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About the Handouts

The following books have been mainly followed to prepare the slides and handouts:

1.
2.
3.
4.

5.

Spiegel, M.R., Theory and Problems of Vector Analysis: And an Introduction to Tensor
Analysis. 1959: McGraw-Hill.

Spiegel, M.S., Theory and problems of theoretical mechanics. 1967: Schaum.

Taylor, J.R., Classical Mechanics. 2005: University Science Books.

DiBenedetto, E., Classical Mechanics: Theory and Mathematical Modeling. 2010:
Birkh&user Boston.

Fowles, G.R. and G.L. Cassiday, Analytical Mechanics. 2005: Thomson Brooks/Cole.

The first two books were considered as main text books. Therefore the students are advised to
read the first two books in addition to these handouts. In addition to the above mentioned books,
some other reference book and material was used to get these handouts prepared.
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Module No. 1

Introduction to the Course and Mathematics

Introduction to Mathematics

“Mathematics is the branch of science which deals with the study of relations and patterns, and

means to represent and communicate them.”

Introduction to the Course

There are two main portions of this course:
» Vectors

» Classical Mechanics



Module No. 2

Scalar and Vector Fields

Scalar Point Function

If to each point (x, y, z) of a region R in space there corresponds a scalar ¢(x,y, z), then ¢ is

called a scalar point function in R.

Scalar Field

Scalar field is a function define on space whose value at each point is a scalar quantity

The set of all values of scalar point function ¢ in R together forms a Scalar field.

Examples of Scalar Fields

1. The temperature T (x, y, z) within a body A is a scalar point function because there exist
only one temperature at each point of A.

2. The pressure and potential due to gravity of the air in the earth’s atmosphere define scalar
field.

Vector Point Function

If to each point (x, y, z) of a region R in space there exist a unique vector 4 (x,y, z), then 4 is

called a vector point function in R.

Vector Field

A function of a space whose value at each point is a vector quantity is called vector field.

Mathematically, we can write it as
A)z/_l) (xfy1 Z) =Al (x:yl Z)+ AZ (x:yl Z) +A3 (x, Y, Z)

The set of all values of 4 in R constitute a vector field.

Examples of Vector Field



. A=A (x,y,2) = xyi — 2yz3] + y2zk defines a vector point function and hence is a
vector field.

. The motion of a moving fluid at any time define vector field.

. The set of tangent vector of a curve C and the set of normal vectors of a surface S are
examples of vector field.
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The Operator Del and Gradient of Function
The Del Operator

The vector differential operator del, symbolize as V, is defined by

V= ii + 9 j+ il?
dx Jdy 0z
The symbol V called del or nabla is used to symbolize del operator. It is only applied as defined
derivative on one-dimensional function, and for more dimensions it may be applied as partial
derivative on the function. The del operator is not a particular operator but when we applied it on
a scalar point function or a vector point function; this may be known as the gradient, the

divergence, and the curl.

Gradient: grad (f) = Ve

Curl:curl 4= Vx4

Divergence: div (4) = V.4

We will discuss here the first application of del operator as gradient.

Gradient Function

Let ¢(x,y,z) be a scalar point function defined on a specific region on R and also differentiable
on the same domain. The we can apply del operator on ¢ in order to obtain gradient of scalar

function ¢ of grad( ) written as Ve is defined by



dy
do,. Odp,  0¢ -
—ali‘@]i‘g

it is to be noted that V¢ defined a vector field. Also Vo = 0 if and only if ¢ is constant.
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Properties of the Gradient

If ¢ and v are Scalar point functions as well as differentiable on a specific domain and C is a
constant then we can show that the gradient holds the following properties.
i. V(Cp)=CVep
i. V(ip+ ¢)=Vop+Vy
ii. V(oY) = oVy +yVe

iv. v(§)=""7"’w;z"’w’,¢¢o

Proof:
i. V(Cp)=CVe

LHS = (e = 200 2 g

ap | 20 | do ~
—Cal-l—C@]-FCEk

do. Odp . 0¢ -
—C(EL-FE] +Ek>
=CVp =R.H.S

i. V(p+ ¢YP)=Veo+Vy

d(e + ll))i+6(<ﬂ+ llf)j+0(90+ w)E

LHS = V(p+ ) =—— 5 ~—

=Vo+Vy=R.H.S

ii. V(epy)= @V +yVe

a(wlP)Ha(q)l/J) +6(<pl/))l€

LHS =V(py) = % 3y ) e






(0P o9\ oY 2P\ . oY 6(p) ~
- (‘pax+‘pax)l+("’ay+‘pay)]+("’ az T¥a;)"
oy oY oY . do Odp Jdop

=@ (ali‘@]‘Fa]{)-}'lp(al-}'@] +Ek>

= VY +yYVp =R.H.S
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Directional Derivative

The procedure to determine the derivative in a specific direction, other than the coordinate axes

(x,y,z) is called directional derivative.

Let ¢ (x, v, z) be a scalar point function defined on a specific region on R and also differentiable
on the same domain. The first partial derivatives of ¢ (x, y, z) are the rate of change of ¢ in the
direction of coordirlte axes (x,y,z). It is a restricted way to calculate the rate change is given
function. Maybe one ought to need the derivative in a specific direction. Therefore the idea of

directional derivative introduced.

To define the directional derivative we choose a point A(x, y, z) in space and a direction at P,
given by a unit vector a. Let C be the ray drawn from P in the direction of @, and let A(x +
Ax,y + Ay, z + Az) denoted by B be a neighboring point on C, whose distance from P is As as

shown in figure,

A

The value of given scalar point function is ¢(x,y,z) and ¢ (+Ax,y + Ay, z + Az) at P and P’
respectively.
Then the limit

A (P —@(P)
111’1’1 —_—= 111’1’1 R EE—
As—0 AS  As—0 As

if it exists, is called the directional derivative of ¢ at P in the direction of @ and is denoted by Z—f.

Obviously,



dp Opdx

+6(p dy OJdedz
ds 0Oxds

dyds ' dzds

= V(p.z—: =Vep.a

1)
Since @ is a unit vector, directional derivative of ¢ (i.e. aa—f) is the component of V¢ in the
direction of this unit vector.

From equation (1), we have the operator equivalence,

d _va
55— V-4

This means that the operator V. @ applied to the scalar function ¢ differentiates it w.r.t the
distance s in the direction of a.

Deductions

In particular, if we assume a has the direction of the positive x-axis, the @ = 1 then equation (1)
will become V. i

Similarly,



10
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Theorem related Directional Derivative
Statement

Show that the maximum va|ue of the directilnal derivative of ¢(x, v z) is equal o the magnitude

of @ (x, y, 2)is equal to the magnitude of Vo (i. e |V |) and it takes place in the direction of V.
Proof

We know that

dg

— =Vgp.a

ds g-a
= |Vel|a| cos b

where 6 is the angle between Vg and a. Since —1 < cos 8 < 1, therefore Z—f IS maximum when

cos@ = 1 or 8 = 0° i.e. when the direction of @ is the direction of V¢ and max (Z—‘:) =Vop.

Thus the maximum value of directional derivative takes place in the direction of V¢ and has the

magnitude |Ve|.

It is important to be note that directional derivative Z—f IS zero, when 8 = 90° i.e when Vg and a

are orthogonal to each other.
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Example of the Directional Derivative
Problem Statement:

Find the directional derivative of ¢ = x%yz + 4xz? at (1,—2,—1) in the direction

2{ — j — 2k.

Solution:
As we studied the equation

Directional derivative = V¢. a
Vo = V(x%yz + 4xz?)

= (2xyz + 4z%)i + (x%2) j + x?y + 8x2)k
Vpat(1,-2,—1) = 8i — j — 10k
The unit vector in the given direction can be calculated as
5 NN
ﬁ:m ]3 2k.:§ﬁ_%f_§lz
then the required directional unit vector is

a=

Vp.a = (81— j 1012)(2A L 212)
p.a=(81— ] — . 31 3] 3
16 1 20 37

3 * 3 3 3
Since this is positive, ¢ is increasing in this direction.
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Related Problem 1 of the Directional
Derivative

Problem Statement:
Find the directional derivative of ¢ = 4xz3 — 3x%y?z at (2,—1,2) in the direction 2 — 3j +
6k.
Solution:
As we studied the equation
Directional derivative = V¢. a
Vo = V(4xz3® — 3x2%y%z)
= (4z° — 6xy%2)i + (—6x%yz) j + (12x2% — 6x%y?)k
Vo at (2,—1,2) = 81+ 24] + 84k
The unit vector in the given direction can be calculated as

.7 21—3j+6k. 2 3 6

i A 2 A
then the required directional unit vector is

Vo.d = (81 + 48] + 841?).(%?—%j+§]})

16 144 504 376

A AR 7
Since this is positive, ¢ is increasing in this direction.
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Related problem 2 of Directional Derivative

Problem Statement
a) In what direction from the point (2,1, —1) is the directional derivative of ¢ = x%yz3a
maximum?

b) What is the magnitude of this maximum?

Solution

First of all, we calculate gradient of ¢ = x%yz3
Vo = V(x%yz®) = Qxyz3)i + (x223)j + 3x%yz»)k
Vo at (2,1, —1) is —4i — 4f + 12k
using the result that directional derivative is maximum in the direction of V¢ and its maximum
magnitude is | Vo |
The directional derivative is a maximum in the direction Vop = — 41 — 47 + 12k

the magnitude of this maximum is | V| = |(—4)% + (—4)? + (12)?| = V176 = 4V11



14

Module No. 10

Related Problem 3 of the Directional
Derivative

Problem Statement:

Find the values of the constants a, b, ¢ so that the directional derivative of ¢ = axy? + byz +
cz%x3 at

(1,2, —1) has a maximum of magnitude 64 in a direction parallel to the z-axis.

Solution:
Since ¢ = axy? + byz + cz?x3, therefore
Vo = V(axy? + byz + cz*x3)
= (ay? + 3cz?x?)i + (Qaxy + bz)j + (by + 2czx®)k
At the point (1,2, —1), the value of this gradient is
= (4a + 3c)i + (4a — b)j + (2b — 2c)k
We know that the maximum directional derivative takes place in the direction of V¢ and has the

magnitude of Ve. The maximum directional derivative will be parallel to the z-axis if

4a+3c=0 (1)
4a—b=0 2
Therefore

Vo = (2b — 2c)k
since the magnitude of this maximum directional derivative is 64, there fore
2b —2c = 64
©)
Solving equation (1), (2) and (3), we find



which is the required solution.

15
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Geometrical Interpretation of Gradient

Geometrically, gradient of a scalar function represents a normal vector to the surface.
V| (x,y, represents the normal vector of the surface at (x, y, z).
Example
If o = x2yz
Vo = 2xyzi + x%zj + x*yk
At (1,1,1)
Volaay =20+]+k

which is normal to the surface ¢ = x%yz
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Theorem Related to Gradient

Theorem
Prove that Ve is a vector perpendicular to the surface ¢(x,y, z) = C, where C is a constant.
Proof

Let the parametric equation of the curve K be x = x(s), y = y(s), z = z(s).
let # = xi + yj + zk be the position vector of the point P(x,y, z), then T = % IS unit tangent

vector to the curve K at P as shown in figure.

J_.?

(x,y.2)

=

X

Since the curve K lies on the level surface, together, the condition of any point on the curve must
satisfy equation (1), and so [x(s), y(s),z(s)] = C.

Differentiating above equation w.r.t‘s’ using the chain rule,

or

dop, Odp_  dp ~\ (dx  dy  dz_
(2004225 00 g) (20, 25 d2g)
<axl+6y]+62 dsl+ds +ds

or

dr -
V(p.%z OQorVeo.T =0
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Which implies that V¢ is a vector perpendicular to the unit tangent vector Tand therefore on the

surface ¢(x,y,z) = C.
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Related Problem 1:; Gradient

Problem Statement
If A = 2x%i — 3yzj + xz%k and ¢ = 2z — x3y
Find
i. A Vo
ii. AxVe
Solution

Since ¢ = 2z — x3y then

0, Op . O0p
Ve =oxtt o) Tk
02z — x3 02z — x3 02z — x3y)
_0Q@z=x"y), 0@z y)j+(z Y)p
0x dy 0z

Vo = —3x%yi — x3j + 2k
Ve at(1,—-1,1)
Vo =3i—j+ 2k
Given vector A = 2x%i — 3yzj + xz2%k at (1,—1,1)
A=2i+3j+k
i. AVe=Qi+3j+k).3i—j+2k)
2B -G+ M)(2)=5
ii. AxVe=(Qi+3j+k)x(3i—j+2k)

i j ok
=2 3 1
3 -1 2

=(6-(-1)i—-(4-3)j+(-2-9k
=7i—j—11k
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Related Problem 2: Gradient

Statement
Show that

Proof
We know that

Vf(r) = aa—xf(r)i + (%f(r)f + %f(r)l?

of or  df or . Of Or ~
=——lt—=—]+t—=
dxdx  dyady 0z 0z
_dfor, Ao, dforp
T dx axl dy ayj dz azk

since r = \/x? + y? + z2, it follows that

or x 0r _y Or z

1)

ax E T roz  r
putting these values in (1), we get
—_ £ f'\ / X" / E’\
=f (r)rl+f (r)r1+f (r)rk
! ﬁr) (xi +y] + 7R)
_f'or

r

Hence Proved
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Related Problem 3: Gradient

Statement

It Vo = 2xyz*1 + x22°] + 3xyz’k,
Find

p(x,y,2) ifp(1,-2,2) =4
Solution

Given equation is

Vo = 2xyz°i + x*2%) + 3x%yz*k
We know that

Vo =221+ + 2k

therefore by comparing equation(1) and (2), we get

6(p 3
— = 2xyz
dox y

dg 2.3
— =Xz

ay

d¢ 2.2
— = 3x%yz
0z y

Integrating Equation (3) w.r.t x, keeping y and z constants

¢ =x?yz° + f(y,2)
Similarly, from equation (4) and (5), we get
o =x%yz3 + g(x,2)
¢ =x*yz°> + h(x,y)

(8)

1)

()

©)
(4)
()

(6)

(7)

Comparison of equation (6), (7) and (8) shows that there will be a common value of ¢ if we

choose
f(v,z) =g(x,z) = h(x,y) =C
where C is an arbitrary constant.
Thus
o =x*yz*+C

9)

21



using ¢(1,—2,2) = 4 in equation (9) we get
Cc =20
hence from equation (9), we obtained
@ =x%yz3+ 20
Which is the required solution of ¢.

22
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Module No. 16

Divergence of a Vector Point Function

Definition

Divergence is a vector operator, when we applied this operator to the quantity of a vector field, it
produces a scalar field.

Let I7(x, y,z) = Vit + V,j + Vsk be defined and differentiable at each point (x,y,z) ina
certain region of space (i.e. V defines a differentiable vector field). Then the divergence of V,
written V.V or div V, is defined by

- ad. . d ., 0 - . . ~
V.V—(al+@]+£k).(Vll + V,j +V3k)

vy av, aV.
1, 0% 0V
dx Jdy o0z

Some Deductions

It is important to be noted that V.V is a scalar quantity. Alsoﬁl

If Vs a constant vector, then\Val/i=10.

ifv.V =0 everywhere in some region of R, Then V is called solenoid vector point function in

the region.
We can consider an example of solenoid to understand the concept.

Example

Determine the constant a so that the vector V = (x +3y)i + (y — 22)] + (x +az)kis
solenoidal.

Solution

0 0 d ~ . ) -
V.V —(al+@]+£k>.((x+3y)l + (y— 22)] + (x+az)k)

d(x+3y) 0d(y— 2z) d(x+az)
= + +
0x dy 0z




=14+14+a=2+a
a=-2

Hence if we substitute a = —2 in given vector field then given V will become solenoidal.

24
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Module No. 17

Properties of the Divergence

Statement
If 4 and B are differentiable vector point functions, and ¢ is differentiable scalar point function,
then prove that

i. V.(A+B)=V.A+V.B

i.  V.(0pA) = @(V.4) + . (Vo)

Proof
Let

A = At + Ay +A4sk and B = Byl + B,j + B3k , then

B =
i. V.(A+B)=V.A+V.B
hence

L. 9 9 9 .
V.(A+B) =$(A1 +Bl)i+@(A2 +B1)j+£(A3 + B3)k

044 N 04, N 04A; N 0B, N 0B, N 0B;
dx dy 0z ( dx dy 0z )

=V.A+V.B=R.H.S
i. V.(pA)=@(V.4)+4 (Vo)
L.H.S =V.(pA)
We have <p/T = @Al + @ Ayj + @Ask

Hence
V. (pA) = —(<pA1)l +5- (<pAz)1 + —(<pA3)k

04, ago 04, ago 04, do
TP Thige T OG Thag TG TGy



0A, 0A, O0A; do do do
- <6x Tyt az)+(Ala+A2ﬁ+A3ﬁ)

— o(V.A) + a(p“+a(p“+(wl? Ai + A7 + Ak
_(p( . ) (axl ay] aZ )( 1l 2] 3 )

V. (gofi)) == go(V.A—)) + (Vo). A = (p(V.A—>) + 4. (Vo)

V. (@A) = p(V.A) if ¢ is constant.

26
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Module No. 18

Laplacian

The Laplacian or Laplace operator is a second-order differential operator given by the
divergence of the gradient of a given function defined over a space R. It is usually denoted by
V.V, or V? or A.
Thus if U is a twice differentiable function, then the Laplacian of U is defined by

AU = V3 = V.Vu
In cartesian coordinate system, the Laplacian is given by the sum of second order partial
derivatives of the function w.r.t each independent variable. Laplace is a Second order differential
operator which is obtained by taking the divergence of gradient of any scalar point function.

It is denoted as

vv—vz—(a“+a“+ai?)(a“+a“+al€)
VEVE x! ay] 9z ) \ox* ay] 0z
02 02 02

V2= + +
0x? dy? 0z?

It is a scalar operator.

In one and two dimension, the Laplace operator reduces to
02

= 9x2
02 02

= — 4+ —
d0x?  0dy?

If (x,y,z) is a scalar point function, then the divergence of gradient of ¢ written as V.V =

VZ

2

V2 is called the Laplacian of ¢ and the equation V2¢ = 0 is called Laplace’s equation.
If a scalar function ¢ satisfies the Laplace equation V2¢ = 0 in a Cartesian region R, then ¢ is
said to be a harmonic function in the region R.

Mathematically, we can write it as

d%2p 0% 0%¢p
2, _ _
4 (p_6x2+6y2+622 ak

We can also express the Laplace operator in polar coordinate (r, 8) notation.
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Two dimensional Laplace operators can be expressed as

10/ of 1 (9%
2pp = —— (L) + —(—E£
Ve = r6r<r ar) + r? <692>
02 10 1 92
_%% 199 10%
00% ror r?06?
The Laplacian occurs in differential equation that describes many physical phenomena, such as

Diffusion equation for heat and fluid flow, gravitational potentials and quantum mechanics.
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Module No. 19

Example of Divergence

Statement
If A = x2zi — 2y32%] + xy?zk, find V.4 (or div A) at the point (1, —1,1).

Solution

As we know del operator V is

Since given vector point function Ais

A =x%zi — 2y32%] + xy?zk

5 0 0 0 ~ ~
=7+ —7+ — 2,4 _ 93,27 2
V.A (6xl+6y]+62 )(x zl — 2y°z°] + xy zk)
_0(x*2) N 0(—2y3z?) N 0(xy?z)

- ox dy 0z

= 2xz — 6y%z% + xy?
As we calculated the expression V. A, we can easily determine its value at (1, —1,1).
V.Aat (1,-1,1) = 2(1)(1) — 6(—1D2(1)? + (1)(—1)?
=2-6+1=-3
V.Aat (1,-1,1) = -3

which is the required Result.



Module No. 20

Related Problem 1: Divergence

Statement

IfA = 3xyz21 + 2xy3) — x2yzkand ¢ = 3x2 — yz,

find
i. V.A
ii. AV
iii.  V.(pA)
iv. V.(Vep)

at the point (1, —1,1).
Solution
Since A = 3xyz21 + 2xy3j — x2yzk

also

then

V.A= <ixi +—j+ —ZI?) .(Bxyz?1 + 2xy®j — x%yzk)
= 3yz? + 6xy?%] — x%y
V.Aat point (1,—1,1)is
=3-DM*+6(D)(-1)* - D*(-1
=-34+6-1=2
ii. AVg

Since ¢ = 3x? —yz
then

30



do  Odop do ~

V(p=al+wj+gk
0(3x* —yz 0(3x* —yz 0(3x% —yz)
_o( yz). y)j+( Y7) -
0x dy 0z
= 6xi — zj — yk

Now,
AV = (3xyz21 + 2xy*j — x%yzk ). (6xi — zf — yk )

= (18x2yz? — 2xy3z + x%y?z)

A. Vg at point (1, —1,1)is

= [18(D*(-D(D)* - 2(D(-1*(1) + (D*(-D*(D]
=—-18+2+1=-15

iii. ~ V.(pA)
then
@A = (3x% — yz)(3xyz?1 + 2xy°j — x2yzk )
= (9x3yz% — 3xy?z3)1 + (6x3y® — 2xy*2)j + (3x*yz — x2y22z?)k
Now
V. ((px) = V. ((9x3yz? — 3xy?z3)1 + (6x3y® — 2xy*2)j + (3x*yz — x%y?2z?)k)
_ 0(9x%yz® — 3xy®z®)  0(6x%y® —2xy*z) 0(3x*yz — x?y?z?)
B 0x + dy + 0z
= 27x%yz% — 3y?z3 + 18x3y? — 8xy3z + 3x*y — 2x*yz
V. (@A) at point (1, —1,1)is
V.(pA) = —27-3+18+8-3+2=-5

iv. V.(Vo)

_(6 - 0 - 6E> <6[A+6<pA+6<pE>
~ \ox' ay] 9z ) \ax oy’ 0z

d, 0 0 -\ 0Bx*—yz) 0Bx*-—yz), 9(3Bx*-yz)_
_(al-}_@] azk>'( dx L dy S 0z )

31



£).(6xi— 2~ yE) = 6
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Module No. 21

Related Problem 2: Divergence

Problem Statement

Given
@ = 2x3y?z*.
To find
I. V.V (ordiv grade).
i _ 2 2l 9, 9% 0 -
ii.  Show that V.V = V@ , where V= ozt 377 t o3 denotes the Laplacian operator.
Solution

i. V.Ve
As we know the grad of ¢
dg

do . O ~
Vop=—i+—j+—k
¢ 6xl+6y]+ z

0(x3y2z*)  0Qx3y?z*)  0Qx3y?*z*)
= i+ j+ k
0x dy 0z
= 6x%y%z*i + 4x3yz*j + 8x3y223k
Then the divergence of the grad of ¢

0 0 d ~ ~
S - % _ 2,,2,4% 3 44 3.,2,.,3
V.Vgo—(axl+ay]+azk>.(6x vz i+ 4x°yz*] + 8x°y“z k)

0 <6<p> N d (6<p> N d (E)(p)
~ Ox \ox dy\ody/ 0z\oz
0(6x%y%z*) 0(4x3yz*) 0(8x3y?z3)
= + +
0x dy 0z
= 12xy%z* + 4x3yz* + 24x3y?7?

i. V.Vp =V

o, 0, 0\ Odp,_ 0dp,  0¢ -
—<—l+—]+£k).(al+a_]+£k)



B d <6<p> N d (6<p> N d (6(/))
~0x\dx/) dy\dy/ 0z\oz
_0%p 0% 0%
~ 0x?  dy? 0z

02 9 92
- <ax2 ot az2> ¢

= Vz(p

Hence proved.
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Module No. 22

Related Problem 3: Laplacian

Problem Statement
Show that
i.  V.(r37)
i V.|| =2
27

i. v[vO|=-%

where 7 is position vector.

Solution

First of all we will derive a general relation for V. [#f ()] then we will substitute our given

values to evaluate our required result.

V.[Ff(M] = f()(V.7) + 7. (Vf(r)

We have
= 3F(r) 4 PR = 3F(r) 4 7.1 ’(:)7

f'(r)

r

=3f(r)+ 7.7
V.[FfM] =3f() +rf'(r)

Now setting f(r) = r™ in above relation, we obtain
V.(7r™) = 3r* + r(nr™ 1)
V.(7r™) = 3r™* + (nr™)
V.(r"#) = 3+ n)r"

We have V. (r37) to evaluate, it is of the form V. [7#f (r)], where [1(r) = r3

35

V.7 =3
.

7

P = =
r

7 =1r?

Rl
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Put n = 3 in above relation, we will obtain the required result
V.r3H) =B +3)r3=6r3
Is the required solution.

i, LHS=V[vG)

We can also write it as
=V.[r(Vr™®)] = V.[r(=3r~>7)]
where we used the result

f'r

r

Vf(r) =

We have V. [r(—3r~5#)] to evaluate, it is of the form V. [#f ()], where f(r) = r™*7

thus,
1 ) 3

V. rV(—3)] =-3V.(r"*) = -3(-4+3)r*=—=RH.S
| T

is the required solution.

ii. LHS=V.[v.0]

frist we evaluate V. é) using formula V. [#f ()], where f(r) = r~1#
V.(r™#) = 3+ n)r"
putn = 1, we have
2
Ve ) =Q@B-Drt= -

therefore
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Module No. 23

Curl of a vector Point Function

Introduction
The infinitesimal rotation of a vector field is described by the curl. The curl of a specific point is
shows by a vector at every point of the vector field. The attributes of this vector (length and

direction) characterize the rotation at that point.
The direction of the curl is the axis of rotation, as determined by the right-hand rule, and the

magnitude of the curl is the magnitude of rotation.
Definition
If l7(x, v, z) is a differentiable vector field in a certain region of space, then the curl or rotation of

V, written V x V, curl V or rot V, is defined by

. d d d ~ -

VXV =(—1l+—j+=—k) X (Vii+V,j + V3k).
(axl+ay]+az ) (1l+ 2]+ 3 )

Where V;, V,, V5 are the components of vector field along X, y and z-axis.

We can write this expression in matrix from

I N
vxv=|2 2 9
dx dy 0z
v, V, Vs
o 0 a 0 a 0
=loy oz|i—|ox az|j+|ox aylk
V, Vs i Vs Vi W
B (6V3 6V2>A <6V3 6V1)A <6V2 avl)k
“\ay "0z \ax "8z " \ax oy

A vector field whose curl is zero is called irrotational.
Identities of Curl
Some identities of curl are stated below
A gradient has zero curl:
VX Vo= 0.

A curl has zero divergence:



V- (VxV) =0
Note: V- (V¥ x V)= (V x V).V = 0 because ¥ X V = 0.

38
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Module No. 24

Properties of the Curl

If A and B are differentiable vector functions, and ¢ is differentiable scalar functions of position

(x,y,z), then
i. Vx(4A+B)=Vx4+VxB or curl (4 +B) = curl 4 +curl B
ii.  Ux (pA) = ¢ (VxA) +(Vo) xA

Proof

Let A = A, 4 A,j + Askand B = B,{ + B,j + B3k , then
i. curl (4+B)=curl 4 +curl B
L.H. S=curl (/T +§)
A+B = (4, +B)i+ (4, + B))j + (43 + Bk

Hence by using the definition of curl

i j k
e d a a
A +B, A,+B, As+Bs

B;

i k| |t ] k
0 d 0 0 040 0
= + | — —
0z

B;

ax a_y 9z dx 0dy
Ay A; Azl 1By B,
= VXA + VB
Hence proved
ii.  Vx (@A) = @ (VxA) + (Vo) x4
L.H.S=Vx (@A)
QA = p(Arl + Af + Ask) = @ALi + @Ay] + A3k,

Then by using the definition of curl



i j k

2 ] ] ]

Vx (pA) = PP P P
PA; @Ay @A;3

40

(o o \. /0 o . [0 o\
= |5, 049 — 5, (042 | 1= (57 (04) — 5 (00 )] + | 5 (042) = 3 (o)

| 9(43) (@)  0(4,) d(e)]. 0(43)
—l(p dy 43 dy -9 0z _AZWll_IQD 0x +
d(4,) (@)  0(Ay) ()] »
+lfp 0x + 42 ox dy —h aylk

~

=o|(5 -5+ (G -5+ 52 =SR] + |

dp I NN
(4,52 = A 3D)E|
I
6_(p

x Jy 0z
Az

= ¢ (VxA) + = ¢ (VxA) +(Vo) x4

Hence Proved
iii. Vx (V) =0

0p . 0@ .

— _ 0P~ 09~ 0P Y _
L.H.S—VX(V<p)—V><( L+ay]+azk)—

ax

_(0%¢ 0%p\, (0%p 0% -
~\oyaz  9zay)'  \azox ~ 9xaz)’

I ~

d
oy

0%¢

%¢ 7
dxdy 0dyox

(@)  d(4y)
-9

a(p)]|.
3 ox 0z J

Y

10 0P~ e ap\ A
_AZZ)I“-I_ (A3E_A1¥)] +

| =

0z
dp
0z

(1)

We assume that ¢ has continuous second order partial derivative so the order of

differentiation can be neglected.

i.e.

0%p 0% 0%

%@ 0%

0%¢p

0ydz  0zdy’0z0x  0xdz’ 0xdy _ dydx

=equation (1) must be equal to zero
Hence the expression.

iv. V.(Vx4)=0
L.H.S=V.(VxA)
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Since
I
vxd=|2 2 2
dx dy 0z
A A Az
0A; 0A 0A; O0A 04, 04, .
:< 3 2>i—< 3 1>A+(_2__1k
dy 0z 0x 0z dx  dy
D)= (L5424 D), (M _ 04y (943 2Av); | 04y 3yyp
HenceV.(VXA)—(al+$]+£k).(—y 6z)l (6x az) Gox 6y)k
0 <6A3 aAz) d <6A3 aAl) 9] (E)Az E)Al)
T ox\dy 0z dy \ 0x 0z dz\ dx 0dy
B 0245 024, 0%24; 0%A, N 024, 024,
~ \oxdy 0xoz dydx 0yodz 0z0x 0zdy
B 0245 024, N 0245  0%A, N 024, 024, B
"~ 0xdy 0x0z 0ydx O0ydz 0zdx 0zdy

Assuming that A has continuous second order derivative.

Hence the theorem.
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Module No. 25
Example of Curl

Statement
IfA = xz3i — 2x%yzj + 2yz*k,

Find
Vx4 (or curl /T) at the point (1,—1,1).

Solution
Vxﬁ—(a“+a“+al?)x 31 — 2x%yzj + 2yz*k
= axl ay] Fp (xz° 1 X“yzj vz*k)

glew
gl ~

7
d
VXA= %

xz3 —2x%*yz 20z*

0x dy

0(—2x? 0(xz3)_ ~
)20 )H(( Xyn) 06,

3 (6(23/24) _ 0(—2x%yz)

. (0Qyz")  0(xz®)
dy 9z )”r( B

Vx A = (2z* + 2x%yz)i + 3x2%] — 4xyzk

Now we calculate the value of V x 4 at (1,-1,1)

VxA=(2-2)+3]+4k

VxA=3j+4k

is the required solution.



Module No. 26

Related Problem 1: Curl

Problem Statement

IfA = 2yzi —x*yj + xz* kand ¢ = 2x%yz3,
Find

. (AxV)p

.  Ax V)

Also show whether they are identical or not.

Solution

Since A = 2yzi —x%yj + xz*kand ¢ = 2x?yz3

. AxXV)e
AxVe=|Q2yzi —x? '+x2k)x<ai+a“+al?)]
(p_ yZ y] Z ax ay] aZ (p
i j k
_2yz —x*y «xz*
(AxX V) = 5 5 5
0x dy 0z

([t - (g )+ (e v
B x yaz Xz dy ' yzaz Xz 0x J yzay x yax ¢
Now substituting ¢
do do do do do dp\ ~
— a2, T 2_T Yy _r _ 2_T )% _r 2,.,_1T
_[( Vo, 6y>l <2yzaz Xz ax)”(zyzay” yax)k]

Since ¢ = 2x?yz3, substituting value

0z 0x

0(2x?yz®)  , 9(Q2x*yz°)) -
—ay + x Y ox k

0z dy

+ (Zyz

d(2x%yz3) 0(2x%yz3)\ | d(2x%yz3) 0(2x%yz3)\ .
=[xy ——F —xz?————— |1 - (2yz———— —xz?———— |

43
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= [{—x%y(6x2yz?) — xz2(2x%2°}1 — {2yz(6x%yz?) — xz%(4xyz3}j
+ {2yz(2x%2%) + x2y(4xyz3}k|
(AX V) = —(6x*y?z% + 2x32°)1 — (12x%y?z% — 4x?yz%)] + (4x%yz* + 4x3y?z3)k
2 y
1)

. Ax(Ve)
Here A = 2yzi —x%yj + xz® kand ¢ = 2x2%yz3

_O0p_  0p 0.

Vo= xtta T ek
0(2x%yz3)  0(2x*yz®) . 0(2x*yz?) .
=~ x vty JtT 0, K

Vo = 4xyz3i + 2x%2%] + 6x2yz%k
Now

i j k
Ax (Vo) =| 2yz —x%y  xz?
axyz3 2x%z3 6x2%yz?

= [(—x2y)(6x2yz?) — (xz2) (2x22%)]i - [(2y2) (6x7yz?) — (x22) (4xyz*)]]
+ (yz)(2x22%) — (=x2y) (4xyz®))k

A X (Vo) = —(6x*y?z% + 2x325)1 — (12x2y223 — 4x?yz5)j + (4x%yz* + 4x3y2z3)k
(2)
From equation (1) and (2), we conclude that

Ax (Vo) =(AxV)p
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Module No. 27

Related Problem 2: Curl

Problem Statement

A vector V is called irrotational if curlv = 0.
I.  Find constants a, b, ¢ so that
A= (x+2y+az)i+ (bx — 3y —2)j + (4x + cy + 22)i
is irrotational.

ii.  Show that 4 can be expressed as the gradient of a scalar function.

Solution
Since give vector field is
A= (x+2y+az)i+ (bx — 3y —2)j + (4x + cy + 22)i

I.  Also for a vector to be irrotational, we have expression

curlA=VxA=0

{ j k
VxA= 9 9 9
0x dy 0z

x+2y+az bx—3y—z 4x+cy+2z

0 0 . 0 0 .
= (a—y(4x+cy+22)—g(bx—By—Z)>L—(a(4x+cy+22)—g(x+2y+az)>]

d d -
+(a(bx—3y—z)—@(x+2y+az))k

=(c-Di—-(@A-a)j+ -2k
or

=(—-Di+(a—4j+ -2k
According to the given condition

(c=1Di+(@a-dj+b-2Dk=0



=c—-1=0=c=1

=a—-4=0=>a=4

=b—-2=0=>b=2
and thus
A= (x+2y+42)1+ Q2x -3y —2)j + (4x + y + 22)i
is irrotational vector field.
ii.  Assume that
A=V =3—‘£i+g—§j+g—‘51€
By comparing equation (1) and (2), we obtain

o9

$=x+2y+4z
dp . .
5—2x 3y —z
dp

5—4x+y+22

Integrating equation (3) w.r.t x, keeping y and z constants,

2
1 =x7+2xy+4xz+f(y,z)

2
Q= 2xy—%—yz+g(x,z)
@ =4xz —vyz+z? +h(x,y)

(1)

()

©)
(4)
()

(6)

(7)
(8)

46

Comparison of equation (6), (7) and (8) shows that there will be a common value of ¢ if we

choose
3 2
f(y,2) = ==+ 2
2
X
g(x,z) = —+z*2
2
x?  3y?
h(x,y) = —— —
(x,y) > "5
so that

x2

2
p=- 3% + 22 + 2xy + 4xz — yz +constant
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Note that we can also add any constant to ¢. In general if V x A = 0, then we can find ¢ so that

A = Vo.A vector field 4 which can be derived from a scalar field ¢ so that 4 = Vg is called a

conservative vector field and ¢ is called the scalar potential.

Note that conversely if A= Vo, then V x A=0
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Module No. 28

Related Problem 3: Curl

Problem Statement

Ifv=wXr, prove w = r curl v where w is a constant vector.

Solution
curlv = VXv = VX (w X71)
i 7k ~
=VX|w;, w, ws3]=VX[(wz—w3y)l— (02— w3x)] + (WY — wx)k]
X y z

i j k
_ d d 0
0x dy 0z

WZ — W3y W3X — WZ WY — WX

0 0 R 0 0 R
= (@ (w1y — wyx) — &(0’39‘ - wﬂ)) L= (a (w1y — wyx) — &(0’22 - w33’))]

0 0 -
+ (a (w3x — w12) — a_y (wyz — w3y)) k

= (w1 + )i — (—w; — w)f + (w3 — (—w3))k
= Z(wli + (Uzj + (1)3’})
= VX (wX1r)=20

=VXv=2w

> w==-VXv
2

1
=>8=Ecurlv
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This problem indicates that the curl of a vector field is linked with rotational properties of the

field. We might say that if curl A = 0, then there would be no rotation and the field is called
irrotational field. A field which is not irrotational is sometimes called ajiggglie!d.



Module No. 29

Vector ldentities

Problem Statement
Evaluate V. (/T X1r)if Vx A =o.

Solution

Let A = A0 + A,j + Ask and 7 = x{ + yj + zk , then

~

R i j k
Axr=[A; A, A
X y z

= (Ayz — A3y)t — (412 — Asx)] + (A1y — Azx)E
And

S a, d ., 0. . ) -
V. (A X r) = <al +@] +£k) . ((Azz —A3y)i — (A1z — Asx)j + (Ay — Azx)k)

0 i} 0
e (Azz — Azy) — @ (A1z — A3x) + 37 (Ary — Ayx)

0A, 0As 04, 04, 04, 04,
ax Yax ‘ay Yoy Ve *%
04 04, 0A, 04, 04, 04,
:x<6y_az)+ (62_6x> <_ )

=Z

_( N l?) <6A3 aAz)A+(6A3 6A1>A+(6A2 6A1>E
RSO oy 0z ! ox 09z )’ ox  dy

If VXA = 0 this reduces to zero.

50



Statement

Prove that

Vx (VxA4)=V.(V.4) - V4

Proof

Let4 = A;i + A,j + Azk be a vector point function

Then
L.H.S=V x(VxA)

Since

|Q) ~>
|Q)\n>

VxA =
dx dy

Ar A

| =

0A; O0A
(-

dy 0z

Hence Vx(VxA4) =

943

ay

04, 94,

[ay ( dy

gl m

04y, -

dy

o1

d0A, aAl) d (6A3 6A2>]A
iy Gy I

<___

dx  dy dy

0z

302

924, 024, 8%A, 024,

B 924,
~ \dyox

[ 0%A, 94
~\ 9y?  0z2

 9x? +axay_}_azay_ 07?2

2 +ayaz

axay azay J

62A2>E
. 0%A; 0%A, - 82A2_+
J dx?  0y? dyodx
62A
ayaz

0z

024,
0z0x

)



x2  9y?  0z2 C9x? dy? 922 x2  9y? 022
0°A, | 0%, 074 0%4, | 0%Ay  0%Ag
+ P+ + j
0x? ayax 0z0x dy? axay 0z0y

024, 024, 074, -
+ +
0z> 0xdz 0yoz

(OZA1 024, 62A1>A <62A2 024, 62A2>A <62A3 0245 0%43) .
=|- i+ + k

= az+az az ) (A0 + Af + A k)+a<aA1+aA2+aA3)
~ " \0x2 T 9y? b+ 4] ox | ay | oz

d (0A, 0A, 04, 0 (0A; 0A, 0A;
+ —( +—+ ) +— ( +—+ )
dy\ox dy 0z dz\dx dy 0z

_ iy (A 04 04
B '(ax dy az)

= —V2A+V.(V.4) = V.(V.4) - V24
Hence the result.
Problem Statement
Find curl (7f (r)) where f(r) is differentiable.
Solution
Let 7 = xi + yj + zk be the given vector
then
curl (Ff(r)) =V x (Ff(1))
=V X (xf(Mi+yf@)j+zf (k)

Q =~
Q
| » =

ax @ 0z
xf(r) yf(r) zf(r)

d d r 0 0 9 3 A
- [@zf(r) —£Yf(r)] i+ Exf(r) —azf(r)]j + [ayf(r) —@xf(r) i
_ [Z af(r) af(r)l l af(r) af(r)l

ay

N [y of@) _ of™|, )

d0x dy

As we know r = /x? + y? + z2, therefore



o0 _ITWI I feryri s = W - [0x
Similarly,
of(r) _ £y
ady r
And

af(r) f'(r)z
0z  r
By substituting these values in equation (1), we obtain

N @y ez [ )z x|, | ff)x f()y] -
= |z —yr l+xr_Zr ]+yr—x k

r r

=0

Hence the result.
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Module No. 30

Line Integral

An integral where the function is evaluated along a curve is called line integral. It is also named
as path integral, curve integral, and curvilinear integral; contour integral as well. The function to
be integrated may be a scalar field or a vector field. The value of the line integral is the sum of
values of the field at all points on the curve, weighted by some scalar function on the curve. A
line integral is a natural generalization of definite integral. Line integral can be transformed into
double integral and surface integrals and vice versa.

f A.d7
C

Where d7 = dxi + dyj + dzk is called the differential displacement vector. The integrals that

The symbolic form of line integral is

involves differential displacement vector d7 care called line integrals.

Line integral can also be expressed as

j A.df = f (Ast + Ay + AsR). (dxt + dyj + dzk)
C C

S f (Aldx + Azdy + A3dZ)
Cc

The line integral fC A. d7 is sometimes called a scalar line integral of a vector field A.

If C is a closed curve which we shall assume a simple closed curve (a curve which does not

intersect itself anywhere), the line integral around C is denoted by
5§ A.ar = ff (Aydx + Aydy + Azdz)
Cc C

Applications
Some applications of line integrals are:

I.  If the vector field to be integrated Ais the force F on a particle move along C, then this

line integral show the work done by the force.
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In fluid mechanics, if the vector field to be integrated A represents the velocity of some

fluid then the line integral is called the circulation of A about C.

In general, we can say that any integral which is to be calculated along a Bl is called a
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Module No. 31

Other forms and General Properties of line
Integrals

Other forms of Line integrals

Generally, we define line integral by the vector function A by

f A.d7
C

As we studied previously, that the function to be integrated can be either scalar point function or
vector point function.

Here, we will define line integral using scalar function,

.[ pdr =f o(dxt + dyj + dzk)
c c

= .[ (godxi + @odyj + (del?)
c

f(p.di":if <pdx+jf <pdy+Ef pdz
c c c c

Also the general line integral indicates the dot product (“.”) between the given vector field and
the differential displacement vector. However we can also express it as a cross product (x) of

both the vector according to our requirement.

f/fxszif (Azdz—A3dy)+jf (A3dx—A1dz)+Ef (A, dy — A,dx)
C C Cc C

Thus any integral that involves differential displacement vector d7 are called line integrals.

General Properties of Line Integral
The following are the properties of the line integrals that are useful in computational subjects and

application
i. [, KA.di=K[. A.di (K isany real constant)

i. [ (A+B).di=[, AdF+ [, B.d¥
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ii. [, Adi=[_Adi+[, Ad7

Where the path C is subdivided into two arcs C; and C, that has the same orientations as C. If the
sense of orientation along C is reversed, the value of the integral is multiplied by “-1°.

iv. If C is piece-wise smooth, consisting of smooth curves Cy, C,, ... ... ....., C, then the line

integral of Aover C is defined as the sum of the line integrals of A over each of the

smooth curve making up C:

f Adfzf Ad?+f Ad?+~um"mmmn“+f A.d7
c c o C

1 n

In the sum, the orientation along C must be maintained over curves C;, C,, ... ... ....., C,. That is

the initial point of C; is the terminal point of C;_;_
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Module No. 32

Example of Line Integral

Problem Statement
If o = 2xyz2 F = xyl —zj + x2k and Cisthe curve x = t%,y = 2t,z = 3 from
t =0tot = 1.
Evaluate the line integrals
i [, p.dr
i. [, Fxdr
Solution
i. [, @.dr

By substituting the given values of X, y, z, we obtain
@ = 2xyz? =2(t?)(2t)(t3)? = 4¢t°
and 7 = xi + yj + zk
= 7=t +2tj + t3k
Also d7 = dxi + dyj + dzk
= d7 = (2t1 + 2f + 3t2k)dt

As we studied the relation

f(p.di":if <pdx+jf <pdy+Ef pdz
c c c c

1
8t1odt +jj

0

1 1 1
:f Qd7 =f 4t°(2t1 + 2 + 3t%k) dt = if 8t°dt + fcj 12t11dt
C 0 0 0

Hence the required solution.

i. [, Fxdr
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Since F = xyi — zj + x2k, first of all we will calculate the value of F using parametric
equations of x,y,z
F=2t31—t3] + t*k
Also we calculated, d7 = (2ti + 2 + 3t2k)dt
Then
Fxdi = (2631 — t3] + t*k) x (2ti + 2f + 3t%k)

~

i 7k A
=23 3 ¢4 |=(=3t>—2tMi— (6t° — 2t°)j + (483 + 2tHk
2t 2 3t?

Using the expression

j/fxdfzij (Azdz—Agdy)+jf (Agdx—Aldz)HEj (A, dy — A,dx)
C C Cc C

Substituting values, we get

1 1 1
f Fxdf= if (=3t> = 2tH)dt —jj (6t> — 2t>)dt + l?j (4t3 + 2tY)dt
C 0 0 0

9/\
= ——1—-

k
10

wl N
ull 3

J+



Module No. 33

Example of Line Integral

Problem statement

Find the total work done in moving a particle in a force field given by F = 3xyl — 5zj +

10xk along the curve x = t2 + 1,y = 2t%,z=t3fromt = 1tot = 2.
Solution

Since F = 3xyi — 5zj + 10xk,
Substituting values x = t2 + 1,y = 2t%,z =1t3, inF.
F = 3(t2 + 1)(2t)i — 5(t3)j + 10(t2 + Dk
F = (6t* + 6t2)i — 5(¢3)f + (10t% + 10)k
Also, di* = dxi + dyj + dzk
= d7 = (2t1 + 4tj + 3t2k)dt

Total work done = [ F.d7 =

2
= f [(6t* + 6t2)i — 5(¢3)f + (10t2 + 10)k]. (2¢8 + 4¢f + 3t%k)dt
1
2
= j 2t(6t* + 6t%2)— 4t(5t3) + 3t2(10t% + 10)dt
1
2
= f (12t5 + 12¢3)— (20t%) + (30t* + 30t?)dt
1

2
= j (12> + 10t* + 123 + 30t2)dt
1

2 2 2 2

=f 12t5dt+f 1Ot4dt+f 12t3dt+f 30t%dt
1 1 1 1

2

5 4 3

B 12t°
| 6

2 |10t5 2 |12t4 2 |30t3
+ +
1 1 1

1

60



=2[(2)° — (D1 +2[(2)° - (1)°] + 3[()* — (D*] + 10[(2)* — (1)°]
= 303

61
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Module No. 34

Line Integral Dependent on Path

The value of line integrals [ c A.d7 generally depends not only on the end points P; and P, of

the curve C but also the geometric shape of the path C i.e. if we integrate form point P; to P,

along different paths, we in general, obtain different values of the integral.

z
N

We will illustrate this concept by the following example
IfA = (3x% + 6y)i — 14yzj + 20xz%k, evaluate fc A.d7 from (0,0,0) to (1,1,1) along the

following paths C
i.  The straight lines from (0,0,0) to (1,0,0), then to (1,1,0), and then to (1,1,1).
ii.  The straight line joining (0,0,0) and (1,1,1).

Solution
i.  Along the straight line from (0,0,0)to (1,0,0)y = 0,z = 0,dy = 0,dz = 0 while x

varies from 0 to 1. Then
the integral over this part of the path is

fﬁ.cﬁ:f (Aydx + Aydy + A;dz)
C C

1

1
= f 3x% + 6(0)dx — 14y(0)dy + 20x(0)? = f 3x2dx =1
0 0
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Along the straight line from (1,0,0) to (1,1,0) x — 1,z = 0,dx = 0,dz = 0 while y varies
from 0 to 1.

Then the integral over this part of the path is
1

1
f 3(1)% + 6ydx — 14y(0)dy + 20x(0)? = f 3+6ydx=0
0 0

Along the straight line from (1,1,0) to (1,1,1) x =1,y = 1,dx = 0,dy = 0 while z varies
from O to 1.

Then the integral over this part of the path is

1 1 20
f 3(1)% + 6(1) (0) — 14(1)2(0) + 20(1)2%dz = f 2027dz = 5

0

By adding all the results, we have

fljd*—1+o+20—23
. LAdr = 3 =3

ii.  The straight line joining (0,0,0) and (1,1,1) is given in parametric formby x = t,y

t,z=t. Then
j A.ar =] (3x% + 6y)i — 14yzj + 20xz%k.d?
c c

1 1 13
=f (3t? + 6t) — 14t% + 20¢3 dt=f 6t — 11t + 20¢3 dt=?
0 0

In example, we discuss two cases here. In each case the end points of the curve were same
but we chose different path to obtain results. The results obtained by both the cases are
different. Hence we conclude that the line integral not only depends on the end points of the

curve but also on the path taken by the particle.
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Module No. 35

Independence of Path

Definition
The line integral fC V.d# is said to be i_n a given region R, if the value
of the line integral f:;z V.d# is the same for all paths C joining any two points P; and P, in R.

Theorem

Prove that a necessary and sufficient condition for f;l 2. d7 to be independent of the path joining

any two points P; and P, (i.e. V to be conservative) in a given region is that gﬁc V.d# = 0 for all

BIBEEE path C in the region.
Proof

Let C be any simple closed curve, and let P; and P, be any two points on C as shown.

Then since by the supposition, the integral is independent of path (i.e. V to be conservative), we

)

1

have

V.d# = j V.d?
AP, P1BP,

Reversing the direction of integration in the integral on the right, we have

f V.di = —f V.d7
P,1A Py P,BPy

or

or

Conversely, if §. V.d# =0,

then



Again changing the direction in the integral, we have

f V.d7 = j V.d7
P1AP, P1BP,

Which shows the line integral is independent of the path joining P; and P, as required.
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Module No. 36

Theorems on line Integral

Scalar Potential Function
A scalar potential function ¢ is a single-valued function for which there exists a continuous

vector field V in a simply connected region R that satisfies the relation V=vo.

Theorem 1 Statement
Prove that a necessary and sufficient condition for |, :; 2 /. d7 to be independent of the path joining

any two points P;(x,y,z) and P,(x,y,z) (i.e. V to be conservative) is that there exist a scalar

function ¢ such that V= Ve, where ¢ is single valued and has continuous partial derivatives.

Proof

LetV = Ve, then

P2 0¢ 5% i1
—f (adx-FEdy-}'EdZ)

P,
= f do = ¢(P2) — ¢(P1) = @(x2,¥2,22) — ¢(x1,¥1,21)
Py

Thus the line integrals only depends only on points P; and P, and not on the path joining them

i.e. V is conservative.

Conversely, let [ c V.d7 be the independent of the path C joining any two points, We choose

these points as a fixed point P; = (x4, y1,2,) and a variable point P, = (x,y, z), so that the result

is a function of only of the coordinates (x, y, z) of the variable end points. Then
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(xyz) xy2) | 47
o(x,y,2) =f V.dr =f V.—ds
(

(x1,1.21) X1,¥1,21)

By taking derivative, we have

do _ 7 ar

dS—V.S 1)
But

do _ 20 _ g, dr

E_as_v “ds (2)

From (1) and (2) we have

= dr ar = ar
V.—-=Vp.—=(V-Vp).—=0

Since % IS a unit tangent vector, therefore % #0
=V -Vp=0
Or
V= Vo
Hence Proved.

Theorem 2 Statement

Prove that a necessary and sufficient condition that a vector field V/ be conservative is that

V x V = 0(i.e. V is irrotational).
Proof

If V is conservative field then by the previous theorem, we have V= Vo.
Thus

UxV=VxVp=0

Conversely, if V x V =0, then

~

i j k

o d 0d|_
dx dy 0z
i V2 Vs

and thus
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oVs 0V, aVy  aVs aV, oV,
dy 0z 9z ox ox 0dy

we must prove that V= V¢ follows as a consequence of this,

Now,

j V.d7 = j (VL (x,y,2)dx + Vy(x,y,z)dy + V5(x,y,2)dz)
c c

Zz

4 (x.y.2)
[ ]
(xlvyivzl)
n
>y
7
>
(x*yyzl) (x,y.2,)

where C is path joining (x4, y4,2;) and (x5, ¥,, z3). Let us choose as a particular path, the
straight lone segment from (x4, y1,21) to (x,¥1,2;) to (x,y,2z) and ¢(x,y, z) the value of the

integral along this particular path. Then omitting the integrand, we have

(x'ylﬂzl) (x,y,zl) (x,y,z)
oya= [ 11+ [ L1+ [ ] &
(xlﬂylle) (x,yl,zl) (x'yle)

i.  Along the straight line (x4, y;,2;) to (x,v4,2,) , y = constant = y,,z = constant = z,
so that dy = 0,dz = 0, while x varies from x; to x.
ii.  Along the straight line (x,y;,2;) to (x,y,z;), x = constant, z = constant, so that
dx = 0,dz = 0, while y varies from [, to y.
iii.  Along the straight line (x,y,z;) to(x,y,z) , x = constant, y = constant, so that

dx = 0,dy = 0, while y varies from z; to z.

Thus we can write equation (1) as

X y z

o(x,y,2) = f Va(x, y1 20)dx + f Va(x,y,21)dy + f Va(x,y, 2)dz

X1 Y1 Z1
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it follows that

op
E - V3(xfy12)
99
o= Vi, 2) + f 2 (x,9,2)dz

=Vo(x,y,21) + j (x y,2)dz = V,(x,y,z,) + |V, (x, YJZ)|Z1 =V,(x,y,2)

Z1

de
Pl =Vi(x,y1,21) + j 2 (x,y,2))dy + j > (x,y,2)dz

Y1 Z1

= VyCoyz) + f Gy, m)dy + f ! (x,y,2)d2

V1 Z1
=V1(x,y1,21) + |V1(x,y,zl)|§:1 + Vil y, 217, = Vo(x,y,2)

=Vi(,y1,21) +Vilx,y,21) = Vi (e, y1,21) + Vi(x,y,2) = Vi(x,y,21)

do
ax_Vl(xy'Z)
Then we have,
— ) ) -~ Op. Odp,  O0¢.
V—V1L+V2]+V3k—a— +E] Ek—V(p

hence V is conservative i.e V = Vg.
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Module No. 37

Selected Example/Problem 1

Problem Statement
If A(t) = ti—t3j + (t — Dkand B(t) = 2t%1 + 6tk,

Evaluate

2 > =

i. [ A.Bdt

i. ['AxBdt
Solution
i. [ ABdt

Since A(¢) = ti— t%j+ (t — Dk and B(t) = 2t%i + 6tk

So,
A.B = (ti—t? + (t — Dk ).(2t%1 + 0] + 6tk)
=2t3+6t(t—1)
Now
2_> . 2
f A.Bdt = j [2t3 + 6t(t — D]dt
0 0
2 2 2
=j 2t3dt+j 6t2dt—f 6tdt
0 0 0
t4 2
= |—+ 2t3 — 3t2|
2 0
=84+16—-12 =12
Hence

o )
ool
QU
o~

Il
—_
[\

is required solution.



~

R A
AXB=|¢t —t2 t-1
2t 0 6t

= [(=t»)(61) = (t — D(O)]i — [(1)(61) — (t — D)(2tD)]] + [(£)(0) — (—tP)(2tH)]k
= —6t31 — (6t% + 2t% — 2t3)] + 2t*k
= —6t31— (8t — 263)j + 2t*k

Now,

2 2
f A x Bdt = f (—6t31 — (8% — 2¢3)j + 2t*k)dt
0 0

2 2 2
= —ij 6t3dt —jf (8t* — 2¢%)dt + l?f 2t*dt
0 0 0

3 8 . tY\ .2 .|
=|-i=tt—j(=t} —= )+ k=t°
| ‘2 ]<3 2>+ 5° .

__,3018) _j<8(8) ~ E) L 2262

2 3 2 5
= —124 “80+1€64
TR T TR
2, 40 . 64
fAXBdt=—24l——]+—k
o 3 5

is the required result.
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Module No. 38

Selected Example/Problem 2: Line Integrals

Problem Statement

If F = 3xyl — y?j, evaluate work done by the force on the curve C in the xy plane, y = 2x2,

from (0,0) to (1,2).

Solution

As we know total work done on a curve is
f‘ﬁdf
C

dr = dxi + dyj

Also,

By substituting

1
= j (3xyi — y?)).(dxi + dyj)
0

1
=f (3xy dx— y?dy)
0

Asy = 2x? is given, this implies dy = 4xdx, now substituting these values in above integral,

we obtain

= f1(3x(2x2)dx— (2x?)%4xdx)
0

1 1
=f 6x3dx—f 16x°>dx
0 0

3 g !
— _x4__x6

2 37 |,
3 8 -7
2 3 6

Note that if the curve were traversed in the opposite sense, i.e. from (1,2) to (0,0), the value of

the integral would have been 7/6 instead of — 7/6.
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Module No. 39

Selected Example/Problem 3: Line Integrals

Problem Statement
Find the work done in moving a particle once around a circle C in the xy plane, if the circle has

center at the origin and radius 3 and if the force field is given by

F= 2x—y+2)i+x+y—2z2)j+ Bx—2y+42)k

Solution
Inthe planez = 0, F = (2x — y)i + (x + y)j and d7 = dxi + dyj

So, that the work done on the curve is

Total work done= | F.d7#

_ j ((2x — )i+ (x + y))) - (AL + dy))
Cc

- f (2x = y)dx + (x +y)dy)
C

As radius of the circle is r = 3, we choose the parametric equations of the circle as
x =3cost = dx = —3sint dt

y = 3sint = dy = 3cost dt
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where t varies from 0 to 2. Then the line integral

2w
= f ((2(3cost) — 3sint)(—3sint)dt) + (3cost + 3sint )(3cost )dt
0
2
= f (6 cost — 3sint)(—3sint) + 9(cos t)? + 9sint cos t dt
0
2
= f —18 costsint + 9sin?t + 9 cos? t + 9sint cost dt
0
2
= j 9 — 9 costsint dt
0

21

—|9t 2 i 2t
= 25111

0
= 18w

In traversing C we have chosen the counterclockwise direction indicated in the adjoining figure.

We call this the positive direction, or say that C has been traversed in the positive sense. If C

were traversed in the clockwise (negative) direction the value of the integral would be —18.
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Module No. 40

Selected Example/Problem 4: Line Integral

Problem Statement
Given a force vector F = (2xy + z3)i + x2] + 3xz2k .

i.  Showthat F a conservative force field
ii.  Find the scalar potential
iii.  Find the work done in moving an object in this field from (1, —2,1) to (3,1,4).

Solution

I.  We derived a necessary and sufficient condition that a force will be conservative is that

curlF = VxF = 0.

Now
) j k
5 5 0 0 0
curlF = VX F = — S
0x dy 0z
2

2xy + z3 x? 3xz?

~ (2 @art) - (2 )1 - | = (Bx22) - 2ay + 7))
=\ Xz 5, (¥7) 1= 5-(3xz 5, (2xy + 29 |

0 d ~
+ (a(xz) —a—y(ny + 23)>k

=0i— (322 -32z%)j+ 2x—2x)k =0
curlF = 0
Hence F is conservative.

ii. AsF isconservative, so F = Vo

and

this implies=
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5 dp . Odop 0@ . e - -
F=vVp=giltg g k=@ + 290+ %] + 3xz°k
By comparing, we get
99 _ 3
ax—ny + z (1)
o9 _ 2
20 _ )
% — 3x72 (3)
0z

By integrating equation (1), (2) and (3), we get
o =x%y+xz3+1(y,z)
¢ =x*y +g(x,2)
@ =xz3+h(x,y)
These equation will agree if we choose
f(y,z) = 0, g(x,z) = xz3 and h(x,y) = x2y
so that ¢ = x%y + xz3 to which may be added any constant.
iii.  From part (ii), we have
o =x*y+xz3+K
Where K is any constant,
Then work done = @(P,) — @(P;)
= (X2, ¥2,22) — (X1, Y1, 71) 4)

(X2, Y2, 22) = 9(3,1,4) = (3)2(1) + 3(4)® = 9 + 192 = 201
o(x,y1,21) = 9(1,-2,1) = (D*(-2) +1(1)* = -2+ 1= -1
Now substituting these values in equation (4)
Work done = ¢(P,) — @(Py) = @(x2,¥2,22) — ¢(x1,¥1,21) = 201 — (—1) = 202
202 is the required work done.
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Module No. 41

Surface Integral

Definition

Integrals that involves the differential surface elements ds are called surface integrals.

ff Ads
S

Let S be a two-sided surface (open or closed), and Ax, y,z) = A;1 + A,] + Ak be be a defined

Mathematically, we can represents it as

and continuous vector function over the surface S. Let one side of S be considered arbitrarily as
the positive side (if S is a closed surface this is taken as the outer side). A unit normal 7 to any

point of the positive side of S is called a positive or outward drawn unit normal.

z

Associate with the differential of surface area dS a vector dS whose magnitude is dS and whose

direction is that of n. Then dS = ds.

U /T.ﬁd5=ff A.dS
S S

The surface integral of a vector field Ais called the flux of A through S.

The other forms of surface integrals are

ff god§andjf AxdS
S s



78

Where ¢ is a scalar point function.

If S is a closed surface, then the surface integrals may be written as

35 A.ds

jé,zxdsi

jg (pd§

Or

Properties of Surface Integrals

Like the double integrals, surface integrals have the following properties:
i. Jf, KA.dS=K [[, A.dS (K isany real constant)
i. [, (A+B).dS=[[, AdS+ [ B.dS
iii.  [f; AdS=[f; AdS+[f AdS
Where the surface S is subdivided into two smooth surfaces S; and S, having atmost a curve in
common.

iv.  If the surface S is partitioned by the smooth curves into a finite number of non-

overlapping smooth patches S;, S,, ... ... ... , S, (i.e.is S is piece-wise smooth), then the

normal surface integral of A over S is the sum of the normal surface integrals of A over

all the smooth patches, i.e.

ff z.d§=jf g.d§+jf AdS++H Aads
S S1 S, Sn



79
Module No. 42

Evaluation of the Surface Integral

To evaluate the surface integral, it is convenient to express them as double integrals taken over
the projected area of the surface S on one of the coordinate planes.

Evaluation of surface integrals can be made by done by the following result

Theorem Statement

Let R ne the projection of the surface S on the xy-plane, then prove that

Let the surface S and its projection R on the xy-plane be as shown in figure.

Proof

Divide R into a rectangles of area A4, k = 1,2, ...... ,n and erect a vertical column on each of

these sub-regions to intersects S in an element of surface area ASy.

z

: D
Choose a point (xy, vk, z;) on each surface element AS;, and draw the unit normal 7, to this
element at this point. Let y, be the acute angle between this unit normal i, and the positive z-
axis.
If this surface element is sufficiently small, it can be regarded as a plane.
We know from geometry, that if two planes intersect at an acute angle, an area in one plane may
be projected into the other by multiplying the cosine of the included angle as shown in figure.
Since the angle between two planes is the angle between their normal, therefore

AS, cosy, = AA,
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or
AxpAyy
7. k|
Thus the sum (1) in the definition of unit normal surface integrals
n n AxyAyy

Ak.ﬁkASk = Ak'ﬁk =
k=1 k=1 |nk|

AS, = secy, A4, =

and the limit of this sum can be written as

- 5 _dxdy
([ dnas= [ anlt
S R |nk|

Similarly, we can prove that if R is the projection of the surface S on the yz-plane, then

5 5 dydz
[[ dnas= [[ 4
s R |7. 7|

And if R is the projection of S on the xz-plane, then




Module No. 43

Example to the previous topic: Surface
Integrals

Problem Statement
Evaluate
JI; A.AdS where A = 18zi — 12j + 3yk and S is that part of the plane

2x + 3y + 6z = 12 which is located in the first octant.

Solution

The surface S and its projection R on the xy plane are shown in the figure below.

[1]

5 2x+3y + 6z = 12
>y

0 4

R
2x +3y = 12

We know that



- - __dxdy
ff A.ndSsz An——=
S R |nk|

Also we know that a normal vector to the surface 2x + 3y + 6z = 12 is given by

V(2x + 3y + 62) = 21 + 3] + 6k

. N . . . 2i+3j+6k 2, 3, 61
ThenaunltnormalntoanypomtofS|sn=+=;L+;]+;k

Thus.k = (3042 +2k) k=2

and so
dxdy
k6
Also
- ~ (2 3 6 .
A7 = (1820 — 12 + 3yk).(7i+7j+7k)
36z — 36 + 18y
- 7
Now from the equation of the surface S 2x + 3y + 6z = 12,
12 — 2x — 3y
=
Therefore
ia= 6(12 — 2x —3y) — 36 + 18y _ 36 —12x
7 7
Then

- 5 _dxdy
([ dnas= [ anlt
S R |nk|

_ﬂ 36 -12x7
/A td

12—-2x

= f f (6 —2x)dydx

y=0

= f(6— 2x) (12 _ Zx) dx

82
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6
4
=](24—12x+§x2)dx
0

4
= |24x — 6x% +§x3

0
=144 — 216 + 96 = 24

If we had chosen the positive unit normal 72 opposite to that in the figure above, we would have
obtained the result — 24 .
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Further Example on Surface Integral

Problem Statement

If F = 2yi —zj + x%k and S is the surface of the parabolic cylinder y? = 8x in the first octant
bounded by the planesy = 4 and z = 6,

Evaluate
f f F.AdS
S

The surface S and its projection R on the yz-plane are shown in figure.

Solution

[1]
A vector normal to S is
V(8x —y?%) =81 —2yj
and therefore
8i—2yj  8i—-2yj = 8i-2y] @ 4i-yj 47 -yJ

= = = = = +
V824 (2y)2 64 +4y?  JA(l6+y?) J16+y? \J16+y% /16 +y2

Also,
4

16 + y?

.l =



85

and
F.a= (2yt—zf + leAc).( i + e >
J16 +y2 /16 + y?
_ 8y +zy
~J16 + 2
Thus

46
jf 8y +zy ,/16+y

6+y 4

4

00
4 6
1 1
Zf f(8y + zy) dzdy = Zf 66ydy
00 0
33 1* 33
=|—y*| =—42=132
27, T2

]f F.AdS = 132
S

is the required result.
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Selected Example/Problem 1: Surface
Integrals

Problem Statement

Evaluate

ff A.7dS
S

for A = yi + 2xj — zk and S is the surface of the plane 2x +y = 6 in the first octant cut off

by the plane z = 4

Solution

The Surface S and its projection R in the yz-plane are shown in figure.

z
A‘l
R
AN \\
\ \ \ N \A4rS
AN
\
\ \ N
y=0| N 3 >y
AN
\ 2x +y =6
z=10

[1]
A vector normal to S is given by
V2x+y)=20+]
Therefore,
20+j  214]  2i+]
J2ZH(?2 VA+1 V5

n=

Also,
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and

and

= f f%(x+y)§dzdy
y=02=0

=4(18+9) =108
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Selected Example/Problem 2: Surface
Integral

Problem Statement

Evaluate
i ff, Afds
i Jf, Ads
where 4 = zi + xj — 3y?zkand ¢ = gxyz S is the surface of the cylinder x? + y? = 16

included in the first octant between z = 0and z = 5.

Solution

i.  The surface S and its projection R on the xz-plane are shown in figure.

A

/
!

3 ‘J
T
L]

g

T e e e e [ T T

: [1]



/

/ —> J
v ~

/R// \ﬁ‘

/S0 4 >Y

/

4

z=0

[1]

R ~ dxdz
ﬂ A.ﬁdSsz AA——= (1)
< R 7. ]|

A normal vector to x2 + y2 = 161is V(x% + y?) = 2xi + 2yj
Thus the unit normal 72 to S is

Then

R 2xi + 2yj 2xt + 2yj 2xt + 2yj 2xt + 2yj 2xt + 2yj
n= = = = =
V02 +(2y)? Vet +4y? AR +y?) YA +y?) 4(16)

_2xt+2yj  2(xi+y))  (xi+y))

V64 8 4
Using x2 + y? = 160nS
Now,
> ~ (XTI +y]
Af= (st + x)— 3y°2k). (~2)
= 4(Zx xy)
And

Thus putting obtained values in equation (1)

5 1 4
ff A.ﬁdSsz —(zx + xy)—dxdz
s r 4 y

4

5
X+ X
=ffz Y dxdz
y

z=0x=0

= fzszo f;z()% + x dxdz

()



Utilizing the equation of the surface of the cylinder
x2+y? =16 =>y? = 16 — x> =y =V16 — x2
Substituting the value of y in equation (2)

5 4
ff 2 4 xdxd
= e —— xaxaz

V16 — x2

z=0x=0

!

5
= f(4z + 8)dz = [2z% + 8z|5 =90

214

—2z4/16 — x2 +x7

dz

0

i Jf, pAds

Substituting values, we get
ﬂ‘ AdS j (3 )(xi+yj)4d J
@.ndS = —XyZ —dxdz
S R 8 4 y

5 4
3
=3 f f xz (xi + yj)dxdz
z=0x=0

Using the value of y = v16 — x2 in above integral,

5
3
_> 2,4 — %27
=3 j j(x zl + xz/16 x])dxdz

z=0x=0
4
dz
0

5
_f |
= Z1l 3
0
5

o4 + dz =8
f?, Z])Z
0

— x2)3/2

Z R Z R
L

0

25, 25 . .
= 8(7 7]) = 1007 + 1005

is required solution.

90
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Selected Example/Problem 3: Surface
Integral

Problem Statement

Evaluate [J, A.AdS
over the entire surface of the region above the xy plane bounded by the cone S

z2 =x%+y2andtheplane z = 4,if 4 = 4xz i + xyz?j + 3zk.

Solution

The surface S and its projection R on the xy-plane are shown in figure.

N

[1]

ﬂ Z.ﬁdS:ff ff.ﬁd51+ff A.7dsS,
S S1 S2

ForS,,z=4n= kandA.k =1

Then
ff Z.ﬁdssz 12d51=12ff dxdy
S S R

1 1

Then

=12 X 1(4)% = 1921
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For S,, the normal vector is given by

V(x? + y? — z2) = 2xi + 2yj — 2zk

Therefore,
. 2xi + 2yj — 2zk _ 2(xt + yj — zk) _ (xi + yj — zk) _ (xi + yj — zk)
n_\/4x2+4y2+422_2\/x2+y2+22_ VZZ+z22 V222
. (i +yj—zk)
= 3
Also,
Ad= i(4x2 +xy?z —3z) and A. k = -1
V2 V2
Therefore
4 Ji6-x?
ff A.AdS, = j f i(4x2 + xy%z — 32).V2 dydx
s i V2

Using z2 = x? + y? in the above integral, we obtain

j
=
N

4 6—
= f f (4x2 + xy?x2 +y2 — 3/x2 + yz) dydx
—4 —V16—x2
Now we will further solve it by using polar coordinates

Letx =rcosf,y =rsinf, therefore 0 <r<4and0<6 <2rm

and
2w 4
ff A.qdS, = f f(4r2 cos? 6 + r* cos @ sin® 0 — 3r)rdrd6o
52 0 0
2w 4
= f f(4r3 cos? 8 + r° cos 0 sin?  — 3r?)drd6
0 0
integerating w.r.t r
2n 6 4

r
r*cos? 6 + Ecos@ sin?8 —r3| deo

0

46
= (256 cos? 6 + & cos 0 sin® 0 — 43> do
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21

46
= j (256 cos? 6 + Zcose sin? 89 — 43> do
0

2T

2048
= f (128(1 + cos 260) +

0

cos 6 sin? 9 — 64) do

Now integrating w.r.t 6 , we get

2T

sin® 0 — 646

2048
= |1289 + 64 sin 260 + 3

0

ff A.7dS, = 1287
S2

ff /T.ﬁdSsz /T.ﬁd51+ff A.7dS,
S S1 S

2

Thus,

ff A.7dS = 192 + 1287 = 3207
S

is the required solution.
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Volume Integral

A volume integral refers to an integral over a 3-dimensional domain, that is, it is a special case of
multiple integrals.

Definition

Let A bea given vector point function which is defined and continuous in a closed region R.Then

Lﬂjdv

If4 = A;i + A,J + Ak, then the above integral may be written as

LﬂﬁdeingldV+fngde+l§j;ﬂA3dv

If we have a scalar point function ¢(x, y, z) defined as continuous over the region R, then the

[f oo

In rectangular coordinate system, dV = dxdydz so the volume integral becomes

[ oav = [[] ot raxave
R R

Which is ordinary triple integral of ¢ (x, y, z) over the region R.

volume integral becomes

If o(x,y,z) = 1, the volume V of the region R is given by

Lfdxdydzzg dv

Notations for other than Cartesian system
VVolume integral can be expressed also in cylindrical and spherical coordinates as

i.  Volume integral in cylindrical coordinates:



|| 90.0.20d0d0as
R

ii.  Volume integral in cylindrical coordinates:

jﬂ. g(r,6,9)r?sin @ drdfde
R

Which are equivalent to ordinary triple integrals in cylindrical and spherical coordinates.

95
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Example on Volume Integral

Problem Statement
LetF = 2xzi — xj + y2k.

Evaluate

j;ﬂ Fav

where V is the region bounded by the surfacesx = 0,y =0,y = 6,z =x%,z = 4.

Solution

We will evaluate the given problem through following scheme.

[1]
The region V is covered (i) by keeping x and y fixed and integrating from z = x2 to z = 4 (base

to top of column PQ),

L
r

[1]
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(i1) Then by keeping y fixed and integrating fromy = Otoy = 6 (R to S in the slab),

(iii) Finally integrating from x = 0 to x = 2 (where z = x2 meets z = 4). Then the required

integral is
j f Fdv =
2

2 6 4 2 6 4
ifj jZXZ dzdydx jjj- jxdzdydx+l€fj J- y?dzdydx
00 00

0 x2 x2 x2

6 4
j j(szi — xj +y%k)dzdydx
0

x2

O\N

Solving integrals turn by turn

2 6 2 6 2 2
J-J- J-sz dzdydx =]jx(16—x4)dydx = jx(16—x4)|y|8dx=6jx(16—x4)dx
00 x2 00 0 0
2 2
—6[(16 —x5)d Y R Y L PSS
- XTXIEEESIT T TS T2 Tel T
o 0
2 6 4 2 6 2 6 2
ff fxdzdydx =ffx|z|fczdydx = ffx(él—xz)dydx =fx(4—x2)|y|8dx
0 0 x2 00 00 0
x|
=6]x(4—x2)dx=6 2x% —— —6|8——|—24
5 0
2 6 4 2 6 2 6 2. a6
J-j J- yzdzdydx=ijzlzlfczdydx=]jy2(4—x2)dydx=f . (4 — x?)dx
0 0 x2 00 00 0 0
x3|? 8
=72 | (4—x?)dx = 72 [4x - | =72(8 ) = 384
0

Hence

2 6 4 2 6 4 2 6 4
fffﬁdeifffozdzdydx—jfffxdzdydx+fcfffy2dzdydx
R 00 00 00

x2 x2 x2

M FdV = 1281 — 24j + 384k
R

is the required solution.
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Selected Example/Problem 1: Volume
Integral

Problem Statement

Find the volume of the region common to the intersecting cylindersx? + y 2 = a? and x? +

2

2= g2

zZ

Solution

Let M be the required common region then

[1]
2 x24z2=g2
£ |
" { E
I
™~
=
& +
™~
bt
>y
0 d

X [1]

98



Required volume = 8 times volume of region shown in above figure.

o N NERT
ff MdV =8 f dzdydx
14 x=0 y=0  z=0
o N o N o
= f zdydx = f Va2 — x2dydx = f(az —x?)dx
x=0 y=0 x=0 y=0 x=0
16a3

99
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