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Introduction

We begin this chapter with some of the basic concept of representation of numbers on
computers and errors introduced during computation. Problem solving using computers and the
steps involved are also discussed in brief.

Number (s) System (s)

In our daily life, we use numbers based on the decimal system. In this system, we use ten
symbols 0, 1,...,9 and the number 10 is called the base of the system.

Thus, when a base N is given, we need N different symbols 0, 1, 2, ...,(N— 1) to represent an
arbitrary number.

The number systems commonly used in computers are

Base, N Number

2 Binary

8 Octal

10 Decimal

16 Hexadecimal

An arbitrary real number, a can be written as

a=a,N" +am_1N’”_1 +---+a1N1 +a, +a_1N_l +eta_,N"
In binary system, it has the form,
a=a2"+a, 2" ++a2 +a,+a 2" ++a 27"
The decimal number 1729 is represented and calculated
(1729),, =1x10° +7x10* +2x10" +9x10°
While the decimal equivalent of binary number 10011001 is

Ix2° +0x 27" +0x 22 +1x27 +1x27* +0x 27 +0x 20 +1x277
1 1 1

— —_ + —_—
8 16 128

=(1.1953125),,

Electronic computers use binary system whose base is 2. The two symbols used in this system
are 0 and 1, which are called binary digits or simply bits.

The internal representation of any data within a computer is in binary form. However, we prefer
data input and output of numerical results in decimal system. Within the computer, the
arithmetic is carried out in binary form.

Conversion of decimal number 47 into its binary equivalent

Sol.
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(47),, = (101111),

2 47 Remainder
2 23 1
2 11 1
2 5 1
2 2 1
2 1 0
0 1 Most significant

bit

Binary equivalent of the decimal fraction 0.7625

Sol.
Product Integer

0.7625 x2 1.5250 1
0.5250 x2 1.0500 1
0.05 x2 0.1 0
0.1 x2 0.2 0
0.2 x2 0.4 0
0.4 x2 0.8 0
0.8 x2 1.6 1
0.6 x2 1.2 1
0.2 x2 0.4 0

(0.7625),, = (0.11....11(0011)),

Conversion (5 9)1 0 into binary and then into octal.

Sol.
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(59),, =(1011),

(111011), =111011=(73),
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Errors in Computations

Numerically, computed solutions are subject to certain errors. It may be fruitful to
identify the error sources and their growth while classifying the errors in numerical
computation. These are
Inherent errors,
Local round-off errors
Local truncation errors
Inherent errors
It is that quantity of error which is present in the statement of the problem itself, before
finding its solution. It arises due to the simplified assumptions made in the mathematical
modeling of a problem. It can also arise when the data is obtained from certain physical
measurements of the parameters of the problem.
Local round-off errors
Every computer has a finite word length and therefore it is possible to store only a fixed
number of digits of a given input number. Since computers store information in binary
form, storing an exact decimal number in its binary form into the computer memory gives
an error. This error is computer dependent.
At the end of computation of a particular problem, the final results in the computer,
which is obviously in binary form, should be converted into decimal form-a form
understandable to the user-before their print out. Therefore, an additional error is
committed at this stage too.
This error is called local round-off error.

(0.7625),, =(0.110000110011),

If a particular computer system has a word length of 12 bits only, then the decimal
number 0.7625 is stored in the computer memory in binary form as 0.110000110011.
However, it is equivalent to 0.76245.
Thus, in storing the number 0.7625, we have committed an error equal to 0.00005, which
is the round-off error; inherent with the computer system considered.
Thus, we define the error as

Error = True value — Computed value
Absolute error, denoted by |Error|,
While, the relative error is defined as

. |Error|
Relative error = ————
|Tme Value|

Local truncation error

It is generally easier to expand a function into a power series using Taylor series
expansion and evaluate it by retaining the first few terms. For example, we may

approximate the function f(x)=cos x by the series

2 4 2n
X

X
cosx=l——+——---+(=1)"
21 41 (2n)!
If we use only the first three terms to compute cos x for a given x, we get an approximate
answer. Here, the error is due to truncating the series. Suppose, we retain the first »

terms, the truncation error (TE) is given by

+ ...
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2n+2
E<_*
(2n+2)!

The TE is independent of the computer used.
If we wish to compute cos x for accurate with five significant digits, the question is, how

many terms in the expansion are to be included? In this situation

2n+2
x?‘l

(2n+2)!
Taking logarithm on both sides, we get
(2n+2)logx—log[(2n+2)!]

<log,,5—6log,,10=0.699—6=-5.3

<.5%x107° =5x10"°

or
log[(2n+2)!]-(2n+2)logx >5.3

We can observe that, the above inequality is satisfied for n = 7. Hence, seven terms in the
expansion are required to get the value of cos x, with the prescribed accuracy

The truncation error is given by
16
TE<-
16!
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Polynomial
An expression of the form f(x)=a,x" +ax"" +a,x" > +..+a, x+a, wherenisa

positive integer and a,,q,,4a, +....a, are real constants, such type of expression is called

an nth degree polynomial in x if a, #0

Algebraic equation:

An equation f(x)=0 is said to be the algebraic equation in x if it is purely a polynomial in
X.
For example

x* +x*+3x* +x—6=0 Itis a fifth order polynomial and so this equation is an algebraic

equation.
X —6=0
x*=7x=0

y' =4y’ +3y* —y—2=0 polynomial in y
t* —6t> —21=0 polynomail int
These all are the examples of the polynomial or algebraic equations.

Some facts

1. Every equation of the form f(x)=0 has at least one root ,it may be real or complex.

2. Every polynomial of nth degree has n and only n roots.

3. If f(x) =0 is an equation of odd degree, then it has at least one real root whose sign is
opposite to that of last term.

4.1f f(x)=0 is an equation of even degree whose last term is negative then it has at least
one positive and at least one negative root .

Transcendental equation

An equation is said to be transcendental equation if it has logarithmic, trigonometric and
exponential function or combination of all these three.
For example

e' —5x—-3=0 itis a transcendental equation as it has an exponential function
e —sinx=0
Inx—sinx=0
2sec’ x—tanx—e* =0

These all are the examples of transcendental equation.

Root of an equation
For an equation f(x) =0 to find the solution we find such value which satisfy the equation

f(x)=0,these values are known as the roots of the equation .
A value a is known as the root of an equation f(x) =0 if and only if f (a) =0.
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Properties of an Algebraic equation

1. Complex roots occur in the pairs. That is ,If (a+ib ) is a root of f(x)=0 then (a-ib )
is also a root of the equation

2. ifx=a is a root of the equation f(x)=0 a polynomial of nth degree ,then (x-a) is a
factor of f(x) and by dividing f(x) by (x-a) we get a polynomial of degree n-1.

Descartes rule of signs

This rule shows the relation ship between the signs of coefficients of an equation and
its roots.

“The number of positive roots of an algebraic equation f(x) =0 with real coefficients
can not exceed the number of changes in the signs of the coefficients in the polynomial
f(x) =0.similarly the number of negative roots of the equation can not exceed the number
of changes in the sign of coefficients of f (-x) =0”

Consider the equation x’ —3x” +4x—5=0 here it is an equation of degree three and
there are three changes in the signs
First +ve to —ve second —ve to +ve and third +ve to —ve so the tree roots will be positive

Now f(—x)=-x"—3x"—4x—5 so there is no change of sign so there will be no negative
root of this equation.

Intermediate value property

If f(x) is a real valued continuous function in the closed interval a < x < b if f(a) and f(b)
have opposite signs once; that is f(x)=0 has at least one root f suchthat a< g <b
Simply

If f(x)=0 is a polynomial equation and if f(a) and f(b) are of different signs ,then f(x)=0
must have at least one real root between a and b.

Numerical methods for solving either algebraic or transcendental equation are classified
into two groups

Direct methods

Those methods which do not require any information about the initial approximation of
root to start the solution are known as direct methods.

The examples of direct methods are Graefee root squaring method, Gauss elimination
method and Gauss Jordan method. All these methods do not require any type of initial
approximation.

Iterative methods

These methods require an initial approximation to start.
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Bisection method, Newton raphson method, secant method, jacobie method are all
examples of iterative methods.

How to get an initial approximation?

The initial approximation may be found by two methods either by graphical method or
analytical method
Graphical method

The equation f(x)=0 can be rewritten as f,(x) = f,(x) and initial approximation of f(x)
may be taken as the abscissa of the point of intersection of graphs of

y=f(x)and y = f,(x)

for example f(x)=x-sinx—-1=0

so this may be written as x —1=sin x Now we shall draw the graphs of

y=x—land y=sinx

Here both the graphs cut each other at 1.9 so the initial approximation should be taken as
1.9

Analytical method

This method is based on the intermediate value property in this we locate two values a
and b such that f(a) and f(b) have opposite signs then we use the fact that the root lies
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between both these points ,this method can be used for both transcendental and algebraic
equations.
Consider the equation

ﬂ% zg}c—\/lJrsinx =0
f()=3-, /1+sin(1><18;0) =3-+/1+0.84147 =1.64299
V2
Here f(0) and (1) are of opposite signs making use of intermediate value property we
infer that one root lies between 0 and 1 .

So in analytical method we must always start with an initial interval (a,b) so that f(a) and
f(b) have opposite signs.

Bisection method (Bolzano)

Suppose you have to locate the root of the equation f(x)=0 in an interval say (x,,x,),let
f(x,)and f(x,) are of opposite signs such that f(x,)f(x,)<0

Then the graph of the function crossed the x-axis between x, and x, which exists the
existence of at least one root in the interval (x,, x,) .

X +x1

The desired root is approximately defined by the mid point x, = if f(x,)=0 then

x, 1s the root of the equation otherwise the root lies either between x,and x, or x,and x,

X, + X,

Now we define the next approximation by x, = provided f(x,)f(x,)<Othen

root may be found between x,and x,
X, +Xx,

2
Thus at each step we find the desired root to the required accuracy or narrow the range to
half the previous interval.
This process of halving the intervals is continued in order to get smaller and smaller
interval within which the desired root lies. Continuation of this process eventually gives
us the required root.

If provided f'(x,)f(x,) < Othen root may be found between x,and x, by x, =

NOTE: In numerical analysis all the calculation are carried out in radians mode
and the value of pi is supposed to be 3.14

Example
Solve x” —9x+1= 0for the root between x=2 and x=4 by bisection method

Solution:

Here we are given the interval (2,4) so we need not to carry out intermediate value
property to locate initial approximation.

Here
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f(xX)=x"-9x+1=0

now f(2)=2"-9(2)+1=8-18+1=9
f(@)=4-94)+1=64-36+1=29

here f(2) f(3)<0soroot lies between 2 and 4

xX,=2 x =4

_2+4

===

f(3)=3-93)+1=27-27+1=1

here f(2)f(3) <0so the root lies between 2 nad 3

n=2t3 15
2

3

3

X,

f(2.5)=2.5-9(2.5)+1=15.625-22.5+1=-5.875<0
so the root lies between 2.5 and 3 as f(2.5)f(3) <0

:2.5+3:2.75

x4
now
similarly x; =2.875 and x, = 2.9375 and the process is continued

untill the desired accuracy is obtained.

n xn f(xn)
2 3 1.0

3 2.5 -5.875
4 2.75 -2.9531
5 2.875 -1.1113
6 2.9375 -0.0901

When to stop the process of iteration?

Here in the solved example neither accuracy is mentioned and nor number of iteration is
mentioned by when you are provided with the number of iteration then you will carry
those number of iteration and will stop but second case is accuracy like you are asked to
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find root with an accuracy of 10~ then you will check the accuracy by subtracting two
consecutive root like 2.135648 and 2.135769
2.135769-2.135648=0.000121

So the accuracy of 10~ is achieved so you will stop here.

Example:
Carry out the five iterations for the function f(x)=2xcos(2x)—(x+1)

Note: All the calculations should be done in the radians.
Solution:

f(x)=2xcos(2x) = (x+1)*
(=) =2(=1)cos(-2) - (=1+1)* ==2(-0.4161) = +0.8322 > 0
£(0)=2(0)cos(0)—(0+1)* =—1=-1<0
so the root lies between 0 and —1as f(0)f(-1)<0
0-1

X, = "
£(-0.5) =2(=0.5)cos(—1) = (=0.5+1)* =-0.5403-0.25=—0.7903 < 0
so root lies between —1 and —0.5 as f(—1) f(-0.5)

—0.5-1

X3 =

-0.5

=-0.75

£(-0.75) = 2(-0.75) cos(~1.5) = (=0.75+1)* = —0.106 — 0.0625 = —0.1686 < 0
so root lies between —1 and —0.75 as f(—1) f(—0.75)

_0T5=1 g5

X4

f(—0.875) = 2(~0.875) cos(—1.75) — (=0.875+1)* =0.3119-0.015625 = 0.296275 > 0
so root lies between —0.875 and —0.75 as f(—0.75) f(—0.875)
—-0.75-0.875
Xy=————
2
f(—0.8125) = 2(~0.8125) cos(—1.625) — (—0.8125+1)> = 0.0880 —0.0351 = 0.052970 > 0
so root lies between —0.8125 and —0.75 as f(-0.75) f(—0.8125)

. —0.75—20.8125 078125

=-0.8125

Example :
Carry out the first five iterations f(x)=xcosx—2x"+3x-1 , 1.2<x<1.3

Note: All the calculations should be done in the radians.
Solution:
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f(x)=xcosx—2x"+3x-1
f(1.2)=1.2cos1.2-2(1.2)* +3(1.2) -1
=1.2(0.3623)—2(1.44)+3.6—-1=0.1548 >0
f(1.3)=1.3cos1.3-2(1.3)> +3(1.3) -1
=1.3(0.2674)—2(1.69) +9.3-1=—-0.1322<0
as f(1.2) f(1.3) <050 the root lies between both

)62:1.2;1.3:1.25

f(1.25)=1.25¢c0s1.25-2(1.25)* +3(1.25) -1
=1.25(0.3153)—-2(1.5625)+3.75-1=0.0191>0

as f(1.25) f(1.3) <0 so the root lies between both

%, = 1.25+1.3 1275

2

f(1.275)=1.275¢c0s1.275-2(1.275)* +3(1.275) -1
=1.275(0.2915)—-2(1.6256)+3.825-1=—-0.0545< 0

as f(1.25) f(1.275) < 0 so the root lies between both

¥, = 1.25+1.275 12625

2

f(1.2625)=1.2625¢c0s1.2625-2(1.2625)" +3(1.2625) -1
=1.275(0.3034)—2(1.5939) +3.7875-1=-0.0172< 0

as f(1.25) f(1.265) < 0 so the root lies between both

X, = 1.25+21.2625 125625

£(1.25625) =1.25625c0s1.25625—2(1.25625)* +3(1.25625) -1
=1.25625(0.3093) —2(1.5781)+ 3(1.25625)-1=0.00108 > 0

as f(1.25625) f(1.265) < 0 so the root lies between both

~ 1.25625+1.2625

X, =1.259375
2
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Regula-Falsi method (Method of false position)

Here we choose two points x, and x,_, such that f(x, )and f(x, ,)have opposite signs.

n—1
Intermediate value property suggests that the graph of the y=f(x) crosses the x-axis
between these two points and therefore, a root lies between these two points.

Thus to find the real root of f(x)=0 using Regula-Falsi method ,we replace the part of the

curve between the points A(x,, f(x,)) and B(x, ,, f(x, ,)) by a chord in the interval and

we take the point of intersection of this chord with x-axis as initial approximation.
Now, the equation of the chord joining the points A and B is,

y- ) x-x,
S, )-f(x) x,.,-x,

Setting y=0 in the above equation we get

Xn —X,Hl
T )~ Sy O

Hence the first approximation to the root is given by
X, —X

RO ETEI R

We observe that f(x, ,)and f(x,,,) are of opposite signs thus it is possible to apply the

above procedure, to determine the line through B and 4, and so on.
Hence for successive approximation to the root above formula is used.

Example

Use the Regula-Falsi method to compute a real root of the equation x3 —9x + 1 =0,
(1) if'the root lies between 2 and 4

(i1) if the root lies between 2 and 3.

Comment on the results.

Solution

Let

f(x)=x3-9x+1

£(2)=2"-9(2)+ 1=8—18+1= —9and f (4) = 4" - 9(4) + 1=64 —36+1=29.

Since f(2) and f'(4) are of opposite signs, the root of f(x) =0 lies between 2 and 4.
Taking x1 = 2, x2 = 4 and using Regula-Falsi method, the first approximation is given by

5T _a_ 4-2 _ _2(29)
S TP R T S T

:4—2:4—1.5263:2.4736
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Now
f(x3) = 2.4736° - 9(2.4736) + 1=15.13520-22.2624+1= -6.12644.

Since f(x2) and f'(x3) are of opposite signs, the root lies between x2 and x3.
The second approximation to the root is given as

= =0T ()2 24736-—2A3078 (¢ 1r6a4
S(x) = f(xy) —6.12644—29
~1.5264
= 24736 —2 (_6.12644) = 2.4736— (0.04345)(—6.12644)
35.12644
= 2.4736+0.26619 = 2.73989
Therefore

f (x4) =2.73989° - 9(2.73989) + 1=20.5683-24.65901+1= =- 3. 090707.
Now, since f(x2) and f'(x4) are of opposite signs, the third approximation is obtained

from
Xy =X, — x—f(x4) 2.73989 — 273989 -4 (-3.090707) = 2.86125
S(x)=f(x) -3.090707 —29
=2.73989 —ﬂ(—3.090707) =2.73989+0.039267(3.090707) = 2.73989+0.121363 =2.86125
-32.090707
Now
f(x5) = 2.86125° - 9(2.86125) + 1=23.42434-25.75125+1=-1.326868.
(ii)
Here

f(x)=x3-9x+1
£f(2)=2"-92)+1 =8 —18+1=-9and f (3) =3’ -9(3) + 1=27-27+1=1.

Since f(2) and f'(3) are of opposite signs, the root of f(x) = 0 lies between 2 and 3.
Taking x1 =2, x2 = 3 and using Regula-Falsi method, the first approximation is given by

X, 3-2
= _— 3I——(1
RVTESE f( w70
:3—i:2.9

10
f(x,)=2.9" -9(2.9) + 1 =24.389 — 26.1+1=—0.711

Since f(x2) and f'(x3) are of opposite signs, the root lies between x2 and x3.
The second approximation to the root is given as
29-3 0.1 —0.1
x,=29-———(-0.711 :2.9— —-0.711 29— —-0.711
) 07111 ) COTh= 7 )

=2.9—(0.05844)(-0.711) = 2.9_0.04156 =2.94156
f(x,)=-0.0207
f(x,)=2.94156" - 9(2.94156) + 1 =25.45265 — 26.47404+1=— 0.0207
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Now, we observe that f'(x2) and f'(x4) are of opposite signs; the third approximation is
obtained from

¥, =2.94156 = 2243073 4 0707) = 204156 - 22084 5 1207
~0.0207 -1 ~1.0207

=2.94156—(-0.05725)(-0.0207) = 2.94275

f(xg)=2.94275 - 9(2.94275) + 1 =25.48356 — 26.48475+1=—0.0011896

We observe that the value of the root as a third approximation is evidently different in
both the cases, while the value of x5, when the interval considered is (2, 3),1s
closer to the root.

Important observation: The initial interval (x1, x2) in which the root of the equation
lies should be sufficiently small.

Example

Use Regula-Falsi method to find a real root of the equation /nx —cos x = 0
accurate to four decimal places after three successive approximations.

Note: here is a transcendental equation all the calculation should be done in the
radians mode

Sol:

f(x)=Inx-cos x

we have
f(1)=In1-cos(1)=0-0.540302=-0.540302<0
f(2)=In2-c0s(2)=0.69315-0.41615=1.109

As 1(1)f(2)<0 so the root lies between 1 and 2
the first approximation is obtained form

X, =2- 2-1 (1.109)
1.109 +0.540302

S ERH LAY
1.6496

f(x;)=In1.3275 - cos 1.3275 =02833-0.2409 = 0.0424

Now, since f(x1) and /' (x3) are of opposite signs, the second approximation is obtained as

x, =1.3275- (.3275)(.0424)
0.0424 +0.5403

=1.3037
f(x,)=1In1.3037 - cos 1.3037 =1.24816x10~
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Similarly, we observe that f(x1) and f'(x4) are of opposite signs, so, the third
approximation is given by

(0.3037)(0.001248)
0.001248+0.5403

x, =1.3037 -

=1.3030
£(x,)=0.6245x10"

The required real root is 1.3030

Example:

Use method of false position to solve e * +2™ " +2cosx—6=0 1<x<2

Solution:

f(x)=e"+27"+2cosx—6

X, =X,
xn+ = N . f(‘xn)
: f(xn)_f(‘xn—l)
f(M) =€ +2"+2cos1-6=2.7182+0.5+2(0.5403) -6 =—1.7011
F2)=e*+27 +2c082—6="7.3886+0.25+ 2(~0.4161)— 6 = 0.8068

now forn=1

X=X —— N0 ) =2 271 0.8068)
f( D= f(x) ©0.8068+1.7011

X, =2- (0.8068) =1.6783
2.5079

f(1.6783)=€" " + 27 1+ 2 ¢0s(1.6783) — 6= —0.5457

now forn =2

Xy =X, — x—f(xz) =1.6783— 1.6783 -2 (—0.5457)
S) =1 (%) (—0.5457)—0.8068

(—0.3217)

(~1.3525)

x, =1.6783— (—0.5457)=1.6783+0.12979 =1.8081
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£(1.8081) = "% + 27" 1. 2 cos(1.8081) — 6= —0.8575
now forn=3

. x—f( )= 1.8081-1.6783
473 f(x) - f(x,) %)= (—0.08575)+0.5457

0.1298

(~0.08575)

x, =1.8081— ( —0.08575)=1.6783+0.12979 =1.8323

f(1.8323) = el'8323 272 4 20s(1.8323)-6=10.1199
now forn=4

X, ) =18323 1.8323-1.8081
Sf(x) - f( X3) 0.01199+0.08575

x, = 1.8323 - 20242
0.09774

X=X, —

(0.01199)

(0 01199)=1.8323-0.00296 =1.8293

£(1.8293) = €"*” + 27" 1 2¢0s(1.8293) — 6 = —0.000343
now forn=>5

xomx—— TNy 8oz 1B82L8ID 4 04543
F(x)- f(x,) ~0.000343—0.01199
x, =1.8203— 0093 600343)=1.8293
0.012333

Example:

Solve the equation 2xcos2x—(x—2)> =0 2< x <3 Perform only three iterations.

Solution

f(x)=2xc0s2x—(x—2)

here x, =2 and x, =3

5o f(2)=2(2)cos4—(2-2)° =4cosd=-2.6146
f(3)=2(3)c0s2(3)-(3-2)* =6cos6-1=4.7610

X —X

e = G e
forn=1
X = 3-2
AT mﬂ ) =3 e10-2.4146 010
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=3- ! (4.7610) =3-0.6455=2.3545
7.3756

£(2.3545) = 2(2.3545) c0s 2(2.3545) — (2.3545 - 2)* = 4.709 cos 4.709 — 0.1257 = —0.1416
forn=2

o= -2 TN (=2 3545-— 2073 (4 1416

Sx)—f(x) —0.1416-4.7610

=2.3731

£(2.3713)=2(2.3713)c0s 2(2.3713) - (2.3713-2)* = 4.7462 c0os 4.7462 - 0.1392 = —0.1392
forn=3

P x—f(x3) 537 2.3731-2.3545 0.0212)
f(x) = f(x,) 0.0212+0.1416
=2.3707
£(2.3707) = 2(2.3707) c0s 2(2.3707) — (2.3707 — 2)* = 4.7414 cos 4.7412 - 0.1374 = 0.00013

forn=4

X, = 23707~ 2370722331 6 60015

X=X _—
T fx 4) f( x,) 0.00013—0.0212
= 23707

© Copyright Virtual University of Pakistan 6



Numerical Analysis -MTHG603

Example
Using Regula-Falsi method, find the real root of the following equation correct, to three
decimal places: x log 10 x =1.2

Solution:
Let f(x) =xlog,,x — 1.2

f(2)= 21log,2 — 1.2=— 0.5979,
f(3)=3log,3 — 1.2=0.2314.

Since f(2) and f (3) are of opposite signs, the real root lies betweenx1 = 2, x2 = 3.

The first approximation is obtained from

womx 2N ()3 372 (2314)
£00) - f(x,) 0.2314+0.5979
_3- 92314, 0r007
0.8293

f(x,)=Let f(x) = 2.72097log,,2.72097 — 1.2 =-0.01713.

Since f(x2) and f'(x3) are of opposite signs, the root of f(x) =0 lies between x2 and

x3. Now, the second approximation is given by
o= m— 7Yy 2272007-— 21299773 (G 191322 7400
£ f(x,) ~0.1713-0.2314

f(x,)=2.7402 log,,2.7402 — 1.2 —3.8905x107"

Thus, the root of the given equation correct to three decimal places is 2.740

NOTE: Here if TOL is given then we can simply find the value of TOL by subtracting
both the consecutive roots and write it in the exponential notation if the required TOL is
obtained then we stop.

Method of Iteration

Method of iterations can be applied to find a real root of the equation f'(x) = 0 by
rewriting the same in the form.

x = @(x)

Let x = x, be the initial approximation to the actual root, say, o of the equation .then the
first approximation is x, = ¢(x,) and the successive approximation are x, = @(x,)

X, =@4(x,),x, =d(x;),....x, =@(x, ,) if sequence of the approximate roots, x,,x,,x;,...X,
converges to « it is taken as the root of the equation f(x)=0.

For convergence purpose the initial approximation is to be done carefully.the choice
of the x, is done according to the theorem.
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Theorem
If a be a root of f(x) =0 which is equivalent to x = @#(x) I be any interval containing the

point x=« and | @'(x) |<1V x&l,then the sequence of approximations x,,x,,x;,...x, will

converge to the root « provided that the initial approximation x, is chosen in I

Example,
f(x)=cosx-2x+3=0.
It can be

Rewritten as x = %(cos x+3)=¢(x)

P(x)= %(cos x+3)

f(x)=cosx-2x+3=0.

f(1)y=cos 1 -2(1) + 3 =1.54030>0

f(2)=cos 1 -2(2) + 3 =-0.041614-4+3=-1.41614<0
so root lies between 1 and 2

P'(x)= —%(sin X)

both ¢'(1)and ¢'(2) <1 so the method of iterations can be applied
let x,=1.5

X, = %(cos X, +3)= %(cos(l .5)+3)=1.999825
X, = %(cos x +3)= %(cos(l .999825) +3) =1.999695

X, = %(cos X, +3)= %(cos(l 1999625) +3) =1.999695

So this is the required root correct up to 5 places of decimal.

Example

Find the real root of the equation x* +x”> —1=0 by method of iterations

Solution
let f(x)=x"+x"—1

now f(0)=0"+0*"-1=-1<0
fO=T+1"-1=1>0

hence a real root lies between 0 and 1
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here
X+x2-1=0
X (x+1)=1

1 _ 1 _
X —(x+1):>x —'—x+l @(x)

here ¢'(x) =—1/2[1 /(x+1)%]

#'(0)=1/2<land ¢'(1)=1/22 <1

so @'(x) <1 for all the values in the int erval

let x, =0.65
¥ = () = = — L (.7784989
Y ol Vs
1 1
X, =d(x,) = = = 0.7498479
: =9(%) Jx +1 /1.7784989
1 1
X, =¢(x,)= = =0.7559617
=9 Jx, +1 +/1.7498479
1 1
— ¢(x,) = = =0.7546446
T a1l V17559617
1 1
X, =d(x,) = = =0.7549278
s =90) Jx, +1 1.7546446
1 1
X, = (x;) = = =0.7548668
o =905 ‘/x +1  /1.7549278
1
= p(x,) = 0.7548799
‘ «/xé ~ J1.7548668
1
X, =@(x,) = = =0.7548771
=90 \/x +1 /17548799
1
= P(x,) =0.7548777
' \/xg +1 17548771
1 1
(x,) =0.7548776
=4 Tl 17548777
1 1
X, =@(x,,) = = =0.7548776
=90 Jxo+1 V1.7548776
hence root is 0.7548776

Note: In this question the accuracy up to 7 places is acquires or here the TOL is 10~
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Example
Find a real root of the equation cosx =3x—1 correct to seven places of decimal.
Solution

Here it is a transcendental function and all the calculation must be done in the radians
mode and value of pi should be 3.14

f(x)=cosx—3x+1

f(0)=cos0-3(0)+1=1>0
f(r/2)=cos(1.57)-3(1.57)+1=0.0007963—-4.71+1=-3.7092037 < 0
so a real root lies between 0 and 7 /2

here ¢(x) = %(cos x+1)

we have ¢'(x) = —%sin X

it is clearly less than 1 as sin is a bounded function and it's values lies between —1 and 1
hence iteration method can be applied

let x, = 0.5 be the inital approximation then

X =d(x,) = %[COS(O.S) +1]=0.6258608

X, =d(x) = %[cos(0.6258608) +1]=0.6034863
X, = d(x,) = %[005(0.6034863) +1]=0.6077873
X, = p(x;,) = %[cos(0.6077873) +1]=0.6069711
X, =P(x,) = %[cos(0.606971 1)+1]=0.6071264

X, = P(x;) = %[cos(0.6071264) +1]=0.6070969
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X, = p(x,) = %[cos(0.6070969) +1]=0.6071025
X, =(x,) = %[cos(0.6071025) +1]=0.6071014
X, = g(x,) = %[cos(0.6071014) +1]1=0.6071016

X =P(x,) = %[005(0.6071016) +1]1=0.6071016
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Newton -Raphson Method

This method is one of the most powerful method and well known methods, used for
finding a root of f(x)=0 the formula many be derived in many ways the simplest way to
derive this formula is by using the first two terms in Taylor’s series expansion of the
form,

f(anrl) = f(xn) + (xn+1 - ‘xn )f '(xn)
setting f(x,,) =0 gives,
Sx)+(x,—x,) f(x,)=0

thus on simplification, we get ,

X, =X, —Mforn =0,12...
Jx)

Geometrical interpretation

Let the curve f(x)=0 meet the x-axis at x=a meet the x axis at x=¢ .it means that « is
the original root of the f(x)=0.Let x, be the point near the root & of the equation f(x)=0

then the equation of the tangent Fj[x,, f(x,)] is
Y= (x) = 1'(x)(x—xp)

S (x)

S'(x0)

This is the first approximation to the root « .if P[x,, f(x,)] is the point corresponding

This cuts the x-axis at x, =x, —

to x, on the curve then the tangent at B is

y_f(xl):f'(‘xl)(x_xl)
S(x)

This cuts the x-axis at x, =x, —~———

S(x)
This is the second approximation to the root « .Repeating this process we will get the
root o with better approximations quite rapidly.

Note:

1. When f'(x) very large .i.e. is when the slope is large, then h will be small (as
assumed) and hence, the root can be calculated in even less time.

2. If we choose the initial approximation x, close to the root then we get the root of
the equation very quickly.

3. The process will evidently fail if f'(x) =0 is in the neighborhood of the root. In
such cases the regula falsi method should be used.
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4. If the initial approximation to the root is not given, choose two say, a and b, such
that f(a) and f(b) are of opposite signs. If |f(a)|<|f(b)| then take a as the initial
approximation.

5. Newton’s raphson method is also referred to as the method of tangents.

Example

Find a real root of the equation x3 — x — 1 = 0 using Newton - Raphson method, correct to
four decimal places.

Solution

fx)=x’ -x-1

f(1)=1" -1-1=-1<0

f(2)=2° -2-1=8-2-1=5>0

so the root lies between 1 and 2

here f'(x)=3x>—1 and f"(x)=6x
f()=3*1*-1=2

f'(x)=3*%2"-1=11

here

7'1)=6

f"2)=6(2)=12

here f(2) and f"(2) have the same signs so x, =2
The second approximation is computed using Newton-Raphson method as
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X =x, _ SO0 5 5y sasas
S'(x) 11
f(1.54545)=1.54545" - 1.54541 - 1 =3.691177-1.54541-1=1.14576
F(x)=3x> —1=3(1.54541)> —1=3(2.38829) — 1 = 7.16487 — 1 = 6.16487
1.14576
6.16525
£(1.35961)=1.35961° - 1.35961 - 1 =3.691177-1.54541-1=1.14576
F(x)=3x> —1=3(1.54541)> —1=3(2.38829) — 1 = 7.16487 — 1 = 6.16487
1.14576

x, =1.54545 - =1.35961

x, =1.54545— =1.35961
6.16525
x, =1.35961- 0.15369 _ 132579,  f(x;)=4.60959x10"
4.54562
-3
X, = 132579 - 20095910 " _ 132471,  f(x,)=-3.39345x10"
427316
-5
X, =1.32471+w=1.324718, f(x)=1.823x10""
426457

Hence, the required root is 1.3247
Note!

Methods such as bisection method and the false position method of finding roots of a
nonlinear equation f(x) = 0 require bracketing of the root by two guesses. Such methods
are called bracketing methods. These methods are always convergent since they are
based on reducing the interval between the two guesses to zero in on the root.

In the Newton-Raphson method, the root is not bracketed. Only one initial guess of the
root is needed to get the iterative process started to find the root of an equation. Hence,
the method falls in the category of open methods.

Newton - Raphson method is based on the principle that if the initial guess of the root of
f(x) = 01is at xi, then if one draws the tangent to the curve at f('xi ), the point xi+1 where
the tangent crosses the x-axis is an improved estimate of the root

f(x)

5 /1)

f(XiI)

f(xi{1) X
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Draw backs of N-R Method

Divergence at inflection points:

If the selection of a guess or an iterated value turns out to be close to the inflection point
off(x),

[where f7(x ) =01,
the roots start to diverge away from the root.

R AE
| ST

Division of zero or near zero:

If an iteration, we come across the division by zero or a near-zero number, then we get a
large magnitude for the next value, xi+1.

Root jumping:

In some case where the function f'(x) is oscillating and has a number of roots, one may
choose an initial guess close to a root. However, the guesses may jump and converge to
some other root.

Oscillations near local maximum and minimum:

Results obtained from N-R method may oscillate about the local max or min without
converging on a root but converging on the local max or min. Eventually, it may lead to

division to a number close to zero and may diverge.

Convergence of N-R Method
Let us compare the N-R formula
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JACH

xn+1 - ‘xn - f((x )
n

with the general iteration formula
xn+l = ¢(xn)’
X
#x) =, ~L1%)
f(x)
f(x)

=0

The iteration method converges if
¢'(x)|<1.

Therefore, N-R formula converges, provided

@)@ <] @f

in the interval considered.

Newton-Raphson formula therefore converges, provided the initial approximation x0 is
chosen sufficiently close to the root and are continuous and bounded in any small interval
containing the root.

Definition

Let x, =a+¢,x,,,=a+e¢,,

n> 7 n+l

where « isarootof f(x)=0.
If we can prove that ¢ ,, = K&,

where K is a constant and ¢, is the error involved at the n - th step, while finding the

root by an iterative method, then the rate of convergence of the method is p.
The N-R method converges quadratically
X, =a+¢,,

xn+1 =a+ gnJrl

where o isarootoff(x)=0and &, isthe errorinvolved at the n-th step, while

n

finding the root by N-R formula

a+e,  =a+e _—f(a+gn)

" " fla+e,)
e —g Sfla+e,) zgnf'(a+8n)—f(0!+8n)
T M+ en) fla+s)

Using Taylor’s expansion, we get
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! , " @+ 5 )
&m—fhﬂ+%fmﬂ+“_aUTw+af@ﬂ+m}{fWHwJTm+Eﬁ%ah-}}

Since o isaroot, f(a)=0. Therefore, the above expression simplifies to

& . 1
T e @
_af@f,,, @]

2 flley " fie) ]

2 fla) " fle) ]
g @), @]

= - l-¢,~—
2 flo)| fa)
2 "
gn+] = g_”’& + 0(83)
2 fa)

On neglecting terms of order & and higher powers, we obtain
8n+1 = ng
Where
k=L@

2f(a)

It shows that N-R method has second order convergence or converges quadratically.

Example
Set up Newton’s scheme of iteration for finding the square root of a positive number N.

Solution
The square root of N can be carried out as a root of the equation

x*—N=0.
Let
f(x)=x"—N.
By Newton’s method, we have
Xpt =X, — /(%)
f(x)
In this Problem
f(x)=x" =N, f'(x)=2x.

Therefore
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x2—N 1( Nj
X, =X, = =—|x, +—

" 2x, 20" «x,
Example
Evaluate /12 , by Newton’s formula.
Solution
Since
V9 =3,416 =4,
We take

x,=(3+4)/2=325.

X =%[xo +KJ =%(35+%) =3.4643
X, .

x2=l 3.4643 + 12 =3.4641
2 3.4643

x, = L[ 3.4641+—2 | =3 4641
2 3.4641

Hence

J12 =3.4641.

Here in this solution we use the iterative scheme developed in the above example and
simply replace the previous value in the next iteration and finally come to the result.

Example
Find the first three iteration of the equation f(x)=x—-0.8—0.2sinx in the interval

[0,7/2] .
Solution
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f(0)=0-0.8-0.25in(0) =0-0.8—0.2(0) =—-0.8
f(1.57)=1.57-0.8—0.25sin(1.75)
=1.57-0.8-0.2(0.99999)
=1.57-0.8-0.199998 = 0.570002
f'(x)=1-0.2cosx
f'(0)=1-0.2cos(0)=1-0.2=0.8
here| f(0) |is greater then x, =0
_ S =0— —0.8 _ 1

X, =X, —=
S (%) 0.8

now

f(1)=1-0.8—-0.2sin(1)
=1-0.8-0.1683
=0.0317

f'(x)=1-0.2cosx
£'(1)=1-0.2cos(1)=1-0.1081=0.8919
5 =x L)y OOT 0355209645
fix) 08919
£(0.9645) = 0.9645 - 0.8~ 0.25in(0.9645)
= 0.9645-0.8-0.1645
=0.0002
f'(x)=1-0.2cosx
£(0.9645) =1-0.2¢05(0.9645) = 1-0.11396 = 0.88604
S _ ogas 00002

X, =X, ; .
£(x,) 0.88604

=0.9645-0.00022 = 0.9643

NOTE: In the above question the function is a transcendental function and we have to
perform all the calculation in the radians mode and the value of pi should be taken as 3.14

Example

Consider the equation f'(x)=4xcosx—(x—2)* find the root of the equation in the range
0<x<8

Solution
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f(x)=4xcosx—(x—2)
here
£(0)=4(0)cos2(0)—(0-2)* =—4
f(8)=4(8)cos2(8)—(8—2)°
=32c0s16—(6)* =-30.6451-36 = —66.6451
f'(x)=4cos2x—8xsin2x—2(x—2)
=4cos2x—8xsin2x—2(x—2)
f'(8)=4cos16—64sin16—-2(8—-2)
=-3.8306+18.4250—-12 =2.5952
since| f(8) |is greater so x, =8
x =xy L) _g (F60645D) _ 45 40,
(%) 2.5952
£(33.6801) = 4(33.6801) cos 2(33.6801) — (33.6801 - 2)
=-24.6545-1003.6 =-1028.25
£'(33.6801) =4c0s2(33.6801)—8(33.6801)sin 2(33.6801) —2(33.6801 - 2)
=-0.7320+264.89 = -63.3602
X, =X ACHA 33.6801+ 1028.25 _ 38.8011
J'(x) 200.79
£(38.8011) = 4(38.8011)cos 2(38.8011)—(38.8011~-2)
=-91.8361-1354.3=1446.14
f'(38.8011) =4c0s2(38.8011)—8(38.8011)sin2(38.8011)—2(38.8011-2)
=-2.3668—-250.236 —73.6022 = —-326.205
1446.14

o L) _3gg011 HOE g 00114443302 430343
£1(x,) ~326.205

Example

Perform three iteration of the equation In(x—1)+cos(x—1)=0when1.2<x <2 .Use
Newton Raphson method to calculate the root.

Solution
Here
In(x—1)+cos(x—1)=0when1.2<x<2

£(x)=In(x—1)+cos(x 1)
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f(x)=In(x—1)+cos(x—1)

f(1.2)=In(1.2-1)+cos(1.2-1)
=-1.6094 +0.9801=-0.6293

f(2)=In(2-1)+cos(2-1)
=0+0.5403 =0.5403

now f(x)=In(x—1)+cos(x—1)

f'(x)= L—sin(x—l)
x—1

SAD=77

=5-0.1986 =4.8014
=x, _SO0) 5 206293 131121331
£(x,) 4.8014
£(1.311)=1In(1.3311-1)+cos(1.3311-1)

=-1.1053+0.9457=-0.1596

—sin(1.2-1)

1
'(1.3311) = ————-sin(1.3311-1
a ) 1.3311-1 ( )

=3.0202-0.3251=2.6951

S | gy 201596

£(x,) 2.6951

£(1.3903) = In(1.3903 1) + cos(1.3903 - 1)
= —0.9408 +0.9248 = —0.016

=1.3311+0.0592 =1.3903

2 1

L
(1.3903) = ———— —sin(1.3903 -1
703909 =1 3505 )

=2.5621-0.3805=2.1816
=, = L) 39930016
£(x,) 2.1816

=1.3903+0.0073=1.3976
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Secant Method

The secant method is modified form of Newton-
Raphson method .If in Newton-Raphson method; we replace the derivative f'(x,) by the

difference ratio, 1.e,

)= f(x,)

Where x, and x, | are two approximations of the root we get

S =

Y {3 €
T S f(x,)
5 () =, ()~ S (), ~x,)
Sx)-f(x,)
_ X, f(x,)—x,f(x,)
Sx)=f(x,)
Provided f(x,)# f(x, )

This method requires two starting values x,, and x, ; values at both these points are

calculated which gives two points on the curve the next point on the curve are obtained
by using the derived formula. We continue this procedure until we get the root of
required accuracy.

Geometrical Interpretation

Geometrically, the secant method corresponds to drawing secants rather than tangents
to obtain various approximations to root« ;
To obtain x, we find the intersection between the secant through the points (x,, f(x,))

And (x,, f(x,)) and the x-axis.
It is experienced that the secant method converges rather quickly .there is a possibility of
the divergence if the two roots lie on the same side of the curve .the order of the

(1++/5)
2

convergence of the decant method equal to =1.618 ,which shows that this

method has the order of convergence slightly inferior that of Newton-Raphson method, In
this method f(x) is not required to change signs between the estimate.
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y=f(x)

f(x1)

v

x1
x0)

F(x0)

Some more description

We choose x0, x1 close to the root ‘a’ of f(x) =0 such that f(x0)  f(x1)
As a next approximation x2 is obtained as the point of intersection of y = 0 and the
chord passing through the points
(x0, f(x0)), (xI f(x1 )).
x)— f(x
y_f(-xo):f( 1) f( 0)
X~ X
Putting y = 0 we get
X. =x= xOf(xl)_xlf(xo)
L =x=
S )= f(x)

Convergence of Secant Method

(x—x,),

Here the sequence is generated by the rule

_ xS =X, f(x, )

X +1
' J)=f (%)

Starting with x0 and x1 as {x,,x,...}

It will converge to ‘a’ , thatis f(a) =0
NOTE
The Secant method converges faster than linear and slower than Newton’s quadratic
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Example
Do three iterations of secant method to find the root of

f(x)=x"=3x+1=0,
Taking
x,=1,x,=0.5
n=1,
f(x)=fM)="=3()+1=-1
f(x)=f(0.5)=0.5"-3(0.5)+1=0.125-1.5+1=-0.375
y. = X (%) =%,/ (xy)
SRVACOESACY
_ (1)(-0.375)—(0.5)(-1) _ o2
-0.375-(-1) '

n=2,
f(x,) = £(0.2)=0.2* -=3(0.2) +1=0.008 - 0.6 +1 = 0.408
Y. = x f(x)—x,f(x)
T fe)-f(x)
_(0.5)(0.408) —0.2(~0.375)
©0.408—(—0.375)

=0.3563

n=3,
f(x)=£(0.3563) = 0.3563° —3(0.3563)+1=0.04523-1.0689 +1=—-0.02367
_ x, () = x; f(x,)

T ) -
~(0.2)£(0.3563)—0.3563 £(0.2)
- £(0.3563)— £(0.2)

x; =0.3473, f(x5) =—0.0000096
=0.0004.

and |x5 -X,

Though X5 is not the true root, yet this is good approximation to the root and
convergence is faster than bisection.

Example

Find the root of 2coshxsinx =1 using the secant method, with accuracy of 4 decimal point
.Take 0.4 and 0.5 as the two starting values
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f(x)=2coshxsinx—1
now f(x,)=2coshx,sinx, -1
=2cosh0.4sin0.4 -1
=2x1.081x0.3894-1=-0.1580
f(x,)=2coshx,sinx, -1
=2co0sh0.5sin0.5-1
=2x1.1276x0.4794-1=0.0811

X, = xOf(xl)_xlf(xo)
f(x) = f(x)
0.4x0.0811-0.5x—0.1580  0.03244+0.979
- 0.0811+0.1580 ©0.2391
f(x,)=2coshx,sinx, -1
=2cosh0.5sin0.5-1

=2x%x1.1106%x0.4494 —1=-0.0811
_ xlf(xz)_xzf(xl)

BT A - f ()
_0.5x—0.018—0.4661x0.0811 _0.009—0.0378
B —0.0018-0.081 ©-0.0828
f(x;)=2coshx,sinx; —1
=-0.00009
X, = X, f(xy)—x, f(x,)
S ()= f(xy)
_0.4661x—0.00009 —0.4668x —0.0018 _ —0.000042 +0.00048
- —0.00009 +0.0018 - ~0.00171

=0.4661

=0.4668

=0.4667

Comparison:

In secant method, we do not check whether the root lies in between two successive
approximates Xn-1, and Xn.
This checking was imposed after each iteration, in Regula —Falsi method.

Muller’s Method

In Muller’s method, f (x) = 0 is approximated by a second degree polynomial; that is by a
quadratic equation that fits through three points in the vicinity of a root. The roots of this
quadratic equation are then approximated to the roots of the equation f'(x) 0.This method
is iterative in nature and does not require the evaluation of derivatives as in Newton-
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Raphson method. This method can also be used to determine both real and complex roots
of f (x) =0.

Suppose, X, ,,X, |,X;

be any three distinct approximations to a root

Of f(x)=0.
S =fi () =1
fx)=1.

Noting that any three distinct points in the (x, y)-plane uniquely; determine a polynomial
of second degree.

A general polynomial of second degree is given by

Noting that any three distinct points in the (x, y)-plane uniquely; determine a polynomial
of second degree.

A general polynomial of second degree is given by

f(x)=ax* +bx+c
Suppose, it passes through the points
(%05 fi2)s (X fi0)s (%, 1)

Then the following equations will be satisfied

2 _
ax, , +bx,_,+c=f_,

2 _
ax,  +bx,  +c=f_,

axf+bxl.+c=ﬂ

Eliminating a, b, ¢, we obtain

¥ x 1 f
2

X, X, 1 [, ~0
2

xooox, LSy

xl.2 x, 1 f

This can be written as

f= (x—x_ )(x—x;) [+ (x—x,_,)(x—x;) L+ (x—x,_,)(x=x,_,)
(xifz - xifl) (XH X )(XH - xi) (xi X2 )(xi - xi—l)
We further define
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aot_ xox
h x,—x
ﬂizi
hi—l
o =1+A

i i

iz

iz

(£ "o

Fig: Quadratic polynomial

With these substitutions we get a simplified Equation as

f= (%w DA,

—AA+1+ A8 S
+A+1+ A DAL
Or
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[ =2 (i A = [ S+ f,4)5]
+ /1[]?—211'2 - fz"—lé‘iz
+ fi(4+8)15" + f,

To compute A, setf=0, we obtain

A (firhi = [a6,+ J)A” + g A+6,f,=0

Where

& = [’ = [0, + fi(4,+6)

A direct solution will lead to loss of accuracy and therefore to obtain max accuracy we
rewrite as:

L0 & A~ fb+ ) =0

A2 A
So that,

| _—g g/ — 404 (i~ fdi+ I
i 21,6,
Or

A= _2fi5i
g (g 4104 (f A~ 10+ I
Here, the positive sign must be so chosen that the denominator becomes largest in

magnitude.
We can get a better approximation to the root, by using

X, =x+hi
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Muller’s Method

Muller’s method is a generalization of the secant method, in the sense that it does not require the derivative

of the function. It is an iterative method that requires three starting points (Pe: £ (Pa)) (P, £ (padd |

and (P& L (Pe)) - A parabola is constructed that passes through the three points; then the quadratic
formula is used to find a root of the quadratic for the next approximation. It has been proved that near a
simple root Muller's method converges faster than the secant method and almost as fast as Newton's
method. The method can be used to find real or complex zeros of a function and can be programmed to use

complex arithmetic.

Example

Do two iterations of Muller’s method to solve x* —3x+1=0 starting with x, =0.5, x, =0, x, =1

Solution

f(x,)=f, =(0.5) =3(0.5)+1=-0.375
fG)=f=0-30)+1=-1
f(x)=/f,=0-3x0+1=+1

c=f, =-0375

h =x —x, =05

hy=x,-x, =05

. hf=(h +h)f, +hf,

hh, (h +h)
B 0.5)(-1)—(—0.375) + (0.5) 15
0.25 ’
—f —al’
b S -, —ah, _
h]
2¢
X=X ——————
+b—~b* —4ac
2(-0.375
=0.5- ( )
2 \J4+4(1.5)(0.375)
-0.75
=0.5- =0.33333<0.5

—2-+4+225
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Take
x, =0,x, =0.33333,x, =0.5
h =x, —x, =0.16667,h, = x, —x, =0.33333
c=f,=/(0.33333)
= x} —3x, +1=0.037046
fi= xf -3x, +1=-0.375
fo=x3=3x,+1=1
I fi=(h ) fy+ b fy, 0.023148
hhy (hy +hy) 0.027778
=0.8333
S Tl Y
hl

b

2c

X=Xy ————

b—+b* —4ac
0.074092
-5.2236
=0.3475>0.33333 = x,
For third iteration take,
x, =0.333333, x,=0.3475, x, =0.5

=0.333333-

Graeffe’s Root Squaring Method

GRAEFFE’S ROOT SQUARING METHOD is particularly attractive for finding all the roots of a
polynomial equation. Consider a polynomial of third degree f(x) = a, + a,x + a,x* + a,x’
f(xX)=a, +a,x+a,x* +a,x’

f(=x)=a, —ax+a,x’ —a,x’

f@)f(=x) = a;x" = (a; —2a,a,)x"

+(al —2a,a,)x* —a,

f@f(=x)=a;t’ —(a; —2a,a,)t’

+(a —2a,a,)t—a;

The roots of this equation are squares or 2i (i = 1), powers of the original roots. Here i = 1 indicates that

squaring is done once.
The same equation can again be squared and this squaring process is repeated as many times as required.

After each squaring, the coefficients become large and overflow is possible as i increase.

Suppose, we have squared the given polynomial ‘i’ times, then we can estimate the value
of the roots by evaluating 2i root of

Where n is the degree of the given polynomial.
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The proper sign of each root can be determined by recalling the original equation. This method fails, when
the roots of the given polynomial are repeated.

This method has a great advantage over other methods in that it does not require prior information about
approximate values etc. of the roots. But it is applicable to polynomials only and it is capable of giving all
the roots. Let us see the case of the polynomial equation having real and distinct roots. Consider the
following polynomial equation

f()=x"+ax"" +ax"+..+a, _x+a, D
separating the even and odd powers of x and squaring we get
(" +a,x" 7 +ax" +.) = (ax" +ax" +ax" + L)
puttig x* = y and simplifying we get the new equation

V' +by " +by" "+ by +b, =0 (2)

b =-a’+2a’

b, =a,’ —2a,a, +2a,

if Py> Py»-..D, bethe roots of eq 1then the roots of the equation2 are p’,p,’,...p,

Example
Using Graeffe root squaring method, find all the roots of the equation x* —6x* +11x—6 =10

Solution
Using Graeffe root squaring method, the first three squared polynomials are as under:
For i =1, the polynomial is

X —(36-22)x +(121-72)x - 36

=x" —14x* +49x-36
For i = 2, the polynomial is
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X3 Z(196 -98)x? + (2401 —1008)x —1296

=3 —98x% +1393x 1296

For i = 3, the polynomial is

X3 — (9604 —2786)x2 + (1940449 — 254016)x — 1679616
=3 —6818x% +16864333x— 1679616

The roots of polynomial are

,/ﬁ=0.85714, ‘/£=1.8708, \/E:3.7417
49 14 1

Similarly the roots of the p;oynomial 2 are

4f1296 =0.982], 4/1393 =1.9417, 4 f% =3.1464
1393 98 1

Still better estimates of the roots obtained from polynomial (3) are

1679616  0.99949, /1686433 _1.99143, JO818 _ o s
1686433 6818 1

The exact values of the roots of the given polynomial are 1, 2 and 3.

Example
Apply Graeffe,s root squaring method to solve the equation x* —8x” +17x—10=0

Solution

f(x)=x-8x* +17x-10

here three chnges are observed form + ve to —ve ,—ve to +ve ,+ve to — ve
hence according to deccarte rule of signs f(x) may have three positive roots
rewriting eq as x(x* +17) = (8x” +10)

and squaring on both sides and putting x> = y

y(y+17)" = 8y +10)*

V' +34y* +289 =64y” +160y +100

y(»* +129) =30y* +100

putting y* = z we get

z(z+129)* = (30z +100)

z° +2582° +16641z = 900z’ + 6000z + 10000

2(z* +16641) = (642z° +10000)

squaring again and putting z* = u we get

u(u+16641)* = (642u +10000)*

w’ +33282u” +27692288 1u = 412164u” +12840000u +10°

u’ —378882u” +264082u —10° =0
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if the roots of the eql are p,, p, p; and those of eqiuationS are q,,q,,4,
P =(g)"* =(=1)"* =(378882)""* = 4.9809593 = 5

D, = (qz)”8 =(-4, /ﬂ.l)”8 =(264082/378882)"* =0.9558821=1

P =(g)"* =(=4,/4,)"* =(10°/264082)""* =2.1003064 = 2

here f(5)=f(2)=f(1)=0

hence all are the roots of the eqiuation

Example
Find all the root of the equation x* —3x+1=0

Solution
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f(x)=x"-3x+1 )

here there are two changes in the sign so there are two positive roots of the equation and
there are no chnge in the roots of the equation f(—x) so two positive real roots and two
are complex roots

rewriting the above equation as

x*+1=3x

squaring the equation and putting x* = y

we have
'+’ =9y
. . . 2
squaring again and putting y~ =z
(z+1)" =81z
2442 +62°-772+1=0
2t 462" +1=—2(42" - 77) 2)

squaring once again and putting Z2=u ,we get

W’ +6u+1)=u(du—-177)7°

u' — 4’ +645u> ~5917u+1=0 3)

if pi, Dy Py, P, arethe roots of the equationland q,,q,,q;,q, are roots of equation 3 then
p=()" =(=4)" =@ =1.189207

) 654
p=(g,)" = [Tz]”8 =[T]”8 -1.8909921
- 5917
py=(g,)" =[f]"8 = [a]”8 =1.3169384
_ 1/8 _ _/14 1/8 _ 1 1/8 _
p,=(q,)" =[—1" =[—=1" =0.3376659

A, 5971

from equation (2 ) and (3)
from equation 2 and 3 ,we observe the magnitude of the cofficients A, and A, have become
cons tant which implies p, and p,arethe real roots ,then p, and p, arereal roots,
let the complex roots be p,e"'” = &, +in,
from equation (3) it's magnitude is given by
pz(23)2 - % = % - p, =1.5780749
also from equation1 sum of roots is zeroie p, +2&,+ p, =0

& =-1/2(p, + p,) =-0.7634365

n, =+ Py — & =+1.9074851 =1.3811173

hence,the four roots are1.1892071,0.3376659,—0.734365 and £1.3811173i

Revision Example
Obtain the Newton-Raphson extended formula

_ .f(x()) _l[f(xo )]2 "
ST e 2
For finding the root of the equation f(x)=0
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Solution
Expanding f (x) by Taylor’s series and retaining up to second order term,

0:f(X)=f(xo)+(x—xo)f'(xo)

+ "“ B2%) )
Therefore,
S(x) = f(x)+(x _xo)f'(xo)
+( 1 O) fﬂ( ) 0
This can also be written as
) L LGP _
S o)+ =x) f(x0) + 21 7 ————f"(x,) =

Thus, the Newton-Raphson extended formula is given by

S 1@,
50T 2 eor ]

This is also known as Chebyshev’s formula of third order
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Solution of Linear System of Equations and Matrix Inversion

The solution of the system of equations gives n unknown values x1, x2, ..., xn, which
satisfy the system simultaneously. If m > n, the system usually will have an infinite
number of solutions.

If |A| # 0 then the system will have a unique solution.

If |4 =0,

Then there exists no solution.

Numerical methods for finding the solution of the system of equations are classified as
direct and iterative methods. In direct methods, we get the solution of the system after
performing all the steps involved in the procedure. The direct methods consist of
elimination methods and decomposition methods.

Under elimination methods, we consider, Gaussian elimination and Gauss-Jordan
elimination methods

Crout’s reduction also known as Cholesky’s reduction is considered under decomposition
methods.

Under iterative methods, the initial approximate solution is assumed to be known and is
improved towards the exact solution in an iterative way. We consider Jacobi, Gauss-
Seidel and relaxation methods under iterative methods.

Gaussian Elimination Method

In this method, the solution to the system of equations is obtained in two stages.
1)  the given system of equations is reduced to an equivalent upper triangular form
using elementary transformations
i1)  the upper triangular system is solved using back substitution procedure

This method is explained by considering a system of n equations in » unknowns in the
form as follows

ay X, +a,x, ++-+a,x, =b

Ay X, + Xy + 0+ @y, X, = b,

anl‘xl + anZXZ oot armxn = bn
Stage I: Substituting the value of x/ from first equation into the rest
X +a,x,+--+a x, =b

' ' A
ApX, +--+a, x, =b

' ’ ot
a,x,+--+a x =b
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Now, the last (n — 1) equations are independent of x1, that is, x1 is eliminated from the
last (n — 1) equations.

This procedure is repeated and x2 is eliminated from 3rd, 4th, ..., n-th equations

The same procedure is repeated till the given system assumes the upper triangular form:
C X +CpX, +ot e, x, =d,

CpyX, + 4y X, =d,

Stage II: The values of the unknowns are determined by backward substitution.
First xn is found from the last equation and then substitution this value of xn in the
preceding equation will give the value of xn-1. Continuing this way, we can find the
values of all other unknowns

Example

Solve the following system of equations using Gaussian elimination method

2x+3y—z=5

4x+4y—-3z=3

—2x+3y—-z=1
Solution

Stage [ (Reduction to upper-triangular form):

Divide first equation by 2 and then subtract the resulting equation (multiplied by 4 and —
2) from the 2nd and 3rd equations respectively. Thus, we eliminate x from the 2nd and
3rd equations.

The resulting new system is given by

27 2 2
—2y—z=-7
6y—-2z=6

Now, we divide the 2nd equation by —2 and eliminate y from the last equation and the
modified system is given by
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2’27

Lz 7
YT
—5z=-15

Stage II (Backward substitution):
From the last equation, we get

z=3
Using this value of z, the second equation gives
_1.3_,

4 2 2

Putting these values of y and z in the first equation, we get
5 3

x=—+—=-3=1
2 2

Thus, the solution of the given system is given by
x=1,y=2,z=3

Partial and Full Pivoting

The Gaussian elimination method fails if any one of the pivot elements becomes zero. In
such a situation, we rewrite the equations in a different order to avoid zero pivots.
Changing the order of equations is called pivoting.

Partial pivoting

If the pivot happens to be zero, then the i-t4 column elements are searched for the
numerically largest element. Let the j-th row (j > i) contains this element, then we
interchange the i-th equation with the j-th equation and proceed for elimination. This
process is continued whenever pivots become zero during elimination.
For example, let us examine the solution of the following simple system
107°x, +x, =1

X +x,=2
Using Gaussian elimination method with and without partial pivoting, assuming that we
require the solution accurate to only four decimal places. The solution by Gaussian
elimination gives x1 =0, x2 = 1.

If we use partial pivoting, the system takes the form
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X +x,=2

107°x, +x, =1

Using Gaussian elimination method, the solution is found to be x1 =1, x2 =1, which
is a meaningful and perfect result.

In full pivoting (or complete pivoting), we interchange rows and columns, such that the
largest element in the matrix of the variables also get changed. Full pivoting, in fact, is
more complicated than the partial pivoting. Partial pivoting is preferred for hand
computation.

The general form of a system of m linear equations in # unknowns x1, x2, x3, ..., xn can
be represented in matrix form as under:

X b,

Using matrix notation, the above system can be written in compact form as
[4](X) =(B)
Note:
1. This method fails if any of he pivots become zero in such cases, by interchanging
the rows we can get the non-zero pivots.

Example

Solve the system of equations by Gaussian elimination method with partial pivoting.
x+y+z=7

3x+3y+4z=24

2x+y+3z=16
Solution
I 1 1|fx 7
3 3 4|y|=|24
2 1 3|z 16

To start with, we observe that the pivot element
a,, =1(#0).

However, a glance at the first column reveals that the numerically largest element is 3
which is in second row. Hence R/2
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Thus the given equation takes the form after partial pivoting
3 3 4|(x 24
1 1 1yl=|7
2 1 3|z 16

Stage I (Reduction to upper triangular form):

1 1 i_x_ 8
3
1

0o -1 - =0
3 y
1

0 O _E—Z— 1]

S_tage II (Ba_ck substitution):
z=3

—-y+1=0 or y=1
x+1+4=8 or x=3

Example

Solve the following system of equations by Gaussian elimination method with partial
pivoting

Ox, + 4x,+2x,+8x,=24
4x, +10x, +5x; +4x, =32

4x,+5x, +6.5x, +2x, =26
9x, +4x,+ 4x,+0x,=21

Solution
In matrix notation, the given system can be written as

0 4 2 8|[x] [24
410 5 4||x| |32
4 5 65 2| x| |26
9 4 4 0ofx]| |21

To start with, we observe that the pivot row, that is, the first row has a zero pivot element
(all = 0). This row should be interchanged with any row following it, which on
becoming a pivot row should not have a zero pivot element.
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While interchanging rows it is better to interchange the first and fourth rows, which is
called partial pivoting and get,

9 4 4 0f[x] [21
410 5 4|x| |32
4 5 65 2| x| |26

0 4 2 8|x| |24

Stage I (Reduction to upper-triangular form):

: % 3 01l x 2.333
0 82222 32222 4|7 |_|2%0000
32020 47222 2| ™| | 16-6066
i 4 2 8 Xy 24

: % 0 |[x] [ 2333
03919 04865 || ™ || 2768
34504 04324 || % | | 778836

x, | [12.9728

0.4324 6.0540 |-~

— 0 x| [23333

S O ~ Vlh © O ~ OlhN
o
1
]

9

0 03919 0.4865 || || >7°68
0 1 01250 ™ 2.2500
I 0 5.999 |L%- 111.9999
Stage 11

Back substitution
x, =1.0, x, =1.0, x; =2.0, x,=2.0
Example

3x+y—z=3
Solve the system of equations 2x -8y +z =—5 using Gauss elimination method.

x—=2y+9z=8

Solution
The given system is equivalent to
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31 —1f|«x 3

2 8 1||y|=|-5

1 -2 91|z 8

A X =8B

the argumented matrix is
31 -1 3

[4|B]=|2 -8 1 | -5
1 -2 9 8

3 ;6 _51 > 2
~10 — = | =7 R2__R1’R3__R1
3 3 7 3 3
o, = 8
L 3 3 J
now choosin g —— as the pivot from the second column,
3 ;6 B ’ 2 1
“lo 20 2 | -7 | R,-=R,R,——R,
3 3 31 3 3
0 @ The
L 78 26_
from this we get
3x+y—-z=3
-26 5
—y+=—z=-7
3773
693 _231
78 26
now by back substitution z =1
-26 5 5 -26
—y=-"T-=@)=-T-=D=—7=y=1
3 7 3)( ) 3)() y
1 1
nowx=§[3—y+z]=§[3—l+l]=l

so the solutionisx=y=z=1

Example

now making A as an upper triangular matrix
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Using Gauss elimination method, solve the system.
3.15x-1.96y +3.852z =12.95

2.13x+5.12y-2.89z =-8.61
5.92x+3.05y+2.15z =6.88

Solution
The given system is equivalent to
3.15 -1.96 3.85 X 12.95

213 512 =289 | y|=|-8.61
592 3.05 215 z 6.88
A X = B

3.15 -1.96 3.85 1295
[4|B]=|2.13 5.12 -2.89 | -8.61
592 3.05 215 6.88

315 -196  3.85 12.95 )13
~| 0 64453 -5.4933 | -17.3667 R2—3'—15 .
| 0 6.7335 -5.0855 —17.4578 '
choosing 6.4453 as pivot
[3.15 -1.96 3.85 12.95 6733
~| 0 64453 -5.4933 | -17.3667 | R, - 7335
6.4453

0 0 0.6534 0.6853 |

form this ,we get
3.15x-1.96y+3.852=12.95
6.4453y—5.4933z=-17.3667
0.6534z =0.6853

by backward substitution

z= 0.6853 =1.0488215
0.6534
_ 5.4933-17.3667 — 1.8005692
6.4453
‘o 1.96y—3.85z+12.95 _ 1.708864
3.15
Example

1

592
’ 315

R,
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Solve the system of equation
X +x,+x,+x,=2

X, +x, +3x; —2x, =6
2x,+3x, —x; +2x, =7
X +2x,+x,—x, =2

By using Gauss elimination method.
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X +x,+x,+x,=2
X, +x,+3x; —2x, =6
2x,+3x, —x; +2x, =7
X +2x,+x,—x,=-2
the given system in matrix form is
I 1 1 1|x 2
1 3 2] x —6

2 1 -1jx, -2
A X=8B
I 1 1 2
I 1 -2 —6
[4]B]=
2 3 -1 2 7
1 2 -1 -2
11 1 1 2]
0 0 2 -3 -8
“lo 1 3 o | 3 R,—R,R,-2R,R,—R
01 0 2 —4 |
sin ce the element in the sec ond column is zero so int erchanging the rows
11 1 1 2]
01 -3 0 3
~ | Ry,
0 0 2 -3 -8
01 0 2 —4 |
11 1 1 2]
01 -3 0 3
~ | R4 - Rz
0 0 2 -3 -8
01 3 2 —4 |
now the pivot is 2,therefore
1 1 1 1 )
01 -3 0 3 3
~100 2 3 gJR-DK
0 0 O 2 5
2

1
2 3 -1 2x| |7
1

© Copyright Virtual University of Pakistan

10



Numerical Analysis -MTHG603

from this we get

X +x,+x,+x, =2

x,—3x;=3

2x,-3x, =-8

(g)x4 =5

nowx, =2

X, zl(—8+3x4):l(—8+6):—1
2 2

now

x,=3+3x,=3-3=0
now from equation 1
X =2-x,-x,—x,=2-0+1-2=1

sox, =1,x,=0,x;,=-Lx,=2

© Copyright Virtual University of Pakistan
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Solution of Linear System of Equations and Matrix Inversion

Gauss—Jordon Elimination Method

This method is a variation of Gaussian elimination method. In this method, the elements above and below

the diagonal are simultaneously made zero. That is a given system is reduced to an equivalent diagonal
form using elementary transformations. Then the solution of the resulting diagonal system is obtained.
Sometimes, we normalize the pivot row with respect to the pivot element, before elimination. Partial
pivoting is also used whenever the pivot element becomes zero.

Example

Solve the system of equations using Gauss-Jordan elimination method:

xX+2y+z=8
2x+3y+4z=20
4x+3y+2z=16

Solution
In matrix notation, the given system can be written as

1 2 1|(x 8

2 3 4||y|=|20

14 3 2]z 16

1 2 x 8

0 } =| 4 (-2) R1 +R2 and (-4) R1+R3
10 =5 -2|\z -16

Now, we eliminate y from the first and third rows using the second row. Thus, we get
(1 0 5 ](x 16

0 -1 2 ||y|=| 4
10 0 -12)(z -36

Before, eliminating z from the first and second row, normalize the third row with respect to the pivot
element, we get

(1 0 5])(x 16
0 -1 2 yl|=|4
0 0 1]z 3

Using the third row of above Equation, and eliminating z from the first and second rows, we obtain
(1 0 0](x 1

0 -1 0||yl|=|-2
0 o 1)lz) |3

The solution is

x=1,y=2,z=3.

Example

Solve the system of equation by using the Gauss Jordan elimination method
10x+y+z=12

2x+10y+z=13
xX+y+5z=7
Solution
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10x+y+z=12
2x+10y+z=13
x+y+5z=7

the given system

10 1 1(|«x 12
2 10 1(|y|=]|13
1 1 5|z 7

the argumented matrix may be written as

10 1 1 12
[4/B]=|2 10 1|13
115 7

1 -8 —44 -51]
2 10 1 |13 |R-9R,
115 7|
1 -8 —44 —51]
0 26 89 |115| R,—2R.R,—R,
0

10 9 49 58|
[1 -8 —44 -51]
~|0 1 89| 59 |R,-3R,
10 9 49 58|
(1 0 420 421
~l0 1 58 | 59 | R+8R,,R,—9R,
10 0 -473 -473
(1 0 0 1 1
~ g (1) (1)\1 m133,131—420}33,1%2—58}%2

thus the system reduces to reduced echlon form

sox=y=z=1

Example

Solve the system of equations by Gauss Jordan method
10x, +x, +x;, =12

x, +10x, —x;, =10

X, —2x, +10x; =9

Solution
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10x, +x, +x;, =12

x, +10x, —x; =10

x, —2x,+10x, =9

the matrix form of the given system may be written as
10 1 1 ]|x 12
1 10 -1||x,|=|10
1 -2 10| |x 9

the argumented mairix may be written as

10 1 1 12
[4/B]=| 1 10 —-1]10
1 210 9

(1 -89 10 -78
~/1 10 ~-1| 88 | R -9R,
1 =2 10 87

[1 -89 10 -78]
~0 9 ~-1| 8 |R,-R,R,—-R
o 1 0 1 |

[1 -89 10 -78]
~l0 9 -1 8 ﬁ,&
o 1 o0 1 99’87
(1 -89 10 -78]
~l0 1 1] 0 | R, -8R,
0o 1 0 1|

(1 0 =79 -78
~[0 1 ~-1] 0 |R-89R,,R -R
0 0 1 1

(1 0 0 1
~[0 1 11| R +79R,,R,+R,
10 0 0 1

so the system gives the values of all the three var iables
X =x,=x,=1
Example

Solve the system of equations by using Gauss Jordan method.
X+2y+z-w=-2

2x4+3y—z+2w=7

X+y+3z-2w=-6

X+y+z+w=2
Solution

X+2y+z-w=-2
2x4+3y—z4+2w=7
X+y+3z-2w=-6
X+y+z+w=2
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the system may be written as

12 1 17 [x] [=2
23 -1 2| |y| |7
11 3 2| |z |-6
111 1] | w| |2

the argumented matrix may be written as
12 1 -1 =2
2 3 -1 2 7

[4/B]= |
11 3 2 -6
11 1 1 2
1 2 1 -1 =2
0 1 3 —4 11
i 0 -1 2 _1|_4 R,-2R.,R,-R.R, - R
0 -1 0 2 4
(1 0 -5 7 20
01 3 —4 -1l .
~ 0 0 1 _1| 3 R1_ZRZ,g(R3+R2),R4+R2
00 3 2 -7
(1 00 2 5
01 0 -1 =2
N 0 0 1 _1|_3 R +5Ry,R, —3R,,R, 3R,
000 1 2
10 0 0 1
01 00 O
N 0 0 1 O|_1 R —=2R,,R, +R,,R, +R,
0001 2

the system maybe written as
1 000 X 1
0100 y 0
0010 z -1
0 0 01 w 2

the values of all the ariables are

x=1L,y=0,z=-1,w=2
Crout’s ReductionMethod
Here the coefficient matrix [A] of the system of equations is decomposed into the product of two matrices

[L] and [U], where [L] is a lower-triangular matrix and [U] is an upper-triangular matrix with 1°s on its
main diagonal.

For the purpose of illustration, consider a general matrix in the form
[L][U]=[4]
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Li 0 0T wuy wu, a, 4y a;
121 122 010 1 Uyy | =] Gy Ay Gy
Ly L, ;)0 0 1 a; 4y a4y

The sequence of steps for getting [L] and [U] are given below:
Step I: Multiplying all the rows of [L] by the first column of [U], we get

Ly =a, Ly =ay, Ly =ay

Thus, we observe that the first column of [L] is same as the first column of [A].

Step II: Multiplying the first row of [L] by the second and third columns of [U], we obtain

Ly, =ay,, Ly =ay,
Or

a, ag;
Uy = ) Uz =

/ /

1 1

Thus, the first row of [U] is obtained. We continue this process, getting alternately the column of [L] and a
row of [U].
Step I1I: Multiply the second and third rows of [L] by the second column of [U] to get
Ly +1y, = ay, Ly, +1;, = ay,
This gives
Ly =ay —hu,, Ly =ay, —lLyuy,
Step IV: Now, multiply the second row of [L] by the third column of [U] which yields
Lyyy +Lyttyy = ays
Uy, = Ay _121ul3
122
Step V: Lastly, we multiply the third row of [L] by the third column of [U] and get
Ly + Lty + 1y = ay,
This gives
Ly = ayy = Lyyuys = Ly,
Thus, the above five steps determine [L] and [U].
This algorithm can be generalized to any linear system of order n.
Consider a system of equations

@, X, +a, X, + a3 %, = b,
Ay X, + Uy X, +ayx; =,
a3 X, + 0y, X, + a3 Xy = b,
In matrix notation as [A](X) = (B). Let [A] = [L] [U], then we get,
[LIIU](X) =(B)
Substituting [U] (X) = (Z) in Eq. we obtain [L] (Z) = (B)
bz =b
Lz +1yz, =b,
Lz +lyz, + 1z, = b,
Having computed z1, z2 and z3, we can compute x1, x2, and x3 from equation [U] (X) = (Z) or from
Lo, uy (X Z
0 1 uyl|lx |=]|2
0 0 I |\ x z,

This method is also known as Cholesky reduction method. This technique is widely used in the numerical
solutions of partial differential equations.
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This method is very popular from computer programming point of view, since the storages space reserved
for matrix [A] can be used to store the elements of [L] and [U] at the end of computation.

This method fails if any

a; =0

Example

Solve the following system of equations by Crout’s reduction method

S5x-2x,+ x,=4

7x, + x,=5x, =8

3x, +7x, +4x, =10

Solution
Let the coefficient matrix [A] be written as [L] [U]. Thus,

L, 0 Ol wu, wu, 5 2 1
Ly L, 00 1 wu,|=|7 1 =5
Ly Ly, L;]|0 0 1 3 7 4

Step I: Multiply all the rows of [L] by the first column of [U], we get

h, =5, Ly =1, L, =3
Step 1I: Multiply the first row of [L] by the second and third columns of [U], we have
by, =2, Ly =1

2 1

Uy ==l

57175

STEP III: Multiply the 2nd and 3rd rows of [L] by the 2nd column of [U], we get

14 19
Lau,+1,=1 or L,=1l+—=—
217712 22 22 5 5
6 41
L, +1, =7 or Ly=T+—=—=—
31712 32 32 5 5

STEP IV: Multiply the 2nd row of [L] by the 3rd column of [U]
Ly +1puy ==5

19 7
Ty =-5-=
57 5
32
=T

STEP V:Finally, multiply the 3rd row of [L] with the 3rd column of [U], we obtain

Ly + Lyuyy +1; =4

L 3
33 19
Thus, the given system of equations takes the form [L][U][X] = (B).
1 21 _xl_ 4
5 0 0 5 5
7 L4 0 (|0 1 _» x, |=|8
5 19
3 41 3271(/0 O 1
L ? F__ __xa_ 10
That is,
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[ __zl_ 4
5 0 0
7 % 0 ||z, |=]| 8
4 37
5 19 __23_ 10

Let [U](X) = (Z), then
[L1(Z)=(4 8 10)

Or
_zl_ 4
5 0 0
7 % 0 ||z, |=]| 8
4 37
| 5 19__23_ 10

Which gives utilizing these values of z, the Eq becomes
By back substitution method, we obtain

46 284 36

X3 = > X =550 X =
327 327 327
This is the required solution.

Example

2x-3y+10z=3
Solve the following system —x+4y+2x =20
S5x+2y+z=-12

Solution
2x-3y+10z=3
—x+4y+2x=20

S5x+2y+z=-12
the given system is AX = B

2 =310 [ x 3
A=|-1 4 2| X=|y B=| 20
5 2 1 |z -12
let LU =4
1 0 O [, w, u,
L=\, 1 0 U=| 0 uy, uy
L L, 1 10 0wy
u, U, U, 2 =310
Ly Ly, +uy, Ly +uy =-1 4 2
Ly Ly + Doy, Lty + Lty + s 5 2 1
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here
u,=2,u, =-3 u,=10
-1
Ly, ==1 =1, :7
5
1311"11 =5 3131 :5

-1 5
Lty +uyy =4 =y =4-Lu, =4- (7)(_3) = E

-1
Lty vy =2 = Uy =2-Lu, = 2—(7)10 =17

1 19
Ly, + iy, =5= L, =—([5-Lu,]=—
2 5
253
Ly + Lty gy = gy = 1= Ly — L,y =——
1 0 O 2 -3 10
L= _—1 1 0 U=|0 i 7
2 2
2Dy 0 o =22
L2 J L 5 |
i
letUX =Y wherey=|y, |,then LY =B,
W3
1 0 O
1 Vi 3
i.e? I 0|y, |=| 20
s o100 |l L
L2 5 J
and
1 0 0
1 X Y
7 L 0||y|=|»n
5 19 2L
2 5
now egn (1) implies
»n=3
-1 43
7)’1"‘)/2:203)/2:7
5 19 -506
5)’1"'?)’2"')’3 =-12 =y, :T
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2x-3y+10z=3 ,§y+7z:£,—£z:io6
2 2 5 3

by back substitution x = -4,y =3and z =2

Example

Solve the following system

x+3y+4z=4
X+4y+3z=-2
x+3y+4z=1
Solution
x+3y+4z=4
x+4y+3z=-2
x+3y+4z=1
the given systemis AX = B
1 3 8 X 4
A=|1 4 3| X=|y B=|-2
1 3 4 z 1
let LU=A4
1 0 O u, U, U,
L=, 1 0 U=| 0 u, uy
L L, 1 0 0 uy,
Uy, u, Uy 1 3 8
Ly, Dyt +uy Ly +uy =1 43
l}lull 131u12 +l32u22 l3lu13 +l32u23 +u33 1 3 4

here

u, =1, u, =3 u,=8
Lu,=-1 =1, =1
Lu,=1 =1, =1
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-1 5
Ly, +uyy =4 =y, =4-Lu, =4- (7)(_3) = E
Lty +uy =2 =uy =4-Lu,=4-1)3=1
1
Ly, + Ly =3= 1, =—[3-Lu,]=0

2
l}lu13 + 132”23 tuy = U = 4_131”13 _132”23 =—4

1 00 1 3 8
L=]11 0 U=/0 1 -5
1 01 0 0 -4
By
letUX =Y wherey=|y, |,then LY =B,
Vs
1 0 0]y 4
ie|]0 1 0|y, |=]-2
1 0 1]y 1
and
1 0 0
-1 o N
7 L 0fly|=|»
5 19 2L
L2 5 ]
now egn (1) implies
v =4
Yy =2

nty=l=y=l-y=-3
we also have
x+3y+8z=4
y=5z=-2
—4z=-3
by back substitutiton

3
==

4

3.7

y:—2+52=—2+5(z):z

7. 3. 29
=4-3y-8z=4-3(L)-8()=—
x y—8z (4) (4) 2
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Solution of Linear System of Equationsand Matrix Inversion

Jacobi’s Method
This is an iterative method, where initial approximate solution to a given system of
equations is assumed and is improved towards the exact solution in an iterative way.

In general, when the coefficient matrix of the system of equations is a sparse matrix
(many elements are zero), iterative methods have definite advantage over direct methods
in respect of economy of computer memory

Such sparse matrices arise in computing the numerical solution of partial differential
equations

Let us consider

a,x, +a,x,+---+a, x, =b

Ay X, +ayx, +--+a, x, =b,

a,x, +a,x,+--+a, x =b

In this method, we assume that the coefficient matrix [A] is strictly diagonally dominant,
that is, in each row of [A] the modulus of the diagonal element exceeds the sum of the
off-diagonal elements.

We also assume that the diagonal element do not vanish. If any diagonal element
vanishes, the equations can always be rearranged to satisfy this condition.

Now the above system of equations can be written as

X b g, L9,
1 2 n
a4y ay
Y. = b, a, L9,
2 1 n
ay 4y ay
coban G
n n-1
am’l a}’l?‘l aVl}l

We shall take this solution vector (x,,x,,...,x,)" as a first approximation to the exact

solution of system. For convenience, let us denote the first approximation vector by

(x",x{",...,x\") got after taking as an initial starting vector.

Substituting this first approximation in the right-hand side of system, we obtain the
second approximation to the given system in the form
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b a a
x1(2) 1 12 él) e V) xil)
a, ay a,
o_ b ay g %,
X T T X,
ay, ap Ay
b a a
o_b% 4 o %o o
xn - xl ‘xn—l
al’lﬂ ann ann

This second approximation is substituted into the right-hand side of Equations and obtain
the third approximation and so on.

This process is repeated and (7+1)th approximation is calculated

b a, a
x1(r+1) St U V) xé») ... n x,(lr)
a, ay ay,
o = b, _ay ) T x)
ay A4y ay
b —a a
(r+l) _ “n nl (1) n(n-1) _(r)
Xy ST T T T XN
ann ann nn
Briefly, we can rewrite these Equations as
n
N
Qi =1 Gy

i
r=12,... i=L2,...n
It is also known as method of simultaneous displacements,

since no element of x"*" is used in this iteration until every element is computed.

A sufficient condition for convergence of the iterative solution to the exact solution is

n
|a,.,,| > Z‘%
j=1

J#l

method converges

, i =1,2,...,n When this condition (diagonal dominance) is true, Jacobi’s

Example

Find the solution to the following system of equations using Jacobi’s iterative method for
the first five iterations:
83x+11y—-4z=95

Tx+52y+13z=104

3x+ 8y+29z=71
Solution
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95 11 4
X=——-——y+—
83 83 83
o4 7 13
52 52 52
71 3 8
=———X———Y
29 29 29

Taking the initial starting of solution vector as (0,0,0)", from Eq. ,we have the first
approximation as

x® 1.1446
y® =1 2.0000
M 2.4483

Now, using Eq. ,the second approximation is computed from the equations

x? =1.1446-0.1325y" +0.04822"

y? =2.0-0.1346x" —0.25z"

2® =2.4483-0.1035x —0.2759 "

Making use of the last two equations we get the second approximation as
xX?) (09976
y? |=]|1.2339
z? ) (17424

Similar procedure yields the third, fourth and fifth approximations to the required
solution and they are tabulated as below;

Variables

[teration number »  [x y z

1 1.1446 2.0000 2.4483
2 0.9976 1.2339 1.7424
3 1.0651 1.4301 2.0046
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4 1.0517 1.3555 1.9435
S 1.0587 1.3726 1.9655
Example

Solve the system by jacobi’s iterative method
8x—-3y+2z=20

4x+11y—z=33
6x+3y+12z=35

(Perform only four iterations)
Solution

Consider the given system as
8x—-3y+2z=20

4x+11y—z=33
6x+3y+12z=35

the system is diagonally do min ant

x:é[20+3y—2z]

1
y=ﬁ[33—4x+z]

1
=—[35-6x-3
z 12[ X y]

we start with an initial aproximation x, =y, =2z,=0
substituting these
first iteration
1
X, = 5[20 +3(0)-2(0)]=2.5

” :%[33—4(0)+0]:3

z, = 5[35 —6(0)—3(0)] =2.916667

Second iteration

X, = é[zo+ 3(3) - 2(2.9166667)] = 2.895833

Y, = %[33 -4(2.5)+ 2.9166667] =2.3560606

z, =%[35—6(2.5)—3(3)] =0.9166666
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third iteration
X, = é[ZO +3(2.3560606) — 2(0.9166666)] =3.1543561

Yy = %[33 —4(2.8958333) + 0.9166666] =2.030303

z. = i[35 —6(2.8958333) —3(2.3560606)] = 0.8797348
12

fourth iteration

X, = l[20 +3(2.030303) - 2(0.8797348)] =3.0419299
8

V, = %[33 —4(3.1543561)+ 0.8797348] =1.9329373

Z4=

é[35—6(3.1543561)—3(2.030303)] =0.8319128

Example
Solve the system by jacobi’s iterative method
3x+4y+15z=54.8

x+12y+32=39.66

10x+y-2z=7.74

(Perform only four iterations)
Solution

Consider the given system as
3x+4y+15z=54.8

x+12y+32=39.66

10x+y—-2z="7.74

the system is not diagonally do min ant we rearrange the system
10x+y—-2z="7.74

x+12y+32=39.66

3x+4y+15z=54.8

x:%[7.74—y+22]

y= é[39.66—x—3z]

1
=—[548-3x—4
z 15[ X y]
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we start with an initial aproximation x, =y, =2z,=0
substituting these

first iteration
X, = %[7.74— (0)+2(0)]=0.774

V= %[39.66 -(0)- 3(0)] =1.1383333

z, = %[54.8 -3(0)— 4(0)] =3.6533333
Second iteration

x =i[7.74—1.1383333+2(3.6533333)]=1.3908333
10

y, = 5[39.66—0.774—3(3.6533333)] =2.3271667

z, :%[54.8—3(0.774)—4(1.1383333)] =3.1949778

third iteration
X, = %[7.74 —-2.3271667 + 2(3.1949778)] =1.1802789

Vi = é[39.66 —1.3908333 - 3(3.1949778)] =2.3903528

z. = i[54.8 —3(1.3908333) - 4(2.3271667)] = 2.7545889
15

fourth iteration

X, = L[7.74 —2.5179962 +2(2.7798501)| =1.0781704
t10

y, = %[39.66 —~1.1802789—3(2.7545889)] = 2.51779962

z, = i[54.8 —3(1.1802789) - 4(2.3903528)] = 2.7798501
Y15
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Solution of Linear System of Equations and Matrix Inversion
Gauss—Seidel Iteration Method

It is another well-known iterative method for solving a system of linear equations of the
form

a,x, +a,x,+---+a, x, =b

Ay X, +ayx, +--+a, x, =b,

anlxl + a}zZ‘xZ teeet ann‘xn = bn

In Jacobi’s method, the (» + 1)th approximation to the above system is given by
Equations

b a a
1
xl(r+) St U V) xér) . _Mn x;Y)
a, 4a, ap
b, a a
1
x§r+) e )| xl(r) .%o xflr)
ay dy Ay
LD b, a, NOR L1y ()
n - 1 n—1
a}’l?‘l a?‘l}’l a}’l}’l

Here we can observe that no element of x"*" replaces x” entirely for the next cycle of
computation.

In Gauss-Seidel method, the corresponding elements of x"*Y replaces those of

x"”) as soon as they become available.

Hence, it is called the method of successive displacements. For illustration consider
a,x, +a,x,+---+a, x, =b

Ay, X, +ayX, +--+a, x, =b,

a,x, +a,x,+--+a, x =b,

nn-’n

In Gauss-Seidel iteration, the (r + 1)th approximation or iteration is computed from:

b a a
1
x1(r+) — A _ "2 xér) I xr(,r)
a, a; a,
y b a . a
x§r+)= 2 Y xl(r+)_____ 2n x’(zr)
ay, Qp ay
a
(r+1) _ b, TN ) B T VIR C®))
xn - xl 'xn—l
al’lﬂ ai‘l}’l a””’l

Thus, the general procedure can be written in the following compact form
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vy _ b Y e Yo ,
X; :——Z—xf - Z—xj forall i=1,2,....n and r=1,2,...
@; =1 4y =i+l Gy

To describe system in the first equation, we substitute the r-th approximation into the

right-hand side and denote the result by x"*". In the second equation, we substitute
(x"*,x",...,x"") and denote the result by x{"*"
In the third equation, we substitute (x"™,x{"", x{”,...,x!"”) and denote the result by

x(r+1)

s, and so on. This process is continued till we arrive at the desired result. For

illustration, we consider the following example :

Note

The difference between jacobi’s method and gauss Seidel method is that in jacobi’s
method the approximation calculated are used in the next iteration for next
approximation but in Gauss-seidel method the new approximation calculated is
instantly replaced by the previous one.

Example
Find the solution of the following system of equations using Gauss-Seidel method and
perform the first five iterations:
4x, —x, —x;=2
—x,+4x,—x, =2
—x, +4x,—-x, =1

—x, —x; +4x, =1

Solution
The given system of equations can be rewritten as

x, =0.5+0.25x, +0.25x,

x,=0.5+0.25x, +0.25x,

x; =0.25+0.25x, +0.25x,

x, =0.25+0.25x, +0.25x,

Taking x, = x; = x, = 0 on the right-hand side of the first equation of the system , we get
x\" =0.5. Taking x, = x, = 0and the current value of x,, we get from the 2nd equation

of the system
x” =0.5+(0.25)(0.5)+0=0.625

Further, we take x4 = 0 and the current value of x/  we obtain from the third equation of
the system

x" =0.25+(0.25)(0.5)+0
=0.375
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Now, using the current values of x2 and x3 the fourth equation of system gives
x{” =0.25+(0.25)(0.625)

+(0.25)(0.375)=0.5

The Gauss-Seidel iterations for the given set of equations can be written as
Y =0.5+0.25x" +0.25x{"

M =0.5+0.25x"" +0.25x)”
XU =0.25+0.25x"" +0.25x"

X =0.25+0.25x" +0.25x"

Now, by Gauss-Seidel procedure, the 2nd and subsequent approximations can be
obtained and the sequence of the first five approximations are tabulated as below:

Variables
Iteration x1 x2 x3 x4
number r
1 0.5 0.625 0.375 0.5
2 0.75 0.8125 0.5625 0.59375
3 0.84375 0.85938 0.60938 0.61719
4 0.86719 0.87110 0.62110 0.62305
5 0.87305 0.87402 0.62402 0.62451
Example
Solve the system by Gauss-Seidel iterative method
8x—-3y+2z=20
4x+11y—z=33

6x+3y+12z=35

(Perform only four iterations)
Solution

Consider the given system as
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8x—-3y+2z=20
4x+11y—z=33
6x+3y+12z=35

the system is diagonally do min ant

x=%[20+3y—2z]

y:%[33—4x+z]

1
z=—|[35-6x-3
5l y]
we start with an initial aproximation x, =y, =2z,=0
substituting these

first iteration

X, = %[20+3(0)—2(0)] =25

3= %[33—4(2.5)+o] = 2.0909091

z, = 5[35 -6(2.5)— 3(2.0909091)] =1.1439394

Second iteration
1

X, = é[ZO +3y, - zl] = g[ZO +3(2.0909091) —2(1. 1439394)] =2.9981061

y, = 1—11[33—4x2 +2z,]= 1—11[33—4(2.9981061)+1.1439394] =2.0137741

z, :é[35—6x2 -3 ]= é[35 —6(2.9981061)—3(2.0137741)] = 0.9141701

third iteration
X, = é[ZO +3(2.0137741)— 2(0.9141701)] =3.0266228

Vy = 1—11[33 —4(3.0266228) + 0.9141701] =1.9825163

z, = i[35 —6(3.0266228) - 3(1.9825163)] = 0.9077262
12
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fourth iteration

X, = %[20+3(1.9825163)—2(0.9077262)] =3.0165121

V= %[33 -4(3.0165121)+ 0.9077262] =1.9856071

z, :é[?ﬁ—6(3.0165121)—3(1.9856071)] =0.8319128

Example

Solve the system by suing Gauss-seidel iteration method
28x+4y—z=32

x+3y+10z=24
2x+17y+4z=35

Solution
28x+4y—z=32

x+3y+10z=24
2x+17y+4z=35

the given system is diagonally do min ant so we will make it diagonaaly do min ant by

iterchanaginhg the equations

28x+4y—z=32
2x+17y+4z=35
x+3y+10z=24

hence we can apply Gauss — Seidel method

from the above equations

]
x=—[32—4y+z
28[ y+z]
—i[35—2x—4z]
T

1
z=—[24-x-3
oL ]

© Copyright Virtual University of Pakistan 5



Numerical Analysis -MTHG603

First approximation

putting y=z=0
X = L[32] =1.1428571
28
puting x =1.1428571 ,z=0
V= %[35 —2(1.1428571) - 4(0)] =1.9243697

putting x=1.1428571 , y =1.9243697

z = i[24—1.1428571 —3(1.9243697)] = 1.7084034
' 10

Second iteration

X, = %[32 — 4(1.9243697) +1.7084034] = 0.9289615
y, = %[35 —2(0.9289615) — 4(1.7084034)] = 1.5475567

z =1[24—0.9289615—3(1.5475567)] —1.8408368
10

third iteration

X, = i[32—4(1.5475567) +1.8428368] = 0.9875932
28

¥, =%[35 —2(0.9875932) — 4(1.8428368)] =1.5090274

%[24 —0.9875932—-3(1.5090274)] =1.8485325
fourth iteration

Z3=

X, = 2i8[32 — 4(1.5090274) +1.8485325] = 0.9933008
y, = %[35 —2(0.9933008) — 4(1.8428368)] =1.5070158

z, = i[24 ~0.9933008 —3(1.5070158)] = 1.8485652
Y10

Example

Using Gauss-Seidel iteration method, solve the system of the equation.
10x-2y—z—-w=3

—2x+10y—z—-w=15
—x—y+10z-2w=27
—x—y—-2z+10w=-9
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(Perform only four iterations)
Solution
10x-2y—z—w=3

—2x+10y—z—-w=15
—x—-y+10z-2w=27
—x—-y—-2z+10w=-9

it is diagonally do min anat and we may write eqaution as

1
X_E[3+2y+Z+W]
y:L[15+2x+z+W]

10
Z:i[27+x+y+2w]

10

1
w=—[-9+x+y+2z
10[ y+2z]

first approximation
putting y=z=w=00n RHS of (1), we get
x,=0.3

V= %[15 +2(0.3)]=1.56

putting x=0.3,y=1.56and w=0

z, = %[27 +0.3+1.56]=2.886

putting x=0.3,y =1.56 and z =2.886

w = %[—9 +0.3+1.56+2(2.886)]=—0.1368

second iteration

X, =%[3+2(1.56)+2.886—0.1368] =0.88692
¥, :%[15+2(0.88692)+2.886—0.1368] =1.952304

Z, = %[27 +0.88692+1.952304 +2(—0.1368)] = 2.9565624

w, = %[—9 +0.88692+1.952304 +2(2.9565624)] = —0.0247651

third iteration

1

X, = EB +2(1.952304) +2.9565624—0.0.0247651] = 0.9836405
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Yy = %[l 5+2(0.9836405) +2.9565624 —0.0247651] =1.9899087

zy = %[27 +0.9836405+1.9899087 +2(—0.0247651)] = 2.9924019

w, = %[—9 +0.983405+1.9899087 +2(2.9924019)] = —-0.0041647

fourth iteration

X, = %[3 +2(1.9899087) 4+ 2.9924019 - 0.0041647] = 0.9968054
Vy= %[1 5+2(0.9968054) +2.9924019—-0.0041647] =1.9981848
zZ,= %[27 +0.9968054 +1.9981848 +2(—0.0041647)] = 2.9986661

w, = %[—9 +0.9968054 +1.9981848 +2(2.9986661)] = —-0.0007677

Note

When to stop the iterative processes ,we stop the iterative process when we get the
required accuracy means if your are asked that find the accurate up to four places of
decimal then we will simply perform up to that iteration after which we will get the
required accuracy. If we calculate the root of the equation and its consecutive values are
1.895326125, 1.916366125, 1.919356325, 1.919326355, 1.919327145, 1.919327128
Here the accuracy up to seven places of decimal is achieved so if you are asked to acquire
the accuracy up to six places of decimal then we will stop here .

But in the solved examples only some iteration are carried out and accuracy is not
considered here.
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Solution of Linear System of Equations and Matrix Inversion

Relaxation Method
This is also an iterative method and is due to Southwell. To explain the details, consider
again the system of equations

a,x, +a,x,+---+a, x, =b

Ay X, +ayx, +--+a, x, =b,

anlxl + a}zZ‘xZ teeet ann‘xn = bn
Let
X = (x(p) xép) x(p))T
L X,
be the solution vector obtained iteratively after p-th iteration. If R'” denotes the

residual of the i-th equation of system given above , that is of a,x, +a,x, +---+a,x, =b,
defined by
(p) _

Ri(p) =b - ailxl(p) —a;r X, =, x

we can improve the solution vector successively by reducing the largest residual to zero
at that iteration. This is the basic idea of relaxation method.

To achieve the fast convergence of the procedure, we take all terms to one side and then
reorder the equations so that the largest negative coefficients in the equations appear on
the diagonal.

Now, if at any iteration, R, is the largest residual in magnitude, then we give an

increment to x;; a, being the coefficient of xi

i

In other words, we change x;. to (x;+dx,) torelax R, thatistoreduceR,  to zero.
Example

Solve the system of equations

6x, —3x, +x; =11

2x, +x, —8x; =15

x,—Tx,+ x,=10

by the relaxation method, starting with the vector (0, 0, 0).

Solution
At first, we transfer all the terms to the right-hand side and reorder the equations, so that
the largest coefficients in the equations appear on the diagonal.
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Thus, we get

0= 11-6x,+3x,— x,
0= 10— x+7x,— x;
0=-15-2x,— x,+8x,

after interchanging the 2nd and 3rd equations.

Starting with the initial solution vector (0, 0, 0), that is taking x, =x, =x, =0,
we find the residuals R, =11, R, =10, R, =-15

of which the largest residual in magnitude is R3, i.e. the 3rd equation has more error and
needs immediate attention for improvement.

Thus, we introduce a change, dx3in x3 which is obtained from the formula
R, 15
dx,=——=—=1.875
a,, 8
Similarly, we find the new residuals of large magnitude and relax it to zero, and so on.
We shall continue this process, until all the residuals are zero or very small.

Iteration Residuals Maximum Difference Variables

number| R1 R2 R3 R, dx, x1 x2 x3

0 11 10 -15 -15 1.875 0 0 0

1 9.125 | 8.125 |0 9.125 |1.5288 0 0 1.875

2 0.0478| 6.5962| - 6.5962 |-0.9423 |1.5288 |0 1.875
3.0576

Iteration Residuals Maximum Difference Variables
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number R1 R2 R3 O00000000oU ooooooooooU xl x2 x3

0 11 10 -15 -15 15/8 0 0 0
=1.875
1 9.125 8.125 0 9.125 -9.125/(-6) 0 0 1.875
=1.5288
2 0.0478 6.5962 - 6.5962 -6.5962/7 1.5288 0 1.875
3.0576 =-0.9423
3 - 0.0001 - -2.8747 2.8747/(-6) 1.0497 - 1.875
2.8747 2.1153 =-0.4791 0.9423
4 - 0.4792 - -1.1571 1.1571/8 1.0497 - 1.875
0.0031 1.1571 =(0.1446 0.9423
Iteration Residuals Maximum Difference Variables

number R1 R2 R3 O000000o0ooU oooooooooou x x2 x3

5 - 0.3346 0.0003 0.3346 -.3346/7 1.0497 - 2.0196
0.1447 =-0.0478 0.9423

6 0.2881 0.0000 0.0475 0.2881 -.2881/(-6) 1.0497 - 2.0196
=(0.0480 0.9901

7 - 0.048 0.1435 0.1435 =-0.0179 1.0017 - 2.0196
0.0001 0.9901

8 0.0178 0.0659 0.0003 - - 1.0017 - 2.0017
0.9901

At this stage, we observe that all the residuals R/, R2 and R3 are small enough and
therefore we may take the corresponding values of xi at this iteration as the solution.
Hence, the numerical solution is given by
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x,=1.0017, x,=-0.9901, x,=2.0017,
The exact solution is
x, =1.0, x, =-1.0, x,=2.0

Example

Solve by relaxation method, the equation

10x-2y—-2z=6
—x—-10y-2z=7
—x—y+10z=8
Solution

The residual 7,r,,r, are given by
r=6-10x+2y+2z
r,=T+x-10y+2z
r,=8+x+y-10z

The operation table is as follows

X |y zZ rl r2 |13
110 [0 |-10 |1 1 L1
01 0 |2 -10 | 1 L2
0 |0 1 2 2 -10 L3

The relaxation table is as follows

X |y |z rl [2 |13

0O [0 |0 |6 |7 |8 L4
0 |0 1 9 |2 L5=L4+L3
0 |1 0 10 | -1 |-1 L6=L5+L2
1 10 |0 0 |0 L7=L6+L1
Explanation

(1) In L4 ,the largest residual is 8.to reduce it, To reduce it ,we give an increment of

8_8_ 0.8=1
¢, 10
the resulting residulas are obtained by

L,+(@1)L;,ieline L,

(2) In line L, the largest residual is 9
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Increment= 2 _2 09=1

b, 10
The resulting residuals (=L, ) =L, +1.L,
(3) In line L, .the largest residual is 10
10 10
Increment= —=—=
a, 10
The resulting residuals (=L, ) =L, +1.L,
Exact solution is arrived and it is x=1,y=1,z=1

Example
Solve the system by relaxation method, the equations

Ox—y+2z=7
x+10y-2z=15
2x-2y—-13z=-17
Solution

The residuals #,r,,r, are given by
Ox—y+2z=9
x+10y-2z=15
2x-2y—-13z=-17
here

n=9-9x+y-2z
r,=15-x-10y +2z
r,=—17-2x+2y+13z

Operation table

X y z rl r2 r3

1 0 0 -9 -1 -2

0 1 0 1 -10 2

0 0 1 -2 2 13
Relaxation table is

X y z rl 12 r3

0 0 0 9 15 -17
0 0 1 7 17 -4

0 1 0 8 7 -2
0.89 0 0 -0.01 6.11 -3.78
0 0.61 0 0.6 0.01 -2.56
0 0 0.19 0.22 0.39 -0.09
0 0.039 0 0.259 0 -0.012
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0.028 0 0 0.007 -0.028

-0.068

0 0 0.00523 -0.00346 -1.01754

-0.00001

Then x=0.89+0.028=0.918;y=1+0.61+0.039=1.694
And z=1+0.19+0.00523=1.19523

Now substituting the values of x,y,z in (1) ,we get
r1=9-9(0.918)+1.649-2(1.19523)=-0.00346
r2=15-0.918-10(1.649)+2(1.19523)=-0.1754
r3=-17-2(0.918) +2(1.649) +13(1.19523) =-0.00001
Which is agreement with the final residuals.
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Solution of Linear System of Equations and Matrix Inversion
Matrix Inversion

Consider a system of equations in the form

[4](X) =(B)

One way of writing its solution is in the form

(X)=[41"(B)

Thus, the solution to the system can also be obtained if the inverse of the coefficient
matrix [A] is known. That is the product of two square matrices is an identity matrix
[A][B]=[1]

then, [B]=[A4]"

and [A]=[B]"

Every square non-singular matrix will have an inverse.

Gauss elimination and Gauss-Jordan methods are popular among many methods available
for finding the inverse of a matrix.

Gaussian Elimination Method

In this method, if A is a given matrix, for which we have to find the inverse; at first, we
place an identity matrix, whose order is same as that of A, adjacent to A which we call an
augmented matrix.

Then the inverse of A is computed in two stages. In the first stage, A is converted into an
upper triangular form, using Gaussian elimination method

In the second stage, the above upper triangular matrix is reduced to an identity matrix by
row transformations. All these operations are also performed on the adjacently placed
identity matrix.

Finally, when A is transformed into an identity matrix, the adjacent matrix gives the
inverse of A.

In order to increase the accuracy of the result, it is essential to employ partial pivoting.

Example

Use the Gaussian elimination method to find the inverse of the matrix
1 1 1

A=|4 3 -1
3 5 3

Solution

At first, we place an identity matrix of the same order adjacent to the given matrix. Thus,
the augmented matrix can be written as
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111 100
4 3 -1 010
353 001

Stage I (Reduction to upper triangular form): Let R1, R2 and R3 denote the Ist, 2nd
and 3rd rows of a matrix. In the 1st column, 4 is the largest element, thus interchanging
R1 and R2 to bring the pivot element 4 to the place of al1, we have the augmented
matrix in the form

(4 3 -1
1
3

whn = W
S = O
[
- o O

1
3

Divide R1 by 4 to get

13 Lo Ly
4 4 4
11 1 10 0
35 3 00 1

Perform R, — R, — , which gives

12 Lo Loy
4 4 4
o L 2 1 Ly
4 4 4
35 3 0 0 1

Perform R, —3R, — R, in the above equation , which yields

P2 Ly Loy

4 4
oI5 L
4 4 4
o L 1 o 3
4 4 4

Now, looking at the second column for the pivot, the max (1/4. 11/4) is 11/4. Therefore,
we interchange R2 and R3 in the last equation and get

© Copyright Virtual University of Pakistan 2



Numerical Analysis -MTHG603

Reduction to an identity matrix (1/4)R3 + R1 and (-15/11)R3 + R2

2 Lo Loy
4 4 4
o L Ly 3
4 4 4
o L 2 1 Ly
. 4 4 4 |
Now, divide R2 by the pivot a22 = 11/4, and obtain
1 31 0 1 0
4 4 4
01 B oy 3 4
11 11 11
0o L 2 Ly
. 4 4 4 )
Performing R, —(1/4)R, — R, yields
R
4 4 4
01 B oo 3 4
11 11 11
00 90 4 2 1
11 11 11
3Ly Loy
4 4
0 1 15 0 34
11 1 11
00 1 L 1L
i 10 5 10|
Stage 11
p 2 M1
4 40 5 40
0 1 0 3 0 1
2 2
001 L L L
i 10 5 10

Finally, performing R, — (3/4)R, — R, we obtain

lainally, we divide R3 by (10/11), thus getting an upper triangular form
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too 2 1 -2
5 5 5
010 3 0 1
2 2
001 4 L1
10 5 10
Thus, we have
_Z 1 ___
5 5 5
A = _2 0 l
2 2
LLE
| 10 5 10
Example
2 11
Find the inverse of the | 3 2 3| using gauss elimination method.
1 49
Solution

We have the argumented system
211 1 00

[4/1]=]3 2 3]0 1 0
1 49 001

2 1 1 1 0 0
1 3 -3 3 1
~13 = Z | = 1 0|R-3R,R.—(5)R
22|2 2(2)13(2)1
111—7 _—101
2 2 2 i
2 1 1 1 0 0
o L 22 1 olr-m
2 2 2
00 2 10 -7 1

X X X3
nOWIf | Xy Xy X
X1 Xy Xy
then the system 1 is the inverse of the given matrix the system is eqivalent to

three systems
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21 1 | - 1
N | A
0 = = ||x|=|—
2 2 2
0 0 2|t |10
0 = = |lxy|=|1
2 2
0 0 —2fl¥] L7
X, =-3 Xy =12 X =5
5 -17 7
X =% Xy =—7— X3 =7
2 2 2
X3 :__1 Xy :é X3 = _l
2 2 2
and the inverse martix is
-6 5 -1
% 24 -17 3
-10 7 -1
LT
0 E E X23 =0
0 0 —2fl¥s] L1

by back substitution ,the three systems of equation may be written as

Example
4 1 2

Fine the inverse of the matrix | 2 3 —1| using gauss elimination method.
1 -2 2

Solution
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4 1 2100
[Ad]=]2 3 -1]0 1 0
1 -2 20 0 1
4 1 21 00
“lo 2 —2|_—1 1 0}32—1R1,R3—1R1
2 2 2 4
o =2 31 gy
L 4 2 4 |

nowif | x,, X,, X, |istheinverse of the given matrix ,then the system(1)is

X3 X3 X33

equivalent to three systems

4 1 2 1
5 i -1
0 5 -2 Xy | = 7
_ X3 _
o 22 3 -4
L 4 2 ] 20 |
4 1 2 %, 0
5
0 5 21| xy |=| 1
IR S
0o = 2
4 2 L10.
4 1 2 %, 0
5
0 E 21| x5 [=|0
_ X3 L
o 22 3
L 4 i
—4 5 7
xn_? le_g x31_§
Xy, =2 Xy =2 Xy, =—3
7 -8 10
X3 BE) X2 3 X3 Y
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and the inverse martix is

4,z
3 3 4 6 7
2 2 Dls 6 -
> ; 7 -9 -10
7 -10 -7
L 3
L3 3

Gauss - Jordan Method

This method is similar to Gaussian elimination method, with the essential difference that
the stage I of reducing the given matrix to an upper triangular form is not needed.
However, the given matrix can be directly reduced to an identity matrix using elementary
row operations.

Example

Find the inverse of the given matrix by Gauss-Jordan method
1 1 1

A=4 3 -1
35 3

Solution

Let R1, R2 and R3 denote the 1st, 2nd and 3rd rows of a matrix. We place the identity
matrix adjacent to the given matrix. So the augmented matrix is given by

AN

(98]

|

—_

(=)
oS = O
- o O

Performing R, -4R, — R,, we get

1 1 1 10
0 -1 =5 0 1
35 3 00

Now, performing R, —3R, — R,, we obtain

0
0
1

1 1 1 00
0 -1 -5 4120
0 2 0 -3 01
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Carrying out further operations R, +R, - R, and R, +2R, > R,,

we arrive at
1 0 -4 -3 10
0 -1 -5 4 10
0 0 -10 -I1 2 1
Now, dividing the third row by —10, we get
1 0 -4 -3 1 0
0 -1 -5 4 1 0
o0 1 1L
L 10 10

Further, we perform R, + 4R, - R, and R, +5R, — R, to get

1 0 O 12
5 5 5
0 -1 0 3 0 1
2 2
0 0 1 o r 1
i 10 5 10
Finally, multiplying R2 by —1, we obtain
1oo 2 L1 2
5 5 5
0 1 0 3 0 1
2 2
0 0 1 w1
i 10 5 10
Hence, we have
_Z 1 ___
5 5 5
A = _E 0 l
2 2
m 1
1 10 5 10
Exercise

Solve all the above examples solved by Gauss elimination by using gauss Jordan method.
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Eigen Value Problems
Let [4] be an n x n square matrix. Suppose, there exists a scalar and a vector

X=(x x .. x)
such that
[4](X) = A(X)

d ax ax
a(e )=a(e™)
2
- (sin ax) = —a’ (sin ax)
x

Then A is the eigen value and X is the corresponding eigenvector of the matrix [4].
We can also write itas [4—AI](X)=(0)

This represents a set of » homogeneous equations possessing non-trivial solution,
provided

|[4-21|=0

This determinant, on expansion, gives an n-th degree polynomial which is called
characteristic polynomial of [4], which has 7 roots. Corresponding to each root, we can
solve these equations in principle, and determine a vector called eigenvector.

Finding the roots of the characteristic equation is laborious. Hence, we look for better
methods suitable from the point of view of computation. Depending upon the type of
matrix [4] and on what one is looking for, various numerical methods are available.

Power Method and Jacobi’s Method

Note!
We shall consider only real and real-symmetric matrices and discuss power and Jacobi’s
methods

Power Method

To compute the largest eigen value and the corresponding eigenvector of the system
[4](X) = A(X)

where [A] is a real, symmetric or un-symmetric matrix, the power method is widely used
in practice.

Procedure
Step 1: Choose the initial vector such that the largest element is unity.

)

Step 2: The normalized vector v\ is pre-multiplied by the matrix [4].

Step 3:The resultant vector is again normalized.
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Step 4: This process of iteration is continued and the new normalized vector is repeatedly
pre-multiplied by the matrix [A4] until the required accuracy is obtained.

At this point, the result looks like

u® =[ AP = g v

Here, g, is the desired largest eigen value and v\ is the corresponding eigenvector.

Example
Find the eigen value of largest modulus, and the associated eigenvector of the matrix by

power method

2 3 2
[A]=|4 3 5
3 29
Solution
We choose an initial vector v
as (1,L1)".

Then, compute first iteration
2 3 2|1 7

u® =[Ap”|4 3 5| 1|=|12
3 2 9((1) (14

Now we normalize the resultant vector to get

1
u =14 ; =g
1
The second iteration gives,
2 3 2|3 2
u®=[4p"4 3 5| ¢|=| <
3 2 9\1 s
0.456140
=12.2143| 0.783626 |= g,v"»
1.0

Continuing this procedure, the third and subsequent iterations are given in the following
slides

2 3 271(0.456140
u® =[Ap® =4 3 5] 0.783626
32 9|l 1.0
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5.263158 0.44096
=| 9.175438 |=11.935672| 0.776874 | = g,v**’
11.935672 1.0
5.18814
u® =[APp® =| 9.07006
11.86036
0.437435
=11.8636| 0.764737 | = g, v
1.0
5.16908
u® =[Ap? =| 9.04395
11.84178
0.436512
=11.84178| 0.763732 | = g,v*
1.0

After rounding-off, the largest eigen value and the corresponding eigenvector as accurate
to two decimals are

0.44
1=11.84 (X)=|0.76
1.00

Example
Find the first three iterations of the power method of the given matrix

7 6 -3

-12 =20 24

-6 —-12 16
Solution
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7 6 -3
-12 =20 24
-6 —12 16

we choose finitial vector as v\” = (1,1,1)’

first iteration

7 6
u =[AV” = -12° =20
-6 -12
10
by diagonalising | -8 | u
-2
second iteration
7 6
u? =[A" = -12° =20
-6 -12
2.8
by diagonalisin g | —0.8
0.4
third iteration
7 6
u® =[4]v? =|-12 =20
-6 -12
now daigonalisin g
4.8574
—2.8588
—0.2868
Example

=311 7+6-3 10
24 ||1|=]-12-20+24 |=|-8
16 || 1 —6-12+16 -2
1
0'=10/-0.8 | ="
-0.2
=3[ 1 7-4.8+0.6 2.8
24| -0.8 [=| -12+16-4.8 |=|-0.8
16 || -0.2| | -6+9.6-3.2 0.4

1
uV =2.8| -0.2857
0.1428

=g ®
2

-3 1 7-1.7142-0.4284 4.8574
24 || -0.2857 |=| =12+5.714+3.4272 | =| —2.8588
16 || 0.1428 —6+3.4284+2.2848 —0.2868

1

now normalisin g 4.8574| —0.5885

-0.0590

Find the first three iteration of the power method applied on the following matrices

1 -1 0
2 4 2
0 -1 2

use x° =(-1,2,1)'
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Solution
1 -1 0
-2 4 2| USEx"” =(-1,2,1)
0 -1 2

st iterations
1 -1 0|[-1 -1-2+0 -3
u? =[A]xV=|-2 4 2| 2|=|2+8-2|=|38
0 -1 2|1 0-2+2 0

now we normalize the resul tan t vector to get

3]
-3 8
u’=| 8 |=8 1 |=¢gx"
0 0
37 | 2140
1 -1 0o]lg| |8 ~1.375
u? =[AlxV =2 4 21| 1 |= §+4+0 =| 4.75
0 -1 210 1 -1
~1.375 ~0.28947
u? =| 475 |=4.75 1
-1 ~0.2152
1 -1 0][-0.28047] [-1.28947 ~0.25789
u? =[A]x? =2 4 -2 1 =| 4.99998 [=4.99998| 1
0 -1 21| -0.2152 ~1.42104 ~0.28420
Exercise

Find the largest eigen value and the corresponding eigen vector by power method after
fourth iteration starting with the initial vector v® =(0,0,1)"
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1 -3 2
[4]=|4 4 -1
6 3 5
Let
Ay A,

be the distinct eigen values of an » x n matrix [4], such that |ﬂ.,| > |/12| >--->I4 | and

//Ln

suppose v,,Vv,,...,v, are the corresponding eigen vectors

Power method is applicable if the above eigen values are real and distinct, and hence, the
corresponding eigenvectors are linearly independent.
Then, any eigenvector v in the space spanned by the eigenvectors v,,v,,...,v

n

can be written as their linear combination v=c,v, +c,v, +---+c¢,v,
Pre-multiplying by A4 and substituting

Av, = Av,, Av, =4y, ... Av, =Av,

We get

Av=24 [clv1 +cz%v2 +~-~+cn&an

A
Again, pre-multiplying by 4 and simplifying, we obtain

Av=2 clv1+c2(£] v2+~-+cn(&j v,
4 4

Similarly, we have

Av=2A" ey, +c, [&j’ v, +- 4, (ﬁjr v,
A A

and

r+l r+l1
A=) ey, +e, [ﬁJ v, +-+c, (ﬁJ v,
2 p

Now, the eigen value A,

can be computed as the limit of the ratio of the corresponding components of A"v

and A"'v.
That is,

© Copyright Virtual University of Pakistan 6



Numerical Analysis -MTHG603

r4l r+l

/11:11 = Lt (4 V)p, p=12,....n

A e (AY),
Here, the index p stands for the p-th component in the corresponding vector
Sometimes, we may be interested in finding the least eigen value and the corresponding
eigenvector.
In that case, we proceed as follows.
We note that [A4](X) = A(X).
Pre-multiplying by [A47'], we get
[47][A1(X) =[47]AX) = A[4'](X)
Which can be rewritten as

-1 _l
[471(X) =—(X)

which shows that the inverse matrix has a set of eigen values which are the reciprocals of

the eigen values of [4].
Thus, for finding the eigen value of the least magnitude of the matrix [4], we have to

apply power method to the inverse of [A4].
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Jacobi’s Method

Definition
Annxn matrix [4] is said to be orthogonal if

(4] [4]=[1],

ief[d]” =[4]"

In order to compute all the eigen values and the corresponding eigenvectors of a real symmetric matrix,
Jacobi’s method is highly recommended. It is based on an important property from matrix theory, which
states

that, if [4] is an n x n real symmetric matrix, its eigen values are real, and there exists an orthogonal matrix
[S] such that the diagonal matrix D is

[S™11A10S]

This digitalization can be carried out by applying a series of orthogonal transformations
81585508,

Let 4 be an n x n real symmetric matrix. Suppose ‘a ;j‘ be numerically the largest element amongst the off-

diagonal elements of 4. We construct an orthogonal matrix S1 defined as
s;.—sin6, s, =sinb,
s; =cosf, s, =cosd
While each of the remaining off-diagonal elements are zero, the remaining diagonal elements are assumed
to be unity. Thus, we construct S1 as under
i-th column j-th column

2 {
1 o --- 0 0 e 0]
01 - 0 - 0 e 0
S 0 0 -+ cos@ -+ —sinf -+ 0| «i-th row
1: . . . .
0 0 -+ sin@ -+ cos@ -+ 0| « j-th row
00 - 0 - 0 |

Where cos@,—sin8,sinf and cos are inserted in (i,i), (7, j),(/,i),(j, j) —th positions respectively,
and elsewhere it is identical with a unit matrix.

Now, we compute

D, =848, =S/ 48,

Since S1 is an orthogonal matrix, such that .After the transformation, the elements at the position (i, j), (j,
i) get annihilated, that is dij and dji reduce to zero, which is seen as follows:
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cos@ sinf || a; a; |/cosd -—sind
= . . a
—sin@ cos@ || a; a; | sind cosf
{aii cos’@sinfcosf+a,sin’ @ (a;—a,)sinfcosd+a, cos20

(a;,—a;)sin@cosO+a,; cos20 a,sin’ O+a, cos’ 6—2a,; sinfcos b

Therefore, dij =0 only if,

a4, —4a

a; cos 20 + ?sin20 =0
That is if
2a,
tan 26 = /
@ —ay

Thus, we choose €  such that the above equation is satisfied, thereby, the pair of off-diagonal elements dij
and dji reduces to zero.However, though it creates a new pair of zeros, it also introduces non-zero

contributions at formerly zero positions.
Also, the above equation gives four values of , but to get the least possible rotation, we choose
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Example
Find all the eigen values and the corresponding eigen vectors of the matrix by Jacobi’s
method

1 V2 2
A=[{2 3 2
2 V21

Solution
The given matrix is real and symmetric. The largest off-diagonal element is found to be
a; =a, =2.
Now, we compute
2a[' 2a 4

tan 20 = = B - =

a;—a; a4y 0
This gives, 6O=7x/4
Thus, we construct an orthogonal matrix Si as

cos¥ 0 —sin% % 0 _%
S=| 0 1 0 |=|0 1T O
sin£ 0 cosZ 5 0 5
The first rotation gives,
D, =S4,
IR RERCEEY I
=0 1 0 |[v2 3 J2/l0 1 o0
AU ERRCARNY U
(3 2 0
=2 3 0
0 0 -1

We observe that the elements d13 and d3/ got annihilated. To make sure that calculations
are correct up to this step, we see that the sum of the diagonal elements of D/ is same as
the sum of the diagonal elements of the original matrix 4.
As a second step, we choose the largest off-diagonal element of D/ and is found to be
d,, =d,, =2,and compute
tan 20 = 20, = 4 =
dll - dzz 0
This again gives 6 = /4
Thus, we construct the second rotation matrix as
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F k0
SZ:% f 0
0 0 1
At the end of the second rotation, we get
D,=S,'DS,
T =B 2o H 0
=l-5 5 0|2 3 0|l % O
0 0 1100 ~1jjlo o 1
5 0 0
=0 1 0
0 0 -1

This turned out to be a diagonal matrix, so we stop the computation. From here, we
notice that the eigen values of the given matrix are 5,1 and —1. The eigenvectors are the

column vectors of § =SS,

Therefore
50 ] ok 0
S=(0 1 0 f f 0
=0 510 o 1
L1 _L
2 2 NG
R
L _1 L
2 2
Example
Find all the eigen values of the matrix by Jacobi’s method.
2 -1 0
A=|-1 2 -1
0 -1 2
Solution

Here all the off-diagonal elements are of the same order of magnitude. Therefore, we can
choose any one of them. Suppose, we choose a/2 as the largest element and compute

tan20 =— =0
0

Which gives, 6=r/4.

Then cos@=sinf= l/\/i
and we construct an orthogonal matrix S7 such that
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F %
S=|+ L 0

0 0 1
The first rotation gives
D, = S48,

F % 02 o1 o % 0
=|-+ & of-1 2 -1||% £ o0
00 1JL0 -1 2Jo o 1
10 -+
=0 3 -+

Now, we choose d,, = —1/ V2
As the largest element of D1 and compute
2d,, 2
d~dy, 1-2
6=27°22'41".
Now we construct another orthogonal matrix S2, such that
0.888 0 —0.459

=l 0 1 0
0459 0 0.888

At the end of second rotation, we obtain
0.634 —-0.325 0

D,=S,'D.S, ={0.325 3 —0.628
0 -0.628 2.365
Now, the numerically largest off-diagonal element of D2 is found to be d,, =—-0.628 and

tan 26 =

compute.
tan 26 = -2x0.628

3-2.365

0 =-31°35"24".
Thus, the orthogonal matrix is
1 0 0

S;=/0 0.852 0.524
0 -0.524 0.852
At the end of third rotation, we get
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0.634 -0.277 0
D,=8;'D,S,=|0.277 338 0
0 0 1979

To reduce D3 to a diagonal form, some more rotations are required. However, we may
take 0.634, 3.386 and 1.979 as eigen values of the given matrix.

Example

Using Jacobi’s method, find the eigenvalues and eigenvectors of the following matrix,
1 1/2 1/3

1/2 1/3 1/4
1/3 1/4 1/5

Solution:
The given matrix is real and symmetric. The [ argest off —diagonal element is found to be
1

Ay =04y =—

2
Now we comute

1
2()

2a,
tan20 =——"— = 2, __\2

a;—a; a,—0ay, 1_1

tan” (j
2
0=—"2=28.155
2

Thus we construct an orthogonal matrix S, as
cos28.155 —sin28.155 0| |0.882 -0.472 0
S, =|sin28.155 co0s28.155 0|=(0472 0882 0

0 0 1 0 0 1
The first rotation gives, D, = S, AS,
[0.882 0.472 0]f1 172 1/3)/0.882 -0472 0
=-0472 0882 0} 1/2 1/3 1/4(0472 0882 0
0 0 1|1/3 /4 1/5 0 0 1

[1.268 0.000 0.412
=10.000 0.066 0.063
10.412 0.063 0.200

We see that sum of the diagonal elements of [) =1.53
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And the sum of the diagonal elements of A =1.53
This means that our question is going right.

As a second step we choose the largest of off-diagonal element of D;, which is dj3 =d3; =
0.412, and comput
2d, 2(0.412)

d, —d, 1268-0.200
tan™' (0.772
,_ ™' (0.772)

tan 26 = =0.772

=18.834

Thus we construct an orthogonal matrix S, as
cos18.834 0 -sinl8.834 0946 0 -0.323

S, = 0 1 0 = 0 1 0
sin18.834 0 cos18.834 0323 0 0.946

Thus the rotation gives,

D, =S,'D,S,

(0946 0 0.323][1.268 0.000 0.412][0.946 0 -0.323
= 0 1 0 0.000 0.066 0.063 0 1 0

|-0.323 0 0946|0412 0.063 0.200 [ 0.323 0 0.946
[ 1.408  0.020 —0.001

=| 0.020 0.066 0.060

| —0.001 0.060 0.059

We again see that sum of the diagonal elements of [) =1.53

Also the sum of the diagonal elements of A = 1.53

This means that our question is going right.

Hence the eigenvalues are 1.408 , .066 and .059 and the corresponding eigenvectors are
the columns of S.Where

§=5§.5.

0.882 -0.472 0(|0946 0 -0.323
=10472 0.882 0 0 1 0

0 0 11{0323 0 0.946
.8343 —.472 —.2848

= |.446 .88 —-.1524
323 0 946
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Interpolation

Introduction
Finite differences play an important role in numerical techniques, where tabulated values
of the functions are available.
For instance, consider a function y = f(x).
As x takes values x,,x,,x,,...,x,,
Let the corresponding values of y be y,,»,,¥,,...,,.
That 1s, for given a table of values, (x,,y,),k=0,1,2,...,n;
The process of estimating the value of y, for any intermediate value of x, is called
interpolation. The method of computing the value of y, for a given value of x, lying
outside the table of values of x is known as extrapolation. If the function f'(x) is known,
the value of y corresponding to any x can be readily computed to the desired accuracy.
For interpolation of a tabulated function, the concept of finite differences is important.
The knowledge about various finite difference operators and their symbolic relations are
very much needed to establish various interpolation formulae.

Finite Difference Operators
Forward Differences
For a given table of values (x,,y,),k =0,1,2,...,n with equally spaced abscissas of a

function y = f(x), we define the forward difference operator A as follows
AV, = Vi = Vs i=0,l,...,(n=1)
To be explicit, we write

Ayy =y =y
Ay =y, -y
Ayn—l :yn_yn—l

These differences are called first differences of the function y and are denoted by the
symbol Ay,  Here, A is called the first difference operator
Similarly, the differences of the first differences are called second differences, defined by

A2y0 =Ay, —Ay,, Azy1 = Ay, — Ay,
Thus, in general

Azyi =Ay,, — Ay,

Here A’ is called the second difference operator. Thus, continuing, we can define,
r-th difference of y, as

Aryi — Arfly

=AY,

By defining a difference table as a convenient device for displaying various differences,
the above defined differences can be written down systematically by constructing a
difference table for values

(x,,,),k=0,1,...,6

Forward Difference Table
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x Y Ay aly Wy aty %
B Ya ﬁ.}?ﬂ

A ! Ay 2%y, A%y, Aty

% ¥ Ay, Ay, A%y, Aty A7y,

i E Ay, Ay, Ay, ity Ay A%y,
Xy Yy Ay, ﬁg}’z 53}’3

5 Ys Ay 523’4

X Ys

This difference table is called forward difference table or diagonal difference table. Here,
each difference is located in its appropriate column, midway between the elements of the
previous column.

Please note that the subscript remains constant along each diagonal of the table. The first
term in the table, that is )0 is called the leading term, while the differences

Ay, A’y,,A’y,,...are called leading differences

Example
Construct a forward difference table for the following values of x and y:

ol o1 0.z 0.5 0. ne 1.1 1=
by 0003 0067 0142 0,248 n.=7 n51: 0697
Solution
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X ¥ I.'_".l}; f._'.llﬂy 153}‘? 1&14}? ﬂﬁy
0.1 0.003

0.3 0.067 | 0064 | 0.017

0.5 0145 | 0081 | 0019 | 0002

07 1 0248 | 01 0,022 [ 0.003 | 0.001

0.4 037 | 0122 | 0026 | 0.004 | 0.001 0

1.1 0518 | 0148 | 0.031 | 0005 | 0.001 0

1.3 0657 | 0179

Example
Express A’y,and A’y,in terms of the values of the function y.

Solution:
Noting that each higher order difference is defined in terms of the lower order difference,
we have

Ay = Ay =AY, = (¥, = 1) = (7 = »)
=V~ 2y1 W
And
A3y0 = Azyl _Azyo =(Ay, —Ay) - (Ayl —Ay,)

= =)= =)= =)+ (=)

=Y, =30, +30 -,
Hence, we observe that the coefficients of the values of y, in the expansion of
A’y,,A’y,, are binomial coefficients.
Thus, in general, we arrive at the following result: -

ANyy=y,~" Cy +" Cy, =" Gy s+ + (D),

Example

Show that the value of yn can be expressed in terms of the leading value y0 and the
leading differences

AV, A Yos. s A,

Solution
The forward difference table will be
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yl_yoszo or y1:y0+Ay0
Y=y =Ay or y, =y +Ay
y3_y2:Ay2 or y3:y2+Ay2

Similarly,

Ay, —Ay, =A%y, or Ay :Ayo""Azyo}
Ay, — Ay, :Azyl or Ayzsz1+A2y1

Similarly, we can also write

AZJ’l _Azyo = A3yo or A2y1 = Azyo +A3yo
Ny, =Ny =Ny, or Ay, =Ny +A%y,

Ay, =(Ay, +A2y0)+ (Azyo +A3yo)

=Ay, +2A2y0 +A3yo

Y3 =MW +Ay2 = (yl +Ay1)+(Ay1 +A2y1)
=y0+3Ay0+3A2y0+A3y0
:(1+A)3y0

Similarly, we can symbolically write
»n=~1+4A)y,,

v, =(1+A)y,,
Y3 :(1+A)3yo

Hence, we obtain

Y, =y, + CAy, +" C,A’ y, +" C;A y, + -+

OR

n

Y = Z nCiAiyo

i=0

+A"y,
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Backward Differences
For a given table of values (x,,y,),k =0,1,2,...,n of a function y = f (x) with equally

spaced abscissas, the first backward differences are usually expressed in terms of the
backward difference operator V as

Vy. =y, -y ji=n, (n-1),...,1
To be explicit, we write

Vyi=y—=Y
OR .V)Q = .yz - ).’1
Vyn :yn_yn—l
The differences of these differences are called second differences and they are denoted by
szz,V2y3,...,V2yn.
vzyl =Vy,=Vy,
That is

szz = Vy3 _vyz

Ve, =Vy, -V,
Thus, in general, the second backward differences are
szl. =Vy,-Vy, ,, i=n,(n-1),..,2
While the k-th backward differences are given as
Vi, =VEly -V i=n,(n-),.,k
These backward differences can be systematically arranged for a table of values
(x,,,),k=0,1,...,6 shown below.

Backward Difference Table

A Yy
A i i Py [Ty W
& Yy VY, EEJ% ?33}4 ?4.}}5 ?5.}}5
a3 Y vy, vgh ?EJG ?4.}}5 vj.}"ﬁ vﬁJ"ls
S L VI L
S L L
X Y Vys
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From this table, it can be observed that the subscript remains constant along every
backward diagonal.

Example
Show that any value of y can be expressed in terms of y and its backward differences.
n
Solution:
From
Vy. =y, -y i=n, (n-1),...,1
We get
yn—l:yn_vyn yn—2:yn—l_vyn—l
From Vy, =Vy, —-Vy.,, i=n,(n-1),..,2
We get VY, =Vy, =V,

From these equations, we obtain
Yoa =Y, —2Vy, +V?y,

Similarly, we can show that
yn—3 :yn _3Vyn +3v2yn _v3yn

Symbolically, these results can be rewritten as follows:

yn—l :(1_v)yn
yn—Z = (l_v)zyn
yn—3 :(l_v)3yn

yn—r = yn - nclvyn + nCZVZyn _“.+(_1)rvryn

Central Differences

In some applications, central difference notation is found to be more convenient to
represent the successive differences of a function. Here, we use the symbol o to
represent central difference operator and the subscript of 0y bb for any difference as

the average of the subscripts

OVyy =N~ Vo> OYy, =¥, = Vis
In General,
5yi =Yirapy ~ Yicap2)
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Higher order differences are defined as follows:
5y, =6y

These central differences can be systematically arranged as indicated in the Table

i(1/2) oy

i~(1/2)

n n—1 n—1
o'y, =0 Yirq) -0 Yicap

X J dy ey 1y ity 1By 8%
A Yo

4 ! Sy 8 e 8y

& Jy Sy 1B v B'm 1w

A3 £ Sysn |8 B |8t ‘55.}’?& 5y,
Xy i 0y |4 j.'}’4 g 35}’9;2

&5 s 6 Yasz 523’5

A Vs 6 Vi

Thus, we observe that all the odd differences have a fractional suffix and all the even
differences with the same subscript lie horizontally.

The following alternative notation may also be adopted to introduce finite difference
operators. Let y = f(x) be a functional relation between x and y, which is also denoted by

Y

Suppose, we are given consecutive values of x differing by 4 say x, x + h, x +2h, x +3h,
etc. The corresponding values of yare y .,y .., V. .25 Visans

As before, we can form the differences of these values.
Thus

Ay = Ve =Y = f(x+ )= f(x)

Azyx =Ayx+h _Ayr

Similarly,
VY, =y =Yy =S ()= f(x—h)

h h
0y, = Varniy ™ Vechizy = f(x‘*‘zj_f(x_EJ

To be explicit, we write
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Avy =y,
Ay, =y, -y

Ayn—l = yn _yn—l

Vy. =y, -y ji=n, (n-1),...,1

OR
Vi =y-x
Vy, =y, =y
vyn :yn_yn—l

5)’1/2 =N =V 5)’3/2 = =M
In General,

oy, = Yiray = Vicayay
Higher order differences are defined as follows:

52% = 5J’i+(1/2) _5yi—(1/2)

n n—1 n—1
0"y, =6 Yirqy) -0 Yicay2)
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Shift operator, E
Let y = f(x) be a function of x, and let x takes the consecutive values x, x + A, x + 2A, etc.
We then define an operator having the property

E f(x)=f(x+h)
Thus, when E operates on f(x), the result is the next value of the function. Here, E is
called the shift operator. If we apply the operator E twice on f(x), we get

E*f(x)=E[E f(x)]
=E[f(x+h)]= f(x+2h)

Thus, in general, if we apply the operator ‘E” n times on f(x), we get

E"f(x)= f(x+nh)

OR
Enyx = yx+nh

Eyy=y,  Ey=y, E'n=y, ... Ey=y,
The inverse operator E_1 is defined as
E7f(x)=f(x~h)
Similarly
E7 f(x)= f(x—nh)
Average Operator, u;

it is defined as
-t

1
= E[J’H(h/z) + yxf(h/Z):|
Differential Operator, D

it is defined as

Dﬂ@z%f@hfh)

DVuhﬁgﬂm=ﬂu>

Important Results Using {A,V,5,E, 1}

Ayx:yx+h_yx:ny_yx
=(E-Dy,

=>A=FE-1
Also

Vyx :yx_yx—h :yx_E_lyx
=(1-E7)y,
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Svoi-gt=E21
E

And
oy, = YVirh12) = Ve(ni)

_ E1/2yx _Efl/zyx

— (El/2 _E—I/Z)y

S=E"?_E?
The definition of g and E similarly yields

X

1
MY, = E[yx+(h/2) + yx—(h/Z)]
:%(El/z LET)y

:ﬂ:%(El/le‘El/z)

We know that
ny :yx+h :f(x+h)

Ey, =f(X)+hf'(x)+%f”(x)+...

=f(x)+th(x)+%sz(x)+...

[ hD  WD?
= 1+T+

= +'-']f(X)=ehDyx

Thus
hD =log E

Example:
Prove that
hD =log(1+A)

=—log(1-V)
=sinh ™' (ud)

Solution:

Using the standard relations we have
hD =log E

=log(1+A)
=—logE™"
=—log(1-V)
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Example
Prove that
Solution
From the definition, we have:
(1)
(2)
(3)

us = %(El/z +EV2\(EV-E?)

1 1
—E(E—E )

%(ehD _ e—hD)
= sinh(4D)

= hD =sinh™ ud

5 2
) 1+8°4° =(1+%}

2) E”2=,u+g

2

3) A:%+5 1+(5°/4)

AE™" A
4 0= +—
) W 3
5) u5=A;V

ﬂé‘:%(El/z +E—l/2)(El/2 _E—I/Z)

1 o
=§(E—E )

1+ 1267 =1+%(E2 —2+E‘2)=%(E+E“)2

52

1 1
l+—=1+—(E" -E"*Y =—(E+E")
5 2( ) 2( )

LU+ (512)

:l(El/Z +E71/2 +E1/2 _E71/2):E1/2
2
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52 (El/z —E_l/z)z (El/z _El/z)\/1+i(E1/2 _E"2 )2

— 4+ 01+ (57 /4) = +
2 2 1

_ E—22+ E™ +%(E1/2 _E—l/z)(El/z +E—1/2)

_E-2+E' E-E
2 2

=F-1=A
4
ﬂé‘:%(El/Z_’_E1/2)(E1/2_E1/2):%(E_E1)
1 A1
=—(1+A-E")==+=(1-E"
2( ) 5 2( )

A 1(E-1 A A
2 2\ FE 2 2F

ﬂé‘:%(El/z +E—1/2)(El/2 _E—I/Z)

)

1 4
=E(E_E )

1 1
=—(1+A-1+V)==—(A+V
5 )=7(A+V)
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Interpolation Newton’s Forward Difference Formula
Let y = f(x) be a function which takes values f(xo), f(x0+ h), f(x0+2h), ..., corresponding

to various equi-spaced values of x with spacing A, say Xo: X0 +h, X +2h,....
Suppose, we wish to evaluate the function f(x) for a value xgt ph, where p is any real

number, then for any real number p, we have the operator £ such that
E"f(x)= f(x+ ph).
S+ ph)=E” f(x)) = (1+A)" f(x,)

:[1+pA+p(p_l)A2+p(p_l3)'(p_2)A3+--}f(xo)

2! !
S (xo+ ph) = f(x))+ pAf(xy)

N p(z;!—l) A2 f(x,)+ p(p —13)!(17—2) A f(x,)

bt P(P‘l)'”fp‘””)A"f(x0)+Error
n

This is known as Newton’s forward difference formula for interpolation, which gives the
value of f(xo + ph) in terms of f(xo) and its leading differences.

This formula is also known as Newton-Gregory forward difference interpolation formula.
Here p=(x-x0)/h.

An alternate expression is

p(z;—l)Azy +P(P‘1)(P‘2)A3y0+...

0 31

V.=Vt PAY, +

LPp-Dp-nth ,,
n!
If we retain (r + 1) terms, we obtain a polynomial of degree r agreeing with y, at

¥, + Error

x0, x1, ..., xr.
This formula is mainly used for interpolating the values of y near the beginning of a set of
tabular values and for extrapolating values of y, a short distance backward from Yo

Example:
Evaluate f(15), given the following table of values:

53 10 20 =0 <10 50
¥= Flx) e S]] =21 o= 101
Solution:

The forward differences are tabulated as
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x »= iz by APy Ay Aty
10 46
20 66 20
30 21 15 -5
40 93 12 -3 2
50 101 2 —4 —1 —3

We have Newton’s forward difference interpolation formula

pp-D » 0+p(p—1)(p—2)A3y0+,,,

yx=yo+pAyo+T h% Y

+p(p—l)(p—nﬂ) A7

¥, + Error
n!

Here we have
x, =10, y, =46, Ay, =20,

A2y0 =-5, A3yo =2, A4y0 =-3

Lety 15 be the value of y when x = 15, then

x—x, 15-10
AT
JAS) =y, = 46+(0.5)(20)+m;'5_1)(—5)
. (0.5)(0.5—6 DO.5-2) o (0.5)(0.5—1)(;)45—2)(0.5—3) 3)

=46+10+0.625+0.125+0.1172
f(15)=56.8672 correct to four decimal places.

Example

Find Newton’s forward difference, interpolating polynomial for the following data:
A 0.1 0.2 03 0.4 0.5

y=Jx 14 1.56 1.76 2 2.28

Solution;

The forward difference table to the given data is
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M= Fixy o _"'31 _«5"31 i‘f_“l.
0.1 0.1
0.2 1. 56 016
"""" 0.3 1.76 0.2 0. 0
0. 1 =z 0, 24 0, 0
"""" 0.5 2. 28 0. 28 0. 0 o

rd th
Since,3 and4 leading differences are zero, we have Newton’s forward difference
interpolating formula as

-1
Y=Y+ pAY, +p(pT)A2yo
In this problem,
x, =0.1,y, =1.40,
Ay, =0.16,A’y, =0.04,
and

x—0.1 C10x—1

p =
Substituting these values,
y=f(x)=1.40+(10x—-1)(0.16)+

(10x—1)2(10x—2) ©0.04)

This is the required Newton’s interpolating polynomial.
Example
Estimate the missing figure in the following table:

x 1 <1 S
»y= Fix) = -——— =z
Solution

Since we are given four entries in the table, the function y = f(x) can be represented by a
polynomial of degree three.

A’ f(x) = Constant
and A*f(x)=0, Vx
In particular,
A4f (x)=0
Equivalently,
(E-D*f(x,)=0
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Expanding, we have

(E*—4E> +6E> —4E+1)f(x,)=0

That is,

() =41 () +6f(x) =41 (x)+ f(x,) =0

Using the values given in the table, we obtain

32—-4f(x;)+6x7-4x5+2=0

which gives f (x3), the missing value equal to 14.

Example
Consider the following table of values
X 2 | 3 | 4 | .5 | .6
F(x) 2304 | 2788 | 3222 | 3617 | 3979
Find f (.36) using Newton’s Forward Difference Formula.
Solution
X y=fx) | A Ay Ay Ay

0.2 0.2304 0.0484 -0.005 0.0011 -0.0005

0.3 0.27838 0.0434 -0.0039 0.0006

0.4 0.3222 0.0395 -0.0033

0.5 0.3617 0.0362

0.6 0.3979

Pp-D o p(p—1(P=2) s
Ve =Nt PR o A A
-(p-2)(p-3 -D(p-2)........ —n+1
PPNP=P=) o PP (pD) o
41 n!

Where
x,=02, y,=0.2304, Ay,=0.0484, x-x, 0.36-02 L6
Ay, =-0.005, A’y =0.0011,A%y, =—0005" 1 01

” :0.2304+1.6(o.0484)+%?_1)(4).005) +

(0.0011)+

1.6(1.6-1)(1.6—2)1.6-3)

1.6(1.6-1)(1.6-2)
31

:0.23o4+.077441—.0024+%6(_4)(.0011)+1‘6('6)(;‘:)(_1'4) (—0005)

=0.3078-.0024—.00007-.00001
=.3053

41
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Example

Find a cubic polynomial in x which takes on the values

-3,3,11,27,57 and 107, when x =0, 1, 2, 3, 4 and 5 respectively.
Solution

Here, the observations are given at equal intervals of unit width.

To determine the required polynomial, we first construct the difference table

Difference Table

) MR B ¥4 50 W A W4 6

D -3 !
"""""""" fE B = =T
"""""""" =z 11 i dse s e
"""""""" 2y i zo ia e
"""""""" 4 sy i zo T zo L e
"""""""" 5 0 doy im0 E
Since the 4‘[h and higher order differences are zero, the required Newton’s interpolation
formula

£+ ph) = £ )+ P xg) + ZEZD A% x4 225 D@ 2D A f(x,)

Here
p:x—xo :x—Ozx
h 1
Af (x)) =6
A f(x,)=2
A f(x) =6

Substituting these values into the formula, we have

f(x)=-3+6x+ x(xz_ D ()4 X2 1;(x ~2)

(6)

f(x)=x"=2x>+7x-3,
The required cubic polynomial.
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NEWTON’S BACKWARD DIFFERENCE INTERPOLATION
FORMULA

For interpolating the value of the function y = f(x) near the end of table of values, and to
extrapolate value of the function a short distance forward from Yoo Newton’s backward

interpolation formula is used

Derivation

Let y = f(x) be a function which takes on values

f (xn), f (xn-h), f (xn-Zh), v f (XO) corresponding to equispaced values X xn-h, xn-2h,

.., X,.. Suppose, we wish to evaluate the function f'(x) at (xn + ph), where p is any real

0
number, then we have the shift operator E, such that

SO, +ph)=E"f(x,)=(E")" f(x,)=(1-V)" f(x,)
Binomial expansion yields,

f(xn+ph)=[1+pV+p(Z'+l)V2+p(p+13)'(p+2)v3+---

+p(p+1)(p+2)|---(p+”‘1)v" +Err0r}f(xn)
n:

That is

+1 +D)(p+2
F,+ ph) = £+ pVf )+ PEED V2 () LEEIPED g2
P+ Dp+2)-(ptn-1)
n!
This formula is known as Newton’s backward interpolation formula. This formula is also
known as Newton’s-Gregory backward difference interpolation formula.
If we retain (r + 1)terms, we obtain a polynomial of degree r agreeing with f'(x) at Xps

V" f(x,)+ Error

X1 o X Alternatively, this formula can also be written as
1 | 2
Y. =Y, +pVy, +—p(];,+ Yy, 22* 3),(p+ Vg, 4
N p(p+1)(p+2)'---(p+n—1) V"y + Error
n!

X—Xx

Here = s
P=

Example
For the following table of values, estimate f(7.5).
: 1 2 3 4 5 6 7 8
R 1 8 27 64 125 216 343 512
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Solution

The value to be interpolated is at the end of the table. Hence, it is appropriate to use
Newton’s backward interpolation formula. Let us first construct the backward difference
table for the given data

Difference Table
=i 2= _FixD s Rl o Rrad
1 1
= = e
= =27 19 1=
= =t =7 1= =
= 125 =1 =< = ]
i 216 =N =0 = ]
ra == 1=7 =S5 = ]
= 512 159 <2 = [

th
Since the 4 and higher order differences are zero, the required Newton’s backward
interpolation formula is
p(p+D oo n
2!
Pt 13)'(19 +2) vy

Y.=y,+pVy, +

In this problem,

x—x, 715-80
h 1

Vy, =169, V’y =42, V'y =6

(—0.52)(0.5) )

p= -0.5

V55 =512+(-0.5)(169) +

N (-0.5)(0.5)(1.5)

6
o (6)
=512-84.5-5.25-0.375
=421.875

Example
The sales for the last five years is given in the table below. Estimate the sales for the year
1979

“ear 1974 1976 1978 1980 1982
Sales
Cin lakhs) <40 43 48 52 57
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Solution
Newton’s backward difference Table
R S K A— AR SN A A A0 S
19774 40
15776 435 A
19778 48 S 2
1580 o2 4 -1 =
1982 57 S 1 2 S
In this example,
_1979-1982 _ 15
2
and
Vy, =5, Vy =1,
Viy, =2, V', =5
Newton’s interpolation formula gives
—-1.5)(-0.5 —1.5)(—0.5)(0.5
Vi :57+(—1.5)5+( )2( )(1)+( X s X )(2)
N (—1.5)(-0.5)(0.5)(1.5) (5)
24
=57-75+0375+0.125+0.1172
Therefore,
Vigro =50.1172
Example
Consider the following table of values
X 1 1.1 1.2 1.3 1.4 1.5
F(x) 2 2.1 2.3 2.7 3.5 4.5
Use Newton’s Backward Difference Formula to estimate the value of f(1.45) .
Solution
x |y Fx) | Vy Vy V'y vy Vy
1 2
1.1 |21 0.1
1.2 |23 0.2 0.1
1.3 (2.7 0.4 0.2 0.1
14 |35 0.8 0.4 0.2 0.1
1.5 |45 1 0.2 -0.2 -0.4 -0.5
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p:X—hxn :1~4f)_11'5 =-0.5,Vy,=1,Vy =2, Vy=-2, V'y=-4,
Vsyn:_'s

As we know that

Yo=Y, +pVy, +

p(p+1) Viy + p(p+1D(p+2) vy
2! 31
N p(p+ 1)(p44'r 2)(p+3) Viy + p(p+1)(p+ 25)'(1? +3)(p+4) vy

(~0.5)(<0.5+1) (~0.5)(<0.5+1)(-0.5+2) (02)
2! 31

(0.2)+

v, =45+(-0.5)()+

L (F0.5) (054 1)(-0.5+2)(-0.5+3) (04)+ (=0.5)(~0.5+1)(=0.5+2)(<0.5+3)(<0.5+ 4)

41 5!

=4.5-0.5-0.025+0.0125 + 0.015625+ 0.068359
=4.07148

(-0.5)
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LAGRANGE’S INTERPOLATION FORMULA

Newton’s interpolation formulae developed earlier can be used only when the values of
the independent variable x are equally spaced. Also the differences of y must ultimately
become small.

If the values of the independent variable are not given at equidistant intervals, then we
have the basic formula associated with the name of Lagrange which will be derived now.
Let y = f(x) be a function which takes the values, YorVpd, corresponding to x 0

XX Since there are (n + 1) values of y corresponding to (n + 1) values of x, we

can represent the function f'(x) by a polynomial of degree n.
Suppose we write this polynomial in the form .

f(x)=4x"+Ax"" +-+ 4,
or in the form,
y=f(x)=ay(x=x)(x=x,) - (x—x,)
i, (x—x)(x—x) -+ (x—x,)
+ay(x= ) (X =) (¥ =X, )+
+an(x_x0)(x_xl).“(x_xn—l)

Here, the coefficients a, are so chosen as to satisfy this equation by the (n + 1) pairs

k
(xi, yi). Thus we get

Yo = J (%) = ay(Xg —x,)(xg = x)(x) = x,) -+ (%) — X,)
Therefore,
Yo
(3 = x)(Xg —x,) -+ (x5 —x,,)

a, =

Similarily,we obtain

a4 = W
: (xl_xo)(x1_x2)"'(x1_xn)
and
_ Yi
LX) =) (=X )(x — X) e (x - )

— yn
! (‘xn _xO)(xn _'xl).”('xn _‘xn—l)

Substituting the values of s d We get

ClO,
(x=x)(x—x,) - (x—x,) (x—=x ) (x—x,) - (x—x,)
y=7(x)= (X = X)X —X,) (% — x,,) o (x; = X)X, = x,) - (x, _xn)yl
(x=x)(x=x) - (x=x_ Jx—x,)(x=x,)
(=3 =), = ) =) (5 —%)
The Lagrange’s formula for interpolation
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This formula can be used whether the values x o Xgp e X ArC equally spaced or not.
Alternatively, this can also be written in compact form as
y=f(x)= Lo(x)yo +L(x)y, +Li(‘xi)yi +"'+Ln(xn)yn

=X Ly, = LS ()

Where
L(x)= (r—x)(x—x)---(x—x  )(x—x,,)---(x—x,)
(xi _xo)(xi _xl)"'(xi —xH)(xi _xi+1)"'(x[ _xn)
We can easily observe that,

L(x)=1 and L(x)=0,i#].
Thus introducing Kronecker delta notation
L if i=y
L(x;)=09; = e
0, if i#j

Further, if we introduce the notation
H(X)=g(x—xi)=(x—xo)(x—x])---(x—xn)

That is [I(x) is a product of (n + 1) factors. Clearly, its derivative

[T (x) contains a sum of (n + 1) terms in each of which one of the

factors of will [I(x) be absent.

We also define,
R(x)=TI(x-x)
Which is same as [I(x) except that the factor (x—xk) is absent. Then
[1'(x) = By(x)+ B (x)+--+B,(x)
But, when x = Xyer all terms in the above sum vanishes except Pk(xk)
Hence
[T'(x) =B (x,) = —x)) (%, =X, ) =%) (%, — x,)
R(x) _ R
P.(x,) II'(x,)
1 (€5
(x=x)IT'(x)

Finally, the Lagrange’s interpolation polynomial of degree n can be
written as

L(x)=

V) = () = g%ﬂm

=Y L@ =Y Ly,

Example
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Find Lagrange’s interpolation polynomial fitting the points
y(1) =-3,y¥(3) =0,

y(4) = 30, y(6) = 132. Hence find y(5).

Solution

The given dat:a can be arranged as

.....................................................................................................................................................................

Using Lagrange’s interpolation formula, we have

3 _(x=3)(x-Hx-6) (x—1)(x—4)x—6)

YO=I= 3 Taase ) oG aG6)

LG 6 o DD ) (o
(4—1)(4—3)(4—6) (6—1)(6—3)(6—4)

0)

On simplification, we get
1
= —(=5x> +135x* —460x + 300
y(x) 10( X X X )

= %(—x3 +27x> —92x + 60)

Which is required Lagrange’s interpolation polynomial.

Now, y(5) = 75.

Example

Given the following data, evaluate f (3) using Lagrange’s interpolating
polynomial.
M

) s P P S = S S N SN SN S S S S

Solution
Using Lagrange’s formula,
f) = BEREED) ) HERNEE) 5 re)s SIS

(y— %) — ;) (3 — 3 ), — (3, — %), — )
Therefore,
(-2G-5 . 3-D3-5),, . (G-1)(3-2)
7= 1055 P eone= P 5one-2 "
=6.49999 = 6.5
Example

Find the interpolating polynomial for the data using Lagrange’s formula
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X 1 2 -4
F(x) 3 -5 -4

Solution:
As Lagrange’s formula for interpolating polynomial is given by,

y(x) = £(x) = (x_"l)gx’xz) Flaemmxmm) g, mx)(xmx)

(xo_xl) xo_xz) (xl_xo)(xl_xz) (xz_xo)(xz_xl)

(x—2)(x+4) (x—1)(x+4) (x=1)(x-2)
i (1-2)(1+4) (3)+ (2-1)(2+4) (=5)+ (—4-1)(-4-2) (—4)

= —%(x2 +2x—8)—%(x2 +3x—4)—%(x2 —3x+2)

3, 6 .24 5, 15 20 4, 12 8

=——x" —— _ _ X ——

x x
5 5 5 6 6 6 30 30 30

35 4), 6 15 12 24 20 8
=|-==-=- — [+ === x| =+ ———
5 6 30 5 6 30 5 6 30

47 , 33 118

X -—=x+—
30 10 15
Which is the required polynomial.
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DIVIDED DIFFERENCES

Let us assume that the function y = f(x) is known for several values of x, (x , v ), for
i

i=0,1,..n. The divided differences of orders 0, 1, 2, ..., n are now defined recursively as:
Vxy1=y(x)) =y,

1s the zero-th order divided difference

The first order divided difference is defined as

WX, % 1= )
X1~ Xo
Similarly, the higher order divided differences are defined in terms of lower order divided
differences by the relations of the form

[xlaxz]_y[xoaxl]

Xy, %, ] =2

Xy =X
Generally,
1
y[xo,xl,...,xn]z _ [y[xl,xz,...,xn]—y[xo,xl,...,xH]]
n 0

Standard format of the Divided Differences
* v(z) 1* order 7 order ™ order A" order
2 Y
| N yERY
e V' NE W %, 5, 7, ] V3, 3, %, %]
X Vs NERA W5, %, %] V5, %, %, %] %, 5, %y 53, 5y
bl Yy NERS M1 % 5]

We can easily verify that the divided difference is a symmetric function of its arguments.
That is,

Yo n Y
Xo =X X=X

y[xloxz]_y[xova
Xy =X

_ 1 Vo= _N=N
Xy =X \ Xy =X X — X

YIx,x, 1= y[x,x 1=

Yxy, X, %,]=

Now
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Therefore

Yo n i n Vs
(xo —X )(xo - xz) (xl — X )(x1 - xz) (xz — X )(xz - X])
This is symmetric form, hence suggests the general result as

y[xoaxlaxz]:

y[xo,...,xk]z Yo + Vi 4+t Yk
(g =x) (% =x) (= x)+- (o —x,) (o =x) =+ (o —x,,)
OR
k
Mgty = Y e
i=0 H(xl x)
=
Example:

Construct the Newton’s divided difference table for values of x=1,2,3,4,5,6
and f(x)=-3,0,15,48,105,192.

Solution:
x F (x) 1st 2 3=
difference |difference |difference
1 -3 15-3/3-
1=6
2 0 0-(-3)=3 33-15/4-2 9-6/4-1=1
=9
3 15 15-0=15 57-33/5-3 12-9/5-
2=1
=12
4 48 48-15=33 87-57/6-4 15-12/6-3
=15 =1
5 105 105-48=57
6 192 192-105=87

NEWTON’S DIVIDED DIFFERENCE INTERPOLATION

FORMULA
Let y = f(x) be a function which takes values y oVp Y, corresponding to x = X i=0,

1,..., n. We choose an interpolating polynomial, interpolating at x = X i=01 ..,nin

the following form
y=f(x)=a,+a,(x—x))+a,(x—x))(x—x,)
+ota, (x—x ) )(x—x)(x—x,_,)
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Here, the coefficients a 1 e SO chosen as to satisfy above equation by the (n + 1) pairs
(xi: yl)
Thus, we have

Y(x)=f(x) =y, =a,
y(x1):f(x1):y1 :a0+a1(x1_xo)
¥(x,) = f(x) =y, =a,+a(x,—x))+a,(x, = x,)(x, — x;)

v, =a,+a,(x, —x,)+a,(x, —x,)(x,—x)++a,(x, —x,)(x,—x, )

The coefficients a0, al, ...,a can be easily obtained from the above system of
n

equations, as they form a lower triangular matrix.
The first equation gives

a, = y(x)) =y,
The second equation gives
=Y
al = 1 . :y[xo’xl]
X, — X,

Third equation yields
Yo=Y —(X2 _xo)y[xoaxl]
(xz =X )(xz - xl)

a,=
Which can be rewritten as

|:y2 =N +(?:§OJ(X1 _xo)}_(xz — X)X, %]

0

(x, =x)(x, — x,)
That is

Yy =V VX0, % 1(x — x,) _ x5, ]= X, %]
(2, = %,)(x, —x,) Xy =X

Thus, in terms of second order divided differences, we have

a, = y[x,,x,,x,]

2

Similarly, we can show that
Newton’s divided difference interpolation formula can be written as

Y =J(x) =y, +(x=x)¥x0, % ]+ (x = x))(x = %) y[xg, %, X, ]
+et (x=x ) (x—x) ... (x—x,_ ) V[x0, %500 X, ]
Newton’s divided differences can also be expressed in terms of forward, backward and

central differences. They can be easily derived.
Assuming equi-spaced values of abscissa, we have
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— A
Mg, ] =2 = 20
x—-x, h
oA
[X s X ]_ [x ,X] A
y[xo,xlsz]zy LNl = VXM h h__ yé)
X, — X, 2h 2'h
By induction, we can in general arrive at the result
Anyo
Xgs Xpserer X, | = —0
Woo 2o 5, =2
Similarly,
— \%
Mg, ] =22 = 20
x-x, h
Yy, Voo
— \Y%
y[x(),xl’xz]:y[xlaxz] J’[x0=x1]: h h — yzz
X, — X, 2h 2'h
In General,we have
V',
XosXppeers X, | = —2
Yxg, %, ] R
Also, in terms of central differences, we have
— o
y[xo’xl]:yl y0: y1/2
X, — X, h
[ [ 0¥, _ OV 5
X, X, |— y[x,,x
y[xo,xl’xz]:y 15X ] =[x, 1]: h h__ _ y;
X, — X, 2h 2'h
In general, we have the following pattern
5"V
B LA R A _W
52m+1ym+(1/2)

y[xo’xla---’x2m+1]:W
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Example
Find the interpolating polynomial by (i) Lagrange’s formula and
(i1) Newton’s divided difference formula for the following data. Hence show that they

X 0 1 2 4

y 1 1
represent the same interpolating polynomial.

X Y 1¥D.D 2" DD 3“DD
0 1

1 1 0

2 2 1 12 -1/2

4 5 3/2 1/6

Solution The divided difference table for the given data is constructed as follows:

i) Lagrange’s interpolation formula gives

(x-1D(x-2)(x—4) )+
(=D(=2)(-4)
N (x=0)(x-1)(x—4) 2)+ (x=0)(x—-1)(x—-2) (5)
(2)(2-D(2-4) 4(4-1)(4-2)
_(x3 —7x> +14x-8) N X —6x7 +8x 3 ¥ —5x" +4x
8 3 2
N 5(x° =3x% +2x)

(x=0)(x-2)(x—4)

y=r(x)= 1—0)1-2)(1—4) M

(ii) Newton’s divided difference formula gives

y=rx)= 1+(x_0)(0)+(X—0)(X—1)(%)+(x—O)(x—l)(x—Z)(_éJ

X 3x* 2

We observe that the interpolating polynomial by both Lagrange’s and Newton’s divided
difference formulae is one and the same.
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Note!

Newton’s formula involves less number of arithmetic operations than that of Lagrange’s.

Example

Using Newton’s divided difference formula, find the quadratic equation for the following
X 0 1 4
Y 2 1 4

data.

Hence find y (2).

Solution:

The divided difference table for the given data is constructed as:

X Y 1" D.D 2'D.D

0 2

1 1 -1 1/2

4 4 1

Now, using Newton’s divided difference formula, we have
y=24+(x-0)(-1)+ (x—O)(x—l)(%j

1
=3 (x*=3x+4)
Hence, y(2)=1.
Example
Find the equation of a cubic curve which passes through the points (4 , -43) , (7, 83), (9,
327) and (12, 1053) using Dividing Difference Formula.
Solution

The Newton’s divided difference table is given by

X Y 1" divided | 2" divided | 3™
difference difference divided
difference
4 -43
7 83 42
9 327 122 16
12 1053 242 24 1
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Newton's Divided Difference formulais
Y= £ = v (=37 5 1 (0 3) (0= )V, 3, 3, T+
(x=x ) (x=x)...(x=x,_)V[X), %50, X, ]

=—43+(x-4)(42)+(x—4)(x=7)16)+ (x—4)(x—T)(x-9)(1)
= —43+(x—4){42+16x—112+x2 —16x+63}
=43+ (x—4)(x*=7)
=—43+x’ —Tx—4x" +28
=x" —4x> —7x-15

Which is the required polynomial.

Example
A function y = f'(x) is given at the sample points x = x 0 and Xy Show that the
Newton’s divided difference interpolation formula and the corresponding Lagrange’s
interpolation formula are identical.
Solution
For the function y = f'(x), we have the data (x,,y,),i=0,1,2.
The interpolation polynomial using Newton’ divided difference formula is given as
Y =F(x) =y, +(x=x)¥[x0,X,]
+(x—x0)(x—xl)y[x0,xl,x2]
Using the definition of divided differences, we can rewrite the equation in the form

N ¢ 52 B m
y=yo(x xO)(xl—xo)+(x o XI){(xo—xl)(xo_XZ)

i N " V2
(x, = x5 —x,) (X, —x)(x, —x;)
=P_(%—x>+(x—%Xx—m)}%

(xo _xl) (xo _xl)(xo _xz)

+|:(x—x0) + (x —x))(x—x,) }yﬁr (x —x)(x—x,)
(= x5) (O = x)(x, — x;) (2, =x)(x, —x,)
On simplification, it reduces to
_ (x=x)(x—x,) + (x = x)(x —x,) + (x—x)(x—x,)
(xg = x)(xy —x,) ’ (% = x)(x; —x,) 1 (% = X )(x, — x;)
which is the Lagrange’s form of interpolation polynomial.
Hence two forms are identical.

Newton’s Divided Difference Formula with Error Term
Following the basic definition of divided differences, we have for any x

2

2
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Y(x) = o+ (x = x0) y[x, %]
y[xaxo] :y[xoax1]+(x_xl)y[xaxoaxl]

VX, X0, %, 1= Y[Xg, X, %, 1+ (X = x,) VX, Xy, X, X, ]

VX, Xgse X, 1= VX5 X500 X, ]+ (X=X, V[X, Xy, X, ]

Multiplying the second Equation by (x — x O)’ third by (x — x O)(x -X 1) and so on,
and the last by

(x— xO)(x - xl) cee (x = X 1) and adding the resulting equations, we obtain

y(x) =)o +(x_xo)y[xo,x1]+(x_xo)(x_x1)y[xoax1ax2]+"'
H(x =X )(x = x,) - (x =X, )V[X, X500 X, ]+ E(X)
Where
e(x)=(x—x)(x—x)) - (x—x,)y[x,Xp,..., X, ]

Please note that for x = XgpXps +ees X the error term £(x) vanishes

© Copyright Virtual University of Pakistan 4



Numerical Analysis -MTHG603

Error Term in Interpolation Formulae
We know, if y (x) is approximated by a polynomial Pn (x) of degree n then the error is

given by
£(x) = y(x)— B, (x),
Where
&(x) = (x—x ) (x—x,) - (x = x,)V[X, X5, X, ]
Alternatively it is also expressed as
e(x) =T1(x)y[x, x;,....x, 1= K 1(x)
Now, consider a function F (x), such that
F(x)=y(x)-F,(x)-KI(x)
Determine the constant K in such a way that F(x) vanishes for x = X X o oo X and also

for an arbitrarily chosen point X , which is different from the given (n + 1) points.

Let 7 denotes the closed interval spanned by the values x,,...,x,,x. Then F (x) vanishes
(n + 2) times in the interval 1.

By Rolle’s theorem  F'(x) vanishes at least (n + 1) times in the interval 7, F"(x) at
least n times, and so on.

Eventually, we can show that F“*"(x) vanishes at least once in the interval /, say at
x=¢ Thus, we obtain

0=y""(5)-B""(&-KI"" (&)

Since Pn(x) is a polynomial of degree n, its (n + 1)th derivative is zero. Also, from the
definition of IT(x)
1" (x) = (n+1)!.
Therefore we get
2
(n+1)!
Hence

(n+1)
£(0) = y(0) - P.(x) =2 1)
(n+1)!

for some in the interval 1.
Thus the error committed in replacing y (x) by either Newton’s divided difference
formula or by an identical Lagrange’s formula is

(n+1)
2@

e(x) =I1(x)y[x, x5 ..., X, ] (n+1)!
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INTERPOLATION IN TWO DIMENSIONS

Let u# be a polynomial function in two variables, say x and y, in particular quadratic in x
and cubic in y, which in general can be written as

u=f(x,y)=a,+ax+a,y+ax’

+axy+ay’ +a,y +a,y’x+agyx’

+a,y x+a,y’x* +a,y’x’
This relation involves many terms. If we have to write a relation involving three or more
variables, even low degree polynomials give rise to long expressions. If necessary, we
can certainly write, but such complications can be avoided by handling each variable
separately.
If we let x, a constant, say x = ¢, the equation simplifies to the form

u=|,_.=b, +b1y+b2y2 +b3y3

Now we adopt the following procedure to interpolate at a point (1, m) in a table of two
variables, by treating one variable a constant say x = Xq- The problem reduces to that of a

single variable interpolation.
Any one of the methods discussed in preceding sections can then be applied to get
f (xl, m). Then we repeat this procedure for various values of x say x = Xy Xy vees X

keeping y constant. Thus, we get a new table with y constant at the value y = m and with
x varying. We can then interpolate at x = 1.

Example

Tabulate the values of the function f'(x) = x2 +y2—y

forx=0,1,2,3,4andy = 0,1,2,3,4.

Using the table of the values, compute (2.5, 3.5) by numerical double interpolation
Solution

The values of the function for the given values of the given values of x and y are given in

X Y |
0 1 2 3 4
0 0 0 2 6 12
the following table
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1 1 3 7 13
2 4 6 10 16
3 9 9 11 15 21
4 16 16 18 22 28

Cont! Using quadratic interpolation in both x and y directions we need to consider three
points in x and y directions. To start with we have to treat one variable as constant, say X.
Keeping x = 2.5, y = 3.5 as near the center of the set, we choose the table of values
corresponding to x = 1,2, 3 and y = 2, 3, 4.

Cont! The region of fit for the construction of our interpolation polynomial is shown in
different color in the table

X Y |
0 1 2 4

0 0 0 2 6 12
1 1 1 3 7 13
2 4 4 6 10 16
3 9 9 11 15 21
4 16 16 18 22 28
Cont !
Thus using Newton’s forward difference formula, we have

At x=1
Y f Af A’ f
2 3
3 7 4 2
4 13 6
Cont !
Similarly

At x=2
Y f Af A f
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2 6
3 10 4 2
4 16 6
Cont !
Similarly

At x=3
Y f Af A f
2 11
3 15 4 2
4 21 6

with p= Y=y 3572 =1.5

h 1

Cont !

with p= Y=Y, 3572 =1.5

h 1
-1

f(L,3.5)= f,+ pf, +%A2fo

=3+(1.5)(4) +w(2) =9.75
Cont !

f(2,3.5)=6+(1.5)4) +(1'L2(0'5)(2) =12.75
f(3,3.5) =11+(1.5)4) +%(2) =17.75

Cont !
Therefore we arrive at the following result

At x=3.5
Y f Af A’ f
1 9.75
2 12.75 3 2
3 17.75 5
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Cont !
Now defining p= ? =15
£(2.5,3.5)=9.75+(1.5(3) +%(2) =15
Cont !

From the functional relation, we also find that
£(2.5,3.5)=(2.5)*+(3.5° -3.5=15
And hence no error in interpolation!!!
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DIFFERENTIATION USING DIFFERENCE OPERATORS

Introduction

Consider a function of single variable y = f (x). If the function is known and simple,
we can easily obtain its derivative (s) or can evaluate its definite integral

However, if we do not know the function as such or the function is complicated and is

given in a tabular form at a set of points x X e, We use only numerical methods for

differentiation or integration of the given function.

We shall discuss numerical approximation to derivatives of functions of two or more
variables in the lectures to follow when we shall talk about partial differential equations.
In what follows, we shall derive and illustrate various formulae for numerical
differentiation of a function of a single variable based on finite difference operators and
interpolation.

Subsequently, we shall develop Newton-Cotes formulae and related trapezoidal rule and
Simpson’s rule for numerical integration of a function.

We assume that the function y = f(x) is given for the values of the independent variable

x= x0 +ph,forp=0, 1, 2, ... and so on. To find the derivatives of such a tabular

function, we proceed as follows
CaseI:
Using forward difference operator A and combining equations

Ef(x)=f(x+h)
and
A=FE-1
hD =log E =log(1+A)
Remember the Differential operator, D is known to represents the property

Df(x) = %f(x) - /')

D*f(x) =%f(X) - £ ()

This would mean that in terms of A :

2 3 4 5
Therefore
Df(xo)=f'(xo)=%{Af(xo)—A L), 8 705)
AV ) A |4
VI }‘dxf("o)
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in other words

n 2 3 4
=i2 Ao p a2
h 12
Ay — A
. _dzyo N Yo Yo
Yo A Yo e +%A4 0—%A5y0+---

Case II:
Using backward difference operator , we have V

hD =—log(1-V)
On expansion, we have

we can also verify that

| v: oveovt Y
D’=—|V-—t—F—+-
h 2 3 4

=i2 vy iy, Sy
h 12 6
Hence
d
— :D = !
dxyn Vi = Vn
2 3 4
:l Vy’7_vy”+vy"+vy”+...
h 2 3 4
y, =D,
and

:%(vzyn +V3yn +%V4yn +%V5yn +j

2
The formulae for Dy 0and Dy o &€ useful to calculate the first and second derivatives at

the beginning of the table of values in terms of forward differences; while formulae for

b

d 29
Ynan y n
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2
The formulae for Dy 0and Dy 0 are useful to calculate the first and second derivatives at

the beginning of the table of values in terms of forward differences; while formulae for

b d 29

yandy

Case III: Using central difference operator ¢ and following the definitions of
differential operator D, central difference operator é and the shift operator £, we have

1/2 -1/2 hD/2 —hD/2
O=E""—-FE ""=e"""-e™"

:2sinhh—D
2
Therefore, we have
h—:sinh*lé
2 2
But,
1 Ix* 1x3x°
sinh" x=x———+ —
23 2x4°5
_1x3x5 X7
2x4x6 7

Using the last two equations we get

3
h_D_[ff o 3 55_..)

2 |2 6x8 40x32
That is,
D:l 5_L53+i55_...
h 24 640
Therefore
d
_— = ':D
dxy y 4
1 1
— __53 - 5.,
h(y 24° 76207 j
Also
Dz_i( 2_L i 3 6_ j
W 12 90
Hence
y”:Dzy:L(é‘zy_ié‘4y+i§6y_"'j
W 12 90

For calculating the second
derivative at an interior tabular
point, we use the equation
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D’ 2(52 54+156—-~-j
W 12° 90

while for computing the firstderivative at an interior tabular point, we in general use
another convenient form for D, which is derived as follows. Multiply the right hand
side of

d 1 1 3
=y =Dy=—| 6y——8y+——3"y -
ax? T h( 4 Y6407 j

by
7]

J1+(8%/4)
which is unity and noting the Binomial expansion

1,7
(1+—52j =1-—-6"+
4 8

3 g 15 &
128 48x64

by
(__53 55_...j

On simplification, we obtain

:ﬁ(g_ly LA s _j
h 6 120

we get

Therefore the equation can also be written in another useful form as

’ /,l 1 3 1 5
=D=L|8y——8y+—58"y—--
y h( Y= g0V t30 Y j

The last two equations for y” and y’ respectively are known as Stirling’s formulae for
computing the derivatives of a tabular function. Similar formulae can be derived for
computing higher order derivatives of a tabular function.

The equation for y’ can also be

written as

s 71

In order to illustrate the use of formulae derived so far, for computing the derivatives of a
tabulated function, we shall consider some examples in the next lecture.

, ﬂ{éjy Ly U0, QNG 57y+..1
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DIFFERENTIATION USING DIFFERENCE OPREATORS:
Applications:
Remember Using forward difference operator A, the shift operator, the backward
difference operator and the average difference operator, we obtained the following
formulae:

, 1 Ny, Ny, Ay
DyO:yO:—[AyO— 0 4 0 _ 0 4...

h 2 3 4
2. A3
D2y =d2y0=y”=L Al)io AyOS
0 dx2 0 hZ +EA4y0_gA5yO+“.
d 1 Viy Vy  Viy
- —D — —— V n n+ n
dxy"l yn yn h[ yn 2 3 4
yi=D%, —%(szn +V%y, +%V4yn +%V5yn + j
1 1 1
n_D2 - 2., 1 o4 +— 6., j
4 hz( 1277 907
d 1
— yv=9v'= = — 5 ——53 + 55 —
A’ h(y 24° 7 620" j

Recall from what we mentioned in the last lecture that for calculating the second
derivative at an interior tabular point, we use the equation

podsLo )
h 12 90

While for computing the first derivative at an interior tabular point, we in general use
another convenient form for D, which is derived as follows. Multiply the right hand
side of

d I 1 3
Ay =Dy = Gy .
dxyyyh(y24y640yj

By M
J1+(52/4)
Which is unity and noting the Binomial expansion

-2
(1+152J SR SR S T
4 8 128 48 x 64

We get

D:ﬁ(l_ly L3 s _...j(g_iy L3 s _)
h 8 128 24 640
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Simplification we get

p=~£

i

s-L1sis

4
120

5.

-J

Therefore the equation can also be written in another useful form as

’ H 1 3 1 5
—D=E|5y——5y+—5y—--
y h( y 6 y 30 y J

The last two equations y” andy’ respectively are known as Stirling’s formulae for

computing the derivatives of a tabular function. Similar formulae can be derived for
computing higher order derivatives of a tabular function.
The equation for y’ can also be written as

V=

2
—[5)/—1—5

LW

s+ QO 5,

7!

In order to illustrate the use of formulae derived so far, for computing the
derivatives of a tabulated function, we consider the following example :

Example:

Compute f"(0) and f7(0.2) from the following tabular data.

X 0.0 0.2 0.4 0.6 0.8 1.0
F(x) 1.00 1.16 3.56 13.96 41.96 101.00
Solution

Since x = 0 and 0.2 appear at and near beginning of the table, it is appropriate to use

formulae based on forward differences to find the derivatives. The difference table for the

given data is depicted below:

X ) VO N | Arw | atre | 8w
0.0 1.00

0.2 1.16 0.16

0.4 3.56 240 2.24 5.76

0.6 13.96 10.40 8.00 9.60 3.84 0.0

0.8 41.96 28.00 17.60 13.44 3.84

1.0 101.00 59.04 31.04

Using forward difference formula for D* f(x),

i.e
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Dt YT M S
we obtained
f(0)= : _2 24 -5 76+£(3 84)_2(0)} -0.0
IS E T A g e

Also, using the formula for Df(x), we have

Df(x) = %{ Af (x) - A f(x) N Nf(x) A f(x)}

2 3 4

Hence,

102y [2.40_800, 060 384) 1

0.2 2 3 4

Example
Find y'(2.2) and y"(2.2) from the table.
X 14 1.6 1.8 2.0 2.2
Y (x) 4.0552 4.9530 6.0496 7.3891 9.0250
Solution:

Since x=2.2 occurs at the end of the table, it is appropriate to use backward difference
formulae for derivatives. The backward difference table for the given data is shown
below:

X f(x) Vy Vy Viy Viy
1.4 4.0552

1.6 4.9530 0.8978

1.8 6.0496 1.0966 0.1988 0.0441

2.0 7.3891 1.3395 0.2429 0.0535 0.0094
2.2 9.0250 1.6359 0.2964

Using backward difference formulae for y'(x) and y»"(x), we have

Therefore,

1
'=—|Vy +
yn h( y?‘l

sz

Vi, Vi

3
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V'(2.2)= L(1,6359 + 0.2964 + 0.0535 + 00094) =5(1.8043)=9.02
0.2 3

Also

" 1 2 3 11_,

=—|Vy +Vy +—V
yn hz ( yn yn 12 yn]

Therefore

V'(2.2)= ;2(0.2964 +0.0535 +£(0.0094))

(0.2) 12

=25(0.3585) =8.9629

Example

Given the table of values, estimate, " (1.3)

X 1.3 1.5 1.7 1.9 2.1 2.3

y 2.9648 2.6599 2.3333 1.9922 1.6442 1.2969

Solution Since x = 1.3 appear at beginning of the table, it is appropriate to use formulae
based on forward differences to find the derivatives. The difference table for the given
data is depicted below:

X y A (x) A S (x) Af(x) A (x) Af(x)
1.3 2.9648

1.5 2.6599 -0.3049

1.7 2.3333 -0.3266 | -0.0217

1.9 1.9922 -0.3411 | -0.0145 | 0.0072

2.1 1.6442 -0.348 -0.0069 | 0.0076 0.0004

2.3 1.2969 -0.3473 | 0.0007 0.0076 0 -0.0004
H=0.2

Using forward difference formula for D* f(x),

D* f(x) =hl—z[Azf(X)—A3f(X)+%A4f(X)——A5f(x)}

We obtain

5
6
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13-t |- _ 11 2.
£11.3) = o { 0.0217-0.0072:+—(0.0004)~=( 0.0004)}
£11.3) = T 12)2 [0.0217 - 0.0072 + (0.9167)(0.0004) —(0.8334)(-0.0004)]
£11.3) = T 12)2 [-0.0217 - 0.0072 + (0.0003667) +(0.0003334)]
" _ 1 _ —
£11.3)= 02y [0.0282] = —0.7050

Case IV: Derivation of Two and three point formulae:
Retaining only the first term in equation:

2 3 4
Dy, =y, :%(Ayo - AzyO + A3y° —A4y0 +)
we can get another useful form for the first derivative as
A Dy Yyt ) - (x)
" h h h
Similarly, by retaining only the first term in Eqn.

d 1 Vy Vy V'y
—y =Dy =y =—| Vy — Lp—ng L.
o T h( S S
y(:Vyi _YiTVia _ y(x)=y(x,—h)

" h h h
Adding the last two equations, we have

YOG+ ) = y(x —h)
Vi Y
These Equations constitute two-point formulae for the first derivative. By retaining only
the first term in Equation ,

11
Ay, — A —A*
dZyO_ "_L yO y0+12 yO

e TR

+EA5yO+---

we get,

n_ Azyi _ i =2yt _ y(x; +2h)=2y(x, + h) + y(x,)
Vi = hz - hz - hz

Similarly we get
o Ny () =2p(x, —h)+ y(x,—2h)

y i hZ - h2
While retaining only the first term in the expression for y” in terms of ¢ we obtain
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= 5y, _ Vi ~9Viap _ Y =2+ Y
i h2 h2 h2
_ Y =h)=2y(x) + y(x; + h)
= e
The last three equations constitute three-point formulae for computing the second
derivative. We shall see later that these two- and three-point formulae become handy for
developing extrapolation methods to numerical differentiation and integration.
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Example 1;

Write first derivative of f(x)atx=0.1,0.2,0.3

where f (x) is given by
X 0.1 0.2 0.3 04 0.5 0.6
F(x) 0.425 0.475 0.400 0.452 0.525 0.575
solution;

Using the two point equation we have

f(02)- £(0.1) _0.475-0.425 _0.050 _

£(0.1) = 0.5.
h 0.1 0.1

P02y L@ 1(02) _0400-0475 0075 _ o
h 0.1 0.1

P03y LOA=S(03) _0450-0400 _0.05_ o
h 0.1 0.1

Example 2:

Find the 2nd derivative at 0.3, 0.4, 0.5 for the function given in the
example above.

Solution;
£7(0.3) = f(0-4)—22f(0-3)+f(0.2) 0025
W =0.01 0.01
(0.4 = LOI=2/ O+ /(03) 0025,
" =0.01 0.01
1705 =00 =2/(05)+/(04) 0075 _,
0.01 0.01

DIFFERENTIATION USING INTERPOLATION

If the given tabular function y(x) is reasonably well approximated by a polynomial Pn(x)

of degree n, it is hoped that the result of P/(x) will also satisfactorily approximate the

corresponding derivative of y(x).
However, even if P (x) and y(x) coincide at the tabular points, their derivatives or slopes
n

may substantially differ at these points as is illustrated in the Figure below:
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 Pe(x)

Y(x /

v

\

\/ Deviation of derivatives

o) Xi

.

For higher order derivatives, the deviations may be still worst. However, we can estimate
the error involved in such an approximation.
For non-equidistant tabular pairs (Xi’ yi), 1=0, ..., n we can fit the data by using either

Lagrange’s interpolating polynomial or by using Newton’s divided difference
interpolating polynomial. In view of economy of computation, we prefer the use of the
latter polynomial.

Thus, recalling the Newton’s divided difference interpolating polynomial for fitting this
data as

Pn(x) = y[xo] + (x—xo)y[xo,xl] + (x_ xo)(x_xl)y[xoaxpxz]
n—1
+---+H(x—xl.)y[xo,xl,...,xn]
i=0
Assuming that Pn(x) is a good approximation to y(x), the polynomial approximation to

canbe )'(x)  obtained by differentiating Pn(x). Using product rule of differentiation,

the derivative of the products in Pn(x) can be seen as follows:
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iﬁ(.x—)ﬂ):f(x_xo)(x_xl)"'(x_xn)
P i

X =0 i=0 X=X

Thus, »'(x) is approximated by P/(x) which is given by
P(x) = ylxg, %, 1+ [0 = x) + (x = x )]V X5 X, %, ]+ +

S(x—xo)(x_xl)"'(x_xnl)

X=X,

V[xg, Xp5en0s X, ]
The error estimate in this approximation can be seen from the following.

We have seen that if y(x) is approximated by Pn(x), the error estimate is shown to be

[I(x) e
E,(x) = y(x)~ B (1) =0 0 )
(n+1)!
Its derivative with respect to x can be written as
' ' ' H’(x) (n+1) H(x) d (n+1)
E (x)=y(x)-P(x)=
0=y (=P = @ mEa @)
Its derivative with respect to x can be written as
' ' ' H’(x) (n+1) H(x) d (n+1)
E (x)=y'(x)-P(x)=
0=y (=P = T @ S
Since (x) depends on X in an unknown way the derivative
d (n+1)
s ()

cannot be evaluated. However, for any of the tabular points x = X.s [1(x) vanishes and
the difficult term drops out. Thus, the error term in the last equation at the tabular point

X=X simplifies to

»"(E)
E (x)= Error—l_[(x)( !

for some & in the interval I defined by the smallest and largest of x, x o Xp o X and
Hl(xi) = (Xi _xo)"'(xi _xn) = H(Xl. _xj)
=0
J#l

The error in the r-th derivative at the tabular points can indeed be expressed analogously.

To understand this method better, we consider the following example.
Example
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Find f7(0.25) and f'(0.22) from the following data using the method based on divided

differences:

X 0.15 0.21 0.23
Y=f(x) 0.1761 0.3222 0.3617

X 0.27 0.32 0.35
Y=f(x) 0.4314 0.5051 0.5441
Solution  We first construct divided difference table for the given data as shown
below:

X Y 1" D.D 2"'D.D 3“D.D
0.15 0.1761

0.21 0.3222 2.4350 -5.700

0.23 0.3617 1.9750 -3.8750 15.6250
0.27 0.4314 1.7425 -2.9833 8.1064
0.32 0.5051 1.4740 -2.1750 6.7358
0.35 0.5441 1.3000

Using divided difference formula

§ )= )
i=0 X=X
VXgs X505, ]
from a quadratic polynomial, we have
Y'(x) = B(x) = y[xg, %, ]+ {1(x —x,) + (x = x0 )} %9, X, %, ]
H{ (=) (0 =26,) + (0 =2 ) (o = 2,) + (o = 2 ) (o = X, )} V[ X5 2,5 X, X5 ]
Thus, using first, second and third differences from the table, the above equation yields

1'(0.25) = 2.4350 +[(0.25— 0.21) + (0.25— 0.15)](=5.75)
+(0.25-0.21)(0.25 - 0.23) +(0.25—0.15)(0.25—0.23)
+(0.25-0.15)(0.25—0.21)](15.625)

Therefore
£'(0.25)=2.4350-0.805+0.10625

=1.7363
Similarly we can show that
£'(0.22)=1.9734

Example
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The following divided difference table is for y=1/x.use it to find y'(0.75) from a

quadratic polynomial

Fit.

% Y=1 /X lst divided 2nd divided 3rd divided
difference |difference |difference

.25 4.0000 -8.0000
.50 2.0000 -2.6668 10.6664
.75 1.3333 -1.3332 2.6672 -14.2219
1.00 1.0000 -.8000 1.0664 -2.1344
1.25 .8000 -.5332 0.5336 -0.7104
1.50 .6667

Solution:

Using divided difference formula

n=l1

;(x_xo)(x_x1)"'(x_xn1)

X=X

VIxg, X505 x,]
If we find the values for quadratic fit then we use the following formula,

y'(x) = P(x)
= y[xg, X+ {1 (x —x) + (x — X))} ¥[ X0, X, X, ]
+{(x = x)(x = x,) + (x = x)(x — X)) + (x = X )(x = X))} ¥[ X0, X5 X5, X5 ]

Thus, using first, second, third differences from the table, we get

V' (x) = B(x) =-8.0000+{(x—.50) +(x—.25)}10.6664
+{(x—.50)(x—.75)+(x—0.25)(x—0.75)+ (x—0.25)(x— 0.50)} (—14.2219)

Put x=7.5

¥'(0.75) = B(0.75) =-8.0000+{(0.75—.50) +(0.75—.25) }10.6664
+{(0.75-.50)(0.75—-.75) +(0.75-0.25)(0.75—-0.75) +(0.75—-0.25)(0.75-0.50) } (—14.2219)

¥'(0.75) = P(0.75) =-8.0000+{(0.25) +(0.50) }10.6664
+{(0.25)(0)+(0.50)(0)+(0.50)(0.25)} (—14.2219)

¥'(0.75) = B(0.75) =-8.0000+{0.75}10.6664+{0.125} ( —14.2219)

¥'(0.75) = B(0.75) =-8.0000+7.9998 —1.7777375

¥'(0.75)=B(0.75)=-1.7779
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RICHARDSON’S EXTRAPOLATION METHOD
To improve the accuracy of the derivative of a function, which is computed by starting
with an arbitrarily selected value of h, Richardson’s extrapolation method is often
employed in practice, in the following manner:
Suppose we use two-point formula to compute the derivative of a function, then we have

)= y-h)

! x) =
Y'(x) 2 T
=F(h)+E,
Where E__ is the truncation error. Using Taylor’s series expansion, we can see that

T
E,=ch’+c,h* +ch® +--
The idea of Richardson’s extrapolation is to combine two computed values of y'(x)

using the same method but with two different step sizes usually h and h/2 to yield a
higher order method. Thus, we have

V'(x)=F(h)+ch® +c,h* +--
And

, h h
y(x):F(Ej+clj+cz—+~--
Here, c, are constants, independent of h, and F(h) and F(h/2) represent approximate

values of derivatives. Eliminating ¢, from the above pair of equations, we get

1
h
e (2)-rn

V'(x)= +dh* +O(h°)

Now assuming that
h

4F (j —F(h)
()22

2 3
Equation for y’(x) above reduces to

Y@)=F @ +dht +O(H")

Thus, we have obtained a fourth-order accurate differentiation formula by combining two
results which are of second-order accurate. Now, repeating the above argument, we have

V'(x)=F (%) +dh* +O(h°)

V(@) =F, @ + A4 0

Eliminating d1 from the above pair of equations, we get a better approximation as

V() =F, (gj +O(h")
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Which is of sixth-order accurate, where

PRZOES

4 4 -1
This extrapolation process can be repeated further until the required accuracy is achieved,
which is called an extrapolation to the limit. Therefore the equation for F, above can be

2
h 4’" F:n—l (thj - F:n—l (2511]
Fl—|=
(zm ] 4m _1
m=12,3,...

generalized as

2

Where F O(h) = F(h).

To illustrate this procedure, we consider the following example.

Example: Using the Richardson’s extrapolation limit, find y’(0.05) to the function
y = -1/x, with h = 0.0128, 0.0064, 0.0032.
Solution

To start with, we take, h = 0.0128, then compute F (h) as

1 1
Fy =@M -yr=h) _ " 0.05+0.0128 " 0.05-0.0128
2h 2(0.0128)
_ —15.923566 + 26.88172
- 0.0256
= 428.05289

Similarly, F(h/2) = 406.66273. Therefore, using Eq. (7.30), we get

(5)- (3)#(3) N

2 4-1

4
Which is accurate to O(h ). Halving the step size further, we compute

1 1
- +
F[i) __0.05+0.0032 " 0.05-0.0032
2? 2(0.0032)
=401.64515

And
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E(hj_”(;]*@

22 4-1
=399.97263
Again, using Eq. , we obtain
o Al
F, (_zj = 2
2 4" -1
=400.00195
The above computation can be summarized in the following table:
h F F1 F2
0.0128 428.0529
0.00064 406.6627 399.5327 400.00195
0.0032 401.6452 399.9726

Thus, after two steps, it is found that '(0.05) =400.00915 while the exact value is

1/(0.05) = (

1

— =400
o0s 0.0025
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Numerical Differentiation and Integration
INTRODUCTION
DIFFERENTIATION USING DIFFERENCE OPREATORS
DIFFERENTIATION USING INTERPOLATION
RICHARDSON’S EXTRAPOLATION METHOD
NUMERICAL INTEGRATION
NEWTON-COTES INTEGRATION FORMULAE
THE TRAPEZOIDAL RULE ( COMPOSITE FORM)
SIMPSON’S RULES (COMPOSITE FORM)
ROMBERG’S INTEGRATION
DOUBLE INTEGRATION
Basic Issues in Integration What does an integral represent?

b
AREA =Jf(x) dx

a

db
VOLUMEZJ j g(x,y) dx dy

ca
Basic definition of an integral::

n—oo

b "
If(x) dx=lm > f(x)Ax
9 k=1

Sum of Height x Width
Objective:
b
Evaluate [ = j f(x)dx without doing calculation analytically.

a
When would we want to do this?
1. Integrand is too complicated to integrate analytically.

j— 2+COS(1+\/;) KEH
0 V140.5x

2. Integrand is not precisely defined by an equation,i.e., we are given a set of data
(x;.f(x)), =1,....n.

All methods are applicable to integrands that are functions.
Some are applicable to tabulated values.
Key concepts:
1. Integration is a summing process. Thus virtually all numerical
approximations can be represented by
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b n
|= [f(x)dx =D Axfix;)+E,

a i=0

Where:
X = weights
X, = sampling points

Et = truncation error

2. Closed & Open forms:

Closed forms include the end points a & b in X.. Open forms do not.

NUMERICAL INTEGRATION

Consider the definite integral

/= j" f(x)dx

Where f (x) is known either explicitly or is given as a table of values corresponding to
some values of x, whether equispaced or not. Integration of such functions can be carried
out using numerical techniques.

Of course, we assume that the function to be integrated is smooth and Riemann integrable
in the interval of integration. In the following section, we shall develop Newton-Cotes
formulae based on interpolation which form the basis for trapezoidal rule and Simpson’s
rule of numerical integration.

NEWTON-COTES INTERGRATION FORMULAE

In this method, as in the case of numerical differentiation, we shall approximate the given
tabulated function, by a polynomial Pn(x) and then integrate this polynomial.

Suppose, we are given the data (Xi’ yi), 1 = 0(1)n, at equispaced points with spacing h =

X.,1 ~ X we can represent the polynomial by any standard interpolation polynomial.

Suppose, we use Lagrangian approximation, then we have
S(x)= z L (x)y(x,)

With associated error given by

_ H(x) (n+1)
E(x) “ah) +l)!y (&)
Where
L (x)= B (CONNN
(x—x)IT'(x,)
And

(0 = (x—x)(x =) (x—x,)
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Then, we obtain an equivalent integration formula to the definite integral in the form
b n
[ rx)de =Y cp(x)
k=1

Where ¢, are the weighting coefficients given by

b
c, = L L, (x)dx

Which are also called Cotes numbers. Let the equispaced nodes are defined by

X, =a,x,=b,h :b—_a’ and x, = x,+kh
n
So that X —X, = ( k — D)h etc. Now, we shall change the variable x to p such that,
X=X, + ph, then we can rewrite equations.
[T(x
L=t
(x—x)[T'(x,)
M0 = (x=x)(x = x,)...(x—x,)
As [Ix)=r""p(p-1)...(p—n)
And L(x)= (x—x)(xr—x)- - (x—x,_ (X —x,,) - (x—x,)

(o0, =X, =)+ (o =X, )X —x,) -+ (%, —x,,)

_(ph)(p=Dh---(p=k+Dh(p—k=Dh---(p—n)h
(kh)(k =Dh---)(h)(=D)h---(k —n)h

L(x) = (~1)"™® pp=D)--(p-k+D)(p—k=1)--(p—n)
kl(n—k)!
Also, noting that dx = h dp. The limits of the integral in Equation
¢, = IbLk (x)dx

change from 0 to n and equation reduces to

p(p=1)
=D L
T ke Mok

The error in approximating the integral can be obtained from

o2 p(p-1)
By = oo
(S)dp

Where x 0 <é< Xn' For illustration, consider the cases for n =1, 2; For which we get

© Copyright Virtual University of Pakistan 3



Numerical Analysis -MTHG603

1 h 1 h
cy=—h (p-Ddp==".c,=h[ pdp==
And

3

N, R,
E ==Y (©f, pp=Ddp =—"(§)

Thus, the integration formula is found to be
3

X h h "
[, £ ()dx =y, + ey, + Brror = (3, + 1) = 3"(6)
This equation represents the Trapezoidal rule in the interval [XO, X 1] with error term.

Geometrically, it represents an area between the curve y = f (x), the x-axis and the
ordinates erected at x = x 0 (=a)andx = X, as shown in the figure.

Y

(x4, y1) (x2, y2)

(Xo, Yo)

Yo Y1 Y2 Y3 Yn-1 Yn

V.

Xo=a Xq X2 X3 Xn-1 Xn=b

This area is approximated by the trapezium formed by replacing the curve with its secant
line drawn between the end points (x oY O) and (x Tt yl).

For n =2, We have
h 2 h
¢ =2, (P=Dp-2)dp ==

2 4
¢ ==h[ p(p=2)dp=—h

h 2 h
e =2 ), pp=Ddp ==
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and the error term is given by
no,
E = (i)
2790 (g
Thus, for n = 2, the integration takes the form

I: f(x)dx =x,y, +x,y, +x,y, +Error

L -y
3 Yo TV T 90y

This is known as Simpson’s 1/3 rule. Geometrically, this equation represents the area

between the curve y = f (x), the x-axis and the ordinates at x = X0 and X, after replacing

the arc of the curve between (XO, yo) and (xz, y2) by an arc of a quadratic polynomial as

in the figure

Y
A
y = f(x)
(X2, ¥2)
(Xo, Yo) P /
Yo Y1 Y2
Xp=a X4 Xo X3 Xn-1 X, =b

Thus Simpson’s 1/3 rule is based on fitting three points with a quadratic.
Similarly, for n = 3, the integration is found to be

X3 3 3 iv
[, £ Gdx =2 h(py #3437, 439) =0 ()

This is known as Simpson’s 3/8 rule, which is based on fitting four points by a cubic.
Still higher order Newton-Cotes integration formulae can be derived for large values of n.
But for all practical purposes, Simpson’s 1/3 rule is found to be sufficiently accurate.
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The Trapezoidal Rule (Composite Form)

The Newton-Cotes formula is based on approximating y = f (x) between (x oY 0) and
(Xl’ yl)by a straight line, thus forming a trapezium, is called trapezoidal rule. In order to

evaluate the definite integral

I = J-j f(x)dx

we divide the interval [a, b] into n sub-intervals, each of size & = (b — a@)/n and denote the
sub-intervals by [xo, xl], [xl, x2], e [xn_l, xn], such that Xp=a and X = b and X =%,

+kh,k= 1,2,...,n—-1.

Thus, we can write the above definite integral as a sum. Therefore,
I= j " (x)dx = j T F(x)dx+ j ®F()dx e+ j " (x)dx

The area under the curve in each sub-interval is approximated by a trapezium. The
integral I, which represents an area between the curve y = f (x), the x-axis and the

ordinates at X = x 0 and x = X is obtained by adding all the trapezoidal areas in each sub-

interval.

Now, using the trapezoidal rule into equation:
3

X h h "
[, £y = oy, + oy + Brror =2 (v, + 1) = 5"(€)

We get

3

[ _h I eyt K
1= f0de= 200470 =5 G+ S 0+ 7))

h R,
+...+_ + —_
Z(yn—l yn) 12y (gn)

Where x, . <&<x, ,fork=1,2, ..., n-1.

k-1 K’
Thus, we arrive at the result

%, h
J.xo f(x)dx:E(yO+2y1+2y2+”.+2yn—l+yn)+En

Where the error term En is given by

h3 4 " 14
=T )Y () (e,
Equation represents the trapezoidal rule over [XO, Xn]’ which is also called the composite

form of the trapezoidal rule. The error term given by Equation:

B, == D (@) (E) ()

is called the global error.
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However, if we assume that y"(x) is continuous over [XO, xn] then there exists some &

in[X,,x ]suchthatx =x_+nh and
n n

X0 0

h3 " __xn_xo 2. n
En——ﬁ[ny &)= T hy"($)

2
Then the global error can be conveniently written as O(h ).
Simpson’s Rules (Composite Forms)
In deriving equation. ,

X, h hs %
Lﬂ S (x)dx = x,y, + x,y, + x,, + Error =§(y0 +4y, +y2)_%y( )(5)

The Simpson’s 1/3 rule, we have used two sub-intervals of equal width. In order to get a
composite formula, we shall divide the interval of integration [a, b] Into an even
number of sub- intervals say 2N, each of width (b — a)/2N, thereby we have

_ —_ _ + — J—
XO a,xl,...,x2N b andxk XO kh,k=1,2, ... 2N-1).

Thus, the definite integral I can be written as
b X, Xy Xon
I=["feode=[" fx)de+[" fE)dx++ " f(x)dx

Applying Simpson’s 1/3 rule as in equation

X2 h hs v
LO S(xX)dx = xyy, + Xy, + X, ¥, +EITOI':§(_)/O +4y, +y2)_%y( )(‘f)

to each of the integrals on the right-hand side of the above equation, we obtain

h
1=§[(yo+4y1+y2)+(y2+4y3+y4)+---

N iv
+(Vay 2 ¥4Von +y2N)]_%h5y( )(5)

That is

XN h
LO S (x)dx :g[yo 4ty Yoy )21, H Yt Yyn) + Yoy ]+ Error term

This formula is called composite Simpson’s 1/3 rule. The error term E, which is also
called global error, is given by

N ; X, —X .
Ee N s gy = _Xan =% pa
50”7 () T (&)

4
for some § in [XO, sz]. Thus, in Simpson’s 1/3 rule, the global error is of O(h ).

Similarly in deriving composite Simpson’s 3/8 rule, we divide the interval of integration
into n sub-intervals, where n is divisible by 3, and applying the integration formula
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X3 3 3 iv
[, £ Odx=2h(py +33 437, 4 ) = 0 ()
to each of the integral given below
j F(x)dx = j F(x)dx + j F)dx++ j F(x)dx

We obtain the composite form of Simpson’s 3/8 rule as
b 3
[, £ == hLy(@)+3y,+ 37, 4 2y +3p, + 3y + 27+

+2Y,5+3Y,5,+3y,., + ()]
With the global error E given by
X T X g4 ()
E 20 R y™(&)
It may be noted that the global error in Simpson’s 1/3 and 3/8 rules are of the same order.
However, if we consider the magnitudes of the error terms, we notice that Simpson’s 1/3
rule is superior to Simpson’s 3/8 rule. For illustration, we consider few examples.

Example
Find the approximate value of y = J.: sin xdx using

(1) Trapezoidal rule

(i1) Simpson’s 1/3 rule by dividing the range of integration into six equal parts. Calculate
the percentage error from its true value in both the cases.

Solution

We shall at first divide the range of integration (0,7) into six equal parts so that each

part is of width 7/6 and write down the table of values:

X 0 /6 3 /2 2m/3 51m1/6 m

Y=sinx | 0.0 0.5 0.8660 1.0 0.8660 0.5 0.0

Applying trapezoidal rule, we have

. h
Io sin xdx =5[yo +Ye+2n + 1, ¥ty +ys)]

Here, h, the width of the interval is 7 /6. Therefore,

L 3.1415

V= Ioﬂsm Xdx = T 0+0+2(3.732)]= x3.732 =1.9540

Applying Simpson’s 1/3 rule

Xy h ]’l5 iv
J.x S (X)dx = xy, +x,y, + x,y, + Error zg(yo +4y, +y2)_%y( )(SZ)
We have
T h
J, sinxde =2 Lpg+ 2o+ 403+ 23+ 29+ 20 4 2,)]

31415 11 464 =2.0008

:%[O+O+(4x2)+(2)(1.732)]:

But the actual value of the integral is
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Ioﬁ sin xdx =[—cos x]; =2

Hence, in the case of trapezoidal rule
The percentage of error

While in the case of Simpson’s rule the percentage error is

2-2.0008 1 00=0.04

(sign ignored)
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Example :

From the following data, estimate the value of J.ls log xdx using Simpson’s 1/3

rule.Also, obtain the value of h, so that the value of the integral will be accurate up to five

decimal places.

X 1.0 1.5 2.0 2.5 3.0 3.5

4.0

4.5

5.0

Y=logx | 0.0000 | 0.4055 | 0.6931 | 0.9163 | 1.0986 | 1.2528

1.3863

1.5041

1.6094

Solution

We have from the data,n=0, 1, ..., 8, and h = 0.5. Now using Simpson’s 1/3 rule,

; h
J logxdx =21y + 3y + 400 + 3+ 35+ 37)+ 20+ 3+ 30)]

- %[(0“.6094) +4(4.0787)+2(3.178)]

= ?(l 6094 +16.3148 + 6.356) = 4.0467

The error in Simpson’s rule is given by

X —X iv
E=— 2N oh4y( )(5)

180
(ignoring the sign)
1 ' 1 " 1 m 2 (iv)
Since y=logx,y'==—,y"=——,)" ==,y
X X X
Max y"(x)=6,

1<x<5

Max y"(x)=0.0096

1<x<5

Therefore, the error bounds are given by

(0.0096)( )" _ . _ (6)(A)h*

180 180
If the result is to be accurate up to five decimal places, then
4
24h <107
180

4
That is, h <0.000075 or h <0.09. It may be noted that the actual value of integrals is

Ilslogxdxz[xlogx—x]f =5log5—-4

Example
dx

1+x

Evaluate the integral [ = J.Ol by using

2
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(1) Trapezoidal rule
(i1) Simpson’s 1/3 rule by taking h = 4. Hence compute the approximate value of .
Solution
At first, we shall tabulate the function as
X 0 Ya V2 Y% 1
y=1 1_'_)(2 1 0.9412 0.8000 0.6400 0.5000
Using trapezoidal rule, and taking h =%
1 =§[y0 +y,+4 + 0+ )] = %[1.5 +2(2.312)] =0.7828
using Simpson’s 1/3 rule, and taking h = %4, we have
I =§[y0 + Y, + 40+ 3) + 20, :é[l.S+4(l.512)+1.6] =0.7854
But the closed form solution to the given integral is
1 odx R U
IO i +[tan x]o —Z
Equating the last two equations, we get T = 3.1416.
Example: Compute the integral / = \/z J: ¢~ *dx using Simpson’s 1/3 rule,
V4
Taking h = 0.125.
Solution At the outset, we shall construct the table of the function as required.
X 0 0.125 | 0.250 | 0.375 | 0.5 0.625 [ 0.750 | 0.875 | 1.0
0.7979 | 0.7917 | 0.7733 | 0.7437 | 0.7041 | 0.6563 | 0.6023 | 0.5441 | 0.4839

y= \/zexp(—xz/Z)
T

Using Simpson’s 1.3 rule, we have

Example :

h
:g[yo + Vg +4(y1 + Y3+ Vs +y7)+2(y2 +), +y6)]

_0.125

+2(0.7733+0.7041+0.6023)]

0.125

= T(1.2812+10.9432+4.1594)

=0.6827

[0.7979 +0.4839+4(0.7917 +0.7437 4+ 0.6563 + 0.5441)

A missile is launched from a ground station. The acceleration during first 80
seconds of flight, as recorded, is given in the following table:
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t(s) 0 10 20 30 40 50 60 70 80

a(m/s*) | 30.00 | 31.63 | 33.34 | 35.47 | 37.75 | 40.33 | 43.25 | 46.69 | 50.67

Compute the velocity of the missile when ¢ = 80 s, using Simpson’s 1/3 rule.
Solution:
Since acceleration is defined as the rate of change of velocity, we have

V= J-Soa dt Or G4 =a
0 dt
Using Simpson’s 1/3-rule, we have

h
v :E[(yo + )+ 4y + Y+ 1)+ 20, + v, + )]

= 1?0[(30 +50.67)+4(31.63+35.47+40.33+46.69) +2(33.34+37.75+43.25)]

=3086.1 m/s
Therefore, the required velocity is given by y = 3.0861 km/s.
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Simpson’s 3/8 rule
Consider the definite integral [ = J.b: f(x)dx

3

X h I’l "
[, £ ()dx =y + ey, + Brror == (3, + 1) == 0"(6)
Then, if n = 2, the integration takes the form

J.: f(x)dx =x,y, +x,y, +x,y, +Error

e ey
3 YoTaN T 90y

Thus Simpson’s 1/3 rule is based on fitting three points with a quadratic.
Similarly, for n = 3, the integration is found to be

X3 3 3 v
[, 7 Odx =2 h(py #3304 37,4 ) = 0 (E)

This is known as Simpson’s 3/8 rule, which is based on fitting four points by a cubic.
Still higher order Newton-Cotes integration formulae can be derived for large values of n.

TRAPEZOIDAL RULE

. h
[ f@dv =0+ 20+ 20,4423, +9)+ E,

x, h
LO f(x)dx :E(yo +2y, 42y, + 42y, +y )+ E,
SIMPSON’S 1/3 RULE

X2 h hs v
=] fdr =2+ 4+ 22) = 577 ©)
XN h
Lo S (x)dx :E[yo +A4(y, + Y3+ Yoy )+ 20, + Yy o+ Yy ) + v,y ]+ Brror term

X — X ;
E:— 2N 0 h4 (iv)
“1s0 Y ()

Simpson’s 3/8 rule is

b 3
L S ()dx =2 hL(@)+ 33,43y, + 29543y, +3ys + 2+ 427,543y, 5 43y, + Y (0)]
With the global error £ given by

X —X -
E=_2n 0h4 (iv)
~%0 Y (&)

ROMBERG’S INTEGRATION

We have observed that the trapezoidal rule of integration of a definite integral is of

2
O(h ), while that of Simpson’s 1/3 and 3/8 rules are of fourth-order accurate.
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We can improve the accuracy of trapezoidal and Simpson’s rules using Richardson’s
extrapolation procedure which is also called Romberg’s integration method.
For example, the error in trapezoidal rule of a definite integral

b
I= j F(x)dx
can be written in the form
I=1,+ch’+c,h* +c,h’ +--
By applying Richardson’s extrapolation procedure to trapezoidal rule, we obtain the
following general formula

m h h
(/’1) 4 IT(m—l) (2”’)_1”'"_1) (2m—1j
ITm vy

2m 4m—1
Where m = 1, 2, ..., with
ITO (h) = IT (h).

For illustration, we consider the following example.
Example:

Using Romberg’s integration method, find the value of J.ll'g y(x)dx starting with

trapezoidal rule, for the tabular values

X 1.0 | 1.1 12 | 1.3 14 | 15 | 1.6 | 1.7 | 18

y=1(x)| 1.543 | 1.669 | 1.811 | 1.971 | 2.151|2.352|2.577|2.828 | 3.107

Solution:

1.8-1.0

N
Let IT denote the integration by Trapezoidal rule, then for

h=

, X, =X, +1h

N=1,h=038,1, =§(y0 +)
=0.4(1.543+3.107) =1.8600
N=2,h=04,1I, =§(y0 +2y,+5,)=0.2[1.543+2(2.151)+3.107]
=1.7904
N=4h=02,1, =§[yo +2(y,+ ¥, + ;) +,1=0.11.543+2(1.811+2.151+ 2.577) + 3.107]
=1.7728

Similarly for
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I, =1.7684

Now, using Romberg’s formula , we have
I (hj _ 4(1.7904) —1.8600
al= 1=

2 3
=1.7672
I(EJZMUJD&—rmn
2\ 22 4’ -1
=1.77317
; (llj::43a.7672)—4.77317
23 4 -1
=1.7671

that the value of the tabulated integral is 1.7671.

DOUBLE INTEGRATION

To evaluate numerically a double integral of the form

1= IU(x, y)dx} dy
over a rectangular region bounded by the lines x = a, x =b, y = ¢, y = d we shall employ
either trapezoidal rule or Simpson’s rule, repeatedly With respect to one variable at
a time. Noting that, both the integrations are just a linear combination of values of the
given function at different values of the independent variable, we divide the interval [a, b]
into N equal sub-intervals of size h, such that h = (b — a)/N; and the interval (c, d) into M
equal sub-intervals of size k, so that k = (d — ¢)/M. Thus, we have

X, =x,+ih, x,=a,

xy=b, fori=12,..,N-1

Y=Y +ik, vy =,

vy =d, fori=12,..,.M -1
Thus, we can generate a table of values of the integrand, and the above procedure of
integration is illustrated by considering a couple of examples.
Example Evaluate the double integral

(22 dxdy
I N J-l J-] X+ y
by using trapezoidal rule, with h =k = 0.25.

Solution
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Taking x =1, 1.25, 1.50, 1.75,2.0 and y = 1, 1.25, 1.50, 1.75, 2.0, the following table is
generated using the integrand

fx,y) = ﬁ

X y

1.00 1.25 1.50 1.75 2.00
1.00 0.5 0.4444 04 0.3636 0.3333
1.25 0.4444 0.4 0.3636 0.3333 0.3077
1.50 04 0.3636 0.3333 0.3077 0.2857
1.75 0.3636 0.3333 0.307 0.2857 0.2667
2.00 0.3333 0.3077 0.2857 0.2667 0.25

Keeping one variable say x fixed and varying the variable y, the application of
trapezoidal rule to each row in the above table gives

jf £, y)dy = %[0.5+2(0.4444+O.4+O.3636)+0.3333]

=0.4062
.[12 f(1.25,y)dy = 0'725[0.4444 +2(0.4+0.3636+0.3333)+ 0.3077]
=0.3682
.[12 f(.5,y)dy = 0'725[0.4 +2(0.3636+0.3333+0.3077)]+ 0.2857
=0.3369
'[12 f(1.75,y)dy = %[0.3636 +2(0.3333+0.3077+0.2857)+ 0.2667]
=0.3105
and
2 0.25
.[1 f(2,y)dy = 7[0.3333 +2(0.3077+0.2857)+0.25]
=0.2879
Therefore
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1= Hfdxdy )+ 207025, 9)+ F(1.5,0)+ FAT5, 01+ £, )

By use of the last equations we get the required result as

I = 0'725[.04602 +2(0.3682+0.3369+0.3105) + 0.2879] =0.3407

Example :Evaluate

J.Oﬂ/z Ioﬂ/z \/sin(x + y)dxdy

by numerical double integration.
Solution
Taking x =y =n/4, 3 n /8, m /2, we can generate the following table of the integrand

S(x,y)=4/sin(x+y)

X y
0 /8 /4 3n/8 /2
0 0.0 0.6186 0.8409 0.9612 1.0
/8 0.6186 0.8409 0.9612 1.0 0.9612
/4 0.8409 0.9612 1.0 0.9612 0.8409
3n/8 0.9612 1.0 0.9612 0.8409 0.6186
/2 1.0 0.9612 0.8409 0.6186 0.0

Keeping one variable as say x fixed and y as variable, and applying trapezoidal rule to
each row of the above table, we get

j””f(o )dx _—[0 0+2(0.6186+0.8409+0.9612) +1.0] =1.1469

0

Iﬂ/z(g,yja’x = %[0.6186+2(0.8409+0.9612 +1.0)+0.9612] = 1.4106

Similarly we get
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/2 V4
jo f Z,yjdx =1.4778,

=2 (371
jo f ?,yjdx:1.4106

7/2 T
jo f E,y]dx=1.1469

Using these results, we finally obtain

J‘ﬁ/zj-ﬁ/zwlsm(ery dxdy——{ JACR y)+2(8 ,ijrf( j+f(%,y}+f(£,yj}

2

and

:%[1.1469+2(1.4106+1.4778+1.4106)+1.1469]
=2.1386
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Ordinary Differential Equations
Introduction
Taylor Series
Euler Method
Runge-Kutta Method
Predictor Corrector Method
Introduction
Many problems in science and engineering when formulated mathematically are readily
expressed in terms of ordinary differential equations (ODE) with initial and boundary
condition.
Example
The trajectory of a ballistic missile, the motion of an artificial satellite in its orbit, are
governed by ordinary differential equations.
Theories concerning electrical networks, bending of beams, stability of aircraft, etc., are
modeled by differential equations.
To be more precise, the rate of change of any quantity with respect to another can be
modeled by an ODE
Closed form solutions may not be possible to obtain, for every modeled problem, while
numerical methods exist, to solve them using computers.
In general, a linear or non-linear ordinary differential equation can be written as

d" d d
y: taya_ya""—j}
dt" dt dt"
Here we shall focus on a system of first order
dy

differential equations of the form f(t,y) with the initial condition y (tO) =Yy

E =
which is called an initial value problem (IVP).

It is justified, in view of the fact that any higher order ODE can be reduced to a system of
first order differential equations by substitution.
For example, consider a second order differential equation of the form

y'=fy.y)
Introducing the substitution p =)', the above equation reduces to a system of two first
order differential equations, such as

y'=p, p'=fty,p)

Theorem
Let f(¢, v) be real and continuous in the strip R, defined by ¢ € [IO, T ] , —o<y<Loo

Then for any ¢ €[¢,,T] and for any Y Yy there exists a constant L, satisfying the

inequality |f(t,y1) —f(t,y2)| < L|y1 —y2| so that ‘fy(t,y)‘ <L, forevery t,yeR

Here, L is called Lipschitz constant.
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If the above conditions are satisfied, then for any yo, the IVP has a unique solution y ( ¢),

for t [t,,T]

In fact, we assume the existence and uniqueness of the solution to the above IVP
The function may be linear or non-linear. We also assume that the function f'(¢, y) is
sufficiently differentiable with respect to either ¢ or y.

TAYLOR'’S SERIES
METHOD

Consider an initial value problem described by

d
=Sy, )=y,
Here, we assume that f'(z, y) is sufficiently differentiable with respect to x and y.

If y (¢) is the exact solution, we can expand y (¢) by Taylor’s series about the point ¢ = tO

and obtain

oy, L) o =t) ()’

YO =y(t) +(=1,)y (1) + ==y (l) + =y () + ==y )+

Since, the solution is not known, the derivatives in the above expansion are not known
explicitly. However, f'is assumed to be sufficiently differentiable and therefore, the
derivatives can be obtained directly from the given differential equation.

Noting that fis an implicit function of y, we have
V=)
Yy

+
ox Oy dx St Iy

Similarly
V= Lot Mo+ Sy + )+ LS+ 1)
=t 2 + L+ LU+ 1)
V' = St 34307 S
+ a2+ 71
+3(f, + IS+ S)
+ 1+ 1)

Continuing in this manner, we can express any derivative of y in terms of
f(¢ y) and its partial derivatives.

Example

Using Taylor’s series method, find the solution of the initial value problem

dy
—=f+y, 1)=0
r Y y(D)

at = 1.2, with 2 = 0.1 and compare the result with the closed form solution
Solution
Let us compute the first few derivatives from the given differential equation as follows:
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m 14

yi=tty, =14y, y'=)l
yIV — ym’ yV — yIV
Prescribing the initial condition, that is, at

tO =1,y0 -y (tO) =0, we have

Yo=Lyy=2,
y(')": yéV = y(l)/ = 2
Now, using Taylor’s series method, we have

2 3
(t_to) yg+(t_t0) m

() =y, +({t—1t)y, + 5 o
(t—1,)" o (t=1)
+—y, +———, +*
24 7 120 0

Substituting the above values of the derivatives, and the initial condition, we obtain
y(1.D)=0+(0.1)(1)+ 0'201 2)+ O'(;Ol 2)+ 0'?(2)801 2)+---

0.001 0.0001 0.00001
+ + +
12 60
=0.1+0.01+0.000333+0.0000083 +0.0000001 +---
=0.1103414

=0.1+0.01+

Therefore
y(1.1)=y, =0.1103414=0.1103

Taking y 1= 0.1103 at ¢ = 1.1, the values of the derivatives are

yI=1.1+0.1103 =1.2103
y'=1+1.2103=2.2103
=y =y’ =2.2103

Substituting the value of y1 and its derivatives into Taylor’s series expansion we get,

after retaining terms up to fifth derivative only......

' t—t ? "
y(1.2)=y + =ty +%yl

(t_t1)3 m (t_t1)4 Vi (t_tl)s 14
+ + +
6 17T aq T M
$(1.2)=0.1103+0.12103
+0.0110515+0.0003683

+0.000184 +0.0000003

=0.2429341~ 0.2429 = 0.243
To obtain the closed form solution, we rewrite the given IVP as

dy _ _
~ _y=t or d(ve") =te”
7 (ve™)

On integration, we get
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y=—¢(te' +e')+ce
=ce' —t—1
Using the initial condition, we get Therefore, the closed form solution is
y=—t—1+2e"

When ¢ = 1.2, the closed form solution becomes
y(1.2)=-1.2-1+2(1.2214028)

-2.2+2.4428056

=0.2428 = 0.243

Example

Using Taylor’s Series method taking algorithm of order 3, solve the initial value problem
Y =1-=y ; p(0)=0 with h=025 at x=.50

Solution:
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Letuscomputethe firstthreederivatives
// / /11

yi=l-y ==y yl==y
Theinitial condition is
v =0 y,=0,wehave
'=1-(0)=1
y//=—y/=—1
y///:_y//:_(_l):1
Now,Taylor's series methosd alg rithm is

(tl — L )2 (l 0)
2

J’(tl):J’o"'(tl_to)J’o/"‘ 3

OR y(tl):y0+hy0/+h2;—y0//+h3%yo/ h=20.25

v (0.25)= 0+ (0.25)(1)+ w(—l)+ %(1)

0.0625 0.015625
6
y(0.25)=0.25-0.03125+0.002604167

¥y(0.25)=0.22135

Taking y, = 0.22135 ,Now

y' =1-y=1-(0.22135)=0.7786
y'=-y'=-0.7786
y"'==-y"=-(-0.7786)=0.7786

y(0.25)=10.25 -

y(tz):y1+(t2_t1)y1/+

2 3
(tz _tl) /! (tz _tl) I
> Yo+ 31 M
OR y(tz)zyl+hy1/+h2%yl//+%h3y1”/ h=.25
=0.22135+(0.25)(0.7786) + %(0.25)2(—0.7786) + %(0.25)3(0.7786)

=0.22135+0.19465-0.02433+0.002027
=0.39369
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EULER METHOD
Euler method is one of the oldest numerical methods used for integrating the ordinary
differential equations. Though this method is not used in practice, its understanding will
help us to gain insight into nature of predictor-corrector method
Consider the differential equation of first order with the initial condition y(to) =Yy

()

The integral of this equation is a curve in, fy-plane.

Here, we find successively y IEROTIETEN A where Yo is the value of y at t=tm = tO +mbh,

m =1, 2,... and h being small.
Here we use a property that in a small interval, a curve is nearly a straight line. Thus at
(tO, y O), we approximate the curve by a tangent at that point.

Therefore,
dy Y=Y
- == t s
( b ]W = )
That is Y=y, +(t—=1)f(ty,,)

Hence, the value of y corresponding to ¢ = ¢ 1 is given by

Vi =Y, + (6 —1) f (45, 3,)
Similarly approximating the solution curve in the next interval (¢ T t2) by a line through

(tl, yl) having its slopef(t], yl), we obtain

Yo =0 +hf(t1>y1)
Thus, we obtain in general, the solution of the given differential equation in the form of a
recurrence relation

ym+l = ym +hf(tmaym)
Geometrically, this method has a very simple meaning. The desired function curve is
approximated by a polygon train, where the direction of each part is determined by the
value of the function f (¢, y) at its starting point.

Example

Given % = y_—z; with the initial condition y = 1 at # = 0. Using Euler method, find y
v+

approximately at x = 0.1, in five steps.

Solution

Since the number of steps are five, we shall proceed in steps of (0.1)/5 = 0.02.
Therefore, taking step size

h = 0.02, we shall compute the value of y at

t=0.02, 0.04, 0.06, 0.08 and 0.1

Thus y, = y, +f (1, y,), where y, =1,7,=0
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1-0

Therefore y, =1+0.02——=1.02
1+0
1.02-0.02
=y +hf(t+1)=1.02+0.02———==1.0392
Yo = f(1 yl) 1024002
1.0392-0.04
=y +hf(t,y,)=1.0392+0.02———""=1.0577
. s =y thf (6, 0,) 1.0392 1 0.04
Similarly, 10577 —0.06
=y, +hf(t.,1.)=1.0577+0.02————— =1.0738
Vi =Ya thf (G, 7) 1.0577+0.06
Vo =y, +hf(t,,y,) = 1.0738+0.02 107382008 _, 5919

1.0738+0.08
Hence the value of y corresponding to ¢ = 0.1 is 1.091

Example
Solve the differential equation
Yi=x+y 5 y(0)=1
in the interval [0,0.5] using Euler’s method by taking h=0.1
Soution:

X, 0

X, 0.1
X, 0.2
X, 0.3
X, 0.4
X 0.5

Since h=0.1s0 we calculate values at x = 0,0.1,0.2,0.3,0.4,0.5
y(0)=1 herex,=0 y, =1

N =Y+ (x5 00)

y, =1+0.1)(0+1)=1+0.1=1.1

y=1L1 x=0.1

Yy =n+hf(x,y)

v, =1.1+(0.1)(0.1+1.1)=1.1+0.12=1.22
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now

v, =122 x,=02

V3=V, +hf(x2’y2)

y; =1.22+(0.1)(1.22+0.2) =1.22+0.142 =1.3620
now

»;=13620 x,=0.3

Vi =Yy +hf (x5, 0,)

v, =1.3620+(0.1)(1.3620+ 0.3) =1.3620+0.1662 =1.5282
now

v, =13620 x,=04

s =Y, Hhf(x,,,)

ys =1.5282+(0.1)(1.5282+0.4) =1.7210

now

ys=1.7210 x,=0.5

Yo =Ys +hf (x5, 5)

ys =1.7210+(0.1)(1.7210+ 0.5) =1.9431

Hencethevalueof y correspondingtot =0.5is1.9431
MODIFIED EULER’S METHOD

The modified Euler’s method gives greater improvement in accuracy over the original
Euler’s method. Here, the core idea is that we use a line through (tO, yO) whose slope is

(1) (1)_ :
the average of the slopes at (tO ,yO) and (tl, Y ) Where Yo=Y, + hf(to, yO) is the

value of yat ¢ =¢_ as obtained in Euler’s method, which approximates the curve in the

1
interval (to, tl)
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) L

A4 (tloyl)

(Modified Euler’s Method)

Geometrically, from Figure, if L is the tangent at (¢

0 yO), L2 is the line through (¢ I

()

1
) but with a slope equal to

1
(1) (1) - :
Yy ) of slope f(t Y ) and L is the line through (# 7Y

(1)

the average of f(t 0 0) and f(t 7Y ),.... the line L through (z ) and parallel to L

070
is used to approximate the curve in the interval (tO, tl).
Thus, the ordinate of the point B will give the value of y I

Now, the equation of the line AL is given by

2

= +h{f(toayo)zf(t1’y1(l)):|

Similarly proceeding, we arrive at the recurrence relation

\ﬂ%yu+fmmyxl}
2

M:yﬂ{fm»m+fmqu@_%)

ym+l =ym+h|:
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This is the modified Euler’s method.

Example
Using modified Euler’s method, obtain the solution of the differential equation

L= /@)

with the initial condition
Yo~ 1 at tO = 0 for the range 0<7<0.6 in steps of 0.2

Solution
At first, we use Euler’s method to get

y O =y, +hf(t,,v,)=1+0.2(0+1)=1.2
Then, we use modified Euler’s method to find
v, +h f(tO’y0)+f(t1’yl(]))

y(0-2)=y1 = 5
1+(0.2+\/1.2)
—1.0402 —1.2295

Similarly proceeding, we have from Euler’s method
W=y, +hf (1, y,)=1.2295+0.2(0.2 +~/1.2295)

=1.4913
Using modified Euler’s method, we get

F@,y)+ [, 1)
y2=yl+h 2 ) 22

(0.2+\/1.2295)+(0.4+\/1.4913)

2

=1.2295+0.2
=1.5225

Finally,
W=y, + hf (t,,) =1.5225+0.2( 0.4 ++/1.5225

=1.8493
Modified Euler’s method gives

F @, y)+ (5,0
y(0.6) = yy = y, + h=—2=2 5 22

=1.5225 +O.l[(0.4+\/1.5225)+(0.6+\/1.8493)]

=1.8819
Hence, the solution to the given problem is given by
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0.2

0.4

0.6

y 1.2295

1.5225

1.8819
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RUNGE - KUTTA METHOD
These are computationally, most efficient methods in terms of accuracy. They were
developed by two German mathematicians, Runge and Kutta.
They are distinguished by their orders in the sense that they agree with Taylor’s series

solution up to terms of hr, where 7 is the order of the method. These methods do not
demand prior computation of higher derivatives of y(t) as in TSM.
Fourth-order Runge-Kutta methods are widely used for finding the numerical solutions of
linear or non-linear ordinary differential equations, the development of which is
complicated algebraically.
Therefore, we convey the basic idea of these methods by developing the second-order
Runge-Kutta method which we shall refer hereafter as R-K method.
Please recall that the modified Euler’s method: which can be viewed as

Y., =Yy,+h (average of slopes)

This, in fact, is the basic idea of R-K method.
Here, we find the slopes not only at tnbut also at several other interior points, and take the

weighted average of these slopes and add to Yy to get Yort Now, we shall derive the

1
second order R-K method in the following slides.
Consider the IVP

% —fy). )=,

We also define
ko =hf(t,,y,),  k,=hf(t,+ah,y,+pk)
and take the weighted average of k1 and k2 and add to Yy to get y

We seek a formula of the form y,,, =y + Wk, +W,k,

n+l

Where o, ,W, and W, are constants to be determined so that the above equation

agree with the Taylor’s series expansion as high an order as possible

Thus, using Taylor’s series expansion, we have
2 3

' h " h "
V(1) = y(t,)+hy (f,,)+7y (fn)+zy 1)+

Rewriting the derivatives of y in terms of f'of the above equation, we get

Y +hf(zn,y,,>+%<f, A7)

h3
+Z[fn +2f + 2+ £(f+ ) [+ OO
Here, all derivatives are evaluated at (tn, yn).

Next, we shall rewrite the given equation after inserting the expressions or &, and k. as

1 2
yn+1 = yn +I/Vlhf(tn’yn)+VV2hf(tn +ah’yn +IBk1)
Now using Taylor’s series expansion of two variables, we obtain
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Vo =V, H W (X, 3,) + Woh| f(t,.3,)+ (ahf, + Bk, f,)

( 2hzf +ahﬂkﬁy+ﬂ2 K fyyj 0(/13)}

Here again, all derivatives are computed at (tn, yn). On inserting the expression for kl’
the above equation becomes

Voot = Yo+ W+ W)Hf +W,h| (ahf, + BhT,)

2 3
. j +O(h )}
On rearranging in the increasing powers of 4, we get
Vot = Y, + W+ WO + W0 (af, + BAT,)

ﬁfﬁJ

212 212
+(“2h fn+a,6’h2ﬁ”ty+'82h

+th3( JutaB i, + 0(”‘)}

2
Now, equating coefficients of 2 and /2 in the two equations, we obtain
Ji+ ﬁ
m+w, =1, Wyaf,+Bf,)=
Implying

WA, =1 Wa=Wp=

Thus, we have three equations in four unknowns and so, we can chose one value
arbitrarily. Solving we get
1

W =1-Ww,, o=—-, =—
1 2 ZW; ﬂ 2W
Where W2 is arbitrary and various values can be assigned to it.
We now consider two cases, which are popular
Casel
If we choose W2 =1/3,
then W1=2/3 and o =f=3/2

1
Vo1 =V, +§(2k1 +k,)

k=h(y), k :hf(t+%h,y+%klj

Case II: If we consider

W2=1/z,then W1=1/zand a=p=1.
Then y, ., =y, +kl;2k2

© Copyright Virtual University of Pakistan 2



Numerical Analysis -MTHG603

klzhf(tay)a kzzhf(t+hay+k1)

In fact, we can recognize that this equation is the modified Euler’s method and is
. nd :
therefore a special case of a2  order Runge-Kutta method. These equations are known

nd
as 2  order R —K Methods, since they agree with Taylor’s series solution up to the term

2
h .

Defining the local truncation error, TE, as the difference between the exact solution
y(thr 1) att= tn+ ) and the numerical solution Yoip obtained using the second order R —

K method, we have

TE = y(tn+l) _yn+l
Now, substituting
1 1
W,=—, W=1-—, f=a,
> 2a : 2a p
into the above equation, we get

h2
Yot =Vu +h 1 +7(f; +]fv)t=tn

+h7“(fﬂ S L)

Finally we obtain
l «

TE=h (E‘Zj(f" +2ff,, +f2fyy>+%fy(ff +ﬁ$)}

The expression can further ioe simplified to

l «o 1
TE — h3 - m_ r +—= '
(6 4)(y £ 6fyy}

Therefore, the expression for local truncation error is given by

1 a m a ’
o= | (G-

Please verify that the magnitude of the TE in case I is less than that of case 11
Following similar procedure, Runge-Kutta formulae of any order can be obtained.
However, their derivations becomes exceedingly lengthy and complicated.

Amongst them, the most popular and commonly used in practice is the R-K method of

fourth-order, which agrees with the Taylor series method up to terms of O (4 ).

This well-known fourth-order R-K method is described in the following steps.
Vo =V, +é(kl +2k, + 2k, + k)
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k= hf(t,.y,)

h k
k,=hf|t +—,y +—
2 f(n 2 yn 2}
where

h k
k,=hf|t +—,y, +—=
3 f(n 2yn 2)

ky=hf(t,+hy,+k)
Please note that the second-order Runge-Kutta method described above requires the
evaluation of the function twice for each complete step of integration.
Similarly, fourth-order Runge-Kutta method requires the evaluation of the function four
times. The discussion on optimal order R-K method is very interesting, but will be
discussed some other time.

© Copyright Virtual University of Pakistan 4



Numerical Analysis -MTHG603

Example
Use the following second order Runge-Kutta method described by

1
Yunt :yn+§(2kl+k2)
3 3
Where kl :hf(xn’yn) and k2 :hf(xn-’_ah:yn-i_akl)

and find the numerical solution of the initial value problem described as

d +Xx
TS w0)=1

dx  y-x’
at x = 0.4 and taking 4 = 0.2.
Solution
Here
f(x,y):y+x, h=0.2, x, =0, vy =1
y—Xx
1+0
We calculate &, =hf(x,,y,) = 0.2m =0.2
k, = hf[xo +0.3,y, + (1.5)(0.2)]

1.3+0.3
1.3-0.3
Now, using the given R-K method, we get

ymzy:%=1+%m4+osm=124

=0.32

=hnf(0.3,1.3)=0.2

Now, taking x, = 0.2, Y= 1.24, we calculate

1.24+0.2
k= hf (x,,,) =0.2———==0.2769
) =0 02

1

@:@{%+§mh+%hj:mumJ6$®

5 1.6554+0.5
T 1.6554-0.5
Again using the given R-K method, we obtain

yﬂl4):)5::L244~%[2Ul2769)+4l373ﬂ

0.3731

=1.54897
Example
Solve the following differential equation
ﬂ =t+y
dt

with the initial condition y(0) = 1, using fourth- order Runge-Kutta method from ¢ = 0 to
t =0.4taking h = 0.1
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Solution
The fourth-order Runge-Kutta method is described as

Yot :yn+%(k1+2kz+2k3+k4) (1)

Where
kl = hf(tn’yn)

h k
k,=hf|t +—,y +—
2 f(n 2yn 2]

h k
ky=hf|t +=,y, +—=
3 f(n 2yn 2)

ky=hf(t,+h,y,+k)
In this problem
ft,y)=t+y, h=0.1, t,=0, y,=1.
As a first step, we calculate

k, = hf(t,,,)=0.11)=0.1

k, = hf (t,+0.05, y, +0.05)
= hf'(0.05,1.05) = 0.1[0.05+1.05]
=0.11

ky, = hf (¢, +0.05, y, +0.055)
=0.1(0.05 +1.055)

=0.1105
k, =0.1(0.1+1.1105) =0.12105

Now, we compute from

Y=Y +%(k1 +2k, + 2k, + k)

=1+%(0.1+0.22+0.2210+O.12105)

=1.11034
Therefore y(0.1) =y]=1.]]03

In the second step, we have to find y 5= 1(0.2)

We compute
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k,=hf(t,y,)=0.1(0.1+1.11034) =0.121034
h k

k,=hf|t,+—,y, +—

2 f(l > Wi 2}

=0.1[0.15+(1.11034+0.060517)] = 0.13208

h k
k,=hf|t,+—,p,+—=
3 f(l 2)’1 2j

=0.1[0.15+(1.11034+0.06604)] = 0.132638

k, =hf(t, +h,y +k;)

=0.1[0.2+(1.11034+0.132638)] = 0.1442978
From Equation (1), we see that

¥, :1.11034+%[0.121034+2(0.13208)

+2(0.132638) +0.1442978] = 1.2428

Similarly we calculate,
k, =hf(t,,y,)=0.1[0.2+1.2428]=0.14428

k, = hf(tz +§, ¥, +%J =0.1[0.25+(1.2428 + 0.07214)] = 0.156494

k, = hf(z‘1 +§, b2 +%j =0.1[0.3+(1.2428+0.078247)] = 0.1571047
ky=hf(t,+h,y,+k;)=0.10.3+(1.2428 +0.1571047)] = 0.16999047
Using equation (1), we compute
y(03)=y, =y, +%(k1 +2k, + 2k, +k,)=1.399711
Finally, we calculate

k, = hf (t;, ;) = 0.1[0.3+1.3997] = 0.16997

k, = hf(g +§, ¥, +%j =0.1[0.35+(1.3997 + 0.084985)] = 0.1834685

k, = hf(g +§,y3 +%) =0.1[0.35+(1.3997 +0.091734)] = 0.1841434

k,=hf(t;+h,y, +k;)=0.1[0.4+(1.3997+0.1841434)] = 0.19838434
Using them in equation (1), we get

1
y04)=y,=y, +g("1 +2k, + 2k, + k,)

=1.58363
which is the required result.

Example
Apply Runge-Kutta Method of order four to solve the initial value problem at x=1.2
y=x" 5 y1=1; h=0.1
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Solution:

The Fourth-Order Runge-Kutta Method is described as :-

Vou =V, +é(k1 +2k, +2k; +k, )

where,

k= hf (4,55,

k, :hf(tn +g,yn +%]
k, :hf(tn +§,yn +k2—2j
k,=hf (t,+h,y, +k)

( Here, we are taking x as t)

First Iteration:-
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k= hf (65, y,) = 0.1[ 1x1'" ]
=0.1

h k
k,=hf|t +—,y +—
2 f(n 2yn 2)

=0.1[ (1+0.05)x(1+4,/2)"" |
—0.106721617

h k
k,=hf|t +—,y, +—=
3 f(n 2yn 2)

=0.1[ (1+0.05)x (1+k, /2)"" |
=0.10683536

k,=hf(t,+h,y,+k)
=0.1[ (1+0.1)x(1+ k)" |
—0.113785527

yn+l =yn +(kl +2k2+2k3+k4)
y, =1+0.10681658
», =1.10681658

Second Iteration:-
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t=11 ,  =110681658

k= hf (4,,,)=0.1[1.1x1.10681658'" |
=0.113784884

h k
k,=hf|t +—,y +—
2 f(n 2yn 2]

=0.1[ (1.1+0.05)x(1+1.10681658/2) " |
=0.120961169

2
=0.1[ (1.1+0.05)x(1.10681658 + , /2)"" |
=0.121085364

k3 =hf(tn +§’yn +k_2)

ky=hf (6, +h,y, +k,)
=0.1[ (11+0.1)(1.10681658+ &) |
~ 0.128499807

Vo = Vo +(ky + 2k, + 2k, + k)
», =1.10681658+0.12106296
v, =1.22787954

So, at x = 1.2, we get:

y(1.2) = y, = 1.22787954

RUNGE - KUTTA METHOD FOR SOLVING A SYSTEM OF
EQUATIONS
The fourth-order Runge-Kutta method can be extended to numerically solve the higher-
order ordinary differential equations- linear or non-linear
For illustration, let us consider a second order ordinary differential equation of the form

d’y dy)
= t, [
dt* f( Yt
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: o .o d : .
Using the substitution jy = p this equation can be reduced to two first-order
t

simultaneous differential equations, as given by

dy dp
—_—= = t’ , , —_—= t’ ,
P fit,y,p) 4 Sy, p)

Now, we can directly write down the Runge-Kutta fourth-order
formulae for solving the system.
Let the initial conditions of the above system be given by
y(xn):yn9 y'(xn):p(xn):pn
Then we define

kl:hfi(tn’yn’pn)’ llzhf‘Z(tn’yn’pn)

h k [ h k /
k,=hf,|t +—,y +—,p, +=|, L=hnf)|t +—,y +—,p, ++
2 fl‘{n 2 yn 2 pn 2} 2 f‘z(}’l 2 yn 2 pn 2)

h k / h k /
ky=hf|t +=,y,+—=,p,+= |, L=hf,|t +—,y, +—=,p +=
3 ﬁ(n 2 yn 2 pn 2} 3 .f;(n 2 yn 2 pn 2]
k,=hf,(t, +h,y, +k,,p, +1,), L =hf,(t, +h,y +k,p, +1)

th
Now, using the initial conditions YoPy and 4 -order R-K formula, we compute
1
Vol =V, +g(kl +2k, + 2k, + k)

P =D, +%(Z1 +21,+2L+1,)

This method can be extended on similar lines to solve system of n first order differential
equations.

Example

Solve the following equation

V' =0.)(1-y*)y +y=0

th
Using 4  order Runge-Kutta method for x = 0.2, with the initial values y(0) = 1, y’(0)=0
Solution:
dy

Let —=p=fi(x,y,p)
dx

d
Then d—i =(0.1)(1-p,)p-y = £,(x,3,P)

Thus, the given equation reduced to two first-order equations.
In the present problem, we are given

0y =1Lp =p =0
Yo Yo PP

Taking A = 0.2, we compute
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kl = hfl(xoayoapo) :02(00) =0.0

ll = hfz(xoayo,Po) = 02(00—1) =-0.2
h k i

k, = hf, (xo +5,y0 +El’p0 +5‘j

=hf,(0.1,1.0,-0.1) =-0.02

h k [
l,=h +—, Yy +—, Py +—
2 fz(xo 5 Yo 5 Py 2)

=hf,(0.1,1.0,-0.1) = 0.2(-0.1) = -0.02

12

h k

k,=h =, Yyt =, Pyt
3 fl(xo 2yo ) Py 2}

=1f,(0.1,0.99,-0.1) = 0.2(-0.1) =-0.02

h k, [,
13 = h]rz X +5,y0 +?,p0 +E = hﬂ(01,099,—01)

=0.2[(0.1)(0.0199)(—0.1)—0.99] = -0.1980

ky = hf(x, + h,y, +k;, py +15)
=hf,(0.2,0.98,-0.1980) = -0.0396

1, = hf,(x, + h, v, + ks, po +1,) = hf,(0.2,0.98,~0.1980)
= 0.2[(0.1)(1-0.9604)(~0.1980) — 0.98] = —0.19616

Now, y (0.2) =¥, is given by

1
y(0.2)=y =y, +g[k1 +2k, + 2k, + k, ]

=1+ é[0.0 +2(-0.02) +2(-0.02) + (-0.0396)]
=1-0.019935=0.9801
, 1
V'(0.2)=p =p, +g[l1 +20, +20 +1,]
=0 +%[—O.2 +2(—0.2) +2(-0.1980) + (-0.19616)]

=-0.19869(=-0.1987)

Therefore, the required solution is
¥(0.2) =0.9801, ¥'(0.2) =-0.1987
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PREDICTOR — CORRECTOR METHOD

The methods presented so far are called single-step methods, where we have seen that the
computation of y at tn+ J that is Yoid requires the knowledge of v, only.

In predictor-corrector methods which we will discuss now, is also known as multi-step
methods.
To compute the value of y at ¢

we must know the solution yat¢ ,¢ _,¢ ., etc.
n n n-2

n+1’ -1

Thus, a predictor formula is used to predict the value of y at tn+ 1 and then a corrector

formula is used to improve the value of Yorr

Let us consider an IVP
d
sy, )=y,
dt

Using simple Euler’s and modified Euler’s method, we can write down a simple
predictor-corrector pair

(P-C)as
Pyrig)l = yn +hf(tn’yn)
h
C : yr(tl+)1 = yn +§|:f(tn’yn)+f(th’y:lg)l):I
1
Here, yn+]() is the first corrected value of yn+1. The corrector formula may be

used iteratively as defined below:
yr(H)l =V +5|:f(tn:yn)+f(tn+1=y;5+ll)):|: r= 1:29---

The iteration is terminated when two successive iterates agree to the desired accuracy
In this pair, to extrapolate the value of Yo e have approximated the solution curve in

the interval (tn, tn+ 1) by a straight line passing through (tn, yn) and (tn-l- 1Vt 1).
The accuracy of the predictor formula can be improved by considering a quadratic curve
through the equally spaced points (tn_ 7V ), (tn, y / (tn TR 1)
Suppose we fit a quadratic curve of the form

y=a+b(t—t )+c(t—t)t—t, )
where a, b, ¢ are constants to be determined As the curve passes through
(tn A 1) and (tn, yn) and satisfies

d
(—yj = f(t,.7,)
(ty5V)

dt
We obtain Y, =a, y,=a+bh=y  +bh
Therefore
b — yn B yn—l
h
and
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d
(?y) = f(t,.p,) = b+cl(t—1, )+ (=1}, .,
L))

Which give
f@,y)=b+c(t, -t _)=b+ch
e W) =Y
h "
Substituting these values of a, b and ¢ into the quadratic equation, we get
Yo = Vi 200, =y, D+ 2AW . 9,) = (v, = y,)]

or

That is
yn+1 = yn—l +2hf(tn’yn)
Thus, instead of considering the P-C pair, we may consider the P-C pair given by
P:ynH :yn—l +2hf(tn’yn)

h
C:yn+] :yn +5[f(tn’yn)+f(tn+]’yn+])]

The essential difference between them is, the one given above is more accurate
However, this one can not be used to predict Yo for a given IVP, because its use

require the knowledge of past two points. In such a situation, a R-K method is generally
used to start the predictor method.

Milne’s Method

It is also a multi-step method where we assume that the solution to the given IVP is

known at the past four equally spaced point tO, t Tt tz and t3.
To derive Milne’s predictor-corrector pair, let us consider a typical [IVP

Yt )=

dt
On integration between the limits tO and ¢ 4 We get
Iy dy Iy
LO Zdt - J'to f(t,y)dt

Y=V = J.t: [, y)dt
But we know from Newton’s forward difference formula

@)= fo+sbfy+ S(Sz_ Dy, 4 36 _%s -2)

ASJfO +...

where s = , t=t,+sh

ty s(s—1)
vom 1| fesnry 2

+s(s—1(s—2)(s—3)A4f0+m}h
24

Now, by changing the variable of integration (from ¢ to s), the limits of integration also
changes (from 0 to 4), and thus the above expression becomes

2 s(s=D(s=2) 5
A f°+—6 A f,
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s(s s(s=1)

s(s—=D)(s—=2) 5
6 Ay

4
Y=y +h|, [4f0+ SAfy+=——= Ay +

N s(s—1(s— 2)(s -3)
24

A4f0+~-1ds
which simplifies to
Y, y0+h[4f0+8Af0 3 =N +— Af0+—A fo}

Substituting the differences
Mo=h=J N fo= =24+ /i,

It can be further simplified to
4h
y4:yo+?(2f1_f2 2f3)+ hAfo
Alternatively, it can also be written as
4h [ ' ! 28 4 7
Yo =Ny +?(2y1 ) +2y3)+%hA Mo

This is known as Milne’s predictor formula.

Similarly, integrating the original over the interval 7, to ¢, or s = 0 to 2 and repeating the

0 2
above steps, we get

W=tz (yo+4y1+y2)__OhA4 :

which is known as Milne’s corrector formula.
In general, Milne’s predictor-corrector pair can be written as

4h ' ' '
P:yn+1 :yn—3 +?(2yn—2 _yn—l +2yn)

h ! ! !
C:yn+l :yn—l +§(yn—l +4.yn +yn+l)

From these equations, we observe that the magnitude of the truncation error in
corrector formula is  1/902A*y,” while the truncation error in predictor formula is

28/90hA*y,

Thus: TE in, c-formula is less than the TE in p-formula.

In order to apply this P — C method to solve numerically any initial value problem, we
first predict the value of Yoi by means of predictor formula, where derivatives are

computed using the given differential equation itself.

Using the predicted value Yo We calculate the derivative y ,n+ J

differential equation and then we use the corrector formula of the pair to have the
corrected value of Yoy This in turn may be used to obtain improved value of Yo by

using corrector again. This in turn may be used to obtain improved value of Yo by

using the corrector again. This cycle is repeated until we achieve the required accuracy.
Example

from the given
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Find y (2.0) if y (#) is the solution of = —(t + )

v (0)=2,y(0.5)=2.636,
¥ (1.0) = 3.595 and y(1.5) = 4.968 Use Milne’s P-C method.
Solution

Taking tO =0.0, tl =0.5, t2 =1.0, t3 =1.5 yo,yl,y2 andy3, are given, we have to
compute y 4 the solution of the given differential equation corresponding to ¢t =2.0

The Milne’s P — C pair is given as

4h ' i '
P y}z+1 y +?(2yn—2_yn—l+2yn)

h ' ' '
C:yn+] :yn—1+§(yn—] +4yn+yn+l)

From the given differential equation, y'=(t+y)/2

We have
yl,:tl+y] =0'5+2'636=1.5680
2 2
¥ = LAy, _ 1.0+3.595 29975
2 2
Y _ 4 ;y3 _ 1.5+;.968 39340

Now, using predictor formula, we compute
4h ! ! !
Ya=Do +_(2y1 =y, +2y3)

4(0.5) 40.5)y

=2+ 2(1.5680) —2.2975+2(3.2340)]

=6.8710
Using this predicted value, we shall compute the improved value of y 4 from corrector

formula
h !’ ! !
Vo= +§(y2 +4y3 +y4)
Using the available predicted value y 4 and the initial values, we compute

, f,+y, 2+6.68710

= = - =4.4355
Y4 > >
¥ = t —;y3 _ 1.5+;.968 39340

and v, =2.2975
Thus, the first corrected value of y 4 is given by
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y =3.595 +—[2 2975+ 4(3.234) + 4.4355]

=6.8731667
Suppose, we apply the corrector formula again, then we have

=y, [(y; +4y+04"Y]

0.5

~3.595 +T{2 2975+ 4(3.234) + M}

= 6.8733467
Finally,  (2.0) =y, = 6.8734.

Example
Tabulate the solution of % =t+y, y(0)=1in the interval [0, 0.4] with h = 0.1,

using Milne’s P-C method.
Solution

Milne’s P-C method demand the solution at first four points ¢ 0 1 t2 and t3 Asitisnota

self — starting method, we shall use R-K method of fourth order to get the required
solution and then switch over to Milne’s P — C method.

Thus, taking tO =0, tl 0.1, t2 =0.2, t3 0.3 we get the corresponding y values using

th
R-K method of 4  order; that is Yo~ l,yl =1.1103, Yy = 1.2428 andy3 =1.3997

(Reference Lecture 38)
Now we compute
yi=t,+y,=0.1+1.1103=1.2103

vy =t,+y,=02+1.2428=1.4428
Vs =t,+y,=034+1.3997 =1.6997
Using Milne’s predictor formula

4h 1 1 ’
Py, =y, +_(2y1 — ¥, +2y5)

=1+ 4(2 :5) [2(1.21103) - 1.4428 + 2(1.69971)]

=1.58363
Before using corrector formula, we compute
vy =t,+y,(predicted value)
=0.4+1.5836=1.9836
Finally, using Milne’s corrector formula, we compute
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h ! ! !
C:y,=y, +§(J’4 +4y;+ ;)

=1.2428 +%(1 9836 +6.7988+1.4428)

=1.5836
The required solution is:
t 0 0.1 0.2 0.3 0.4
y 1 1.1103 1.2428 1.3997 1.5836

Example
Using Milne’s Predictor-Corrector Formula find {(0.4) from Ordinary Differential
Equation
yi=x-y ; y0)=1; h=0.1
with the help of following table.

X 0 0.1 0.2 0.3

Y 1 0.9097 0.8375 0.7816
Solution:
Here,

X%=0, =01, x,=02 , x,=03, x,=04

y,'=x, -y =0.1-0.9097 = —0.8097
y,'=x, -y, =0.2-0.8375=-0.6375
y,'=x,—y, =0.3-0.7816 =—0.4816

Now, using Predictor Formula

4h
Yi=Yo +?(2;vl —y,'+2y,")

*
s :1+%(-1.9451)

y, =0.740653333
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Using the predicted value, we shall now compute the corrected value as;

h 1 1 1
Vo= +§(.V2 +4y, '+, )
Now,

V' =x,—y,=0.4-0.740653333=-0.340653333

Putting the values,into the Corrector Formula;

h
Yi= Y, +§(y2 +4y,'+y,")

v, = 0.8375+%(—0.6375+(4*—0.4816) -0.340653333)

v, =0.8375-0.096818444

v, =0.740681556  Ans.
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Adam-Moulton Method

It is another predictor-corrector method, where we use the fact that the solution to the
given initial value problem is known at past four equally spaced points

t .t .t ot .
n’ n-1" n-2’ n-3

The task is to compute the value of y at ¢

n+1’
Let us consider the differential equation
dy
- t
4 AUSY
Integrating between the limits t to ¢ g Ve have

[ L= [ p v
That is
Vo =y = [ 1)

To carry out integration, we proceed as follows. We employ Newton’s backward
interpolation formula, so that

f)=fy5vf,+ 2Dy NS D gy
Where
t—t
S = n
h
After substitution, we obtain
Lyt s(s+1
yn+1:yn+L [f;l+svf;t+ ( )Vf
N s(s+ lé(s +2) V4 s(s+ 1)(s2-;2)(s +3) VL e } dr

Now by changing the variable of integration (from ¢ to s), the limits of integration also
changes (from 0 to 1), and thus the above expression becomes
s(s+ 1)

1
Yo =0+ L, + 5V, + ==V,
Jrs(s+1)(s+2) Vi +s(s+1)(s+2)(s+3) VL e |ds
6 24
Actual integration reduces the above expression to
1 5 3 251
=y +h| f,+=Vf, +=Vf +=V'f + —V* ]
yn+l yn (f;z 2 ﬁz 12 f;’l 8 f;’l 720 fn

Now substituting the differences such as

Vi =1 = fa
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vzj;1 = f;a _2f;1—l + n-2
VBfn = fn - 3fn—1 + 3fn—2 - -fn—S

Equation simplifies to

251

h 4
=y +—(55f -59f +37f ,-9 +—hV
yn+] yn 24 ( f;1 f;1—l J{n—Z fn—S) 720 fn
Alternatively, it can be written as
h 251
=y +—[55y' =59y +37y' -9y |+=——hV*)
yn+l yn 24 [ yn yn—l yn—Z yn—3] 720 y

This is known as Adam’s predictor formula.
The truncation error is (251/720)hV*y.

To obtain corrector formula, we use Newton’s backward interpolation formula about
instead of f .
/ n+l / n

We obtain
0 s(s+1
yn+1 = yn +h_[_l[j;1+l +SV n+l + ( 2 )vzfnﬂ
N s(s+1)(s+2) Vo4 s(s+1D)(s+2)(s+3) VL e |ds
6 24
Carrying out the integration and repeating the steps, we get the corrector formula as
h -19
=y +—(9y,, +19y' =5y' +y' )+| — |hV"y!
yn+1 yn 24 ( yn+1 yn yn—l yn—Z ) ( 720} yn+1

Here, the truncation error is (19/20)2V*y! ..

The truncation error in Adam’s predictor is approximately thirteen times more than that
in the corrector, but with opposite sign.

In general, Adam-Moulton predictor-corrector pair can be written as

h ' ' ' '
P : yn+1 = yn +g(55yn _59)}’1—1 +37yn—2 _9yn—3)

h 1 1 1 1
C:yu=Y, +§(9yn+l +19y, =5y, +¥.,)

Example
Using Adam-Moulton predictor-corrector method, find the solution of the initial value
problem

dy 2

—=y-t, 0)=1

=7 ¥(0)

at £ = 1.0, taking 2 = 0.2. Compare it with the analytical solution.
Solution

In order to use Adam’s P-C method, we require the solution of the given differential

t
equation at the past four equally spaced points, for which we use R-K method of 4
order which is self starting.
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Thus taking tO =0, yO =1, h=0.2, we compute
k1 =0.2, k2 =0.218,

k3 =0.2198, k4 =0.23596,

and get

Y=Y, +%(k1 +2k, + 2k, +k,)=1.21859
Taking tl =0.2,
Y = 1.21859, h=0.2,
we compute k. = 0.23571,
k2 =0.2492,

k3 =0.250064, k4 =0.26184, and get

V=0 +é(k1 +2k, + 2k, +k,)=1.46813

1

Now, we take t2 =04,

Yy = 1.46813, h = 0.2, and compute k&
k2 =0.2697,

k3 =0.2706, k4 =0.2757

to get
»;=(0.6)=y, +%(kl +2k, + 2k, + k,)=1.73779

1= 0.2616,

Thus, we have at our disposal
Yo =y(0)=1

¥, =»(0,2)=1.21859

v, =(0.4)=1.46813

v, =»(0.6)=1.73779
Now, we use Adam’s P-C pair to calculate y (0.8) and y (1.0) as follows:

h [ [ ! ’
P:y,.. =, +Z(55yn —59y, ,+37y,, =9 ;)

h 1 1 1 1
C:yu=Y, +£(9yn+l +19y, =5y, + Vi)

h ’ 1 ’ !
Thus yf:y3+£(55y3—59y2+37y1—9y0) (1

From the given differential equation, we have

y=y-t.
Therefore
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Yo =Yo—1t; =1.0

y =y, —t; =1.17859

y,=y,—t: =1.30813

yi=y,—t; =1.37779
Hence, from Eq. (1), we get

y(0.8) =yl = 1.73779+%(75.77845—77.17967+43.60783—9) =2.01451

Now to obtain the corrector value of y at £ = 0.8, we use
c c h !’ ’ ! !
Vi =y 08) =y, + 7 (9 #1941 =5V, + 1)

But 9y, =9(yY —tj) =9[2.01451—-(0.8)*]=12.37059
Therefore

v, =y°(0.8) = 1.73779+(;—'j(12.37059 +26.17801-6.54065 +1.17859) =2.01434

Proceeding similarly, we get

h ! ! ! !
¥ =y"(1.0)=y, +£(55y4 —59y,+37y; -9y})

Noting that
Vi =y, —t; =1.3743,
We calculate

yi= 2.01434+%(75.5887 —81.28961+48.40081-10.6073 1) =2.28178

Now, the corrector formula for computing y 5 is given by

(2)

)

¢ ¢ h ' ' ’ ’
Vs =Y (1-0):y4+£(9)’5+19y4_5y3+y2) 4)
But
9y; =9(yf —£)=11.53602
Then finally we get
s =y(1.0)=2.01434 +%(1 1.53602+26.17801—6.54065+1.17859)
=2.28393 (5)
The analytical solution can be seen in the following steps.
dy 2
- —y=—t
a
After finding integrating factor and solving, we get
iye_l _ _e—ztz
dt
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Integrating, we get

That is

ye‘t = _J. e 't?dt = J-tzd(e_’) =t’e " +2e " +¢

2 c
y=t +2t+2+;

Now using the initial condition, y(0) =1,

we getc=—1.

Therefore, the analytical solution is given by

From which we get

Example

y=t'+2t+2-¢

1(1.0)=5-e=2.2817

Using Adam-Moulton Predictor-Corrector Formula find f(0.4) from Ordinary

Differential Equation

Y =1+2xy ; »0)=0; h=0.
with the help of following table.
X 0 0.1 0.2 0.3
Y 0 0.1007 0.2056 0.3199
Solution:
Here
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h=0.1

S(x,y)=1+2xy

¥ '=1+2x,y, =1+2(0)(0)=1

y,'=1+2xy, =1+2(0.1)(0.1007) =1.02014
¥, "=1+2x,y, =1+2(0.2)(0.2056) = 1.08224
yy'=142xy, =1+2(0.3)(0.3199) =1.19194

Now, Using Adam's P-C Pair Formula:-

h ' ' ' '
yn+1 =yn+£(55y n_59y n—1+37y n—2_9y n—3)

Putting the values;

h 1 1 1 1
Vs :y3+£(55y ;—=59y,+37y" =9 0)

V= 0.3199+%(55(1.19194)—59(1.08224)+37(1.02014)—9(1))

v, =0.446773833
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Computing y', for the Corrector Formula,

vy =1+2x,y, =1+2(0.4)(0.446773833)
»', =1.3574190664

Now Applying the Corrector Formula;

h ' ' ' '
yn+1 =yn+£(9y n+1+19y n_sy nfl+y n—2)

h 1 1 1 1
Vi =V +£(9y 19y =5y + ")

V= 0.3199+%(9(1.3574190664)+19(1.19194)—5(1.08224)+1.02014)

v, =0.446869048

Convergence and Stability Considerations
The numerical solution of a differential equation can be shown to converge to its exact
solution, if the step size 4 is very small.The numerical solution of a differential equation
is said to be stable if the error do not grow exponentially as we compute from one step to
another. Stability consideration are very important in finding the numerical solutions of
the differential equations either by single-step methods or by using multi-step methods.
However, theoretical analysis of stability and convergence of R -K methods and P —C

methods are highly involved and obtain numerically stable solution using 4t order R - K
method to the simple problem y” = Ay gives us stability condition as -2.78<4h

In practice, to get numerically stable solutions to similar problems, we choose the value
of h much smaller than the value given by the above condition and also check for
consistency of the result.

Another topic of interest which is not considered, namely the stiff system of differential
equations that arises in many chemical engineering systems, such as chemical reactors,
where the rate constants for the reactions involved are widely different.

Most of the realistic stiff DE do not have analytical solutions and therefore only
numerical solutions can be obtained. However, to get numerically stable solutions, a very
small step size h is required, to use either R-K methods or P — C methods.

More computer time is required
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Lecture # 41

Examples of Differential Equations

Recall EULER METHOD

We considered the differential equation of first order with the initial condition y(t0) = yO0.

dy
=fy)
dt
We obtained the solution of the given differential equation in the form of a recurrence relation

ym+l :ym +hf(tm7ym)
In fact Euler’'s method constructs wi ~ y(ti ) for each i = 0, 1,..., N-1 by deleting the remainder
term. Thus the Euler's Method is

w, =a,

W =W R (4, W)

for each i=0,1,...N -1
Euler’s algorithm

Let us try to approximate the solution of the given IVP at (N+1) equally spaced numbers in the
interval [a ,b]

y'=/y),
a<t<bh, yva)=«a
INPUT endpoints a, b; integer N, initial condition (alpha)
OUTPUT approximate w to y at the (N+1) values of t
Step 1
Set h=(b-a) /N
t=a
w = (alpha)
OUTPUT (t,w)
Step 2
Fori=0,1,...N do Step 3, 4.
Step 3

Set w=w+hf(t,w); (compute wi).
t=a+ih (computeti)
Step 4 OUTPUT (t, w)
Step 5 STOP
Example
Use Euler’s method to approximate the solution of IVP
y=y—-t"2+1,0<t<2,
y(0)=0.5 with N =10.
Solution
Here, h = 0.2, ti = 0.2i, w0= 0.5 and wi+1 =wi + h (wi—ti"2 + 1)
= wi+0.2[wi - 0.04i2 +1]
=1.2 wi - 0.008i*2 + 0.2
fori=0,1,...,9.
The exact solution is
y(t)=(t+1)"2-05¢e"
> alg051();
This is Euler's Method.
Input the function F(t,y) in terms of t and y



For example: y-t"2+1
> y-tA2+1
Input left and right endpoints separated by blank
>02
Input the initial condition
>0.5
Input a positive integer for the number of subintervals
>10
Choice of output method:
1. Output to screen
2. Output to text file
Please enter 1 or 2
>1
Output
t w
0.000 0.5000000
0.200 0.8000000
0.400 1.1520000
0.600 1.5504000
0.800 1.9884800
1.000 2.4581760
> alg051();
This is Euler's Method.
Input the function F (t,y) in terms of t and y
For example: y-3*t"2+4
> y-3*th2+4
Input left and right hand points separated by a blank
>01
Input the initial condition
>0.5
Input a positive integer for the number of subintervals
>10
Choice of output method:
1. Output to screen
2. Output to text file
Please enter 1 or 2
> 1
Output
t w
0.000 0.5000000
0.100 0.9500000
0.200 1.4420000
0.300 1.9742000
0.400 2.5446200
0.500 3.1510820
0.600 3.7911902
0.700 4.4623092
0.800 5.1615401
0.900 5.8856942
1.000 6.6312636
Recall Runge-Kutta (Order Four) METHOD
The fourth-order R-K method was described as

Vol =V, +é(kl +2k, + 2k, + k)

where



k= hf(t,.y,)

h k
k,=hf|t +—,y +—
2 f(n 2yn zj

h k
k,=hf|t +—,y, +—=
3 f(n 2yn 2)

k4 :hf(tn+h7yn+k3)

Example
Solve the following differential equation

d
Y _ t+ vy with the initial condition y(0) = 1, using fourth- order Runge-Kutta method fromt =10

dt
tot= 0.4 taking h = 0.1

Solution
The fourth-order Runge-Kutta method is described as

Vot =V +%(kl +2k, + 2k, + k) @

where

ky = hf(2,,,)

h k
k,=hf|t +—,y +—
2 f(n 2yn 2)

k, =hf(tn+§,yn +%j
ky=hf(t, +h,y,+k)

In this problem,

f@y)=t+y, h=0.1, t,=0, y,=1.

As a first step, we calculate

k =hf(t,,y,)=0.1(1)=0.1

k, = hf (t,+0.05, y, +0.05)
=hf'(0.05,1.05)=0.1[0.05+1.05]
=0.11

ky, = hf (¢, +0.05, y, +0.055)
=0.1(0.05+1.055)
=0.1105

k,=0.1(0.1+1.1105) =0.12105
Now, we compute from



V=Y +%(k1 +2k, + 2k, + k,)

=1+%(0.1+O.22+0.2210+0.12105)

=1.11034

Therefore y(0.1) = y1=1.1103
In the second step, we have to find y2 = y(0.2)
We compute

k = hf(t,y,)=0.1(0.1+1.11034) = 0.121034
h k

k,=hf|t,+=,y, +—=

2 f(1 > Y 2)

=0.10.15+(1.11034+ 0.060517)] = 0.13208
h k

k,=hf|t +—,p +—-=

3 f(1 5 Y 2)

=0.110.15+(1.11034+0.06604)] = 0.132638
k4 = hf(tl +h,y1 +k3)

=0.10.2+(1.11034+0.132638)] = 0.1442978
From Equation (1), we see that

V, = 1.11034+é[0.121034+2(0.13208)

+2(0.132638) +0.1442978] =1.2428

Similarly we calculate,
k =hf(t,,y,)=0.110.2+1.2428] = 0.14428

k, = hf(rz +§, ¥, +%] =0.10.25+ (1.2428 + 0.07214)] = 0.156494

k, = hf(z‘1 Jr%,y1 +%) =0.110.3+(1.2428+0.078247)] = 0.1571047

ky,=hf(t,+h,y,+k)=0.10.3+(1.2428 +0.1571047)] = 0.16999047
Using equation (1), we compute

$(0.3) =y, =y, +é(k1 + 2k, + 2k, +k,) =1.399711

Finally, we calculate
k, =hf(t,,y,)=0.10.3+1.3997]1=0.16997

k, = hf(tS + g y, + %) =0.1[0.35+(1.3997 + 0.084985)] = 0.1834685

ky = hf(z‘3 +g,y3 +%J =0.1[0.35+(1.3997+0.091734)] = 0.1841434

k, = hf(t, +h,y, + k) = 0.1[0.4+(1.3997 + 0.1841434)] = 0.19838434

Using them in equation (1), we get



y(04) =4
=y, +é(kl +2k, + 2k, + k)
=1.58363

which is the required result
Runge-Kutta Order Four

W, =a

kl = hf(tiawi)

h k
k, =hf(t,. +§an +E‘j

h k
ky=hf|t,+—,w +-=
3 fﬂ R 2)
k, = hf (t, + hyw +k,)

Wi+1

=wi+%(kl+2k2+2k3+k4) ................. )]

RK4 algorithm
Let us try to approximate the solution of the given IVP at (N+1) equally spaced numbers in the
interval [a ,b]

V'=fty)
a<t<hb, v(a)=«a
INPUT endpoints a, b; integer N, initial condition (alpha)
OUTPUT approximate w to y at the (N+1) values of t
Step 1
Set h=(b-a) /N
t=a
w = (alpha)
OUTPUT (t,w)
Step 2
Fori=0,1,...N do Step 3 - 5.
Step 3
Set
Ky =hf(t,w)

h K
K, :hf(t+5,w+71j

h K
K,=hf|t+—,w+—=
3 f[ > w > )

K,=hf(t+h,w+K,)

Wi+1

=w, +%(k1 +2k, + 2k, + k)

Step 3

Set w=w+hf(t,w); (compute wi).
t=a+ih (computeti)

Step 4 OUTPUT (t, w)



Step 5 STOP
> alg052();
This is the Runge-Kutta Order Four Method.
Input the function F(t,y) in terms of t and y
For example: y-t*2+1
> y-tA2+1
Input left and right endpoints separated by blank
>02
Input the initial condition
>0.5
Input a positive integer for the number of subintervals
>10
Choice of output method:
1. Output to screen
2. Output to text file
Please enter 1 or 2
>1
Output
t w
0.000 0.5000000
0.200 0.8292933
0.400 1.2140762
0.600 1.6489220
0.800 2.1272027
1.000 2.6408227
1.200 3.1798942
1.400 3.7323401
1.600 4.2834095
1.800 4.8150857
2.000 5.3053630



Lecture 42
Examples of Numerical Differentiation

The simplest formula for differentiation is

£ = 1 Gy )= 1) e,

Example
Let f(x)= In x and x0 = 1.8. Then quotient

fA.8+h)— f(1.8) 10
h b b
is used to approximate f'(1.8) with error

")l A
2 2877 2(1.8)
Let us see the results for h = 0.1, 0.01, and 0.001.

where 1.8<&<1.8+4.

h f(1.8 + h) f(1.8+h)— £(1.8) 1A

h 2(1.8)°
0.1 0.64185389 0.5406722 0.0154321
0.01 0.59332685 0.5540180 0.0015432

0.001 0.58834207 0.5554013 0.0001543



Since f'(x)=1/x,

The exact value of f7(1.8) is 0.555 and the error bounds are a appropriate.

The following two three point formulas become especially useful if the nodes are equally spaced,
that is, when

x1=x0+h and

X2 =x0 + 2h,

, 1 h’
S(x) = E[_3f(xo) A4S (o + )= f (% + 2h)]+?f(3)(§0),
where &,  lies between x0 and x0 + 2h, and

J'(x) =%[f(xo +h) = f(x —h)]—h?jf(”(éi),

where & lies between (x0 —h) and (x0 + h).
Given in Table below are values for f (x) = xe™.

X f(x)

1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
22 19.855030
Since

f'(x)=(x+1e", f'(2.0)=22.167168.

Approximating 1'(2.0)

using the various three-and five-point formulas produces the following results.
Three point formulas:

£(x) = ﬁ[—sﬂxo) FAL G+ )~ (%, +20)] +%f“>(50>,

J'(x) =i[f(xo + )= 1 (%, —h)]—h—gf(”(é),

Using three point formulas we get

h=0.1 :é[—3f(2.0) +4£(2.1)- f(2.2)]
=22.032310,



h=-0.1 :ﬁ[a f(2.0)+4£(1.9)— £(1.8)]
=22.0054525,
L _
h=0.1:— [fQ2.1)-f(1.9)]
=22.228790,
1
h= o.z.ﬁ[f(z.z)—f(l.s)]

=22.414163.

Five point formula
Using the five point formula with h = 0.1 (the only formula applicable):

1'(x) =$[f(xo —2h) =8 f (x, —h)+8 1 (x, +h) = f (x, +2h)]

_ é[ S1.8)=81(1.9)+81(2.1)— £(2.2)]

=22.166999.
The errors in the formulas are approximately

1.35x107",1.13x107", —6.16x107%,-2.47x107",

and 1.69x107*,

respectively. Clearly, the five-point formula gives the superior result.
Consider approximating for f (x) = sin x, using the values in table [ the true value is cos (0.900) =
0.62161.]

X sin x X sin x

0.800 0.71736 0.901 0.78395
0.850 0.75128 0.902 0.78457
0.880 0.77074 0.905 0.78643
0.890 0.77707 0.910 0.78950
0.895 0.78021 0.920 0.79560
0.898 0.78208 0.950 0.81342
0.899 0.78270 1.000 0.84147

Using the formula



£(0.900+ k) — £(0.900 &)

'(0.900) ~
/7(0.900) 7

with different values of h gives the approximations in table given below:

h Approximation to Error
£7(0.900)

0.001 0.62500 0.00339
0.002 0.62250 0.00089
0.005 0.62200 0.00039
0.010 0.62150 -0.00011
0.020 0.62150 -0.00011
0.050 0.62140 -0.00021

0.100 0.62055 -0.00106



Examples of
Numerical Integration
EXAMPLE

The Trapezoidal rule for a function f on the interval [0, 2] is

J; @ =217+ £ (6]
[ redr =~ £+ 12,

while Simpson’s rule for f on [0, 2] is

J.ozf(x)dx:g[f(xo)+4f(x1)+f(x2)]-
That is

J; fede =S +4f D+ Q)

f (x) x2 x4 1/(x+ 1) 2 sinx ex

1+x

Exactvalue 2.667 6.400 1.099 2.958 1416  6.389
Trapezoidal 4.000 16.000 1.333 3.326 0.909 8.389

Simpson’s 2,667 6.667 1.111 2.964 1.425 6.421

Use close and open formulas listed below to approximate

IO”/4sin xdx=1- \/5/2

Some of the common closed Newton-Cotes formulas with their error terms are as follows:
n=1: Trapezoidal rule

" = ﬁ _ h_3 n
I @ = 307G+ £ )= 1)

Where x, <& <x,.
n = 2: Simpson’s rule



X, <& <x,.

[ £ =207+ A1 G+ S ()] o O E),

n = 3: Simpson’s rule
2 £ =2 () + 37000+ 3 () + FGNI-S F O, % <é<x,
n=4:

E S (x)dx :%[7f(xo)+32f(x1)+12f(x2)+32f(x3)+7f(x4)]_%f(6)(§

Where x, <& <x,.

n=0: Midpointrule

where x , <& <x,.

[ e =2mf i) + 5 176,

n 1 2 3 4

Closed 0.27768018 0.29293264 0.29291070  0.29289318
formulas

Error 0.01521303 0.00003942 0.00001748  0.00000004
Open formulas  0.29798754 0.29285866 0.29286923

Error 0.00509432 0.00003456 0.00002399

Composite Numerical Integration



EXAMPLE 1
Consider approximating j: sin xdx with an absolute error less than 0.00002, using the

Composite Simpson’s rule. The Composite Simpson’s rule gives

7 h (n/2)-1 n/2 7Z'h4

'[0 sin xdx = 3 2 Z sinx,; + 42 sinx,; | |— @sm M.
J=1 J=1

Since the absolute error is required to be less than 0.00002, the inequality

4 4 5
7h h T

130 180 1807°

is used to determine n and h. Computing these calculations gives n greater than or equal to 18. If
n = 20, then the formula becomes

. 9 . 10 .
["sinxdx ~=-| 23 sin (ﬂ] +4) sin (Mj =2.000006.
0 60| = (10) 5 20

To be assured of this degree of accuracy using
the Composite Trapezoidal rule requires that

2 2 3
h < T T
12

12 122°

orthat n>360. Since this is many more

calculations than are needed for the

Composite Simpson’s rule, it is clear

that it would be undesirable to use the Composite Trapezoidal rule on this problem. For
comparison purposes, the Composite Trapezoidal rule with n = 20 and

gives

ju 19 .
.[ sin xdx = x 22 sin (ﬂ] +sin0+sin 7z
0 401 ‘S 20

19 .
= Z |23 sin| £2 | | =1.9958860.
40 20

The exact answer is 2; so Simpson'’s rule with n = 20 gave an answer well within the required
error bound, whereas the Trapezoidal rule with n = 20 clearly did not.

An Example of Industrial applications: A company advertises that every roll of toilet paper
has at least 250 sheets. The probability that there are 250 or more sheets in the toilet paper is
given by

P(y>250)= '[;00.3515 o 03881(y-2522)° dy
Approximating the above integral as
P(y>250)= LZ)O 03515 e 03881-25227 dy

a)use single segment Trapezoidal rule
to find the probability that there are 250
or more sheets.

b)Find the true error, Et for part (a).
C)Find the absolute relative true

error for part (a).

< <0.00002

sin p

sin u <0.00002




where

Iz(b_a){f(a);f(b)}

a=250 =270

f(y) _ 0'35156—0.3881@—252.2)2 f(250) _ 0.35156—0.3881(250—252‘2)2
=0.053721

£(270) = 0.3515¢3%1270-222° _ 1 388810

0.053721+1.3888 x 10-54}

I= (270—250){ :

=0.53721

b) The exact value of the above integral cannot be found. We assume the value obtained by
adaptive numerical integration using Maple as the exact value for calculating the true error and
relative true error.

P(y2250)=[ 03515 ¢ 02y,
= 0.97377

so the true error is =0.97377-0.53721 =0.43656
The absolute relative true error,

|€;| , would then be

|€’| " | True Value
_[0.97377-0.53721|

100
T 09371 |

=44.832%
Improper Integrals

EXAMPLE
To approximate the values of the improper integral

'[(: %dx,

True Error <100

we will use the Composite Simpson’s rule with h = 0.25. Since the fourth Taylor polynomial for ex
aboutx =01is
2 3 4

P(x)—1+x+x—+x—+x—
2 6 24
We have
1
Ip(x)d = lim [2x1/2+2x/ +1x/2+LX7/2+Lx9/2}
M—0° 3 5 21 180 "
o2y L Lo 9035450
3 5 21 108

Table below lists the approximate values of



¢ R

6= Ja when x=0

0,
X G(x)
0.00 0
0.25 0.0000170
0.50 0.0004013
0.75 0.0026026
1.00 0.0099485

Applying the Composite Simpson’s rule to G using these data gives
1
j G(x)dx ~

u[0 +4(0.0000170) + 2(0.0004013)

+4(0.0026026)+0.0099485]

=0.0017691
Hence

J.le—dx ~2.9235450+0.0017691=2.9253141.
T

This result is accurate within the accuracy of the Composite Simpson’s rule approximation for the
function G. Since ‘G(‘” (x)‘ <1

on [0, 1], the error is bounded by

129 0,25y (1) = 0.0000217.

180
EXAMPLE
To approximate the value of the improper integral

1= j *sin— dx



1
we make the change of variable t = x”" to obtain [ = IO ' sint dt.

The fourth Taylor polynomial, P4(t), for sin t about O is
1
1AW Zf—gf )

So we have [ = j- 5/2dt

. 1
i1sinf—t+1¢ 2 1

:j T6dt+ —l3/2 ——t7/2
o ¢ 3 21 |,

1s1nt 4+ t
1/2 It

_j1s1nt—t+ t

W dt+0.61904761.

Applying the Composite Simpson’s rule with n = 8 to the remaining integral gives
1 =0.0014890097 +0.61904761 = 0.62053661,

which is accurate to within 4.0x107%,



An
Introduction to
MAPLE

Maple is a comprehensive
computer system for advanced mathematics.

It includes facilities for interactive algebra, calculus, discrete mathematics, graphics, numerical
computation etc.

It provides a unique environment for rapid development of mathematical programs using its vast
library of built-in functions and operations.

Syntax :As with any computer language, Maple has its own syntax.

We try to explain some of the symbols used in Maple

Symbol Description Examples gimf
. End-of-line. Tells Maple to process the hello: hello
’ line and show the output. ’
End-of-line. Tells Maple to process the hello:
line and hide the output. ’
— Assignment. Lets you assign valuesto a :=3; a=3
variables. a; 3
" . 1+ 3; 4
+, - Addition, subtraction. 1-3: 2
3*412; 1236
* Multiplication, division 1236/3; 412
7/3; 7/3
213,
A sqrt Power, square root sqrt(2);
2M1/2);
evalf, . Floating-point (decimal) evaluation evalf(7/3); 2333333333

7.0/3; 2.333333333



2+ 37; 2+3|
I,Pi Imaginary unit, Pi. (2*H"2; -4
evalf(Pi); 3.14159265

Recall the last output, recall the second- %;

to-last output, etc. % % %; 3.14159265-4

%, %%

Some syntactical Tips:
Maple is case sensitive. foo, Foo, and FOO are three different things.

x*y gives the product of x and y,
Xy is one variable

To get the constant e use exp(1).

Using the % operator can give confusing results. It always returns the last output from the
Kernel, which may have nothing to do with where the cursor is (or which worksheet is active).
If Maple doesn't recognize something, it assumes it as a variable; e.g. typing i*2 will give you
i2,while we may be wanted -1.

Spaces are optional.

Greek letters may be entered by spelling their name. For example, alpha is always displayed
as @ ,and Gamma is displayed as I
(note upper-case).
Built-in Data Capabilities
Maple can handle arbitrary-precision floating point numbers. In other words, Maple can store as
many digits for a number as you like, up to the physical limits of your computer's memory. To
control this, use the Digits variable.
sqrt(2.0);
1.414213562
Digits := 20:
sqrt(2.0);
1.4142135623730950488

Maple sets Digits to be 10 by default. You can also temporarily get precision results by calling
evalf with a second argument.
evalf(sqrt(2), 15);
1.41421356237310
Large integers are handled automatically

Using symbolic computation
The main feature of Maple is symbolic computation.



In other words, Maple does algebra.

Example

(x +y)*2;

k= x*y + y"2;

p =k /(x+y);

k:="k"

Output Comments

(x +y)? A basic expression.

k is now an alias for the expression. Note that k is
simply another name for the expression - they are not
equal in the mathematical sense.

ki=xy+y

You can now use k to refer to the expression. Maple
immediately substitutes the value of k.

You can unassign a variable by assigning it to its own
name in single quotes.



simplify(p); y The simplify command does algebraic simplification.

p:=x"2 - p :=x2 - Maple doesn't mind if you re-use names. The old value is
8*x +15; 8x +15 lost.

Use the solve command to solve equations. Note the
use of the = sign. Here, it is used in a mathematical

solve(p=3,x); 2,6 sense. Maple will try different values for x until it finds all
of them that make the mathematical statement x2 - 8x +
15 = 3 true.

The diff command differentiates an expression

dpdx := diff(p,x); dpdx :=2x -8 with
respect to a variable.

ol
Fe ><
. . [ The int command integrates an expression.
int(p,x): THN T Note that the constant of integration is left off.
LT
|
Ly

Basic Plotting
Maple can produce graphs very easily. Here are some examples, showcasing the basic

capabilities.



3 5 ]
(rowth 2 ]
1
I T |
2 1 A ] 1
Time 5 bt
plot( x*2, x=-2..2); plot( x2, x=-2..2, y=-10..10);
A basic plot. A plot with vertical axis control.

i

l'||II||||

plot([x, x*2, x*3], x=-2..2);
Plot multiple expressions by enclosing them in brackets.



plot3d(4-x*2-y*2, x=-3..3, y=-2..2);

A basic 3-d plot.

smartplot3d(x"2-y2);



Using smartplot to let maple set it's own scaling.

Eigenvals and vectors of a numeric matrix :
Calling Sequence

Eigenvals( A, vecs)

Eigenvals( A, B, vecs)

Parameters
A,B - square matrices of real or complex numbers
vecs - (optional) name to be assigned the matrix of eigenvectors

Example
> A = array([[1,2,4],[3,7,2].[5,6,91]);
1 2 4
A=z 7 2
] fa Q
evalf(Eigenvals(A));

[-. 2048025434, 13 74722001, 4 146713483]
> lambda := evalf(Eigenvals(A,vecs));
A= [- 2046025434, 13 74722001, 4.146713425]

> print(vecs);
0948575123 0 3502673642 - ARETIERIAEE

- 2212195168 0. 4346670537 07371720079

- 3074361518 0927641 5241 - BO35E00728
linalg[eigenvectors] - find the eigenvectors of a matrix

Calling Sequence
eigenvectors( A)
eigenvectors( A, 'radical')
eigenvectors( A, "implicit')



Parameters
A - square matrix
The command with(linalg,eigenvectors) allows the use of the abbreviated form of this
command.
> with(linalg):
Warning, the protected names norm and trace have been redefined and unprotected
> A := matrix(3,3, [1,-3,3,3, -5,3,6,-6,4]);

i} -f 4
> ¢ := eigenvalues(A);
g =4 -2 -2

> v := [eigenvectors(A)];

vE[4 DAL LA, 022 0L L0 L, 0, 103

>v[1][1]; # The first eigenvalue
4

> v[1][2]; # Its multiplicity

1

> v[1][3]; # Its eigenvectors
{1, 1, 2]}

> v[2][1]; # The second eigenvalue
-2

> v[2][2]; # Its multiplicity
>v[2][2]; # Its multiplicity

2

Help

its worksheet interface

» Waiting for command;
» Restart; refresh memory;
» # #; comments so no action implied
Eval - Evaluate an expression
Calling Sequence
Eval(a, x=n))
Eval(a, {x1=nl,x2=n2,...})
Parameters
a - an expression
X, x1, x2,... - names
n, nl, n2,... - evaluation points
Description
The Eval function is a place holder for evaluation at a point.
The expression a is evaluated at
x =n (x1=nl, x2=n2, ... for the multivariate case).



The call Eval (a, x=n) mod p evaluates the polynomial a at x=n modulo p .

Note: The polynomial must be a multivariate polynomial over a finite field.

The call modp1(Eval(a,n),p) evaluates the polynomial a at x =n modulo p where a
must be a univariate polynomial in the modp1 representation, with n an integer and p an
integer > 1.

Examples

» Eval(x"2+1,x=3) mod 5;
0

» Eval(x"2+y,{x=3,y=2}) mod 5;
> Eval (int (f(x),x), x=y);
Jf(x) dx
x=y
Eigen values ?;
Solution of Problems
We can use Maple For:
Solution of non-linear equations
by Newton’s Method
by Bisection Method
Solution of System of linear equations.
Numerical Integration.
Numerical Solution of ODE’s.
Maple performs both numerical and symbolic itegration.
Please note that the Maple uses the int function for the both numerical and symbolic
integration, but for numerical integration we have to use the additional evalf command
Some inbuilt functions in Maple being used for integration
Numerical Integration
Calling Sequences
evalf(Int(f, x=a..b))
evalf(Int(f, a..b))
evalf(Int(f, x=a..b, opts))
evalf(Int(f, a..b, opts))
evalf(int(f, x=a..b))
We Define Parameters
f - algebraic expression or procedure; integrand
X - name; variable of integration
a,b - endpoints of the interval of integration
opts - (optional) name or equation of the form
option=name; options
Description
In the case of a definite integral, which is returned unevaluated, numerical integration
can be invoked by applying evalf to the unevaluated integral. To invoke numerical
integration without
first invoking symbolic integration, use the inert function Int as in: evalf( Int(f, x=a..b) ).




If the integrand f is specified as a procedure or a Maple operator, then the second
argument must be the range a..b and not an equation. (i.e., a variable of integration must
not be specified.)

>evalf(Int( exp(-x"3), x =0..1));.8075111821

>evalf(Int( exp(-x"3), x =0..1));.8075111821

>evalf(Int( exp(-x"3), x =0..1));8075111821

>alg041(); This is Simpson’s Method.

‘Input the function F(x) in terms of x°

"For example:

> sin (x)

“Input lower limit of integration and upper limit of integration’

‘separated by a blank’

>0 3.14159265359

‘Input an even positive integer N.’

> 20

The integral of F from 0.00000000

to

3.14159265

is 2.00000678

alg041(); This is Simpson’s Method.
‘Input the function F(x) in terms of x°
> x"2

‘Input lower limit of integration and upper limit of integration separated by a blank’
>0 2

Input an even positive integer N

>20

The integral of F from

0.00000000

to

2.00000000

is 2.66666667

> alg041();

This is Simpson’s Method.

Input the function F(x) in terms of x, for example: cos(x)
> exp(x-x"2/2)

Input lower limit of integration and upper limit of integration separated by a blank
>0 3.14159265359

Input an even positive integer N.

> 20

The integral of F from

0.00000000

to

3.14159265



is 3.41046542
> alg044();
This is Simpson's Method for double integrals.

Input the functions F(X,Y), C(X), and D(X) in terms of x and y separated by a space.
For example: cos(x+y) x*3 x

> exp(y/x) x3 x"2

Input lower limit of integration and upper limit of integration separated by a blank
>0.10.5

Input two even positive integers N, M ; there will be N subintervals for outer integral and
M subintervals for inner integral - separate with blank

>1010

The double integral of F from

0.100 to  0.500

Is 03330546

obtained with

N:= 10and M := 10

> alg045();

"This is Gaussian Quadrature for double integrals.’

‘Input the function F(x,y) in terms of x and y*

"For example: sqrt(x"2+y”2)’

> exp (y/x)

Input the functions C(x), and D(x) in terms of x separated by a space

For example: cos (x) sin (X)

>x"3 x™2

Input lower limit of integration and upper limit of integration separated by a blank space
>0.10.5

Input two integers M > 1 and N > 1. This implementation of Gaussian quadrature
requires both to be less than or equal to 5.

M is used for the outer integral and N for the inner integral - separated by a space.
>55

The double integral of F from

0.1000 to 0.5000

is 3.3305566120e-02

Or 0.03305566120

obtained with

M=5and N=5



Lecture 44

Solution of
Non-Linear Equations

Bisection Method
Regula-Falsi Method
Method of iteration
Newton - Raphson Method
Muller’'s Method
Graeffe’s Root Squaring Method

Newton -Raphson Method
An approximation to the root is given by

S (x)
X =Xy =
S(x0)
Better and successive approximations x2, x3, ..., xn to the root are obtained from
f(x,)

xn+1 - xn

f(x,)
N-R Formula
Newton'’s algorithm

To find a solution to f(x)=0 given an initial approximation p0
INPUT initial approximation pO; tolerance TOL; maximum number of iterations NO

OUTPUT approximate solution p or message of failure
Step 1
Set 1=1
Step 2
While i < NO do Steps 3-6
Step 3
Set p=p0—f(p0)/f(p0) (compute pi ).
Step 4

IfAbs (p—p0) < TOL OUTPUT (p);
(The procedure was successful.)
STOP
Step 5 Set i=i+1
Step 6 Set p0 =p (Update p0)
Step 7 OUTPUT
(The method failed after NO iterations, NO = NO )
The procedure was unsuccessful
STOP
Example
Using Maple to solve a non-linear equation.

cos(x)—x=0



Solution
The Maple command will be as follows,
Fsolve ( cos (x) -x);

» alg023();

» This is Newton's Method
Input the function F(x) in terms of x
For example:
> cos(x)-x
Input initial approximation
> 0.7853981635
Input tolerance
> 0.00005
Input maximum number of iterations - no decimal point
> 25
Select output destination
1. Screen
2. Text file
Enter 1 or 2
>1
Select amount of output
1. Answer only
2. All intermediate approximations

Enter 1 or 2

>2

Newton's Method
| P F(P)
1 0.739536134 -7.5487470e-04
2 0.739085178 -7.5100000e-08
3 0.739085133 0.0000000e-01

Approximate solution = 0.73908513
with F(P) = 0.0000000000

Number of iterations = 3

Tolerance = 5.0000000000e-05

Another Example

> alg023();

Input the function F(x) in terms of x,
> sin(x)-1

Input initial approximation
>0.17853

Input tolerance

> 0.00005

Input maximum number of iterations — no decimal point
> 25

Select output destination

1. Screen

2. Text file

Enter 1 or 2

>2

Select amount of output

1. Answer only

2. All intermediate approximations
Enter 1 or 2

>2

Newton's Method



~NO PR, OWN -~ —

P
1.01422964e+00
1.29992628e+00
1.43619550e+00
1.50359771e+00
1.53720967e+00
1.55400458e+00
1.56240065e+00

8 1.56659852e+00

9
10
11
12
13
14
15

1.56869743e+00
1.56974688e+00
1.57027163e+00
1.57053407e+00
1.57066524e+00
1.57073085e+00
1.57076292e+00

Approximate solution
=1.57076292

with

F(P)
-1.5092616e-01
-3.6461537e-02
-9.0450225e-03
-2.2569777e-03
-5.6397880e-04
-1.4097820e-04
-3.5243500e-05

-8.8108000e-06
-2.2027000e-06
-5.5070000e-07
-1.3770000e-07
-3.4400000e-08
-8.6000000e-09
-2.1000000e-09
-6.0000000e-10

F(P) =6.0000000000e-10
Number of iterations = 15
Tolerance = 5.0000000000e-05

Bisection Method

> alg021();
This is the Bisection Method.

Input the function F(x) in terms of x
For example:

> xN3+4*x"2-10

Input endpoints A < B separated by blank

>12

Input tolerance
> 0.0005

Input maximum number of iterations - no decimal point

>25

Select output destination

1. Screen ,

2. Text file
Enter 1 or 2

>1

Select amount of output
1. Answer only
2. All intermediate approximations
Enter 1 or 2

>2

Bisection Method

I

1
2
3

P

1.50000000e+00 2.3750000e+00
-1.7968750e+00

1.25000000e+00
1.37500000e+00

4 1.31250000e+00

5
6

1.34375000e+00
1.35937500e+00

F(P)

1.6210938e-01
-8.4838867¢e-01
-3.5098267e-01

-9.6408842e-02

More...



7 1.36718750e+00 3.2355780e-02
8 1.36328125e+00 -3.2149969e-02
9 1.36523438e+00 7.2030000e-05
10 1.36425781e+00 -1.6046697e-02
11 1.36474609e+00 -7.9892590e-03

Approximate solution P = 1.36474609

with F(P) = -.00798926

Number of iterations = 11

Tolerance = 5.00000000e-04

alg021(); Another example of the Bisection Method.
Input the function F(x) in terms of x,

> cos(x)

Input endpoints A < B separated by blank

>12

Input tolerance

> 0.0005

Input maximum number of iterations - no decimal point
> 25

Select output destination

1. Screen , 2. Textfile

Enter 1 or 2

>1

Select amount of output

1. Answer only

2. All intermediate approximations

Enter 1 or 2

>2

Bisection Method
1 P F(P)
1 1.50000000e+00 7.0737202e-02
2 1.75000000e+00 -1.7824606e-01
3 1.62500000e+00 -5.4177135e-02
4 1.56250000e+00 8.2962316e-03
5 1.59375000e+00 -2.2951658e-02

6 1.57812500e+00 -7.3286076e-03
7 1.57031250e+00 4.8382678e-04
8 1.57421875e+00 -3.4224165e-03
9 1.57226563e+00 -1.4692977e-03
10 1.57128906e+00 -4.9273519e-04
11 1.57080078e+00 -4.4542051e-06

Approximate solution P = 1.57080078

with F(P) = -.00000445

Number of iterations = 11

Tolerance = 5.00000000e-04

> alg025(); This is the Method of False

Position

Input the function F(x) in terms of x

> COS(X)-X

Input endpoints PO < P1 separated by a blank space

» 0.5 0.7853981635

Input tolerance

>0.0005

Input maximum number of

iterations - no decimal point

> 25



Select output destination

1. Screen

2. Text file

Enter 1 or 2

>1

Select amount of output

1. Answer only

2. All intermediate approximations

Enter 1 or 2

>2

METHOD OF FALSE POSITION
| P F(P)

2 7.36384139e-01 4.51771860e-03
3 7.39058139e-01 4.51772000e-05
4 7.39084864e-01 4.50900000e-07

Approximate solution P = .73908486
with F(P) = .00000045

Number of iterations = 4

Tolerance = 5.00000000e-04

System of Linear Equations

Gaussian Elimination Gauss-Jordon Elimination
Crout’s Reduction Jacobi’s

Gauss- Seidal Iteration Relaxation

Matrix Inversion

> alg061();

This is Gaussian Elimination to solve a linear system.

The array will be input from a text file in the order:

A(1,1), A(1,2), ..., A(1,N+1), A(2,1), A(2,2), ..., A(2,N+1),..., A(N,1), A(N,2),

Place as many entries as desired on each line, but separate entries with
at least one blank.

Has the input file been created? - enter Y or N.
>y

Input the file name in the form - drive:\name.ext
for example: A:\DATA.DTA

> d:\maple00\dta\alg061.dta

Input the number of equations - an integer.

>4

Choice of output method:

1. Output to screen 2. Output to text file
Please enter 1 or 2.

> 1

GAUSSIAN ELIMINATION

The reduced system - output by rows:
1.00000000 -1.00000000 2.00000000 -1.00000000 -8.00000000
0.00000000 2.00000000 -1.00000000 1.00000000 6.00000000
0.00000000 0.00000000 -1.00000000 -1.00000000 -4.00000000
0.00000000 0.00000000 0.00000000 2.00000000 4.00000000

Has solution vector:
-7.00000000 3.00000000 2.00000000 2.00000000

ooy ANN,N+1)



with 1 row interchange (s)

> alg071();

This is the Jacobi Method for Linear Systems.
The array will be input from a text file in the order
A(1,1), A(1,2), ..., A(1,n+1), A(2,1), A(2,2), ...,
A(2,n+1),..., A(n,1), A(n,2), ..., A(n,n+1)

Place as many entries as desired on each line, but separate
entries with at least one blank.

The initial approximation should follow in the same format has the input file been created? - enter
Y orN.

>y

Input the file name in the form - drive:\name.ext
for example: A\DATA.DTA

> d:\maple00\alg071.dta

Input the number of equations - an integer.

>4

Input the tolerance.

> 0.001

Input maximum number of iterations.

>15

Choice of output method:

1. Output to screen

2. Output to text file

Please enter 1 or 2.

> 1

JACOBI ITERATIVE METHOD FOR LINEAR SYSTEMS

The solution vector is :
1.00011860 1.99976795
-.99982814 0.99978598

using 10 iterations

with Tolerance 1.0000000000e-03

An approximation to the root is given by

Better and successive approximations x», X3, ..., X, to the root are obtained from

Example
Using Maple to solve a non-linear equation.



System of Linear Equations

Input the tolerance.

> 0.001

Input maximum number of iterations.
>15

Choice of output method:

1. Output to screen

2. Output to text file

Please enter 1 or 2.

>1



Summing up

Non-Linear
Equations

Bisection Method (Bolzano)
Regula-Falsi Method
Method of iteration
Newton - Raphson Method
Muller’'s Method
Graeffe’s Root Squaring Method

In the method of False Position, the first approximation to the root of f (x) = 0 is
given by

X —X

IS kS H 7 S 2.2
¥ =%, oS () (2.2)

Here f (xn-1) and f (xn+1) are of opposite sign. Successive approximations to the
root of f (x) = 0 is given by Eq. (2.2).

METHOD OF ITERATION can be applied to find a real root of the equation f (x)

= 0 by rewriting the same in the formy x = ¢(x)
X = ¢(xo)
x, =P(x,)

xn+1 = ¢(xn)

In Newton — Raphson Method successive approximations
x2, X3, ..., xn to the root are obtained from

oy L)
)

N-R Formula



xS O) XSG s

xn+
: f(xn)_f(xn—l)
This sequence converges to the root ‘b’ of f(x) =01i.e. f(b) = 0.

The Secant method converges faster than linear and slower than Newton’s
quadratic.
In Muller’'s Method we can get a better approximation to the root, by using
X, =x+hA
A= _2ft§z
g, £g} ~ 4/ A4S ah— [0+ [

Where we defined

A=l X%
hi X — X
ﬂl:i
h,
0, =1+4

1

Systems of Linear
Equations
Gaussian Elimination Gauss-Jordon Elimination
Crout’s Reduction Jacobi’s
Gauss- Seidal lteration Relaxation
Matrix Inversion

In Gaussian Elimination method, the solution to the system of equations is
obtained in two stages.

*the given system of equations is reduced to an equivalent upper triangular form
using elementary transformations

*the upper triangular system is solved using back substitution procedure

Gauss-Jordon method is a variation of Gaussian method. In this method, the
elements above and below the diagonal are simultaneously made zero

In Crout’s Reduction Method the coefficient matrix [A] of the system of equations
is decomposed into the product of two matrices [L] and [U], where [L] is a lower-



triangular matrix and [U] is an upper-triangular matrix with 1’s on its main
diagonal.

For the purpose of illustration, consider a general matrix in the form

[Z][v]=[4]

Ly 0 0|1 wuy u, a, 4, 4y
121 122 00 1 Uy | =y Ay Ay
Ly L, L;]|0 0O 1 a3 Gy Ay

Jacobi’s Method is an iterative method, where initial approximate solution to a
given system of equations is assumed and is improved towards the exact
solution in an iterative way.

In Jacobi’'s method, the (r + 1)th approximation to the above system is given by
Equations

b a, a
A =2 fi o By 0)
all all all
L b, ay o _ %y
2 - 1 n
Cl22 a22 a22
o _ b, i) e o)
n - 1 n—1
a?‘l}’l a}’l?‘l ann
Gy %0 .
Here we can observe that no element of ™ replaces entirely

for the next cycle of computation.

(r+1)
In Gauss-Seidel method, the corresponding elements of L replaces
(r)
those of L as soon as they become available. It is also called method of

Successive Displacement.

The Relaxation Method is also an iterative method and is due to Southwell.

Eigen Value Problems



Power Method

Jcobi’'s Method
In Power Method the result looks like

u® =[ AP = g v ®

Here, 9c is the desired largest eigen value and v

is the corresponding
eigenvector.

Interpolation

Finite Difference Operators
Newton’s Forward Difference Interpolation Formula
Newton’s Backward Difference Interpolation Formula
Lagrange’s Interpolation Formula
Divided Differences
Interpolation in Two Dimensions
Cubic Spline Interpolation

Finite Difference Operators
Forward Differences
Backward Differences

Central Difference
Ary[ = Arilym _Arilyi

kai = vk_lyi _Vk_lyifla
i=n,(n-1),...k

n n—1 n—1
0"y, =6 Yivay2) -0 Yicay2)

Thus
Ay, =y — V. =f(x+h)— f(x)

Azyx :Ayx+h _Ayx
Similarly



Vy. =y, =y, =fx)-f(x=h)

h h
oy, = Verni2)y = Veenizy = f(x + Ej - f(x _Ej

Shift operator, E
E f(x)=f(x+h)
E"f(x)= f(x+nh)

Enyx = yx+nh
The inverse operator E-1 is defined as

E7f(x)=f(x—h)

Similarly,
E7 f(x)= f(x—nh)

Average Operator, #

ﬂﬂx):ﬂf(ﬁ%}f("‘%ﬂ

- %[ymh/z) + yH”/zJ

Differential Operator, D

Df(x) = %f(x) - /')

D*f(x) =%f(x) — ()

Important Results
A=E-1
E-1

V=1-E'="—
E

S=EV:_E"

hD =log E

,Ll :%(El/z +E—1/2)

The Newton’s forward difference formula for interpolation, which gives the value
of f (xO + ph) in terms of f (x0) and its leading differences.

S (xo+ ph) = f(x))+ pPAf(x,)

N p(z;—l) A2 f(x,)+ p(p —13)'(19—2) A f(x,)

+...+P(P‘l)”'fp_””)A"f(x0)+Error
n.




An alternate expression is
pp-D o
X A%y,
+10(10—13)'(10—2) Ay, 4
Lpp-D)(p—ntl) ,,
n!
Newton’s Backward difference formula is,

S, +ph)=f(x,)+pVf(x,)
P22 £
PNPED g
N p(p+1)(p+2)'---(p+n—1) V' f(x.)+ Error
n.
Alternatively, this formula can also be written as

pp+D s
Y Vy,

Y=Yy + DAY, +

¥, + Error

Y.=y,+pVy, +

+p(p+13)|(p+2)v3yn+m
+p(p+1)(p+2)'---(p+n—1)vn
n'

y, + Error

Here
xX—x,
h
The Lagrange’s formula for interpolation

p:

(x—x)(x—x,)---(x—x,) (x—x)(x—2x,)---(x—x,)

+ ..

y=fx)=

(x_xo)(x_xl)"'(x_xi—l)(x_xi+1)"'(x_xn)
(= X) (=) (% %, (% — %) (5 —x,)

() = 2%,)(xX) = X,) -+ (%, _xn)yo (3 = %) (X, = x,) -+ (¥, _xn)yl

(x_xo)(x_xl)(x_xz)'

"(x_xn—l)

(x, = Xo)(x, —x,)(x, —x,)

Newton’s divided difference interpolation formula can be written as

y=f(x)=y,+(x=x)¥[x, %]
+(x = x0)(x = x)) ¥ %0, X, X, ]

+...+

(x=x)(x=x)...(x=x,_)V[x), %50, X, ]

Where the first order divided difference is defined as

Y
o (xn - xn—l)



J’[xmxl]:u
X =X

Numerical Differentiation and Integration
We expressed D in terms of A :

2 3 4 5
D ZL[A_A_+A__A_+A__...J
h
Using backward difference operator , we have
hD =—log(1-V).
On expansion, we have

2 3 4
D:l V_V_+V_+V_+...
2 3 4
Using Central difference Operator
D 21(5_L§3 +i§5 _j
h 24 640

Differentiation Using Interpolation
Richardson’s Extrapolation

d n—1
EH(X_X[)

n—1

:g(x—xo)(x—xom(x—x,,)

X=X

Thus, Y s approximated by B which is given by
P(x) = ylxg, %, 1+ [(x = x) + (x = x ) VX, %, %, ]+

+HZ:]: (x=x)x=x)(x=x,,)

X=X
(3
2m
)]
~ 2" 2"

- 4m 1
m=1,2,3,
Basic Issues in Integration
What does an integral represent?

V[Xg, X505 X, ]

b

b
j f(x)dx = AREA
a



db

”g(x,y) dx dy =VOLUME

ca
Y
A
___ y=f(x)
(x4, y1) (X2, y2)
\
(Xo, Yo)
Yo Y1 Y2 Y3 Yn-1 Yn
(0] .
Xo=a X4 X2 X3 Xn-1 Xn=b
X3
[ Fryax
Xo

3

3 iv
=§h(yo +3y,+3y, +y3)—8—h5y‘ (&)

0



y = f(x)
(X2, ¥2)
(X0, Yo) /
/
/
Yo Y1 Y2
(0] p X
Xo=a X4 Xo X3 Xn-1 X, =b

TRAPEZOIDAL RULE

j f(x)dx

h
=§(y<>+2y1 +2y,+- 42y, +y)+E,

DOUBLE INTEGRATION
We described procedure to evaluate numerically a double integral of the form

1= IU(x, y)dx] dy
Differential Equations

Taylor Series
Euler Method
Runge-Kutta Method
Predictor Corrector Method



In Taylor’s series we expanded y (t ) by Taylor’'s series about the
point t = t0 and obtain

90 = 1)+ =1,y (1) L0y e L2 oy L2

Y 3 2 Y () +

In Euler Method we obtained the solution of the differential equation in the form
of a recurrence relation

ym+l :ym +hf(tm’ym)
We derived the recurrence relation
Sty y,)+ Sty Y0 }
2

Which is the modified Euler's method.
The fourth-order R-K method was described as

ym+l =ym+h|:

Vo1 =V, +%(kl +2k, + 2k, + k)

where
ky=hf(t,,)
h k
k,=hf|t +—,y +—
2 f( n 2 yn zj

h k
k,=hf|t +—,y, +—=
3 f(n 2yn 2)

k4 = hf(tn +hvyn +k3)
In general, Milne’s predictor-corrector pair can be written as

4h ' ' '
P:yn+1 :yn—3 +?(2yn—2 _yn—l +2yn)

h ! ! !
Ciypt =V +§(yn71 +4y, +y,.1)

This is known as Adam’s predictor formula.

h 251
=y, +—(55/,-59f, ,+37f, ,—9f, ) +—hV*
yn+1 yn 24 ( f;’l f;l—l f;l—2 f;z—3) 720 f;z

Alternatively, it can be written as
251

720

!

Vo =30+ 55V =300, + 3T, =00 L]+ 9,
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