


 PHP is a server scripting language, and a 
powerful tool for making dynamic and 
interactive Web pages.

 PHP is a widely-used, free, and efficient 
alternative to competitors such as Microsoft's 
ASP.



While PHP originally stood for Personal Home 
Page, it now stands for (PHP: Hypertext 
Preprocessor), which is a recursive acronym.

P -> PHP
H -> Hypertext
P -> Preprocessor



 It is powerful enough to be at the core of the 
biggest blogging system on the web 
(WordPress)!

 It is deep enough to run the largest social 
network (Facebook)!

 It is also easy enough to be a beginner's first 
server side language!





 PHP can generate dynamic page content

 PHP can create, open, read, write, delete, and 
close files on the server

 PHP can collect form data

 PHP can send and receive cookies



 PHP can add, delete, modify data in your 
database

 PHP can be used to control user-access

 PHP can encrypt data



With PHP you are not limited to output HTML. 

You can output 

 Images
PDF files 
Flash movies
XHTML
XML.





 PHP runs on various platforms (Windows, 
Linux, Unix, Mac OS X, etc.)

 PHP is compatible with almost all servers 
used today (Apache, IIS, etc.)



 PHP supports a wide range of databases like 
MySQL, MS Access, MS SQL Server, Oracle, etc

 PHP is free. 

 PHP is easy to learn and runs efficiently on 
the server side



 PHP is FREE

 It runs on Linux which is FREE

 It support MySQL Free

 It runs on Apache which is also free

That is why most of the time hosting of PHP is 
cheap.





 A PHP script can be placed anywhere in the 
document.

 A PHP script starts with <?php and ends 
with ?>:

 <?php
// PHP code goes here
?>



 Extension of PHP page should be .php



PHP statements end with a semicolon (;)





To get the PHP running at your computer you 
will need to 
 install a web server
 install PHP
 install a database, such as MySQL

The official PHP website (PHP.net) has 
installation instructions for 
PHP: http://php.net/manual/en/install.php

http://php.net/manual/en/install.php


 Installation and configuration process of PHP 
can be easily done using Bundled Software 
know as LAMP and WAMP

 LAMP Stands for Linux, Apache, MySQL 
and PHP.

 WAMP is Windows, Apache, MySQL and PHP.

 We will be using a WAMP bundle 



 This is a open source platform.

 WAMP Server works on Windows Operating 
System only.

 WAMP is a combine 
package of Windows, Apache, MySQL 
and PHP.

 .



VertrigoServ is easy to install package 
consisting of

 Apache (HTTP web server)
 PHP(Server Side Scripting)
 MySQL (SQL Database Management System)
 PhpMyAdmin (tool written in PHP intended to 

handle the administration of MySQL)





<!DOCTYPE html>
<html>
<body>

<h1>My first PHP page</h1>

<?php
echo "Hello World!";

?>

</body>
</html>





In PHP there are two basic ways to get output: 
h d i techo and print.

The differences are small:The differences are small: 
 echo has no return value while print has a 

return value of 1 so it can be used in 
iexpressions. 

 echo can take multiple parameters (although 
such usage is rare) while print can take onesuch usage is rare) while print can take one 
argument. 

 echo is marginally faster than print.



The echo statement can be used with or 
without parentheses: echo or echo().



The following example shows how to output 
text with the echo command (notice that the 
text can contain HTML markup)



<?php
echo "<h2>PHP is Fun!</h2>";
echo "Hello world!<br>";
echo "I'm about to learn PHP!<br>";echo I m about to learn PHP!<br> ;
echo "This ", "string ", "was ", "made ", 
"with multiple parameters.";p p ;

?>



<?php
$txt1 = "Learn PHP";
$txt2 = "W3Schools.com";
$x = 5;$x = 5;
$y = 4;

echo "<h2>$txt1</h2>";
echo "Study PHP at $txt2<br>";

h $ $echo $x + $y;
?>



 The following example shows how to output 
text with the print command (notice that the 
text can contain HTML markup)

 <?php
print "<h2>PHP is Fun!</h2>";print <h2>PHP is Fun!</h2> ;
print "Hello world!<br>";
print "I'm about to learn PHP!";
?>





A comment in PHP code is a line that is not 
read/executed as part of the program. Its only 
purpose is to be read by someone who ispurpose is to be read by someone who is 
looking at the code.



Comments can be used to:

 Let others understand what you are doing

 Remind yourself of what you did - Most 
programmers have experienced coming backprogrammers have experienced coming back 
to their own work a year or two later and 
having to re-figure out what they did.having to re figure out what they did. 
Comments can remind you of what you were 
thinking when you wrote the code.



PHP supports several ways of commenting:

 // (Single Line Comment)
 # (Single Line Comment)
 /* */ (Multiple Line Comments)



<!DOCTYPE html>
<html>
<body>

<?php
// This is a single-line comment

# This is also a single-line comment

/*
This is a multiple lines comment blockThis is a multiple-lines comment block
that spans over multiple
lines
*/
<?><?>

</body>
</html>



<!DOCTYPE html>
ht l<html>

<body>
<?php><?php>
// You can also use comments to leave out 
parts of a code line
$ 5 /* + 15 */ + 5$x = 5 /* + 15 */ + 5;
echo $x;
?>
</body>
</html>





In PHP, all keywords (e.g. if, else, while, echo, 
etc.), classes, functions, and user-defined 
functions are NOT case sensitivefunctions are NOT case-sensitive.



<!DOCTYPE html>
<html><html>
<body>

<?php<?php

ECHO "Hello World!<br>";
echo "Hello World!<br>";echo Hello World!<br> ;
EcHo "Hello World!<br>";

?>

</body>
</html>





All variable names are case-sensitive

<!DOCTYPE html>
<html>
<body><body>

<?php
$color = "red";
echo "My car is " $color "<br>";echo My car is  . $color . <br> ;
echo "My house is " . $COLOR . "<br>";
echo "My boat is " . $coLOR . "<br>";

?>?>

</body>
</html>







 A variable can have a short name (like x and 
y) or a more descriptive name (age, 
studentname, total_volume).



 A variable starts with the $ sign, followed by 
the name of the variable
A i bl i h l h A variable name must start with a letter or the 
underscore character

 A variable name cannot start with a number A variable name cannot start with a number
 A variable name can only contain alpha-

numeric characters and underscores (A-z, 0-numeric characters and underscores (A z, 0
9, and _ )



 Variable names are case-sensitive ($age and 
$AGE diff i bl )$AGE are two different variables)





In PHP, a variable starts with the $ sign, 
followed by the name of the variable:

E lExample:



<!DOCTYPE html>
<html><html>
<body>

<?php
$ " ll ld "$txt = "Hello world!";
$x = 5;
$y = 10.5;

echo $txt;
echo "<br>";
echo $x;

h " b "echo "<br>";
echo $y;
?>

</body>
</html>



After the execution of the statements above, 
the variable $txt will hold the value Hello 
world! the variable $x will hold the value 5world!, the variable $x will hold the value 5, 
and the variable $y will hold the value 10.5.



Note: Unlike other programming languages, 
PHP has no command for declaring a variable. 
It is created the moment you first assign aIt is created the moment you first assign a 
value to it.





Variables can store data of different types, and 
different data types can do different things.
PHP supports the following data types:

 String
I t Integer

 Float (double)
 Boolean Boolean
 Array
 Object Object
 NULL



 A string is a sequence of characters, like 
"Hello world!".

 A string can be any text inside quotes. You 
can use single or double quotes:can use single or double quotes:



<?php
$x = "Hello world!";
$y = 'Hello world!';

echo $x;
echo "<br>";;
echo $y;
?>





 An integer is a whole number (without 
decimals). It is a number between -
2,147,483,648 and +2,147,483,647.



 An integer must have at least one digit (0-9)
 An integer cannot contain comma or blanks
 An integer must not have a decimal point
 An integer can be either positive or negative
 Integers can be specified in three formats: 

decimal (10 based) hexadecimal (16 baseddecimal (10-based), hexadecimal (16-based 
- prefixed with 0x) or octal (8-based -
prefixed with 0)prefixed with 0)



<?php
$x = 5985;
var_dump($x);
?>?>

var dump($x) will return the data type variablevar_dump($x) will return the data type variable.





A float (floating point number) is a number 
with a decimal point or a number in 
exponential form.

In the following example $x is a float. 

<?php
$x = 10.365;$x  10.365;
var_dump($x);
?>





A Boolean represents two possible states: TRUE 
or FALSE.

$$x = true;
$y = false;

Booleans are often used in conditional testing. 
You will learn more about conditional testing inYou will learn more about conditional testing in 
a later chapter of this tutorial.



An object is a data type which stores data and 
information on how to process that data.
In PHP, an object must be explicitly declared.

First we must declare a class of object. For this, 
we use the class keyword A class is a structurewe use the class keyword. A class is a structure 
that can contain properties and methods:



 <?php <?php
 class Car {
 function Car() {
 $this >model = “Honda"; $this->model = Honda ;
 }
 }
 // create an object // create an object
 $fahad = new Car();

 // show object properties // show object properties
 echo $fahad->model;
 ?>





Null is a special data type which can have only 
one value: NULL.

A i bl f d NULL i i bl hA variable of data type NULL is a variable that 
has no value assigned to it.

 Tip: If a variable is created without a value, it 
is automatically assigned a value of NULL.is automatically assigned a value of NULL.

 Variables can also be emptied by setting the 
value to NULL:



 <?php
$x = "Hello world!";
$x = null;
var dump($x);var_dump($x);
?>







 PHP automatically converts the variable to the 
correct data type, depending on its value.

I h l h C C d J In other languages such as C, C++, and Java, 
the programmer must declare the name and 
type of the variable before using ittype of the variable before using it.



 <?php
$x = 5;
$y = 4;
echo $x + $y;echo $x + $y;

 $x = “Pakistan” $x = Pakistan

 Echo $x Echo $x


?>







In PHP, variables can be declared anywhere in 
th i tthe script.

The scope of a variable is the part of the scriptThe scope of a variable is the part of the script 
where the variable can be referenced/used.

PHP has three different variable scopes:
 local
 global global
 static



A variable declared outside a function has a 
GLOBAL SCOPE and can only be accessed 
outside a function:



 <?php
$x = 5; // global scope$x = 5; // global scope

function myTest() {
// using x inside this function will generate an// using x inside this function will generate an 

error
echo "<p>Variable x inside function is: 

$x</p>";/p ;
}
myTest();

h " V i bl t id f ti iecho "<p>Variable x outside function is: 
$x</p>";
?>





A variable declared within a function has a 
LOCAL SCOPE and can only be accessed within 
that function:



 <?php
function myTest() {function myTest() {

$x = 5; // local scope
echo "<p>Variable x inside function is: 

$x</p>";$x</p> ;
}
myTest();

// using x outside the function will generate an 
error
echo "<p>Variable x outside function is: 
$ / "$x</p>";
?>





The global keyword is used to access a global 
variable from within a function.

T d hi h l b l k d b f hTo do this, use the global keyword before the 
variables (inside the function):



<?php
$x 5;$x = 5;
$y = 10;

f i T () {function myTest() {
global $x, $y;
$y = $x + $y;

}

myTest();y ();
echo $y; // outputs 15
?>





Normally, when a function is 
completed/executed, all of its variables are 
deleted. However, sometimes we want a local 
variable NOT to be deleted We need it for avariable NOT to be deleted. We need it for a 
further job.

To do this, use the static keyword when you 
first declare the variable:



<?php
f ti T t() {function myTest() {

static $x = 0;
echo $x;;
$x++;

}

myTest();
myTest();

T ()myTest();
?>







A string is a sequence of characters, like "Hello 
world!".





The PHP strlen() function returns the length of 
a string.
Th l b l h l h f hThe example below returns the length of the 
string "Hello world!":

<?php
echo strlen("Hello world!"); // outputs 12echo strlen( Hello world! ); // outputs 12
?>



The PHP str_word_count() function counts the 
number of words in a string:

<?php
echo str word count("Hello world!");echo str_word_count( Hello world! ); 

// outputs 2
?>?>



The PHP strrev() function reverses a string:

<?php
echo strrev("Hello world!"); 
// outputs !dlrow olleH// outputs !dlrow olleH
?>



The PHP strpos() function searches for a 
specific text within a string.

If h i f d h f i hIf a match is found, the function returns the 
character position of the first match. If no 
match is found it will return FALSEmatch is found, it will return FALSE.



The example below searches for the text 
"world" in the string "Hello world!":

? h<?php
echo strpos("Hello world!", "world"); 
// outputs 6// outputs 6
?>



 The PHP str_replace() function replaces some 
characters with some other characters in a 
string.

 The example below replaces the text "world" The example below replaces the text world  
with "Dolly":

<?php
echo str_replace("world", "Dolly", "Hello p ( , y ,
world!"); // outputs Hello Dolly!
?>



 For a complete reference of all string 
functions, go to complete PHP String 
Reference.

 http://www.w3schools.com/php/php_ref_stri
ng aspng.asp

 The PHP string reference contains description The PHP string reference contains description 
and example of use, for each function!





A constant is an identifier (name) for a simple 
value. The value cannot be changed during the 
script.

A valid constant name starts with a letter or 
underscore (no $ sign before the constantunderscore (no $ sign before the constant 
name).

Note: Unlike variables, constants are 
automatically global across the entire script.



To create a constant, use the define() function.

Syntax
define(name value case insensitive)define(name, value, case-insensitive)

Parameters:Parameters:
 name: Specifies the name of the constant
 value: Specifies the value of the constant
 case-insensitive: Specifies whether the constant 

name should be case-insensitive. Default is false



The example below creates a constant with 
a case-sensitive name:







Operators are used to perform operations on 
variables and values.



PHP divides the operators in the following 
groups:

 Arithmetic operators Arithmetic operators
 Assignment operators
 Comparison operators
 Increment/Decrement operators
 Logical operators

St i t String operators
 Array operators





Operator Name Example Result

+ Addition $x + $y Sum of $x and $y

- Subtraction $x - $y Difference of $x and $y

* Multiplication $x * $y Product of $x and $y

/ Division $x / $y Quotient of $x and $y/ Division $x / $y Quotient of $x and $y

% Modulus $x % $y Remainder of $x divided by 
$y

** Exponentiation $x ** $y Result of raising $x to the 
$y'th power (Introduced in 
PHP 5.6)





 The PHP assignment operators are used with 
numeric values to write a value to a variable.

Th b i i i PHP i " " The basic assignment operator in PHP is "=". 
It means that the left operand gets set to the 
value of the assignment expression on thevalue of the assignment expression on the 
right.



Assignment Same as... Description

x = y x = y The left operand gets set to the value of the 
expression on the right

x + y x x + y Additionx += y x = x + y Addition

x -= y x = x - y Subtraction

x *= y x = x * y Multiplication

x / y x x / y Divisionx /= y x = x / y Division

x %= y x = x % y Modulus





Operator Name Example Result

== Equal $x == $y Returns true if $x is equal 
to $y

=== Identical $x === 
$y

Returns true if $x is equal 
to $y, and they are of the 
same type

!= Not equal $x != $y Returns true if $x is not 
equal to $yequal to $y

<> Not equal $x <> $y Returns true if $x is not 
equal to $yq y



!== Not identical $x !== $y Returns true if $x 
i t l tis not equal to 
$y, or they are 
not of the same 
type

> Greater than $x > $y Returns true if $x 
is greater than 
$y

< Less than $x < $y Returns true if $x 
is less than $yis less than $y

>= Greater than or 
equal to

$x >= $y Returns true if $x 
is greater than or 

l $equal to $y

<= Less than or 
equal to

$x <= $y Returns true if $x 
is less than orequal to is less than or 
equal to $y





Operator Name Description

++$x Pre-increment Increments $x by one, then returns $x

$x++ Post-increment Returns $x, then increments $x by one

--$x Pre-decrement Decrements $x by one, then returns $x

$x-- Post-
decrement

Returns $x, then decrements $x by one





Operator Name Example Result

and And $x and $y True if both $x and $y are 
true

or Or $x or $y True if either $x or $y is 
true

xor Xor $x xor $y True if either $x or $y isxor Xor $x xor $y True if either $x or $y is 
true, but not both

&& And $x && $y True if both $x and $y are 
truetrue

|| Or $x || $y True if either $x or $y is 
true

! Not !$ Tr e if $ is not tr e! Not !$x True if $x is not true





Operator Name Example Result

. Concatenation $txt1 . $txt2 Concatenation of 
$txt1 and $txt2$txt1 and $txt2

.= Concatenation $txt1 .= $txt2 Appends $txt2 to 
assignment $txt1







Condition will 
be evaluated to 

true or false









































Multiple if statements if … elseif…  else

if ($num1 > $num2)
echo “Number 1 is greater than number 2” ;

if($num1 < $num2)
echo “Number 2 is greater than number 1” ;

if($num1 == $num2)
echo “Both numbers are equal” ;

if ($num1 > $num2)
echo “Number 1 is greater than number 2” ;

else if ($num1 < $num2)
echo “Number 1 is less than  number 2” ;

else
echo “Both numbers are equal” ;



























In the first part, we set the value of loop 
counter and it is initialized only once at the 

start of loop



In the second part, we set the condition for 
the continuation/termination of loop



In third part, we increment/decrement the 
value of loop counter



for ($i = 0; $i<5;  $i++)
{

echo “value of i is $i <br>” ;
}

Iterations Condition
($i<5)

Loop body
Output

Increment
$i++

1 0<5 (True) 0 1
2 1<5 (True ) 1 2
3 2<5 (True) 2 3
4 3<5 (True) 3 4
5 4<5 (True) 4 5
6 5<5 (False) Loop terminates

















$i = 0 ;
while($i<5)
{

echo “value of i is $i <br>” ;
$i++ ;

}
Iterations Condition

($i<5)
Loop body

Output
Increment

$i++
1 0<5 (True) 0 1
2 1<5 (True ) 1 2
3 2<5 (True) 2 3
4 3<5 (True) 3 4
5 4<5 (True) 4 5
6 5<5 (False) Loop terminates













$i = 0 ;
do
{

echo “value of i is $i <br>” ;
$i++ ;

} while($i<5) ;

Iterations Loop body
Output

Increment
$i++

Condition
($i<5)

1 0 1 1<5 (True)

2 1 2 2<5 (True )

3 2 3 3<5 (True)

4 3 4 4<5 (True)

5 4 5 5<5 (False)

Here loop terminates



















 The include statement takes all the 
text/code/markup that exists in the specified 
file and copies it into the file that uses the 
include statement.

 Including files is very useful when you want 
to include the same PHP, HTML, or text on 
multiple pages of a website.



include 'filename';



Assume we have a standard footer file called 
"footer.php", that looks like this:

<?php

echo "<p>Copyright; 1990-" . date("Y") . " 
ABC.com</p>";

?>



To include the footer file in a page, use the include 
statement:

<html>
<body>

<h1>Welcome to my home page!</h1>
<p>Some text.</p>
<p>Some more text.</p>

<?php include 'footer.php';?>

</body>
</html> 





 The PHP date() function is used to format a 
date and/or a time.



 The PHP date() function formats a timestamp 
to a more readable date and time.

Syntax 
date(format,timestamp)

Parameter Description
format Required. Specifies the format of the timestamp
timestamp Optional. Specifies a timestamp. Default is the 

current date and time

Note that the PHP date() function will return the current date/time 
of the server!



 The required format parameter of the date() 
function specifies how to format the date (or 
time).

 Here are some characters that are commonly 
used for dates:
◦ d - Represents the day of the month (01 to 31) 
◦ m - Represents a month (01 to 12)
◦ Y - Represents a year (in four digits)
◦ l (lowercase 'L') - Represents the day of the week

 Other characters, like"/", ".", or "-" can also be 
inserted between the characters to add additional 
formatting.



 The example below formats today's date in 
three different ways:

<?php
echo "Today is " . date("Y/m/d") . "<br>";
echo "Today is " . date("Y.m.d") . "<br>";
echo "Today is " . date("Y-m-d") . "<br>";
echo "Today is " . date("l");
?>



 Use the date() function to automatically 
update the copyright year on your website:

Example

&copy; 2010-<?php echo date("Y")?>



 Here are some characters that are commonly 
used for times:

◦ h - 12-hour format of an hour with leading zeros 
(01 to 12) 
◦ i - Minutes with leading zeros (00 to 59)
◦ s - Seconds with leading zeros (00 to 59)
◦ a - Lowercase Ante meridiem and Post meridiem 

(am or pm)



 The example below outputs the current time 
in the specified format:

<?php
echo "The time is " . date("h:i:sa");
?>



 If the time you got back from the code is not 
the right time, it's probably because your 
server is in another country or set up for a 
different timezone.

 So, if you need the time to be correct 
according to a specific location, you can set a 
timezone to use. 



 The example below sets the timezone to 
"Asia/Karachi", then outputs the current time 
in the specified format:

Example

<?php
date_default_timezone_set("Asia/Karachi");
echo "The time is " . date("h:i:sa");
?>





 A cookie is often used to identify a user. A 
cookie is a small file that the server embeds 
on the user's computer. 

 Each time the same computer requests a 
page with a browser, it will send the cookie 
too. 

 With PHP, you can both create and retrieve 
cookie values.



A cookie is created with the setcookie() 
function.

Syntax

setcookie(name, value, expire, path, domain, 
secure, httponly);

Only the name parameter is required. All other 
parameters are optional.

Note: The setcookie() function must appear BEFORE the <html> tag.



<?php
$cookie_name = "user";
$cookie_value = "Ahmed";
setcookie($cookie_name, $cookie_value, time() + (86400 
* 30), "/"); // 86400 = 1 day 
?>
<html><body>
<?php
if(!isset($_COOKIE[$cookie_name])) {

echo "Cookie named '" . $cookie_name . "' is not set!";
} else {

echo "Cookie '" . $cookie_name . "' is set!<br>";
echo "Value is: " . $_COOKIE[$cookie_name];}

?>
</body></html> 

The value of the cookie is automatically URL encoded when sending the 
cookie, and automatically decoded when received (to prevent URL 
encoding, use setrawcookie() instead).



To delete a cookie, use the setcookie() function with an 
expiration date in the past:

Example

<?php
// set the expiration date to one hour ago
setcookie("user", "", time() - 3600,"/");
?>
<html><body>
<?php
echo "Cookie 'user' is deleted.";
?>
</body></html> 





 A session is a way to store information (in variables) to 
be used across several pages.

 Unlike a cookie, the information is not stored on the 
users computer.

 When you work with an application, you open it, do 
some changes, and then you close it. This is much like 
a Session.

 On the internet there is one problem: the web server 
does not know who you are, because the HTTP address 
doesn't maintain state.

 Session variables solve this problem by storing user 
information to be used across multiple pages (e.g. 
username etc.). By default, session variables last until 
the user closes the browser.

 Session variables hold information about one single 
user, and are available to all pages in one application.



 A session is started with the session_start() function. 
 Session variables are set with the PHP global variable: $_SESSION.
 Now, let's create a new page called "session_demo1.php". In this page, 

we start a new PHP session and set some session variables: 

Example

<?php
// Start the session
session_start();
?>
<!DOCTYPE html>
<html><body>
<?php
// Set session variables
$_SESSION["favcolor"] = "green";
$_SESSION["favanimal"] = "cat";
echo "Session variables are set.";
?>
</body></html> 

Note: The session_start() function must be the very first thing in your 
document. Before any HTML tags.



 Next, we create another page called 
"session_demo2.php". From this page, we will 
access the session information we set on the first 
page ("session_demo1.php").

 Session variables are not passed individually to 
each new page, instead they are retrieved from 
the session we open at the beginning of each 
page (session_start()).

 All session variable values are stored in the 
global $_SESSION variable



<?php
session_start();
?>
<!DOCTYPE html>
<html>
<body>

<?php
// Echo session variables that were set on previous page
echo "Favorite color is " . $_SESSION["favcolor"] . ".<br>";
echo "Favorite animal is " . $_SESSION["favanimal"] . ".";
?>

</body>
</html> 



 Another way to show all the session variable values for a user 
session is to run the following code:

<?php
session_start();
?>
<!DOCTYPE html>
<html>
<body>

<?php
print_r($_SESSION);
?>

</body>
</html> 



 Most sessions set a user-key on the user's 
computer that looks something like this: 
765487cf34ert8dede5a562e4f3a7e12. 

 Then, when a session is opened on another 
page, it scans the computer for a user-key. 

 If there is a match, it accesses that session, if 
not, it starts a new session. 



 Most sessions set a user-key on the user's 
computer that looks something like this: 
765487cf34ert8dede5a562e4f3a7e12. 

 Then, when a session is opened on another 
page, it scans the computer for a user-key. 

 If there is a match, it accesses that session, if 
not, it starts a new session. 



To remove all global session variables and destroy the session, use 
session_unset() and session_destroy(): 

Example

<?php
session_start();
?>
<!DOCTYPE html>
<html><body>

<?php
// remove all session variables
session_unset(); 

// destroy the session 
session_destroy(); 
?>

</body></html> 





Filters are used for 
 Validating data = Determine if the data is in proper form. 
 Sanitizing data = Remove any illegal character from the data. 

 Many web applications receive external input. External 
input/data can be: 
◦ User input from a form 
◦ Cookies 
◦ Web services data 
◦ Server variables 
◦ Database query results  

 
 You should always validate external data! 
 Invalid submitted data can lead to security problems and break 

your webpage! 
 By using PHP filters you can be sure your application gets the 

correct input!  
 



 The filter_var() function both validate and 
sanitize data. 

  

 The filter_var() function filters a single 
variable with a specified filter. It takes two 
pieces of data: 
◦ The variable you want to check 

◦ The type of check to use 

 



 The following example uses the filter_var() 
function to remove all HTML tags from a string: 

 

Example 

  

<?php 

$str = "<h1>Hello World!</h1>"; 

$newstr = filter_var($str, 
FILTER_SANITIZE_STRING); 

echo $newstr; 

?>  



 The following example uses the filter_var() function to first remove all 
illegal characters from a URL, then check if $url is a valid URL: 

  
Example 
  
<?php 
$url = "http://www.vu.edu.pk"; 

 
// Remove all illegal characters from a url 
$url = filter_var($url, FILTER_SANITIZE_URL); 

 
// Validate url 
if (!filter_var($url, FILTER_VALIDATE_URL) === false) { 
    echo("$url is a valid URL"); 
} else { 
    echo("$url is not a valid URL"); 
} 
?>  



 The following example uses the filter_var() function to first remove all 
illegal characters from the $email variable, then check if it is a valid email 
address: 

 
Example 
  
<?php 
$email = "john.doe@example.com"; 

 
// Remove all illegal characters from email 
$email = filter_var($email, FILTER_SANITIZE_EMAIL); 

 
// Validate e-mail 
if (!filter_var($email, FILTER_VALIDATE_EMAIL) === false) { 
    echo("$email is a valid email address"); 
} else { 
    echo("$email is not a valid email address"); 
} 
?>  



 The following example uses the filter_var() function to check if 
the variable $int is an integer. If $int is an integer, the output of 
the code above will be: "Integer is valid". If $int is not an integer, 
the output will be: "Integer is not valid": 

 
Example 
  
<?php 
$int = 100; 

 
if (!filter_var($int, FILTER_VALIDATE_INT) === false) { 
    echo("Integer is valid"); 
} else { 
    echo("Integer is not valid"); 
} 
?>  



 In the previous example, if $int was set to 0, the function above 
will return "Integer is not valid". To solve this problem, use the 
code below: 

 
Example 
  
<?php 
$int = 0; 

 
if (filter_var($int, FILTER_VALIDATE_INT) === 0 || !filter_var($int, 
FILTER_VALIDATE_INT) === false) { 
    echo("Integer is valid"); 
} else { 
    echo("Integer is not valid"); 
} 
?>  



 The following example uses the filter_var() function to 
check if the variable $ip is a valid IP address: 

 
Example 
  
<?php 
$ip = "127.0.0.1"; 

 
if (!filter_var($ip, FILTER_VALIDATE_IP) === false) { 
    echo("$ip is a valid IP address"); 
} else { 
    echo("$ip is not a valid IP address"); 
} 
?>  





 Data base 
◦ A database is an organized collection of data.  

 Database management system (DBMS) 
◦ It is a computer software application, designed to 

allow the definition, creation, querying, update, and 
administration of databases.   

◦ Example 
Some examples of DBMS are : 

 MySQL 

 PostgreSQL 

 Microsoft SQL Server 

 Oracle 

 Sybase  
 

 
2 



 A free, fast, reliable, easy-to-use, multi-user 
multi-threaded relational database system. 

 SQL (Structured Query Language) is use in 
MYSQL database system. 

 It is freely available and released under GPL 
(GNU General Public License ). 

 Officially pronounced “my Ess Que Ell” (not 
my sequel). 
 

3 





 There are many tools available for handling 
MY SQL databases such as: 

 

 XAMPP :consisting mainly of the Apache HTTP 
Server, MySQL database 

 WAMP:consisting of the Apache web 
server, OpenSSL for SSL 
support, MySQL database  
 

 For our course we will use WAMP 

https://en.wikipedia.org/wiki/OpenSSL


 Is a FREE software tool written 
in PHP intended to handle the administration 
of MySQL over the Internet.  

 PhpMyAdmin supports a wide range of 
operations with MySQL, the most frequently 
used being the managing of databases, 
tables, fields, relations, indexes, users, 
permissions.  

 You still have the ability to execute SQL 
statements directly as well. 

 



 





 These mysql database tables contain grant 
information: 

  user: User accounts, global privileges, and 
other non-privilege columns. 

  db: Database-level privileges. 

  host: Obsolete. 

  tables_priv: Table-level privileges. 

  columns_priv: Column-level privileges. 

  procs_priv: Stored procedure and function 
privileges. 

 



 Used in PHP code, 
 <?php 

$servername = "localhost"; 
$username = "username"; 
$password = "password"; 
 
// Create connection 
$conn = mysqli_connect($servername, $username, 
$password); 
 
// Check connection 
if (!$conn) { 
    die("Connection failed: " . mysqli_connect_error()); 
} 
echo "Connected successfully"; 
?>  
 





 Earlier versions of PHP used the MySQL 
extension. PHP version 5 and after that 
work with a MySQL database using: 

 

 MySQLi extension (the "i" stands for 
improved) 
 

 PDO (PHP Data Objects) 

 



 PDO will work on 12 different 
database systems, where as MySQLi 
will only work with MySQL databases.  

 Three ways of working with PHP and 
MySQL:  

          i-  MySQLi (object-oriented) 

          ii- MySQLi (procedural) 

          iii- PDO 
 

Note:  We will use Procedural method in our examples. 





The CREATE DATABASE statement is used to 
create a database in MySQL. 

 

Examples  
 
<?PHP   $servername = "localhost"; 
 
$username = “root"; 
 
$password = “"; 
 
 



// Create connection 
$conn = mysqli_connect($servername, $username, 
$password); 
 
// Check connection 
if (!$conn) { 
    die("Connection failed: " . mysqli_connect_error());} 
 
   
       // Create database 
$sql = "CREATE DATABASE mystudent"; 
if (mysqli_query($conn, $sql)) { 
    echo "Database created successfully"; 
} else { 
    echo "Error creating database: " . mysqli_error($conn); 
}    ?> 

 

 





 The CREATE TABLE statement is used to create a table in 
MySQL. 
 

 We will create a table named “Student", with five 
columns: “s_id", "firstname", "lastname", "email" and 
"reg_date":  

 
SQL Statement:- 
 

CREATE TABLE Student ( 
s_id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY, 
firstname VARCHAR(30) NOT NULL, 
lastname VARCHAR(30) NOT NULL, 
email VARCHAR(50), 
reg_date TIMESTAMP 
)  

 



Example:- 
<?php 
$servername = "localhost"; 
$username = “root"; 
$password = “"; 
$dbname = "mystudent"; 
 
// Create connection 
$conn = mysqli_connect($servername, $username, 
$password, $dbname); 
// Check connection 
if (!$conn) { 
    die("Connection failed: " . mysqli_connect_error()); 
} 
 
 
 



// sql to create table 
$sql = "CREATE TABLE student ( 
id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,  
firstname VARCHAR(30) NOT NULL, 
lastname VARCHAR(30) NOT NULL, 
email VARCHAR(50), 
reg_date TIMESTAMP 
)"; 
 
if (mysqli_query($conn, $sql)) { 
    echo "Table student created successfully"; 
} else { 
    echo "Error creating table: " . mysqli_error($conn); 
} 
 
mysqli_close($conn); 
?> 
 





 When a database and a table have been 
created, we can start adding data in them. 

Here are some syntax rules to follow: 

 The SQL query must be quoted in PHP 

 String values inside the SQL query must be 
quoted 

 Numeric values must not be quoted 

 The word NULL must not be quoted 

 The INSERT INTO statement is used to add 
new records to a MySQL table 

 



 The INSERT INTO statement is used to add 
new records to a MySQL table:  

 

SQL Statement:  INSERT INTO table_name 
(column1, column2, column3,...) 
VALUES (value1, value2, value3,...)  

 

Note:  If a column is AUTO_INCREMENT (like the "id" column) or 

TIMESTAMP (like the "reg_date" column), it is no need to be specified 
in the SQL query; MySQL will automatically add the value. 



Example  
<?php 
$servername = "localhost"; 
$username = “root"; 
$password = “"; 
$dbname = "mystudent"; 
 
// Create connection 
$conn = mysqli_connect($servername, $username, 
$password, $dbname); 
// Check connection 
if (!$conn) { 
    die("Connection failed: " . mysqli_connect_error()); 
} 
 
 



Example(continued ) 
$sql = "INSERT INTO student (firstname, lastname, 
email) 
VALUES (‘Ali', ‘Wali', ‘ali@example.com')"; 
 
if (mysqli_query($conn, $sql)) { 
    echo "New record created successfully"; 
} else { 
    echo "Error: " . $sql . "<br>" . 
mysqli_error($conn); 
} 
 
mysqli_close($conn); 
?> 
 
 





 we perform an INSERT or UPDATE on a table with 
an AUTO_INCREMENT field, we can get the ID of 
the last inserted/updated record immediately. 
 

 In the table “student", the "id" column is an 
AUTO_INCREMENT field: 

 

Example 
<?php 
$servername = "localhost"; 
$username = “root"; 
$password = “"; 
$dbname = "mystudent"; 
 

 



// Create connection 
$conn = mysqli_connect($servername, $username, $password, 
$dbname); 
// Check connection 
if (!$conn) { 
    die("Connection failed: " . mysqli_connect_error()); 
} 
 
$sql = "INSERT INTO student (firstname, lastname, email) 
VALUES (‘Nadeem', ‘Muhammad', ‘Nadeem@example.com')"; 
 
if (mysqli_query($conn, $sql)) { 
    $last_id = mysqli_insert_id($conn); 
    echo "New record created successfully. Last inserted ID is: " . 
$last_id; 
} else { 
    echo "Error: " . $sql . "<br>" . mysqli_error($conn); 
} 
 
mysqli_close($conn); 
?>  

 





 Multiple SQL statements must be executed with the 
mysqli_multi_query() function. 

 

 The following examples add three new records to 
the “student" table:  
 

<?php 
$servername = "localhost"; 
$username = “root"; 
$password = “"; 
$dbname = "mystudent"; 
 

 

 

 



$conn = mysqli_connect($servername, $username, 
$password, $dbname); 
// Check connection 
if (!$conn) { 
    die("Connection failed: " . mysqli_connect_error()); 
} 
 
$sql = "INSERT INTO student (firstname, lastname, email) 
VALUES (‘Babar', ‘Ali', ‘Babar@example.com');"; 
$sql .= "INSERT INTO student (firstname, lastname, email) 
VALUES (‘sara', ‘khan', ‘sara@example.com');"; 
$sql .= "INSERT INTO  student (firstname, lastname, 
email) 
VALUES (‘Mahmood', ‘Zakir', ‘Mahmood@example.com')"; 
 
 



if (mysqli_multi_query($conn, $sql)) { 
    echo "New records created successfully"; 
} else { 
    echo "Error: " . $sql . "<br>" . 
mysqli_error($conn); 
} 
 
mysqli_close($conn); 
?>  

 





 A prepared statement is a feature used to execute the 
same (or similar) SQL statements repeatedly with high 
efficiency. 

 Prepared statements basically work like this: 

 Prepare: An SQL statement template is created and sent to 
the database. Certain values are left unspecified, called 
parameters (labeled "?"). Example: INSERT INTO student 
VALUES(?, ?, ?) 

 The database parses, compiles, and performs query 
optimization on the SQL statement template, and stores 
the result without executing it 

 Execute: At a later time, the application binds the values to 
the parameters, and the database executes the statement.  



 The application may execute the statement as many times as 
it wants with different values 

 Compared to executing SQL statements directly, prepared 
statements have two main advantages: 
 

 Prepared statements reduces parsing time as the preparation 
on the query is done only once (although the statement is 
executed multiple times) 

 Bound parameters minimize bandwidth to the server as you 
need send only the parameters each time, and not the whole 
query 

 Prepared statements are very useful against SQL injections, 
because parameter values, which are transmitted later using a 
different protocol, need not be correctly escaped. If the 
original statement template is not derived from external 
input, SQL injection cannot occur. 

 
 

 



Example 
<?php 
$servername = "localhost"; 
$username = “root"; 
$password = ""; 
$dbname = "mystudent"; 
 
// Create connection 
$conn = new mysqli($servername, $username, $password, 
$dbname); 
 
// Check connection 
if ($conn->connect_error) { 
    die("Connection failed: " . $conn->connect_error); 
} 
 
 
 



// prepare and bind 
$stmt = $conn->prepare("INSERT INTO student 
(firstname, lastname, email) VALUES (?, ?, ?)"); 
$stmt->bind_param("sss", $firstname, $lastname, 
$email); 
 
// set parameters and execute 
$firstname = “Khalid"; 
$lastname = “Zia"; 
$email = “khakid_zia@example.com"; 
$stmt->execute(); 
 



$firstname = “Amna"; 
$lastname = “khan"; 
$email = “amna@example.com"; 
$stmt->execute(); 
 
$firstname = “Zanub"; 
$lastname = “ali"; 
$email = “zanub@example.com"; 
$stmt->execute(); 
 
echo "New records created successfully"; 
 
$stmt->close(); 
$conn->close(); 
?> 
 





 The SELECT statement is used to select data 
from one or more tables: 

Example 

SELECT column_name(s) FROM table_name 

 

we can use the * character to select ALL 
columns from a table: 

Example 

SELECT * FROM table_name 

 



Example 
<?php 
$servername = "localhost"; 
$username = “root"; 
$password = ""; 
$dbname = "mystudent"; 
 
// Create connection 
$conn = mysqli_connect($servername, $username, 
$password, $dbname); 
// Check connection 
if (!$conn) { 
    die("Connection failed: " . mysqli_connect_error()); 
} 
 
 



$sql = "SELECT id, firstname, lastname FROM student"; 
$result = mysqli_query($conn, $sql); 
 
if (mysqli_num_rows($result) > 0) { 
    // output data of each row 
    while($row = mysqli_fetch_assoc($result)) { 
        echo "id: " . $row["id"]. " - Name: " . 
$row["firstname"]. " " . $row["lastname"]. "<br>"; 
    } 
} else { 
    echo "0 results"; 
} 
 
mysqli_close($conn); 
?> 

 





The DELETE statement is used to delete records 
from a table. 

SQL Statement:-DELETE FROM table_name 
WHERE some_column = some_value. 

Example:-  

<?php 
$servername = "localhost"; 
$username = "username"; 
$password = "password"; 
$dbname = "myDB";  

 

 



Example (continued ) 
// Create connection 
$conn = mysqli_connect($servername, $username, $password, 
$dbname); 
// Check connection 
if (!$conn) { 
    die("Connection failed: " . mysqli_connect_error()); 
} 
 
// sql to delete a record 
$sql = "DELETE FROM student WHERE id=3"; 
 
if (mysqli_query($conn, $sql)) { 
    echo "Record deleted successfully"; 
} else { 
    echo "Error deleting record: " . mysqli_error($conn);  
} 
mysqli_close($conn); 
?>  
 





 The UPDATE statement is used to update existing 
records in a table:  

 SQL UPDATE Statement:- UPDATE table_name 
SET column1=value, column2=value2,... 
WHERE some_column=some_value  

Example:- 
<?php 
$servername = "localhost"; 
$username = “root"; 
$password = ""; 
$dbname = "mystudent"; 
 
 



Example(continued) 
// Create connection 
$conn = mysqli_connect($servername, $username, $password, 
$dbname); 
// Check connection 
if (!$conn) { 
    die("Connection failed: " . mysqli_connect_error()); 
} 
 
$sql = "UPDATE student SET lastname=‘Ismaile‘  WHERE id=2"; 
 
if (mysqli_query($conn, $sql)) { 
    echo "Record updated successfully"; 
} else { 
    echo "Error updating record: " . mysqli_error($conn); 
} 
 
mysqli_close($conn); 
?> 
 





 MySQL provides a LIMIT clause that is used to 
specify the number of records to return  

 

Example:-  

    $sql = "SELECT * FROM  student Orders LIMIT 05";  

 

    When the SQL query above is run, it will return the 
first 05 records.  





 File handling is an important part of any web 
application. You often need to open and 
process a file for different tasks. 



 PHP has several functions for creating, reading, 
uploading, and editing files. 
 

 Be careful when manipulating files! 
 
When you are manipulating files you must be 
very careful. You can do a lot of damage if you 
do something wrong. 

  
◦ Common errors are:  

 
 Editing the wrong file 
 Filling a hard-drive with garbage data 
 And deleting the content of a file by accident 





 The readfile() function reads a file and writes it to the 
output buffer. 
 

 Assume we have a text file called "webdictionary.txt", 
stored on the server, that looks like this: 
 

AJAX = Asynchronous JavaScript and XML 
CSS = Cascading Style Sheets 
HTML = Hyper Text Markup Language 
PHP = PHP Hypertext Preprocessor 
SQL = Structured Query Language 
SVG = Scalable Vector Graphics 
XML = EXtensible Markup Language 



The PHP code to read the file and write it to the 
output buffer is as follows (the readfile() function 
returns the number of bytes read on success): 

 

Example 

 

<?php 
echo readfile("webdictionary.txt"); 
?> 

 

The readfile() function is useful if all you want to 
do is open up a file and read its contents. 







A better method to open files is with the fopen() function. 
This function gives you more options than the readfile() 
function. 
 
We will use the text file, "webdictionary.txt", during the 
lessons: 
 

 
AJAX = Asynchronous JavaScript and XML 
CSS = Cascading Style Sheets 
 HTML = Hyper Text Markup Language 
PHP = PHP Hypertext Preprocessor 
SQL = Structured Query Language 
SVG = Scalable Vector Graphics 
XML = EXtensible Markup Language 



 fopen() function looks like this 
fopen("webdictionary.txt", "r") 

 

 The first parameter of fopen() contains the 
name of the file to be opened and the second 
parameter specifies in which mode the file 
should be opened.  

 



<?php 
$myfile = fopen("webdictionary.txt", "r") or 
die("Unable to open file!"); 
echo 
fread($myfile,filesize("webdictionary.txt")); 
fclose($myfile); 
?> 

 





The file may be opened in one of the following modes: 

 

 
Modes Description 

r Open a file for read only. File pointer starts at the beginning of the file 

w 
Open a file for write only. Erases the contents of the file or creates a new file 

if it doesn't exist. File pointer starts at the beginning of the file 

a 
Open a file for write only. The existing data in file is preserved. File pointer 

starts at the end of the file. Creates a new file if the file doesn't exist 

x 
Creates a new file for write only. Returns FALSE and an error if file already 

exists 

r+ Open a file for read/write. File pointer starts at the beginning of the file 

w+ 
Open a file for read/write. Erases the contents of the file or creates a new file 

if it doesn't exist. File pointer starts at the beginning of the file 

a+ 
Open a file for read/write. The existing data in file is preserved. File pointer 

starts at the end of the file. Creates a new file if the file doesn't exist 

x+ 
Creates a new file for read/write. Returns FALSE and an error if file already 

exists 





The fread() function reads from an open file. 
 

The following PHP code reads the 
"webdictionary.txt" file to the end: 

 
fread($myfile,filesize("webdictionary.txt")); 

 
The first parameter of fread() contains the 
name of the file to read from and the second 
parameter specifies the maximum number of 
bytes to read. 

 
 





 The fclose() function is used to close an open file. 
 

 It's a good programming practice to close all files after you have 
finished with them. You don't want an open file running around 
on your server taking up resources! 

 
 The fclose() requires the name of the file (or a variable that holds 

the filename) we want to close: 
 
Example 
  
<?php 
 $myfile = fopen("webdictionary.txt", "r"); 
// some code to be executed.... 
 fclose($myfile); 
 ?>  
 





 The fgets() function is used to read a single line from a 
file. 
 

 The example below outputs the first line of the 
"webdictionary.txt" file:  
 

Example 
  
<?php 
$myfile = fopen("webdictionary.txt", "r") or die("Unable to 
open file!"); 
echo fgets($myfile); 
 fclose($myfile); 
?>  
 
Note: After a call to the fgets() function, the file pointer has 
moved to the next line. 







 The feof() function checks if the "end-of-file" (EOF) has been 
reached. 
 

 The feof() function is useful for looping through data of unknown 
length. 

 
 The example below reads the "webdictionary.txt" file line by line, 

until end-of-file is reached:  
 

Example 
  
<?php 
$myfile = fopen("webdictionary.txt", "r") or die("Unable to open file!"); 
// Output one line until end-of-file 
while(!feof($myfile)) { 
  echo fgets($myfile) . "<br>"; 
} 
fclose($myfile); 
?>  







 The fgetc() function is used to read a single character from a file. 
 
 The example below reads the "webdictionary.txt" file character by 

character, until end-of-file is reached:  
 

Example 
  
<?php 
$myfile = fopen("webdictionary.txt", "r") or die("Unable to open file!"); 
// Output one character until end-of-file 
while(!feof($myfile)) { 
  echo fgetc($myfile); 
} 
fclose($myfile); 
?>  
 
Note: After a call to the fgetc() function, the file pointer moves to the 
next character. 





PHP Exception Handling 



 Creating a custom exception handler is quite 
simple.  

 We simply create a special class with 
functions that can be called when an 
exception occurs in PHP.  

 The class must be an extension of the 
exception class. 

 The custom exception class inherits the 
properties from PHP's exception class and 
you can add custom functions to it. 

 



<?php 
 class customException extends Exception { 

   public function errorMessage() { 
     //error message 

     $errorMsg = 'Error on line '.$this->getLine().' in '.$this->getFile() 
     .': <b>'.$this->getMessage().'</b> is not a valid E-Mail address'; 

     return $errorMsg; 
   } }  

$email = "someone@example...com"; 
 try { 

   //check if 
   if(filter_var($email, FILTER_VALIDATE_EMAIL) === FALSE) { 

     //throw exception if email is not valid 
     throw new customException($email); 

   } 

 }  
catch (customException $e) { 

   //display custom message 
   echo $e->errorMessage(); } ?>  

The new class is a copy of the old exception class with an addition of the 

errorMessage() function. 
Since it is a copy of the old class, and it inherits the properties and methods from the 

old class, we can use the exception class methods like getLine() and getFile() and 

getMessage(). 



<?php 

 class customException extends Exception { 
   public function errorMessage() { 

     //error message 

     $errorMsg = 'Error on line '.$this->getLine().' in '.$this->getFile() 
     .': <b>'.$this->getMessage().'</b> is not a valid E-Mail address'; 

     return $errorMsg; 
   } }  

$email = "someone@example...com"; 
 try { 

   //check if 
   if(filter_var($email, FILTER_VALIDATE_EMAIL) === FALSE) { 

     //throw exception if email is not valid 
     throw new customException($email); 

   } 
 }  

catch (customException $e) { 
   //display custom message 

   echo $e->errorMessage(); } ?>  

The customException() class is created as an extension of the old exception class. This 

way it inherits all methods and properties from the old exception class 



<?php 
 class customException extends Exception { 

   public function errorMessage() { 

     //error message 

     $errorMsg = 'Error on line '.$this->getLine().' in '.$this->getFile() 

     .': <b>'.$this->getMessage().'</b> is not a valid E-Mail address'; 

     return $errorMsg; 

   } }  
$email = "someone@example...com"; 

 try { 

   //check if 
   if(filter_var($email, FILTER_VALIDATE_EMAIL) === FALSE) { 

     //throw exception if email is not valid 
     throw new customException($email); 

   } 
 }  

catch (customException $e) { 
   //display custom message 

   echo $e->errorMessage(); } ?>  

The errorMessage() function is created. This function returns an error 
message if an e-mail address is invalid 



<?php 
 class customException extends Exception { 

   public function errorMessage() { 
     //error message 

     $errorMsg = 'Error on line '.$this->getLine().' in '.$this->getFile() 
     .': <b>'.$this->getMessage().'</b> is not a valid E-Mail address'; 

     return $errorMsg; 
   } }  

$email = "someone@example...com"; 
 try { 

   //check if 
   if(filter_var($email, FILTER_VALIDATE_EMAIL) === FALSE) { 

     //throw exception if email is not valid 
     throw new customException($email); 

   } 
 }  

catch (customException $e) { 
   //display custom message 

   echo $e->errorMessage(); } ?>  

The $email variable is set to a string that is not a valid e-mail address 



<?php 
 class customException extends Exception { 

   public function errorMessage() { 
     //error message 

     $errorMsg = 'Error on line '.$this->getLine().' in '.$this->getFile() 
     .': <b>'.$this->getMessage().'</b> is not a valid E-Mail address'; 

     return $errorMsg; 
   } }  

$email = "someone@example...com"; 
 try { 

   //check if 
   if(filter_var($email, FILTER_VALIDATE_EMAIL) === FALSE) {  

     //throw exception if email is not valid 
     throw new customException($email); 

   } 

 }  
catch (customException $e) { 

   //display custom message 
   echo $e->errorMessage(); } ?>  

The "try" block is executed and an exception is thrown since the e-mail 
address is invalid 



<?php 
 class customException extends Exception { 

   public function errorMessage() { 
     //error message 

     $errorMsg = 'Error on line '.$this->getLine().' in '.$this->getFile() 
     .': <b>'.$this->getMessage().'</b> is not a valid E-Mail address'; 

     return $errorMsg; 
   } }  

$email = "someone@example...com"; 
 try { 

   //check if 
   if(filter_var($email, FILTER_VALIDATE_EMAIL) === FALSE) { 

     //throw exception if email is not valid 
     throw new customException($email); 

   } 

 }  
catch (customException $e) { 

   //display custom message 
   echo $e->errorMessage(); } ?>  

The "catch" block catches the exception and displays the error message 







 The fopen() function is also used to create a file. Maybe a 
little confusing, but in PHP, a file is created using the same 
function used to open files. 
 

 If you use fopen() on a file that does not exist, it will create 
it, given that the file is opened for writing (w) or 
appending (a). 

 
 The example below creates a new file called "testfile.txt". 

The file will be created in the same directory where the 
PHP code resides:  
 

Example 
  
$myfile = fopen("testfile.txt", "w") 

PHP File Permissions 

If you are having errors when trying to get this code to run, check that you have 
granted your PHP file access to write information to the hard drive. 





 The fwrite() function is used to write to a file. 
 The first parameter of fwrite() contains the name of the file 

to write to and the second parameter is the string to be 
written. 

 The example below writes a couple of names into a new 
file called "newfile.txt": 

Example 
<?php 
$myfile = fopen("newfile.txt", "w") or die("Unable to open 
file!"); 
$txt = "John Doe "; 
fwrite($myfile, $txt); 
$txt = "Jane Doe "; 
fwrite($myfile, $txt); 
fclose($myfile); 
?> 



Example explained 
 
 Notice that we wrote to the file "newfile.txt" 

twice. Each time we wrote to the file we sent the 
string $txt that first contained "John Doe" and 
second contained "Jane Doe". After we finished 
writing, we closed the file using the fclose() 
function. 

  
If we open the "newfile.txt" file it would look like 
this: 
  
John Doe Jane Doe  



 Now that "newfile.txt" contains some data we can show 
what happens when we open an existing file for writing. 
All the existing data will be ERASED and we start with an 
empty file. 

 In the example below we open our existing file 
"newfile.txt", and write some new data into it: 

 
Example 
<?php 
$myfile = fopen("newfile.txt", "w") or die("Unable to open 
file!"); 
$txt = "Mickey Mouse "; 
fwrite($myfile, $txt); 
$txt = "Minnie Mouse "; 
fwrite($myfile, $txt); 
fclose($myfile); 
?> 

 



If we now open the "newfile.txt" file, both John 
and Jane have vanished, and only the data we 
just wrote is present: 

 

 

Mickey Mouse Minnie Mouse 





 First, ensure that PHP is configured to allow 
file uploads. 

 

 In your "php.ini" file, search for the 
file_uploads directive, and set it to On:  

 

 file_uploads = On 



 Next, create an HTML form that allow users to choose the 
image file they want to upload: 
 

<!DOCTYPE html> 
<html> 
<body> 
 
<form action="upload.php" method="post" 
enctype="multipart/form-data"> 
Select image to upload: 
<input type="file" name="fileToUpload" id="fileToUpload"> 
<input type="submit" value="Upload Image" 
name="submit"> 
</form> 
 
</body> 
</html> 



Some rules to follow for the HTML form are: 
 Make sure that the form uses method="post" 
 The form also needs the following attribute: 

enctype="multipart/form-data". It specifies which content-type 
to use when submitting the form 
 

Without the requirements above, the file upload will not work. 
  
Other things to notice: 
 The type="file" attribute of the <input> tag shows the input field 

as a file-select control, with a "Browse" button next to the input 
control  
 

 The form above sends data to a file called "upload.php", which 
we will create next. 
 





The "upload.php" file contains the code for uploading a file:  
 

<?php 
$target_dir = "uploads/"; 
$target_file = $target_dir . basename($_FILES["fileToUpload"]["name"]); 
$uploadOk = 1; 
$imageFileType = pathinfo($target_file,PATHINFO_EXTENSION); 
// Check if image file is a actual image or fake image 
if(isset($_POST["submit"])) { 
    $check = getimagesize($_FILES["fileToUpload"]["tmp_name"]); 
    if($check !== false) { 
        echo "File is an image - " . $check["mime"] . "."; 
        $uploadOk = 1; 
    } else { 
        echo "File is not an image."; 
        $uploadOk = 0; 
    } 
}?>  



 $target_dir = "uploads/" - specifies the 
directory where the file is going to be placed 

 $target_file specifies the path of the file to be 
uploaded 

 $uploadOk=1 is not used yet (will be used 
later) 

 $imageFileType holds the file extension of 
the file 

 Next, check if the image file is an actual 
image or a fake image 
 

 Note: You will need to create a new directory called "uploads" in 
 the directory where "upload.php" file resides. The uploaded files 
 will be saved there. 



 Now we can add some restrictions. 
  
 First, we will check if the file already exists in the 

"uploads" folder. If it does, an error message is 
displayed, and $uploadOk is set to 0: 

  
 

// Check if file already exists 
if (file_exists($target_file)) { 
    echo "Sorry, file already exists."; 
    $uploadOk = 0; 
 }  



 The file input field in our HTML form above is 
named "fileToUpload". 

 
 Now, we want to check the size of the file. If the 

file is larger than 500kb, an error message is 
displayed, and $uploadOk is set to 0: 

  
 

 // Check file size 
if ($_FILES["fileToUpload"]["size"] > 500000) { 
    echo "Sorry, your file is too large."; 
    $uploadOk = 0; 
 }  



 The code below only allows users to upload JPG, 
JPEG, PNG, and GIF files. All other file types gives 
an error message before setting $uploadOk to 0: 

  
 

// Allow certain file formats 
if($imageFileType != "jpg" && $imageFileType != 
"png" && $imageFileType != "jpeg" 
&& $imageFileType != "gif" ) { 
    echo "Sorry, only JPG, JPEG, PNG & GIF files are 
allowed."; 
    $uploadOk = 0; 
}  



Now if $uploadOk is set to 0 then file will not be uploaded 
otherwise file uploading code will be executed 

 
 
// Check if $uploadOk is set to 0 by an error 
if ($uploadOk == 0) { 
    echo "Sorry, your file was not uploaded."; 
// if everything is ok, try to upload file 
} else { 
    if (move_uploaded_file($_FILES["fileToUpload"]["tmp_name"], 

$target_file)) { 
        echo "The file ". basename( $_FILES["fileToUpload"]["name"]). " 

has been uploaded."; 
    } else { 
        echo "Sorry, there was an error uploading your file."; 
    } 
} 

 





 Exceptions are events that occur during the execution of 
programs that disturb the normal flow of instructions. 
 

 We can also explicitly trigger an exception with throw keyword 
 

 After exception is triggered it must be handled 
 
 This is what normally happens when an exception is triggered: 

◦ The current code state is saved 
◦ The code execution will switch to a predefined (custom) exception 

handler function 
◦ Depending on the situation, the handler may then resume the 

execution from the saved code state, terminate the script execution or 
continue the script from a different location in the code 

 
 

Note: Exceptions should only be used with error conditions, and should 
not be used to jump to another place in the code at a specified point. 



PHP Exception Handling 



 When an exception is thrown, the code following it will not be 
executed, and PHP will try to find the matching "catch" block.  

 If an exception is not caught, a fatal error will be issued with an 
"Uncaught Exception" message. 

 
Lets try to throw an exception without catching it:  

 
<?php 
 //create function with an exception 
 function checkNum($number) { 
   if($number>1) { 
     throw new Exception("Value must be 1 or below"); 
   } 
   return true; 
 } 
 //trigger exception 
 checkNum(2); 
 ?>  

 



Fatal error: Uncaught exception 'Exception' 
with message 'Value must be 1 or below' in C:\webfolder\test.php:6 
Stack trace: #0 C:\webfolder\test.php(12): 
checkNum(28) #1 {main} thrown in C:\webfolder\test.php on line 6 



 To avoid the error from the example above, we 
need to create the proper code to handle an 
exception.  

 

 Proper exception code should include: 
1. Try - A function using an exception should be in a "try" 

block. If the exception does not trigger, the code will 
continue as normal. However if the exception triggers, 
an exception is "thrown" 

2. Throw - This is how you trigger an exception. Each 
"throw" must have at least one "catch" 

3. Catch - A "catch" block retrieves an exception and 
creates an object containing the exception information 

 



Lets try to trigger an exception with valid code:  
 

<?php 
 //create function with an exception 

 function checkNum($number) { 
   if($number>1) { 

     throw new Exception("Value must be 1 or below");   } 
   return true; 

 }  
//trigger exception in a "try" block 

 try { 
   checkNum(2); 

   //If the exception is thrown, this text will not be shown 
   echo 'If you see this, the number is 1 or below'; } 

  

//catch exception 
 catch(Exception $e) { 

   echo 'Message: ' .$e->getMessage(); 
 } 

 ?>  
 

The code above will get an error like this: 
  

Message: Value must be 1 or below  



 The code throws an exception and catches it: 
1. The checkNum() function is created. It checks if a 

number is greater than 1. If it is, an exception is 
thrown 

2. The checkNum() function is called in a "try" block 

3. The exception within the checkNum() function is 
thrown 

4. The "catch" block retrieves the exception and 
creates an object ($e) containing the exception 
information 

5. The error message from the exception is echoed 
by calling $e->getMessage() from the exception 
object 

 

 





 

WordPress is web software you can use to 

create a beautiful website, blog, or app. We 
like to say that WordPress is both free and 

priceless at the same time. 



 https://wordpress.org/showcase/ 



 Free 

 Easy to use 

Written in PHP 

MySQL Database at back end 

 Easy customization (Themes) 

 Simple to understand 





 Access to your web server 

 A text editor 

 An FTP Client 

 Your web browser of choice 



 You must be able to execute PHP at your web 
server 

 

 Access to an MySql Database 

 

 In simple you web hosting company should 
provide PHP and MySQL support 





 Access to your web server www directory 

 A text editor 

 Your web browser of choice 

MySQL Database 





 Access to your web server www or 
public_html directory 

 A text editor 

 An FTP Client 

 Your web browser of choice 

 A MySQL Database 













 Find the Pages menu in the WordPress 
Dashboard Navigation menu. Click Add new. 

 

 Add the title of the page, like About. Note: 

If you have pretty permalinks set up, the 

title of your page will also be the URL slug. 

 

 Next, add some content. 

 

 To Publish the page click on save and publish 





Media consists of the images, video, 
recordings, and files that you upload and use 

in your site/blog.  

 

Media is typically uploaded and inserted into 

the content when writing a Post or writing a 
Page.  



The Media Library Screen allows you to edit, 
view, and delete Media previously uploaded to 

your blog. Multiple Media objects can be 
selected for deletion.  

 

Search and filtering ability is also provided to 
allow you to find the desired Media. 





You must define a menu before you can add 
items to it. 

 

 Login to the Wordpress Dashboard. 

 From the 'Appearance' menu on the left-hand 
side of the Dashboard, select the 'Menus' 
option to bring up the Menu Editor. 

 Select Create a new menu at the top of the 
page 

 Enter a name for your new menu in the Menu 
Name box 

 Click the Create Menu button. 

 



You can add different link types into your menu, these 
are split between panes left of the menu you're 
currently editing. 

 

 Locate the pane entitled Pages. 

 Within this pane, select the View All link to bring up 
a list of all the currently published Pages on your 
site. 

 Select the Pages that you want to add by clicking the 
checkbox next to each Page's title. 

 Click the Add to Menu button located at the bottom 
of this pane to add your selection(s) to the menu that 
you created in the previous step. 

 Click the Save Menu button once you've added all the 
menu items you want. 

 



 Locate the menu item that you want to 
remove in the menu editor window 

 

 Click on the arrow icon in the top right-hand 
corner of the menu item/box to expand it. 

 

 Click on the Remove link. The menu 
item/box will be immediately removed. 

 

 Click the Save Menu button to save your 
changes. 

 



 

 

https://codex.wordpress.org/WordPress_Menu
_User_Guide 

 

https://codex.wordpress.org/WordPress_Menu_User_Guide
https://codex.wordpress.org/WordPress_Menu_User_Guide
https://codex.wordpress.org/WordPress_Menu_User_Guide
https://codex.wordpress.org/WordPress_Menu_User_Guide
https://codex.wordpress.org/WordPress_Menu_User_Guide
https://codex.wordpress.org/WordPress_Menu_User_Guide




WordPress themes are simply a group of files, 
called templates, which determine the look 

and basic function of your site 

 

 





https://wordpress.org/themes/ 
 

https://wordpress.org/themes/
https://wordpress.org/themes/
https://wordpress.org/themes/


 http://www.templatemonster.com/wordpres
s-themes.php 

 

 http://themeforest.net/ 

 

 http://www.themezilla.com/themes/ 

http://www.templatemonster.com/wordpress-themes.php
http://www.templatemonster.com/wordpress-themes.php
http://www.templatemonster.com/wordpress-themes.php
http://www.templatemonster.com/wordpress-themes.php
http://www.templatemonster.com/wordpress-themes.php
http://themeforest.net/
http://themeforest.net/
http://www.themezilla.com/themes/
http://www.themezilla.com/themes/
http://www.themezilla.com/themes/




 

Plugins tiny pieces of software which are used 

to extend and add to the functionality that 
already exists in WordPress.  

 

The core of WordPress is designed to be lean 
and lightweight, to maximize flexibility and 

minimize code bloat. Plugins then offer 
custom functions and features so that each 

user can tailor their site to their specific 

needs. 



 

 

 

https://wordpress.org/plugins/ 
 

 

https://wordpress.org/plugins/
https://wordpress.org/plugins/
https://wordpress.org/plugins/
https://wordpress.org/plugins/
https://wordpress.org/plugins/
https://wordpress.org/plugins/


We need to have employee list for our website 
which we have developed in Wordpress. 

 

We can use plugins like  

 

 Employee Spotlight 

 Simple Staff List 

 OS Our Team 

 

 





The Theme Customizer allows you to preview 
changes to your site before publishing them. 

You can also navigate to different pages on 
your site to preview them. 



 Site Title & Tagline 

 Colors 

Header Image 

 Background Image 

 Navigation 

Widgets 

 Static Front Page 



https://codex.wordpress.org/Appearance_Cust
omize_Screen 


	Week 1
	1.1 Introduction
	Introduction
	PHP
	PHP
	Slide Number 4

	1.2 What PHP Can Do
	What PHP can do
	Slide Number 2
	Slide Number 3
	Slide Number 4

	1.3 Why PHP
	Why PHP
	Slide Number 2
	Slide Number 3
	FREE

	1.4 Basic PHP Syntax
	�Basic PHP Syntax
	Slide Number 2
	PHP File Extension
	End of Statement

	1.5 Installation and Configuration of WAMP
	Installation and Configuration of WAMP
	Slide Number 2
	LAMP & WAMP
	WAMP
	VertrigoServ

	1.6 Hello World
	Hello World
	Slide Number 2


	Week 2
	2.1 echo and print Statements
	2.2 Comments in PHP
	2.3 PHP is not case sensitive
	2.4 Variable Names
	2.5 Declaring PHP Variables
	2.6 Data Types

	Week 3
	3.1 PHP is a Loosely Typed Language
	3.2 PHP Variables Scope
	3.3 Strings
	3.4 Constants

	Week 4
	4.1 PHP Operators
	4.2 PHP Arithmetic Operators
	4.3 PHP Assignment Operators
	4.4 PHP Comparison Operators
	4.5 PHP Increment & Decrement Operators
	4.6 PHP Logical Operators
	4.7 PHP String Operators

	Week 5
	5.1 if statement
	if statement 
	if statement
	if statement
	if statement (Cont…)
	Example 1
	Example 1 (Cont..)
	Example 2

	5.2 if-else statement
	if else statement 
	if else statement
	if else statement (Cont…)
	Example 1
	Example 1(Cont..)
	Example 2
	Example 2(Cont..)

	5.3 if-elseif-else statement
	if elseif else 
	if…elseif...else 
	if…elseif...else (Cont..)
	Example 1
	Example 1 (Cont..)
	Example 2
	Example 2 (Cont..)
	Multiple if statements 
	�Multiple if statements vs. elseif statements�

	5.4 switch statement
	Switch Statement 
	We use this statement to select one of several blocks of code to be executed. ���Used to avoid long blocks of if elseif else statements .�
	switch statement (Cont..)
	Example 1
	Example 1 (Cont..)
	Example 1 (Cont..)
	Example 2
	Example 2 (Cont..)
	Example 2 (Cont..)


	Week 6
	6.1 for loop
	for loop 
	Loops are repetition structures that are used to perform the same task again and again.��for loops are used to execute same block of code again and again for the specified number of times.��If we know the exact iteration of loop then for loop must be used.  ��
	General PHP syntax���for(initialization; condition; increment/decrement)�{�     // loop body�}���
	                 for (initialization; condition; increment/decrement)������
	                 for (initialization; condition; increment/decrement)�������In each iteration, if the condition evaluates to true then loop continues otherwise if it evaluates to false then loop terminates
	            for (initialization; condition; increment/decrement)��������At the end of each iteration, third part is evaluated
	Example 1
	Example 2
	Example 2 (Cont..)
	Example 3
	Example 3 (Cont..)

	6.2 while loop
	while loop 
	while loops are repetition structures that are used to perform the same task again and again till the satisfaction of certain condition.��The loop continues to run as long as the condition is true and terminates if the condition is false.  ��If we want to repeat the process till the satisfaction of certain condition and the exact iteration of loop is not known then while loop must be used.
	General PHP syntax:� ��while(condition)�{�    // code to be executed�}� �
	Example 1
	Example 2
	Example 2 (Cont..)

	6.3 do-while loop
	do while loop 
	In do while loop, first the body of loop is executed and then loop is repeated till the satisfaction of certain condition.��In each iteration of loop, body of loop is executed and then condition is checked for continuation or termination of loop.  ��If there is a situation in which a loop must be executed at least once then a do-while loop must be used. 
	General PHP syntax:���do�{�  // code to be executed��} while(condition) ;� �
	Example 1
	Example 2
	Example 2 (Cont..)

	6.4 foreach loop
	foreach loop
	foreach loop is a looping structure that is used to loop through arrays.��For each iteration of loop, the value of current element of array is automatically assigned to a variable and then array pointer is moved by 1. � �
	 �General PHP syntax:�� �foreach(array as value)�{�   // code to be executed�}� �
	�The following example will print the values of each element of array using foreach loop.� ��<?php� �$a = array(1, 2, 3, 4, 5) ;� �foreach ($a as $value)�{�	echo $value . “<br/>” ;�}�?>
	 �The following example will calculate the square of each element of array using foreach loop.� �<?php� �$a = array(1, 2, 3, 4, 5) ;� �foreach ($a as $value)�{�	$square = $value * $value ;�	echo $square. "<br>" ;�}�?>


	Week 7
	7.1 PHP Include
	PHP Include Statement
	PHP include statement
	Syntax
	PHP include Example
	PHP include Example (Continued)

	7.2 PHP Date and Time
	PHP Date and Time
	PHP Date and Time
	The PHP Date() Function
	Get a Simple Date
	Example
	Automatic Copyright Year
	Get a Simple Time
	Example
	Get Your Time Zone
	Get Your Time Zone (Example)

	7.3 Cookie Introduction
	PHP Cookies
	What is a Cookie?
	Create Cookies With PHP
	Example

	7.4 Delete Cookies
	Delete a Cookie


	Week 8
	8.1 Session Introduction
	PHP Sessions
	What is a Session?

	8.2 Start sessions and retrieve session values
	Start a PHP Session
	Get PHP Session Variable Values
	Example

	8.3 PHP Session retrieve another example
	Example 2

	8.4 How Session works
	How does it work? 

	8.5 How Session works
	How does it work? 

	8.6 Destroy PHP Session
	Destroy a PHP Session


	Week 9
	Week 10
	Week 11
	Week 12
	Week 13
	Week 14
	Week 15
	Week 16

