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1-Introduction VU

LECTURE No. 1
INTRODUCTION

- Calculus is the mathematical tool used to analyze changes in physical quantities.
- Calculus is also Mathematics of Motion and Change.

- Where there is motion or growth, where variable forces are at work producing
acceleration, Calculus is right mathematics to apply.

Differential Calculus deals with the Problem of Finding
(1) Rate of change
(2) Slope of curve

Velocities and acceleration of moving bodies. Firing angles that give cannons their
maximum range. The times when planets would be closest together or farthest apart.

Integral Calculus deals with the Problem of determining a function from information
about its rates of Change.

Integral Calculus enables us

(1) To calculate lengths of curves.

(2) To find areas of irregular regions in plane.

(3) To find the volumes and masses of arbitrary solids

(4) To calculate the future location of a body from its present position and knowledge of
the forces acting on it.

Reference Axis System

Before giving the concept of Reference Axis System, we recall you the concept of real
line and locate some points on the real line as shown in the figure below, also remember
that the real number system consist of both Rational and Irrational numbers that is we can
write set of real numbers as union of rational and irrational numbers.

Fs
)
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d

Here in the above figure, we have located some of the rational as well as irrational
numbers and also note that there are infinite real numbers between every two real
numbers.

Now if you are working in two dimensions, then you know that we take the two mutually
perpendicular lines and call the horizontal line as x-axis and vertical line as y-axis and
where these lines cut we take that point as origin. Now any point on the x-axis will be
denoted by an order pair whose first element which is also known as abscissa is a real
number and other element of the order pair which is also known as ordinate will have 0

values, i.e. (x, 0)
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1-Introduction VU

Similarly any point on the y-axis can be representing by an order pair (0, y). Some

points are shown in the figure below. Also note that these lines divide the plane into four
regions: First, Second, Third and Fourth quadrants respectively. We take the positive real
numbers at the right side of the origin and negative to the left side, in the case of x-axis.
Similarly for y-axis and also shown in the figure.
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Location of a point

Now we will illustrate how to locate the point in the plane using x- and y- axes. Draw
two perpendicular lines from the point whose position is to be determined. These lines
will intersect at some point on the x-axis and y-axis and we can find out these points.
Now the distance of the point of intersection of x-axis and perpendicular line from the
origin is the x-coordinate of the point P and similarly the distance from the origin to the
point of intersection of y-axis and perpendicular line is the y-coordinate of the point P as
shown in the figure below.

b T ¢ Pla, &)

Negative y-axis

Cartesian coordinates

In space, we have three mutually perpendicular lines as reference axes, namely x ,y and z
axis. Now you can see from the figure below that the planes x =0,y =0 and z = 0 divide
the space into eight octants. Also note that in this case we have (0,0,0) as origin and any
point in the space will have three coordinates.

Signs of coordinates in different octants

First of all note that the equation x = 0 represents a plane in the 3d space and in this plane
every point has its x-coordinate as 0, also that plane passes through the origin as shown in
the figure above. Similarly y = 0 and z = 0 also define a plane in 3d space and have
properties similar to that of x = 0 such that these planes also pass through the origin and

2
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1-Introduction VU

any point in the plane y = 0 will have y-coordinate as 0 and any point in the plane z = 0
has z-coordinate as 0.

The planes x = 0, y = 0, and z =0
divide space into eight octants.

Also remember that when two planes intersect we get the equation of a line and when two
lines intersect then we get a plane containing these two lines. Now note that by the
intersection of the planes x = 0 and z = 0 we get the line which is our y-axis.

Also by the intersection of x = 0 and y = 0 we get the line which is z-axis, similarly you
can easily see that by the intersection of z = 0 and y = 0 we get line which is x-axis.

Now these three planes divide the 3d space into eight octants depending on the positive
and negative direction of axis. The octant in which every coordinate of any point has
positive sign is known as first octant formed by the positive X, y and z —axes. Similarly in
second octant every point has x-coordinate as negative and other two coordinates as
positive correspond to negative x-axis and positive y and z axis.

Now one octant is that in which every point has x and y coordinate negative and z-
coordinate positive, which is known as the third octant. Similarly we have eight octants
depending on the sign of coordinates of a point. These are summarized below.

First octant (+, + +)  Formed by positive sides of the three axis.
Second octant (—, +, + ) Formed by —ve x-axis and positive y and z-axis.
Third octant ( - - + Formed by —ve x and y axis with positive z-axis.
Fourth octant (+ -, +) Formed by +ve x and z axis and —ve y-axis.
Fifth octant (+, + —)  Formed by +ve x and y axis with -ve z-axis.
Sixth octant (-, + —) Formed by —ve x and z axis with positive y-axis.
Seventh octant (-— —)  Formed by -ve sides of three axis.

Eighth octant ( +, - —) Formed by -ve y and z-axis with +ve x-axis.

(Remember that we have two sides of any axis one of positive values and the other is of
negative values) Now as we told you that in space we have three mutually perpendicular
lines as reference axis. So far you are familiar with the reference axis for 2d which
consist of two perpendicular lines namely x-axis and y-axis. For the reference axis of 3d

3
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1-Introduction VU

space we need another perpendicular axis which can be obtained by the cross product of
the two vectors, now the direction of that vector can be obtained by Right Hand rule. This
is illustrated below with diagram.

The Cartesian coordinate system is
right-handed.

Concept of a Function
Historically, the term, function denotes the dependence of one quantity on other quantity.
The quantity x is called the independent variable and the quantity y is called the

dependent variable. We write itas y = f (x) and we read y is a function of x.

For example, the equationy = 2x defines y as a function of x because each value
assigned to x determines unique value of y.

Examples of function

- The area of a circle depends on its radius r by the equation A= nr? so, we say that
A is a function of r.

- The volume of a cube depends on the length of its side x by the equation V= x3
so, we say that V is a function of x.

- The velocity V of a ball falling freely in the earth’s gravitational field increases
with time t until it hits the ground, so we say that V is function of t.

- In a bacteria culture, the number n of present after one day of growth depends on
the number N of bacteria present initially, so we say that N is function of n.

Function of Several Variables
Many functions depend on more than one independent variable.
Examples
1) The area of a rectangle depends on its length | and width w by the equation
A =1w, so we say that A is a function of | and w.
2) The volume of a rectangular box depends on the length |, width w and height h by the
equation V =1w h so, we say that V is a function of | , w and h.
3) The area of a triangle depends on its base length | and height h by the equation

A=% I xh , sowe say that A is a function of | and h.

4) The volume V of a right circular cylinder depends on its radius r and height h by the
equation V =z r°h so, we say that V is a function of r and h.

© Copyright Virtual University of Pakistan



2-Values of functions VU

LECTURE No. 2

VALUES OF FUNCTIONS
Example 1:Consider the function f (x) = 2x*-1, then f (1):2(1)2 -1=1
f(4)=2(4)"-1=31 f(-2) =2(-2)°-1=7
f(t-4) =2(t-4)" -1= 2t -16t + 31
These are the values of the function at some points.
Example 2 : Now we will consider a function of two variables, so consider the function

f(xy) =x?y+1lthen f(21) =(2)°'1+1=5 f(12) =(1)'2+1=3,

f(0,0) =(0)°0+1=1,  f(1,-3) =(1)°(-3)+1=-2,

f(3a,a) = (3a)2 a+l=9a’+1, f(ab,a-b) = (ab)2 (a—-b)+1=a’v*-a’h’+1
These are values of the function at some points.

Example 3: Now consider the function f(x,y)=x+ 3@, then

@ f(24)=2+3/2)@8)=2+8=2+2=4

(b) F(t,t2) =t+ J@O)(t?) =t+ V£ =t+t=2t

(©) f(x,x*)=x+ 3W:x+ % = x4+ x=2x

() F(2y%, 4y) =2y* + *J(2y*)(4y) =2y* + *\By* =2y* + 2y

Example 4: Now again we take another function of three variables

f(%,y,2) ==X —y? 2 then f(O,%,%):\/l_o_(ljz_(ljz o

2 2 2
Example 5: Consider the function f (x, Y, z) = xy®z® +3, then at certain points we have

f(212) =(2)(2)"(2)’ +3=19, f(0,0,0) =(0)(0)°(0)' +3=3,

f(a,a,a) =(a)(a)’(a)’+3=a°+3, f(t,tz,—t) :(t)(tz)z(—t)3+3:—t8+3,

f(-311) =(-3)(1)° (1) +3=-3+3=0

Example 6: Consider the function f (x,y,z) =x*y’z*, wherex(t) =t°, y(t)= t’and z(t)=t
() F(x(t)y().2() =[x [y [z =[ T[] [ = o

(b) (x(0),¥(0).2(0)) =[x(0)] [y(0)] [2(0)] =[ 0] [0*][0]"= 0

Example 7: Let us consider the function f(x,y,z) = xyz + x, then

f(xy%,xzj = (xy)(%j(xz) + Xy = Xy’Z+Xy
Example 8:Let us consider g(x,y,z) =z Sin(xy), u(x,y,z) =xz°,

© Copyright Virtual University of Pakistan



2-Values of functions VU

v(X,y,2) =Pxyz, w(x,y,2) :X—Zy, then

g(u(xy,2), v(xy.2), W(x,y,2)) = w(xy,z) Sin(u(xy,z) v(x,y,z))
Now by putting the values of these functions from the above equations, we get

g(u(xy.2), v(xy.2), w(x,y,2)) :%Sin[(xzzg)( nyz)] :%Sin(szyz“)

Example 9:Consider the function g(x,y) =y Sin(xzy) and u(x,y)=x*y*, v(x,y)=7xy,

then g (u(xy), v(xy)) = v(xy) Sin([u(x, y) ]zv(x, y))
By putting the values of these functions we get
g(u(xy), v(xy)) =zxy Sin([xzys]2 ﬂxy) = 7rxy Sin(7x°y")
Function of One Variable: A function f of one real variable x is a rule that assigns a

unique real number f( x ) to each point x in some set D of the real line.
Function of two Variables: A function f intwo real variables x and y, is a rule that

assigns unique real number f (x, y) to each point (x,y) in some set D of the xy-plane.
Function of three variables: A function f in three real variables X, y and z, is a rule
that assigns a unique real number f (x, Y, z) to each point (x,y,z) in some set D of three
dimensional space.

Function of n variables: A function f in n variable real variablesx;,X,, X;,...... Xy
is a rule that assigns a unique real number w = f (X, X,, X, ...... , X, ) to each point (xu,
X2, X3,... ... , Xn) I n some set D of n dimensional space.

Circles and Disks:
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1 t
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2-Values of functions VU

General equation of the Parabola opening upward or downward is of the form
y="f(x)= ax®+bx+c.  Opening upward if a >0, Opening downward if a <0

LS . So the y-coordinate of the vertex

The x-coordinate of the vertex is given by x,

2a
isy, = f(X,) The axis of symmetry isx = x,.
¥y Axiz of crlex
A symimelry it
-
\ ! /| = ax? + bx + ¢ 2ol — b
! (a0 > ) ¢
| s 3
o =
Ia s OaaE G B
| — b
f(";:') “_ Vertex ‘ — <vmin
(i)

(n)

Sketching of the graph of parabola y = ax?+bx + ¢

Finding vertex: x-coordinate of the vertex is given by x, = —21
a

The y-coordinate of the vertex is y, = a x,’ +b X, + ¢ . Hence vertex is V (X,, ¥, )-
Example 10: Sketch the parabola y = — x* + 4x
Solution:Since a = —1 < 0 because parabola is opening downward. Vertex occurs at

X = - LI =2 Axis of symmetry is the vertical line x = 2.

2a 2(-1)
The y-coordinate of the vertex isy = —(2)2 + 4(2) = 4. Hence vertex is V(2 ,4). The

zeros of the parabola (i.e. the point where the parabola meets x-axis) are the solutions to
—Xx*+4x = 0, sox = 0Oandx = 4. Therefore, (0,0) and (4,0) lie on the parabola.

Also (1,3) and (3,3) lie on the parabola.
Graphof y = — x*+ 4x

Viertex (2, 1) maximum

—

© Copyright Virtual University of Pakistan



2-Values of functions VU

Example 11: Sketch the parabola y =x°— 4x+3
Solution: Sincea = 1 > 0, parabola is opening upward. Vertex occurs at

—4 . : -
X = — b = — Q = 2. Axis of symmetry is the vertical line x = 2. They co-
2a 2(1)

ordinate of the vertex isy = (2)2— 4(2) + 3 = —1.HencevertexisV (2, —-1). The

zeros of the parabola (i.e. the point where the parabola meets x-axis) are the solutions to
x*— 4x + 3= 0,s0x = landx = 3 .Therefore (1,0) and (3,0) lie on the parabola.

Also (0,3) and (4, 3) lie on the parabola. Graph of y=x*-4x+3

»
10 4~ 1 - 45 + =
]
= 1
a1 |
L}
L}
- 1
I
1
“* 1
- 1
L}
2- '
1
——— =i
2 -4 - s
2 '
STANDARD
ORIENTATION DESCRIFTION EQUATION o + Foci and major axis
+ Foei and major axi on the y-uxis.
oci and major axis I
Ty on the x-axis. + Minor axis on the
b s N
- +  Minor axis on the % Y-axIs,
| + | L o, 2 . o]
i Y-axis Py bl s v + Center at the origin, b g
e . — = | i .
ay (~¢,0) } (e, 0)/ @ + Center at the origin at b o yintercepls: +h
~ | |
g * xntercepls: +a A0, ~¢) *y-inlercepls: +a
| !
| + yeintercepts: +h " ash
s izh
STANDARD
ORIENTATION DESCRIFTION EQUATHON ASYMPTOTE EQUATIONS
X s
N, y
|
= Foci on the x-axis - : v - X
! x | 3 x2  pZ .
1" « Conjugate axis on the v-axis —5 BE 1
e S . -y @* =
% « Center at the origin. ¥
N
ry My
\

Hyperbola

Home Assignments:
In this lecture we recall some basic geometrical concepts which are prerequisite for this course

and you can find all these concepts in the chapter # 12 of your book Calculus By Howard
Anton.
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3-Elements of three dimensional geometry VU

LECTURE No.3

ELEMENTS OF THREE DIMENSIONAL GEOMETRY

Distance formula in three dimensions

Let P(x,Y;,z)and Q(X,,Y,,z,) be two points such that PQ is not parallel to one of the

coordinate axis ThenPQ = \/(xz -%x)*+(Y,-Y,)’ +(z,-2)° Which is known as
Distance fromula between the points P and Q.

Example of distance formula
Let us consider the points A(3,2,4 ), B(6, 10, —1) and C(9,4,1), then

|AB|=1/(6-3)? + (10— 2)* + (-1-4)? =~/98=7+2
IAC|=/(9-3)7 + (4—2)7 + (1-4)? =/49=7
IBC|=+/(9-6)7 - (4-10)? — (1 +1)? =~/49=7

Mid point of two points

Let P(x,Y;,z)and Q(x,,Y,,2,) be two points. If R(X,y,z) is the middle point of the

line segment PQ, then the coordinates of the middle point R(X, Y, z) are given below:
:X1+X2 =y1+y2 2:21+22

2 2 2
Example 2: Let us consider two points A(3,2,4 ) and B(6, 10, —1), then the coordinates

of mid point of ABare(BZG,Zzlo 421j (9 6, Ej

2 2
Given a point, finding its Direction Cosines

)

r

P(x,y)
From triangle we
can write
¥ cog a=xr
cos Pp=ylr

L J

X-axis

Direction Angles
The direction angles a, £, y of a line is defined as

a = Angle between line and the positive x-axis
S = Angle between line and the positive y-axis
y = Angle between line and the positive z-axis

© Copyright Virtual University of Pi




3-Elements of three dimensional geometry VU

By definition, each of these angles lie between 0and 7.
Direction Ratios: Cosines of direction angles are called direction cosines. Any multiple
of direction cosines are called direction numbers or direction ratios of the line L.

Direction angles of a Line

The angles which a line makes with positive X, y and z-axis are known as Direction
Angles. In the above figure, the blue line has direction angles as «, fand y which are the

angles which blue line makes with x, y and z-axes respectively.

Direction Cosines
Now if we take the cosine of the Direction Angles of a line, then we get the Direction
cosines of that line. So the Direction Cosines of the above line are given by

X y z z
OP /x*+y?+7?

X y
COSQ=——=—F————, C0Sff=——=——=———, COSy=
0P Jiryiz 0P Jiryiz
Since, by distance formula, OP = y/(x—0f +(y —0f + (z—0) =x*+y?+ 72
Squaring and adding these equations (1), (2) and (3), we get

2 2 2
cos’ o + cos” B + cos’ y = X + y + :
JXe+y*+7° X4y + 77 JXe+y?+7°
X +yi+zt X4yi+7
2 T2 2 2
(/x2+y2+22) X“+y +2
cos’ o + cos” B+ cos’y =1
Direction cosines and direction ratios of a line joining two points
For a line joining two points P(x,,y,,z )and Q(X,,Y,,Z,),
the direction ratios are x, - x,, y,-y,and z, -2,
XZ_le Yo=Y and ZZ_Zl.
PQl " |PQ| PQ]
Example 3: Find direction cosines and direction ratios for a line joining two points
P(1,3,2) and Q(7,-2,3).

and the directions cosines are

10
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3-Elements of three dimensional geometry VU

Solution: For a line joining two points P(1,3,2) and Q(7,-2,3), the direction ratios are
X, - X, =7-1=6, Y, -y, =—2-3=-5, z,-2,=3-2=1

and the directions cosines are
6 -5

1
J8 (-5 +1° \J82+(-5) +1 \[67+(-5) +1’
6 5 1

V62’ 62" 62
Intersection of two surfaces
eIntersection of two surfaces is a curve in three dimensional space.
oIt is the reason that a curve in three dimensional space is represented by two equations
representing the intersecting surfaces.
Intersection of Cone and Sphere

Intersection of Two Planes

If the two planes are not parallel, then they intersect and their intersection is a straight
line. Thus, two non-parallel planes represent a straight line given by two simultaneous
linear equations in X, y and z and are known as non-symmetric form of equations of a
straight line.

The planes x =— 0, y = 0, and =z = 0

divide space into eight octants.

11
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3-Elements of three dimensional geometry VU
REGION DESCRIPTION EQUATION
xy-plane Consists of all points of the form (X, y, 0) z=0
xz-plane Consists of all points of the form (x, 0, z) y=0
yz-plane Consists of all points of the form (0, y, z) x=0
X-axis Consists of all points of the form (x, 0, 0) y=0,z=0
y-axis Consists of all points of the form (0, y, 0) z=0,x=0
Z-axis Consists of all points of the form (0, 0, 2) x=0,y=0

Planes parallel to Coordinate Planes

General Equation of Plane

Any equation of the form ax+by+cz+d=0 represents a plane, where
a, b, c, d are real numbers.

Sphere

Folxor Yor %)
\

The standard equation of the

sphere of radius a centered at (xo, yo, 20) is I

(x — x0) + (¥ — yo)? + (z — 20)* = a*.

The level surfaces of f(x, y,z) =

VX2 + y? + z? are concentric spheres.

12
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3-Elements of three dimensional geometry VU

Right Circular Cone

xeysl i fatys]l |
graphed in | | graphedin '
2-space | | 3-space j
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/\ ________
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1
x2 4 2% = 1
[
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¥
x ' 3
4

13
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3-Elements of three dimensional geometry VU
Horizontal Elliptic Cylinder
x2 4427 = 4
\)‘
5 The circle
x2 4+ yr =4, z=73
3)
I'he plane
(2,0,0 — 7 »
- | 24w =A== 0
The circle x? + y? — 4, z = 3.
Overview of Lecture # 3
Chapter # 14
Three Dimensional Space
Page # 657
Book CALCULUS by HOWARD ANTON
14
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4-Polar Coordinates VU

LECTURE No.4

POLAR COORDINATES
Outlines of the lecture:

0 Spherical Polar Coordinate

0 Cylindrical Polar Coordinate

You know that position of any point in the plane can be obtained by the two
perpendicular lines known as x and y axes and together we call it as Cartesian
coordinates for plane. Beside this coordinate system, we have another coordinate system
which can also be used for obtaining the position of any point in the plane. It is called
Polar coordinate system. In this coordinate system, we represent position of each particle
in the plane by rand & where r the distance from a fixed point known as pole is O and &
is the measure of the angle.

Pir3)

& .
0] - |nitial ray

Conversion formula from polar to Cartesian coordinates and vice versa

A

P(x, y) =P(r, 8)

r

_/

y

y 3

L1

v

Now we convert the polar coordinates P(r,8) to Cartesian coordinates P(X, V)

From above diagram and remembering the trigonometric ratios we can write

5:COSH = X=rcosd -———(1)
r

X_sing = y=rsing -———(2)
;

The equations (1) and (2) are used to convert the polar coordinates P(r,€) to Cartesian
coordinates P(X,y). Now we convert the Cartesian coordinates P( X, y) into polar
coordinates P(r,8). Squaring equations (1) and (2), and adding them, we get,

X +y’ = (rcosé’)2 +( I‘siné?)2 =r’ (c0529 + sin’ 9)

x> +y? =r? or  r={x+y -——-Q)

Dividing equation (2) by equation (1), we get
15
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4-Polar Coordinates VU

Y = tano S
X

The equations (3) and (4) are used to convert the Cartesian coordinates P(X,Yy) to polar
coordinates P(r,8).

Rectangular coordinates for three dimensions: Since you know that the position of
any point in the three dimensions can be obtained by the three mutually perpendicular
lines known as X, Y and Z — axes and also shown in figure below. These coordinate axes
are known as Rectangular coordinate system.

Rectanguiar coordinates
(x, », =}
Cylindrical Coordinates: Beside the Rectangular coordinate system, we have another
coordinate system which is used for getting the position of the any particle in space,
known as the cylindrical coordinate system as shown in the figure below.

Cvylndnical coordinates
{r,0,=z)
(r=0,0=6 < 2mx )

Spherical Coordinates: Beside the Rectangular and Cylindrical coordinate systems, we

have another coordinate system which is used for getting the position of the any particle
in space, known as the spherical coordinate system as shown in the figure below.

Spherical coordnates
(. 6. )
(Pz200=<0< 2m O0<¢ =m

16
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Conversion formulas between Rectangular and Cylindrical coordinates

Now we will find out the relation between the Rectangular coordinate system and
Cylindrical coordinate system.

For this, consider any point P in the space and consider the position of this point in both
the coordinate systems as shown in the figure below:

o

r—j— r e

]
1

|~ | B

(=% ; -

- ", - F |
O Ao

_’_,.'" i o I . #a
= g =

In the above figure, we have the projection P'(r,8) of the point P(X, Y, Z) in the xy-

plane and write its position in plane polar coordinates and also represent the angle 6 .
Now from that projection, we draw perpendiculars P’A and P'B to both of the axes and
using the trigonometric ratios, find out the following relations:

X X .
—=cosfd, —=sinf, 1=1
r r

Therefore, X=rcosf, y=rsinf, z=2

These equations convert the polar coordinates P(r,8,2) to Cartesian coordinates

P(x,y,2).
r=4x>+y?, tant9=l, =1
X

These equations convert the Cartesian coordinates P( X, Y, Z) to polar coordinates
P(r,0,z)

Conversion formulas between cylindrical and spherical coordinates
Now we will find out the relation between spherical coordinate system and cylindrical
coordinate system.

[t B, )
l:;-_ & =)

= d
L e

:. w2 1/ e ]
_M'H..
P .
i e J /
il

-
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First we will find the relation between Planes polar to spherical. From the above figure,
you can easily see that from the two right angled triangles we have the following
relations: (0,0, ¢) —>(r,0,2)

In the triangle, Cosezé = x=r Cosé
Sin 0=% = y=rSiné
In the triangle,  Sin (/)=L = r=pSing ———(a)
Yo,

Cosgo:i = z=pCosgp ———(b)
Yo,

Therefore, r=pSing, 6=0, z=pCos¢

Now from these equations we will solve the first and second equation for p and ¢. Thus
we have (r,0,2) - (p,0, @)

Squaring and adding equations (a) and (b), we get

.. . . r
Divide equation (a) by equation (b), tang=—
Z

Therefore, p=Ar+17>, =0, tan¢:£

Z
Conversion formulae between Rectangular and Spherical coordinates (p, 6, ®) —
(%, ¥, 2)
Since we know that the relation between Cartesian coordinates and Polar coordinates are
X=rcos @, y=rsiné, z=2 ————(A)
We also know that the relation between Spherical and cylindrical coordinates are,
r=pSing, 0=60, z=pCos¢g —-———(B)
Now putting this value of r and z from (B) in (A), we get
Xx=pSing Cos @, y=pSingSing, z=pCos¢ —-—-——(C)

It is the relation between spherical coordinate system and Cartesian coordinate system.
Now we will find (X, Yy, 2) = (p, 6, ¢)
Squaring and adding the equations in (C),
x> +y>+ 2> =(pSing Cos ) + (pSing Sin 8) + (pCos¢)’
=p?[sin> 4 (Cos® 6 + Sin* ) +Cos® ¢ |
=p*[sin ¢ +Cos’ 4 |

2

=p
p=X+y +7°
Also, Tanezl And Cos¢zi: Z
X P \/x2+y2+ 7’

18
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Constant Surfaces in Rectangular Coordinates
The surfaces represented by equations of the form
X=Xy Y=Y, 2=1,
where X,, Y,, Z, are constants, and are planes parallel to the yz-plane, xz-plane and Xy-
plane, respectively. Also shown in the figure,

a4

P

! ] X =xp
Z0 —H!_y;‘
.Jﬂ*__ 1 - z=2p

L4
by

LY
Lk

(er
Constant Surfaces in Cylindrical Coordinates

The surface r =rg is a right cylinder of radius rg centered on the z-axis. At each point
(r, 0, z), this surface on this cylinder, r has the value ro, z is unrestricted and 0 < 6 < 2.

The surface 0 = 0y is a half plane attached along the z-axis and making angle 6o with the
positive x-axis. At each point (r, 0, z) on the surface, 0 has the value 0o, z is unrestricted
and r> 0.

The surfaces z = z, is a horizontal plane. At each point (r, 0, z) this surface z has the

value zo, but r and 0 are unrestricted as shown in the figure below.

L z-.wg\LJ % o,
Z i N ¥ -
i 8|

- —

I ; i
or-| 4 S
§/’(5C, |

i
§

<l |

i)

Constant Surfaces in Spherical Coordinates
The surface p =p o consists of all points whose distance p from origin is p . Assuming

that p o0 be nonnegative, this is a sphere of radius p o centered at the origin. The surface

0 = 0 is a half plane attached along the z-axis and making angle 8o with the positive x-
axis. The surface ® = @ consists of all points from which a line segment to the origin

makes an angle of @) with the positive z-axis. Depending on whether 0 < @ < % or

19
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% < @ <, this will be a cone opening up or opening down. If &) = %, then the cone

is flat and the surface is the xy-plane.

Spherical Coordinates in Navigation

Spherical coordinates are related to longitude and latitude coordinates used in navigation.
Let us consider a right handed rectangular coordinate system with origin at earth’s center,
positive z-axis passing through the North Pole, and x-axis passing through the prime
meridian. Considering earth to be a perfect sphere of radius p = 4000 miles, then each
point has spherical coordinates of the form (4000, 0, ®) where @ and 0 determine the
latitude and longitude of the point. Longitude is specified in degree east or west of prime
meridian and latitudes is specified in degree north or south of the equator.

Domain of the Function
» In the above definitions, the set D is the domain of the function.
* The Set of all values which the function assigns for every element of the domain
is called the Range of the function.
*  When the range consists of real numbers, the functions are called the real valued
function.

0 Ifa function is of single variable i.e. y= f(X), then domain is a subset of real line

and its graph is a curve.

o0 If a function is of two variables i.e. Z= (X, Y), then domain will be from xy-
plane.

0 Ifa function is of three variables i.e. W= f(X, Y, ), then domain is a subset of
space.

NATURAL DOMAIN

Natural domain consists of all those points at which the formula has no divisions by zero
and produces only real numbers.

Example

20
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Consider the function @w=4/y — X’ . Then the domain of the function is y > x> which can
be shown in the plane as parabola opening upwards. It includes the shaded area and its
boundary is y= x* and the range of the function is[O,oo) .

Ouside, / The parabola
¥ T e O N 1 v xE == 0O
p is the boundary.

1 e =1 B
1 (8] 1

The domain of fix, y) — [y — x=
consists of the shaded region and its
bounding parabola y = x?.

Example

Consider the function w= L
Xy

: : 1 . : . .
Domain of function w=— 1is the whole xy-plane, excluding x-axis and y-axis because at
Xy
x-axis, Y=0 and at y-axis, X=0.
Domain: xy=#0 = x#0, y=0

Domain is entire xy-plane except x-axis and y-axis.
Range is (-, 0)U(0, »)

21
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LECTURE No. 5

LIMIT OF MULTIVARIABLE FUNCTION
Example 1:

f(x,y)=Sin " (x+y)
Domain of f is the region in which —1 <x+y < 1

y-axis
A

-1<x+y<l1

Domains and Ranges

Functions Domain Range
) wo=xX*+y+7° Entire space [0, )
1 . . .
) o=—5—F—7 Entire space except origin (0, )
x>+ yi+z

(%,Y,2)#(0,0,0)
3) w=xylnz Half space, z > 0 (o0, )

Examples of domain of a function
Example 2: f(x,y) = xy\/ﬁ
Domain of f consists of the region in xy-plane where y >1.
(Here we take y—1>0 for real values.)

22
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5-Limits of multivariable function VU

Example 3: f(X,y) = 4X> + y’ -4

Domain of f consists of the region in xy-plane where x> + y* >4. It means
that the points of the domain lie outside the circle with radius 2. As shown in the figure

O =

Example 4:  f(x,y) = Inxy

XY>0 which is possible: When x<0, y<0

Domain of f consists of region

For the real values of logarithmic function,

(3rd quadrant) and when x>0, y>0 ( Ist quadrant )

lying in first and third quadrants in xy-plane as shown below.

Example 5: f(x,y,z) =e **
Domain of f consists of the entire region of three dimensional space.

NVES

Example 6: f(x,y) =
ple 6: f(xy) = o=

Here we take 4 — x> >0 for real valuesof f(x, y).
Domain of f consists of regionin Xy - plane where x> < 4 whichimpliesthat -2 < x <2.

_ x=2
x=-2 y

Example 7: f(x,y,z) = \/25 - X -y’ -7’
Here we take 25 — X* — y* —z° >0 forreal valuesof f(X,y). So, x*+y’+2z° <5°

23
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VU

Domain of f consists of region in three dimensional space occupied by sphere centre at

(0, 0,0) and radius 5.

x>+ 2X7y —xy =2y’
X+2y
(0, 0) is not defined but we see that limit exits.

Example 8: f(x,y) =

Approaching to (0,0) Approaching to (0,0)

through f(x, y) through f(x, y)
X-axis y-axis

(0.5,0) 0.25 (0,0.1) -0.1

(0.25,0) 0.0625 (0,0.001) -0.001
(0.1,0) 0.01 (0,0.00001) 0.00001

(-0.25,0) 0.0625 (0,-0.001) 0.001
(-0.1,0) 0.01 (0,-0.00001) 0.00001

Approaching to (0,0) through
y=x f(x, y)
(0.5,0.5) -0.25
(0.1,0.1) -0.09
(0.01,0.01) -0.0099
(-0.5,-0.5) 0.75
(-0.1,-0.1) 0.11
(-0.01,-0.01) 0.0101

© Copyright Virtual University of Pakistan
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Example 9:

f(x,y) =—XY
(x,y) Tay?

f(0, 0) is not defined and we see that limit also does not exist.

Approaching to Approaching to
(0,0) through f(x,y) (0,0) through f(x,y)
x-axis (y = 0) y =X
(0.5,0) 0 (0.5,0.5) 0.5
(0.1,0) 0 (0.25,0.25) 0.5
(0.01,0) 0 (0.1,0.1) 0.5
(0.001,0) 0 (0.05,0.05) 0.5
(0.0001,0) 0 (0.001,0.001) 0.5
(-0.5,0) 0 (-0.5,-0.5) 0.5
(-0.1,0) 0 (-0.25,-0.25) 0.5
(-0.01,0) 0 (-0.1,-0.1) 0.5
(-0.001,0) 0 (-0.05,-0.05) 0.5
(-0.0001,0) 0 (-0.001,-0.001) 0.5
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lim 2—)1%=0 (along y=10)
xy) - (0,0)
. Xz
lim

3 = 0.5 (along y = x)
+
) O X Y

lim 2—):_% does not exist.
(xy)—> (0,0) ©

Xy
m 2 2
()00 X* 4y

Let (X, Y)approach (0, 0)along the line y=X.

Xy
f(x,y)=
(X, y) ry
XX x> 1
f(x,X)= =——=— X#0
(*%) x> +x> 2x* 2
lim f(x,y)= Ilim y _1 Along theline y =x
oo V)T oo X2+y: 2 J y=

Now let (X, y)approach (0, 0)along x-axis. On x-axis, Yy=0.

X x0 0
f(X,0)=——— =— =0 X#0
(x.0) x> +0%  x*

lim f(xy)= lim —2 =0

—— Along theline x — axis.
(%,Y)=(0,0) (xy)=00) X* 4y

|Therefore f(X,Y)assumes two different values, as (X, Y) approaches (0,0) along two

different paths. So  lim does not exist.

(x)=(0.0) X* 4 y?

We can approach a point in space through infinite paths some of them are shown in the
figure below:

*

(%, Vo

A J
i
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Rule for Non-Existence of a Limit

If in( 1)1rr(1 . f(x,y), we get two or more different values, as (X, Y) approaches (a,b)
X,y)—(a,l

along two different paths, then ( l)im . f (X, y) does not exist.
X,y)—>(a.b)

The paths along which (a,b) is approached may be straight lines or plane curves through
(a,b)
Example 10

lim (x3+2x2 —x—2y>
lim X +2X2Y—X=2Y> ot y y )
(%, Y)—(2.1) X+2 lim (x+2
y <x,y>»<2,1>( )

(227 ()-(2)-20)") geg-2-2
- (2+2(1)) 4

3

Example 11

. X
lim —y
=00 [y2 y?

Weset X=rcosf, y=rsiné, then
Xy (rcos@)( rsino)

\/x2+y2 _\/(rcosﬁ)er(rsin@)2
(rzcosesinﬁ) B (rcos&’sin@)

rycos’@+sin’ @ - N/l

=rcosdsind, r>0
Since r=4x*+y*, so r—0 as (x,y)—(0,0)
Xy

lim ————=Ilim rcos@sin@ =0x cos@sind=0
(X,¥)—(0,0) /X2+y2 r—0

Note that |cos fsin 6’| <1 forall valuesof &.

RULES FOR LIMIT
If lim f(x,y)=L and lim g(xy)=L,,then

(X,¥)=>(Xo,Yo) (X, ¥)>(Xo,Y0)

(a) ( )lir(n )cf (x,y)=cL, (if cis constant)
X, ¥)=>(Xo, Yo

(b) lim {f(xy)+g(x Y=L +L,
(X, Y)=>(%,Yo)

(c) lim {f(xy)-g(xy)}=L-L,
(6Y)=>(%Yo)

(d) lim {f(x,y)g(x,y)}=LL,

(6Y)=>(%:Y0)
(e ooy L (fL2=0)

im
>0k g(X,Y) L,
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lim c=c (Cisa constant) lim X, =X lim =
(X¥)=> (K0 Yo) T =) Oj(XﬂY)9(X0,YO)y0 Yo

Similar rules are for the function of three variables.

Overview of lecture# 5

In this lecture we recall you all the limit concept which are prerequisite for this course
and you can find all these concepts in the chapter # 16 (topic # 16.2)of your Calculus By
Howard Anton.

28
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6-Geometry of continuous functions A9

LECTURE No. 6

GEOMETRY OF CONTINUOUS FUNCTIONS
Geometry of continuous functions in one variable or Informal definition of continuity of
function of one variable

A function is continuous if we draw its graph by a pen such that the pen is not raised so that there
is no gap in the graph of the function.

Geometry of continuous functions in two variables or Informal definition of continuity of
function of two variables

The graph of a continuous function of two variables to be constructed from a thin sheet of
clay that has been hollowed and pinched into peaks and valleys without creating tears or
pinholes.

Continuity of functions of two variables
A function f of two variables is called continuous at the point (X,, Y, ) if f satisfies the

following conditions:
1. (X, Y,) is defined.

2. lim f(x,Y) exists.
Y)>0%,%0)

3. lim fy)=F(X,Y,)

(6= Y0)
The requirement that f (x,, y, ) must be defined at the point (X,, Y, ) eliminates the possibility of
a hole in the surface z = f (Xx,, y,) above the point(X,, ¥, ).

Justification of three points involving in the definition of continuity

(1) Consider the function of two variables x> + y* In(x” + y*). Now as we know that the Log
function is not defined at 0, it means that when X = O andy = 0, our function

x>+ y> In(x* +y*) is not defined. Consequently the surface z = x> + y* In(x* + y*) will have a

hole just above the point (0,0) as shown in the graph of x> + y* In(x* + y*)

= = (xZ + 32) In(x2Z + =)

has a hole at
the origin.

(2) The requirement that ( )lir(n : f (X, y) exists ensures us that the surface z = f(x,y) of the
X,Y)=>(Xo, Yo

function f (X, y) doesn’t become infinite at (X,, Y, ) or doesn’t oscillate widely.
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) ) ) 1 )
Consider the function of two Varlablesﬁ. Now as we know that the Natural domain of
X*+y

the function is whole the plane except origin. Because at origin, we haveX = O andy =0. In

the defining formula of the function, we will have % at that point which is infinity. Thus the
limit of the function % does not exist at origin. Consequently the surface
X +Yy

will approach towards infinity when we approach towards origin as shown in the

A

1
ey

figure above.

1

L

\/\‘z+ w\"-’
becomes infinite
at the origin.

(3) The requirement that x ygif?xo o f(x,y)="f (Xo, yo) ensures us that the surface
.Y )Xo Yo

z = f(x,y) ofthe function f(X,y) doesn’t have a vertical jump or step above the point
(%5 o)

Consider the function of two variables
0 if x>0andy>0
f(x,y)= .
1 otherwise

Now as we know that the Natural domain of the function is whole the plane. But you should note

that the function has one value “0” for all the points in the plane for which both x and y have
nonnegative values. And value “1” for all other points in the plane. Consequently the surface

0 if x>0andy=>0 ) )
z=f(x,y)= . It has a jump as shown in the figure.
1 otherwise

© Copyright Virtual University of Pakistan
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X~

30 ifx>=0,y=>0

1 otherwise

has a vertical jump
at the origin.

Example 1: Check whether the limit at (O, 0) exists or not for the function

2

X
lim f(x,y)=
(%.¥)—(0,0) (%.Y) x> +y?
Solution:First we will calculate the Limit of the function along x-axis and we get
2
. . X . .
lim f(x,0)= lim ———= Ilim I=I (Along x-axis, y = 0)
(X%,¥)->(0,0) xY)=>0,0) X> +0  (xy)=(0,0)

Now we will find out the limit of the function along y-axis and we note that the limit is
2

0
lim f(0,y)= Ilim = lim —= lim 0=0 (Along y-axis,Xx=0
A L 02 +y? 00 Y2 (x)-0.0) (Along y-axis, )

Now we will find out the limit of the function along the line y = x and we note that
2 2

: : X . X . I 1
lim f(x,x)= lim ———= lim ——= lim —=— (Alongy=X)
(%.)>(0.0) =00 X2 4 x> ()00 2X>  y)-002 2

It means that limit of the function f(X,y) at (O, 0) doesn’t exist because it has different values
along different paths. Thus the function cannot be continuous at(O, 0) . And also note that the

function is not defined at (O, 0) and hence it doesn’t satisfy two conditions of the continuity.

Example 2: Check the continuity of the function at (0, 0)
sin (x> +y?)
f(X,y)=2 x+y’
1 if (X,y)=(0,0)
Solution: First we will note that the function is defined on the point where we have to check the
Continuity; that is, the function has value at (0, 0). Next we will find out the Limit of the

if (x,y)#(0,0)

) . . . . sinX
function at (0, 0) and in evaluating this limit, we use the result hng— =1 and note that
X—> X
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Sin(x? + y?)
lim  f(xy)= lim Tty
(xy) = (0,0) (xy) = (0,0)
=1 =1(0, 0)
This shows that f is continuous at (0,0)
CONTINUITY OF FUNCTION OF THREE VARIABLES
A function f of three variables is called continuous at a point (x(, y(, zq) if
L. f(xg.y(7) is defined.
2. lim f(X,y,2) exists.

(X,¥,2)=>(X,Y0,20)

3 lim ) f (X, Yy, Z) = f(Xo, Yo» Zo)

(X,¥,2)>(Xg, Y029

EXAMPLE 3: Check the continuity of the function
y+1
f(x,y,2)=—"———
(x.¥.2) x> +y’ -1
Solution: First of all, note that the given function is not defined on the cylinder x> +y* —1=0.
Thus the function is not continuous on the cylinder Xx* +y* —1=0
However, f(X,Y,2)is continuous at all other points of its domain.

RULES FOR CONTINOUS FUNCTIONS
1) If gand h are continuous functions of one variable, then f(X,y)=g(x)h(y) is a continuous

function of X and V.
2) Ifgis a continuous function of one variable and h is a continuous function of two variables,
then their composition f(x,y)=g(h(x, y)) is a continuous function of X and Y.

3) A composition of continuous functions is continuous.
4) A sum, difference, or product of continuous functions is continuous.
5) A quotient of continuous function is continuous, expect where the denominator is zero.

EXAMPLE OF PRODUCT OF FUNCTIONS TO BE CONTINUED
In general, any function of the form f(x,y)=AXx"x" ( m and n non-negative integers) is

continuous everywhere in the domain because it is the product of continuous functions AX" and
x". The function of the form f(x,y)=3x’Xx’ is continuous every where in the domain because it

is the product of continuous functions g(x)=3x>and h(y)=y".

CONTINUOUS EVERYWHERE
A function f that is continuous at each point of a region R in 2-dimensional plane or 3-
dimensional space is said to be continuous on R. A function that is continuous at every point
in 2-dimensional plane or 3-dimensional space is called continuous everywhere or simply
continuous.
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EXAMPLES
@ fxy = In2x —y +1)
The function f is continuous in the whole region where 2x >y —1, y <2x+1. And its region is

shown in figure below.

@ f(x,y)=e"

The function f is continuous in the whole region of xy-plane.

@) f(x,y)=tan"'(y—x)

The function f is continuous in the whole region of xy- plane.

@ f(xy)=y—-x

The function is continuous where x >y

Partial Derivative
Let f a function of x and y. If we hold y constant, say y=Y, and view X as a variable, then

f(x,y,) isa function of X alone. If this function is differentiable at X=X, then the value of
this derivative is denoted by f,(X,, ¥,) and is called the Partial derivative of f with respect of
X at the point (X,, Y,)-

Similarly, if we hold x constant, say X=X, and view Y as a variable, then f(X,, y) isa
function of y alone. If this function is differentiable at y =Yy, , then the value of this derivative is

denoted by f (X, Y,) andis called the Partial derivative of f with respect of y at the point
(%> ¥o)-
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Example 4: Let f(x,y)=2x"y’>+2y+4xbe a surface. Find the partial derivatives of f with
respect to X and Y at point (1, 2).
Solution: Treating y as a constant and differentiating with respect to X, we obtain
f (X,y)=6Xy*+4
Treating X as a constant and differentiating with respect to y , we obtain
f,(x,y)=4Xy+2
Substituting X = 1 and y = 2 in these partial-derivative formulas yields.
f.(1,2)=6(1)" (2) +4=28
f,(1,2)=4(1) (2)+2 =10
Example 5: Let z =4x” -2y +7x*y’ be a surface. Find the partial derivatives of z with respect

to X and Y.

Solution : z = 4x*> -2y + 7x*y’ @=8x+28x3y5, a = -2 +35x*y*
OX oy

Example 6: Let Z = f (x,y)= x*sin’ Y be a surface. Find the partial derivatives of z with
respect to X and .

Solution: Z = f (X, y) = X’sin’y
Then to find the derivative of f with respect to X, we treat y as a constant.

oz .
Therefore, — = f =2xsin’y
OX

Then to find the derivative of f with respect to y, we treat X as a constant.

0z . .
—=1f,=x*(2sinycosy)=x’sin2y
X +y° . . . .
Example 7: Let z=In be a surface. Find the partial derivatives of z with respect to
X+Y

X and Y.
Solution: By using the properties of the In, we can write it as
z=In(x>+y>) - In (x+Y)
a 1 1
gzxz+yz.2x—x+y
22+ 2xy — X2 —y?
T YY)
x>+ 2xy — y°
T YY)

Similarly by symmetry,
Z_ yYrigp-x

F @Y
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Example 8: Find the partial derivatives of z = x* sin(xy3 ) with respect to X and V.

Solution:
z = x*sin(xy?)
0Z O 4 . ;o3
x _&[x sin(Xy )]
=x' i[sin(xy3)] + sin(Xy3)i(X4)
OX OX

=x*cos(xy’) y’ +sin(xy’) 4%’

o _ x*y? cos(xy’) + 4x’ sin(xy’)
OX

a2 _ i[x“ sin(xy3)]

ay oy

=x* %[sin(XW’)] + sin(xy3)a%(x4)

= x*cos(xy’) 3xy’ +sin(xy’).0
=3xy* cos(xy’)

Example 9: Find the partial derivatives of z = cos(X’ y*) with respect to x and V.

Solution:
z=cos(x’y")
oz . osoa O sy
— =—sin(X’y*) —(x
x sin( Xy )ax( YY)
=-5x*y*sin(x’y*)

oy
=—4xy’sin(X’y*)

oz . 54£ 5.4
= Sln(XY)ay(XY)

Example 10: Find the partial derivatives of W= x> +3y> +4z° —x y z with respect to X, y and z.

Solution:
w=X +3y"+4z°xyz

ow_,
o 2X YZ
ow

dy =0y - Xz
dw
E=8Z—xy

© Copyright Virtual University of Pakistan
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7-Geometric Meaning of Partial Derivative VU

LECTURE No.7
GEOMETRIC MEANING OF PARTIAL DERIVATIVE

Geometric meaning of partial derivative
z=1(x,y)

. .. . . Z
Partial derivative of f with respect to X is denoted by a or f, or (;i
X X

Partial derivative of f with respect to y is denoted by @ or f or i
5}/ y

Partial Derivatives

Let z = f(X, y) be a function of two variables x and y defined on a certain domain D.

For a given change AX in X, keeping Y as constant, the change Az in z, is given by
Az =f(X+AX, y)-f(XY)

E _ f(X+AX9y)_ f(va)

AX
called Partial derivative of f with respect to X.
Similarly for a given change Ay in Yy, keeping X as constant, the change Az in z, is given by

Az = (X y+Ay)-f(XY)

If the ratio Az _f(X y+Ay)-T(XY)
Ay Ay

called Partial derivative of f with respect to .

If the ratio approaches to a finite limit as Ax —0, then this limit is

approaches to a finite limit as Ay —0, then this limit is

Geometric Meaning of Partial Derivatives
Suppose z = f(X, y) is a function of two variables X and y. The graph of f is a surface. Let P be a
point on the graph with the coordinates (X,, Y,, f (X,, Y,))-

N 1+ WVertical axis in
the plane v Yo
Pix Vs X L ) ]
T i x, v)
I'he curve : Flx, ¥, o
in the planc y "o »
]
Tangent line | I
s : :
Y, e = i _j\(,)
Sogt e o B -~
e
e g 3 it (_d_--—"'—‘f_‘ L
e ’ -
x ___7__.;__--———** \
e § {.x W )

e .- o Yo ¥
I'."II_;-- ;J"' ‘.II,

Horizontal axis in the plane » Yy

If a point starting from P, changes its position on the surface such that y is constant, then the
locus of this point is the curve of intersection of z = f(X, y) and y = constant. On this curve,

2—2 is a derivative of z = f(x, y) with respect to X with y constant.
X
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7-Geometric Meaning of Partial Derivative VU

Thus, 2—2 = slope of the tangent to this curve at P. Similarly, Z—Z is the gradient of the tangent at
X y

P to this curve of intersection of z = f(X, y) and X = constant. As shown in the figure below
(left). Also together these tangent lines are shown in figure below (right).

Vermical axis T

in the plane .

A iy T'his tangent line

has slope f, (x4, ¥g)

Tangent line h v Plxg, ¥o. Sxg5. ¥o))

2 | : This tangent line

| .

A ~ has slope f,(xg, vq)

The curve z = fix,, ¥) ¥ 0r0

in the plane x = x &
F ' The ¢ 2= fix, ¥g)

urve 2
\.\/ — in the plane v = y

= flx y)

/ \
< o \’() k) \\_ : x*

Nhe curve = Flxg. 3 ™~ 4 / \
in the plane Horizontal axis Y=g (X, Vo) ¥ xg
v

o= in the plane x Xy

Partial Derivatives of Higher Orders
The partial derivatives f, and f of a function f of two variables X and y, being functions of X and

y, may possess derivatives. In such cases, the second order partial derivatives are defined as
below:

2
s =)= 1,

2
ATl L)1),
) -Tr-2 (1)) = =,

Thus there are four second order partial derivatives for a function z = f(X, y). The partial
derivatives f, and f  are called Mixed Second partials and are not equal in general. Partial

Xy
derivatives of order more than two can be defined in a similar manner.
2 2
Example 1: Find 0z and 0z for z=arcsin| =
oxoy 0yox y

Solution : z=arcsin [ij
y

a _

sl sl e e
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oz 0 (X)) 1 o(x| Yy -X | —X
— = ——|arcsin| — | |=——=—| — |= | o
o oy y 1(XJayy y'—x*\Y YNy —X
y
azz zi(gjz__l(yz—xz);i(yz—xz)z_—13xzy= _y 3
oyox oy \ ox 2 oy z(yz_xz)g (yz_xz)§
0’z _i(@}_ -1 x| 1 -2 ey =X~y
oxoy  ox\oy) yy*-x* Y 2(y2_xz)§ y(yz_xz)% (yz_xz)é
2 2
Here, you can see that 0z = oz
0yox OXoy
2 2 2 2
Example 2: Find I 4 z ot and 2 f for f (X, y)=Xcosy+ye*.
OX oy~  0oyox oxoy
Solution :Z—; :g(xoos y+ye')=cosy+ye"
a =£(XCOSy+yeX) = —Xsin y+e*
oy
2
0 I _ofa =i(cosy+yex)=0+yexzyeX
OX OX\ 0X ) OX
2
ot _ofat :i(cosy+yex):—siny+ e’
oyox oy \ ox
2
o°f :i i :i(_)(siny+ex):—siny+ex
oxoy ox\oy ) oOx
2
0 z :E(QJ :i(—Xsiny+ex):—Xcosy
oy oy\oy) oy

Laplace’s Equation
For a functionw= f (X, Y, z), the equation

o’f o*f o°f
+ +
ox* oy oz

=0

is called Laplace’s equation.

© Copyright Virtual University of Pakistan
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7-Geometric Meaning of Partial Derivative VU

Example 3: Show that the function f (X, y) = €” sin y+e€” cos X satisfies the Laplace’s equation.
Solution: f(x,y) =e*siny+e’ cosx
of

6_ :a_( e*sin y+ey COSX) = e*sin y—ey sin X
X OX
af a X - y X y
5 =6_y(e siny+e cosx):e cos y+e’ cos X
o't ofof) o, . Vo O\ y
Fveaatevi v _&(e sin y—e” sin x) =€’ sin y —€” cos X
o’ft  ofof 0 [ « y X o y
Y :5 5 :5(6 cosy+e cosx):—e sin y+e” cos X
Adding both partial second order derivatives, we have
2 2
88 I +2y—z: (exsiny—eycosx)+(—exsiny+eycosx):0
X

Euler’s Theorem
The Mixed Derivative Theorem
If f(x, y) and its partial derivatives f, f ,f, and f  are defined throughout an open region

x> tyo 'xy

containing a point (a, b) and are all continuous at (a, b), then
fy(@ b) =f, (a b)
Advantage of Euler’s theorem

y

W =Xy +

y y>+1
2

The symbol ow

oxoy

However, if we postpone the differentiation with respect to y and differentiate first with respect
to X, we get the answer more quickly.

ow a[ e’ j
= Xy + =y+0=y

tells us to differentiate first with respect to y and then with respect to X.

X ox y*+1
o'w 6(8W) 0

an =—|—|==—(y) =1
oyox oy\ ox ) oy

Overview of lecture# 7
Chapter # 16 Partial derivatives
Page # 790 Article # 16.3
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8-Euler theorem chain rule VU

LECTURE No. 8
MORE ABOUT EULER THEOREM, CHAIN RULE

In general, the order of differentiation in an nth order partial derivative can be changed
without affecting the final result whenever the function and all of its partial derivatives of
order less than n are continuous.

For example, if f and its partial derivatives of the first, second and third orders are

continuous on an open set, then at each point of the set,
fay = Tyy = fipe
: . o f o f o f
or in another notation, — = = :
oy°0x  0Oyoxoy  oxoy

Order of Differentiation

For a function f(x,y) = y?x%* + 2
5

If we are interested to find ayas—;z , that is, differentiating in the order firstly w.r.t. x
X

and then w.r.t. y, then the calculation will involve many steps making the job difficult.
But if we differentiate this function with respect to y first, and then with respect to x
secondly then the value of this fifth order derivative can be calculated in a few steps.

of 0 24X 4xa 2 0 4, X 44X

it )= xe (V) (2y)+0=2y

621: 8(6]‘] 8 44X 4><a 4% 4,X
=—| — |=—=—(2yx"e*) =2x"e*—(y)= 2x"e*(1)= 2x"e

3 2 4 3
a‘;zﬁ(a‘;}g(zx“ex)zo, afszﬁ(a‘;jzﬁ(o):o
oy oy\ oy oy oxoy®  ox\ oy OX

5 4
ol = -2 (0)-0
ox°oy®  ox\ oxoy OX
EXAMPLE 1: Let f(x,y) = . Find f, and f,.
0 0
(x=y) 5, (x4y)=(xay) o (x=y)

Solution: f, _ 0. Q(XH/]: X X __ =2y :

OX OX\ X—-Yy (x—y) (x—y)

IR R A CE .
j_ (x=y) (x=y)
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8-Euler theorem chain rule

EXAMPLE 2: If f (x, y)=x°e™ + y*sec/X , then find the partial derivatives of f(x, )

with respect to x and y.

Solution:
f(x,y)=x e +y?sec/x

f = O e (3x* ) + y*sec/x tan&x(gﬁJ
OX OX

1
= 3x% Y + y¥sec/x tan+/x (—j
d 2Jx

f, = % f=x*(-e” ) +secVx x(3y*)=—x%" +3y’sec/x
EXAMPLE 3: If f(x,y)=x"ye” , then find the partial derivatives of f(x, y) with
respect to x and y at (1, 1).

Solution: f (x,y)=x’ye”
0
f.(xy) =—f=
«y) =—T=y
f(xy) =xye”[2+xy]

f, @) =(1)@)e"[2+(1)(1)]=3e

f,(xy) = % f(x,y) =x° [%(y) exy+y5( exy)}

{%(xz)exuxz%(exy)} V[ZX e +x"e" aa(xy)}

f,(xy) ==x° [1>< eY+ yexy%(xy)} = x’e” [1+xy]

f, 1) =(1) e"[1+(1)(1)] = 2e

Example 4: If f (X, y):XZCos(xy) , then find the partial derivatives of f(x, y) with

respect to x and y at (%, 7).
Solution: f (X, y)=xCos(xy)
f (Xy) :—( ?)xCos xy

() - -

Now fy(x,y):E(XZCos(xy)): 2 XCos(xy):xz(—Sin(xy)) (xy)=—x*Sin(xy)
fy(%,ﬂ):—(%jssin(%xnjz—(%jsm( jz_%

© Copyright Virtual University of Pakistan

+ X —Cos(xy) 2xCos(xy)—x*ySin(xy)

N

]ﬂX1

Q|

(SN
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8-Euler theorem chain rule VU

o'w
dz2oyox

EXAMPLE5: Let w= (4x—3y+22)5.Find

Solution: w= (4x—3y+22)5
ow 4 0 4
—= 5(4x-3y+2z) &(4x—3y+22): 20(4x—3y+22)
X

0*W a(aw] 0
OX

oo :5 :5(20(4x—3y+22)4)

= 20x4(4x—3y+22)3%(4x—3y+22) = —240(4x—3y+22)3

3 2
ow__ 3( 2 W] 3(—240(4x—3y+22)3)
0z0yoxX 0z \ oyox

T
= —240x3(4x—3y+22)2§(4x—3y+22) = —1440(4x-3y +2z2)’
z

o'w a[ 53wJ 0

= = 2 (-1440(4x-3y +22)*
02%0yox oz \ ozoyex 82( (4x-3y+22) )

= —-1440x2(4x—-3y+22 9 4x—-3y+22)=-5760(4x—-3y+2z
0z
Chain Rule

I - Chain Rule in function of One Variable
The function f(x) depends on one variable x, and x depends on single variablet.

Given thatw= f (x) andx = g(t), we find Z—\iv as follows:

Fromw = f(x), we get Z—W Fromx = g(t), we get %
X
dw  dw dx
Then —=——
dt  dx dt

Example 6: Let w= x+4, x=Sint. Find?j—\iv, using the chain rule.

Solution: w= x+4, x=Sint

dx dx dt  dx
: dw dw dx
By Chain Rule, — = — == — (1 =
y Chain Rule, T dt (1) (cost) = cost
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8-Euler theorem chain rule VU

Chain Rule in function of one variable
y is a function of u, u is a function of v,

v is a function of w, w is a function of z,

z is a function of x. Ultimately, y is a function of x.So we can talk about ﬂ

dx
By the Chain Rule, d_y = d_y d_u ﬂ d_W E

dx du dv dw dz dx

Il When the function f is a function of two variable xandy. And xandy are
functions of one variable t.

w = f(xy), x =g(t), y = (D)

| Dependent variable | _

~hA ow
oy
)

dx
dr dr
aw owdx oway v
- = =
dt ox dt oy dt
Independent variables

EXAMPLE BY SUBSTITUTION

Let w= xy, x=cost, y=sint. Find Z—W by Substitution method.
Solution : By subtitution, w= xy, x=cost, y=sint
w= cost sint =%x 2cost sint =%sin 2t

d—\iv = %(cosZt) x2 = cos2t

EXAMPLE 7:Letw=xy, x=cost, and y=sint. Find %[be chain rule.

Solution : Givenw = xy, x =cost, and y =sint

ow _o(xy) ow _o(xy) _ dx _dcost _
OX OX oy oy
‘:'j_VtV :%% ; %3_{: (y)(=sint) + (x)(cos 1)

= (sint)(=sint) + (cost)(cos t)= —sin®t + cos®t = cos 2t
(sint)(-sint) + (cost)(cos t)

sint, ﬂ: dsint .

Bk ost
dt dt dt dt
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EXAMPLE 8: Let z =3x*y®, x=t*, y=t% Find %

Solution:Given z = 3x*y®, x=t*, y=t?
oz _ 0 oz 0
" (K Y)=3(@)Y = =3¢y =3 3y ) = 9%y’
o 4t%, Yo
dt dt

dz ozdx ozd
PTG LRSI

_ (6(t4)(t2)3)(4t3)+(9(t4)2 () ) (2t) = 26" 4180 — 42
EXAMPLE 9: Let z =41+ x - 2xy*, x=Int, y=t. Find% by the Chain Rule.

Solution: Given z =1+ x — 2xy*, x=Int, y=t

1 oy

a 1(1+ X —2xy*) 2 i(1+ X —2xy*) = 1-2y

ox 2 OX 2\/1 + X — 2xy*
1 3

a 1(1+x—2xy) a(1+x—2xy) 4xy

oy 2 oy J1+x - 2xy*

dx _dint _ 1 dy i(t)—

dt dt t dt dt

% g% gﬂ 1- 2y 14_ 4Xy3 x1

dt oxdt dydt 2 14 x-2xy* U 1+ x-2xy*

1 1-2y* 3] 1 (1 , )
= + 4xy ——t*+4t°(Int
J1+ x — 2xy* ( 2t \/1 +Int—2t"(Int)\ 2t (1)

EXAMPLE 10: Let z=In(2x2+Y), x=+k, y:tg. Find%, using Chain Rule.

Solution: z=In(2x*+y) z=F(X,y)
2

x=+t, y=t? x=g(t), y=f(t)
aon@eon) 3 o20y) 1,
OX OX 2X°+y OX 2x°+y 2X°+y
o on@ey) 1 o2¢ey) 1 1
oy oy 2x°+y oy 2X°+y 2X° 4y

2

dx_dvt _ 1 dy_dts 250 2
dt dt 2t dt dt 3 o3
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8-Euler theorem chain rule VU

dz ozdx ozdy 4x 1 1 2
dt oxdt aydt (2x*+y 2t 2x%+y St%
1
1 2 | 2 2 6t +2

Mt 1
B ;2 (ZﬁjJr ; 2| 1|7zt T T T 2
2(%) +t3 2(\&) +te (3t ) 2t+t® 3t 3[2t+t3J 3t 3[2t+t3j

111 When the function f is a function of three variable x, y and z. And x,
y and z are functions of one variable t .

w = f(x.y,2), x =g(t) .y = f(), z=h(t)

Dependent variable

cw
&z

Independent variables | .

dw _owdx  owdy  ow dz
dt ox dt oy dt oz dt

Overview of Lecture#8
Book Calculus by Howard Anton
(Chapter # 16 - Topic # 16.4, Page# 799)
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9-Examples VU
LECTURE No. 9
EXAMPLES
First of all, we revise the example which we did in our 8" lecture.
Consider w =f(x,y, z) , where x =g(t), y =1(t), z=nh(t), then
dw  ow dx awdy ow dz
dat ox dt oy dt oz dt
Example 1: Consider a function w=x*+y+ z+ 4, thenfind d—W
Solution:
wW=xX'+y+z+4
x = e, y=cost, z=t+4
w _ ow _ ow _
OX =2 ay =l 5 =t
dx _ _Y_ dz _
gt € g oSNt g =1
dw _owdx owdy ow dz
dt ~ox dt oy dt oz Cdt
= (2¥) )+ (1). (-Sint) + (1) (1)
=2 (€Y E)-Sint+1
= 2e?-Sint+1
Consider w = f(x), where x = g(r, s). Now it is clear from the figure that “x” is
ow dw ox aw dw 6x
intermediate variable and we can write —=—— and
or dx or 8s  dx ds
| Dependernt variable |
v
b
Intermediate variables
= Ehe
Example 2:If w=Sinx+x*, x=3r +4s, thenfind ;ﬂand éﬂ
r S
Solution: w=sinX + x?, x=3r+4s
d—W =C0S X + 2X, %zs, %=4
dx or 0s
ow _ dw ox =(cosx+2x)-3=3cos x+6x =3c0s(3r+4s)+6(3r+4s)
or  dxar
46
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9-Examples VU
=3cos(3r+4s)+18r+24s
@zd—w%=(cosx+2x)-4= 4cosx+8x =4c0s(3r+4s)+8(3r+4s)
0s dx os
=4c0s(3r+4s)+24r+32s
Consider the function w = f(x, y), where x = g(r, s), y = h(r, s)
Dependent variable
ow
8}"
Intermediate variables
oW _ 0w OX N ow oy
or — ox or oy or
Similarly, if you differentiate the function w with respect to s we will get
Dependent variable
intermediate variables
ow_owox owdy
s Ox 0s oy 0s
47
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VU

Consider the functionw = f(x,y,z), wherex = g(r, s),y = h(r,s), z = k(r, s)

- Dependent variable

IS

Independent variables

Thus we have

ow 8w8x+8w_y oW 0z

o oxor oyor oz or
Similarly if we differentiate with respect to s then we have,
ow 8W8x+8w_x oW 0z
0S OX0S 0y 0s 0z 0s

intermediate variables

w @

. . r
Example 3: Consider the function w=x+2y+z°, x=—, y=r’+Ins, z=2r,
S

Solution:
First we calculate@ =1, ow =2, ow =21z, X :E, % =2r, oz =2
OX oy 0z or s or or
. ow OWOX OWOoy Ow oz
Since — = ——4+—24

or  xaor oyor azor

M (1} (2)(2r) +(22)(2) = = + 4r + (4r)(2) = = +12r
or S s S

By putting the values from above, we get X = —Lz, 0] = 1
oS S oS S

So we can calculate oW X ew ay ow oz

oS ox or oy ar oz or

r

= (1)(—%]+ (2) (lj+ (22)(0) :g__z
S s s s

Z -0
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Remembering the Different Forms of the Chain Rule:

The best thing to do is to draw appropriate tree diagram by placing the dependent
variable on top, the intermediate variables in the middle, and the selected independent
variable at the bottom.

To find the derivative of dependent variable with respect to the selected independent
variable, start at the dependent variable and read down each branch of the tree to the
independent variable, calculating and multiplying the derivatives along
the branch. Then add the products you found for the different branches.

The Chain Rule for Functions

of Many Variables
Suppose o = f (X, y, ...., v) is a
differentiable function of the
variables x, vy, ..... , v (a finite
set) and the x, vy, .., v are

differentiable functionsofp,q, ,t
(another finite set). Then w is a
differentiable function of the
variables p through t and the
partial derivatives of ® with
respect to these variables are
given by equations of the form

8&):8@8X+ﬁa)ﬁy+ +0”a)51)
op oxX op oy op 7 Jdv op
The other equations are obtained by
replacing p byq, ..., t, one at a time.
One way to remember last equation
is to think of the right-hand side as
the dot product of two vectors with

components.
(6_03 ) a_w) o (a_x Y 6_0)
%oy 7 o ap P
Derivatives of o with Derivatives of the intermedaite
respect to the variables with respect to the
intermedaite variables selected independent variable
. : o*'w
Example 4:For the function w=In(e" +€° +¢&' +¢" ), find w,,, where w, =t
r
Solution: w=In(e"+e°+e'+e")
gV =gh(E rereteeh) Take anti-log on both sides
e=e" +e+e' +e' ————() since e =x

Take derivative with respect to r,
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oe"  0(e"+e°+e'+e")

=(e"+0+0+0)
or or
e"w, =e' Since — =w,
or
. )
e

Take derivative with respect to s,

oe"  o(e"+e’+e'+e")

= (0+e*+0+0)
0s 0s
e'w, = e’ Since — =w,
0S
w, = e_W =" ———=(3)
e

Similarly, by taking derivative of (1) with respect to u, we get

w, =e"" - 4)
Similarly, by taking derivative of (1) with respect to t, we get
w, =" - (5)
Now differentiate equation (2) with respect to s,
ow, _oe " _¢ or—w) :e"W(O—@) since r iskeptconstant
0s 0s 0s 0s
w, =—e"w, =-e""e""  by(3)
Wrs _ er—w+s—w —_ er+s—2w

Now differentiate it with respect to t,
8W aer+s—2w

_ er+s—2w a(r +S— 2W)

r+s—2w aZW . .
=-€ (0+0__8t ) since r iskeptconstant
W, =—e " (—2w)=2e"""""w, =2e Y e
— 2er+s+t—3w by (5)
OW,, 023 pgrsit-an o(r+s+t—3w)
ou ou

ou
Wiy =2€755(04+04+0- 2V

ou )
— 2er+s+t—3w (—SWU) —_ 6er+s+t—3w eu—W

- _ 6er+s+t+u—4w by (4)
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10-Introduction to Vectors VU

LECTURE No. 10
INTRODUCTION TO VECTORS

Some of things we measure are determined by their magnitude, but some times we need
magnitude as well as direction to describe the quantities. For example, to describe a force, we
need the direction in which that force is acting (Direction) as well as how large it is (Magnitude).
Another example is the body’s velocity; we have to know where the body is headed as well as
how fast it is.

Quantities that have direction as well as magnitude are usually represented by
arrows that point the direction of the action and whose lengths give magnitude of the action in
term of a suitably chosen unit.

A vector in the plane is a directed line segment.

B

Y

A
v=AB
Vectors are usually described by the single bold face Roman letters or letter with an arrow. The
vector defined by the directed line segment from point A to point B is written as AB .

Magnitude or Length of a Vector :
Magnitude of the vector v is denoted by

v|=[#8
which is the length of the line segment AB

Unit vector: Any vector whose magnitude or length is 1 is a unit vector.

| <1

Unit vector in the direction of vector v is denoted by\7 and is given by V=

=<

Addition of VVectors

=
=

4]
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This diagram shows three vectors in two vectors; one vector OA is connected with tail of
vector AB . The tail of third vector OB is connected with the tail of OA and head is connected
with the head of vector AB .This third vector is called Resultant vectorr .

The resultant vector r can be writtenas r = a + b
Similarly, ~r=a+b+c+d+e+ f

e
E ~—
Y/
F
g\
O a

Equal Vectors: Two vectors are equal or same vectors if they have same magnitude and

direction. ‘a‘ = ‘6‘
/
b

Opposite Vectors: Two vectors are opposite vectors if they have same magnitude and opposite
directions.

Parallel Vectors: Two vectors a and b are parallel if one vector a is scalar multiple of the
otherb.

b=44d where A is a non-zero scalar.
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r=xi+yj+zk

Addition and subtraction of two vectors in rectangular component:

Let a=aji+ay]+azk
and b=Dbsi+byj+bsk
a+ b= (a1l +ayj + azk) + (bei + bzj + bzk)
=(ar+by)i+ (a2 +b2)j+ (a3 + ba)k
a-b= (ail + azj + azk) - (bai + boj + bsk)
=(ay -by)i+ (@2- bp)j+ (a3~ by)k
The ith component of first vector is added to ( or subtracted from) the ith component of second
vector, jth component of first vector is added to (or subtracted from) the jth component of second

vector, similarly kth component of first vector is added to ( or subtracted from) the kth
component of second vector.

Multiplication of a VVector by a Scalar

////

© Copyright Virtual University of Pakistan
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A

Any vector a can be written as a= ‘5 a

Scalar Product;: Scalar product (dot product) (“a dot b ) of vector a and b is the number
which is given by the formula:

ab = |a| |b| cos &
where 6 is the angle between aand b .
In words, a.b is the length of atimes the length of b times the cosine of the angle between a
andb .

Remark: This is known as commutative law. a.b=>b.a

Some Results of Scalar Product

a.b = |a| |b| cos 8

1) If al b, thenitmeansthat a is perpendicular to b

—_—

so a.b=0 since =90°, Co0s90°=0
Ao i-j=0=j-i, jJ-k=0=k-j, k-i=0=i-]
2) f a I b the it means a is parallel to b .
s a.b =‘ EHTJ‘ since =0, Cos0=1

If we replace b by a, then

—

—|2
a.a= =‘a‘

al[a

so I.i=j.J=k.k =
Example
If a=3k andb=+21i ++/2Kk, 9:%,
then ab = |a| |b| cos & = |3K]| |21 +~/2k] cos%
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EXPRESSION FOR a.b IN COMPONENT FORM
a=aji+ aj+ ask and
b = bli_ b]i_ b;k
a.b = (ali— a;i— a;k} - Eh‘li_ h‘]] Ly b;k:}
=api.(byi+ baj ~ bk} + azj. (b1i+ baj ~ bsk)}
T a;k. (bli_ b]i_ b;k}

= albli LI alb;i.i— aﬂ:r;i. k- a;bi L1 a;b;j . ]
+absj.k+asbik.i+ +aihhk.j+ asbsk . k

arby (1) + a;ba(0) + arbs (0) + a:by(0) + a:b, (1)
T azb3(0) + asb1(0) + + azba(0) + azbs(1)

= aib; + a;by + a3b;

In dot product, the ith component of vector a will multiply with ith component of vector b,
jth component of vector a will multiply with jth component of vector b and
kth component of vector a will multiply with kth component of vector b.

Angle between Two Vectors
The angle @ between two vectors a and b is

0 =Cos ™ i'—tl

2]/

Since the values of arc-cosine lie in [0, 7:], so the above equation automatically gives the angle
made between a and b.

Example : Find the angle between the vectors a=i —2] -2k and b=6i +3]+2k.
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Solution: a.b=(i ~2j-2k).(6 +3j+2k) =(1)(6)+(-2)(3)+(-2)(2)
—6-6-4=—4

al=J0) (-2 +(-2f =va =3, [bl=\(6) =49 =7

6 =Cos™* i'—g =Cos [iJ:Cos - (ij ~1.76 radians
‘aH b‘ (3)(7) 21

Perpendicular ( Orthogonal )VVectors

The non-zero vectors @ and D are perpendicular if and only if &. b =0

This statement has two parts If @ and b are per perpendicular, thenad. b=0.And
ifad. D=0, then @ and b are per perpendicular.

Vector Projection

Consider the Projection of a vector b onavector @ making an angle 6 with each other
B

0 a C "A
From right angle triangle OCB,
base |EC.

Cosf= =
hypotenuse |b|
w = ﬂ Cosé
|b| |2 |C039= b;_a
4 4
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Projectionof balonga=Db :(gl where{i} is the unit vector along a.
8\ [4] g
b.a- b.a-
==—a ===2a
aa]  a.a

The number ﬂ Cos@ is called the scalar component of b in the direction of a because
b| Cos6 =b.a

Example : Find the vector projection of b=6i +3j+2k onto a=i —2j —2K.
Solution:

Projectionof bontoa= —— 5:_—46 ~2j —212) _ 4 +§]+ 8¢
9 9 9

The scalar component of D in the direction of @ is ﬂ Cosé.

B Coso - b.a (61 +3i+2K).(i-2j-2K) 6x1+3(-2)+2(-2) 6-6-4 4

al Jo (2 (2 8 33

The Cross Product of Two Vectors in Space
Consider two non-zero vectors a and b in space. The vector product axb ("a crossb") to be

the vector axb = ‘5“5‘ Sin@ n where n is the unit vector determined by the Right Hand rule.

Right-hand rule

We start with two nonzero nonparallel vectors A and B .We select a unit vector n perpendicular
to the plane by the right handed rule. This means we choose n to be the unit vector that points
the way your right thumb points when your fingers curl through the angle 0 from A to B.

The vector A x B is orthogonal to both A and B.
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VU
AxB B
= o A
n . o P
] : 3§
A B:-:.-'-\11
Some Results of Cross Product axb
Aswe knowthat  axb = ‘5“5‘ Siné n
1) If aj|b,then axb =0 since Sin0° =0
Similarly, axa=0 and ixi=jxj=kxk=0
2) If a_Lb, then axb = ‘EHB n since Sin90° =1
Similarly, ix] =k, ]xi=—12
)
k
Note that the vector product is not commutative.
The Area of a Parallelogram
Because nis a unit vector and magnitude ofa x b is
‘5 x 5‘: ‘EHB‘ Sing ‘ﬁ‘ = ‘5“5‘ Sing Since ‘ﬁ‘ =1
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Area = base - height
\ = |al-|b]|sin 6]

‘\ = |a x< b|

h = |Bl|sin 0|

!
!
1
]
L
|
i

|

i e

a
This is the area of parallelogram which is determined by aandb where a is the base and
‘B‘ Sin@ is the height of the parallelogram.

a x b from the components of aand b
a=a,i+a,j+ak and b=hi+b,j+bk
axb :(a1f+a2]+a3lz)x(bﬁ+b2]+b3I2)

= aﬁx(bﬁ +b2]+bslz)+a2 ]x(bﬁ +b2]+b3lz)+a3lzx(bﬁ +b2]+b3lz)

:aiblixf +a1b2ix]+a1b3ixlz+a2b1]xi +a2b2]x]+a2b3]xlz
a3bllz><f +a3b2I2x]+a3b3I2><I2
=ah x0 +ab,k+ab, (—] )+a2b1(—lz )+ a,b, (0)+ayb,i
abj +a3b2(—f)+a3b3(0)
= (a,b, —a,b, )i —(ab,—a, ) j+(ab,-a,b )k
i

5 L =

]
Ch a,
b b
Example: Leta=2i+j+k and b=-4i +3]+K, then find axb.
Solution:

3

i)k
axbl=|2 1 1|=i(1-3)-j(2+4)+k(6+4)=-2i —6]+10k
4 3 1

Over view of Lecture # 10
Chapter# 14: Article # 14.3, 14.4 Page # 679
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VU

LECTURE No. 11

THE TRIPLE SCALAR OR BOX PRODUCT

The product (a'xB)-C is called the triple scalar product of &,b and € ( in that order).

As (§x5)~6 = ‘axﬁ‘ | |cos 6]

So the absolute value of the product is the volume of the parallelepiped (parallelogram-

sided box) determined by &,b and C.

axb

C

b % ~—— Area of base

~ -axb

"V ;

Height = |¢| |cos Bj} @
| i
>,

a

Volume = (area of base) (height)
=lax bl el cose
=laxb.¢

By treating the planes of b and ¢ and of € anda as the base planes of the
parallelepiped determined by a,b and C.

We see that (éxﬁ)-é = (Exé)-é = (cxd)-b

<2
>
(@]
@D
—
=
D
o
o
—
o
=
o
[oR
c
(@]
—
>
(@]
o
3
3
c
—
D
=
<
o
—_—
jabl
X
(ox]
(]
Il
jabs
—_
o
X
(l]
S~

Proof : Consider a=al +a,]+ak
b=bi+b,j+bk
C=ci+c,]+ck
i)k
= o = = - 2 - bz b3 bl b3 N b1
a(bxc)za b, b, by=(ai+aj+ak) - i+
CZ CS Cl C3 Cl
Cl C2 C3
bZ b3 bl b3 bi b2
=a -a, +a,
CZ C3 Cl C3 cl CZ
al al al
So, d-(bxt)=|b b, b
C c C

© Copyright Virtual University of Pakistan
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Example : Let a = f+2] k, b=-2i

Solution:
1 2 -1
~(C = 0 3 -2 3 -2 0
a(bxc =-2 0 3| =1 -2 +(-1)
7 -4 0 -4 0o 7
0 7 -4

=1(0-21)-2(8-0)—(-14-0)
=-21-16+14 =-23
When we solve a -(Bxé), then answer is—23. If we get negative value, then Absolute

value makes it positive and also volume is always positive.
Gradient of a Scalar Function

where V is called “del” operator.
Gradient ¢ is a vector operator defined as

grad ¢ = [IA£+ j—+ 123}1;
OX oy oz
= §¢
V “del operator” is a vector quantity. Grad means gradient. Gradient is also vector
quantity. V¢is vector and ¢ is scalar quantity.

Directional Derivative

If f(x,y) isdifferentiable at (xo, yO and if

i=(u,,u,) isaunit vector, then the

directional derivative of f(x,y) at

(Xo, Y, ) in the direction of U is defined by A

D, f(XO’yO): fx(XO'yO)u1+ f XO'yO L—

It should be kept in mind that there are
infinitely many directional derivatives of

z=f(x,y) atapoint (x,,Y,), one for each

possible choice of the direction vector U.

Remarks ( Geometrical Interpretation )

The directional derivative D, f (XO, yo) can be interpreted algebraically as the

instantaneous rate of change in the direction of U at (xo, yo)of z= f(x,y) with respect
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to the distance parameters described above, or geometrically as the rise over the run of
the tangent line to the curve C at the point Q, .

NOTE : Formula for the directional derivative can be written in the following compact
form, using gradient notation: D, f (x,y)=Vf (x,y)-0

The dot product of the gradient of f with the unit vector U produces the
directional derivative of f in the direction of U .
Example : Find the directional derivative of f(x,y)=3x"y at (1,2)in the direction of

a=3i +4j.

Solution : Given f(x,y) =3x%y, (L2), d= 3+ 4]
f (x,y)=6xy, f.(1,2)=6(1)(2)=12
f,(xy) =3, f,(L2)=3(1) =3
g8 _31+4] 3 +4) 3- 4=

A fF.a JB 5 5]

D, f(xy)=Vf(12)a —(f(12)|+f(12)j)( I+—jj

) 8 (3o

Example : Find the directional derivative of f(x,y)=2x"+y* at P, (—1,1) in the
direction of G =31 — 4].
Solution : Given f(x,y)=2x*+Y?, P(-11), U= 3 —4].

f (X, y) =4x, f (-11) =4(-1)=-4

f,(xy)=2y, f,(-11)=2(1)=2
E: 3i 4j 3 —4] 3A_4]
0 J#+4 25 5

)-d

f(xy)=Vf(-11 (—4|+2J)(§|‘__J°J

HEORES
5 5 5
Remarks:

If 0= ulf +u2j is a unit vector making an angle @ with the positive x-axis, then

<

U,=cosé and U, =SiN&. So D, f (X, Y,) = f, (X Yo)u+ f, (X Yo)U, can be written
inthe form D, (X,,Y,) = f, (X, ¥,) cos@+ f (X, Y,)sing
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Example: Find the directional derivative of €9 at (—2,0) in the direction of the unit

vector U that makes an angle of % with the positive x-axis.

Solution: Given f(x,y) =€, (_2,0)’ G = cos %f +sin %]
f.(xy)=ye?, f(-2,0)=(0)e? =0
f,(xy)=xe", f,(-2,0)=(-2)e? = —

D, f(xy)=Vf(-20)-0 =(of —2})-(cos %f + sin% ]J

~(of -2]) (;nijJ @z(%

Gradient of Function
If f isa functionof xand y, then gradient of f is defined as

VEixy)=fxy) i+ f(xy)]

2

Directional Derivative

Formula for the directional derivative can be written in the following compact form using
the gradient

D, f(x,y)=Vf(xy)-U

The dot product of the gradient f with the unit vector 0 produces the directional
derivative of f in the direction of G.

Example: Find the directional derivative of f(x,y)=2xy—3y* at P0(5,5)in the
direction of O = 41 + 3].
Solution:

Given f(x,y)=2xy—-3y?, P (55), U=4i+3]

f.(xy)=2y, f.(55)=2(5)=10
f,(x,y)=2x-6y, f,(5,5)=2x-6y=2(5)-6(5)=-20
a:E: 4i +3) _4i +3] :ﬂf+§j

Dy f(xy)=Vf (55)-0=(10f 201)(ﬂf+—]]
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Example: Find the directional derivative of f(x,y)=xe’ +cos (xy) at the point

(2,0)in the direction of @ = 31 — 4].

Solution:
Given f(xy)=xe’+cos(xy), (20), d=31-4]
f (x,y) =€’ —ysin(xy), f,(2,0)=e°—(0)sin(2x0)=1-0=1
f,(x,y) =xe’ —xsin(xy), f,(2,0)=2e"~(2)sin(2x0)=2-0=2

é:i:3l—4j:3l—4j:§f_4e

al J#+4 J25 5 5
D, f(x,y)=Vf(20)-4

(i v2) {3 - 1]
SURHEES

Properties of Directional Derivatives

D, f = Vf -0 =|Vf|coso

1. Thefunction f increases most rapidly when cos@=1 or & =0 or when U is in
the direction of Vf . That is, at each point P in its domain, f increases most rapidly in

the direction of gradient vector Vf atP. The derivative in this direction is
D, f =Vf -U\Z‘vf‘COSO: Wf‘

2. Thefunction f decreases most rapidly when cos@=—1 or =7 orwhen U is in
the opposite direction of Vf . Thatis, at each point P in its domain, f decreases most

rapidly in the direction of gradient vector —Vf atP. The derivative in this direction is

D, f =Vf -lj:Wf‘cos;zz—Wf‘
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3. Any direction of U which is orthogonal to the gradient vector V1 is the direction

of zero change in f because Hzg and cos% =0

D, f =vf-l]=‘vf‘cos%:‘vf‘.0:0

Example: Find the directions of rapid increase, rapid decrease and no change for the
2 2

. X y
function f(x,y)=— + —.
(x,y) >t

X2 2
Solution: f(x,y)=— + —

2
Vi x, =(i“£ °£j
(x,y) +Jay

. - . T+] 1= .
(a) Its direction of rapid increase is u = J =1 +—=]

JE+12 2 2

(b)  The function f decreases most rapidly in the direction of gradient vector —Vf at

(1,1) whichis -0 =

N
V2. V2

(c) The direction of zero change of the function f is orthogonal to gradient vector
1 =~ 1 = 1 =

—Vf at (1,1) whichis 4 = B AL N

=

1
J2
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Most rapid < Zero change
decrease in f inf

= ¥
Most rapid /Vf: i+ j

increase in I
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LECTURE No. 12
TANGENT PLANES TO THE SURFACES

Normal line to the surfaces

If C is a smooth parametric curve in three dimensions, then tangent line to C at the point
Po is the line through Poalong the unit tangent vector to the C at the Po. The concept of a
tangent plane builds on this definition.

If Po(Xo,Yy0,20) is a point on the Surface S, and if the tangent lines at Po to all the
smooth curves that pass through Poand lies on the surface S all lie in a common plane,
then we shall regard that plane to be the tangent plane to the surface S at Po.

Its normal (the straight line through Po and perpendicular to the tangent) is called the
surface normal of S at Po.

Different forms of equation of straight line in two dimensional space

1. Slope intercept form of the Equation of a line

y = mx +c¢
where m is the slope and c is y intercept
2. Point-Slope Form
Let m be the slope and P,(x,, y,) be the point of required line, then

y—yozm(x—xo)

. Rise b
m = slopeof line=——=—
Run a
b
Y=Yo=—(x=%)

Rise

Run

3. General Equation of straight line
Ax+ By +C =0
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Parametric equation of a line
Parametric equation of a line in two dimensional space passing through the point (xO, yO)

and parallel to the vector ai+ bj is given by
X =X, +at, 'y =y,+bt

Eliminating t from both equations, we get

X_XO:t y_yO:t

b
Y =Y :g(x _XO)
Parametric vector form:
r(t) = (x +at)i+(y,+bt)j

Equation of line in three dimensional
Parametric equation of a line in three dimensional space passing through the point

(Xo» Yor Zo) and parallel to the vector ai+ bj+ck is given by

X =X +at, 'y =y,+D0bt, Z = 7,+ct

Eliminating t from these equations we get

X5y Yh_ =t

Example: Find Parametric equations for the straight line through the point A (2,4,3) and
parallel to the vector v =4i + 0] — 7k.

Solution:
Xo= 2, Yo= 4, 2,= 3
and a =4,b=0c=-7
The required parametric equations of the straight line are
X = 2 + 4t,
y = 4 + 0Ot
z=3-Tt

Different forms of the equation of curve
Curves in the plane are defined in different ways

(1) Explicit form:  y = f(x)
68
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Example: y = +/9-x° -3<x<3
(2) Implicit form: ~ F(x,y) = 0
Example: x* +y*> =9  -3<x<3, 0<y<3
(3) Parametric form: x= f(t) andy = g(t)
Example:
X =3cosf, y=3sind 0<0<r
x* +y*=9c0s* 4 + 9sin’ @
=9(cos’ 0 + sin®0)=9(1)

x> +y?=9
(4) Parametric vector form: r(t) = f(t)i+g(t)j, a<t<h.

Example: r(t) = 3costi+3sintj 0<t<z

Equation of a plane

A plane can be completely determined if we know its one point and direction of
perpendicular (normal) to it.

Let a plane passing through the point B, (X,, Y, zo) and the direction of
normal to it is along the vector n= ai+ bj+ ck

Let P (x, Y, z) be any point on the plane, then the line lies on it so that n L ﬁ
(L means “perpendicularto” )

PP =(x =%)i+(y —¥o)i+(z -7)k
Therefore, n ﬁ =0
(ai+ bj+ ck).((x =%))i+ (y —¥,)i+(z —2,)k)=0

a(x —x,)+ b(y —y,)+¢c(z —z)=0
which is the required equation of the plane.
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NOTE : Here we use the theorem:
Let a and b be two vectors. If a and b are perpendicular,
then a-b=0

SincenandP,P are perpendicular vector, son.P,P =0

REMARKS
Point normal form of equation of plane is

a(x —x)+ b(y —y,)+¢(z —z,)=0

We can write this equation as
ax —ax,+ by —by, +cz —cz, =0
ax + by+cz—ax,—by, —cz, =0
ax + by+cz+d =0
where d =-ax, —by, —cz,
,which is the equation of plane

Example: An equation of the plane passing through the point (3, - 1, 7) and
perpendicular to the vector n = 4i + 2j - 5k.

A point-normal form of the equation is
4(x-3)+2(y+1)-5(z-7)=0
4x+2y-52+25=0

Which is the same form of the equation of plane ax + by + cz+d =0

The general equation of straight line
isax+by+c=0

Let (x1, y1) and (%, y2) be two points
on this line then

axxthyr+c=0

ax+by+c=0

Subtracting above equation

a(k —x1)+b(y2-y1)=0

V=0%-xX)i+(y2-y1)]
IS a vector in the direction of line

o(x y) =ax+ by

dx = 4, dy=D
Vo =ai+bj =n
Vo.r=0

Then nand v are perpendicular
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The general equation of plane is
ax+by+cz+d=0
For any two points (xi, Y1, z1) and
(X2, Y2, z2) lying on this plane we
have
axy +byy +czz+d=0 (1)
aXp+thby,+cz+d=0 (2)
Subtracting equation (1) from (2)
have
a (—x1)+b (y2-y1) +c(zz—2z1) =0
(ai + bj + ck). [ (XeX0) i+(Y2 ) j +Zez0 k]
Here we use the definition of dot product of two vectors.

¢ =ax+by+cz

d)x =4, d)y = b, (I)z =C
V¢ =ai+Dbj+ck _
Where v = (x2 — x1)it(e—Y1)j t (Z2 -z 1)K

V¢ is always normal to the plane.

Gradients and Tangents to Surfaces

f(x,y)=c
z=1(x,y), z=c

If a differentiable function f (x, y) has a constant value ¢ along a smooth curve,
having parametric equations:

x=g(t), y=h(), r=g(t)i+h(t)]j

Differentiating both sides of f(x,y) =c with respecttot,

£ (9(0), h) = S(c)

otdg  ofdh_,
ox dt oy dt
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: r -
VT is normal to the tangent vector % So it is normal to the curve through (xo, yo).

Tangent Plane and Normal Line

Consider all the curves through the point Po(x0, y0, z0) on a surface f(x, y, z) = 0. The
plane containing all the tangents to these curves at the point PO(x0, y0, z0) is called the
tangent plane to the surface at the point Po.

The straight lines perpendicular to all these tangent lines at Po is called the normal line to
the surface at Py if fx, fy, fz are all continuous at Po and not all of them are zero, then
gradient f (i.e fxi + fyj + fzK) at Po gives the direction of this normal vector to the surface
at Po.

Tangent

lines /
S NF s
. e
SR o r ! \ Tangent
g / : plane
y
| i 2l
74 4 (%0, ¥o)
7 All tangent lines
4 at Py lie in the
/ tangent plane.

Tangent plane
Let Po (Xo, Yo, Zo) be any point on the Surface
f(x,y,z) = 0. If f(x,y,z) is differentiable
at po(Xo,Yo,20) then the tangents plane at the
point Po (Xo,Yo0,20) has the equation

Example: Find the equation of tangent plane to the surface
9x* +4y®—z°=36 at point P(2,3,6).
Solution:

X +4y -7 =36 P (2,3,6).
f(X,y,2) = O+ 4y — 7 — 36
fk = 18X, f, =8y, ,=-2z

fx (P) = 36, fy (P) = 24, fz (P) =-12 79
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Equations of Tangent Plane to the surface through P is

36(x—-2) +24(y—-3)-12(z-6)=0
3X+2y-z-6=0

Example: Find the equation of tangent plane to the surface
z=xcosy—ye* atpoint(0,0,0).
Solution:

z=xcosy—ye (0,0,0). 2
cosy—ye -z=0
f(x,y,z) =cosy—ye* -z yi
(0,0, 0) = (cos y — ye*)o0 =1-0.1=1 | Y &
£(0,0,0) = (- xsiny— €00 =0-1=-1. |
£,(0,0,0) = -1
The tangent plane is
£(0,0,0)(x — 0)+fy (0,00)(y - 0) + £(0,0,0)(z-0)=0
1(x-0)-1(y-0)-1(z-0) = 0,
x—y—-z=0.

x
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LECTURE No. 13
ORTHOGONAL SURFACE

In this Lecture we will study the following topics
e Normal line
e Orthogonal Surface
e Total differential for function of one variable
e Total differential for function of two variables

Normal line

Let B (X0,Y0,20) be any point on the surface f(x,y,z)=0 If f(x,y,z) is differentiable at
P {X0)Y0Z0) then the normal line at the point P(X 0¥ 4:2,) has the equation

X = Xo+fx(Po)t, y= yot+fy(Po)t, z = 20+f(Po)t
Here fx means that the function f(x,y,z) is partially differentiable with respect to x And
fx(Po) means that the function f(x,y,z) is partially differentiable with respect to x at the
point Po(Xo,yo,20)

fy means that the function f(x,y,z) is partially differentiable with respect to y And fy(Po)
means that the function f(x,y,z) is partially differentiable with respect to y at the point
Po(Xo0,Y0,20)

Similarly, fz means that the function f(x,y,z) is partially differentiable with respect to z
And fz(Po) means that the function f(x,y,z) is partially differentiable with respect to z at
the point Po(Xo,Y0,20)

Example: Find the Equation of the tangent plane and normal of the surface f(x,y,z)=
X2+y2+z2-4 at the point P(1,-2,3)
Solution:
f(x,y,2)=x"+y*+12°-14, P(1,-2,3)
fo=2x, f,=2y, f,=2z
f.(R)=2 f,(R)=-4 f,(R)=6
Equation of the tangent plane to the surface at P is
2(x-1)-4(y+2)+6(z-3)=0
X -2y+3z-14=0
Equation of the normal line of the surface through P is
(x-1) _(y+2)_(2-3)

2 -4 6
(x—1) _ (y+2) _ (z-3)
1 -2 3
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Example : Find the equation of the tangent plane and normal plane

Solution:
4X—y +32°=10 P (2-3,1)
f(x,y,z) = 4% - y2 +322-10
fy = 8X, fy=-2y, f, =62z
fk (P)=16, f (P)=6, ,(P)=6

Equations of Tangent Plane to the surface through P is
16(x—-2)+6 (y+3)+6(z -1)=0
8x+3y+3z=10
Equations of the normal line to the
surface through P are
X-2 y+3 z-1
16 6 6
X-2 y+3 z-1
8 3 3

Example

1
z2=5 X y2

f(x.y,2) =% x'y2-z
7
fX = E )(6.y-27 fy =- X7.y3’ E = 'l

f (2, 4, 4)% (2P @)2=14

f,(2,4,4) = () (4y3=-2
f,(2 4,4) =1

Equation of Tangent at (2, 4, 4) is given by
fX(2,4,4)(x —2)+ fy(2,4,4)(y —4)+ fz(2,4,4)(z -4)=0
MU4x —-2)+(-2)(y -4 -(z-4=0

14x -2y -z -16=0
The normal line has equation s
X = 2+fx(2,4,4) t, y= 4+fy(2,4,4) t, z= 4+fz(2,4,4) t
X =2+ 14t, y=4 - 2t z=4 —t

© Copyright Virtual University of Pakistan
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13-Orthogonal surfaces

ORTHOGONAL SURFACES

Two surfaces are said to be orthogonal at a point of their intersection if their normals
at that point are orthogonal. They are Said to intersect orthogonally if they are orthogonal

at every point common to them.

CONDITION FOR ORTHOGONAL SURFACES
Let (X, Y, z) be any point of intersection of

f(x,y,2)=0--—-- (1)
and g(x,y,2)=0---- (2)
Direction ratios of a line normal to (1) are f , fy A

Similarly, direction rations of a line normal to (2)

are g, o, 0z
The two normal lines are orthogonal if and only if

g+ fgy + %0 =0

Example
Show that given two surfaces are orthogonal or not

f(X,y,2)=x*+y*+2-16
g(x,y,2) =x*+y*—63z
f(x,y,2)=x"+y*+2-16
g(x,y,z)=x"+y*-63z

)
——-=(2)
63,1 ____

Adding (1) and (2), x2+y2:7, 2=7
f, = 2x, fy =2y, f,=1
g,=2%x, 9,=2y, g,=-63

fog, +fg, +fg,=4x+y)-63 :4(%}63 using (3)

=0
Since they satisfy the condition of orthogonality, so they are orthogonal.

Differentials of a functions

For a function 'y = f(x)
dy=f(x)dx
is called the differential of functions f(x)
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dx the differential of x is the same as the actual change in x

i.e. dx = Vx where as dy the

differential of y is the approximate change in the value of the functions \yhich
IS different from the actual change Vy in the value of the functions.

Distinction between the increments Ay and the differential dy

? Y= f(-x)
A y
/ Ax = dx |
X X + Ax D
(x + dx)

Approximation to the curve

If f is differentiable at x , then the tangent line to the curve y = f(x)
at X, is a reasonably good approximation to the curve y = f(x) for value of x
near X Since the tangent line passes

through the point (xo, f(xo)) and has slope f(xo), the point-slope form of
its equation is
y — f(%0) = f(Xo)(X — X0) or
= f(xo) + f(xo) (X - Xo)

(%) _ﬁ
X=4and dx = \/3
AY =\Nx +AX \?L
=\'7 -\ a
Ify \/— then
so dy = dx
dX %/;( Y 2 m&

_2\[(3)_ = 75

EXAMPLE

77
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Example Using differentials approximation
for thevalue of cos 61 °.
Lety =cosx and x =60°
then dx = 61° — 60° = 1°
Ay = dy = —sinx dx = —sin60° (1°)
BE )
2 180"
Now y = cos X
y+AY = €0S (X+AX) = cos (x+dx)
= cos (60°+1°)=cos61°
COS61° = y+AYy = COSX + AY

\3 (1
~ C0S60° — 5 (180 nj

\3 (1

1
C0S61° ~ 5~ 5 (180 nj
=0.5-0.01511 =0.48489

cos6le ~ 0.48489
Example

A box with a square base has its  height twice is width.If the

width of the box is 8.5 inches with a possible error of
% 0.3 inches

Let x and h be the width and the height
of the box respectively, then its volume
V is given by
V = x°h
Since h = 2x, so (1) take the form
V=23
dV = 6x° dx

Since x = 8.5, dx = +0.3, so

putting these values in (2), we have

dV =6 (8.5)° (+:0.3) = + 130.05

This shows that the possible error in the
volume of the box is +130.05.
TOTAL DIFFERENTIAL
If we move from (x,, y,) to a point (X + dx, Yy, + dy) nearby, the
resulting differential in f is
df = fx (X0, yo) dx + fy (Xo, Yo) dy

This change in the linearization of

78

© Copyright Virtual University of Pakistan



13-Orthogonal surfaces VU

fis called the total differential of f.

EXACT CHANGE

Area = Xxy
x=10,y=38 Area =80
x=10.03y=8.02  Area=80.4406
Exact Change in area = 80.4406 — 80

= 0.4406

Example
A rectangular plate expands in such a way that its length changes from

10 to 10.03 and its breadth changes from 8 to 8.02.

Let x and y the length and
breadth of the rectangle
respectively, then its area is
A =xy
dA = Ax dx + Aydy = ydx + xdy
By the given conditions
x =10, dx =0.03, y =8, dy = 0.02.
dA =8(0.03) + 10(0.02) = 0.44
Which is an exact change.
Example
The volume of a rectangular parallelepiped is given by the formula V = xyz. If this solid

is compressed from above so that z is  decreased by 2% while x and y each is
increased by 0.75% approximately

V = xyz
dV = de X+ Vydy + Vde
dV =yzdx + xzdy + zydz (1)

0.75 0.75 2
=00 X Y =700 ¥+ 92 ~ 10 2
Putting these values in (1), we have
g 2075, 075 2

Y100 Y2~ 100 V2

100
0.5 0.5
= =100 100 Y
This shows that there is 0.5 %

decrease in the volume.
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Example
A formula for the area A of a triangle is
= % ab sin C. Approximately what error is
made in computing A ifa is takento be 9.1
instead of 9, b is taken to be 4.08 instead of
4 and C is taken to be 30°3' instead of 30°.
By the given conditions
a=9,b=4,C=230°,
da=9.1-9=0.1,
db=4.08-4=0.08
3 [}
dC =30°3' -3 = (&j
_3
=50 X180 radians
Putting these values in (1), we have

1 ]
=3 absinC

o (1 ) o (1 .
dA_aa (2 ab sin C) da+ab (2 ab sin C) db

o (1 .
+ o (2 ab sin Cj dC

dA:% bsinCda+% asinCdb

1
+ E ab cos CdC

da = Zasin30° (0.1)+195in 30° (0.08)+£36cos300 (Lj
2 2 2 3600

= 2(%)(0.1)+%(%)(0.08)+18(§J (%) ~0.293

%agechange in area = %xloo = %xloo =3.25%
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LECTURE No.14
EXTREMEA OF FUNCTIONS OF TWO VARIABLES

In this lecture, we shall find the techniques for finding the highest and lowest points on
the graph of a function or, equivalently, the largest and smallest values of the function.

The graphs of many functions form hills and valleys. The tops of the hills are relative
maxima and the bottoms of the valleys are called relative minima. Just as the top of a hill
on the earth’s terrain need not be the highest point on the earth , so a relative maximum
need not be the highest point on the entire graph .

Absolute maximum

2
A function f of two variables on a subsetof R is said to have an ) absolute (global)
maximum yalue on D ifthere is some point (X01 ya of D such that value of f on D

f (X0, yo) > (x, y) for all (x, y) € D

In such a case f(Xo, Yo is the absolute maximum

Relative extremum and absolute extremum
minimum at (X ¥ o), then we say that f has a

If f has a relative maximum or a relative
relative extremum at (X o, o), and if f has an absolute maximum or absolute minimum at

(X0Yg): then we say that f has an absolute extremum at (x o, y/q)-

Absolute minimum )
A function f of two variables onasubset D of R Issaidto have an absolute (global)

minimum value on D i there is some point (X0, Vo) of D such that
f(Xo, Yo)=f(x,y) forall (x, y)€ D.

In such a case f (Xo, yo) is the absolute minimum valueof fon D

Relative (local) maximum

The function f is said to have a relative (local ) maximum at some point (x0,y0) of its
domain D if there exists an open disc K centered at (x0,y0) and of radius r

K={(x,y) € R 1 (x = x0)" +(y —yo) < r'}
Withk e D such that

f(Xo, yo) 2T (x,y) forall x,y )

81
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Relative ( Local ) Minimum

The function f is said to have a relative ( local ) minimum at some point (x,, y,) of D
if there exists an open disc K centered at (,, Y, ) and of radius r with K <D such that

f (X ¥o) < F(XY) forall (x,y)eK

Absolute maximum ~————a

z=f(x,¥)

Extreme Value Theorem
If f (X, y) is continuous on a closed and bounded set R, then f has both
an absolute maximum and on absolute minimumon R .

Remarks

If any of the conditions the Extreme Value Theorem fail to hold, then there is no
guarantee that an absolute maximum or absolute minimum exists on the region R.

Thus, a discontinuous function on a closed and bounded set need not have any absolute
extrema, and a continuous function on a set that is not closed and bounded also need not
have any absolute extrema.

Extreme values or extrema of f

The maximum and minimum values of f are referred to as extreme values of extrema of f
.Let a function f of two variables be defined on an open disc

K ={&y):k—%) +¢—yo) <r}.

Suppose X d f (Xp,Yy)bothexiston g
ppose ¢ (*o,y)and f, 0

If f has relative extrema at (Xo,yo),then

fx(Xo, yo) =0 = f,(Xo, Yo).
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2 Relative
maximum

Saddle Point

A differentiable function f(x, y) has a saddle point (a, b) if in every open disk
centered at (a, b) there are domain points (X, y) where f (x, y) > f (a, b) and domain
points (X, y) where f (X, y) < f (a, b). The corresponding point (a, b, f (a, b)) on the

surface z = f (x, y) is called a saddle point of the surface

Remarks

Thus, the only points where a function f(x,y) can assume extreme values are critical
points and boundary points. As with differentiable functions if a single variable, not

every critical point gives rise to o a local extremum. A differentiable function of a single
variable might have a point of inflection. A differentiable function of two variable might

have a saddle point.
EXAMPLE

Fine the critical points of the given function
f(x,y) =x®+y® - 3axy,a>0.
fy, f, exist at all points of the domain of f.
f,=3x, —3ay, f, =3y’ - 3ax
For critical points f, = f, =0.

Therefore, x> —ay =0 (1)
and ax-y’=0 )
Substituting the value of x from (2) into (1),

we have
4
%z —ay=0
y(y’-a’) =0
y= 0, y=a
and so
X =0, X= a.

The critical points are (0, 0) and (a, a).
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Overview of lecture # 14
Topic Article # page #
Extrema of Functions of Two Variables 16.9 833
Absolute maximum 16.9.1 833
Absolute manimum 16.9.2 833
Extreme Value Theorem 16.9.3 834
Exercise set Q#1,3,5,7,9,11,13,15,17 841
Book
CALCULUS by HOWARD ANTON
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LECTURE No. 15

EXAMPLES

Example: Find the critical point of f(x,y) = /x> + y°.
_ 2 2
f(x,y) =Vx"+y
X

fx(x, y) = m
fy(x, y) = Nromv:

The partial derivatives exist at all points of the domain of fexcept at the origin which is

in the domain of f . Thus (0, 0) is a critical point of f
Now fx(x, y) =0onlyif x=0and
fy(x,y) =0onlyif y=0
The only critical point is (0,0) and f(0,0)=0
Sincef (x, y) =2 0 for all & y),f (0, 0) = 0 is the absolute minimum value of

5
z = \/x%+ y?@

Example : Find the critical point of f(x,y) = x> + y*.

z=1(x,y) = X%+ y2 (Paraboloid)
fx (X, y) = 2%, fy(x,y) =2y
when fx (x,y) =0, fy (X,y)=0
we have (0, 0) as critical point.
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z=x2 4 ‘V'Z

Example: Find the critical point of z =g(x,y) =1-x* — y*.

7= (X, y) = 1- X% — y* (Paraboloid)
O (X, Y) == 2%, g (X, y) =-2y

whengx (x, y) =0, g, (X, y) =0
we have (0, 0)as critical pint.

z2=1-x2_,2

Example: Find the critical point of z=h(x,y) = y*—x°.

z= h(x,y)=y2—x2 (Hyperboljaraboloid)
hx (X, y) ==2%, h (X, y)=2y
whenhx (x,y) =0, hy(x,y)=0

we have (0, 0) as critical paint.
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Example:

fx, y) S\ +y°

y
fy = fy, =
oAy T ARy
The point (0,0) is critical point of f because the partial derivatives do not both exist. It
is evident geometrically that fx(0,.0) does not exist because the trace of the cone in the

plane y=0 has a corner at the origin.

The fact that f,(0,0) does not exist canalso be seen algebraically by noting
that §(0,0) canbe interpreted as thederivative with respect to x of the function

f (X, 0):\&2+O =|x| atx=0.

But |x|is not differentiable at x = 0, so f (0,0) does not exist. Similarly,
f,(0,0) does not exist. The function f has a relative minimum at the critical
point (0,0).

The Second Partial Derivative Test

Let f be a function of two variables with continuous second order partial derivatives

in some circle centered at a critical point (o, Yo), and let

D = fux (X0, Yo) Fyy (X0, Yo) = %y (X0, Y0)

(@) IfD>0 and fu(XoY9 >0,thenfhasa
relative minimum at (Xo,Yyo).

(b) 1f D >0 and fxx(Xo0,yo) <0, then f has a
relative maximumat (>o,yo).

(c) IfD<0,thenfhasa saddle point at
(X0,Yo0).

(d) If D=0, then no conclusion can be
drawn.

REMARKS

If a function f of two variables has an absolute extremum (either an absolute maximum
or an absolute minimum) at an interior point of its domain, then this extremum occurs at
acritical point.

Example:
f(x,y) = 2x* —4x+xy* -1
fx(le):4X_4+y2’ fxx(X’y):4
f,(x,y) = 2xy, f,(xy)=2x f,(xy)="f,(xy)=2y
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For the critical points, we set the first partial derivatives equal to zero. Then
f(xy)=0 = 4x-4+y*=0 ()]
f,(x,y)=0 = 2xy =0 (2)
= Xx=0or y=0

When x =0, then by (1), 4(0)-4+y*=0 = y’ =4 =y
When y =0, then by (1), 4x—4+0° =0 = 4x-4 = x=1
So the critical points are (1, 0), (0, 2) and (0, —2).
Now we check the nature of each point:
At (1,0), f, (1,0) = 4

f,(10) = 2(1)=2

f,10) =2(0)=0

D = £,(L0) f,L0) [ f,00)] =4x2-0° =8
Since D > 0 and f,(1,0)is positive, so f has a relative minimum at (1,0).

Il
I+
N

At (0,-2), f. (0,-2) =14

f,, (0,—2) =2(0)=0

f,(0,-2) =2(-2)=-4
D = f,(0,-2) f,(0,-2) - [fxy(o,—z)]2 = 4x0-(-4)" =0-16=-16
Since D< 0, sof has asaddle point at (0,—2).

At (0,2), f,(0,2) =4, f,(02)=2(0)=0, f,(0,2) =2(2)=4

D = £,(0,2) f,,(0,2) - [ £,(0,2)| = 4x0—(4)" =0-16=-16
Since D< 0, sof has a saddle point at (0, 2).
Example:

F(x,y) = e

) = 20,1 Gy =[(caxa)t et
f,(x,y) = —2ye 9, f,(xy) =[4y? —2]e 02

f (X, y) = —2y(-2x—-2)e Y+

For critical points,

put f,(x,y)=0 = —2(x+1)e ™2 =0

2 2
= 200 20 x+1=0 = x=-1
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put f(xy)=0 = -2y ™20
— 20X L0 y=0
The critical point is (-1,0).
£, (-10) = [(—2(—1) ~2) - 2} (020
_ [O—Z]e’(”’z) =—2e'=—-2¢
fyy (-1,0) = [4(0)2 _2} e—((—1)2+02+2(—1)) — _2e
f(-1,0) = —2y(-2x—2)e ) = _2(0)(-2(~1)-2)e )
D = f,(-1,0) f,,(-10) - [ f,(-L0)]
= (—2e)(-2e)—(0)" = 4e?
Since D> 0, sof,, (-1,0) has a maximum point at (-1,0).
EXAMPLE
f(x,y) =2¢ + y* =x* =2y
fx(X, y) = 8x° - 2x, fy(x,y) =2y -2
foc (X, V) =245 =2, Fyy(xy) =2,
fxy (%, y) =0
For critical points
fx(x, y) =0,
2x (4x° —1)=0, x=0,1/2,-1/2
fY(X’ y) = O’
2y —2=0, y=1
Solving above equation we have the critical
- 1t
points (0,1), [— x 1] [2 , 1] .
Txx (0,1) = - 2, fyy (0, 1) = 2,
fxy (O, 1) =0 )
D =1(0, 1) fyy (0, 1)—f'xy (0, 1)
=(-2)(2)-0=-4<0
This shows that (0, 1) is a saddle point.
1 1 1
fXX (E,ljzll, fyy [E,lj:Z fxy (E,ljzo
2
1 1 1 2
D: fxx (5,1) fyy (E,lj—[ fxy (E,l):| = (4)(2)—(0) = 8 > O
. 1 L 1
Since f,, (El) =4>0, so fisminimum at(z,lj.
89
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Example
Locate all relative extrema and
saddle points of

f(x,y) =4xy —x* —y".
fx,y) =4y —4C,  f (x,y)=4x -4y’
For critical points

fi(x,y)=0
4y — 4x =0 D)
y=x

f, (x y)=0
4x —4y* = )

X =

Solving (1) and (2), we have the

critical points (0,0), (1, 1),61, -1).

Now fu (X, y) = — 12X, fxx(0,0) =0

fyy (X, ¥) == 12y, fyy (0,0) = 0

fxy (X y) 4, fxy (0 0) 4

D = fxx (O 0) fy (O, 0) 2 xy (0,0)

= (0) (0)- (4) =-16 <0

This shows that (0,0) is the saddle point.
fxx (X y) __12X fxx (1,1) =-12<0
fyy (X)y) = —12y , K (Q1)=-12
fxy (X y) 4, fxy Sl,l) =4
D=1« (1,1) fyy (1,1)— %y (1, 1)

=(-12) (-12)- (4 =128 >0

This shows that f has relative maximum at
1,2).

fxx(Xy)—_].ZX fxx( 1, _1)—_12<0
fy(xy)——2y fy(-1,-1)=-12
fxy (X y) 4 fxy (—1 _l) 4
D=f«x (-1,-1) fyy (-1 —1)—f xy(=1,—1)
=(-12) - 12)- (4) =128>0
This shows that f has relative maximum
(-1,-1).
Overview of lecture #15 Book (Calculus by HOWARD ANTON)
Topic # Article # Page #
Example 3 836
Graph of f(x,y) 16.9.4 836
The Second Partial Derivative Test 16.9.5 836
Example 5 837
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LECTURE No.16
EXTREME VALUED THEOREM
EXTREME VALUED THEOREM

If the function f is continuous on the closed interval [a, b], then f has an absolute
maximum value and an absolute minimum value on [a, b]

Remarks

An absolute extremum of a function on a closed interval must be either a relative
extremum or a function value at an end point of the interval. Since a necessary condition
for a function to have a relative extremum at a point C is that C be a critical point, we
may determine the absolute maximum value and the absolute minimum value of a
continuous function f on a closed interval [a, b] by the following procedure:

1. Find the critical points of f on [a, b] and the function values at these critical points.

2. Find the values of f (a) and f (b).

3. The largest and the smallest of the above calculated values are the absolute maximum
value and the absolute minimum value respectively

Example: Find the absolute extrema of f(x)= x3+ x?-x+1 on [-2,1/2]
Solution: Since f is continuous on [-2,1/2], the extreme value theorem is applicable.
For this

f/(x) =3 x>+2x-1

This shows that f(x) exists for all real numbers, and so the only critical numbers of f will
be the values of x for which f (x)=0.

Setting f/(x) =0, we have
Bx-1)(x+1)=0
from which we obtain

1

x=-1 and X=3

The critical points of fare -1 and 5, and each of these points is in the given

closed interval (,, %) We find the function values at the critical points and at the end
points of the interval, which are given below.

f-2)=-1, f(-1) =2, -

; f;] 2 f[;j _Z
\3) ~ 27’ "\2) "8

The absolute maximum value of f or(-2, %) is therefore

2, which occurs at— 1, and the absolute min. value of f on

(-2, %) is — 1, which occurs at the left end point—
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16-Extreme valued theorem VU

Example:
Find the absolute extrema of

fx)=(x — 228 on[1,5].

Since f is continuous on [1. 5], the extreme-value theorem is applicable.
Differentiating f with respect to x, we get

2

There is no value of x for which f(x) = 0. However, since f (x) does not exist at 2,

f(x) =

/

we conclude that 2 is a critical point of f,

so that the absolute extrema occur either at 2 or at one of the end points of the interval. The
function values at these points are given below.

f()=1, f@=0,  f5)=3g
From these values we conclude that the absolute minimum value of fon [1,5] iSO,
occurring at 2, and the absolute maximum value of f on [1, 5] is /9 ,occurring at 5.

Example:
Find the absolute extrema of

h(x) = x** on [-2, 3].
N2 ap 2
h(x) = 3X =3B
h'(x) has no zeros but is undefined at x = 0.

The values of h at this one critical point
and at the endpoints x =—2 and x = 3 are

h(O) =0 213 1/3
h(-2)=(2"=4
h(3) - (S)gIB - 91/3.

1/3
The absolute maximum value is 9 assumed at x = 3; the absolute minimum is 0, assumed at
x=0.

How to Find the Absolute Extrema of a Continuous Function f of Two Variables on
a Closed and Bounded Region R.
Step 1.

Find the critical points of f that lie in the interior of R.
Setp 2.

Find all boundary points at which the absolute extrema can occur,
Step 3.

Evaluate f(x,y) at the points obtained in the previous steps. The largest of these
values is the absolute maximum and the smallest the absolute minimum.
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Example:
Find the absolute maximum and minimum value of

f(x,y) = 2 + 2X +2y-x2-y?
On the triangular plate in the first quadrant bounded by the lines x=0,y=0,y=9-x
Since f is a differentiable, the only places where f can assume these values are points
inside the triangle having vertices at O(0,0), A(9,0)and B(0,9) where fx = fy=0 and points
of boundary.

y=0 A(9,0)

For interior points:

_We have fx=2-2x=0 and fy=2-2y=0
yielding the single point (1,1)

For boundary points we take take the triangle one side at time :
1. On the segment OA, y=0
U(x) = f(x, 0)=2+2x-x?

may be regarded as function of x defined on the closed interval 0<x<39 Its extreme

values may occur at the endpoints x=0 and x=9 which corresponds to points (0, 0) and
(9, 0) and U(x) has critical point where

U/(x) = 2-2x=0 Then x=1
On the segment OB, x=0 and
V(y)=f(0,y)= 2+2y-y*

Using symmetry of function f, possible points are (0,0 ),(0,9) and (0,1)
3. The interior points of AB.
Withy =9- x, we have
f(X, y) = 2+2x+2(9-X)—X"~(9- XY’
W(X) = f(x, 9-X) = - 61 +18x— 2X*
Setting w(x)= 18 -4x = 0, x = 9/2.
At this value of x,y =9 -9/2

Therefore we have (g, g) asa critical point.
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(% Y) (0.0) (9,0) (4, 0) (2, 9]
2 2
(%) 2 = : -4t
2
(% Y) (0.9) (0.1) (&)
f (X, y) -61 3 4

The absolute maximum is 4 which f assumes at the point (1,1) The absolute minimum is
-61 which f assumes at the points (0, 9) and (9,0)

EXAMPLE

Find the absolute maximum and the absolute minimum values of
f(x,y)=3xy-6x-3y+7

on the closed triangular region r with the vertices (0,0), (3,0) and (0,5) .

f(x,y)=3xy—-6x -3y +7
fx, y) =3y —6, f,(x,y)=3x-3
For critical points

fi(x,y)=0
3y—-6=0
y=2
fy(x, ) =0
3x-3=0
x=1

Thus, (1, 2) is the only critical point in the interior of R. Next, we want to determine the
location of the points on the boundary of R at which the absolute extrema might occur.
The boundary extrema might occur. The boundary each of which we shall treat
separately.

(i) The line segment between (0, 0) and (3, 0):
On this line segment we have y=0 so (1) simplifies to a function of the single variable x,

u(x)=f(x,0)= —6x+7,0 <x<3

This function has no critical points because u'(6)=-6 is non zero for all x . Thus, the
extreme values of u(x) occur at the endpoints x = 0 and x=3 , which corresponds to the
points (0, 0) and (3,0) on R

(i) The line segment between the (0,0) and (0,5)
On this line segment we have x=0 ,so single variable vy,
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16-Extreme valued theorem VU

vy)=f(0,y)= —3y+7,0 <y<?®

This function has no critical points because v/(y)=-3 is non zero for all y.Thus ,the
extreme values of v(y) occur at the endpoints y = 0 and y=5 which correspond to the
point (0,0) and (0,5) or R

(i) The line segment between (3,0) and (0,5)
In the xy-plane, an equation for the line segment
y=—§x+5, 0<x<3

So (1) simplifies to a function of the single variable X,

w(x)=f (x,—g X +5)

= —5X+14x—8, 0<x<3
wW(x)=-10x + 14

w(x) =0

10x+14=0
_L

X75

: 7. . .
This shows that x = 5 is the only critical point of w. Thus, the extreme values of w

. . . 7 . .
occur either at the critical point x = T or at the endpoints x=0 and x=3.The endpoints

correspond to the points (0, 5) and (3, 0) of R, and from (6) the critical point corresponds

to |:Z’§:|
53

(RN

j 1.2

1

xy) |00 | B0 |5

U1 | ©|w |00

f(x,y) 7 -11 -8

Finally, table list the values of f (x, y) at the interior critical point and at the points on

the boundary where an absolute extremum can occur. From the table we conclude that the
absolute maximum value of fis f (0,0)=7 and the absolute minimum values

is f(3,0)=-11 .

OVER VIEW:

Maxima and Minima of functions of two variables.
Page # 833

Exercise: 16.9

Q #26,27,28,29.
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LECTURE No. 17
EXAMPLES

EXAMPLE
Find the absolute maximum and minimum values of f(X,y)=xy-x-3y on the closed
triangular region R with vertices (0, 0), (0, 4), and (5, 0).

fixy)=xy-x-3y (1)
kX, y)=y-1, f(xy=x-3
For critical points
fx(x,y)=0,y —1=0

y=1 (2)
fy (x,y)=0,3x-3=0
X=3 (3)

Thus, (3, 1) is the only critical point in the interior of R. Next, we want to determine the
location of the points on the boundary of R at which the absolute extrema might occur.
The boundary of R consists of three line segments, each of which we shall treat
separately.

(i) The line segment between (0, 0) and (5,0)

On this line segment we have y = 0, so (1) simplifies to a function of the single variable

X, u(x)=Ff(x,00=-x,0cx<5 (4

The function has no critical points because the u/(x)=-1 is non zero for all x. Thus, the
extreme values of u(x) occur at the endpoints x=0 and x=5, which corresponds to the
points (0,0) and (5,0) of R.

ii) The line segment between (0,0) and (0,4)
On this line segment we have x = 0, so (1) simplifies to a function of the single variable
y!

v(yFf(0,y)=-3y,0<y<4. (5

This function has no critical points because v/ (y)= -3 is nonzero for all y. Thus, the
extreme values of v(y) occur at the endpoints y =0 and y=4 ,which correspond to the
point (0,0) and (0,4) or R.

iii) The line segment between (5,0) and (0,4)
In the xy-plan, an equation is

4
y :—EXI-4,0SXS5 (6)
so (1) simplifies to a function of the single variable x,
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w(x) = f (X, —%x+4)

4 4
=X(—=X+4)—x-3(—=x+4
(gx+4) (g x+4)

:—ix2 +£x—12
5) 5

, 8
W(X)=—=X+—
(%) 2 X+

by w'(x) =0, we get x:%

This shows that x =% is the only critical point of w. Thus, the extreme values of w

occur either at the critical point x :% or at the endpoints x =0 and x = 5. The

endpoints correspond to the points (0, 4) and (5, 0) of R, and from (6) the critical point

{27 13}
corresponds to | —,—
8 10
X, y) (0, 0) (5,0 (0,4) | (27/8,13/10) G 1)
f(x,y) 0 -5 -12 -231/80 -3

Finally, from the table below, we conclude that the absolute maximum value of f is
f (0,0) = 0 and the absolute minimum value is f (0, 4)=-12

Example
Find three positive numbers whose sum is 48 and such that their product is as large as

possible
Let x,y and z be the required numbers, then we have to maximize the product

f(x,y)=xy(48-x-y)

Since
fi=48y-2xy-y? | fy=48x-2xy-x?
solving x=0 , fy=0
we get x=16, y=16, z=16
Since x+y+z=48
fa(X,y) = - 2y, fi(16, 16) =-32 <0
fuy (X, y) = 48-2x-2y, iy (16, 16) =-16
fiy (X, y) = -2X, fyy (16, 16) = -32

D=fxx(16,16 )f,7416,16)Fxy(16,16)
=(-32) (—32)—(16)"=768>0

© Copyright Virtual University of Pakistan
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Forx =16,y =16 we have z=16since x +y +z =48
Thus, the required numbers are 16, 16, 16.

Example
Find three positive numbers whose sum is 27 and such that the sum of their squares is as

small as possible

Let X, y, z be the required numbers, then
we have to
f(x,y) = xz2 + y22 +7° )
=X +y +(27-X-Y)
Since x+y+z = 27
fx = 4x+2y—54, fy = 2x+4y-54,
fxx= 4, fyy = 4, fxy =2

Solving k=0, f=0
Weget x=9, y=9,z=9
Since x+y+z =27

2
D =1« (9, 9) fy (9é O)-[fxy (9, 9)]
=(4)4)-2=12>0
This shows that f is minimum
x=9,y=9,z=9, so the required
numbers are 9, 9, 9.

Example
Find the dimensions of the rectangular box of maximum volume that can be

inscribed in a sphere of radius 4.
Solution:
The volume of the parallelepiped with dimensions X, y, z is
V =xyz
Since the box is inscribed in the sphere of radius 4, so equation of sphere is

x%+ y?+ 7%= 42 from this equation we can write z = \/16 — x> — y* and putting this value of

“z” in above equation we get V = xy+/16 — x* — y* .Now we want to find out the

maximum value of this volume, for this we will calculate the extreme values of the
function “V”. For extreme values we will find out the critical points and for critical points
we will solve the equations Vx=0 and Vy=0 .Now we have

Xy (=2x)

2,16 - x* —y°

2 2 2 2
:>Vx=y{_2X -y +16} Now VX:O:y{_ZX -y +16}=O

V, = yJ16-x*—y* +

16— x> —y? 16—x> —y°

= -2X"—Y*+16=0= 2X* + Y* =16..c0eecvrerrrrrrnn. (@)
Similarly we have
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V, =x16-x° —y? + Xy(=2y)

216 - X — y?

_2_ 2 _2_ 2
:\/y_x{u} Now Vy=0:> X{M}—O

J16—x*—y? 16—x*—y?
=X =2y’ +16=0= X*+2Y* =16.cccccerrrrrrrnn. (b)
. : 4 4
Solving equations (a) and (b) we getthe x=— and y=—
g eq (a) and (b) we g 7 y 7
2 2
Now V,, = Xy(2x" +3y ?8) (We obtain this by using quotient rule of differentiation)
(16-x*—y?)?
4 4 16
V (=,—=)=—F<0
XX(\/§ \/é \/§
Also we have to calculate V, xy(3x 2y’ 48) and V (\7_ j_ \1/9 < 0Also
(16-x*—y )2
4 4
note that V, (— Now as we have the formula for the second order partial
NN 1 f
derivative is f,. fW (fxy) and putting the values which we calculated above we note
4 4 320
that f,(— ) (f, )) =+—— > 0 Which shows that the
NN f B f N
. . 4 . .
function V has maximum value when x =— and y =— . So the dimension of the
55
rectangular box are X=—=,y=—= and z=—
f f B

Example: A closed rectangular box with volume of 16 ft3 is made from two kinds of
materials. The top and bottom are made of material costing Rs. 10 per square foot and the
sides from material costing Rs.5 per square foot. Find the dimensions of the box so that
the cost of materials is minimized
Let x, y, z, and C be the length, width, height, and cost of the box respectively. Then it is
clear form that

C=10(xy+xy)+5(xz+xz)+5(yz+yz)--------------- (1)

C=20xy+10(x+y)z
The volume of the box is given by

Putting the value of z from (2) in
(1), we have

C=20xy +10(x + y)—

Xy
160 160
X

160 160
Cx—20y , Cy=20x— 7-

C=20xy+=-
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For critical points

Ci=0
160
20y-~z=0and C,=0
1
ZOX—T(;Q =0

Solving these equations, we have
X = 2,y = 2. Thus the critical point
is (2, 2).

320
Ca(xy)="7

2
Cu (2, 2):3—80:4o>o

320
Cyy x,y) :_y3_

2
Cy (2,2) :3—80 =40
Cy (X, y)=20
Cy (2,2)=20

Cxx(2,2) Cyy(2,2) — C2xy(2,2) =(40)(40)-(20)2=1200>0

This shows that S has relative minimum at x = 2 and y = 2. Putting these values in (2), we
have z = 4, so when its dimensions are 2 x2 x4.
Example

Find the dimensions of the rectangular box of maximum volume that can be
inscribed in a sphere of radius a.
Solution:
The volume of the parallelepiped with dimensions x, y, z is
V = xyz
Since the box is inscribed in the sphere of radius 4, so equation of sphere is

X2+ y2+ 72= 42 from this equation we can write z = \/a’ — x> — y* and putting this value of

“z” in above equation we get V = xy/a’ — x> — y* .Now we want to find out the

maximum value of this volume, for this we will calculate the extreme values of the
function “V”. For extreme values we will find out the critical points and for critical points
we will solve the equations Vx=0 and Vy=0 .Now we have

V =yyal-x*—y* + ” ,7:3/(:)(2:(3 v

Coy? 2, a2 C9y? 2, a2
:VX_y{M} Now v _ojy{u}_o

X
az_Xz_yz

= -2X = y?+16=0= 2X" + Y’ =@’ e (@)
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Similarly we have

V, = X /az_xz_yz n XZ(_ZZY) 2
2\Ja"—x" -y

2 _9y2 a2 2 _9y2 a2
v, _X{w} Now V, _ojx{m}_o

/az_xz_yz 2_ g2\ 2

a’-x’ -y
= X" =2y’ +a’=0=> X" +2y° =@’ e, (b)

Solving equations (a) and (b) we get the x = 2

J3

-3a%) o . . . -
3 (We obtain this by using quotient rule of differentiation)
(@ —x*-y*)?

a a, a
VXX(E,E = \/§'<0

Also we have to calculate A

_xy(2x* +3y?

Now V,, =

xy(3x 2y’ 33) and V ( Also note

@ty NI

Now as we have the formula for the second order partial

that ny(

\/—\/_ f

derivative is f,.f - (fxy) and putting the values which we calculated above we note
20a’

NNV N v v

function V has maximum value when x _a and y =— . So the dimension of the

NG 5

a
and z=—

5 B

Example: Find the points of the plane x + y + z = 5 in the first octant at which
f(x,y,z) = xy?z? has maximum value.
Solution: Since we have f(x,y,z) = xy?z?and we are given the plane x + y + z = 5 from
this equation we can write X =5 -y —z . Thus our function “f* becomes
f(5-y-12),y.2) = (5 -y -z )y?z? Say this function u(y,z) That is u(y,z) = (5 -y - z )y?z?
Now we have to find out extrema of this function. On simplification we get
u(y,z) =5 y222 _ y322 _ y223
Uy = 10yzz—3y222—2yz3
= yz?(10 - 3y - 22)
u, = 10y*z — 2y3z — 3y?7*
= y?z2 (10 - 2y - 32)
uy =0, u,=0
y=0, z=0
10-3y—-2z=0
10-2y-3z=0

that f,,(— —— > 0Which shows that the

rectangular box are x =

101

© Copyright Virtual University of Pakistan



17-Examples VU

On solving above equationsweget —10+5z2=0=z=2and10- 3y-4=0=y=2
Uy = 102° - 6yz* — 22°

Uz = 10y - 2y° — 6y’z

Uy, = 20yz — 6y°z — 6yz°

at

y=2, z=2

Uy (2,2)=40-48-16=-24<0
Y2(2,2) = 40 — 16 — 48 = — 24

Uy (2,2) =80 — 48 — 48 = — 16

D = Uyy Uy, — (Uy2)?

(- 24) (- 24) — (- 16)°
576 — 256

320>0
Fory=2andz=2

We havex=5-2-2=1

Example: Find all points of the plane x+y+z=5 in the first octant at which f(x,y,z)=xy?z?
has a maximum value.
Solution:

f(xy.2) =xy'z =xy’ (5 x~ y)z
Since X+y+z =

fi = y*(5-3%-y) (5-x-Y),

fy = 2xy(5-x-2y) (5-x-Y)

Solving fx=0, fy = 0, we get

x=1,y=2,2=2 .. x+y+z=5

fxx:_y2 (5_3X_y) - 3y2 (5_X_5)
fiy=2y (5-X-y)(5-3%y)-y’ (5-3x-Y)

-y 6-x-y)
f,y=2X(5-x%-y) (5—Xx-2y)-2xy(5—x-2y)

—4xy (5-x-Y)
fu(1,2,2)=-24<0
f,(1,22)=-16
f (1,2,2)=-8
fiofyy — (o)’ = (-24)(-16)—(-8)"

=320>0

Hence “f” has maximum value when x =1 and y = 2. Thus the points where the function
has maximum valueisx=1y=2and z = 2.
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LECTURE No. 18

REVISON OF INTEGRATION

1
Example 1: Consider the following integralj(xy+ y?)dx
0

Integrating with respect to x, keeping y constant, we get

j(xy+ y?)dx = yj XdX + y{?ldx
0 0 0

o1t

1
=y X? +y? X[, = y(E—O)+y2 (1-0)

0

1
[ O+ y?yax =%+ y’

0
1
Example 2: Consider the following integral I (xy + y?)dy
0
Integrating with respect to y , keeping x constant, we get

1 1 1

[ Oy +y?)dy = x] ydy + [ y*dy

0 0 0

1 1

2

2

3

3

X 1
=X + (12—02)+§(13—o3)

2

0 0

h x 1
= [(xy+y)dy==+=
!( y+y )y =2+
Double Integral
Symbolically, the double integral of two variables x and y over the certain region R of the
xy — plane is denoted byJ'J' f(x, y)dxdy .
R
Example: Use a double integral to find out the solid bounded above by the plane
z = 4 — x -y and below by the rectangle R={(x,y):0<x<1,0<y<?2}

Solution: We have to find the region “R”out the volume “V” over that is,
V =|[(4-x-y)dA
R

And the solid is shown in the figure below.

L
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x=1

dy

x=0

2

2

X
4—x—-y)dxdy = | [4X———X
(4—x—y)dxdy { =

2

y2

Z_ y]dy = Z y—
2 2 2
11
Example 3: Evaluate the double integral ”(xy+ y?)dxdy
00

1 1
+ y2|x|2}dy_j(%+ yzjdy
0 0

1

0

11 1 2
Solution ;| | (xy + y?)dxdy = X
!!(y y2)dxdy ![42

2 3
:y_+y_ _2(12_02)4_1(13_03):24_3:1
4 3|, 4 3 4 3 12
11
Example 4: Evaluate the double integral ”(xy+ y?)dydx
00

Solution: First we will integrate the given function with respect to y and our integral
becomes

ﬁ(xy+ y?)dydx = j[{x

s

31
y dx
3 0

=i[§(12—02)+%(13—03)jdx=i(§+ljdx

11 x2 x L
”(xy+ y?)dydx = |=—+=
2% 4 3|
Remarks: The example 3 and example 4 show that
11 11
J [0+ yyaxdy = [ [oy+yyex = -
00 00 12

Iterated or Repeated Integral

Ly
2

0

=%@“ﬂﬁ+—@—®=

df{ b
The expression j [J' f(x, y)dx} dy is called iterated or repeated integral. Often the brackets

cLa

db df b
are omitted and this expression is written as ” f (X, y)dxdy = ID f(x, y)dx} dy in

b
whichJ' f (X, y)dx yields a function of y , which is then integrated over the

intervalc<y<d.
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Similarly ij. f(x, y)dydx = TU f(x, y)dy} dx in which i f (x, y)dy yields a function of x
which is thaecn integrated ovear tche interval a<x<b. C

Example: Evaluate the integral ﬁ (x+3)dydx.

Solution: Here we will first inte;(r)ate with respect to y and get a function of x then we

will integrate that function with respect to x to get the required answer. So

1
(x +3)dydx = j (x+3)|y[; dx

O ey
O N

1

1
jx+3) (2-0)dx = jz(x+3)dx 2| >
0

= 6(12 —02)+3(1—0)j= 2(%+3j=7

Now if we change the order of integration, so we get ” (x +3)dxdy, then we have

2

(— + 3x) dy

ﬁ(x+3)dxd :j'

1 2 2 — |
!(2(1 o)+3(1 Ojdy j( +3)dy jzd _—| Y = 2 0)=7
Now you note that the values of the integral remain same if we change the order of
integration. Actually we have a stronger result which we state as a theorem.

Theorem: Let R be the rectangle defined by the inequalitiesa<x<bandc<y<d. If
f (x, y) is continuous on this rectangle, then

H f(x, y)dA:” f (x, y)dxdy :” f (x, y)dydx.

Remark: This powerful theorem enables us to evaluate a double integral over a
rectangle by calculating an iterated integral. Moreover, the theorem tells us that the

“order of integration in the iterated integral does not matter”.
In2In3

Example: Evaluate theintegralj Iex*ydxdy
0 0

Solution: First we will integrate the function with respect to x . Note that we can write
e“Vase*.e’

In2 In3 In2
So we have, J.ey dy = jey(e'n3 e)dy = je (3-1dy = ZJ' e’dy

0

0
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VU

Here we use the fact that “e” and “In” are inverse function of each other. So we have
In2 In3

In2
e"*=3.Thusweget  [e’le| dy=2] eydyzz‘ey‘:z =2(2-1)=2
0 0 0

In31In2

Example: Evaluate the integral J. J.e“ydydx
0 0

Solution: First we will integrate the function with respect to y . Note that we can write
In3 In2 In3 In3 In3

eV ase*.e’ Sowe have, j e* ey‘ dx = I e*(e"? —e%)dx = _[ e*(2—1dx= j e*dx
0 0 0 0 0

Since “e” and “In” are inverse function of each other. So we have ¢"? =2,
In2

In3
Thus we get J'eX ey‘ " = (e" ) = (3-1) =2
0 0

Note that in both cases our integral has the same value.

In
0

In3
dx = J'exdx=
0

Overview:
Double integrals Page # 854-857
Exercise Set 17.1 (page 857): 1, 3,5, 7,9, 11, 13, 15,17, 19

106

© Copyright Virtual University of Pakistan



19-Use of integrals VU

LECTURE No. 19

USE OF INTEGRALS

Area as anti-derivatives

4 2 y-axis I *+ 8
'[Zx dx = 21X :‘XZE
0
= 4° —O02 =16 :
Area of triangle = % basex altitude .
:%x4X8:16 4 x-axis

Volume as anti-derivatives
2 2 2

3 2
Volume = [ [ 5 dydx =[5y, dx= [ 5(3-0)dx = | 15dx = 15|x; =15 (2-0) = 30
0 0 0 0 0
Geometrically, 0<x<2,0<y<3,0<z<5
Volume = 2 x 3 x5 = 30

The following results are analogous to the result of the definite integrals of a function of
single variable.

THEOREM
1) ” c f(x,y)dxdy = c” f(x,y)dxdy where ¢ is a constant.
R R

2) ” [f(xy)+g(x,y)]dxdy = .”' f(x,y)dxdy + H g(x, y)dxdy

3) [ [feey)—g0xy)Jdxdy = [[ f(xy)dxdy - [[ g(xy)dxdy

Example: Use double integral to find the volume under the surface z = 3x®+3x’y and
the rectangle {(x,y):1<x<3, 0<y<2}.

Solution:
4 3 3 3
Volume = ﬁ(3x3+3x2y) dx dy:'z[ SLJr?’X—y dy :j 3( ‘. )+y<33_13) dy
01 0 4 3 ) o |4 .
2
2 9 2
= E(81—1)+y(27—1) dy = [ (60+26y)dy= 6oy+26y
0 |4 0 5 0
- |e0(2-0)+13(2'~0 )| ~[120+52| -172
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19-Use of integrals VU

Example: Use double integral to find the volume of solid in the first octant enclosed by
the surface z = x* and the planes x=2,y =0,y = 3andz = 0.

y

“dx=[ x*(3-0)dx

0

23 2
Solution:: Volume = [ [x* dy dx = [ x*
00 0

2

2 X3
=3j x2 dx = 3|— :(23—03):8
0 3

0

SOME RESULTS:
1) ﬂ f(x,y)dA>=0 if f(x,y)=0on R.
R

2) [ fouy)dA= [ cg(xy) dA if F(xy)> g(xy)

If f(x, y) is nonnegative on a region R, then subdividing R into two regions R, andR,

has the effect to subdividing the solid between Rand z = f (x, y) into two solids, the
sum of whose volumes is the volume of the entire solid.

[J foayyda=T] f(x.y)dA+ [ f(xy)dA
R R, R,
The volume of the solid S can also be obtained, using cross sections perpendicular to
d
y-axis. Vol (S):I Aly)dy ———————— )

Where A(y) represents the area of the cross section perpendicular to y —axis, taken at
the point y.

|
¥

<%= ac

The volume of the entire
solid is the sum of the
volumes of the solids

above R, and <.

How to compute cross sectional area
For each fixed y in the intervalc <y <d, the function f (x,y) is a function of xalone,

and A(y) may be viewed as the area under the graph of this function along the

intervala < x < b,
b

Thus A(y) = J. f(x,y)dx

a

Substituting this expression in (1), we get
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Vol (S) =j “f(x, y)dx} dy:j jf(x, y)dxdy ———————— (2)

~z z = f(x, ¥)

Rk
-

Similarly, the volume of the solid S can also be obtained, =
perpendicular to x —axis.

Vol (S)=i A(X) dX —————— (3)

Where A(x) represents the area of the cross section perpendicular to x —axis, taken at
the point x.

‘ -
| : 7 Alx)
)-vl_'_ g i 1
I "7
ol k

____________

For each fixed x in the intervala < x <b, the function f (x,y) is a function of y alone,
d
and A(x)is given by A(x) = J' f(x,y)dy Substituting this expression in (3), we get

c

Vol (8) =] “f(x,y)dy} S I TR 1 S—— 4

By equations (2) and (4), jj f(x,y) dA =j jf(x, y)dxdyzi jf(x, y) dy dx

Double integral for non-rectangular region
Type I region is bounded the left and right by the vertical lines x=a and x=b and is
bounded below and above by continuous curves y = g,(x) andy = g,(x), where

0,(x) <g,(x) for a<x<b

If R is atype I region on which f (X, y) is continuous, then
b g2(x)

” f(x,y) dA =j j f(x, y)dy dx

a gi(x)
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z="f(x,y)

By the method of cross section, the volume of S is also given by

VoI(S):j)' AX)dx ————- (5)

where A(x) is the area of the cross section at the fixed point x and this cross

section area extends from g,(x) to g,(x) inthe y—direction,
92 (x)

So A(X) = j f(x,y)dy

91(x)

b 9, (x) b g,(x)
Using itinequation(5),WegetVoI(S):j {j f(x,y)dy} dx =j j f(x,y)dydx

a | g% a  g(x)
b g,(x)
The volume of S is also given by H f(x,y) dA= j j f(x, y)dydx
R a  g(x)

Type Il region is bounded below and above by horizontal lines y=c and y=d and is
bounded in the left and right by continuous curves x=h,(y) and x=h,(y) satisfying

h(y)<h,(y) for c<y<d.

If R isatype Il region on which f (X, y) is continuous,
d hy(y)

then” f(x,Y) dA:j j f(x,y)dxdy

c ()

d
Similarly, the partial definite integral I f (X, y)dy with respect to y is evaluated by
holding x fixed and integrating with respect to y. The integral of the form

d
j f (x,y)dy produces a function of x.
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LECTURE No.20
DOUBLE INTEGRAL FOR NON-RECTANGULAR REGION

Double Integral for Non-rectangular Region
Type | region is bounded the left and right by vertical lines x=a and x=b and is
bounded below and above by curves

y=0,(x)andy=g,(x), whereg,(x)<g,(x) foras<x<b

b g,(x)

H f(x,y)dA:j j f(x, y)dydx

a gi(x)

P
L

Type Il region is bounded below and above by the horizontal lines y=c and y=d and
is bounded on the left and right by the continuous curves x = h,(y) and x=h, (y)
satisfying h,(y)<h,(y) forc<y<d

d hy(x)

jj f(x,y)dxdy:j j f(x,y)dxdy
R ¢ m(x)

x=hz(w%)

Write double integral of the function f(x,y)on the region whose sketch is given

In8 Iny

j j f(x,y)dxdy
1 0

In(In8) In8

j j f(x, y)dydx

e)(

0] InIn R 111
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VU
Solution:
In8 Iny
| = j j f(x,y)dxdy
1 0
Here, limitsof x are 0<x<lhy ————- @
limitsofyare 1<y<Ih8 —-————- (2)
Take logrithm of each sides of (2), ~ 0<Iny<In(In8) ———(3) --In1=0
Compare (1) and (3), 0<x<Iny<In(In8) —-——- (4)
From (4), 0<x<In(In8) and x< Iny<In(In8)
e*<y< In8
In(In8) Ing
So, = j j f (X, y)dydx
0 eX
Write double integral of the function f(x,y)on the region whose sketch is given
1y y
[ ] fOxy)ydxdy
0 0
1 1
J. J. f(x,y)dydx
0 Jx
1y
Solution : | :J' J' f(x,y)dxdy
0 0
Here, limitsof xare 0<x<y> = 0<+/x< y ———(@ by taking square root
limtsofyare 0<y<1l ————- (2
Compare (1) and (2), 0<x< y<l ————— 3)
From (3), 0<Jx <1 and Jx< y<1
0° < (&)2 <1? and +x<y<1
0< x<1 and ﬁgygl
EXAMPLE: Draw the region and evaluate an equivalent integral with the order of
2 2x
integration reversed. j j (4x + 2) dy dx
0 x?
i L .
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The region of integration is given by the inequalities x* <y <2x and 0 < x <2.

limits of y are x* <y < 2x ——®
limitsofxare 0<x<2 or 0<2x<4 -———(2)
Compare (1) and (2), 0< x*<y<2x<4 ———-3)
From(3), 0<y<4 and x°<y, y<2x
x <.y, %SX or %s x <[y
2 2x 4y 4 W2 Jy
J'.[ (4x+2)dydx:j J' (4x+2)dxdy:j 4= +2x| dy
0 X 0y 0 2 Y
2
4 yz 4 yz
:! [2y—7J+(2\/§—y) dy=£ (2ﬁ+y—?j dy
4
toy o1y 4 Y V| 1
y> y- 1y 2.y Y
= XY Y %y Y Y %igy, T (16)- 2 (64) =8
3 2 23 3y 2 6O 3()2()6()
2 0

EXAMPLE

4 2
Evaluate | =f J' ycos x> dxdy. The integral is over the region 0< y <4, x=\/§ and x=2.
0y

X=2
X=2
y=p @4 y=p (2.4)
y:X [ .X.:.\/
N
O : (0]
Solution : For reversing the limits of the integral,
limitsof xare Jy<x<2 or y<x’<4 ———)
limitsofyare 0<y< 4 —-———(2)
By(l)and (2), 0<y<x’*<4 ————@3)
By (3), 0<y<x’* and 0< x*<4
0< x< 2

2 X2 2

2
I:I I ycosx5dydx=J' y7
0

' cos x° dx :j 1(()(2)2_02)005)(5 dx
0 2

0

2 2
:EJ‘ x*cosx® dx = 1
2 2x5

0

2
11 .
'([ cos X° (5x4)dx=ES|n x>

= isin 32
10

0
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20-Double integral for non-rectangular region VU
1
2 1 )
EXAMPLE: Evaluate | :I j e’ dydx.
0 2x
Solution: The integral cannot be evaluated in the given order, since e’ has mo anti-
derivative. So we shall change the order of integration. The region R in which
integration is performed is givenby 0 < x < % y=2x and y =1.
The region is enclosed by x =0, x:% and 0<y<1
y
1 2 , 1 , Yy 1
I=| | ¢ dxdy=| e |X|* dy =2x Or x=y/2
[ 1o o=l erlx, Y= Ry
1 1
[ Y. _ 1 y
_I[ 2e dy = le 2ye’ dy “
........ o
1
1l 2] 1
== =—(e-1
4 € 4( )
0 . 0 112
EXAMPLE: Evaluate | =j j x dydx.
1 0
Solution: The region R in which integration is performed is given by
Limits of xare 1<x<3 e
IN1<Inx<In3
0<Inx<In3 ——-()
Limits of y are 0<y<Inx ———(2) v
By (1) and (2), 0<y<Inx<In3 —---(3
From (3), y<Inx<In3 and 0<y<In3
e’ <x<3 and 0<y<In3
In3 3 In3 X2 3 lln3
_ - A —= _e¥
I_l' ejy xdxdy = I 2|, dy—zl (9 e )dy
2y In3 ;
Loy & - 1(9 |n3—1(e'“3 -e")j ~Yom3-4)=2in3-2
2 2, 2 2 2 2
Over view of Lecture # 20
Book Calculus by Howard Anton
Chapter # 17 Article #17.2
Page (858-863) Exercise set 17.2 (21, 22, 23, 25, 27, 35, 37, 38)
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LECTURE No. 21

EXAMPLES
Example
1 4 N
2
Ijey dy dx
0 %x 4 Y54 (wa
Reversing the order of - x=yia
integration ..................... é....;
4 yl4 §y=4><
II ¥’ dx dy
0 O
4 4
9 yl4
o [ e P
0 0
4
-1
= ?I e” (- 2y) dy
0
C L L
—_8|e |0—_8|e _Cl
1 1
=8 [1—35]
Example :Calculate ” —dA where R is the triangle in xy-plane bounded by the

X
x-axis, the liney = x and the line x=1.

Solution ; jU sinx 4 de—l (S'”X jdx j( (x- O)de

= —(cosl—cos 0)~0.46

1
=I sin xdx = —
0

0| ' 1
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Example

2 1 2

[ ] e dxdy

0 yr

x2 )
Since there is no elementary antiderivative of e , the integral

2 1 2
[ ] e dxdy
0 Y2

cannot be evaluated by performing the x-integration first.

To evaluate this integral , we express is as an equivalent iterated integral with the order if
integration reversed . For the inside integration, y is fixed and x varies from he line

X =y/2 to the line x = 1. For the outside integration, y varies from 0 to 2, so the given
iterated integral is equal to a double integral over the triangular region R.

To reverse the order of integration, we treat R as a
type | region, which enables us to write the given

integral as

21 2 P >

”ex dxdy T i /;ff K5

0y 2 1, 2)

2
By changing the order of integration we get,
21 12x
'[ e’dxdy = J. I ¥ dydx R
0y 00 x
2 o i b

2X

1 2
= IO [e*Y] 0 dx

1 2
= IO 2xe X" dx

Example
Use a double integral to find the volume of the solid that is bounded above by the palne
z = 4-x-y and below by the rectangle R = {(Xx,y):x x< 1, 0<y<2}

2 1

V = J..[(4—x—y)dA:.[ j(4—x—y)dxdy

2 2 2
X 7 7
4X —— =Xy dy:'[ (E—Yde:y A =5
2 0 2 2

0 0

O ey N

116

© Copyright Virtual University of Pakistan



21-Examples

VU

Example

Use a double integral to find the volume of the tetrahedron bounded by the coordinate
planes and the plane z=4-4x-2y The tetrahedron is bounded above by the plane.

Z=4-4X-2y ----m-mmmmmmmmee- (1)
and below by the triangular region R
-4
Thus, the volume is given by == ne
V = [](4-4x-2y) dA
R LE____ e o

The region R is bounded by the x-axis, >~
the y-axis, and the line y = 2 — 2x [set ’

z =0 in (1)], so that treating R as a

type | region yields.

V=] é (4-4x-2y) dA

12-2x
[ o (4-4x-2y)dydx
by-txyy]
[Ay-y-yl, g O

S

(4—8x+4x?)dx

]
w|_|><f‘|_\ S =

Example : Find the volume of the solid bounded by the cylinder x>+y? = 4 and the planes

y+z=4andz=0.

The solid is bounded above by the

plane z = 4 — y and below b;/ the
region R within the circle xX* + y* = 4.
The volume is given by

V = I£(4—y)dA

Treating R as atype | region we obtain
2 4-x2

VZII (4 —-y) dy dx
, -2 -\4-x2 e

=] {4y - % yz} dx
2

y=-\4-x2

2
=I8 4 —x° dx
2
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2

=8 XA [4-x* 24_)( +%sin‘15

2-2

= 8| 2sin™(1) -2sin(-1)|

=8[2(5) + 2(5)]
=8(2n) = 16x

Example
Use double integral to find the volume of the solid that is bounded above by the
paraboiled z=9x2 + y? ,below by the plane z=0 and laterally by the planes
x=0, y=0, x=3, y=2
32

Volume = II (9% + y?) dy dx
2
,[ {9x y+ } dx
0

3
= J; [18x2 + %J dx
3

8
3 —
6Xx +3x0

6(27) +8
170
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LECTURE No. 22

EXAMPLES
Example : Evaluate ” xy dA ,whereR is the region bounded by the trapezium with the
R

vertices (1, 3), (5, 3), (2,1) and (4, 1).

Solution: Slope of AD = 371_2 -2 Since Slope = m _Y"h
1-2 -1 X, — X
Equation of line AD
y=Y=m (X_ Xl) D(L3) C63)
y-1=-2(x-2)
y-1=-2x+4
y-5=-2X AR B(4.2)
X = _y—_5
2
Slope of BC = 3-1 E=2
5.4 1
Equation of lineBC:y —y, =m (X — X,)
y-1=2(x-4) or y+7=2x = x:y;r7
Limits of x are from x = — y -5 to x = y;7.

Limits of y are from 1 to 3.
3 yTH 3 X2 2 18 7\ 5\’
y + y -
H xydA:j I xydxdy:I y|— dy =EI y( )_(_ ) dy
R y 1 1

1 _y-5 2 _
2 _y=s

12 +49+14 +25-10 13 24+ 24
1 y{y y_y’ y} dy = | y{ y}dy
1

2 4 4

3

1

? y oy

'[ 3y+3y dy: 3—43—| =12+26=38

1 2 3,
EXAMPLE: Use double integral to find the volume of the wedge cut from the cylinder
Ax*+y® =9 bytheplane z=0and z=y+3

2 2

Solution: Since we can write 4x* + y> =9as x_2+y3 =1 This is eq of ellipse.

(3/2
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2 2

_9—_yand X = 9_y
2

Now the Lower and upper limits for x are x=

And upper and lower limits for y are —3 and 3 respectively. So the required volume is
given by

s 3 N =
] ormmof [y e o

| 9y2[ﬂj+3\/92y2£\/92y2]

2

o

3
V9 - y*(-2y)dy +3 j 9 -y dy
_ -3 -3
3
2 9 -1
X\/Q -y —sin ()
2 2 3

+% ‘sin (1) -sin _1(—1)‘ - 277”

Il
JEE—
—_—

13
Y9 - y7 + 349 - yz}dy=7j

3

12 2
=—Xx— — +3
2x3(9 y )2
3

2o o
2 2
EXAMPLE: Use double integral to find the volume of solid common to the cylinders
X+ y* =25 and x>+ z* =25.
Solution: From x*+ y*=25 or y*=25-x> or y==425-x

Radius of cylinder is 5, so limits of x is from 0 to 5.
Fromx®+ 22 =25 = z=4/25-x*>  Only +ve value taken in first octant.

+

-3 -3

=0+3

Volume = 8x Area of cylinder in first Octant

V252 5
=8jjsz=8j j «/25—x2dydx:8_[ J25 - X2
R 0 0

= sj V25 -7 (25 - X ~ 0] ax - sj (25 - %) dx

ol

25— x2
dx

0

y

o
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5
3

—8psy _ 1 :8{25(5—0) —%(53—03)} _ 2000
3 0
AREA CALCUALTED AS A DOUBLE INTEGRAL
V= ﬂ 1dA=” dA )
R R

However, the solid has congruent cross sections taken parallel to the xy -plan so that
V =area of base x height=area of R x1 = area of R
Combining this with (1) yields the area formula
Area of R= 'U dA (2)
R

EXAMPLE: Use a double integral to find the area of the region R enclosed between the

2
parabola y = X?and the line y = 2x.

2
Solution: The required area is between the parabola y = X? ------- 1)

and the line y=2x = ------- (2)

2
By(l)and(2),x7:2x = X! =4x = x=0, x=4

4 y=2X 4 y=2x 4 X2
Area of R :J.J.dA: I I dy dx:J. ‘y dex:j {Zx——}dx
R 0 y:ﬁ 0 y=? 0 2
2
x> 1 x° 4
SRS (4 -0) (e -0r) = 2
2 2 3 0 3

EXAMPLE: Find the area of the region R enclosed by the parabola y = x* and the line
y=X+2.

Solution: The required area is between the parabola y = x> ------- (@D)]
and the line y=x+2  ------- 2
By (1) and (2), X* = Xx+2
X* —x-2=0
x=2, x=-1

2 y=x+2

J' j dy dx =J2'1 ‘y

-1 y:x2

y=X+2
dx
y=x?

2 2
2 2 3

:jl {(x+2)-(x¢)}dx = XZ laxf -1 :%(4_1)+ 2(2+1) —%(8+1)=%
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LECTURE No. 23

POLAR COORDINATE SYSTEMS

POLAR COORDIANTE SYSTEMS
To form a polar coordinate system in a

plane, we pick a fixed point O, called the P(r,0)
origin or pole, and using the origin as an

endpoint we construct a ray, called the polar

axis. After selecting a unit of measurement,

we may associate with any point P in the

plane a pair of polar coordinates (r, 0), >
where r is the distance from P to the origin O Origin
and 6 measures the angle from the polar axis

to the line segment OP. P(6, 45°)

Polar Axis

The number r is called the

radial distance of P and 0 (5, 120°)
is called a polar angle of P. In

the points (6, 45°), (3, 225°), P(3, 225%

(5, 120°), and (4, 330°)

are plotted in polar coordinate

systems.

THE POLAR COORDINATES OF A (4, 330
POINT ARE NOT UNIQUE.

v

For example, the polar coordinates

(1,315°), (1,—45°), and (1, 675°) 1

all represent the same point

In general, if a point P has polar coordinate (1,315
(r, @), then for any integer n=0,1,2,3,.......

(r,6+n-360°) and (r,0+n-360°)

are also polar coordinates of p

In the case where P is the origin, the line

segment OP reduces to a point, since r = 0. ] (1,675
Because there is no clearly defined polar angle

in this case, we will agree that an arbitrary

Polar angle 6 may be used. Thus, for every 6 may be used.

Thus , for every 0, the point (0, 0 ) is the origin.

v

(17 _450)
NEGATIVE VALUES OF R

When we start graphing curves in polar coordinates, it will be desirable to allow negative
values for r. This will require a special definition. For motivation, consider the point P
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with polar coordinates (3, 225%) We can reach this point by rotating the polar axis 225°
and then moving forward from the origin 3 units along the terminal side of the angle. On
the other hand, we can also reach the point P by rotating the polar axis 45° and then
moving backward 3 units from the origin along the extension of the terminal side of the
angle

This suggests that the point

(3, 225") might also be denoted by Terminal
Sides >

-3, 45") with the minus sign
( g

serving to indicate that the point is Polar Axis
on the extension of angle’s terminal P(3,2259%)
side rather than on terminal side .

itself. / .

Polar Axis

P(-3,225%)
Since the terminal side of the angle 8 +180° is the
extension of the terminal side other angle & ,We shall define.

(-1, @) and (r, #+180°) to be polar coordinates for the same point .
With r=3and @ =45%in (2) if follows that (-3, 45°) and ( 3, 225°) represent the same
point.

RELATION BETWEEN POLAR AND RECTANGULAR COORDINATES

P(x,y)
Y| P(r,0)
r
v = r sino
(€]

X= rcos 0

CONVERSION FORMULA FROM POLAR TO CARTESIAN COORDINATES
AND VICE VERSA

P(x, y) =P(r, 0)

X=rcosf

0 y=rsné

X
\\\//// % ¥+ P=p
v/ X =tam

Example :
Find the rectangular coordinates of the point P whose polar coordinates are (6, 135°)
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A8

Solution:
Substituting the polar coordinates,
r=6and =135 inx=rcos@ andy=rsin@ yields

X =6c0s 135°=6(—[2/2) =-34/2 ‘

Il
=N

135°

y=6sin135° =6 (\[2/2) =32
Thus, the rectangular coordinates of the point P are ( — 3 \/5 ,3 \/E )
Example: Find polar coordinates of the point P whose rectangular coordinates are

(-2,243)

Solution: We will find polar coordinates (r, &) of P such thatr >0 and 0 <6 <27 .

r=yC+y> =(=2)> +(23) =V4+12 =16 =4

:%:—ﬁ:@ztanl(—\/g)zz?ﬁ

tanH:X
X

From this we have (-2, 2 NE) ) lies in the second quadrant of P. All other Polar coordinates

of P have the form
(4,2?”+2n7z) or (—4,5?”+2n7z) ,where n is integer

LINES IN POLAR COORDIANTES

A line perpendicular to the x-axis and passing through the point with xy coordinates with
(a, 0) has the equation x = a . To express this equation in polar coordinates we substitute

X=rcos @ =>a=rcos O - (1)
This result makes sense

geometrically since each 5w
point P (1, 6) on this line will =
yield the value a for r cos 0. e = + =5
A line parallel to the x-axis that i
meets the y-axis it the point with

xy-coordinates (0, b) has the

equationy =b.

Substituting y = r sin 0 yields. __0, 8]

rsin®=>b 2)
as the polar equation of this line. / b
This makes sense geometrically \@

since each point P (r, 0) on this line

will yield the value b for r sin 0 e
For Any constant 0, the equation S
0=0o 3)

is satisfied by the coordinates of all
points of the form P (r, 0p), ;
regardless of the value of r. Thus, the et

Vi

equation represents the line through
the origin making an angle of 6,
(radians) with the polar axis. o= e,
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By substitution x =r cosf and y =r sinf in the
equation Ax +By +C = 0. We obtain the general polar form of the line,

r (Acos® +Bsinf) +C=0

CIRCLES IN POLAR COORDINATES
Let us try to find the polar equation

of a circle whose radius is a and
whose center has polar coordinates

(ro, 0p). If we let P(r, 6) be an
arbitrary point on the circle, and if

we apply the law of cosines to the
triangle OCP we obtain

I —2rro cos (6 —Bg) +12 =a’ (1)

SOME SPECIAL CASES OF EQUATION OF CIRCLE IN POLAR
COORDINATES

A circle of radius a, centered at the
origin, has an especially simple polar o
equation. If weletry =01in (1), we
obtain r> = a® or, since a >0,r=a

This equation makes sense s
geometrically since the circle 5
of radius a, centered at the
origin, consists of all points
P (r, ) for which r = a,
regardless of the value of 0

r=2asinf %

‘(a, _;rm)
If a circle of radius a has its center
on the x-axis and passes through the
origin, then the polar coordinates of
the center are either Polar
(a,0) or (a,m) axis

depending on whether the center is to @
the right or left of the origin

(@ = 73)

r=-—2a sin 8
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LECTURE No. 24
SKETCHING

Draw graph of the curve having the equation r = sin 0

o . V2 .
By substituting values for 0 at increments of g(30°) and calculating r, we can construct

The following table:
0 0 il il T 2n Sn
(radians) 6 3 2 3 6
r=sin 0 0 L \3 1 A3 L
2 2 2 2
0 T in 4n 3n S lrn | 2n
(radians) 6 3 2 3 6
r=sin 0 [ 0 L NES -1 N 0
2 ) D) 2
Note that there are 13 pairs listed in \ a3 /
Table, but only 6 points plotted in : 27\35 1T~ o
This is because the pairs from 6 = 1 (2 ?) "\ =23)
on yield duplicates of the preceding < { < =
points. For example, (- Y, 71/6) and L 5,_,_?}\% \ 1/ . ff'f(f’l & )
(1/2, m/6) represent the same point. g = (O;};eo) 2:8

The points appear to lie on a circle.
This is indeed the case may be seen by expressing the given equation in terms of x and y.

We first multiply the given equation through by r to obtain r> =r sin © which can be
rewritten as
x2+y2=y or x2+y2—y=0
1y 1
2 Z| =
+ly-— 3

. == .. : .1
or on completing the square x 4. This is a circle of radius 5 centered at

the point (0, % ) in the xy-plane.

Sketching of Curves in Polar Coordinates

1. SYMMETRY

(i) Symmetry about the Initial Line .
If the equation of a curve remains unchanged when (r, 8) l
is replaced by either (r, - @) in its equation ,then the curve '
is symmetric about initial line. (-9)
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(ii) Symmetry about the y-axis
If when (r, @) is replaced by either (r,7 -6 ) in (1,7-0) (r,0)

The equation of a curve and an equivalent equation
is obtained ,then the curve is symmetric about the
line perpendicular to the initial i.e, the y-axis

(ii) Symmetry about the Pole

If the equation of a curve remains unchanged
when either (-r, 6) or is substituted for (r, ) (r,0)
in its equation ,then the curve is symmetric
about the pole. In such a case, the center of
the curve.

(-1,0)
2. Position of the Pole Relative to the Curve

See whether the pole on the curve by putting r = 0 in the equation of the curve and
solving foré.

3. Table Of Values

Construct a sufficiently complete table of values. This can be of great help in sketching
the graph of a curve.

II Position Of The Pole Relative To The Curve.

When r =0, 8 = 0. Hence the curve passes through the pole.

II1. Table of Values 5

0 0 |n/3|m/2|2r/3 | & 3\ ‘
r=a (l-cos0) | 0 |a/2 | a 3a/2 | 2a “x\ .g
As 0 varies from 0 to m, cos O decreases o \ * w
steadily from 1 to — I, and 1 — cos 0 %ﬁ al \/3
increases steadily from O to 2. Thus, as 0 \'*.\ A‘i“
varies from 0 to =, the value of mf - Za g*{ 2
r=a (1 — cos 0) will increase steadily from /1IN
an initial value of r = 0 to a final value of ’
r =2a.
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On reflecting the curve in about the x-axis, we obtain the curve.

ARDIOIDS
0=n / §=0, r=0 = //,.,.- \

r=2a OL\ Oq A a ‘

r=aﬁ1_C0S9) r=a(l+cos ) e
0,2) D ’
o |
( ) r = a(l — cos @)
C (2a)-n/2) ’ioff};/z)

r=a(1-sin0) r=a(1+sin0)

CARDIDOIDS AND LIMACONS

r=a+b sin 0, r = a—bsin 0
r=a+b cos 0, r = a—bcos 0

The equations of above form produce polar curves called limacons. Because of the heart-
shaped appearance of the curve in the case a = b, limacons of this type are called
cardioids. The position of the limacon relative to the polar axis depends on whether sin 0

or cos 0 appears in the equation and whether the + or — occurs.

LEMNISCATE

If a > 0, then equation of the form
r2=a?cos20, r?=-—a’cos20
r’=a’sin 20, r?>=-a’sin20
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represent propeller-shaped curves, called lemniscates (from the Greek word “lemnicos”
for a looped ribbon resembling the Fig 8. The lemniscates are centered at the origin, but
the position relative to the polar axis depends on the sign preceding the a*> and whether
sin 20 or cos 20 appears in the equation.

|

A lemniscate

Example
r’=4cos20

The equation represents a lemniscate. The graph is symmetric about the
x-axis and the y-axis. Therefore, we can obtain each graph bv first sketching the portion
of the graph in the range 0 < 0 < 7/2 and then reflecting
that portion about the x- and y-axes. The curve passes
through the origin when 0 = n/4, so the line 6 = /4 is
tangent to the curve at the origin. As 0 varies from 0 to /4, SN
the value of cos20 decreases steadily from 1 to 0, - :
so that r decreases steadily from 2 to 0.For 0 in the | r=v2
range /4 < 0 < r/2, the quantity cos26 is negative,

so there are no real values of r satisfying first equation.
Thus, there are no points on the graph for such 6. r = 2./cos 20
The entire graph is obtained by reflecting the curve NLT NN
about the x-axis and then reflecting the resulting curve - N TD
about the y-axis. N

w4

ROSE CURVES
Equations of the form
r=asinnb and r=acosn0
represent flower-shaped curves called roses. The rose has n equally spaced petals or
loops if n is odd and 2n equally spaced petals if n is even

" T, MME&““%' ...... T,
§ iy 7~ & g e~ b
g‘, *.%g V4 n‘;,; %.ﬂ_j_kﬂ ] S - st
..... e N e ¥
e jg\ S i
{ /N ) { 1
e’ S o
A four-petal rose . A three-petal rose
{rnn = 2) (rz = 3)
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The orientation of the rose relative to the polar axis depends on the sign of the constant a
and whether sinf or cos6 appears in the equation.

SPIRAL
A curve that “winds around the origin” infinitely many times in such a way that r

increases (or decreases) steadily as O increases is called a spiral. The most common
example is the spiral of Archimedes, which has an equation of the form.

r=a0 (6>0) or r=ab (6<0)
In these equations, 0 is in radians and a is positive.
EXAMPLE

Sketch the curve r=0 (0 > 0) in polar coordinates.
This is an equation of spiral with a = 1; thus, it represents an Archimedean spiral.
Since r = 0 when 6 = 0, the origin is on the curve and the polar axis is tangent to the
spiral.
A reasonably accurate sketch may be obtained by plotting the intersections of the spiral
with the x and y axes and noting that r increases steadily as 0 increases. The intersections
with the x-axis occur when
06 =0, m 2m, 37, .......
at which points r has the values
r=0, nmt, 2w, 3m,.....
and the intersections with the y-axis occur when
_ & 3m Sm In
0 = 220 2 9 sy e
at which points r has the values
_m 3m Smn
L= 5,5y e
Starting from the origin, the Archimedean spirals r = 0 (6 > 0) loops counterclockwise
around the origin.
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LECTURE No. 25

DOUBLE INTEGRALS IN POLAR COORDINATES

Double integrals in which the integrand and the region of integration are expressed in
polar coordinates are important for two reasons: First, they arise naturally in many
applications, and second, many double integrals in rectangular coordinates are more
easily evaluated if they are converted to polar coordinates. The function z = f(r,8) to

be integrated over the region R as shown in the figure.

.\ A r=rif) -
\ e S =

\E—T o

=«

INTEGRALS IN POLAR COORDIATES

When we define the double integral of a function over a region R in the xy-plane, we
begin by cutting R into rectangles whose sides are parallel to the coordinate axes. These
are the natural shapes to use because their sides have either constant x -values or constant
y -values. In polar coordinates, the natural shape is a “polar rectangle” whose sides have

constant r and & - values.

Suppose that a function f(r,&) is defined over a region R that is bounded by the ray 6 =

o and 6 = B and by the continuous curves r = r1 (0) and r = r2(6). Suppose also that
0 <ri(0) <rz(0) < a for every value of 6 between o and . Then R lies in a fan-shaped
region Q defined by the inequalities0< r<a and . <6 <.

Then the double integral in polar coordinates is given as

6=p r=r,(0)
[fre)da= [ [ f(r.e)drdo
R

O=c r=r,(6)

How to find limits of integration from sketch

Step 1. Since 0 is held fixed for the first integration, draw a radial line from the origin
through the region R at a fixed angle 6. This line crosses the boundary of R at most twice.
The innermost point of intersection is one the curve r = r1(6) and the outermost point is
on the curve r = r2(0). These intersections determine the r-limits of integration.

Step 2.Imagine rotating a ray along the positive x-axis one revolution
counterclockwise about the origin. The smallest angle at which this ray intersects the
region R is 6 = a and the largest angle is 6 = . This yields the 0-limits of the integration.
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EXAMPLE
Find the limits of integration for integrating f (r,&) over the region R that lies inside the

cardioids r = 1 + cos@ and outside the circle r = 1.

Solution:
Step 1. We sketch the region and label the bounding curves.

Step 2. The r-limits of integration. A typical ray from the origin enters R where r =1 and
leaves where r = 1 + cosé.

Step 3. The 6-limits of integration. The rays from the

- . T T
origin that intersect R run from 0 = —5 10 0= >
n/2 1+coso n/2 1+cosf

The integral is L[/ZI . f(re)yrdrde = 2] | = f(r,6) rdrde

EXAMPLE : Evaluate | sin ® dA  where R is the region in the first quadrant that is
R

outside the circle r =2 and inside the cardioids r = 2(1+cos#).
Solution:

n/2  2(1+cosg) a g 0 2(1 + cos @)

[I'sinodA=[ 1, (sin ©) r dr do
R

/2
2(1+cos0)

o Lo
= IO 5 r2sin6] _ do

n/2
= 2] [(1+cos)’sin 6-sin6]do
/2

= 2[—%(1+cose)3+cose]0:2[—%—(—gﬂ :%

EXAMPLE : Use a double polar integral to find the area enclosed by the three-petaled
rose r = sin 30.

Solution: We calculate the area of the petal R in the first quadrant and multiply by three.
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n/3 sin3g /3 .
2 sin30
A:3I£dA=BJOJO rdrde=3/ 5| ~drde e
;> , ™ //R7
:§Io sin2360 do :Z'[O (1-cos 66) do —y
3 in 60 /3 3 3 /3 1
sin ) 1
—4[6— 6 }0—[46—24%66} =T

0

EXAMPLE : Find the area enclosed by the lemniscate r? = 4 cos20. The total area is four
times the first-quadrant portion.

Solution: ! Leaves a
L S 4 cos 20
o 7z 2 4Cos26 . 55 *_\ 4
4 4Cos20 ilr (N8R
A=4[ [ rdrdo=4f |-~ do ! I\ ..
0 0 0 2 == N rl=4cos2f
0 Enters at T
r=10 4
n/4 ld

=4 2c0s20d6 =4sin26] =4.
0

CHANGING CARTESIAN INTEGRALS INTO POLAR INTEGRALS
The procedure for changing a Cartesian integral [[f(x, y) dx dy into a polar integral has
R

two steps.

Step 1. Substitute x=r cos@ and y=rsiné, and replace dx dy by r dr d& in the
Cartesian integral.

Step 2. Supply polar limits of integration for the boundary of R. The Cartesian integral
then becomes

[T f(x,y) dx dy=[] f(rcos6, rsin®)r dr do
R G

where G denotes the region of integration in polar coordinates.
Notice that dx dy is not replaced by dr d@ but by r dr dé.

11X

EXAMPLE: Evaluate the double integral J. J. (x* + y?)dydx by changing to polar

0

o

coordinates.
Solution: The region of integration is bounded by

0<y<al-x?and0<x<1
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y =4/1-x2 isthe circle, which gives x2+y?=1, r=1

On changing into the polar coordinates the given integral is
n/2 1 /2 a2

 Jeddo =), \4\ d=i,% 0= |9

_z
~ 8

EXAMPLE

Evaluate | = IDJx—ﬂ)//_ by changing to polar coordinates,

where D is the region in the first quadrant between the circles

Solution:
Two circles are x>+ y?=a? and x?+ y?=b?, 0<a<b

2 b /2 b
I—IOIM [, Onr], do
/2 n/2
= iy () ao=[om ()] =5 (]
EXAMPLE

,_.
X
N

1
Evaluate the double integral j j (x> + y*)dy dx by changing to polar coordinates.
0 0

The region of integration is bounded by 0 <y < +v1-x*> and0< x< 1

y = +1-x* isthecircle X’ +y*=1,r=1
On changing into the polar coordinates, the given integral is

1

721
do= [ ~do =—|e|
0 0 4

zl2 1 72

j J'r3drd49=_|.
0 0 0

4

r
4

72

—%(7[/2)=7Z/8
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LECTURE No. 26

EXAMPLES

4 ay-y?

Example 1 : Evaluate I=J;_[ 0 (x?>+y?)dx dy by changing into polar coordinates.

Solution: The region of integration is bounded by 0<x<\/4y —y? and 0<y <4
Now x=+/4y —y? is the circle xX2+y?—4y=0 = x? + y? = 4y.In polar coordinates this

takes the form r>=4rsin®, r=4sin@
On changing the integral into polar coordinates, we have

n/2 4sin0 /2

I:JO Io r>.rdrdo = jo 64 sin* 6 do= 64.

w
(I

. g: 127 (using Walli’s formula)

S
N

Example 2 : Evaluate ” e dy dx.,where R is the semicircular region bounded by the
R

x-axis and the curve y =/1 — x?
Solution: In Cartesian coordinates, the integral in question is a non-elementary integral

and there is no direct way to integrate Y2 with respect to either x ory.

Substituting X =r cos 6, y = r sin, and replacing dy dx by r dr do enables us to evaluate
the integral as

1
nl T T
2,2 1 1 i
IF{eX Ydydx=[[e"rdrdo=] [Eefz} do=] 5(e-1)do=7 (e-1).
0

Example 3 : Let Ra be the region bounded by the circle x? + y? = a%. Define

[cole o]

J. Iwe'(x2+y2)dxdy - !'m “e-(x2+y2)dx dy

—o0 — -0 ' p

Solution: To evaluate this improper integral,

=] [ e Y dxdy:IimHe_(xz+y2)dxdy
—00 — a—o0 Da

2n a 2n
o . o 1 a?vqn 1 a2 2n
= limJ e rdrdo=limf,53(1-e")do= limpA-e") ol
=lim z(1-e ) ==lim | 7-" | = 7-lim" = 7 - = 7
a—o a—o ea aaooea e
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i
2

Example 4 : Prove that _[ e X dx =
0

Solution: To prove it, we take

I—J'.[e(“”dxdy—_H'exeydxdy—J'eyJ'ededy

—o0 —0 —00 —00
©

= J. e dx j e dx y is a dummy variable, so we can change y to x.

oo e

Therefore, 4(] e ™ dx] = jj e @ dxdy= 7z by Example3
0

—00 —00

fore] 5

By taking square root on both sides,

T e Az
J‘e dx_T

THEOREM : Let G be the rectangular box defined by the inequalities
as<x<bh, c<y<d, k<z<v/
bd I

If f is continuous on the region G, then I” f(x,y,2)dv = I” f(X,y,2)dzdydx
G ack

Moreover, the iterated integral on the right can be replaced with any of the five other
iterated integrals that result by altering the order of integration.

bld | bd L db
= f dydz d f dydx dz = f ,z)dx dy d
JU (x,y,2)dydz dx = HI (x,y,2)dydx dz ljj (x,y,z)dx dy dz
dlb dbl

= f(x,y,z)dx dz dy = f(x,y,z)dz dx d

[[] fy2)axdzdy=[]] fxy.2)dz ceay

Example 5: Evaluate the triple integral |[] 12xy?z® dV over the rectangular box G
G

defined by the inequalities —1<x<2,0<y<3,0<z<?2.
Solution: We first integrate with respect to z, holding x and y fixed, then with respect to
y holding x fixed, and finally with respect to x.

232

2
[I12xy?z® dv=] [ | 12xy?*dzdydx =] [ [3xy’z*] dydx=[] 48xy?dy dx
G ‘100 ;10 7=0 10

2

3 2 2 3

2 3 2

= [ [16xy%] dx=] 432xdx = 216x2] =648
1 y=0 1 1
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Example 6 :Evaluate ,”Rj (x—2y+z)dxdydz RegionR: 0<x,1, 0<y<x?
0<z<x+y
X+y Xy
Solution: _” J. (x =2y +2z) dz dy dx= _H ‘ a 2 +2) dy dx
X2 ° 2
2 3
” [(X 2ytxty)  (x=2y) }d dx=2 I f (352 — 3y2) dy dx= - Y dx
2 2 2 31,
1
B (e X g3 X X S[L 1.8
20X T3 /™72 521 T2 5721)7 35

Example 7 : Evaluate _[” xyzdxdydz Where S ={(x,y,z) : x+y*+z2< 1, x>0,y >0,
S

z>0}
Solution: S is the sphere x? + y? + z2 = 1 .Since X, y, z are all +ve so we have to consider

only the +ve octant of the sphere. Now x?+y?+2z2=1 .Sothat z=1/1—-x2—y?
The Projection of the sphere on xy plan is the circle x* + y? = 1.

This circle is covered as y-varies from 0 to \/1 —x2 and x varies from 0 to 1.

1 V1-x2 \1-x2-y2 1 V1-x2 ) .
j_l_[xyzdxdydz:_[)jo j . xyzdzdydx:_UO xyz— dy dx
2
1 V1-x2 , 1 1-x2 i
=IO xy(l_%y— dy dx = U X (y —x%y —y°) dy dx
1

1
2

V1-x2

1 dx%_“ {1x x(1x2)£1—XL}

Xt x _1(1 LD)-4
8\2 2 6/ 48

X___
2 2%

1 1
=3 _L(x—2x3+x5)dx:§
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LECTURE No. 27
VECTOR VALUED FUNCTIONS

Recall that a function is a rule that assigns to each element in its domain one and only one
element in its range. Thus far, we have considered only functions for which the domain
and range are sets of real numbers; such functions are called real-valued functions of a
real variable or sometimes simply real-valued functions. In this section we shall consider
functions for which the domain consists of real numbers and the range consists of vectors
in 2-space or 3-space; such functions are called vector-valued functions of a real variable
or more simply vector-valued functions. In 2-space such functions can be expressed in
the form.

r=x@®.y®=x@i+ty]j
and in 3-space in the form

r@=x@®.y® z@®)=x@i+y®j+zok

where x(t), y(t), and z(t) are real-valued functions of the real variable t. These real-

valued functions are called the component functions or components of r. As a matter of
notation, we shall denote vector-valued functions with boldface type f(t), g(t) and r(t) and
real-valued functions, as usual, with lightface italic type f(t), g(t) and r(t).

EXAMPLE: r(t)=(Int)i+/t?+ 2]+ (cos tm)k

Then the component functions are x(t) = Int, y(t) =\t? + 2, and z (t) = costr
The vector that r(t) associates witht=1is r(1)=(In 1) i+\/§j +(cos ) k:\/gj— k
The function r is undefined if t < 0 because In t is undefined for such t.

If the domain of a vector-valued function is not stated explicitly, then it is understood
to consist of all real numbers for which every component is defined and yields a real
value. This is called the natural domain of the function. Thus the natural domain of a
vector-valued function is the intersection of the natural domains of its components.

PARAMETRIC EQUATIONS IN VECTOR FORM
Vector-valued functions can be wused to express parametric equations in
2-space or 3-space in a compact form.

For example, consider the parametric equations x = x(t), y =y (t)
Because two vectors are equivalent if and only if their corresponding components are
equal, this pair of equations can be replaced by the single vector equation.

X=X, y=y (O e (1)
Xity] =x@i+y O] - 2)
Similarly, in 3-space the three parametric equations
X=X(t), y=y@®, z=z(t) - 3)
can be replaced by the single vector equation
Xi+yj+zk=x(®i+yOf + 2Ok oo (4)
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ifweletr=xi+yj and r(t) = x(t) i +y(t) j in2-sapce

and let r=xi+yj+zk and r(t) = x(t) i + y(t)j + z(t)k in 3-space, then both (2) and (4)
can be writtenas r =r(t) --------- (5) which is the vector form of the parametric equations
in (1) and (3). Conversely, every vector equation of form (5) can be rewritten as

parametric equations by equating components on the two sides.

EXAMPLE: Express the given parametric equations as a single vector equation.

(@ x=t3 y=3t
(b) x = cost, y = sint, z=t

Solution: (a) Using the two sides of the equations as components of a vector yields.

Xi+yj=t2i+3t]j
(b) Proceeding as in part (a) yields
Xi +yj +zk = (cos t)i + (sint)j + tk

EXAMPLE: Find parametric equations that correspond to the vector equation

Xi+tyj+zk=(E+Di+3j+ek
Equating corresponding components yields.
x=t3+1, y=3, z=¢

GRAPHS OF VECOR-VALUED FUNCTOINS

One method for interpreting a vector-valued function r(t) ‘

in 2-space or 3-space geometrically is to position the vector

r = r (t) with its initial point at the origin, and 1 P o

let C be the curve generated by the tip of the vector r

as the parameter t varies

The vector r, when positioned in this way, is called

the radius vector or position vector of C, and C is called the

As ¢ varies, the tip
of the radius vector r
traces out the curve

graph of the function r(t) or, equivalently, the graph of the

equation r = r(t). The vector equation r = r (t) is equivalent to a set of parametric

equations, so C is also called the graph of these parametric equations.

EXAMPLE: Sketch the graph of the vector-valued function r(t) =
0<t<2nm
The graph of r(t) is the graph of the vector equation
xityj = (cost)i+ (sint)j], 0<t<2n
or equivalently, it is the graph of the parametric equations
X=cost, y=sint (0<t<2n)

(cos t)i + (sin t)j,

This is a circle of radius 1 that is centered at the origin with the direction of increasing t

counterclockwise. The graph and a radius vector are shown in Fig.

r ={cosiyi+ (sinf)j
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EXAMPLE: Sketch the graph of the vector-valued function r(t) = (cos t)i+(sin
t)j+2k, 0<t<2n
The graph of r(t) is the graph of the vector equation
Xi +yj + zk = (cost)i + (sint)j + 2k, 0<t<2n
or, equivalently, it is the graph o the parametric equations
x=cost, y=sint, z=2 (0<t<2n)
From the last equation, the tip o the radius vecor traces a curve in the plane z = 2, and
from the first two equations and the preceding example, the curve is a circle of radius 1
centered on the z-axis and traced counterclockwise looking down the z-axis. The graph
and a radius vector are shown in Fig.
Li“
2] 2
L /
./}_ ﬁl ‘_{\

r=(cos&)i+ (sint)j+ 2k

EXAMPLE: Sketch the graph of the vector-valued function r(t) = (a cos t)i + (a sin
t)] + (ct)k ,where a and c are positive constant.

The graph of r(t) is the graph of the parametric equations.

Xx=acost, y=a sint, z=ct
As the parameter t increases, the value of z = ct also increases, so the point (X, vy, z)
moves upward. However, as t increases, the point (x, y, z) also moves in a path directly
over the circle. x =a cost, y=a sint inthe xy-plane. The combination of these
upward and circular motions produces a corkscrew-shaped curve that wraps around a
right-circular cylinder of radius a centered on the z-axis.
This curve is called a circular helix.

A
e
| ' 4
. A
- - P_,I[—a.['l..'.'t'fl
A Sl I )
(0, —a, =5 -t |
o - v
= = # -
2 Fy | -
{f0e T
- L
:I r= =
o ] T
- ¥ e
-— -
A, O
S =)
X
F={acosf)li-= {mainflj*iciihk

EXAMPLE: Describe the graph of the vector equation r = (— 2 +t) i + 3tj + (5 — 4t)k
The corresponding parametric equationsarex = -2 +t, y=3t, z=5 —4t
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The graph is the line in 3-space that passes through the point (- 2, 0, 5) and is parallel to
the vector i + 3J — 4k.

EXAMPLE

The graph of the vector-valued function r () =ti +t?j + t3k is called a twisted cubic.
Show that this curve lies o the parabolic cylinder y = x?, and sketch the graph for t >0

The corresponding parametric equations are x =t, y=t’, z=t

Eliminating the parameter t in the equations for x and y yields y = x2, so the curve lies on
the parabolic cylinder with this equation. The curve starts at the origin for t = 0; as t
increases, so do X, y, and z, so the curve is traced in the upward direction, moving away
from the origin along the cylinder.

GRAPHS OF CONSTANT VECOR-VALUED FUNCTIONS
If ¢ is a constant vector in the sense that it does not depend on a parameter, then the graph
of r = c is a single point since the radius vector remains fixed with its tip at c.
If ¢ = x + yo (in 2-space), then the graph is the point (xo, Yyo), and if
C = Xol + Yoj + zok (in 3-space), then the graph is the point (Xo, Yo, Zo).
EXAMPLE: The graph of the equation r = 2i + 3] — k is the point (2, 3, — 1) in 3-space.
Remark: If r(t) is a vector-valued function, then for each value of the parameter t, the
expression ||r(t)|| is a real-valued function of t because the norm (or length of r(t) is a real
number.

For example, if r(t)=ti+ (t—1)j Then |r(t)||=~/t>+ (t—1)*> which is a real-
valued function of t.
EXAMPLE: The graph of r (t) = (cost)i+ (sint)j+2k, 0 <t < 2x is a circle of
radius 1 centered on the z-axis and lying in the plane z = 2. This circle lies on the
surface of a sphere of radius \/3 because for each value of t

Ir@)| = Veos’t+sin’t+22 =~/1+4=+/5

which shows that each point on the circle is a distance of\/§ units from the origin.

¥ =(cosi)i+ (sin#)j+ 2k
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LECTURE No. 28
LIMITS OF VECTOR VALUED FUNCTIONS

The limit of a vector-valued function is defined to be the vector that results by taking the
limit of each component. Thus, for a function r(t) = x ()i +y (t)j in 2-space we define.

lim r() = (fim x(0)i + (lim y(0)]

and for a function r(t) = x(t)i + y(t)j] + z(t)k %,

in 3-space we define. L
lim r(®) = (limx(®))i + (limy(0)j + (limz(t))k r’“" z A
If the limit of any component does not exist, e engiang

then we shall agree that the limit of r (t) does not exist. -

These definitions are also applicable to the one-sided limits tIim+ , lim and infinite
—a

t—oa™

limits, tﬂmo, and tﬂ)r_rgo. It follows from (1) and (2) that
limr() =L
if and only if the components of r(t) approach the components of L as

t — a. Geometrically, this is equivalent to stating that the length and direction of r (t)
approach the length and direction of Last — «o

CONTINUITY OF VECTOR-VALUED FUNCTIONS
The definition of continuity for vector-valued functions is similar to that for real-valued
functions. We shall say that r is continuous at to if
1. r (to) is defined;
2. limr(t) exists;
t—>t0

3. limr(t) = r (to).
—>t0

It can be shown that r is continuous at to if and only if each component of r is continuous.
As with real-valued functions, we shall call r continuous everywhere or simply
continuous if r is continuous at all real values of t. geometrically, the graph of a
continuous vector-valued function is an unbroken curve.

DERIVATIVES OF VECOR-VALUED FUNCTIONS
The definition of a derivative for vector-valued functions is analogous to the definition
for real-valued functions.

DEFINITION
The derivative r/(t) of a vector-valued function r(t) is defined by
r/(t) - ||m M
h—0 h

Provided this limit exists.
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For computational purposes the following theorem is extremely useful; it states that the
derivative of a vector-valued function can be computed by differentiating each
components.

THEOREM
(@) If r(t) = x(t)i + y(t)j is a vector-valued function in 2-space, and if x(t) and y(t) are

differentiable, then r/(t) = X/ ()i + y/(t)j

(b) If r(t) = x(t)i + y(t)j + z(t)k is a vector-valued function in 3-space, and if x(t), y(t),
and z(t) are differentiable, then

r'(t) = X(0i + y'(1)j + Z(Dk
We shall prove part (a). The proof of (b) is similar.

Proof (a):
0= fi jim D=

= X/(0i + y'(0]

rt+h)—r() . [x(t+h)=x(1)].
h L R

As with real-valued functions, there are various notations for the derivative of a vector-
) o eves d d
valued function. If r = r (t), then some possibilities are P [r(®)], d_: ,r(t), and 1/
EXAMPLE
Let r(t) = t% +t%j. Find r/(t) and r/(1)
d . d )
r) = g [P+ g 1]
=2ti+ 3t?j
Substituting t=1 yields
r'(1) = 2i+3;j.
TAGENT VECTORS AND TANGENT LINES

GEOMETRIC INTERPRETATIONS OF THE DERIVATIVE.
Suppose that C is the graph of a vector-valued

function r(t) and that r/(t) exists and is nonzero i “"\_‘;,\r'm
for a given value of t. If the vector r/(t) is BP- o
positioned with its initial point at the terminal | Ao Jc
point of the radius vector "/_,/ / l
DEFINITION

Let P be a point on the graph of a vector-valued e

function r(t), and let r(to) be the radius vector from T
the origin to P

If r'(to) exists and r'(to) = 0, then we call r'(to) |
the tangent vector to the graph of r at r(to) J{ -
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REMARKS
Observe that the graph of a vector-valued function can fail to have a tangent vector at a
point either because the derivative in (4) does not exist or because the derivative is zero at

the point. If a vector-valued function r(t) has a tangent vector r/(to) at a point on its graph,

then the line that is parallel to r'(to) and passes through the tip of the radius vector r(to)
is called the tangent line of the graph of r(tyat r(to). Vector equation of the tangent line is

r=r(to) + t r'(to)

EXAMPLE

Find parametric equation of the tangent line to the circular helix
X = cost, y = sint, z=1  atthe point where t = /6
Solution:

To find a vector equation of the tangent line, then we shall equate components to obtain
the parametric equations. A vector equation r = r(t) of the helix is

Xi +y]j + zk = (cost)i + (sin t)j + tk

Thus, r(t) = (cos t)i + (sin t)j + tk
=r/(t) = (= sin t)i + (cos t)j + k

At the point where t = 1t/6, these vectors are

r@ —£i+%j+ﬂk and

6) 2 6
()3 Bien

so from (5) with to = 7t/6 a vector equation of the tangent line is

r(%) +tr’(%j = (lzgi+%j+%k)+t(—%i+32@j+k)

Simplifying, then equating the resulting components with the corresponding components
of r=xi+yj + zk yields the parametric equation.

A3 1 1 A3 =z
X=Tp by y=p vyt z=gHt

EXAMPLE
The graph of r(t) = t%i + t%j is called a semi-cubical parabola )
Find a vector equation of the tangent line to the graph of r(t) at L./
(a) the point (0,0) (b) the point (1,1) e o8

The derivative of r(t) is
r'(t) = 2ti + 3t?

riid =i %ioe 1%

(@) The point (0, 0) on the graph of r corresponds to t = 0. As this point we have r/(0)= 0,
so there is no tangent vector at the point and consequently a tangent line does not exist at
this point.
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(b) The point (1, 1) on the graph of r corresponds to t = 1, so from (5) a vector equation
of the tangent line at this pointis r =r(1) + t r'(1)

From the formulas for r (t) and r'(t) with t = 1, this equation becomes
r=(i+j)+t(2i+3j)

If r is a vector-valued function in 2-space or 3-space, then we say that r(t) is smoothly

parameterized or that r is a smooth function of t if the components of r have continuous

derivatives with respect to t and r/(t) = O for any value of t. Thus, in

3-space r (t) = x(t)i +y (t)j + z(Hk is a smooth function of t if x/(t), y/(t), and Z/(t) are
continuous and there is no value of t at which al three derivatives are zero. A parametric
curve C in 2-space or 3-space will be called smooth if it is the graph of some smooth
vector-valued function.

It can be shown that a smooth vector-valued function has a tangent line at every point on
its graph.

PROPERTIES OF DERIVATIVES

(Rules of Differentiation).

In either 2-space or 3-space let r(t), ri(t), and rz(t) be vector-valued functions, f(t) a real-
valued function, k a scalar, and c a fixed (constant) vector. Then the following rules of
differentiation hold:

1 % [c]=0

2. Ik ] =k g [rO)

3. g [ + (0] = g [r(0]+g 72 0]
4. G InO-r:01 = g Iru] — g [r20]

5. S IROO] = O [FOT+r (O [F (O]

In addition to the rules listed in the foregoing theorem, we have the following rules for
differentiating dot products in 2-space or 3-space and cross products in 3-space:

d dr, dr,
dt[l() 2()] Ut il
d dr, dr,
7. a[rl(t)xrz(t)]: rlxd_t?._i_d_tlxrz
REMARKS:

In (6), the order of the factors in each term on the right does not matter, but in (7) it does.

In plane geometry one learns that a tangent line to a circle is perpendicular to the radius
at the point of tangency. Consequently, if a point moves along a circular arc in 2-space,
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one would expect the radius vector and the tangent vector at any point on the arc to be
perpendicular. This is the motivation for the following useful theorem, which is
applicable in both 2-space and 3-space.

THEOREM:

If r (t) is a vector-valued function in 2-space or 3-space and ||r(t)|| is constant for all t,
then r(t). r'(t)=0

Proof: That is, r(t) and r'(t) are orthogonal vectors for all t. It follows from (6) with
ri(t) =rz(t) = r(t) that

L o1 = roS +5

or, equivalently,% [lIr(]1? = 2r(t) %
But ||r(t)||? is constant, so its derivative is zero. Thus 2r(t).% =0 thatisr(t) . % =0

That is the r(t) is perpendicular %

EXAMPLE

Just as a tangent line to a circular arc in 2-space is perpendicular to the radius at the point
of tangency, so a tangent line to a curve on the surface of a sphere in 3-space is
perpendicular to the radius at the point of tangency.

To see that this is so, suppose that the graph of r(t) lies
on the surface of the sphere of radius k > 0 centered
at the origin. For each value of t we have ||r(t)||=k,
r(t). r'(t) =0
which implies that the radius vector r(t) and the

tangent vector r'(t) are perpendicular. This completes the argument because the tangent
line, where it exists, is parallel to the tangent vector.

INTEGRALS OF VECTOR VALUED FUNCTION

(@) If r(t)=x(t) i +y(t) j is a vector-valued function in 2-space ,then we define.

[riyde=([xmdvi+(ymdj  (a)
[ryde=([x®dyi+(y@mdj ()

@) If r(t)=x(t) i +y(t) j + z(t) k is a vector-valued function in 3-space ,then we define.
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[ryde = ([ x®dt)i+ ([ yydt) j+ (] 2(t)dt)k (2a)
[ryde= ([ x®dr)i+ ([ y@ydt)j +([ zt)dt)k (2b)
Example:

Let r(t)=2ti+3t%j, find
2
(@) [r(t)dt ()] r(t)ct
0
j r(t)dt = j (2ti+3t2j)dt =(j 2tdt)i +(j 3t%t) j
t*+C)i+(t*+C,)j=ti+Ci+t’j+C,]
=i +t°j+Ci+C, ]
=t’i+t3j+C
WhereC =Cii +C, jisanarbitrary vector constant of integration

(b) 'Z[r(t)dt =j.(2ti +3t° j)dt =(j.2tdt)i +(j.3tzdt) j=[eTi+[t] =@ -0i+@-0)j=4i+8]

PROPERTEIS OF INTEGRALS

Icr(t) dt= cj r (t) dt 3)
I[rl(t)+rz(t)] dt= J ri(t)dt + J rz(t) dt 4)
I [ra(t)—rz(t)]dt = j ri(t) dt—.[ rz(t) dt (5)

These properties also hold for definite integrals of vector-valued functions. In addition,
we leave it for the reader to show that if r is a vector-valued function in 2-space or 3-

space, then % [j r(t) dt] =r(t) (6)

This shows that an indefinite integrals of r(t) is, in fact, the set of anti-derivatives of r(t),
just as for real-valued functions.

If r(t) is any anti-derivative or r(t) in the sense that R/(t) = r(t), then

I rit)dt=R(t) +C (7)
where C is an arbitrary vector constant of integration.

Moreover,
b

fa r(t) dt = R(t) ]b = R(b) - R(a)
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LECTURE No.29
CHANGE OF PARAMETER
It is possible for different vector-valued functions to have the same graph.

For example, the graph of the function . _
r=(3cost)i+(3sint)j,0<t<2mg ----- D S e e

is the circle of radius 3 centered at the origin f_x’*/ l /"’\"\“--. 3
with counterclockwise orientation. The parameter [ PR T
t can be interpreted geometrically as the positive — : e j P
angle in radians from the x-axis to the radius vector. \ ¥,

For each value of t, let s be the length of the arc N\ g

subtended by this angle on the circle b SN (5 o

The parameters s and t are related by
t= >, 0<s<6n
3

If we substitute this in equation (1), we obtain a vector-valued function of the parameter
s, namely

r=3cos (s/3)i +3sin (s/3)], 0<s<6mn
whose graph is also the circle of radius 3 centered at the origin with counterclockwise
orientation .In various problems it is helpful to change the parameter in a vector-valued
function by making an appropriate substitution. For example, we changed the parameter

above from t to s by substituting t = %in equation(l).

In general, if g is a real-valued function, then substituting t = g(u) in r(t) changes the
parameter from t to u.

SMOOTH FUNCTION
When making such a change of parameter, it is important to ensure that the new vector-
valued function of u is smooth if the original vector-valued function of t is smooth. It can
be proved that this will be so if g satisfies the following conditions:

1. gis differentiable.

2. ¢ is continuous.

3. ¢/(u) # 0 for any u in the domain of g.

4. The range of g is the domain of r.
If g satisfies these conditions, then we call t = g(u) a smooth change of parameter.
Henceforth, we shall assume that all changes of parameter are smooth, even if it is not
stated explicitly.

ARC LENGTH
Because derivatives of vector-valued functions are calculated by differentiating
components, it is natural to define integrals of vector-functions in terms of components.
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EXAMPLE: If x/(t) and y/(t) are continuous for a <t <Wb, then the curve given by the
parametric equations

x=x(t), y=y({) (@a<t<b) 9)
has arc length .
2 2
L= L (?j_)t() + (%%) dt (10)

This result generalizes to curves in 3-spaces exactly as one would expect:

If x/(t), y/(t), and z/(t) are continuous for a <t < b, then the curve given by the parametric
equations

X=X(), y=y(®), z=z(t) (a<t<b)

has arc length

A NEE G

EXAMPLE : Find the arc length of that portion of the circular helix
Xx=cost, y=sint, z=t

Fromt=0tot=n

The arc length is

L AJCT (o - [ o
[\ w7

ARC LENTH AS A PARAMETER

For many purposes the best parameter to use >
for representing a curve in 2-space or 2SR, &
3-space parametrically is the length of s =
arc measured along the curve from some (

fixed reference point. This can be done as follows: R

Step 1: Select an arbitrary point on the curve C to serve as a reference point.

Step 2: Starting from the reference point, choose one direction along the curve to be the
positive direction and the other to be the negative direction.

Step 3: If P is a point on the curve, let s be the *“signed” arc length along C from the
reference point to P, where s is positive if P is in the positive direction from the
reference point, and s is negative if P is in the negative direction.

By this procedure, a unique point P on the curve is determined when a value for s is
given. For example, s = 2 determines the point that is 2 units along the curve in the

. o . 3 . . .3
positive direction from the reference point, and s = — 5 determines the point that is 5

units along the curve in the negative direction from the reference point.
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Let us now treat s as a variable. As the value of s changes, the corresponding point P
moves along C and the coordinates of P become functions of s. Thus, in 2-space the
coordinates of P are (x(s), y(s)), and in 3-space they are (x(s), y(s), z(s)). Therefore, in 2-
space the curve C is given by the parametric equations X = X(s), y =Yy (S)

and in 3-space by x =x(s), y=y(s), z=z(s)

REMARKS

When defining the parameter s, the choice of positive and negative directions is arbitrary.
However, it may be that the curve C is already specified in terms of some other parameter
t, in which case we shall agree always to take the direction of increasing t as the positive
direction for the parameter s. By so doing, s will increase as t increases and vice versa.
The following theorem gives a formula for computing an arc-length parameter s when the
curve C is expressed in terms of some other parameter t. This result will be used when we
want to change the parameterization for C fromt to s.

THEOREM
(@) Let C be acurve in 2-space given parametrically by
x=x(®), y=y(®
where x’(t) and ;/ (t) are continuous functions. If an arc-length parameter s is introduced
with its reference point at (x(to), y (to)), then the parameters s and t are related by
t

_ )", (dy)’
s= _[0 (du) + (du) du (13a)
(b) Let C be a curve in 3-space given parametrically by

x=x(), y=y(t), z=z2()

where x/(t), y/(t), and z’(t) are continuous functions. If an arc-length parameter s is
introduced with its reference point at (x(to), y(to), z(to)), then the parameters s and t are

related by
t
_ dx\* | (dy)" , (dz)’
_L \/@J*(w)+bﬂd“ (130)
Proof
If t > to, then from (10) (with u as the variable of integration rather than t) it follows that
t

dx)* | (dyY’
L@@ e 2
represents the arc length of that portion of the curve C that lies between (x(to), y(to)) and
(x (1), y(1)). If t < to, then (14) is the negative of this arc length. In either case, integral
(14) represents the “signed” arc length s between these points, which proves (13a).
It follows from Formulas (13a) and (13b) and the Second Fundamental Theorem of
Calculus (Theorem 5.9.3) that in 2-space.
% = % Error! = Error!
and in 3-space

ds d

dt — dt Error! = Error!

Thus, in 2-space and 3-space, respectively,
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ds dx\?  (dy)
at (a) +(a¥j (15a)

VG e

REMARKS:

Formulas (15a) and (15b) reveal two facts worth noting. First, % does not depend on to;

that is, the value of % is independent of where the reference point for the parameter s is

located. This is to be expected since changing the position of the reference point shifts
each value of s by a constant (the arc length between the reference points), and this
constant drops out when we differentiate. The second fact to be noted from (15a) and

(15b) is that % > 0 for all t. This is also to be expected since s increases with t by the
remark preceding Theorem 15.3.2. If the curve C is smooth, then it follows from (15a)
and (15b) that % >0forallt.

EXAMPLE
X=2t+1, y=3t-2 (16)
using arc length s as a parameter, where the reference point for s is the point (1, — 2).
In formula (13a) we used u as the variable of integration because t was needed as a limit
of integration. To apply (13a), we first rewrite the given parametric equations with u in
place of t; this gives
from which we obtain
x=2u+l1l, y=3u-2
dx _ dy _
du ~ 2, du ~ 3
we see that the reference point (1,—2) correspondstot=1to =0

t t
dxy | (dy\’ u=t
s:_[o (ﬁ) +(a)l9 du=.[0\/§du:\/ 13u ]U:O=\/1_3t

Theref t=
erefore, \@ S
Substituting this expression in the given parametric equations yields.

x-Z(is) +1—Ls+l
~ W13 ~4/13

1 3
y:3(—s,—13j -2 :—,—133—2
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EXAMPLE: Find parametric equations for the circle x =acost,y =asint (0 <t<2n)
using arc length s as a parameter, with the reference point for s being (a, 0), where a > 0.
Solution: We first replace t by u in the given equations so that x =acosu,y=asinu

ax _ dy _
And du——asmu, du = acosu

Since the reference point (a, 0) corresponds to t = 0, we obtain
t t t

i i u=t
s:_[0 G—ﬁ) +(%)l9 du :_[0\/(—asin u)® + (a cos u)® du :'[)adu:au]u:o = at

Solving for t in terms of s yields t _3
a

Substituting this in the given parametric equations and using the fact that s = at ranges
from 0 to 2ra as t ranges from 0 to 2%, we obtain

X=acos (i), y=a sin (%) (0<s<2ma)

EXAMPLE
Find Arc length of the curve r (t) = 3 + tj + %~/6 2k, 1 <t<3
Here x = 2,y = t, z-l/z\/ESt2

dx 2_)1
ot St Gt T ’dt =6t

Arc length I\/ ) dt-I AJOt* + 1 + 6t2 dt—_[ AJBE+1)? dt

= |t3+t|1: (3)3+3—(1)3—1:27+3—1—1:28

EXAMPLE: Calculate dr by chain Rule, where r = e'i + 4e'lj and t = u?

du
Solution:
g: = e'i — 4ej
dt
a - =2u

G = e s 2o

By expressing r in terms of u
r= e + 4e*’j

d i
dE = 2u e — 8ue'“21
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LECTURE No. 30

EXACT DIFFERENTIAL

0z 0z
Ifz=1(x,y), thendz = x dX+ay dy

The result can be extended to functions of more than two independent variables.
oz oz oz
If z=1(x,y, w), dz= ox dX+6ydy+6w dw

Make a note of these results in differential form as shown.

Exercise

Determine the differential dz for each of the following functions.
7=x2 + yz

z=x3sin 2y

z=(2x-1)e¥

Z=x%+2y? + 3w?

z=x%?w.

SARE A

Finish all five and then check the result.

dz =2 (x dx +y dy)

dz = x2 (3 sin 2y dx + 2x cos 2y dy)
dz = e¥ {2dx + (6x — 3) dy}

dz = 2 (xdx + 2ydy + 3wdw)

dz = x?y (3ywdx + 2xwdy + xydw)

arOdE

Exact Differential

We have just established that if z = f(x, y)
gz d
oy y

0z
dz = ox dx +

We now work in reverse.
Any expression dz = Pdx + Qdy, where P and Q are functions of x and vy, is an exact
differential if it can be integrated to determine z.

az _a
. P_ax andQ—8y
P 0% Q &% 0’z &z
Now oy ~oyox and X oxdy and we know that 2yox  oxdy
Therefore, for dz to be an exact differential (2—5 = 88—(3 and this is the test we apply.
EXAMPLE

dz = (3x2 + 4y?) dx + 8xy dy.
If we compare the right-hand side with Pdx + Qdy, then

oP
— 2 2 . I -
P = 3x°+4y~- .. 8y_8y
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0Q
Q =8xy P 8y
oP 00 _ ) . .
oy~ ox .. dz is an exact differential

Similarly, we can test this one.

EXAMPLE

dz = (1 + 8xy) dx + 5x2 dy.
From this we find dz is not an exact differential
for dz = (1 + 8xy) dx + 5x? dy

wP=1+8xy .. 2—5 = 8X

Q=5x> .. Q—lox

P Q . dz is not an exact differential
oy 7 ox

EXERCISE

Determine whether each of the following is an exact differential.
dz = 4x3y3dx + 3x%y? dy
dz = (4x3y+2xy?) dx+(x*+3x2y?) dy
dz=(15y?e>+2xy?)dx+(10ye>+x%y)dy
dz=(3x%e¥-2y?e>)dx+(2x%e¥—2ye>)dy
dz=(4y3cosdx+3x2cos2y)dx+(3y?sindx—2x3sin 2y) dy.

Yes 2. Yes 3.No 4.No 5. Yes

e o

We have just tested whether certain expressions are, in fact, exact differentials—and we
said previously that, by definition, an exact differential can be integrated. But how
exactly do we go about it? The following examples will show.

Integration Of Exact Differentials

dz = Pdx+Qdy where P Cz and Q= 8

= J. Pdx andalso z= .[ Qdy

Example
dz = (2xy + 6x) dx + (x? + 2y3) dy.
= g— =2xXy +6x .. z:_[ (2xy+6x)dx

.z =x% + 3x% + f (y) where f(y) is an arbitrary function of y only, and is akin to the
constant of integration in a normal integral.
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Also Q=7 = x2+2y3 -z= _[ (x2+2y°) dy

4
L Z=XY+ );— + F(x) where F(x) is an arbitrary function of x only.

0z
y

z = X%y + 3x% + f(y) 0)
4

and 2= 3ty + 5 +F(x) (i

For these two expressions to represent the same function, then
4

f(y) in (i) must be);— already in (i)

and F(x) in (i) must be 3x? already in (i)
4

z=x2y+3x2+};—

EXAMPLE
Integrate dz = (8™ + 2xy?) dx + (4 cos 4y + 2x%y) dy.

dz = (8e™ + 2xy?) dx+(4 cosdy+2x2y) dy

p= 2 —getrs 2xy?
X

LZ= I (8e™ + 2xy?) dx
L z= 2"+ xy? +f(y) (i)
_0z _ 2
Q—é,y =4 cos 4y + 2xy
L Z= I (4cos 4y + 2x%y) dy
. Z=sin 4y + x?y? + F(X) (i)

For (i) and (ii) to agree, f (y) = sin 4y and F(x) = 2e*
. z=2e+ x%y? + sin 4y v

Area enclosed by the closed curve

One of the earliest applications of integration is finding J
the area of a plane figure bounded by the x-axis, the curve

¥ = fx) B
‘:I
A 1

y = (x) and ordinates at x=x1 and x=xa.
X2

Alz_[( Xlzydx:_[( X f(x)dx

If points A and B are joined by another curve, y = F(x)
X2

Az = ,[( . f(x)dx
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v Y
y=flx) B
1
|
s |
| | y=Flx) l!
| l :
0 Xy X X 0 A e A
Combining the two figures, we have
X2 X2
A=A1-Az A:_[( F(x)dx—_[( f(x)dx
1 1
The final result above can be written in the form

A :—cﬁ y dx

Where the symbol Cﬁ indicates that the integral is to be evaluated round the
closed boundary in the positive

Y

EXAMPLE

Determine the area enclosed by the graph of y = x® and

y =4x for x> 0.

First we need to know the points of intersection. These are
x=0andx =2

We integrate in a an anticlockwise manner

cy=x3 limitsx=0tox=2

C2:y =4x, limitsx=2tox=0.

A= —(_f’ y dx = A = 4 square units
For A= —(_f’ ydx = —Error! =—Error!'=4
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EXAMPLE
Find the area of the triangle with vertices (0, 0), (5, 3) and (2, 6).
; f B(2. 6)
3 A
(5, 3)
G 2 s x

. : 3 . .
The equation of OA isy=¢ X,BAis y=8-x,OBisy=3x

Then A=— C_ﬁ y dx
Write down the component integrals with appropriate limits.

A:_95 ydx=— Error!

The limits chosen must progress the integration round the boundary of the figure in an
anticlockwise manner. Finishing off the integration, we have

A = 12 square units

The actual integration is easy enough. The work we have just done leads us on to
consider line integrals, so let us make a fresh start in the next frame.

Line Integrals

If a field exists in the xy-plane, producing a force F on a particle at K, then F can be
resolved into two components.Fi1 along the tangent to the curve AB at K. F2 along the
normal to the curve AB at K.

Line Integrals

The work done in moving the particle through a small distance &s from K to L along the
curve is then approximately F1 6s. So the total work done in moving a particle along the
curve from A to B is given by

IgLrpZFtSS:IFtdsfromAtoB

This is normally written I Ftds where A and B are the end points of the curve,
AB
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or as_[ Ft ds where the curve ¢ connecting A and B is defined.
C

Such an integral thus formed, is called a line integral since integration is carried out along
the path of the particular curve c joining A and B.

" IZ_[ Fth:thdS
AB C

where c is the curve y = f(x) between A(x1, y2) and B (xz, y2).
There is in fact an alternative form of the integral which is often useful, so let us also
consider that.

Alternative form of a line integral

It is often more convenient to integrate with respect to x or y than to take arc length as the
variable.

If Ft has a component

P in the x-direction

Q in the y-direction

then the work done from K to L can be stated as Pdx + Qdy

" jAB Fids = J.AB (P dx + Qdy)
where P and Q are functions of x and y.
In general then, the line integral can be expressed as

I:_C[Ftds:j(de+Qdy)
C
where c is the prescribed curve and F, or P and Q, are functions of x and y.

Make a note of these results —then we will apply them to one or two examples.
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LECTURE No.31
LINE INTEGRAL

The work done in moving the particle through a
small distance &s from K to L along the curve
is then approximately F1 8s. So the total work
done in moving a particle along the curve from
A to B is given by

%LTEIZFt8S:_[Ftder0mAtOB

This is normally written J Ft ds where A and B are the end points of the curve, or asj Ft
AB C

ds where the curve ¢ connecting A and B is defined.Such an integral thus formed, is
called a line integral since integration is carried out along the path of the particular curve
c joining A and B.
= _[ Fth:IFtdS

AB C
where c is the curve y = f(x) between A(x1, y1) and B (X2, y2).
There is in fact an alternative form of the integral which is often useful, so let us also
consider that.

Alternative form of a line integral

It is often more convenient to integrate with respect to x or y than to take arc length as the
variable.

If Ft has a component ,P in the x-direction ,Q in the y-direction

then the work done from K to L can be stated as Pox + Qdy

Example 1:
Evaluate,[ (x + 3y) dx from A (0, 1) to B (2, 5)
C

along the curve y = 1 + x2,
Solution: The line integral is of the form

b[ (P dx + Qdy) where, in this case, Q =0and c

isthe curve y=1+x2

It can be converted at once into an ordinary
integral by substituting for y and applying

the appropriate limits of x.
2

| = l (Pdx+Qdy) = l (x+3y)dx = j (x+3+3x2)dx

0

X2 ’
=[?+3x+x3} =16
0

159

© Copyright Virtual University of Pakistan



31-Line integral VU

Example 2
Evaluate | = j (X% +y) dx + (x — y?)dy from A (0, 2) to B (3, 5) along the curve y =2 + X.
C

Solution: | = I (Pdx + Qdy)
Cc

P=x?+y=x>+2+Xx=xX2+X+2
Q = X—y? = X—(4+4x+x?) = — (X>+3x+4)
Alsoy =2 +x

. dy = dx and the limits are x=0 to x=3

|
|
|
|
|
i

0 1 2 3
3 3 2 3
| = j {(x*+x+2) dx — (x2+3x+4) dx} = j —(2x+2) dx = ‘—x _2%x| =-9-6=-15
0 0 0
Example 3

Evaluate | = ,([ {(x?+2y)dx + xydy} from O(0, 0) to B(1, 4) along the curve y=4x2.

Solution: In this case, ¢ is the curve y = 4x2.

o dy =8xdx
Substitute for y in the integral and apply the limits.
| = _([ {(x?+2y) dx+xydy}

also x? + 2y = x% + 8x? = 9x%;  xy =4x3

1= (9x dx + x(4x)(8xd —flgzd+324d =4 _g4
. —.([(x x+x(x)(xx))—0{x X+32X x}—?— .
They are all done in very much the same way.

Example 4
Evaluate | = _([ {(x* + 2y) dx + xydy} from O(0, 0) to A (1, 0) along the line

y = 0 and then from A (1, 0) to B (1, 4) along the line x = 1. y
4-—————"8
Solution: (i) OA:ciistheliney=0 .. dy=0.
Substituting y = 0 and dy = 0 in the given integral gives. ) " 2
1 1 . :
X3 1 0 =i 1 X
— 2 || ==
|OA—J; X dx—[3}0—3
(i) AB: Hereczisthelinex=1 .. dx=0
. laB=8
4 4 P
For las = J; {(1 +2y) (0) +ydy} = J; ydy = Pﬂ =8
0
1 1 1
Then | = loa+las =3 +8 = 8§ IZ%: 8§
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If we now look back to Example 3 and 4 just completed, we find that we have evaluated
the same integral between the same two end points, but along different paths of
integration. If we combine the two diagrams, we have
where c is the curve y = 4x? and c1 + ¢z are the lines
y = 0and x = 1. The result obtained were

2 1
le= 9§ and ley+cp = 8§
Remark: The integration along two distinct
paths joining the same two end points does not
necessarily give the same results.

Properties of line integrals
1. ~C[Fds:l{de+Qdy}

2. _[ Fds=- I Fds and _[ {P dx+Q dy} = _[ {P dx+Q dy}
AB BA AB BA

i.e. the sign of a line integral is reversed when the direction of the integration along the
path is reversed.
3. (a) For a path of integration parallel to the y-axis, i.e. x =k, dx =0

.'.Jde:O Ic:_[Qdy.
C Cc
(b) For a path of integration parallel to the x-axis, i.e. y =k, dy =0.

I Q dy=0 .- |c:I P dx.
C C

4. If the path of integration c joining A to B is divided into two parts AK and KB, then

lc = laB = lak + Iks. ; oy 2 v2)

5 .If the path of integration c is not single

valued for part of its extent, the path is
divided into two sections.

y = fi(x) from A to K, y = f2 (x) from K to B. i 7l

n X

(x3,¥3)

|
|
|
|

6. In all cases, the actual path of integration involved must be continuous and single-
valued.
Example 5

Evaluate | = j (x +y) dx from A(0, 1) to B (0, — 1) along the semi-circle x>+y?=1
C

for x > 0.
Solution: The first thing we notice is that 1

the path of integration c is not single-valued ‘\
For any value of X,y =+ \/ 1 — x2. Therefore, o/ .

we divided c into two parts
(i) y =4/ 1 - x2from A to K ( x=0 to x=1) -
(i) y=-+/1-x2fromKtoB (x=1to x=0)
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As usual, | :_([ (Pdx + Qdy) and in this particular case, Q =0

1 0
: I:lde:,L (x+\/1—x2)dx+J; (x —\/1-x2) dx
1 1
:,[J(x+\/1—x2—x+mdx = 2,[) 1= %2 dx

Now by trigonometric substitution, put x =sin 6
dx=cos0de andy1-x? =y/1-sin? 6 =+/cos? 6 =cosH

n

Limits:x=0, 6=0; x=1, 9:2

1
I:Z,[) \/ 1 - x2dx
sin ZGT/Z _

/2 /2 /2
= 2_[ . cos0 cosO do = ZI . c0s%0d0 = I . (1+c0s20)d06= [9 +—

Now let us extend this line of development a stage further.

nNa

0

Example 6
Evaluate the line integral

I = 4) (x?dx — 2xy dy) where ¢ comprises the three sides of the triangle joining O(0, 0), A (1, 0)
and B (0, 1).

Solution:First draw the diagram and mark in ¢y, ¢, and cs,

the proposed directions of integration. Do just that. The three se
of the path of integration must be arranged in an

Y

18

anticlockwise manner round the figure. &
Now we deal with each pat separately. .
@ OA:ciistheliney=0 : - s

Therefore, dy =0.

Then | = 98 (x°dx — 2xy dy) for this part becomes
1

3T 1
— 2 |2 | —=
I1—J; xdx-[g]o—3

(b) AB:forczistheliney=1-x

sody = —dx.
0 0 0 ) X3 ’ 2
Iz:j {xzdx+2x(1—x)dx}:.|‘ (x2+2x—2x2)dx:I (2x—x?) dx= [x" = — =-3
1 1 1 3 .
o2
2773
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Note that anticlockwise progression is obtained by arranging the limits in the appropriate
order. Now we have to determine I3 for BO.
(©) BO: csisthelinex=0

sodx=0 |3:I0dy=0 . 13=0
Finally,l=|1+|2+|3=% _% +O:_% I=_%
Example 7

EmwmeédeWMncEmedeX4f=4.
c

Solution: X2+y2=4 - y=+[4-x o
y is thus not single-valued. Therefore use /— <

y =+/4 — x* for ALB between : o\
x=2and x=-2and X -2 o 2 x
y =—+/4-x? for BMA between \ﬁ/
X=-2andx=2. ¥

-2 2
. |:J.2 N dx+J‘2 {/4 - x?}dx
2 2
:—2'[2«/4—x2dx :—4J;\/4—x2dx.

2
1=—4] \J4-x" dx
0

Put x =2sind = 3—2=2COS(9 = dx=2co0s@ d&
When x=0, 0= 2sin@ = 0=sind =6=0

When x=2, 2=2sind = 1=sind :9:%

a

I=—4j \JA—-4sin’0 2cosé dé =—16i \ cos’8 cosé do
0 0

4 /4

2 2
= -16] cos§ cosd do =16 cos’d do= -8 L1+ Cos26
0 0

2

do

O o [N

a

' —8((%—0} +%(0—o )j

0

sin 26

=-8| (1+Cos20) do=—8|g +

O N [N

2
=—4r
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LECTURE No. 32

EXAMPLES

Example 1: Evaluate | = (j.) {xydx+(1+y?)dy} where c is the boundary of the rectangle

joining A(1,0), B (3, 0), C(3, 2), D (1, 2).
Solution: First draw the diagram and insert c1,C2,C3,Ca.
That give 2 -

Now evaluate |1 for AB; |2 for BC; I3 for CD; !
I4 for DA; and finally 1.

1= peyax+ L+ ) dy} i
@ AB:ciisy=0 .. dy=0 S =0
(b) BC:crisx=3 .. dx=0
2
32
2 2
MPE _[) (1+yA)dy = [y + %]O =43 k=47
(©) CD:c3isy=2 sody=0
1
1
.'.I3:_L 2xdx:[x2]3:—8 s l3=-8
(d) DA:csisx=1 sodx=0

0
310
2
I4:j (1+y?) dy:[y + )ﬂ =43
2 2

Finally I =11+ 2+ I3+ 14 = 0+4%—8—4%:—8 ~1=-8

Remember that, unless we are directed otherwise, we always proceed round the closed

boundary in an anticlockwise manner.

Line integral with respect to arc length
We have already established that

I = _[ Fids = I {Pdx+Qdy}
AB AB

where Ft denoted the tangential force along the curve c at the sample point K(x,y).
The same kind of integral can, of course, relate to any function f(x,y) which is a function

of the position of a point on the stated curve, so that
I = ,C[f(x, y) ds.
This can readily be converted into an integral in terms of x:
I = _[f(x,y)dx = _[f(x,y) g—i dx
C C
where % =1\/1+ (%)2
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_lf(x,y) dx:,[ 2f(x,y) 1+(%¥)2 dX-m-mmmmmmmmm e (1)

X1
Example 2
Evaluate | = I(4x+3xy)ds where c is the straight line joining O(0,0) to A (1,2).
C

Solution: c is the liney = 2x .. g))f =2 ; _____ \(1.2)
ds [, (7 |
Tdx T l+(dx) =\'5 '

x=1 1 il

= I " (4x+3xy)ds= J; (4x+3xy)(\/_5) dx. Buty=2x

X

1 1
for 1= J; (4x+6x2)(\[5) dx = 21/5 fo (2x+3x) dx =45 °

Parametric Equations
When x and y are expressed in parametric form, e.g. x =y (t), y = g(t), then

s BT O o [OT (@
dat = (dt) +(dt) wods= (dt) +(dt dt

1= Jfocy) as={ ) IR — @

ty

Example 3 : Evaluate | = (§4xyds where c is defined as the curve x =sin t,y = cos t
between t=0 and t:% .

: : dx
Solution: We have x =sint .. ot —cost,

y = cost .. %% =-sint

2 2
% = (?j_)'[() +(%)9 =+/cos?t+sin?t =1 oo ds=dt

g I:E[f(x,y)ds = _[tzf(x,y) @—@2{%%)2 dt

t

cos Zt}""1

/4 /4
:,[ 4sintcostdt = 2_[ sin2tdt:—2[
0 0 2

0
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Dependence of the line integral on the path of integration

We know that integration along two separate paths joining the same two end points does
not necessarily give identical results. With this in mind, let us investigate the following
problem.

Example 4 : Evaluate | = 4{3x2 y2dx + 2x3y dy} between O (0, 0) and A (2, 4)
C

(@) alongcii.e.y=x?

(b) alongcai.e.y=2x

(c) alongczi.e.x=0from (0,0)to (0,4) andy =4 from (0,4) to (2,4).
Solution:

(a).First we draw the figure and insert relevant information.

| = _[ {3x?y%dx + 2x%ydy}
C
The pathcrisy=x? .. dy=2xdx
2

2
o= J; {3x2x4dx+2x3x22xdx}= J; (3x° + 4x°) dx

o= [x7]Z:128 - 1h=128

(b) Here the path of integration is cz, i.e. y = 2X
So, in this case, for with ¢z, y =2x .. dy = 2dx

2
PR _[J (3x2 4x2 dx + 2x3 2x 2dx}

2
= _[) (12x* dx + 8 x* dx}

=I02 20 x* dx= 4[x5]z=128 - 12=128

(c) In the third case, the path cs is split _
x =0 from (0,0) to (0, 4), , =4 o
y =4 from (0, 4) to (2, 4) c3
Sketch the diagram and determine ls.
from (0,0) to (0,4) x=0 .. dx=0 .. I13.=0 2
from (0,4) to (2,4) y=4 .. dy=0 -l

2 ,
|3b=,[) 48x% dx = 128 0 1 2 X
. 13=0+128 =128

In the example we have just worked through, we took three different paths and in each
case, the line integral produced the same result. It appears, therefore, that in this case, the
value of the integral is independent of the path of integration taken.
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We have been dealing with | = I {3x%y%dx+2x%ydy}
C

On reflection, we see that the integrand 3x2 y? dx + 2x3 dy is of the form P dx+Q dy
which we have met before and that it is, in fact, an exact differential of the function

z = x3y?, for % = 3x? y2 and 2—; =2x3y

This always happens. If the integrand of the given integral is seen to be an exact
differential, then the value of the line integral is independent of the path taken and
depends only on the coordinates of the two end points.
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LECTURE No.33

EXAMPLES

Example 1: Evaluate | = j{3ydx + (3x+2y)dy} from A(1, 2) to B (3, 5).
C

Solution: No path is given, so the integrand is doubtless an exact differential of some
oP 0Q

function z = f (x,y). In fact 6_y =3= Y We have already dealt with the integration of
exact differentials, so there is no difficulty. Compare with | = I{P dx + Q dy}.
C
P= S—i =3y SoZ= I 3ydz=3xy+fly) - Q)

Q= g—; =3x+2y ..z= I(3X+2y) dy = 3xy + yHF(X) (i)
For (i) and (i) to agree f(y)=y?; F(x)=0
Hence z = 3xy +y?

= l {3ydx + (3x+2y)dy}= _[

(3,5) (35)
d@yry=[Byy] = @s+25) - (6+4) = 60

1,2

Example2: Evaluate | = I{(x2+yex)dx+(ex+y)dy} between A (0, 1) and B (1, 2).
C

Solution: As before, compare with J {Pdx+Q dy}.
C

3
=& =x*+ye* ..z :Xg + ye*+f (y)

OX
oz 2
Q= oy =e*+y SoZ=ye+ );— + F(x)

For these expressions to agree,

(1,2)
_ Y. _x _ [x_g N )ﬁ} _5

REMARKS: The main points are that, if (Pdx+Qdy) is an exact differential
@ I= I(de + Qdy) is independent of the path of integration
C

(b) 1= (§ (P dx + Q dy) is zero.
C

Ifl= _[{P dx + Q dy} and (Pdx + Qdy) is an exact differential,
C

Then e, =- I,

|c1 + |C2 =0
Hence, the integration taken round a closed curve is zero,
provided (Pdx+Q dy) is an exact differential.
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- If (P dx + Q dy) is an exact differential, Qf (Pdx+Qdy)=0

Exact differentials in three independent variables
A line integral in space naturally involves three independent variables, but the method is
very much like that for two independent variables.
dz =Pdx + Q dy + R dw is an exact differential of z = f(x, y, w)
0P _0Q P R R _&Q
oy OX'ow oOx'oy ow
If the test is successful, then

€)] J; (P dx + Q dy + R dw) is independent of the path of integration.

(b) C_f (P dx + Q dy + R dw) is zero.
C
Example 3: Verify that dz = ( 3x%yw + 6x) dx + (x*w — 8y) dy + (x® + 1) dw is an exact
differential and hence evaluate I dzfromA(1,2,4)toB (2,13).
C

Solution: First check that dz is an exact differential by finding the partial derivatives
above, when
P=3x’yw+6x; Q=x*w-8y;and R=x%+1

P 0 Qo P _0Q
oy~ XW S o = 3x°w oy T ox
ok _ o R _ o P _OR
aW—3xy,aX—3xy..aW—aX

R_.0Q_ . R _Q

oy '8W_X oy T ow
.. dz is an exact differential
. Oz oz _ o0z
Nowtoflndz.P—aX ’Q‘ay’R_aw
%=3xzyw+6x z=.[ (BxPyw+6x)dx = X yw+3x*+f(y)+F(w)
g_; =x*w-8x .. z= I (Cw-8y)dy = xyw—dy?+g(x)+F(w)
g—vzvzx3y+1 nzZ= _[ (Cy+L)dw = ylyw+w+f(y)+g(x)

For these three expressions for z to agree
fly)=-4y% Fw)=w;  g(x)=3x*
Z=x% W+ 3x% — 4y? + w

(2,1,3)
| = [x3yw + 3x2—4y2+w]
(1,2,4)
(2,1,3)
for 1= [xyw+axi-dyrew] = (24+12-4+3)-(8+3-16+4)=36
(1,2,4)

The extension to line integrals in space is thus quite straightforward.
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Finally, we have a theorem that can be very helpful on occasions and which links up with
the work we have been doing. It is important, so let us start a new section.

Green’s Thorem

Let P and Q be two function of x and y that are finite

and continuous inside and the boundary c of a region

R in the xy-plane.If the first partial derivatives are

continuous within the region and on the boundary,

then Green’s theorem states that. ¢

”@5 i} dxdy =— (g (P dx+ Q dy) X

That is, a double integral over the plane region R can be transformed into a line integral
over the boundary c of the region and the action is reversible.

Let us see how it works.

EXAMPLE 4

Evaluate | = C_&{(Zx — y)dx + (2y+x)dy} around the boundary c of the ellipse
C

X% + 9y? = 16.
Solution: The integral is of the form

:C_f{de+Qdy) whereP=2x-vy .. %

J ,[ @5 i}dxdy:—i _[ (-1-1)dx dy=2 _F[ J dx dy = 2A

But de dy over any closed region give the area of the figure.
R

_ _ . 9Q _
=—landQ =2y +x .. X

In this case, then, I = 24 where A is the area of the ellipse (A = 7 ab)

2. 0v2 — _L
X“+9y 16|e16 16 - 1
4 16n 32n
. a_4,b—3 ..A—ﬁab 3 .. I—2A— 3

To demonstrate the advantage of Green’s theorem, let us work through the next example
(a) by the previous method, and (b) by applying Green’s theorem.

Example 5: Evaluate | = C}{(2x+y) dx+(3x-2y) dy} taken in anticlockwise manner
C
round the triangle with vertices at O (0,0) A (1, 0) B (1, 2).
Solution: | = 4 {(2x +y) dx + (3x — 2y) dy}
o

2l— ————— B

C3
2

A
0 cy 1 X
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(@) By the previous method
There are clearly three stages with ci,c2,cs. Work through the complete evaluation to
determine the value of I. It will be good revision. When you have finished, check the
result with the solution in the next frame. | = 2
@ ()crisy=0 sody=0
1
1
g I1:_[2xdx: [xz] =1 . Ii=1
0 0
(i) c2isx=1 .. dx=0
2 0
. |2=J; (3-2y) dy:[3y—y2]1:2 =2
(iii) czisy=2x .. dy=2dx
0

" I3=_[ {4x dx + (3x — 4x) 2 dx}

_[Zxdx [x =-1 . Iz3=-1

I = I1+I2+I3 = 1+2+(— =2 .. 1=2
Now we will do the same problem by applying Green’s theorem, so more
(b) By Green’s theorem

1= {@x+y) dx+ (3x - 2y) dy}
C

P=2x+y .. a—y=1;
_ . QL
Q=3x-2y.. ox -

I J (OP aQ)
oy oXx
- ,”(1—3) dx dy=2 ,”dx dy = 2A
R R
= 2 x the area of the triangle = 2 x (%xlx Zj =2
Sol=2
Remark: Application of Green’s theorem is not always the quickest method. It is useful,

however, to have both methods available.
If you have not already done so, make a note of Green’s theorem.

”@5 ij dx dy:—(é (P dx + Qdy)

Note: Green’s theorem can, in fact, be applied to a region that is not simply connected
by arranging a link between outer and inner boundaries, provided the path of integration
is such that the region is kept on the left-hand side.
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LECTURE No.34

EXAMPLES

Example 1: Evaluate the line integral | = Cj{xy dx + (2x —y) dy} round the region
C

bounded by the curves y = x? and x = y2 by Green’s theorem
Solution: Points of intersection are O(0, 0) and A(Z, 1).

I = (f{xydx+(2x—y)dy}
C

= Céf {Pdx+ Qdy}= —_FU(% - %} dx dy
~oP 0Q

P =xy a_y =X; Q=2x-y .'.&:2
1 y=Vx
I:—II(X—Z)dxdy:—JI , (x—2) dy dx . AL 1)
R1 N 0 y=x il ‘5
X 0 * " x

1 1
= —_[)(X—Z) (\x —x?) dx = —_[) (x¥2 — x3 — 2x12 + 2x?) dx

— g 5/214 43/223}1 _ﬂ
“[5X T 760

. . P
In this special case when P=y and Q=—-Xx so % =1 and (Z% =-1

Green’s theorem then states ,[ _[ {1-(-1)}dxdy :—4 (P dx+Q dy)
R C

i.e. ngxdy:—céf(ydx—xdy) :Céf (x dy —y dx)

Therefore, the area of the closed region A = ”dx dy = % Cf (x dy —y dx)
R Cc

Example 2: Determine the area of the figure enclosed by y = 3x? and y = 6x.
Solution: Points of intersection: 3x2=6x .. x=0 or 2

1
AreaA:E (i (x dy —y dx)

Al2,12)

We evaluate the integral in two parts, i.e.
OAalongc: and AO along c2
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oz [ (xdy=ydx) J (xdy-ydx) _ -
2

1 (along OA) (along OA)
li:crisy=3x2 .. dy=6xdx
2 2

l1 :_[)(6x2dx—3x2dx):J; 3x2dx:[x3]z:8:. 1=8

Similarly, forc2isy =6x .. dy =6dx
0

l2 = _[2(6xdx—6xdx):0

2=0
I=lh+12=8+0=8
. A =4 square units

Example 3: Determine the area bounded by the curves y = 2x3, y = x* + 1 and the axis
x =0 for x > 0. g Al 2)
Solution: Hereitisy=2x3% y=x3+1; x=0 :
Point of intersection 2x3=x3+1 .. x*=1 .. x=1

AreaA:%(f(xdy—ydx) 2A:C§ (x dy —y dx)
C C
(@) OA:crisy=2x3 .. dy=6x%dx
1 1
1
I1=J (xdy —ydx):_[) (6x3dx-2x3dx) = _[) 4x3 dx = [ x4 ] =
1 0

.h=1
(b) AB: Czlsy x}+1 ..dy= 3x2dx

I{3x3dx (3 +1)dx} = I(2x3 1) dx _[ﬁ_x}oz_(%_ ):%

i

€3

.
.12 = 2
(©) BO csisx=0 .. dx=0
I3 I (xdy ydx)=0 .. 13=0
1 1 3 .

C2A= =i+ 2+ I3:l+§ +0:1§ L A=Y square units
Revision Summary
Properties of line integrals

¢ Sign of line integral is reversed when the direction of integration along the path
IS reversed.

e Path of integration parallel to y-axis, dx =0 .. Ic = ,C[Q dy.
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e Path of integration parallel to x-axis, dy =0 .. Ic= J: P dx.
e Path of integration must be continuous and single-valued.

e Dependence of line integral on path of integration.

e In general, the value of the line integral depends on the particular path of

integration.

e Exact differential
If P dx + Q dy is an exact differential, then

P _dQ

@ 5y T ax

(b) I = _[ (P dx + Q dy) is independent of the path of integration

() I= Cf (P dx + Q dy) is zero.
Cc

e Exact differential in three variables.
IfPdx+Qdy+Rdwisan exact differential
oP Q o _oR IR _0Q
@5y " ow T ox' oy ow

(b) J: (P dx + Q dy + R dw) is independent of the path of integration.

() (EF (P dx + Qdy + R dw) is zero.
C

e Green’s theorem

4 (P dx+Q dy)=— ”{ap 8Q}dx dy and, for a simple closed curve,
C

oy OX
%‘ (Xdy—de)=2_Fdedy:2A

where A is the area of the enclosed figure.

Gradient of a scalar function

Del operator is given by V = (| a@ + J%Jr kﬁ)

Vo=grad ¢ = (|Q+ji+k—)¢ -|J‘2 l; kj‘2

grad ¢ = V¢ = J‘Z 4:‘; ?‘Zak

Div (Divergence of a vector function)

If A =aii +azj +ask, then

. 0 .0 0 . .
divA=V.A= ( J8_y+ ka—j (a1| +az) + a3k)

_da o O
~divA=V.A= ox ay az
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Note that
(@) the grad operator V acts on a scalar and gives a vector
(b) the div operator V acts on a vector and gives a scalar.

Example 4: If A = x%yi — xyzj + yz°k, then find Div A.
Solution:

DivA=V.A :i(xzy) —i(xyz) +2(yz4) = 2Xy — XZ + 2yz
OX oy 0z

Example 5: If A = 2x%yi — 2(xy?+ y32)j+3y?z%k, determine V.A i.e. div A.
Solution: A= 2x%yi — 2(xy? + y3z)j + 3y?z°k
_ @ aay aaz
V.A= X +— ay pe
Such a vector A for which V.A = 0 at all points, i.e. for all values of x, y, z, is called a
solenoid vector. It is rather a special case.

= 4xy — 2(2xy+3y?z) + 6y?z = 4xy — 4xy — 6y?z+6y?z =0

Curl (Curl of a Vector Function)
The curl operator denoted by V x A, acts on a vector and gives another vector as a result.
If A= aii + azj + ask then curl A=VxA.

- _vopa (i@, 0, O ( R )
I.e. curl A=VxA= (I ox + jay+ kazjx ail + azj + ask

i j k
_ |2 0 0
OX oy 0z

ai a2 as
_.(%as dai 0as odaz  odai
- VXAS ( j (82 axj k(ax B 8y)
Curl A is thus a vector functlon.

Example 6: If A=(y*—x?z?)i+(x?+y?)j—x?yzk, determine curl A at the point (1,3, -2).

i j k
wton: culAcvias | & 22
Solution: Curl A=V xA= | 5 oy 0z

yA-x?z* X*+y?  —x%yz
Now we expand the determinant

VA= iy - S () -1 S ) - S )
K|S oery) - £ )

VxA= i{—x2}-j{-2xyz+2x°2}+k(2x-4y*}. .. At (1, 3, - 2),
VxA=i(2)—j(12-4)+k (2-108) =2i-8j-106k

Example 7:
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Determine curl F at the point (2,0,3) given that F =z e®Yi + 2 X z cos yj+(x+2y)k.
Solution: In determinant form, curl F=V x F

i j k
vuEo e 22
= ox oy 0z

7e®Y  2xzcosy X+2y

Now expand the determinant and substitute the values for x, y and z, finally obtaining
curl

V x F=i{2 — 2x cos y}- j{1 — e2Y}+ k ({2z cos y — 2xze?V}

~AL2,0,3) VxF=i(24)(1-1) +k(6-12) =-2i-6k =-2 (i + 3k)

Summary of grad, div and curl

(@) Grad operator acts on a scalar field to give a vector field.
(b) Div operator acts o a vector field to give a scalar field.
(c) Curl operator acts on a vector field to give a vector field.
(d) With a scalar function ¢ (X,y,z)

Grad g =V = ?‘2 JZ J‘zk

6y 0z
(e) Withavector function A= axi +ayj +azk
8ax @x 0az
(i))divA=V.A= ox 6y+6z
i ] k
. _ _ |2 <o 4
(i) Curl A=V xA= ox oy 0
ax dy dz

Multiple Operations
We can combine the operators grad, div and curl in multiple operations, as in the
examples that follow.

EXAMPLE 8: If A = x%yi + yz%j — zx3k, then find grad div A.
Solution: divA=V.A= (I @i + j%+ k—) (x2yi + yz%j — 2x3K)
=2xy +28--x3=¢ (say)
Now grad (div A) = V(V.A) = JA vk 53] + J‘1k (2y -- 3x3)i+(2x)j+(3z2%)k
i.e., grad (div A) = V(V. A)= (2y--3x?)i + 2xj + 322k
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Example 9: If ¢ = xyz — 2y?z + x?z2 determine div grad ¢ at the point (2, 4, 1).

Solution: First find grad ¢ and then the div of the result.
divgrad ¢ = V.(Vd)
We have ¢ = Xyz — 2y?z + x?z?
grad ¢ = V¢ = ﬁ | + al;; j+ aﬁ K =(yz+2x2%)i + (xz-4yz)j + (xy—2y*+2x°z) k

- div grad ¢=V.(V¢) = 22 — 47+2%?

oAt (24,1), divgrado=V.(Vp)=2-4+8=6

REMARK: Let gradd)—J‘2 % ﬁk

2 2
Then div grad ¢ = V.(V¢) = (.@+,—+k—)(ﬁ 5;/‘2 aﬁ) £+%+%
~divgrad ¢ = V.(V§) = a—)?a—fa—;z

Example 10: If F = x%yzi + xyz?j + y?zk determine curl F at the point (2, 1, 1).
Determine an expression for curl F in the usual way, which will be a vector, and then the
curl of the result. Finally substitute values.
Solution: Curl curl F=Vx(VxF) =i+2j+6k
i j k
_| 2 Xl o _ 2 (g2 52
curl F= ox oy ozl = (2yz—2xyz)i+x°yj+(yz-—x-z)k

xXyz  xyz?  yz

i ] k
9 0 Xl ” .
Curl Curl F = ox oy oz | =2 i—(=2xz— 2y+2xy)j+(2xy—2z+2xz)k

2yz-2xyz X%y y7?—x’z
A2, 1, 1), curlcul F=Vx(V x F) =i + 2] + 6k

Two interesting general results
(@) Curl grad ¢ where ¢ is a scalar

grad ¢ = JZ % gk

i j k
9 o 9

scurlgradp= [ Ox oy oz
o b 0
OX oy 0z
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_i1 % ¢ {ﬁt ﬁt}+ k{ﬁt_ﬁt}
oyoz 826y 0Z0OX 0OX0zZ oXoy  0yox
=i0-j0+k0=0
socurlgrad o=V x (V) =0

(b) Div curl A where A is a vector.
A = axi + ayj + azk

i j k
oA |2 o ol (oa oa) .(0a o8 @51)
A=V A= 150 oy oz (ay az) J (8x - 82) K (8x ~ oy
ax ay dz
0 0
Then div curl A =V.(VxA) = | Ev ja_y+ k— (VxA)
0%az 823.y 0%az azax azay 0%ax -0

= oxdy ~ dzox ~ owdy oyoz "ok oyez

sdiveurlA=V.(VxA) =0

(c) Div grad ¢ where ¢ is a scalar.

0
os=hie gek
. 82 82
~.div grad ¢=V.(V¢) = a—)g 8—;38—;%

This result is sometimes denoted by V2¢.
So these general results are

(@) curl grad ¢ = Vx(Vo) =0
(b) divcurl A=V.(VxA)=0

2
(c) div grad ¢=V. (Vq))—g—)j‘Z 3‘2 6_;2
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LECTURE No. 35

DEFINITE INTEGRALS
Definite Integral for sin"x and cos"x, 0<x<mw/?2

E_ 1E 1 sin2 f 1 sin

@ jsmzxdx=—.f(1—c052x)dx=—‘x— nexe 2z sz«
) 21 2 2 |, 22 2| 4
3_2 1z
Ism Xdx = ——
) 22
2 1E 1 sin2 2 1 sin

2) J.coszxdx=—j(1+coszx)dx=—‘x+I al Il AL
) 21 2 2 |, 22 2| 4
2 ) 1z
J.cos xdx =——
) 22

O o | N

2 2 2 2
sin® xdx = J.sin2 X sin xdx =J'(1—cos2 x) sin xdx = J'sin xdx+J.cos2 X(—sin x)dx
0 0 0 0

T

s® x|2

=|cos x|0% +|%

1
= —COS£+COSO+—|:COS3Z—C053 0} =1-
2 3 2

w| -
w N

0

T V.4 V.4 V.4

O Lo |y

2 2 2 2
cos® xdx = jcosz X c0s Xdx = j (1—sin? x) cos xdx = jcos xdx —jsinz x(cos x)dx
0 0 0 0

T

.3X2

7 sin
=lsin x|z - 3

:sinz—sinO—l{sinSZ—sin3 O} =1—l =
2 37 2 3

T T

E 2 1_ 2 2 15
sin® xdx = J'(sin2 x)’dx = J{%} dx =Z'[(1_ZCOS 2X +c0s” 2x)dx
0 0 0

O v | N

1% 1+cos4 1% 3 cos4
=—.[(1—20052x+¥)dx=—I(——20052x+ X
4+ 2 4+ 2

1(3 ) sin4x|z 1[37[ i sinZH}
=—|—=X-sin2x+ =—|——-=sinz+
2 L 4|22 8
2 3 2
_[sm“ xdx = —[—1} ) jsm“ xdx =—==—
0 2 2 0
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T Va Va

2 2 2 1 ek 15
Icos4 xdx = _[ (cos® x)*dx = J{%} dx :ZI(1+ 2C0S 2X +c0s” 2x)dx
0 0 0 0

1+cos4x cos4x

(1+2cos 2x+T)dx =

P 3
j(—+2c032x+ )dx
Y 2

SN
O v | N

sin4x

, 4122

3 . 2 1137 . sin2z
= Ex+sm2x+ = +sin 7 +

1[3 2 31
cos’ xdx == —E} So .[cos“ xdx=>=2
4022 ) 422

O v | N

T

2
sin® xdx:ig and J.coss xdx:ig
53 ) 53
. 531 2 531
sin xdx=>>=2  and jcose xdx =222
6422 ) 6422

T

. 642 2 642
sin xdx=——= and _[0057 xdx =——=
753 ) 753

N

2
sin® xdx = 8642 and J'cos,9 xdx _8642
9753 ) 9753

NN Ot |y O [N O [N O v [N O |y

Wallis Sine Formula
Whenniseven Z~

- n-1n-3 n-5n-7
sin" xdx = ————————

| yO = |

n-1 n-3 n-5n-7 6

2
Whennisodd  [sin" xdx=——>.—— —— ~— > ad

) N n-2n-4n-6 75
10.8.6.4.2
11.9.7.5.3

10.8.6.4.2

2
J's,inll xdx = ettt
11.9.7.5.3

2
and j cos' xdx =
0

T

2
sin* xdx = 11975317 and j cos™ xdx =
10.8.6.4.2 2 )

11.9.7531x
10.8.6.4.2 2

Ot [N ©

53
n n-2n-4n-6 6 4
4 2
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Integration By Parts

j-Ude =U .[V dx—‘fDde.c;—L:} dx

Example: Evaluate j X Inx dx
'[ X Inx dx = Inx I Xdx — '[ [I X dx.di(ln x)] dx  (Using integrating by parts)
X

-1 i e (Dydxs (Xymxt (X
=Inx() [ ()= () Inx [ () x=(5) Inxe— (5)

Example: Evaluate j X sinx dx
j X sinx dx :xJ‘ sin xdx — j [J' sinx dx.di(x)] dx (We are integrating by parts)
X

= X(-C0sX)- J. (-cosx)(1)dx= -x(cosx ) + j cosx d x = -x(cosx)+sin X

Line Integrals

Let a point p on the curve c joining A and B be denoted
by the position vector r with respect to origin O. If q : —r A
is a neighboring point on the curve with position vector e

r+dr,then PQ =r

The curve ¢ can be divided up into many n such small T T
arcs, approximating to dri, dr2, drs,.......... drp,...... T

(8]

__.n
so that ABZ dr, where drpis a vector representing the element of the arc in both
p=1

magnitude and direction. If dr — 0, then the length of the curve AB:J'dr .

Scalar Field
If a scalar field V/(r) exists for all points on the curve ,

n 2| Y
the ZV(r)drp with dr — 0, defines the line integral ‘

p=1
of V i.e line integral = J'V(r)dr. >

We can illustrate this integral by erecting a continuous 2
Ordinate to V(r) at each point of the curve _[ V (r)dr is then represented by the area of the
C

curved surface between the ends A and B the curve c. To evaluate a line integral, the
integrand is expressed in terms of X, y, zwith dr=dxi+dyj+dzk

In practice, X, y and z are often expressed in terms of parametric equation of a fourth

variable (say u), i.e. x =x(u) ; y =y(u) ; z=z(u) . From these, dx, dy and dz can be
written in terms of u and the integral evaluate in terms of this parameter u.
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LECTURE No.36
SCALAR FIELD

Scalar Field
If a scalar field V/(r) exists for all points on the curve,

then ZV (r)dr, with dr — 0 defines the line integral

p=1

of V i.e. line integral = IV (r)dr.

We can illustrate this integral by erecting a continuous !
Ordinate to V(r) at each point of the curve j V (r)dr is then represented by the area of the
C

curved surface between the ends A and B the curve c. To evaluate a line integral, the
integrand is expressed in terms of X, y, z with dr =dxi +dyj+dzk

In practice, X, y and z are often expressed in terms of parametric equation of a fourth
variable (say u), i.e. x =x(u) ; y =y(u) ; z = z(u) . From these, dx, dy and dz can be
written in terms of u and the integral evaluate in terms of this parameter u.

Example: If V=xy?z, evaluate j V (r)dr along the curve c having parametric equations

x = 3u; y=2u? ;z=u® between A(0,0,0) and B(3,2,1)

Solution: V= xy?z = (3u)(4u*)(u®)=12u8

dr=dxi+ dy j+ dzk = dr=3du i +4udu j +3u?du k

forx=3u; .. dx=3du;y=2u? .. dy=4udu ;z=u® .. dz=3u%dz

Limiting: A(0,0,0) corresponds to B(3,2,1) corresponds to u
A(0,0,0) = u=0; B(3,21)= u=1

9 10 11

1 1
[V(rdr = [ 12u°(3 i +4u j +3u? k)du=(36-—i+ 48— j+36-—k _4i+ 245,35
: > 9 10 11, 5° 11

Example : If V = xy + y?z Evaluate J'V(r)dr along the curve c defined by x=1t%y =2t;

z= t+5 between A(0,0,5) and B(4,4,7) . As before, expressing V and dr in term of the
parameter t .
Solution:

since V=xy+y ’z
= (£)(20)+(4t°)(t+5)
= 6t° + 20t°,
x = t% dx =2tdt
y=2t dy=2dt
z=t+5 dz=dt
dr = dxi + dyj + dzk
=2tdti+2dtj+dtk
[ vdr = | (68%+20t%)( 2t i +2j+K) dt
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0;
2

Limits:A (0,0,5) =t
B (4é 4,7)

s Jvdr=[ (683+20t%)( 2ti +2 j +k) dt
C 0

2
I Vdr =2 I {6t*+20t%)i+(6t>+20t%)]
C 0
+(33+10t9)k}dt.
= % (444i + 290j + 145K)

Vector Field
If a vector field F(r) exists for all points of the curve c, then for each element of arc we
can form the scalar product F-dr . Summing these products for all elements of arc, we

have Zn: F.drp

p=1
The line integral of F(r) fr om Ato B B

along the stated curve = | F.dr.
C

In this case, since F.dr is a scalar
product, then the line integral is a scalar.
To evaluate the line integral, Fandd r
are expressed in terms of x,y,z, and the
curve in parametric form. We have

F=F1i+F2j+F3k
And dr =dxi+dyj+dz k
Then F.dr = (F1i+ F2j +F3 k).(dx i +dy j +dz k) :J'(Fldx + F,dy +F,dz)

Now for an example to show it in operation.
Example

IfF(r) =x?i+xzj+2yzk, Evaluate jF.dr between A(0,0,0) and B(4,2,1) along the
curve ¢ having parametric equations x=4t ; y =2t%, z = t3

Solution: Expressing everything in terms of the parameter t, we have
dx =4 dt; dy = 4tdt; dz = 3t? dt

x%y = (16t%)(2t?) =32 t*

X =4t soodx=4dt

xz = (4t)(t%) = 4 t*

y=2t2 o dy =4tdt

2yz=(4t?H)( t3 =413

z=1t3 o dz=3t2dt

F=32t%i+4t*j-4 ok

183
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dr=4dti +4tdtj+3t2k
Then ) F.dr = f (32t*i+4t%j-4tK).
(4dt i + 4t dt j + 3t? dt k)

= J (128t*+16t°+12t") dt
Limits: A(0,0,0) =t=0;

B(421)=t=1 128 . 16 ;5 12

8 3
— 4 5 Nt — 5 6 8 — 242
(I:F.dr—(128t +16° + 12t)dt ="~ P+ +g € =75 +3 +5 =2976

Example

If F(r) = »2yi + 2yzj + 32°%k
Evaluate | F.dr between A(0,0,0) and B(1,2,3) @

Cc
B(1,2,3)
(a) along the straight line
c¢1 from (0, 0, 0) to (1, 0, 0)
then ¢, from (1,0, 0)to (1, 2, 0)

and c3from(1,20)to(1,2,3). . .
(b) along the straight line ¢ 4 joining

(0,0,0)to (1, 2, 3).
We first obtain an expression for ~ F.dr
which is
F.dr = (Pyi + 2yzj + 32°xK).
(dx i+ dyj + dz k)
F.dr = x%y dx + 2yz dy + 3z°x dz

I F.dr = I xzydx + j 2yzdy+J 3z°xdz

Here the integration is made in three

sections, along c, ¢, and cs.

(i) c1: y=0,z=0, dy=0,dz=0

- | F.dr=0+0+0=0
C1

(if) c2: The conditions along c; are
C:x=1,z=0,dx=0,dz=0

] Fdr=0+0+0=0

C2
(iii) c3ix =1, y:32, dx=0, dy=0

1, 2,00

(1,0,00

| Fdr=0+0+] 3z%dz=27
Cy 0

S(,um;ning the three partial results
1,23

) Fdr=0+0+27=27

(0,0,0)
| F.dr =27
C1+C24C3 184
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If t taken as the parameter, the parametric equationof care x=t;y=2t;z=3t
(0,0,00=1t=0,(1,2,3)=t=1 andthe limitsoftare t=0andt=1

F = 2% + 122 + 2763k

dr = dxi+dyj +kdz =dti + 2dt j +3dt k

[ Fdr =[ @ffi+1205+276%).(i+2)+3K) dt = [ (2t*+24t+816)dt

1 4
=] (83 + 24t dt = [83 tz + 8t3} 15 g5
So the value of the line integral dep@nds on the path taken between the two end
points A and B

@) _[F.dr via ¢, ¢z and ¢3 = 27
(b) _[F.dr via ¢4 =28.75

Example
Evaluate IF dv where V is the region bounded by the planes x =0,y =0,z=0and

2x +y=2,and F =2z i+y k. To sketch the surface 2x + y + z = 2, note that

when z=0, 2x+y=2 i.e.y=2 — 2X
when y=0, 2x+z=2 i.e.z=2 —2X
when x=0, y+z=2 ie.z=2 -y
Inserting these in the planes
x=0,y=0,z=0will help.

The diagram is therefore.

So 2x +y + z = 2 cuts the axes at
A(1,0,0); B (0,2,0); C (0,0, 2).
Also F = 2zi + yk;
z2=2-2x-y=2(1-x)-y
1 2(1-x) 2(1-x)-y

JJRval] T (2xityKydzdydx

1 2(1-X) Z=2(1'X)'y

=] [22i+yzk] dydx
00 z=0
1 2(1%)

=[], {140 -4(1-x)y+yTi +[2(1-x)y-y’Ik}dydx

. Fav =2 (2i+K)
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Lecture No. 37
Higher order derivative and Leibniz theorem
Derivative of a function

The concept of Derivative is at the core of Calculus and modern mathematics. The
definition of the derivative can be approached in two different ways. One is geometrical
(as a slope of a curve) and the other one is physical (as a rate of change).

We know that if y=f(x) is a single valued function of a continuous variable, and if the
ratio %{f(x + h) — f(x)} tends to a definite limit as the value of h tends to zero through

positive or negative directions, then we say that the function has a derivative at the point
‘X’ . If the ratio has no limiting value then the function has no derivative at the point x.
Symbolically it is represented as

J'(x) =lim

Sx+h) - /()
h

If the derivative of a function y = f{ x) is itself a continuous function y' = f'( x), we can
take the derivative of /'( x), which is generally referred to as the second derivative of f(x)
and written /“(x) . Similarly, the third derivative is obtained by differentiating second
derivative as given below.

S = (")’

This can continue as long as the resulting derivative is itself differentiable, with the
fourth derivative, the fifth derivative, and so on.

Any derivative beyond the first derivative can be referred to as a higher order
derivative.

Interpretation:

A first derivative tells how fast a function is changing i.e., how fast it’s going up or down
which is graphically the slope of the curve. A second derivative tells how fast the first
derivative is changing or, in other words, how fast the slope is changing. A third
derivative informs about how fast the second derivative is changing, i.e., how fast the rate
of change of the slope is changing.

Notation

Let 7'(x)be a function of x. The following are notations for higher order derivatives.
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2"d derivative 3d derivative | 4™ derivative | nth derivative | remarks
f(x) f"(x) 79 (x) 7™ (x) Probably the
most common
notation
d*f df d*f d"f Leibniz
e P A A" notation.
d? d® d* d" Another form of
W[f(x)] E[f(x)] y[f(x)] N [f(x)] Leibrjiz
notation.
D*f Df D*f D"f Euler's notation.

Because the “prime” notation for derivatives would eventually become somewhat messy,
it is preferable to use the numerical notation ¢ (x) = " (x) to denote the nth derivative

of A(x).

Example:
f(x) =15x° =3x* + 20x -5

Its first derivative is given as
f'(x) = 45x* —6x+20
Now, this is again a continuous function and therefore can be differentiated. Its
derivative which will be the second derivative of given function will become
/() =(f"(x))'=90x -6
As, this is a continuous function so we can differentiate it again. This will be called the
third derivative which is

SM(x) =(f"(x))"' =90
Continuing, fourth derivative will be .

7 2)={r(@) =0

(We have changed the notation at this point. We can keep adding on primes, but that
will get cumbersome as we calculate the derivatives higher than third. )

This process can continue but notice that we will get zero for all derivatives after this
point.

This above example leads us to the following fact about the differentiation of
polynomials.

Note:
1) If p(x) is a polynomial of degree n (i.e. the largest exponent in the polynomial)
then,

»™(x)=0

© Copyright Virtual University of Pakistan
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2) We will need to be careful with the “non-prime” notation for derivatives.
Consider each of the following

fP0)=1(x)
2@ =T

The presence of parenthesis in the exponent denotes differentiation while the absence of
parenthesis denotes exponentiation.

Example:
If

f(x) =3x" —2x° + x* —4x + 2, then

f'(x)=12x° —6x* +2x -4
f"(x) =36x" —12x+2

£(x) = T2x —12
fO) =72

(=0

fP()=0  (n25)

In the above two examples, we have seen that all polynomial functions eventually go to
zero when you differentiate repeatedly. On the other hand, rational functions like

x? -8
x+5

f(x) =

get messier and messier as you take higher and higher derivatives.
Cyclical derivatives:

The higher derivatives of some functions may start repeating themselves. For example,
the derivatives of sine and cosine functions behave cyclically.

y=sinx
y'=C0Sx
y"=-sinx
y"=-CcoSx
y™ =sinx

The cycle repeats indefinitely with every multiple of four.
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Example: Find the third derivative of f(x) =4sinx— LB +5x with respect to x.
X+

Solution:
f(x) =4Sinx—i+5x
x+3
1
(x)=4cosx+——+5
/) (x +3)?

f"(x)=—4sinx— +0

2
(x+3)°

wex 6
f"(x)= 4003x+—(x+3)4

Some standard nth derivatives
1)

Let

y=(ax+b)" Then
y'=ma(ax+b)""

" =m(m—1)a®(ax +b)"?

If mispositive integer and n < m, we can write

(n) _ m' n m—n
= a'(ax+b
y () ( )

if m=n, then y" = nla",aconstant, so that y** and subsequent derivatives of y are zero.

Corollary 1:
1

ax+b
Therefore, y™ = (=1)(=2)(-3).....(~n)a" (ax +b) ™"
eI [ 1 }

- (ax +b)"™ S dx" | ax+b

fm=-1y=
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Corollary 2:

Let y =In(ax+b) so that
a 1

= =a.
ax+b ax+b
Taking its (n -1)¢h derivative, we have

n n—-1
y("):%[ln(aerb)]:d { a }

dx" | ax+b
4 D" (n-Dla"* _ ()" (n-1)'a"
(ax+b)" (ax+b)"
2)
y — ellX
y'=ae"™
— GZeax
y(n) — a(n)eax
3)
y =sin(ax+b)

y'=acos(ax+b) = asin(ax+b+%)

y'=da’ COS(ax+b+£) =a° sin(ax+b+£+£) =a° sin(ax+b+2.£)
2 2 2 2

y"=a’cos(ax+b+ 2%)

y"=a®sin(ax+b+ 2.%+%) =a° Sin(ax+b+3.%)

y(”) =a"sin(ax+b+ n%)
Similarly
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VU
——[cos(ax+b)]=a" cos(ax+b+ n.z)
dx" 2
Example:
If y=————, find y.
Y o4 3c+1 4
Solution:
. X _ X . X . X
T v av+l 22+ 2x+x+1 20+ D) +1(x+])  (2x+D)(x+1)
Applying partial fraction
x A4 B O
2x+D(x+1) (2x+1) (x+1
X _ A(x+1)+B(2x+1)
2x+1)(x+1) 2x+(x+1)
x=A(x+1)+B(2x+1)
putx+1=0=x=-1
~1=B(-2+1)
-1=-B
1=8
1
put2x+1:O:x:—E
louciin=24
2 2 2
-1=4
put valuesof Aand Bin (1)
X -1 N 1
x+D(x+1) (2x+1) (x+1)
by 1 B 1
2x+D(x+1) (x+1) (2x+1)
191

© Copyright Virtual University of Pakistan



37- Higher Order Derivatives VU

. d" 1 B 1
Y ax" | x+1 2x+1

_d" 1 _d” 1
ax" | x+1]| dx"| 2x+1

C(D'm! (D ar2
C(x+D)™ (2x+1)

:(—1)”11![ 1 - 2 1}
(x+D)"™  (2x+D)™

Leibniz theorem

In calculus, the general Leibniz rule, named after Gottfried Leibniz, generalizes the
product rule (which is also known as "Leibniz's rule.) It states that if « and v are n-times
differentiable functions, then the nth derivative of the product uv is given by

(wv)" = Z (Zj ut" ™y

k=0
Where [Z] is the binomial coefficient.

Proof:

The proof of this theorem will be given through mathematical induction.
We know that

wv)'=u'v+uv'

(uv) "=Dl[(uv)']
=D(u'v+uv
=Dw'v)+Duv'")
=u"v+u'v+u'v+uv"
=u"v+2u'v'+uv"

Which can be written as

= 2Cou "y + 2Clu "v'+ 2Czuv".
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Thus the theorem is true for n=1, 2. Suppose that the theorem is true for a particular value
of n, say n=r. then

YO =) =" Cou v+ " Cu v+ C_ v+ C uv?
Differentiating both sides of the above equation, we have

y(r+l) — (uv)(r+l) — rCO [u(r+1)v+ u(r)vl] + rCl[u(r)vl+u(r—1)v||] +o+ r r_l[u uv(r—l) +u |v(r)] + rcr[u |v(r) +uv(r+1)]
="Cou v +u"WC, + "Cl+u" W[ Cy+ "Cl+ e+ uVO[C + TC 1+ TC
n n _ n+l
But"C +"C.,=""C,, forall n,so that
y(r+l) — r+lCO u(r+l)v+ r+lC1u(r)vl+ r+lC2u(r—l)vu+ oy r+lcru |v(r) + r+lCr+luv(r+l)

Thus the theorem is true for n=r+1 .By the principal of mathematical induction, the result
is true for all positive integer n. Hence the theorem is proved.
Example:

Find the »" derivative of
y = e"Inx By using Leibniz theorem

Solution:
Leibniz theorem states that
(7 K (k
(u.v)" = Z 2R, (6)
k=0 k
It will be expanded like
(uv)" ="C, uMy + "C, u"Vyy "C, u A +"C uv D 4 "C, uvt™
-1 :
(uy)" =u"v+ nu("_l)v'+mu("_z)v"+ ................ +nu v £y y™ @
2!
Here u=¢" and v=Inx
1 (-D°o!
e _ 1_(1°
X X
1] X n 1 (_1)11I
u =e vV =——=
xz )C2
_1 n-2 _ 2 |
un—l — ex anl — ( ) n(_’f )
X
1" 1)
e o DD
xl’l
Now inserting all values in (1)
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n-2 1 _1\y-1 _ 1
(e".Inx)" =e" Inx + ne*. +M (—iz)+ ............ + ne’ < (’f 2) ( V" (=)t

b 2! X x" x"

n—-2 | _ n-1 _ 1
{m o G-y D (=)t () ﬂ
X 2x° X X
Example:

If y=acos(Inx)+bsin(Inx), then prove that
¥y 1 (20 +D)xy" P + (n® +1)y™ =0

Solution:
y=acos(Inx)+bsin(In x)

y'==asin(In x)£+bcos(ln x)1
X X

»' = (-asin(In x)+ bcos(in x))
X

xy'=—asin(In x) + b cos(In x)
Differentiating it again, we get

xy"+y'=—acos(In x)%—bsin(ln x)%

xy"+y'= 1 (acos(In x) +bsin(In x))
X
x*y"+xy'=—(acos(Inx) + bsin(In x)) =—y
x’y"+xy'+y=0
Differentiating 'n' times by using leibniz theorem

(ncoy(n+2) 2 + nC y(r1+l) 2‘x+ nCZy(n) 2)+( Coy(n+l)x+ nC y(n))_l_y(n) _O

(n+2) | 2 (n+1)

+2xny™V + ——Z 2.y 4y x4 py® +y® =0

n(n-1)
Y 2!

(n+2) 2

y +(2n+)xy™ + (n*-n+n +1)y(”) =0
y™x? 4 2n+Dxy™ + (n?+1)y" =

x2y™ 4 2n+Dxy™ + (n?+D)y"™ =0

hence proved.

Example:

Find the nth order derivative of e“ sinx.
Solution:
We know that by using Leibniz theorem

1 n n_l - n ' _
(uv)" =u"v+nu" Vv +gu‘” DY, Fnu v fuy

2!

(n)

Here
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u=e" v=sinx

1 1 - T
u'=ae” v :COSx:SIn(erE)

"=a’e" "= cos(x +2) = sin(x + = +2) =sin(x + 2.2
u"=a‘e v (x 2) (x 5 2) (x 2)
"=qae™ "= cos(x +2.2) =sin(x+ 2.2 +2) =sin(x +3.%
u"=ae v (x 2) (x i 2) (x 2)
ul"™M = gl e v =sin(x + (n—l)%)
u(n) =q"e™ v(") :Sln(x+n%)

ax  ar (n) n_ax af (n-1) ax o T n(n_l) (n=2) _ax <; T
(e”.sinx)™ =a"e”sinx+na" e Sln(x+5)+Ta e Sln(x+3.5)

+....+nae”Sin(x+(n—l).%)+e”8iﬂ(x+n.%)

Exercise
1) Find the third derivative of f(x) = 4x® + 6x° + 2x +1 with respect to x.
2) Find the nth order derivative of

. X

[
(i) R

.. X

i) —
(i (x=-D(x-2)
3) Prove that

n _ n l

TR PR SO
dx" | x x"" 2 n-1 n
NDIf f(x)=In(l+1-x), prove that

Ax(L-x)f"(x)+2(2-3x)f'(x)+1=0
5) Find the nth order derivative of e“ cosx.
195
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Lecture No. 38
Taylor and Maclaurin Series

Introduction

When we talk about Approximation, the first question comes in to mind is that, why we have
developed these expansion formulas, there is not merely a mathematical curiosity, but rather, is
an essential means to exploring and computing those functions (transcendental), whose
characteristics are not very much familiar.

What we actually do in approximation problem, we chose a function from the well-defined class
that closely matches a target function (which we want to approximate at a certain point) in a task
specific way. This is typically done with polynomial or rational (ratio of polynomials)
approximations, as we are very well aware of characteristics of polynomials and we know how to
mathematically manipulate them to get our required results.

It is common practice to approximate a function by using Taylor series. A Taylor series is a
representation of a function as an infinite sum of terms that are calculated from the values of the
function's derivatives at a single point. Any finite number of initial terms of the Taylor series of a
function is called a Taylor polynomial. The Taylor series of a function is the limit of that
function's Taylor polynomials, provided that the limit exists.

Approximation problem

Suppose we are interested in approximating a function f (x) in the neighborhood of a point
a=0 by a polynomial

P(X)=C, +C,X+C,X* ++--+C X" @)

Because P(x) has n+1 coefficients, so we have to impose n+1 condition on the polynomial to
achieve good approximation to f (x) . As “0” is the point about which we are approximating the
function so we will chose the coefficient of P(x), such that the P(x)and the 1% n derivatives are
same as the f(x) and the 1% n derivatives of f (x) at the point “0” i.e.

P(0) = £(0),P'(0) = f'(0), P"(0) = £"(0)...., P"(0) = £(0) (2)

We have
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P(X)=Cy +C,X+C,X* ++--+C X"
P'(X)=c, +2C,X+-+-+nc, Xx"*
P"(x)=2c, +3.2¢;x+---+n(n-1)c X"
P"(x)=3.2¢, +---+n(n-1)(n-2)c x"°

P"(x)=n(n-1)(n-2)...(1)c,
From (2) we get

P(0)=1f(0)=c,

P'(0)= f'(0) =c,
P"(0)=f"(0) = 2!c,
P"(0)= f"(0) =3.2c, =3lc,

P"(0)=f"(0)=n(n-1)(n—-2)...(4)c, =n'c,

So we get the following values for the coefficients of

P(x) ¢, = f(0),¢,= f'(0),c, = f;(!o) €= f’;SO) =] n(!o)

Now we have evaluated all the unknowns.

Taylor Polynomial

Let a function f has continuous derivatives of nth order on the interval [a, a+ h]. Then

f(x) = Z (a)(x a)k = f(a)+(x— a)f(a)+( ) f(a) +

k=0

Alternate form

(X_a)n fn(a)
n!
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f(a+h):zn:h—kf"(a): f(a)+hf’(a)+2—2|f”(a)+---+:—r:f”(a)

k=0

is called the Taylor polynomial of degree n.

Taylor Series

Let a function f has continuous derivatives of every order on the interval [a, a+ h] . Then

f(x):ifl(_a)(x a) = f(a)+ (x—a)f'(a)+ X =3 2_) f(a)+-- +( ) f"(a)...

Alternate form

h h’ h"
g TH@=T@+ht @)+ @)+t @)+

fa+sh) =Y

[M]s

=
Il

0
is called the Taylor Series.

This expression (Taylor Series) can be easily converted to Maclaurin Series just by
puttinga=0 and h=X the

fo)=3 X ¢

k=0

| <_

14O = 1O+ Q)+, f”(0)+ +)r(]_r:f”(0)+...

X

The above expression is called Maclaurin Series.
Taylor’s Theorem

Now we will discuss a result called Taylor’s Theorem which relates a function, its derivative and
its higher derivatives. It basically deals with approximation of functions by polynomials.

Statement

Suppose f has n+1 continuous derivatives on an open interval |a,a -+ h[. Then there exist a
number @, 0 < @ <1, such that
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n-1

(n-1)!

f(a+h)= f(a)+hf’(a)+2—2|f”(a)+---+

Proof:
Consider the function F defined by

f(a) +% f"(a+6h)

(@a+h-x)"" .,

F(x)= f(X)+(a+h—x)f'(x)+(aJrg—l_X)zf”(><)+...Jr

n
N (a+h-x) A
n!
where A is a constant to be determined such that F(a) = F(a+h)

So we have
2 n-1 hn

' h "
f(a)+hf'(a)+=; 1 (a)+-~+(n_1)! n!

The function F clearly satisfied the condition of roll’s Theorem. Hence there exist a number

number @ with 0 <@ <1, suchthat, F'(a+&h)=0

Now

F'(x)= f'(x) = F'(X)+(@+h—x)F"(x) = (@+h—x)f"(x)

_ 2 _ n-1
L@+h-x? L @arh-xm

X)_(a+h—x)”‘1

2' m(X)_.. (n_l)l ( (n—l)l
_ (a ‘Enh:l;(l) [f n (X) _ A]
Therefore
F’(a+9h)=%[f"(a+9h)— A]=0
hnfl

(L—@)"[f"(a+6h)— A]=0

(n-1)!

Since h=0,1—-8 %0, so we have
f'"(a+6h)—A=0
f'"(a+6h)=A

Substituting the value of A into (1) we get,

(n-1!

f"(a)+—A=f(a+h)

A
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n-1

(n-1)!

f(a+h)= f(a)+hf’(a)+2—2| fr(@)+-+ f”l(a)+:—nlf”(a+¢9h)

0<f0<1

This formula is known as Taylor Development of a function in finite form with (n +1)th term as
Lagrange’s Form of Remainder after n terms.

Taylor’s Theorem with Cauchy Form of Remainder

Suppose f has n+1 continuous derivatives on an open interval ]a, a+ h[. Then there exist a
number & with 0 < @ <1, such that

n-1 n

TR

This formula is known as Taylor Development of a function in finite form with term as
Cauchy’s Form of Remainder after n terms.

f(a+h)= f(a)+hf’(a)+2—2| fr(@)+ -+ 1-6)"'f"(a+6h)

Corollary

If the interval in Taylor’s Theorem is taken as [O, X] in place of [a, a+ h] then this form is
called Maclaurin’s Theorem, it again has two forms

I Maclaurin’s Theorem with Lagrange’s Remainder

n-1

(n-1)!

f(x)= f(0)+xf'(0)+);—2' £7(0) +---+ f”‘1(0)+)r(]—r:f“(6’x)

0<f<1

Il Maclaurin’s Theorem with Cauchy’s Remainder

n-1 n

X n-1
TR AT

f(x)= f(0)+ xf (0)+ f"(0)+ - L—6)f"(6x)

0<f0<1

Example
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Apply Taylor’s Theorem to prove that

(a+mm:am+%am%+ﬂm%§9am%2+m

Forall thereal m,a>0,—a<b<a.

Solution

Here f(X)=x", f'(X)=mx™", f"(x)=m(m—-1)x""?, and
f7(x)=m(m-D(M-2)x"3..., f"(x) =m(m-1)(m—-2)---(m—n+1)x""

Then by Taylor’s Theorem

2 n-1 n

, h " n-1
f(a+h)=f(a)+hf (a)+5f (a)+-..+(n_1)!f (a)+(n—1)!

1-6)"'f"(a+6h)

By putting values

2 3 n
fu+m=u@+mxm+%¢%m+%¢w@+m+%¢%mﬁm

2 3
=x" +bmx™* +%m(m —1)x"? +%m(m —)(m—=2)x"> +...

n

+ m(m-1)(m—=2)---(m—n+1)x™"

(n=1)!

Then

2 3
Ha+M:am+Mmﬂ4+%ﬂMm—DaW2+%ﬂMm—DUn—DaWWP~

Here
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b" n-1gn
”:(n—l)!(l_e) f"(a+6b),0<0<1.
f"@a+ob)=m(m-D(M-2)---(m—n+D(a+6b)™™"
- il -o)"* - —2...(m- m-n
&_Kﬂ4ﬁa 6)"'m(m-1)(m—2)---(m—n+1)(a+6b)
B bn(l_e)n—ln! e
_(m—n)!(n—l)!(a+0b)

R, —0as n—oo forallreal m,a>0,—a<b<a

Hence

m(m —1)
2!

am—2b2 eee

(a+mm=am+%aW%+

Example

Apply Taylor’s Theorem to prove that

Insin(x+h)=InSinx+ hCotx—%hZCsczx+%h3Cothsczx+---

Solution
Let f(X)=InSinx, then

_1 .Cosx =Cotx, f"(x)=-Csc’x
Sinx

f""(x) = — 2Cscx(—Cscx Cotx) = 2Cscx C ot x

£/(x) =

By applying Taylor’s Theorem

Insin(x+h)=InSinx+ hCotx—%hZCsczx+%h3Cothsczx+---

Example

Find the Maclaurin Series f (X)=e€" , expanded about X =0

© Copyright Virtual University of Pakistan
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\i
"~
-3 .:;':' -1 1 2 3
— —2f
e _af
Solution

Here f'(x)=e*, f"(x)=€e" andsoon f™(x)=¢€* for n=0,1,2,...

f(0)=f'(0)=f"(0)=...= f™(0) =€’ =1

The nth Maclaurin polynomial is

n k 2 n
Zf (O)szf(O)+Xf’(0)+X—f”(O)_|_..._|_X_f(n)(0)
o k! 2! n!

Thus the Maclaurin Series is

o0 k 2 n
SO et )4 xt@)+ X 17(0) 4+ X 1O (0) 4
= k! 2! n!

Putting the values, we get

Example

Find the Maclaurin Series of f (x) = CosX, expanded about X =0.

© Copyright Virtual University of Pakistan
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\ +f !
.1"“. 2 i ."JF
. — I L
: f —q\“e_ " <
2 T - R
e -z “\
/! N
£ ™

Solution: Here f(x)=Cosx, f'(x)=-Sinx, f"(x)=-Cosx,...

and f (0) =1, f'(0)=0, f"(0)=-1,...
The nth Maclaurin polynomial is

n k 2 n
zﬂxk = £(0) + XF'(0) + 2 £"(0) +--- + 2= £™(0)
“ 21 N

the Maclaurin Series is

= £40) X, X"
> x* = f (0) + xf (0)+Ef (o)+...+ﬁf<>(o)+m

oo k!

Putting the values, we get

0 f k O X2 X4 X6 X2k
> ( )xkzl——+———+---+(—1)k T
i k! 2! 41 6! 2k)!
Exercise
1. Find the Maclaurin series of given functions
i) Sinx
ii) eSin X
2. Find the Taylor series of given functions

i) InX about Xx=1

i) a’ about X=2

© Copyright Virtual University of Pakistan
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Lecture No. 39
Numerical Integration

To evaluate the definite integral of certain functions whose anti derivatives cannot
be found easily or in more practical situations the integrand is expressed in tabular form,
numerical techniques provide efficient way to approximate the definite integral.

A definite integral '[ i f (X)dx can be interpreted as area under the curve y = f(X)

bounded by the x-axis and the line X=a and X=Db . In numerical integration to
approximate the definite integral, we estimate the area under the curve by evaluating the
integrand f(X) at a set of distinct points(X,, X;,..., X,) , Where X, €[a,b]for 0<i<n. Of

course, we assume that the function to be integrated is continuous on [a,b].

Integration Methods

The commonly used integration methods can be classified into two groups: the
Newton-Cotes formulae that employ functional values at equally spaced points, and the
Gaussian quadrature formulae that employ unequally spaced points.

Closed Newton-Cotes Quadrature Formula

The method of integration will be based on interpolation polynomial P, (X)of
degree n appropriate for a given function. When this polynomial P, (X) is used to
approximate f(x) over [a,b], and then the integral of f(X) is approximated by the
integral of P (X), the resulting formula is called a Newton-Cotes quadrature formula.
When the sample points X, =a and x,=Db are used, it is called a closed Newton-Cotes

formula. Thus the idea of Newton-Cotes formulas is to replace a complicated function or
tabulated data with an approximating function that is easy to integrate.

= jb f (X)dx = jb P (x)dx

where P (x)=a, +a,Xx+a,X* +...+a, X"

The next result gives the formulae when approximating polynomials of degree n=1, 2 are
used.

Theorem

Assume that X, = X, +kh, are equally spaced nodes and f, = f(x,). The first
two closed Newton-Cotes quadrature formulae:

(1) Trapezoidal Rule j f (x)dx ~ g(f(x0)+f(xl))
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(2) Simpson’s Rule j f(x)dx = 2( f(x)+4f(x)+ f(x,))

The Trapezoidal Rule

b
One of the simplest ways to estimate an integral | :I f (x)dx is to employ linear
a

interpolation, i.e., to approximate the curve y= f(x) by a straight line y=PR(x)also

called secant line passing through the points (a, f(a)) and (b, f (b)) and then to compute
the area under the line i.e. area is approximated by the trapezium formed by replacing the

curve with its secant line drawn between the end points (a, f(a)) and (b, f (b)).
Leta=x,, b=x, and h=x —X,. To approximate

jb fo0dx =" f(0dx = [ P(x)dx

4 fx)
RAEY!
Hix)
Jix
@ = x h=x >
-+ -

Now the area of trapezoid is the product of its altitude and the average length of its
parallel sides. The area of trapezoid with altitude X, — X, is

(Xl—xo)( f(xo); f(xl)j

- g(f<xo)+ £(x))

Thus j f(x)dx ~ g( f (%) + F(x))
Note: the error term involved in trapezoidal rule is
h3 "
:_Ef (é:): é:e[xoax]]

Thus the trapezoidal rule with error term is

X _ E _h_3 "
Lﬂf(x)dx- 2(f(><o)+f(><1)) 5 1
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The Trapezoidal Rule (Composite Form)

b
In order to evaluate the definite integral | = j f (X)dx we divide the interval

—a .
and denote the sub-intervals by
n

[Xg> X 1 (X5 %, 15 - [ X, 15 X, ], such that x, =a, X, =b, and x, =x,+kh, k=1,2,....,n and
then use the trapezoidal rule on each subinterval

[a,b] into n sub-intervals, each of size h =

_y=fx

(X1, y1) (X2, ¥2)

(X0, Yo)

Yo Y1 Y2 Y3 Yn-1 Yn

Xo=a X X2 X3 Xn-1 Xn=b

Thus, we can write the above definite integral as a sum. Therefore,

I :J': f (x)dx :J'Xz' f(x)dx+.[: f(x)dx+---+_[:n: f (x)dx
The area under the curve in each sub-interval is approximated by a trapezium. The
integral |, which represents an area between the curve y= f(X), the x-axis and the
ordinates at X =X,, X=X, 1s obtained by adding all the trapezoidal areas in each sub-
interval. Now, using the trapezoidal rule into equation:
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% _h b,
[, F00dx=(y+y) = Y'(€)

We get

oot iy sy e ey sy Py
|_jX0 f(x)dx—2(yo+yl) S Y G+ YY) -5 Y (&)

h h
4ot — + -
2 (yn—l yn) 12 y (fn)

Where x,_, <& <X, for k=12,..,n—1.
Thus, we arrive at the result

LXH f(X)dX :g(yo +2y1 +2y2 +“'+2yn—1 + yn)+ En
Where the error term En is given by
h3 4 4 "
B, =~ (E)+Y &)+ Y (5)]

Equation represents the trapezoidal rule over [X,, X,], which is also called the composite
form of the trapezoidal rule. The error term given by Equation:

=Y (@) + V(&) o+ Y (&)
= _EKZ:;, y"(é:k)a é:k € (X1 %)

is called the global error.
However, if we assume that y”(x) is continuous over [X,,X,] then there exists some & in

[X,,X,] such that and X =X, +nh and the maximum error incurred in the approximate

value obtained by trapezoidal rule is

3
:—h NL where M =max
12n

FS) & elXX,]

n

Example (The Trapezoidal Rule):

Evaluate the integral | = I 0 >, by using Trapezoidal rule, take h = 1 .
014X 4
Solution
At first, we shall tabulate the function as
X 0 1/4 1/2 3/4 1
y= 1 1 0.9412 0.8000 0.6400 0.5000
14X
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Using trapezoidal rule, and taking h :%

| 1odx
0l+x*°

h
:E[yo +2(y1 +Y, +y3)+y4]

:é[1+2(0.9412+O.8000+0.6400)+0.5000]

=é[1+2(2.3812)+0.5000]

:%[1+2(2.3812)+0.5000]

1
=—16.2624

=0.7828

But the closed form solution to the given integral is

Simpson’s 1/3 Rule

The trapezoidal rule tries to simplify integration by approximating the function to
be integrated by a straight line or a series of straight line segments. In Simpson’s rule we
try to approximate by a series of parabolic segments, hoping that the parabola will more
closely match a given curve y = f (x), than would the straight line in the trapezoidal rule.

To estimate | = I: f (x)dx, the curve y = f (x), is approximated by a parabola y = P,(X)

passing through three points (X, f(X,)),(X,, f (X)), (X,, f(X,)) and then the area under the

parabolic segment is computed. We assume that X, coincides with the origin so that

X, = —X, and parabola is P,(x) = ax’ +bx+c
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/
y =7
j / En
%= % %
b Xy Xy
j f (x)dx =j f (x)dx ~ j P, (x)dx
a Xo Xo
a=X, X, =X+hand x,=x,+2h=Db
[ Roodx=[" P,(x)dx
_ Ifz (ax® +bx + c)dx
a’l” x| %
= + +CX
3 —X 2 =X s
a’l” bx[” %
= + +CX
3 —X 2 —X o
3 3 2 2
& L& bx,” _ b%, +CX, +CX,
3 3 2
3
-2 +20x,
-5 ax? +6c) )
- 3 2 ---------------
We also have
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h=Xx =% =0-(=X%)=X,

f(x,)= f(-x,)=ax,> —bx, +c=ah’ —bh+c
f(x)=f(0)=c
f(x,)=ax,’ +bx, +c=ah’ +bh+c

f(x,)+ f(x,)=2ah’ +2c

and so

f(x)+4f(x)+f(x,)=2ah*+6¢

Substituting this in the area formula (1), we have

j P, (x)dx =2(2ah2 +6¢)

:g(f(xo)+4f(xl)+ f(x,))

Thus j f(x)dx ~ 2( f(x,)+4F(x)+ f(x,))
%
Note: the error term involved in Simpson’s 1/3 rule is
hs [\
= fe )(5) S €%y, %]

Thus the Slmpson s 1/3 rule with error term is

J.xxzf(x)dx— —(F(x)+4f(x)+ (%)) h f('V)(é:)

or

5

jf(x)dx——(y0+4yl+y2>— y™'(&)

Simpson’s 1/3 Rule (Composite Form)

In deriving equation,
5

jf(x)dx——(y0+4yl+yz)— Yy (&)

Geometrically, this equation represents the area between the curve y = f(x), the x-axis
and the ordinates at X = X, and X, after replacing the arc of the curve between (X,, y,)and
(X,,Y,) by an arc of a quadratic polynomial as in the figure.
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Y
A
y = f(x)
(x2, y2)
(Xo, Yo) //
Yo V1 Y2
Xo=a X1 X2 X3 X1 Xn=D

In Simpson’s 1/3 rule, we have used two sub-intervals of equal width. In order to get a
composite formula, we shall divide the interval of integration [a, b] into an even number
of sub intervals say 2N, each of width (b — a)/2N, thereby we have

Xo =8, X5..., %y =0 and X, =X, +kh, k=12,...,(2N-1)

Thus, the definite integral I can be written as

1= f(x)dx:_[: f(x)dx+_|.:: FOOdX+-+ [ F(x)dx

Applying Simpson’s 1/3 rule as in equation

) h h5 iv
J,, FO0d =20y, +4y,+y,) =y (©)

to each of the integrals on the right-hand side of the above equation, we obtain

h
I =§[(y0+4y1+yz)+(y2+4Y3+Y4)+"'

N iv
+(y2N—2 +4y2N—l + yZN )]_%hsy( )(f)

That is
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XN h
J. f(X)dX :E[yo +4(y1 Y+t y2N71)+2(Y2 LD 28 yszz)"' yzN]"'EITOr term

This formula is called composite Simpson’s 1/3 rule. The error term E, which is also
called global error, is given by

N i X, — X i
E=— h5 (iv) — _ 2N 0 h4 (iv)
oY Q== MY

for some & in [X,, X, ].

Example (Simpson’s 1/3 Rule):

Estimate the value of f Inxdx using Simpson’s 1/3 rule. Also, obtain the

value of h, so that the value of the integral will be accurate up to five decimal places.

Solution  Let for number of sub-intervals 2N =8, and X, =5, X, =1

h= Xn =%
2N

~271 o5
K X, =X, +kh y=f(X)=Inx
1 x =1+1%0.5=15 y, = f(x)=Inx =In1.5=0.4055
2 X, =1+2%0.5=2 y, = f(%)=Inx, =In2.0=0.6931
3 X, =1+3%0.5=2.5 f(x,)=0.9163
4 X, =3.0 y, =1.0986
5 X, =3.5 f(x)=1.2528
6 X, =4.0 13863
7 X, =4.5 1.5041
8 X, =5 1.6094
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Now using Simpson’s 1/3 rule,

5 h
L 1nxdx=§[y0 +A(Y, + Y5+ Y5+ Y)+2(Y, + Y, + Vo) + Vsl

:%[0+4(0.4055+0.9163+1.2528+1.5041)
+2(0.6931+1.0986 +1.3863) +1.6094]
=%[0+4(4.0786)+2(3.178)+1.6094]

= % (24.2798) = 4.0466

The error in Simpson’s rule is given by

X,y — X .
E —_ 2N 0 h4 (iv)
YY)
(ignoring the sign)
! 1 4 1 m 2 (iv) 6
- y=hxy' ==y =-=y"==y"=-—
Since X X X X

Max y™(x)=6,

1<x<5

Min y™(x)=0.0096

1<x<5

Therefore, the error bounds are given by

4 4
(0.0096)(4)h <E< (6)(4)h
180 180
If the result is to be accurate up to five decimal places, then

24h*
180
That is, h* < 0.000075 or h < 0.09. It may be noted that the actual value of integrals is

[ Inxdx =[xIn X~ XJ} =5In5 -4 =4.0472

<107

Example (Simpson’s 1/3 Rule):
dx

X2

Evaluate the integral | = J: 0 , by using Simpson’s 1/3 rule, take h =% .

Solution

At first, we shall tabulate the function as
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X 0 Ya Yo Ya

2 |1 0.9412 0.8000 0.6400

y =1/ 1+x

0.5000

Using Simpson’s 1/3 rule, and taking h = % , we have

_pbodx
ol+x*’

h
:g[yo +4(y1 + y3)+2y2 + y4]
1

:%[1+4(l.5812) +1.6+0.5000]

1
——[9.4248
7 (9-4248]

=0.7854

Exercise

Evaluate the following integrals by using
(i) Trapezoidal rule
(i1) Simpson’s 1/3 rule

4
1. fxzdx, h=1/2
0

3
2, jldx, h=1/5
I X

=E[1+4(0.9412+0.6400)+ 2(0.8000) +0.5000]
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