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Lecture No-1 Introduction

— Calculus is the mathematical tool used to analyze changes in physical quantities.
— Calculus is also Mathematics of Motion and Change.

— Where there is motion or growth, where variable forces are at work producing
acceleration, Calculus is right mathematics to apply.

Differential Calculus Deals with the Problem of Finding

(1)Rate of change.
(2)Slope of curve.

Velocities and acceleration of moving bodies. Firing angles that give cannons their
maximum range. The times when planets would be closest together or farthest apart.

Integral Calculus

Deals with the Problem of determining a Function from information about its rates of
Change.

Integral Calculus Enables Us

(1) To calculate lengths of curves.

(2) To find areas of irregular regions in plane.

(3) To find the volumes and masses of arbitrary solids

(4) To calculate the future location of a body from its present position and knowledge of
the forces acting on it.

Reference Axis System

Before giving the concept of Reference Axis System we recall you the concept of real
line and locate some points on the real line as shown in the figure below, also remember
that the real number system consist of both Rational and Irrational numbers that is we can
write set of real numbers as union of rational and irrational numbers.

FS
2
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b
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a

Here in the above figure we have locate some of the rational as well as irrational numbers
and also note that there are infinite real numbers between every two real numbers.

Now if you are working in two dimensions then you know that we take the two mutually
perpendicular lines and call the horizontal line as x-axis and vertical line as y-axis and
where these lines cut we take that point as origin.

Now any point on the x-axis will be denoted by an order pair whose first element which is
also known as abscissa is a real number and other element of the order pair which is also
known as ordinate will has 0 values.

Similarly any point on the y-axis can be representing by an order pair. Some points are
shown in the figure below. Also note that these lines divide the plane into four regions,
First ,Second ,Third and Fourth quadrants respectively. We take the positive real numbers
at the right side of the origin and negative to the left side, in the case of x-axis. Similarly
for y-axis and also shown in the figure.
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Location of a point

Now we will illustrate how to locate the point in the plane using x and y axis. Draw two
perpendicular lines from the point whose position is to be determined. These lines will
intersect at some point on the x-axis and y-axis and we can find out these points. Now the
distance of the point of intersection of x-axis and perpendicular line from the origin is the
X-C ordinate of the point P and similarly the distance from the origin to the point of
intersection of y-axis and perpendicular line is the Y-coordinate of the point P as shown
in the figure below.

bt -9 Pla, b)

Positive v-axis
3 b

Negative x-axis Origin
| [
bod S E— L[
3 2 1 0 1 .2 a3

Positive x-axis
Negative y-axis

Cartesian coordinates

In space we have three mutually perpendicular lines as reference axis namely x ,y and z
axis. Now you can see from the figure below that the planes x= 0 ,y=0 and z=0 divide the
space into eight octants. Also note that in this case we have (0,0,0) as origin and any point
in the space will have three coordinates.
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The planes x = 0, y = 0, and z =0
divide space into eight octants.

Sign of co-ordinates in different octants

First of all note that the equation x=0 represents a plane in the 3d space and in this plane
every point has its x-coordinate as 0, also that plane passes through the origin as shown in
the figure above. Similarly y=0 and z=0 are also define a plane in 3d space and have
properties similar to that of x=0.Such that these planes also pass through the origin and
any point in the plane y=0 will have y-coordinate as 0 and any point in the plane z=0 has
z-coordinate as 0. Also remember that when two planes intersect we get the equation of a
line and when two lines intersect then we get a plane containing these two lines. Now
note that by the intersection of the planes x=0 and z=0 we get the line which is our y-axis.
Also by the intersection of x=0 and y=0 we get the line which is z-axis, similarly you can
easily see that by the intersection of z=0 and y=0 we get line which is x-axis.

Now these three planes divide the 3d space into eight octants depending on the positive
and negative direction of axis.

The octant in which every coordinate of any point has positive sign is known as first
octant formed by the positive X, y and z —axis. Similarly in second octant every points has
x-coordinate as negative and other two coordinates as positive correspond to negative x-
axis and positive y and z axis.

Now one octant is that in which every point has x and y coordinate negative and z-
coordinate positive, which is known as the third octant. Similarly we have eight octants
depending on the sign of coordinates of a point. These are summarized below.

First octant (+ +, 1) Formed by positive sides of the three axis.
Second octant -+ 1) Formed by —ve x-axis and positive y and z-axis.
Third octant (- -1 Formed by —ve x and y axis with positive z-axis.
Fourth octant (+-,1) Formed by +ve x and z axis and —ve y-axis.
Fifth octant (+ +,-) Formed by +ve x and y axis with -ve z-axis.
Sixth octant (-,+-) Formed by —ve x and z axis with positive y-axis.
Seventh octant (- --) Formed by —ve sides of three axis.

Eighth octant (+-,-) Formed by -ve y and z-axis with +ve x-axis.

(Remember that we have two sides of any axis one of positive values and the other is of
negative values)

Now as we told you that in space we have three mutually perpendicular lines as reference
axis. So far you are familiar with the reference axis for 2d which consist of two
perpendicular lines namely x-axis and y-axis. For the reference axis of 3d space we need
another perpendicular axis which can be obtained by the cross product of the two vectors,
now the direction of that vector can be obtained by Right hand rule. This is illustartaed
below with diagram.
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The Cartesian coordinate system is
right-handed.

Concept of a Function

Historically, the term, function, denotes the dependence of one quantity on other quantity.
The quantity x is called the independent variable and the quantity y is called the
dependent variable. We write y = f (x) and we read y is a function of x.

The equation y = 2x defines y as a function of x because each value assigned to x
determines unique value of y.

Examples of function

— The area of a circle depends on its radius r by the equation A= nr* so, we say that
A 1s a function of r.

— The volume of a cube depends on the length of its side x by the equation V=x" so,
we say that V is a function of x.

— The velocity V of a ball falling freely in the earth’s gravitational field increases
with time t until it hits the ground, so we say that V is function of t.

— In a bacteria culture, the number n of present after one day of growth depends on
the number N of bacteria present initially, so we say that N is function of n.

Function of Several Variables
Many functions depend on more than one independent variable.

Examples
The area of a rectangle depends on its length | and width w by the equation
A=1w, so we say that A is a function of | and w.
The volume of a rectangular box depends on the length |, width w and height h by the
equation
V =1w h so, we say that V is a function of | , w and h.
The area of a triangle depends on its base length I and height h by the equation
A="1h, so we say that A is a function of | and h.
The volume V of a right circular cylinder depends on its radius r and height h by the
equation V= ntr2h so, we say that V is a function of r and h.

Home Assignments:

In the first Lecture we recall some basic terminologies which are
essential and prerequisite for this course. You can find the Home Assignments on the last
page of Lecture # 1 at LMS.
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2-Values of functions

Lecture No-2 Values of functions:

Consider the function f(x) = 2x* —1, then f(1) = 2(1)* -1 =1, f(4) = 2(4)* -1 =31,
f(-2)= 2(-2)*-1=7

f(t-4) = 2(t-4)% —1= 26> -16t + 31

These are the values of the function at some points.

Example
Now we will consider a function of two variables, so consider the function

f(x,y) =x*y+1 then f(2,1) =(2%)1+1=5, f(1,2) =(1%)2+1=3, £(0,0) =(0%)0+1=1,
f(1,-3) =(1%)(-3)+1=-2, f(3a,a) =(3a)’a+1=9a’+1, f(ab,a-b) =(ab)*(a-b)+1=a’b*-a’b>+1
These are values of the function at some points.

Example:
Now consider the function f(x,y)=x+ *\/xy then

(@ F(2,4)=2+°J2)4) =2+ 8=2+2=4
() F(t,t2) =t+ JOE) =t+ V& =t+t=2t
(©) F(X,X*) = x+ *J(X)(X*) =X+ WX = x4+ x=2x

(d) f(2y?,4y) =2y + 2y )(dy) =2y* + */8y’ =2y’ +2y

Example:
Now again we take another function of three variables

f(X,y,2)=+/1-X*—y* —2* Then
1

11 L, 1, _[1
f(O’E’E)_\/l_O_(E) 3 2

Example:
Consider the function f(x,y,z) =xy’z’+3 then at certain points we have

£(2,1,2) =(2)(1)*(2)*+3=19, f(0,0,0) =(0)(0)*(0)’+3=3, f(a,a,a) =(a)(a)*(a)’+3=a’+3
f(t,1%,-t) =(0)()*(-t)*+3=-t>+3, £(-3,1,1) =(-3)(1)*(1)*+3=0
Example:

Consider the function f(x,y,z) =x’y’z" where x(t) =t y(t)= t*and z(t)=t

(@) fx().y(0.200) <xOPYOP (0] = CPIET = ¢
(b) £x(0),y(0)2(0) =[x(O)F [Y(O) 2(O)F'<[ 0°F[0°’[0]*= 0

Example:
Let us consider the function f(X,y,z) = xyz + x then
f(xy,y/x,xz) = (xy)(y/X)(xz) + Xy = Xyzz+xy.
Example:

Let us consider g(x,y,z) =z Sin(xy), u(x,y,z) =x’z’ , v(x.,y,z) =Pxyz,

W(X,Y,2) = g Then.

g(u(x,y,z), v(x,y,z), w(x,y,z)) = w(x,y,z) Sin(u(x,y,z) v(X,y,z))
Now by putting the values of these functions from the above equations we get

g(U(x.y.2), V(X.y.2), W(x.y.2)) = % Sin[(x’2’)( Pxyz)] =X—Zy Sin[(Pyx’z")].

© Copyright Virtual University of Pakistan
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Example:

Consider the function g(x,y) =y Sin(xzy) and u(x,y) =xzy3 v(x,y) =7 xy Then
2(u(xy), V(%)) = v(xy) Sin([u(x,y) I* v(x.y))

By putting the values of these functions we get
g(u(xy), v(x,y)) =z xy Sin([x’y’]* 7 xy) = 7 xy Sin(x’y").

Function of One Variable
A function f of one real variable x is a rule that assigns a unique real number f( x ) to
each point x in some set D of the real line.

Function of two Variables
A function f in two real variables x and y, is a rule that assigns unique real number
f (x,y) to each point (x,y) in some set D of the xy-plane.

Function of three variables:
A function f in three real variables x, y and z, is a rule that assigns a unique real number f
(x.y,z) to each point (x,y,z) in some set D of three dimensional space.

Function of n variables:

A function f in n variable real variables XI’X2’ X3, ...... , Xn, is a rule that assigns a unique

real number w = f(x, X2, X3,...... , Xn) to each point (xi, X2, X3,...... , Xp) I n some set D of
n dimensional space.

The parabola y = x*.

Parabola y = -x

© Copyright Virtual University of Pakistan
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General equation of the Parabola opening upward or downward is of the form

y = f(x) = ax’+bx + ¢. Opening upward if a > 0. Opening downward if a < 0.

x co-ordinate of the vertex is given by x¢ = -b/2a. So the y co-ordinate of the vertex
is yo= f(X¢) axis of symmetry is X = X¢. As you can see from the figure below

b 4 Axis of
A symmelry

vo=ax? & by oy o
" {er = 1))
\ -b
2a i

|

h !

f(i;u) ‘\__ Vertex
(i)

1/G2)

(n)

Sketching of the graph of parabola y = ax*+bx + ¢
Finding vertex: x — co-ordinate of the vertex is given by xy= - b/2a
So, y — co-ordinate of the vertex is yo=a Xo*+b xo + ¢. Hence vertex is V(%0 , Y0).

Example: Sketch the parabola y = - x* + 4x
Solution: Since a = -1 <0, parabola is opening downward. Vertex occurs at
x = - b/2a = (-4)/2(-1) =2. Axis of symmetry is the vertical line x = 2. The y-co-ordinate
of the vertex isy = -(2)* + 4(2) = 4. Hence vertex is V(2 , 4 ). The zeros of the parabola
(i.e. the point where the parabola meets x-axis) are the solutions to -x* +4x =0 sox =0
and x = 4. Therefore (0,0)and (4,0) lie on the parabola. Also (1,3) and (3,3) lie on the
parabola.

Graph of y = - x> + 4x

Vertex (2, ) maximum

>

Example y= x° - 4x+3
Solution: Since a =1 > 0, parabola is opening upward.Vertex occurs at

x = - b/2a = (4)/2 =2.Axis of symmetry is the vertical line x = 2. The y co-ordinate of the
vertex is y = (2)* - 4(2) + 3 = -1.Hence vertex is V(2 , -1 )The zeros of the parabola (i.e.
the point where the parabola meets x-axis) are the solutions to x*-4x+3 =0, so

x = 1 and x = 3.Therefore (1,0)and (3,0) lie on the parabola. Also (0,3 ) and (4, 3 ) lie on
the parabola.
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Graph of y = x* - 4x+3

I
+ 1

-1- ¥y=n"-4x + 3

]
(]
I
L, |
]
Te- 1
= 1
2- :
1
—— bt x
-2 o [ 4= & R
—2-L I|
Ellipse
STANDARD M + Foct and major axis
ORIENTATION DESCRIFTION EQUATION “ o oit the yas.
) . . (0, ¢ .
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; on the y-axis. R Yixis, 2
: + Minor axis on the gl L 4 vy e e |
b N + Cenler at the origin. b gt
P y-axis. o2
b : i Lok | cintercents:
EANEA] fe, 0}/ @ + Center at the origin, at b ! / * xinlercepls: £,
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Hyperbola
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\ T /
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o /
‘\\ g ! e . b
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| { oy i
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F A i
/b \
/ { AY
»’/ \\

Home Assignments:

In this lecture we recall some basic geometrical concepts which are prerequisite for this

course and you can find all these concepts in the chapter # 12 of your book Calculus By

Howard Anton.
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Lecture No-3 Elements of three dimensional geometry

Distance formula in three dimension

Let P(x,Y,,Z)and Q(X,,Y,,Z,) be two points such that PQ is not parallel to one of the

coordinate axis Then PQ = \/ (%, —X%)*+(Y,—Y,)* +(z, —z,)° Which is known as Distance

fromula between the points P and Q.

Example of distance formula

Let us considerthe pointsA (3, 2, 4),B (6, 10,-1),

andC (9,4, 1)

Then

|AB| =63 + (10— 27 + (- 1 - 4) =AJo8 =712
|AC|=\O—37 +(4—27 +(1-4) =\[49 =7
1BC|=\JO— 67 +@— 107 +(1+ 1y =\[49=7

Mid point of two points

If R is the middle point of the line segment PQ, then the co-ordinates of the middle
points are

x= (x1+x2)/2 ,

y=(yl+y2)/2 ,

7= (z1+22)/2

Let us consider tow points A(3,2,4) and B(6,10,-1)
Then the co-ordinates of mid point of AB is

[(3+6)/2,(2+10)/2,(4-1)/2]
=(9/2,6,3/2)

Direction Angles

Thedirection angles o f,y0f a lineare defined as

a = Angle between lineand the positive x-axis
g = Angle between line and the positivey-axis
y = Angle between lineand the positive zaxis.

By definition, each of these angles lies between 0 and 7

Direction Ratios
Cosines of direction angles are called direction cosines
Any multiple of direction cosines are called direction numbers or direction ratios of
the line L.

Given a point, finding its Direction cosines

y-axis

11

© Copyright Virtual University of Pakistan



3-Elements of three dimensional geometry VU

a
P(x.y)
From triangle we can
B write
, cos a = x/r
Y cos B =yIr
L] |-
0 X X-axis

Direction angles of a Line

g PUY.Z)
—\

7 \
\
\i\éu\‘

The angles which a line makes with positive x,y and z-axis are known as Direction
Angles. In the above figure the blue line has direction angles as q,[]and[Jwhich are the
angles which blue line makes with x,y and z-axis respectively.

Direction cosines:

Now if we take the cosine of the Direction Angles of a line then we
get the Direction cosines of that line. So the Direction Cosines of the above line are given

by

X X
cos a = Qgp ~ mz
I A
cspo = op - V2 12 122
Similarly,
Z Z

cos = = oo
4 OP 52 +y2 +22
cos® a + coszﬂ+ cos > y = 1.

Direction cosines and direction ratios of a line joining two points

*For a line joining two points P(x,, y,, z,) and Q(X,, y,, X,) the direction ratios are

12
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X - X ’ Y2 "Y1 ang 2274

PQl ~ [PQ PQl
Example For a line joining two points P(1,3,2) and Q(7,-2,3) the direction ratios
are

X, =X, Y, =Y Z, -z, and the directions cosines are

7-1,-2-3,3-2
6, -5, 1
and the directions cosines are
662, -5M62,  1/V62

In two dimensional space the graph of an equation relating the variables x and y 1is the set
of all point (X, y) whose co-ordinates satisfy the equation. Usually, such graphs are
curves. In three dimensional space the graph of an equation relating the variables
X,y
and z is the set of all point (X, y, z) whose co-ordinates satisfy the equation.
Usually, such graphs are surfaces.

Intersection of two surfaces

Intersection of two surfaces is a curve in three dimensional space.

*It is the reason that a curve in three dimensional space is represented by two equations
representing the intersecting surfaces.

Intersection of Cone and Sphere

Intersection of Two Planes

If the two planes are not parallel, then they intersect and their intersection is a straight
line. Thus, two non-parallel planes represent a straight line given by two simultaneous
linear equations in x, y and z and are known as non-symmetric form of equations of a
straight line.

The planes x = 0, v = 0, and =z = 0
divide space into eight octants.

13

© Copyright Virtual University of Pakistan



3-Elements of three dimensional geometry

VU

REGION DESCRIPTION EQUATION
xy-plane Consists of all points of the form (X, y, 0) z=0
xz-plane Consists of all points of the form (x, 0, z) y=0
yz-plane Consists of all points of the form (0, y, z) x=0
X-axis Consists of all points of the form (x, 0, 0) y=0,z=0
y-axis Consists of all points of the form (0, y, 0) z=0,x=0
z-axis Consists of all points of the form (0, 0, z) x=0,y=0

Planes parallel to Co-ordinate Planes

Plane x

(2.0,

General Equation of Plane
Any equation of the form
ax+by+cz+d=0
where a, b, c, d are real numbers,represent a plane.

Sphere

ol Yor Zo)
\

The standard equation of the : I
sphere of radius a centered at (xo. yo. Zo) is

(x — %0 + (¥ — yo)? + (z — z0)* = a°.

The level surfaces of f(x,y, 2) =

VX2 + y? + z? are concentric spheres.

14
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Right Circular Cone
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Horizontal Elliptic Cylinder
X7 4+ 477 =4
\‘)‘
5 'I'l'_:e cir{_.;le
(2.0, 3) x2 4 v =4, z =3
3)
I'he plane
et | e __4'::(,»
The circle x? + y? — 4, z — 3.
Overview of Lecture # 3
Chapter # 14
Three Diamentional Space
Page # 657
Book CALCULUS by HOWARD ANTON
16
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Lecture -4 Polar co-ordinates

You know that position of any point in the plane can be obtained by the two
perpendicular lines known as x and y axis and together we call it as Cartesian coordinates
for plane. Beside this coordinate system we have another coordinate system which can
also use for obtaining the position of any point in the plane. In that coordinate system we
represent position of each particle in the plane by “r” and “0 ”where “r” is the distance

from a fixed point known as pole and 0 is the measure of the angle.

€.
T

P (r, 0)

8 .

(0] P Initial ray

“0O” is known as pole.

Conversion formula from polar to Cartesian coordinates and vice versa

[

(x, y) =P(r, 0)

r

/

y

a

L

v

From above diagram and remembering the trigonometric ratios we can write X = r cos 0,
y =1 sin . Now squaring these two equations and adding we get,

)(24-y2=1'2

Dividing these equations we get
y/X = tanf

These two equations gives the relation between the Plane polar and Plane Cartesian
coordinates.

Rectangular co-ordinates for 3d
Since you know that the position of any point in the 3d can be obtained by the three

mutually perpendicular lines known as x ,y and z — axis and also shown in figure below,
these coordinate axis are known as Rectangular coordinate system.

17
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Rectanguiar coordinates
(x, v, =)

Cylindrical co-ordinates

Beside the Rectangular coordinate system we have another coordinate system which is
used for getting the position of the any particle is in space known as the cylindrical
coordinate system as shown in the figure below.

Cylindrical coordinates
(r,8,z)
(rz0,020<2n)

Spherical co-ordinates

Beside the Rectangular and Cylindrical coordinate systems we have another coordinate
system which is used for getting the position of the any particle is in space known as the
spherical coordinate system as shown in the figure below.

Spherical coordinates
(p. 6, )
(pz20,0s0<2n0<s¢p=m

18
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Conversion formulas between rectangular and cylindrical co-ordinates

Now we will find out the relation between the Rectangular coordinate system and
Cylindrical coordinates. For this consider any point in the space and consider the position
of this point in both the axis as shown in the figure below.

S P 2
L€, 8, =)

7 "5,< r, &)
y

s
In the figure we have the projection of the point P in the xy-Plane and write its position in
plane polar coordinates and also represent the angle 6 now from that projection we draw
perpendicular to both of the axis and using the trigonometric ratios find out the following
relations.

(r. 62 >y, 2)

X =rcosé, y=rsing, z2=1

r=\x*+y? tanfd= y 1=1

X l

Conversion formulas between cylindrical and spherical co-ordinates

Now we will find out the relation between spherical coordinate system and Cylindrical
coordinate system. For this consider any point in the space and consider the position of
this point in both the axis as shown in the figure below.

(p, 6, ¢)
3:? !I i
o (‘./ : ilf’. e z)

First we will find the relation between Planes polar to spherical, from the above figure
you can easily see that from the two right angled triangles we have the following
relations.

(0,0,4) >(r, 6,7)
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r=psing, 6=6, z=pcos ¢

Now from these equations we will solve the first and second equation for p and ¢. Thus
we have

(r, 6,2) >(p.0,¢)
p=\r+z% 6=6, tang=

N |=

Conversion formulas between rectangular and spherical co-ordinates

(p; 6, ®) - (X, y, 2)

Since we know that the relation between Cartesian coordinates and Polar coordinates are

x=rcos 0, y=rsin0and z=2z.We also know the relation between Spherical and
cylindrical coordinates are,

r=psing, 6=6, z=pcos ¢

Now putting this value of “r” and “z” in the above formulas we get the relation between
spherical coordinate system and Cartesian coordinate system. Now we will find

(X,y,2) = (p,6, D)

X2 + y2 +22 = (psin @ cos 6)2 +  (psin @ sin 6)2 + (p cos CD)2
pz{sinzd)(cosze + sin29) +cos2<D)}
p2(sin 2(D + cosz(D)2 = p2

p="\x2 +y2+72

Tan®=y/x and Cos ® = x +y+7

Constant surfaces in rectangular co-ordinates

The surfaces represented by equations of the form
X=X, Y =Y0s Z= %

where x are constants, are planes parallel to the xy-plane, xz-plane and xy-

o0 Yo o
plane, respectively. Also shown in the figure
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£ Z
! /1 x= ¥y
/ﬂ = pre=c0
i
i ¥
Xy ——. )_O_ —————— =
0 s s S
/ =
'\-—":/.'C Y EM0

(e
Constant surfaces in cylindrical co-ordinates

The surface r = ry is a right cylinder of radius rg centered on the z-axis. At each point

(r, 9, z) this surface on this cylinder, r has the value 1y, z is unrestricted and
0<0<2m

The surface 0 = 0y is a half plane attached along the z-axis and making angle 6, with the
positive x-axis. At each point (r, 0, z) on the surface ,0 has the value 0y, z is unrestricted
and r >0. The surfaces z = z,, is a horizontal plane. At each point (r, 6, z) this surface z

has the value z, , but r and 0 are unrestricted as shown in the figure below.

Constant surfaces in spherical co-ordinates

The surface p=p o consists of all points whose distance p from origin is p o Assuming
that p o0 be nonnegative, this is a sphere of radius p o centered at the origin. The surface

0 = 0y is a half plane attached along the z-axis and making angle 6, with the positive x-
axis. The surface ® = @ consists of all points from which a line segment to the origin

makes an angle of @) with the positive z-axis. Depending on whether 0< @ < /2 or
n/2 < @< m, this will be a cone opening up or opening down. If @ = /2, then the cone
is flat and the surface is the xy-plane.
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Spherical Co-ordinates in Navigation

Spherical co-ordinates are related to longitude and latitude coordinates used in navigation.
Let us consider a right handed rectangular coordinate system with origin at earth’s center,
positive z-axis passing through the north pole,and x-axis passing through the prime
meridian. Considering earth to be a perfect sphere of radius p = 4000 miles, then each
point has spherical coordinates of the form (4000,0,@) where ® and 0 determine the
latitude and longitude of the point. Longitude is specified in degree east or west of the
prime meridian and latitudes is specified in degree north or south of the equator.

Domain of the Function
* In the above definitions the set D is the domain of the function.
» The Set of all values which the function assigns for every element of the domain
is called the Range of the function.
*  When the range consist of real numbers the functions are called the real valued
function.

NATURAL DOMAIN

Natural domain consists of all points at which the formula has no divisions by zero and
produces only real numbers.

Examples

Consider the Function @ =+/y — x* . Then the domain of the function is

y > x*> Which can be shown in the plane as
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Ouiside, 5 / The parabola
¥ X7 = O 1 8 F ¥ =0
. g is the boundary.

The domain of f(x, ¥) = J/y — x2
consists of the shaded region and its
bounding parabola y xt.

and Range of the function is [0,).

Domain of function w = 1/xy is the whole xy- plane Excluding x-axis and y-axis, because
at x and y axis all the points has x and y coordinates as 0 and thus the defining formula
for the function gives us 1/0. So we exclude them.
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Lecture No-5 Limit of Multivariable Function
f (x,y)= sin "' (x+y)

Domain of f'is the region in which -1 <x +y <1

. y-axis
X =- A _
A XA 1
-1<x+y<l1
y =1
» X-axis
y =-1
Domains and Ranges
Functions _ Domain Range
i ) ) ) Entire space . 0, )
w X + Yy + z
o — (x,y,2) = (0,0, 0) ©, )
x2+ y2 4+ ,2
- Half space z>0 (= ®» o)
@ = Xy Inz

Examples of domain of a function

f(x,y) = Xy\'y- 1 Domain of f consists of region in xy planewhere y = 1

fx,y)= Wx2+y2- 4

Domainof f consists of region

in Xy plane where x2 +y%> 4
As shown in the figure
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f(x, y) = Inxy
Domain of f consists of region lying in first and third quadrants in xy plane as shown in
above figure right side.

f(x,y,z) =e xye
Domain of f consists of region

of three dimensional space

Domain of f consists of region in xy plane x2 <4 ,-2<x<2

=2 x=2

fxy, 3=¥25-%- y- 7
Domain of f consists of region in three dimensional space occupied by sphere centre at
(0, 0, 0) and radius 5.

x3 + 2x%y - xy - 2y?
f(x,y) = X + 2y
f(0,0) is not defined but we see that limit exits.
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5-Limits of multivariable function VU
Approaching to (0,0) Approaching to (0,0)
through f(x,y) through f(x,y)
X-axis y-axis
(0.5,0) 0.25 (0,0.1) -0.1
(0.25,0) 0.0625 (0,0.001) -0.001
(0.1,0) 0.01 (0,0.00001) 0.00001
(-0.25,0) 0.0625 (0,-0.001) 0.001
(-0.1,0) 0.01 (0,-0.00001) 0.00001
Approaching to (0,0) through f(x,y)
y =X
(0.5,0.5) -0.25
(0.1,0.1) -0.09
(0.01,0.01) -0.0099
(-0.5,-0.5) 0.75
(-0.1,-0.1) 0.11
(-0.01,-0.01) 0.0101
26
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5-Limits of multivariable function VU
Example
f(xy) =2+
X"ty
f(0,0) is not defined and we see that limit also does not exit.
Approaching to Approaching to
(0,0) through f(x,y) (0,0) through f(x,y)
x-axis (y = 0) y=X
(0.5,0) 0 (0.5,0.5) 0.5
(0.1,0) 0 (0.25,0.25) 0.5
(0.01,0) 0 (0.1,0.1) 0.5
(0.001,0) 0 (10.05,0.05) 0.5
(0.0001,0) 0 (0.001,0.001) 0.5
(-0.5,0) 0 (-0.5,-0.5) 0.5
(-0.1,0) 0 (-0.25,-0.25) 0.5
(-0.01,0) 0 (-0.1,-0.1) 0.5
(-0.001,0) 0 (-0.05,-0.05) 0.5
(-0.0001,0) 0 (-0.001,-0.001) 0.5
. Xz
1 =0 (alongy=0)
w00 Y
. Xy
lim =0.5 (alongy=x)
(@0 X Y
. Xy .
lim > does not exist.
@0 X Y
Example
lim 2
X, y) = (0,0) X" +y
Let (X, y) approach (0, 0) along the line y = x.
Xy X + X
f(x,y) = = = X # 0.
X, Y) x2+y2 il 141 #
_1
2
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Let (X, y) approach (0, 0) along
the liney = 0.

f(x, y)A—Lz 0> x=0.

+(0)
Thus f(X, y) assumes two different
values as (X,y) approaches (0,0)
along two different paths.

f (X, y) does not exist.
(X, Y) 300, 0)

We can approach a point in space through infinite paths some of them are shown in the

figure below.
A

(XOIy

Rule for Non-Existence of a Limit

If in
f(x,
xS, b) Y
We get two or more different values as we approach (a, b) along different paths, then

(X, y)le(a b) f(x,y)

does not exist.
The paths along which (a, b) is approached may be straight lines or plane curves through

(a,b).

Example
L X+ xry - x - y?
m
(x,y) > (2,1) X+ 2y

(x*+2 x2y—xy —2y?)

(x*2y)

Lim
(x,y) > (2,1)

Lim
x,y) = (2,1)
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VU

Lim C+2 xX*y-x — y?)
(X, y) 2> (2,1)

) B,y BT
Example
% ¥)25%0,0) \/x—+ y
We set

X=rcos @, y=rsin b

rcos @.rsin 0

th
o \] \/r cos’ O+ r’sin® 6

= I cos @ sing ,for 1 >0

Since r =\]X2 + y2 , r=>0as(x,y)— (0,0),
Osinf=
(X,y)g?() 0)\/XT rLgIbrcos sinf= (),

since | cos @sin | < 1 for all value of 6.

RULES FOR LIMIT

If lim f(x,y)=L  and lim g(X,y)=L,Then

(X, ¥)=>(%,Yo) (X, ¥)=>(Xo,Yo)

(a) lim cf(x,y)=cL, (if cis constant)
(%,¥)—>(Xo,Yo)

(b) lim {f(xy)+9(xy)}=L+L,

(Y)=>(X%,Yo)

lim {f(X, y)—g(x, Y)} = Ll - Lz

(X,Y)=>(Xg,Y)

(d) lim  {f(x,y)g(x,y)} =LL,

(X, Y)>(Xo,Yo)

@) im OV L Gep, -
=000 g(X,y) L,

lim c=c (Ccaconstant), Ilim X,=X,, lim

(X Y)>(%Y0) P> 0Y0) © (Y)Y

Similarly for the function of three variables.

Yo=Y
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Overview of lecture# 5

In this lecture we recall you all the limit concept which are prerequisite for this course
and you can find all these concepts in the chapter # 16 (topic # 16.2)of your Calculus By
Howard Anton.

30

© Copyright Virtual University of Pakistan



6-Geometry of continuous functions \%49

Lecture No -6 Geometry of continuous functions

Geometry of continuous functions in one variable or Informal definition of
continuity of function of one variable.

A function is continuous if we draw its graph by a pen then the pen is not raised so that
there is no gap in the graph of the function

Geometry of continuous functions in two variables or Informal definition of
continuity of function of two variables.

The graph of a continuous function of two variables to be constructed from a thin sheet of
clay that has been hollowed and pinched into peaks and valleys without creating tears or
pinholes.

Continuity of functions of two variables
A function f of two variables is called continuous at the point (x),y() if

1. f (%) if defined.

2. lim f(x,y) exists.
(X,¥)=>(X9,Yo)

li f(x,y) =
3 ylim TOGY) = f(xpvp)

The requirement that f (X(¥ () must be defined at the point (xp:¥0) eliminates the
possibility of a hole in the surface z =f (xo,yo) above the point (XO,yO).

Justification of three points involving in the definition of continuity.

(1) Consider the function of two variables x> + y* In(x> + y*) now as we know that the
Log function is not defined at 0, it means that when x = 0 and y = 0 our function

x>+ y* In(x* + y*) is not defined. Consequently the surface z = x>+ y* In(x* + y*) will
have a hole just above the point (0,0)as shown in the graph of X* + y* In(x* + y*)

z=(x2+ yz) In(x? + 3'2)
has a hole at
the origin.

(2) The requirement that ( )liI(n : f (X, y) exists ensures us that the surface z = f(x,y) of
X,¥)=>(%Yo

the function f(x,y) doesn’t become infinite at (XO,yO) or doesn’t oscillate widely.
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: ) ) 1 )
Consider the function of two Varlablesﬁ now as we know that the Natural domain
X +y

of the function is whole the plane except origin. Because at origin we have x =0 and y =0
in the defining formula of the function we will have at that point 1/0 which is infinity.

1

1 . e
surface z=———— will approaches towards infinity when we approaches towards

A

Thus the limit of the function does not exists at origin. Consequently the

origin as shown in the figure above.

b Al

\/\_:+ V2
becomes infinite
at the origin.

(3) The requirement that

li f(x =
<x,y)g(rx10,yo) (%.Y) F(xpyp)

ensures us that the surface z = f(x,y) of the function f(x,y) doesn’t have a vertical jump or
step above the point (xo,yo).

Consider the function of two variables

0 if x>0andy=>0
1 otherwise

f(xy)= {
now as we know that the Natural domain of the function is whole the plane. But you
should note that the function has one value “0” for all the points in the plane for which
both x and y have nonnegative values. And value “1” for all other points in the plane.
Consequently the surface

0 if x>0andy>0 . .
z=f(x,y)= ] has a jump as shown in the figure
1 otherwise
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; O ifx=0,y=0

1 otherwise

has a vertical jump
at the origin.

Example
Check whether the limit exists or not for the function
2
X
li f(x,y)=
(0.0 (*.y) x> +y?
Solution:
First we will calculate the Limit of the function along x-axis and we get
2
X
li f(x,y)= =1(Along x-axis
o, T6Y) =257 o = | (Along x-axis)
Now we will find out the limit of the function along y-axis and we note that the limit
2
is lim f(x,y)= 2y =1(Along y-axis). Now we will find out the limit of the
(x.y)>(0,0) vy’ +0

2

. . . X
function along the line y = x and we note that lim f(x,y)=—;
(X,¥)—(0,0) X+ X

= % (Along y = x)

2

It means that limit of the function at (0,0) doesn’t exists because it has different values
along different paths. Thus the function cannot be continuous at (0,0). And also note that
the function id not defined at (0,0) and hence it doesn’t satisfy two conditions of the
continuity.

Example
Check the continuity of the function at (0,0)

sin(x’ +y%)
f(x,y) :j Xty if (x, y) #(0,0)

1 if (x,y)=(0,0)

Solution:
First we will note that the function is defined on the point where we have
to check the Continuity that is the function has value at (0,0). Next we will find out the
sin X

Limit of the function at (0,0) and in evaluating this limit we use the result ling =1
X—> X

and note that
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Sin(x? + y?)
lim f(x,y) = lim — 2 2
+y
(xy)— (0,0) (xy)— (0,0
=1=1(0, 0)

This shows that f is continuous at (0,0)

CONTINUITY OF FUNCTION OF THREE VARIABLES
A function f of three variables is called continuous at a point (x,y(,z) if

1. f(xpy(-2q) if defined.
2. lim f(X,y,2) exists;

(X,¥,2)>(X,Y0,20)

3 lim f(x,y,2) = f(xq,y0-20)-

(%,¥,2)=>(%9,Y0-20)

EXAMPLE
Check the continuity of the function
y+1
f(x,y,2)=—"———
(%.%.2) X2 +y’ -1
Solution:

First of all note that the given function is not defined on the cylinder
x> +y?> —1= 0 .Thus the function is not continuous on the cylinder x* +y* —1=0
And continuous at all other points of its domain.

RULES FOR CONTINOUS FUNCTIONS

(a) If g and h are continuous functions of one variable, then f(x, y) = g(x)h(y) is a

continuous function of x and y

(b) If g is a continuous function of one variable and h is a continuous function of two
variables, then their composition f(x, y) = g(h(x,y)) is a continuous function of x and y.

A composition of continuous functions is continuous.

A sum, difference, or product of continuous functions is continuous.

A quotient of continuous function is continuous, expect where the denominator is zero.

EXAMPLE OF PRODUCT OF FUNCTIONS TO BE CONTINUED
In general, any function of the form
f(x, y)= AX"y" (mand n non negative integers)
is continuous because it is the product ofthe
continuous functions AX™ and y".

The function f(x, y)=3x"y" is continuous
because it is the product ofthe continuous
functions g(x) =3x" and h(y) = y’.

CONTINUOUS EVERYWHERE

A function f that is continuous at each point of a region R in 2-dimensional space or
3-dimensional space is said to be continuous on R. A function that is continuous at
every point in 2-dimensional space or 3-dimensional space is called continuous
everywhere or simply continuous.
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Example:

(Df (x,y) =In(2x —y +1)
The function f is continuous in the whole region where 2x > y-1, y < 2x+1.And its region
is shown in figure below.

@ f(x,y)=e7"

The function f is continuous in the whole region of xy-plane.

3 f(x,y)=tan"'(y—X)

The function f is continuous in the whole region of xy- plane.

@ f(xy)=yy—x

The function is continuous where x >y

Partial derivative
Let f be a function of x and y. If we hold y constant, say y = Y, and view X as a variable,

then f(x, yo) is a function of x-alone. If this function is differentiable at
X=X, then the value of this derivative is denoted by fX(x0 , yo) and is called the Partial
derivative of f with respect of x at the point (x0 , yO) .

Similarly, if we hold x constant, say x =x, and view y as a variable, then f (xO ,y)isa

0
function of y alone. If this function is differentiable at y = Yor then the value of this
derivative is denoted by fy (xO , yo) and is called the Partial derivative of f with respect

of y at the point (XO , yO)
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Example
f(X,y)=2Xy* +2y +4x
Treating y as a constant and differentiating
with respect to X, we obtain
fr (X, y) = 6X°y° +4
Treating X as a constant and differentiating
with respect to y, we obtain
fy(x,y)= 4y +2
Substituting X = 1 and y = 2 in these partial-derivative formulas yields.
fr(1,2)=6(1*(2° +4 =28
fy(1,2) =4(1’2)+2 =10

Example
Z=4x> -2y +7x%y’
% _gx+28x° y’
OX
R_ oy 35x*y*
oy
Example

z=f(x,y)=xsin’y

Then to find the derivative of f with respect to X we treat y as a constant therefore

0z .
—=f, =2xsin’y
OX
Then to find the derivative of f with respect to y we treat X as a constant therefore
0z

2 .
—=f,=x"2sinycosy

=Xx’sin2y

2 2
Zzln(x Y j
X+Yy

By using the properties of the In we can write it as

z=In(x>+y*) - In (X +Y)
a 1 1
5:x2+y2'2x_x+y
X2y XY
S (YY)
Xy -y
S (YY)

Example

Similarly, (or by symmetry)
a y+uxy-x

& (CHY)x+Y)
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Example
P z = x"sin(xy’)
0z _ 0 4 - 3
x —&[X sin(Xxy )]
=x' i[sin(xy3)] + sin(xy3)i (x*)
OX OX
=x*cos(xy’)y’ +sin(xy’)4x’
a _ x*y? cos(xy?) +sin(xy?)
OX
_ E[x“ sin(xy3)]
oay oy
=x* g[sin(xf’)]+sin(xy3)i(x4)
oy oy
= x* cos(xy?).3xy’ +sin(xy*).0
=3x"y* cos(Xy’)
Example
z=cos(x’y")
(o4 o osoa 0 s g
— =—sin(X’y*)—(x
x sin(X’y") ax( YY)
=-5x*y*sin(x’y*)
oz . osoa O s g
—=—sin(X’y") —(Xy")
oy oy
=—4x’y’sin( X’ y*)
Example
w =X +3y°+4z°xyz
ow
ox 2X —yz
ow
E =0y - xz
dw
Az 8z - xy
37
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Lecture No -7 Geometric meaning of partial derivative

Geometric meaning of partial derivative

z=1(x,y)
Partial derivative of f with respect of x is denoted by

oz of
ox O X OT oy

Partial derivative of f with respect of y is denoted by

O Of

oy or fy or gy

Partial Derivatives
Let z = f(x, y) be a function of two variable defined on a certain domain D.
For a given change Ax in x, keeping y as it is, the change Az in z, is given by

Az=f(x+Ax,y)-f(x,y)
If the ratio

A4z fx+4x Y)-f(x,y)
AX A X

approaches to a finite limit as Ax —0, then this limit is called Partial derivative of f with

respect of x.

Similarly for a given change Ay in y, keeping x as it is, the change Az in z, is given by
Az=f(x,y+Ay)-f(x,y)

If the ratio
4 _ f(X 5 y+ Ay) — f(Xa y)
dy Ay

approaches to a finite limit as Ay —0, then this limit is called Partial derivative of f with
respect of y.

Geometric Meaning of Partial Derivatives

Supposa =f(x, y) is a functionof two variablesThe ‘

Vertical axis in

graph of f is a surface. LetP be a point on the graph

the plane y = ¥,

with coordinates (Xo, Yo, f(Xo, Yo)). If a point starting

2= flx,y)

The curve 7 = flx, y,) \
fromP, changes its position on the surface such that Y nthe pancy =

Tangent line

remains constant, then the locus of this point is the curve

. )
of intersection ofz=f(X, y) andy = constantOn this curve, i /\
— L
é’z . . . . . ; L il (x5 ¥p) v
5( is derivative of =f(X, y) with respect t& withy constan | (gt hoy)
Horizontal axis in the planc y = y,

z
Thusg( = slope of the tangent to this curve atP
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Z
Similarly, g_y is the gradient of the
tangent at p to the curve of

intersection of z=f(x,y) andX = constant.
As shown in the figure below (left) Also together these tangent lines are shown in figure
below (right).

Vertical axis
in the plane This tangent line t
has slope f,(xg, vg)
v Plxg, g flag, vold |
| This tangent line
{ - has slope f.(xg. ¥g)

X Xy
NMngent line
The curve z = f(xg, ¥)

in the plane x = x; = :
The curve z = f(x, yo)

i3 \\/ -~ in the plane y = y,

1

\ i
3 i
1

i

1

o e
W

- IS e .
0 ! / . A ) \
7 : s /
} N . / / f,
(o o y / / Ry
The curve z Flxge V) ' NG f [ \ \
in the plane Horzontal axis Y=X (X ¥p)  x=xp

X = xy in the plane x Xy

Flx, vy

Se=flny)

Partial Derivatives of Higher Orders
The partial derivatives fy and fy of a function f of two variables X and

y, being functions of X and Yy, may possess derivati ves. In such cases,
the second order partial derivatives are defined as below.

¢ (éf ¢
,—(,—) — = — () = (fdx = fux =

cX\ CcX c X cX

i(ﬁ)— R
cy\ éx _c’yéx_éy(x)_(x)y_

i(ﬂ)— L= )y =t
cx\ ¢ _oxoy_ 2x Ty = (y)y = fyx

y
Thus, there are four second order partial derivatives for a
function z=f(x, y). The partial derivatives fyy and fyy are called mixed

Oy(fy) = (fyy = fyy ="y’

second partials and are not equal in general. Partial derivatives of
order more than two can be defined in a similar manner.

Example

.| X
of = argsin y |1

ox DAY

X
oy
2z _ e X =X
» \/1 Y yly e
Y

2 22302 —_—y
—X 2 =
y ) y V"
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7-Geometric meaning of partial derivative

VU

ik :i(ﬂj
ox oy ox\ oy

B
N (y2 = x2)3"2
Y xiox _y

- y(y2 — x2)32 - (v = x3)*"2

Hence
A%z 2%z

OX 3y Oy Ox

Example

f(X,y)=Xcosy+ ye”

of +yeX
—=cos
ox y+ty

o*f 0 (8fj : X
=—|—|=-siny+e
oyox oy \ ox

o f a(aj )
_ _ye

x> ax\ox

f(x,y)=xcosy +ye”"
of : X
5 =-—XSsmy t+e¢
o
0x0y
O f o (of

@ :8_y (a—yj =-XCOoSy

= —siny + "

Laplace’s Equation

For a function w = f(X,y,2)

The equation
1 A A
)

Xt ey 1

is called Laplace’s equation

© Copyright Virtual University of Pakistan
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7-Geometric meaning of partial derivative

VU

Example

f(x,y)=¢e"siny + €’ cos x,

= e*siny — &’ sin x

X

i G y

o2~ € siny—€ cosXx

o €cosy + ecosx

% =-¢'siny +€ cosx

e
Adding both partial second order derivative, we have
A y
WJrﬁ_yZ: €siny — e cos X

—e'siny+ cosX

Euler’s theorem
The mixed derivative theorem

If f(x,y) and its partial derivatives fX, fy’ ny and fyx are defined throughout
an open region containing a point (a, b) and are all continuous at (a, b), then
fxy(a ,b)= fyx (a,b)

Advantage of Euler’s theorem

ey

w=Xxy+
y y’+1

The symbol 62W/ ox 0Oy tell us to differentiate first with respect to y and then with respect
to x. However, if we postpone the differentiation with respect to y and differentiate first

with respect to x, we get the answer more quickly.

ow oW _
ax=y Oyox

Overview of lecture# 7
Chapter # 16 Partial derivatives
Page # 790 Article #16.3
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8-Euler theorem chain rule vuU

Lecture No- 8 More About Euler Theorem Chain Rule

In general, the order of differentiation in an nth order partial derivatice can
be change without affecting the final result whenever the function and all its
partial derivatives of order < n are continuous. For example, if f and its
partial order derivatives of the first, second, and third orders are continuous
on an open set, then at each point of the set,

1txyy = fyxy = fyyx
or in another notation.
o f o f o f
O0y°0x Oyoxoy oxoy’
Order of differentiation
For a function

f(xy) =yx‘e +2

3 aXZ
If we are interested to find ¥ , that is, differentiating in the order firstly w.r.t. x
and then w.r.t. y, calculation will involve many steps making the job difficult. But if we
differentiate this function with respect to y, firstly and then with respect to x secondly
then the value of this fifth order derivative can be calculated in a few steps.

03 f
Y
5x26y3
EXAMPLE
-2
- Q)H_ —(X+ EX_
fx(x,y)=( P (1)—;): VoY)
_ (X=y)D)—(x+y)d)
(x=y)’
__—2y
(x=y)’
0 d
fY(X:y): y y

(x=y)’
(X=y)D) =X+ Y)(=D
(x—y)*

2X
(x-y)*
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8-Euler theorem chain rule

\48)

EXAMPLE

f(x,y)=x%"+y3sec~/x
f (X,y)=3x%7Y+y’sec~/X tan ﬁi

2/
f(x,y)= —x3eY +3y2sec/x

EXAMPLE

f(x,y)=x"ye”
f (X,y)=2xye” +x’y’e”
= xye™” (2+xy)
f, (LD =@O1e™ 2+ )1)]
=3e

f(x,y)=x>ye?

f (x,y)=x’eY +x’ye”

= x*e¥ (1+xy)

f,(L1) = DHMe™ 1+ D))
=2e

Example
f (X, y)=x* cos(xy)
f (X, ¥) =2xcos(Xy)—Xysin(xy)

f,(1,m) =2 V) cos( @) ~( 1)) (m)sin(72))

%

f,(x,y)=—x"sin(xy)
f,(5,7)=—(}) sin(%)
- X

43
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8-Euler theorem chain rule

\48)

EXAMPLE

W=(4x—3y+22)°
— =20(4x—-3y+22)"
o ( y+22)
ﬂ=—24 (4x -3y +22)’
OYOX
o*w
0Z0YOX
o*w
0z>0yoX

——1440(4x-3y+2z)*

=576 (4X—3y+22)

Chain Rule in function of One variable

Given that w= f(x) and x = g(t), we find dw as follows:
dt
From w = f(x), we get dw
dx
From x = g(t), we get dx

dt
Then

dw dw dx

dt ~— dx dt

Example

w=x+4, x=Sint
By Substitution
w = Sint + 4

dw

dt = Cost

w=x+4 :>dW=1
dx
d

X = Sint :>—X = Cost

dt
By Chain Rule

dw dw dx
at  dt th =1.x Cost=Cost
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8-Euler theorem chain rule vuU

Chain rule in function
of one variable

y is a functionof u, u is a functionofv
v is a function of w, w is a function of z
z is a function of x. Ultimately y is function of x
dy
dx
and by chain rule it is given by
dy _ dy du dv dw dz
dx dudvdw dz dx

so we can talk about

w = f(xy), x =g(t), y = ()

Dependent variable | -

ow

OX

22

| Intermediate variables | _ _

dx d

dt dt

dw awdx owdy !

- = 4 7

Independent variables

EXAMPLE BY SUBSTITUTION

W = Xy
X = cost, y = sint
w = cost sint

2 sint cot

N | —

=5 sin2t
d 1
&= cos2t.2
t 2
= cos 2t

45
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8-Euler theorem chain rule

\48)

EXAMPLE
W =Xy, X =cost,and y =sint
ow ow
dx

o
i sint, dt cost,

dw ow dx oJwdy

dt  ox di oy dti

= (sint)(—sint) + (cost)(cost)

.2
= - sint +cos’t = cos 2t

EXAMPLE

z =3y
x=t! A t

dt  ox 3d_t 3a_y at

(6xy”) (4t7) + 9x7y” (2t)

6 (31) (t%) (46) +9 (t%) () )
=247 +18t"7 = 42¢"

EXAMPLE
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8-Euler theorem chain rule

VU
dz_ 0z dx oz dy
dt ox dt ay dt
B 0 A Y S
\jl+x 2xy ¢t ‘\II-H(-ny4 '
e [y
\jl+x-2xy [ 2t
4
- —l—4 [ﬁt— - 4 (Int) tﬂ
A1+ lint- 2 (Inp & L 2t
T e em
= — -t* - 4f Int
1 +1nt- 26" Int L2t
EXAMPLE
2
z=In(Q2x +Yy) "
X = Nt, y=t
oz 1,
ox 22Xty x 2 +y
Gz __1 dx 11 &y _2.m
oy 2X +y’ dt 24 d 3
w=1f(xy.z), x =g(t) .y =f(t), z= h(t)
Dependent variable
w ow
o
dy
& dt o
v
Independent variables -
Overview of Lecture#8
Chapter # 16
Topic # 16.4
Page # 799 Book Calculus By Haward Anton
47
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8-Euler theorem chain rule vuU

Lecture No -9 Examples

First of all we revise the example which we did in our 8™ lecture.
Consider w = f(x,y,z) Where
x =9(t), y =1(t), z=h(9)

dw _owdx  owdy  owdz

= + +
dt oxdt oydt ozdt

Then

X=e, y = cost, z=t+4
ow ow oW

0x = 2% oy L 82_1

& _ o dy_ . dz

dt =e, at Sint, dt =1

dw ow dx owdy ow dz

dt  ox dt 9y dt o6z " dt
2x) (€") + (1) . (- Sint) + (1) (1)
2 (e") (") — Sint + 1

=2¢e” —Sint+1

Consider
w = f(x), where x = g(r, s). Now it is clear from the figure that “x” is
intermediate variable and we can write.

ow  dw ox d ow dw ox Denendent variahle
or dxor os dx os -
Example:
dw
w=Sinx+x’ x=3r+4s dx
dw
aw _ n . _
ax | CosXF2x Intermediate variables
ox _ oxX _
ow dw 0x 5 —
= A S
or dx or 0
=(Cosx+2x).3
=3 Cos (3r+4s) + 6 (3r + 4s) . .
=3 Cos 3r+4s) + 18r + 24s
ow_dw ox
Os dx " 0Os
= (Cosx +2x).4
=4 Cosx + 8x
= 4 Cos 3r+4s)+ 8 (3r+4s)
= 4 Cos (3r + 4s) + 24r + 32s
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9-Examples VU

Consider the function w = f(x,y), Where x =g(r, s), y = h(r, s)

Dependent variable

Intermediate variables

ow 0w 0x 0w 0y

or  0x or | dy or

Similarly if you differentiate the function “w” with respect to “s” we will get

And we have

Ow OwoOx Ow 0y

ds  0x ds Dy ds
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Consider the function w = f(x,y,z), Where x = g(r, s), y = h(r,s), z = k(r, s)

or X
0S

Independent variables

Dependent variable

intermediate variables

0z oz
or s

Thus we have

Ow 0w OX a_WQX_i_a_W@

or ox or oy or Oz or

Similarly if we differentiate with respect to “s” then we have,

oW 8W6_X+GWQX+8WQ

ds 0Ox ds Oy ds 0z Os

Example: r
Consider the function w=X+2y + 7?, x=—,y=r’+Ins, z=2r
S

First we will calculate

oW
oy S

0z or

ow OW OX Ow oW 0z
Now as we know that — = ——+ oy +—— By putting the values from above

or oxor oyor ozor

Y o2

or or

we get
SW 1
5_:(1)(_]+(z)(2r)+(22)(2)
r S
1
L arran@ =t
Now > S
x __roy_ 1 a_g
os 52 oS S 0S

So we can calculate w @Q+@ﬂ+@@
ds oxor oyor ozor

=(1>[—%]+(2)(1j+(2z>(0)
S S

2 r

s § 50
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9-Examples VU

Remembering the different Forms of the chain rule:

The best thing to do is to draw appropriate tree diagram by placing the dependent variable
on top, the intermediate variables in the middle, and the selected independent variable at
the bottom. To find the derivative of dependent variable with respect to the selected
independent variable, start at the dependent variable and read down each branch of the
tree to the independent variable, calculating and multiplying the derivatives along

the branch. Then add the products you found for the different branches.

The Chain Rule for Functions

of Many Variables
Suppose ® = f(x,y, ...., v) is a
differentiable function of the
variables x, y, ..... , L (a finite
set) and the x, y, ..., v are

differentiable functions ofp, q, , t
(another finite set). Then o is a
differentiable function of the
variables p through t and the
partial derivatives of ® with
respect to these variables are
given by equations of the form

80)_80)8X+§a)0”y+ +§a)§u
op oxdp T dep T _ﬁua“p'

The other equations are obtained by
replacing pbyaq, ..., t, one at a time.
One way to remember last equation
is to think of the right-hand side as
the dot product of two vectors with

components.
oxy P an opop op
Derivatives of  with Derivatives of the intermedaite
respect to the variables with respect to the
intermedaite variables selected independent variable

Example:
w=In(e" +e° +e' +e")

Taking “In” of both sides of the given equation we get
e"=e"+e° +e' +e"
Now Taking partial derivative with respect to “r, s , u, and t” we get

e'w, =e' > w =e" | e'w = w et | W, = =S W, =e" gy

3

eW\Nt — et — Wt — et—W

51
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9-Examples VU

Now since we have W, =e' " Now Differentiate it partially w.r.t. “s”
_ar-w
W, =€ "(-W,)

— gl Was W (Here we use the value of w; )

W = _er+s—2W

s

Now differentiate it partially w.r.t. “t” and using the value of W, we get,

— _er+s—2w (_2Wt )
— 2er+s—2wet—w

_ r+s+t-3w
W, = 2€

r

W

rst

(1]

Now differentiate it partially w.r.t. “u” we get,

_ r+s—3w
Wrstu =2e (_3 Wu ) and by putting the value of w,, we
get,

— _6er+s+t—3w (eu—w)

r+s+t+u—4w
6e

W

rstu

W

rstu
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11-The triple scalar or Box product \48

Lecture No -10 Introduction to vectors

Some of things we measure are determined by their magnitude. But some times
we need magnitude as well as direction to describe the quantities.
For Example, To describe a force, We need direction in which that force is acting
(Direction) as well as how large it is (Magnitude).
Other Example is the body’s Velocity; we have to know where the body is headed as well
as how fast it is.
Quantities that have direction as well as magnitude are usually represented by arrows that
point the direction of the action and whose lengths give magnitude of the action in term
of a suitably chosen unit.
A vector in the plane is a directed line segment.

A
v=AB
Vectors are usually described by the single bold face roman letters or letter with an arrow.
The > vector defined by the directed line segment from point A to point B is written as AB

Magnitude or Length Of a Vector :
Magnitude of the vector V is denoted by

| Q_l = |1:B> | is the length of the line segment AB

Unit vector
Any Vector whose Magnitude or length is 1 is a unit vector.

Unit vector in the direction of vector V is denoted by V.
and is given by

Addition Of Vectors

r A

Q) a
This diagram shows three vectors, in two vectors one vector OA is connected with tail of
vector AB . The tail of third vector OB is connected with the tail of OA and head is
connected with the head of vector AB .This third vector is called Resultant vector.
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11-The triple scalar or Box product \48

The resultant vector can be written as

r=a+b

Similarly
r=atb+ct+d+e+f

c D

=

|

O a

Equal vectors

Two vectors are equal or same vectors if they have same

magnitude and direction.
/
—
Two vectors are opposite vectors if they have same magnitude and
o
7

Parallel vectors
Two vector are parallel if one vector is scalar multiple of the other.

Opposite vectors

opposite direction.

b=41a
where A is a non zero scalar.
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11-The triple scalar or Box product \48

r=xi+yj+zk
Addition and subtraction of two vectors in rectangular component:

Let a=ajitajt+azk

and b=b1i+b2j+b3k
a+b=(ajit+ayj+ask)+ (bji+byj+bsk)
=(ar+by)i+ (a2 +b2)j+ (a3 + bs)k
a-b=(aji +ayj+ azk) - (bji + byj+ bszk)
=(a; -bp)i+ (az- bp)j+ (a3 - by)k

I th component of first vector is added (subtracted) to the ith component of second vector,
jth component of first vector is added (subtracted) to the jth component of second vector,
similarly kth component of first vector is added (subtracted) to the kth component of
second vector,

Multiplication of a vector by a scalar

2a

Any vector a can be written as

a=aa

Scalar product

Scalar product (dot product) (“a dot b”’) of vector a and b is the
number

a.b =a| |b| cos 0.
where 0 is the angle between a and b.

In word, a.b is the length of a times the length of b times the cosine of the angle between
aandb.

Remark:-

a.b=Db.a
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\48

This is known as commutative law.

Some Results of Scalar Product

a.b =a| |b| cos 0.
1. a|blIf

This means that if a is perpendicular to b.
Then a.b=0

Also

1j=0=j.
j-k=0=kj

k.i=0=ik

2. Ifa || b
That means a is parallel to b.
Then

ab =|a||b]
1f we replace b by a then
a.a = |a ||a|

2
aa=|a |

¢|a|:a.a

so ii=j.j=k.k=1

Example
Ifa =3k andb =\Ei +\Ek,
then
a. =|a||b|cosH

= (3) (2) cos ’i

P N
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EXPRESSION FOR a.b IN COMPONENT FORM
a=aji+ aj+azk and
b=b1i+b2j+b3k

a.b=(aji+ azj+ azk).(bji+ byj+ bsk)

=aji.(bji+ byj+ bsk)+ azj. (bji+ byj+ bsk)

+ aszk. (bll + bz_] + b3k)

aibji.i+ ajbai.j+ ajbsi.k + azbj.i+ azbaj.j
+ a2b3j. k + asbik .i+ + as;bk SJt asbsk . k

a1b1(1) + a1bs(0) + arbs (0) + azbi(0) + azbs (1)
+ azb3(0) + a3bi(0) + + azba(0) + aszbs(1)

= a;b; + a;b, + azbs

In dot product ith component of vector a will multiply with ith component of vector b ,
jth component of vector a will multiply with jth component of vector b and

kth component of vector a will multiply with kth component of vector

b

Angle Between two vectors

The angle between two nonzero
vectors a and b is

.b
0=cos™ (a )
alb]

Since the values of the arc
lie in [0, 7], above equation automatically
gives the angle made by a and b.
Example
a=i-2j—2kandb = 6i+3j+2k.
ab =(1)6)+(=2)3) +(-2)(2)

=6-6-4=-4
| =N £ 27+ (2) =V9 =3
b|=N©6)+( 37 +( 2 =N49 =7
= oanel [ o
0 = cos |1||b| )
= cos [mmmmm | = cos [ =]
= cos ((3)(7)) cos (21)~1.76rad

Perpendicular (Orthogonal) Vectors

a and b are perpendicular if and only if a.b=0.
This has two parts If “a” and “b” are per perpendicular then a.b=0. And if a.b=0 “a” and
“b” will be perpendicular.
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Vector Projectio

Consider the Projection of a vector b on a vector a making an angle 6 with each other

B

a C "A

From right angle triangle OCB
COS 9=Base / hypotenuse

-

COS@=| C|
b |

|OC| = |b|] Cos0
b| |a| CosO

The number |b | cos 0O is called the scalar

component of B in the direction of a .

. a
since |b| cos® =B. m,
we can find the scalar component by

“dotting” b with the direction of a

Example

Vector Projection of b =6i+ 3j+ 2k
ontoa =i-2j—-2k is
b.a

= — o

a a.a

proj 664
“Trarg (7272

4. ..
= —9(1—2]—2k)

_£'+§'+§k
T9'TglT gk

© Copyright Virtual University of Pakistan

58



11-The triple scalar or Box product \48

he scal®f Pa}ﬂponent
the direction of a
a 1, 2, 2
— — . + . + -t e o
|bjcos6 =b a] (6i + 3j + 2Kk). (31 31 3k)
4__14
3 3°

=0_2_

The Cross Product of
Two Vectorsin Space

Consider t wo nonzero vectors a
and b in space. T he vec tor
product a x b (“ a cross b ) to be
the vector

ax b=( a||b|sin 0)n
where  n is a vector determined
by right hand rule.

Right-hand rule

AX B]. B

We start with two nonzero nonparallel vectors A and B .We select a unit vector n
Perpendicular to the plane by the right handed rule. This means we choose n to be the
unit vector that points the way your right thumb points when your fingers curl through the
angle O from A to B .

The vector A*B is orthogonal to both A and B.

Some Results of Cross Product
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axb=|a||b/Sin 0 fi

Ifa|lb

then axb=0

So axa=0

ixi =jxj=kxk=0

If alb

then a x b = |a| |[b| fi
ixj=k, jxi=-Kk
jxk=1i, kxj=-1i

kxi=j ixk = -j
Note that this product is not
commutative.

The Area of a Parallelogram

Because n is a unit

the magnitude ofa x b is Area = base - height

la xb|=1a||b||sin 0| n| = |al- [bl|sin 6]
=|A| b|sin 6 =laxb

This is the area of the

determined by a and b b

|a | being the base of the
and | |sin6)| the
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a x b from the components of a and b

Suppose
a =aji+aj+ask,
b =bii+ b2j+ bsk.
a xb = (aii+azj+ask) x (bii+ baj+ bsk)
= atbiixi+aibix j+arbsixk
+azbij x i+ azbajx j+asbsjx k
+azbik x i +asbok x j+asbsk x k
Y Eﬂ%ﬁﬁikdn — a3b)j
b =lajty bt ek

i j k
axb=laa a a
bi b2 b3
Example:
Let
a=2i+j+k and b=-4i+3j+k.Then
i j k
axb=2 1 1
-4 3 1

axb=i(1-3)— j2+4)+k(6+4)
axb=-2i—6]+10Kk is the required cross product of a and b.

Over view of Lecture # 10
Chapter# 14

Article # 14.3, 14.4

Page # 679
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Lecture No -11 The Triple Scalar or Box Product

The product (axb) . ¢ is called the triple scalar product of a, b, and ¢ (in that order).

As | (axb).c | = |axb| |c| |cos O]

the absolute value of the product is the volume of the parallelepiped (parallelogram-sided
box) determin-ed by a,b and ¢

axb
C

b . —— Areaof base

,‘r

Height = || |cos ]} 0
\ e =axb
>

a

Volume = (area of base) (height)

=lax bl e cose

=laxb.¢
By treating the planes of b and ¢ and of ¢ and a as he base planes of the parallelepiped
determined by a, b and c
we see that

(a * b).c = (bxc).a=(cxa).b

Since the dot product is commutative, ( a xb).c =a.(bxc)

a=aji+ayj+azk,
b=bji+ sz + bsk.
c=cjitcyjt+ck.

i j kK
a.(bxe)=a.la a a3
by by bs
:a.[ by bs|. [br bs| . b1 b k}
Cy C3 C; C3 1 G
b, b3 by b by b
= a —aj +a3
Cy C3 C1 Ci C
a as as
— | b b, bs
E 1 Ct C ¢C
SHAIRE L _j42j—k, b =-2i+3k, ¢ =7j-4k.
1 2 -1
a.(bxec)=(-2 0 3
07 —4
o 3) 5|2 3‘ ‘—2 o)
|7 -4 1 0-4 |0 7
=_21-16+14
=-23

The volume is
When we solve a.(bx?ltl}eﬁ @gwr-_lszg3 . if we get negative value then Absolute value

make it positive and also volume is always positive.
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Gradient of a Scalar Function

V is called “del operator”
Gradient ¢ is a vector operator

dgfidehhs ¢ is a vector operator
defined

CHTE )

V is called “del operator”
V “del operator” is a vector quantity. Grad means gradient. Gradient is also vector
quantity. y/¢ is vector and ¢ is scalar quantity, Every component of V ¢ will operate
with the

Directional Derivative

If f(x,y) is differentiable at (x  0,Yo0),

and if u=(u 1,u2) is a unit vector, oz Duflxo.y0) = i
then the directional derivative of f at 7 1
(x0, y 0) in the direction of uis o + ¥
defined by A

Duf(x0,y0) = fx(x0,y0)ur + fy(Xo0,yo)u2 ,

It should be kept in mind that  there |
are infinitely many directional / B =
derivatives of z = f(x,y)  at a point /f o 70
(x0,y0), one for each possible choice o

of the direction vector u

Remarks (Geometrical interpretation)
The directional derivative D f(Xo,y0)
can be interpreted algebraically as
the instantaneous rate  of change in
the direction of u at (xo,yo ) of
z=f(x,y) with respect to the distance
parameter s described above, or
geometrically as the rise over the run
of the tangent line to the curve C at
the point Qg

Example
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The directional derivative of
f(x,y) = 3x 2y at the point (1, 2) in the
direction of the vector a = 31 + 4.

f(X9Y) o 3X y

fx(x,y) = 6xy, fy(x,y) = 3 x?
so that

fx(1,2) =12, fy(1,2) =3
a= 3i+4j

/\

— (Bit+4j)
\/7
J

u]|uo—|

“5175
3 4
Duf (1,2) =12 (g) +3 (gj
_48
-5

Note:

Formula for the directional
derivative can be written in the
following compact form using the
gradient notation

. A
Duf(Xa Y) o Vf(Xa Y) - u
The dot product of the gradient of f
with a unit vector @ produces the

fy means that function f(X,y) is differentiating partially with respect to x and
f, means that function f(x,y) is differentiating partially with respect to y.

Another example, In this example we have to
find directional derivative of the function

f(x,y)=2x>+Yy” at the point P,(-1,1) in
the direction of u = 3i — 4j. To find the
directional derivative we again use the
above formula

us = sinf

Example
2 2
fix,y)=2x +y, Po(=1,1)
u=3i—4j
|u|—\l32+( 47 =5
3
/\__.__.
Y57
fi = 4x K(=1,1)=-
fy =2y f(=1,1)=2
Duf (-1,1) = fx(-1 1)u1+fy( 1,DHuy
_ L2 8
-t
Remarks
If w =uwi+uzjis aunit vector
making an angle 9 with the positive
X - axis, then
u; =cos 0 and
Duyf(xo0,y0)=f x(xo,yo)uir +f y(xo,yo)u2
can be written in the form
Duf(xo,y0)=f x Xo,yo)cos 6 +f y(Xo,y0)sin®
Example
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The directional derivative of e*’ at
(-2,0) in the direction of the wunit
vector u that makes an angle of n/3
with the positive x-axis.

fix,y)=e"
f(xy)=ye?, £ (xy)=xe?
fx (-2,00=0, fy(2)=-2

Dufl=2, 0)= £, (- 2, 0) cos §+fy(—2, 0) sing

Gradient of function

Iff is a function of x and
then the gradient of is defined

VI (x,y)= fi(x,y)i+ fy(X,y)j

Directional Derivative

Formula for the directional derivative can be written in the
using the gradient

N f(x, y)= VI, y). o

The dot product of the gradient  f

with a unit it produces
directional derivative of f in
direction u.

following compact form

EXAMPLE
5 ,In this example we have to find directional
f(x,y) = 2xy— 3y, Po(5,5) derivative of the function
u=4i+3j |u£: AJ42 132 =5 f(X,y)=2x y—3y~ at the point Po(5,5) in
AW 4. 3. the direction of u = 4i + 3j. To find the
u= =Z11t7_] J
| 5 5 directional derivative we again use the
t =2y, fy =2x — by above formula

f(5,5)=10, fy(55)=-20
V= 10i - 20j
Duf(5,5)=Vf. 1

offnf
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EXAMPLE

Directional derivative of the function
f(x, y) = x&+cos (xy) at the point
(2,0) in the direction ofa = 3i — 4j.
A_QAa § . ﬂ .
u—lal—sl—sj.

f (x,y) = €'~y sin (xy)

fy(x,y) = xe —xsin(xy)

The partial derivatives of f

at (2, 0) are

f (2,00=¢"—0 =1

£(2,0) =2e'-2.0 =2

The gradient of f at (2, 0)

Vieo = x(2,0)i+ y(2,0)j
=i+ j

The derivative of fat  0) in the

direction ofa is

( u)o =Vieo.

BN
.]) 51_5.]
3_8__
5 5

Properties of Directional Derivatives

Duf=Vf.ﬁ=|Vﬂc0s9

1. The function f increases mostrapidly when cos = 1, or when u is the direction of

Vf. That is, at each point P in its domain, f increases most raf)\idly in the
direction of the gradient vectorV f at P. The derivative in this direction is

Duf=(V{] cos(0) = [V{].

2. Similarly, f decreases most rapidly in the direction of — vy,
The derivative in this direction is

Duf5|V flcos( n)= - |V 1.
3. Any direction i orthogonal of the gradient is a direction of
zero change in fbecaussg 0 thenequals m/2 and

Duf=V1] cos (n/2)=V{].0=0 "
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< ¥
fLy) =5 +5

a) The direction of rapid change

The function increases most rapidly in the direction of v/ fat
(1,1). The gradient is
(VB =G+ ypan =i+

its direction is
A At

i+ j
it
V(l)z + (1)2

=i +_ (1,1) are the directions orthogonal to Vf.

{{

b) The directions of zero change

The directions of zero change at

A

A —jt+—

R

A1 1
and —n=—F=i—-——F7j.

2 A2
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Most rapid — Zero change
decrease in f n f

Most rapid /Vj: i+ j

increase injf

68
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12-Tangent planes to the surfaces \48)

Lecture No -12 Tangent planes to the surfaces

Normal line to the surfaces

If C is a smooth parametric curve on three dimension, then tangent line to C at the point
Po is the line through Poalong the unit tangent vector to the C at the Po.The concept of a
tangent plane builds on this definition.

If Po(x0,y0,20) is a point on the Surface S, and if the tangent lines at Po to all the
smooth curves that pass through Po and lies on the surface S all lie in a common plane,

then we shall regards that plane to be the tangent plane to the surface S at Po.

Its normal (the straight line through Po and perpendicular to the tangent) is called the
surface normal of S at Po.

Different forms of equation of straight line in two dimensional space

1. Slope intercept form of the Equation of a line.

y=mx+c
Where m is the slope and ¢ is y intercept.

2.Point_Slope Form

Let m be the slope and P,(X,, Y,) be the point of required line, then
- =mx-—-Xx
Y=Yp=mE-xy)
3. General Equation of straight line
Ax+By+C=0

Rise b Rise

m = slope of line = =

y—w=§@—m)

Run a

A
/ Run

Parametric equation of a line

69
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12-Tangent planes to the surfaces \48)

Parametric equation of a line in two dimensional space passing through the point (xo, yO)

and parallel to the vector ai + bj is given by

X=x0+at, y=y0+bt

Eliminating t from both equation we get

X=X y-—W
a _b b
y-y=, x-x)

Parametric vector form:
r(t) = (xq +at) i +(yq +bt) j,

Equation of line in three dimensional

Parametric equation of a line in three dimensional space passing through the point (xO,

Yoo ZO) and parallel to the vector ai + bj + ck is given by
X =Xt at, y=y0+bt, z=17,+ ct

Eliminating t from these equations we get

X=X _Y=Yo _Z=2%
a b ¢
EXAMPLE
Parametric equations for the straight line through the point A (2, 4, 3) and parallel
to the vector v=4i+ 0j— 7k .

XO=2,yO=4,zO=3

anda=4,b=0,c=-7.
The required parametric equations of
the straight line are
X =2+4t,
y=4+0t,
z=3-Tt

Different form of equation of curve
Curves in the plane are defined in different ways

Explicit form:
y = 1(x)

© Copyright Virtual University of Pakistan
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Example
y = 9-x" -3 <x<3.
Implicit form:
F(x,y)=0
Example
]
X +y: =09, 3<x<3, 0<y<3

Parametric form:

x= f(t) and y = g(t)

Example
X = 3co0s0, y = 3sin0, 0<0<nm
X =3cosf, y=3sind
X + y2 =9 cos’ + 9sin’0

= 9(Cos’@ + Sir'0)
2 2
X +y =9
Parametric vector form:

r(t) = (1) i +g(t) j, a<t<b.

r (t) =3 cospi + 3 sinfj, 0 <O <.

Equation of a plane

A plane can be completely determined
if we know its one point and

direction of perpendicular

(normal) to it.

Let a plane passing through the point P (XO, Yor ZO) and the direction of

normal to it is along the vector

n =ai+ bj +ck
Let P (x, y, z) be any point on the plane then the line lies on it so that n
1 FOIS (L means perpendicular to )

PoP = (x—x0) i+ (y—y0) j + (z— ) k
.PoP=0

=]
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12-Tangent planes to the surfaces

a(x—x0)+b(y—yo)+c(z—2)=0

is the required equation of the plane

Here we use the theorem ,let a and b be two
vectors, if a and b are perpendicular then
a.b=0 son andP,P are perpendicular vector so

n.PoP=0

REMARKS

Point normal form of equation of plane is
a(x—x0)+b (y—y0)+c(z—zo)=0

We can write this equation as
ax+by+cz—ax0—by —cz, =0

0 0
ax+by+cz+d=0
where d=—ax0—by0—czo

Which is the equation of plane

EXAMPLE

An equation of the plane passing through the point (3, - 1, 7) and perpendicular to the
vector n = 4i + 2j - Sk.
A point-normal form of the equation is
4x-3)+2(y+1)-5@z-7)=0
4x +2y-52+25=0
Which is the same form of the equation of plane ax + by + cz+d =0

The general equation of straight line
isax+by+c=0

Let (x1, y1) and (%, y2) be two points
on this line then

axi +byt +¢c=0

axx tby+c¢=0

Subtracting above equation

a(x -x1)+b(-y)=0
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12-Tangent planes to the surfaces

vV=(x —x)it+ (y2— y1)j
1s a vector in the direction of line

¢(x, y) =ax+by

(I)X:a) (I)y:b
Vo=ai+bj =n
Vo.r=0

Then nand v are perpendicular

The general equation ofplane is
ax+by+tcz+d=0

For any two points (x;, yi, z;) and
(X2, Y2, ) lying on this plane we

have

ax; +by; +cz; +d=0 (1)

axp+tby+cz+d=0 2)
Subtracting equation (1) from (2)
have

a (x—x1)th (y2—y1) tc(z—-21)=0
(ai + bj + ck).| (e X) iHY2Y) (220 k ]

Here we use the definition of dot product of two vectors.

¢ =ax +by +cz

ox=a, ¢y =b, ¢z =c

V¢ =ai+bj+ck

Where v = (x2 — x))it(e—-yDj+ (22 =z Dk

V¢ 1s always normal to the plane.

Gradients and Tangents to Surfaces

fx,y)=c
z=1xy), z = c

If a differentiable function f(x,y) has a constant value c along a smooth
curve having parametric equation

x=g(), y=h(t), r=g(t)ith ()]
differentiating both sides of this
equation with respect to t leads to the
equation

d d
4160, h) = (¢)
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A d_q_ A dh_ )
xdt oy dt Chain Rule

@ d@j((lq 3?‘) 0
r
a0

Vftis normal to the tangent vector d r/dt,
50 it is normal to the curve through (xy, yo).

Tangent Plane and Normal Line

Consider all the curves through the point

P0(x0, y0, z0) on a surface f(x, y, z) = 0. The plane containing all the tangents to these
curves at the point PO(x0, y0, z0) is called the tangent plane to the surface at the point
PO.

The straight lines perpendicular to all these tangent lines at Po is called the normal line to
the surface at PO if fx, fy, fz are all continuous at Po and not all of them are zero, then
gradient f (i.e fxi + fyj + fzk) at PO gives the direction of this normal vector to the surface
at PO.

Tangent
T i lines 5
S NP/l s
F o e ( ! \\\Tangent
/ ; plane
| A 24
/) s (X0, ¥o)
/7 All tangent lines
4 at By lie in the
/ tangent plane.

{8
P

Tangent plane
Let Po (xo0, Yo, o) be any point on the Surface
f(x,y,z) = 0. If f(x,y,z) is differentiable
at po(x0,y0,20) then the tangents plane at the

point Po (X0,y0,20) has the equation

EXAMPLE
OX +4y -7 =36 P (2,3,6).
f(x,y,2) = 9%+ 4y2 ~7-36
f=18x,  f =8y, f,=-2z
Equationsgofpaneggt Plpngppths gurfaeep) — 1
74
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\48)

through P is

36(x — 2) + 24(y — 3) ~12(z— 6) =0

3x+2y—-z—-6=0

EXAMPLE

z=xcosy—ye (0,0,0). 5

cosy—ye —z=0
f(x,y,z) =cosy—ye*—z
(0,0, 0) = (cos y —ye“ )00 =1-0.1=1
(0,0, 0) = (- xsiny — € )00 =0—-1=—1.
£(0,0, 0)=-1

The tangent plane is

&(0,0:0)(x — 0)+fy (0,0,0)(y — 0) + £2(0,0,0)(z—0)=0

1(x=0)-1(y-0)-1(z-0) =0,

x—y—-z=0.

Normal Tangent
line K/—_ plane

75
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Lecture No -13 Orthogonal Surface
In this Lecture we will study the following topics

Normal line

Orthogonal Surface

Total differential for function of one variable
Total differential for function of two variables

Normal line

Let B (x0,y0,20) be any point on the surface f(x,y,z)=0 If f(x,y,z) is differentiable at
P {X0yazo) then the normal line at the point P(x o,y .z,) has the equation

x = xot+f&x(Po)t, y= yo+fy(Po)t, z=2+H{(Po)t

Here fx means that the function f(x,y,z) is partially differentiable with respect to x And
fx(Po) means that the function f(x,y,z) is partially differentiable with respect to x at the
point Po(x0,y0,z0)

fy means that the function f(x,y,z) is partially differentiable with respect to y And fyPo)
means that the function f(x,y,z) is partially differentiable with respect to y at the point
Po(x0,y0,z0)

Similarly

fz means that the function f(x,y,z) is partially differentiable with respect to z And fz(Po)
means that the function f(x,y,z) is partially differentiable with respect to z at the point
Po(x0,y0,z0)

EXAMPLE

Find the Equation of the tangent plane and normal of the surface f(x,y,z)= x2+y2+z2-4 at
the point P(1,-2,3)

f(x,y,z) = )(2+y2+z2 - 14
P, —-2,3).
f = 2x, fy =2y, t,=2z
f(po)=2, £ (Po)=-4, z(Po)=6

Equation of the tangent p lane to the surface at P is

76
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2x—1)-4(y+2)+6(z —3)=0
Xx—2y+3z14=0
Equations of the normal line  of the

surface through P are

x—1 _X+2 z-3

2 -4 6
x—1 —X+2 z—-3
EXAMPLE 1 -2 3

Find the equation of the tangent plane and normal plane

4X—y +37 =10 P (2-3,1)
f(x,y,z) = 4% - y2 +372-10
f, = 8%, fy=-2y, f,=6z
tc(P)=16, f (P)=6, t,(P)=6

Equations of Tangent Plane to the surface through P is
16(x-2)+6(yt3)+6(z-1)=0
8x +3y+3z=10
Equations of the normal line to the
surface through P are
x-=2 y+3 z-1

16 6 6
x-2 y+3 z-1
8 3 3
Example
I )
Z—2xy

1
f(X7Y>Z) = E X7 y_2 —Z

7
x=5 Xé.y'z’ fy=- x7.y'3, f=-1

f (2,4, 4) —% QP @?*=14
f(2,4,4)=(2) (4y°=-2
£,(2,4,4)=1
Equation of Tangent at (2, 4, 4) is given by
fX(29494)()92)+ @(27474)(}]_4)-'_ fZ (27474)(2_4) - O
4x-2)+2)(y-4)-(z-4)=0
14x —2y—z—-16=0
The normal line has equation
X =2+4(2,4,4)t, y =4+1(2,4,4) t,z =4+1,2,4,4}

x =2+ 14¢, y =4-2t, z=4-t 77
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ORTHOGONAL SURFACES

Two surfaces are said to be orthogonal at a point of their intersection if their normals
at that point are orthogonal. They are Said to intersect orthogonally if they are orthogonal

at every point common to them.

CONDITION FOR ORTHOGONAL SURFACES

Let (X, Yy, z) be any point of intersection of

f(X> Y, Z) = 0---- (1)
and g (Xa Y, Z) =0 - (2)
Direction ratios of a line normal to (1) are f , fy 1

Similarly, direction rations of a line normal to (2)
are g, o g

The two normal lines are orthogonal if and only if

fget gy + g =0
EXAMPLE
Show that given two surfaces are orthogonal or not
fixy,z)=x+y +z—16 (1)
gxy2)=X+y - 638 (2)

Adding (1) and (2)
ry=2 =1 0

fk=2x, =2y f,=1
&=2X, g =2y g=-063
foec + gy + g
=4(x*+y)-63 using (3)
fect 6 g t+hg

63
—4(4)—63—0

Since they satisfied the condition of orthogonality so they are orthogonal.

Differentials of a functions

For a function y = f(x)
dy=frd>
is called the differential of functions f(x)

dx the differential of x is the same as  the actual change in x

i.e. dx = Vx where as dy the

differential of y is the approximate change in the value of the functions \hich
1S different from the actual change Vy in the value of the functions. 78
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Distinction between the increment Ay and the differential dy

T y = o)
i dy
/Ax-—— dx
X X + Ax b
(x + dx)

Approximation to the curve

If f is differentiable at x , then the tangent line to the curve y = f(x)

at x, is a reasonably good approxiimation to the curve y = f(x) for value of x

near x; Since the tangent line passes

through the point (xo, f(x0)) and has slope f(xo), the point-slope form of

its equation is
y — f(x0) = f(X0)(x — X0) or

y = f(x0) + f(x0) (x = X0)

EXAMPLE

fx) 2 x
x =4 and dxAx = =\/§
Ay =Nx +AX =V x
7 V4 ~.65

Ify =\ x , then
dy 1

S A
dc oy 0 Y T
1 3
=—F 3)= =.75

Z\/;(() 4

79
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EXAMPLE
Using differentials approximation
for thevalue of cos 61 °.
Lety =cosx and x =60°
then dx =61° — 60° = 1°
Ay = dy = — sinx dx = — sin60° (1°)
RA L]

~ 2 180 ™

Now y = cos x
y+tAy = cos (x+Ax) = cos (x+dx)
= cos (60°+1°)=cos61°
cos61° = y+Ay = cosx + Ay

600 _3 L
=~ COS — 7 1807E

oL N3 (L
cosbIm~5 = 180 ™

=0.5-0.01511=0.48489
cos61° ~ 0.48489

EXAMPLE
A box with a square base has its  height twice is width.If the

width of the box is 8.5 inches with a possible error of
* 0.3 inches

Let x and h be the width and the height
of the box respectively, then its volume
V is given by
V=xh
Since h = 2x, so (1) take the form
V=2x
dV = 6x° dx
Since x = 8.5, dx = +0.3, so
putting these values in (2), we have
dV =6 (8.5 (x0.3) =+ 130.05
This shows that the possible error in the

volume of the box is +130.05.

TOTAL DIFFERENTIAL

If we move from (x,, y,) to a point (X, +dx, y, + dy) nearby, the
resulting differential in f'is
df = fx (%0, yo) dx + fy (X0, yo) dy

This change in the linearization of
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fis called the total differential of f.

EXACT CHANGE
Area =Xy
x=10,y=8 Area = 80

x=10.03 y=8.02  Area = 80.4406
Exact Change in area = 80.4406 — 80
=0.4406
EXAMPLE
A rectangular plate expands in such a way that its length changes from

10 to 10.03 and its breadth changes from 8 to 8.02.

Let x and y the length and
breadth of the rectangle
respectively, then its area is
A =xy
dA = Ax dx + Aydy = ydx + xdy
By the given conditions
x =10, dx=0.03, y =28, dy =0.02.

dA = 8(0.03) + 10(0.02) = 0.44

Which is exact Change

EXAMPLE

The volume of a rectangular parallelepiped is given by the formula V = xyz. If this solid

is compressed from above so that zis decreased by 2% while x and y each is
increased by 0.75% approximately

V =xyz
dV = Vid x + Vydy + V.dx
dV =yzdx + xzdy + zydz (1)

0.75 0.75 2
=700 X 4 =700 Y- 97~ Tg0 2

Putting these values in (1), we have

o075 075 2
~ 100 %100 24 100 XY*
_ 05 05
7100777 100

This shows that there is 0.5 %
decrease in the volume.

81
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EXAMPLE

A formula for the area A ofa triangle is

1
=5 ab sin C. Approximately what error is
made in computing A ifa is taken to be 9.1

instead of 9, b is taken to be 4.08 instead of
4 and C is taken to be 30°3' instead of30°.

By the given conditions

a=9,b=4,C=30°,

da=9.1-9=0.1,

db=4.08-4=0.08
3 o

dC =30°3" -3’ =(&)

3. .
=0 X 130 radians

Putting these values in (1), we have

1
=5 absinC

0 (1 ) o0 (1 )
dA_@a (2 ab s1an da+ab (2 ab smC] db

o (1 .
+—— | T
aC (2 ab sij dC

dAZ% bsinCdaJr% asinC db

1
+ 5 ab cos CdC

1 1
dA:E 4 sin 30°(0. 1)+E 9 sin 30°(0.08)

1 of_m
+2 36cos 30 (3600)

1 1(1
dAzz@(o.mE @ (0.08)

+18 (—3 (ﬁj =0.293
2 \3600)
% change in area =
0.293
9

x 100

x 10=3.25%
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Lecture No -14 Extrema of Functions of Two Variables

In this lecture we shall fined the techniques for finding the highest and lowest points on
the graph of a function or , equivalently, the largest and smallest values of the function.

The graph of many functions form hills and valleys. The tops of the hills are relative
maxima and the bottom of the valleys are called relative minima. Just as the top of a hill
on the earth’s terrain need not be the highest point on the earth , so a relative maximum
need not be the highest point on the entire graph .

Absolute maximum

2
A function f of two variables on a subsetof R is said to have an [) absolute (global)
maximum yalye on D if there is some point (%o, Y 0) of D such that value of f onD
2

f (X0, Yo) > (X, y) for all (x, y) € D

Insuchacase f(y, Yy, isthe absolute maximum
b

Relative extremum and absolute extremum
minimum at (XO’ Y (), then we say that f has a

If f has a relative maximum or a relative
relative extremum at (X 0,Y o), and if f has an absolute maximum or absolute minimum at

(xpY())- then we say that f has an absolute extremum at (X , y)-

Absolute minimum

? s sai bsolute (global
A function f of two variables on asubset D of R is said to have an absotute (global)

minimum value on D ifthere is some point (X0, Vo) of D such that
>

f (X0, Y0)= (X, y) for all (X, y)€ D.

In such a case f (XO, yo) is the absolute minimum valueof fon D .

Relative (local) maximum

The function f is said to have a relative (local ) maximum at some point (x0,y0) of its
domain D if there exists an open disc K centered at (x0,y0) and of radius r

K={(X,y) € R : (x = x0) +(y—yo) <}
WithKk € D such that

f(Xo, Yo) 2T (X, y) forall X,y )

Relative (local) minimum
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The function fis said to have a relative(local) minimum at some point

(X0, Yo) of D if there exists an open disK centred at (X, Yo) and of radius
r with K < D such that
f(X()a yO) <f (Xa Y) for all (Xa Y) € K.

er Absolute maximum ———

i z = flx,¥)
Relative maximum

!

|
|
[
I
¥
i
:
i
1
1
i
I
I
1
|
|
Ve

~=x Relative minimum

Absolute minimum

Extreme Value Theorem

If f (x, y) is continuous on a closed and bounded set R, then f has both
an absolute maximum and on absolute minimum on R .

Remarks

If any of the conditions the Extreme Value Theorem fail to hold, then there is no
guarantee that an absolute maximum or absolute minimum exists on the region R.

Thus, a discontinuous function on a closed and bounded set need not have any absolute
extrema, and a continuous function on a set that is not closed and bounded also need not
have any absolute extrema.

Extreme values or extrema of f

The maximum and minimum values of f are referred to as extreme values of extrema of
.Let a function f of two variables be defined on an open disc

K ={&Yy):k—X) +¢§—Yo) <r}.

Suppose E( (XO, yO) and fy (X0, Y ) both exist on K

If fhas relative extrema at (xo0,yo),then

fx(Xo, Yo) = 0 = fy(Xo, Yo).
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D% Relative
maximum

Saddle Point

A differentiable function f(x, y) has a saddle has a saddle point (a, b) if in every

open disk centered at (a, b) there are domain points (X, y) where f (x, y) > f (a, b) and

domain points (X, y) where f (x, y) < f (a, b). The corresponding point (a, b, f (a, b)) on

the surface z = f (x, y) is called a saddle point of the surface

Remarks

Thus, the only points where a function f(x,y) can assume extreme values are critical

points and boundary points. As with differentiable functions if a single variable, not every

critical point gives rise to o a local extremum. A differentiable function of a single

variable might have a point of inflection. A differentiable function of two variable might

have a saddle point.
EXAMPLE

Fine the critical points of the given function
f(x,y)=x>+y* - 3axy,a>0.
fy, f, exist at all points of the domain of f.
f,=3x, - 3ay, f,=3y"-3ax
For critical points f, = f, =0.

Therefore, x> —ay =0 (1)
and ax—y =0 )
Substituting the value of x from (2) into (1),

we have
v
2y = 0
Yy’ —a’) =0
y=0, y=a
and so
X =0, X=a.

The critical points are (0, 0) and (a, a).
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Overview of lecture # 14

Topic Article #
Extrema of Functions of Two Variables 16.9
Absolute maximum 16.9.1
Absolute manimum 16.9.2
Extreme Value Theorem 16.9.3

Exercise set

Book

CALCULUS

Q#1,3,5,7,9,11,13,15,17

by HOWARD ANTON

page #
833
833
833

834

841
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Lecture No - 15 Example
EXAMPLE
— 2 2
f(x,y) =Vx"+y
X
fx , =
(X Y) s Y

fy(X, y) = Ny

The partial derivatives exist at all points of the domain of fexcept at the origin which is

in the domain of f. Thus (0, 0) is a critical point of f
Now fx(X, y) =0 only if Xx=0and
fy(x,y) =0onlyif y=0
The only critical point is (0,0) and £(0,0)=0
Sincef (X, y) 2 0 for all &, ¥),f (0, 0) = 0 is the absolute minimum value of f.

Example
z=1(x,y) = x>+ y* (Paraboloid)
fX (Xa Y) - 2X9 fy (Xa Y) - 2y
whenfx (x,y)= 0, fy (x,y)=0
we have (0, 0) as critical point.

i
—_—
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EXAMPLE

z=gXx,y)=1- X - y2 (Paraboloid)

g (X, y) =—2x, g(X,y) =2y
Whengx (X9 Y) :Oa & (Xa y) =0
we have (0, 0)as critical pmt.

EXAMPLE

2 2
z=h(x,yFy =X (Hyperbolparaboloid)
he(x,y)=-2x, b (x,y)=2y
whenhx (x,y)=0, hy(x,y)=0
we have (0, 0) as critical point.

EXAMPLE
fx, ) =Vx" +y?

X y
f, = f, =
‘\/x2 + V2 \/x2 + V2
The point (0,0) is critical point of f because the partial derivatives do not both exist. It
is evident geometrically that 1x(0,.0) does not exist because the trace of the cone in the

plane y=0 has a corner at the origin.

The fact that £ (0,0) does not exist canalso be seen algebraically by noting

that £(0,0) canbe interpreted as thederivative with respect to x of the function

f(x,0)=Nx"+0 =|x| atx=0.
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But [x|is not differentiable at x = 0, so f (0,0) does not exist. Similarly,

£y(0,0) does not exist. The function f has a relative minimum at the critical
point (0,0).

The Second Partial Derivative Test

Let f be a function of two variables with continuous second order partial derivatives

in some circle centered at a critical point (xo, yo), and let

D = fyx (X0 Yo) Fyy (X0 Yo) = T “xy (X0 Y0)

(@) IfD>0 and f(x0,y9 >0, thenfhasa
relative minimum at (xo,yo).

(b) If D> 0 and fxx(Xo,y0) <0, then f has a
relative maximumat (xo,yo).

(¢) If D<O0,then fhasa saddle point at
(x0,y0).

(d) If D=0 , then no conclusion can be
drawn.

REMARKS

If a function f of two variables has an absolute extremum (either an absolute maximum or
an absolute minimum) at an interior point of its domain, then this extremum occurs at a
critical point.

EXAMPLE

f(x,y) = 2X —4x + xy —1
tx (X, y) =4x—4+y2, fx (X, y) =4
fy (X, y) =2xy, fyy (X, y) =2x
fry (X, y) = 8x (X, y) =2y
For critical points, we set the first partial derivatives equal to zero. Then

Ax—4+y =0 (1)
and 2xy =0 (2)

we have x=0 or y=0

x =0, then from (1), y = £ 2.
y =0, then from (1), x = 1.
Thus the critical points are (1,0), (0, 2), (0, — 2).

&9
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We check the nature of each point.
fx(1,0) = 4,
fyy(1, 0) =2,
fxy (1, O) =0
D= f(1, 0).fyy (1, 0)- [y (1, O)F’
=8>0

and fxx (1, 0) is positive. Thus f has a relative minimum at (1, 0).

fxx(o,_Z) = 4,
fyy(o,_Z) = O,
fxy(O,_z) =—4
D= 1,40, 2).fyy (0, - 2) - [fxy (0, — 2)*
=—-16<0. £ (0,2) =4,
fyy (O, 2) = O,
fxy (0, 2) =4
D= (0, 2).fyy (0, 2) - [fyy (0, 2)
=-16<0.
Therefore, f has a saddle point at (0,2).

Therefore, f has a saddle point at (0,— 2).

EXAMPLE

flxy) = €222

(x, =2 (e
-(x2+y2+2x)
fy(x, y)=—2ye
For critical points
t(x,y)=0, x+1=0, x=1 and
fy (x,y)=0, y=0
Hence critical point is £1,0).
fa(xy) = [(— 2x = 2)° = 2]¢ ¥
fi(—1, 0) = -
fy(x.y) = [4y —2]
fy (-1,0)=-
f(x,y) =2y (- 2x —2)e VT
fiy (—1,0)=0
D = fu(-1,0) f,(-1,0) - £y (- 1,0)
=(-2¢) (-2¢) >0
This shows that f is maximum at 1, 0).

(v 242
e(X y“+2x)
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EXAMPLE
f(x,y) = 2¢ + Y —x* =2y
fx(x,y) = 8x° — 2X, fy(x,y)=2y —2
fou (X, V) =24x" =2,  fy(xy)=2,
fxy (X, y)=0
For critical points
fX(Xa Y) = 0:
X (4x - 1)=0, x=0,1/2,-1/2
fY(X’ Y) = Oa
2y —2=0, y=1

Solving above equation we have the critical

points (0,1),[—% , 1] [% , lj .
fxx(o 1)__2 fyy (O, 1):2,
fxy 0,1)=0
=£:(0, 1) fyy (0, 1)— f xy (0, 1)
—( 2)(2)-0=-4<0
This shows that (0, 1) is a saddle point.

1 1
fxx(z 1]24, fyy=[2,1]=2
1

-

oo e b

=(4)(2)-0=8>0
1 1
fxx(zylj 4> 0, so f is minimum at[ ,1]
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Example

Locate all relative extrema and
saddle points of

f(x,y) =4xy —x* -y~
B y)=dy—4x, £ (xy)=4x—4y’
For critical points
fi(x,y)=0
4y-4x*=0 (1)
y=x
£, x,y)=0
4x -4y’ =0 )
X= y3
Solving (1) and (2), we have the
critical points (0,0), (1, 1),c1, —1).
Now fix (X, y) = " 12x2, fx (0,0)=0
fyy (x, ¥) =~ 12y, £y (0,0)=0
fxy (X, Y) = 4, fxy (O, 0) =4
D = fux (0,0) £y (0,0) - 'y (0,0)
= (0)(0)—@)=-16 <0
This shows that (0,0) is the saddle point.
fox (X, y) = — 12>§, fx (1,1) == 12 <0
fiy (x,y)=—12y, f(1,1)=-12
fxy (X, Y)=4, fxy gl,l):4
D=t LDty LD=-Fw (1, 1)
=(—12)(—12)—-(4) =128>0
This shows that f has relative maximum at

(1,1).

fix (X,y) = —12X, fu (=1, -1)=—12<0
f(x,y)= -2y, f (-1,-1)=—12
fu(x,y)=4, fy(-1,-1)=4
D=fxx (—1,-1) fy (1,~1)~Fry(-1,~1)
—(—12) C 12)- (4 =128 >0
This shows that f has relative maximum

(-1, 1).

Over view of lecture # 15 Book
Calculus by HOWARD ANTON

Topic # Article # Page #
Example 3 836
Graph of f(x,y) 16.9.4 836
The Second Partial Derivative Test 16.9.5 836
Example 5 837
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Lecture No -16 Extreme Valued Theorem

EXTREME VALUED THEOREM
If the function f is continuous on the closed interval [a, b], then f has an absolute
maximum value and an absolute minimum value on [a, b]

Remarks

An absolute extremum of a function on a closed interval must be either a relative
extremum or a function value at an end point of the interval. Since a necessary condition
for a function to have a relative extremum at a point C is that C be a critical point, we
may determine the absolute maximum value and the absolute minimum value of a
continuous function f on a closed interval [a, b] by the following procedure.

1. Find the critical points of f on [a, b] and the function values at these critical.

2. Find the values of f (a) and f (b).

3. The largest and the smallest of the above calculated values are the absolute maximum
value and the absolute minimum value respectively

Example
Find the absolute extrema of

f(x)= x>+ x*-x+1 on [-2,1/2]
Since f is continuous on [-2,1/2], the extreme value theorem is applicable. For this

f'(x) =3 x*+2x-1

This shows that f(x) exists for all real numbers, and so the only critical numbers of f will
be the values of x for which f (x)=0.

Setting f/(x) =0, we have
BGx—-1)(x+1)=0
from which we obtain

1
x=-—1 and X =3

1 S .
The critical points of f are -1 and 5, and each of these points is in the given

closed interval (., %) We find the function values at the critical points and at the end
points of the interval, which are given below.

f=2)=—-1, f(-1)=2, -
(

] 1] 2 f[l] 1z
\3) 27 2) 8

The absolute maximum value of f on(-2, %) is therefore

2, which occurs at— 1, and the absolute min. value of f on

1
(-2,5) is — 1, which occurs at the left end point- 2.

Find the absolute extrema of
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f(x) =(x 2) 23 on[1,5].

Since f'is continuous on [1. 5], the extreme-value ttheorem is applicable.

Differentiating f with respect to x, we get

=357

There is no value of x for which f(x) = 0. However, since f(x) does not exist at 2,

/

we conclude that 2 is a critical point of f,

so that the absolute extrema occur either at 2 or at one of the end points of the interval. The
function values at these points are given below.

(=1, -0,  f5=/9
From these values we conclude that the absolute minimum value of fon [1,5]is 0,
occurring at 2, and the absolute maximum value of fon [1, 5] is 3 \/3 ,occurring at 5.

Find the absolute extrema of

h(x) = x** on [-2, 3].

oy 2 an 2
hO)=3x " =317

h/(x) has no zeros but is undefined at x = 0.
The values of h at this one critical point
and at the endpoints x =— 2 and x = 3 are

E(é)_) 2:)(): a 2)2/3 _ 4B
h(3) = (3)2/3 NG

1/3
The absolute maximum value 1s 9 assumed at x = 3; the absolute minimum is 0, assumed at
x=0.

How to Find the Absolute Extrema of a Continuous Function f of Two Variables on
a Closed and Bounded Region R.

Step 1.
Find the critical points of f that lie in the interior of R.
Setp 2.
Find all boundary points at which the absolute extrema can occur,
Step 3.
Evaluate f(x,y) at the points obtained in the previous steps. The largest of these
values is the absolute maximum and the smallest the absolute minimum.
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Find the absolute maximum and minimum value of

f(X,y) = 2 + 2X +2y-x>-y?
On the triangular plate in the first quadrant bounded by the lines x=0,y=0,y=9-x
Since f'is a differentiable, the only places where f can assume these values are points
inside the triangle having vertices at O(0,0), A(9,0)and B(0,9) where f, = £,=0 and points
of boundary.

y=0 A(9,0)

For interior points:

_We have f,=2-2x=0 and f,=2-2y=0
yielding the single point (1,1)

For boundary points we take take the triangle one side at time :
1. On the segment OA, y=0
U(x) = f(x, 0)=2+2x-x"

may be regarded as function of x defined on the closed interval 0<x<9 Its extreme
values may occur at the endpoints x=0 and x=9 which corresponds to points (0, 0) and
(9, 0) and U(x) has critical point where

U/(X) =2-2x=0 Then x=1
On the segment OB, x=0 and
V(y)=f(0,y)= 2+2y-y’

Using symmetry of function f, possible points are (0,0 ),(0,9) and (0,1)
3. The interior points of AB.
With y =9 - x, we have
f(x, y) = 242x+2(9-%)-x"~9- x)’
W(x) = f(x, 9-x) = - 61 +18x - 2x*
Setting w(x)= 18 -4x =0, x = 9/2.
At this value of x,y =9 —9/2

Therefore we have (E, 5 )as a critical point.

(X, y) ( 9 2)

0,0) 90| (1,0 | |2°2
41
f(x,y) 2 —61 3 2
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(X, y) 0,9 ()] (LD

f(x,y) - 61 3 4

The absolute maximum is 4 which f assumes at the point (1,1) The absolute minimum is
-61 which f assumes at the points (0, 9) and (9,0)

EXAMPLE

Find the absolute maximum and the absolute minimum values of
f(x,y)=3xy-6x-3y+7

on the closed triangular region r with the vertices (0,0), (3,0) and (0,5) .

flx,y)=3xy—-6x—-3y+7
fx(X9 Y) = 3y -0, fy(Xa Y) =3x-3

For critical points
fi(x,y)=0
3y—6=0

y=2

f(x, y)=0
3x-3=0

x=1

Thus, (1, 2) is the only critical point in the interior of R. Next, we want to determine the
location of the points on the boundary of R at which the absolute extrema might occur.
The boundary extrema might occur. The boundary each of which we shall treat
separately.

i)The line segment between (0, 0) and (3, 0):
On this line segment we have y=0 so (1) simplifies to a function of the single variable x,

ux)=f(x,0)= —6x+7,0 <x<3

This function has no critical points because u/(6)=-6 is non zero for all x . Thus, the
extreme values of u(x) occur at the endpoints x = 0 and x=3 , which corresponds to the
points (0, 0) and (3,0) on R

ii) The line segment between the (0,0) and (0,5)
On this line segment we have x=0 ,so single variable y,

v(y)=f(0,y)= —3y+7,0 <y<?

This function has no critical points because v/(y)=-3 is non zero for all y.Thus ,the
extreme values of v(y) occur at the endpoints y = 0 and y=5 which correspond to the point
(0,0) and (0,5) or R
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iii) The line segment between (3,0) and (0,5)
In the XY- plan , an equation for the line segment

S
y=—3x+50<x<3
so (1) simplifies to a function of the single variable x,
S
w(x)=f (x, —3 X +5)

= —5x+14x—8, 0<x<3
w(x)=—10x+ 14

w(x)=0
10x+14=0
x-t

This shows that x =7/5 is the only critical point of w. Thus, the extreme values of w occur
either at the critical point x=7/5 or at the endpoints x=0 and x=3.The endpoints
correspond to the points (0, 5) and (3, 0) of R, and from (6) the critical point corresponds
to [7/5,8/3]

——
(V. REN|

j (1,2)

1

xy) 0,0 | G0 )| O35

W | Ofw |0

f(x,y) 7 -11 -8

Finally, table list the values of f(X,y) at the interior critical point and at the points on the
boundary where an absolute extremum can occur. From the table we conclude that the
absolute maximum value of f is f(0,0)=7 and the absolute minimum values is f(3,0)=-11.

OVER VIEW:

Maxima and Minima of functions of two variables. Page # 833
Exercise: 16.9 Q #26,27,28,29.
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Lecture No -17 Examples

EXAMPLE
Find the absolute maximum and minimum values of f(x,y)=xy-x-3y on the closed
triangular region R with vertices (0, 0), (0, 4), and (5, 0).

f(xy) =xy - x -3y )
fX(X9Y):y_1a fY(X9Y):X_3
For critical points
ft(x,y)=0,y —1=0

y=1 (2)
f, (x,y)=0,3x~3=0
x=3 3)

Thus, (3, 1) is the only critical point in the interior of R. Next, we want to determine the
location of the points on the boundary of R at which the absolute extrema might occur.
The boundary of R consists of three line segments, each of which we shall treat
separately.

(i) The line segment between (0, 0) and (5,0)

On this line segment we have y = 0, so (1) simplifies to a function of the single variable x,

u(x)=f(x,0)=-x,0<x<5 (4
The function has no critical points because the v (x)=-1 1s non zero for all x.Thus,the

exteme values of u(x) occure at the endpoints x=0 and x=5 , which corresponds to the
points (0,0) and (5,0) of R.

ii) The line segment between (0,0) and (0.,4)
On this line segment we have x = 0, so (1) simplifies to a function of the single variable
Y

V(yFf(0,y)=—-3y,0<y<4.  (5)

This function has no critical points because v (y)= -3 is nonzero for all y. Thus, the
extreme values of v(y) occur at the endpoints y =0 and y=4 ,which correspond to the point
(0,0) and (0,4) or R.

iii) The line segment between (5,0) and (0,4)
In the xy-plan, an equation is

4
y Z—gx%4,0§x§5 (6)

so (1) simplifies to a function of the single variable x,

W(X) = f(x,—§x+4)
4 4
_x(—§x+4)—x—3(—§x+4)

:—ix2 +£x—12
5 5
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, 8
W(X)=—=X+—
(X) s X+

by w'(x) =0, we get x:%:

. 27 . .. .
This shows that x = 3 is the only critical point of w. Thus, the extreme values of w

. . . 27 . .
occur either at the critical point x= 3 or at the endpoints x = 0 and x = 5. The endpoints

correspond to the points (0, 4) and (5, 0) of R, and from (6) the critical point corresponds

27 13
o|—,—
{8 10}

(X, y) (0, 0) (5, 0) 0,4) | (27/8, 13/10) 3, 1)

f(x,Y) 0 5 12 -231/80 3

Finally, from the table below, we conclude that the absolute maximum value of f is
£(0,0) = 0 and the absolute minimum value is f(0,4)=-12

Example
Find three positive numbers whose sum is 48 and such that their product is as large as

possible
Let x,y and z be the required numbers, then we have to maximize the product

f(x,y)=xy(48-x-y)

Since
fX=48y-2xy-y2 . fy=48x-2xy-x2
solving
=0 |, £,=0
we get x=16, y=16, z=16
Since x+y+z=48
fx(x,y) = - 2y, fix(16,16) =-32<0
fiy(x, y) = 48-2x-2y, f£iy(16,16) =-16
fyy(x, y) = -2x, fyy(16, 16) =-32
D=fxx(16,16)fy7(16,16)—tzxy(162,16)

=(=32)(=32)-(16) =768 >0

Forx=16,y=16 we have z= 16 since x + y + z=48
Thus, the required numbers are 16, 16, 16.

Example
Find three positive numbers whose sum is 27 and such that the sum of their squares is as

small as possible
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Let x, y, z be the required numbers, then
we have to
f(x,y) = x + y +7°
=X + y +(27—-x-— y)
Since x+y+z =27
fk=4x+2y-54, f =2x+4y-54,
fix=4, fyy = 4, fiy=2

Solving =0, =0
Weget x=9, y=9,2=9
Since x+y+z = 27

D=1x(09,9) fy (95 9)-[fy (9, 9)]
=4)4)—-2=12>0

This shows that f is minimum

x=9,y=9,z=09, so the required

numbers are 9, 9, 9.

Example

Find the dimensions of the rectangular box of maximum volume that can be
inscribed in a sphere of radius 4.
Solution:
The volume of the parallelepiped with dimensions X, y, z is
V =xyz
Since the box is inscribed in the sphere of radius 4, so equation of sphere is

x>+ y*+ z’= 4 from this equation we can write Z = /16 — x> — y* and putting this value of

(Y=}

7” in above equation we get V = Xy, /16— x> — y*> .Now we want to find out the

maximum value of this volume, for this we will calculate the extreme values of the
function “V”. For extreme values we will find out the critical points and for critical points
we will solve the equations V=0 and Vy=0 .Now we have

Xy(=2X)

V, =y J16-x>—y* +
2416 - x> —y?
_ 2_ 2 _ 2_ 2
:>Vx=y M NOvaz():)y M =0
J16=x* —y? 16-x> -y’
=2 -y +16=0=2X"+ Y’ =16u.cceeeenn.. (a)

Similarly we have

V —x\/16 NG y + xy( 2Y)

216X’ —y
—X* =2y +16 X =2y’ +16
=V, =X V,=0=X 0
y { Vie-x-y* } {J X =y’ }
=X =2y +16=0= X*+2Y* =16.ccccceeerne... (b)
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4

and y:ﬁ

Solving equations (a) and (b) we get the X = 4

NG

xy(2x +3y? 48)

Now V,, (We obtain this by using quotient rule of differentiation)
163 -y
4 4 16
NN LN
Also we have to calculate V,, xy(3x +2y° 48) and V, (—= 4 4 16 < 0 Also note

16-% — )2 BB

4 4 — Now as we have the formula for the second order partial

FE T

derivative is f,.f, —( fxy) and putting the values which we calculated above we note
44,

N L v e U v

function V has maximum value when X = 4 and y= 4 . So the dimension of the

NG NG

and z=— 4

, Y= .
U N
Example

A closed rectangular box with volume of 16 ft* is made from two kinds of materials. The
top and bottom are made of material costing Rs. 10 per square foot and the sides from
material costing Rs.5 per square foot. Find the dimensions of the box so that the cost of
materials is minimized

that V, (—=

that f (—= > 0 Which shows that the

rectangular box are X =

Let x, y, z, and C be the length, width, height, and cost of the box respectively. Then it is
clear form that

C=10(xy+xy)+5(xz+xz)+5(yz+yz)--------------- 1)

C=20xy+10(x+y)z
The volume of the box is given by

xyz=16 2)
Putting the value of z from (2) in
(1), we have
16
C=20xy+ 10 (x +y)x_
160 160

C=20xy +T + =

160 160
C=20y -=7, Gy =20x— 7‘
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For critical points

C=0
160

20y—7=0 and C,=0
1

20x — @ =
y

Solving these equations, we have
x = 2, y = 2. Thus the critical point
is (2, 2).

320
Co (X, ¥) =73

320
Cu(2,2)="g =40>0

320
Cyy X, Y) =y
320
Cy (2,2) =8 40
Cy (x,y)=20
Cy (2,2)=20

Cex(2,2) Cyy(2,2) — C2(2,2) =(40)(40)-(20)>=1200>0

This shows that S has relative minimum at x = 2 and y = 2. Putting these values in (2), we
have z = 4, so when its dimensions are 2 X2 x4,
Example

Find the dimensions of the rectangular box of maximum volume that can be
inscribed in a sphere of radius a.
Solution:
The volume of the parallelepiped with dimensions X, y, z is
V =xyz
Since the box is inscribed in the sphere of radius 4, so equation of sphere is

x*+ y*+ z°= 4% from this equation we can write z =+/a’ —x* — y* and putting this value of

(Y=}

z” in above equation we get V = Xy /a’ — x> —y* .Now we want to find out the

maximum value of this volume, for this we will calculate the extreme values of the
function “V”. For extreme values we will find out the critical points and for critical points
we will solve the equations Vx=0 and Vy=0 .Now we have

V =y az_xz_yz + Xy(—2X)
X 2\/a2—x2—y2
g2 2 2 g2 2 2
v, - y{2—y} Now v, =0 y{z—y}o
a —-x -y a —-x -y
=2 -y +16=0=2X"+ Y =@ oo, (a)

Similarly we have
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V, =X /az_xz_yz n Xy(=2y)

2\/a2—x2—y2

RV ) RV R )
:>Vy:X w NOWVy:O:>X m =0

az_xz_yz az_xz_yz

=X -2y +a’=0= X* 42y =A%, (b)

a a

Solving equations (a) and (b) we getthe x=— and y=—

g¢q g 5 5

Now V. = xy(2x* +3y’ —3a)

(We obtain this by using quotient rule of differentiation)
@ -x" -y )2

a a __a_
VXX(E’E)_ \/§'<0

Also we have to calculate V Xy(3x +2y° 3 a’)

(@ -x* -y’ )2

Now as we have the formula for the second order partial

and V ( Also note

J_f \/—

that V, (—=

S

derivative is f,,.f, —( fxy) and putting the values which we calculated above we note
2

that fXX( ) (f, )) =+——— > 0 Which shows that the
FE N EE 5
function V has maximum value when x=— and y = i . So the dimension of the
\/5 NE]
rectangular box are X = and z= a

50 5

Find the points o the plane x + y + z =5 in the first octant at which
f(x,y,z) = xy’z* has maximum value.
Solution:

Since we have f(x,y,z) = xy’z> and we are given the plane x +y + z =5 from this
equation we can write X =5 —y — z . Thus our function “f” becomes
f(G-y-2),y,2)=(5-y-z )yzz2 Say this function u(y,z) Thatisu(y,z)=(5 -y -z )yzz2
Now we have to find out extrema of this function. On simplification we get
u(y,2) =5 2 — v’z — y*2}
uy = 10y22—3 y222—2yz3

= yZ/(10 - 3y - 22)
u,= lOyzz - 2y3z - 3y222
= y’z(10 - 2y - 32)

Example:

u, =0, u,=0

=0, z=0
10-3y-2z=0
10-2y-3z=0

On solving above equations we get —10+5z=0=z=2and 10— 3y-4=0=y=2
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Uy, = 102" - 6y7’ — 27’
Uy = 10y2 - 2y3 - 6yzz
uy, =20yz - 6yzz - 6yz2
at
y=2, z=2
Uy (2,2)=40-48 —16=—24<0
V,(2,2) =40 — 16 — 48 =— 24
u,,(2,2)=80-48 —48 =— 16
D=uyu, - (uyz)2
= (-24)(-24) - (- 16)
= 576 - 256
= 320>0
Fory=2andz=2
We havex=5-2-2=1
Example:

Find all points of the plane x+y+z=>5 in the first octant at which f(x,y,z)=xy’z’ has
a maximum value.

f(x,y,z) = XYZZZ = Xy2 5—x- y)2
, Since xt+y+z=75

=y (5-3x-y)(5—x~y),

fy = 2xy(5-x-2y) (5-x~y)

Solving fx =0, fy = 0, we get

x=1,y=2,7z=2 .. xtytz=35

fo==y (5-3x-y) - 3y’ (5—x-5)
£y =2y (5—x-y)(5-3x-y)-y" (5-3x-y)

-y (5-x-y)

£y =2x(5—%=y)(5—x-2y)-2xy(5—x%-2y)
—4xy (5 —-x-y)

fi (1,2,2)=—24<0

f,, (1,2,2)=-16

fy (1,2,2)=-38

fo £y = (fy)* = (24)(-16)~(-8)’

=320>0

Hence “f” has maximum value when x = 1 and y = 2. Thus the points where the function
has maximum value is x =1,y =2 and z = 2.
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Lecture No -18 Revision of Integration

Example:

1
Consider the following integral J. (xy + y*)dx Integrating we get
0

j(xy +y )y = le- ydx +Jl' y*dx
0 0 0

3 1

y

3

1 2
=X + =y(—)+
y(2) y

2

0

1
1
= [y +y ) =y()+y’
0

Example:

1
Consider the following integral J (xy + y*)dy Integrating we get
0

1 1 1
'[(xy+ y>)dy = XI ydx+_[y2dx
0 0 0
I, 1
=X(=)+—
(2) 3

0 0

1
X 1
= | (Xy+y)dx ==+~
!(y YK =
Double Integral

Symbolically, the double integral of two variables “x” and “y” over the certain region R
of the plane is denoted by J.j f(x, y)dxdy .
R

Example:
Use a double integral to find out the solid bounded above by the plane

Z =4 —x —y and below by the rectangle R={(x,y):0<x<1,0<y<2}

Solution:
We have to find the region “R”out the volume “V” over that is,

V =|[[(4-x-y)A

And the solid is shown in the figure below.

EY

1. 2)

M
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\ :”(4—x—y)dA:ﬂ'(4—x—y)dxdy

4x —X? —Xy| dy After putting the upper and lower limits we get

2
(4—x—y)dxdy =[
0

21
Il
00
2y} :‘z vl
!(2 =53]

solidV = jj (4-x—y)dA=5.
R

x=0

again after putting the limits we get the required volume of the

Example:

11
Evaluate the double integral I j (xy + y*)dxdy
00

Solution:
First we will integrate the given function with respect to “x’ and our

1
y

31
+ dy
a

Y
2

11 1
integral becomes_[ (xy + y*)dydx = I[X
00 0

0

and after applying the limits we have,

1
(xy + y*)dydx = I(%’L%] dy integrating we get
0

 xl 11 7
— | = —=—
43

xy + y*)dydx =
(Xy+y")dy 173712

I
I

0

Iterated or Repeated Integral

df{ b
The expression J.{J. f (X, y)dx} dy is called iterated or repeated integral. Often the brackets

cLa

are omitted and this expression is written as

db df b b
_” f (X, y)dxdy = I{ '[ f (X, y)dx} dy Where we haveJ. f (X, y)dx yields a function of “y”,

which is then integrated over the intervalc <y <d .

bd b| d d
Similarly [ [ f(x,y)dydx = j{ [T y)dy} dx Where we have [ f(x, y)dy yields a function

€,

of “x”which is then integrated the intervala < X <b.
Example:

12
Evaluate the integral I I (X+3)dydx .
00
Solution:

Here we will first integrate with respect to “y” and get a function of “x” then we
will integrate that function with respect to “x” to get the required answer. So
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S E——
S Ly 1O

1
(x+3)dydx = I(X +3) | y|z dx and after putting the limits we
0

1
and the required value of the double integral
0

1 1 2
get,j(x+3)|y|j dx:j2(x+3)dx:2‘%+3x
0 0

1
isI
0

21
Now if we change the order of integration so we get I J (X+3)dxdy Then we
00

(Xx+3)dydx = 2(%+3) =7.

S S 1O

21 2| 2 1 2
have Jj(x +3)dxdy = I (X— +3)| dy= Izdy = Z| y|§ =7 .Now you note that the value of
00 0 2 0 0 2 2
the integral remain same if we change the order of integration. Actually we have a
stronger result which we sate as a theorem.
Theorem:

Let R be the rectangle defined by the inequalitiesa <x<band e<y<d. Iff(x,y)is

db b d
continuous on this rectangle, then ” f(x,y)dA= J. _[ f (X, y)dxdy = J J- f(x,y)dxdy .
R ca ac

Remark:

This powerful theorem enables us to evaluate a double integral over a rectangle by
calculating an iterated integral. Moreover the theorem tells us that the “order of
integration in the iterated integral does not matter”.

Example:
In21n3

Evaluate the integral I I e "Ydxdy
0 0

Solution:
First we will integrate the function with respect to “x”. Note that we can write
In2 In3 In2
e“"Vase*.e’ So we have, _[ e’le’| dy= J- e’(3—1)dy Here we use the fact that “e” and
0 0 0
“In” are inverse function of each other. So we have "’ =3 .Thus we get,

In2 In3
Je
0

Example:

eX

In2
dy = 2] e’dy = 2‘ey‘?2 =2(2-1)=2is the required answer.
0

0

In31In2

Evaluate the integral I I e*”dydx (Note that in this example we change the
00

order of integration)
Solution:
First we will integrate the function with respect to “y”. Note that we can write
In3 In2 In3
e“"Vase*.e’ So we have, J- e ey‘ dy = '[ e*(2 —1)dy Here we use the fact that “e” and
0 0 0
“In” are inverse function of each other. So we have e™* =2 .Thus we get,
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In2
In3

ex0 =(3-1)=2 s the required answer.

ey‘

In3
X
[e
0 0

Note that in both cases our integral has the same value.

In3
dx = J' e*dy =
0

Over view:
Double integrals Page # 854-857
Exercise Set 17.1 (page 857): 1,3,5,7,9,11,13,15,17,19
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Lecture No -19 Use Of Integrals
Area as anti-derivatives 4 43
4 y-axis (4.8)
IO 2x dx =[x |0 8

=4y =16

Area of triangle =1/2 base x altitude
=% 4)(8)=16

v

4 X-axis

volume as anti-derivative

23
Volume = IO JO 5 dydx
2 3 2

:0|5y2|0dx=1015 dx

=] 15x| =30
0

0<x<2, 0<y<3, 0<z<5

Volume =2x3x5=30
The following results are analogous to the result of the definite integrals of a function of

single variable.
| {( cf(x,y)dxdy
= If{ f(x,y)dxdy( ¢ a constant )
ity + gyl dxdy
= 1{ f(x,y) dxdy +] IJ; g(x,y) dxdy

ity - geypl dxdy
= | 1{ f(x,y) dxdy -1 1{ g(xy) dxdy

Use double integral to find the volume under the surface z = 3x” +3x”y and the rectangle

{(x,y):1£x<3,0<y L2},
23
Volume = JOII (3x3 + 3x2y) dx dy

2 4 3
3x 3
=0l 4 +XY|1dy

2 s 3
28 -2 - 0Yy - yldy
2
=Jy[60 +26 y] dy
2

=] 60y +13y | =172
Use double integral to find the volume of solid in the first octant enclosed by the surface z
=x2 and the planes x=2,y=0,y=3andz=0
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23
Volume = & {) X dydx
2 3 2

2 2
=&|x2 y(|)dx =(5[3X]dx
=X | =8

0

[[f(x,y)dA > 0if f(x,y)> 0 on R
[[fx,y)dA > [[eg(x,y)dA
if f(x,y) 2 g(x,y)
If f(x,y) is nonnegative on a region R, then subdividing R into two regions R;

and R; has the effect to subdividing the solid between R and z= f(x,y) into two solids, the
sum of whose volumes is the volume of the entire solid

I}{ f(x,y)dA =] Rflf(x, y) dA+] Rsz(><, y)dA

The volume of the solid S can

also be obtained using cross .
sections pernpendicular to the v -axis.

d
vol =] A dy (1)

Where A(y) represents the area of the cross .
section perpendicular to the yaxis taken at the pointy

How to compute cross sectional area

For each fixed y in the interval ¢ <y < d, the function f(x,y) is a function of x alone ,and
A(y)may be viewed as the area under the graph of this function along the interval a<x<b,
Thus b

Ay) =L fxy) dx

Substiuting this expression
in (1) yields.

o

Vol (8)=1, {I L 06 y) dx:| dy
db

. =1 [ fex, y) dx dy o .
Similarly the vélifme of the side S can also be obtained using sections perpendicular to

the x-axis b
Vol (S) :J;l A(x) 3)

Where A(x) is the area of the cross section perpendicular to the x-axis taken at the point
X.
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For each fixed x in the interval a < x <b the function f(x,y) is a function of alone, so that
the area A(x) is given by 4

Ax) =] f(x,y)dy

Substituting this expression in
(3) yields

b| d
Vol (S) 2.[1 |:.[ c f(x,y) dy:| dx

R
=l fxyayax @
From eq (2) and eq (4) we have

.[ Igf (x,y) dA :J; '[a f(x,y)dx dy

b.d
:'[a J.c f(x,y)dy dx

Double integral for non-rectangular region

Type I region is bounded the left and right by the vertical lines x=a and x=b and is
bounded below and above by continuous curves y=g ) and y=gx), where

gi1x) < 22(x) fora<x < b
If R is a type I region on which f(x, y) is continuous, then

b 2
Jf(xy)dA Ef |7 fix,y)dydx (1)
7(X)

By the method of cross section, the volume of S is also given by
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VU

b
Vol (S) =L, Amydx ()
where A(X) is the area of the cross section at the fixed point x this cross section area
extends from g x) to g2 in the y-direction,

x)
so ,A(x) = 1(X)f(X, y) dy
Substituting this in ( 2) we obtain
b g (x)
Vol (S) =] g (x5 ) dy dx
Since the volume ofS is also given by
b g,(x)
o vy da = | [ oof 6 y) dy dx

Type II region is bounded below and above by horizontal lines y=c and y=d and is
bounded in the left and right by continuous curves x=h,(y) and x=h,(y) satisfying
hi(y) £ hy(y) for forc<y < d.

. If R is a type II region on which f (x, y) is continuous, then

d hy(y)
J If{ f(x,y)dA=IC Jill (y) f(x,y)dx dy

Similarly, the partial definite integral with respect to_l f(x,y) is evaluated by
holding x fixed and integrating with respecttoy. ¢
An integral of the form f F(x,y) dy produces a function of x.
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Lecture No -20  Double integral for non-rectangular region

Double integral for non-rectangular region
Type I region is bounded the left and right by vertical lines x=a and x=b and is bounded
below and above by curves y=g;(x) and y=g»(x) where g;(x) < gx(x) fora< x<b

b g,(x)

e yyda =01,

f(x,y) dy dx

b >

O emmmm

Type II region 1s bounded below and above by the horizontal lines y=c and y=d and is
bounded on the left and right by the continuous curves x= h;(y) and x=h,(y) satisfying

hi(y) £ hy(y) forc< y<d d h.(y)
2
] qu fx,y) dxdy = [ ﬁll () fxy)dx dy

x=ha(y)

v

Write double integral of the function f(X,y)on the region whose sketch is given

In8 Iny

.[ f(x,y) dx

I 0
In (In8) In8

ol sy

0] Inln R

Write double integral of the function f(X,y)on the region whose sketch is given
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v
YZ )

1
,[) Io f(x,y) dx dy
11

,[),[/Xf(x,y)dydx

EXAMPLE

Draw the region and evaluate an equivalent integral with the order of integration reversed
2 2x

[T, @ax+2)dyax
0 x

The region of integration is given by the inequalities x2 < y<2xand 0 <x <2.

4 W
.[ .[ (4x +2) dx dy. ;
0yr2 WL
4 &
= J. |2x2 + 2X| dy
0 y/2

4
= Jo {2y+2\/§—%—y}dy

4 3 2|4
2, 3 Y Y
A )

0
_ 4 @’
- {16+§(4)3/2—T—8}

64 _
6

4
1643 (8)——8 =8

EXAMPLE 4 2
Evaluate |:J;)&; y cos x° dx dy The integral is over the region 0 <y < 4, XZ\/;I
and x =2 2 62

I=_[),[O y cos x° dy dx
xX=2

y=p 24) Y= 24

y=x

Il
2

X
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\48

I
o
|><
S
(@]
o
7]
o]
W

[oN
=

|
—{—sinxs} === gin 32

172 1

2
Evaluate | ZJ. . L ¢’ dydx

The integral cannot be evaluated I the given order since ey2 has no antiderivative. We
shall change the order of integration. The region R which integration is performed

< oiven b 1
o BIVERDY OSXSE, y=2x and y =1

This region is also enclosed by

- _X
x=0, x=5 and 0<y<lI I /y=2x0rx:y/2

Thus ‘ ‘

>

0 172

(3, n3)
y=Inx
J' j x dy dx
10

Reversing the order of
integration

In3 3

= x dx dy
y

0 e

115

© Copyright Virtual University of Pakistan



20-Double integral for non-rectangular region \48

2y|n3
C
|9Y—7 :

2In3 e0
{9 In3 — 5 + 3}

+1}
2

a

\SJINe)

{9 In3 -
[91n3 - 4]

In3-2

IO N~ N~ N~ N~

Over view of Lecture # 20

Book Calsulus By Howard Anton
Chapter #!7 Article # 17.2
Page (858-863) Exercise set 17.2
21,22,23,25,27,35,37,38
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Lecture No -21 Examples
14 \
2
Ijey dy dx i
0 4x 4 y_;4 (1,4)
Reversing the order of x=yia
integrat]on ..................... | T S
4 y/4 §y=4x
II dx dy
y/4
= I |Xe =I% &’ dy
=3 j T (=2y)dy
1 2 1 0
- -y = -16
Ll = L)
1 1
=5 [1 ‘;m]
Example
Calculate
j‘ sin X dA.
R

where R is the triangle in the xy- plane bounded by the x-axis ,the line y=x and the line x=1

We integrate first with respect
to y and then with respect to x,
we find

1/ x .
J'{ SIEXdyJ dx x=1 y=x

(VA1)

femT
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1
= jsin Xdx =—cos(0)+1~0.46
0

1
= j sin X dx = —cos(0) + 1~ 0.46
0

EXAMPLE

2 1 )

I I e dxdy

0 yr2

x2
Since there is no elementary antiderivative of e , the integral
2 1 2
X

| ] e dxdy
0 y?2

cannot be evaluated by performing the x-integration first.

To evaualte this integral , we express is as an equivalent iterated integral with the order if
integration reversed . For the inside integration, y is fixed and x varies from he line

x =y/2 to the line x = 1. For the outside integration, y varies from 0 to 2, so the given
iterated integral is equal to a double integral over the triangular region R.

To reverse the order of integration, we treat R as a
type I region, which enables us to write the given
integral as

21

2 ~y I
J.J.ex dXdy x=1 /‘)‘r Dy
0y

L 2 (1, 2)
2

By changing the order of integration we get,
12x

j'j[exzdxdy = j j ¥ dydx P
0y 00
2

VH

2x

1 2
- IO [e¥y] o dx

1 2
= IO 2xe ™ dx
1
=ex2| =e—1
0

EXAMPLE

Use a double integral to find the volume of the solid that is bounded above by the palne
Z=4-x-y and below by the rectangle R = {(x,y):xx<1,0<y<2}
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V=] 4-x-y) da
R
21

[T @x-y)yaxay
00

2 5 1
X
J. [4x—7—xy} dy

x=0

0
2 2
7 7 ¥

[[-s)ov-Jy-%] -5

0 0
EXAMPLE
Use a double integral to find the volume of the tetrahedron bounded by the coordinate
planes and the plane z=4-4x-2y The tetrahedron is bounded above by the plane.

7=4-4x-2y (1)

and below by the triangular region R

!

b
e

Thus, the volume is given by
V = [[(4-4x-2y)dA
R

|
I
|
|
N
}

The region R is bounded by the x-axis,  _ 4*‘
the y-axis, and the line y = 2 — 2x [set 7
z = 0 in (1)], so that treating R as a
type I region yields.
V=] l{ (4-4x-2y) dA
12-2x
:'[Oj 0 (4 —4x - 2y) dy dx
1 , 22X
= |y [dy-4xy-y’ ] dx
y=0

1
= [, (4-8x+4x%)dx
4

3
Find the volume of the solid bounded by the cylinder x2+y2 =4 and the planesy + z=4
and z= 0.
The solid is bounded above by the

plane z = 4 — y and below bzy the
region R within the circle X+ y =4.
The volume is given by

V=] £ (4-y) dA
Treating R as a type I region we obtain
2 j4x?
V:II (4 -y)dydx
2 N4x2
2 1 V4-x2
= .f {4y -3 yz} dx
-2 y=-\/4-x2
2
:J. 844 —x° dx
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2

_glX 4-x +f~-1§
= ) 7 sin 2l

= 8| 2sin™'(1) -2sin™'(-1)|

=82(5) +25)]
=8(2m) =161

EXAMPLE
Use double integral to find the volume of the solid that is bounded above by the
paraboiled z=9x + y* ,below by the plane z=0 and laterally by the planes

x=0, y=0, x=3, y=2

32
Volume = _[ _[ (9x* +y?) dy dx
00

6(27)+8
= 170
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Lecture No -22 Examples
EXAMPLE
.[ J xy dA
R
R is the region bounded by the Trapezium with the vertices (1, 3) (5, 3) (2, 1) (4, 1)

SlopeofAD=% ==2
Equation of line AD
y-l==-2(x-2)
y—1=-2x+4

D(1.3) C(5,3)

-2x=y-5

AQ.D B(4.1)

3-1
SlopeofBC—5 4 =2
Equation of line BC
y=-1=2(x-4) = y-1=2x-8= 2x=y+7 :>x=—yJ2r7

3 (y+7)/2

wﬁ el

(y+7)/2

3
-] Gy 3y dy
1

EXAMPLE

Use double integral to find the volume of the wedge cut from the cylinder 4x*+y*=9 by
the plane z=0 and z=y+3

Solution:
2 2
Since we can write 4X” +y* =9as - +y? =1 this is equation of
3
2
ellipse.
NP —~9-y 9-y’
Now the Lower and upper limits for “x” are X = Tand X=-"——
And upper and lower limits for “x” are —3 and 3 respectively. So the required volume is
p-y?
302
given by I I (y +3)dxdy
-3 _Jo— yz

2
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= f|XV+3XIJ7—dy
P
g
=‘2IW(—2y)dy+3iny

33t sfere

3 0)+3] vty 3Ly 42 2

EXAMPLE
Use double integral to find the volume of solid common to the cylinders x>+ y>=25 and

x>+ 72=25
5 \25x2

Volume = EJ jo \25-x dy dx

25x:

—sfm|y|

= 8.[ (25-%°) dx

3| 375 — 125 250] 2000
X — — = — | e—
=3 ‘25)(—? =8(125—12—5] ‘8( 3 ] 8(3 3
. 3
AREA CALCUALTED AS A DOUBLE INTEGRAL

= l1da=1ldA (1)
However, the solid has gongruent Cross sections taken parallel to the xy-plan so that
V = area of base x height=area of R.1 = area of R
Combining this with (1) yields the area formula
area of R = | 1£ dA (2)

EXAMPLE
Use a double integral to find the area of the region R enclosed between the parabola

= 14 x* and the line y=2x
area of R= ” dA
R

—H

dy dx

x2/2
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4

LTl b 5]

=<2
y=x</2 0

Treating R as type Ilyields.
8 \/Zy
area of Rzﬂ. dA _J‘ J‘
2 =

dx dy
L™ 8
O[X]y=x2/2 X _ _L[\/?},_zy] dy z{%éyz/z_}’zl:?
EXAMPLE

Find the area of the region R enclosed by the parabola y=x* and the line y=x+2
2 y=x+2

J-Iy_XZ dy dx

-1

2
x+2
- BT, ax
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VU

Lecture No - 23

POLAR COORDIANTE SYSTEMS

To form a polar coordinate system in a
plane, we pick a fixed point O, called the
origin or pole, and using the origin as an
endpoint we construct a ray, called the polar
axis. After selecting a unit of measurement,
we may associate with any point P in the
plane a pair of polar coordinates (r, 0),
where r is the distance from P to the origin
and 6 measures the angle from the polar axis
to the line segment OP.

The number r is called the
radial distance of P and 0

is called a polar angle of P. In
the points (6, 45°), (3, 225°),
(5, 120°), and (4, 330°)

are plotted in polar coordinate
systems.

THE POLAR COORDINATES OF A
POINT ARE NOT UNIQUE.

For example, the polar coordinates

(1,315°), (1,—45°), and (1, 675°)

all represent the same point

In general, if a point P has polar co-ordinate

(r, @), then for any integer n=0,1,2,3,.......
(r,6+n.360%) and (r,0+n.360")

are also polar co-ordinates of p

In the case where P is the origin, the line line seg
Because there is no clearly defined polar angle i
Polar angle 6 may be used. Thus, for every 6 ma
(0, 0) is the origin.

NEGATIVE VALUES OF R

Polar Coordinate Systems

P(r,60)

»

O Origin

|

Polar Axis

P(6,45°)

P(3,225%

—

(1,315%

(1,-45%

v

(5,120

(4,330°)

(1,675°%)

When we start graphing curves in polar coordinates, it will be desirable to allow negative
values for r. This will require a special definition. For motivation, consider the point P
with polar coordinates (3, 225°) We can reach this point by rotating the polar axis 225"
and then moving forward from the origin 3 units along the terminal side of the angle. On
the other hand, we can also reach the point P by rotating the polar axis 45° and then
moving backward 3 units from the origin along the extension of the terminal side of the

angle
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23-polar co-ordinate systems \%48

This suggests that the point (3, 225 Terminal >

might also be denoted by ( — 3, 45 Sides Polar Axis

with the minus sign serving to P(3,225%
indicate that the point is on the /

extension of the angle’s terminal side .
rather than on the terminal side itself. / -

Palar Axis

P(-3,225%
Since the terminal side of the angle 8 +180° is the
extension of the terminal side other angle &, ,We shall define.

(-r, @) and (r, #+180°) to be polar coordinates for the same point .
With r=3 and € =45in (2) if follows that (-3, 45°) and (-3, 225°) represent the same
point.

RELATION BETWEEN POLAR AND RECTANGULAR COORDINATES

P(x.y)
Y| P(r.0)
r
y = r sin0O
(8}
9 X= rcos 0 x

CONVERSION FORMULA FROM POLAR TO CARTESIAN COORDINATES
AND VICE VERSA

P(x, y) =P(r, 0)

X =71 cos 0

y=r1sinf
0o X X
\J e
y/ X =tane
Example

Find the rectangular coordinates of the point P whose polar co-ordinates are (6,135
Solution:

Substituting the polar coordinates

r=6and 0=135" inx = cos@ and y=sin® yeilds

x=6cos 135°=6 (-~[2/2) =-342 ‘

Il
=

135°

y=6sin135° =6 (\[2/2) =32
Thus, the rectangular coordinates of the point P are (-3 \/E ,3 \/E )
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Example:

Find polar coordinates of the point P whose rectangular coordinates are (-2, 243 )

Solution:
We will find polar coordinates (r, &) of P such thatr >0 and 0<6 <27 .

x+y =J(-2? +(2\3) =4+12 =16 = 4

tan9=l=%=—\/§:>9=tanl(—\/§)=2?ﬁ

X

From this we have (-2,2 NE) ) lies in the second quadrant of P. All other Polar co-ordinates

of P have the form

(4,27”+2n7;) or (_4,5?”+2n7z) , Where n is integer

LINES IN POLAR COORDIANTES

A line perpendicular to the x-axis and passing through the point with xy co-ordinates
with (a,0) has the equation x=a . To express this equation in polar co-ordinates we

substitute x =r cos & = a=rcos § - (1)

This result makes sense .
geometrically since each N
point P (r, ©) on this line will =
yield the value a for r cos 0. e t s o3

A line parallel to the x-axis that
meets the y-axis it the point with
xy-coordinates (0, b) has the
equation 'y =b.

Substituting y =r sin 0 yields. _ 0. 8] P
rsin@=>b (2) =
as the polar equation of this line. / b
This makes sense geometrically \@

since each point P (r, 0) on this line
will yield the value b for r sin 6

For Any constant 0y, the equation S
0= 9() (3)

is satisfied by the coordinates of all
points of the form P (r, 6), ,
regardless of the value of r. Thus, the _—e O'

equation represents the line through
the origin making an angle of 6,
(radians) with the polar axis. 6= 6,

By substitution x = rcosf and y = rsinf in the
equation Ax +By +C = 0 . We obtain the general polar form of the line,

r (Acosf + Bsinf)+C=0

vy
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CIRCLES IN POLAR COORDINATES

Let us try to find the polar equation
of a circle whose radius is a and
whose center has polar coordinates
(ro, 0p). If we let P(r, 6) be an
arbitrary point on the circle, and if
we apply the law of cosines to the
triangle OCP we obtain

1’ — 211 cos (0 — 0g) + ré =a> (1)

SOME SPECIAL CASES OF EQUATION OF CIRCLE IN POLAR

COORDINATES

A circle of radius a, centered at the
origin, has an especially simple polar
equation. Ifweletr ¢=01in (1), we
obtain r> = a’ or, since a >0,r=a
This equation makes sense
geometrically since the circle

of radius a, centered at the

origin, consists of all points

P (r, 0) for which r = a,
regardless of the value of 6

If a circle of radius a has its center
on the x-axis and passes through the
origin, then the polar coordinates of
the center are either

(a,0) or (a,m)

depending on whether the center is to
the right or left of the origin

Lecture No -24

ZP
r=a
a
D
r=2asinf %
Eﬁv{‘:
¢(a, 1)
Polar
axis
& ™
(a, — E)
r=-—2asin @
Sketching
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Draw graph of the curve having the equation r = sin 0

L . T .
By substituting values for 6 at increments of g(30°) and calculating r , we can construct

The following table:

0 0 T il il 2n Sn
(radians) 6 3 2 3 6
r=sin 0 0 L NE 1 NE L
2 2 2 2
0 T in 4n 3n S lrn | 2n
(radians) 6 3 2 3 6
r=sin 6 [ 0 [ L N 3| UL 0
2 ) ) 2
Note that there are 13 pairs listed in ) \ IE@I:%}
Table, but only 6 points plotted in - 2;\\5, — 1T -
This is because the pairs from 6 = 7t ( ??) 5 é( 23)
on yield duplicates of the preceding -~ L N L 2 ]
points. For example, (- %, 7n/6) and (1, ;_7_?}‘% b ﬂ‘(;z )
(1/2, n/6) represent the same point. . (o“‘}iéo) -

The points appear to lie on a circle.
hat this is indeed the case may be seen by expressing the given equation in terms of x and
y. We first multiply the given equation through by r to obtain r* =r sin © which can be
rewritten as
X2+y2=y or x2+y2—y=O
2
. 1 1 . . :
or on completing the square x* + |y —=| = 1 .This is a circle of radius 1\2 centered
at the point (0,1/2) in the xy-plane.

Sketching of Curves in Polar Coordinates

(i) Symmetry about the Initial Line
If the equation of a curve remains unchanged when (r, &) !
is replaced by either (r,- @) in its equation ,then the curve
is symmetric about initial line. ., (r,-0)

1.SYMMETRY ‘ r,0)

(ii) Symmetry about the y-axis
If when (r, @) is replaced by either (r,7 -6 ) in (1,7-0) (r,0)

The equation of a curve and an equivalent equation
is obtained ,then the curve is symmetric about the
line perpendicular to the initial i.e, the y-axis

(ii) Symmetry about the Pole
If the equation of a curve remains unchanged

1, 0
@9) 128
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when either (-r, @) or is substituted for (r, &)

in its equation ,then the curve is symmetric
about the pole. In such a case ,the center of

the curve.

2. Position Of The Pole Relative To The Curve

See whether the pole on the curve by putting =0 in the equation of the curve and solving

for 6.

3. Table Of Values

Construct a sufficiently complete table of values. This can be of great help in sketching

the graph of a curve.

II Position Of The Pole Relative To The Curve.

Whenr=0, & =0 .Hence the curve passes through the pole.

II1. Table of Values

0 0

/3 | n/2 | 27w/3

T

r=a (I-cos0) | 0

a/2 a 3a/2

2a

As 0 varies from 0 to w, cos O decreases

steadily from 1 to —

1, and 1 — cos ©O

increases steadily from 0 to 2. Thus, as 0
varies from 0 to =, the value of
r=a (1 — cos 0) will increase steadily from
an initial value of r = 0 to a final value of

r=2a.

On reflecting the curve in about the x-axis, we obtain the curve.

ARDIOIDS

0=n ) 6=0, =0

r=2a OL

r=a(l—cos0)
(O\,R/Z)
)

C (2af-n/2)
r=a(1-sin0)

9—714
r=0

r=a(1+cos0)

(0| “2)
r=a(1+sin0)

CARDIDOIDS AND LIMACONS

r=a(l — cos @)

wly
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r=a+b sin 0, r = a—bsin 0
r=a+b cos 6, r = a—bcos 0

The equations of above form produce polar curves called limacons. Because of the heart-
shaped appearance of the curve in the case a = b, limacons of this type are called
cardioids. The position of the limacon relative to the polar axis depends on whether sin 6
or cos 0 appears in the equation and whether the + or — occurs.

Limagan with
inner loop

LEMINSCATE

If a > 0, then equation of the form

r’=a’cos20, r’=-—a’cos20

r’=a’sin 20, r’=—a’sin20

represent propeller-shaped curves, called lemiscates (from the Greek word “lemnicos” for
a looped ribbon resembling the Fig 8. The lemniscates are centered at the origin, but the

position relative to the polar axis depends on the sign preceding the a* and whether sin 20
or cos 20 appears in the equation.

|

A lemniscate

Exam
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r’=4cos20
The equation represents a lemniscate. The graph is symmetric about the
x-axis and the y-axis. Therefore, we can obtain each graph bv first sketching the portion
of the graph in the range 0 < 0 < /2 and then reflecting
that portion about the x- and y-axes.The curve passes
through the origin when 6 = n/4, so the line 6 = /4 is

w4

tangent to the curve at the origin.As 0 varies from 0 to n/4, ~\

the value of cos20 decreases steadily from 1 to 0, : 3
so that rdecreases steadily from 2 to 0.For 0 in the V2 2
range 1/4 < 0 < 7/2, the quantity cos20 is negative, - -

so there are no real values of r satisfying first equation. T

Thus, there are no points on the graph for such 6. r=2\/cos 20
The entire graph is obtained by reflecting the curve / +—|>
about the x-axis and then reflecting the resulting curve AN N /2

- ~— -

about the y-axis.

ROSE CURVES

Equations of the form

r=asinn® and r=acosn9

represent flower-shaped curves called roses. The rose has n equally spaced petals or
loops if n is odd and 2n equally spaced petals if n is even

> il j’g\ TN {
LN \ ()
{ " o . SR _’} W dxj
A four-petal rose . A three-petal rose
(= 2) G =)

The
orientation of the rose relative to the polar axis depends on the sign of the constant a and
whether sinf or cosO appears in the equation.

SPIRAL
A curve that “winds around the origin” infinitely many times in such a way that r

increases (or decreases) steadily as O increases is called a spiral. The most common
example is the spiral of Archimedes, which has an equation of the form.

r=a0b (06>0) or r=ab (6<0)
In these equations, O is in radians and a is positive.
EXAMPLE

Sketch the curve r=0 (0 > 0) in polar coordinates.

This is an equation of spiral with a = 1; thus, it represents an Archimedean spiral.

Since r = 0 when 0 = 0, the origin is on the curve and the polar axis is tangent to the
spiral.

A reasonably accurate sketch may be obtained by plotting the intersections of the spiral
with the x and y axes and noting that r increases steadily as 0 increases. The intersections
with the x-axis occur when

06=0, wn 2m, 3m, .......
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at which points r has the values

r=0, mt, 2w, 3m,.....

and the intersections with the y-axis occur when
n 3n St Tn

0 = 220 2 9 sy e

at which points r has the values
n 3n 5t Tn

r:2,2,2,2, ......

Starting from the origin, the Archimedean spirals r = 6 (6 > 0) loops counterclockwise

around the origin.
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Lecture No -25 Double integrals in polar co-ordinates

Double integrals in which the integrand and the region of integration are expressed in
polar coordinates are important for two reasons: First, they arise naturally in many
applications, and second, many double integrals in rectangular coordinates are more
easily evaluated if they are converted to polar coordinates. The function z = f(r,0) to be
integrated over the region R As shown in the Fig.

INTEGRALS IN POLAR COORDIATES

When we defined the double integral of a function over a region R in the xy-plane, we
began by cutting R into rectangles whose sides were parallel to the coordinate axes. These
were the natural shapes to use because their sides have either constant x-values or
constant y-values. In polar coordintes, the natural shape is a “polar rectangle” whose sides
have constant r and 6- values.

Suppose that a function f (1, 0) is defined over a region R that is bounded by the ray 6 = a
and 6 = B and by the continuous curves r = r; (0) and r = r(0). Suppose also that
0 <r1y(0) <1y(0) < a for every value of O between a and . Then R lies in a fan-shaped
region Q defined by the inequalities 0 <r<aand a <0 <.
Then the double integral in polar coordinates is given as

0= 1=1,(0)
Mfoda= [ [ f(r,0)drdo
R

6=a r=r(0)

How to find limits of integration from sketch

Step 1. Since 6 is held fixed for the first integration, draw a radial line from the origin
through the region R at a fixed angle 6. This line crosses the boundary of R at most twice.
The innermost point of intersection is one the curve r = r;(0) and the outermost point is on
the curve r = r,(0). These intersections determine the r-limits of integration.

Step 2.Imagine rotating a ray along the positive x-axis one revolution counterclockwise
about the origin. The smallest angle at which this ray intersects the region R is 6 = o and
the largest angle is 6 = 3. This yields the 0-limits of the integration.

EXAMPLE

Find the limits of integration for integrating f (r, 8) over the region R that lies inside the
cardioid r = 1 + cos 0 and outside the circle r = 1.

Solution:
Step 1. We sketch the region and label the bounding

curves.

Step 2. The r-limits of integration. A typical ray from
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The origin enters R where r =1 and leaves where
r =1+cos 0.
Step 3. The 6-limits of integration. The rays from the

.. . T T
origin that intersect R run from 6 = — to 0= -

/2 1+cosO
The integral is {MJ . f(r,8)rdrde
/2 1+cosO
= 2IOI . f(r, ) rdrde

EXAMPLE

Evalaute [] sin 0 dA
R

Where R is the region ion the first quadrant that is outside the circle r = 2 and inside the
cardioid r = 2(1+cos0).

Solution:
n/2  2(1+cosg) g= = r=2(1 +cos 8)

[ sin 6 dA=] | (sin ©) r dr dO =2 71" N
R 02 / o B
/2 \\
1 5 . 2(1+cos0) 6=0
= Io 5 1" sin 9]Fz do

/2

=2[ . [(1+cos0)’sin O—sinO]dO
/2

= 2[—%(l+cose)3+cos6} = [—%—(—%ﬂ =§

0
EXAMPLE

Use a double polar integral to find the area enclosed by the three-petaled rose r = sin 36.
We calculate the area of the petal R in the first quadrant and multiply by three.

Solution:
n/3  sin3g /3 .
1'2 sin30
A=3I}£dA=3IO Jp rdrdo=[ 7| = drdo s
/3 /3 A)
=% IO sin® 30 dO =% JO (1—cos 60) d . ——
/3 /3
3 sin60| {3, 3 . 1
=2 [9— 6 L = [46—24sm66} =3 T
0
EXAMPLE
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Find the area enclosed by the lemniscate r* = 4 cos20. The total area is four times the
first-quadrant portion.

SOlution: Vv Leaves at
r=v4cos 28
/4 4 cos2 /4 ;
/4 4 cos2g n . =, dcos2, : s
A=4] | rdrdo=A] |—= do ; Vs .
00 0|2 o -
r=0 '\\_ /
: 2= 4 cos 20
/4 Enters at ™ :
w4 b 4

=4f0 2c0s 20 dO =4 sin 20] =4.
0

CHANGING CARTESIAN INTEGRALS INTO POLAR INTEGRALS

The procedure for changing a Cartesian integral [[f(x, y) dx dy into a polar integral has
R

two steps.

Step1. Substiute x = r cos O and y = r sinf, and replace
dx dy by r dr dO in the Cartesian integral.

Step 2. Supply polar limits of integration for the boundary of R. The Cartesian integral
then becomes

[] f(x,y) dx dy=[] f(rcos6, rsin®)r dr dO
R G

where G denotes the region of integration in polar coordinates.

Notice that dx dy is not replaced by dr d@but by r dr dé.
EXAMPLE
1 y1x2

Evalaute the double integral || (x> +y?) dy dx by changing to polar coordinates.
0 0

The region of integration is bounded by

0<y<\l-x>and0<x<1

y=4/1-x7 is the circle
X+y=1, r=1

On changing into the polar coordinates, the given integral is
w2 1 /2 /2

J I, rdrde =] H de_j—de_ T

-8

EXAMPLE

Evaluate | = f | ;ZTy% by changing to polar coordinates,
where D is the region in the first quadrant between the circles.
x*+y*=a’ and x*+y’=b’, 0<a<b

/2 b /2

b
I—I IrdrdG

. [Inr], dO
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/2 /2
=J In (h) 6= [e In (bﬂ L (b).
0 a a 2 a
0
EXAMPLE
J1-x?

1
Evaluate the double integral I I (x* + y*)dy dx by changing to polar coordinates.
0 0

The region of integration is bounded by 0 <y < +/1-x* and0< x< 1
y=~1-x" isthecircle X’ +y>*=1,r=1

On changing into the polar coordinates, the given integral is

/2 1 /2 1

Hrdrde j

4
z/2

jld =—|@| L wi2)=2/8
x 4
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Lecture No - 26 EXAMPLES
EXAMPLE

4 \dy-y?

Evalaute I=_[) _[ o (x*+y*)dx dy by changing into polar coordinates.

The region of integration is bounded by 0<x<\/4y — y? and 0<y<4

Now x =14y - y* is the circle x*+y*—4y=0 = x* + y* = 4y.In polar coordinates this
takes the form r* = 4r sin 0, r=4sin 0
On changing the integral into polar coordinates, we have

/2 4sin® /2

I:IOIO rdrde—j 64 sin* 0 do= 64.

UJ

A
5 - %— 12t (using Walli’s formula)

IN

EXAMPLE

2,2
Evalaute J ,[ e*"¥" dy dx.,where R is the semicircular region bounded by the x-axis and

R
the curve y =1/1 — X

In Cartesian coordinates, the integral in question is a nonelementary integral and there is
. . 242 .
no direct way to integrate ¢ ¥~ with respect to either x or y.

Substituting x = r cos 0, y = r sinf, and replacing dy dx by r dr dO enables us to evaluate
the integral as

1 b 1 T

“ex2+y2dy dx=fofoer2rdrd9=f0[ } do = J (e 1)d9__ (e —1).

R
0

EXAMPLE
Let R, be the region bounded by the circle x>+ y* = a. Define

o 00

Loi (x o )dxdy = lim ”e(x dx dy

a—>0

To evaluate this improper integral.

o0 00

1= | exp {- (*+y))} dxdy=lim [[exp {~ (*+y")} dx dy
a—>»0 Da

21 a 2n

lim IO Ioexp {(-r}rdrdd = lim JO %(1 —exp {—a’}dd = lim % (1 —exp {—a’} 0|

21

0

o fim — T
T exp{—a)

EXAMPLE
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<)

2 1
Prove that ,fo e’ dt= A

00 00 o0 e} o0 o0

=] exp{=(x*+y")} dx dy=] expt~y} [ expi—=’}dx]dy =[ epi-iI| epi=idd
* @ a 2 a 2
= [L exp{—tz}dt][Lo exp{—t} df] =lim [{a exp {—t°} dt] = 4lim [IO exp {—t*} dt]
a aa [oe] 2

Hencewehave  4lim [{) exp{—tz}dt]=li_r)nL L e)qa{—(xzﬂfz)}dxdy4li_r)n [foexp{-tz}dt] =7

o0 o0

2

lim [Ioexp{-tz}dt] =n/4 = IO exp {—t} dt=32E

THEOREM

Let G be the rectangular box defined by the inequalities
a<x<b, c<y=d, k<z</

b d
If f is continuous on the region G, then _[ I j f(x,y,z)dV = _[ _[ _[( f(x,y, z)dz dy dx
G a ¢

Moreover, the iterated integral on the right can be replaced with any of the five other
iterated integrals that result by altering the order of integration.
b d ¢

d ¢ b d b g
Z[_[(_[f(x,y,z)dyddeZ[,[,[(f(x,y,z)dyddeZ'['[Jkf(x,y,z)dxdydz
b

14 ¢ b d
2_[1_[( Cf(x,y,z)dxdzdyZ_[(_[1_[’f(x,y,z)dzdxdy

d

EXAMPLE

Evalaute the triple integral [[] 12xy’z’ dV over the rectangular box G defined by the
G

inequalities — 1 <x<2,0<y<3,0<z<2.

We first integrate with respect to z, holding x and y fixed, then with respect to y holding x
fixed, and finally with respect to x.

232 ) 3 , -
iI2xy’z’ dv= [ [ 12xy’Zdzdydx = [[ [3xy’2'] dydx=]] 48xy dy dx
G 100 10 7z=0 -10
2 3 ) 5
—[[16xy’] dx=f 432xdx = 216x>] =648
-1 o] |

y=0
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EXAMPLE

Evalaute”RJ.(x 2y+z)dxdydz RegionR 0<x,1,0§y§x2, 0<z<x+y

1 x2 x+y

IH (x - zy+z)dzdydx—JI

_[ j [(X—2y+X+y) (X—Zy)}

xty

2 +z
A dy dx

0

2
3 x° 3
—2_[)()(4— Z)dXZ2

Example:

Evalaute _[ J. j xyzd x dy dz Where S = {(x,y,z):x2+y2+22§1, x>0,y>0,z>0}
S

S is the sphere x> + y> + z* = 1 .Since x, y, z are al +ve so we have to consider only the
+ve octant of the sphere

Now x*+y*+z'=1 .Sothat z=A[1-x"—y
The Projection of the sphere on xy plan is the c1rcle XX +y'=1.

2

This circle is covered as y; varies from 0to1 - x* and x varies from 0 to 1.
1 V1x2 V1x2y2 1 V1x2

jj_[xyzdxdydzz II _[ xyz dz dy dx = II
R 0" 0 0 0" 0

1 V1-x2 1 V1-x2

” Xy(I_ _jdydx=l” x (y - x’y -y’ dy dx

2
1 4 \/lx 1—x>
_ j X(y_ X’y Lj - j {_xz_xz(l_xz)_ﬁ_XL dx
29 X\2 72 2

_1(1 .
0_8 2 2'6) 48

V1-x2 -y2

y % dy dx
0

2 4 6
X X

IX_ N
2 26

1
=3 _[)(X—ZX3+X5) dx=§
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Lecture No -27 Vector Valued Functions

Recall that a function is a rule that assigns to each element in its domain one and only one
element in its range. Thus far, we have considered only functions for which the domain
and range are sets of real numbers; such functions are called real-valued functions of a
real variable or sometimes simply real-valued functions. In this section we shall consider
functions for which the domain consists of real numbers and the range consists of vectors
in 2-space or 3-space; such functions are called vector-valued functions of a real variable
or more simply vector-valued functions. In 2-space such functions can be expressed in the
form.

r®)=x@®,y®)=x®i+y@)]

and in 3-space in the form

r(t)=(x (t), y (t), z ©)i+y(Oj+z Dk

where x(t), y(t), and z(t) are real-valued functions of the real variable t. These real-valued
functions are called the component functions or components of r. As a matter of notation,
we shall denote vector-valued functions with boldface type [f(t), g(t), and r (t) and real-
valued functions, as usual, with lightface italic type [f(t), g(t), and r(t)].

EXAMPLE

r(t)=(nt)i+~/t" +2j+ (costn)k

then the component functions are x(t)=Int,y(t)=\/t" + 2,and z (t) = costr

The vector that r(t) associates with t =1 is r(1)=(In 1) i+\/3_j +(cos ) k:\/3_j— k
The function r is undefined if t < 0 because In t is undefined for such t.

If the domain of a vector-valued function is not stated explicitly, then it is understood to
consist of all real numbers for which every component is defined and yields a real value.
This is called the natural domain of the function. Thus the natural domain of a vector-
valued function is the intersection of the natural domains of its components.

PARAMETRIC EQUATIONS IN VECTOR FORM

Vector-valued functions can be wused to express parametric equations in
2-space or 3-space in a compact form.

For example, consider the parametric equations X = x(t), y =y (t)

Because two vectors are equivalent if and only if their corresponding components are
equal, this pair of equations can be replaced by the single vector equation.

x=x(t), y=y ¥

xi+tyj =x(Oi+y®]

Similarly, in 3-space the three parametric equations

x=x(t), y=y (), z=7(t)

can be replaced by the single vector equation

xi +yj+zk=x(t)i+ y(t)j + z(t)k

ifweletr=xi+yj and r(t) =x(t)i+y(t) j in 2-sapce

and let r =xi +yj+zk and r(t) =x(t) i+ y(t)j + z(t)k

in 3-space, then both (2) and (4) can be written as  r =r(t)

which is the vector form of the parametric equations in (1) and (3). Conversely, every
vector equation of form (5) can be rewritten as parametric equations by equating
components on the two sides.
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EXAMPLE

Express the given parametric equations as a single vector equation.

(a) x =t%, y =3t

(b) x =cost, y=sint, z=t
(a) Using the two sides of the equations as components of a vector yields.
xi+tyj=ti+3t]j
(b) Proceeding as in part (a) yields
xi +yj +zKk = (cos t)i + (sin t)j + tk

EXAMPLE

Find parametric equations that correspond to the vector equation
xityjtzk=@E+Di+3j+e'k
Equating corresponding components yields.

x=t+1,

y=3, z=¢

GRAPHS OF VECOR-VALUED FUNCTOINS

One method for interpreting a vector-valued function r(t)
in 2-space or 3-space geometrically is to position the vector

r =r (t) with its initial point at the origin, and

let C be the curve generated by the tip of the vector r

as the parameter t varies

The vector r, when positioned in this way, is called
the radius vector or position vector of C, and C is called the

As ¢ varies, the tip
of the radius vector r
traces out the curve

graph of the function r (t) or, equivalently, the graph of the equation r = r (t). The vector
equation r = r (t) is equivalent to a set of parametric equations, so C is also called the
graph of these parametric equations.

EXAMPLE

Sketch the graph of the vector-valued function r(t) = (cos t)i + (sin t)j, 0 <t <2w

The graph of r (t) is the graph of the vector equation

xityj = (cos t)i + (sint)j, 0 <t <2m

or equivalently, it is the graph of the parametric equations

x=cost, y=sint

(0 <t<2m)

This is a circle of radius 1 that is centered at the origin with the direction of increasing t

counterclockwise. The graph and a radius vector are shown in Fig.

r = {cos )i + (sin ) j
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EXAMPLE

Sketch the graph of the vector-valued function r(t) = (cos t)i+(sin t)j+2k, 0 <t <2m
The graph of r(t) is the graph of the vector equation

xi+yjt+zk=(cost)i+(sint)j+2k, 0<t<2rn

or, equivalently, it is the graph o the parametric equations

x=cost, y=sint, z=2 (0<t<2n)

From the last equation, the tip o the radius vecor traces a curve in the plane z = 2, and
from the first two equations and the preceding example, the curve is a circle of radius 1
centered on the z-axis and traced counterclockwise looking down the z-axis. The graph
and a radius vector are shown in Fig.

L 2
|
>
.

_;‘ . v
/}— o
< x

r=(cos&)i+ (sint)j+ 2k

EXAMPLE

Sketch the graph of the vector-valued function r(t) = (a cos t)i + (a sin t)j + (ct)k
where a and c are positive constant.

The graph of r(t) is the graph of the parametric equations.

x=acost, y=a sint, z=ct

As the parameter t increases, the value of z = ct also increases, so the point (X, y, z)
moves upward. However, as t increases, the point (X, y, z) also moves in a path directly
over the circle. x =a cost, y=a sint in the xy-plane. The combination of these
upward and circular motions produces a corkscrew-shaped curve that wraps around a
right-circular cylinder of radius a centered on the z-axis.

This curve is called a circular helix.

EXAMPLE

Describe the graph of the vector equation r = (-2 + t)i + 3tj + (5 —4t)k

The corresponding parametric equations are x =—2 +t, y=3t, z=5 -4t

The graph is the line in 3-space that passes through the point (- 2, 0, 5) and is parallel to
the vector i + 3j — 4k.

EXAMPLE

The graph of the vector-valued function r (t)=ti+ t*j + t' k is called a twisted cubic.
Show that this curve lies o the parabolic cylinder y = x*, and sketch the graph for t > 0
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The corresponding parametric equations are x =t, y=t, z=t

Eliminating the parameter t in the equations for x and y yields y = x% so the curve lies on
the parabolic cylinder with this equation. The curve starts at the origin for t = 0; as t
increases, so do x, y, and z, so the curve is traced in the upward direction, moving away
from the origin along the cylinder.

GRAPHS OF CONSTANT VECOR-VALUED FUNCTIONS

If ¢ is a constant vector in the sense that it does not depend on a parameter, then the graph
of r = ¢ is a single point since the radius vector remains fixed with its tip at c.

If ¢ = xi + yoj (in 2-space), then the graph is the point (X, yo), and if
¢ = Xol + yoj + zok (in 3-space), then the graph is the point (Xo, Yo, Zo).

EXAMPLE

The graph of the equation r = 2i + 3j — k is the point (2, 3, — 1) in 3-space.

If r(t) is a vector-valued function, then for each value of the parameter t, the expression
|lr(t)|| is a real-valued function of t because the norm (or length of r(t) is a real number.
For example,

If r)=ti+(t-1)j

Then |[r(t)|| =~/t* + (t— 1)* which is a real-valued function of t.

EXAMPLE

The graph of r (t) = (cos t)i + (sin t)j + 2k, 0<t<2m

is a circle of radius 1 centered on the z-axis and lying in the plane z =2. This circle lies
on the surface of a sphere of radius \/g because for each value of' t

|[r(t)]| =\/cos2t +sint+t = \/1 +4= \/g

which shows that each point on the circle is a distance of \/g units from the origin.

¥ =(cosi)i+ (sin#)j+ 2k
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Lecture No -28 Limits of Vector Valued Functions

The limit of a vector-valued functions is defined to be the vector that results by taking the
limit of each component. Thus, for a function r(t) = x (t)i +y (t)j in 2-space we define.

lim r(t) = (Jim x(0)i + (lim y(0)j
and for a function r(t) = x(t)i + y(t)j + z(t)k

in 3-space we define. L s
limr()=(imx(0)i+ limy ()} +(imz())k =

If the limit of any component does not exist, . o
then we shall agree that the limit of r (t) does not exist. e tengtang
These definitions are also applicable to the one-sided S

and infinite limits lim , lim lim, and lim. It follows from (1) and (2) that
t=>a T t=a t—>+o t—>—0
y_)mr(t) =L

if and only if the components of r(t) approach the components of L as
t — a. Geometrically, this is equivalent to stating that the length and direction of r (t)
approach the length and direction of L as t - a

CONTINUITY OF VECTOR-VALUED FUNCTIONS
The definition of continuity for vector-valued functions is similar to that for real-valued
functions. We shall say that r is continuous at ty if

1. r(to) is defined,

2. }Lrpr(t) exists;

3. thﬁrtr;r(t) =1 (to).

It can be shown that r is continuous at ty if and only if each component of r is continuous.
As with real-valued functions, we shall call r continuous everywhere or simply
continuous if r is continuous at al real values of t. geometrically, the graph of a
continuous vector-valued function is an unbroken curve.

DERIVATIVES OF VECOR-VALUED FUNCTIONS
The definition of a derivative for vector-valued functions is analogous to the definition
for real-valued functions.

DEFINITION

The derivative r(t) of a vector-valued function r(t) is defined by

. r(tth)—r(t

r = fiy S

Provided this limit exists.

For computational purposes the following theorem is extremely useful; it states that the
derivative of a vector-valued function can be computed by differentiating each
components.

THEOREM
(a) If r(t) = x(t)i + y(t)j is a vector-valued function in 2-space, and if x(t) and y(t) are
differentiable, then

r'(t) = X' + y'(0)]
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(b) If r(t) = x(t)i + y(t)j + z(t)k is a vector-valued function in 3-space, and if x(t), y(t),
and z(t) are differentiable, then
r'(t) = X(Hi + y/()j + Z(Hk
We shall prove part (a). The proof of (b) is similar.

Proof (a):

. r+h)—r() . [x(tth)—x(t)]. . [y(tth) —y(1)] .
= g = i ROy MO
= xX()i +y'(v)j

As with real-valued functions, there are various notations for the derivative of a vector-
valued function. If r = r (t), then some possibilities are

d dr
4 [T (o), and ¥

EXAMPLE
Let r(t) = t!i +t*j. Find r/(t) and r'(1)
d , . d 5.
rv)= g [1i+ g [
=2ti 3t%j
Substituting t=1 yields
(1) = 2i+3;j.
TAGENT VECTORS AND TANGENT LINES

GEOMETRIC INTERPRETATIONS OF THE DERIVATIVE.
Suppose that C is the graph of a vector-valued

function r(t) and that r/(t) exists and is nonzero | ; N
for a given value of t. If the vector r/(t) is o
positioned with its initial point at the terminal l .
point of the radius vector ’/’

DEFINITION
Let P be a point on the graph of a vector-valued line
function r(t), and let r(t) be the radius vector from
the origin to P

If r/(to) exists and r/(to) # 0, then we call r/(to)
the tangent vector to the graph of r at r(to) # - )

REMARKS
Observe that the graph of a vector-valued function can fail to have a tangent vector at a
point either because the derivative in (4) does not exist or because the derivative is zero at

the point.If a vector-valued function r(t) has a tangent vector r/(ty) at a point onits graph,

then the line that is parallel to r/(to) and passes through the tip of the radius vector r(t)
is called the tangent line of the graph of r(t)at r(tp)
Vector equation of the tangent line is

r=r (to) + t r'(ty)
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EXAMPLE
Find parametric equation of the tangent line to the circular helix
X = cost, y = sint, z=1 at the point where t = /6

To find a vector equation of the tangent line, then we shall equate components to obtain
the parametric equations. A vector equation r=r(t) of the helix is

xi +yj + zk = (cost)i + (sin t)j + tk

Thus, r(t) =(cos t)i + (sin t)j +tk
=r/(t) = (- sin t)i + (cos t)j + k

At the point where t = 1/6, these vectors are

1
r(ﬂ) =£i+§j+ﬂk and

6 2 6
1 3
r/(%j =—§i+32£j+k

so from (5) with ty = /6 a vector equation of the tangent line is

T (T _ 3@ 1.z 1. BE
r(6j+tr(6) (2 1+2J+6k +1 21+2]+k

Simplifying, then equating the resulting components with the corresponding components
of r=xi+yj + zk yields the parametric equation.

3 1 1

Y
X=T T ymp gyttt

EXAMPLE

The graph of r(t) = t%i + t’j is called a semicubical parabola
Find a vector equation of the tangent line to the graph of r(t) at .
(a) the point (0,0) (b) the point (1,1) I ! B
The derivative of r(t) is '
r/(t) = 2ti + 3t%j

(a) The point (0, 0) on the graph of r corresponds

to t = 0. As this point we have r/(0) = 0, so there is no
tangent vector at the point and consequently a tangent line does not exist at this point.
(b) The point (1, 1) on the graph of r corresponds to t = 1, so from (5) a vector equation

of the tangent line at this pointis r =r(1) +tr/(1)

From the formulas for r (t) and r/(t) with t = 1, this equation becomes
r=(i+j)+1t(2i+3j)

If r is a vector-valued function in 2-space or 3-space, then we say that r(t) is smoothly

parameterized or that r is a smooth function of t if the components of r have continuous

derivatives with respect to t and r/(t) # 0 for any value of t. Thus, in
3-space r (t) =x(t)i +y (t)j + z(H)k

is a smooth function of t if x/(t), y/(t), and Z/(t) are continuous and there is no value of t at
which al three derivatives are zero. A parametric curve C in 2-space or 3-space will be
called smooth if it is the graph of some smooth vector-valued function.

It can be shown that a smooth vector-valued function has a tangent line at every point on
its graph.
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PROPERTIES OF DERIVATIVES

(Rules of Differentiation).

In either 2-space or 3-space let r(t), ri(t), and ry(t) be vector-valued functions, f{(t) a real-
valued function, k a scalar, and ¢ a fixed (constant) vector. Then the following rules of
differentiation hold:

§i -0

< k(0] = k 5 [1(0)

% (v + m(t)]% (O [r2 (0]
< ro-ra0)- a £ 1) - < )

d d
< [for)] = 05, OO 0]

In addition to the rules listed in the foregoing theorem, we have the following rules for
differentiating dot products in 2-space or 3-space and cross products in 3-space:

d dr, dr

G MORO]=rig g n (6
d dr, d
LX< gl ()
REMARK:

In (6), the order of the factors in each term on the right does not matter, but in (7) it does.
In plane geometry one learns that a tangent line to a circle is perpendicular to the radius at
the point of tangency. Consequently, if a point moves along a circular arc in 2-space, one
would expect the radius vector and the tangent vector at any point on the arc to be
perpendicular. This is the motivation for the following useful theorem, which is
applicable in both 2-space and 3-space.

THEOREM:

If r (t) is a vector-valued function in 2-space or 3-space and ||r(t)|| is constant for all
t, then r(t).r'(t)=0

that is, r(t) and r/(t) are orthogonal vectors for all t.It follows from (6) with
rl(t)zrz(t)=r (t) that

dt [r(t) r(t)] = r(t) at + FTRRO)
. d dr
or, equivalently, at [||r(t)||]2 =2r(t). at
2. . . . . dr . dr
But ||r(t)||” is constant, so its derivative is zero. Thus 2r(t).a =0 that is r(t) . T 0

d
That is the r(t) is perpendicular é
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EXAMPLE
Just as a tangent line to a circular arc in 2-space is perpendicular to the radius at the point
of tangency, so a tangent line to a curve on the surface of a sphere in 3-space is
perpendicular to the radius at the point of tangency.

To see that this is so, suppose that the graph of r(t) lies
on the surface of the sphere of radius k > 0 centered
at the origin.For each value of t we have ||r(t)||=k,
r(t). r'(t)=0
which implies that the radius vector r(t) and the

tangent vector r/(t) are perpendicular. This completes the argument because the tangent
line, where it exists, is parallel to the tangent vector.

INTEGRALS OF VECTOR VALUED FUNCTION

(a) If r(t)=x(t)I +y(t) j is a vector-valued function in 2-space ,the we define.

J.r(t)dt =( j X(t)dt)i + ( j ydt)j  (1a)
J.r(t)dt =( j X(t)dt)i +( j ydt)j  (Ib)

(b) Ifr(t)=x (t) i+y(t)j+z(tkisa
vector-valued function in
3-space, then we define.

_.r(t)dt{_[x(t)dbiery(t) o +dz(t)dbk (2a)

b b b b
,ar(t)dté[l x(t)d)'r#(_[l y(t)d)j+da Z(t)d)k (2b)

Let r(t)=2ti+3t*]
(@) [ r(t)dt (b)[ r(tyct

j r(t)dt = j (2ti +3t7j)dt = (jztdt)i +(j 3t°dt) |
+Ci+T+C)j=ti+Ci+t’j+C,j=t’i+t’j+Ci+C,j=t’i+t’j+C

WhereC =C,i+C, jisanarbitrary vector constant of integration

(b) Jz.r(t)dt = j(zti +3t2j)dt :(Jz-ztdt)i +(J2.3t2dt) j =[t2]i i+t ]z j=(22—0)i+(2 —0)j = 4i +8]
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PROPERTEIS OF INTEGRALS
j cr(t)dt=c¢ _[ r(t) dt 3)

j [ri(D)+ra(t)] dt = .[ rl(t)dt + j 1y(t) dt
4)

_[ [I‘l(t)—rz(t)]dt = Jrl(t) dt—JI‘z(t) dt
)

These properties also hold for definite integrals of vector-valued functions. In addition,
we leave it for the reader to show that if r is a vector-valued function in 2-space or 3-

space, then % [I () dt] =r () (6)

This shows that an indefinite integrals of r(t) is, in fact, the set of antiderivatives of r(t),
just as for real-valued functions.
If r(t) is any antiderivative or r(t) in the sense that R/(t) =r(t), then

I r(t)dt=R(t) + C (7
where C is an arbitrary vector constant of integration. Moreover,
b
b

fa rt)dt=R(t) | = R(b)- R(a).

a
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Lecture No -29 Change of parameter

It is possible for different vector-valued functions to have the same graph.
For example, the graph of the function .
r=@Bcost)i+(3sint)j,0<t<2n oo B

: . : .. 35 %

is the circular of radius 3 centered at the origin l P b
with counterclockwise orientation. The parameter r’/ | A 1 x
t can be interpreted geometrically as the positive == 5 s ] P
angle in radians from the x-axis to the radius vector. \ g F

For each value of t, let s be the length of the arc \\_‘ o)

subtended by this angle on the circle S~

The parameters s and t are related by

t=s/3, 0<s<6n

if we substitute this in (10), we obtain a vector-valued function of the parameter s, namely
r=3cos (s/3)i+ 3 sin(s/3)j, 0 <s<é6mn

whose graph is also the circle of radius 3 centered at the origin with counterclockwise
orientation .In various problems it is helpful to change the parameter in a vector-valued
function by making an appropriate substitution. For example, we changed the parameter
above from t to s by substituting t=s/3 in (10).

In general, if g is a real-valued function, then substituting t = g(u) in r(t) changes the
parameter from t to u.

When making such a change of parameter, it is important to ensure that the new vector-
valued function of u is smooth if the original vector-valued function of t is smooth. It can
be proved that this will be so if g satisfies the following conditions:

1. gis differentiable.

2. ¢ is continuous.

3. g/(u)# 0 for any u in the domain of g.

4. The range of g is the domain of r.
If g satisfies these conditions, then we call t = g(u) a smooth change of parameter.
Henceforth, we shall assume that all changes of parameter are smooth, even if it is not
stated explicitly.
ARC LENGTH
Because derivatives of vector-valued functions are calculated by differentiating
components, it is natural do define integrals of vector-functions in terms of components.
EXAMPLE

7 / , . .
If x(t) and y(t) are continuous for a <t<b, then the curve given by the parametric
equations

x=x(1), y=y(®) (@ast<b) (9)
has arc length
b

(10)
This result generalizes to curves in 3-spaces exactly as one would expect:

/ / / ) . .
If x(t), y (t), and z (t) are continuous for a <t <b, then the curve given by the parametric
equations

X=x(1), y=y(), z=2z1) (a<t<b)
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has arc length

L= J \/ @t)z dt (12)

EXAMPLE
Find the arc length of that portion of the circular helix
X =cos t, y =sin t, z=t

Fromt=0tot=mn
The arc length is

L= I \/ 2+@®2dt =I0 /(= sin t) + (cos t)> + 1 dt
:Lﬁdt:ﬁn

ARC LENTH AS A PARAMETER

For many purposes the best parameter to use >
for representing a curve in 2-space or e =
3-space parametrically is the length of e
arc measured along the curve from some "'(

fixed reference point. This can be done as follows:

Step 1: Select an arbitrary point on the curve C to serve as a reference point.

Step 2: Starting from the reference point, choose one direction along the curve to be the
positive direction and the other to be the negative direction.

Step 3: If P is a point on the curve, let s be the “signed” arc length along C from the
reference point to P, where s is positive if P is in the positive direction from the
reference point, and s is negative if P is in the negative direction.

By this procedure, a unique point P on the curve is determined when a value for s is
given. For example, s = 2 determines the point that is 2 units along the curve in the

. N . 3 . . .3
positive direction from the reference point, and s = — 5 determines the point that is 5

units along the curve in the negative direction from the reference point.

Let us now treat s as a variable. As the value of s changes, the corresponding point P
moves along C and the coordinates of P become functions of s. Thus, in 2-space the
coordinates of P are (x(x,), y(s)), and in 3-space they are (x(s), y(s), z(s)). Therefore, in
2-space the curve C is given by the parametric equations x = x(s), y =1y (s)

and in 3-space by x =x(s), y=y(s), z=z(s)

REMARKS

When defining the parameter s, the choice of positive and negative directions is arbitrary.
However, it may be that the curve C is already specified in terms of some other parameter
t, in which case we shall agree always to take the direction of increasing t as the positive
direction for the parameter s. By so doing, s will increase as t increases and vice versa.
The following theorem gives a formula for computing an arc-length parameter s when the
curve C is expressed in terms of some other parameter t. This result will be used when we
want to change the parameterization for C from t to s.
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THEOREM

(a) Let C be a curve in 2-space given parametrically by

x=x(t), y=y(@®

where x (t) and y (t) are continuous functions. If an arc-length parameter s is introduced
with tits reference point at (x(t), y (o)), then the parameters s and t are related by

(13a)

(b) Let C be a curve in 3-space given parametrically by

x=x(0), y=y(0), 2= (1)

where x(t), y(t), and z(t) are continuous functions. If an arc-length parameter s is
introduced with its reference point at (x(to), y(to), z(to)), then the parameters s and t are
related by

5= I \/ dy) Glzj du (13b)

Proof
If t > ty, then from (10) (with U as the variable of integration rather than t) it follows that
t

(14)

represents the arc length of that portion of the curve C that lies between (x(to), y(to)) and
(x (1), y(t)). If t < ty, then (14) is the negative of this arc length. In either case, integral
(14) represents the “signed” arc length s between these points, which proves (13a).

It follows from Formulas (13a) and (13b) and the Second Fundamental Theorem of
Calculus (Theorem 5.9.3) that in 2-space.

¢ 2 2 2 2
ds_d dx\" (dy ] (dx Qz)
NN

and in 3-space

¢ 2 2 2 2 2 2
ds_d dx\ (dy) (dz) | . [ (dx Qz) (d_)
o[ (@@ |- [ @ (5

Thus, in 2-space and 3-space, respectively,

2 2
ds _ dx) | (dy
dt — (dt) +(dt) (15a)
2 2 2
ds _ dx) | (dy), (dz
dt ~ \/ (dt) +(dt) +(dt) (155)
REMARKS:

Formulas (15a) and (15b) reveal two facts worth noting. First, ds/dt does not depend on
to; that is, the value of ds/dt is independent of where the reference point for the parameter
s is located. This is to be expected since changing the position of the reference point shifts
each value of s by a constant (the arc length between the reference points), and this
constant drops out when we differentiate. The second fact to be noted from (15a) and
(15b) is that ds/dt > 0 for all t. This is also to be expected since s increases with t by the
remark preceding Theorem 15.3.2. If the curve C is smooth, then it follows from (15a)
and (15b) that ds/dt > 0 for all t .
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EXAMPLE

x=2t+1, y=3t-2 (16)

using arc length s as a parameter, where the reference point for s is the point (1, — 2).

In formula (13a) we used u as the variable of integration because t was needed as a limit
of integration. To apply (13a), we first rewrite the given parametric equations with u in
place of't; this gives

from which we obtain

x=2u+1l, y=3u-2

dx dy

du ~ 2, du ~ 3

we see that the reference point (1 ,—2) corresponds to t =ty =0

(&) dum H—du_m] T3

Therefore, t=—"F—= s
A\ 13
Substituting this expression in the given parametric equations yields.

1 2
X—Z(\/ESJ +1—\/1—35+1

3

EXAMPLE

Find parametric equations for the circle x =acost,y=asint (0 <t<2n)

using arc length s as a parameter, with the reference point for s being (a, 0), where a > 0.
We first replace t by u in the given equations so that x =acosu, y=asinu

And dx =—asinu, dy =acosu
du du

Since the reference point (a, 0) corresponds to t =0, we obtain
t
u=t
du du—_[\/( asin u)® + (a cos u)* du —Jadu—au] = at

u=0

Solv1ng for t in terms of s yields t =s/a
Substituting this in the given parametric equations and using the fact that s = at ranges
from O to 2ma as t ranges from 0 to 27, we obtain

x=acos (s/a), y=a sin (s/a) (0<s<2ma)

Example
Find Arc length of the curve r (t) = )i + tj + 1/2\/6 £k 1<t<3
Herex =t,y =t, z—l/z\/gt2

dx 2_X
d_3’dt ’dt \/gt

Arc length= j\/ dt dt dt) dt—_[ A9t + 1 + 62 dt—_[ \/(3t7+1 2 dt

= |¢ +t|— By +3-(1P-1=27+3-1-1=28
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EXAMPLE
d
Calculate d—:; by chain Rule.
r=c'i+4e’j
d
o —ei-de’j
dt
du — 2u

dr dr dt
g g = (el 4e).2u) = 2u e -8ue™]
By expressing r in terms of u
2
R=¢"i +4e"j

e 2 2,
du =2ue i—8ue j

154

© Copyright Virtual University of Pakistan



30-Exact differential VvU

Lecture No -30 Exact Differential
0z 0z
Ifz=1f(x,y), thendz = ox dx + dy dy
The result can be extended to functions of more than two independent variables.
0z, 0z, 6 0z
Ifz=1(x,y, w), dz= ox dx+a dy+a dw

Make a note of these results in differential form as shown.

Exercise
Determine the differential dz for each of the following functions.
1. z=x"+ y2

2. z=x"sin2y

3. z=(2x-1)e”

4. z=xz+2y2+3w2
5. Z=x3y2 W.

Finish all five and then check the result.

1. dz=2(xdx+ydy)

2. dz=x"(3 sin 2y dx + 2x cos 2y dy)

3. dz=¢" {2dx + (6x — 3) dy}

4. dz=2 (xdx + 2ydy + 3wdw)

5. dz=x%y Bywdx + 2xwdy + xydw)

Exact Differential

We have just established that if z=f(x, y)
0z 0z

dz = ox dx + oy dy

We now work in reverse.
Any expression dz = Pdx + Qdy, where P and Q are functions of x and y, is an exact
differential if it can be integrated to determine z.

0z 0z

. P= ox and Q = oy
L oP Pz Q&2 &z 0z
Wy oyox 2 ox = ox aya“d we know that 7 5 =5 oy

. ., 0P 0 -
Therefore, for dz to be an exact differential =~ = xQ and this is the test we apply.

oy 0Ox

Example
dz = (3x” + 4y”) dx + 8xy dy.
If we compare the right-hand side with Pdx + Qdy, then

P
P =3x*+4y” . oy - 8y
Q =8y . 8£ 8y
op = Q .. dz is an exact differential
dy 0Ox

Similarly, we can test this one.
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Example
dz = (1 + 8xy) dx + 5x* dy.
From this we find dz is not an exact differential
for dz = (1 + 8xy) dx + 5x°* dy
oP

~ P=1+8y .. By = 8x
Q=5x" 88% = 10x
(%P ;tg% .. dz is not an exact differential
Exercise

Determine whether each of the following is an exact differential.

1. dz=4x’y’dx + 3x*y* dy

2. dz=(4x’y+2xy’) dx+H(x*+3x2y%) dy

3. dz=(15y°e™2xy")dx+H10ye™+x’y)dy

4. dz=(3x’e-2y’e™)dxH2x P —2ye™)dy

5. dz=(4y’cos4x+3x’cos2y)dx+(3y’sindx—2x" sin 2y) dy.

1. Yes 2. Yes 3.No 4.No 5. Yes

We have just tested whether certain expressions are, in fact, exact differentials—and we
said previously that, by definition, an exact differential can be integrated. But how exactly
do we go about it? The following examples will show.

Integration Of Exact Differentials

0z 0z
dz = Pdx+Qdy where P—6X and Q—ay

Z:JPdX and also Z:J. Qdy

Example
dz = (2xy + 6x) dx + (x2 + 2y3) dy.
:% =2xy +6x .. Z:J (2xy+6x)dx

. z=x"y + 3%’ + f (y) where f(y) is an arbitrary function of y only, and is akin to the
constant of integration in a normal integral.
Also

Q= % =x>+ 2y3 VS _[ (x2+2y3) dy
4

L z=Xx2y+ % + F(x) where F(x) is an arbitrary function of x only.

2=Xy 3¢ +f(y) ()
and z=xy+ % +Fx) (i)
For these two expressiona to represent the same function, then
f(y) in (i) must be % already in (i)
and F(x) in (ii) must be gxz already in (i)

z=x2y+3x2+%
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VU

Example

Integrate dz = (8¢ + 2xy?) dx + (4 cos 4y + 2x’y) dy.

Argue through the working in just the same way, from which we obtain
z=2e* + x’y* + sin 4y

Here it is.

dz = (8¢™ + 2xy?) dx+(4 cosdy+2x’y) dy

_@ _ 4x 2
P= ox 8e™ + 2xy
Soz= _[ (8e™ + 2xy?) dx

L z=2e"+ Xy +1(y) )
0z
Q=% =
A _[ (4cos 4y + 2x%y) dy

. z=sin4y + )(2y2 +F(x) (i)
For (i) and (ii) to agree, f (y) = sin 4y and F(x) = 2e™

. z=2e"™+x%y* +sin 4y ]

4 cos 4y + 2x%y

Area enclosed by the closed curve

One of the earliest application of integration is finding
the area of a plane figure bounded by the x-axis, the curve

y = f (x) and ordinates at x=x; and x=Xx,.

A1=J; XlzdeZ_[ Xzf(x)dx

X]
If points A and B are joined by another curve, y = F(x)
X2

A= _[ f(x)dx

X

14 B
y=flx)

Combining the two figures, we have
X2

X2
A=A —-A; AZJ f(x)dx—j f(x)dx
X]

X

The final result above can be written in the form

A= —[ﬂ ydx
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Where the symbol (;5 indicates that the integral is to be evaluated round the
closed boundary in the positive

Y

Example

Determine the area enclosed by the graph of y = x” and

y =4x for x > 0.

First we need to know the points of intersection. These are
x=0and x=2

We integrate in a an anticlockwise manner

01:y=x3, limitsx=0tox =2

Co:y =4x, limits x =2 to x =0.

0 1 2 X

A= —Cﬁ y dx = A =4 square units

For A= yax - —{Il 2x3dx+J; 04xdx} - -{(%2 + [2x2]2} _4

0 0
Example
Find the area of the triangle with vertices (0, 0), (5, 3) and (2, 6).
Y B(2. 6) v =
(=]
3 A <3 =
(5, 3) 3 A
1 1 <
0 2 5 X 1 1
o] 2 5 X

3
The equation of OAisy= 3 x,BAis y=8—-x,0Bisy=3x

Then A = — (ﬁ y dx
Write down the component integrals with appropriate limits.

5 2 0
A=—gs ydx=— {L %xdx-i-_[ (8—x)dx+,£ 3xdx}

The limits chosen must progress the integration round the boundary of the figure in an
anticlockwise manner. Finishing off the integration, we have
A = 12 square units
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The actual integration is easy enough. The work we have just done leads us on to consider
line integrals, so let us make a fresh start in the next frame.

Line Integrals

If a field exists in the xy-plane, producing a force F on a particle at K, then F can be
resolved into two components.F; along the tangent to the curve AB at K. Fa along the
normal to the curve AB at K.

Line Integrals

The work done in moving the particle through a small distance s from K to L along the
curve is then approximately F; 8s. So the total work done in moving a particle along the
curve from A to B is given by

%gng F s Z_[Ft ds from A to B

This is normally written _[ F; ds where A and B are the end points of the curve,
AB

or as J. F; ds where the curve ¢ connecting A and B is defined.
C

Such an integral thus formed, is called a line integral since integration is carried out along
the path of the particular curve ¢ joining A and B.

" IZ_[ Fth:J-Ftds
AB C

where c is the curve y = f(x) between A(x, y2) and B (X2, y2).
There is in fact an alternative form of the integral which is often useful, so let us also
consider that.

Alternative form of a line integral

It is often more convenient to integrate with respect to x or y than to take arc length as the
variable.

If F; has a component

P in the x-direction

Q in the y-direction

then the work done from K to L can be stated as Pox + Qdy
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R J.ABFtdS:J.AB (P dX+Qdy)
where P and Q are functions of x and y.
In general then, the line integral can be expressed as

I:IFtdSZJ(de+Qdy)
C C

where c is the prescribed curve and F, or P and Q, are functions of x and y.
Make a note of these results —then we will apply them to one or two examples.
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Lecture No -31 Line Integral

The work done in moving the particle through a
small distance 0s from K to L along the curve
is then approximately F; ds. So the total work
done in moving a particle along the curve from
A to B is given by

%LrngFt SSZJ.Ft ds from A to B

This is normally written _[ F; ds where A and B are the end points of the curve, or as _[ F;
AB C

ds where the curve ¢ connecting A and B is defined.Such an integral thus formed, is
called a line integral since integration is carried out along the path of the particular curve
c joining A and B.

" IZI Ftdx=£Ftds

AB
where c is the curve y = f(x) between A(Xj, y2) and B (x2, y2).

There is in fact an alternative form of the integral which is often useful, so let us also
consider that.

Alternative form of a line integral

It is often more convenient to integrate with respect to x or y than to take arc length as the
variable.

If F; has a component ,P in the x-direction ,Q in the y-direction

then the work done from K to L can be stated as Pox + Qdy

Example 1
Evaluate J. (x +3y)dx from A (0, 1) to B (2, 5)
C

along the curve y = 1 + x°.
The line integral is of the form

j (P dx + Qdy) where, in this case, Q =0 and ¢
C

is the curve y=1+x"

It can be converted at once into an ordinary
integral by substituting for y and applying
the appropriate limits of x.

2

[= I (Pdx+Qdy) = I (x+3y)dx=] (x+3+3x%)dx
C C C

2

Now for another, so turn on.

X2 ’
Z[—+3x+x3} =16
0

161

© Copyright Virtual University of Pakistan



31-Line integral VU

Example 2
Evaluate [ = ,[ (x> + y)dx + (x — yz)dy from A (0, 2) to B (2, 5) along the curve y =2 + x.
C

1= j (Pdx + Qdy)
C

P=x’+ y=x"+2+x=x"+x+2
Q = x—y” = x—(4+4x+x7) = — (x*+3x+4)

Alsoy=2+x
. dy = dx and the limits are x=0 to x=3
o I=-15
2

2

2
for I = I ((P+x+2) dx — (x*+3x+4) dx} or I —xt2)dx=[-x* —2x] =—4-4=-38
0 0 0

Example 3
Evaluate [ = _[ {(x*+2y)dx + xydy} from O(0, 0) to B(1, 4) along the curve y=4x".
C

In this case, c is the curve y = 4x2.

. dy =8xdx
Substitute for y in the integral and apply the limits.
Then1=9.4

for I= _[ {(x*+2y) dx-+xydy} &
C

y = 4x* o dy = 8xdx
also x” + 2y = x> + 8x” = 9x%; xy =4x’

1 |

g sz {9x%dx+32x*dx}= J (9x*+32x") dx = 9.4

0 0
They are all done in very much the same way.
Example 4
Evaluate I = J (x* + 2y) dx + xydy} from O(0, 0) to A (1, 0) along the line

C

y =0 and then from A (1, 0) to B (1, 4) along the line x = 1. y
(1) OA:clistheliney=0 .. dy=0. | e
Substituting y = 0 and dy = 0 in the given integral gives.

1 1 2

3
- o (x 1 < A
IOA—J;X dx—[3l)—3 —— %
(i1)) AB: Herec,isthelinex=1 .. dx=0
" IAB =8

4 4
ForIAB=I {(1+2y)(0)+ydy}=j ydy:[%TZS
0 0 0

ThenI = IOA+IAB = % +8 = 8% 128%

If we now look back to Example 3 and 4 just completed, we find that we have evaluated
the same integral between the same two end points, but along different paths of
integration.If we combine the two diagrams, we have

where c is the curve y = 4x” and c1 + ¢ are the lines

y =0 and x = 1. The result obtained were
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2 1

I.= 95 and I¢ e, = 85 Z __________ B
Notice therefore that integration along two distinct

paths joining the same two end points does not

necessarily give the same results.

%]

Properties of line integrals

1. _[Fds =I (Pdx + Qdy}
C C

2. _[ Fds=- I Fds and _[ {Pdx+Qdy} = _[ {Pdx+Qdy}
AB BA AB BA

i.e. the sign of a line integral is reversed when the direction of the integration along the
path is reversed.
3. (a) For a path of integration parallel to the y-axis, i.e. x =k, dx =0

_[ Pdx=0 .. I¢c= _[ Qdy
C C
(b) For a path of integration parallel to the x-axis, i.e. y =Kk, dy =0.

,[ Qdy=0 .. Ic=) Pdx.
C C

4. If the path of integration ¢ joining A to B is divided into two parts AK and KB, then

I. = IaB = Iak + Iks. (x2. ¥2)
5 .If the path of integration c is not single
valued for part of its extent, the path is

divided into two sections.

y = 11(x) from A to K,y = £, (x) from K to B. e vl

n X

(x3, ¥3)

|
|
|
|

6. In all cases, the actual path of integration involved must be continuous and single-
valued.

Example
Evaluate [ = _[ (x +y) dx from A(0, 1) to B (0, — 1) along the semi-circle x*+y’=1
C

for x > 0.The first thing we notice is that
the path of integration c is not single-valued 1

For any value of x, y =+1/ 1 — x%. Therefore, \
we divided c into two parts ° ‘/

(1) y= 1 — x* from A to K
() y=-y1-x"fromKtoB

As usual, I = J (Pdx + Qdy) and in this particular case, Q =0
C
1 0

" I:deX:I (x+y l—xz)dx+j (x\1-x%)dx
C 0 1
1 1
=j(x+\/l—x2—x+\/l—x2dx =2j 1 —x*dx
0 0

Now substitute x = sin 0 and finish it off. | =§

163

© Copyright Virtual University of Pakistan



31-Line integral

VU

forI=2J. 1 — x%dx X =sin 0
0
dx=cos0d0 / 1—x>=cosO
Limits: x=0, 0=0; x=1, e:E

" I—2_[ €0s20d0 = J (1+co0s20)d6= [9+

Now let us extend this hne of development a stage further.

Example
Evaluate the line integral

sin 26

1= (J-) (x*dx — 2xy dy) where ¢ comparises the three sides of the triangle joining O(0, 0), A (1, 0)

and B (0, 1).

First draw the diagram and mark in ¢y, ¢, and c3, the proposed

directions of integration. Do just that. The three sections

of the path of integration must be arranged in an

anticlockwise manner round the figure.
Now we deal with each pat separately.
(a) OA :cjistheliney=0
Therefore, dy =0.

Then I = 95 (x*dx — 2xy dy) for this part becomes
1

341

X 1 1
I, = xdeZ[—} =7 therefore I; =73
! J; 3 X 3 173

(b) AB:forcyistheliney=1-x
dy——dx

f {x*dx+2x(1-x)dx} f (x*+2x-2x%)dx = f (2x—x%) dx= {X _);311):_5

2
12:—§

Y

158
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-

Note that anticlockwise progression is obtained by arranging the limits in the appropriate

order.
Now we have to determine I; for BO.
(c) BO: c;isthe linex =0

©dx=0 .'.IgZIOdyZO s Iz=0
) 1 2 1
Finally, I = I, +I,+]; =3 -3 +0= -3

Example

Evaluate (j.) y dx when ¢ is the circle x*+y* = 4.
c

x2+y2=4 y=i\/4—x2

y is thus not single-valued. Therefore use
y=1/4-x" for ALB between
x=2and x=-2and

y=- 4 —x* for BMA between
x=—2and x =2.
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2 2
" IZI 4—X2dX+J. {—\/4—x2}dx
2 2

2 2 2
=2_[ 4 —x* dx=—2J. 4 —x* dx =—4J 4 —x* dx.
2 -2 0

To evaluate this integral, substitute x =2 sin 0 and finish it off. 1 = —4xn
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Lecture No -32 Examples

Example

Evaluate I = (I’ {xydx+(1+y*)dy} where c is the boundary of the rectangle joining A(1,0), B
3,0),C@3,2),D(1,2).

First draw the diagram and insert c,c,C3,C4.

That give 2
Now evaluate I; for AB; I, for BC; I5 for CD; !
I4 for DA; and finally 1.
11:0;12:4%;13:—8I4:—4§;I:—8 . . ¢
Here is the complete working.

1= (JS {xydx + (1 +y°) dy}

(a) AB:cjisy=0 .. dy=0 .. ;=0
(b) 123C:czisx=3 sodx=0

0
(c) CD:031isy=2 sody=0

32

2 2

-'-Iz:j (1+y2)dy:[y+};_] =47 L=4
0

3

(d) DAZC%iSXZI sodx=0

P
- 1) (1Y) dy:[y + %} =43
2

2

.'.132_[ 2xdx=[x2] =-—8 .Iz3=-8
3

2 2
Finally =L+ L+ +14= 0+4§ —8—45 =-8..I=-8

Remember that, unless we are directed otherwise, we always proceed round the closed
boundary in an anticlockwise manner.

Line integral with respect to arc length

We have already established that

I= J Fds = I {Pdx+Qdy}
AB AB

where F; denoted the tangential force along the curve c at the sample point K(x,y).
The same kind of integral can, of course, relate to any function f(x,y) which is a function
of the position of a point on the stated curve, so that

I= _[f(x, y) ds.
C

This can readily be converted into an integral in terms of x:

ds
I= I f(x,y)dx = j f(x,y) g dx
C C

ds _ dyY’
where Ix 1+ ( dx)

X
l f(x,y) dX:J fx,yn\ | 1+(%§)2 dX---mmmmmemmee (1)
X]
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Example
Evalaute I = I (4x+3xy)ds where c is the straight line joining 0(0,0) to A (1,2).
C
d
cis theliney =2x . 4 =2 Y
X 2h-———3A(1,2)

Cds dyY =
dx 1+(dxj_ 5
x=1 1

|

|

|

g I=I (4X+3xy)ds=_[ (4x+3xy)\/ 5) dx. But y = 2x |
x=0 0

|

:

1 1
for I= I (4x+6x2)(\[5) dx = 24/5 I x+3) dx =45  °
0 0

Parametric Equations
When x and y are expressed in parametric form, e.g. x =y (t), y = g(t), then

ds __ [fdxV (dyY N (Qz)
dt (dt) * (dt) wods= (dt) ) dt
2 T vV
_ _ dxy" . (dy
I= -([f(xay)ds_-[l f(xay) (dt) + (dt) """""""" (2)
Example
Evaluate I = (_f4xyds where c is defined as the curve x = sin t, y = cos t between t=0
T
and t= 4°
d d
We have x =sin t d—)t(:cost,yzcost H%Z—sint
ds
dt !
d dx)? (dyY?
forEi = (d_)t(j J{E%) =\/cos t+sin"t =1

1= 1 [B 2

t
/4

2_[0 4sintcostdt = 2,[

/4
cos 2t
0

4

TT/!
sin 2t dt
0

Dependence of the line integral on the path of integration

We know that integration along two separate paths joining the same two end points does
not necessarily give identical results.With this in mind, let us investigate the following
problem.
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EXAMPLE

Evaluate I = ‘f {3x* y* dx + 2x’y dy} between O (0, 0) and A (2, 4)
C

(a) along c;ie.y=x

(b) alongc;i.e.y=2x

(¢) along c;i.e. x =0 from (0,0) to (0,4) and y =4 from (0,4) to (2,4).
(a).First we draw the figure and insert relevant information.

I= j{3x2y2dx +2x’ydy}
The path Ci 1s y=x> . dy=2xdx
I (3x*x*dx+2x’x*2xdx )= I (3x° + 4x%) dx

o= [¥7] =128 - 1 =128

(b) In (b), the path of integration changes to ¢, i.e. y = 2x
So, in this case,for with ¢, y =2x .. dy =2dx
2

I, = J. (3x% 4x* dx + 2x° 2x* dx}
0

Al2, 4)
2 2
=IO 20x*dx= 4[x°] =128 - =128
0
X
(c) In the third case, the path c; is split _
x =0 from (0,0) to (0, 4), y =4 from (0, 4) to (2, 4) , = e
Sketch the diagram and determine 1. €3
from (0,0) to (0,4) x=0 .. dx=0 .. 13,=0 o |
from (0,4)to (2,4) y=4 .. dy=0 ... I5,=48 &l
x=0
_[48); dx = 128 s =128 i)
0 1 2 X

In the example we have just worked through, we took three different paths and in each
case, the line integral produced the same result. It appears, therefore, that in this case, the
value of the integral is independent of the path of integration taken.

C3
4 Al2, 4)

We have been dealing with [ = _[ (3x’y dx+2x’ydy}
C

168

© Copyright Virtual University of Pakistan



32-Examples VU

On reflection, we see that the integrand 3x* y* dx + 2x’y dy is of the form Pdx+Qdy
which we have met before and that it is, in fact, an exact differential of the function
0z 0z
_ 3.2 0z _ ., 2 2 oz _ 3
z=Xx"y", for ox 3x"y anday 2x°y
This always happens. If the integrand of the given integral is seen to be an exact
differential, then the value o the line integral is independent of the path taken and depends

only on the coordinates of the two end points.

169

© Copyright Virtual University of Pakistan



33-Examples VU

Lecture No -33 Examples

Example
Evaluate I = I {3ydx + (3x+2y)dy} from A(1, 2) to B (3, 5).
C

No path is given, so the integrand is doubtless an exact differential of some function z = f
P_ . _XQ
oy~ 0 T ox
differentials, so there is no difficulty. Compare with

I:I{PdX+Qdy}.
C
B % =3y S 2= .[ 3ydz=3xy+f(y) -------- )

(x,y). In fact . We have already dealt with the integration of exact

P

Q= % a2y 2=y dy = xy+y RGO G

For (1) and (ii) to agree f(y)= y2 ;0 F(x)=0
Hence z = 3xy +y2

~I= I{Sydx + (3x+2y)dy}= _[
C (
Example
Evaluate I = I {(x*+ye*)dx+(e*+y)dy} between A (0, 1) and B (1, 2).
C

(3,5) 3.,5)

daxyty)=[3xyty?] = @5+25) - (6+4)= 60
)

1,2 (1,2)

As before, compare with _[ {Pdx+Q dy}.
C

3
yet Lz =3t ye*+f (y)
2

= =e"+ . z=ye L+ F(x
Yy y 2

For these expressions to agree,

3 2 o) 6

So the main points are that, if (Pdx+Qdy) is an exact differential

LZ <3 3 Lz (1,2)
fly) = PR F(X):? Then 1 =|:_+yex+ } == 4+ 2¢

(a) I= j (Pdx + Qdy) is independent of the path of integration
C

(b) I= (_f (P dx + Q dy) is zero.
C

Ifl= _[ {P dx + Q dy} and (Pdx + Qdy) is an exact differential,
C

Then I, =L

e, +1,=0

Hence, the integration taken round a closed curve is zero,
provided (Pdx+Q dy) is an exact differential.

- If (P dx + Q dy) is an exact differential, C_F (Pdx+Qdy)=0

2
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Exact differentials in three independent variables

A line integral in space naturally involves three independent variables, but the method is
very much like that for two independent variables.

dz =Pdx + Q dy + R dw is an exact differential of z = f(x, y, w)

LGP _0Q P _R R _2Q
Moy “ox’ow ox "oy ow
If the test is successful, then

(a) _[ (P dx + Q dy + R dw) is independent of the path of integration.
C

(b) (_f (P dx + Q dy + R dw) is zero.
C

Example
Verify that dz=(3x’yw+6x)dx+Hx'w—8y)dy+(x’y+1) dw is inexact differential and hence

evaluate _[ dz from A (1, 2,4) to B (2,1 3).
C

First check that dz is an exact differential by finding the partial derivatives above, when
P—3x2yw+6x; Q=X3w—8y; andR=X3y+ 1

oP Q Lo P _0Q
oy 3XW’8 _3XW"8y_8x
OP OR ) P OR

ow =V T oy o
R 300 3  OJR_0Q
oy “Xoow X 0y Ow

.. dz is an exact differential

8 oz ., 0z
Now to find z. P = ; Q= 6y = 5w
oz J'
" ox == =3x’ywH6x .. z=)(3xPyw+6x)dx = X yw+3x*+H(y)+F(w)
.0z I 3 3 2
o 8y = =xw-8x .. z=)(x'w-8y)dy =xyw—4y*+g(x)+F(w)
9z _ 3 ‘[ 3 3
aw X ytl oo z= )X y+tD)dw =y ywtwH(y)+g(x)

For these three expressions for z to agree

fy) = = 4y*; F(w) = w; g(x) = 3x’

z=x3yw+3x2—4y2+w
2,1,3)

I= [x3 yw + 3x2—4y2+w]
1,2,4
013
for  1=[xyw 3~y w]| = (24+12-443)-(8+3-16+4)=36
(1,2.4)
The extension to line integrals in space is thus quite straightforward.
Finally, we have a theorem that can be very helpful on occasions and which links up with
the work we have been doing. It is important, so let us start a new section.
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Green’s Thorem

Let P and Q be two function of x and y that are finite
and continuous inside and the boundary ¢ of a region
R in the xy-plane.If the first partial derivatives are
continuous within the region and on the boundary,

then Green’s theorem states that. ¢

OP a&)

P dxdy=-Y Pdx+Qd X
g(éy ox ) dxdy Ccf( x+Qdy)

That is, a double integral over the plane region R can be transformed into a line integral
over the boundary c of the region — and the action is reversible.
Let us see how it works.

EXAMPLE
Evaluate 1 = (j{(Zx — y)dx + (2y+x)dy} around the boundary c . the ellipse
C

x> + 9y* = 16.
The integral is of the form

P
IZ(}{deﬁLQdy) where P=2x -y .. Z—Y
C

| =—£ J. (g—g—ggjdxdyZ—i _[ (-1-1)dx dy=2 { J. dx dy

But _[ J dx dy over any closed region give the area of the figure.
R

=—landQ=2y+x .. % =1.

In this case, then, [ = 24 where A is the area of the ellipse
2 2

2002 _ 1o X9V
x+9y” =16 1.e. 16 16 =1
4 167 32n
. a—4;b—3 SoA= 3 S I=2A= 3
To demonstrate the advantage of Green’s theorem, let us work through the next example

(a) by the previous method, and (b) by applying Green’s theorem.

Example
Evaluate [ = (_f {(2x+y) dx+(3x—2y) dy} taken in anticlockwise manner round the triangle
C

with vertices at O (0,0) A (1, 0) B (1, 2).
1= ('f {2x +y)dx + (3x —2y) dy}
¢

.2 - e B

C3
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(a) By the previous method
There are clearly three stages with cj,cy,c3. Work through the complete evaluation to
determine the value of I. It will be good revision. When you have finished, check the
result with the solution in the next frame. [ = 2
(a) ()ciisy=0 sody=0
1
1
’ Il=_[2xdx= [Xz] =1 ~L=1
0 0
(i) cpisx=1 .. dx=0
2
0
: 122_[) (3-2y) 01y=[3y—y2]1 =2 - =2
(i) czisy=2x .. dy=2dx
0
A :J. {4x dx + (3x — 4x) 2 dx}
1

0
= IZXdX:[XZ]OZ—l L Lh==1
1 1

[=I+4s = 1 24(- 1) =2 - 1=2

Now we will do the same problem by applying Green’s theorem, so more

(b) By Green’s theorem
I= (} {2x +y) dx + (3x — 2y) dy}
C

oP
P=2x+y oy b
_ . 9Q _
Q=3x-2y .. ox =3

_ oP  9Q
I = _‘l[j(@y_ 6x) dx dy
Finish it off. [ =2

ForI=—”(1—3) dx dy=2 ”dx dy =2A
R R

= 2 x the area of the triangle =2 x 1 =2
[=2
Application of Green’s theorem is not always the quickest method. It is useful, however,
to have both methods available.
If you have not already done so, make a note of Green’s theorem.

ij(%—%ij dxdyZ—? (P dx + Q dy)

Note: Green’s theorem can, in fact, be applied to a region that is not simply connected
by arranging a link between outer and inner boundaries, provided the path of integration
is such that the region is kept on the left-hand side.
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Lecture -34......... Examples

Example

Evaluate the line integral I = (j {xy dx + (2x — y) dy} round the region bounded by

C
the curves y = x* and x = y* by the use of Green’s theorem.
Points of intersection are O(0, 0) and A(1, 1).

I—q {xy dx + (2x —y) dy}

Cf pax+ Qdy}— | ( ] dx dy

Poxy - &y Q=2x-y .. €Q_,
Xy dy X; x]};_ Ox
I——”(x 2)dxdy= — ” , (x=2)dy dx L
Vx e
——I (x - 2) ] dx

1 0 x

I(x 2) (\/_— 2) dx = —J (x? —x* = 2x" + 2x%) dx
0
_ [2 sl a4 43p 23 T:ﬂ
0

e

P
In this special case when P=y and Q=—-x so % =1 and g% =-1
Green’s theorem then states j I {l —(-1)} dx dy =—(_f (P dx+Q dy)
R C
ie. 2”dxdy=—(§(ydx—xdy) Zq(xdy—ydx)
R C C

1
Therefore, the area of the closed region A = _[ _[ dx dy = 5 (Ef (x dy — y dx)
R C

Example
Determine the area of the figure enclosed by y = 3x* and y = 6x.
Points of intersection : 3x* = 6x Sox=0 or2

1
AreaAZE (c'f (xdy —y dx)

A(2,12)

We evaluate the integral in two parts, i.e.
OA alongc; and AO along c;

) A:J (xdy—ydx) N I (xdy—ydx) _ 141,
¢ (along OA) Cy (along OA)
Ii:crisy=3x> .. dy=6xdx
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2 2

I =I(6X2dx—3x2dx)=,'. 3x2dx=[x3] =8 .. =8
0 0 0

Similarly, forc,isy=6x .. dy=6dx
0

I, = I(6de—6xdx)=O
2

12:0
[=]}+L=8+0=8
. A =4 square units

Example
Determine the area bounded by the curves y = 2x°, y = x° + 1 and the axis

x=0 forx>0.
Hereitisy =2x°; y= x+1 x=0
Point of 1ntersect10n 2x°=x>+1 =1

X
AreaAZE(if(xdy—ydx) S (_f dy —y dx)
C C
(@) OA :cpisy=2x" .. dy=6x"dx
1

.'.112_[ (xdy —ydx)Z_[) (6x°dx—2x> dx) = _[) 4x3 dx = [ x* ] =1
|

=1
(b) AB: czlsy x+1 ody= 3X dx

g Iz—_[ (B3xPdx — (x> + 1) dx} = _[(ZX -1)dx —[X;—XI):—(E—I)Z%

L=
(©) BO c3isx=0 .. dx=0

N | —

I j (xdy ydx)=0 .. I3=0

1 1 3
’, 2A=I=Il+12+13=1+§ +0=15 A:Z square units

Revision Summary
Properties of line integrals
e Sign of line integral is reversed when the direction of integration along the path
is reversed.

e Path of integration parallel to y-axis, dx =0 .. I, = ,[ Qdy.

e Path of integration parallel to x-axis, dy =0 .. I.= _[ P dx.

e Path of integration must be continuous and single-valued.
e Dependence of line integral on path of integration.
e In general, the value of the line integral depends on the particular path of
integration.
e Exact differential
If P dx + Q dy is an exact differential

175

© Copyright Virtual University of Pakistan



34-Examples VU

® _aQ
@ 5y Tx

b)I= _[ (P dx + Q dy) is independent of the path of integration

(c) I= (Ef (Pdx+Qdy)is  zero.
C

e FExact differential in three variables.
IfPdx+Qdy+Rdwisan exact differential

b _0Q P OR IR _0Q

@5y =ox > ow x> oy ow

(b) _[ (P dx + Q dy + R dw) is independent of the path of  integration.
(©) (if (P dx+Qdy+ R dw) is zero.
C
e (Qreen’s theorem

(if (P dx+Q dy)=— _[ _[ {6—1) - 6£}dx dy and, for a simple closed curve,
e 2 10y 0Ox

(j (xdy—ydx)=2_”dxdy=2A
C R

where A is the area of the enclosed figure.

Gradient of a scalar function

o 0 i

Del operator is given by V = (1 6x 8 j
0
}b L.

Vo =grad ¢ = (—Jr]@ o

gradd = Vo = ﬁ1+ Gﬁ _]+8Z

Div (Divergence of a vector function)
IfA=aji+ayj+ask

then divA=V.A= ( XA + Ji+ kij (ali + apj + agk)

ox “0y 0
. 6a1 832 8213
~divA=V.A= ox 8y +62
Note that

(a) the grad operator V acts on a scalar and gives a vector
(b) the div operator V. acts on a vector and gives a scalar.

Example
If A = x’yi — xyzj + yz’k then

DivA=V.A =3(x2 y) —i(xyz) +£(yz4)= 2Xy — Xz + 2yz
OX oy oz

Example
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If A = 2x%yi — 2(xy*+y’)j+3y°z’k determine V.A i.e. div A.
A=2x%i - 2(xy*+ y’z)j + 3y*Z’k

_Oay  Oay Oa
V.A= ox + 2y + pe
Such a vector A for which V.A = 0 at all points, i.e. for all values of x, y, z, is called a

solenoid vector. It is rather a special case.

= 4xy-2(2xy+3y’2)+6y’z= 4xy — 4xy — 6y°z+6y°z =0

Curl (curl of a vector function)
The curl operator denoted by Vx, acts on a vector and gives another vector as a result.
If A= aji + a5j + a3k then curl A=VxA.

. .0 .0 0 . .
1.€. curl A=VxA= (1 + Jaer k&)x (au +ayj + a3k)

OX
i j k
|l 2 2
| ox oy 0z
a ar as
. aa3 6a2 . aa1 58.3 88.2 831
VXA:I(E_Ej +j (E—ngrk(g—a—y)
Curl A is thus a vector function.
Example
If A=(y*—x*2%)i+(x*+y?)j—x"yzk,determine curl A at the point (1,3, —2).
i i k
9 0 o
Curl A=V xA= ox By o

y4—xzz2 ><2+y2 —Xzyz
Now we expand the determinant
0

_-i 2 222} {_ 2 £4 22}
VxA—n{ay(—xym—aZ(xw) ~j | C Xy -5, (v - x2)
i 2 2 i 4 2 2}
+k{aX(X +Y)_ay(y _XZ)
VxA=i{—xz}—j{-2xyz+2x’z} +k(2x—4y’}. .. At(1, 3, -2),
VxA=i(2)-j(12-4)+k(2-108) =2i-8j— 106k

Example
Determine curl F at the point (2,0,3) given that F=z¢™i+2xycosyj+(x+2y)k.
i j k
: 0 0 0
In determine form, curl F=V xF= | =~ ~ =~
ox oy 0z

ze™  2xzcosy x+2y
Now expand the determinant and substitute the values for x, y and z, finally obtaining
curl
V x F=i{2 - 2x cos y}— j{1 — e®}+ k ({2z cos y — 2xze*™}
SAH2,03)  VxF=i24)-j(1-1)+Hk(6-12) = -2i-6k = -2 (i + 3k)

Summary of grad, div and curl
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(a) Grad operator V acts on a scalar field to give a vector field.
(b) Div operator V. Acts o a vector field to give a scalar field.
(c) Curl operator V x acts on a vector field to give a vector field.
(d) With a scalar function ¢ (x,y,z)

o, 00, 0b.
Grad ¢ =V = G%Hc’iy J+8zk
(e) With a vector function A=a,it+a,j+ak
aax Oay, 0Oa,
(1) divA=V.A= ox 6y+82
i j k
1)) Curl A=V x A= 4 4 9
(i) Curf A=V x A= ox 5 Py
ax ay a,

Multiple Operations
We can combine the operators grad, div and curl in multiple operations, as in the
examples that follow.

EXAMPLE

If A = x%yi + yZ’j — zx’k

Then div A=V.A = (i 9. j@+ k@j (x%yi + yz’j — zx’K)
’ ox “0y 0z)
=2xy+z’ + x° = ¢ (say)

Then grad (div A) =V(V.A) = ﬁ 1 + 8ﬁ jt ﬁ (2y+3x2)i+(2x)j+(322)k
i.e., grad div A=V(V.A)= (2y+3x )it2xj+32> k

Example

If ¢ = xyz — 2y*z + x’z* determine div grad ¢ at the point (2, 4, 1).
First find grad ¢ and then the div of the result.

div grad ¢ = V.(V¢)

We have b =xyz - 2y’z + x’7*
grad =V = ﬁ é’ﬁ it ﬁ Kk =(yz+2x2)i+(xz—4dyz)j+(xy—2y*+2x°z) k
.. div grad d)—V.(Vd)) 27" - 4z+2x2

S At (2,4,1), divgrado=V.(V$)=2-4+8=6

orad § = Ja ;‘2 ;‘2

0 .0, .0 o\ 0 7 &

Then div grad ¢ = V.(V¢)= (&Jra— ka—)(gz f;ﬁ?gk): £+§+6_§
&

&
~.div grad ¢=V.(V¢) = ?g aﬁ P
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Example

If F = x’yzi + xyz’j + y’zk determine curl F at the point (2, 1, 1).Determine an expression
for curl F in the usual way, which will be a vector, and then the curl of the result. Finally
substitute values.

Curl curl F=Vx(VxF) = i+2j+6k

i i k

0 0 0

ox g Pl (2yz-2xyz)i+x’yjHyz"—x’z)k

Xyz  xyzZ = yz

For curl F =

i j k
9 o 0 2 :
Then Curl Curl F = ox By 2 | T2 i—(—2xz— 2y+2xy)j+(2xy—2z+2xz)k
2

2yz-2xyz Xy yz *x’z
SAt(2,1,1), curl cul F=VX(V x F) =i+ 2j + 6k

Two interesting general results
(a) Curl grad ¢ where ¢ is a scalar

grad § = Jz Ja Ja
i J k
o 9o 0
- curl grad ¢ = | Ox oy 0z
a0 o0b 9
o0x oy 0z
N
0y0z 0z0x 0z0x 0X0z 0x0y 0Oyox
soeurl grad 9=V x (Vo) =0
(b) Div curl A where A is a vector.
A=ad+ayj+ak
i j k
oo |la o a| (e oa) .(0a oa) ., (08, oa
curl A=V x A= ox Oy Oz (G‘y 82) (8){ 82) kK (8}( B 8y)
ax ay a,
. 0 o .0
Then div curl A =V.(VxA) = 8_ + J6_+ k— (VxA)
B o’a, 82ay o’a, N 0*ay 62av 82ax _
- 0x0y 0z0x 0xO0y Oydz 0z0x 0ydz
Sodiveurl A=V . (VxA)=0
(c) Div grad ¢ where ¢ is a scalar.
grad ¢ = ﬁ £ it ﬁ
: o 0. .0 oo o &
Then div grad ¢ = V.(Vo)= [ - 8_ ka—) [?Q 6£ ?122 k)z ﬁ + ﬁ + a—;%
i _ _% @ ol
~.div grad ¢=V.(V¢) = 6X2+ 6y2+ P,

This result is sometimes denoted by VZ¢.
So these general results are
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(a) curl grad ¢ = Vx(Vd)=0
(b) div curl A = V.(VxA) 0

P
(c) div grad ¢=V. (V(b)’?g % %
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Lecture No -35 Definite Integrals

Definite integral for sin"x and cos"x , 0<x< 7?2

3 3 - .
J-sinz XdX=lJ‘(1—cos2x)dX=l X_sm2x ’ :lz__smﬂ =z
) 24 2 2 |, 202 2] 4
3
1
J‘sinzxdxz—z
) 22
5 o .
cos’ XdX=lJ-(l+cos2X)dX:l x4 S02Xe Lz szl 7
29 2 2 |, 2|2 2 4

1
cos® xdx = -z
22

Y S N S

z

™
2

sin Xdx + jcosz X(—sin X)dx
0

o'-—-.w\k)

L4 z
2 2
J-sin3 xdx = J-sm Xsin xdx = I(l cos’ X)sin Xdx =
0 0

T
s* X
3

=—cos£+cosO+l{cos3£—cos3 O}zl—l:%
2 3 2 3 3

0

z

cos Xdx — | sin® X(cos X)dx

o'——,mm
SN

= =

2 2

J-c0s3 xdx = Icos X cos Xdx = J-(l sin” X) cos Xdx =
0 0

z
sin® x|2

:sinz—sinO—l sin3£—sin30 =1- —%
2 3 2 3

W | =

0

s s

2 2 %
sin® xdx = I(Sinz X)*dx = I[l Coszx} =%j 1-2cos2x+cos” 2x)dx
0

O — 10 | N

1+ cos4x cos4x

5
j(l 2cos2X+———)dx =
7 2

(%—2cos2x+ )dx

1
4

O —— 10 | N

2 1[37r ) sin27r}
=—| == —sinz+
. 4]22 8

sin* xdx = l —_ sin* xdx = élf
4 4272

S | N
1
[\O N OS]
N
L 1
w
(@]
O 0 | N
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T

3 ; 3
cos” xdx = J(COSZ X)* dx = J‘F - cos2x} = I (1+2c0s2x+ cos” 2x)dx
0

O 0 | N

1
4

: :
lJ‘(1+2c052x+m)dx:lj.(§+2cos2x+COS4X)dX
45 2 442
13 . sindx|2 1|37 . sin 2z

=—|=X+sin2X+ =—|=—+sinz+

2 8 |, 4l22 8

122
: :
Isms xdx=—= and jcoss Xdx =—=
0 0
3 _ z ﬂ
Ismé xdx===—— and Icosé Xdx===——
0 2 0 2
: :
Ism7 xdx = 642 and Ic s’ Xdx = 642
0 53 0 53
: :
Ismg xdx =Z§§l£ and J.cos8 Xdx = Zéélz
0 86422 g 86422
: :
Ismg xdx = 8642 and jcosg xdx=———=
0 9753 f
: :
Ismlo xdx = 27331x and '[cosg _27331x
0 1086422 0 1086422

Wallis Sine Formula

When n is even isin”xdx:n_l.n_3.n_S.n_7.————————§.§.l-£
0 n n-2n-4n-6 6422

Whennisodd  [eost xax=""10=3 =507 642
0 n n-2n-4n-6 753
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35-Definite intagrals \%48)

il a2 108642

3
Jeos s = 10.8.6.4.2
11.9.7.5.3 )

11.9.7.5.3

.1 11.9.753.1x
n-xdQx=———"-—-—
10.8.6.4.2 2

119.7.53.1 7
dx = 2220
10.8.6.4.2 2

721
—

O V[N O 0| N

Integration By Parts

fuvdx=u[v dx—jDde.‘jj—ﬂ dx

Example Evaluate J' X Inx dx
j x Inx dx= Inx j xdx — j [j X dx.di (In x)] dx (We are integrating by parts)
X
X x* 1 X X X 1 X
=Inx(Z) [ (ST Inxe [ (F)dx=() I ()

Example Evaluate j- X sinx dx

j X sinx dx =x _[ sin xdx — J‘ [J‘ sinx dx. di (x)] dx (We are integrating by parts)

X

= x(-cosx)- I (-cosx)(1)dx= -x(cosx ) +I cosx d x = -x(cosx)+sin X

Line Integrals
Let a point p on the curve c joining A and B be denoted

by the position vector r with respect to origin O. If q ; g A
is a neighboring point on the curve with position vector g
—_ o
r+dr,then PQ =r
The curve ¢ can be divided up into many n such small e

dry dra dry

arcs , approximating to dr; , drp , drs,.......... drp,......

__n
so that ABZ dr, where dr;is a vector representing the element of the arc in both
p=1

magnitude and direction. If dr — 0, then the length of the curve AB= .[ dr .

Scalar Field
If a scalar field V(r) exists for all points on the curve ,

n Z ¥
the ZV (r)dr, with dr — 0, defines the line integral i
= |
of V i.e line integral = jV (r)dr. 5
I &
0 X

We can illustrate this integral by erecting a continuous

Ordinate to V(r) at each point of the curve IV (r)dr is then represented by the area of the

curved surface between the ends A and B the curve c. To evaluate a line integral , the
integrand is expressed in terms of x , y ,z with dr=dx +dyj+dzk

In practice , x , y and are often expressed in terms of parametric equation of a fourth
variable (say u), i.e. x =x(u) ; y =y(u) ; z=z(u) . From these , dx, dy and dz can be

written in terms of u and the integral evaluate in terms of this parameter u.
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Lecture No -36 Scalar Field

Scalar Field
If a scalar field V(r) exists for all points on the curve ,

the D V(r)dr, withdr — 0, defines the line integral
p=1

of V i.e line integral = J.V (r)dr.

We can illustrate this integral by erecting a continuous ’ y

Ordinate to V(r) at each point of the curve IV (r)dr is then represented by the area of the
C

curved surface between the ends A and B the curve c. To evaluate a line integral , the

integrand is expressed in terms of x , y ,z with dr=dx +dyj+dzk

In practice , x , y and are often expressed in terms of parametric equation of a fourth

variable (say u), i.e. x =x(u) ; y =y(u) ; z=z(u) . From these , dx, dy and dz can be

written in terms of u and the integral evaluate in terms of this parameter u.

Example
If V=xy’z, evaluate IV (r)dr along the curve ¢ having parametric equations

x = 3u; y=2u” ;z=u’ between A(0,0,0) and B(3,2,1)
V= xyzz = (3u)(4u)(u’)=12u"
dr= dxi+ dy j+ dzk = dr=3dui+4uduj+3u’duk
forx=3u;..dx=3du;y=2u" .. dy=4udu ;z=uv’ .. dz=3u’dz
Limiting : A(0,0,0) corresponds to B(3,2,1) corresponds to u
A(0,0,0) = u=0; B3,2,)= u=1
1 9 10 !
[Vrdr =] 120*G i +4uj+3u> K)du=[36"i+ 48~ j+36-—| =4i £ 285,30,
g 0 9 10 11, 5 11
Example
If V = xy + y’z Evaluate J.V (r)dr along the curve ¢ defined by x=1t% y =2t ; z=t+5

between A(0,0,5) and B(4,4,7) . As before , expressing V and dr in term of the
parameter t .
since V=xy+y 7
= ()2 +(4t>)(t+5)
= 61> +20t°.
x =t dx=2tdt
y=2t dy=2dt }
z=t+5 dz=dt
dr =dxi + dyj + dzk
=2tdti+2dtj+dtk

I vdr = [ (68+20t%)( 2t i +2j+K) dt
C C
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Limits: A (0,0,5) =t=0;
B@4,4,7) =t=2
2

sl vdr=[ (684209 ( 2ti +2 j +k) dt
C 0

2
I Vdr=2 I {6t+206)i+(6t+20t)j
C 0
+(3+10tH)k} dt.
8
= 15 (444i+290j + 145k)

Yector Field
If a vector field F(r) exist for all points of the curve c, then for each element of arc we can
form the scalar product F.dr. Summing these products for all elements of arc, we have

Zn: F.drp
p=1

The line integral of F(r) fr om Ato B B

along the stated curve = [ F.dr.
C

In this case, since F.dr is a scalar
product, then the line integral is a scalar.
To evaluate the line integral, Fandd r
are expressed in terms of x,y,z, and the
curve in parametric form. We have

F=Fi+F,j+F;k
And dr=dxi+dyj+tdzk
Then F.dr = (F; i + F, j +F; K).(dx i +dy j +dz k) = j (Fdx + F,dy +Fdz )

Now for an example to show it in operation.

Example
IfF(r)= xzy i+xzj+2yzk, Evaluate j F.dr between A(0,0,0) and B(4,2,1) along the

curve ¢ having parametric equations x=4t ; y-2t*; z=t’
Expressing everthing in terms of the parameter t, we have
dx =4 dt ; dy =4tdt ; dz = 3t* dt
X’y = (16t)(2t") =32 t*
x =4t Soodx=4dt
xz = (4t)(t) =4 t*
y=2t2 dy = 4t dt
2yz=(@4tH( t)=4t¢>
z=t’ o dz=3¢dt
F=32t'i+4t'j-4 £k
dr=4dti +4tdtj+3t°k
Then J F.dr =) (32t"i+4t*j—4t°k).
(4dti+ 4t dt j + 3t° dt k)

= j (128t*+16t™+12t") dt
Limits: A(0,0,0) = t = 0;
B@21)=t=1 128 s 16 ¢ 12 4 128

8 3
_ 4 5 7 _ 1<« e __=° el e
iF.dr—(128t 168+ 120)dt=—= O+ '+ =5 T3 +5 =29.76

185

© Copyright Virtual University of Pakistan



36-Scalar field

VU

Example

If F(r) = Xyi + 2y7j + 32°xk

Evaluate | F.dr between A(0,0,0) and B(1,2,3) @) - 1.2,3)
C

B(1,2,3) o
(a) along the straight line 6

¢; from (0, 0, 0) to (1, 0, 0) :
then ¢ from (1,0, 0) to (1, 2, 0)

and c3from(1,20)to(1,2,3) . .
(b) along the straight line ¢ 4 joining

(0,0,0) to (1,2, 3).
We first obtain an expression for ~ F.dr
which is
F.dr = (xzyi + 2yzj + 3zzxk).
(dx i+ dyj + dz k)
F.dr = x’y dx + 2yz dy + 3z°x dz

j F.dr = j Xzde + J. 2yzdy+J. 3z°xdz
Here the integration is made in three
sections, along ¢y, ¢; and cs.

(1) ¢c1: y=0,z=0, dy=0,dz=0
[ F.dr=0+0+0=0
G

(i1) c2: The conditions along c; are

c:x=1,z=0,dx=0,dz=0
] Fdr=0+0+0=0
G2
(i) c:x=1, y=32, dx=0, dy=0

[ Fdr=0+0+] 32dz=27
Cy 0

Summing the three partial results
(1,2,3)

[ Fdr=0+0+27=27
(0,0,0)
- F.dr=27

C1+C2+C3

If t taken as the parameter, the parametric equation of c are x=t;y =2t; z= 3t

(0,0,0)=t=0,(1,2,3) >t=1 and the limits oftare t=0andt=1
F = 28% + 12t + 27k

dr = dxi+dyj +tkdz = dti + 2dt j +3dt k

[ Fdr =[ fi+126§+276K).(1+2§+3K) dt = Iol (20+24%+81¢)dt

_ jo (836 + 248 dt = [83 7" 8t31) _ 14ﬁ 5875
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So the value of the line integral depends on the path taken between the two end

points A and B

(a) _[F.dr via ¢y, ¢z and ¢3 =27

(b) _[F.dr via ¢4 =28.75

Example
Evaluate I F dv where V is the region bounded by the planes x =0,y =0, z=0 and

2x +y=2,and F =2z i+y k. To sketch the surface 2x +y + z =2, note that

when z=0, 2x+y=2 i.e.y=2 —2x
when y=0, 2x+z=2 ie.z=2 —2x
when x=0, y+z=2 ie.z=2 -y
Inserting these in the planes
x=0,y=0, z=0 will help.

The diagram is therefore.

So 2x +y + z= 2 cuts the axes at
A(1,0,0); B (0, 2, 0); C (0, 0, 2).
Also F =2zi + yk;
z=2-2x-y=2(1-x)—-y
1 2(1x) 2(1-x)-y
SJEVELT T (xityldzdyds

1 2(1) 72(1x)y

=JO ] o [Zzi+yzk] . dydx
1 2(1-x)

=} {40410y +y Ti +[2(1x)y-y Tk} dydx

L FdV =% (2i + k)
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Lecture No -37 Examples

Example

Evaluate _[ v FdV where F=2i+2zj+yk and V is the region bounded by the planes z=0, z =
4 and the surface

x2+y2 =9.

It will be convenient to use cylindrical polar
coordinates (r, 0, z) so the relevant transformations are
X =rcos0; y =r18in0 z=z; dV=rdrd6 dz

Then j VFdV= I j _[ W(2i+2zjtyk)dxdydz

Changing into cylindrical polar coordinates with

appropriate change of limits this becomes
3 4

T

2n 3

4
_[V Fdv=|] | | (2i+2zj+rsinOk)rdzdrdo=] | [2zi+z2j+rsinezk] rdrd®

0=0 r=0 z=0 0=0r=0 z=0
2n 3 21 3 21 3 3
=| | (8i+16j+4rsinOk)rdrd6=4 | [ (2ri+4rj+r’ sin Ok) drdo=4/ [Izi+212j+r§ sin® k] de
00 00 0 o
2n 2n

2n

=4[ (9i+18j+9 sin Ok) d0=36 ] (i+2j+sindk)do= 36 [ 0i + 26j — cosOk |
0 0
=36 {(2mi + 47j — K)—(— k)}= 727 (i + 2j)

0

Scalar Fields
A scalar field F = xyz exists over the curved surface S defined by x*+y’= 4 between the
planes z = 0 and z = 3 in the first octant.

Evaluate I s F dS over this surface.
We have F = xyz S: x2+y2—4=0, z=0toz=3

. . _ VS
dS=ndS wheren =S|

oS.08. 08 . .
Now VS = ox l+8y J+62k_2Xl+2yj
VS| 2\/4X2+4y2 =2\/X"ty =2\/Z =4
LA VS _Xi+yi
~M T vy T2

k L
- dS=hdS =X'—2X~lds

Lo 1
J stszj sFnds=> J s Xyz(xityj)dS=7 J s (x%yzitxy’zj)dS (1)

We have to evaluate this integral over the prescribed surface.
Changing to cylindrical coordinates with r =2

x=2cos0; y=2sin0z=z; dS =2d6dz

. X°yz = (4cos°0)(2sinb)(z)= 8 cos’0 sinbz

XyZZ = (2cos0) (4sin’0) (z)=8cosOsin’0z

1
Then result _[ sFdS =5 J. s (x’yzi+xy’zj)dS becomes.
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"2 3 w23
8
I sFdS= 35 ] 0 Io (cos’sinbi-+cosOsin20j)2zdzd0=4[ . Io (cos”BsinBi+cosOsin’0j)2zdz dO
w2 /2
=4 o (coszesm9i+cosesin29j)zz|(3) do= 4/ o (cos*0sinBi+cosOsin’0j)9dO

3 .3 /2
=36[—%+S“; ej} — 12(i+j)
0

Vector Field
A vector field F=yi+2j+k exists over a surface S defined by x*+y” + z* = 9 bounded by
x =0,y =0, z= 0 in the first octant,

Evaluate _[ s F.dS over the surface indicated.

. . _VS
dS=ndS ; n—IVSI
S:x2+y2+22—9=0
0S.,08.08, .., .
VS = ox ] + oy jt oz k=2xi+2yj+2zk

- |VSI=ax+y +47" =2\[xX+y™+2> =2+[9=6

A

) 1
LM = (2xi+ 2yf+27K) =3 (xi+yj +7k)

A 1 1
I S F.dSZI S F.ndSZI g(yi+2j+k).§ (xityjtzk)dS= 3 _[ s (xy +2y +2z)dS

Before integrating over the surface, we convert to spherical polar coordinates.

x =3 sin ¢ cos 6; y=3sin ¢ sin® z=3cos ¢; dS=9sin¢pd¢dpdo
Limits of ¢ and 0 are ¢=0t0§; OZOtOg

1
.[s F.dS =3 .[s (xy +2y +2z)dS
Xy =3 sind cos0 . 3 sin sin® =9 sin°0 cos®
2y =2 .3 sinp sin@ = 6 sin¢ sinO
z = 3 cosd
dS =9 sin¢ d¢ dO

Putting these values we get
w2 72

1
f s F.ds=3 | . | . (9sin’$psinBcosO+6sindsind+3cosh)9singdpdo
w2 w2
=9f . [ . (3sin’psinBcosH+2sin’dsin6-+sindcosh)ddpdo

As we know that
/2

2
j sin’ d = 3 by Wallis Formula
0

w2

T
2

N [ —

also J. sin® ¢ d =
0

So we get
w2

/2
0
[or.as—of O (2sinecos 0+5 sinGJ%)de =9 [sin26—%cosﬁ+ﬂ =9 [(1 ~0+) - (0-5+ O)]
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L 3n
=9 [1+4+2}—9(1+ 4j

Example

Evaluate _[ s F.dS where F = 2yj + zk and S is the surface x* + y> = 4 in the first two

octants bounded by the planes z=0,z=5and y = 0.

S:x*+y"—4=0

Vs
s

oS, oS, a8, ..
VS_6x1+6yJ+azk_2Xl+2yl

= VS| =\l4x2+4y2=2 X"ty =24/4 =4

A VS 2xi+2vj 1 . .
Slvs] T 4 T2 (iTyD

.-.ISF.dszst.ﬁ ds

Jsraas =3 Js @y as=sy?as

This is clearly a case for using cylindrical polar coordinates.
x =2 cos 0; y=2sin® z=z;, dS=2d0dz

I s F.dS =I sy’dS = ” 45in’02d0dz =8 ” sin’0 d0 dz
S S

Limits:6=0to0=mn; z=0toz=5

5 = 5 5
fs F.dS=4_[ f (1—cos 20) dodz = 4I [e_smzZG} dz=4,[ n dz= 4n [z]5= 20m
70 60 0 0 0 0

Conservative Vector Fields

In general, the value of the integral j c F.dr between
two stated points A and B depends on the particular
path of integration followed. If, however, the line
integral between A and B is independent of the path
of integration between the two end points, then the
vector field F is said to be conservative.

It follows that, for a closed path in a conservative
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field, (,[) F.dr =0.

For, ifcthe field is conservative,

ICI(AB) F.dr= Lz(AB) F.dr

But j c,BA) Fodr — j o,(aB) F.dr

Hence, for the closed path ABcl + BACz, dS F.dr

= j C{(AB) F.dr + ICz(AB> F.dr= _[ C(AB) F.dr — j ¢5(AB) F.dr
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Lecture No -38 Vector Field

Conservative Vector Fields

In general, the value of the integral j c F.dr
between two stated points A and B depends ™ i
on the particular path of integration followed. 7 )
If, however, the line integral between A and A =

B is independent of the path of integration

between the two end points, then the vector field
F is said to be conservative.

It follows that, for a closed path in a conservative field, d; F.dr=0.

C
For, if the field is conservative,

.[ c,ap) F.dr = .[ c,aB) F.dr But .[ c,8a) F.dr — .[ ey(aB) F.dr 3 / :_-73

Hence, for the closed path AB, X + BACZ, J) F.dr

= J. C(AB) F.dr + ,[c2(AB) F.dr

= .[Cl(AB) F.dr — J.C2(AB) F.dr= JCI(AB) F.dr — 'LI(AB) Fdr=0 O B
Note that this result holds good only for a closed curve A ¢

and when the vector field is a conservative field.
Now for some examples

Example

If F = 2xyzi + x’zj + x’yk, evaluate the line integral _[ F.dr between A(0,0,0) and B(2,4,6)

. . )
(a) along the curve ¢ whose parametric equations are x =u, y =u’, z=3u

(b) along the three straight lines ¢;:(0,0,0) to (2, 0, 0); c; : (2, 0, 0) to

(2,4,0);¢3:(2,4,0)to (2,4, 6).

Hence determine whether or not F is a conservative field. z
First draw the diagram.

(a) F = 2xyzi + x’zj + x’yk
x=u;, y=2u;z=3u
dx =du; dy=2udu; dz=3du.
F.dr=(2xyzi+xzzj+x2yk).(dxi+dyj+dzk)
=2xyz dx + x’z dy + X’y dz
Using the transformation shown above, we can now express F.dr in terms of u.
for 2xyzdx=(2u)(u>)(3u)du = 6u'du
x’zdy = (u2)(3u)(2u)du = 6u‘du
x’ydz = (u)(uH)3du  =3u’du
F.dr = 15u*du
The limits of izntegration inuare u=0tou=2
2
. _ a1 _[a.5] =
- Jerar JO 15u*du = [ 3u ]0 9

Bl2, 4,6)
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(b) The diagram for (b) is as shown. We consider each straigh -
j F.dr = I (2xyz dx + x*zdy+x’ydz) (

¢1: (0,0,0) to (2,0,0): y =0,z=0,dy =0, k f
ICIF.dr=0+O+O=0 Loa

In the same way, we evaluate the line integral along ¢, and c;.

| Bi2, 4, 6]

o F.dr=0;
J. F.dr=|2xyzdx+x*zdy+x’ydz)

2 (2,0,0) t0 (2,4,0); x=2, z=0,dx=0, dz=0
Icz F.dr=0+0+0=0 jcz F.dr=0

c3:(2,4,0)t0 (2,4,6); x=2, y=4,dx=0, dy=0
6
6

| ¢, F.dr= o+o+f0 16dz=[16z]0 —o6 -] ¢, F.dr=96

Collecting the three results together

J.c1+02+03 Fdr=0+0+96 .. J.c1+02+03 F.dr =96
In this particular example, the value of the line integral is independent of the two paths

we have used joining the same two end points and indicates that F is a conservative field.
It follows that

i j k
o 4 O
curl F = ox By o
2xyz X’z X2y
= (xz—xz)i—(2xy—2xy)j+(2XZ—2xz)k =0
wcurl F=0

So three tests can be applied to determine whether or not a vector field is conservative.
They are

(a) J) F.dr=0
(b) curl F=0
@) F=grad V
Any one of these conditions can be applied as is convenient.

Divergence Theorem (Gauss’ theorem)
For a closed surface S, enclosing a region V in a vector field F

IV diVFdV:'[s F.dS

In general, this means that the volume integral
(tripple integral) on the left-hand side can be expressed
as a surface integral (double integral) on the right-hand side.

Example
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Verify the divergence theorem for the vector field

F = x%i + zj + yk taken over the region bonded by the
planesz=0,z=2,x=0,x=1,y=0,y=3. ==
dV = dx dy dz L@

we have to show that _“V div FdV = Js F.dS O

(a) To find I v div F dV
: 0.,0. 0 2 .
divF=V.F= _l‘f‘&_yj +—k . (x7i+ zj +yk)
(x )+ (Z)+a (y)=2x+0+0=2x

,[ div F dV—,[ 2x dV—,[ j ,[ 2xdzdydx

1

_[ div FdV = jjj2xdzdydx j_[ 2xz 2dy dx = _[ [2XZ]3dX:I 12x dx=[6x2] =6
0 0

(b) to find _[s F.dSi.e. Js F.n dS

Z
The enclosing surface S consists of six separate 23— ;
plane faces denoted as T 'J[) *
Si1, Sy, ..... Sg as shown. We consider each face in turn. AT BEs
F=x%+zj+yk 1 t e
(i) S; (base): z=0; fi = — k (outwards and downwards) ¥ s,

F=x%i+yk dS;=dxdy
1 3

13
2
. : 9
I s, F. fidS = J I s, (x2i+yk).(-k)dydx = IO fo (—y) dydx = fo [— 3;—} dx=-3
(i)  Ss(top): z=2: i=k dS,=dx dy

I s F.ﬁdszf I s, (CiHzj+yk).(k)dydx =IO fo y dy dx =
(ii1))  S; (right-hand end): y = 3;
n=j dS; = dxdzj
F=x%+zj+yk
1 2

12 1
2
" js3 F.ﬁdSZJ‘J‘s3 (x%i+zj+3K).(j)dzdx = _[) ,[) zdz dx :J; [%} dx = _[) 2dx=2
0
(iv) S4 (left-hand end): y=0, fi=—j, dS;=dx dz

L4 F.ndS=-2
1 2

12
for I s, F.ﬁdS=J f s, (x2i+zj+yk).(—j)dzdx=_[) IO (—z)dz dx=_[) [— Zﬂ dx

0
1

=_[)(—2)dx=—2

Now for the remaining two sides Ss and S¢  Evaluate these in the same manner, obtaining

jSSF.ﬁdS:6; ISSFﬁdS =0
Check:
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(V) Ss (front): x=1;i=i dSs=dydz

s rpas=]] s, (i+7i+yk).(i)dy dz= JJs, 1ayaz=6
(vi) S¢ (back): x=0; i=—i dSe=dy dz

_[56 F.ndS = ”36 (zj+yk).(—i)dy dz :j ss 0dy dz=0

9 9
For the whole surface S we therefore have j sF.dS=- 5+ §+2 —-2+6+0 =06

and from our previous work in section (a) _[ vdivFdV=6

We have therefore verified as required that, in this example_[ vy divFdV = _[ s F.dS

Stokes Theorem
If F is a vector field existing over an open surface S and around its boundarv closed curve

C, then _[ scurl F.dS = (J.) F.dr

C —dS
This means that we can express a surface integral 6
in terms of a line integral round the boundary curve.

c

The proof of this theorem is rather lengthy and is
to be found in the Appendix. Let us demonstrate its application in the following
examples.

Example
A hemisphere S is defined by x*+y*+z’=4 (z > 0). A vector field

F = 2yi — xj+xzk exists over the surface and around its boundary c. Verify Stoke’s
theorem that

j scurl F.dS = (ﬁ F.dr.
C

S:x2+y2+zz—4=0
F =2yi-xj+xzK cis the circle x* + y* = 4.

(a) d; F.dr= I c (2yi — xj + xzKk) . (idx + jdy + kdz)
C

= _[ c (2ydx — x dy+xz dz)
Converting to polar coordintes.x =2 cos 0; y=2sin0; z=0

dx=-25sin06dO; dy =2 cos 6 dO; Limits 6 =0 to 2w
2/m 2/m

Eb F.dr = j . (4sin6[ (-2sin0dO]-2 cosO2cos0dO = — 4 _[ , @ sin’0 + cos’0) d
c

2n
sin 20

2/n 2/m
=—4j0 (1+sin2e)de=—2fo (3—cos29)d6=—2[36—T} —121 (1)
0

(b) Now we determine _[ s curl F.dS

j curl F.dS = _[ curl F. ndS
F =2yi — xj + xzk
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i j k
o o 9| _. . :
curl F = ox By P i(0-0)—j (z—0)+k (-1-2) =—zj -3k
2y =X XZ
Now fiz VS  2xi+2yj+2zk  xityjtzk
J‘ N J xi +yj + zKk 1 J‘
Then Js curl F. ndS = Js (—zk—3Kk). 7 dS = 5 s (-yz—-32z)dS
x =2 sind cos0; y = 2 sin¢ sinB; z = 2cos ¢ ,dS =4 sin ¢ dd dO
1
- IS curlF.ﬁdSZ— _[ I (—2 sin¢ sinB 2cosd— 6 cosd) 4 sind dp dO
2n 72 2‘3 '63'21[/2
= —_[ J. (2sin” ¢ cos ¢ sin O +3sinpcosd)dpdo=—4 J [ = 3¢ = 512n ﬂ de
0
——4,[ ( sinf + j do=-12n (2)
So we have from our two results (1) and (2)
_[ scurl F.dS= (I) F.dr
C
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VU

Lecture No -39

Periodic functions

Periodic Functions

A function f(x) is said to be periodic if its function values repeat at regular intervals of the
independent variable. The regular interval between repetitions is the period of the

oscillations.

f(x +p) = f(x)

Graphs of v = A sin nx

(a) y = sin x The obvious example of a periodic
function is y = sin x, which goes through its complete

range of values while x increases from 0° to 360°.

The period is therefore 360° or 2n radians and the amplitude,

the maximum displacement from the position of rest.

y = 5sin 2x

The amplitude is 5. The period is 180° and there

are thus 2 complete cycles in 360°.

Example
Functions Amplitude Period
y =3 sin 5x 3 72°
y =2 cos 3x 2 120°
y=siny 1 720°
y =4 sin 2x 4 180°

y = A sin nx

Thanking along the same lines, the function y = A sin nx
360°

has amplitude = A; period = "

n 2

_2rn

n cycles in 360°.

Graphs of y = A cos nx have the same characteristics

Example

7
4

i

0 6 B
period |

"

8 tims) X

period = 8 ms

Analvtical description of a periodic function

I
|
2

5

[}

I
I
1
8

timg) X

period = 6 ms

A periodic function can be defined analytically in many cases.

Example

(a) Betweenx=0andx=4, y=3,

ie. f(x)=3

0<x<4

(b) Betweenx=4andx=6, y=0,

1.e.

f(x)=0 4<x<6.

So we could define the function by

f(x) =3

0<x<4

amplitude
] X

period =5 cm

6

10 12

X
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fx)=0 4<x<6 Y
fx)=f(x+6) 5y e S T ER—
the last line indicating that the function is periodic f(x) \

with period 6 units 0]- g -
f(x)=2-x 0<x<3 Bl ] e
flx)=-1 3<x<5

f(x) = f(x+5)

3 ______________
0 =5 0<x<4 E
0 1
fx)=7-x 4<x<10 ' ? o
) e

fix)=-3 10<x<13
fix)=f(x+13)

Example
Sketch the graphs of the following inserting relevant values.
1. f(x)=4 0<x<5
f(x)=0 5<x<8 4
f(x)=f(x+8) P Dy 1
) fix)
f(x)=3x-x" 0<x<3
f(x)=f(x+3) 0 5 8 X
fix)=2sinx 0<x<m
fix)=0 T<x<2m
f(x) = fz(X + 2m).
fx) = 0<x<4
f(x)=4 4<x<6
f(x)=0 6<x<8

f(x) = f(x + 8).

Useful integrals

The following integrals appear frequently in our work on Fourier series, so it will help if
we obtain the result in readiness. In each case, m and n are integers other than zero.

T . 1
(a) | sinnx dx = [%} =4 {—cosnm+cosnn}=0

T
T

. T 1
(b) | cos nx dx = [%] =4 {sinnmt + sinnn} =0

1 1 in 2nx|"
(c) | sin’nx dx = 5 [ (1—cos2nx) dx= 5 [x — %} =7 (n=0)

-7
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T T

1 1 in 2nx|"
(d)fcosznxdxzzf (1+cosan)dx=§[x+$} =n (n#0)

g W

] 1
(e) | sinnx cos mx dx = 5 [ {sin(n+m)x+sin(n—m)x } dx= 7 {0+0}=0

from result (a) with n # m
s T

1 1
(f) | cosnx cos mx dx = 5 [ {cos(n+m)x+cos(n—-m)x}dx= 5 {0+0}=0

from result (b) with n #m

Note:
If n =m, then
T T

[ cos nx cos mx dx becomes | cos’nx dx=n from (d) above.

- -
T T T

(g) | sinnx sin mx dx =— % | (- 2) sin nx sin mxdx= -1 cos(n+m)x—cos(n—m)xdx

-7 - -
T

1
=50 {0-0=0  from result (b) withn = m

T

Note:
If n = m, then
T s
[ sinnx sin mx dx becomes | sin’nx dx =7 from (c) above
—n -

Summary of integrals

(@)] sinnxdx=0 ()] cosnxdx=0 , (c)] sin’ nx dx =7 (#0)

(d) [ cos’nxdx=n(n#0) (e)] sinnx cos mx dx=0

(f) | cos nx cos mx dx =0 (n# m) (g) [ sinnx sinmx dx =0 (n#m)
[ cosnxcosmxdx=n  (n=m) [ sinnxsinmx dx =7 (n=m)
Note

We have evaluated the integrals between — w and m, but, provided integration is carried
out over a complete periodic interval of 27w, the results are the same. Thus, the limits
could just as well be — &t to m, 0 to 2w, — /2 to 3n/2, etc. We can therefore choose the

limits to suit the particular problems.
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Fourier series

Periodic functions of period 27

The basis of a Fourier series is to represent a periodic function by a trigonometrical series
of the form.

f(x) = Agtcy sin (x+ap) + ¢ sin (2x+0) +c3 sin (3x+as)+...+¢, sin (nX+oy,)+ ...

where Ay is a constant term

Ci, C2, C3....ch denote the amplitudes of the compound sine terms o, o, O3..... are
constant auxiliary angles.

Each sine term, ¢, sin (nx + a,,) can be expanded thus:

Cn Sin (nX + o) = ¢y {SIin NX COSOL,TCOS N X SiNal, }= (Cpsinay,) cos nx + (¢,co0sa,) sin nx

= a,c0s nx + bysin nx

the whole series becomes.

f(x) = Ap+ 2 {a, cos nx + b, sin nx}

n=1
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VU

Lecture No- 40 Fourier Series

0
As we know that Ag+ 2. {a,cosnx + bysinnx};

n=1
which can be written as in the expanded from
AgH(ajcosxtbisinx)+(a,cos2x+bysin2x)+ .... + (2,08 nx+bysin nx)+...........
Agtajcosx+arcos2x+.+a,cos nx+.. .. +bysinx+b,sin2x+... bysin nx+..........

f(x) = Apta cosx+a,cos2x+.+a,cos nx+.. .... +bsinx+b,sin2x+... bysin nx+...

Fourier coefficients
We have defined Fourier series in the form

f(x) =Ap+ 2 {ascosnx + bysinnx}; n a positive integer
n=1

(a) To find Ay, we integrate f(x) with respect to x from — 7 to 7.
T

T

—T —T —T n=1

T

280 = | f(x)dx

0y
Y W

1 1
Ao=5- [ f(x) dx=1/2ay . Where ap = [ f(x) dx

(b) To find a, we multiply f(x) by cos mx and integrate from — =« to 7.

J. f(X)COS mx dx = J. Ag cos mx dx+3 {f a, cos nx cos mx dx+/ b, sin nx cos mx dx}

- - n=1
m

[ f(x)cos mx dx = Aq {0} + Zolo {an (0) + b, (0)}=0 forn#m

7 1

—T -

=0+amn+0=a,mt forn=m
T

1
. oAp = E f f(x) cos nx dx

-7
(c) To find b, we multiply f(x) by sinmx and integrate from — =« to =.

T T T T
o0
J. f(x)sin mx dx = J. Ao sin mx dx +z {f a, cosnxsinmx dx+[ b, sin nx sinmxdx}

{1 {1 n=1 L, -n

T

[ f(x)sin mx dx = Ay {0} + ZO‘,O {a, (0) + b, (0)}=0 forn#m
- n=1

=0+0+byt=b,t forn=m

T

1
L= [ f(x) sin nx dx

—T

[ fx)dx=] Agdx+ 3 {I a, cos nx dx+[ b, sin nx dx} =[Ax] +X {0+0}=2A0m
- - n=1
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Result For Fourier Series

1 0
f(x)=§ agtY. {apcosnx-+tb,sinnx};
n=1
1 .
(a) ap= o | f(x) dx = 2xmean value of f(x) over a period

T

1
(b) a,= - [ f(x) cos nx dx=2xmean value of f(x) cosnx over a period.

T
T

1
(c) by= - [ f(x) sin nx dx =2 x mean value of f(x) sin nx over a period.
Ineachcase,n=1,2,3, ......

Example
Determine the Fourier series to represent the periodic

function shown.

It is more convenient here to take the limits as 0 to 2.
The function can be defined as

fx) =5 0<x<2m
f(x) = f(x + 2m) period = 27.

Now to find the coefficients
2n 2n

1 CL(x) LT
(a) ao—nfo f(x)dx—nfo(zjdx—4n [x]o—n
aQ)— T
21 X

1
(b)a,=— [ f(x) cos nx dx
T o
2n
1 X
= jo (2) cos nx dx

2n o 2m
1 1 X sin nx 1, . 1 1
an =5 Io X(:osnxdx—27T {[ n ]O—rlfosmnxdx}— 27T{(O—O)—n(O)}
Soapn=0

2n

1
(a) by= - | f(x)sinnxdx So we now have
0

2n . o
Lo x . 1 X COSnX 1 1 1
bn_n Ioz s1nnxdx—27T {[— n ‘]0 +nf0 cosn><dx}——21m [2n-0]= -
1
Q) = T3 a,=0; b":_n

Now the general expression for a Fourier series is

0

1 . o
f(x) = 5 a0t 2. {a, cos nx + b, sin nx} Therefore in this case
n=1
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1 1
fx)=7 + Z {b, sin nx} = —+{ 1 ~ sinx— 7 = Sin2x—5 3 sin3x—...} since a, =0
=1

1 1
f(x) = E —{sinx+§ sin2x+§ sin3x+....... }

Dirichlet Conditions

If the Fourier series is to represent a function f(x), then putting x = x; will give an infinite
series in x; and the value of this should converge to the value of f(x;) as more and more
terms of the series are evaluated. For this to happen, the following conditions must be
fulfilled.

(a) The function f(x) must be defined and single-valued.

(b) f(x) must be continuous or have a finite number of finite discontinuities within a
periodic interval.

(c) f(x)and f (x) must be piecewise continuous in the periodic interval.
If these Dirichlet conditions are satisfied, the Fourier series converges to f(x;), if
X =X is a point of continuity

Example
Find the Fourier series for the function shown.

Y
Consider one cycle between x=0 and x=rt.
The function can be definedby ~ —=-moon 4 ‘"j—
f(x)=0 —n<x<—§ \T : .
X, LT X
T T
flx)=4 -5 <X<5
f(x) = 0 g <x<m

f(x)=f(x+2n)

1
f(x)=5 ao+ 2. {a, cos nx+b, sin nx}
n=1

1
The expression for ag is ag = o [ f(x) dx This gives

-7/2 /2 T
1 1 /2
ao =—{I 0dx + | 4dx+f0dx} == [4x] =4
L 2 2 n )
ag = 4

T -m/2 /2 T /2
1 1
(b) a,= - [ f(x) cos nx dx %{I (O)cosnxdx+]  4cosnxdx+] (0) cosnxdx} = {f 4c0snxdx}

- —1/2 /2 —1/2

4 28 . nm
=_- sinnx| = —-sin5
nn _pp TN
_8 . nn
ap=_ - sin
Then considering different integer values of n, we have
Ifnis even a,=0
8
Ifn=15,9.... an=__
nm
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Ifn=3,711, .... a=—__

(c) To find b,

T -n/2 n/2 n
1
by =" [ f(x) sin nx dx = % {I (O)sinnxdx+]  4sinnxdx+[ (0) Sinn"dx}

—T -1/2 n/2

/2
4 . 4 | — cos nx 2 4 nmw —nw
bnz—f sinnxdx =—|—_ =———13¢c0s» —cos|—= |t =0
T an T n . nm 2 2
b,=0

So with ap= 4: an as stated above; b, = 0;

The Fourier series is
fi —2+§ 1 3 +l 5 1 7x +
x)= n {cosx—3 cos 3X 5 cos5X —= cos 7X .

In this particular example, there are, in fact, no sine terms.

Effect Of Harmonics

It is interesting to see just how accurately the Fourier series represents the function with
which it is associated. The complete representation requires an infinite number of terms,
but we can, at least, see the effect of including the first few terms of the series.

Let us consider the waveform shown. We established earlier that the function

f(x) = 0 —m<x<-%
Y.
fix) = 4 - <x<%

2 | T"

f(x)=0 7 <x<m
f(x)=f(x+2n)

[XTEN

gives the Fourier series
8 1 1 1
fx)=2+ T {cos X—3 cos3x + 3 cos 5x — 7 c0s X+ ...}

If we start with just one cosine term, we can then see the effect o including subsequent
harmonics. Let us restrict our attention to just the right-hand half of the symmetrical
waveform. Detailed plotting of points gives the following development.

(1) fx)=2 +% COS X
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1
2) f(x)=2 +% {cosx — 3 cos 3x}

i

5‘\-_-/5'){

8 1 1
3) f(x)=2+g {cos X—3 cos3x + 3 c0s5x)

8 1 1 1
4)fx)=2+ - {cosx—g cos3x+ 3 COS5X — - cos 7x}

As the number of terms is increased, the graph gradually approaches the shape of the
original square waveform. The ripples increase in number and decrease in amplitude, but
a perfectly square waveform is unattainable in practice. For practical purpose, the first
few terms normally suffice to give an accuracy of acceptable level.
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Lecture No -41 Examples

Example

Find the Fourier series for the function defined by
f(x)=—x —nt<x<0

f(x)=0 0<x<m

f(x) =f(x +2n)

The general expressions for a, a,, b, are
T T

1 1 1
ao:;j f(x) dx , anzgf f(x) cos nx dx , bn=;I f(x) sin nx dx

T o n o 0
1 _1 1 _1 _p Xz
I f(x) dx —n{n(—x)dernfode —n{n(—x)dx —n[— 2L =3
(b) Tofmdan
0 b n
an =—f f(x) cosnxdx—— [ (—x) cosnxdx + = dex——— | x cos nx dx

—TE T -

0
1 sin nx_ " 1 COS NX
:_; {[x—n ] —fnsmnxdx}——; {(0 0) - ;{ } T}

-7

1 (1] cos nx]° cos nx
=—— 11" - | (=- —3 [cos 0 —cos nrt]
s n ] mn’

== {1 — cos nm}

But cosnt=1(neven)and cosnt =—1 (n odd)
2
= -3 (nodd) and a, =0 (n even)

(c) Now to find b,
b3 0 0

1 1 1
ba=" [ f(x)sinnxdx = - [ (—x) sin nx dx = — - [ x sin nx dx

- - —T

0
1 —cos nx). ” 1 jmcosnm 1| sin nx 0 CoS N7

=— \[x|—/———1 +2 f cos nx dx +— =
T n K n nl n ] n

—T

1
b, =— 0 (neven) and bn= 0 (n odd)
So we have

T 2
=753 an= 0 (neven) and a, =— 3 (n odd)
1 1
b,=- n (neven) and b, = n (n odd)

2 1 1 1 1 1
f(x - 4 (cosx+§ cos3x+§ cos 5x+...) + (sin X—5 sin 2x + 3 sin 3x — 1 sin 4x+.. )

It is just a case of substituting n =1, 2, 3, etc.
In this particular example, we have a constant term and both sine and cosine terms.
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Odd And Even Functions

(a) Even functions

A function f(x) is said to be even if f(— x) = f(x) i.e. the function value for a particular
negative value of x is the same as that for the corresponding positive value of x. The
graph of an even function is therefore symmetrical about the y-axis.

y=1(x) = x? is an even function
since

f(-2)=4=1(2)
f(-3)=9=1(3) etc.

y = f(x) = cos X is an even function
since cos (— X) = cos X
f(—a)=cos a=f(a)

Y

(b) Odd functions

A function f(x) is said to be odd if f(—x)=—1(x)
1.e. the function value for a particular negative value of xis numerically equal to that for
the corresponding positive value of x but opposite in sign. The graph of an odd function is
thus symmetrical about the origin.

y=1(x)= x° is an odd function since
fl-2)=-8=-1(2) o L :
f(=5)=-125=-1(5) etc. af”

Y

y = f(x) = sin x is an odd function
Since sin (- x) =—sin X
f(—a)=-f(a).

So, for an even function f (— x) = f(x)

symmetrical about the y-axis

for an odd function f(— x) = - f(x) symmetrical about
the origin.

odd. Odd
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Even neither

/%\ ________ . /_4 e

Y

Even Odd

Products Of Odd And Even Functions

The rules closely resemble the elementary rules of signs.

(even)x(even)=(even) like (+)x(+)=(+); (odd)x (odd) = (even) ()x(=)=(+) ;
(odd)x (even) = (odd) (=)x(H)=(-)

The results can easily be proved.

(a) Two even functions
Let F(x) = f(x) g(x) where f(x) and g(x) are even functions.
Then F(— x) = f(— x) g (— x) = f(x) g(x) since f(x) and g(x) are even.
- F(=x)=F(®Xx)
F(x) is even

(b) Two odd functions
Let F(x) = f(x) g(x) where f(x) and g(x) are odd functions.

Then F(—x) =f(-x) g(-x) ={-f(x)} {-gX)}
since f(x) and g(x) are odd.

= f(x) gx) =F (x)

. F(—x)=F(x)
F (x) is even
Finally

(¢c) One odd and one even function
Let F(x) = f(x) g(x) where f(x) is odd and g(x) even.
Then F (- x) =f (- x) g(-=x) =-1(x) g(x) =-F (x)
L F(=x)=-F(x)

F (x) is odd

So if f(x) and g(x) are both even, then f(x) g(x) is even and if f(x) and g(x) are both
odd, then f(x) g(x) is even but if either f(x) or g(x) is even and the other odd. Then
f(x) g(x) is odd.
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Example

State whether each of the following products is odd, even, or neither.
1. x*sin 2x odd (E)(0)=(0)
2. X cos X odd (0)(E)=(0)
3. cos2xcos3x even (E)(E)=(E)
4. X sin nx even (O) (0)=(E)
5. 3sinxcos4x odd (O)(E)=(0)
6. (2x +3) sin 4x neither (N) (O) =(N)
7. sif®xcos3x  even (E)(E)=(E)
8. x¢ neither (O) (N) = (N)
9. (x*+4)sin2x odd (E)(O)=(0)

Two useful facts emerge from odd and even functions.
(a) For an even function

a a

] f(x)dx=2j0 f(x) dx

—a

(b) For an odd function

Iaf(x) L A S %

—a X1 —a 0

THEOREM 1

If f(x) is defined over the interval — m < x <7 and f(x) is even, then the Fourier series for
f(x) contains cosine terms only. Included in this is ap which maybe regarded as a, cos nx
with n=0.

Proof:

T T T

(a) aﬁi[n f(x)dx =% IO f(x)dx s oag=

P> \)
o

f(x) dx

1
(b) = [ f(x) cos nx dx.

But f(x) cos nx is the product of two even functions and therefore itself even.

1 2 2
an==| f(x)cosnxdx ==[ f(x)cosnxdx. ..a,== [ f(x)cosnxdx
T T o T 0
1 :
(c) by= - [ f(x) sin nx dx

Since f(x) sin nx is the product of an even function and an odd function, it is itself odd.
T

’ bn=if f(x) sin nx dx = 0.

oo ba=0
Therefore, there are no sine terms in the Fourier series for f(x).
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Example
The waveform shown is symmetrical about the y-axis. The function is therefore even and

there will be no sine terms in the series.

y
1 00 e e e e e g s /] sy = = — — — —
f(x)=§a0+z a, COS NX _‘ I
m " n /2 X, 2 —;; o 0 " Tlf Y
1 2 2 2 2 2 2
(a) a _nLT f(x) dx —TEJO f(x) dx.= RIO 4 dx
/2
2
=— [4x] =4
T 0
1 " ) " 5 w2 2 Tsi /2
(b) an=—[ f(x)cosnxdx ==/ f(x)cosnxdx==] 4cosnx dx="— [M}
T —x mTo T o T n 0
_8 . nn
“qn O 2

. nm
But sin 5= 0 for n even

=1 forn 1,5,9, .....
=—1 forn=3,7,11, ....
a,=0 (n even);
8
an=__ (n=1,5, 9,),

mn

8
an=-_ n=3,7,11...... )

(c) b, =0, since f(x) is an even function.Therefore, the required series is
1 1
f(x)=2 +§ {cos x —3 cos 3x+§ cos 5x—7 cos 7x + ...}

Theorem 2:
If f(x) is an odd function defined over the interval — n < x < i, then the Fourier series for
f(x) contains sine terms only.
Proof:
Since f(x) is an odd function
0 T

[ fx)dx=- IO f(x) dx.

-T

(a) ap= %__[ f(x) dx.

But f(x) is odd
ap = 0

1
(b) a,= ;,[ f(x) cos nx dx
Remembering that f(x) is odd and cosnx is even, the product f(x) cosnx is odd.
1 1
S = EI f(x) cosnx dx = EJ. (odd function) dx
an=0

210

© Copyright Virtual University of Pakistan



41-Examples VU

1
(b) b,= ;J. f(x) sin nx dx
and since f(x) and sin nx are each odd, the product f(x) sin nx is even.
1 I : 2 I .
Then b, = p (even function) dx = - f(x) sin nx dx
- 0
~ bp="J) f(x)sin nx dx
T
So,

If f(x) is odd function then ap=0; a, =0;

2 ) . . . .
b, = EI f(x) sin nx dx i.e. the Fourier series contains sine terms only.
0

Example

fx)=-6 -m<x<0 ‘f

f(x)=6 0<x<m ‘j"‘o{—_{_h___
f(x) = f(x + 27m) g |'0 | !

We can see that this is an odd function;

ag=0anda,=0

1
b, = ;J. f(x) sin nx dx.

-7
f(x) sin nx is a product of two odd functions and is therefore even.

2
" bHZ—J f(x) sin nx dx
T "0

¢ T 0

2 12 | = 12 12

by =" J. 6sinnx dx ="— [—COS HX} =— [—COS nx} =" [cos 0 — cos n7]
T % s n nl n T

0 b3

1
i~ (1 — cos nm).
24
b, =0 (neven) b, = m (n odd)

24 1 1
So the series is f(x) = o {sinx + 3 sin3x + 5 sin5x +....}

Of course,
if f(x) is neither an odd nor an even function, then we must obtain expressions for ao, a,
and b, in full.
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Lecture No -42 Examples

Example
Determine the Fourier series for the function

shown.
This is neither odd nor even. P2 S 2

Therefore we must find ag, a, and b,,. /

0

1 . _
f(x) = 5 A + Zl {a, cos nx + b, sin nx} R W X0 i
-

f(X):;X 0<x<m

=2, T<Xx<2m
21

b 2n
(a)aOZ%J.O f(X)dX:% {_[) %deJr_[ 2dx}=% {[§}+[2X]2} % {n+4n-2n}
n 0 T
R ao:3

21 T 2n
1
(b)a, = ;J. f(x) cos nx dx =% {f (gx) cosnxdx +] 2 cosnx dx}
0

0 \TU T

T 21 T 2n
1 2J1
; { f X cosnx dx + ZJ cosnxdx}— = {n f X cosnx dx + 2f cosnxdx}
0

T T T

2n 2 i . -
_)2 X Xsin e nX _.[ sinnxdx +_[ cosnxdx | = 2 0- L [— cos nx} + [Sm nx:|

0 . i nmn no n |
2 COS Nx
n{nn[ n l)}_ n {COSHW_COSO} 22 {Cosnn—l}

a= 0 (n even); an= ﬁ (n odd)

(¢) To find by, we proceed in the same general manner

T 2n
1
b, = __[ f(x) sin nx dx=% {J (%X) sinnx dx +[ 2 sinnx dx}
0

i

T 2n
ki 2m
— 2 |1 1[si -
xemmR nx +—I cosnxdx+ sinnxdx [ = = = (-= cosmr)+4n|:sm nx}+|: 2 nxj|
n, n |mn ml n n
2
T
2

2
T ™
1 2 [ 1 1 1
= = cosnn+(0 0)— (cos 2nn—cosnm) | = i cosnn+(0—0)—H cos 2nn+; cosnr
1 2
- { —Cos 2nn} =——"_co0s 2nm
n n
But cos 2nmt = 1.
2

bp=——
n mn

So the required series is

1 1 2 1 1 1
f(x) 22 {cosx+§cos3x+gc035x+ } = {sinx+§sin2x+§sin3x+z sin4x..}

Sum of a Fourier series at a point of discontinuity
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0

1 .
f(x)=5a0+ Z‘;l {a, cos nx + by, sin nx}

Y
At x = x, the series converges to the value f(x;) o
as the number of terms including increases to . h/
infinity. P A :
A particular point of interest occurs at a point of . = %
finite discontinuity or “jump’ of the function y = f(x).
At x = x, the function appears to have two
distinct values, y; and y». =
il —_——d
If we approach x = x; from below that value, Y1 :}:
the limiting value of f(x) is y;. e
|
o )Ic1 X

If we approach x = x; from above that value, the
limiting value of f(x) is ya.

To distinguish between these two values we write i
y1 = f(x; — 0) denoting immediately before x = x; //
y2 =1(x; +0) Yz b |

1

denoting immediately after x = x.

In fact, if we substitute x = x; in the Fourier series for 3 5 s
f(x), it can be shown that the series converges to the
value
1 1
5 {fx; = 0) +f(x; +0)} = 5 (y1 +y2), the average of y; and y».
Example
Consider the function
f(x)=0 —<x<0 Z
f(x)=a 0<x<m
f(x)=f(x+2m) _.""__a L
L el
(a) ap= = %f(x) dx= n Oa dx . 0 - X
1 T
=—Jax] =a
T 0
dp—a
1 1 a [sinnx|
(b) a,=—[ f(x)cosnx dx =—facosnxdx==|——| =0
T T T n
T ap=0
1 1 - i
by=—1 f(x)sin nxdx == a sin nx dx0= 2 [M} L (1 — cos nm)
T T, T n , nn
But cosnt =1 (neven) and cos nt = -1 (n odd)
2
b,=0 (neven) and b, = =2 (n odd)
nm
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1 S .
f(x)zz ag + a by, sin nx

2 1 1
f(x)=%+;a {sinx+§sin3x +3 sin5x +....}

A finite discontinuity, or jump’, occurs at x = 0. If we substitute x = 0 in the series
obtained, all the sine terms vanish and we get

f(x) = a/2, which is, in fact, the average of the .
two function values atx=0. | /77—~ a e

Note also that at x = &, another finite 2® ®
discontinuity occurs and substituting 2 | |
x = 1 in the series gives the same result. L A ) - X

Because of this ambiguity, the function is said

to be ‘undefined’ at x = 0, x = T, etc.

Half-Range Series

Sometime a function of period 2r is defined over the
range 0 to m, instead of the normal — 7 to mt, or 0 to 2.
We then have a choice of how to proceed.

For example, if we are told between

x =0and x = =, f(x) = 2x,

then, since the period is 2w, we have no evidence

of how the function behave between x = — n and

x=0.

If the waveform were as shown in (a), the

function would be an even function, symmetrical
about the y-axis and the series would have only cosine
terms (including possibly ay).

On the other hand, if the waveform were as shown in
(b), the function would be odd, being symmetrical
about the origin and the series would have only sine terms.

Example
A function f(x) is defined by
f(x) = 2x 0<x<m

f(x) = f(x + 2n)
Obtain a half-range cosine series to represents the
function.
To obtain a cosine series, i.e. a series with no sine
terms, we need an even function.
Therefore, we assume the waveform between

= —m and x = 0 to be as shown, making the total graph symmetrical about the y-axis.

X

Now we can find expressions for the Fourier
coefficients asuswal. gt
¢ T m :'R\ i
_2 _2 _21.01 _ e,
ao—n_[) f(x)dx —ﬁ_[)2xdx—n[x]0—27r }
X] sty X
. ag=2m
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T

1 2
= J. f(x) cosnxdx == ] f(x)cosnx dx
-T 0

s
2 4 4 1
aHZ—I 2X cos nx dx :—J. xcosnxdx =— {[xsmnx} —J sinnxdx}
T% T % T ncs,

-4 {(0—0) -3 [anl} ) cos 1)

cosnt=1 (neven)and cosnm =-1 (nodd)
a,=0 (neven) and a,=-— . (n odd)
All that now remains is b, which is zero, since f(x) is an even function, i.e. b, = 0
Soay=2n, a,=0 (neven)anda, = gy (n odd),
b, =0. Therefore
8 1 1
f(x)= n— cosx+g cos3x+g cos5x+..

Exam ple
Determine a half-range sine series to repressent the function f(x) defined by

fx)=1+x 0<x<m
f(x) = f(x + 2m)

We choose the waveform between

x = — 1 and x = 0 so that the graph is symmetrical :
about the origin. The function is then an odd Xy -7 X
function and the series will contain only sine
terms.
Y
1+ p———- ;
a =0 and a,=0 /ﬂv*”*
T 1
1 . . ™
by =" j f(x) sin nx dx e e :
T -n i
T - 4 =1 +7)
2 ¥
b,== j f(x) sin nx dx
2 — 1
= —j (1+x)sin nx dx = {[(1 + X) M} +H'[ cosnxdx}
0
0

2] 1+m 1 1[sinnx] 2]1 1+m 2
= —3- cosnt+—+_|— | ="1o— cosnn(=__ {1 — (1 + m) cos nm}
L n n n 0 n

n nln n
cosnw =1 (neven)andcosnt= —1 (nodd)
2
" bp=— 0 (n even)
4+27
R (n odd)

o0

Substituting in the general expression f(x) = Z b, sin nx we have

x=1
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4+2 1 1 1 1 1
f(x)= - & {sinx 3 sin3x+§ sinSx+...}— 2 {5 sin 2X+Z sin 4x+€ sin 6x+ ....)

and the required series obtained

4 1 1 1 1 1
f(x)=(;+2j {sin X+3 sin 3x+§ sin 5x+..}— 2{5 sin 2X+Z sin 4x+g sin 6x+ .....}

So knowledge of odd and even functions and of half-range series saves a deal of
unnecessary work on occasions.
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Lecture No.-43 Functions With Periods Other Than 27

So far, we have considered functions f(x) with period 2r. In practice, we often encounter
: g T T
functions defined over periodic intervals other than 27, e.g. from 0 to T, — Bl to 2] etc.

Functions With Period T

T T
If y = f(x) is defined in the range — 55, i.e. has a period T, we can convert this to an

interval of 2w by changing the units of the independent variable.
In many practical cases involving physical oscillations,
the independent variable is time (t) and the periodic
interval is normally denoted by T, i.e.

fit)y=1f(t+T)
Each cycle is therefore completed in T seconds and the
frequency f hertz (oscillations per second) of the

0 a

Period=T

Yy

1
periodic function is therefore given by f = T If the
angular velocity, o radians per seconds, is defined by ® = 2nf, then

21 21
=" and T = .

The angle, x radians, at any time t is therefore x = ot and the Fourier series to represent
the function can be expressed as

1 0
f(t)=75 a0+ x§1 {a,Cos nwt +b,Sin not}

which can also be written in the form
1 ® .
f(t) =7 Aot By sin (not+ ¢n) n=1,23, ..
x=1

Fourier Coefficients
With the new variable, the Fourier coefficients become:

1 00
f(t) = 5a0t Z {a, cosnmt + by, sinnmt}
! 21/®
I ft) dt = QJ fit) dt
0 T o
T 21/®

an =7 f(t) cos not dt = QJ. f(t)cos not dt
0 T o

=S

a0

T 2711/®
2
ba=7 I f(t) sin not dt= "> f f(t)sin not dt
0 T o

We can see that there is very little difference between these expressions and those that

T T 2
have gone before. The limits can, of course, be 0 to T, -5 to 5 , — I to I ,0to =X etc.
2772 0o o o

as is convenient, so long as they cover a complete period.

Example
Determine the Fourier series for a periodic function defined by
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ft)y=2(1+¢) -1<t<0
ft)y=0 0<t<1
fit)y=~f(t+2) Y
The first step is to sketch the wave which is. 2
y=2(1+1 /
Xy - 0 i X

1 0
f(t) = 5 aﬁgl {a, cos nwt+b, sin not})

T=2
/2 o

1 0
—f f)di=3 If(t)dt —I 2(1+t)dt+f (O)dt—[2t+t] =1

=1
%92 1 0
2 2
an = TJ. f(t)cosnotdt= —J f(t)cosnowt dt= J 2 (1 +t) cosnomt dt
)

0 0 0
t 1 1 t
an=2 {[(Ht)sm e } - E'[ sinnwtdt} =2 { (0-0) - o [— %} }
_ -1 1

1

2
= P (1 — cos nw)

LOST S, T L anT g g (1 — cos nm)

= Pl (n odd)

Now for b,
T2

= g_[ f(t) sin nwt dt
0

0
t 1
=7 _[ 2(1+t) sin nwt dt =2 {[(IH)M} + E‘[ cosna)tdt}
“1
-1

1 1 |si t 1 1
:2{__+_[_smnoa} }=2{ —+3 2(s1nnm)}
n® no| ne |, no no

As before ==t

2
bn:__
now

So the first few terms of the series give

1 +4{ +l 3+L +}2 i +l'2 +l'3 +l'4
(t)— cos mt+gcos3ot 25cos5(ot o sin ot 5sin ot 3sin ot 2510 ot..
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Half-Range Series

The theory behind the half-range sine and cosine series still applies with the new variable.

(a) Even function
Half-range cosine series

T
y =1(t) 0<t< b o HA] Cr=r

ft)y="1f(t+T)
symmetrical about the y-axis.
With an even function, we know that b,= 0

1
f(t) = 5 a0 + Z a, cos nmt
' /2
4 4
where ap= Tj f(t)dt and an = TJ‘ f(t) cos nomt dt
0 0

(b) Odd function
Half-range sine series

T
y =1(t) 0<t<5

fit)y=1(t+T) f(t)
symmetrical about the origin.
~a=0anda,=0 ol
f(t) = 2 b, sin not;

x=1

T/2

b, = %j f(t) sin not dt
0

Example
A function f{(t) is defined by .

fty=4—-t, 0<t<4. f(z)
We have to form a half-range cosine series to represent
the function in this interval.

First we form an even functlon ie. symmetrlcal about the y-axis.
/2

%=%I ﬂmdrﬂ-J@ t) dt=> LM—Odt

Y 47 1 |
:5[4myj§ﬁ=5[w—ski(&=4
4

0
T/2

4 4

an = —_[ fi(t)cos not dt =7 J. (4 —t) cos not dt
T 8 %

Simple integration by parts gives 4

1 2 sin 4n(o 1 N\ s
—_—<_ _ 7
A, 5 { 5 2 (cos 4nm 1)}

_2n 2n

T

o 1] 2sinnm 1 1
P T T 2mz(cosnn— )
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cosnm =1 (neven); cosnm=-1 (n odd)
“ap=0 (n even)

1
=7 2 (n odd)

- )= o2 |cos otrgeos3ottrzcosSot. .. where ® =7

Example
A function f{(t) is defined by

ft)y=3+t 0<t<2

ft)=f(t+4)

Obtain the half-range sine series for the
function in this range.

Sine series required. Therefore, we form an
function, symmetrical about the origin.
ap=0; a,=0; T=4

f(t) = io‘, by, sin not 4
n=1 ™ ) 3M
4 I : j :
~be=73) f(sinnotd=]) (3+1)sin not dt St _fii: e
0 *.

(3+t)cosnmt

—now

odd

0
2

2
J -

0

2
_[(3+t)sinnootdt=‘
0

cos nmt
- nw
=(3+2)cosn032_ 3 +L
() -n® ne
m 2
o o

dt

3 5 1 |sin2nw
=—— ——— cos2nowt+ 737 3 -0
nw nw n‘m nw

But T=

3 5 1
=——_ ———_cosnmt+ 3 72|
now now n“ nw

1 .
b, = o (3 =5 cos2nw) + (sin 2nm)

2.2
naow

1 | 2
. bp= o 3 - 5cosnn)+n20)2 (sin nm) = — o (n even)

8
o (n odd)
2 1 4 1
f(t):a{4sinmt —Esin2cot+§sin3cot - Zsin4mt..}

Half-Wave Rectifier
A sinusoidal voltage E sin ot, where t is time, is passed through a half-wave rectifier that

clips the negative portion of the wave
Find the Fourier series of the resulting periodic o
functions.
! . e e
u(t)=0 if -T2<t<0 v e .
=E sin ot 0<t<T/2
2n

here T=—
0}
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T/2 0 T/2 T/2 T/®
2 2 2 2
ao:TJ. u(t)dt=f _[ Odt+TJ. EsinmtdtZTJ. Esinmtdtzg_[ E sin ot dt
“112 12 0 0 oo
T/
—Ccosmt ?
® 0
T/2 T
2 2
an =7 'L/z u(t) cos n ot dt =T _[

/®

2E
T

()
T

d

) )

/2 T/®
. E :
E sin ot cos n ot dt = o j 2 sin ot cos n ot dt
0

0

= 3)—5 J [sin (1+n) wt+sin (1-n) wt] dt
0

If n = 1 then integral on the right is zero

andifn=2,3, ...... then we obtain.
_oE [ cos (1+n) ot  cos (1-n) mt}m) _oE [—cos (I+n)t+1 —cos (1-n) n+1}
Yo |7 (e | (I-n)o " 2n (1+n)o (I-n)o
_ oE [—cos (Itmm+1  —cos(l-n) n+1}
21 (1+n) (1-n)
ifnis odd then a, =0
ch E 2 2 E |2-2n+2+2n 2E
if n is even then a, = (EJFE) = [ (1+n)(1-n) } = (I—n)(1+n)7
__2E
T (1-nHn
For b, we have
T/2 T/2 T/®
an :% I u(t) sin not dt :% _[ E sin ot sin not dt= _w_E _[ — 2 sin ot sin not dt
) 0 2n 7y

T/®

E
- 02)_ [cos(1+n)mt—cos(1—n)wt] dt

T "o
If n=1

o /o
) oE |sin 2wt oFE
b“__Zn IO [cos2mt—1]dt——2n_ e 0 = (- mlw) = B2
if n#l
T/® B
_ OF _ oF |sin(l4n) ot sin (1-n) wt}

bn - .[0 [cos(1+n)wt—cos(1-n)mt] dt=— o [ e~ (e
__oE |sin(l+n) ® sin (1-n) n}_ B
S on [ (mo ~ (-mo | 0 for n=2,3,4, .......

1 s}
u(t)zz ap+ 2. a, cos nmt
n=2
G E B 2E
u()_n o sinot—"

1 1
(ﬁ cos 2mt + ﬁ cos 4ot + j

Lecture No -44 Laplace Transforms
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s+6
19

LY =$ LAY = £{2sm 3t+cos 3t} =

And L'I{S1 y=e’; L{ }—t L{S+6} 2sin 3t +cos 3t

31
We show that L{t’} = —4 For this consider the integral
L(t}) = jﬁe—“dt [t e jst2 e 2e-stdt
e 327¢ -
=0+={t° + 2 |tedt === | te Vdt = —t — e dt
S{ . | : j b=2e j { J }
- ) 2. !
=3.32 *S‘dt_ﬂ—l e (Ls)dt = 3.42.1e,st = 320 241=3_4
s 9 s° sy S S S

|
So that L{t*} :3—4'
S

Laplace Transform
The Laplace Transform of a function F(t) is denoted by L{F(t)} and is defined as the
integral of F(t) €™ between the limits t=0 and t = o

L{F(t)}= T e F(t)dt.

In all cases, the constant parameter s is assumed to be positive and large enough to ensure
that the product F(t) e * converges to zero as t — o , what ever the function F(t).

In determining the transform of any function , you will appreciate that the limits are
substituted for t, so that the result will be a function of's.

Laplace Transform of F(t) = a (constant).

That is

L(a)=if ae *'dt :aT e *'dt
0 0

—st

e
—S

©» —da a

Example
Find the laplace transform of the form e that F(t)= e* where a is a constant.

@ @ g (st
L(e*) = j e’e”dt :J' e ¥t = Iy
0 0

—(s—-a)
o 1 N
T T s—a et °7F

- _ 1 [0 - 1]= 1
S—a S—a

Liety =
S—a

So we already have two standard transforms
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L{a}zi; L{eat}:L ;
S s-a
Li=2 Lie"=—L
S s-4
‘5 Dt 1
L{-5}=—; L{e"}\=—/;
(5= T

Laplace transform is always a function of's.

Complex Numbers Power of i

Every time a factor i*occurs , it can be replace by the factor 1, so that the power of i is
reduced to one of the four results above.

i"=CiH%i=@Q) %i=1. i=i
RIS

i =i i’=1) "(-D=1( -D= -1
i =i iPP=1(-i)= -

Complex Numbers

z=3+51,is called a complex number where 3 is real part and 5 is imaginary part
of the complex number.

In general z=a+ b 1, is called a complex number where a is real part and b is
imaginary part of the complex number. So,

Complex Number = (Real Part )+ i (Imaginary Part)

Conjugate complex numbers
For a complex number a + i b, the complex number a - i b is called the conjugate of
a +1b. Conjugate complex numbers are identical except the signs in the middle for the
brackets.
e (4+51)and (4-51)are conjugate complex numbers
e (6+21)and (2 + 61)are not conjugate complex numbers
e (5-31)and(-5+31)are not conjugate complex numbers

Remember

The product of complex number by its conjugate is always entirely real.
3+4i1)(3-41)=9+16=25

(atbi)(a- bi)=a’>+b’

Euler Formaula

As we know that the series expansion of e*,cos x and sin x are given as

2 3 4
X

@ =14+ Xt —F—F—F e
21 31 4!
x> xt xS
COSXZI——‘l'——— ..............
21 41 6!
x x X
SINX=X——F+———F . rrrrrrrenn
31 51 71

Replace x by (it) , we get
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e =1+ (it)+ (i)’ + (it + (i’ Frvrerrreeenns
2! 3! 4!

O 14 (it)— (1)’ ~ i(t) N ON . i(t) - (t)° ~ i(t)’ .
2! 3! 4! 5! 6! 7!

e Z[]— (t)’ N ®° ®° N

Y 4] gp T 3l 5 - gy | ]
where
2 4 6
cos t =1—(t) +(t) —(t) F o
2! 4! 6!
3 5 7
sint=t—(t) +(t) —(t) F oo
3! 5! 7!

e" =cost +isint
R(e" )= cost and I(e")=sint

The Laplace transform of F(t) = sin at
. : r % _ e—(s—ia)t ©
L(Sln at) — L(I( eIat )) — I J‘elatefs'[dt :I J-ef(Sfla)'[dt :I {|:—-:| }
0 0

—(s—1a) ],
1
ZI{ (s—la)( - )} {(s—ia)}

L{s1nat}—l{s+la}—l[s i iaz]

a
s’+a’
We can use the same method to determined to determine L {cos at }.
Since cos at is the real part of eiat written as R(e™)
S+ia a

L{cosat} = R{ } R[S e S +a2]

- L{sinat} =

S
s’+a’

L{cosat} =

The Transform of F(t) = t" where n is a positive integer.

By the definition L(t") = J‘t"e’“dt integrating by parts
0

_st I® n © 1 " n o0
T | D[ttt = ——[te ]+ D [0t
. S% s Y

—S

L(t") = jt”e'“dt = [t”
0

n e_St ) n nw n-1,-st
|t =0-0=0 .-.L{t}:-jt R | E— (1)
=S 1 S%

you will notice that I t"'e ™dt is identical to jt"e‘“dt except that n is replaced by (n-1)
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If ifl, = It”e‘“dt,then I, = It”“e‘“dt and the result (1) becomes
0 0

n
I =—I
n S n-1
This is reduction formula and , if we now replace n by (n-1) we get
n-1
In—l_TIn—z
If we replace n by (n-1) again in this last result , we have
n-2
In—2 Tln—3
T n n n-1 nn-1n-2 nn-1n-2n-3
So I =[tesge="y nA0=%, _nn=in=s 0 : : I
”I s"™ sTs "™ sTs s ™ sTs s s M

So finally, we have

| N n-1n-2n-3n-4 gll
T s e s T S5
But
=Ly = L1} =~
S
| _hn-In-2n-3n-4 %ll _nt
T s s s T S50 T o
L{t}_ n+l
31 6
L{t}— L{t}—— {t3}=s—4=s—4

Laplace Transform of F(t) = sinh at and F(t) = cosh at.

Starting from the exponential definitions of sinh at and cosh at
: ) 1 1

ie. sinhat= E(eat —e ™) and coshat = E(eat +e™)

We proceed as follow

a) F(t)=sinhat

Sinh at = I sinhat e gt = _[ (e*—e)eddt = 1 J‘(e""‘e‘St —e e ™)t 1 J' (e —g Yt
2 0 2 0 2 0

0

_l —(s—a)t @ e—(s+a)t *© 1{ ( ~ )_ ( ~ )} 1 1
2] ~(s-a) ], |-(s+a)] —(s—a) (s a) 2|(s—a) (s+a)
_1[s+a-s+a _l{ 2a }_{ a }

2| (s—a)s+a)| 21s*-a’) |s*-a’

b) F(t)= coshat
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L(COSh at) — L(%( eat+ e—at)) =%I(eat + eat)e—stdt Z%{Ie—(s—a)tdt + Ie—(s+a)tdtj|
1{{ } { } }1{ L0+ —— <o_n}=1{ o]
2|L-G-a)), L-G+a)]] 2(-(s-a) ~(s+a) 2|(s—a) (s+a)
_ 1] s+a+s-a _l{ 2s }_{ s }
2| (s—a)s+a)| 21s*-a’) |s*-a
L(coshat):{ 25 2}

s*—a

Several Standard Results

|
Lia =2, et =—y L=
S S—a S
L{sinat} =—2>—; L{cosat} =———
Ss"+a S"+a
. a S
L{sinhat} = ———; L{coshat} =———
ST —a s —a

We can , of course, combine these transforms by adding or subtracting as necessary , but
they must not be multiplied together to form the transform of a product.

Example
' _ 3 S S+6
a) L{2sin3t+cos3t} =2L(sin3t) + L(cos3t) =2. —+——=—
$+9 s°+9 s°+9

b) L{4e” +3cosh 4t} = 4L(e”)+ L(3cosh4t) =4 ——+3.—° 4 3¢
S

) = +
-2 s—16 s -2 s*—16

787 —65-64
(s—2)(s*—16)
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Lecture No -45 Theorems

Theorem 1
The First Shift Theorem

The first Shift theorem states that if L{F(t)}=f(s) then L{e"* F(t)}= f(s+a)
The transform L{e™" F(t)} is thus the same as L{F(t)} with s everywhere in the result
replaced by (s+a)

Example

L{sin 2t}= then L{e™ sin2t}= 2 = 2

$2+4 (s+3)°+4 s> +65+13

Example

Lit*} = % ; L{t2 “1 is the same with s replaced by (s-4)

So L{t2 4t} =
(s —4)

Theorem 2

Multiplying by t

If L{F(t)}=f(s) then L{t(F(t)}:—%{f(s)}

Example L{sin 2t}= 2
s*+4
And L{tsin 2t} = -i 2 248 3
ds| (s> +4) (s +4)
s —9)—s(2s 2_9-2¢? :
Example L{tcosSt}:—i( 23 ]:_( 2) S )=_S 29 223 _ 32 +92
ds\s” — (s°-9) (s°-9) (s°=9)

We could, if necessary, take this a stage further and find
2 2
Litcos3t) = —i S0 |- 22D
s\ (s*-9) (s°-9)

Theorem ObV10usly extends the range of function that we can deal with. So, in general

Theorem
Dividing by t

If L{F(t)}=1f(s) then F(t)

= J‘ f(s)ds

sin at

Example Determine L{ }

As Li{sinat} =—

s’ +a’

s1n at} ,[ = {tanl(i)} _T_ tan’l(i) =tan"' (E)
.S a s 2 a >
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1-cos 2t
t

Example Determine L{ }

S

s’ +4

As L{l-cos 2t}=l—
S

Then by Theorem 3,

l-cos2t, T 1 s

t h= '[(S s*+4

00

L{ )ds:{lns—%ln(52+4)}S :B.Zlns—%ln(sz+4)}

S S

%) 2 0
=[lln32—lln(sz+4)} =l[1ns—1n(s2+4)]°°=l In—>
2 2 2 s 2 (5 +44) |,

2

When s — « then In —-Inl=0

(s’ +4)

1
_ o 2 2 Y 2
L{l cos2t}:J‘(l_ 2S )ds:—l In 28 I 2S Cn S -1-4
t " S ST +4 2 (s +4) (s +4)

Standard Forms

FO | L {Fw} =)

a

at

€

EEIE

o

sin at

w2
+|o |
[

cos at

jm

sinh at

cosh at S
s"—a

n!
H:F
s

n

t

(n a positive integer)

Theorem 1 The First Shift Theorem

If L{F(t)}= f(s) then L{e"™ F(t)}= f(s+a)

Theorem 2 Multiplying by t
If L{F(t)}=1(s) then L{t(F(t)} :—%{ f(s)}

Theorem 3 Dividing by t
If L{F(t)}=1f(s) then L{@}: [ f(s)ds

t—0

Provided Lim {@} exists.
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Inverse Transforms
Here we have the reverse process i.e. given a Laplace transform, we have to find the

function of t to which it belongs. For example, we know that ——- is the Laplace

S"+a

s’ +a’

indicating the inverse transform and not a reciprocal.

-1 1 ot
(@ L {Sj}_e
c) L {%:4
S

(d) Ll{ 2129}:4sinh3t
S —

Transform of sin at , so we can now write L™ { } =sinat , the symbol L!

But what about L™ {23—5} , it happens that we can write 23—8 as the sum of
$°—5s—-6 §s°—s—-6
two simpler functions %+% which , of course , makes all the difference , since we
S+ S—
-1 3s -l 1 -1 1 a2t 3t
can now proceed. L~y 5——¢=L" {——¢+L {——r=€" +2¢
§s°—s—-6 S+2 s-3

Rules of Partial Fractions

1. The numerator must be of lower degree than denominator. If it is not , then we
first divide out.

2. Factorise the denominator into its prime factors. These determine the shapes of the
partial fraction.

is a constant to be determined.

3. A linear factor (s+a) gives a partial fraction

S+a
4. A repeated factor (s+a)’ gives + B 5
s+a (s+a)
5. Similarly (st+a)’ gives + B >+ ¢ 3
s+a (s+a) (s+a)
6. A quadratic Factor (S* + ps+() gives 2—+Q
ST+ PS+(Q

Ps+Q Rs+T
2 + 2 2
S“+ps+q (S°+ps+0Q)

— 2 f—
So _ s has partial fraction of the form A + B and 38 —ds+l 12
(s=2)(s+5) (s=2) (s+5) (s+3)(s-2)

7. Repeated quadratic Factor (s> + ps+(Q)° gives

B C

has partial fraction + + ;
(s+3) (s=2) (s-2)
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Example

To determine L' 258—+1
S —s—12

a) First we check that the numerator is of lower degree than the denominator. In fact

this is so.
b) Factories the denominator
5s+1 5s+1 A B

= = +
s—s—12 (s=4)(s+3) (s—-4) (s+3)
We therefore have an identity

5s+1 A N B
s?—s—12 (s—-4) (s+3)

which is true for any value of s we care to substitute

If we multiply through by the denominator (s* —s—12) we have

5s+1= A(s+3)+B(s -4)

We now substitute covenant values for s

1) Let (s -4) =0 that is s = 4 therefore 21 = A(7) + B(0) = A=3

i1) Let (s + 3) =0 that is s = -3 therefore B =2
55+1 3 N 2
s —s—12 (s—-4) (s+3)

L' {—255 - 112} =3e* +2e"
s’ —s—

Example Determined L"{ 958 }

s> —2s
9s-8
LIF®) =
a) Numerator of first degree ; denominator of second degree.
b) 9s-8 A B

s°-2s s s-2

c) Multiply by s(s—2)

29s5-8 = A(s-2)+B(s)

d) Puts=0

-8 =A(-2)+B((0) ..A=4
e)Puts—2,i.e.5=2

- 10=A(0)+B(0)..B=5

- Fey=L" {f+i}: 4+ 5¢*
S

s-2
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Table of inverse
transforms

Standard transforms
f(s) F(t)
a a

S

e—at

[

! t"
S (n a positive
integer)
1 tn—l
s (n - D
(n a positive
integer)
sin at

w2
+ |
&

Cos at

n
+| =
©

Sinh at

2]
o
o

Cos ax

w
[ e |
®

Transforms Of Derivatives

Let F/(t) denote the first derivative of F(t) with respect to t, F’(t) denote the second

derivative of F(t) with respect to t, etc.

Then L{ F'(t)}=[¢F (t)dt by definition ,
0
Integrating By Parts

o0

L{F'(t)}=[e™ F(t)]: - j F(t)(—se™)dt

0
when t >0, “F(t)>0

L{ F (t)}=-F(0)+ sT e~ F(t)dt

L{ F/(t)}=-F(0>+s£{ F (0}

L{ F'()}=-F (0)+SL{ F'()}=-F'(0)+s[ -F (0)+SL{F (1)} ]
L{ F/()}=s’L{ F()}sF (0)+ F' (0)

L{ F"(t)}=s’L{ F(t)}-5’F (0)—sF'(0)~ F"(0)

L{ F"(t)}=s'L{ F(t)}-s’F(0)—s’F'(0)-sF" (0)~ F" (0)
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Differential Equation And Its Solution

dx
— —2X =4 e 1
a (M
. 2 . dx
Its Solution is x =-2 +3e™ , To verify it we find ot
9 _ 6e’ then
dt
dx

— —2x=6e"—2(-2+3e™)
dt
=6e" +4-6e" =4
So equation (1) is satisfied. Hence x = -2 + 3¢ is solution of %— 2x=4

Example Solve the differential equation %— 2Xx=4 given thatatt=0,x=1

Taking Laplace transform as

L [%(X(t)) - 2|—(X(t))} =L@ =L [%(X(t))} —2L(x(1)) = L(4) = sL(x(1)) = x(0) - 2L(x(1)) = %
(s—2)L(x(t))—x(0) = % = (s-2)L(x(t))-1= g = (s—2)L(x(1)) = %+ 1= (s-2)L(x(1)) = %
4+s | 4+s
:L(x(t)):s(s_z):x(t)zL {5(5—2)} (1)
First we do the partial fraction of S
s(s—2)
4+4s A B
s(s=2) s (s-2)
= 4+5=A(S-2)+ B(S) -------------—--- (2)
Put s =0 in equation (2) ; 4=-2A; A=-2
Put s =2 in equation (2) ; 6=BQ2); B=3

4+4s 2 3

0 =—+—
s(s-2) s s-2
Equation # (1) becomes

X(t) = L‘{ 4+s }: L [_—2} L [i} =243
s(s—2) S s—2

Solution of differential equation by laplace transforms

To solve a differential equation by Laplace transforms, we go through Laplace
transforms, we go through four distinct stages.

(a) Re- write the equation in term of Laplace transforms.

(b) Insert the given initial conditions.

(c) Rearrange the equation algebraically to give the transform of the solution.
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(d) Determine the inverse transform to obtain the particular solution.

Solve the equation
2
d ;(—3ﬂ+2X:2e3t given thatatt=0,x =15 and %:7
dt dt dt
X" (1) = 3%/ (t) + 2x(t) = 2e™
Given x(0)=5,%x(0)=7

L(x"(t))=3L(X () +2L(x(1)) =2L(e™)

S’L{X(D} - s x(0) = x'(0) = 3{s L(x(1))—x(0)} + 2L x(t) =£

We rewrite the equation in term of its transforms.

L{%}—3L[%}+2L[x]:2qe3‘]

[[5*L(x(t)) - s X(0)— X' (0)]- 3[s L(X(t) - X(0) ]+ 2L(e") ]
At t=0,x=5, %_7
dt

SOX(O)ZS,X/(O):7
sZL(x(t)>—s(5)—7—3{sL(x<t>)+3(s)}+2L(x(t)>:S_f3

SPL(X(t)) = 3sL(X(t)) + 2L(x(t)) = é— 8+35s

2—85+24+55% —155

s-3
2-8s+24+5s*-15s 587 —-23s+24
L(x(1)) = =

(s-D(s=2)(s-3)  (s=D(s-2)(s-3)
Making Partial fraction of R.H.S, We have
L(x(t)) = A + B + ¢
(s=1) (s=2) (s-3)
After solving these we get A=3 ,B=2and C=0
So L(x(t)) = 3 + 2 + 0
(s=1) (s=2) (s-3)
3 2
+

(s=1) (s=2)

(s* =3s+2)L(x(t)) =

L(x(1) =

-1 3 —1 2 _ t 2t
x(t) = L {@HL {@}_% +2e
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