
 Mobile & Pervasive Computing

1

CS710

Mobile & Pervasive Computing

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

2

Lecture 1

͞The ŵost pƌofouŶd teĐhŶologies aƌe those that disappeaƌ. TheǇ ǁeaǀe theŵselǀes iŶto the
fabric of everyday life uŶtil theǇ aƌe iŶdistiŶguishaďle fƌoŵ it.͟

-- Mark Weiser in his seminal paper on ubiquitous computing

Pervasive Computing

͞CoŵputiŶg that is oŵŶipreseŶt aŶd is, or appears to ďe, eǀerǇǁhere all the tiŵe; ŵaǇ iŶǀolǀe
many different computing devices that are embedded in various devices or appliances and

operate iŶ the ďaĐkgrouŶd.͟

͞The age of calm technology, when technology recedes into the background of our lives.”͞The
practice of making computers so common and accessible that users are not even aware of their

physical presence. The ideal of ubiquitous computing could be defined as a high-speed network

that Đoǀers aŶǇ kiŶd of geographǇ aŶd is easilǇ iŶstalled aŶd autoŵatiĐallǇ ŵaiŶtaiŶed.͟

Ubiquitous Computing (ubicomp): is a post-desktop model of human-computer interaction in

which information processing has been thoroughly integrated into everyday objects and

activities.

An integration of microprocessors into everyday objects like furniture, clothing, white goods, and

toys even paints.

• The original term ubiquitous computing was coined by Mark Weiser in 1988 at Xerox

PARC

• The esseŶĐe of Weiseƌ͛s ǀisioŶ is that ŵoďile aŶd eŵďedded pƌoĐessoƌs ĐaŶ
communicate with each other and the surrounding infrastructure, seamlessly

coordinating their operation to provide support for a wide variety of everyday work

practices.

Evolution of Pervasive Computing

• Weiser believed that in a ubicomp world, computation could be integrated with common

objects that you might already be using for everyday work practices, rather than forcing

computation to be a separate activity.

• If the integration is done well, you may not even notice that any computers were

involved in your work.

• Weiser sometimes also referred to this as invisible computing

• ParcTab, or Tab, an inch-scale computer that represented a pocket book or wallet

• Tabs communicated wirelessly with a ceiling-mounted base station using 10 kbps

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

3

• diffuse infrared signaling

• ParcPad, or Pad, a foot-scale device, serving the role of a pen-based notebook or e-book reader

• ParcPads employed a similar design approach using a low-bandwidth X-protocol across a radio

link, communicating with a basestation through a proprietary short-range near-field radio

• Liveboard provides the functionality of a whiteboard

• Liveboards were designed around standard computer workstations, but with much larger pen-

based displays, and pen-based input

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

4

• In the mid-1990s, IBM began a research direction it called pervasive computing (IBM Mobile and

Pervasive Computing)

• IBM, to its credit, was one of the first companies to investigate the business opportunity around

pervasive systems, and created a business unit dedicated to the task.

• One of the first commercial deployments of a pervasive computing system was born from a

collaboration between IBM Zurich and Swissair in 1999 (IBM Swissair), enabling passengers to

check-in using Web-enabled (WAP) cell phones

• Once the passengers had accessed the service, the phone also served as a boarding pass, showing

gate seat and flight departure information, and identifying the traveler as having valid fight

credentials.

• Although this was one of the most publicized projects, IBM also applied these technologies to

other service opportunities in banking and financial services, gaining early experience in this

area.

• Taking another approach to ubiquitous computing, wearable computing puts the emphasis on a

poƌtaďle Đoŵputeƌ that ĐaŶ ďe uŶoďtƌusiǀelǇ iŶtegƌated ǁith a peƌsoŶ͛s ĐlothiŶg, ǁhile still ďeiŶg
comfortable for the wearer

• An important related topic is augmented reality in which a computer is able to overlay

information on top of what a user sees in order to improve ability to carry out a task.

• In an expanded view of ubiquitous computing with a suitably unobtrusive heads-up display

embedded in our eyewear, augmented reality could become an indispensable tool of the future

in much the same way we have come to rely on the cell phone today

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

5

Pervasive Computing Projects

• Classroom 2000 began in July 1995 with a bold vision of how ubiquitous computing could be

applied to education and provide added value to standard teaching practices in the future

• Classroom 2000 investigated the possibility of capturing the entire lesson in a form that would

be a useful reference itself.

• Key challenge was to create index points that enabled students to skip over a block of video of

little interest and be able to jump to the exact point in time that might provide the answer to a

question

• Furthermore, these index points needed to be automatically generated, with clear meaning to

anybody who wanted to use them

• With an electronic board (the Xerox Liveboard was used for some of the work), it is possible to

timestamp all the annotations made by a teacher during the lesson, along with slide transitions

during a presentation, and other user-generated input, and these were used to index the audio

and visual record of the lesson.

• Thus, the combined media, timeline, and indices represent a powerful summary that can be

immediately made available to the students when the class finishes.

• In 1999, the Aware Home project was founded and set out to explore how computation and

embedded technologies could support everyday activities in a home.

• In the spirit of Living Laboratories, a complete residential building was designed from scratch,

providing all of the expected features in a modern home, but with additions to support

embedded computation and sensing, wiring conduits, and a control center.

• Systems introduced into the Aware Home to support the research included cameras and RFID

tags to ideŶtifǇ aŶd tƌaĐk aŶ oĐĐupaŶt͛s loĐatioŶ, aŶd ǀaƌious foƌŵs of seŶsoƌs. Foƌ eǆaŵple, the
house included a smart floor composed of a network of pressure sensors that could identify the

characteristic ambulatory gait of individuals as they moved between rooms, thus providing

additional means of occupant identification.

• The GUIDE project was created, obtained a government grant, and captured the imagination of

many researchers interested in location-based services in the wild.

• It was the first mobile electronic guidebook designed and optimized from concept to

implementation for use by tourists.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

6

Modern Directions

• SenseCam is a small wearable computer that periodically captures images of the world as a user

moves around.

• In collaboration with the MyLifeBits project, SenseCam provides a wealth of contextual data

about the wearer, augmented by a database describing documents and other electronic media

that the individual has accessed.

• The result is a prosthetic memory aid that can be used to answer basic questions about an

iŶdiǀidual͛s life, eŶaďliŶg ŵoƌe detailed ƌeĐall thaŶ ŵost of us Đould aĐhieǀe ďǇ uŶaided ŵeaŶs

• RADAR was the first example of a wireless system allowing mobile computers to locate

themselves in a building [an indoor global positioning system (GPS)].

• It was designed around the first WiFi (802.11b) radios that were commercially available, and

made use of reception maps in a Microsoft building hosting several access points (APs) with the

data collected using a wireless survey tool. By comparing the received signal strength indication

(RSSI) reading for each AP measured at a point of interest with the RSSI signal maps on record,

the sǇsteŵ Đould autoŵatiĐallǇ deteƌŵiŶe a ŵoďile Đoŵputeƌ͛s ŵost likelǇ loĐatioŶ to aŶ
accuracy of 2–3 meters.

• EasyLiǀiŶg, estaďlished iŶ ϭϵϵϵ, ǁas M“‘͛s Đlosest pƌojeĐt to the spiƌit of the oƌigiŶal uďiĐoŵp
vision.

• The research was centered on a smart room designed to support both work and recreational

activities.

• A key ingredient was the use of image processing to recognize activities in the space, making use

of multiple cameras to track the occupants, and objects situated in the room.

• Of particular note was the ability to migrate computing sessions from screen to screen as people

moved around, and mechanisms to automatically control the lighting and music in the space to

best suit all the occupants

• Place Lab was the best known of the projects from IRS, exploring and building a system that could

determine the location of a mobile device by cataloguing and mapping WiFi access points

throughout a city

• This was later extended to GSM towers, and demonstrated effective location-based services for

cell phone applications.

• The project was rolled out to the research community as a sandbox to experiment with location

based services on standard mobile platforms.

• It had a distinct advantage over GPS, in that it worked well indoors and did not require the

purchase of additional GPS equipment for operation outdoors.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

7

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

8

Lecture 2

Wearable Computing?

͞The ŵost profouŶd teĐhŶologies are those that disappear. TheǇ ǁeaǀe theŵselǀes iŶto the
faďriĐ of eǀerǇdaǇ life uŶtil theǇ are iŶdistiŶguishaďle froŵ it.͟

-- Mark Weiser in his seminal paper on ubiquitous computing

• Omnipresence, background execution, Accessibility, embed-ability

Example Scenarios – Aura

• XYZ is at Gate 23 in the Lahore airport, waiting for her connecting flight. She has edited many

large documents, and would like to use her wireless connection to e-mail them. Unfortunately,

bandwidth is miserable because many passengers at Gates 22 and 23 are surfing the Web. Aura

oďseƌǀes that at the ĐuƌƌeŶt ďaŶdǁidth XY) ǁoŶ͛t ďe aďle to fiŶish seŶdiŶg heƌ doĐuments before

heƌ flight depaƌts. CoŶsultiŶg the aiƌpoƌt͛s Ŷetǁoƌk ǁeatheƌ seƌǀiĐe aŶd flight sĐhedule seƌǀiĐe,
Aura discovers that wireless bandwidth is excellent at Gate 15, and that there are no departing

or arriving flights at nearby gates for half an houƌ. A dialog ďoǆ pops up oŶ XY)͛s sĐƌeeŶ
suggesting that she go to Gate 15, which is only three minutes away. It also asks her to prioritize

her e-ŵail, so that the ŵost ĐƌitiĐal ŵessages aƌe tƌaŶsŵitted fiƌst. XY) aĐĐepts Auƌa͛s adǀiĐe aŶd
walks to Gate 15. She watches TV there until Aura informs her that it is close to being done with

her messages, and that she can start walking back. The last message is transmitted during her

walk, and she is back at Gate 23 in time for her boarding call.

• Fred is in his office, frantically preparing for a meeting at which he will give a presentation and

software demonstration. The meeting room is a 10-minute walk across campus. It is time to

leave, but Fred is not quite ready. He grabs his wireless handheld computer and walks out of the

door. Aura transfers the state of his work from his desktop to his handheld, and allows him to

make his final edits using voice commands during his walk. Aura infers where Fred is going from

his calendar and the campus location tracking service. It downloads the presentation and the

demonstration software to the projection computer, and warms up the projector. Fred finishes

his edits just before he enters the meeting room.

•

As he walks in, Aura transfers his final changes to the projection computer. As the presentation

proceeds, Fred is about to display a slide with highly sensitive budget information. Aura senses

that this ŵight ďe a ŵistake: the ƌooŵ͛s faĐe deteĐtioŶ aŶd ƌeĐogŶitioŶ ĐapaďilitǇ iŶdiĐates that

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

9

there are some unfamiliar faces present. It therefore warns Fred. Realizing that Aura is right, Fred

skips the slide. He moves on to other topics and ends on a high note, leaving the audience

impressed by his polished presentation.

Pervasive Computing

• These scenarios embody two key ideas in pervasive computing

• Proactivity

– Combining knowledge from different layers of the system

• Self-Tuning

– automatically adjusting behavior to fit circumstances

– ability to move execution state effortlessly across diverse platforms

• …. CoŶsultiŶg the aiƌpoƌt͛s Ŷetǁoƌk ǁeatheƌ seƌǀiĐe aŶd flight sĐhedule seƌǀiĐe

• … The last ŵessage is tƌaŶsŵitted duƌiŶg heƌ ǁalk, aŶd she is ďaĐk at Gate Ϯϯ iŶ tiŵe foƌ heƌ
boarding call.

• … Auƌa iŶfeƌs ǁheƌe Fƌed is goiŶg fƌoŵ his ĐaleŶdaƌ aŶd the Đaŵpus loĐatioŶ tƌaĐkiŶg service

Composition of Pervasive Computing

• Pervasive computing represents a major evolutionary step in a line of work dating back to the

mid-1970s.

• Two distinct earlier steps in this evolution are distributed systems and mobile computing.

• Some of the technical problems in pervasive computing correspond to problems already

identified and studied earlier in the evolution.

– In some of those cases, existing solutions apply directly;

– In other cases, the demands of pervasive computing are sufficiently different that

new solutions have to be sought.

– There are also new problems introduced by pervasive computing that have no

obvious mapping to problems studied earlier.

Distributed Systems

• The field of distributed systems arose at the intersection of personal computers and local area

networks.

• Conceptual framework and algorithmic base developed in this paradigm later became basis for

all work involving two or more computers connected by a network

• The knowledge base developed spans many areas that are foundational to pervasive computing

• Remote communication, including protocol layering, remote procedure call, the use of timeouts,

and the use of end-to-end arguments in placement of functionality.

– Protocol layering is a common technique to simplify networking designs by

dividing them into functional layers, and assigning protocols to perform each

layer's task.

– The principle states that, whenever possible communication protocol operations

should be defined to occur at the end-points of a communications system, or as

close as possible to the resource being controlled

• Fault tolerance, including atomic transactions, distributed and nested transactions, and

two-phase commit.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

10

– In an atomic transaction, a series of database operations either all occur, or

nothing occurs.

– a nested transaction occurs when a new transaction is started by an instruction

that is already inside an existing transaction.

– that coordinates all the processes that participate in a distributed atomic

transaction on whether to commit or abort (roll back) the transaction

• High availability, including optimistic and pessimistic replica control, mirrored execution,

and optimistic recovery.

– Traditional pessimistic replication systems try to guarantee from the beginning

that all of the replicas are identical to each other, as if there was only a single

copy of the data all along.

– In optimistic replication replicas are guaranteed to converge under certain

conditions

– Optimistic Recovery is a technique supporting application-independent

transparent recovery from processor failures in distributed systems

• Remote information access, including caching, function shipping, distributed file systems,

and distributed databases.

– This makes it possible for multiple users on multiple machines to share files and

storage resources over network

• Security, including encryption-based mutual authentication and privacy.

– Mutual Authentication is a security feature in which a client process must prove

its identity to a server, and the server must prove its identity to the client, before

any application traffic is sent over the client-to-server connection.

For More Info Visit Cluesbook.Com

http://en.wikipedia.org/wiki/Distributed_transaction
http://en.wikipedia.org/wiki/Distributed_transaction
http://en.wikipedia.org/wiki/Commit

 Mobile & Pervasive Computing

11

Lecture 3

Mobile Computing

• The appearance of full-function laptop computers and wireless LANs in the early 1990s

• … distƌiďuted sǇsteŵ ǁith ŵoďile ĐlieŶts.
• Although many basic principles of distributed system design continued to apply, four key

constraints of mobility forced the development of specialized techniques.

• unpredictable variation in network quality,

• lowered trust and robustness of mobile elements,

• limitations on local resources imposed by weight and size constraints, and

• concern for battery power consumption

• Mobile computing is still a very active and evolving field of research

• Mobile networking, including Mobile IP, IPv6, ad hoc protocols, and techniques for improving

TCP performance in wireless networks

– The IP address of a node consists of two portions network identifier (network ID)

and a host identifier (host ID). The network ID specifies which network a host is

on, and the host ID uniquely specifies hosts within a network.

• Mobile information access, including disconnected operation, bandwidth-adaptive file access,

and selective control of data consistency

– Data consistency summarizes the validity, accuracy, usability and integrity of

related data between applications and across the IT enterprise

• Support for adaptative applications, including transcoding by proxies and adaptive

resource management

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

12

– Application adaptation is a means by which applications can respond to a

changing operating environment.

– Transcoding proxies are used as intermediaries between generic World Wide

Web and a variety of client services in order to adapt to greatly varying

bandwidths of different client communication links and handle the hetergeneity

of possible small screen devices

• System-level energy saving techniques, such as energy-aware adaptation, variable-speed

processor scheduling, and energy-sensitive memory management

– how applications can dynamically modify their behavior to conserve energy

• Location sensitivity, including location sensing and location-aware system behavior.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

13

Lecture 4

Pervasive Computing

• One saturated with computing and communication capability, yet so gracefully integrated with

useƌs that it ďeĐoŵes a ͞teĐhŶologǇ that disappeaƌs.͟

• The agenda of pervasive computing subsumes that of mobile computing, but goes much further

• Effective Use of Smart Spaces:

• smart space brings together two worlds that have been disjoint until now

• computing infrastructure

• building infrastructure

• Invisibility:

• The ideal is Đoŵplete disappeaƌaŶĐe of peƌǀasiǀe ĐoŵputiŶg teĐhŶologǇ fƌoŵ a useƌ͛s
consciousness.

• In practice, a reasonable approximation to this ideal is minimal user distraction.

• If a pervasive computing environment continuously meets user expectations and rarely

presents him with surprises, it allows him to interact almost at a subconscious level

• Localized Scalability

• As sŵaƌt spaĐes gƌoǁ iŶ sophistiĐatioŶ, the iŶteŶsitǇ of iŶteƌaĐtioŶs ďetǁeeŶ a useƌ͛s
personal computing space and his/her surroundings increases

• This has severe band-width, energy, and distraction implications for a wireless mobile

user. The presence of multiple users will further complicate this problem. Scalability, in

the broadest sense, is thus a critical problem in pervasive computing.

• Like the inverse square laws of nature, good system design has to achieve scalability by

severely reducing interactions between distant entities.

• Masking Uneven Conditions

• theƌe eǆits huge diffeƌeŶĐes iŶ the ͞sŵaƌtŶess͟ of diffeƌeŶt eŶǀiƌoŶŵeŶts

• The laƌge dǇŶaŵiĐ ƌaŶge of ͞ sŵaƌtŶess͟ ĐaŶ ďe jaƌƌiŶg to a useƌ, detƌaĐtiŶg fƌoŵ the goal
of making pervasive computing technology invisible

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

14

Composition of Pervasive Computing

• Some of the technical problems in pervasive computing correspond to problems already

identified and studied earlier in the evolution.

– In some of those cases, existing solutions apply directly;

– in other cases, the demands of pervasive computing are sufficiently different that

new solutions have to be sought.

– There are also new problems introduced by pervasive computing that have no

obvious mapping to problems studied earlier.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

15

Lecture 5

Composition of Pervasive Computing

• Some of the technical problems in pervasive computing correspond to problems already

identified and studied earlier in the evolution.

– In some of those cases, existing solutions apply directly;

– in other cases, the demands of pervasive computing are sufficiently different that

new solutions have to be sought.

– There are also new problems introduced by pervasive computing that have no

obvious mapping to problems studied earlier.

• Sensing and Actuating

– Location Sensing

– Activity Inference

– Robotics

– Ad-hoc Networks

• Operating Systems

– Operating System of Small Things

– Power Management

– Application Aware Adaption

– Disconnected Operation

• Computer Architecture

– Wearable Computer

– Low Power Hardware

– Rapid Prototyping

• Software Engineering

– Self-Healing Systems

– Dynamic Reconfiguration

– Economic Models

• Security and Privacy

– Location Privacy

– Low-power Encryption

– Biometric Authentication

• Human Computer Interaction

– Context Awareness

– Seamlessness

– Multimodal I/O

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

16

Pervasive Application Development

• This vision of pervasive computing leads to two fundamental characteristics of pervasive

applications — mobility and context-awareness

• Both of these characteristics are a result of the extremely dynamic nature of pervasive

computing environments

• Mobility has three implications. First, applications must run on a wide variety of devices,

including the devices embedded in various environments and devices carried by users.

• Second, because devices may be transported to locations where a high-bandwidth network

connection is not available, applications must work (perhaps in a degraded mode) with low-

bandwidth network connections or in the absence of any network connection.

• Thiƌd, appliĐatioŶs that ŵake use of a useƌ͛s loĐatioŶ ŵust aĐĐouŶt foƌ the possiďilitǇ that the
location will change.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

17

Lecture 6

Pervasive Application Development

• A context-aware application is one that is sensitive to the environment in which it is being used

(e.g., the location or the particular user of the application).

• The application can use this information to customize itself to the particular location or the user.

This implies the following technological requirements

• Identifying and binding to data sources that provide the right information

• Composing the information from these sources to create information that is useful for an

application

• Using that information in meaningful ways within the application itself

• Identifying and binding to data sources that provide the right information

• Composing the information from these sources to create information that is useful for an

application

• Using that information in meaningful ways within the application itself

Some Definitions

• A multi-device application is one that is able to execute on devices with different capabilities.

• A multimodal application is one that supports multiple user interface modalities such as GUI,

voice, and a combination of the two.

• we consider only networked applications, because they represent the bulk of interesting and

useful pervasive applications

• A device platform is the distributed software platform to which a pervasive application is

targeted.

• A thin-client application is a networked application in which the user interface rendering

ĐoŵpoŶeŶt is eǆeĐutiŶg oŶ the useƌ͛s deǀiĐe, ǁheƌeas the ƌest of the appliĐatioŶ is eǆeĐutiŶg oŶ
a networked computer.

• A thick-client application, on the other hand, has significant application components executing

oŶ the useƌ͛s deǀiĐe.
• well-known MVC application structure

• The view represents the presentation, and the controller represents the application flow,

including the navigation, validation, error handling, and event handling.

• The view and the controller together deal with the user interaction of the application.

• The model component includes the application logic as well as the data underlying the

application logic.

• A disconnect able application is one that is able to continue to execute when there are different

levels of connectivity between the different components of the application.

• The attributes of the environment of an application are referred to as the context of the

application.

• The conteǆt of aŶ appliĐatioŶ iŶĐludes soŵe of the useƌ͛s sigŶifiĐaŶt attƌiďutes, suĐh as loĐatioŶ,
destination, the identities of other people in the vicinity, and the attributes of the task being

performed, such as the objective and the artifacts necessary for the task.

• A context-aware application is one that is able to sense some aspects of the environment in

which it is executing and adapt its behavior to the sensed environment.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

18

Pervasive Application Development

• There are fundamental reasons why pervasive application development is more difficult than

conventional application development.

• End user devices, such as smart phones and PDAs, come in many varieties and have widely

varying capabilities, both hardware (form factor, user interface hardware, processor, memory,

and network bandwidth) and software (operating system, user interface software, services, and

applications).

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

19

Lecture 7

Pervasive Application Development

• There are fundamental reasons why pervasive application development is more difficult than

conventional application development.

• End user devices, such as smart phones and PDAs, come in many varieties and have widely

varying capabilities, both hardware (form factor, user interface hardware, processor, memory,

and network bandwidth) and software (operating system, user interface software, services, and

applications).

Heterogeneity of Device Platforms

• The impact of device heterogeneity on application developers is that applications need to be

developed (or ported) to each device and maintained separately for each device.

• User Interface

– output capabilities, such as the screen characteristics (e.g., size and color)

– the input capabilities, such as the number of hard buttons, rollers, and other

controls;

– and the software toolkit available to manipulate these input and output

capabilities

• Because of differences in these capabilities from one device to another, the view component of

an application will have to be rewritten for each device

• Interaction Modalities

– significant method of user interaction

– Examples are keyboard or mouse, speech, pen, and tactile interfaces

• view and controller portions of applications may need to be significantly rewritten to enable each

modality

– a speech based application could have a different structure from a GUI-based

application

• Furthermore, multimodal interfaces can use multiple modalities within a single application

• Platform Capabilities

– distributed software infrastructure on which an application executes

– including the device software infrastructure and the server software

infrastructure

– the programming models on the device and the server are different

• An application may need to be partitioned differently between the device and the server

depending on the processor, memory, and network capabilities of a device

• Connectivity

– Execute in a dynamic environment that supports multiple levels of connectivity

– worry about dynamically varying the partitioning of the application between the

various connectivity scenarios

– Resynchronizing partitioned components after reestablishing connectivity

• adds a significant amount of complexity

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

20

Dynamics of Application Environments

• Pervasive applications should be customized to the user and task at hand — also referred to as

the context of the application.

• The context can be highly dynamic. The data sources that provide information about the

appliĐatioŶ͛s eŶǀiƌoŶŵeŶt aƌe Đalled ĐoŶteǆt souƌĐes

• Consider the complexities of application development in the face of dynamic and heterogeneous

context sources.

• The context data from different context sources could have different schemas and formats.

– For example, location data from a cell tower is different from the location data

from an IEEE 802.11 base station.

• If each pervasive application that uses context data were responsible for collecting and

normalizing context data from different sources, applications would indeed be quite complex.

• The context information from any one source could be too low-level to be useful for an

application.

• The actual context sources themselves could be highly dynamic. For example, the location of a

person can be obtained by a multitude of sources, including a cell tower, a telematics gateway,

a wireless local area network (LAN) hub, and an active-badge access point.

• Each of these sources of location may have a different API and may be more or less applicable to

different locations. Applications should not be responsible for discovering these context sources

and explicitly binding to them.

Approaches for Developing Pervasive Applications

• The basic problem of mobile application development to multiple devices, modalities, and

connectivity environments is that of complexity, because the same application may have to be

rewritten multiple times.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

21

Lecture 8

Heterogeneity of Device Platforms

• The impact of device heterogeneity on application developers is that applications need to be

developed (or ported) to each device and maintained separately for each device.

Dynamics of Application Environments

• Pervasive applications should be customized to the user and task at hand — also referred to as

the context of the application.

• The context can be highly dynamic. The data sources that provide information about the

appliĐatioŶ͛s eŶvironment are called context sources

• Consider the complexities of application development in the face of dynamic and heterogeneous

context sources.

• The context data from different context sources could have different schemas and formats.

– For example, location data from a cell tower is different from the location data

from an IEEE 802.11 base station.

• If each pervasive application that uses context data were responsible for collecting and

normalizing context data from different sources, applications would indeed be quite complex.

• The context information from any one source could be too low-level to be useful for an

application.

• The actual context sources themselves could be highly dynamic. For example, the location of a

person can be obtained by a multitude of sources, including a cell tower, a telematics gateway,

a wireless local area network (LAN) hub, and an active-badge access point.

• Each of these sources of location may have a different API and may be more or less applicable to

different locations. Applications should not be responsible for discovering these context sources

and explicitly binding to them.

• The actual context sources themselves could be highly dynamic. For example, the location of a

person can be obtained by a multitude of sources, including a cell tower, a telematics gateway,

a wireless local area network (LAN) hub, and an active-badge access point.

• Each of these sources of location may have a different API and may be more or less applicable to

different locations. Applications should not be responsible for discovering these context sources

and explicitly binding to them.

Approaches for Developing Pervasive Applications

• The basic problem of mobile application development to multiple devices, modalities, and

connectivity environments is that of complexity, because the same application may have to be

rewritten multiple times.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

22

Platform-Independent View Component

• Presentation Transcoding

Platform-Independent Controller Component

• The controller of an application represents the control flow, including data validation and error

handling, typically via event handlers.

• To address the full range of applications, it is necessary to consider the role of the controller in

modern interactive applications.

• There are several reasons why the controller of an application needs to be targeted to multiple

devices

Host-Independent Model Component

• How to deal with the heterogeneity of connectivity environments

• Networked mobile applications vary in the distribution of logic and data between the mobile

device and the server

• In a thin-client application, views are generated on the server and then rendered on the client

device by a component such as a Web browser.

• Controller logic, model logic, and model data all reside on the server, so disconnected operation

is impossible.

• In a thick-client application, the model still resides on a server, perhaps accessed through Web

services, but the rest of the application resides on the client device.

• Caching of data before connection and queuing of updates to be performed upon reconnection

enable limited forms of offline operation in a weakly connected environment.

• The operations allowed are those that can proceed sensibly in the absence of a complete and

current model.

• An autonomous-client application resides entirely on the client device.

• It maintains its own fully functional model, which may be synchronized from time to time with

replicas of the model on a server.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

23

Lecture 9

Host-Independent Model Component

• An autonomous-client application resides entirely on the client device.

• It maintains its own fully functional model, which may be synchronized from time to time with

replicas of the model on a server.

• It should be noted that there is a significant level of runtime infrastructure needed for

disconnectable applications:

– An application hosting and execution environment is needed on the mobile

device.

– If application code is to be downloaded from the server to clients upon

demand, a code-migration component is needed on the server and device sides

to coordinate the partitioning and loading of application components.

– A data synchronization component is needed for updating both the device and

server instances of the application with changes to the data on the other sites

and to resolve any possible conflicts.

Developing Context-Aware Applications

• One can think of a context-aware application as having a triggering aspect and an effecting aspect

• The triggering aspect binds to data sources, collects data, analyzes the data, and ensures that

the data is relevant to the application.

• If so, it notifies the effecting aspect, which takes the action corresponding to the trigger.

• Context-aware applications have three sources of complexity:

1. The heterogeneous nature of data sources

2. The dynamic nature of context sources

3. The multiple sources of potentially low-level context data

• Observe that these are all in the triggering component of applications.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

24

Source-Independent Context Data

• An application obtaining data from heterogeneous sources with inconsistent availability and

quality of service should not name a specific source of data.

• Rather, it should describe the kind of data that is required, so that the underlying infrastructure

can discover an appropriate source for the data.

• The basic idea of this approach is for an application to specify the desired context data without

specifying the exact location and data type of the source, or whether it is coming from multiple

sources.

• These are considerations that will be handled transparently by the infrastructure.

• In some cases, the infrastructure may discover a data source, such as a device or a Web service

that directly provides the described data.

• Some data sources, such as request-response Web services, are passive or pull-based.

• Other data sources, such as sensors that trigger alarms, are active or push-based.

• Flexible infrastructure is capable of discovering both kinds of data sources.

• An application can then pull the current value from a passive data source or subscribe to be

notified each time an active data source generates a new value.

Developing Pervasive Software

1. Device-independent views — these allow an application to capture the basic interaction

structures that should be reused across multiple devices and modalities. They should be

combined with the ability to fine-tune the presentation when necessary.

2. Platform-independent controllers — these allow an application to specify the overall

control flow across multiple execution platforms, but still allow an application to have different

control flow structures for different devices and uses.

3. Host-independent models — these allow an application to encapsulate the business logic

and data in a manner that can be reused regardless of which host a component is instantiated

on.

4. Source-independent context data — this allows an application to specify the intended

context data to be supplied by reusable infrastructure components, which in turn are

concerned with the specific data formats, locations, and combinations of physical data sources

that provide the actual data.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

25

Lecture 10

Hardware Platforms

• Projected Shipment

– Cell Phones: Little above 1600M

– Smart Phones: 400M

– Laptops: 200M

Operating Systems for Smartphones

• Symbian

• Windows Mobile

• Blackberry OS

• Android

• iOS

Hardware Platforms

Symbian

• Developed by Symbian Ltd and runs exclusively on ARM processors

– An unreleased x86 version exists

• Successor to Symbian OS and Nokia Series 60

• Designed for Smartphones

• Maintained by Nokia

• Open Source Operating System and Software Development Platform

• Embedded Operating Systems Family

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

26

• Symbian releases are styled Symbian^1, Symbian^2

• Symbian^1, as the first release, forms the basis for the platform. It incorporates Symbian

OS and S60 5th Edition (Symbian OS 9.4)

• Symbian^2 was the first royalty-free version of Symbian. On June 1, 2010, a number of

Japanese companies including DoCoMo and Sharp announced smartphones using

Symbian^2

• Symbian^3 ǁas aŶŶouŶĐed oŶ ϭϱ FeďƌuaƌǇ ϮϬϭϬ. It ǁas desigŶed to ďe a ŵoƌe ͚Ŷeǆt
geŶeƌatioŶ͛ sŵartphone platform. The Symbian^3 release introduced new features such

as a new 2D and 3D graphics architecture, UI improvements, and support for external

displays through HDMI.

• Symbian^4 was expected to be released in the first half of 2011. However, Nokia

announced in October 2010 that Symbian^4 will not ship as a separate release. Instead,

improvements to Symbian will be delivered as software updates to all current Symbian^3

devices

Crash Course on Operating Systems

• An operating system is a software, consisting of programs and data that runs on

computers and manages computer hardware resources and provide common service for

efficient execution of various application software

• For hardware functions such as input and output and memory allocation, the operating

system acts as an intermediary between the application programs and the computer

hardware

• Kernel is a bridge between applications and the actual data processing done at the

hardware level. The kernel's responsibilities include managing the system's resources

(communication between hardware and software resources)

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

27

• Application Programming Interfaces (APIs)

– The functionality provided by the Windows API can be grouped into eight categories

• Base Services

• Advanced Services

• Graphics Device Interface

• User Interface

• Common Dialog Box Library

• Common Control Library

• Windows Shell

• Network Services

• Application Programming Interfaces (APIs)

– Web

– Multimedia

– Program interaction

– Wrapper Libraries

Symbian – Architecture

• System Model Structure - Technology domains and packages

– The system model reflects the organization of a modular software stack

• Layers are the fundamental stacking of software

– Each layer abstracts the ones below

• Levels within layers group packages by intended audience

• Packages are self-contained technologies

– Levels within packages show their internal software stack

• Collections are logical groupings of related components

• Components are the atomic unit of software architecture

Symbian – Foundation Layers

• Three Symbian Foundation Device layers:

OS, Middleware and Applications

• Additional layers may be added with Architecture Council approval

• Vendors may add their own layers if needed

– VeŶdoƌ͛s laǇeƌs ĐaŶ oŶlǇ ĐoŶtaiŶ ŶoŶ-contributed, vendor-specific packages

OS

Middleware

Applications

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

28

Foundation Device Layers – OS

• Provides APIs that abstract the hardware platform

– Allowing higher layers to be isolated from hardware

changes

• Contains lower-level APIs that are not hardware abstractions, but are used within the OS

layer

• Sufficient to develop a test platform

• Two levels:

– hw: The kernel, interfaces to the hardware and user-side services

• This level is sufficient to be an operating system (filesystems, essential drivers, program

execution model)

– services: Essential services necessary for a phone

• Contains communications, text and data handling, graphics, etc

Foundation Device Layers – Middleware

• Provides higher-level generic APIs usable by programs in the application layer

• Includes native UI frameworks, application lifecycle, higher-level protocols and data

handling, etc

• Middleware components are independent of the hardware platform

– MW APIs are not used by the OS layer

• Two levels:

– generic: Services intended for any class of application

• Examples: Text entry, security and GUI widgets are expected to be used by

most apps

• This level and below is a general purpose computer

– specific: Services intended for a specific class of application

• Examples: Presence is mainly used by instant messaging apps, the Phone Server is

expected to only be used by a Phone application

• This level and below is sufficient for phone application development

Foundation Device Layers – Applications

• Primarily contains interactive UI applications

• Includes non-interactive applications (daemons) that

respond to events from other than the device user (e.g. from a PC).

• Two levels:

– services: Non-interactive applications, services provided to other packages

• This level and below is sufficient to create applications which work together

– apps: Applications which interact with the user

• This level and below is the full set of software on the device

• Packages which span both levels provide user-facing applications and services to other

applications.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

29

• Example: Contacts Apps provides the user-facing Phonebook application, plus the

Contact Model which has an API for programmatically accessing contacts

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

30

Lecture 11

Symbian Design Patterns

• The microkernel pattern

• The client–server pattern

• Frameworks

• The graphical application model

• An event-based application model

• Specific idioms aimed at improving robustness

• Streams and stores for persistent data storage

• The class library

Symbian – Architecture

• System Model Structure - Technology domains and packages

• The system model reflects the organization of a modular software stack

• Layers are the fundamental stacking of software

– Each layer abstracts the ones below

• Levels within layers group packages by intended audience

• Packages are self-contained technologies

– Levels within packages show their internal software stack

• Collections are logical groupings of related components

• Components are the atomic unit of software architecture

Symbian – Foundation Layers

• Three Symbian Foundation Device layers:

OS, Middleware and Applications

• Additional layers may be added with Architecture Council approval

• Vendors may add their own layers if needed

– VeŶdoƌ͛s laǇeƌs ĐaŶ oŶlǇ ĐoŶtaiŶ ŶoŶ-contributed, vendor-specific packages

Symbian OS Model

• UI Framework Layer

• UI Framework layer provides the frameworks and libraries for constructing a user

interface

• The Application Services Layer

• System-level services Text Handling

• Services that support generic types of application, Alarm Server, data synchronization

services, Printing Support

• Services based on more generic but application-centric technologies, mail, messaging

and browsing

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

31

• The OS Services Layer

– generic operating system services

– communications services

– multimedia and graphics services

– connectivity services.

• The Base Services Layer

• The Kernel Services and Hardware Interface Layer

Symbian – Architecture

• All the services provided by a layer are at a similar level of abstraction

• A laǇeƌ pƌoǀides seƌǀiĐes to higheƌ laǇeƌs ;͚upǁaƌds͛Ϳ
• A laǇeƌ delegates tasks to loǁeƌ laǇeƌs ;͚doǁŶǁaƌds͛Ϳ
• Dependencies flow consistently from higher layers to lower layers (but dependencies are

allowed sideways within layers)

• Requests travel downwards

• Notifications travel upwards

• Higher layers abstract the services of lower layers away from machine centric services towards

user-visible functionality

• A layer provides services as far as possible via well-defined external interfaces, which can be

separated from the internal interfaces available within the layer

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

32

Lecture 12

Symbian – Architecture

• System Model Structure - Technology domains and packages

– The system model reflects the organization of a modular software stack

• Layers are the fundamental stacking of software

– Each layer abstracts the ones below

• Levels within layers group packages by intended audience

• Packages are self-contained technologies

– Levels within packages show their internal software stack

• Collections are logical groupings of related components

• Components are the atomic unit of software architecture

Symbian – Components

• The smallest architectural entity of the system.

• A component is an implementation unit that provides a discrete, re-usable piece of the

system. packages.

• Build and packaging data

– binaries, data, tests, documentation and source code

– Informative data

• Information provided for documentation or analysis purposes

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

33

– Age

– What devices this can should or must appear it

– Intended target (ie device or desktop)

– Class of contents (ie, what is in it)

Symbian – Collections

• A coherent set of collaborating components which together deliver a complete, discrete,

and identifiable part of the system functionality

• Components in a collection will generally be strongly coupled or implement the same

interface (e.g. a family of plugins)

• A component with no strong ties in the package can live alone in its collection

• CollectioŶs ĐaŶ gƌoup ĐoŵpoŶeŶts to ƌefleĐt …

– the software or communication stack

– a sub-technology of functionality

• Collections are stacked in levels

– The primary package exposed interfaces are on the top

– The interface to lower layers or hardware are on bottom

– Middle levels tend to reflect dependencies and technology-specific relationships

Symbian Design Patterns

• The microkernel pattern

• The client–server pattern

• Frameworks

• The graphical application model

• An event-based application model

• Specific idioms aimed at improving robustness

• Streams and stores for persistent data storage

• The class library

Symbian – Architecture

• Comm Services

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

34

• What about package ?

– OS Security package: provides cryptography services to the layers above including

applications written on the OS.

• The contentmgmt collection

• crypto collection

• cryptomgmtlibs collection

• cryptoservices collection

• securityanddataprivacytools

Symbian – Packages

• A modular group of component collections that is sufficient to develop, build, and test a

technology

– A high-level application or application suite, e.g. Phone Apps, Messaging Apps

– Services with a common or interrelated code base, e.g. Security Services, Input Methods

– A core technology, e.g. Graphics, Networking Services

• Packages are the basic unit of Symbian Foundation organisational control

– Package scope and model location is agreed with the Foundation Architecture council

• Packages are owned and maintained by a package owner (PkO)

– PkO has overall responsibility for the package and its contents

– Contributions also come from the wider Symbian Foundation community

• A package belongs to a single technology domain – a vertical grouping of related

packages

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

35

• Packages split or combine over time

• GeŶeƌiĐ teĐhŶologies split ǁheŶ theǇ gaiŶ suffiĐieŶt ͞ŵass͟ oǀeƌ tiŵe to ǁaƌƌaŶt theiƌ
own package.

– New technologies tend to start development in the generic packages: Generic App

Support, Generic OS Services.

– This avoids the overhead of creating a package for a technology with an unclear future

• Example: Device Services split out of Generic OS Services

• Subtechnologies split when large or sufficiently self-contained enough to be developed

separately

• Example: Shortlink Services split into Bluetooth and USB

Symbian – Architecture

• Design

– Symbian OS was created with three systems design principles in mind:

• the integrity and security of user data is paramount,

• user time must not be wasted, and

• all resources are scarce.

– features pre-emptive multitasking and memory protection

– follow an object-oriented design: Model-View-Controller

– strong emphasis on conserving resources, cleanup stacks, disk space, low power modes

etc

– Event-based

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

36

Symbian – Kernel

• Bootstrapping the physical or emulated device to provide the basic initialization of the

hardware

• Creating and managing the fundamental operating system kernel abstractions, for

example, threads, processes, memory address spaces, and other resources including

timers, mutexes, and so on

• Scheduling, pre-emption and interrupt handling

• Access to devices, providing the device-driver framework and device drivers that

abstract device hardware and implement the two-tier logical and physical device driver

model

• Encapsulating the kernel–user boundary; all processes which run in privileged mode

originate from this layer

• Encapsulating the loǁest leǀel of aŶ opeƌatiŶg sǇsteŵ poƌt ;͚ďase poƌt͛Ϳ to Ŷeǁ haƌdǁaƌe
insulating all higher layers from actual hardware.

• EKA2 (EPOC Kernel Architecture 2) is the second-generation Symbian platform Kernel

• Like its predecessor it has pre-emptive multithreading and full memory protection. The

main differences are:

• Real-Time guarantees (each API call is quick, but more importantly, time-bound)

• Multiple threads inside the kernel as well as outside

• Pluggable memory models, allowing better support for later generations of ARM

Instruction set

• A "nanokernel" which provides the most basic OS facilities upon which other "personality

layers" can be built

• Symbian kernel (EAK2) supports sufficiently-fast real time response

• single processor core executes both the user application and the signaling stack

• microkernel architecture that contains only the minimum, most basic primitives and

functionality

• for maximum robustness, availability and responsiveness

Symbian - Features

• Application Development

• From 2010, Symbian switched to using standard C++ with Qt as the SDK, which can be

used with either Qt creator or Carbide.

• Qt supports the older Symbian S60 3rd and 5th editions, as well as the new Symbian

platform.

• Alternative application development can be done with using Python (Python for S60),

Adobe Flash or JavaME

• Symbian OS previously used a Symbian specific C++ version along with Carbide.c++

Integrated development environment as the native application development

environment.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

37

Symbian – Devices

• As of 21 July 2009, more than 250 million devices running Symbian OS had been shipped

• In addition to Nokia , Sony Ericsson and Samsung have used Symbian OS.

Symbian – Packages

• PaĐkage͛s iŶteƌŶal softǁaƌe staĐk desĐƌiďed ǁith leǀels

– Lowest provides interface to hardware or layers below

– Highest provides, UIs, APIs, metadata and documentation

– Mid-levels tend to be frameworks, engines, servers, plugins, internal tools, etc

• Meaning differs between layers

• By convention, packages in the same layer and level have roughly the same number of

internal levels

– O“ LaǇeƌ, hǁ leǀel: ≤ϱ leǀels. Bottoŵ leǀel ƌeseƌǀed foƌ deǀelopŵeŶt ďoaƌds.
– O“ LaǇeƌ, seƌǀiĐes leǀel: ≤ϲ leǀels. Bottoŵ leǀel ƌeseƌǀed foƌ deǀiĐe dƌiǀeƌs

– Middleǁaƌe LaǇeƌ, geŶeƌiĐ leǀel: ≤ϲ leǀels

– Middleware Layer, specific level: ≤ϱ leǀels. UI, if aŶǇ, oŶ top leǀel
– App LaǇeƌ, seƌǀiĐes leǀel: ≤ϰ leǀels

– App LaǇeƌ, apps leǀel: ≤ϰ leǀels.
• “paŶŶiŶg paĐkages ≤ϴ leǀels

• Applications and UIs on top level, frameworks and engines below, plugins and other

support on bottom (guidelines, not binding)

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

38

Symbian – Architecture

• Operating system

– The All over Model contains the following layers, from top to bottom:

• UI Framework Layer

• Application Services Layer

– J2ME

– OS Services Layer

• generic OS services

• communications services

• multimedia and graphics services

• connectivity services

– Base Services Layer

– Kernel Services & Hardware Interface Layer

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

39

Lecture 13

Android Linux Kernel

• Great memory and process management

• Permissions-based security model

• Proven driver model

• Support for shared libraries

• Itʼs alƌeadǇ opeŶ souƌĐe!

Android Linux Kernel Enhancement

• Alarm

• Ashmem

• Binder

• Power Management

• Low Memory Killer

• Kernel Debugger

• Logger

Android Kernel – Binder

• Applications and Services may run in separate processes but must communicate and share data

• IPC can introduce significant processing overhead and security holes

• Driver to facilitate inter-process communication (IPC)

• High performance through shared memory

• Per-process thread pool for processing requests

• Reference counting, and mapping of object references across processes

• Synchronous calls between processes

Android Kernel – Power Management

• Mobile devices run on battery power

• Batteries have limited capacity

• Built on top of standard Linux Power Management (PM)

• More aggressive power management policy

• CoŵpoŶeŶts ŵake ƌeƋuests to keep the poǁeƌ oŶ thƌough ͞ǁake loĐks͟

• Supports different types of wake locks

Android Native Libraries

• Bionic Libc

• Function Libraries

• Native Servers

• Hardware Abstraction Libraries

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

40

Android Native Libraries – libc

• Bionic libc is Custom c run time implementation, optimized for embedded use.

• License: keep GPL out of user-space

• Size: will load in each process, so it needs to be small

• Fast: limited CPU power means we need to be fast

Android Native Libraries – Function Libraries

• These are libraries that do most of the heavy lifting

• Providing a lot of power behind Android platform

• Abstracted by the higher level API seen in application framework.

• WebKit – Browser Engine

• Media Framework - built on top of a set of media libraries, including OpenCore

• SQLite – Open Source Relational Database

Android Native Servers

• Surface Flinger

• Audio Flinger

Surface Flinger

• Provides system-ǁide suƌfaĐe ͞Đoŵposeƌ͟, haŶdliŶg all suƌfaĐe ƌeŶdeƌiŶg to fƌaŵe buffer

device

• Can combine 2D and 3D surfaces and surfaces from multiple applications Libraries

• Surfaces passed as buffers via Binder IPC calls

• Can use OpenGL ES and 2D hardware accelerator for its compositions

Audio Flinger

• Manages all audio output devices

• Processes multiple audio streams into PCM audio out paths

• Handles audio routing to various outputs

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

41

Hardware Abstraction Libraries

• Native Libraries to provide a better abstraction between the hardware and upper OS layers

• User space C/C++ library layer

• DefiŶes the iŶteƌfaĐe that AŶdƌoid ƌeƋuiƌes haƌdǁaƌe ͞dƌiǀeƌs͟ to iŵpleŵeŶt
• Separates the Android platform logic from the hardware interface

• Why do we need a user-space HAL?

– Not all components have standardized kernel driver interfaces

– Kernel drivers are GPL which exposes any proprietary IP

– Android has specific requirements for hardware drivers

Android Runtime

• Composed of two elements

– Core Libraries

– Dalvik Virtual Machine (DVM)

• AŶdƌoidʼs Đustoŵ ĐleaŶ-room implementation virtual Machine

• Provides application portability and runtime consistency

• Runs optimized file format (.dex) and Dalvik bytecode

• Java .class / .jar files converted to .dex at build time

Android Virtual Machine (DVM)

• Performance requirements on handsets are severe

• Packages in Android, are full-featured and extensive

• These system libraries might use as much as 10 to 20MB (even with the optimized JVM)

– Welcome to Dalvik JVM :It reuses duplicate information from multiple class files,

effectively reducing the space requirement (uncompressed) by half from a traditional

.jar file

– MaŶǇ of AŶdƌoid͛s Đoƌe liďƌaƌies, iŶĐludiŶg the gƌaphiĐs liďƌaƌies, aƌe iŵpleŵeŶted iŶ C
and C++

– Fine-tuned the garbage collection

– Dalvik VM uses a different kind of assembly-code generation use of registers rather

than stack

• Used to write all the classes or core system services

• Services that are essential to the Android platform

• Behind the scenes - appliĐatioŶs tǇpiĐallǇ doŶʼt aĐĐess theŵ diƌeĐtlǇ

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

42

Android Software Stack

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

43

Lecture 14

Android Kernel – Binder

• Applications and Services may run in separate processes but must communicate and share data

• IPC can introduce significant processing overhead and security holes

• Driver to facilitate inter-process communication (IPC)

• High performance through shared memory

• Per-process thread pool for processing requests

• Reference counting, and mapping of object references across processes

• Synchronous calls between processes

Android Kernel – Power Management

• Mobile devices run on battery power

• Batteries have limited capacity

• Built on top of standard Linux Power Management (PM)

• More aggressive power management policy

• CoŵpoŶeŶts ŵake ƌeƋuests to keep the poǁeƌ oŶ thƌough ͞ǁake loĐks͟

• Supports different types of wake locks

Android Native Libraries

• Bionic Libc

• Function Libraries

• Native Servers

• Hardware Abstraction Libraries

Android Native Libraries – libc

• Bionic libc is Custom c run time implementation, optimized for embedded use.

• License: keep GPL out of user-space

• Size: will load in each process, so it needs to be small

• Fast: limited CPU power means we need to be fast

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

44

Lecture 15

Android Native Libraries – libc

• Bionic libc is Custom c run time implementation, optimized for embedded use.

• License: keep GPL out of user-space

• Size: will load in each process, so it needs to be small

• Fast: limited CPU power means we need to be fast

Android Native Libraries – Function Libraries

• These are libraries that do most of the heavy lifting

• Providing a lot of power behind Android platform

• Abstracted by the higher level API seen in application framework.

• WebKit – Browser Engine

• Media Framework - built on top of a set of media libraries, including OpenCore

• SQLite – Open Source Relational Database

Android Native Servers

• Surface Flinger

• Audio Flinger

Surface Manager/Flinger

• Provides system-ǁide suƌfaĐe ͞Đoŵposeƌ͟, haŶdliŶg all suƌfaĐe ƌeŶdeƌiŶg to fƌaŵe ďuffeƌ deǀiĐe

• Can combine 2D and 3D surfaces and surfaces from multiple applications Libraries

• Surfaces passed as buffers via Binder IPC calls

• Can use OpenGL ES and 2D hardware accelerator for its compositions

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

45

Surface Manager/Flinger

Audio Manager/Flinger

• Manages all audio output devices

• Processes multiple audio streams into PCM audio out paths

• Handles audio routing to various outputs

Hardware Abstraction Libraries

• Native Libraries to provide a better abstraction between the hardware and upper OS layers

• User space C/C++ library layer

• DefiŶes the iŶteƌfaĐe that AŶdƌoid ƌeƋuiƌes haƌdǁaƌe ͞dƌiǀeƌs͟ to iŵpleŵeŶt
• Separates the Android platform logic from the hardware interface

Android Runtime – Dalvik

• AŶdƌoidʼs Đustoŵ ĐleaŶ-room implementation virtual Machine

• Provides application portability and runtime consistency

• Runs optimized file format (.dex) and Dalvik bytecode

• Java .class / .jar files converted to .dex at build time

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

46

Lecture 16

Android Runtime - Dalvik

• 4 Kinds of Memory

• clean vs. dirty

– clean: mmap()ed and unwritten

– dirty: malloc()ed

• shared vs. private

– shared: used by many processes

– private: used by only one process

• clean (shared or private)

– common dex files (libraries)

– application-specific dex files

• shared dirty

– ???

• private dirty

– appliĐatioŶ ͞liǀe͟ deǆ stƌuĐtuƌes

– application heap

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

47

• CPU speed: 250-500MHz

• bus speed: 100MHz

• data cache: 16-32K

• available RAM for apps: 20 MB

• No JIT (Just In Time) Compiler

– Omitted at first, Back in release 2.2

• Install Time Work

– Verification

• valid indices

• valid offsets

– Code CaŶ͛t ŵisďehaǀe

• Optimization

– byte-swapping and padding (unnecessary on ARM)

– static linking

– ͞iŶliŶiŶg͟ speĐial Ŷatiǀe ŵethods

– pruning empty methods

– adding auxiliary data

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

48

• Register Machine

– avoid instruction dispatch

– avoid unnecessary memory access

– consume instruction stream efficiently

– higher semantic density per instruction

• Core APIs for Java language provide a powerful, yet simple and familiar development

platform

– Data structures

– Utilities

– File access

– Network Access

– Graphics

– …

Application Framework

• Written in Java

• Services that are essential to the Android platform

• Behind the scenes - appliĐatioŶs tǇpiĐallǇ doŶʼt aĐĐess theŵ directly Application

Core Application Services

• Activity Manager

• Package Manager

• Window Manager

• Resource Manager

• Content Providers

• View System

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

49

Lecture 17

Android Runtime – Dalvik

• clean (shared or private)

– common dex files (libraries)

– application-specific dex files

• shared dirty

– ???

• private dirty

– appliĐatioŶ ͞liǀe͟ deǆ stƌuĐtuƌes

– application heap

• No JIT (Just In Time) Compiler

– Omitted at first, Back in release 2.2

• Install Time Work

– Verification

• valid indices

• valid offsets

– Code CaŶ͛t misbehave

• Optimization

– byte-swapping and padding (unnecessary on ARM)

– static linking

– ͞iŶliŶiŶg͟ speĐial Ŷatiǀe ŵethods

– pruning empty methods

– adding auxiliary data

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

50

• Register Machine

– avoid instruction dispatch

– avoid unnecessary memory access

– consume instruction stream efficiently

– higher semantic density per instruction

• Core APIs for Java language provide a powerful, yet simple and familiar development

platform

– Data structures

– Utilities

– File access

– Network Access

– Graphics

– …

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

51

Lecture 18

Application Framework

• Written in Java

• Services that are essential to the Android platform

• Behind the scenes - appliĐatioŶs tǇpiĐallǇ doŶʼt aĐĐess theŵ diƌeĐtlǇ AppliĐatioŶ

Core Application Services

• Activity Manager

• Package Manager

• Window Manager

• Resource Manager

• Content Providers

• View System

• Hardware Services

– Provide access to lower-level hardware APIs

– Typically accessed through local Manager object

• Telephony Service

• Location Service

• Bluetooth Service

• WiFi Service

• USB Service

• Sensor Service

Applications

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

52

Runtime Walkthrough

• System Startup

– Bootloader

– Kernel

– Init

– Zygote

– System Server

– Activity Manager

– Launcher (Home)

Runtime Walkthrough – Zygote

Package, Service and Process

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

53

Runtime Walkthrough – Run Time Process

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

54

Lecture 19

Core Application Services

• Activity Manager

• Package Manager

• Window Manager

• Resource Manager

• Content Providers

• View System

• Hardware Services

• Provide access to lower-level hardware APIs

• Typically accessed through local Manager object

• Telephony Service

• Location Service

• Bluetooth Service

• WiFi Service

• USB Service

• Sensor Service

Applications

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

55

Recap of Lecture 18

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

56

Lecture 20

Core Application Services

• Activity Manager

• Package Manager

• Window Manager

• Resource Manager

• Content Providers

• View System

• Hardware Services

• Provide access to lower-level hardware APIs

• Typically accessed through local Manager object

• Telephony Service

• Location Service

• Bluetooth Service

• WiFi Service

• USB Service

• Sensor Service

Applications

Runtime Walkthrough

• System Startup

– Bootloader

– Kernel

– Init

– Zygote

– System Server

– Activity Manager

– Launcher (Home)

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

57

Runtime Walkthrough – Zygote

Package, Service and Process

Runtime Walkthrough – Run Time Process

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

58

Runtime Walkthrough

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

59

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

60

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

61

Lecture 21

Layer Interaction

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

62

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

63

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

64

Overall Architecture

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

65

Lecture 22

Android

• Android is an open source software stack for mobile devices that includes an operating system,

middleware and applications.

• Google, Inc. purchased the original developer of the software Android Inc. in 2005

• Google and other members of the Open Handset Alliance collaborated on Android's

development and release

• The Android Open Source Project (AOSP) is tasked with the maintenance and further

development of Android

• AŶdƌoid͛s ŵoďile opeƌatiŶg sǇsteŵ is ďased upoŶ a ŵodified ǀeƌsioŶ of the liŶuǆ keƌŶel
• Software Stack consists of

– Java applications running on java based, object oriented application framework on the top of

java core libraries running on a Dalvik virtual machine featuring a JIT compilation

Android Software Stack

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

66

Windows Phone 7

• Windows Phone 7 is a mobile operating system developed by Microsoft and is the successor to

its Windows Mobile platform.

• Unlike its predecessor, it is primarily aimed at the consumer market rather than the enterprise

market

• It was launched in Europe, Singapore, Australia and New Zealand on October 21, 2010, and in

the US and Canada on November 8, 2010, Mexico on November 24, 2010, with Asia to follow in

2011

• With Windows Phone 7, Microsoft offers a new user interface with its design language named

Metro, integrates the operating system with 3rd party and other Microsoft services, and controls

the hardware it runs on

• Work on a major Windows Mobile update may have begun as early as 2004 under the codename

"Photon", but work moved slowly and the project was ultimately cancelled.

• In 2008, Microsoft reorganized the Windows Mobile group and started work on a new mobile

operating system.

• The product was to be released in 2009 as Windows Phone, but several delays prompted

Microsoft to develop Windows Mobile 6.5 as an interim release.

• Windows Phone 7 was developed quickly. One result was that Windows Mobile applications do

not run on it.

• On October 11, 2010, Microsoft's CEO announced 10 devices operating Windows Phone 7, made

by HTC, Dell, Samsung and LG.

• Microsoft reported on December 21, 2010 that in the first 6 weeks phone manufacturers sold

1.5 million Windows Phone 7 devices to mobile operators and retailers.

• On 11 February 2011, at a press event in London, Microsoft CEO and Nokia CEO announced a

partnership between their companies in which Windows Phone would become the primary

smartphone operating system for Nokia.

• The eǀeŶt ǁas laƌgelǇ foĐused oŶ ĐƌeatiŶg ͞a Ŷeǁ gloďal ŵoďile eĐosǇsteŵ͟, suggestiŶg
competition with Android and iOS, by saying "It is now a three horse race".

• IŶtegƌatioŶ of MiĐƌosoft seƌǀiĐes ǁith Nokia͛s oǁŶ seƌǀiĐes ǁeƌe aŶŶouŶĐed speĐifiĐallǇ that Bing

would power search across Nokia devices, and an integration of Nokia Maps with Bing Maps as

ǁell as Nokia͛s appliĐatioŶ stoƌe ďeiŶg iŶtegƌated ǁith the WiŶdoǁs PhoŶe MaƌketplaĐe.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

67

Lecture 23

Version History

• 7.0.7004.0 - Original WP7 RTM version.

• 7.0.7008.0 - Intermediate test update (no functionality changes).

• 7.0.7389.0 - New phones installed with this version includes all the features of OS version

7.0.7390.0.

• 7.0.7390.0 - "NoDo" update (copy/paste, performance improvements, market search

improvements.)

• 7.?.????.? - "Mango" update (3rd party multitasking, IE9, Twitter integration, etc...)

Structure of the OS – Building

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

68

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

69

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

70

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

71

Structure of the OS – File

• Phone OS Windows 7 uses two file systems

• IMGFS and TexFAT.

– IMGFS is intended for system files

– TexFat is an 'extended' version of FAT can handle those files larger than 4GB

• For user files, Microsoft Unified Storage System.

– This system ensures that applications and users cannot distinguish between files in the internal

flash memory and files on a memory card.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

72

Lecture 24

Structure of the OS – File

• Phone OS Windows 7 uses two file systems

• IMGFS and TexFAT.

– IMGFS is intended for system files

– TexFat is an 'extended' version of FAT can handle those files larger than 4GB

• For user files, Microsoft Unified Storage System.

– This system ensures that applications and users cannot distinguish between files in the internal

flash memory and files on a memory card.

Structure of the OS – Graphics

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

73

Windows 7 – Requirements

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

74

Windows 7 – Updates

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

75

Lecture 25

Structure of the OS – Building

Windows 7 – Requirements

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

76

Software Architecture

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

77

Framework Details.

App Hosting and Run Time

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

78

Lecture 26

App Hosting and Run Time

WP7 Execution Model

• There are four application states:

– Launch

– Running

– Closing

– Deactivated

– Activated

– Dormant

– Tombstoned

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

79

Application Life Cycle

Deactivation Resource Management

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

80

Activation Resource Management

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

81

Lecture 27

Deactivation Resource Management

Activation Resource Management

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

82

Content Centric Experience: Challenges

Content Centric Experience: Working

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

83

Structured Data and IO Performance

Structured Data in Mango

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

84

Lecture 28

LINQ to Everything

Complex Scenarios

• Numerous relationships and constraints

• Example: Shopping List

– 7 tables

– 100s of records

– 5 foreign keys

ItemReferenceData

PK ItemId

 ItemName

 ItemDescription

FK1 CategoryId

Categories

PK CategoryId

 CategoryName

Lists

PK ListId

 ListName

ListItems

PK ListItemId

 ListItemName

FK1 ListId

 Quantity

 Category

 Description

FK2 StoreId

Stores

PK StoreId

 StoreName

 StoreLocationLat

 StoreLocationLong

 StoreAddressLine1

 StoreAddressLine2

 StoreAddressCity

 StoreAddressState

 StoreAddressCountry

 StoryAddressZip

Favorites

PK FavoriteItemId

 FavoriteItemName

 FavoriteItemCategory

 FavoriteItemQuantity

 FavoriteItemDescription

FK1 FavoriteItemListId

 FavoriteItemPhoto

History

PK HistoryItemId

 HistoryItemName

 HistoryItemCategory

 HistoryItemQuantity

 HistoryItemDescriptioin

 HistoryItemDateAdded

FK1 HistoryItemListId

 HistoryItemPhoto

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

85

• Huge amounts of static reference data

• Example: dictionary app

– 3 tables

– 1 table with 500k rows

Web Services Cache

• Fetch reference data from cloud

• Cache it locally

• Combine with user-specific data

Words

PK WordId

 Word

 Pronunciation

 Definition

 AlternateSpellings

 Origin

Favorites

PK FavoriteId

FK1 WordId

History

PK HistoryItemId

FK1 WordId

 AddedDate

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

86

Users Data

• Filter contacts

– Birthdays in the next month

• Query all appointments

– Find an available time for a meeting

Local Storage Data – Overview

Filteƌ

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

87

Architecture

Code First Development

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

88

User Data – New and Updated APIs

• Chooser Tasks related to user data

– EmailAddressChooserTask

– PhoneNumberChooserTask

– AddressChooserTask

• Microsoft.Phone.UserData for direct access

– Contacts

– Appointments

Microsoft.Phone.UserData

• Important points

– Contacts and Appointments APIs are read only

– Third party social network data cannot be shared

Contact/Appointment Data Share

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

89

Lecture 29

Rethinking Multitasking

• Keep the UX great

• Get more out of the phone

• DoŶ͛t keep useƌs ǁaitiŶg

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

90

Lecture 30

Windows Phone Harmony

Rethinking Multitasking

• Keep the UX great

• Get more out of the phone

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

91

• DoŶ͛t keep useƌs ǁaitiŶg

Multitasking and Phone Health

Getting more out of the phone: agents

New OS services

Processing on demand

Balance foreground and
background

Align with system and user
activity

Monitor resource usage

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

92

Multitasking Components

End to End Architecture

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

93

Background Agent Functionality

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

94

Lecture 31

Windows Phone Harmony

Multitasking and Phone Health

New OS services

Processing on demand

Balance foreground and
background

Align with system and user
activity

Monitor resource usage

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

95

End to End Architecture

Background Agent Functionality

.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

96

Additional Functionality

Generic Background Agents

• Agents

– Periodic

– On Idle

– May have one or both

• Initialized in foreground, run in background

– Persisted across reboots

• User control through CPL

– Up to a maximum of 18 periodic agents

• Synchronize with foreground through mutex

• Agent runs for up to 14 days (can be renewed)

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

97

Lecture 32

Generic Background Agents

DoŶ’t Keep Users WaitiŶg: BackgrouŶd TraŶsfers

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

98

Multitasking Cheat Sheet

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

99

Services and Frameworks

WP7 Security Model

• The need for protection

• Chambers

• Capabilities

• Sandbox

• Application deployment

Chambers

• There are four chamber types

– Trusted Computing Base (TCB)

– Elevated Rights Chamber (ERC)

– Standard Rights Chamber (SRC)

– Least Privileged Chamber (LPC)

Capabilities

• Each application discloses its capabilities to the user, including:

– Disclosure on the application details page in the Windows Phone Marketplace.

– Disclosure with an explicit prompt upon application purchase, for those capabilities

that have legal requirements for explicit disclosure and specific consent collection.

– Disclosure within the application, when the user is about to use the location capability

for the first time.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

100

Sandbox

• Every application on Windows Phone 7 runs in its own isolated chamber, and is defined by the

declared capabilities that the application needs to function.

• Applications developed by other companies that are distributed via the Windows Phone

Marketplace cannot remain active in the background.

Application Deployment

• Application developers must register with Microsoft before an application can be submitted to

the Marketplace Hub.

• All applications are code-signed by VeriSign.

• The appliĐatioŶ deǀelopŵeŶt ŵodel͛s use of ͞ŵaŶaged Đode oŶlǇ͟ iŶ additioŶ to the least
privilege and isolation aspects of the Windows Phone OS 7.0 security model provide strong

protections against security attacks

Apps, Contents and Isolation

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

101

Content Sharing for Applications

Getting More Out of the Phone: Audio Agents

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

102

Getting More Out of the Phone: Generic Agents

DoŶ’t Keep Users WaitiŶg: DorŵaŶt Apps

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

103

Graphics Composition

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

104

Lecture 33

Research In Motion

• BlackBerry and its OS are produced by Research In Motion (RIM)

• Recognized as the cultural icon of the office environment / workforce

• Ontario based founded in 1984 by Mike Lazaridis

– Entered the wireless market making pagers

– Like the inter@active (RIM-900) for Ericsson

– Wireless Email on GSM / CDMA networks

• Released the BlackBerry in 2002

Market Share

• Actual handset shipment numbers place the BlackBerry closer to 16%

• Yearly growth of 80% in 2007-08.

• RIM also offers its push email services to other platforms

– Symbian, Windows Mobile and Palm OS.

• 1.2 million new users [Q4, 2007]

• US user base had reached 12 million users [2008]

• The consumer BlackBerry Internet Service is available in 91 countries worldwide on

over 500 mobile service operators using various mobile technologies

Development Model

• BlackBerry applications are written using Java ME

– RIM provides a JDE and Eclipse plug-in

– Mobile Information Device Profile (MIDP)

• Defines common interface for low lever features on mobile devices

• Users can download and run any application

• Code signing is needed for certain functions

– Does not guarantee correct code

Applications

• Many popular apps

• OďtaiŶ appliĐatioŶs thƌough ǁeď, desktop ĐoŶŶeĐt, oƌ ‘IM͛s hoŵepage.
• In October 2008, RIM announced their own Application Store built directly into the BlackBerry

– Competes with Apple and Google's app stores.

– Offer free and paid applications

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

105

OS Architecture

• Blackberry OS is proprietary

• No significant information publicly

• Hardware access through RIM developed JVM via

– Standard JavaME applications

– MDS (Mobile Data System) applications

• Legacy devices supported C++, but no longer

• ‘IM͛s atteŶtioŶ to ďuildiŶg Đƌoss-platform functionality

– Symbian-OS, Windows Mobile, Desktop Connect

• Suggests nothing specific about the underlying OS

• Focus mainly on the RIM API that wraps MIDP

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

106

Lecture 34

Development Model

• BlackBerry applications are written using Java ME

– RIM provides a JDE and Eclipse plug-in

– Mobile Information Device Profile (MIDP)

• Defines common interface for low lever features on mobile devices

• Users can download and run any application

• Code signing is needed for certain functions

– Does not guarantee correct code

OS Architecture

• Blackberry OS is proprietary

• No significant information publicly

• Hardware access through RIM developed JVM via

– Standard JavaME applications

– MDS (Mobile Data System) applications

• Legacy devices supported C++, but no longer

• ‘IM͛s atteŶtioŶ to ďuildiŶg Đƌoss-platform functionality

– Symbian-OS, Windows Mobile, Desktop Connect

• Suggests nothing specific about the underlying OS

• Focus mainly on the RIM API that wraps MIDP

Network Architecture

• All BB ĐoŶŶeĐt to ‘IM͛s ĐeŶtƌal NOC thƌough Caƌƌieƌ

• NOC connected to all BES on site

• BES can attach to additional middleware services

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

107

MDS (Mobile Data Services)

• MDS focuses mainly on web and enterprise services

– MDS is a runtime container for processing pushed data

– Ideal for Rapid Application Development

– Minimal coding required (sometimes none)

• BB enterprise servers perform all the data processing and management

– WSDL, Database, etc

• Can be arbitrarily complex on the backend

Application Structure

• JavaME applications like MIDLets contain

– .jar and .jad files

• Converted to proprietary .cod files for BB

– Compiled code (optionally signed) and preverified

– Rapc tool converts .jar .jad to .cod

• .alx files used to load applications via the BlackBerry Desktop Manager software

– XML-based BlackBerry application descriptor

Over the Air (OTA) Deployment

• Standard MIDlets and .cod files can be obtained over the air (OTA)

• Provider puts both a .jad file and either a .cod or a .jar file

• Select the .jad file from a browser

• MDS server feature provides a built-in transcoder that converts .jar files into .cod files.

MDS Applications

• MDS is the simplest to develop for the client side

– Arbitrarily complex on the server end

• CoŶsideƌed ͞Bƌoǁseƌ Based͟

– Essentially laying out html forms

– All data is received in expected form

– Can be developed into a browse-able page (cHTML)

• MDS Server defines a WSDL or SQL-DB Schema

– MDS uses standard wrappers to call these accessors

• MDS apps use the compression and encryption features to securely send data through

the cell carriers

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

108

Security Model in Brief

• Class files verified for interface compliance

• Limited API set (CLDC)

• Downloading and management within the JVM

• No user-defined class loaders

• No Java Native Interface or user extensions

• System classes cannot be overridden.

Sensitive APIs

• Use of the BlackBerry and RIM API is restricted

– Tracked for security and export reasons

– Not in simulator

• The JVM checks for valid code signatures

– Developer just sends code hashes to a webservice

– Gets a RIM signed signature

– Linktime verification

– Runtime verification

Company History

• April 1, 1976: Apple Computer, Inc. is founded (Apple I)

• Apple II, Apple III, Lisa

• 1984: Macintosh: mouse, GUI; first version of Apple͛s ͞ease of use͟

• 1998: iMac: designed by J. Ive (designed iPod and iPhone too)

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

109

iPhone History

• 1999: Apple starts registering trademarks and domain names: iPhone.org, iPhone TM

• 2004: Apple and Motorola work on phone with iTunes

• Sept. 7, 2005: ROKR released

• Jan 9, 2007: iPhone announced, Apple Computer, Inc. becomes Apple, Inc.

• June 29, 2007: iPhone launched

• March 6, 2008: SDK

• Before that: only Web applications

• Jully 11, 2008: iPhone 3G, AppStore

Market Share and Predictions

• 12.9% in Q3 2008; one year before: 3.4%

• 3rd after Symbian (49.8%) and RIM (15.9%)

• Q4 2008: 6.9 million units sold; one year before: 1.1 million

• Prediction: 45 million total in 2009

• By the end of fiscal year 2010, a total of 73.5 million iPhones were sold

• By 2010/2011, the iPhone has a market share of barely 4% of all cellphones, but Apple

still pulls in more than 50% of the total profit that global cellphone sales generate

For More Info Visit Cluesbook.Com

http://en.wikipedia.org/wiki/Fiscal_year

 Mobile & Pervasive Computing

110

Development Model

• Free (with registration) SDK available

– Requires Intel-based Mac

• SDK allows code development and testing

– Includes a simulator for the iPhone

• However, loading code onto an actual iPhone is not possible without joining the iPhone

developer program

iPhone Developers Program

• iPhone Developer Program allows developers to load applications on the iPhone

• Developers can publish applications in the AppStore

– Developer sets price

• Can be free; minimum price $0.99, maximum price $999

– Apple takes 30% of application cost for each copy sold

• Thƌee diffeƌeŶt ͞leǀels͟ foƌ the deǀelopeƌ pƌogƌaŵ

Development Tools

• SDK is based around Xcode

– XCode is used to develop Mac OS X, iPhone OS, Apple applications

• Other included utilities

– Instruments -- real time code profiling

– Dashcode -- rapid development of widgets

• Web apps for iPhone

• Dashboard widgets for Mac OS X

– Simulator -- used for testing

– Interface Builder -- drag and drop interface creation tool

iPhone Applications

• Written in Objective-C

– Superset of C

• ͞AŶotheƌ oďjeĐt-oriented C-like laŶguage͟

– SmallTalk influence

• ͞Messages͟ aƌe seŶt to oďjeĐts

• Event driven model

• Note: Even though the SDK is available, Apple does not release all API information

– Things like CoverFlow and certain hardware APIs are not published

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

111

Applications

• AppStore provides over 20,000 different applications

– Requires Apple approval to be published in the AppStore

– Wide variety of applications available

• Everything from games and social networking to finance and business

Application Framework

• OS Architecture

– Based on Darwin

• Darwin Information

– Open Source

– BSD-like system

– Maintained by Apple and community

• Thƌee diffeƌeŶt ͞ǀaƌiaŶts͟

– PowerPC and Intel x86 (Mac OS X)

• Released as open source

– ARM (iPhone OS)

• Not released

Darwin

• Darwin kernel is XNU

• XNU is a hybrid kernel based on the Mach 3 microkernel and various FreeBSD

components

• Object-oriented device driver framework/API

– I/O Kit

• Binary format: Mach-O

– Mach-O is a binary format similar to ELF, a.out, EXE, COM, etc.

Mach-O

• File can contain binary code for multiple CPU architectures

– For example, 32-bit (G4) and 64-bit (G5) PowerPC along with Intel x86.

• KŶoǁŶ as a ͞UŶiǀeƌsal BiŶaƌǇ͟

• Seamless transition between architectures

• Rosetta (used during PowerPC to Intel switch)

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

112

iPhone Runtime

• Model different from PC

– “hoƌt ;͞ďuƌstǇ͟Ϳ usage

– Single foreground application

• CuƌƌeŶtlǇ Ŷo ͞ďaĐkgƌouŶd͟ pƌoĐesses alloǁed

• This really only applies to 3rd party app developers

• Apple has released guidelines on writing applications that fit this usage model

• App is notified of pending termination and is advised to save state

• Applications are sandboxed

• Applications run in their own virtual address space

– No swapping is done

– Event is sent to app to notify it to free some memory

– If more memory is still needed, application can be killed by OS

Application Structure

• Distribution in bundle

– Executable file

– png files

– .nib files

– Info.plist

– .lproj

Application Lifecycle

• Applications are based on event handling

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

113

MVC Design Pattern

• View: user interface

• Model: engine

• Controller: link between the two

Objective-C

• Object-oriented superset of C

– Different from C++

• Some nice features

– Automatic generation of setters and getters according to properties

• Some difficulties

– The message-passiŶg sǇsteŵ…

Memory Management

• No garbage collector

• Instead, reference count

– Alloc

– Release

– Retain

– Autorelease

– copy

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

114

Lecture 35

Frameworks and APIs

• iPhone OS based on a layered architecture

– Four basic layers

Core OS Layer

• Three basic frameworks at this layer

– CFNetwork -- APIs related to networking

• Sockets, FTP, HTTP, Bonjour, etc.

– Security

• Certificate handling, random number generation, crypto related functions

– System

• BSD and POSIX related functions

Cross Layer Services

• Address Book

– Contact information used by things like SMS and Phone applications

• Core Foundation

– Access to basic data structures like strings and other basic system functions

• Core Location

– Location based information (GPS access)

• Foundation

– Base for all Objective-C objects like the root NSObject class, NSString, and NSArray for

example

• System Configuration

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

115

Media Layer

• Audio Toolbox

• Audio Unit

• AV Foundation

• Core Audio

• Core Graphics

• Media Player

• OpenGL ES

• Quartz Core

Cocoa Touch Layer

• Address Book UI

– UI for the Address Book

• UIKit

– All user interface components

Undocumented APIs

• Not all APIs are documented

– CoverFlow, hardware (proximity sensor for example)

– Using undocumented APIs is a reason for being rejected from the AppStore

– Google uses such APIs in their voice search application

– Accepted into AppStore

– EƌiĐ “Đhŵidt ;CEO, GoogleͿ sits oŶ Apple͛s board of directors

System Protection

• Sandboxed applications

• Code signing

– Applications signed by Apple

– Deǀelopeƌ͛s ĐeƌtifiĐate sigŶed ǁith Apple͛s ƌoot ĐeƌtifiĐate used foƌ deǀelopŵeŶt aŶd
testing

– Code reviewed by Apple before publication in the App Store

– Review process: mystery, but seems thorough

– Jailbreaking circumvents this protection

JailBreaking

• Two firmwares to modify with different results

– Application processor firmware modification to allow unsigned code to run (i.e.

applications from outside the AppStore)

• This is jailbreaking

– Baseband processor firmware modification to allow carriers other than the intended one

• This is SIM unlocking

• Similar to other OSes, the iPhone OS is loaded in stages

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

116

– Boot ROM loads the LLB

– LLB loads the Firmware

– At each stage, signature checks performed to validate the next stage

• In theory...

• The boot ROM does not perform a signature check on the LLB

– Oops!

• More recently, the LLB is subject to a buffer overflow which allows unsigned code to be loaded

that can override the signature checks of all subsequent checks.

SIM Unlocking

• Jailbreaking is only half the battle.

• Users still tied to a specific carrier

• Jailbreaking can lead to more vulnerabilities...

Android Development Framework

• Android applications are written with Java as a programming language but executed by means

of a custom virtual machine called Dalvik rather than a traditional Java VM.

• Each Android application runs in a separate process within its own Dalvik instance, relinquishing

all responsibility for memory and process management to the Android run time, which stops and

kills processes as necessary to manage resources.

• Dalvik and the Android run time sit on top of a Linux kernel that handles low-level hardware

interaction, including drivers and memory management, while a set of APIs provides access to

all the underlying services, features, and hardware.

Dalvik Virtual Machine

• One of the key elements of Android is the Dalvik virtual machine.

• The Dalǀik VM uses the deǀiĐe͛s uŶdeƌlǇiŶg LiŶuǆ keƌŶel to haŶdle loǁ-level functionality

iŶĐludiŶg seĐuƌitǇ, thƌeadiŶg, aŶd pƌoĐess aŶd ŵeŵoƌǇ ŵaŶageŵeŶt. It͛s also possiďle to ǁƌite
C/C++ applications that run directly on the underlying Linux OS.

Android Software Development Kit (SDK)

• The Android software development kit (SDK) includes everything you need to start developing,

testing, and debugging Android applications.

– The Android APIs

– Development Tools

– Android Virtual Device Manager and Emulator

– Full Documentation

– Sample Code

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

117

Application Development Environment

• Android SDK and

• The Java development kit.

• IDE of Choice – Eclipse

• Versions of the SDK, Java, and Eclipse are available for Windows, MacOS, and Linux

Setting Up the Environment

• Download Eclipse

• Download ADT

– https://dl-ssl.google.com/android/eclipse/

For More Info Visit Cluesbook.Com

https://dl-ssl.google.com/android/eclipse/

 Mobile & Pervasive Computing

118

Create an AVD

• Maximum virtual machine heap size

• Screen pixel density

• SD Card support

• The existence of DPad, touchscreen, keyboard, and trackball hardware

• Accelerometer and GPS support

• Available device memory

• Camera hardware (and resolution)

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

119

Emulator

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

120

Creating First Android Application

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

121

Lecture 36

Android Development Framework

• Android applications are written with Java as a programming language but executed by means

of a custom virtual machine called Dalvik rather than a traditional Java VM.

• Each Android application runs in a separate process within its own Dalvik instance, relinquishing

all responsibility for memory and process management to the Android run time, which stops and

kills processes as necessary to manage resources.

Dalvik Virtual Machine

• One of the key elements of Android is the Dalvik virtual machine.

• The Dalǀik VM uses the deǀiĐe͛s uŶdeƌlǇiŶg LiŶuǆ keƌŶel to haŶdle loǁ-level functionality

including security, thƌeadiŶg, aŶd pƌoĐess aŶd ŵeŵoƌǇ ŵaŶageŵeŶt. It͛s also possiďle to ǁƌite
C/C++ applications that run directly on the underlying Linux OS.

Android Software Development Kit (SDK)

• The Android software development kit (SDK) includes everything you need to start developing,

testing, and debugging Android applications.

– The Android APIs

– Development Tools

– Android Virtual Device Manager and Emulator

– Full Documentation

– Sample Code

Application Development Environment

• Android SDK and

• The Java development kit.

• IDE of Choice – Eclipse

• Versions of the SDK, Java, and Eclipse are available for Windows, MacOS, and Linux

Hello World

package com.example.helloworld;

import android.app.Activity;

import android.os.Bundle;

public class HelloWorld extends Activity {

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 }

}

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

122

Views

@Override

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

}

Defining UI – XML Way

• UI layout defined in the main.xml file created by the Android project template

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Hello World, HelloWorld"

 />

</LinearLayout>

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

123

Defining UI – Coding Way

package com.example.helloandroid;

import android.app.Activity;

import android.os.Bundle;

import android.widget.TextView;

public class HelloAndroid extends Activity {

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 TextView tv = new TextView(this);

 tv.setText("Hello, Android");

 setContentView(tv);

 }

}

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

124

Hello World – BlackBerry Style

• Sun JDK

• Eclipse SDK,

• BlackBerry JDE Plug-in for Eclipse and

• BlackBerry JDE Component Packs 4.3 – 4.7

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

125

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

126

package com.rim.samples.helloworld;

import net.rim.device.api.ui.UiApplication;

public class HelloWorld extends UiApplication

{

 public static void main(String[] args)

 {

 HelloWorld theApp = new HelloWorld();

 theApp.enterEventDispatcher();

 }

 public HelloWorld()

 {

 //display a new screen

 pushScreen(new HelloWorldScreen());

 }

}

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

127

final class HelloWorldScreen extends MainScreen

{

 public HelloWorldScreen()

 {

 super();

 LabelField title = new LabelField("HelloWorld Sample",

 LabelField.ELLIPSIS | LabelField.USE_ALL_WIDTH);

 setTitle(title);

 add(new RichTextField("Hello World!"));

 }

 public boolean onClose()

 {

 Dialog.alert("Goodbye!");

 System.exit(0);

 return true;

 }

}

final class HelloWorldScreen extends MainScreen

{

 public HelloWorldScreen()

 {

 super();

 LabelField title = new LabelField("HelloWorld Sample",

 LabelField.ELLIPSIS | LabelField.USE_ALL_WIDTH);

 setTitle(title);

 add(new RichTextField("Hello World!"));

 }

 public boolean onClose()

 {

 Dialog.alert("Goodbye!");

 System.exit(0);

 return true;

 }

}

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

128

Hello World – WP7 Style

• Microsoft Visual Studio

– Microsoft Visual Studio 2010 Express for Windows Phone.

• Windows Phone Developer Tools

– http://developer.windowsphone.com

– Windows Phone SDK 7.1

– Visual Studio 2010 Express for Windows Phone

– Windows Phone Emulator Resources

– Silverlight 4 Tools For Visual Studio

– XNA Game Studio 4.0

– Microsoft Expression Blend for Windows Phone

For More Info Visit Cluesbook.Com

http://developer.windowsphone.com/

 Mobile & Pervasive Computing

129

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

130

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

131

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

132

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

133

XAML

 ...

 <Grid x:Name="LayoutRoot" Background="Transparent">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 ...

 </Grid>

</phone:PhoneApplicationPage>

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

134

XAML

...

<Grid x:Name="LayoutRoot" Background="Transparent">

 ...

 <!--ContentPanel - place additional content here-->

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="Auto"/>

 </Grid.ColumnDefinitions>

 <TextBox Grid.Column="0" Name="MessageTextBox" FontSize="{StaticResource

PhoneFontSizeExtraLarge}" Margin="20,20,10,20"/>

 <Button Grid.Column="1" Name="ClickMeButton" Content="Click Me"

HorizontalAlignment="Right" Padding="4" Margin="10,20,20,20" />

 </Grid>

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

135

XAML

...

<Grid x:Name="LayoutRoot" Background="Transparent">

 ...

 <Grid Grid.Row="2">

 <TextBlock Name="BannerTextBlock" Style="{StaticResource PhoneTextExtraLargeStyle}"

 Foreground="#FFFF9A00" HorizontalAlignment="Stretch"

 TextWrapping="Wrap" TextAlignment="Center" FontWeight="Bold" />

 </Grid>

</Grid>

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

136

C#

private void ClickMeButton_Click(object sender, RoutedEventArgs e)

{

 BannerTextBlock.Text = MessageTextBox.Text;

 MessageTextBox.Text = String.Empty;

}

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

137

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

138

Types of Android Applications

• Foreground

• Background

• Intermittent

• Widget

Building Blocks of Android App

• Activities

• Services

• Content Providers

• Intents

• Broadcast Receivers

• Widgets

• Notifications

Application Manifest

<manifest xmlns:android=http://schemas.android.com/apk/res/android

package="com.my_domain.my_app"

android:versionCode="1"

android:versionName="0.9 Beta">

[... manifest nodes ...]

</manifest>

<uses-sdk android:minSdkVersion="4"

android:targetSdkVersion="5">

</uses-sdk>

<uses-configuration android:reqTouchScreen=["finger"]

android:reqNavigation=["trackball"]

android:reqHardKeyboard=["true"]

android:reqKeyboardType=["qwerty"/>

<uses-configuration android:reqTouchScreen=["finger"]

android:reqNavigation=["trackball"]

android:reqHardKeyboard=["true"]

<uses-feature android:glEsVersion=" 0x00010001"

android:name="android.hardware.camera" />

<supports-screens android:smallScreens=["false"]

android:normalScreens=["true"]

android:largeScreens=["true"]

android:anyDensity=["false"] />

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

139

<application android:icon="@drawable/icon"

android:theme="@style/my_theme"

android:name="MyApplication"

android:debuggable="true">

[... application nodes ...]

</application>

<activity android:name=".MyActivity" android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<service android:enabled="true" android:name=".MyService"></service>

<provider android:permission="com.paad.MY_PERMISSION"

 android:name=".MyContentProvider"

 android:enabled="true"

 android:authorities="com.paad.myapp.MyContentProvider">

</provider>

<receiver android:enabled="true"

 android:label="My Intent Receiver"

 android:name=".MyIntentReceiver">

</receiver>

<uses-permission android:name="android.permission.ACCESS_LOCATION"/>

Location Based Services

• Youƌ appliĐatioŶ kŶoǁs hoǁ to saǇ Hello, ďut it doesŶ͛t kŶoǁ ǁheƌe it͛s loĐated.
• Now is a good time to become familiar with some simple location-based calls to get the GPS

coordinates.

• Problem is that emulator does not have GPS sensors!!

• The emulator does not have location sensors, so the first thing you need to do is seed your

emulator with GPS coordinates

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

140

import android.location.Location;

import android.location.LocationManager;

….
public void getLocation() {

 try {

 LocationManager locMgr = (LocationManager)

 getSystemService(LOCATION_SERVICE);

 Location recentLoc = locMgr.

 getLastKnownLocation(LocationManager.GPS_PROVIDER);

 Log.i;DEBUG_TAG, ͞loĐ: ͞ + ƌeĐeŶtLoĐ.to“tƌiŶg;ͿͿ;
 }

 catch (Exception e) {

 Log.e;DEBUG_TAG, ͞LoĐatioŶ failed͟, eͿ;
 }

}

• Now try to run the application

• It generates an error

Manifest Permissions

• ACCESS_MOCK_LOCATION Allows an application to create mock location providers for testing

• ACCESS_NETWORK_STATE Allows applications to access information about networks

• BATTERY_STATS Allows an application to collect battery statistics

• BLUETOOTH Allows applications to connect to paired bluetooth devices

• CALL_PHONE Allows an application to initiate a phone call without going through the Dialer

user interface for the user to confirm the call being placed.

• CAMERA Required to be able to access the camera device.

• INTERNET Allows applications to open network sockets.

For More Info Visit Cluesbook.Com

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html

 Mobile & Pervasive Computing

141

Lecture 37

Hello World – WP7 Style

• Microsoft Visual Studio

– Microsoft Visual Studio 2010 Express for Windows Phone.

• Windows Phone Developer Tools

– http://developer.windowsphone.com

– Windows Phone SDK 7.1

– Visual Studio 2010 Express for Windows Phone

– Windows Phone Emulator Resources

– Silverlight 4 Tools For Visual Studio

– XNA Game Studio 4.0

– Microsoft Expression Blend for Windows Phone

• In the File menu, choose New Project.

• In the New Project dialog, select the Silverlight for Windows Phone category in the list of

installed templates, and there the Windows Phone Application template. Then set the name to

HelloPhone and the location to Ex1-CreatingWP7AppsWithVisualStudio in the Source folder of

the lab. Change the solution name to Begin, and then click OK.

For More Info Visit Cluesbook.Com

http://developer.windowsphone.com/

 Mobile & Pervasive Computing

142

• In Solution Explorer, review the structure of the solution generated by the Windows Phone Application

template. Any Visual Studio solution is a container for related projects; in this case, it contains a single

Silverlight for Windows Phone project named HelloPhone.

• App.xaml / App.xaml.cs :Defines the entry point of the application, initializes application-scoped

resources, and displays the application user interface

• MainPage.xaml / MainPage.xaml.cs : Defines a page with the user interface of the application

• ApplicationIcon.png: An image file with an icon that represents the application icon in the

phoŶe͛s appliĐatioŶ list
• Background.png: An image file with an icon that represents the application icon in the start

screen

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

143

• SplashScreenImage.jpg: This is the image that will first be displayed when the

application launches. The splash screen gives the user immediate feedback that the

application is launching and will remain displayed until the navigation to the first page

has been completed. Your splash screen can look similar to your first page in order to

give the appearance that the application is loading quickly.

• Properties\AppManifest.xml: An application manifest file required to generate the

application package

• Properties\AssemblyInfo.cs: Contains the name and version metadata that is embedded

into the generated assembly

• Properties\WMAppManifest.xml: A manifest file that includes specific metadata

related to a Windows Phone Silverlight application, including specific features available

only for Silverlight for Windows Phone

• References folder: A list of libraries (assemblies) that provide services and functionality

that the application requires to work

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

144

• File contains XAML markup with an Application root element and inside it an

Application.Resources section. Herein you can define application-level resources such as colors,

brushes and style objects used throughout the application.

• The XAML code also initializes the ApplicationLifetimeObjects property of the Application to

create a PhoneApplicationService object. The PhoneApplicationService class provides access to

ǀaƌious aspeĐts of the appliĐatioŶ͛s lifetiŵe. This iŶĐludes ŵaŶageŵeŶt of the appliĐatioŶ͛s idle
ďehaǀioƌ aŶd ŵaŶageŵeŶt of the appliĐatioŶ͛s state ǁheŶ it ďeĐoŵes aĐtiǀe oƌ iŶaĐtiǀe.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

145

• The RootFrame property in the Application class identifies the starting page of the

application. All Windows Phone applications have a single top-level container element

whose data type is PhoneApplicationFrame. The frame hosts one or more

PhoneApplicationPage elements that present content for the application. It also handles

navigation between pages.

• Application code-behind file showing global event handlers

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

Prepared by: Aamir Mustafa VU ID: MS150400200

146

• The generated project includes a default document that contains XAML markup that defines

the main UI of the application, MainPage.xaml . the XAML document provides a blank canvas

to ǁhiĐh Ǉou add ĐoŶtƌols to Đƌeate Ǉouƌ appliĐatioŶ͛s useƌ iŶteƌfaĐe. : Extensible Application

Markup Language (XAML) is a declarative language.

• The ApplicationIcon.png file contains the icon that identifies the application in the quick launch

screen of the phone device. You can double-click the item in Solution Explorer to open the file

in a registered image editing application on your machine, for example, Paint.exe.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

147

• The Windows Phone project properties window allows you to modify some phone-specific

properties. These properties relate to the deployment and appearance of the application on the

device. The parameters are stored in the WMAppManifest.xml

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

148

• Verify that the target of the deployment is the Windows Phone Emulator. To do this, ensure that

Windows Phone 7 Emulator is selected in the Select Target drop down next to the Start

Debugging button on the toolbar.

• Press F5 to launch the application in the Windows Phone Emulator. Notice that a device emulator

window appears and there is a pause while Visual Studio sets up the emulator environment and

deploys the application image.

• Once it is ready, the emulator shows the Start page and shortly thereafter, your application

appears in the emulator window.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

149

XAML

 ...

 <Grid x:Name="LayoutRoot" Background="Transparent">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 ...

 </Grid>

</phone:PhoneApplicationPage>

• In the XAML markup generated by the default Windows Phone application template, locate the

Grid container element named LayoutRoot. Its purpose is to arrange the elements on the page.

Inside its RowDefinition property, insert an additional row between the two existing rows and

set the value of its Height property to Auto. This row will soon include a textbox and a button.

• Grid: Defines a flexible grid area consisting of columns and rows.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

150

• Notice that the root Grid element contains other nested elements with each one assigned to a

different row of the outer grid by defining a Grid.Row property. Locate the Grid element named

TitlePanel. Set the Text property of the first TextBlock element inside the inner Grid to the string

͞Windows Phone 7͟. “iŵilaƌlǇ, set the Text property of the second TextBlock element to the

stƌiŶg ͞Hello Phone͟.

Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="Auto"/>

 </Grid.ColumnDefinitions>

 <TextBox Grid.Column="0" Name="MessageTextBox" FontSize="{StaticResource

PhoneFontSizeExtraLarge}" Margin="20,20,10,20"/>

 <Button Grid.Column="1" Name="ClickMeButton" Content="Click Me" HorizontalAlignment="Right"

Padding="4" Margin="10,20,20,20" />

 </Grid>

</Grid>

• Now, locate the Grid element named ContentPanel, which should currently be empty,

and paste the following (blue-highlighted) XAML markup inside this element.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

151

XAML

...

<Grid x:Name="LayoutRoot" Background="Transparent">

 ...

 <Grid Grid.Row="2">

 <TextBlock Name="BannerTextBlock" Style="{StaticResource PhoneTextExtraLargeStyle}"

 Foreground="#FFFF9A00" HorizontalAlignment="Stretch"

 TextWrapping="Wrap" TextAlignment="Center" FontWeight="Bold" />

 </Grid>

</Grid>

...

• To complete the design of the page, add a third row to contain the banner with the message

entered by the user. To create this row, insert the following (blue-highlighted) XAML markup

immediately before the end tag of the outer grid

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

152

• CliĐk the ďuttoŶ laďeled ͞Click Me͟ oŶ the desigŶeƌ suƌfaĐe to seleĐt it aŶd theŶ pƌess F4 to open

its Properties window.

• In the Properties panel, click the Events tab to display a window with a list of available events.

Locate the Click event in this list and then type ClickMeButton_Click in the text box located next

to this event. Press ENTER to generate an event handler with this name and open the code-

behind file to display the method stub generated by Visual Studio.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

153

C#

private void ClickMeButton_Click(object sender, RoutedEventArgs e)

{

 BannerTextBlock.Text = MessageTextBox.Text;

 MessageTextBox.Text = String.Empty;

}

• The method implementation (which is an empty method right now) is in the MainPage.xaml.cs

file. Insert the following code inside the body of the ClickMeButton_Click method.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

154

Lecture 38

Application Manifest

<manifest xmlns:android=http://schemas.android.com/apk/res/android

package="com.my_domain.my_app"

android:versionCode="1"

android:versionName="0.9 Beta">

[... manifest nodes ...]

</manifest>

• Each Android project includes a manifest file, AndroidManifest.xml

• The manifest lets you define the structure and metadata of your application, its components,

and its requirements.

• It includes nodes for each of the components (Activities, Services, Content Providers, and

Broadcast Receivers) that make up your application and,

• Using Intent Filters and Permissions, determines how they interact with each other and with

other applications.

<uses-sdk android:minSdkVersion="4"

android:targetSdkVersion="5">

</uses-sdk>

<uses-configuration android:reqTouchScreen=["finger"]

android:reqNavigation=["trackball"]

android:reqHardKeyboard=["true"]

android:reqKeyboardType=["qwerty"/>

<uses-configuration android:reqTouchScreen=["finger"]

android:reqNavigation=["trackball"]

android:reqHardKeyboard=["true"]

android:reqKeyboardType=["twelvekey"]/>

• uses-sdk This node lets you define a minimum, maximum, and target SDK version that must be

available on a device in order for your application to function properly

• uses-configuration Use uses-configuration nodes to specify each combination of input

mechanisms supported by your application. a device with a finger touchscreen, a trackball, and

either a QUERTY or twelve-key hardware keyboard

<uses-feature android:glEsVersion=" 0x00010001"

android:name="android.hardware.camera" />

<supports-screens android:smallScreens=["false"]

android:normalScreens=["true"]

android:largeScreens=["true"]

android:anyDensity=["false"] />

• uses-feature nodes to specify each of the hardware features your application requires.

• You can also use the uses-feature node to specify the minimum version of OpenGL required by

your application

• supports-sĐƌeeŶ Ŷode lets Ǉou speĐifǇ the sĐƌeeŶ sizes Ǉouƌ appliĐatioŶ ĐaŶ, aŶd ĐaŶ͛t, suppoƌt.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

155

<application android:icon="@drawable/icon"

android:theme="@style/my_theme"

android:name="MyApplication"

android:debuggable="true">

[... application nodes ...]

</application>

<activity android:name=".MyActivity" android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

• application A manifest can contain only one application node. It uses attributes to specify the

metadata for your application (including its title, icon, and theme).

• The <application> node also acts as a container that includes the Activity, Service, Content

Provider, and Broadcast Receiver tags used to specify the application components.

• activity An <activity> tag is required for every Activity displayed by your application. Using the

aŶdƌoid:Ŷaŵe attƌiďute to speĐifǇ the AĐtiǀitǇ Đlass Ŷaŵe. TƌǇiŶg to staƌt aŶ AĐtiǀitǇ that͛s Ŷot
defined in the manifest will throw a runtime exception. Each Activity node supports <intent-

filter> child tags that specify which Intents launch the Activity.

<service android:enabled="true" android:name=".MyService"></service>

<provider android:permission="com.paad.MY_PERMISSION"

 android:name=".MyContentProvider"

 android:enabled="true"

 android:authorities="com.paad.myapp.MyContentProvider">

</provider>

<receiver android:enabled="true"

 android:label="My Intent Receiver"

 android:name=".MyIntentReceiver">

</receiver>

• service As with the activity tag, create a new service tag for each Service class used in your

application. Service tags also support <intent-filter> child tags to allow late runtime binding.

• pƌoǀideƌ Pƌoǀideƌ tags speĐifǇ eaĐh of Ǉouƌ appliĐatioŶ͛s CoŶteŶt Pƌoǀiders.Content Providers

are used to manage database access and sharing within and between applications

• receiver By adding a receiver tag, you can register a Broadcast Receiver without having to launch

your application first. Broadcast Receivers are like global event listeners that, once registered,

will execute whenever a matching Intent is broadcast by the system or an application. By

registering a Broadcast Receiver in the manifest you can make this process entirely autonomous.

If a matching Intent is broadcast, your application will be started automatically and the registered

Broadcast Receiver will be run.

• <uses-permission android:name="android.permission.ACCESS_LOCATION"/>

• uses-permission As part of the security model, uses-permission tags declare the permissions

Ǉou͛ǀe deteƌŵiŶed Ǉouƌ appliĐatioŶ Ŷeeds to opeƌate pƌopeƌlǇ. The peƌŵissioŶs Ǉou

• include will be presented to the user before installation commences. Permissions are required

for many of the native Android services, particularly those with a cost or security implicatio

• (such as dialing, receiving SMS, or using the location-based services).

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

156

Location Based Services

• Youƌ appliĐatioŶ kŶoǁs hoǁ to saǇ Hello, ďut it doesŶ͛t kŶoǁ ǁheƌe it͛s loĐated.
• Now is a good time to become familiar with some simple location-based calls to get the GPS

coordinates.

• Problem is that emulator does not have GPS sensors!!

• The emulator does not have location sensors, so the first thing you need to do is seed your

emulator with GPS coordinates

1. Press the Home key to return to the Home screen.

2. Launch the Maps application from the Application drawer.

3. Click the Menu button.

4. Choose the My Location menu item. (It looks like a target.)

5. Click the DDMS perspective in the top-right corner of Eclipse.

6. You see an Emulator Control pane on the left side of the screen. Scroll down to the Location Control.

7. Manually enter the longitude and latitude of your location. (Note they are in reverse order.)

8. Click Send.

import android.location.Location;

import android.location.LocationManager;

….
public void getLocation() {

 try {

 LocationManager locMgr = (LocationManager)

 getSystemService(LOCATION_SERVICE);

 Location recentLoc = locMgr.

 getLastKnownLocation(LocationManager.GPS_PROVIDER);

 Log.i(DEBUG_TAG, ͞loĐ: ͞ + ƌeĐeŶtLoĐ.to“tƌiŶg;ͿͿ;
 }

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

157

 catch (Exception e) {

 Log.e;DEBUG_TAG, ͞LoĐatioŶ failed͟, eͿ;
 }

}

• new method called getLocation() in your class and make a call to this method in your onCreate()

method.The getLocation() method gets the last known location on the phone and logs it as an

informational message. If the operation fails for some reason, the method logs an error.

• Android logging features are in the Log class of the android.util package.

• Log.e() Log errors

• Log.w() Log warnings

• Log.i() Log informationalmessages

• Log.d() Log Debug messages

• Log.v() Log Verbose messages

• Now try to run the application

• It generates an error

your application requires special permissions to access location-based functionality. You must register

this permission in your AndroidManifest.xml file.To add location-

based service permissions to your application, perform the following steps:

1. Double-click the AndroidManifest.xml file.

2. Switch to the Permissions tab.

3. Click the Add button and choose Uses Permission.

4. In the right pane, select android.permission.ACCESS_FINE_LOCATION. (Allows an application to access

fine (e.g., GPS) location)

5. Save the file.

ACCESS_COARSE_LOCATION Allows an application to access coarse (e.g., Cell-ID, WiFi) location

Manifest Permissions

• ACCESS_MOCK_LOCATION Allows an application to create mock location providers for testing

• ACCESS_NETWORK_STATE Allows applications to access information about networks

• BATTERY_STATS Allows an application to collect battery statistics

• BLUETOOTH Allows applications to connect to paired bluetooth devices

• CALL_PHONE Allows an application to initiate a phone call without going through the Dialer

user interface for the user to confirm the call being placed.

• CAMERA Required to be able to access the camera device.

• INTERNET Allows applications to open network sockets.

For More Info Visit Cluesbook.Com

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html

 Mobile & Pervasive Computing

158

Types of Android Applications

• Foreground

• Background

• Intermittent

• Widget

• Foreground: AŶ appliĐatioŶ that͛s useful oŶlǇ ǁheŶ it͛s iŶ the foƌegƌouŶd aŶd is effeĐtiǀelǇ
suspeŶded ǁheŶ it͛s Ŷot ǀisiďle. Gaŵes aŶd ŵap ŵashups aƌe ĐoŵŵoŶ eǆaŵples.

• Background: An application with limited interaction that, apart from when being configured,

spends most of its lifetime hidden. Examples include call screening applications and

• SMS auto-responders.

• Intermittent: Expects some interactivity but does most of its work in the background. Often

these applications will be set up and then run silently, notifying users when appropriate. A

common example would be a media player.

• Widget: Some applications are represented only as a home-screen widget.

Building Blocks of Android App

• Activities: Youƌ appliĐatioŶ͛s pƌeseŶtatioŶ laǇeƌ. EǀeƌǇ sĐƌeeŶ iŶ Ǉouƌ appliĐatioŶ ǁill ďe aŶ
extension of the Activity class. Activities use Views to form graphical user interfaces that display

information and respond to user actions. In terms of desktop development, an Activity is

equivalent to a Form.

• Services: The invisible workers of your application. Service components run in the background,

updatiŶg Ǉouƌ data souƌĐes aŶd ǀisiďle AĐtiǀities aŶd tƌiggeƌiŶg NotifiĐatioŶs. TheǇ͛ƌe used to
peƌfoƌŵ ƌegulaƌ pƌoĐessiŶg that Ŷeeds to ĐoŶtiŶue eǀeŶ ǁheŶ Ǉouƌ appliĐatioŶ͛s AĐtiǀities aƌeŶ͛t
active or visible.

• Content Providers: Shareable data stores. Content Providers are used to manage and share

appliĐatioŶ dataďases. TheǇ͛ƌe the pƌefeƌƌed ŵeaŶs of shaƌiŶg data aĐƌoss appliĐatioŶ
boundaries. This means that you can configure your own Content Providers to permit access

from other applications and use Content Providers exposed by others to access their stored data.

Android devices include several native Content Providers that expose useful databases like the

media store and contact details.

• Intents: An inter-application message-passing framework. Using Intents you can broadcast

messages system-wide or to a target Activity or Service, stating your intention to have an action

performed. The system will then determine the target(s) that will perform any actions as

appropriate.

• Broadcast Receivers: Intent broadcast consumers. If you create and register a Broadcast

Receiver, your application can listen for broadcast Intents that match specific filter criteria.

Broadcast Receivers will automatically start your application to respond to an incoming Intent,

making them perfect for creating event-driven applications.

• Widgets: Visual application components that can be added to the home screen. A special

variation of a Broadcast Receiver, widgets let you create dynamic, interactive application

components for users to embed on their home screens.

• Notifications: A user notification framework. Notifications let you signal users without stealing

foĐus oƌ iŶteƌƌuptiŶg theiƌ ĐuƌƌeŶt AĐtiǀities. TheǇ͛ƌe the pƌefeƌƌed teĐhŶiƋue foƌ gettiŶg a useƌ͛s
attention from within a Service or Broadcast Receiver. For example, when a device receives a

text message or an incoming call, it alerts you by flashing lights, making sounds, displaying icons,

or showing messages.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

159

Lecture 39

Activity Life Cycle

• An activity is usually a single screen that the user sees on the device at one time. An application

typically has multiple activities, and the user flips back and forth among them. As such, activities

are the most visible part of your application. I usually use a website as an analogy for activities.

Just like a website consists of multiple pages, so does an Android application consist of multiple

aĐtiǀities. Just like a ǁeďsite has a ͞hoŵe page,͟ aŶ AŶdƌoid app has a ͞ŵaiŶ͟ aĐtiǀitǇ, usuallǇ
the one that is shown first when you launch the application. And just like a website has to provide

some sort of navigation among various pages, an Android app should do the same. On the Web,

you can jump from a page on one website to a page on another. Similarly, in Android, you could

be looking at an activity of one application, but shortly after you could start another activity in a

completely separate application. For example, if you are in your Contacts app and you choose to

teǆt a fƌieŶd, Ǉou͛d ďe lauŶĐhiŶg the activity to compose a text message in the Messaging

application.

• Starting state: WheŶ aŶ aĐtiǀitǇ doesŶ͛t eǆist iŶ ŵeŵoƌǇ, it is iŶ a staƌtiŶg state. While it͛s staƌtiŶg
up, the activity will go through a whole set of callback methods that you as a developer have an

opportunity to fill out. Eventually, the activity will be in a running state. Keep in mind that this

transition from starting state to running state is one of the most expensive operations in terms

of computing time, and this also directly affects the battery life of the device. This is the exact

ƌeasoŶ ǁhǇ ǁe doŶ͛t autoŵatiĐallǇ destƌoǇ activities that are no longer shown. The user might

want to come back to them, so we keep them around for a while.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

160

• Running state: The activity in a running state is the one that is currently on the screen and

interacting with the user. We also say this activity is in focus, meaning that all user interactions—

such as typing, touching the screen, and clicking buttons—are handled by this one activity. As

such, there is only one running activity at any given time. The running activity is the one that has

priority in terms of getting the memory and resources it needs to run as quickly as possible. This

is because Android wants to make sure the running activity is zippy and responsive to the user.

• Paused state: When an activity is not in focus (i.e., not interacting with the user) but still visible

oŶ the sĐƌeeŶ, ǁe saǇ it͛s iŶ a paused state. This is Ŷot a tǇpiĐal sĐeŶaƌio, ďeĐause the deǀiĐe͛s
screen is usually small, and an activity is either taking up the whole screen or none at all. We

often see this case with dialog boxes that come up in front of an activity, causing it to become

Paused. All activities go through a paused state en route to being stopped. Paused activities still

have high priority in terms of getting memory and other resources. This is because they are

visible and cannot be removed from the screen without making it look very strange to the user.

• Stopped state: When aŶ aĐtiǀitǇ is Ŷot ǀisiďle, ďut still iŶ ŵeŵoƌǇ, ǁe saǇ it͛s iŶ a stopped state.
Stopped activity could be brought back to the front to become a Running activity again. Or, it

could be destroyed and removed from memory. The system keeps activities around in a stopped

state because it is likely that the user will still want to get back to those activities sometime soon,

and restarting a stopped activity is far cheaper than starting an activity from scratch. That is

because we already have all the objects loaded in memory and simply have to bring it all up to

the foreground. Stopped activities can be removed from memory at any point.

• Destroyed state: A destroyed activity is no longer in memory. The Activity Manager decided that

this activity is no longer needed and has removed it. Before the activity is destroyed, it can

peƌfoƌŵ ĐeƌtaiŶ aĐtioŶs, suĐh as saǀe aŶǇ uŶsaǀed iŶfoƌŵatioŶ. Hoǁeǀeƌ, theƌe͛s Ŷo guaƌaŶtee
that your activity will be stopped prior to being destroyed. It is possible for a paused activity to

be destroyed as well. For that reason, it is better to do important work, such as saving unsaved

data, en route to a paused state rather than a destroyed State.

package net.learn2develop.Activities;

import android.app.Activity;

import android.os.Bundle;

import android.util.Log;

public class MainActivity extends Activity {

 “tƌiŶg tag = ͞EǀeŶts͟;
 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 Log.d;tag, ͞IŶ the oŶCƌeate;Ϳ eǀeŶt͟Ϳ;
 }

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

161

puďliĐ ǀoid oŶ“taƌt;Ϳ { supeƌ.oŶ“taƌt;Ϳ; Log.d;tag, ͞IŶ the oŶ“taƌt;Ϳ eǀeŶt͟Ϳ;}
public void onRestart() { super.onRestart(); Log.d;tag, ͞IŶ the oŶ‘estaƌt;Ϳ eǀeŶt͟Ϳ; }
public ǀoid oŶ‘esuŵe;Ϳ { supeƌ.oŶ‘esuŵe;Ϳ; Log.d;tag, ͞IŶ the oŶ‘esuŵe;Ϳ eǀeŶt͟Ϳ; }
puďliĐ ǀoid oŶPause;Ϳ { supeƌ.oŶPause;Ϳ; Log.d;tag, ͞IŶ the oŶPause;Ϳ eǀeŶt͟Ϳ; }
puďliĐ ǀoid oŶ“top;Ϳ { supeƌ.oŶ“top;Ϳ; Log.d;tag, ͞IŶ the oŶ“top;Ϳ eǀeŶt͟Ϳ; }
public void onDestroǇ;Ϳ { supeƌ.oŶDestƌoǇ;Ϳ; Log.d;tag, ͞IŶ the oŶDestƌoǇ;Ϳ eǀeŶt͟Ϳ;}
}

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

162

When the activity is first loaded, you should see the following in the LogCat window

12-28 13:45:28.115: DEBUG/Events(334): In the onCreate() event

12-28 13:45:28.115: DEBUG/Events(334): In the onStart() event

12-28 13:45:28.115: DEBUG/Events(334): In the onResume() event

When you now press the back button on the Android Emulator, observe that the following is printed:

12-28 13:59:46.266: DEBUG/Events(334): In the onPause() event

12-28 13:59:46.806: DEBUG/Events(334): In the onStop() event

12-28 13:59:46.806: DEBUG/Events(334): In the onDestroy() event

Click the Home button and hold it there. Click the Activities icon and observe the following:

12-28 14:00:54.115: DEBUG/Events(334): In the onCreate() event

12-28 14:00:54.156: DEBUG/Events(334): In the onStart() event

12-28 14:00:54.156: DEBUG/Events(334): In the onResume() event

Press the Phone button on the Android Emulator so that the activity is pushed to the background.

12-28 14:01:16.515: DEBUG/Events(334): In the onPause() event

12-28 14:01:17.135: DEBUG/Events(334): In the onStop() event

Notice that the onDestroy() event is not called, indicating that the activity is still in memory. Exit the

phone dialer by pressing the Back button. The activity is now visible again.

12-28 14:02:17.255: DEBUG/Events(334): In the onRestart() event

12-28 14:02:17.255: DEBUG/Events(334): In the onStart() event

12-28 14:02:17.255: DEBUG/Events(334): In the onResume() event

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

163

Lecture 40

Activity Life Cycle

• Back Button

• Home Button

• Phone Button

When you now press the back button on the Android Emulator, observe that the following is printed:

12-28 13:59:46.266: DEBUG/Events(334): In the onPause() event

12-28 13:59:46.806: DEBUG/Events(334): In the onStop() event

12-28 13:59:46.806: DEBUG/Events(334): In the onDestroy() event

Click the Home button and hold it there. Click the Activities icon and observe the following:

12-28 14:00:54.115: DEBUG/Events(334): In the onCreate() event

12-28 14:00:54.156: DEBUG/Events(334): In the onStart() event

12-28 14:00:54.156: DEBUG/Events(334): In the onResume() event

Press the Phone button on the Android Emulator so that the activity is pushed to the background.

12-28 14:01:16.515: DEBUG/Events(334): In the onPause() event

12-28 14:01:17.135: DEBUG/Events(334): In the onStop() event

Notice that the onDestroy() event is not called, indicating that the activity is still in memory. Exit the

phone dialer by pressing the Back button. The activity is now visible again.

12-28 14:02:17.255: DEBUG/Events(334): In the onRestart() event

12-28 14:02:17.255: DEBUG/Events(334): In the onStart() event

12-28 14:02:17.255: DEBUG/Events(334): In the onResume() event

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

164

Content Provider

• Content providers are interfaces for sharing data between applications. By default, Android runs

each application in its own sandbox so that all data that belongs to an application is totally

isolated from other applications on the system. Although small amounts of data can be passed

between applications via intents, content providers are much better suited for sharing persistent

data between possibly large datasets. The Android system uses this mechanism all the time.

• Browser — Stores data such as browser bookmarks, browser history, and so on

• CallLog — Stores data such as missed calls, call details, and so on

• Contacts — Stores contact details, Contacts Provider is a content provider that exposes all user

contact data to various applications

• MediaStore — Stores media files such as audio, video and images, responsible for storing and

sharing various media, such as photos and music, across various applications.

• Settings — “toƌes the deǀiĐe͛s settiŶgs aŶd pƌefeƌeŶĐes, “ettiŶgs Pƌoǀideƌ eǆposes sǇsteŵ
settings to various applications, including the built-in Settings application.

• Besides the many built-in content providers, you can also create your own content providers.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

165

Lecture 41

Content Provider

• Content providers are relatively simple interfaces, with the standard insert(), update(), delete(),

and query() methods. These methods look a lot like standard database methods, so it is relatively

easy to implement a content provider as a proxy to the database. Having said that, you are much

more likely to use content providers than write your own.

• How the Contacts app uses Contacts Provider, a totally separate application, to retrieve data

aďout useƌs͛ ĐoŶtaĐts. The CoŶtaĐts app itself doesŶ͛t haǀe aŶǇ ĐoŶtaĐts data, aŶd CoŶtaĐts
Pƌoǀideƌ doesŶ͛t haǀe aŶǇ user interface. This separation of data storage and the actual user

interface application offers greater flexibility to mash up various parts of the system. For

example, a user could install an alternative address book application that uses the same data as

the default Contacts app. Or, he could install widgets on the Home screen that allow for easy

changes in the System Settings, such as turning on or off the WiFi, Bluetooth, or GPS features.

• To query a content provider, you specify the query string in the form of a URI, with an

optional specifier for a particular row. The format of the query URI is as follows:

<standard_prefix>://<authority>/<data_path>/<id>

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

166

The various parts of the URI are as follows:

• The standard prefix for content providers is always content://.

• The authority specifies the name of the content provider. An example would be contacts for the

built-in Contacts content provider. For third-party content providers, this could be the fully

qualified name, such as com.wrox.provider or net.learn2develop.provider.

• The data path specifies the kind of data requested. For example, if you are getting all the contacts

from the Contacts content provider, then the data path would be people, and the URI would look

like this: content://contacts/people.

• The id specifies the specific record requested. For example, if you are looking for contact number

2 in the Contacts content provider, the URI would look like this: content://contacts/people/2.

Content Providers – Cursors

• Cursors

– This interface provides random read-write access to the result set returned by a

database query.

• Cursor Adapters

– Adapter that exposes data from a Cursor to a ListView Widget

• ListView: A view that shows items in a vertically scrolling list

Content Providers

public class MainActivity extends ListActivity {

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 Uƌi allCoŶtaĐts = Uƌi.paƌse;͞ĐoŶteŶt://ĐoŶtaĐts/people͟Ϳ;
 Cursor c = managedQuery(allContacts, null, null, null, null);

 ….
 …

The managedQuery() method of the Activity class retrieves a managed cursor. A managed cursor handles

all the work of unloading itself when the application pauses and requerying itself when the application

restarts.

The statement

Cursor c = managedQuery(allContacts, null, null, null, null);

is equivalent to

Cursor c = getContentResolver().query(allContacts, null, null, null, null);

startManagingCursor(c); //---alloǁs the aĐtiǀitǇ to ŵaŶage the Cuƌsoƌ͛s // lifeĐǇle ďased oŶ the aĐtiǀitǇ͛s
lifecycle---

The getContentResolver() method returns a ContentResolver object, which helps to resolve a content

URI with the appropriate content provider.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

167

<?ǆŵl ǀeƌsioŶ=͟ϭ.Ϭ͟ eŶĐodiŶg=͟utf-ϴ͟?>

 <ŵaŶifest ǆŵlŶs:aŶdƌoid=͟http://sĐheŵas.aŶdƌoid.Đoŵ/apk/ƌes/aŶdƌoid͟

 paĐkage=͟Ŷet.leaƌŶϮdeǀelop.Pƌoǀideƌ͟

 aŶdƌoid:ǀeƌsioŶCode=͟ϭ͟

 aŶdƌoid:ǀeƌsioŶNaŵe=͟ϭ.Ϭ͟>

 <appliĐatioŶ aŶdƌoid:iĐoŶ=͟@dƌaǁaďle/iĐoŶ͟ aŶdƌoid:laďel=͟@stƌiŶg/app_Ŷaŵe͟>

 <aĐtiǀitǇ aŶdƌoid:Ŷaŵe=͟.MaiŶAĐtiǀitǇ͟

 aŶdƌoid:laďel=͟@stƌiŶg/app_Ŷaŵe͟>

 <intent-filter>

 <aĐtioŶ aŶdƌoid:Ŷaŵe=͟aŶdƌoid.iŶteŶt.aĐtioŶ.MAIN͟ />

 <ĐategoƌǇ aŶdƌoid:Ŷaŵe=͟aŶdƌoid.iŶteŶt.ĐategoƌǇ.LAUNCHE‘͟ />

 </intent-filter>

 </activity>

 </application>

 <uses-sdk aŶdƌoid:ŵiŶ“dkVeƌsioŶ=͟ϳ͟ />

 <uses-peƌŵissioŶ aŶdƌoid:Ŷaŵe=͟aŶdƌoid.peƌŵissioŶ.‘EAD_CONTACT“͟>

 </uses-permission>

 </manifest>

Note that in order for your application to access the Contacts application, you need to have the

READ_CONTACTS permission in your AndroidManifest.xml file.

• Some examples of predefined query string constants are as follows:

– Browser.BOOKMARKS_URI

– Browser.SEARCHES_URI

– CallLog.CONTENT_URI

– MediaStore.Images.Media.INTERNAL_CONTENT_URI

– MediaStore.Images.Media.EXTERNAL_CONTENT_URI

– Settings.CONTENT_URI

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

168

Lecture 42

Intents

• Intents are messages that are sent among the major building blocks. They trigger an activity to

start up, tell a service to start or stop, or are simply broadcasts. Intents are asynchronous,

ŵeaŶiŶg the Đode that seŶds theŵ doesŶ͛t haǀe to ǁait foƌ theŵ to ďe Đoŵpleted.
• An intent could be explicit or implicit. In an explicit intent, the sender clearly spells out which

specific component should be on the receiving end. In an implicit intent, the sender specifies the

type of receiver. For example, your activity could send an intent saying it simply wants someone

to open up a web page. In that case, any application that is capable of opening a web page could

͞Đoŵpete͟ to Đoŵplete this action. When you have competing applications, the system will ask

Ǉou ǁhiĐh oŶe Ǉou͛d like to use to Đoŵplete a giǀeŶ aĐtioŶ.
• An intent could be explicit or implicit. In an explicit intent, the sender clearly spells out which

specific component should be on the receiving end. In an implicit intent, the sender specifies the

type of receiver. For example, your activity could send an intent saying it simply wants someone

to open up a web page. In that case, any application that is capable of opening a web page could

͞Đoŵpete͟ to Đoŵplete this aĐtioŶ. WheŶ Ǉou haǀe ĐoŵpetiŶg appliĐatioŶs, the sǇsteŵ ǁill ask
Ǉou ǁhiĐh oŶe Ǉou͛d like to use to Đoŵplete a giǀeŶ aĐtioŶ. You ĐaŶ also set aŶ app as the default.
This mechanism works very similarly to your desktop environment, for example, when you

downloaded Firefox or Chrome to replace your default Internet Explorer or Safari web browsers.

This type of messaging allows the user to replace any app on the system with a custom one. For

example, you might want to download a different SMS application or another browser to replace

your existing ones.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

169

• Intent i = new Intent(android.content.Intent.ACTION_VIEW,

Uri.parse;͞http://ǁǁǁ.aŵazoŶ.Đoŵ͟ͿͿ;
startActivity(i);

• Intent i = new Intent(android.content.Intent.ACTION_DIAL, Uƌi.paƌse;͞tel:+ϲϱϭϮϯϰϱϲϳ͟ͿͿ;
startActivity(i);

• Intent i = new Intent(android.content.Intent.ACTION_VIEW, Uri.parse;͞geo:ϯϳ.ϴϮϳϱϬϬ,-
ϭϮϮ.ϰϴϭϲϳϬ͟ͿͿ;
startActivity(i);

• In the first button, you create an Intent object and then pass two arguments to its constructor

— the action and the data: The action here is represented by the

android.content.Intent.ACTION_VIEW constant. You use the parse() method of the Uri class to

convert an URL string into an Uri object.

• For the second button, you dial a specific number by passing in the telephone number in the data

portion. In this case, the dialer will display the number to be called.

• If you simply want to display the dialer without specifying any number, simply omit the data

portion, like this: Intent i = new Intent(android.content.Intent.ACTION_DIAL);

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

170

• The thiƌd ďuttoŶ displaǇs a ŵap usiŶg the ACTION_VIEW ĐoŶstaŶt: Heƌe, iŶstead of usiŶg ͞http͟
Ǉou use the ͞geo͟ sĐheŵe.

• Intent i = new Intent(android.content.Intent.ACTION_PICK);

i.setType(ContactsContract.Contacts.CONTENT_TYPE);

startActivityForResult(i,request_Code);

android.content.Intent.ACTION_PICK

• The fourth button invokes the Contacts application to enable the user to pick a contact. Because

you are asking the user to select a contact, you need the Contacts application to return a value;

in this case, you need to set the type of data to indicate what kind of data needs to be returned:

• Because you are expecting a result from the Contacts application, you invoke it using the

startActivityForResult() method, passing in the Intent object and a request code. You needto

implement the onActivityResult() method in order to obtain a result from the activity:

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

171

• Action : The action portion defines what you want to do

• Data: while the data portion contains the data for the target activity to act upon

• Type: For some intents, there is no need to specify the data. For example, to select a contact

from the Contacts application, you specify the action and then indicate the MIME type using

the setType() method

• Category: Besides specifying the action, the data, and the type, an Intent object can also

specify a category. A category groups activities into logical units so that Android can use it for

further filtering.

You can also pass the data to the Intent object using the setData() method. In this example, you indicate

that you want to view a web page with the specified URL. The Android OS will look for all activities that

are able to satisfy your request. This process is known as intent resolution.

Intent i = new Intent(android.content.Intent.ACTION_VIEW);

i.setData(Uri.parse;͞http://ǁǁǁ.aŵazoŶ.coŵ͟ͿͿ;
Intent i = new Intent(android.content.Intent.ACTION_PICK);

i.setType(ContactsContract.Contacts.CONTENT_TYPE);

i.setType(ContactsContract.CommonDataKinds.Phone.CONTENT_TYPE);

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

172

<intent-filter>

<aĐtioŶ aŶdƌoid:Ŷaŵe=͟Ŷet.leaƌŶϮdeǀelop.ACTIVITYϮ͟ />

<ĐategoƌǇ aŶdƌoid:Ŷaŵe=͟aŶdƌoid.iŶteŶt.ĐategoƌǇ.DEFAULT͟ />

</intent-filter>

• This is a ǀeƌǇ siŵple eǆaŵple iŶ ǁhiĐh oŶe aĐtiǀitǇ Đalls aŶotheƌ usiŶg the ͞Ŷet.leaƌŶϮdeǀelop
.ACTIVITYϮ͟ aĐtioŶ.

• An activity can invoke another activity using the Intent object. In order for other

activities to invoke your activity, you need to specify the action and category within the

<intent-filter> element in the AndroidManifest.xml file

IŶteŶt i = Ŷeǁ IŶteŶt;aŶdƌoid.ĐoŶteŶt.IŶteŶt.ACTION_VIEW, Uƌi.paƌse;͞http://ǁǁǁ.aŵazoŶ.Đoŵ͟ͿͿ;
i.addCategoƌǇ;͞Ŷet.leaƌŶϮdeǀelop.Apps͟Ϳ;
startActivity(i);

<activity aŶdƌoid:Ŷaŵe=͟.MǇBƌoǁseƌAĐtiǀitǇ͟

aŶdƌoid:laďel=͟@stƌiŶg/app_Ŷaŵe͟>

<intent-filter>

<aĐtioŶ aŶdƌoid:Ŷaŵe=͟aŶdƌoid.iŶteŶt.aĐtioŶ.VIEW͟ />

<aĐtioŶ aŶdƌoid:Ŷaŵe=͟Ŷet.leaƌŶϮdeǀelop.MǇBƌoǁseƌ͟ />

<ĐategoƌǇ aŶdƌoid:Ŷaŵe=͟aŶdƌoid.iŶteŶt.ĐategoƌǇ.DEFAULT͟ />

<categoƌǇ aŶdƌoid:Ŷaŵe=͟Ŷet.leaƌŶϮdeǀelop.Apps͟ />

<data aŶdƌoid:sĐheŵe=͟http͟ />

</intent-filter>

• You add the category to the Intent object using the addCategory() method. If you omit the

addCategory() statement, the preceding code will still invoke the MyBrowerActivity activity

ďeĐause it ǁill still ŵatĐh the default ĐategoƌǇ ͞aŶdƌoid.iŶteŶt.ĐategoƌǇ.DEFAULT͟.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

173

Intent i = new Intent(android.content.Intent.ACTION_VIEW, Uri.parse;͞http://ǁǁǁ.aŵazoŶ.Đoŵ͟ͿͿ;
i.addCategory(͞Ŷet.learŶ2deǀelop.OtherApps͟Ϳ;
startActivity(i);

<aĐtiǀitǇ aŶdƌoid:Ŷaŵe=͟.MǇBƌoǁseƌAĐtiǀitǇ͟

aŶdƌoid:laďel=͟@stƌiŶg/app_Ŷaŵe͟>

<intent-filter>

<aĐtioŶ aŶdƌoid:Ŷaŵe=͟aŶdƌoid.iŶteŶt.aĐtioŶ.VIEW͟ />

<aĐtioŶ aŶdƌoid:Ŷaŵe=͟Ŷet.leaƌŶϮdeǀelop.MǇBƌoǁseƌ͟ />

<categoƌǇ aŶdƌoid:Ŷaŵe=͟aŶdƌoid.iŶteŶt.ĐategoƌǇ.DEFAULT͟ />

<category aŶdroid:Ŷaŵe=͟Ŷet.learŶ2deǀelop.Apps͟ />

<category aŶdroid:Ŷaŵe=͟Ŷet.learŶ2deǀelop.OtherApps͟ />

<data aŶdƌoid:sĐheŵe=͟http͟ />

</intent-filter>

• The pƌeĐediŶg ĐategoƌǇ ;͞Ŷet.leaƌŶϮdeǀelop.OtheƌApps͟Ϳ does Ŷot ŵatĐh aŶǇ iŶ the iŶteŶt filteƌ,
so a run-time exception will be raised.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

174

Lecture 43

Intents

• Action : The action portion defines what you want to do

• Data: while the data portion contains the data for the target activity to act upon

• Type: For some intents, there is no need to specify the data. For example, to select a contact

from the Contacts application, you specify the action and then indicate the MIME type using the

setType() method

• Category: Besides specifying the action, the data, and the type, an Intent object can also specify

a category. A category groups activities into logical units so that Android can use it for further

filtering.

• You can also pass the data to the Intent object using the setData() method. In this

example, you indicate that you want to view a web page with the specified URL. The

Android OS will look for all activities that are able to satisfy your request. This process is

known as intent resolution.

• Intent i = new Intent(android.content.Intent.ACTION_VIEW);

• i.setData(Uri.parse;͞http://ǁǁǁ.aŵazoŶ.coŵ͟ͿͿ;
• Intent i = new Intent(android.content.Intent.ACTION_PICK);

• i.setType(ContactsContract.Contacts.CONTENT_TYPE);

• i.setType(ContactsContract.CommonDataKinds.Phone.CONTENT_TYPE);

<intent-filter . . . >

 <data android:mimeType="video/mpeg" android:scheme="http" . . . />

 <data android:mimeType="audio/mpeg" android:scheme="http" . . . />

 . . .

</intent-filter>

• Consider, for example, what the browser application does when the user follows a link

on a web page. It first tries to display the data (as it could if the link was to an HTML

page). If it can't display the data, it puts together an implicit intent with the scheme and

data type and tries to start an activity that can do the job. If there are no takers, it asks

the download manager to download the data. That puts it under the control of a content

provider, so a potentially larger pool of activities (those with filters that just name a data

type) can respond.

• Intents are matched against intent filters not only to discover a target component to activate,

but also to discover something about the set of components on the device.

• For example, the Android system populates the application launcher, the top-level screen that

shows the applications that are available for the user to launch, by finding all the activities with

intent filters that specify the "android.intent.action.MAIN" action and

"android.intent.category.LAUNCHER" category.

• It then displays the icons and labels of those activities in the launcher. Similarly, it discovers the

home screen by looking for the activity with "android.intent.category.HOME" in its filter.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

175

<intent-filter>

<aĐtioŶ aŶdƌoid:Ŷaŵe=͟Ŷet.leaƌŶϮdeǀelop.ACTIVITYϮ͟ />

<ĐategoƌǇ aŶdƌoid:Ŷaŵe=͟aŶdƌoid.iŶteŶt.ĐategoƌǇ.DEFAULT͟ />

</intent-filter>

This is a ǀeƌǇ siŵple eǆaŵple iŶ ǁhiĐh oŶe aĐtiǀitǇ Đalls aŶotheƌ usiŶg the ͞Ŷet.leaƌŶϮdeǀelop
.ACTIVITYϮ͟ aĐtioŶ.

• An activity can invoke another activity using the Intent object. In order for other activities

to invoke your activity, you need to specify the action and category within the <intent-

filter> element in the AndroidManifest.xml file

IŶteŶt i = Ŷeǁ IŶteŶt;aŶdƌoid.ĐoŶteŶt.IŶteŶt.ACTION_VIEW, Uƌi.paƌse;͞http://ǁǁǁ.aŵazoŶ.Đoŵ͟ͿͿ;
i.addCategoƌǇ;͞Ŷet.leaƌŶϮdeǀelop.Apps͟Ϳ;
startActivity(i);

<activity aŶdƌoid:Ŷaŵe=͟.MǇBƌoǁseƌAĐtiǀitǇ͟aŶdƌoid:laďel=͟@stƌiŶg/app_Ŷaŵe͟>

<intent-filter>

<aĐtioŶ aŶdƌoid:Ŷaŵe=͟aŶdƌoid.iŶteŶt.aĐtioŶ.VIEW͟ />

<aĐtioŶ aŶdƌoid:Ŷaŵe=͟Ŷet.leaƌŶϮdeǀelop.MǇBƌoǁseƌ͟ />

<ĐategoƌǇ aŶdƌoid:Ŷaŵe=͟aŶdƌoid.iŶteŶt.ĐategoƌǇ.DEFAULT͟ />

<categoƌǇ aŶdƌoid:Ŷaŵe=͟Ŷet.leaƌŶϮdeǀelop.Apps͟ />

<data aŶdƌoid:sĐheŵe=͟http͟ />

</intent-filter>

• You add the category to the Intent object using the addCategory() method. If you omit the

addCategory() statement, the preceding code will still invoke the MyBrowerActivity activity

ďeĐause it ǁill still ŵatĐh the default ĐategoƌǇ ͞aŶdƌoid.iŶteŶt.ĐategoƌǇ.DEFAULT͟.

IŶteŶt i = Ŷeǁ IŶteŶt;aŶdƌoid.ĐoŶteŶt.IŶteŶt.ACTION_VIEW, Uƌi.paƌse;͞http://ǁǁǁ.aŵazoŶ.Đoŵ͟ͿͿ;
i.addCategoƌǇ;͞ALTE‘NATIVE͟Ϳ;
startActivity(i);

<intent-filter android:label="@string/resolve_title">

 <action android:name="com.android.notepad.action.EDIT_TITLE" />

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.ALTERNATIVE" />

 <category android:name="android.intent.category.SELECTED_ALTERNATIVE" />

 <data android:mimeType="vnd.android.cursor.item/vnd.google.note" />

</intent-filter>

• The pƌeĐediŶg ĐategoƌǇ ;͞Ŷet.leaƌŶϮdeǀelop.OtheƌApps͟Ϳ does Ŷot ŵatĐh aŶǇ iŶ the iŶteŶt
filter, so a run-time exception will be raised.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

176

Services

• “eƌǀiĐes ƌuŶ iŶ the ďaĐkgƌouŶd aŶd doŶ͛t haǀe aŶǇ useƌ iŶteƌfaĐe ĐoŵpoŶeŶts. TheǇ ĐaŶ
perform the same actions as activities, but without any user interface. Services are useful

for actions that we want to perform for a while, regardless of what is on the screen. For

example, you might want your music player to play music even as you are flipping

between other applications. Services have a much simpler life cycle than activities (see

Figure 4-3). You either start a service or stop it. Also, the service life cycle is more or less

controlled by the developer, and not so much by the system. Consequently, we as

deǀelopeƌs haǀe to ďe ŵiŶdful to ƌuŶ ouƌ seƌǀiĐes so that theǇ doŶ͛t ĐoŶsuŵe shaƌed
resources unnecessarily, such as the CPU and battery.

public class MyService extends Service {

 @Override

 public IBinder onBind(Intent arg0) {

 return null;

 }

 @Override

 public int onStartCommand(Intent intent, int flags, int startId) {

 // We want this service to continue running until it is explicitly

 // stopped, so return sticky.

 Toast.makeText;this, ͞“eƌǀiĐe “taƌted͟, Toast.LENGTH_LONGͿ.shoǁ;Ϳ;
 return START_STICKY;

 }

 @Override

 public void onDestroy() {

 super.onDestroy();}

 Toast.makeTeǆt(this, ͞“erǀiĐe DestroǇed͟,
Toast.LENGTH_LONG).show();

• MyService.java. Populate it with the following code

• First, you defined a class that extends the Service base class. All services extend the

Service class:

• public class MyService extends Service { }

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

177

• The onBind() method enables you to bind an activity to a service. This in turn enables an

activity to directly access members and methods inside a service. For now, you simply

return a null for this method.

• @Override

• public IBinder onBind(Intent arg0) {...}

• The onStartCommand() method is called when you start the service explicitly using the

startService() method (discussed shortly). This method signifies the start of the service,

and you code it to do the things you need to do for your service. In this method, you

returned the constant START_STICKY so that the service will continue to run until it is

explicitly stopped.

• @Override

• public int onStartCommand(Intent intent, int flags, int startId) {...}

• The onDestroy() method is called when the service is stopped using the stopService()

method. This is where you clean up the resources used by your service.

• @Override

• public void onDestroy() {...}

<?ǆŵl ǀeƌsioŶ=͟ϭ.Ϭ͟ eŶĐodiŶg=͟utf-ϴ͟?>

 <ŵaŶifest ǆŵlŶs:aŶdƌoid=͟http://sĐheŵas.aŶdƌoid.Đoŵ/apk/ƌes/aŶdƌoid͟

 paĐkage=͟Ŷet.leaƌŶϮdeǀelop.“eƌǀiĐes͟

 aŶdƌoid:ǀeƌsioŶCode=͟ϭ͟

 aŶdƌoid:ǀeƌsioŶNaŵe=͟ϭ.Ϭ͟>

 <appliĐatioŶ aŶdƌoid:iĐoŶ=͟@dƌaǁaďle/iĐoŶ͟
aŶdƌoid:laďel=͟@stƌiŶg/app_Ŷaŵe͟>

 <aĐtiǀitǇ aŶdƌoid:Ŷaŵe=͟.MaiŶAĐtiǀitǇ͟

 aŶdƌoid:laďel=͟@stƌiŶg/app_Ŷaŵe͟>

 <intent-filter>

 <aĐtioŶ aŶdƌoid:Ŷaŵe=͟aŶdƌoid.iŶteŶt.aĐtioŶ.MAIN͟ />

 <ĐategoƌǇ aŶdƌoid:Ŷaŵe=͟aŶdƌoid.iŶteŶt.ĐategoƌǇ.LAUNCHE‘͟
/>

 </intent-filter>

 </activity>

 <serǀice aŶdroid:Ŷaŵe=͟.My“erǀice͟ />

 </application>

 <uses-sdk aŶdƌoid:ŵiŶ“dkVeƌsioŶ=͟ϵ͟ />

</manifest>

• All services that you have created must be declared in the AndroidManifest.xml file, like

this:

• <seƌǀiĐe aŶdƌoid:Ŷaŵe=͟.MǇ“eƌǀiĐe͟ />

• If you want your service to be available to other applications, you can always add an

intent filter with an action name, like this:

• <seƌǀiĐe aŶdƌoid:Ŷaŵe=͟.MǇ“eƌǀiĐe͟>

• <intent-filter>

• <aĐtioŶ aŶdƌoid:Ŷaŵe=͟Ŷet.leaƌŶϮdeǀelop.MǇ“eƌǀiĐe͟ />

• </intent-filter>

• </service>

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

178

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 Button btnStart = (Button) findViewById(R.id.btnStartService);

 btnStart.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 startService(new Intent(getBaseContext(), MyService.class));

 }});

 Button btnStop = (Button) findViewById(R.id.btnStopService);

 btnStop.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 stopService(new Intent(getBaseContext(), MyService.class));

}

• To start a service, you use the startService() method, like this:

• startService(new Intent(getBaseContext(), MyService.class));

• If you are calling an external service, then the call to the startService() method will look like

this:

• staƌt“eƌǀiĐe;Ŷeǁ IŶteŶt;͞Ŷet.leaƌŶϮdeǀelop.MǇ“eƌǀiĐe͟ͿͿ;
• To stop a service, use the stopService() method, like this:

• stopService(new Intent(getBaseContext(), MyService.class));

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

179

Intents and Broadcast Receivers

• Intents: An inter-application message-passing framework. Using Intents you can broadcast

messages system-wide or to a target Activity or Service, stating your intention to have an action

performed. The system will then determine the target(s) that will perform any actions as

appropriate.

• Broadcast Receivers: Intent broadcast consumers. If you create and register a Broadcast

Receiver, your application can listen for broadcast Intents that match specific filter criteria.

Broadcast Receivers will automatically start your application to respond to an incoming Intent,

making them perfect for creating event-driven applications.

SMS Application

AndroidManifest.xml

• BeĐause seŶdiŶg “M“ ŵessages iŶĐuƌs additioŶal Đosts oŶ the useƌ͛s eŶd, iŶdiĐatiŶg the “M“
permissions in the AndroidManifest.xml file enables users to decide whether to allow the

application to install or not.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

180

MainActivity.java

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

181

• To send an SMS message programmatically, you use the SmsManager class. Unlike other classes,

you do not directly instantiate this class; instead, you call the getDefault() static method to obtain

a SmsManager object. You then send the SMS message using the sendTextMessage() method:

 private void sendSMS(String phoneNumber, String message)

 {

 SmsManager sms = SmsManager.getDefault();

 sms.sendTextMessage(phoneNumber, null, message, null, null);

 }

Following are the five arguments to the sendTextMessage() method:

• destinationAddress — Phone number of the recipient

• scAddress — Service center address; use null for default SMSC

• text — Content of the SMS message

• sentIntent — Pending intent to invoke when the message is sent

• deliveryIntent — Pending intent to invoke when the message has been delivered

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

Prepared by: Aamir Mustafa VU ID: MS150400200

182

Sending SMS

//---sends an SMS message to another device---

private void sendSMS(String phoneNumber, String message)

{

“tƌiŶg “ENT = ͞“M“_“ENT͟;
“tƌiŶg DELIVE‘ED = ͞“M“_DELIVE‘ED͟;
PendingIntent sentPI = PendingIntent.getBroadcast(this, 0,new Intent(SENT), 0);

PendingIntent deliveredPI = PendingIntent.getBroadcast(this, 0, new Intent(DELIVERED), 0);

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

183

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

184

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

185

• Using the SmsManager class, you can send SMS messages from within your application without

the need to involve the built-in Messaging application. However, sometimes it would be easier

if you could simply invoke the built-in Messaging application and let it do all the work of sending

the message.

Receiving SMS

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

186

• To listen for incoming SMS messages, you create a BroadcastReceiver class. The

BroadcastReceiver class enables your application to receive intents sent by other

applications using the sendBroadcast() method. Essentially, it enables your application

to handle events raised by other applications. When an intent is received, the

onReceive() method is called; hence, you need to override this. When an incoming SMS

message is received, the onReceive() method is fired.

• The SMS message is contained in the Intent object (intent; the second parameter in the

onReceive() method) via a Bundle object. The messages are stored in an Object array in

the PDU format. To extract each message, you use the static createFromPdu() method

from the SmsMessage class. The SMS message is then displayed using the Toast class.

The phone number of the sender is obtained via the getOriginatingAddress() method.

• One interesting characteristic of the BroadcastReceiver is that you can continue to listen

for incoming SMS messages even if the application is not running; as long as the

application is installed on the device, any incoming SMS messages will be received by the

application.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

187

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

188

Lecture 44 & 45
Notifications

• Status Bar Notifications

– A status bar notification adds an icon to the system's status bar (with an optional

ticker-text message) and an expanded message in the "Notifications" window.

– When the user selects the expanded message, Android fires an Intent that is defined by

the notification (usually to launch an Activity).

– You can also configure the notification to alert the user with a sound, a vibration, and

flashing lights on the device.

• A status bar notification should be used for any case in which a background Service

needs to alert the user about an event that requires a response.

• A background Service should never launch an Activity on its own in order to receive

user interaction.

• The Service should instead create a status bar notification that will launch the Activity

when selected by the user.

For More Info Visit Cluesbook.Com

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/app/Activity.html

 Mobile & Pervasive Computing

189

• An Activity or Service can initiate a status bar notification. Because an Activity can perform

actions only while it is active and in focus, you should create your status bar notifications from a

Service.

• This way, the notification can be created from the background, while the user is using another

application or while the device is asleep. To create a notification, you must use two classes:

Notification and NotificationManager.

• Use an instance of the Notification class to define the properties of your status bar notification,

such as the status bar icon, the expanded message, and extra settings such as a sound to play.

• The NotificationManager is an Android system service that executes and manages all

Notifications.

• In order to give it your Notification, you must retrieve a reference to the NotificationManager

with getSystemService() and then, when you want to notify the user, pass it your Notification

object with notify().

• Get Reference to Notification Manager

String ns = Context.NOTIFICATION_SERVICE;

NotificationManager mNotificationManager = (NotificationManager) getSystemService(ns);

• Instantiate the Notification:

int icon = R.drawable.notification_icon;

CharSequence tickerText = "Hello";

long when = System.currentTimeMillis();

Notification notification = new Notification(icon, tickerText, when);

• Define the Notification's expanded message and Intent:

Context context = getApplicationContext();

CharSequence contentTitle = "My notification";

CharSequence contentText = "Hello World!";

Intent notificationIntent = new Intent(this, MyClass.class);

PendingIntent contentIntent = PendingIntent.getActivity(this, 0, notificationIntent, 0);

notification.setLatestEventInfo(context, contentTitle, contentText, contentIntent);

• Pass the Notification to the NotificationManager:

private static final int HELLO_ID = 1;

mNotificationManager.notify(HELLO_ID, notification);

• Fancy Stuff

– Adding Sound

– Add Vibration

– Adding Flashing Lights

For More Info Visit Cluesbook.Com

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/app/Notification.html
http://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/reference/android/app/Notification.html
http://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/NotificationManager.html

 Mobile & Pervasive Computing

190

Widgets

• Widgets are little applications which can be placed on the home screen of your Android device.

• An widget gets its data on a periodic timetable. There are two methods to update a widget, one

is based on an XML configuration file and the other is based on AlarmManager.

• Define a layout file for your widget.

• Maintain an XML file (AppWidgetProviderInfo) which describes the properties of the widget, e.g.

size or fixed update frequency.

• Create a broadcast receiver which will be used to update the widgets. This receiver extends

AppWidgetProvider which provides additional lifecycle hooks for widgets.

• Maintain the App Widget configuration in the "AndroidManifest.xml" file.

• Optional you can also specify a configuration activities which is called once one instance of the

widget is added to the homescreen.

• To save power consumption a widget does not have its own process but is part of the

homescreen process.

• Therefore the widget UI is created as a RemoteView. A RemoteView can be executed by another

process with the same permissions as the original application.

• In the widget configuration file you can specify a fixed update interval. The system will wake up

after this time interval and call your broadcast receiver to udpate the widget. The smallest

update interval is 180000 milliseconds (30 minutes).

• <?xml version="1.0" encoding="utf-8"?>

• <appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"

android:updatePeriodMillis="180000" android:initialLayout="@layout/widget_layout"

android:minHeight="72dp" android:minWidth="146dp"> </appwidget-provider>

• AppWidget Provider

• Your broadcast receiver extends AppWidgetProvider. The AppWidgetProvider class implements

the onReceive() method, extracts the required information and calls the following widget

lifecycle methods.

Creating Database / Persistence

• Android incorporates SQLite (version 3 to be precise), a server-less, transactional database

engine for this purpose.

• Inside the onCreate() method declare and assign an SQLiteDatabase as follows:

• SQLiteDatabase db;

• db = openOrCreateDatabase("my_database.db", SQLiteDatabase.CREATE_ IF_NECESSARY, null);

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

191

• we can use the SQLiteDatabase method openOrCreateDatabase() to produce one from scratch,

as we did here. The openOrCreateDatabase() function takes a string name, an SQL mode, and a

CursorFactory object, which is a public interface for handling Cursor objects. The flag that we

used in the SQL mode, CREATE_IF_NECESSARY, is just one of several we could have applied—the

others being OPEN_READWRITE, OPEN_READONLY, and NO_ LOCALIZED_COLLATORS.

• Underneath this, define a table for our database in the following manner:

 final String CREATE_TABLE_CITIES = "CREATE TABLE tb_cities (" + "id INTEGER PRIMARY KEY

AUTOINC‘EMENT,͞ + "ĐitǇ_Ŷaŵe TEXTͿ;";
• Then execute this SQL statement: db.execSQL(CREATE_TABLE_CITIES);

• We put together an SQL statement, CREATE TABLE tb_cities (id INTEGER PRIMARY KEY

AUTOINCREMENT,city_name TEXT), which we concatenated into a string constant,

CREATE_TABLECITIES, for clarity. Any SQL statement can be constructed in this way and

executed with execSQL().

• Now using a ContentValues object insert some entries:

ContentValues cv = new ContentValues();

cv.put("city_name", "Aberdeen");

db.insert("tb_cities", null, cv);

cv.put("city_name", "Dundee");

db.insert("tb_cities", null, cv);

• Inserting data is something we will need to do often with a working database and here we took

advantage of the ContentValues class, which allows us to pass values to a ContentResolver that

provides us access to the underlying grammar or content model.

• And finally close the database:

• db.close();

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

192

• Making a database thread safe

• To apply locks around our database and therefore making it thread safe, use:

• db.setLockingEnabled(true);

• Versioning a database

• An Android SQLite database can be versioned with:

• db.setVersion(2);

Detecting User Activity

• Reading a device's orientation

• Measuring motion with the accelerometer

• Listing available sensors

• Recognizing a touch event

• Detecting multi-touch elements

• Recognizing gestures

• Handling multi-touch gestures

• Controlling on screen keyboards

• If one aspect of modern smartphones makes them stand out from other digital devices, it is

surely the large array of sensors that can be found on-board. Android handsets can detect speed,

motion, gravitational pull, and even the Earth's magnetic field.

• Combined with sensitive touch-screens capable of reading complex gestures, these new forms

of input device make smartphones among the most versatile and fun devices a programmer can

get his or her hands on.

• Android provides us with many handy tools for detecting user activity of this nature along with

an intuitive series of callbacks and listeners.

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

193

Reading Device Orientation

• Open the AndroidManifest.xml file and inside the <activity> node add a configChanges element

with the following value:

 <activity

 android:name=".OrientationReader"

 android:configChanges="orientation"

 android:label="@string/app_name">

 ...

 </activity>

• Open the Java activity window and form an association between a private class member,

mTextView, and the TextView that we created in XML:

 mTextView = (TextView) findViewById(R.id.text_box);

Override the onConfigurationChanged() method as follows:

@Override

public void onConfigurationChanged(Configuration config) {

 super.onConfigurationChanged(config);

 if (config.orientation == Configuration.ORIENTATION_LANDSCAPE) {

 mTextView.setText("landscape");

 } else if (config.orientation ==Configuration.ORIENTATION_PORTRAIT) {

 mTextView.setText("portrait");

}}

Measuring Speed with Accelerometer

• There are a wide and growing variety of sensors that can be found on an Android handset, from

accelerometers and gyroscopes to light and proximity sensors. Most of these devices can be

accessed with the android.hardware.SensorEvent class, although naturally they each produce

their own specific data sets.

• Gathering information from sensors is quite straightforward as Android provides a handy

interface, android.hardware.SensorEventListener, to facilitate this.

• Inside our main activity's Java class edit the declaration so that it implements

SensorEventListener, like so:

 public class MotionDetector extends Activity implements SensorEventListener {

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

194

• Just below this, declare a class field of type SensorManager:

 private SensorManager mSensorManager;

• At the end of the onCreate() method add the following SensorManager assignment:

• mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

• We need to disable our sensors when we are not using them, so add an onPause() and an

onResume() method, completed as seen here:

@Override

protected void onResume() {

 super.onResume();

 mSensorManager.registerListener(this,

mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),

SensorManager.SENSOR_DELAY_UI);

}

• Registering the listener, on the other hand, was slightly more complex, requiring a

SensorEventListener, an int type, which here was the default accelerometer, and a delay value.

This delay (int) value controls how quickly the sensor operates and can have a dramatic affect on

power usage. There are four settings:

• ffSENSOR_DELAY_FASTEST

• ffSENSOR_DELAY_GAME

• ffSENSOR_DELAY_NORMAL

• ffSENSOR_DELAY_UI

@Override

protected void onPause() {

super.onPause();

mSensorManager.unregisterListener(this);

}

• Many sensors, including the accelerometer, are a powerful drain on a device's battery so we

need to disable them when not in use. We did so in the onPause() callback using

SensorManager's unregisterListener(SensorEventListener) method.

fill out the body of the onSensorChanged() method as follows:

public void onSensorChanged(SensorEvent e) {

 synchronized (this) {

if (e.sensor.getType() == Sensor.TYPE_ACCELEROMETER) {

mTextView.setText("x= " + e.values[0] + "\ny= " + e.values[1] +"\nz= " + e.values[2]);

}}}

• The actual reading of the accelerometer's values was done in the onSensorChanged(). The

accelerometer, along with the magnetic field sensor and the gyroscope, returns three values

based on a coordinate system. In our example here the three values describe the acceleration of

the device along each of the three axes of this coordinate system measured in m/s2

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

195

•
The onAccuracyChanged() method is not used in this example but must be included anyway—you

can leave it like this:

public void onAccuracyChanged(Sensor sensor, int accuracy) {

// TODO Auto-generated method stub

}

• Reading a sensor's values requires several components, including the SensorEventListener

interface that implements two callbacks which we use to respond to changes in sensor values

• or accuracy. The onAccuracyChanged() callback is required less often but is nevertheless useful

as demands on battery and environmental conditions can cause this setting to change.

• The possible constant int values for this can be:

• SENSOR_STATUS_ACCURACY_HIGH,

• SENSOR_STATUS_ACCURACY_MEDIUM

• SENSOR_STATUS_ACCURACY_LOW

• Provided you have assigned the TextView with findViewById(), this program can be run on any

emulator or handset with an accelerometer:

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

196

Other Types of Sensors

• TYPE_ACCELEROMETER

• TYPE_ALL

• TYPE_GRAVITY

• TYPE_GYROSCOPE

• TYPE_LIGHT

• TYPE_LINEAR_ACCELERATION

• TYPE_MAGNETIC_FIELD

• TYPE_ORIENTATION

• TYPE_PRESSURE

• TYPE_PROXIMITY

• TYPE_ROTATION_VECTOR

• TYPE_TEMPERATURE

Listing Available Sensors

• Android handsets come with a wide variety of sensors but which sensors are included is a matter

for manufacturers to decide and differs from model to model.

• As developers we need some way to detect which sensors are available to us. In particular we

may want to select between sensors that perform similar functions.

• For example it may be preferable to measure motion with a gyroscope if one is available but

prepare a function that utilizes the accelerometer when one is not.

• Open up the Java activity file and declare the following private members:

private SensorManager mSensorManager;

private TextView mTextView;

private List mList;

• Inside the onCreate() method assign our SensorManager and TextView like this:

mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

mTextView = (TextView) findViewById(R.id.text_view);

• Finally, add the following statement block just beneath this:

mList = mSensorManager.getSensorList(Sensor.TYPE_ALL);

for (int i = 1; i < mList.size(); i++) {

mTextView.append("\n" + mList.get(i));

}

For More Info Visit Cluesbook.Com

 Mobile & Pervasive Computing

197

Other Functionalities

• Recognizing a Touch Event

• Detecting Multi-Touch Event

• Recognizing Gestures

• Controlling on-screen Keyboard

For More Info Visit Cluesbook.Com

