. Problem analysis: Analysis of a software problem

2. Product description: Complete specification of the desired external behavior of

the software system to be built. Also known as functional description, functional

requirements, or specifications

Problem Analysis

• Problem analysis is the first and foremost task of requirements engineering process. It

includes:

 Brainstorming, interviewing, eliciting requirements

 Identifying all possible constraints

 Expansion of information

• Trading off constraints and organizing information

• Complete understanding should be achieved

Product Description

• Product description is another task of requirements engineering process. In this task we:

 Make decisions to define the external behavior of the software product

 Organize ideas, resolve conflicting views, and eliminate inconsistencies and

ambiguities

What Really Happens

• It should be kept in mind that: “Both problem analysis and product description run in
parallel and iteratively throughout the requirements engineering process”.

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Requirements Engineering Activities

Requirements Elicitation

• Requirements elicitation activity is performed by

• Determining the system requirements through consultation with stakeholders, from

system documents, domain knowledge, and market studies

• Requirements acquisition or requirements discovery

Requirements Analysis and Negotiation

• Requirements analysis and negotiation activity is performed by

• Understanding the relationships among various customer requirements and shaping

those relationships to achieve a successful result

• Negotiations among different stakeholders and requirements engineers

• Incomplete and inconsistent information needs to be tackled here

• Some analysis and negotiation needs to be done on account of budgetary constraints

Requirements Specification

• Requirements specification includes

• Building a tangible model of requirements using natural language and diagrams

• Building a representation of requirements that can be assessed for correctness,

completeness, and consistency

Requirements Document

• Detailed descriptions of the required software system in form of requirements is captured

in the requirements document

• Software designers, developers and testers are the primary users of the document

Requirements Validation

• It involves reviewing the requirements model for consistency and completeness

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

• This process is intended to detect problems in the requirements document, before they

are used as a basis for the system development

Requirements Management

• Although, it is not shown as a separate activity in RE Process, it is performed through

out the requirements engineering activities.

• Requirements management asks to identify, control and track requirements and the

changes that will be made to them

Who are Actors?

• Actors in a process are the people involved in the execution of that process

• Actors are normally identified by their roles rather than individually, e.g., project

manager, purchasing director, and system engineer

Actors in the RE Process

• Requirements engineering involves people who are primarily interested in the problem to

be solved (end-users, etc) as well as people interested in the solution (system

designers, etc.)

• Another group of people, such as health & safety regulators, and maintenance engineers

may be effected by the existence of the system

• Role-action diagrams are process models which show the actors associated with

different process activities

• They document the information needs of different people involved in the process

• They use model of prototype software system as part of requirements elicitation process

Role-Action Diagram for Software Prototyping

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Role Descriptions

Role Description
Domain Expert Responsible for proving information about the application domain

and the specific problem in that domain, which is to be solved
System End-user Responsible for using the system after delivery
Requirements
Engineer

Responsible for eliciting and specifying the system requirements

Software
Engineer

Responsible for developing the prototype software system

Project Manager Responsible for planning and estimating the prototyping project

Human and Social Factors

• Requirements engineering processes are dominated by human, social and

organizational factors because they always involve a range of stakeholders from

different backgrounds and with different individual and organizational goals

• System stakeholders may come from a range of technical and non-technical background

and from different disciplines

Stakeholder Types

• Software engineers

• System end-users

• Managers of system end-users

• External regulators

• Domain experts

Factors Influencing Requirements

• Personality and status of stakeholders

• The personal goals of individuals within an organization

• The degree of political influence of stakeholders within an organization

Process Support

• One way to minimize errors in the requirements engineering is to use process models

and to use CASE tools

• The most mature CASE tools support well-understood activities such as programming

and testing and the use of structured methods

• Support for requirements engineering is still limited because of the informality and the

variability of the process

CASE Tools for RE

• Modeling and validation tools support the development of system models which can be

used to specify the system and the checking of these models for completeness and

consistency

• Management tools help manage a database of requirements and support the

management of changes to these requirements

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Process Improvement

• Process improvement is concerned with modifying processes in order to meet some

improvement objectives

• Improvement objectives

 Quality improvement

 Schedule reduction

 Resource reduction

Planning Process Improvement

• Some important questions arise:

• What are the problems with current processes?

• What are the improvement goals?

• How can process improvement be introduced to achieve these goals?

• How should process improvements be controlled and managed?

RE Process Problems

• Lack of stakeholder involvement

• Business needs not considered

• Lack of requirements management

• Lack of defined responsibilities

• Stakeholder communication problems

• Over-long schedules and poor quality requirements documents

Process Maturity

• Process maturity can be thought of as the extent that an organization has defined its

processes, actively controls these processes and provides systematic human and

computer-based support for them

• The SEI‟s Capability Maturity Model is a framework for assessing software process

maturity in development organizations

Capability Maturity Model

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

CMM Level 1: Initial

• Organizations have an undisciplined process and it is left to individuals that how to

manage the process and which development techniques to use

CMM Level 2: Repeatable

• Organizations have basic cost and schedule management procedures in place. They are

likely to be able to make consistent budget and schedule predictions for projects in the

same application area

CMM Level 3: Defined

• The software process for both management and engineering activities is documented,

standardized and integrated into a standard software process for the organization

CMM Level 4: Managed

• Detailed measurements of both process and product quality are collected and used to

control the process

CMM Level 5: Optimizing

• The organization has a continuous process improvement strategy, based on objective

measurements, in place

RE Process Maturity Model

Initial RE Process Maturity Level

• There is no defined RE process.

• It suffer from requirements problems such as requirements volatility, unsatisfied

stakeholders and high rework costs.

• It is dependent on individual skills and experience

• Defined standards for requirements documents, policies and procedures for

requirements management

• Defined RE process based on good practices and techniques. Active process

improvement process is in place

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Best Practices for RE Process Improvement

• RE processes can be improved by the systematic introduction of best requirements

engineering practices

• Each improvement cycle identifies best practice guidelines and works to introduce them

in an organization

• Best practices will be discussed throughout the semester

Requirements Engineering Costs

• About fifteen percent (15%) of system development costs

• However, if the requirements engineering process is not executed properly, this cost can

increase substantially

Social and Cultural Issues in Requirements Engineering

• Some aspects of the requirements engineering process deal with social and cultural

issues

• What is the best way to deal with these issues?

• Some think that these issues fall outside the scope of requirements engineering process,

and fall under management, interpersonal skills, or ethics

Social Issues in RE

• Requirements engineering is a social process, as it involves interaction among clients,

engineers, and other systems

• Requirements engineering is not an entirely formal process, because it involves

discovering client needs and reconciling them with technical possibilities

Stakeholders in RE Process

• At least three major groups participate in requirements engineering process;

 The client organization

 The requirements team

 The development team

• There may be other interested parties, e.g., regulatory authorities

Six Areas of Social Issues

• Within the client organization

• Within the requirements team

• Between the client and the requirements team

• Between the development and requirements teams

• Within the development team

• Between the development team and the client

Issues within the Client Organization

• In a large organization, there are usually competing divisions or groups, so the notion of

„the client‟ is not obvious

• Intended users of the system may be different people from the ones who interact with

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

the requirements team

• The users of the system should be brought into the requirement engineering process, as

they hold the key of the eventual success of the software engineering project

• The requirement process reveals the problems within the client organization, which must

be addressed by facilitating communication among different stakeholders

• The problems within the client organization must not be buried, as they effect the

implementation of the project

• The new automated system may have profound impact on how the business is

conducted or how information is classified within the organization

• Success of the project requires that every group within the organization understand

different aspects of the new system

• Problems of tacit knowledge

 Say-do problem

Issues within the Requirements Team

• How work is organized?

• What methods and notations are used?

• What team members think about organization and how jelled requirement team is?

Issues between Client Organization and Requirements Team

• Financial arrangements

• Ethical obligations

• Legal safeguards

• Personal relationships

• Denial of information

• Management of changes

Issues between Development and Requirement Teams

• Development team needs to work very closely with the requirements team to resolve

inconsistencies and to get details

• In some cases, requirements team may be disbanded or assigned other tasks

Issues of Development Team

• Team members may be demoralized

• There may be high turn over rate

• The deadlines may slip

• Developers dislike documentation

• Development teams may have to communicate with clients directly, to gain better

understanding of the project‟s possibilities and limitations, both for initial development
and maintenance

Cultural Issues in RE

• Advances in the internet and communication technologies has enabled customers and

developers to collaborate with each other in geographically and temporally dispersed

environments, There may be

 Time zones differences

 Language and terminology differences

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

 Religious and racial differences

 Ethical issues

 Political differences

 Differences in business environment

Example: A Billion

• Scientific community and US consider the following number to be a billion

1,00,00,00,000

• For the rest of the world, a billion is

10,00,00,00,00,000

Differences in Time Zones

• Working hours of clients and developers may differ by eight hours or more

• Arranging phone calls and video conferences become a hassle as one party has to

come to office very early or stay very late

• Analysts start assuming requirements

Language and Terminology Differences

• Clients and developers may speak different languages or different dialects

• Requirements errors are introduced by not understanding other partner‟s language and
terminology properly

• People and government in the US, and worldwide scientific community consider the

following number to be a billion

 1,00,00,00,000

• For the rest of the world, a billion is

 10,00,00,00,00,000

• Globally, people communicate with fellow citizens using sports lingo to convey certain

situations and concepts, even in the business environment

• This can cause misunderstandings

• Use of the word „hockey‟ in Pakistan and US means two different sports: „field hockey‟
and „ice hockey‟ respectively

Religious and Racial Differences

• Insensitive comments on religious and racial backgrounds of people involved in software

engineering projects can become a major hindrance in the successful execution of the

requirements engineering process

Ethical Issues

• Access to confidential client information

• Possibility of elimination of jobs

• Differences of opinions with the client on the project

Political Differences

• Differences in political ideologies and personal convictions can also lead to

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

unprofessional environment in the execution of the requirements engineering process

• Some people do not want to work on military software program

Differences in Business Environments

• Every society has its own culture within the business community, which must be

understood for successful execution of the requirements engineering process

Addressing Social and Cultural Issues

• Understand social and cultural issues and differences

• Avoid judgmental comments and offensive remarks on un-related views and beliefs of

others

• Create an environment of respect and professionalism

• Focus on discovering the needs of the customers

• Use state-of-the-art technology to facilitate activities in the requirements engineering

process

Requirements Engineering Process

RE Process 1: Requirements Elicitation

• Elicit means to gather, acquire, extract, and obtain, etc.

• Requirements elicitation means gathering requirements or discovering requirements

• Activities involved in discovering the requirements for the system

Basics of Knowledge Acquisition

• These are the sources of knowledge acquisition

 Reading

 Listening

 Asking

 Observing

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Requirements Elicitation Techniques

• Individual

• Group

• Modeling

• Cognitive

Problems in Requirements Elicitation

• Problems of scope

 The boundary of the system is ill-defined

 Unnecessary design information may be given

• Problems of understanding

 Users have incomplete understanding of their needs

 Users have poor understanding of computer capabilities and limitations

 Analysts have poor knowledge of problem domain

 User and analyst speak different languages

 Ease of omitting “obvious” information

 Conflicting views of different users

 Requirements are often vague and untestable, e.g., “user-friendly” and “robust”
• Problems of volatility

 Requirements evolve over time and hence there are some requirements which

are bound to change during the system development process due to one reason

or the other.

Contexts in Requirements Elicitation Process

• It is important to consider the context in which requirements are being elicited.

Requirements elicitation process may be followed in the following contexts

 Organization

 Environment

 Project

 Constraints imposed by people

• Organization

 Submitters of input

 Users of output

 Ways in which the new system change the business process

• Environment

 Hardware and software

 Maturity of the target system domain

 Certainty of the target system‟s interfaces to the larger system

 The target system‟s role in the larger system

• Project

 The attributes of the different stakeholder communities, such as the end users,

sponsors, developers, and requirements analysts. Examples of such attributes

are:

o Management style

o Management

hierarchy

o Domain experience

o Computer experience

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

• The constraints imposed by the people

 They are involved in the elicitation process, e.g., managerial constraints

concerning cost, time, and desired quality in the target system

Requirements Elicitation Guidelines

• Assess the business and technical feasibility for the proposed system

• Identify the people who will help specify requirements and understand their

organizational bias

• Define the technical environment

• Identify “domain constraints” that limit the functionality or performance of the system

• Define one or more requirements elicitation methods (interviews, focus groups, team

meetings)

• Solicit participation from many people so that requirements are defined from different

points of view; be sure to identify the rationale for each requirement that is recorded

• Identify ambiguous requirements as candidates for prototyping

• Create usage scenarios to help customers/users better identify requirements

Ethnomethodology

• Looks for behaviors that may be different in a specific culture but which have the same

underlying purpose or meaning

• Conversational analysis

• Measurement of body system functions

• Non-verbal behavior studies

• Detailed video analysis

Requirements and Psychology

• Errors in statements can happen in two places

 Perception of facts – reality

 Linguistic representation of one of these perceptions – personal reality

• To remove these errors, requirements should be reviewed (during and after elicitation)

Use Case Modeling

• Define actors and black-box use cases

• The functional requirements of the system are defined in terms of use cases and actors

• The use case descriptions are a behavioral view

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Components of Requirements Elicitation

Dimensions to Requirements Elicitation

• Application domain understanding

• Problem understanding

• Business understanding

• Understanding the needs and constraints of system stakeholders

• Application domain understanding

 Knowledge of the general area where the system is applied

• Problem understanding

 The details of the specific customer problem where the system will be applied

must be understood

• Business understanding

 Understand how systems interact and contribute to overall business goals

• Understanding the needs and constraints of system stakeholders

 Understand, in detail, the specific needs of people who require system support in

their work

Elicitation and Analysis Processes

• Requirements elicitation and requirements analysis are closely linked processes

Requirements Elicitation Stages

• Objective setting

• Background knowledge acquisition

• Knowledge organization

• Stakeholder requirements collection

Objective Setting

• Overall organizational objectives should be established at this stage

• These include general goals of business, an outline description of the problem to be

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

solved and why the system may be necessary, and the constraints on the system such

as budget, schedule, and interoperability constraints

Background Knowledge Acquisition

• Requirements engineers gather and understand background information

• This includes information about the organization where the system is to be installed,

information about the application domain of the system, and information about any

existing systems which are in use and which may be replaced

Knowledge Organization

• The large amount of knowledge which has been collected in previous stage must be

organized and collated

• Identifying system stakeholders and their roles in the organization, prioritizing the goals

of the organization and discarding domain knowledge which does not contribute directly

to the system requirements

Stakeholder Requirements Collection

• It involves consulting system stakeholders to discover their requirements, and deriving

requirements which come from the application domain and the organization which is

acquiring the system

A General Requirements Elicitation Process

Comments on this Process

• It is an idealized process, while the reality of requirements elicitation tends to be much

messier

• The activities are usually mixed up with each other

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

• If objective setting activities are not carried out, significant analysis problems occur, as

no objective and business goals are available to prioritize requirements

• It is an idealized process, while the reality of requirements elicitation tends to be much

messier

• The activities are usually mixed up with each other

• If objective setting activities are not carried out, significant analysis problems occur, as

no objective and business goals are available to prioritize requirements

• The output from the requirements elicitation process should be a draft document which

describes the system requirements, which is then analyzed to discover problems and

conflicts in the requirements definition

• This process is followed by the requirements analysis process, which will be discussed

in another lecture

Basics of Knowledge Acquisition

• Reading

• Listening

• Asking

• Observing

• Results in large volume of information, which must be organized to make it

understandable

Knowledge Structuring Techniques

• Partitioning

 Organization of knowledge into aggregation relationships, where requirements

knowledge is described in terms of its parts

 Booking system example: a booking record may be may be defined as a flight

reference, source & destination of flight, the name & address of the passenger,

fare, and date of travel

• Abstraction

 Organization of knowledge according to general/specific relationships.

Requirement knowledge is described by relating specific instances to abstract

structures

 Passenger abstraction may represent all classes of passengers (children, adults,

full-fare paying, concessionary passengers, etc.)

• Projection

 Organization of knowledge from several different perspectives or viewpoints

 Booking system example: travel agents, airline management, check-in desk

operators, passengers, a bookings database, etc.

Specific Elicitation Techniques

• Interviews

• Scenarios

• Observations and social analysis

• Requirements reuse

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Interviews

• The requirements engineer or analyst discusses the system with different stakeholders

and builds up an understanding of their requirements

• Interviews are less effective for understanding the application domain and the

organizational issues due to terminology and political factors

Types of Interviews

• Closed interviews

 The requirements engineer looks for answers to a pre-defined set of questions

• Open interviews

 There is no predefined agenda and the requirements engineer discusses, in an

open-ended way, what stakeholders want from the system

Interviewing Essentials

• Interviewers must be open-minded and should not approach the interview with pre-

conceived notions about what is required

• Stakeholders must be given a starting point for discussion. This can be a question, a

requirements proposal or an existing system

• Interviewers must be aware of organizational politics - many real requirements may not

be discussed because of their political implications

Interview Steps

• Prepare

• Conduct

 Opening

 Body

 Closing

• Follow through

Prepare for the Interview

• Before developing questions

 Define the purpose and objectives

 Determine whether the interview should be conducted by one person or a team

(define roles for team members)

 Contact interviewee to arrange time, place, and logistics of the interview and

outline the purpose and format

 Obtain background information

• After contacting the interviewee

 Develop the interview guide

 List name and title of interviewee and date of the interview

 List questions in the order you will ask them

 Move from general to specific

 Include open questions to elicit essay type response (e.g., Describe…, Tell
me…, How…)

 Include closed questions to obtain specific information (e.g., Who? How much?

Where?)

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Conduct the Interview

• Opening

 Establish rapport and build trust and credibility

o Make eye contact

o Shake hands

o Introduce yourself (and your team); provide information about role(s) in

the interview process

 Clarify purpose, time frame, and key objectives

 Transition to the core of the interview by leading into the first question

• Body

 Follow your interview guide

as you ask questions; use

probes to follow up on a

response

 Be flexible and open-minded

 Listen actively

 Monitor your voice and body

language

 Identify interviewee‟s main
concerns

 Maintain rapport

 Take accurate notes

 Use silence and pauses

 Ask for and obtain relevant

documentation

 Ask “catch-all” question at
the end

• Closing

 Summarize findings and link to purpose

 Answer any questions the interviewee has

 Determine and agree on next steps

 Set next meeting, if necessary

 Thank the interviewee for his/her input and for taking the time to meet with you

Follow Through

• Immediately after the interview, fill in your notes; be sure to jot down impressions and

important ideas

• Review any documentation received from the interviewee

• Write an interview report, if necessary

• Follow up on leads obtained during the interview

 Contact other potential interviewees

 Research other data sources

• Follow up in agreed-upon next steps

• Send a thank you note to the interviewee, if appropriate

Listening

• The art of listening is most important. You can best impress your client by listening and

giving due attention to what the client or customer is saying

• This requires effort on part of the interviewer

• Listening Steps

 Hear

o Listen to learn as much as you can so that you will know how to respond

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

o Give the speaker your undivided attention; don‟t just wait for your turn to
speak

o Concentrate on the message, not the person

o Don‟t interrupt
o Tune out distractions such as interfering noises, wandering thoughts, and

emotional reactions to the speaker‟s message

o Suspend judgment about the message until you have heard all the facts

o Take notes on the speaker‟s key points, if appropriate

o Learn to manage your own emotional filters, personal blinders, and

biases, which can keep you from hearing what is really being said

 Interpret

o Observe the speaker‟s nonverbal cues (gestures, facial expressions, and
tone of voice) and factor them into your interpretation

o Listen for the attitudes and motives behind the words

o Listen for the speaker‟s needs and wants

o Put the message in a broader context

o Integrate what you‟ve just heard into what you already know about the
speaker or subject

 Respond

o Nonverbal Response to the Message

– Make eye contact

– Nod affirmatively

– Use facial expressions and gestures to indicate that you are

listening

o Verbal Response to the Message

– Ask questions and probe to get more specific information and

ensure understanding

– Rephrase the message using different words to check the

meaning

– Make empathetic remarks that acknowledge you understand the

speaker‟s feelings, without offering opinions or judging him or her
 Evaluate

o Identify the main point of the message and its supporting evidence

o Clarify facts, perceptions, and opinions

o Distinguish between fact and opinion

o Group facts in like categories and logical order (importance, chronology)

o Base your opinion about the message on the facts

o Use the total message – the needs, the context, and the content – to

follow through on what you hear

Brainstorming

• Facilitated application specification technique (FAST)

• Group activity

• All members are equal

• Off-site meeting location is preferred

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Scenarios

• Scenarios are stories which explain how a system might be used. They should include

 A description of the system state before entering the scenario

 The normal flow of events in the scenario

 Exceptions to the normal flow of events

 Information about concurrent activities

 A description of the system state at the end of the scenario

• Scenarios are examples of interaction sessions which describe how a user interacts with

a system

• Discovering scenarios exposes possible system interactions and reveals system

facilities which may be required

Scenarios and Use-Cases

• The term use-case (i.e., a specific case of system usage) is sometimes used to refer to a

scenario

 A use-case is a scenario

 A scenario is a collection of use-cases. Therefore, each exceptional interaction is

represented as a separate use-case

 A use-case is a collection of scenarios

Observation and Social Analysis

• People often find it hard to describe what they do because it is so natural to them.

Sometimes, the best way to understand it is to observe them at work

• Ethnography is a technique from the social sciences which has proved to be valuable in

understanding actual work processes

• Actual work processes often differ from formal, prescribed processes

• An ethnographer spends an extended time observing people at work and building up a

picture of how work is done

Ethnography in Requirements Elicitation

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Ethnography Guidelines

• Assume that people are good at doing their job and look for non-standard ways of

working

• Spend time getting to know the people and establish a trust relationship

• Keep detailed notes of all work practices. Analyze them and draw conclusions from them

• Combine observation with open-ended interviewing

• Organize regular de-briefing session where the ethnographer talks with people outside

the process

• Combine ethnography with other elicitation techniques

Requirements Reuse

• Reuse involves taking the requirements which have been developed for one system and

using them in a different system

• Requirements reuse saves time and effort as reused requirements have already been

analyzed and validated in other systems

• Currently, requirements reuse is an informal process but more systematic reuse could

lead to larger cost savings

Reuse Possibilities

• Where the requirement is concerned with providing application domain information

• Where the requirement is concerned with the style of information presentation. Reuse

leads to a consistency of style across applications

• Where the requirement reflects company policies such as security policies

Prototyping

• A prototype is an initial version of a system which may be used for experimentation

• Prototypes are valuable for requirements elicitation because users can experiment with

the system and point out its strengths and weaknesses. They have something concrete

to criticize

Recap of Requirements Elicitation

• Requirements elicitation deals with discovering requirements for a software product

• It is an iterative process and consists of many activities including establishing objectives,

understanding background, organizing knowledge, and collecting requirements

• Introduced the concept of elicitation and requirements elicitation process

• Basics of knowledge acquisition (reading, listening, asking, & observing)

• Knowledge acquisition techniques (individual, group, modeling, cognitive)

• Elicitation problems (scope, understandability, volatility)

• Context (organization, environment, project, constraints imposed by people)

• Guidelines for knowledge acquisition

• Discussed in detail some requirements elicitation techniques, especially interviews

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Requirements Engineering Process

RE Process 2: Requirements Analysis and Negotiation

• We‟ll discuss requirements analysis and negotiation separately, in order to understand

them clearly and to appreciate that different skills are needed to perform them

• They are inter-leaved activities and join to form a major activity of the requirements

engineering process

• The aim of requirements analysis is to discover problems with the system requirements,

especially incompleteness and inconsistencies

• Some analysis is inter-leaved with requirements elicitation as problems are sometimes

obvious as soon as a requirement is expressed

• Detailed analysis usually takes place after the initial draft of the requirements document

is produced

• Analysis is concerned with incomplete set of requirements, which has not been

discussed by stakeholders

Iterative Aspects of Elicitation, Analysis, and Negotiation

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Comments on Requirements Analysis

• Analysts read the requirements, highlight problems, and discuss them in requirements

review meetings

• This is a time-consuming and expensive activity

• Analysts have to think about implications of the draft statements of requirements

• People do not think in the same way and different analysts tackle the process in different

ways

• It is not possible to make this activity a structured and systematic process

• It depends on the judgment and experience of process participants

Requirements Analysis Stages

• Necessity checking

 The need for the requirement is analyzed. In some cases, requirements may be

proposed which don‟t contribute to the business goals of the organization or to
the specific problem to be addressed by the system

• Consistency and completeness checking

 The requirements are cross-checked for consistency and completeness.

Consistency means that no requirements should be contradictory; Completeness

means that no services or constraints which are needed have been missed out

• Feasibility checking

 The requirements are checked to ensure that they are feasible in the context of

the budget and schedule available for the system development

Requirements Analysis Process

Analysis Techniques

• Analysis checklists

 A checklist is a list of questions which analysts may use to assess each

requirement

• Interaction matrices

 Interaction matrices are used to discover interactions between requirements and

to highlight conflicts and overlaps

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Analysis Checklists

• Each requirement may be assessed against the checklist

• When potential problems are discovered, these should be noted carefully

• They can be implemented as a spreadsheet, where the rows are labeled with the

requirements identifiers and columns are the checklist items

• The are useful as they provide a reminder of what to look for and reduce the chances

that you will forget some requirements checks

• They must evolve with the experience of the requirements analysis process

• The questions should be general, rather than restrictive, which can be irrelevant for most

systems

• Checklists should not include more than ten items, because people forget items on long

checklists reading through a document. Example of analysis checklist

Checklist Items

• Premature design

• Combined requirements

• Unnecessary requirements

• Use of non-standard hardware

• Conformance with business goals

• Requirements ambiguity

• Requirements realism

• Requirements testability

Checklist Items Description

• Premature design

 Does the requirement include premature design or implementation information?

• Combined requirements

 Does the description of a requirement describe a single requirement or could it

be broken down into several different requirements?

• Unnecessary requirements

 Is the requirement „gold plating‟? That is, is the requirement a cosmetic addition

to the system which is not really necessary

• Use of non-standard hardware

 Does the requirement mean that non-standard hardware or software must be

used? To make this decision, you need to know the computer platform

requirements

• Conformance with business goals

 Is the requirement consistent with the business goals defined in the introduction

to the requirements document?

• Requirements ambiguity

 Is the requirement ambiguous i.e., could it be read in different ways by different

people? What are the possible interpretations of the requirement?

• Requirements realism

 Is the requirement realistic given the technology which will be used to implement

the system?

• Requirements testability

 Is the requirement testable, that is, is it stated in such a way that test engineers

can derive a test which can show if the system meets that requirement?

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Requirements Interactions

• A very important objective of requirements analysis is to discover the interactions

between requirements and to highlight requirements conflicts and overlaps

• A requirements interaction matrix shows how requirements interact with each other,

which can be constructed using a spreadsheet

• Each requirement is compared with other requirements, and the matrix is filled as

follows:

 For requirements which conflict, fill in a 1

 For requirements which overlap, fill in a 1000

 For requirements which are independent, fill in a 0

• Consider an example

• An Interaction Matrix

Requirement R1 R2 R3 R4 R5 R6
R1 0 0 1000 0 1 1

R2 0 0 0 0 0 0
R3 1000 0 0 1000 0 1000
R4 0 0 1000 0 1 1

R5 1 0 0 1 0 0
R6 1 0 1000 1 0 0

Comments on Interaction Matrices

• If you can‟t decide whether requirements conflict, you should assume that a conflict
exists. If an error is made it is usually fairly cheap to fix; it can be much more expensive

to resolve undetected conflicts

• In the example, we are considering, we can see that R1 overlaps with R3 and conflicts

with R5 and R6

• R2 is an independent requirement

• R3 overlaps with R1, R4, and R6

• The advantage of using numeric values for conflicts and overlaps is that you can sum

each row and column to find the number of conflicts and the number of overlaps

• Requirements which have high values for one or both of these figures should be

carefully examined

• A large number of conflicts or overlaps means that any changes to that requirement will

probably have a major impact of the rest of the requirements

• Interaction matrices work only when there is relatively small number of requirements, as

each requirement is compared with every other requirement

• The upper limit should be about 200 requirements

• These overlaps and conflicts have to be discussed and resolved during requirements

negotiation, which we‟ll discuss next

Requirements Negotiation

• Disagreements about requirements are inevitable when a system has many

stakeholders. Conflicts are not „failures‟ but reflect different stakeholder needs and

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

priorities

• Requirements negotiation is the process of discussing requirements conflicts and

reaching a compromise that all stakeholders can agree to

• In planning a requirements engineering process, it is important to leave enough time for

negotiation. Finding an acceptable compromise can be time-consuming

• The final requirements will always be a compromise which is governed by the needs of

the organization in general, the specific requirements of different stakeholders, design

and implementation constraints, and the budget and schedule for the system

development

Requirements Negotiation Stages

• Requirements discussion

 Requirements which have been highlighted as problematic are discussed and the

stakeholders involved present their views about the requirements

• Requirements prioritization

 Disputed requirements are prioritized to identify critical requirements and to help

the decision making process

• Requirements agreement

 Solutions to the requirements problems are identified and a compromised set of

requirements are reached. Generally, this will involve making changes to some of

the requirements

Requirements Negotiation Process

Comments on Requirements Negotiation

• In principle, requirements negotiation should be an objective process

• The judgments should be the requirements for the system should be based on technical

and organizational needs

• Reality is, however, often different

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

• Negotiations are rarely conducted using only logical and technical arguments

• They are influenced by organizational and political considerations, and the personalities

of the people involved

• A strong personality may force their priorities on other stakeholders

• Requirements may be accepted or rejected because they strengthen the political

influence in the organization of some stakeholders

• End-users may be resistant to change and may block requirements, etc.

• The majority of time in requirements negotiation is usually spent resolving requirements

conflicts. A requirement conflicts with other requirements if they ask for different things

• Example of access of data in a distributed system

• Even after years of experience, many companies do not allow enough time for resolution

of conflicts in requirements

• Conflicts should not be viewed as „failures‟, they are natural and inevitable – rather

healthy

Resolution of Requirements Conflicts

• Meetings are the most effective way to negotiate requirements and resolve requirements

conflicts

• All requirements which are in conflict should be discussed individually

• Negotiation meetings should be conducted in three stages

Stages of Negotiation Meetings

• Information stage

 An information stage where the nature of the problems associated with a

requirement is explained

• Discussion stage

 A discussion stage where the stakeholders involved discuss how these problems

might be resolved

o All stakeholders with an interest in the requirement should be given the

opportunity to comment. Priorities may be assigned to requirements at

this stage

• Resolution stage

 A resolution stage where actions concerning the requirement are agreed

o These actions might be to delete the requirement, to suggest specific

modifications to the requirement or to elicit further information about the

requirement

Requirements Error/Defect

• A deficiency in the requirements quality that can hamper software development

Requirements Errors

• Errors and omissions find their way in different requirements documents

• If not removed, requirements errors usually flow downstream into design, code, and user

manuals

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

• It is difficult to detect requirements errors once they flow downstream

• Requirements errors are most expensive to eliminate

Software Development Process

Types of Requirements Errors

• Errors of omission

 Errors of omission are most common among requirements errors

 Domain experts easily forget to convey domain knowledge to requirements

engineers, because they consider that to be obvious and implicit

• Errors of clarity and ambiguity

 Second most common errors are those of clarity and ambiguity

 Primarily, because natural languages (like English) are used to state

requirements, while such languages are themselves ambiguous

 For example: object

• Errors of commission

 Errors of commission can also find their way into the requirements documents

• Errors of speed and capacity

 Performance, that is errors of speed and capacity, are also found in requirements

 Primarily, these occur due to conflicting understanding or competing needs of

different stakeholders

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Negative Impact of Requirements Errors

• The resulting software may not satisfy user‟s real needs

• Multiple interpretations of requirements may cause disagreements between customers

and developers, wasting time and money, and perhaps resulting in lawsuits

• Negative impact on humans

 Unsatisfied customers and developers

 Lack of interest in automation of processes

 Blame game

Addressing Requirements Errors

• Prevention

• Removal

Prevention vs. Removal

• For requirements errors, prevention is usually more effective than removal

• Joint application development (JAD), quality function deployment (QFD), and prototyping

are more effective in defect prevention

• Requirements inspections and prototyping play an important role in defect removal

Defect Prevention

• Don‟t let defects/errors become part of the requirements document or requirements

model in the first place

• How is it possible?

• Understanding application domain and business area is the first step in defect

prevention

• Training in different requirements engineering activities (elicitation, analysis and

negotiation, specification, and validation) is also very important for defect prevention

• Allocating enough time to conduct requirements engineering activities also is very

important in this regard

• Willing and active participation of stakeholders in different activities of requirements

engineering. That is why JAD is very useful in defect prevention as far as requirements

errors are concerned

• An overall commitment to quality and emphasis on using documented processes is also

a very important

• An overall commitment to process improvement

Inspections

• Inspections, by all accounts, do a better job of error removal than any competing

technology, and they do it at a lower cost

 Robert Glass

• Inspections are conducted by a group of people working on the project, with the

objective to remove defects or errors

• Every member of the inspection team has to read and evaluate requirements documents

before coming to the meeting and a formal meeting is conducted to discuss

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

requirements errors

• Requirements errors detected during this inspections save lot of money and time as

requirements errors do not flow into the design and development phases of software

development process

• A complete description of inspections must address five dimensions:

 Technical

 Managerial

 Organizational

 Assessment

 Tool support

Defect Detection Without Inspections

Observations

• Requirements engineers are trained to write requirements documents, but have no

training on reading/reviewing requirements documents

• Reviewers typically rely on ad hoc reading techniques, with no well-defined procedure,

learning largely by doing

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

Techniques for Reading Requirements Documents

• Ad hoc review

 A review with no formal, systematic procedure, based only individual experience

• Checklist review

 A list of items is provided to reviewers, which makes this inspection process

more focused

• Defect-based reading

 Provides a set of systematic procedures that reviewers can follow, which are

tailored to the formal software cost reduction notation

• Perspective-based reading

 Researchers at Experimental Software Engineering Group at the University of

Maryland, College Park, have created Perspective-Based Reading (PBR) to

provide a set of software reading techniques for finding defects in English-

language requirements documents

Different Perspectives

• PBR operates under the premise that different information in the requirements is more or

less important for the different uses of the document

• Each user of the requirements document finds different aspects of the requirements

important for accomplishing a particular task

• PBR provides a set of individual reviews, each from a particular requirements user‟s
point of view, that collectively cover the document‟s relevant aspects

• This process is similar to constructing system use cases, which requires identifying who

will use the system and in what way

Steps in PBR

• Selecting a set of perspectives for reviewing the requirements document

• Creating or tailoring procedures for each perspective usable for building a model of the

relevant requirements information

• Augmenting each procedure with questions for finding defects while creating the model

• Applying procedures to review the document

Two Questions

• What information in these documents should they check?

• How do they identify defects in that information?

Benefits of Different Perspectives

• Systematic

 Explicitly identifying the different uses for the requirements gives reviewers a

definite procedure for verifying whether those uses are achievable

• Focused

 PBR helps reviewers concentrate more effectively on certain types of defects,

rather than having to look for all types

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

• Goal-oriented and customizable

 Reviewers can tailor perspectives based on the current goals of the organization

• Transferable via training

 PBR works from a definite procedure, and not the reviewer‟s own experience
with recognizing defects, new reviewers can receive training in the procedures‟
steps

Identifying Defects

• A series of questions are used to identify different types of requirements defects

• Requirements that do not provide enough information to answer the questions usually do

not provide enough information to support the user. Thus, reviewers can identify and fix

defects beforehand

Requirements Defects that PBR Helps Detect

• Missing information

 Any significant requirement related to functionality, performance, design

constraints, attributes, or external interface not included

 Undefined software responses to all realizable classes of input data in all

realizable classes of situations

 Sections of the requirements document

 Figure labels and references, tables, and diagrams

 Definitions of terms and units of measures

• Ambiguous information

 Multiple interpretations caused by using multiple terms for the same

characteristic or multiple meanings of a term in a particular context

• Inconsistent information

 Two or more requirements that conflict with one another

• Incorrect fact

 A requirement-asserted fact that cannot be true under the conditions specified for

the system

• Extraneous information

 Unnecessary or unused information (at best, it is irrelevant; at worst, it may

confuse requirements users)

• Miscellaneous defects

 Other errors, such as including a requirement in the wrong section

Benefits of PBR’s Detailed Questions

• Allow controlled improvement

 Reviewers can reword, add, or delete specific questions

• Allow training

 Reviewers can train to better understand the parts of a representation or work

product that correspond to particular questions

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

 CS-708 Software Requirement Engineering

PBR General Questions

• Does the requirement make sense from what you know about the application or from

what is specified in the general description?

• Do you have all the information necessary to identify the inputs to the requirement?

Based on the general requirements and your domain knowledge, are these inputs

correct for this requirement?

• Have any of the necessary inputs been omitted?

• Are any inputs specified that are not needed for this requirement?

• Is this requirement in the appropriate section of the document?

Results of PBR Experiments

• PBR provides a framework that represents an improved approach for conducting

requirements reviews

• This approach will only be effective when an organization tailors the framework to its

own needs and uses feedback from its reviewers to continually improve and refine the

techniques

• PBR seems best suited for reviewers with a certain range of experience (not too little;

not too much)

• Development teams that use PBR to inspect requirements documents tend to detect

more defects than they do using other less- structured approaches

• Relatively novice reviewers can use PBR techniques to apply their expertise in other

development tasks to defect detection

• Using PBR improves team meeting by helping team members build up expertise in

different aspects of a requirements document

• It creates high-level representations of the software system, usable as a basis of work

products in later stages of the development

• Each development organization can customize PBR‟s set of perspectives, level of detail,
and types of questions

• PBR facilitates controlled improvements, providing a definite procedure, alterable

according to projects metrics and reviewers‟ feedback

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

46 CS-708 Software Requirement Engineering

PBR General Questions

• Does the requirement makes sense from what you know about the application or from what is

specified in the general description?

• Do you have all the information necessary to identify the inputs to the requirement? Based on

the general requirements and your domain knowledge, are these inputs correct for this

requirement?

• Have any of the necessary inputs been omitted?

• Are any inputs specified that are not needed for this requirement?

• Is this requirement in the appropriate section of the document?

Results of PBR Experiments

• PBR provides a framework that represents an improved approach for conducting requirements

reviews

• This approach will only be effective when an organization tailors the framework to its own

needs and uses feedback from its reviewers to continually improve and refine the techniques

• PBR seems best suited for reviewers with a certain range of experience (not too little; not too

much)

• Development teams that use PBR to inspect requirements documents tend to detect more

defects than they do using other less- structured approaches

• PBR seems best suited for reviewers with a certain range of experience (not too little; not too

much)

• Development teams that use PBR to inspect requirements documents tend to detect more

defects than they do using other less- structured approaches

• It creates high-level representations of the software system, usable as a basis of work products

in later stages of the development

• Each deǀelopŵeŶt oƌgaŶizatioŶ ĐaŶ Đustoŵize PB‘͛s set of peƌspeĐtiǀes, leǀel of detail, aŶd
types of questions

• PBR facilitates controlled improvements, providing a definite procedure, alterable according to

pƌojeĐts ŵetƌiĐs aŶd ƌeǀieǁeƌs͛ feedďaĐk

Requirements Engineering Process

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

47 CS-708 Software Requirement Engineering

Validation Objectives

• Certifies that the requirements document is an acceptable description of the system to be

implemented

• Checks a requirements document for

 Completeness and consistency

 Conformance to standards

 Requirements conflicts

 Technical errors

 Ambiguous requirements

Analysis and Validation

• Analysis works with raw requirements as elicited from the system stakeholders

 ͞Haǀe ǁe got the ƌight ƌeƋuiƌeŵeŶts͟ is the key ƋuestioŶ to ďe aŶsǁeƌed at this stage

• Validation works with a final draft of the requirements document i.e., with negotiated and

agreed requirements

 ͞Haǀe ǁe got the ƌeƋuiƌeŵeŶts ƌight͟ is the key ƋuestioŶ to ďe aŶsǁeƌed at this stage

Validation Inputs and Outputs

• Requirements Document

 Should be a complete version of the document, not an unfinished draft. Formatted and

organized according to organizational standards

• Organizational Knowledge

 Knowledge, often implicit, of the organization which may be used to judge the realism

of the requirements

• Organizational Standards

 Local standards e.g. for the organization of the requirements document

• List of Problems

 List of discovered problems in the requirements document

• Agreed Actions

 List of agreed actions in response to requirements problems. Some problems may have

several corrective actions; some problems may have no associated actions

Requirements Reviews

• A group of people read and analyze the requirements, look for problems, meet and discuss the

problems and agree on actions to address these problems

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

48 CS-708 Software Requirement Engineering

Requirements Review Process

Review Activities

• Plan review

 The review team is selected and a time and place for the review meeting is chosen

• Distribute documents

 The requirements document is distributed to the review team members

• Plan review

 The review team is selected and a time and place for the review meeting is chosen

• Distribute documents

 The requirements document is distributed to the review team members

• Plan review

 The review team is selected and a time and place for the review meeting is chosen

• Distribute documents

 The requirements document is distributed to the review team members

Problem Actions

• Requirements clarification

 The requirement may be badly expressed or may have accidentally omitted information

which has been collected during requirements elicitation

• Missing information

 Some information is missing from the requirements document. It is the responsibility of

the requirements engineers who are revising the document to discover this information

from system stakeholders

• Requirements conflict

 There is a significant conflict between requirements. The stakeholders involved must

negotiate to resolve the conflict

• Unrealistic requirement

 The requirement does not appear to be implement-able with the technology available

or given other constraints on the system. Stakeholders must be consulted to decide

how to make the requirement more realistic

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

49 CS-708 Software Requirement Engineering

Pre-review Checking

• Reviews are expensive because they involve a number of people spending time reading and

checking the requirements document

• Reviews are expensive because they involve a number of people spending time reading and

checking the requirements document

Pre-review Checking Stages

Review Team Membership

• Reviews should involve a number of stakeholders drawn from different backgrounds

 People from different backgrounds bring different skills and knowledge to the review

 Stakeholders feel involved in the RE process and develop an understanding of the needs

of other stakeholders

• Review team should always involve at least a domain expert and an end-user

Review Checklists

• Understandability

 Can readers of the document understand what the requirements mean?

• Redundancy

 Is information unnecessarily repeated in the requirements document?

• Completeness

 Does the checker know of any missing requirements or is there any information missing

from individual requirement descriptions?

• Ambiguity

 Are the requirements expressed using terms which are clearly defined? Could readers

from different backgrounds make different interpretations of the requirements?

• Consistency

 Do the descriptions of different requirements include contradictions? Are there

contradictions between individual requirements and overall system requirements?

• Organization

 Is the document structured in a sensible way? Are the descriptions of requirements

organized so that related requirements are grouped?

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

50 CS-708 Software Requirement Engineering

• Conformance to standards

 Does the requirements document and individual requirements conform to defined

standards? Are departures from the standards, justified?

• Traceability

 Are requirements unambiguously identified, include links to related requirements and

to the reasons why these requirements have been included?

Checklist Questions & Quality Attributes

• Is each requirement uniquely identified?

 Traceability, conformance to standards

• Are specialized terms defined in the glossary

 Understandability

• Does a requirement stand on its own or do you have to examine other requirements to

understand what it means?

 Understandability, completeness

• Do individual requirements use the terms consistently

 Ambiguity

• Is the same service requested in different requirements? Are there any contradictions in these

requests?

 Consistency, redundancy

• If a requirement makes reference to some other facilities, are these described elsewhere in the

document?

 Completeness

• Are related requirements grouped together? If not, do they refer to each other?

 Organization, traceability

Prototyping

• Prototypes for requirements validation demonstrate the requirements and help stakeholders

discover problems

• Validation prototypes should be complete, reasonably efficient and robust. It should be possible

to use them in the same way as the required system

• User documentation and training should be provided

Prototyping for Validation

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

51 CS-708 Software Requirement Engineering

Prototyping Activities

• Choose prototype testers

 The best testers are users who are fairly experienced and who are open-minded about

the use of new systems. End-users who do different jobs should be involved so that

different areas of system functionality will be covered

• Develop test scenarios

 Careful planning is required to draw up a set of test scenarios which provide broad

coverage of the requirements. End-useƌs shouldŶ͛t just play aƌouŶd ǁith the systeŵ as
this may never exercise critical system features

• Execute scenarios

 The users of the system work, usually on their own, to try the system by executing the

planned scenarios

• Document problems

 Its usually best to define some kind of electronic or paper problem report form which

users fill in when they encounter a problem

User Manual Development

• Writing a user manual from the requirements forces a detailed requirements analysis and thus

can reveal problems with the document

• Information in the user manual

 Description of the functionality and how it is implemented

 Which parts of the system have not been implemented

 How to get out of trouble

 How to install and get started with the system

System Models

• For some projects, system models may be developed based on the agreed set of requirements

• These models may be data-floǁ ŵodels of the systeŵ͛s fuŶĐtioŶality, oďjeĐt ŵodels, eǀeŶt
models, entity-relation models

Model Validation

• Validation of system models is an essential part of the validation process

• Some checking is possible with automated tools

• Paraphrasing the model is an effective checking technique

Objectives of Model Validation

• To demonstrate that each model is self-consistent

• If there are several models of the system, to demonstrate that these are internally and

externally consistent

• To demonstrate that the models accurately reflect the real requirements of system

stakeholders. This is very difficult

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

52 CS-708 Software Requirement Engineering

Data-flow Diagram for Issue

Paraphrased Description

Check user

Inputs and sources Useƌ͛s liďƌaƌy Đaƌd fƌoŵ eŶd-user

Transformation function Checks that the user is a valid library user

Transformation outputs The useƌ͛s status

Control information User details from the database

Check item

Inputs and sources The useƌ͛s status fƌoŵ CheĐk useƌ

Transformation function Checks if an item is available for issue

Transformation outputs The iteŵ͛s status

Control information The availability of the item

Issue item

Inputs and sources None

Transformation function Issues an item to the library user. Items are

stamped with a return date.

Transformation outputs The item issued to the end user

Database update details

Control information Item status - items only issued if available

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

53 CS-708 Software Requirement Engineering

Requirements Testing

• Each requirement should be testable i.e., it should be possible to define tests to check whether

or not that requirement has been met

• Inventing requirements tests is an effective validation technique as missing or ambiguous

information in the requirements description may make it difficult to formulate tests

• Each functional requirement should have an associated test

Test Case Definition

• What usage scenario might be used to check the requirement?

• Does the requirement, on its own, include enough information to allow a test to be defined?

• Is it possible to test the requirement using a single test or are multiple test cases required?

• Could the requirement be re-stated to make the test cases more obvious?

Hard-to-Test Requirements

• System requirements

 Requirements which apply to the system as a whole. In general, these are the most

difficult requirements to validate irrespective of the method used as they may be

influenced by any of the functional requirements. Tests, which are not executed,

cannot test for non-functional system-wide characteristics such as usability

• Exclusive requirements

 These are requirements which exclude specific behavior. For example, a requirement

may state that system failures must never corrupt the system database. It is not possible

to test such a requirement exhaustively

• Some non-functional requirements

 Some non-functional requirements, such as reliability requirements, can only be tested

with a large test set. Designing this test set does not help with requirements validation

Requirements Management

• The process of managing changes to the requirements for a system

• IŶ this leĐtuƌe, ǁe͛ll talk aďout the ƌeasoŶs foƌ ĐhaŶges iŶ ƌeƋuiƌeŵeŶts aŶd hoǁ to ŵaŶage
them

Requirements Management and Traceability

• Requirements cannot be managed effectively without requirements traceability

 A requirement is traceable if you can discover who suggested the requirement, why the

requirement exists, what requirements are related to it and how that requirement

relates to other information such as systems designs, implementations and user

documentation

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

54 CS-708 Software Requirement Engineering

Change - A Constant

• There is nothing permanent except change

 Heraclitus (500 B.C.)

• No matter where you are in the system life cycle, the system will change, and the desire to

change it will persist throughout the life cycle

• Software is like a sponge due to its susceptibility to change

Changing Requirements

• All stakeholders want to change requirements, due to different reasons

• Studies have shown that very significant percentage of delivered defects can be traced back to

changing user requirements

• A major issue in requirements engineering is the rate at which requirements change once the

ƌeƋuiƌeŵeŶts phase has ͞offiĐially͟ eŶded

• This rate is on average 3% per month in the subsequent design phase, and should go down after

that

• This rate should come down to 1% per month during coding

• Ideally, this should come down to no changes in testing, however, this is very rare

Sources of Change

• New business or market conditions dictate changes in product requirements or business rules

• New customer needs demand modification of data produced by information systems,

functionality delivered by products, or services delivered by computer-based system

• Reorganization or business growth/downsizing causes changes in project priorities or software

engineering team structure

• Budgetary or scheduling constraints cause a redefinition of the system or product

Why All This Modification?

• As time passes, all constituencies know more

 About what they need

 Which approach would be best

 How to get it done and still make money

• Statement of the fact: most changes are justified!

Managing Changing Requirements?

• Following quality assurance mechanisms can limit the damage done by changing requirements

 Formal change management procedures

 State-of-the-art configuration control tools

 Requirements reviews

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

55 CS-708 Software Requirement Engineering

Main Concerns in Requirements Management

• Managing changes to agreed requirements

• Managing the relationships between requirements

• Managing the dependencies between the requirements document and other documents

produced in the systems engineering process

CASE Tools for Requirements Management

• Requirements management involves the collection, storage and maintenance of large amounts

of information

• There are now a number of CASE tools available which are specifically designed to support

requirements management

• Configuration management tools may be adapted for requirements engineering

Stable and Volatile Requirements

• Requirements changes occur while the requirements are being elicited, analyzed and validated

and after the system has gone into service

• Some requirements are more stable, while others may be more subject to change than others

• Stable requirements are concerned with the essence of a system and its application domain.

They change more slowly than volatile requirements

• Volatile requirements are specific to the instantiation of the system in a particular environment

and for a particular customer

Requirements Change Factors

• Requirements errors, conflicts and inconsistencies

 As requirements are analyzed and implemented, errors and inconsistencies emerge and

must be corrected. These may be discovered during requirements analysis and

validation or later in the development process

• Evolving customer/end-user knowledge of the system

 As requirements are developed, customers and end-users develop a better

understanding of what they really require from a system

• Technical, schedule or cost problems

 Problems may be encountered in implementing a requirement. It may be too expensive

or take too long to implement certain requirements

Requirements Change Factors

• Changing customer priorities

 Customer priorities change during system development as a result of a changing

business environment, the emergence of new competitors, staff changes, etc.

• Environmental changes

 The environment in which the system is to be installed may change so that the system

requirements have to change to maintain compatibility

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

56 CS-708 Software Requirement Engineering

• Organizational changes

 The organization which intends to use the system may change its structure and

processes resulting in new system requirements

Types of Volatile Requirements

• Mutable requirements

 These are requirements which change because of changes to the environment in which

the system is operating

• Emergent requirements

 These are requirements which cannot be completely defined when the system is

specified but which emerge as the system is designed and implemented

• Consequential requirements

 These are requirements which are based on assumptions about how the system will be

used. When the system is put into use, some of these assumptions will be wrong

• Compatibility requirements

 These are requirements which depend on other equipment or processes

Requirements Identification

• It is essential for requirements management that every requirement should have a unique

identification

• The most common approach is requirements numbering based on chapter/section in the

requirements document

• Problems with this are:

 Numbers cannot be unambiguously assigned until the document is complete

 Assigning chapter/section numbers is an implicit classification of the requirement. This

can mislead readers of the document into thinking that the most important

relationships are with the requirements in the same section

Requirements Identification Techniques

• Dynamic renumbering

 Some word processing systems allow for automatic renumbering of paragraphs and the

inclusion of cross-references. As you re-organize your document and add new

requirements, the system keeps track of the cross-reference and automatically

renumbers your requirement depending on its chapter, section and position within the

section

• Database record identification

 When a requirement is identified it is entered in a requirements database and a

database record identifier is assigned. This database identifier is used in all subsequent

references to the requirement

• Symbolic identification

 Requirements can be identified by giving them a symbolic name which is associated with

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

57 CS-708 Software Requirement Engineering

the requirement itself. For example, EFF-1, EFF-2, EFF-3 may be used for requirements

which relate to system efficiency

Storing Requirements

• Requirements have to be stored in such a way that they can be accessed easily and related to

other system requirements

• Requirements Storage Techniques

 In one or more word processor files

 In a specially designed requirements database

Word Processor Documents: Advantages

• Requirements are all stored in the same place

• Requirements may be accessed by anyone with the right word processor

• It is easy to produce the final requirements document

Word Processor Documents: Disadvantages

• Requirements dependencies must be externally maintained

• Search facilities are limited

• Not possible to link requirements with proposed requirements changes

• Not possible to have version control on individual requirements

• No automated navigation from one requirement to another

Requirements Database: Advantages

• Good query and navigation facilities

• Support for change and version management

Requirements Database: Disadvantages

• Readers may not have the software/skills to access the requirements database

• The link between the database and the requirements document must be maintained

Requirements Database Choice Factors

• The statement of requirements

 If there is a need to store more than just simple text, a database with multimedia

capabilities may have to be used

• The number of requirements

 Larger systems usually need a database which is designed to manage a very large

volume of data running on a specialized database server

• Teamwork, team distribution and computer support

 If the requirements are developed by a distributed team of people, perhaps from

different organizations, you need a database which provides for remote, multi-site

access

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

58 CS-708 Software Requirement Engineering

• CASE tool use

 The database should be the same as or compatible with CASE tool databases. However,

this can be a problem with some CASE tools which use their own proprietary database

• Existing database usage

 If a database for software engineering support is already in use, this should be used for

requirements management

Change Management

• Change management is concerned with the procedures, processes and standards which are

used to manage changes to system requirements

• Without formal change management, it is impossible to ensure that proposed changes support

business goals

Change Management Policies

• The change request process and the information required to process each change request

• The process used to analyze the impact and costs of change and the associated traceability

information

• The membership of the body which formally considers change requests

• The software support (if any) for the change control process

Change Management Stages

Problem Analysis and Change Specification

• Some requirements problem is identified

• This could come from an analysis of the requirements, new customer needs, or operational

problems with the system. The requirements are analyzed using problem information and

requirements changes are proposed

Change Analysis and Costing

• This checks how many requirements (and, if necessary, system components) are affected by the

change and roughly how much it would cost, in both time and money, to make the change

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

59 CS-708 Software Requirement Engineering

Change Implementation

• A set of amendments to the requirements document or a new document version is produced.

This should, of course, be validated using whatever normal quality checking procedures are used

Change Analysis and Costing Process

Change Analysis Activities

• The change request is checked for validity. Customers can misunderstand requirements and

suggest unnecessary changes

• The requirements which are directly affected by the change are discovered

• Traceability information is used to find dependent requirements affected by the change

• The actual changes which must be made to the requirements are proposed

• The costs of making the changes are estimated.

• Negotiations with customers are held to check if the costs of the proposed changes are

acceptable

Change Request Rejection Reasons

• If the change request is invalid. This normally arises if a customer has misunderstood something

aďout the ƌeƋuiƌeŵeŶts aŶd pƌoposed a ĐhaŶge ǁhiĐh isŶ͛t ŶeĐessaƌy

• If the change request results in consequential changes which are unacceptable to the user.

• If the cost of implementing the change is too high or takes too long

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

60 CS-708 Software Requirement Engineering

Change Processing

• Proposed changes are usually recorded on a change request form which is then passed to all of

the people involved in the analysis of the change. It may include

 Fields to document the change

analysis

 Data fields

 Responsibility fields

 Status field

 Comments field

Tool Support for Change Management

• May be provided through requirements management tools or through configuration

management tools

Tools Features

• Electronic change request forms which are filled in by different participants in the process

• A database to store and manage these forms

• A change model which may be instantiated so that people responsible for one stage of the

process know who is responsible for the next process activity

• Electronic transfer of forms between people with different responsibilities and electronic mail

notification when activities have been completed

• In some cases, direct links to a requirements database

Requirements Traceability

• Refers to ability to describe and follow the life of a requirement, in both a forwards and

backwards direction

• That is from its origins, through its development and specification, to its subsequent

deployment and use, and through all periods of on-going refinement and iteration in any of

these phases

Tracing Requirements

• It is important to trace requirements both ways

 Origin of a requirement

 How is it implemented

• This is a continuous process

Classifications of Requirements Traceability

• Backward-from traceability

 Links requirements to their sources in other documents or people

• Forward-from traceability

 Links requirements to design and implementation components

• Backward-to traceability

 Links design and implementation components back to requirements

• Forward-to traceability

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

61 CS-708 Software Requirement Engineering

 Links other documents (which may have preceded the requirements document) to

relevant requirements

Backwards and Forwards Traceability

Categories of Traceability

• Requirements-sources traceability

 Links the requirement and the people or documents which specified the requirement

• Requirements-rationale traceability

 Links the requirement with a description of why that requirement has been specified.

This can be a distillation of information from several sources

• Requirements-requirements traceability

 Links requirements with other requirements which are, in some way, dependent on

them. This should be a two-way link (dependent on them and is-dependent on)

• Requirements-architecture traceability

 Links requirements with the sub-systems where these requirements are implemented.

This is particularly important where sub-systems are being developed by different sub-

contractors

• Requirements-design traceability

 Links requirements with specific hardware or software components in the system, which

are used to implement the requirement

• Requirements-interface traceability

 Links requirements with the interfaces of external systems, which are used in the

provision of the requirements

Traceability Tables

• Requirements traceability information

can be kept in traceability tables, each

table relating requirements to one or

more aspects of the system or its

environment

• A Generic Traceability Table

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

62 CS-708 Software Requirement Engineering

Need for Traceability Policy

• Huge amount of information, which is expensive to collect, analyze, and update

• Need to continuously update traceability information

• A traceability policy is needed

Traceability Policy

• Traceability information

• Traceability techniques

• When to collect information

• Roles

• Documentation of policy exceptions

• Process of managing information

Traceability Information

• No. of requirements

• Estimated lifetime

• Leǀel of oƌgaŶizatioŶ͛s ŵatuƌity

• Project team and composition

• Type of system

• Specific customer requirements

Basic Types of Requirements Traceability

• Pre-RS traceability

 CoŶĐeƌŶed ǁith those aspeĐts of a ƌeƋuiƌeŵeŶt͛s life pƌioƌ to its iŶĐlusioŶ iŶ the ‘“
(requirements production)

• Post-RS traceability

 Concerned with those aspects of a reƋuiƌeŵeŶt͛s life that ƌesult fƌoŵ its iŶĐlusioŶ iŶ the
RS (requirements deployment)

Pre-RS Traceability

• Depends on the ability to trace requirements from and back to, their originating statements,

through the process of requirements production and refinement, in which statements from

diverse sources are eventually integrated into a single requirement in the RS

• Changes in the process need to be re-worked into the RS

Post-RS Traceability

• Depends on the ability to trace requirements from, and back to, a baseline (the RS), through a

succession of artifacts in which they are distributed

• Changes to the baseline need to be re-propagated through this chain

Pre-RS Traceability and Rationale

• Mostly only Post-RS traceability is considered sufficient

• Pre-RS traceability captures the rationale for each requirement, which is a very important aspect

in managing requirements properly

Prototyping

• It is the technique of constructing a partial implementation of a system so that customers, users,

or developers can learn more about a problem or a solution to that problem

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

63 CS-708 Software Requirement Engineering

Prototype

• An initial version of the system under development, which is available early in the development

process

• A prototype can be a subset of a system, and vice versa, but they are not the same

• In hardware systems, prototypes are often developed to test and experiment with system

designs

• In software systems, prototypes are more often used to help elicit and validate the system

requirements. There are other uses also

• It should be easy for a prototype to be developed quickly, so that it can be used during the

development process

• Prototypes are valuable for requirements elicitation because users can experiment with the

system and point out its strengths and weaknesses. They have something concrete to criticize

Types of Prototyping

• Throw-away prototyping

• Evolutionary prototyping

Throw-away Prototyping

• Intended to help elicit and develop the system requirements

• The requirements which should be prototyped are those which cause most difficulties to

customers and which are the hardest to understand. Little documentation is needed

• Determine the feasibility of a requirement

• Validate that a particular function is really necessary

• Uncover missing requirements

• Determine the viability of a user interface

• Writing a preliminary requirements document

• Implementing the prototype based on those requirements

• Achieving user experience with prototype

• Writing the real SRS

• Developing the real product

Evolutionary Prototyping

• Intended to deliver a workable system quickly to the customer

• The requirements which should be supported by the initial versions of this prototype are those

which are well-understood and which can deliver useful end-user functionality

• Documentation of the prototype is needed to build upon

• This process repeats indefinitely until the prototype system satisfies all needs and has thus

evolved into the real system

• EǀolutioŶaƌy pƌototype ŵay Ŷot ďe ďuilt iŶ a ͚diƌty͛ fashioŶ. The eǀolutioŶaƌy pƌototype eǀolǀes
into the final product, and thus it must exhibit all the quality attributes of the final product

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

64 CS-708 Software Requirement Engineering

Comparison of Prototyping

 Throwaway Evolutionary

Development approach Quick and dirty. No rigor No sloppiness. Rigorous

What to build Build only difficult parts Build understood parts first.

Build on solid foundation

Design drivers Optimize development time Optimize modifiability

Ultimate goal Throw it away Evolve it

Prototyping Benefit

• The prototype allows users to experiment and discover what they really need to support their

work

• Establishes feasibility and usefulness before high development costs are incurred

• EsseŶtial foƌ deǀelopiŶg the ͚look aŶd feel͛ of a useƌ iŶteƌfaĐe. Helps Đustoŵeƌs iŶ ͚ǀisualiziŶg͛
their requirements

• Forces a detailed study of the requirements which reveals inconsistencies and omissions

Prototyping Costs

• Training costs

 Prototype development may require the use of special purpose tools

• Development costs

 Depend on the type of prototype being developed

Prototyping Problems

• Extended development schedules

 Developing a prototype may extend the schedule although the prototyping time may be

recovered because rework is avoided

• Incompleteness

 It may not be possible to prototype emergent system requirements

Additional Benefits of Prototyping

• Developing a system prototype is worth the investment in time and money

• Real needs of the customers will be reflected in the requirements set

• Rework will be reduced

• Defect prevention

Developing Prototypes

• Conventional system development techniques usually take too long, and prototypes are needed

early in the elicitation process to be useful

• Rapid development approaches are used for prototype development

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

65 CS-708 Software Requirement Engineering

Approaches to Prototyping

• Paper prototyping

 A paper mock-up of the system is developed and used for system experiments

 This is very cheap and very effective approach to prototype development

 No executable software is needed

 Paper versions of the screens, which might be presented to the user are drawn and

various usage scenarios are planned

 For interactive systems, this is veƌy effeĐtiǀe ǁay to fiŶd useƌs͛ ƌeaĐtioŶs aŶd the
required information

• ͚Wizaƌd of Oz͛ pƌototypiŶg

 A person simulates the responses of the system in response to some user inputs

 Relatively cheap as only user interface software needs to be developed

 The users interact through this user interface software and all requests are channeled to

the a peƌsoŶ, ǁho siŵulates the systeŵ͛s ƌespoŶses

 This is particularly useful for new systems, which are extensions of existing software

systems, and the users are familiar with the existing user interface

 The peƌsoŶ siŵulatiŶg the systeŵ is Đalled ͚Wizaƌd of Oz͛
• Executable prototyping

 A fourth generation language or other rapid development environment is used to

develop an executable prototype

 This is an expensive option and involves writing software to simulate the functionality of

the proposed system

 4GLs based around database systems are useful for developing prototypes, which

involve information management

 Visual programming languages such as Visual Basic or ObjectWorks

 These languages are supported by powerful development environments, which include

access to reusable objects and user interface development utilities. Support for

database-oriented applications is not that strong

 Internet-based prototyping solutions based on WWW browsers and languages. Here,

we a ready-made user interface and Java applets can be used to add functionality to the

user interface

Comments on Prototyping

• Prototyping interactive applications is easier than prototyping real-time applications

• Prototyping is used better to understand and discover functional requirements, as compared to

non-functional requirements

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

66 CS-708 Software Requirement Engineering

Writing Requirements

• Requirements specification should establish an understanding between customers and suppliers

about what a system is supposed to do, and provide a basis for validation and verification

• Typically, requirements documents are written in natural languages (like, English, Japanese,

French, etc.)

• Natural languages, by their nature, are ambiguous

• Structured languages can be used with the natural languages to specify requirements

Problems with Natural Languages

• Natural language understanding relies on the specification readers and writers using the same

words for same concept

• A natural language requirements specification is over-flexible. You can say the same thing in

completely different ways

• It is not possible to modularize natural language requirements. It may be difficult to find all

related requirements

 To discover the impact of a change, every requirement have to be examined

Problems with Requirements

• The requiƌeŵeŶts aƌe ǁƌitteŶ usiŶg Đoŵpleǆ ĐoŶditioŶal Đlauses ;if A theŶ B theŶ C…Ϳ, ǁhiĐh aƌe
confusing

• Terminology is used in a sloppy and inconsistent way

• The writers of the requirement assume that the reader has a specific knowledge of the domain

or the system and they leave essential information out of the requirements document

Impact of These Problems

• Difficult to check the requirements for errors and omissions

• Different interpretations of the requirements may lead to contractual disagreements between

customer and the system developer

Structured Language Specifications

• Structured natural language

• Design description languages

• Graphical notations

• Mathematical notations

Comments on Special-Purpose Languages

• These languages cannot completely define requirements

• They are not understandable by all stakeholders

• Therefore, there is always a need for well-written, natural language statements of requirements

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

67 CS-708 Software Requirement Engineering

Essentials for Writing Requirements

• Requirements are read more often than they are written. Investing effort in writing

requirements, which are easy to read and understand is almost always cost-effective

• Readers of requirements come from diverse backgrounds. If you are requirements writer, you

should not assume that readers have the same background and knowledge as you

• Recollect our discussion on cultural issues in requirements engineering

• WƌitiŶg ĐleaƌlǇ aŶd ĐoŶĐiselǇ is Ŷot easǇ. If Ǉou doŶ͛t alloǁ suffiĐieŶt tiŵe foƌ ƌeƋuiƌeŵeŶts
descriptions to be drafted, reviewed and improved, you will inevitably end up with poorly

written requirements

• Different organizations write requirements at different levels of abstraction from deliberately

vague product specifications to detailed and precise descriptions of all aspects of a system

• Level of detail needed is dependent on

 Type of requirements (stakeholder or process requirements)

 Customer expectations

 Organizational procedures

 External standards or regulations

• Writing good requirements requires a lot of analytic thought

• Specifying rationale of requirement is one way to encourage such thought

Guidelines for Writing Requirements

• Define standard templates for describing requirements

 Define a set of standard format for different types of requirements and ensure that all

requirement definitions adhere to that format

 Standardization means that omissions are less likely and makes requirements easier to

read and check

• Use language simply, consistently, and concisely

 Use language consistently. In particular, distinguish between mandatory and desirable

requirements. It is usual pƌaĐtiĐe to defiŶe ŵaŶdatoƌǇ ƌeƋuiƌeŵeŶts usiŶg ͚shall͛ aŶd
desiƌaďle ƌeƋuiƌeŵeŶts usiŶg ͚should͛. Use ͚ǁill͛ to state faĐts oƌ deĐlaƌe puƌpose

 Use short sentences and paragraphs, using lists and table

 Use text highlighting to pick out key parts of the requirements

• Use diagrams appropriately

 Use diagrams to present broad overviews and show relationships between entities

 Avoid complex diagrams

• Supplement natural language with other descriptions of requirements

 If readers are familiar with other types of descriptions of requirements (like equations,

etc.) then use those

 Particularly applicable to scientific and engineering domains

• DoŶ͛t tƌǇ to ǁƌite eǀeƌǇthiŶg iŶ Ŷatuƌal laŶguage

 Specify requirements quantitatively

o Specify requirements quantitatively wherever possible

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

68 CS-708 Software Requirement Engineering

o This is applicable to properties of system, such as reliability or performance

o Recollect our discussion on metrics for non-functional requirements

Additional Guidelines for Writing Requirements

• State only one requirement per requirement statement

• State requirements as active sentences

• Always use a noun or a definite pronoun when referring to a thing

• Do not use more than one conjunction when writing requirements statements

• Avoid using weak words and phrases. Such words and phrases re generally imprecise and allow

the expansion or contraction of requirements beyond their intent

• Examples of Words to be Avoided

 About, adequate, and/or, appropriate, as applicable, as appropriate, desirable, efficient,

etc., if practical, suitable, timely, typical, when necessary

• State the needed requirements without specifying how to fulfill them

• Write complete statements

• Write statements that clearly convey intent

Requirements Document

• The requirements document is a formal document used to communicate the requirements to

customers, engineers and managers

• It is also known as software requirements specifications or SRS

• The services and functions which the system should provide

• The constraints under which the system must operate

• Overall properties of the system i.e., ĐoŶstƌaiŶts oŶ the sǇsteŵ͛s eŵeƌgeŶt pƌopeƌties

• Definitions of other systems which the system must integrate with

• Information about the application domain of the system, e.g., how to carry out particular types

of computation

• Constraints on the process used to develop the system

• It should include both the user requirements for a system and a detailed specification of the

system requirements

• In some cases, the user and system requirements may be integrated into one description, while

in other cases user requirements are described before (as introduction to) system requirements

• Typically, requirements documents are written in natural languages (like, English, Japanese,

French, etc.)

• Natural languages, by their nature, are ambiguous

• Structured languages can be used with the natural languages to specify requirements

• For software systems, the requirements document may include a description of the hardware

on which the system is to run

• The document should always include an introductory chapter which provides an overview of the

system and the business needs

• A glossary should also be included to document technical terms

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

69 CS-708 Software Requirement Engineering

• And because multiple stakeholders will be reading documents and they need to understand

meanings of different terms

• Also because stakeholders have different educational backgrounds

• Structure of requirements document is also very important and is developed on the basis of

following information

 Type of the system

 Level of detail included in requirements

 Organizational practice

 Budget and schedule for RE process

Users of Requirements Documents

• System customers

 Specify the requirements and read them to check that they meet their needs. They

specify changes to the requirements

• Project managers

 Use the requirements document to plan a bid for the system and to plan the system

development process

• System engineers

 Use the requirements to understand what system is to be developed

• System test engineers

 Use the requirements to develop validation tests for the system

• System maintenance engineers

 Use the requirements to help understand the system and the relationships between its

parts

Six Requirements for RS

• It should specify only external behavior

• It should specify constraints on the implementation

• It should be easy to change

• It should serve as a reference tool for system maintainers

• It should record forethought about the lifecycle of the system

• It should characterize acceptable responses to undesired events

 Heninger (1980)

How to Organize an SRS?

• Clients/developers may have there own way of organizing an SRS

• US Department of Defense

• NASA

• IEEE/ANSI 830-1993 Standard

1. Introduction

 1.1 Purpose of the requirements document

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

70 CS-708 Software Requirement Engineering

 1.2 Scope of the product

 1.3 Definitions, acronyms, and abbreviations

 1.4 References

 1.5 Overview of the remainder of the document

2. General description

 2.1 Product perspective

 2.2 Product functions

 2.3 User characteristics

 2.4 General constraints

 2.5 Assumptions and dependencies

3. Specific requirements

 Covering functional, non-functional, and interface requirements. These should

document external interfaces, functionality, performance requirements, logical

database requirements, design constraints, system attributes, and quality

characteristics

4. Appendices

5. Index

Comments on IEEE Standard

• It is good starting point for organizing requirements documents

• First two sections are introductory chapters about background and describe the system in

general terms

• The third section is the main part of the documents

• The standard recognizes that this section varies considerably depending on the type of the

system

Comments on Organization of SRS

• It should be possible to specify different systems

• It should allow for omitting certain sub-sections and also adding new sections

• These variations should be documented also

• Each SRS has some parts, which are stable and some, which are variant

• Stable parts include introductory chapters and glossary, which should appear in all requirements

documents

• Variant parts are those chapters, which can be changed depending on the system

An SRS based on IEEE Standard

• Preface

• Introduction

• Glossary

• General user requirements

• System architecture (reusable architectural components)

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

71 CS-708 Software Requirement Engineering

• Hardware specification

• Detailed software specification

• Reliability and performance requirements

• Appendices

 Hardware interface specifications

 Reusable components

 Data-flow model

 Object-model

Specifying Requirements

• Requirements are specified in a document called software requirements specifications (SRS)

• SRS is used for communication among customers, analysts, and designers

• Supports system-testing activities

• Controls the evolution of the system

Validation Objectives

• Certifies that the requirements document is an acceptable description of the system to be

implemented

• Checks a requirements document for

 Completeness and consistency

 Conformance to standards

 Requirements conflicts

 Technical errors

 Ambiguous requirements

What Should Be Included in SRS?

• Functional requirements

 They define what the system does. These describe all the inputs and outputs to and

from the system as well as information concerning how the inputs and outputs

interrelate.

• Non-functional requirements

 TheǇ defiŶe the attƌiďutes of a sǇsteŵ as it peƌfoƌŵs its joď. TheǇ iŶĐlude sǇsteŵ͛s
required levels of efficiency, reliability, security, maintainability, portability, visibility,

capacity, and standards compliance

 Some of these are quality attributes of a software product

What Should Not Be Included in SRS?

• Project requirements (for example, staffing, schedules, costs, milestones, activities, phases,

reporting procedures)

• Designs

• Product assurance plans (for example, configuration management plans, verification and

validation plans, test plans, quality assurance plans)

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

72 CS-708 Software Requirement Engineering

SRS Quality Attributes

• Correct

 An SRS is correct if and only if every requirement stated therein represents something

required of the system to be built

• Unambiguous

 An SRS is unambiguous if and only if every requirement stated therein has only one

interpretation

 At a minimum all terms with multiple meanings must appear in a glossary

 All natural languages invite ambiguity

 Example of Ambiguity

o ͞Aircraft that are nonfriendly and have an unknown mission or the potential to

enter restricted airspace within 5 minutes shall raise an alert͟

o Combination of ͞and͟ and ͞or͟ make this an ambiguous requirement

• Complete

 An SRS is complete if it possesses the following four qualities

o Everything that the software is supposed to do is included in the SRS

o Definitions of the responses of the software to all realizable classes of input

data in all realizable classes of situations is included

 All pages are numbered; all figures and tables are numbered, named, and referenced; all

terms and units of measure are provided; and all referenced material and sections are

present

 No sections are marked

 ͞To Be Determined͟ (TBD)

• Verifiable

 An SRS is verifiable if and only if every requirement stated therein is verifiable. A

requirement is verifiable if and only if there exists some finite cost effective process with

which a person or machine can check that the actual as-built software product meets

the requirement

• Consistent

 An SRS is consistent if and only if:

o No requirement stated therein is in conflict with other preceding documents,

such as specification or a statement of work

o No subset of individual requirements stated therein conflict

 Conflicts can be any of the following

o Conflicting behavior

o Conflicting terms

o Conflicting characteristics

o Temporal inconsistency

• Understandable by customer

 Primary readers of SRS in many cases are customers or users, who tend to be experts in

an application area but are not necessarily trained in computer science

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

73 CS-708 Software Requirement Engineering

• Modifiable

 An SRS is modifiable if its structure and style are such that any necessary changes to the

requirements can be made easily, completely, and consistently

 Existence of index, table of contents, cross-referencing, and appropriate page-

numbering

 This attribute deals with format and style of SRS

• Traced

 An SRS is traced if the origin of its requirements is clear. That means that the SRS

includes references to earlier supportive documents

• Traceable

 An SRS is traceable if it is written in a manner that facilitates the referencing of each

individual requirement stated therein

 Techniques for Traceability

o Number every paragraph hierarchically and never include more than one

requirement in any paragraph

o Assign every requirement a unique number as we have discussed this earlier

o Use a convention for indicating a requirement, e.g., use shall statement

 Traced and Traceability

o Backward-from-requirements traceability implies that we know why every

requirement in the SRS exists

o Forward-from-requirements traceability implies that we understand which

components of the software satisfy each requirement

o Backward-to-requirements traceability implies that every software component

explicitly references those requirements that it helps to satisfy

o Forward-to-requirements traceability implies that all documents that preceded

the SRS can reference the SRS

• Design independent

 An SRS is design independent if it does not imply a specific software architecture or

algorithm

 Sometimes, it is not possible to have no design information due to constraints imposed

by the customers or external factors

• Annotated

 The purpose of annotating requirements contained in an SRS is to provide guidance to

the development organization

 Relative necessity Relative stability

• Concise

 The SRS that is shorter is better, given that it meets all characteristics

• Organized

 An SRS is organized if requirements contained therein are easy to locate. This implies

that requirements are arranged so that requirements that are related are co-related

 We had discussed organization of SRS in the last lecture

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

74 CS-708 Software Requirement Engineering

Phrases to Look for in an SRS

• Always, Every, All, None, Never

• Certainly, Therefore, Clearly, Obviously, Evidently

• Some, Sometimes, Often, Usually, Ordinarily, Customarily, Most, Mostly

• Etc., And So Forth, And So On, Such As

• Good, Fast, Cheap, Efficient, Small, Stable

• Handled, Processed, Rejected, Skipped, Eliminated

• If…TheŶ…;ďut ŵissiŶg ElseͿ

The Balancing Act

• Achieving all the preceding attributes in an SRS is impossible

• Once you become involved in writing an SRS, you will gain insight and experience necessary to

do the balancing act

• There is no such thing as a perfect SRS

Use Case Modeling

Introduction

• No system exists in isolation. Every interesting system interacts with human or automated

actors that use that system for some purpose, and those actors expect that system to behave in

predictable ways

• A use case specifies the behavior of a system or part of a system

• It is a description of a set of sequences of actions, including variants, that a system performs to

yield an observable result of value to an actor

• They are used in requirements elicitation process

• Use cases are applied to capture the intended behavior of the system under development,

without having to specify how the behavior is implemented

• They provide a way for developers, end users, and domain experts to come to a common

understanding

• Use cases serve to help validate the architecture and to verify the system as it evolves during

development

• Use cases are realized by collaborations whose elements work together to carry out each use

case

• Well-structured use cases denote essential system or subsystem behaviors only

• They are neither overly general nor too specific

How Things Are Used in Real World?

• A house is built around the needs of occupants

 How they will use their house?

• A car is built around the needs of drivers and passengers

 How will they use that car?

• This is en example of use case-based analysis

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

75 CS-708 Software Requirement Engineering

Use Cases

• Use case is a description of a set of sequences of actions, including variants, that a system

performs to yield an observable result of value to an actor

• There are a number of important parts to this definition

• A use case describes a set of sequences, in which each sequence represents the interaction of

the things outside the system (its actors) with the system itself

• A use case represents a functional requirement of the system as a whole

• An actor represents a coherent set of roles that users of use cases play when interacting with

these use cases

• Actors can be human or they can be automated systems

• One central use case of a bank is to process loans

• In modeling a bank, processing a loan involves, among other things, the interaction between a

customer and a loan officer

• A use case may have variants

• In all interesting systems, you will find use cases that are specialized versions of other use cases,

use cases that are included as part of other use cases, and use cases that extend the behavior of

other core use cases

• You can factor the common, reusable behavior of a set of use cases by organizing them

according to these three kinds of relationships

• A use case carries out some tangible amount of work

• Fƌoŵ the peƌspeĐtiǀe of a giǀeŶ aĐtoƌ, a use Đase does soŵethiŶg that͛s of ǀalue to an actor

• In modeling a bank, a processing of loan results in the delivery of an approved loan

• Use cases can be applied to the whole system, part of a system (including subsystems), and even

individual classes and interface

• Use cases not only represent the desired behavior, but can also be used as the basis of test

cases for these elements as they evolve during development

• Use cases applied to whole system are excellent sources of integration and system tests

• Use cases applied to subsystems are excellent sources of regression tests

• The UML provides a graphical representation of a use case (an eclipse) and an actor (a stick

figure)

Use Case Names

• Every use case must have a name that distinguishes it from other use cases

• A name is a textual string, consisting of any number of letters, numbers, and most punctuation

marks

• In practice, use case names are short active verb phrases naming some behavior found in the

vocabulary of the system being modeled

• A name alone is known as simple name

• A path name is the use case name prefixed by the name of the package in which that use case

lives

• It must be unique within its enclosing package

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

76 CS-708 Software Requirement Engineering

Use Cases

Actors

• An actor represents a coherent set of roles that users of use cases play when interacting with

the use cases

• Typically, an actor represents a role that a human, a hardware device, or even another system

plays with a system

• Actors can be of general kind

• They can also be specialized using generalization relationship

Specialized Actors

Use Case Diagrams

• A use case diagram is the diagram that shows a set of use cases and actors and their

relationships

• It has a name and graphical contents that are a projection into a model

• Contents of Use Case Diagrams

 Use cases

 Actors

 Dependency, generalization, and association relationships

• Actors may be connected to use cases only by association

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

77 CS-708 Software Requirement Engineering

• An association between an actor and a use case indicates that the actor and the use case

communicate with one another, each one possibly sending and receiving messages

• A Use Case Diagram

• Use case diagrams are used to model the use case view of the system being modeled

• This involves modeling the context of a system, subsystem, or class, or modeling requirements

of the behavior of these elements

Identifying Use Cases

• What functions will the actor want from the system?

• Does the system store information? What actors will create, read, update, or delete that

information?

• Does the system need to notify an actor about changes in its internal state?

• Are there any external events that the system must know about? What actor informs the system

about those events?

• Startup, shutdown, diagnostics, installation, training, changing a business process

Documenting Use Cases

• Includes basic functionality, alternatives, error conditions, preconditions, post-conditions

• Preconditions - the state the system must be in at the start of the use case

• Post-conditions - the state the system must be in at the end of the use case

• Flow of events - a series of declarative statements listing the steps of a use case fƌoŵ the aĐtoƌ͛s
point of view

• Alternatives - allows a different sequence of events than what was used for the basic path

Documenting Use Cases

• Name

• Summary

 Short description of use case

• Dependency (on other use cases)

• Actors

• Preconditions

 Conditions that are true at start of use case

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

78 CS-708 Software Requirement Engineering

• Flow of Events

 Narrative description of basic path

• Alternatives

 Narrative description of alternative paths

• Post-condition

 Condition that is true at end of use case

Use Cases and Flow of Events

• A use case describes what the system (or subsystem, class, or interface) does but it does not

specify how it does it

• It is important that you keep clear the separation of concerns between this outside and inside

view

• The behavior of a use case can be specified by describing a flow of events in text clearly enough

for an outsider to understand it easily

• How and when the use case starts and ends

• When the use case interacts with the actors and what objects are changed

• The basic flow and alternative flows of behavior

• A use Đase͛s floǁ of events can be specified in a number of ways:

 Informal structured text (example to follow)

 Formal structured text (with pre- and post-conditions)

 Pseudocode

Organizing Use Cases

• Use cases can be organized by grouping them in packages

• You can also organize use cases by specifying generalization, include, and extend relationships

among them

• You apply these relationships in order to factor common behavior (by pulling such behavior

from other use cases that it includes) and in order to factor variants (by pushing such behavior

into other use cases that extend it)

• Generalization among use cases is just like generalization among classes

• It means that the child use case inherits the behavior and meaning of the parent use case; the

child may add to or override the behavior of its parent; and the child may be substituted any

place the parent appears

• You may have a use case Validate User, which is responsible for the verifying the identity of the

user

• This use case can be used in many different application domains

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

79 CS-708 Software Requirement Engineering

Specialized Use Cases

• You may have two specialized children of this use case (Check password and Retinal scan)

• An include relationship between use cases means that the base use case explicitly incorporates

the behavior of another use case at a location specified in the base

• The included use case never stands alone, but is only instantiated as part of some larger base

that includes it

• It is like the base use case

• Include relationship is used to avoid describing the same flow of events several times, by putting

the common behavior in a use case of its own

• This is an example of dependency

• Track order use case includes Validate user use case

• Including a Use Case

 Obtain and verify the order number. include (Validate user). For each part in the order,

query its status, then report back to the user

• An extend relationship between use cases means that the base use case implicitly incorporates

the behavior of another use case at a location specified indirectly by extending use case

• The base use case may stand alone, but under certain conditions, its behavior may be extended

by another use case

• A base use case may be extended only at certain points, called its extension points

• Extend relationship can be used to model

• Optional behavior

• Separate sub-flow that is executed only under given conditions

• Several flows that may be inserted at a certain point, governed by explicit interaction with an

actor

• This is also an example of dependency

• Consider the Place order use case, which extends the Place rush order

• Extending a Use Case

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

80 CS-708 Software Requirement Engineering

 include (Validate user)

 ColleĐt the useƌ͛s oƌdeƌ iteŵs

 (set priority)

 Submit the order for processing

• In this example, set point is an extension point

• A use case may have more than one extension points

• Apply use cases to model the behavior of an element (system, subsystem, class)

• Outside view by domain experts

• Developers can approach the element

• Basis for testing

Guidelines for Use Cases

• Identify the actors that interact with the element. Candidate actors include groups that require

certain behavior to perform their tasks or that are needed directly or indirectly to perform the

eleŵeŶt͛s fuŶĐtioŶs

• Organize actors by identifying general and more specialized roles

• For each actor, consider the primary ways in which that actor interacts with the element.

Consider also interactions that change the state of the element or its environment or that

involve a response to some event

• Consider the exceptional ways in which each actor interacts with the element

• Organize these behaviors as use cases, applying include and extend relationships to factor

common behavior and distinguish exceptional behavior

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

81 CS-708 Software Requirement Engineering

Use Case Diagram for ATM

Abstract Use Case Example

• Name: Validate PIN

• Summary : System validates customer PIN

• Dependency: none

• Actors: ATM Customer

• Preconditions: ATM is idle, displaying a Welcome message.

• Flow of Events: Basic Path

1. Customer inserts the ATM card into the Card Reader

2. If the system recognizes the card, it reads the card number

3. System prompt customer for PIN number

4. Customer enters PIN

5. System checks the expiration date and whether the card is lost or stolen

6. If card is valid, the system then checks whether the user-entered PIN matches the card

PIN maintained by the system

7. If PIN numbers match, the system checks what accounts are accessible with the ATM

card

8. System displays customer accounts and prompts customer for transaction type:

Withdrawal, Query, or Transfer

• Alternatives:

 If the system does not recognize the card, the card is ejected

 If the system determines that the card date has expired, the card is confiscated

 If the system determines that the card has been reported lost or stolen, the card is

confiscated

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

82 CS-708 Software Requirement Engineering

• Alternatives (cont.):

 If the customer-entered PIN does not match the PIN number for this card, the system

re-prompts for PIN

 If the customer enter the incorrect PIN three times, the system confiscates the card

 If the customer enters Cancel, the system cancels the transaction and ejects the card

• Postcondition: Customer PIN has been validated

Concrete Use Case Example

• Name: Withdraw Funds

• Summary : Customer withdraws a specific amount of funds from a valid bank account

• Dependency: Include Validate PIN abstract use case

• Actors: ATM Customer

• Preconditions: ATM is idle, displaying a Welcome message.

• Flow of Events: Basic Path

1. Include Validate PIN abstract use case

2. Customer selects Withdrawal, enters the amount, and selects the account number

3. System checks whether customer has enough funds in the account and whether the

daily limit will not be exceeded

4. If all checks are successful, system authorizes dispensing of cash

5. System dispenses the cash amount

6. System prints a receipt showing transaction number, transaction type, amount

withdrawn, and account balance

7. System ejects card

8. System displays Welcome balance

• Alternatives:

 If the system determines that the account number is invalid, it displays an error

message and ejects the card

 If the sǇsteŵ deteƌŵiŶes that theƌe aƌe iŶsuffiĐieŶt fuŶds iŶ the Đustoŵeƌ͛s aĐĐouŶt, it
displays an apology and ejects the card

 If the system determines that the maximum allowable daily withdrawal amount has

been exceeded, it displays an apology and ejects the card

 If the ATM is out of funds, the system displays an apology, ejects the card, and shuts

down the ATM

• Postcondition: Customer funds have been withdrawn

A Well-Structured Use Case

• Names a single, identifiable, and reasonably atomic behavior of the system or part of the system

• Factors common behavior by pulling such behavior from other use cases

• Factors variants by pushing such behavior into other use cases that extend it

• Describes the flow of events clearly enough for an outsider to easily understand it

• Is described by a minimal set of scenarios that specify the normal and variant semantics of the

use case

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

83 CS-708 Software Requirement Engineering

Banking System Case Study

Problem Description

• A bank has several automated teller machines (ATMs), which are geographically distributed and

connected via a wide area network to a central server. Each ATM machine has a card reader, a

cash dispenser, a keyboard/display, and a receipt printer. By using the ATM machine, a

customer can withdraw cash from either checking or savings account, query the balance of an

account, or transfer funds from one account to another. A transaction is initiated when a

customer inserts an ATM card into the card reader. Encoded on the magnetic strip on the back

of the ATM card is the card number, the start date, and the expiration date. Assuming the card

is recognized, the system validates the ATM card to determine that the expiration date has not

passed, that the user-entered PIN (personal identification number) matches the PIN maintained

by the system, and that the card is not lost or stolen. The customer is allowed three attempts to

enter the correct PIN; the card is confiscated if the third attempt fails. Cards that have been

reported lost or stolen are also confiscated.

• If the PIN is validated satisfactorily, the customer is prompted for a withdrawal, query, or

transfer transaction. Before withdrawal transaction can be approved, the system determines

that sufficient funds exist in the requested account, that the maximum daily limit will not be

exceeded, and that there are sufficient funds available at the local cash dispenser. If the

transaction is approved, the requested amount of cash is dispensed, a receipt is printed

containing information about the transaction, and the card is ejected. Before a transfer

transaction can be approved, the system determines that the customer has at least two

accounts and that there are sufficient funds in the account to be debited. For approved query

and transfer requests, a receipt is printed and card ejected. A customer may cancel a transaction

at any time; the transaction is terminated and the card is ejected. Customer records, account

records, and debit card records are all maintained at the server.

• An ATM operator may start up and close down the ATM to replenish the ATM cash dispenser

and for routine maintenance. It is assumed that functionality to open and close accounts and to

create, update, and delete customer and debit card records is provided by an existing system

and is not part of this problem.

• ͚Designing Concurrent, Distributed, and Real-Tiŵe AppliĐatioŶs ǁith UML͛ ďǇ H. Goŵaa,
Addison-Wesley, 2000

Use Case Model

• The use cases are described in the use case model

• There are two actors of this system

 ATM Customer Operator

ATM Customer

• Withdraws funds from the checking or savings account

• Query the balance of an account

• Transfer funds from one account to another

• The ATM customer interacts with the system via the ATM card reader, keyboard/display, cash

dispenser, and receipt printer

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

84 CS-708 Software Requirement Engineering

ATM Operator

• Shutdowns the ATM

• Replenishes the ATM cash dispenser

• Starts the ATM

Use Cases for ATM Operator User Case for ATM Customer

• Add cash

• Startup

• Shutdown

• Withdraw funds

• Query account

• Transfer funds

Organizing Use Cases for ATM Customer

• Comparing these three use cases, it can be seen that the first part of each use case – namely,

the PIN validation – is common to all three use cases

• This common part of the three use cases is factored out as an abstract inclusion use case called

Validate PIN

• The Withdraw funds, Query account, Transfer funds use cases can each be rewritten more

concisely as concrete use cases that include the Validate PIN abstract use case

Uses Case Diagram for ATM Customer

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

85 CS-708 Software Requirement Engineering

Use Case Diagram for ATM

Use Cases of the ATM System

• Abstract use cases

 Validate PIN

• Concrete use cases

 Withdraw Funds

 Query Account

 Transfer Funds

Query Account Use Case

• Name: Query Account

• Summary: Customer receives the balance of a valid bank account

• Actor: ATM Customer

• Dependency: Include Validate PIN abstract use case

• Precondition: ATM is idle, displaying a Welcome message

• Flow of Events: Basic Path

1. Include Validate PIN abstract use case

2. Customer selects Query, enters account number

3. System reads account balance

4. System prints a receipt showing transaction number, transaction type, and account

balance

5. System ejects card

6. System displays Welcome message

• Alternative:

 If the system determines that the account number is invalid, it displays an error

message and ejects the card

• Postcondition:

 Customer account has been queried

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

86 CS-708 Software Requirement Engineering

Transfer Funds Use Case

• Name: Transfer Funds

• Summary: Customer transfers funds from one valid bank account to another

• Actor: ATM Customer

• Dependency: Include Validate PIN abstract use case

• Precondition: ATM is idle, displaying a Welcome message

• Flow of Events: Basic Path

 1. Include Validate PIN abstract use case

 2. Customer selects Transfer and enters amounts, from account, and to account

 3. If the system determines the customer has enough funds in the from account, it

performs the transfer

 4. System prints a receipt showing transaction number, transaction type, amount

transferred, and account balance

 5. System ejects card

 6. System displays Welcome message

• Alternatives:

 If the system determines that the from account number is invalid, it displays an error

message and ejects the card

 If the system determines that the to account number is invalid, it displays an error

message and ejects the card

 If the sǇsteŵ deteƌŵiŶes that theƌe aƌe iŶsuffiĐieŶt fuŶds iŶ the Đustoŵeƌ͛s fƌoŵ
account, it displays an apology and ejects the card

• Postcondition:

 Customer funds have been transferred

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

87 CS-708 Software Requirement Engineering

Software Modeling

Need for Modeling

• Modeling is a central part of all activities that lead up to the development good software

• We build models to communicate the desired structure and behavior of our system

• We ďuild ŵodels to ǀisualize aŶd ĐoŶtƌol the sǇsteŵ͛s aƌĐhiteĐtuƌe

• We build models to better understand the system we are building, often exposing opportunities

for simplification and reuse

• We build models to minimize risk

• We build models so that we can better understand the system we are developing

• We build models of complex systems because we cannot comprehend such a system in its

entirety

• A model is a simplification of reality

Four Aims of Modeling

• Models help us to visualize a system as it is or as we want it to be

• Models permit us to specify the structure or behavior of a system

• Models give us a template that guides us in constructing a system

• Models document the decisions we have made

Do We Model Everything?

• Modeling is not just for big systems

• Small pieces of software can also benefit from modeling

• Larger and more complex systems benefit more from modeling

Principles of Modeling

• The choice of what models to create has profound influence on how a problem is attacked and

how a solution is shaped

• Every model may be expressed at different levels of precision

• The best models are connected to reality

• No single model is sufficient. Every nontrivial system is best approached through a small set of

nearly independent models

Problem Analysis

• Activity that encompasses learning about the problem to be solved, understanding the needs of

potential users, trying to find out who the user really is, and understanding all constraints on the

solution

• Defining the product space – the range of all possible software solutions that meets all known

constraints

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

88 CS-708 Software Requirement Engineering

Points to Note

• Understanding the needs of potential users

• Trying to find out who the user really is

• Understanding all constraints on the solution

• All three are very difficult

Need for a Software Solution

• There is recognition that a problem exists and requires a solution

• A new software idea arises

• Either there is no automated system or there is a need for some improvements in the existing

automated system

Subjects to Study for Modeling Manual System

• People and/or machines currently playing some role

• Items produced, processed, or consumed by these people and machines

• Functions performed by these people and machines

• Basic modes of operation that determine what functions are performed and when

Subjects to Study for Modeling to Improve a System

• People/machines who have a need for some service to be performed or some item to be

produced

• Items that need to be produced to satisfy the need

• Items that are necessary in order to produce the required new service or item

• Functions that need to be performed in order to generate the required new service or item

• Basic modes of operations that determine what functions are performed and when

Steps in Problem Analysis

• Gain agreement on the problem definition

• Understand the root causes – the problem behind the problem

• Identify the stakeholders and the users

• Define the solution system boundary

• Identify the constraints to be imposed on the solution

Principles of Modeling

• Partitioning

 Captures aggregation/part of relations among elements in the problem domain

• Abstraction

 Captures generalization/specialization relations among elements in the problem domain

• Projection

 Captures different views of elements in the problem domain

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

89 CS-708 Software Requirement Engineering

Avoid the Urge to Design

• One can easily get into the trap of completely designing the proposed system

• The focus of modeling during requirements engineering is understanding and that of preliminary

design is optimization

Software Modeling

• A number of modeling techniques have been developed over the years

Features of Modeling Techniques

• Facilitate communication

• Provide a means of defining the system boundary

• Provide a means of defining partitions, abstractions, and projections

• Encourage the analyst to think and document in terms of the problem as opposed to the

solution

• Allow for opposing alternatives but alert the analyst to their presence

• Make it easy to modify the knowledge structure

Modeling Techniques

• Object-oriented modeling

 Static and dynamic modeling

• Functional modeling

• Dynamic modeling

Object-Oriented Modeling

• The main building block of all software systems is the object or class

• An object is a thing, generally drawn from the vocabulary of the problem or the solution space

• A class is a description of a set of common objects

• OO paradigm helps in software modeling of real-life objects in a direct and explicit fashion

• It also provides a mechanism so that the object can inherit properties from their ancestors, just

like real-life objects

• Every object has identity, state, and behavior

• The object-oriented approach has proven itself to be useful, because it has proven to be

valuable in building systems in all sorts of problem domains and encompassing all degrees of

size and complexity

• Object-oriented development provides the conceptual foundation for assembling systems out of

components using technology such as Java Beans or COM+

• A number of consequences flow from the choice of viewing the world in an OO fashion

 What is the structure of good OO architecture?

 What artifacts the project should create?

 Who should create them?

 How should they be measured?

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

90 CS-708 Software Requirement Engineering

Object-Oriented Modeling Methods

• Shlaer/Mellor - 1988

• Coad/Yourdon – 1991

• Booch - 1991

• OMT by Rumbaugh et. al. – 1991

• Wirfs-Brock – 1991

• And many more

Unification Effort

• 1994 key researchers Grady Booch, James Rambaugh, and Ivar Jacobson joined hands to unify

their respective methodologies

• In 1997 Object Management Group (OMG) finally approved the Unified Modeling Language

(UML)

Unified Modeling Language

• Visualizing, specifying, constructing, and documenting object-oriented systems is exactly the

purpose of the unified modeling language or UML

• The rules of UML focus on the conceptual and physical representation of a system

• Process independent

• Notation has well-defined semantics

• It has become the de-facto standard for modeling

• Many vendors provide tools that support different modeling views

• UML provides a very rich set of concept areas

 Static structure

 Dynamic behavior

 Implementation constructs

 Model organization

 Extensibility mechanisms

Static Structure

• Any precise model must first define the universe of discourse, that is, the key concepts from the

application, their internal properties, and their relationships to each other

• This set of constructs is the static view

• The application concepts are modeled as classes, each of which describes a set of discrete

objects that hold information and communicate to implement behavior

• The information they hold is modeled as attributes; the behavior they perform is modeled as

operations

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

91 CS-708 Software Requirement Engineering

UML Notation for Classes

Objects and Classes

• An object is an instantiation of a class

• It has an identity, state, and behavior

UML Notation for Objects

Relationships between Objects

• A relationship is a connection among things. In object-oriented modeling, the three most

important relationships are dependencies, generalizations, and associations

• Graphically, a relationship is rendered as a path, with different kinds of lines used to distinguish

the kinds of relationships

• Dependencies, generalizations, and associations are all static things defined at the level of

classes

• In the UML, these relationships are usually visualized in class diagrams

• These relationships convey the most important semantics in an object-oriented model

Dependency Relationship

• A dependency is a using relationship that states that a change in specification of one thing may

affect another thing that uses it, but not necessarily the reverse

• Graphically, a dependency is rendered as a dashed line, directed to the thing being depended on

• Use dependencies when you want to show one thing using another thing

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

92 CS-708 Software Requirement Engineering

Generalization Relationship

• A generalization is a relationship between a general thing (called a super class or parent) and a

more specific kind of that thing (called the subclass or child)

• GeŶeƌalizatioŶ is soŵetiŵes Đalled aŶ ͚is-a-kind-of͛ ƌelatioŶship

Association Relationship

• An association is a structural relationship that specifies that objects of one thing are connected

to objects of another. Given an association connecting two classes, you can navigate from an

object of one class to an object of the other class, and vice versa

• Graphically, an association is rendered as a solid line connecting the same of different classes

• Use associations when you want to show structural relationships

• An association can have four adornments

 Name

 Role

 Multiplicity

 Aggregation

o Captuƌes the ͚ǁhole-paƌt͛ ƌelatioŶship

o Composition – a stƌoŶgeƌ ͚ǁhole-paƌt͛ ƌelatioŶship

• Association Relationship:

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

93 CS-708 Software Requirement Engineering

Hints and Tips

• Use dependencies only when the relationships you are modeling are not structural

• Use geŶeƌalizatioŶ oŶlǇ ǁheŶ Ǉou haǀe ͚is-a-kind-of͛ ƌelatioŶship; ŵultiple iŶheƌitaŶĐe ĐaŶ ofteŶ
be replaced with aggregation

• Keep your generalization relationships generally balanced; inheritance latices should not be too

deep (more than five levels or so should be questioned) nor too wide (instead, look for the

possibility of intermediate abstract classes)

• Beware of introducing cyclical generalization relationships

• Use associations primarily where there are structural relationships among objects

Class Inheritance and Object Composition

• Class Inheritance: Advantages

 Class inheritance is defined statically at compile-time

 Class inheritance is straightforward to use, as it is supported directly by object-oriented

programming languages

 Class inheritance makes it easy to modify the implementation being reused

• Class Inheritance: Disadvantages

 You cannot change the implementations inherited from parent class at run-time,

because inheritance is defined at compile-time

 PaƌeŶt Đlasses ofteŶ defiŶe at least paƌt of theiƌ suďĐlasses͛ phǇsiĐal ƌepƌeseŶtatioŶ.
AŶǇ ĐhaŶge iŶ the paƌeŶt͛s iŵpleŵeŶtatioŶ ǁill foƌĐe the suďĐlass to change

 Inheritance breaks encapsulation

 IŵpleŵeŶtatioŶ depeŶdeŶĐies ĐaŶ Đause pƌoďleŵs ǁheŶ Ǉou͛ƌe tƌǇiŶg to ƌeuse a
subclass

• Object Composition: Advantages

 Object composition is defined dynamically at run-time through objects acquiring

references to other objects

 CoŵpositioŶ ƌeƋuiƌes oďjeĐts to ƌespeĐt eaĐh otheƌs͛ iŶteƌfaĐes, that ƌeƋuiƌes Ǉou to
carefully define interfaces of classes

 Encapsulation is not broken

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

94 CS-708 Software Requirement Engineering

 Very few implementation dependencies

 Object composition has a positive affect on the system design

o Classes are encapsulated and focused on one task

o Classes and class hierarchies will remain small

o Theƌe ǁill ďe ŵoƌe oďjeĐts thaŶ Đlasses, aŶd the sǇsteŵ͛s ďehaǀioƌ ǁill depeŶd
on their interrelationships instead of being defined in one class

Object-Oriented Static Modeling of the Banking System

Steps in Object-Oriented Analysis

• Identify classes within the problem domain

• Define the attributes and methods of these classes

• Define the behavior of those classes

• Model the relationship between those classes

Identification of Objects and Classes

• Examine structures in the real world

• Identify other systems with which the current or proposed system will interact

• Identify those things in the real world that need to be remembered for later retrieval

• Identify specific roles played by individuals

• Identify physical locations that need to be known

• Identify organizations that humans belong to

• Identify catalogs that have to record quantities of repetitive, static information about things

Structure

• Classification

• Assembly

External Device I/O Objects

• A concrete entity in the application domain is an entity that exists in the real world and has

some physical attributes

• For every concrete entity in the real world that is relevant to the application domain, there

should be a corresponding software object in the system

• Each software object hides the details of the interface to the real world entity that it receives

input from or provides outputs to. However, a software object models the events experienced

by the concrete entity to which it corresponds. The events experienced by the entity are inputs

to the system, particularly to the software object that models the entity

• Examples

 Engine sensor

 Brake sensor

 Buttons

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

95 CS-708 Software Requirement Engineering

User Role Objects

• A user role object models a role played in the application domain, typically by a user. A role is a

sequence of related actions performed sequentially by a user

• If a user can play two or more independent roles, then this may be represented by a different

object for each role

• Examples: Machine Operator, Loan Officer

Control Objects

• A control object is an active abstract object in the problem domain that has different states and

controls the behavior of other objects and functions. A control object is defined by means of a

finite state machine, which is represented by a state transition diagram

• A control object receives incoming events that cause state transitions

• It generates output events that control other objects or functions

• In a real-time system, there are usually one or more control objects

• Examples: Elevator control

Data Abstraction Objects

• For every entity in the application domain that needs to be remembered, there should be a

corresponding data abstraction object. These objects model the real world entities by

encapsulating the data that needs to be remembered as well as supporting the operations on

that data

• Locations and organizations are examples of objects that need to be remembered

• A data abstraction object is a passive object

• The basis for a data abstraction object is a data store

Algorithm Objects

• An algorithm object encapsulates an algorithm used in the problem domain

• This kind of object is more prevalent in real-time domains

• Example: Scheduler object

Banking System Case Study

Problem Description

• A bank has several automated teller machines (ATMs), which are geographically distributed and

connected via a wide area network to a central server. Each ATM machine has a card reader, a

cash dispenser, a keyboard/display, and a receipt printer. By using the ATM machine, a

customer can withdraw cash from either checking or savings account, query the balance of an

account, or transfer funds from one account to another. A transaction is initiated when a

customer inserts an ATM card into the card reader. Encoded on the magnetic strip on the back

of the ATM card are the card number, the start date, and the expiration date. Assuming the card

is recognized, the system validates the ATM card to determine that the expiration date has not

passed, that the user-entered PIN (personal identification number) matches the PIN maintained

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

96 CS-708 Software Requirement Engineering

by the system, and that the card is not lost or stolen. The customer is allowed three attempts to

enter the correct PIN; the card is confiscated if the third attempt fails. Cards that have been

reported lost or stolen are also confiscated.

• If the PIN is validated satisfactorily, the customer is prompted for a withdrawal, query, or

transfer transaction. Before withdrawal transaction can be approved, the system determines

that sufficient funds exist in the requested account, that the maximum daily limit will not be

exceeded, and that there are sufficient funds available at the local cash dispenser. If the

transaction is approved, the requested amount of cash is dispensed, a receipt is printed

containing information about the transaction, and the card is ejected. Before a transfer

transaction can be approved, the system determines that the customer has at least two

accounts and that there are sufficient funds in the account to be debited. For approved query

and transfer requests, a receipt is printed and card ejected. A customer may cancel a transaction

at any time; the transaction is terminated and the card is ejected. Customer records, account

records, and debit card records are all maintained at the server.

• An ATM operator may start up and close down the ATM to replenish the ATM cash dispenser

and for routine maintenance. It is assumed that functionality to open and close accounts and to

create, update, and delete customer and debit card records is provided by an existing system

and is not part of this problem.

• ͚DesigŶiŶg CoŶĐuƌƌeŶt, Distƌiďuted, aŶd ‘eal-Tiŵe AppliĐatioŶs ǁith UML͛ ďǇ H. Goŵaa,
Addison-Wesley, 2000

Observations

• A bank has several ATMs

• Each ATM has a card reader, a cash dispenser, a receipt printer, and a user who interacts with

the ATM through a keyboard/display unit

• The card reader reads an ATM card - physical thing

• Dispensed cash and receipt are also physical entities

• ATM operator maintains an ATM

Possible Objects in the ATM Domain

• External device I/O objects

 Card Reader

 Cash Dispenser

 Keyboard/Display

 Receipt Printer

• External user

 ATM Operator

• User role/entity objects

 ATM Customer

 ATM (ATM Info)

 Debit Card

 ATM Card

 Bank Account

 ATM Cash

 ATM Transaction

• User role/entity objects (contd.)

 PIN Validation Transaction

 Withdrawal Transaction

 Query Transaction

 Transfer Transaction

 Checking Account

 Savings Account

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

97 CS-708 Software Requirement Engineering

Entity Classes in Banking System

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

98 CS-708 Software Requirement Engineering

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

99 CS-708 Software Requirement Engineering

Interface Classes for External Objects

• Output Device Interface Classes in the Banking System

• User Interface Classes in the Banking System

System and Subsystem Classes

• System and Subsystem Classes in the Banking System

• A Bank Has Many ATMs

• An Operator Maintains an ATM

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

100 CS-708 Software Requirement Engineering

An ATM Has Other Objects

Relation Between

CardReader and ATMCard

Relation Between

CashDispenser and

ATMCash

Relation Between

ReceiptPrinter and Receipt

Relationship Between Account and CheckingAccount & SavingsAccount

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

101 CS-708 Software Requirement Engineering

ATMTransaction and its Subclasses

Putting the Classes Together

Conceptual Static Model for Problem Domain: Physical Classes

• A bank has several ATMs.

• Each ATM is a composite class consisting of a Card Reader, a Cash Dispenser, a Receipt Printer,

and a user, the ATM Customer, who interacts with the system by using a keyboard/display

• The Card Reader reads an ATM Card, which is a plastic card and hence a physical entity

• The Cash Dispenser dispenses ATM Cash, which is also a physical entity in terms of paper money

of given denominations

• The Receipt Printer prints a Receipt, which is a paper physical entity

• The physical entities represent classes in the problem domain and are usually modeled by

software entity classes

• In addition, the Operator is also a an external user, whose job is to maintain the ATM – who

interacts with the system via a keyboard/displaytemuuteat

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

102 CS-708 Software Requirement Engineering

Conceptual Static Model for Problem Domain: Entity Classes

• The Bank entity class has a one-to-many relationship with the Customer class and the Debit Card

class

• The Bank class has only one instance

• The Customer has many to many relationship with Account class, which has its subclasses

(Checking Account, Savings Account)

• An Account is modified by an ATM Transaction, which is also specialized to depict different types

of transactions (Withdrawal Transaction, Query Transaction, Transfer Transaction, or PIN

Validation Transaction)

• There is also a Card Account association class. Association classes are needed in cases where the

attributes are of the association, rather than of the classes connected by the association. Thus,

in many-to-many association between Debit Card and Account, the individual accounts that can

be accessed by a given debit card are attributes of the Card Account class and not of either

Debit Card or Account

• Entity classes are also required to model the physical classes in the problem domain

• These include ATM Card, representing the information read off the magnetic strip on the plastic

card

• ATM Cash holds the amount of cash maintained at an ATM, in five-hundred and one-thousand

rupee notes

• The Receipt holds information about a transaction, and because is holds similar information to

the Transaction class described earlier, a separate entity class is unnecessary

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

103 CS-708 Software Requirement Engineering

Banking System Context Class Diagram

• The system context diagram is developed to show the external classes to which the Banking

system has to interface

• We develop the context class diagram by considering the physical classes

• The external classes correspond to the users and I/O devices depicted to the classes in the

application domain

• They are the Card Reader, the Cash Dispenser, the Receipt Printer, the ATM Customer who

interacts with the system via a keyboard/display, and the Operator who also interacts with the

system via a keyboard/display

• There is one instance of each of these external classes for each ATM

• The system context class diagram for the Banking system depicts the system as one aggregate

class that receives input from and provides output to the external classes

Client/Server Subsystem Structuring

• The Banking system is a client/server application, some of the objects reside at the ATM client

and some reside at the bank server

• The ATM Client Subsystem

• The Bank Server Subsystem

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

104 CS-708 Software Requirement Engineering

Banking System: Major Subsystems

• The ATM Client Subsystem is a composite class, and one instance of this class is located at each

ATM machine

• All the external classes interface to this aggregate class

• The Bank Server Subsystem has one instance

• This aggregate class has a one-to-many association with the ATM Client Subsystem

• This is an example of geographically distributed system

ATM Client Object Structuring

• Consider the interface classes for the ATM Client Subsystem. These classes are determined from

the system context diagram

• We design one interface class for each external class, which can be a device interface class or

user interface class

Banking System External Classes and Interfaces Classes

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

105 CS-708 Software Requirement Engineering

• The device interface classes are the Card Reader Interface, through which ATM cards are read,

the Cash Dispenser Interface, which dispenses cash, and the Receipt Printer Interface, which

prints receipts

• There is also the Customer Interface, which is the user interface class that interacts with the

customer via the keyboard/display, displaying textual messages, prompting the customer, and

ƌeĐeiǀiŶg the Đustoŵeƌ͛s iŶputs

• The Operator Interface class provides the user interface to the ATM operator, who replenishes

the ATM machine with cash

• There is one instance of each of these interface classes for each ATM

ATM Client Subsystem Classes

• To control the sequence in which actions take place, we identify the need for a control

object/class

• This is a state-dependent object

ATM Client Structuring: Objects in Use Cases

• Validate PIN Abstract Use Case

 Card Reader Interface

 ATM Card

 Customer Interface

 ATM Transaction

(PIN Validation Transaction)

 ATM Control

(Controls the Sequence)

• Withdraw Funds Concrete Use Case

 ATM Transaction

(Withdrawal Transaction)

 Cash Dispenser Interface

 ATM Cash

 Receipt Printer Interface

 ATM Control controls the

sequence

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

107 CS-708 Software Requirement Engineering

Use Cases and Classes

• Query Account and Transfer Funds use cases are associated with the same set of classes/objects

Operator-Specific Use Cases

• Operator Interface

• ATM Control

Object Structuring in Bank Server Subsystem

• Several entity objects are bank-wide and need to be stored to be accessible from any ATM.

Therefore, these objects must be stored at the server

• These objects include: Account objects and Debit Card objects

• In the Bank Server Subsystem, the entity classes are Customer, the Account super-class,

Checking Account and Savings Account subclasses, and Debit Card

• There is also the ATM Transaction object, which migrates from the client to the server. The

client sends the transaction request to the server, which sends a response to the client. The

transaction is also stored at the server as an entity in the form of a Transaction Log, so that a

transaction history is maintained

• The transient data sent as part of the ATM Transaction message might differ from the persistent

transaction data; for example transaction status is known at the end of the transaction but not

during it

• Business logic objects are also needed at the server to define the business-specific application

logic for processing client requests. Each ATM transaction type needs a transaction manager to

specify the business rules for handling the transaction

Function-oriented Modeling

• In function-oriented modeling, a hierarchy of functions (also known as processes, transforms,

transactions, bubbles, and activities) is created

• At the root of the hierarchy is the most abstract function, while the leaf nodes of the hierarchy

are least abstract

• Function-oriented modeling is based on the concept of functions or processes, so they become

the most important element in this approach

• The functional model describes computations within a system, i.e., what happens

• What is a function or a transform or process?

• Each function is a sequential activity that potentially may execute concurrently with other

functions

• The functional model specifies the result of a computation without specifying how or when they

are computed

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

108 CS-708 Software Requirement Engineering

Types of Functions

• Asynchronous Function

 An asynchronous function can be activated by another object or function to perform

some action

• Asynchronous State Dependent Function

 An asynchronous state-dependent function is usually a ͞one-shot͟ action, which is

executed during a transition from one state to another state

 This function is activated by a control transformation

• Periodic Function

 A periodic function is activated at regular intervals to perform some action

 The frequency with which a specific function is activated is application dependent

• Periodic State-Dependent Function

 A periodic function is activated at regular intervals to perform some action

 The frequency with which a specific function is activated is application dependent

 This function is activated by a control transformation

Functional Modeling

• Non-interactive programs, such as compilers, usually are used for computations. The functional

model is the main model for such programs

• On the other hand, databases often have a trivial functional model, since their purpose is to

store and organize data, not to transform it

• Fundamental to most of techniques used for functional modeling, is some combination of data

flow diagrams and data dictionaries

Data Flow Diagrams

• Data flow diagrams are composed of data on the move, transformations of data into other data,

sources and destinations of data, and data in static storage

• Data flow diagrams show the flow of data through a system

Observations About DFDs

• All names should be unique

• A DFD is not a flow chart

• Suppress logical decisions

• Do not become bogged down in details

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

109 CS-708 Software Requirement Engineering

Data Flow

• Data flows through a system, beginning as input and be transformed into output.

Data Stores

• Data is often stored for later use.

Data Flow Diagramming: Guidelines

• All icons must be labeled with meaningful names

• The DFD evolves through a number of levels of detail

• Always begin with a context level diagram (also called level 0)

• Always show external entities at the context-level or level zero 0

• Always label data flow arrows

• Do not represent procedural logic

Constructing a DFD

• Determine data objects and associate

operations

• Determine external entities

 Producers of data

 Consumers of data

• Create a level 0 DFD

• Level 0 DFD Example

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

109 CS-708 Software Requirement Engineering

• Write a narrative describing the transform

• Parse to determine next level transforms

• ͞Balance͟ the flow to maintain data flow continuity

• Develop a level 1 DFD

• Use a 1:5 (approx.) expansion ratio

The Data Flow Hierarchy

Ward Notations for DFD Extensions

• Ref: Software Requirements by Alan Davis, PH 1993. Copyright 1986 IEEE

Description of Ward’s Extensions

• Discrete data

 A single item of data

• Continuous data

 A source of constantly available and perhaps continuously changing data

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

110 CS-708 Software Requirement Engineering

• Signal

 Reporting an event

• Activation

 A direct overt action to initiate another process

• Deactivation

 A direct overt action to stop another process

• Data transformation

 This is an example of a process, which is used to transform data values

 The lowest-level functions are pure functions without side effects

 A process may have side effects if it contains nonfunctional components, such as data

stores or external objects

• Control transformation

 Control transformations are modeled in the dynamic model, as they deal with

sequencing and control issues

Data Dictionaries

• Data dictionaries are simply repositories in which to store information about all data items

defined in DFDs

• Contents of Data Dictionaries

 Name of the data item

 Aliases

 Description/purpose

 Related data items

 Range of values

 Data flows

 Data structure definition/for

Function-oriented Modeling Techniques

• Structured requirements definition

• Structured analysis and system specification

• Modern structured analysis

• Real-time structured analysis and structured design

• Structured analysis and design technique

• PSL/PSA

Real-Time Structured Analysis and Structured Design (RSTAD)

• Develop the system context diagram

• Perform data flow/control flow decomposition

• Develop control transformations or control specifications

• Define mini-specifications (process specifications)

• Develop data dictionary

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

111 CS-708 Software Requirement Engineering

System Context Diagram

Data Flow Diagram – Level 1

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

112 CS-708 Software Requirement Engineering

Level 2 DFD: Interface with Customer

Level 2 DFD: Interface with Operator

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

113 CS-708 Software Requirement Engineering

Level 2 DFD: Interface with Bank

Control Flow Specification

• There is only function here, which has a control flow: Control ATM

• We will discuss control flow in dynamic modeling

Mini Specification

• These are almost equivalent to the use cases

• We had discussed these in quite detail when we talked about use cases

Contents of Data Dictionary

• Name of the data item

• Aliases

• Description/purpose

• Related data items

• Range of values

• Data flows

• Data structure definition/form

Structured Analysis and Design Technique (SADT)

• A model of the problem is constructed, which is composed of hierarchy of diagrams

• Each diagram is composed of boxes and arrows

• The topmost diagram, called the context diagram, defines the problem most abstractly

• As the problem is refined into sub-problems, this refinement is documented into other diagrams

• Boxes should be given unique names that should always be verb phrases, because they

represent functions

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

114 CS-708 Software Requirement Engineering

• All boxes should be numbered in the lower right corner, to reflect their relative dominance

• Arrows may enter top, left, or bottom sides of the box, and can exit only from the right side of

the box

• An arrow pointing into the left side of a box represents things that will be transformed by the

box. These are inputs

• An arrow pointing down into the top of the box represents control that affects how the box

transforms the things entering from left side

• Arrows entering the bottom of a box represent mechanism and provide the analyst with the

ability to document how the function will operate, who will perform it, or what physical

resources are needed to perform the function

An SADT Context Diagram

IDEF0 Fundamentals

• Diagrams based on simple box and arrow graphics, arrows convey data or objects

• Text labels to describe boxes and arrows and glossary and text to define the precise meanings of

diagram elements

• Box name shall be a verb or verb phrase, such as "Perform Inspection͟, arrows are nouns

• Gradual exposition of detail, with the major functions at the top and with successive levels of

sub functions revealing well-bounded detail breakout

• The limitation of detail to no more than six sub functions on each successive function

• A "node chart" that provides a quick index for locating details within the hierarchic structure of

diagrams

IDEF0 – Rules

• There is always an A-0 context diagram, and its box number is always 0. This is a strict part of

the standard that helps identify the overall description of the system

• A non-context diagram has from 3 to 6 boxes. This helps us manage detail

• Each box is numbered in its lower right corner, generally going upper left to lower right on the

diagram. This gives us a consistent way to lay out the diagram

• Arrows have horizontal and/or vertical segments, never diagonal; make diagrams more readable

• Each box has at least one control and output. This keeps us from using boxes with little purpose

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

115 CS-708 Software Requirement Engineering

• Successive detail diagrams are numbered by "building up" diagram and box numbers. This is one

of the most important concepts, that leads to a collection of easy-to-understand diagrams

rather than a single confusing one

• Unconnected ends of boundary arrows are identified by their ICOM codes. This helps identify

arrows when moving from one diagram to another.

• Fork and/or join arrows, rather than using parallel arrows for the same object. This reduces

clutter, and reduces the likelihood that an arrow could be overlooked because it is in another

part of the diagram

Banking System Context Diagram

SADT Level 1 Diagram

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

116 CS-708 Software Requirement Engineering

SADT Level 2

SADT Level 1 Diagram

Application of SADT

• This is an application of SADT technique on the ATM system. This can be decomposed further

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

117 CS-708 Software Requirement Engineering

Dynamic Modeling

• Temporal relationships are difficult to understand

• A system can first be understood by examining its static structure and the relationships that

exist among different elements at single moment in time

• Then we examine changes in these elements and their relationships over time

• Those aspects of a system that are concerned with time and changes are the dynamic model

• Control is an aspect of a system that describes the sequences of operations that occur in

response to external stimuli, without consideration of what the operations do, what they

operate on, or how they are implemented

• Dynamic modeling deals with flow of control, interactions, and sequencing of operations in a

system of concurrently-active objects

• Major dynamic modeling concepts are events, which represent external stimuli, and states,

which represent values of objects

• There are two ways to model dynamic behavior

• One is the life history of one object as it interacts with the rest of the world; the other is the

communication patterns of a set of connected objects as they interact to implement behavior

• The view of an object in isolation is a state machine – a view of an object as it responds to

events based on its current state, performs actions as part of its response, and transitions to a

new state

• This is displayed in state chart diagrams in UML

• The view of a system of interacting objects is a collaboration, a context-dependent view of

objects and their links to each other, together with the flow of messages between objects across

data links

• Collaboration and sequence diagrams are used for this view in UML

Techniques for Dynamic Modeling

1. Finite state machines (FSM)

2. Statecharts

3. Petri nets

4. Decision tables and decision trees

5. Collaboration diagrams

6. Sequence diagrams

1 – Finite State Machines

• A finite state machine (FSM) is a hypothetical machine that can be in only one of a given number

of states at any specific time

• In response to an input, the machine generates an output and changes state

• Both the output (O) and the next state (SN) are purely functions of the current state (SC) and the

input (I)

 SN = F(SC , I)

 O = G(SC , I)

• There are two notations commonly used for finite state machines

 State transition diagrams (STDs)

 State transition matrices (STMs)

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

118 CS-708 Software Requirement Engineering

State Transition Diagrams

• A circle denotes a state

• A directed arc connecting two states denotes the potential to transition between the two

indicated states

• A label on the arc, which has two parts separated by a slash, means the input that triggers the

transition and the output with which the system responds

• Mealy model of state transition diagrams

• Most structured analysis tools use a slightly different notation to describe state transition

diagrams

• They use boxes instead of circles

• This notation has become very popular in software engineering

• Another model exists for state transition diagrams, Moore model, in which system responses

are associated with the state rather than the transition between states

• On Moore STDs, arcs are labeled with only the stimulus name, and circles are labeled with the

state name and the system response

2 – Statecharts

• Statecharts are an extension to finite state machines, proposed by Harel

• They provide a notation and a set of conventions that facilitate the hierarchical decomposition

of finite state machines and a mechanism for communication between concurrent finite state

machine

• Statecharts allow a transition to be a function of not only an external stimulus but also the truth

of a particular condition

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

119 CS-708 Software Requirement Engineering

• The concept of superstate, which can be used to aggregate sets of states with common

transitions

• A super-state can be used an abstract state, in which all states transition to a particular state

• A super-state can be used to transition into from more than one states

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

120 CS-708 Software Requirement Engineering

• Default eŶtƌǇ state/ ͚oƌ͛ deĐoŵpositioŶ

• “tateĐhaƌts desĐƌiďes the ͚aŶd͛ function of state refinement

• The siŵpliĐitǇ, appliĐaďilitǇ, aŶd elegaŶĐe of Haƌel͛s oƌthogoŶal deĐoŵpositioŶ ďeĐoŵes ŵost
apparent when we compare equivalent behavioral descriptions using conventional state

transition diagrams

• Statecharts provide natural extensions to FSMs to make them more suitable for specifying

external behavior of real-time systems

• These extensions provide for hierarchical decomposition of states and specification of

transitions dependent on global conditions and being in particular state

Orthogonal Decomposition using Statecharts

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

121 CS-708 Software Requirement Engineering

Explosion of States

Dynamic Modeling (Continued)

• There are two ways to model dynamic behavior

• One is the life history of one object as it interacts with the rest of the world; the other is the

communication patterns of a set of connected objects as they interact to implement behavior

• The view of an object in isolation is a state machine – a view of an object as it responds to

events based on its current state, performs actions as part of its response, and transitions to a

new state

• This is displayed in state chart diagrams in UML

• The view of a system of interacting objects is a collaboration, a context-dependent view of

objects and their links to each other, together with the flow of messages between objects across

data links

• Collaboration and sequence diagrams are used for this view in UML

• The dynamic model depicts the interaction among the objects that participate in each use case

• The starting point for developing the dynamic model is the use case and the objects determined

during object structuring

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

122 CS-708 Software Requirement Engineering

Dynamic Modeling of Banking System Case Study

• The Client Validate PIN and Client Withdraw Funds client use cases are state-dependent use

cases. The state-dependent aspects of the use case are defined by the ATM Control object,

which executes the ATM statechart

• The Client Validate PIN use case starts with the customer inserting the ATM card into the card

reader

• The statechart for ATM Control for the Validate PIN use case is shown next

Statechart for ATM Control: Validate PIN Use Case

Statechart for ATM Control: Validate PIN Use Case

• 1: The ATM Customer actor inserts the ATM card into the Card Reader. The Card Reader

Interface object reads the card input

• 1.1: The Card Reader Interface object sends the Card Input Data, containing card ID, start Date,

and expiration Date, to the entity ATM Card

• 1.2: Card Reader Interface sends the Card Inserted event to ATM Control. As a result, the ATM

Control statechart transitions from Idle state (the initial state) to Waiting for PIN state. The

output event associated with this transition is Get PIN

• 1.3: ATM Control sends the Get PIN event to Customer Interface

• 1.4: Customer Interface displays the Pin Prompt to the ATM Customer actor

• 2: ATM Customer inputs the PIN to the Customer Interface object

• 2.1: Customer Interface requests Card Data from ATM Card

• 2.2: ATM Card provides the Card Data to the Customer Interface

• 2.3: Customer Interface sends the Customer Info, containing card ID, PIN, start Date, and

expiration Date, to the ATM Transaction entity object

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

123 CS-708 Software Requirement Engineering

• 2.4: Customer Interface sends the PIN Entered (Customer Info) event to ATM Control. This

causes ATM Control to transition from Waiting for PIN state to Validating PIN state. The output

event associated with this transition is Validate PIN

• 2.5: ATM Control sends a Validate PIN (Customer Info) request to the Bank Server

• 2.6: Bank Server validates the PIN and sends a Valid PIN response to ATM Control. As a result of

this event, ATM Control transitions to Waiting for Customer Choice state. The output events for

this transition are Display Menu and Update Status

• 2.7: ATM Control sends the Display Menu event to the Customer Interface

• 2.7a: ATM Control sends an Update Status message to the ATM Transaction

• 2.8: Customer Interface displays a menu showing the Withdraw, Query, and Transfer options to

the ATM Customer actor

Statechart for ATM Control: Withdraw Funds Use Case

• 3: ATM Customer actor inputs withdrawal selection to Customer Interface, together with the

account number for checking or savings account and withdrawal amount

• 3.1: Customer Interface sends the customer selection to ATM Transaction

• 3.2: ATM Transaction responds to Customer Interface with Transaction Details. Transaction

Details contains transaction ID, card ID, PIN, date, time, account Number, and amount

• 3.3: Customer Interface sends the Withdrawal Selected (Transaction Details) request to ATM

Control. ATM Control transitions to Processing Withdrawal state. Two output events are

associated with this transition, Request Withdrawal and Display Wait

• 3.4: ATM Control sends a Request Withdrawal transaction containing the Transaction Details to

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

124 CS-708 Software Requirement Engineering

the Bank Server

• 3.4a: ATM Control sends a Display Wait message to Customer Interface

• 3.4a.1: Customer Interface displays the Wait Prompt to the ATM Customer

• 3.5: Bank Server sends a Withdrawal OK (Cash Details) response to ATM Control. Cash Details

contains the amount to be dispensed and the account balance. This event causes ATM Control

to transition to Dispensing state. The output events are Dispense Cash and Update Status

• 3.6: ATM Control sends a Dispense Cash (Cash Details) message to Cash Dispenser Interface

• 3.6a: ATM Control sends an Update Status (Cash Details) message to ATM Transaction

• 3.7: Cash Dispenser Interface sends the Cash Withdrawal Amount to ATM Cash

• 3.8: ATM Cash sends a positive Cash Response to the Cash Dispenser Interface

• 3.9: Cash Dispenser Interface sends the Dispenser Output command to the Cash Dispenser

external output device to dispense cash to the customer

• 3.10: Cash Dispenser Interface sends the Cash Dispensed event to ATM Control. As a result, ATM

Control transitions to Printing state. The three output events associated with this transition are

Print Receipt, Display Cash Dispensed, and ACK Cash Dispensed

• 3.11: ATM Control sends Print Receipt event to Receipt Printer

• 3.11a: ATM Control requests Customer Interface to Display Cash Dispensed message

• 3.11a.1: Customer Interface displays Cash Dispensed prompt to ATM Customer

• 3.11b: ATM Control sends an Acknowledge Cash Dispensed message to the Bank Server

• 3.12: Receipt Printer Interface requests Transaction Data from ATM Transaction

• 3.13: ATM Transaction sends the Transaction Data to the Receipt Printer Interface

• 3.14: Receipt Printer Interface sends the Printer Output to the Receipt Printer external output

device

• 3.15: Receipt Printer Interface sends the Receipt Printed event to ATM Control. As a result, ATM

Control transitions to Ejecting state. The output event is Eject

• 3.16: ATM Control sends the Eject event to Card Reader Interface

• 3.17: Card Reader Interface sends the Card Reader Output to the Card Reader external I/O

device

• 3.18: Card Reader Interface sends the Card Ejected event to ATM Control. ATM Control

transitions to Terminating state. The output event is Display Ejected

• 3.19: ATM Control sends the Display Ejected event to the Customer Interface

• 3.20: Customer Interface displays the Card Ejected prompt to the ATM Customer

ATM Statecharts

• A hierarchical statechart for the ATM Control class is needed, which can be decomposed further

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

125 CS-708 Software Requirement Engineering

Top-Level ATM Control Statechart

• Five states are shown on the top-level statechart

 Closed Down (initial state)

 Idle

 Processing Customer Input (superstate)

 Processing Transaction (superstate)

 Terminating Transaction (superstate)

• At system initialization time, given by the event Startup, the ATM transitions from the initial

Closed Down state to Idle state. The event Display Welcome message is triggered on entry into

idle state. In Idle state, the ATM is for a customer-initiated event

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

126 CS-708 Software Requirement Engineering

ATM Control Statechart: Processing Customer Input Superstate

• Processing Customer Input Superstate

 The Processing Customer Input superstate is decomposed into three substates

 Waiting for PIN

 Validating PIN

 Waiting for Customer Choice

• Waiting for PIN Substate

 This substate is entered from Idle state when the customer inserts the card in the ATM,

resulting in the Card Inserted event. In this state, the ATM waits for the customer to

enter the PIN

• Validating PIN Substate

 This substate is entered when the customer enters the PIN. In this substate, the Bank

Server validates the PIN

• Waiting for Customer Choice Substate

 This substate is entered as a result of a Valid PIN event, indicating a valid PIN was

entered. In this state, the customer enters a selection: Withdraw, Transfer, or Query

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

127 CS-708 Software Requirement Engineering

ATM Control Statechart: Processing Transaction Superstate

ATM Control Statechart: Terminating Transaction Superstate

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

128 CS-708 Software Requirement Engineering

Processing Transaction Superstate

• This superstate is also decomposed into three substates

 Processing Withdrawal

 Processing Transfer

 Processing Query

• DepeŶdiŶg oŶ Đustoŵeƌ͛s seleĐtioŶ the appƌopƌiate suďstate ǁithiŶ PƌoĐessiŶg TƌaŶsaĐtioŶ is
eŶteƌed, duƌiŶg ǁhiĐh the Đustoŵeƌ͛s ƌeƋuest is pƌoĐessed

Terminating Transaction Superstate

• This superstate has five substates

 Dispensing

 Printing

 Ejecting

 Confiscating

 Terminating

Interaction Diagrams

• Interaction diagrams are used to model the dynamic aspects a system. For the most part, this

involves modeling concrete or prototypical instances of classes, interfaces, components, and

nodes, along with messages that are dispatched among them, all in the context of a scenario

that illustrates a behavior

• Interaction diagrams may stand alone to visualize, specify, construct, and document the

dynamics of a particular society of objects, or they may be used to model one particular flow of

control of a use case

• There are types of Interaction Diagrams

• Sequence diagrams

 A sequence diagram is an interaction diagram that emphasizes the time ordering of

messages

 Graphically, a sequence diagram is a table that shows objects arranged along the X axis

and messages, ordered in increasing time, along the Y axis

• Collaboration diagrams

 A collaboration diagram is an interaction diagram that emphasizes the structural

organization of the objects that send and receive messages

 Graphically, a collaboration diagram is a collection of vertices and arcs

Hints and Tips on Interaction Diagrams

• Give it a name that communicates its purpose

• Use a sequence diagram if you want to emphasize the time ordering of messages

• Use a collaboration diagram if you want to emphasize the organization of the objects involved in

the interaction

• Lay out its elements to minimize lines that cross

• Use notes and color as visual cues to draw attention to important features of your diagram

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

129 CS-708 Software Requirement Engineering

Collaboration Diagram: ATM Client Validate PIN Use Case

Sequence Diagram: ATM Client Validate PIN Use Case – 1

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

130 CS-708 Software Requirement Engineering

Sequence Diagram: ATM Client Validate PIN Use Case – 2

Sequence Diagram: ATM Client Validate PIN Use Case – 3

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

131 CS-708 Software Requirement Engineering

Collaboration Diagram: ATM Client Withdraw Funds Use Case

Sequence Diagram: ATM Client Withdraw Funds Use Case

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

132 CS-708 Software Requirement Engineering

Consolidated Collaboration Diagram for ATM Client Subsystem

Requirements Document for the Banking System

Requirements Document (Review)

• The requirements document is a formal document used to communicate the requirements to

customers, engineers and managers

• It is also known as software requirements specifications or SRS

• The services and functions which the system should provide

• The constraints under which the system must operate

• Oǀeƌall pƌopeƌties of the sǇsteŵ i.e., ĐoŶstƌaiŶts oŶ the sǇsteŵ͛s eŵeƌgeŶt pƌopeƌties

SRS for the Banking System

• Preface

 This should define the expected readership of the document and describe its version

history including a rationale for creation of a new version and a summary of the changes

made in each version

• Introduction

 This should define the product in which the software is embedded, its expected usage

and present an overview of the functionality of the control software

• Glossary

 This should define all technical terms and abbreviations used in the document

• Specific requirements

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

133 CS-708 Software Requirement Engineering

 This should define specific requirements for the system using natural language with the

help of diagrams, where appropriate

• Appendices

 Use-case model

 Object model

 Data-flow model

Software Requirements Specifications for the Banking System

1. Preface

• This document, Software Requirements Specification (SRS), is created to document the software

requirements for the Banking System, as described in section 2, Introduction, of this document

• This doĐuŵeŶt ǁas Đƌeated oŶ the ƌeƋuest of the ͚XY) BaŶk IŶĐ.͛ – the ͚ClieŶt͛. The Đƌeator of

this doĐuŵeŶt is ͚A “oftǁaƌe House IŶĐ.͛ – ͚VeŶdoƌ͛. The ͚ClieŶt͛ has asked the ͚VeŶdoƌ͛ to
deǀelop aŶ “‘“ foƌ the BaŶkiŶg “Ǉsteŵ. The ͚VeŶdoƌ͛ ǁill also ďe ƌespoŶsiďle foƌ the
development of the software based on this SRS

• This is the first version of the SRS.

2. Introduction

• This section documents an overview of the functionality expected from the software for the

Banking System

• We͛ll ƌeǀieǁ the fuŶĐtioŶalitǇ of the softǁaƌe to ďe deǀeloped

• A bank has several automated teller machines (ATMs), which are geographically distributed and

connected via a wide area network to a central server. Each ATM machine has a card reader, a

cash dispenser, a keyboard/display, and a receipt printer. By using the ATM machine, a

customer can withdraw cash from either checking or savings account, query the balance of an

account, or transfer funds from one account to another. A transaction is initiated when a

customer inserts an ATM card into the card reader. Encoded on the magnetic strip on the back

of the ATM card are the card number, the start date, and the expiration date. Assuming the card

is recognized, the system validates the ATM card to determine that the expiration date has not

passed, that the user-entered PIN (personal identification number) matches the PIN maintained

by the system, and that the card is not lost or stolen. The customer is allowed three attempts to

enter the correct PIN; the card is confiscated if the third attempt fails. Cards that have been

reported lost or stolen are also confiscated.

• If the PIN is validated satisfactorily, the customer is prompted for a withdrawal, query, or

transfer transaction. Before withdrawal transaction can be approved, the system determines

that sufficient funds exist in the requested account, that the maximum daily limit will not be

exceeded, and that there are sufficient funds available at the local cash dispenser. If the

transaction is approved, the requested amount of cash is dispensed, a receipt is printed

containing information about the transaction, and the card is ejected. Before a transfer

transaction can be approved, the system determines that the customer has at least two

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

134 CS-708 Software Requirement Engineering

accounts and that there are sufficient funds in the account to be debited. For approved query

and transfer requests, a receipt is printed and card ejected. A customer may cancel a transaction

at any time; the transaction is terminated and the card is ejected. Customer records, account

records, and debit card records are all maintained at the server.

• An ATM operator may start up and close down the ATM to replenish the ATM cash dispenser

and for routine maintenance. It is assumed that functionality to open and close accounts and to

create, update, and delete customer and debit card records is provided by an existing system

and is not part of this problem.

3. Glossary

• ATM: Automated Teller Machine

• PIN: Personal Identification Number

4. Specific Requirements

1. The XYZ Bank Inc. can have many automated teller machines (ATMs), and the new software

system shall provide functionality on all ATMs.

2. The system shall enable the customers of XYZ Bank Inc., who have valid ATM cards, to perform

three types of transactions; 1) withdrawal of funds, 2) Query of account balance, and 3) transfer

of funds from one bank account to another account in the same bank.

3. An ATM card usage shall be considered valid if it meets the following conditions:

a. The card was issued by an authorized bank.

b. The card is used after the start date, i.e., the date when the card was issued.

c. The card is used before the expiration date, i.e., the date when the card expires.

d. The card has not been reported lost or stolen by the customer, who had been issued

that card.

e. The customer provides correct personal identification number (PIN), which matches the

PIN maintained by the system.

4. The system shall confiscate the ATM card if it detects that a lost or stolen card has been inserted

by a customer. The system shall also display an apology to the customer.

5. The system shall allow the customer to enter the correct PIN in no more three attempts. The

failure to provide correct PIN in three attempts shall result in the confiscation of the ATM card.

6. The system shall ask for the transaction type after satisfactory validation of the customer PIN.

The customer shall be given three options: withdrawal transaction, or query transaction, or

transfer transaction.

7. If a customer selects withdrawal transaction, the system shall prompt the customer to enter

account number and amount to be dispensed.

8. For a withdrawal transaction, the system shall determine that sufficient funds exist in the

requested account, that the maximum daily limit has not be exceeded, and that there are

sufficient funds available at the local cash dispenser.

9. If a withdrawal transaction is approved, the requested amount of cash shall be dispensed, a

receipt shall be printed containing information about the transaction, and the card shall be

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

135 CS-708 Software Requirement Engineering

ejected. The information printed on the receipt includes transaction number, transaction type,

amount withdrawn, and account balance.

10. If a customer selects query transaction, the system shall prompt the customer to enter account

number.

11. If a query transaction is approved, the system shall print a receipt and eject the card. The

information contained on the receipt includes transaction number, transaction type, and

account balance.

12. If a customer selects transfer transaction, the system shall prompt the customer to enter from

account number, to account number, and amount to be transferred.

13. The system shall check if there are enough funds available in the from account, which are being

requested for transfer to the to account.

14. If the transfer transaction is approved, a receipt shall be printed and card shall be ejected. The

information printed on the receipt includes transaction number, transaction type, amount

transferred, and account balance.

15. The system shall cancel any transaction if it has not been completed if the customer presses the

Cancel button

16. The customer records, account records, and debit card records will all be maintained at the

server and shall not be the responsibility of the system.

17. The system shall enable an ATM operator to shutdown or start up an ATM for routine

maintenance.

18. The system shall enable an ATM operator to add cash to the cash dispenser.

19. The system shall not be responsible for opening or closing of accounts, and to create, update,

and delete customer and debit card records. These tasks are performed elsewhere by a bank.

20. The system shall be linked with the bank server through communication systems, which are

beyond the scope of the current system. It is assumed that this facility is always available.

21. The system shall not be responsible for the maintenance of the hardware devices of the ATM or

network facilities.

5. Appendices

5.1 Use-case model

5.2 Object model

5.3 Functional model

5.3.1 Data-flow model

5.3.2 SADT model

5.4 Dynamic model

5.4.1 Statecharts

5.4.2 Interaction diagrams

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

136 CS-708 Software Requirement Engineering

Use Case Model

Uses Case Diagram for ATM Customer

Use Case Diagram for ATM Operator

Use Case Diagram for ATM

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

137 CS-708 Software Requirement Engineering

Object Model

Conceptual Static Model for Problem Domain: Physical Classes

Conceptual Static Model for Problem Domain: Entity Classes

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

138 CS-708 Software Requirement Engineering

Banking System Context Class Diagram

Banking System: Major Subsystems

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

139 CS-708 Software Requirement Engineering

Banking System External Classes and Interfaces Classes

ATM Client Subsystem Classes

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

140 CS-708 Software Requirement Engineering

Data Flow Diagrams

System Context Diagram

Data Flow Diagram – Level 1

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

141 CS-708 Software Requirement Engineering

Level 2 DFD: Interface with Customer

Level 2 DFD: Interface with Operator

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

142 CS-708 Software Requirement Engineering

Level 2 DFD: Interface with Bank

SADT Diagrams

Banking System Context Diagram

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

143 CS-708 Software Requirement Engineering

SADT Level 1 Diagram

SADT Level 2

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

144 CS-708 Software Requirement Engineering

SADT Level 1 Diagram

Statecharts Diagrams

Statechart for ATM Control: Validate PIN Use Case

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

145 CS-708 Software Requirement Engineering

Statechart for ATM Control: Withdraw Funds Use Case

Top-Level ATM Control Statechart

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

146 CS-708 Software Requirement Engineering

ATM Control Statechart: Processing Customer Input Superstate

ATM Control Statechart: Processing Transaction Superstate

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

147 CS-708 Software Requirement Engineering

ATM Control Statechart: Terminating Transaction Superstate

Collaboration Diagrams

Collaboration Diagram: ATM Client Validate PIN Use Case

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

148 CS-708 Software Requirement Engineering

Collaboration Diagram: ATM Client Withdraw Funds Use Case

Consolidated Collaboration Diagram for ATM Client Subsystem

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

149 CS-708 Software Requirement Engineering

Sequence Diagram

Sequence Diagram: ATM Client Validate PIN Use Case – 1

Sequence Diagram: ATM Client Validate PIN Use Case – 2

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

150 CS-708 Software Requirement Engineering

Sequence Diagram: ATM Client Validate PIN Use Case – 3

Sequence Diagram: ATM Client Withdraw Funds Use Case

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

151 CS-708 Software Requirement Engineering

Requirements Engineering for Agile Methods

Introduction

• Agile methods are a family of software development processes

• Their aim is to deliver products faster, with high quality, and satisfy customer needs through the

application of the principles of lean production to software development

• Agile methods have become popular during the last few years

• LeaŶ pƌoduĐtioŶ has ďeeŶ ĐoŶĐeiǀed duƌiŶg the ͛50s iŶ ToǇota. It iŶǀolǀes seǀeƌal pƌaĐtiĐes that
are now part of most manufacturing processes, such as just-in-time development, total quality

management, and continuous process improvement

• The principle of lean production is the constant identification and removal of waste, that is,

anything that does not add value for the customer to the final product

• Agile methods focus on

 Delivering value for the customer

 Ensuring that the customer understand such value and be satisfied by the project

• Agile methods pose a lot of emphasis in producing and delivering to the customer only those

features that are useful

• Producing anything that is not required is considered a mistake

• Adding a feature that is not needed not only consumes effort without adding customer value

but also creates extra code, which may contain errors and make code longer and more complex

to maintain, to correct and improve

• The waste includes general architectures that are used only partially or reusable components

with functionalities that are likely to be never usedTo achieve such elimination of waste, agile

methods claim to be

 Adaptive rather than predictive

 People-oriented rather than process-oriented

• A close collaboration between the development team and the customer is a must, so that

 Requirements are fully identified and correctly understood

 Final products reflects what the customer needs, no more no less

Agile Methods

• eXtreme Programming

• Scrum

• Dynamic Systems Development Method

• Adaptive Software Development

• The Crystal Family

Agile Manifesto

• Individuals and Interactions over Process and Tools

• Customer Collaboration over Contracts

• Working Software over Documentation

• Responding to Change over Planning

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

152 CS-708 Software Requirement Engineering

Common Practices and Behaviors

• Adaptability

• Incremental Development

• Frequent Releases

• Requirements Prioritization before

every iteration

• High Customer Involvement

RE in Agile Methods

• In agile methods, the whole development team is involved in requirements elicitation and

management, while in traditional approaches often only a subset of the development team is

involved

• This approach is feasible only if the size of the problem is limited, as only a small development

team can interact directly with the customer

• If the problem is bigger, the team can use other techniques for eliciting and managing

requirements

• The understanding of requirements variability has a strong impact on the ability of agile

methods to be ͞leaŶ͛

Focus of Agile Methods in RE

• The Customer

• Waste in Requirements

• Requirements Evolution

• Non-functional Requirements

Customer in RE of Agile Methods

• Customers/stakeholders assume a paramount role in requirements engineering in agile methods

• The interaction between the development team and stakeholders is complex due to the

different perceptions of the problem that the stakeholders have

• In agile methods, the problem of multiple stakeholders is solved reducing their number to one,

who represent all stakeholders in the project

• The customer should be a domain expert and able to make important decisions such as

accepting the product, prioritize requirements, etc.

Customer-on-Site Requirements

• Availability

 The customer has to be always available to answer questions coming from the

development team. Any delay in the answer delays the development of the product

• Complete knowledge

 The customer is the representative for all the stakeholders. Therefore, he is able to

answer all questions, since he is the domain expert and knows how the application

should work and input/output data required. Again, this is possible if the size of the

project is limited

• Decision power

 The customer is able to make final decisions and commitments. Changes in

requirements, acceptance of the features implemented, etc., can be decided directly by

the customer, allowing a fast decision making process

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

153 CS-708 Software Requirement Engineering

Waste in Requirements

• Identification and reduction of waste from requirements assume a paramount role to avoid the

creation of waste later in the development process

• In lean practices, the reduction of waste is extremely important because waste always generates

more waste

• Waste in requirements includes both wrong and useless requirements

• All the waste generated is a cost for the customer both directly and indirectly

• Such costs are likely to generate further waste inside the customer organization due to the

reduced amount of money available to its core business and reduced revenues

Impact of Requirements Waste on Development Process

• More source code to write and higher cost

• Increased complexity of the source code

• Delayed delivery of the final version of the application with all functionalities

• More complex and costly maintenance

• More resources required by the application, including: memory usage, processing power,

network usage, etc

• Increased complexity of the application from the point of view of the customer (e.g., more

complex user interface, more effort to learn how to use the application, etc)

• Savings produced by the application in the production process of the customer are delayed

Techniques to Focus on Interaction with Customer

• The whole development team collects requirements from the customer

 Usage of documents to share knowledge is reduced to a minimum

• Requirements are collected using a common language

 Requirements are collected using the language of the customer, not any formal

language

• Direct interaction between the development team and the customer

 Reduces both the number of documents required and the probability of

misunderstanding due to unnecessary communication layers

• Requirements splitting

 If the development team considers a requirement too complex, this technique helps the

customer to split it in simpler ones

Waste Reduction Techniques

• In order to reduce the waste created by the over specification of requirements, following

techniques are used

 Requirements prioritization

 Incremental releases

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

154 CS-708 Software Requirement Engineering

Prioritization Activities

• The development team estimates the time required to implement each functionality. If the

effort required is too high, the requirement is split into simpler ones that can be implemented

with less effort

• The customer specifies business priorities for each functionality

• According to the business priorities, the development team assign a risk factor to the

functionalities

• The customer and the development team identify the functionalities to implement in the

iteration

Requirements Evolution

• Agile methods assume that is very hard to elicit all the requirements from the user upfront, at

the beginning of a development project

• They also assume that such requirements evolve in time as the customer may change its mind or

the overall technical and socio-economical environment may evolve

• Agile companies are aware that changes are inevitable and they include the management of

variability into the development process

• Requirements are not well known at the beginning of the project

• Requirements change

• Making changes is not expensive

• Agile methods assume that the cost of introducing changes in a product is nearly constant over

the time, but this hypothesis is not true in every context

• Usually, the cost of implementing changes grows exponentially over the time

• On the other hand, if development phases are grouped together in very short iterations and

binding decisions are taken as late as possible, the growing of the cost is limited

• In order to manage requirements evolution, agile methods use variable scope-variable price

contract. This means that the features really implemented into the system and its cost evolve as

well

• Requirements are negotiated throughout the project b/w the customer the development team

Managing Variability

• Decoupling requirements

• Requirements elicitation and prioritization

• Decoupling requirements

 Requirements have to be as independent as possible in order to clearly identify what to

implement and make the order of their implementation irrelevant

• Requirements elicitation and prioritization

 At the beginning of every iteration, there is a requirements collection and prioritization

activity. During that, new requirements are identified and prioritized. This approach

helps to identify the most important features inside the ongoing project.

• Features are implemented mainly according to their prioritization, not their functional

dependence

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

155 CS-708 Software Requirement Engineering

Non-Functional Requirements

• Agile methods do not provide any widely accepted technique for eliciting and managing non-

functional requirements

• Such requirements are collected implicitly during the requirements collection activity. The need

of specifying non-functional requirements is less important than in other context due to the

continuous interaction with the customer

Roles and Responsibilities

• Customer

• Developers

• Managers

Tools for Requirements Management in Agile Methods

• Paper, pencil, and pin boards

• UML modeling tools

• Requirements negotiation tools

• Instant messaging tools

• Project management tools

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

156 CS-708 Software Requirement Engineering

Internet & Requirement Engineering

Internet

• Internet is a network of networks

• It is a huge network providing various kinds of information in various forms

• We use internet in our daily life to send an email, to get information about a particular topic and

even to chat with our friends

Web-Based Information Systems (WBIS)

• What makes web systems so different from the traditional software systems that their planning

and construction requires a unique development process?

• First, we need to understand different types of web-based information systems

Types of WBIS Models

• Those that deliver advertising and promotion

• Those that assist business workflow

• Those that facilitate inter-organizational interaction

• Those that support multi-participant trading

Differences in WBIS Models

• Each kind of WBIS model emphasizes distinct aspects of site design depending on its purpose

• Some focus on supporting business to business transactions, the construction of online

metaphors for business activity, and customer assistance

• Others look at promoting organizational brand, building market trust and credibility

• While some simply accentuate web contents, layout, navigation and search for organizational

information

E-What?

• E-commerce

• E-banking

• E-auctioning

• E-government

• E-voting

• E-healthcare

• E-insurance

• E-everything

WBIS and Requirements Engineering

• In the richness of web design issues, many directly concern WBIS customers and thus necessarily

absorb requirements engineers

Stakeholders in WBIS

• Apart from the obvious project stakeholders, such as sponsors, customers, and users, the parties

involved also include content developers and copyright consultants, marketing and public

relation specialists, media planner and strategists, creative and art directors, graphic designers,

multimedia and interaction developers, and many others, who are not often considered by

requirements engineers as having input into the specification of a traditional software system

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

157 CS-708 Software Requirement Engineering

• It is a faĐt that stakeholdeƌs͛ opiŶioŶ ĐoŶfliĐt ǁith eaĐh otheƌ

• In WBIS, these conflicts are firmly embedded not only in the needs of the software systems to

be developed but rather in the business processes and objectives of online buyers and sellers,

and in the constraints imposed on the system by agencies regulating the financial transactions

or determining compliance with the laws of the land and international treaties

Key facts

• The scope of concerns to be considered in the earliest stages of web site construction can be

significantly enlarged, due to the marketing-driven development process

• The delivery cycle for web-enabled applications is commonly very short, i.e., 3 months, which

leaves very little time for any formal requirements gathering and their consolidation

• Current requirements engineering practices for WBIS projects are inadequate, failing

requirements engineers in identification and characterization of the potential system users,

their needs and preferences, and the features required of the web systems under development

• There is need to emphasize on the stakeholder views and opinions on requirements evolution in

web development

• A stakeholder in this context is considered to be any individual, group, or organization whose

actions can influence or be influenced by the development and use of the system whether

directly or indirectly

RE Approaches for Development of WBIS

• Web engineering

• Relationship management methodology

• Internet commerce development methodology

• Web information systems development methodology

Web Engineering

• Web development should be recognized as a process with all its structure and complexity

• Most of the difficulties with respect to development of large web sites can be attributed to a

lack of suitable process models for the project teams to follow, suitable architecture, or a

project model for the development of web-enabled application

• One of the most significant points, as a new and emerging trend associated with the

development and evolution of web-enabled services, is the acknowledgement of the

importance for project teams to improve by learning through experience

Relationship Management Methodology (RMM)

• RMM was introduced as a methodology for the development of hypermedia systems

• While acknowledging the importance of requirements analysis, RMM sheds little light on its

mechanism

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

158 CS-708 Software Requirement Engineering

Internet Commerce Development Methodology (ICDM)

• ICDM combines the elements of business analysis as well as system development

• Internet commerce is one of those fields, that necessitate intense business activity as part of

their systems development, and thus it requires a thorough analysis of its place in the overall

business strategy

• Customers and suppliers (users of the systems) are encouraged to be involved at various stages

of the e-Business operations, and participate in periodic reviews

• The two commonly used requirements gathering techniques in ICDM are:

 Brainstorming

 Group Requirements Sessions (GRS)

• Although clearly acknowledging the importance of stakeholder issues and ͞learning from

experience͟ in requirements establishment for WBIS, ICDM is not prescriptive as to the use of

any specific model or a process where these issues could be addressed

Web Information Systems Development Methodology (WISDM)

• WISDM is employed with the aim for evaluating the effectiveness of a pre-web methodology to

the web-based methodology

• RAD and prototyping are effective approaches for WISDM project development

Non-Functional Requirements

• Special focus on non-functional requirements

 Security

 Efficiency

 Scalability

 User-interface design

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

159 CS-708 Software Requirement Engineering

Requirements Engineering for Product Lines

Introduction

• The interest in software product lines emerged from the field of software reuse when

developers realized that they could obtain much greater reuse benefits by reusing software

architectures instead of reusing individual software components

Software Reuse

• Software reuse has been a goal in software engineering since 1968

• Goal is to maximize productivity, minimize cost of developing software and to improve profits

for the software vendors

• This has been an research area in software engineering

Software Reuse Manifestos

• Code reuse

 Mathematical libraries

• Design reuse

• Requirements reuse

• Knowledge reuse

• Product line approach

Software Family of Systems

• Parnas referred to a collection of systems that share common characteristics as a family of

systems. It is worth considering the development of a family of systems when there is more to

be gained by analyzing the systems collectively rather than separately – that is, when the

systems have more features in common than features that distinguish them

Software Product Lines

• A software product line consists of a family of software systems that have some common

functionality and some variable functionality

• To take advantage of the common functionality, reusable assets are developed

• Reusable assets include: requirements, designs, components, and so on

• These reusable assets can be reused by different members of the family

• The software industry is increasingly recognizing the strategic importance of software product

lines

• Product lines are not new and they have been used in ancient era also

• Egyptian pyramids are an example of product lines

Airline Product Lines

• A modern example of product lines comes from the airline industry, with the European Airbus A-

318, A-319, A-320, A-321 airplanes, which share common product features, including jet

engines, navigation equipment, and communication equipment

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

160 CS-708 Software Requirement Engineering

Software Product Lines

• The traditional mode of software development is to develop single systems - that is, to develop

each system individually

• For software product lines, the development approach is broadened to consider a family of

software systems

• A software product line is also referred to as a software product family, a family of systems, or

an application domain

• The terms used most in the early days of this field were domain analysis and domain

engineering

• The architectures developed for application domains were referred to as domain-specific

software architectures

Software Development Approach for Product Lines

• This approach involves analyzing what features (functional requirements) of the software family

are common, what features are optional, and what features are optional, and what features are

alternatives

• After the feature analysis, the goal is to design a software architecture for the product line,

which has common components (required by all members of the family), optional components

(required by only some members of the family), and variant components (different versions of

which are required by different members of the family)

• To model and design families of systems, the analysis and design families of systems, the

analysis and design concepts for single-product systems need to be extended to support

software product lines

Clements and Northrop

• ͞A set of software intensive systems sharing a common, managed set of features that satisfy the

specific needs of a particular market segment or mission and that are developed from a

common set of core assets in a prescribed way͟

Activities in Software Product Lines

• Modeling commonality and variability is an important activity in developing software product

line

• There have been a number of product line techniques

Early Product Line Approaches

• Family-Oriented Abstraction, Specification, and Translation

• Work at Software Engineering Institute

• Work at Software Productivity Consortium

• Evolutionary Development Life Cycle

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

161 CS-708 Software Requirement Engineering

Variability in Software Product Lines

• Variability in a software product line can be modeled at the software requirements level and at

the software design level

• The most widely used approach for modeling variability in requirements is through feature

modeling

The Concept of a Feature

• Features are an important concept in software product lines because they represent reusable

requirements or characteristics of a product line

• The concept of a feature is quite intuitive and applies to all product lines, not just software

product lines

Example of a Product Line

• A vehicle is a product line

• Common features

• Alternative features

• Optional features

Feature Modeling

• The FODA (feature-oriented domain analysis method uses features, which are organized into a

feature tree. Features may be mandatory, optional, or mutually exclusive

• Other product line methods also used features

Common Features

• Common features are those features that must be provided by every member of the software

product line

• They are also referred to as mandatory, necessary, or kernel features

Optional Features

• Optional features are those features that need to be provided by only some members of the

product line

• Optional features can assume that common features are provided and so can depend on the

presence of the common features

Alternative Features

• Two or more features may be alternatives to each other, where only one of them can be

provided in any given member of the software product line

• Thus the features are mutually exclusive

Feature Groups

• Related features can be grouped into feature groups, which place a constraint on how the

features are used by a given member of the software product line

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

162 CS-708 Software Requirement Engineering

Mutually Exclusive Features

• A feature can be an alternative – that is, one of a group of mutually exclusive features. In some

product families, one of the alternatives must always be chosen for a given product family

member

• In other cases, however, selecting one of the alternatives is optional for a given family member

• A zero-or-one-of feature group handles the case in which selecting one of the alternatives is

optional

Exactly-One-Of Features

• In an exactly-one-of- feature group, a feature must always be selected from the group. Unlike

the mutually exclusive case, the option of not selecting a feature does not exist

• This group is also known as one-and-only-one-of feature group

• It is possible for such a feature group to have a default feature and to have a prerequisite

• The feature group must contain at least two features, one of which could be a default feature

At-Least-One-Of Features

• In an at-least-one-of group, one or more optional features can be selected from the group, but

at least one feature must be selected

• It is also possible for this feature group to have a default feature and to have a prerequisite

• The feature group must contain at least two features, one of which could be a default feature

Zero-or-More-Of Features

• At first, a zero-or-more-of feature group might seem unnecessary, since zero or more of means

that all features in the group are optional and there are no constraints on feature selection from

within the group

• However, sometimes it is useful to group optional features together because of dependency

• For example, all features in the group depend on another feature or feature group

• There is usually no default feature in this case

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

163 CS-708 Software Requirement Engineering

Requirements Prioritization

The Decision Making Process

• In everyday life, we make decisions, e.g., when buying a DVD-player, food, a telephone, etc

• Usually, we do not have more than a couple of choices to consider. Even with just a couple of

choices, decisions can be difficult to make

Need for Prioritization

• When having tens, hundreds or even thousands of alternatives, decision-making becomes much

more difficult

• One of the keys to making the right decision is to prioritize between different alternatives. It is

often not obvious which choice is better, because several aspects must be taken into

consideration

Example

• Buying a car

• One aspect or several aspects

Requirements Prioritization

• When developing software systems, similar trade-offs must be made

• The functionality that is most important for the customers might not be as important when

other aspects (e.g. price) are factored in

• We need to develop the functionality that is most desired by the customers, as well as least

risky, least costly, and so forth

• The quality of software products is often determined by the ability to satisfy the needs of the

customers and users

• So, it is very important to include those requirements in the product, which are really needed by

the customers

• Most software projects have more candidate requirements than can be realized within the time

and cost constraints

• Prioritization helps to identify the most valuable requirements from this set by distinguishing

the critical few from the trivial many

• Act of giving precedence or priority to one item over another item

• Requirements prioritization means giving precedence to some requirements over other

requirements based on feedback from system stakeholders

Benefits of Requirements Prioritization

• Stakeholders can decide on the core requirements for the system

• Planning and selection of ordered, optimal set of software requirements for implementation in

successive releases

• Helps in trade-offs of conflicting constraints such as schedule, budget, resources, time to

market, and quality

• Balances the business benefit of each requirement against its cost

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

164 CS-708 Software Requirement Engineering

• Balances the implications of requirements on the software architecture and future evolution of

the product and its associated cost

• Selects only a subset of the requirements and still produce a system that will satisfy the

customers

• Get technical advantage and optimize market opportunity

• Minimize rework and schedule slippage (plan stability)

• Handle contradictory requirements, focus the negotiation process, and resolve disagreements

between stakeholders

• Establish relative importance of each requirement to provide the greatest value at the lowest

cost

Requirements Prioritization (Continued):

• Prioritization can be done arbitrarily, as we discussed in the requirements negotiations

• Prioritization should be based on certain criteria like objectives, risks, quality factors, or

viewpoints of stakeholders

• ͞The ĐhalleŶge is to seleĐt the ͚ƌight͛ ƌeƋuiƌeŵeŶts out of a giǀeŶ supeƌset of ĐaŶdidate
requirements so that all the different key interests, technical constraints and preferences of the

critical stakeholders are fulfilled and the overall business value of the product is maximized͟

 Ruhe et. al.

Prioritization Process

• Prioritization is an iterative process and might be performed at different abstraction levels and

with different information in different phases during the software lifecycle

• Prioritization techniques can roughly be divided into two categories:

 Methods Negotiation approaches

Prioritization Methods

• The methods are based on quantitatively assigning values to different aspects of requirements

• Quantitative methods make it easier to aggregate different decision variables into an overall

assessment and lead to faster decisions

Negotiation Approaches

• Negotiation approaches focus on giving priorities to requirements by reaching agreement

between different stakeholders

• They are based on subjective measures and are commonly used when analyses are contextual

and when decision variables are strongly interrelated

Important Considerations

• In addition, one must be mindful of the social nature of prioritization. There is more to

requirements prioritization than simply asking stakeholders about priorities

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

165 CS-708 Software Requirement Engineering

• Stakeholders play roles and should act according to the goals of that roles, but they are also

individuals with personalities and personal agendas, and there are organizational issues also

• These issues must be addressed while prioritizing requirements

Aspects of Prioritization

• Requirements can be prioritized taking many different aspects into account

• An aspect is a property or attribute of a project and its requirements that can be used to

prioritize requirements

• Often aspects interact and changes in one aspect could result in an impact on another aspects

• Importance

 The stakeholders should prioritize which requirements are most important for the

system. Importance is multifaceted, and could be urgency of implementation,

importance for product architecture, strategic importance

• Penalty

 It is possible to evaluate the penalty that is introduced if a requirement is not fulfilled.

Penalty is not just the opposite of importance

• Cost

 The implementation cost is usually estimated by the developing organization. Measures

that influence cost include: complexity of the requirement, the ability to reuse existing

code, the amount of testing and documentation needed

 Cost is often expressed in terms of staff hours

• Time

 Time is influenced by many other factors such as degree of parallelism in development,

training needs, need to develop support infrastructure, complete industry standards

• Risk

 Every project carries some amount of risk

• Volatility

 Volatility of requirements is considered a risk factor and is sometimes handled as part of

the risk aspect. A point of view is to handle them separately

• Other aspects

 Financial benefit, strategic benefit, competitors, competence/resources, release theme,

ability to sell

• It is important for stakeholders to develop a list of aspects to help in decision-making process

• Combining different aspects

Prioritization Techniques

• The purpose of any prioritization is to assign values to distinct prioritization objects that allow

establishment of a relative order between the objects in the set. In our case, the objects are the

requirements to prioritize

• The prioritization can be done with various measurement scales and types

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

166 CS-708 Software Requirement Engineering

• The least powerful prioritization scale is the ordinal scale, where the requirements are ordered

so that it is possible to see which requirements are more important than others, but not how

much more important

• The ratio scale is more powerful since it is possible to quantify how much more important one

requirement is than another

• An even more powerful scale is the absolute scale, which can be used in situations where an

absolute number can be assigned

Analytical Hierarchy Process (AHP)

• AHP is a systematic decision-making method that has been adapted for prioritization of software

requirements

• It involves comparing all possible pairs of hierarchically classified requirements, in order to

determine which has higher priority, and to what extent

• The total number of comparisons to perform with AHP are n * (n-1)/2; where n is the number of

requirements; at each hierarchy level, which results in a dramatic increase in the number of

requirements

• Studies have shown that AHP is not suitable for large number of requirements

Cumulative Voting, the 100-Dollar Test

• The 100-dollar test is a very straightforward prioritization technique where the stakeholders are

given 100 imaginary units (money, hours, etc.) to distribute between the requirements

• The result of the prioritization is presented on a ratio scale

• One should only perform the prioritization once on the same set of requirements, since the

stakeholders might bias their evaluation the second time around if they do not get one of their

favorite requirements as a top priority

Numerical Assignment (Grouping)

• It is the most common prioritization technique, and is based on grouping requirements into

different priority groups

• The number of groups can vary, but in practice, three groups are very common

• When using numerical assignment, it is important that each group represents something that

the stakeholders can relate to (e.g. critical, standard, optional), for a reliable classification

• Using relative terms such as high, medium, and low will confuse the stakeholders

• Everything can be marked critical

Ranking

• As in numerical assignment, ranking is based on an ordinal scale but the requirements are

ranked without ties in rank

• This means that the most important requirement is ranked 1 and the least important is ranked n

(for n requirements)

Dr. Ghulam Ahmad Farrukh| Virtual University of Pakistan | www.vumultan.com

167 CS-708 Software Requirement Engineering

Top-Ten Requirements

• In this approach, the stakeholders pick their top-ten requirements (from a larger set) without

assigning an internal order between the requirements

• This makes the approach especially suitable for multiple stakeholders of equal importance

• The reason to not prioritize further is that it might create unnecessary conflict when some

stakeholders get support for their top priority and others only for their third priority

• It is not advisable to take average across all stakeholders since it might lead to some

stakeholders not getting any of their top requirements

• The main challenge in this technique is to balance issues related to the fact that top priority

requirements of all stakeholders are included in the next development activity

Summary of Presented Techniques

 Scale Granularity Sophistication

AHP Ratio Fine Very Complex

100 Dollar Test Ratio Fine Complex

Ranking Ordinal Medium Easy

Numerical Assignment Ordinal Coarse Very Easy

Top-Ten --- Extremely Coarse Extremely Easy

Hints and Tips on Requirements Prioritization

• A general advice is to use the simplest appropriate prioritization technique and use more

sophisticated ones when a more sensitive analysis is needed for resolving disagreements or to

support the most critical decisions

• More sophisticated techniques, generally, are more time consuming, the simplest possible

technique ensures cost effective decisions

• The trade-off is to decide exactly how ͞quick and dirty͟ the approach can be without letting the

quality of the decisions suffer

• Commercial tools are available that facilitate the use of sophisticated techniques

• Different techniques can be combined also

Involvement of Stakeholders

• One Customer

• Several Known Customers

• Mass Market

• Concept of personas

• Perspectives of customers, developers, and financial representatives

Requirements Prioritization Issues

• Abstraction level

• Reprioritization

• Non-functional requirements

• Introducing prioritization into an

organization

• Evaluating prioritization

• Using the results of requirements

prioritization

