Virtual University

Virtual University of Pakistan

Real Analysis 1T (MTHG631)

Salman Amin MALIK

Virtual University
Learning Management System



To my unknown students



ii

About the instructor

Dr. Malik did his MS and PhD (Mathematics) from University of La Rochelle, La
Rochelle, France in 2009 and 2012, respectively. Prior to MS and PhD, Dr. Malik
completed his MPhil and MSc (Mathematics) from Department of Mathematics,
University of the Punjab, Lahore, Pakistan. He has been affiliated with several
universities in Pakistan and abroad. He has the experience of teaching a wide range
of mathematics courses at undergraduate and graduate level.

Dr. Malik has published several research articles in international journals and
conferences. His area of research includes the study of differential equations with
nonlocal operators and their applications to image processing. He is also interested
in inverse problems related to reaction-diffusion equations with nonlocal integro-
differential operators and boundary conditions. These models have numerous appli-
cations in anomalous diffusion/transport, biomedical imaging and non-destructive
testing.

About the handouts

The books followed during this course are: W. Rudin, Principles of Mathemat-
ical Analysis, Third Edition, McGraw-Hill, 1976. ISBN: 9780070542358. and
W. F. Trench, Introduction to Real Analysis, Pearson Education, 2013. Con-
sequently, the most of the examples considered in these notes are from the above
mentioned books and their exercises, but not restricted to those books only. If
you find any typing error in the text kindly report to me by writing an email to
salman.amin.malik@gmail.com.
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Course Information
Title and Course Code: Real Analysis IT (MTH631)
Number of Credit Hours: 3 credits

Course Objective: Real Analysis II is the follow up course of Real Analysis I and in
general an advanced course related to mathematical analysis. The topics of the Real
Analysis II are linked with its first course namely Real Analysis I, indeed, we will
extend the ideas of Real Analysis I to Euclidean space R™, we will discuss sequences
and series of functions, limits and continuity of functions of several variables, partial
derivatives their applications, multiple integrals etc. Upon completion of this course
students will be able to

e Understand the convergence of sequence of functions (LO1).

e Understand the pointwise convergence, uniform convergence, several tests for
convergence (LO2).

e Apply the interchange of limit and integration, derivative of sequence of func-
tions (LO3).

e Understand the infinite series of functions, convergence, Weierstrass’s test and
some other results about the convergence (LO4).

e Apply Dirichlet’s test for uniform convergence, series of product of two func-
tions, interchange of sum and intgeration (LO5).

e Represent and study the function which could be written as power series,term
by term integral and derivative of a power series, (LO6). item Understand the
concept of equicontinuous function, The Stone-Weierstrass Theorem (LOT).

e Understand and find the Fourier series, Fourier coefficients, convergence of
Fourier series (LOS).

e Apply the best approximation theorem and understand the Euler gamma func-
tion and the beta function and their properties (LO9)

e Understand the functions of several variables, Heine-Borel Theorem, limits
and continuity of functions of several variables (LO10)

e Vector valued functions and their calculus, Bounded functions and several
results about vector valued functions (LO11)

e Differentiablity in R™, Differentials, Directional derivatives, Partial deriva-
tives, Maxima and minima (LO12)

e Improper integrals, Multiple integrals, Functions of bounded variation (LO15)
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Prerequisites: Real Analysis I (MTH621)
The textbooks for this course:

[1] W. Rudin, Principles of Mathematical Analysis, Third Edition, McGraw-Hill,
1976. ISBN: 9780070542358.

[2] W. F. Trench, Introduction to Real Analysis, Pearson Education, 2013.
[3] S. Ponnusamy, Foundations of Mathematical Analysis, Birkhauser, 2012.
Reference books:

[4] A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Revised English
Edition Translated and Edited by R. A. Silverman, Dover Publication, Inc. New
York.

[5] R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis, Third Edition,
2000, John Wiley & Sons Inc.

e Sequences and Series of functions

e Functions of several variables

e Vector valued functions

e Integral Calculus
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CHAPTER 1

Sequences and Series of Functions

1.1 Informal way

If Fy, Fgi1, ..., Fhn,... are real-valued functions defined on a subset D of the real
numbers, we say that {F},} is an infinite sequence or (simply a sequence) of functions
on D. For each xg € D, we have a sequence of real numbers and we can talk about
the convergence of that sequence of real numbers.

If the sequence of values {F,(x)} converges for each x in some subset S of D, then
{F,} defines a limit function on S.

Example: The functions

0.3

0.1]

Ol 2 6 T
Figure 1.1: Plot of Fy(z) = ( L ) . n>1,forn=1,24,8,100

n+x

Example: The functions

define a sequence on D = [0, 00).
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Figure 1.2: Plot of Fy(z) = ( z ) C m>1,forn=1,24,8,20 100

n+x

Example: The functions

na n/2
Fn(w)_<1_n_‘_1> , n=>1,

define a sequence on D = (—o0, 1].

1.2 Pointwise Convergence

Suppose that {F,} is a sequence of functions on D and the sequence of values
{F.(x)} converges for each = in some subset S of D. Then we say that {F,}
converges pointwise on S to the limit function F, defined by

F(z) = lim F,(x), z€S.

n—oo

Example: The sequence of functions defined by

oo, x <0,
lim F,(z) =< 1, z=0,
n—oo

0, O<ax<l1.

Therefore, { F},} converges pointwise on S = [0, 1] to the limit function F' defined by

1, z=0,
F(x)_{ 0, 0<z<l1.

Example: Consider the functions

Fo(z)=2"e ", x>0, n>1L1
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Equating the derivative
Fl(z) =nz"le ™ (1 — 1)

to zero shows that the maximum value of F,(z) on [0,00) is e™", attained at = 1.
Therefore,

|Fro(z)| <e™™, x>0,

50 limy, o0 F(z) = 0 for all x > 0. The limit function in this case is identically zero
on [0, 00).

Example: For n > 1, let F), be defined on (—o0, 00) by

(0, r< —2

Fn(x) = TL2.’I}, _% S T < %7
n(2-nz), *<z<
2
L O, J;ZH

Since F,(0) = 0 for all n, lim, o F,(0) = 0. If x # 0, then F,(z) = 0 if
n > 2/|x|. Therefore,

lim F,(z) =0, —oo<z <00,
n—oo

so the limit function is identically zero on (—o0, 00).

Example: Show that the sequence of functions

Fn(x)=< . ) w1,
n X

define a sequence on D = [0, 00), converges to 0.

Example: For each positive integer n, let S, be the set of numbers of the form
x = p/q, where p and ¢ are integers with no common factors and 1 < ¢ < n.

Define
1, =€ 8
F — 9 mns
n(®) {o, © ¢S,

If z is irrational, then = ¢ S, for any n, so F,,(z) = 0, n > 1. If z is rational, then
x €S, and F,(z) =1 for all sufficiently large n.
Therefore,
lim F,(z) = F(z) =

n—oo

1 if x is rational,
0 if x is irrational.
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1.3 Norm Defined Over a Set

Let us introduce the notation

lglls = sup |g(z)].
x€eS

Lemma: If g and h are defined on S, then

lg+hlls < llglls + lIAlls
lghlls < llgllsllAlls-

Moreover, if either g or h is bounded on S, then

lg = hlls = lllglls — Al

1.4 Uniform Convergence

A sequence {F,} of functions defined on a set S converges uniformly to the limit
function F on S if

lim ||F, — F||s = 0.
n—oo
Thus, {F,} converges uniformly to F on S if for each € > 0 there is an integer N
such that
|F, — Flls <e if n>N. (1.1)

y=F(x)+e
y=F()
y=F(x)—¢

| —— —

Figure 1.3: Uniform convergence graphically

A sequence {F},} of functions defined on a set S converges uniformly to the limit
function F on S if

lim ||F, — F||s = 0.
n—oo
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Thus, {F,} converges uniformly to F on S if for each £ > 0 there is an integer N
such that
|Fn, — Flls <e if n>N. (1.2)

If S = [a,b] and F is the function with graph shown in then (1.2) implies that the
graph of

lies in the shaded band

Example: The sequence {F,} defined by

Fo.(z) =2"e ™, n>1,

converges uniformly to F' = 0.
We have
10 = Flls = [ Fulls = ™,

SO
|E, — Flls <e

if n > —loge. For these values of n, the graph of
y=Fy(z), 0<x<oo,

lies in the strip
—-e<y<e x20

Theorem: Let {F,,} be defined on S. Then

1. {F,} converges pointwise to F' on S if and only if there is, for each € > 0 and
x € S, an integer N (which may depend on = as well as €) such that

|Fo(z) — F(z)| <e if n>N(ex).

2. {F,} converges uniformly to F on S if and only if there is for each £ > 0 an
integer N (which depends only on ¢ and not on any particular z in S) such
that

|Fo(x) — F(z)| <e forall zin Sif n> N(e).

Theorem: If {F,} converges uniformly to F' on S, then {F,} converges pointwise
to F on S.

The converse is false; that is, pointwise convergence does not imply uniform conver-
gence.
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Counter example: For n > 1, let F,, be defined on (—o0, 00) by

Fn(fﬁ): n2$, —%S$<%,
n(2-nz), *<a<?
0, T 2%

The sequence {F), } of converges pointwise to F' = 0 on (—00, 00), but not uniformly.
Because

12 = Fllsoos = Fa (3) =
SO

1P = Fll(ao00) = o0

lim
n—oo

Counter example: For n > 1, let F,, be defined on (—o00,00) by

Fn(x) = 7'1/21U, _% S T < %7
n(2—nz), <a<
2
\ O, xZE

However, the convergence is uniform on
S, = (=00, 9] U [p, )

for any p > 0, since
2
| Fn — Flls, =0 if n> .

How to show that a sequence of functions is not uniformly convergent?
Suppose that a sequence of function Fj, is point wise convergent on the set S.

Then the convergence of Fj, is not uniform, if there exists an € > 0 such that to

each integer N there correspond and integer n > N and a point x,, € S for which

we have
|Fy () — F(zp)] > €.

Example: If F,(z) = 2", n > 1, then {F,} converges pointwise on S = [0, 1] to

1, z=1,
F(@_{ 0, 0<z<1.
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The convergence is not uniform on S. To see this, suppose that 0 < € < 1. Then
|Fo(z) —F(z)|>1—¢ if (1-e)Y/"<z<1.

Therefore,
l-—e<|F - Fls<1

for all n > 1. Since € can be arbitrarily small, it follows that
|Fn — Flls =1 for all n > 1.

Example: If F,(z) = 2", n > 1, then {F,,} converges pointwise on S = [0, 1] to

F(x):{ 1, =1,

0, 0<z<1.
However, the convergence is uniform on [0, p] if 0 < p < 1, since then
[1En = Flijo,0) = p"
and lim,,_,~ p" = 0. Another way to say the same thing: {F,} converges uniformly
on every closed subset of [0, 1).
1.5 Cauchy’s Uniform Convergence Criterion

Theorem: A sequence of functions {F,} converges uniformly on a set S if and
only if for each € > 0 there is an integer N such that

|En — Frlls <e if m,m> N. (1.3)

Proof: For necessity, suppose that {F,} converges uniformly to F' on S.
Then, if € > 0, there is an integer N such that

||Fk—FHS<§ if k> N.

Therefore,
HFn_FmHS = H(Fn_F)“'(F—Fm)HS
< |Fn = Flls + [|F = Fulls
< E+§:5 if m,n>N.

2 2
For sufficiency, we first observe that (1.17) implies that

|Fp(x) — Fp(z)] <e if n,m>N,

for any fixed z in S.
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Therefore, Cauchy’s convergence criterion for sequences of constants implies that
{Fn(z)} converges for each z in S; that is, {F,} converges pointwise to a limit
function F on S.

To see that the convergence is uniform, we write

[Fn(z) = F(z)] = |[Fm(2) = Fu(2)] + [Fa(z) = F(2)]]
< [Fn(e) = Fu(2)] + [Fo(z) — F(2)|
< |Fm = Falls + [Fa(z) — F(2)].
This and (1.17) imply that
|Fo(z) — F(z)| < e+ |Fu(x) — F(z)] if n,m>N. (1.4)

Since lim, o0 Fr(z) = F(x),
|Fo(z) — F(z)| <e
for some n > N, so (1.4) implies that
|F(z) — F(z)| <2 if m>N.
But this inequality holds for all z in S, so
|Fm — Flls <2 if m>N.

Since ¢ is an arbitrary positive number, this implies that {F,} converges uniformly
to Flon S.

Example: Suppose that g is differentiable on S = (—o0,00) and
ld ()] <r <1, —oo<z<o00. (1.5)
Let Fy be bounded on S and define
Fu(t) = g(Fpr(z)), n> 1. (16)
Show that {F,} converges uniformly on S.

Solution: We first note that if v and v are any two real numbers, then (1.5) and
the mean value theorem imply that

lg(u) = g(v)| < rlu—o. (1.7)

Recalling (1.6) and applying this inequality with u = F,,_1(z) and v = 0 shows that

[Fn(z)] = \g(0> ((Fn 1(93)) 9(0))]

IAIA
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Therefore, since Fp is bounded on S, it follows by induction that F, is bounded on
S for n > 1.

Moreover, if n > 1, then (1.6) and (1.7) with v = F,(z) and v = F,,_1(z) imply
that

[Fro1(z) — Fu(z)] = [g(Fu(z)) — g(Fr-1(2))]
< 7“|Fn(33)_Fn71(x)|7 —00 <X < 00,

SO
HFn—i-l - FnHS < rHFn - Fn—IHS'

By induction, this implies that
[t = Falls < vy — Fols. (1.8)
If n > m, then
[Fn = Fnlls = [(Fo = Fo1) + (Fp1 = Foa) + -+
+(Fms1 — Fu)lls

”Fn *anlHS+ ||Fn71 *Fn72||5+
+||Fm+1 - FmHS

IN

Now (1.8) implies that

|Fp — Fulls < ||1FL— Folls(I+ 7+ 4. 4 pnmm=l)pm
,,,.m

1—7

< ||F1 — Folls

T‘N

1—r

Therefore, if |F1 — Folls <eg,

then ||Fy, — Finls <eif n, m > N.
1.6 Properties Preserved by Uniform Convergence

1.6.1 Continuity of the Limit Function at a Point

Theorem: If {F),} converges uniformly to F' on S and each F,, is continuous at a
point zg in S, then so is F'. Similar statements hold for continuity from the right
and left.

Proof: Suppose that each F;, is continuous at zg. If z € S and n > 1, then

|F'(2) — F(0)] |F () = Fr(2)| + |[Fa(2) = Fa(xo)| + [Fu(zo) — F(x0)|

<
< [Fa(2) = Fu(wo)| + 2[[Fn — Fls-

(1.9)
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Suppose that e > 0. Since {F},} converges uniformly to F' on S, we can choose n so
that ||F,, — F'||s < €. For this fixed n, (1.9) implies that

|F(x) — F(z0)| < |Fn(x) — Fp(zo)| + 26, x € 8S. (1.10)
Since F}, is continuous at xg, there is a § > 0 such that
|Fn(z) — F(zo)| <e if |x—xo] <.

So, from (1.10),
|F'(z) — F(zo)| <3¢, if |z—axo|<é.

Therefore, F' is continuous at xg.
Similar arguments apply to the assertions on continuity from the right
and left.

Corollary: If {F,} converges uniformly to F' on S and each F}, is continuous on S,
then so is F'; that is, a uniform limit of continuous functions is continuous.

Proof: See video lectures.

Remark: If {F,} converges uniformly to F on S. Is the following

b b
/F(ac) dx = li_)m F,(x)dx,

is true?

Example: fab F(z)dr = limp_0o f; F,(z)dx, is not true generally.

Consider the sequence of functions defined on S = [0, 1]

0, %<a:<1.

Then the sequence {F,} converges pointwise to F(z) = 0 on [0,1] and it is not
uniformly convergent. We have

1 1/n 1 1
/ Fn(:n)dx:/ ndx—l—/ Odr =1 But / F(z)dx =0
0 0 1/n 0

b b
/ h_)m F,(x)dx # lim F,(z)dz,

n—oo a
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1.6.2 Interchange of Limit and Integration

Theorem: Suppose that {F),} converges uniformly to F' on S = [a,b]. Assume that
F and all F,, are integrable on [a, b].
Then

b b
/F(x)d:c: lim F,(x)dx. (1.11)

n—oo a

Proof: Consider

/abFn(:E) d:n—/abF(:U) do

IN

/abFn(x) dx—/abF(x) dw

and lim, o ||Fy, — F||s = 0, the conclusion follows.

/ (Fu(z) - F(2)|do

(b—a)l|Fn = Flls

A

Remark: Recall the theorem we have just proved; i.e.,

Theorem: Suppose that {F},} converges uniformly to F' on S = [a, b]. Assume that
F and all F,, are integrable on [a, b].
Then

b b
/F(ac) dr = lim F,(z)dx.

n—o0 a

The hypotheses of Theorem are stronger than necessary.

Theorem: Suppose that {F,,} converges pointwise to F' and each F), is integrable
on [a,b].

1. If the convergence is uniform, then F' is integrable on [a,b] and

b b
/ F(z)dx = lim F,(x)dx.

n—o0 a

holds.

2. If the sequence {|[Fy[|[o,4} is bounded and F' is integrable on [a, b], then

b b
/ F(xz)dx = lim F,(x)dx.

n—o0 a

holds.
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Remark: Part (1) of this theorem shows that it is not necessary to assume that F
is integrable on [a, b], since this follows from the uniform convergence. Part (2) is
known as the bounded convergence theorem. Neither of the assumptions of (2) can
be omitted.

Example (Unbounded sequence of functions): For n > 1, let F,, be defined
on (—o0,00) by

Fo(z) =< n’z, —% <z < %,
n(2-nz), i<z<
0, T >

Example (Bounded sequence of functions but limit is not integrable): For
each positive integer n, let S, be the set of numbers of the form = = p/q, where p
and ¢ are integers with no common factors and 1 < g < n.

Define
1, xze€lS,,

F”(””):{ 0, ¢S,

If z is irrational, then = & S, for any n, so F,,(x) =0, n > 1. If = is rational, then
x € Sy, and Fy,(x) = 1 for all sufficiently large n. Therefore,

lim F,(x) = F(z) =

n—oo

1 if x is rational,
0 if x is irrational.

In this example it is clear that |[F}[[j,4 = 1 for every finite interval [a,b], F), is
integrable for all n > 1, and F' is nonintegrable on every interval.

Example: The sequence {F,} defined by
1

xn—l'

F,(z) = 2" sin

The sequence of functions converges {F),} converges uniformly to F' = 0 on [ry, 9]
if 0 <r; <ry <1 (or, equivalently, on every compact subset of (0,1)).

However,

1
*(TL*].)COSF

F!(z) = nz" Lsin I

xnfl

so {F!(x)} does not converge for any x in (0,1).
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1.6.3 Under What Conditions We May Have F’ = lim, . F)

Theorem: Suppose that F is continuous on [a, b] for all n > 1 and {F],} converges
uniformly on [a, b]. Suppose also that {F},(z¢)} converges for some z¢ in [a, b].

Then {F,} converges uniformly on [a,b] to a differentiable limit function F, and

F'(z) = lim F)(x), a<x<b, (1.12)
n—oo
while

F' (a) = nh_)nolo F!(a+) and F’'(b) = nh_>n;0 F!(b-). (1.13)
Proof: Since F) is continuous on [a, b], due to fundamental theorem of calculus, we

can write -
Fo(@) = Fy(w0) +/ Fl(t)dt, a<z<b. (1.14)

0
Let L = lim F,(x0), G(x) = lim F(z). (1.15)

n—oo n—oo

Since F is continuous and {F,} converges uniformly to G on [a, b, G is contin-
uous on [a, bl.

Therefore, (1.14) and wusing the fact we have proved f; F(z)de =
limy, 00 f; F,(x)dz (with F and F, replaced by G and F)) imply that {F,} con-
verges pointwise on [a,b] to the limit function

Flz)=L+ / G(t) dt.

F(z) = L+/ G(t) dt. (1.16)

o
The convergence is actually uniform on [a, b], since subtracting (1.14) from (1.16)
yields

|F(2) = Fa(2)]

IN

L = Fr(wo)| +

[ 16t - Ewla
xo
|L — Fp(zo)| + |z — x| |G — Fyllfa)-

IN

Consequently,
IF = Fulllag) < |L = Fa(zo)| + (b= a)l|G = Fyllja,0),

where the right side approaches zero as n — oo.
Since G is continuous on [a,b], (1.15), (1.16), Definition ??, and Theorem ??
imply (1.12) and (1.13).
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1.7 Series of Functions

If {f;}3° is a sequence of real-valued functions defined on a set D of real numbers,
then Zj‘;k [j is an infinite series (or simply a series) of functions on D.

The partial sums of, 327 f; are defined by
Fo=) fj, n>k
=k

If {F,};° converges pointwise to a function F' on a subset S of D, we say that
Z;’;k fj converges pointwise to the sum F' on S, and write

sziﬁiif}, xeS.
=k

If {F,,} converges uniformly to F on S, we say that Zjoik, fj converges uniformly
to F on S.

1.8 Convergence of Series of Functions

The infinite series of functions Zj’;k fj on D is said to be uniformly convergent if
the sequence of partial sum {F,,} defined by

E%'::jgjj}’ n > k.
j=k

converges uniformly to F(x) on D.
Example: For the functions
filz) =2, =0,

define the infinite series of functions
oo
> @
=0
on D = (—00,00).

Pointwise convergence: The nth partial sum of the series is

Fyx)=1+z+2*+ - +2"

1—gntl
— b "'B#]‘7

Ph(x):: 11—z
n+1, x=1.

or, in closed form,
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We have seen earlier that {F,,} converges pointwise to

1
F =
(@) =1—
if |x| < 1 and diverges if |z| > 1.
Hence, we write
[e'S) ' 1
Y 4l = , —l<z<l
, 1—2z
7=0
Since the difference
xn+1
Pla) = Fa(e) = 1—

can be made arbitrarily large by taking x close to 1,
[F' = Full(—1,1) = o0,

so the convergence is not uniform on (—1,1).
We have seen earlier that {F),} converges pointwise to

if |z| < 1 and diverges if |z| > 1.
Neither is it uniform on any interval (—1,7] with —1 < r < 1, since

||F - Fn”(—l,r) >

DN | =

for every m on every such interval.

Example: For the functions fj(z) = 2/, j >0, discuss the uniform convergence
of the infinite series of functions 3 72 f;(z).

Uniform convergence: The series does converge uniformly on any interval [—r, 7]

with 0 <7 < 1, since
rn-‘,—l

| F' = Full[—rp = 1—-

and limy, 7™ = 0. Put another way, the series converges uniformly on closed
subsets of (—1,1).
Uniform convergence (using ¢): See video lectures.

Remark: A necessary condition for 7% f;(z) to converge on S is that fj(z) — 0
for each x € S.

Remark: As for series of constants, the convergence, pointwise or uniform, of a
series of functions is not changed by altering or omitting finitely many terms. This
justifies adopting the convention that we used for series of constants: when we are
interested only in whether a series of functions converges, and not in its sum, we
will omit the limits on the summation sign and write simply > f,.
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1.8.1 Cauchy’s criterion for functional series

Recall the following Theorem knows as Cauchy’s convergence criterion

Theorem: A sequence of functions {F,} converges uniformly on a set S if and
only if for each € > 0 there is an integer N such that

|Ey — Frlls <e if my,m> N. (1.17)

Theorem: A series ) f, converges uniformly on a set S if and only if for each
€ > 0 there is an integer N such that

an+fn-i—l'f""—’_meS<6 if mZnZN (1'18)

Proof: Apply Cauchy’s convergence criterion to the partial sums of > f,,, observing
that

fn+fn+1+"'+fm:Fm_ n—1-

Theorem: A series Y f, converges uniformly on a set S if and only if for each
€ > 0 there is an integer N such that

I+ fasr oo+ fmlls <& if m>n>N. (1.19)

Corollary: If > f, converges uniformly on S, then lim, , ||fn]ls = 0. Setting
m=n.

Remark: The above conditions is necessary but not sufficient.
Example: We have proved that the series 22 fj(x), where

is uniformly convergent on any compact subset of (—1,1) say [—r,r|, where 0 < r <
1.
Let us apply Cauchy’s criterion for functional series, recall that we have

1 _xn+1
Foz)=142z42°+ .. +2"= —"—
1—=x
Consider
1— anrl 1— merl xm+1 _ xn+1
F —F = — g
[P nl | 1—2 1—2 =1 1—2
2|$n+1‘
<
T 1z
2‘7’”+1‘

< :
1=
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We have
2]7“”+1 |

1—r|”

HFm - F”H[*T,T] <

Since
9 | ,rnJrl |

1—|r|

—0 as n — oo,

there is an integer N (g) can be found for which

2|7‘"+1|
1—|r|

<e¢e, when n> N(e).

We have
||Fm - FTLH[—T,T} <e,

hence by Cauchy’s criterion the series Z(;io 27, is uniformly convergent on [—r,7].

1.8.2 Dominated Series of Real Numbers for Series of Functions

Let {M,} be a sequence of nonnegative real numbers, and {F,(z)} a sequence of
functions defined on the set .S such that

|Fn(x)] < My, VeSS and neN.

Then the series of functions Y- ; F,(z) is said to be dominated on S by the series
2zt M.

Example: Consider F), = ﬁ and the series of functions > >° | F,, is dominated
by the series > 1/n? because

1

We know that > 1/n? < oco.

1.8.3 Weierstrass M-test/dominated Convergence Test

Theorem The series ) f,, converges uniformly on S if

where > M,, < occ.

Proof: From Cauchy’s convergence criterion for series of constants, there is for each
€ > 0 an integer N such that

My +Myp1+---+My,<e if m>n>N.
which, because of (1.20), implies that

||fn||S+||fn+1HS+"'+”fm||S<5 it m,n>N.
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| fn+ fos1+- -+ fmlls <e if m,n>N.

Due to Cauchy’s criterion, we conclude that > f,, converges uniformly on S.
Recall the following necessary condition for uniform convergence:

It > fn converges uniformly on S, then lim,_, || fn]ls = 0.
Example: Check the uniform convergence of the following series of functions

© Y e
® Z sir;;m:.

Solution: We have . .

x24+n? — n?’

Taking M,, = 1/n? and recalling that

1
Zﬁ<oo.

Due to Weierstrass M-test, we can conclude

1 |
Y X

converge uniformly on (—o0, 00).

Example: Check the uniform convergence of the series

Saw=%(r53)

Solution: The given series converges uniformly on any set S such that

< 1 S. 1.21
‘l—i—x <r<l, ze ( )

For such a set S, we have || f,||s < ™.
By Weierstrass’s test applies, with Y M,, = > r" < oo.
Since (1.21) is equivalent to
—r r

<

< S
1—|—r_$_1—r’ T ED

this means that the series converges uniformly on any compact subset of (—1/2,0).

Example: Check the uniform convergence of the series

Er =% ()
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Solution: See the solution in video lecture.

Recall: If ) f, converges uniformly on S, then lim, , || falls = 0. The series
does not converge uniformly on S = (—1/2,b) with b < oo or on S = [a, c0) with
a > —1/2, because in these cases || f,||s = 1 for all n.

Absolute convergence: A series of functions ) f,, is said to converge absolutely
on S if Y |fn| converges pointwise on S, and converges absolutely uniformly on S if
> | fn| converges uniformly on S.

Remarks:

e The condition of absolutely convergence (pointwise or uniform) is stronger
than the usual convergence (pointwise or uniform).

e In our proof of Weierstrass’s M-test, we actually proved that > f,, converges
absolutely uniformly on S.

e Show that if a series converges absolutely uniformly on S, then it converges

uniformly on S.

Theorem: The series -
Z fngn
n=~k

converges uniformly on S if {f,} converges uniformly to zero on S, > (fn+1 — fn)
converges absolutely uniformly on .S, and

gk + grr1 + -+ gnlls <M, n>k, (1.22)
for some constant M.

Proof: Let
Gn =0k +gks1+  + 9n,

and consider the partial sums of > >, fngn:
Hp = frgr + fe19k+1 + -+ fogn (1.23)
By substituting ¢x =G and ¢, =G, —Gp—1, n>k+1,
into (1.23), we obtain
Hy = fiGr + fer1(Gre1 — Gi) + -+ fu(Gn — Gn).

Which we rewrite as

Hp = (fk = fer1)Gr + (fkr1 — fer2)Grrr + -+ (fum1 — fo)Gn1 + fuGhr,
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or

Hn =dJp-1+ fnGna (124)

where

Jn—1 = (fr = [k41)Gr + (fog1 — froa2)Gryr + -+ (fae1 — fu)Gno1. - (1.25)

That is, {J,,} is the sequence of partial sums of the series

[e.e]

> (fi = )Gy (1.26)

=k

From (1.22) and the definition of G},

> fi(@) = fi(2)]Gi(x)| < MZ [fi(z) = fima()l, z€S,

j=n
SO
S (fi = Fi)Gil| <MD= fial
Jj=n S j=n S

Now suppose that € > 0. Since > (f; — fj+1) converges absolutely uniformly on S,
Cauchy’s convergence criterion implies that there is an integer /N such that the right
side of the last inequality is less than € if m > n > N. The same is then true of the
left side, so Cauchy’s convergence criterion implies that (1.26) converges uniformly

on S.

We have now shown that {.J,} as defined in (1.25) converges uniformly to a limit
function J on S. Returning to (1.24), we see that

H,—J=Jdn1—J+ frGn.
Hence, we have

1Hn = Jls [Jn-1 = Jlls + [ fullsGnlls

<
< N1 = Jlls + M| fulls-

Since {Jp—1 — J} and {f,} converge uniformly to zero on S, it now follows that
limy, o0 || Hpn — J||s = 0. Therefore, { H,} converges uniformly on S.

Corollary: The series > 7, fngn converges uniformly on S if
fn—i—l(x) an(l'), mES, nZk,
{fn} converges uniformly to zero on S, and

lgk + g1+ -+ gnlls <M, n>k,
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for some constant M.

Example: Consider the series

o .
Z S nax
n

n=1

with f,, = 1/n (constant), g,(x) = sinnz, and
Gpn(z) =sinx + sin 2z + - - - + sinnz.

We have

1

|G ()] < ma

n>1 n#2kn (k = integer).

Therefore, {||Gy||s} is bounded, and the series converges uniformly on any set S on
which sinz/2 is bounded away from zero.
Example: For example, if 0 < § < 7, then
2|10
sin —| > sin —
21 2

if x is at least & away from any multiple of 27; hence, the series converges uniformly

on
S= |J 2k +6,2(k + 1)m — 4],
k=—o00
Since )
Z sinna| I
n

This result cannot be obtained from Weierstrass’s test.

Example: The series

2
ontx
satisfies the hypotheses of Corollary on (—o0, 00), with

L
n+ a2’

fn() = gn=(=1)", Gopy =0, and Gom+1 = —1.

Therefore, the series converges uniformly on (—oo,00). This result cannot be ob-
tained by Weierstrass’s test, since

1
Zn+x2:oo

for all x.

Recall the following result:
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Theorem: If {F,,} converges uniformly to F on S and each F, is continuous at a
point zg in S, then so is F'. Similar statements hold for continuity from the right
and left.

Theorem: If Y 7 f, converges uniformly to F on S and each f, is continuous at
a point xg in .5, then so is F. Similar statements hold for continuity from the right
and left.

Proof: See Lecture.

Recall the following: Theorem: If Y 7, f, converges uniformly to F on S and
each f, is continuous at a point xg in .S, then so is F. Similar statements hold for
continuity from the right and left.

Example: Recall, we have proved that the series

Flw) = i (1:%)”

n=0

converges uniformly on every compact subset of (—1/2, 00).
Since the terms of the series are continuous on every such subset, implies that
F is also.

In fact, we can state a stronger result: F' is continuous on (—1/2,00), since
every point in (—1/2,00) lies in a compact subinterval of (—1/2,00).

Example: Show that the function

is continuous except perhaps at z; = 2km (k = integer).

We have seen that the series Y 7, % is uniformly convergent by applying Dirich-
let’s Test for Uniform Convergence except at zj = 2km (k = integer).

Example: The function
1
n + x?

H(z) =Y (-1)"

n=1

is continuous for all x.

Theorem: Suppose that {F},} is a sequence of Riemann integrable functions defined
on an interval [a,b]. If {F},} converges uniformly on [a,b] to F, then F' is Riemann
integrable on [a, b], and
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For each t € [a, b]
¢
/ Fo(x)d,

t

/m@m

a

converges uniformly on [a, b] to

Proof: We need to show that the function F' is integrable on [a, b].
Observe that the following statements holds:

e [}, is bounded, because each F), is integrable on [a, b].

e [ is bounded, because

|F ()] < [Fo(z) = F(2)| + [Fu(@)] < 6 + [Fa()],

where 0, = sup,ejq) [Fn(2) — F(z)].

e Since F), converges uniformly to F', for every € > 0, there exists an N such
that

for all z € [a,b],n > N.

Also, F), is integrable, there exists a partition P of [a,b] such that

S(P,F,) — s(P,F,) <

Wl ™

For each x € [a,b] with n =N

|Fy(x) — F(z)| < for all =z € [a,b],n > N,

3(b—a)’

implies that
implies tha - -

30— a) <F(m)<Fn(m)+3(b_a).

F,(x) —

Therefore,

%REJ—§<%RDSSGMW<MRE»+§

Hence F is integrable. Finally, for n > N and for each ¢ € [a,b], we have

‘jﬂ@w—jF@M

t

< [IF@) - F@)lda

IN

for all =z € [a,b],n > N.
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Remark: The limit of a uniformly convergent series of integrable functions is inte-
grable, and so term-by-term integration is permissible for such a series.

Theorem: Suppose that -~ , f, converges uniformly to F on S = [a,b]. Assume
that F' and f,, n > k, are integrable on [a, b]. Then

b St b
/ F(z)dx = Z fn(x)d.
a n=k a
We say in this case that ) -, f, can be integrated term by term over [a,b].

Example: Consider the {F},} defined by

X

Fnle) = T

x € [a,b] C R.
Then Weieretrass’s M-test shows that > F,, converges uniformly on [a, b]
Consequently, term-by-term integration is permissible in this series.

Example: Consider the following

1 o0
:E ", —l<z<l1.
11—z =

The series converges uniformly, and the limit function is integrable on any closed
subinterval [a, b] of (—1,1).

Hence,
b 0 p
dx / n
= z" dx.
L 1—x nZ:;) a
Consequently,
0 bn+1 o an+1
log(l—a)—log(l—b)zz i
n=0
Remark: We have seen that
0 bn+1 o an+1
log(l —a) —log(l —b) =
og(1 — a) ~log(1 —8) = > "

n=0
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Letting a = 0 and b = « yields

log(l—x):—z7f+1, -l<z<l
n

Example: Evaluate the

o 1
Z/we —1)e " dx.
0

n=1

Solution: The sequence of partial sum is

n

F, = Zaz(ex — e *dz.

k=1

Observe that F,,(0) = 0 and for x > 0

Example: Evaluate the

o 1
Z/ (e — 1)e "*dx.
n=17

nT

Solution: For the function xe™™*, we have seen that it attains its maximum at

x = 1/n, we have
[Fn(z) — || = sup | Fy(z) —
x>0

1

—nx‘_

| Fn(x) — z|| = sup |ze .
>0 en

So, as n — oo, we have || F,,(z) — z|| — 0.

Example: Evaluate the
o 1
Z/ e’ —1)e "dx.
n=1jp

Solution: The series of functions

o0

Z xz(e® —1)e "*dux,

n=1
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converges uniformly to F'(z) = x.
Applying the theorem of interchange of sum and integral sign, we can conclude
that

o 1 1o 1
Z/xe -1) _”xd:):—/Z:ce -1) _md:):—/:vdw.
0 0 0

n=

—_

x || 1
1+nz? — 2f|x| 2\/5'

F,,(z) is uniformly convergent to F'(z) = 0 on R. We have

[Fo()] =

1 — na?

Fp(z) = At na?)?

When z = 0, we have lim,_,o F),(x) = 0 and for = # 0 lim,,_,o F},(z) = 1.

Remark: What we have observed in this example is:

e We have a sequence of differentiable functions {F,,} defined on S.
e F,, converges uniformly to F' on S.
e [ is differentiable on S.

e There exists x € S with F'(z) # lim, o F), (), because F,,(0) — 1 # F'(0).

Thus, even if the limit of a uniformly convergent sequence (respec-
tively series) of differentiable functions on S is differentiable on 5, it may
happen that the derivative of the limit is not the limit of the sequence
(respectively sequence of partial sums) of derivatives of the differentiable
functions.

Theorem: Suppose that f, is a sequence of functions such that:
e f, is continuously differentiable on [a, b] for each n > k, i.e., f,, € C'[a,b].

o > > . fa(xo) converges for some g in [a,b].
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e > >, f1 converges uniformly on [a,b].

Then >, fn converges uniformly on [a, b] to a differentiable function F, such
that

Fl(z)= if,’b(m), a<z<b,
n=~k

while  F'(a+) =Y _ fi(a+) and F'(b—)=>_ fi(b-).
n=k n=k

Proof: Since f], is uniformly convergent to g on any closed interval contained in
[a,b], say in an interval with endpoints xg and x, x € [a,b]. Thus, for all = € [a, b],

we have . .
/ g(t)dt = lim fr(t)dt.
o xo

Recall the fundamental theorem of calculus, we have

xT

[ ottt = Jim (5u(a) = (o).
o
Recall the lim,, oo frn(xo) exists (given hypothesis), we can obtain

T

[ o+t fuw) = im fulo), on fa,b]

zo

The above convergence is uniform. By setting F'(x) = lim, oo fn(x), we have

T

[otde+ tw fuw) = @), on o

o

Now, g, being the limit of a uniformly convergent sequence of continuous functions

on [a,b], is continuous on [a, b].
x

Recall the second fundamental theorem of calculus with G(z) = [ g(¢)dt is
o

differentiable and G'(z) = g(x) on [a, b].
Therefore, we have

Fle)=g(x),  Fl(@)=lim fi(z). on [a8]

Remark: The series > -, fn can be differentiated term by term on [a, b).

How to apply this result?
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e We first verify that > 2, fn(xo) converges for some xg in [a, b].

e Then differentiate > .~ , f, term by term. If the resulting series converges
uniformly. Then term by term differentiation was legitimate.

Example: The series
1
S (1)~ cos (1.27)

converges at zg = 0. Differentiating term by term yields the series

1 T
n+1 :
E 1(—1) ) sin - (1.28)

of continuous functions. This series converges uniformly on (—oo,00), by Weier-
strass’s test. Consequently, the series (1.27) converges uniformly on every finite
interval to the differentiable function

oo
1 x
F = E —1)"—cos—, —oo <z < 00,
(x) n:1( ) ~cos 00 < <00
F' = E —1)" ZsinS, —oo < < 0.
() n:1( ) —ysin—, o0 <z <o

Example: Consider the series

& " 2 .1'3
E(x)zzﬁ—1+x+—+§+ (1.29)
n=0

The series converges uniformly on every interval [—r, r] by Weierstrass’s test, because

rn
TL' = ﬁ’ ’.’,E‘ S r,
.n !

Z%<oo

=1

for all r, by the ratio test.
Differentiating the right side of (1.30) term by term yields the series

0o _ .
— (n—1)! nz:;) nl’
which is the same as (1.30).
Example: Consider the series
X n 22 23
E(x)zzm—1+w+f+§+~-. (1.30)

n=0
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Therefore, the differentiated series is also uniformly convergent on [—r, 7] for every
r, so the term by term differentiation is legitimate and

E'(z) = E(z), —o0o<z < .

This is not surprising if you recognize that F(z) = e*.

Remark: Failure to verify that the given series converges at some point can lead
to erroneous conclusions.

Example: For example, differentiating

> x

g cos — (1.31)
n

n=1

term by term.

We have
o
1 .z
— — sin —.
n n
n=1
Since
1, =z lz| 7
—sin—| <5 < —, 2| <,
n n n

and Y 1/n? < co. which converges uniformly on [—7,7] for every r,
We cannot conclude from this that (1.31) converges uniformly on [—r, r]. In fact,
it diverges for every =z.

1.9 Power Series

An infinite series of the form
o0
> an(a — x0)", (1.32)
n=0

where x¢ and ag, a1, ..., are constants, is called a power series in x — xg. If zg =0

oo
g anx™.
n=0

then power series becomes

Theorem: The radius of convergence of > a,(x — x¢)" is given by

an+1
Gn

— = lim

n—o0

if the limit exists in the extended real number system.
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Theorem: For the power series Y ° an(z — x0)", define R in the extended real
numbers by

1
= = limsup |a, |'/". (1.33)

n—oo

Theorem: A power series
o0
f@) =" an(z —z0)"
n=0

with positive radius of convergence R is continuous and differentiable in its interval
of convergence, and its derivative can be obtained by differentiating term by term;
that is,

fl@) = nan(z —x0)" ", (1.34)
n=1
which can also be written as
fl@) = (n+Dani1(z — o). (1.35)
n=0

This series also has radius of convergence R.

Proof: Since

limsup((n + 1)]a,|)"/" = limsup(n + 1)/"|a,|"/"
n—oo n—oo
= ( lim (n + 1)1/") <limsup |an|1/“>
n—oo n—00

= [ exp (<2

0 1
lim sup |a, U”) 26*:*7
< n%opl | =R

the radius of convergence of the power series obtained by term by term differentiation
is R. Therefore, the power series in

o0

f(@) = 30+ Dang(z — o),

n=0
converges uniformly in every interval [zg — 7, 2o + 7] such that 0 < r < R.
The term by term differentiation is valid for the power series and the series

o0

F@) = (04 Dang (@ — o),

n=0

converges uniformly for all z in (zg — R, zo + R).
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Theorem: A power series

x) = Z an(x — z0)"
n=0

with positive radius of convergence R has derivatives of all orders in its interval of
convergence, which can be obtained by repeated term by term differentiation. That
is,

o0

FE @)= nn—1)-(n—k+ an(z — z0)" " (1.36)

n=~k
The radius of convergence of each of these series is R.
Proof:
o0
) (z Znn—l (n =k + Dan(z — 20)" .
n=k
The proof is by induction. The assertion is true for £ = 1, by the Theorem we

proved in previous module.
Suppose that it is true for some k& > 1. By shifting the index of summation, we

can write
fO@) =3 k)t k=1 (04 Danale —0)", |o—zo < R.
n=0
Defining
bp=Mm+k)(n+k—=1)--(n+1)ayik- (1.37)
We rewrite this as
8 (x Zb r—x0)", |r—x0| <R.

By Theorem of term by term differentiation of power series, we can differentiate
this series term by term to obtain

| an r—x0)" Y, |z — x| < R.

Substituting from (1.37) for b, for |z — x| < R yields

[e.9]

FED (@) = "(n+k)(n+k—1)- (n+ Dnapps(z — 20)" .

n=1
Shifting the summation index yields

o0

FED () = Z n(n—1)-(n—k)an(z —20)" "', |z —x0| <R,
n=k+1
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which is (1.42) with k replaced by k + 1. This completes the induction.

Example: We have proved that

1 o
n=0
Repeated differentiation yields

(1_];!)/&4-1 = z:n(n—1)---(n—l’<:—{—1)m”_’c

n==k
oo

= Z(n+k)(n+k—l)~--(n+1)$”, lz| <1,
n=0

1 = (n+k\ ,

n=0

Example: Show that the series

o0 1:2n+1 & 1:2n
S(x):;(—l)”w and C(:v):;:%(—l)”@n)!

converges for all z.
Differentiating yields

5'(a) = 3 (-1 G = C@)
n=0
and , o0 . :L.Zn—l 0 . 1.211—&—1
C'(z) = nz:l(—l) -1 —7;)(—1) i)l —S(z).

These results should not surprise you if you recall that

S(z) =sinz and C(x)=cosz.

Theorem: If -
f(z) = Zan(x —x0)", |r—x0| <R,
n=0

then
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Proof: We have

[e.9]

F®) Z (n—1)-(n—k+ Day(xz —zo)" .

Setting z = x¢ in the above equation yields

F®) (o) = Kla.

Theorem: If
Zanaj—xo Zb x —x0)" (1.38)

for all = in some interval (zg — r,zo + ), then

an =b,, n>0. (1.39)

Proof: Let f(z) =Y 7" jan(z —x0)" and g(z) = > 0" bz — 20)™.

From previous result, we have

£ (o)

g™ (20)
n! '

and b, =
n!

(1.40)

an =
From (1.38), f = ¢ in (x9 — r, 29 + 7). Therefore,

F(x0) = g™ (), n>0.
This and (1.40) imply (1.39).

Theorem (Recall the following): For the power series, define R in the extended
real numbers by

1
& = limsup |a, |'/". (1.41)

n—oo

In particular, R = 0 if limsup,,_, o, |a,|"/™ = 0o, and R = oo if limsup,,_, , |an|"/" =

0.
Then the power series converges

1. only for z = xg if R = 0;
2. for all z if R = oo, and absolutely uniformly in every bounded set;

3. for  in (xg — R,z90 + R) if 0 < R < 00, and absolutely uniformly in every
closed subset of this interval.
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Remark: The series diverges if |x — x9| > R. No general statement can be made
concerning convergence at the endpoints * = xg + R and z = 9 — R : the series
may converge absolutely or conditionally at both, converge conditionally at one and
diverge at the other, or diverge at both.

Theorem (Recall the following): Suppose that > 7, f, converges uniformly to F
on S = [a,b]. Assume that F' and f,, n > k, are integrable on [a, b].

/F ClZL‘_

Theorem: If z; and x2 are in the interval of convergence of

o0
= Zan(a: —x0)",
n=0

Then ,
fn(x)dx

nk

then

/ f dx _ Z + - [(xg - xg)"ﬂ . (1,1 . xo)nJrl] :

that is, a power series may be 1ntegrated term by term between any two points in
its interval of convergence.

Proof: See Lecture.

Some questions related to Power Series.

e For what values of x a given power series converges.
e We discussed, what are the properties of its sum.

e What properties guarantee that a given function f can be represented as the
sum of a convergent power series in x — xg?

Recall the following;:

Theorem: A power series

x) = Z an(z — x0)"
n=0

with positive radius of convergence R has derivatives of all orders in its interval of
convergence, which can be obtained by repeated term by term differentiation; thus,

) (z Zn n—1)---(n—k+ ap(z — z0)" " (1.42)
n==k
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The radius of convergence of each of these series is R. If
o0
f(z) = Zan(a: —x9)", |r—x0| <R,
n=0

then
f(n) (3;0).

Ap = |
n:

1.10 The Taylor’s Series

The only power series in x — xg that can possibly converge to f in such a neighbor-
hood is -
> I

p (x — x0)"™. (1.43)

n=0
This is called the Taylor series of f about zo (also, the Maclaurin series of f, if
xo = 0). The mth partial sum of (1.43) is the Taylor polynomial

m () (g
Ty = Y2 L0 0y
n=0 ’

Remark: The Taylor series of an infinitely differentiable function f may converge
to a sum different from f.

Example: Consider the function

e—l/z2
O

the function f is infinitely times differentiable on (—oo, 00) and f(™(0) = 0 for
n > 0. So its Maclaurin series is identically zero.

Taylor’s theorem: If f is infinitely differentiable on (a,b) and z and x are in
(a,b) then, for every integer n > 0,

flz) — Tp(z) = ———==(z — 1:0)"_1, (1.44)

where ¢, is between x and xg.

Therefore,
2 M (z .
fa) =3 L
n=0 ’
for an z in (a,b) if and only if
(n+1)
f (C )($ xo)n—i—l =0
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Remark: It is not always easy to check this condition, because the sequence {c,}
is usually not precisely known, or even uniquely defined; however, the next theorem
is sufficiently general to be useful.

Theorem: Suppose that f is infinitely differentiable on an interval I and

T.n

- ()|, —
Jim || A7 = 0. (1.45)

Then, if 2o € I°, the Taylor series
> r(n) (g
> e w0
~  nl

converges uniformly to f on

I, =IN[zg—r,20+ 7]

Proof: We know that

(n+1)
o) = Toe) = L -y,
n+1 n+1
15 = Tall, < gV < I,

so (1.45) implies the conclusion.

Example: If f(z) = sinz, then ||f(k)\|(_oo,oo) =1, k> 0. We know that

holds for all 7.
Since
FEM0) =0 and fEmY0) = (=)™, m >0,

Apply the previous theorem, with I = (—o0,00), ¢ = 0, and r arbitrary. We have
the the well known series expansion of sin z, that is,
o x2n+1
sinz = ) —o<r<o
7;)( ) (2n+ 1)V ’

and the convergence is uniform on bounded sets.
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Example: A similar argument shows that

o0 p2n
— n
cosT = nEZO(—l) o —00 < T < 00,

with uniform convergence on bounded sets.

Example: If f(z) = e®, then f®)(z) =¢® and || f®)|; =€, k >0, if [ = [-r,7].

Since
n
lim —e" =0
n—oo n!
we conclude that
o0 n
. T
e’ = , —oo<x<oo,
n!
n=0

with uniform convergence on bounded sets.

Example: If f(z) = (1 + )9, then

fM () <z>(1 Lo s 1O (‘I) (1.46)

n!
The Maclaurin series -
n=0 n

is called the binomial series. We saw in Analysis I that this series equals (1 + )4
for all z if ¢ is a nonnegative integer.

Example: We will now show that if ¢ is an arbitrary real number, then

i <q>$"=f(ﬂf) =(1+z)! 0<z<L (1.47)

Since
. q q\| _ g—n|
lim =1,
the radius of convergence of the series in (1.47) is 1.
From (1.46),
(n)
17 oy [max(1, 29)] <q> . n>0.
n! n
Example: Therefore, if 0 < r < 1,
. Tn (n) . q n
limsup — || /" |lj0,1) < [max(1,279)] lim r'" =0,
n—00 n! ’ n—oo |\ N
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where the last equality follows from the absolute convergence of the series in (1.47)
on (—1,1).

Theorem: If -
f@) = an(z—x0)", |z— 0| <Ru, (1.48)

n=0
g(@) = bu(x—10)", |z — 0| < Ry, (1.49)

n=0

and « and (8 are constants, then

[e.o]

af(x) + Bg(x) = Z(aan + Bbyp)(z — x0)", | —z0| < R,

n=0

where R > min{Ry, Ro}.
Proof: See the video lectures.
Recall the following theorem:

Theorem: If > > ja, and > _,° b, converge absolutely to sums A and B, then
the Cauchy product of > > ;a, and > 7 b, converges absolutely to AB.

Theorem: If f and g are given by power series

f(z) = Zan(z‘ —x0)", | — x| < R,
n=0

g(@) =3 bulw —20)", |z —a0| < Ra,
n=0

then

flx)g(z) = ch(x —x9)", |x—ux0| <R, (1.50)
n=0

n n
Cn = E arbn—rzg ap—rby
r=0 r=0

and R > min{R;, Ra2}.

Proof: Suppose that Ry < Ro.
Since the series

f(z) = Zan(x —x0)", |z —x0| < Ru,
n=0
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g(x) = bu(z —x0)", |z —x0| < Ry,
n=0

converge absolutely to f(x) and g(z).

If |z — o] < Ry, their Cauchy product converges to f(x)g(z) if |z — xo| < R,
by product of series.

The nth term of this product is

n

Z ar(x — 20) " bp—p(x — 20)"" " = (Z arbn_r> (x —x0)" = cn(x — 20)".
r=0

r=0

Example: If

where

sno= (by+ (1)by + -+ (1)by,
= bo+by+--+ by

Example: We have already discussed

(1+2)P = i (Z)m", 2] < 1.

n=0
Also
— (4q
1+2)7 = n :
(1+z) Z<n>m, lz] <1
n=0
Since

(14 2)P(1 + 2)7 = (1 +2)P9 = i <p + q) ",

n
n=0

while the Cauchy product is Y oo, cpa™, with

=2 ()(,")

r=0
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Product of power series implies that

- 2)
(-2 O0)

valid for all p and ¢. The quotient

This yields the identity

h(x)
flr) = ——= 1.51
@)= (1.51)
of two power series
h(z) = > calw—z0)", |z —z0| <Ry,
n=0

o0
g(z) = an(fﬁ —20)", |z —z0| < Ra,
n=0
can be represented as a power series
o0
f@) =" an(z — z0)" (1.52)
n=0

with a positive radius of convergence, provided that

bo = g(wo) # 0.

This is surely plausible. Since g(z() # 0 and ¢ is continuous near zp, the denomina-
tor of (1.51) differs from zero on an interval about xg. Therefore, f has derivatives
of all orders on this interval, because g and h do.

Since

f(@)g(x) = h(z),

The result about the product of Power series implies that
n
Zarbn_r =cy, n>0.
r=0

Solving these equations successively yields

€o
by’

1 n—1
an, = % (cn —gbn_rar> , n>1.

ayg =
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Remark: It is not worthwhile to memorize these formulas. Rather, it is usually
better to view the procedure as follows: Multiply the series f (with unknown co-
efficients) and g according to the procedure of Theorem ??, equate the resulting
coefficients with those of h, and solve the resulting equations successively for ag, a1,

Example: Suppose that we wish to find the coefficients in the Maclaurin series
tanx:a0+a1:p—i—a2x2—i—--- .

We first observe that since tanx is an odd function, its derivatives of even order
vanish at xg = 0, so ag;,, = 0, m > 0. Therefore,

tanx:a1x+a3x3+a5x5+--- .

Since .
sin x
tanx =

cosx’
it follows from series of sin z and cos z that

$3 a:5
T— % tagm T

2 4
-2

a1r + azx® +azx® + - =

S0
22zt 3 2d
et a1 ) (1 E Y B
or
ar\ 3 as  ar\ s x> 2
art (a =)ot (a5 =G 57 )@t 4o o= T g

Comparing coefficients of like powers of x on the two sides of this equation must be
equal; hence,

T s L R 5
_ _ 1,1 _ 1 _ 1 1/1 1 _ 2
a = 1, a3__6+§(1) = 3 a5_m+§(§)—ﬂ(1) = i
Therefore,
t ML
anr=x+ — 4+ —x° +---.
3 15

Example: To find the reciprocal of the power series

X n
X
g@)=1l+e" =2+ T,
n=1



1.10. The Taylor’s Series

43

we let h =11in (1.51). If
1 o0
LS
g(z) —

then

2 333

X
1 = (a0+a1x+a2w2+a3w3+~-)<2+x—|—++--~

2 6
= 2ag+ (ap + 2a1)z + (5 +ai + 2a2> x

a a
+(—0+—1+a2+2a3>m3+-~.

6 2
From Corollary,
2a0 = 1,
ap+2a; = 0,
%+a1+2a2 = 0,
%—1—%4-&24-2(13 = 0.
Solving these equations successively yields
1
apg = 57
ap 1
a = B —
1 2 47
B 1(0+ )_ 1/1 1 —0
@2 = TH\p Ty o\a 1) "
1 /a0 a 1/1 1
= —_ | — — = —— _— = = 0 = —
“ 2<6+2+a2> 2<12 8 > 48’
o)
1 1 z 23
=———4+—+

(e.9] :L'n
n=0
we again let h =1 in (1.51). If
o
(em) 1_ Zanl'n,
n=0

then

(1.53)
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where
>
Cp = — .
" ~ (n—r)

We have, cg = ap = 1 and ¢, = 0 if n > 1; hence,

ap = — Z ar n > 1. (1.54)

r=0
Solving these equations successively for ag, a1, ... yields
1
a; = _ﬂ(1'32):_1’
1 1 1
ay = — -2'(1)+1'(—1):| = 5,
1 1 1 /1 1
= —|=(D+=(-D+=(=)]| =—=
“ LT T (2)} 6
1 1 1 /1 1 1 1
= — |- +=(-D+=(=)+=(-2)| ==
“ aW g <2>+1!< 6>] 24
From this, we see that
(=1
ap =

for 0 < k <4 and are led to conjecture that this holds for all k. To prove this by
induction, we assume that it is so for 0 < k <n — 1 and compute from (1.54):

an = —Z?;é (nir)! (_rl!)T

— s (=1 ()

Thus, we have shown that

CORED Y S
n=0

Since this is precisely the series that results if « is replaced by —x in (1.53), we have
verified a fundamental property of the exponential function: that

(ex)fl — e 7

This also follows from Example ?7.

1.11 The Abel’s Theorem

Theorem: Let f be defined by a power series with finite radius of convergence R.
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o If > ja,R" converges, then

lim Z an R".

—(zo+R)—

o If > (—1)"anR™ converges, then

fl@) =) (-1)"anR".

11m
z—(zo—R)+

Proof: Let - -
= Z bny", Z b, = s (finite).
n=0 n=0

We will show that

lim g(y) =
y—1—
We have
o0
- y) Z Snyna
n=0
where
Sn=bo+ b1+ + by
Since
1
. Zy and therefore 1= (1 — Zy vl <1,
n=0

we can multiply through by s and write

oo
—y) Y syl <1
n=0

Subtracting this from (1.56) yields

o0

gy) —s=(1—-y) Y (sa—s)y" |yl <1.

n=0
If € > 0, choose N so that

|sp, —s| <e if n>N+1.
Then, if 0 < y < 1,

[e.9]

N
l9(y) —s| < (1—y)2\8n—8|y”+(1—y) D dsn—sly"

n=N+1

< Z\sn—SIy + N“Zy
N

< (1—y)2\3n—sl—|—€,

n=0

(1.55)

(1.56)

(1.57)
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because of the second equality in (1.57).

Therefore,
|9(y) — s < 2¢
if
N
(1—y)Z|sn—s| <e.
n=0

To obtain first part of the theorem from this, let b, = a,, R" and g(y) = f(z¢+ Ry);
to obtain second part, let b, = (—1)"a, R"™ and ¢(y) = f(xo — Ry).

Example: The series

J@) = = S

n=0

diverges at x = 1, while lim,_,;_ f(z) = 1/2.
This shows that the converse of Abel’s theorem is false.
Integrating the series term by term yields

© mn—f—l
log(l+xz) = - x| <1,
(1) =S

where the power series converges at x = 1. The Abel’s theorem implies that

oo
(1!
log2 = R —
08 nzz;) n+1

Example: If ¢ > 0, the binomial series

[e.9]

> ()
n=0 n

converges absolutely for x = 1. This is obvious if ¢ is a nonnegative integer, and
it follows from Raabe’s test for other positive values of ¢, since

Gp41 q q n—q
e = >
an ‘(n-&—l)/(n) nt1 70
and
lim n(an—H —1> = lim n(n—q_1>
n—00 an n—00 n+1
= Jim ——=(-g-1)=-¢-1

Therefore, Abel’s theorem imply that

e}

5 () =x i Sr(?) = 10
n=0

n=0
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1.12 Pointwise and Uniform Bounded Functions

A sequence of functions {F,} on the set S is said to be pointwise bounded on S if
the sequence of functions is bounded for every x € S, that is, if there exists a finite
valued function ¢(z) defined on S such that

|Fo(2)] < ¢(z), €S n=1,23,..

We say that {F,} is uniformly bounded on S if there exist a number M such
that
|Fo(z)| <M, z€Sn=1,23,...

Remark: If {F,} is pointwise bounded on S and S} is countable subset of S| it is
always possible to find a subsequence {Fj,, } such that subsequence is convergent.
However, even if {F,,} is uniformly bounded sequence of continuous functions on a
compact set S, there need not exist a subsequence which converges pointwise on S.

Example: Consider the sequence of functions
F,(z) = sinnz, x € [0, 27].

Suppose there exists a sequence {ny} such that {sinngz} converges, for every
x € [0,27]. Then we must have

lim (sinngz — sinngq2) =0, x € [0, 27].
k—o0
Hence
lim (sin gz — sinngq2)? =0, x € [0, 27].
k—o0

By Lebesgue’s theorem concerning integration of bounded convergent sequences,

we have
27

lim [ lim (sinnge — sinngyz)? = 0.
k—o0 k—o0
0

But we have

lim (sinngz — sinngq2)? = 2.
k—o0

which is a contradiction.

Example: Consider the sequence of functions

.732

Fo(x) = (=) S =10,1].
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Then |F,| <1, so that {F,(z)} is uniformly bounded on [0, 1]. Also
lim Fp(z)=0, xe¢l0,1].

But

50 no subsequence can converge uniformly on [0, 1].

1.13 Equicontinuous Functions on a Set

A family of functions F defined on the set S is equicontinuous if for all f € F and
for each € > 0 there is a § > 0 such that

|f(z1) — f(z2)| <e if  @1,22 € [a,b], |71 — 22| <. (1.58)

Remark: It is clear that every member of F is uniformly continuous.

Theorem: If {F,} is a pointwise bounded sequence of functions on a countable
set S, then {F,} has a subsequence {F},, } such that subsequence converges for all
rxelS.

Proof: Let {z;}, i =1,2,3,... be the points of S arranged in a sequence.

Since {F},(x;)} is bounded, there exists a subsequence, which we shall denote by
{F;r}, such that {F;(z;)} converges as k — oo.

Consider the sequences 51,52, ..., defined by

S1:Fig Fig Fiz Fig ...
Sy Fyq Foo Fo3 Foy ...

S3:F31 F30 F33 F34 ...

Consider the sequences 51,52, ..., defined by
S1:FiqFigFizFig ...

Syt Fo1 Fop Fog Foy ...
S3:F31 F30 F33 F34 ...

The sequence has the following properties

e S, is a subsequence of S,,_1, for n =2,3,4, ...
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e Due to the boundedness of {F,,(zy)}, we can say that F, ;(xy) converges, as
k — oo.

e The order in which the functions appear is the same in each sequence, i.e., if
one function precedes another in Sy, they are in the same relation in every
Sy, until one or the other is deleted. Hence, when going from one row in the
above array to the next below, functions may move to the left but never to
the right.

We consider the sequence
FE Fl,l F2’2 F3,3

By (3) property E is a subsequence of S,,, for n = 1,2, 3, .... The order in which the
functions appear is the same in each sequence, i.e., if one function precedes another
in S1, they are in the same relation in every S,,, until one or the other is deleted.

Hence, when going from one row in the above array to the next below, functions
may move to the left but never to the right. The (2) property of the sequence
ensures that {F), ,(x;) } converges as n — oo for every = € S.

Theorem: If K is a compact subset and if { F}, } is a sequence of continuous functions
defined on K and {F,} converges uniformly then {F,} is equicontinuous on K.

Proof: Since the sequence of functions {F,} is uniformly convergent, for every
€ > 0, there is an integer /N such that

|Fn — Fnllk <e,  n>N.

We know that continuous functions on compact sets are uniformly continuous, there
is a 6 > 0 such that

|Fi(z) — Fi(y)| <e, |z—y|<d1<i<N.

Theorem: If K is a compact subset and if { F}, } is a sequence of continuous functions
defined on K and {F,,} converges uniformly then {F,} is equicontinuous on K.
For n > N and |z — y| < §, we have

[Fn(@) = Fuly)l < |Fa(z) = En(2)| + |[Fn(2) — FN(y)]
+Fn(y) — Fa(y)|
< 3e.

Theorem: If {F,} is a sequence of continuous functions defined on a compact set
S and if {F},} is a pointwise bounded and equicontinuous on S, then
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1. {F,} is uniformly bounded on S,

2. {F,} contains a uniformly convergent subsequence.

Proof: Since {F),} is equicontinuous then by definition for every ¢ > 0, we have
[Fa(z) — Fu(y)l <&, |z—y| <d.

From Analysis I, we know that .S is compact then there are finitely many points
1, D2, ...pr in S such that to every z € S corresponds at least one p; such that
|LE - p1| < 4.

Since {F),} is pointwise bounded, there exists M; < oo such that

|Fn(pi)| < Mi,n € N.

If we take
M = max{M, ..., M,},
then |F, ()| < M + ¢ for every x € S. This proves the first part of the theorem.

Theorem: If {F,} is a sequence of continuous functions defined on a compact set
S and if {F},} is a pointwise bounded and equicontinuous on S, then

1. {F,} contains a uniformly convergent subsequence.

Proof: Let E be a countable dense subset of S. Then from previous theorem we
have a subsequence {F,,,(z)} such that the subsequence {F,,,(z)} converges for every
r el

Fix the notation F,(z) = g;, we shall prove that {g;} converges uniformly on S.

Let € > 0, and choose ¢ as before. Let V(x,d) be the set of all y € S such that
|z —y| < 4.

Since F is dense in S, and S is compact, there are finitely many points z1, ..., Ty,
in E such that

S CV(x1,d)U...UV(z,0) (%).

Since {g;(x)} converges for every x € E, there is an integer N such that
lgi(xs) — gj(xzs)| < e, whenever 4,57 >N,1<s<m.
If z €S, from (*) shows that x € V(xzs,0) for some s, so that
19i(z) — gi(s)| <e

for every .
If i > N and j > N, it follows that

l9i (%) — gj(x)] < |gi(w) — gi(ws)| + [gi(zs) — gj(ws)| + 195 (xs) — gj ()]

lgi(x) — gj ()] < 3e.
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1.14 The Stone-Weierstrass Theorem

Theorem: If f is continuous function on [a, b], there exists a sequence of polyno-
mials P, such that

T—r00

uniformly on [a, b].

Proof: Without any loss of generality, we may assume that [a,b] = [0, 1].
We may also assume that f(0) = f(1) = 0. As we can consider

9(x) = f(x) = f(0) —c[f(1) = f(O)), = €[0,1]

If g can be obtained as the limit of uniformly convergent sequence of polynomials,
it is clear that the same is true for f, since f — g is a polynomial.
Furthermore, we define f(z) to be zero for x outside [0, 1]. Then f is uniformly
continuous on the whole line.
We take
Qn(z) = cu(1 — 22, n=12 ..,

where ¢, is chosen so that

Consider the function
(1—2%)" — 14 na?,

which is zero at © = 0 and whose derivative is positive in (0, 1).
Since

1 1
/(1 — e = 2/(1 — 2%)"dx
-1 0
1/y/mn
> 2 (1 —x*)"dx
0
1/y/mn
> 2 (1 — na?)dx
0
4
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It follows from

that ¢, < y/n.
For any 6 > 0, we have

Qn(z) <Vn(1—63)",  §<|z[ <L

So that @, — 0 uniformly in ¢ < |z| < 1.

Now set .

Py(x) = /f(x +6)Qn(t)dt, x € 10,1].

-1

By change of variable and assumption on f implies that

1
/fx+t@n O/f )Qn(t — x)d

and the last integral is clearly a polynomial in x.

Thus {P,} is a sequence of polynomials.

Given € > 0, we chose § > 0 such that |y — z| < ¢ implies
€

7~ @)l < S

Let M = sup |f(z)|, we see that for z € [a, b], we have

Pae) — f@)] = | / G+ 0) = F@)@u(0)ar

IA
DO
=
\
O
i
S:
_|_
\
@
5

IN
W
=
B
_
|
>,
N
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1.15 Fourier Series

One of the fundamental methods of solving many problems in engineering fields
is to represent the behavior of a system by a combination of simple behaviors.
Mathematically, this is related to representing a function f(x) in the form of a
functional series

fl@) =" cxpn(z).
k=1

Here the functions ¢ (x) are suitable elementary functions, also called the base
set of functions, and the c; are called the coefficients of the expansion.
For the Taylor series

f(ZL') = chxk’ ‘$| < R:
k=0

the set {1,z,...,2", ...} is a base set of functions.

Fourier Series: A Fourier series expansion of a function is a representation of
the function as a linear combination of sines and cosines, that is, the base set of the
representation is

{1,cos nz,sinnz}o ;.

1.15.1 Periodic Functions

A function f : Q@ € R — R is said to be periodic if there exists a nonzero real
number w such that

f(z) = f(z +w), x e Q.

The simplest examples of periodic functions from R into R include the well known
sine and cosine functions, since for each k € Z\{0}.

AN AN

Figure 1.4: Periodic functions

= |

Remark: If w; and wy are such that

flzt+w) = f(x),  flz+w)=fl2)

Then so is wy & ws.

f(@+ (w1 £ w2))
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There is a smallest positive value w of a periodic function f called the primitive
period (or the basic period or the fundamental period) of f(x).
The reciprocal of the primitive period is called the frequency of the periodic function.

Lemma: If f : R — R is a periodic functions with period w, then the period of
f(ex) is w/e. If f(x) and g(x) are periodic with the same period w, then h(x) =
af(z)+ bg(z) is also a periodic function with period w. Here w is not necessarily a
primitive period.

Proof: Let ¢(z) = f(cx), then
¢(z) = flex) = flex +w) = fle(z + w/c)) = p(z +w/c), zeR.

This shows that w/c is a period.
For the second part, we consider

hz +w) =af(z+w)+bg(x +w) = af(z) + bg(z) = h(x).

Example: sin(cz) and cos(cx) are periodic functions with period 27 /c.

The function
oo

Z(an cosnx + by, sinnz),

n=1
is a periodic function with period 2.
Although, individual functions, cosx,cos2x,cos3x,..., have periods
2w, 7, 27/3, ..., respectively.

Lemma: If f(z) is a periodic function with period w, then

/ " e = [ s

whenever f is integrable on [0, w].

Proof: Geometrically, it is obvious

y

A

c+w

Figure 1.5: Geometric proof
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Consider

ctw

f(x)dx = /Of(a:)dm—i-/wf(x)dm—i-/f(m)dx
0

Cc c w

C w Cc

- _/f(a:)da;+/f(x)da:+/f(3)d3
wo ’ ’

= /f(ac)dsc
0

showing that the integral of a periodic function with period w taken over an arbitrary
interval of length w always has the same value.

1.15.2 Periodic Extension

Suppose that f is a function defined on [a, a + w]. Then the periodic extension of f
over the infinite interval (—oo, 00) is defined by the formula

- f(x), a<zx<a+w,
f(ac):{
flz—nw), a+nw<z<a+(n+ 1w,

where n is an integer.

ua

o fim)=f(-m)

| | | |
| | [ | . : : 1
| | I | [ ] f 1s continuous on |—m, T
| | I | ) ’
| | | |

—;TM/ T\/ST\_I/:‘IT ?..r

Figure 1.6: Periodic extension example 1
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A
— ar Y a:/ =

Figure 1.7: Periodic extension example 2

1.15.3 Trigonometric Polynomials

Any linear combination of the trigonometric functions sin kx, cos kx, given by

n
sp(x) = ?—I—Z(akcoskx—l—bksinm;), z € R,
k=1

where ay and by are real numbers, is known as trigonometric polynomials.

Recall the Stone and Weierstrass theorem stating that the trigonometric polynomials
are dense in Cfa, b] for any closed interval [a, b], provided that b — a < 2.

n
sn(z) = ?+Z<akcoskx+bksinkx>, x € R,
k=1

The sequence {sy}, converges on a set E, then we may define a function f : E — R
by
ap >
f(a:):nlgrolosn(w) :2+;<akcoskx—l—bksmkx>, xeFE.
The series on the right is called a trigonometric series. The constants ag, ay, by
(k € N) are called coefficients of the trigonometric series.

We have taken the constant term in series as ap/2 rather than ag so that we can
make ag/2 fit in a general formula later.

We observe that if the series on the right converges for all real ¢[0, 27|, then the
sum f must satisfy
f(z) = f(x+ 2m), z €R.

Vector Space: A vector space is a nonempty set V of objects, called vectors, on
which are defined two operations, called addition and multiplication by scalars (real
numbers), subject to the ten axioms (or rules). The axioms must hold for all vectors
u,v, and w in V and for all scalars ¢ and d.

1. The sum of u and v, denoted by u+ v, is in V.
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9.

10.

.u+v=v+u.

(u+v)+w=u+(v+w)

. There is a zero vector 0 in V such that u+4 0 = u.
. For each u in V, there is a vector —u in V' such that u+ (—u) = 0.
. The scalar multiple of u by ¢, denoted by cu, is in V.

. c(u+v)=cu+ecv.

(c+d)u = cu+ du.
c(du) = (cd)u.

lu=u.

Remark: Using only these axioms, one can show that the zero vector in Axiom 4 is

unique, and the vector —u, called the negative of u, in Axiom 5 is unique for each

uin V.

The Inner Product: Let u, v, and w be vectors in vector space V, and let ¢ be
a scalar. Then an inner product is a function < .,. >: V x V — F such that

1.

2.

3.

4.

<v,$u>=<u,v>
<(v4u),w>=<v,w>+<uw>
<cu,v>=<u,cv>=c<v,u>

< u,u>>0, and < u,u >= 0 if and only if u = 0.

1.16 The space &£

Let us define the space £ be the set of all real valued piecewise defined periodic
function f on the interval [—m,7].

Theorem: The space £ is a linear space, that is, a vector space. Moreover, £ an

inner product space with respect to the inner product

1 s
<fg>=7 [ Hg@ns

The trigonometric functions: The set of functions

cos(nz),sin(nx) : n € N}

®= (.
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is an infinite orthonormal system in £ with respect to the inner product defined
1 s
<fg>=7 [ Ha)g@ns
—T

Let ® = {¢1, 02, ..., Pn, ...} be an orthonormal basis of an infinite dimensional
inner product space X', and let f € X. Then the infinite series

o< fidk> drl@) =) endn(a),
k=1 k=1

is called the Fourier series of f (relative to @), and the coefficients ¢ =< f, ¢, >
are called the kth Fourier coefficient of f.
We introduce

IfII> =< f, f >= 1 /ﬂ |f(2)|?dz.

™J—x

Suppose that we are given a trigonometric series of the form

f(a:):C;()+Z<akcoskx+bksinkx>, reE.
k=1

Clearly, since each term of the series has period 27, if it converges to a function
f(z), then f(z) must be a periodic function with period 27.

Thus, only 27-periodic functions are expected to have trigonometric series of the
above form.

Problem: Suppose that f is a 27-periodic function. Under what conditions does
the function have a representation of the form

f(z) = % —l—Z(ancosnaﬂ—i—bnsinm}).

n=1

When it does, what should be a,, b,7
Assume for the moment that the series

aq > :
f(z) = 5 + E:I (an cosnx + by, sin nx), (%)

converges uniformly on R. This is the case if

a o
G 3 (el )

converges, so that the series (*) is dominated by the convergent series in R.
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(an cosnx + by, sinnz) }

| =
\:‘
=
2
SN
8

Il
Sy
\ﬂ
—N
| &
+
(]

n=1
1 T o s
= % ﬂ/_ﬂdx}JrZ{i:’/_Wcosn:vdx
n=1
b s
—l—n/ Sinrm)}
7T —T
= aO
Recall:
1 /7 1 (7
/ cos nx cos kxdr = O, = / sin nz sin kxdx
™ J_r T J—xm
s
/ cosnz sin kxdr =0
-7
and

2cosacos B = cos(a + ) + cos(a — )
2sin asin 8 = cos(a — 3) — cos(a + f3)
2sinacos B = sin(a + () + sin(a — ).

flz) = % + Z (an cos nx + by, sin n:z:>, (%)

n=1
Multiply by cos kz and the series for f(z) cos kx can be integrated term by term for
each fixed k, we can determine a; and b,.

1 f(x)coskxdr = dol / cos kxdx +

T ) 27 ) _,
e T
Z (an / cos kx cosnxdx
n=1 -

+b, / sin nx cos kxdx) .

ar = — f(x) cos kxdx.
™ —T

Multiply by sin kz and the series for f(x) sin kx can be integrated term by term
for each fixed k, we can determine by and b,,.

1 4 ao], 4

— f(z)sinkzder = —— / sin kxdx +

T ) 27w ),
0 T
Z <an / sin kx cos nxdx
n=1 -

vy
+b, sin n sin k‘xd:n) .

—T
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1 s
b = — f(z)sin kzdz.

s

Fourier Series: For any integrable function f on [—m, ], the numbers a; and by
defined by

™ 1 ™
ap = — f(z)coskxdx, k>0, by, = — f(z)sinkzdz, k > 1.
™ J_rx T J-m

are called the Fourier coefficients of f. The corresponding trigonometric series

o
% + kzl <ak cos kx + by sin kx),

is called the Fourier series of f. We express this association by writing

fz)=2 +Z<akc0skm+bksinkx),

2
k=1
to indicate that the Fourier series on the right may or may not converge to f at
some point t € [—m, 7).

Theorem: If the trigonometric series of the form

ao

5 + ; (ak cos kx + by, sin k:c) , (%)

converges uniformly on [—, 7], then it is the Fourier series of its sum.
More precisely, if the trigonometric series (*) converges uniformly to f on [—, 7],
then the ay and by are given by

™ 1 7"
ap = ; f(x) CcOS kxdaj7k 2 O’ bk = ; f(f,U) sin kwd$7k 2 1.

Remark: We have no idea what happeuns if the series
a [e.e]
50 + kzl <a;C cos kx + by sin kaz) , ()

doesn’t converge uniformly on [—m, 7.

However, since
lag, cos kx + by sin kx| < |ag| + bk,

Weierstrass M-test shows that the trigonometric series (*) converges absolutely and
uniformly on every closed interval [a, b] whenever

o0

> Claxl + [bx])

k=1

is convergent.
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1.16.1 Fourier Series of Even and Odd Functions

Even and odd functions possess certain simple but useful properties:
e The product of two even (or odd) functions is an even function.
e The sum of two even (or odd) functions is an even (or odd) function.
e The product of an even and an odd function is an odd function.

e For a Riemann integrable function f defined on [—¢,¢| (¢ > 0), it is evident
that

' f(z)dx = Q/Cf(:r)dx, if f is even
e 0
’ f(x)dx =0, if fis odd

Fourier series of even function: Suppose that f(z) is a periodic function of
period 2. Let us further assume that f is even on (—m, ), i.e., f(z) = f(—x) for
all z € (—m,m).

Then the product function f(z)sin kz is odd, which means that by = 0 for all £ > 1,
and hence we have the Fourier cosine series

o0 1 s
flx) = a0 + apcoskx,ar, = — f(x)coskxdz.
2
T
k=1 d

Fourier series of odd function: Suppose that f(z) is a periodic function of
period 2. Let us further assume that f is odd on (—m,7), i.e., f(x) = —f(—=x) for
all z € (—m,m).

Then the product function f(z) cos kz is odd, which means that a; = 0 for all &£ > 0,
and hence we have the Fourier cosine series

o 1 T
x) = Z ag sin kx, by, = = f(z)sin kzdz.

Example: Consider f(x) = |z| on [—m,7].
Then f is even and continuous on [—, 7].

21— (1))

ay = —
n2m

We have
_*_*ZCOS2]€+1$
a (2k +1)2 °
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cos(2k + 1)z
=3 *Z (2k + 1)

Remark: Note that the Fourier series here converges uniformly to |x| on [—m, 7]
but not on the whole interval (—oo, c0), and so outside the interval (—oo,o0), f(z)
is determined by the periodicity condition f(x) = f(x + 2m).

we can make use of this series to find the values of some numerical series. For instant
z = 0 gives

Z 2k+1

k:l

Some natural questions arise:

e For what values of x does the Fourier series of f converge? Does it converge
for all z in [—m,m|? If it converges on [—m, 7] but not to f, what will be its
sum?

e If the Fourier series of f converges at x, does it converge to f7

e If the Fourier series of f converges to f on [—m, 7|, does it converge uniformly
to f on [—m,7]?

Is the continuity of f is sufficient to guarantee convergence of the Fourier series
of fon [—m, =|?

In 1876, Paul du Bois-Reymond constructed a continuous function f : [—m, 7] —
R whose Fourier series failed to converge to f at each point in a dense subset of
[—7, 7).

Indeed, the following are true statements

e There exists a continuous function whose Fourier series diverges at a point.

e There exists a continuous function whose Fourier series converges everywhere
on [—m, 7|, but not uniformly.

e There exists a continuous function whose Fourier series diverges for points in
some set S and converges on (—m,7) \ S.
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The space &: Let us define the space £ be the set of all real valued piecewise
defined periodic function f on the interval [—m,7].

Define
&= {f S hl_i)r(1)1+ fla+ h)h_ f(at) exists ¢ € [—m, )
lim flw+h) = fla) exists x € (—7‘(’,7[']}
h—0— h

Theorem: Let f € &. Then for each € (—m,7), the Fourier series of f(x)
converges to the value

fla=) + fla+)
5 .
At the end points x = £, the series converges to

flr=) + f(=m+)
5 :

Remark: If f € £ is continuous at z, then f(z—) = f(z+) = f(x), and so at such
points

Thus, the Fourier series of f converges to f(x) at the point x where it is continuous.

At the point of discontinuity x, the Fourier series of f assumes the mean of the
one-sided limits of f.

Corollary: If f: [—7, 7] — R is continuous, and if f(—7) = f(7), f'(z) exists and
is piecewise continuous on [—, 7], then the Fourier series of f converges to f(z) at
every point z € [—m, 7|

Theorem: Suppose that f : [—7, 7] — R is piecewise continuous on [—m, 7] and
piecewise monotone,that is, there exists a partition P = xg, x1, ..., ,, of [—7, 7] such
that the restriction f‘[xk—lyxk]’k =1,2...,n, is either increasing or decreasing.

Let f(x) be defined for other values of = by the periodicity condition f(z) = f(x +
27). Then the Fourier series of f on [—m, 7| converges to

e f(x)if f is continuous at x € (—m, 7).
o (f(z+)+ f(x—))/2if f is discontinuous at .

o (f(m—)+ f((—m)—))/2if f is discontinuous at = = =£.
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! (Ta)+ 14

2
Ny G
+ -

([ flz—)= 11r1fsl . - ~
\ s—+I— / fﬂ_\\,_____.--‘

: * f
—r Ols = T

Figure 1.8: At discontinuous points

Example:If f(z) = z on [—m,7) and f(7) = —w. Find the Fourier sine series

of f.

S S

Figure 1.9: Example

e f is odd function, hence a, = 0.

® b, = %f:rxsinnmdx = %fowxsinnz‘dm = 2(_173”71.
oo k-1
—1
r =2 Z (13; sin kz.
k=1

Remarks: Note that the Fourier series does not necessarily agree with f(z) =
at every point in [—m, 7].

The Fourier series vanishes at both endpoints * = 4w, whereas the function
does not vanish at either endpoint.

However, the Dirichlet’s theorem states that series converges to f(z) at every
interior point of (—m, ).

For example at # = 7/2 the symbol = could be replaced by = and so

T 0 (-1) 0 1
2_2(1 o ey 4+5+...>.
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mQQiﬂsinkx
N k=1 k .

Remarks: Finally, we remark that at the endpoints x = £, the series converges
flr=) + f(=m)=) Tt (=m)
2 2 )

we could also consider f as follows: f(z) =z on (—m,7) and f(—7n) = f(7) = 0.

to

Figure 1.10: Example

Example: If f(z) =¢€" on [—7,7) and f(x + 27) = f(x) for © € R. Determine
the Fourier series of the function f.

Some facts about complex numbers.

Example: If f(x) =¢" on [—7, ) and f(x + 27) = f(x) for z € R. Determine
the Fourier series of the function f.

/emm = /cos nmdaz—i—i/sinnmdw.

According to this, the Fourier coefficients are easy to derive quickly by writing

1 [7 .
an — b, = / e ""etdx

T J 7
1 e(l—in)x

T l—in ' "

1 e(lfin)ﬂ _ ef(lfin)ﬂ
- 7r< 1—in >

(1) (e =)
m(1 —in)

2(—1)""Insinh
(14 n?)

2(—1)"sinh 7

by, =
(14 n?)

an = )
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We have
. . o
¢ .~ Sinhm = 2sinh7 (=)™
et = - - g 512 COS NI
n=1
251nh7r 2 (-1)"1n
E sinnzx.
_|_
n=1

Remark: In particular, at the point of continuity = = 0, it follows that

1=

sinh7w  2sinh7 o= (—1)"
M
T 7r (1+n2)

n=1

Which can be written as

TL

7rcsc7r—1 i
1+n2

n:l

Remark: According to Dirichlet’s theorem, at the endpoint * = 7, we have

e +e ™ sinh 7 . 2sinh i 1
2 7r T ‘ (1+n2)’

= 1

Which reduces to

7TCOth7T—1 i
— 1—|—n2

1.17 Fourier Series for Arbitrary Periodic Function

Suppose that f is a 2L-periodic and Riemann integrable function. The function
f(at) has period 2L/a.

In particular, f((L/7)t) is 2m-periodic, and so the Fourier series expansion has the
following in terms of the variable ¢:

L o
f(=t) = 2 4 Z(an cosnt + by, sinnt), t e [—mml,

n=1

T L
ap, = 71r/ f(Et) cos ntdt = i/L f(x) cos(l%rx)dx

s

where

L a = .
f(;t) ~ 0 Z(an cosnt + by, Slnnt>, t € [—m, ],
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where

ap = — /7r f(ét) cos ntdt = ll;/L f(x) cos(k%x)dx,
™ —L

™ —T

and similarly,
1 [F k
b= 7 /L £(z) sin(%x)dm.

We remark that the interval of integration in the last two formulas for the Fourier
coefficients can be replaced with an arbitrary interval [c,c + 2L], of length 2L.
Changing the variable ¢, by setting ¢t = (7/L)x.

Theorem: Let f be a periodic function with period 2L. Then the Fourier expansion
of f is given by

~ 00 nm (" _
fl) = +Z<ancos( %) + bn sin(— x)>, ze[-L, L],
where .
1 nmw
an =7 /_Lf(x) cos(fx)d:c,

and

L
by, = 2/_L f(z) sin(n%az)d:n.

Remark: The interval of integration in the last formulas for the Fourier coefficients
can be replaced with the interval [c, ¢ 4+ 2L}, where ¢ is any real number; we usually
let ¢ = —L. Notice that

cos(%(w +2L)) = cos(%x)
sin(n—;(x +2L)) = sin(n—gx).

Corollary: The Fourier series of an even function f with period 2L is a Fourier
cosine series

G k
f(:z)’écg)—i-;ancos(gx), T € [c,c+ 2L,

where or
1 f° nm
ap, = L/c f(x) cos(fsv)dac.

and the Fourier series of an odd function f with period 2L is a Fourier sine series

flz) = nzlbn sin(%x), x € [e,e+ 2L,
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68

where
nmw

c+2L
by, = / f(x)sin(—x)dx
. L
where c is any real number.

Example: Consider the function

0, —2<z<0,
f(x)_{ 1, 0<z<2

Here, we have L = 2, and the function is even. We have

L
an = i/L f(z) cos(l%x)dx,

and .

1 k

by, = T /_L f(z) sin(%x)dw.

we obtain )

ag = 57 ap = 0

14 (—1)» 1

nm

Example: Consider the function f(z) = |sinz|. The function is defined for all x

and the function has period .

Clearly, f represents a continuous, piecewise smooth, even function of period 7,
and therefore it is everywhere equal to its Fourier series, consisting of cosine terms

only.
We have ¢ =0, and L = 7/2, then we have

a = 2/ f(x) cos(2kx)dx
TJo
2 [T
= / sin x cos(2kx)dx
T Jo

1

™

™

us 2k +1 + 2k —1

1 < _cos(1+2k)x | cos(2k — 1)z

2k +1 2k -1
4
m(4k% — 1)

s

_ _l ((_1)2k+1 -1 B (_1)2k—1 -1

ar =

_ ! /0 i [sin(l 1 2k) — sin(2k — l)x] da

_ 1 /Oﬂ [sin(l + 2k — sin(2k — 1)4 do

™

)
)

0
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Thus, the Fourier series expansion of |sinz| is

2 4 2k
|sin:z|:7r—zzlzzz_? r € [~m, 7.

1.18 Best Approximation Theorem

Theorem: Let ® = ¢1,...,¢, be an orthonormal set of functions in the inner
product space £, and let ¢ be the Fourier coefficients of f relative to ¢:

=2 [ f@)de@)de =< f.ép > .

s

If T, (z) is an arbitrary Fourier polynomial relative to ¢y, that is, T,(z) =
> k1 di¢r(z) for some constants di, ..., d,, then we have

n 2
w—z%mw < If Tl
k=1

with equality if and only if ¢, = dj for each k =1, ...,n. Moreover,

MF /v ) 2.

Proof: Setting S, = Y p_; ck¢r(z). Then we have

I =Ta® = /u ©)2dx

;/umWw+i/mme
~22d [ f@)on(e)da

- 2 . 2 =
— d dil* — 2 d
7T/|f(f13)| 1’+;|k\ ;Ckk

_ 1 [ 2 & 2 -

= = [I@Pde+ Y 0 -2 ey
o k=1 k=1
1 [ 2 - 2 -

= = d —dy|? -2
W/vwﬂw+gy% i -2)

= |If = Sul®+ D lex — dil*.
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Therefore,
Hf - Tn||2 2 Hf - Sn||2a

with equality if and only if ¢, = di for each k =1,...,n.

Hf _TnH2 2 Hf - Sn||27

Note that f and ¢ are fixed, while the dj are allowed to vary.
In particular, setting dp = cg, shows that the minimum value of || f — T;,||*> >
|lf — Snll?, is given by

™
) 1 n n
win | = Tl = [ 15@)Pde = Y feul = 117 = 3 [l
" I k=1 k=1

which has to be nonnegative. This gives

n 1 m
Z|ck|2 < ﬂ/|f(x)\2d$ for all n.
k=1 7



CHAPTER 2

Functions of Several Variables

2.1 Euclidean Spaces
The vector sum of
X:(I‘l,xg,...,l‘n) and Y:(ylvy%”-vyn)

is
X+Y:(m1+y15$2+y27"'7xn+yn)- (21)

If a is a real number, the scalar multiple of X by a is

aX = (az1,axs, ..., azy,). (2.2)
In R*, let
X =(1,-2,6,5) and Y =(3,-54,1).
Then
X+Y= (4’ —7,10, %)
and

6X = (6,—12,36, 30).

Theorem: If X, Y, and Z are in R” and a and b are real numbers, then

e X+Y =Y + X (vector addition is commutative).

(X4+Y)+Z =X+ (Y +Z) (vector addition is associative).

There is a unique vector 0, called the zero vector, such that X+ 0 = X for all
X in R"™.

For each X in R™ there is a unique vector —X such that X + (—=X) = 0.

e a(bX) = (ab)X.

(a+b)X =aX + bX.

aX+Y)=aX+aY.

e 1X =X.
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Remark: Clearly, 0 = (0,0, ...,0) and, if X = (z1,22,...,2y), then
—X = (=21, —T2, ..., —Tp).

We write X 4+ (—=Y) as X — Y. The point 0 is called the origin.

Length, distance: The length of the vector X = (z1,z2,...,xy) is
X| = (2 + a3+ +ap)/%

The distance between points X and Y is | X — Y.

In particular, |X| is the distance between X and the origin. If |X| =1, then X is a
unit vector.

Example: The lengths of the vectors

X =(1,-2,6,5) and Y = (3,-5,4,1)

are
X| = (12 + (-2)* + 6> +59)1/2 = V66
and
V201
Y] =32+ (=5)" +4* + ()")"? = .

The distance between X and Y is

V149

X -Y[=(1-32+(-2+52+6-4>+(5B-3)HV*= :

The inner product XY of X = (z1,22,...,2,) and Y = (y1,Y2,...,Yn) is

XY =x1y1 + xoy2 + - + Tpyn.

2.2 Schwarz’s Inequality
Lemma: If X and Y are any two vectors in R”, then

X Y] < [X][Y], (2.3)
with equality if and only if one of the vectors is a scalar multiple of the other.

Proof: Suppose that Y # 0 and ¢ is any real number. Then

0 < ( — ty;)?

= Z:L’ -2ty 1x1yl+t S 1.%
|X\2—2(X Y)t + 2[Y)?.

:HM:

(2.4)
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The last expression is a second-degree polynomial p in t. From the quadratic formula,
the zeros of p are

(X Y)+ /(X Y)? - [XPY]?

t =
Y2

Hence,
(X-Y)? < [XPIY (2.5)

because if not, then p would have two distinct real zeros and therefore be negative
between them, contradicting the inequality (2.4).

Proof:

(X-Y)* < |[XP[Y] (2.6)
Taking square roots in (2.6) yields (2.3) if Y # 0. If X = ¢Y, then X Y| =
IX||Y]| = [t|[Y|? (verify), so equality holds in (2.3).

Conversely, if equality holds in (2.3), then p has the real zero ty = (X -Y)/[Y|?

and
n

> (@i — toy:)* =0

i=1
from (2.4); therefore, X =¢yY.

Theorem: If X and Y are in R™, then
X+ Y[ < [X[+]Y], (2.7)

with equality if and only if one of the vectors is a nonnegative multiple of the other.

Proof: By definition,

X+YP = YL@ +w)?

iy 230wy + Y

= [XPP+2(X-Y)+ Y] (2.8)
1X]2 +2X]| Y|+ |Y[]* (by Schwarz’s inequality)

(X[ +[Y])%

IN

Hence,
X+ Y[? < (IX] + [Y])%

Taking square roots yields (2.7).
From the third line of (2.8), equality holds in (2.7) if and only if X -Y = |X]||Y],

which is true if and only if one of the vectors X and Y is a nonnegative scalar
multiple of the other.
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Corollary: If X, Y, and Z are in R", then

X —Z| <X - Y|+ Y -2

Proof: Write
X-Z=X-Y)+(Y-12),

and apply triangle inequality with X and Y replaced by X —Y and Y — Z.
Corollary: If X and Y are in R"”, then
X =Y[ > [[X] - [Y]].

Proof: Since
X=Y+(X-Y),

Triangle inequality implies that
X< Y[+ X -],

which is equivalent to |X| — Y| < |[X =Y.
Interchanging X and Y yields

Y[ - [X] <Y = X].
Since | X — Y| =|Y — X], the last two inequalities imply the stated conclusion.
Theorem: If X, Y, and Z are members of R™ and a is a scalar, then
o |aX| = |a|X].

e |X]| > 0, with equality if and only if X = 0.

|X — Y| > 0, with equality if and only if X =Y.

e X - Y=Y X.

X (Y+Z)=X - Y+X-Z

o (X)) Y=X-(cY)=¢(X-Y).
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2.2.1 Line Segment in R"

The equation of a line through a point Xo = (20,%0,20) in R® can be written
parametrically as

T=x0+uwt, yY=1yog+ul, 2z=2z29+ugt, —oo<t<oo,
where u1, uo, and us are not all zero. We write this in vector form as
X=Xp+tU, —oo<t< oo, (2.9)

with U = (u,ug,us), and we say that the line is through Xo in the direction of U.
There are many ways to represent a given line parametrically.
For example,
X=Xp+sV, —oo<s<oo, (2.10)

represents the same line as (2.9) if and only if V = aU for some nonzero real number
a.

Then the line is traversed in the same direction as s and ¢ vary from —oo to oo if
a > 0, or in opposite directions if a < 0. To write the parametric equation of a line
through two points Xo and Xy in R3.

We take U = X; — Xp in (2.9), which yields
X:X0+t(X1—Xo):tX1+(1—t)X0, —o0 <t < o0.

The line segment from Xg to X; consists of those points for which 0 <t < 1.
Suppose that Xy and U are in R” and U # 0.

Then the line through Xo in the direction of U is the set of all points in R™ of the
form
X=Xp+tU, —-oco<t<oo.

A set of points of the form

X =Xo+tU, t <t<to,
is called a line segment. The line segment from Xg to X; is the set of points of the
form

X:X0+t(X1—X0):tX1+(1—t)X0, 0<t< 1.

2.3 Neighbourhoods and Open Sets in R"
If € > 0, the e-neighborhood of a point X in R™ is the set

N:(Xp) = {X|X — Xg| < €}

N.(Xg) in R?
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We are going to define neighborhood, interior point, interior of a set, open set,
closed set,limit point, boundary point, boundary of a set, closure of a set, isolated
point, exterior point, and exterior of a set.

Example: Let S be the set of points in R? in the square bounded by the lines
x = +1, y = £1, except for the origin and the points on the vertical lines x = +1
thus,
S = {(l‘,y) : (:Evy) 7& (050)7 -1<z< ]-7 -1< y < 1}
Every point of S not on the lines y = 41 is an interior point.
y

A
1. D 1, 1)

L1, -1y

Figure 2.1: The set S

S°={(z,y): (z,9) # (0,0), ~1 <z,y <1}

S is a deleted neighborhood of (0,0) and is neither open nor closed.
The closure of S is
?: {(Jﬁ,y) i —1 < z,y < 1}7

and every point of S is a limit point of S.

The origin and the perimeter of S form 95, the boundary of S. The exterior of
S consists of all points (z,y) such that |z| > 1 or |y| > 1. The origin is an isolated
point of S°.

Example: If Xj is a point in R™ and r is a positive number, the open n-ball of
radius r about X is the set

B (Xo) = {X: [X = X[ <1}
Thus, e-neighborhoods are open n-balls. If X; is in S,(Xp) and
X -Xy| <e=7r—|X-=Xpl,

then X is in S;(Xy). Thus, S,(Xg) contains an e-neighborhood of each of its points,
and is therefore open.
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We can show that the closure of B,(Xj) is the closed n-ball of radius r about Xp,
defined by

S,(Xo) = {X : |X — Xo| <r}.

Remark: Open and closed n-balls are generalizations to R™ of open and closed
intervals.

Lemma: If X; and X5 are in S,.(Xy) for some r > 0, then so is every point on the
line segment from X; to Xas.

Proof: The line segment is given by
X=tXo+(1-t)X;, 0<t<l.
Suppose that r» > 0. If
IX: —Xo| <r,  |Xo—Xo| <,
and 0 <t < 1, then

(X = Xo| = [tXo+(1-1)X1—tXg— (1 —1)Xo
= [t(Xe = Xo) + (1 = 1)X1 = Xo)|
< tr+(1—t)r=r.

2.4 Convergence of a Sequence in R"

A sequence of points {X,} in R" converges to the limit X if
lim |X, — X]| = 0.
T—00

In this case we write

lim X, = X.
T—>00
Theorem: Let
X:(Eljfz"”75n) and sz(xl’l"7x27”7"'7$n’f‘)7 7’21

Then lim, o X, = X if and only if

lm z;, =7;, 1<i<n;
T—00

that is, a sequence {X,} of points in R™ converges to a limit X if and only if the
sequences of components of {X,} converge to the respective components of X.
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Theorem (Cauchy’s Convergence Criterion): A sequence {X,} in R" con-

verges if and only if for each € > 0 there is an integer K such that
X, — X5l <e if rs>K.
Diameter of a Set: If S is a nonempty subset of R”, then
d(S)=sup{|IX-Y|: X, Y € 5§}
is the diameter of S.

If d(S) < o0, S is bounded; if d(S) = oo, S is unbounded.

2.5 Principle of nested sets
Theorem: If Si, Sy, ... are closed nonempty subsets of R™such that
S$51D285D---D5 D---

and
lim d(S,) =0,

r—00

' As
r=1

then the intersection

contains exactly one point.

Proof: Let {X,} be a sequence such that X, € S, (r > 1).
Because of S DS D - D85, D, X, € Spif r >k, so

X, — X5 <d(Sk) if r,s>k.

(2.11)

(2.12)

From lim,_,~ d(S,;) = 0 and Cauchy’s convergence theorem, X, converges to a
limit X. Since X is a limit point of every S; and every Sy is closed, X is in every
Sk (A set is closed if and only if it contains all its limit points). Therefore,

X €1, s0 I # (. Moreover, X is the only point in I, since if Y € I, then

and (2.12) implies that Y = X.
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2.6 Heine-Borel Theorem

We are going to state and prove the Heine-Borel theorem for R™.

This theorem concerns compact sets. As in R, a compact set in R™ is a closed and
bounded set.

Recall that a collection H of open sets is an open covering of a set S if
SCcU{H:HeH}

Theorem: If H is an open covering of a compact subset .S, then .S can be covered
by finitely many sets from H.

Proof: The proof is by contradiction. We first consider the case where n = 2, so
that you can visualize the method.

Suppose that there is a covering H for S from which it is impossible to select a
finite subcovering.

Since S is bounded, S is contained in a closed square
T ={(z,y)la1 <z <a1+L,ay <z <ay+ L}

with sides of length L

7

7@

Figure 2.2: Heine-Borel Theorem for n = 2

Bisecting the sides of T leads to four closed squares, T, TR TG) and T®,
with sides of length L/2. Let

SO =gnTH 1<i<4.

Each SO, being the intersection of closed sets, is closed, and
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Moreover, H covers each S but at least one S cannot be covered by any finite
subcollection of H, since if all the S® could be, then so could S. Let S; be a set
with this property, chosen from S, §2) §G) and S&.

We are now back to the situation we started from: a compact set S covered by H,
but not by any finite subcollection of H. However, S; is contained in a square T}
with sides of length L/2 instead of L. Bisecting the sides of T} and repeating the
argument, we obtain a subset Sy of S7 that has the same properties as S, except that
it is contained in a square with sides of length L/4. Continuing in this way produces
a sequence of nonempty closed sets Sy (= 5), S1, So, ..., such that S; D Sky1 and
d(Sy) < L/2F1/2 (k> 0).

From Principle of Nested Sets Theorem, there is a point X in Nrey Sk-

Since X € S, there is an open set H in H that contains X, and this H must also
contain some e-neighborhood of X. Since every X in S}, satisfies the inequality

’X . X’ < 2_k+1/2L,
it follows that Sy C H for k sufficiently large.

This contradicts our assumption on H, which led us to believe that no Sy could be
covered by a finite number of sets from .

Consequently, this assumption must be false: H must have a finite subcollection
that covers S. This completes the proof for n = 2.

The idea of the proof is the same for n > 2. The counterpart of the square T is
the hypercube with sides of length L:

T={(z1,22,...,2n) 1 a; <x; <a;+ L,i=1,2,...,n}.

Halving the intervals of variation of the n coordinates x1, 9, ..., x, divides T into
2" closed hypercubes with sides of length L/2:

T = {(x1,22,...,20) 1 b; <2 < b+ L/2,1 < i < n},

where b; = a; or b; = a; + L /2. If no finite subcollection of H covers S, then at least
one of these smaller hypercubes must contain a subset of S that is not covered by
any finite subcollection of S. Now the proof proceeds as for n = 2.

Remark: The Bolzano—Weierstrass theorem is valid in R™; its proof is the same as
in R.
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2.7 Connected Sets in R"

A subset S of R"™ is connected if it is impossible to represent S as the union of two
disjoint nonempty sets such that neither contains a limit point of the other.

If S cannot be expressed as S = AU B, where

A#0, B#0, AnB=0, and ANB=10. (2.13)

If S can be expressed in this way, then S is disconnected.

Example: The empty set and singleton sets are connected, because they cannot be
represented as the union of two disjoint nonempty sets.

Example: The space R™ is connected.

IfR"=AUBwith ANB=0and ANB =1, then AC Aand B C B.

That is, A and B are both closed and therefore are both open.

Since the only nonempty subset of R” that is both open and closed is R" itself,
one of A and B is R" and the other is empty.

2.7.1 Polygonal Path
If Xy,Xo,..., X} are points in R"

Let L; is the line segment from X; to X;4+1, 1 <17 < k — 1, we say that Ly, Lo,
.o, L1 form a polygonal path from X; to Xj.

We say that X and X}, are connected by the polygonal path.

2.8 Polygonally Connected Set

A set S is polygonally connected if every pair of points in S can be connected by a
polygonal path lying entirely in .S.

Theorem: An open set S in R™ is connected if and only if it is polygonally
connected.

Proof: For sufficiency, we will show that if S is disconnected, then S is not poly-
gonally connected.

Let S = AU B, where A and B satisfy

A#0, B#0, ANB=0, and ANB=0.
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Suppose that X1 € A and X9 € B, and assume that there is a polygonal path
in S connecting X; to Xo. Then some line segment L in this path must contain a
point Yy in A and a point Y5 in B.

The line segment

X =tYo+ (1-8)Y;, 0<t<1,
is part of L and therefore in S. Now define
p=sup{r:tYo+ (1-¢t) Y1 € A, 0<t<7<1}.
Let X, = pY2+ (1 — p)Y;. Then X, € AN B.
However, since X, € AU B and AN B = AN B = {, this is impossible.

Therefore, the assumption that there is a polygonal path in S from X; to X9 must
be false.

For necessity, suppose that S is a connected open set and Xg € S. Let A be the set
consisting of Xy and the points in S can be connected to Xy by polygonal paths in
S. Let B be set of points in S that cannot be connected to X by polygonal paths.
If Yo € S, then S contains an e-neighborhood N.(Yy) of Yo, since S is open. Any
point Y7 in N.(Y( can be connected to Yy by the line segment

X=tY +(1—-1)Yy, 0<t<1,

which lies in N.(Yy) and therefore in S. This implies that Yo can be connected
to Xp by a polygonal path in S if and only if every member of N.(Y() can also.
Thus, N.(Yo) C Aif Yo € A, and N.(Yy) € B if Yy € B. Therefore, A and B are
open. Since AN B = (), this implies that AN B = AN B = (). Since A is nonempty
(Xo € A), it now follows that B = (), since if B # (), S would be disconnected.
Therefore, A =S, which completes the proof of necessity.

Remark: Any polygonally connected set, open or not, is connected. The converse
is false. A set (not open) may be connected but not polygonally connected.

Regions in R™: A region S in R™ is the union of an open connected set with some,
all, or none of its boundary; thus, S° is connected, and every point of S is a limit
point of SY.

Example: Intervals are the only regions in R. The n-ball B,.(Xy) is a region in R",
as is its closure S,.(Xg). The set S = {(z,y) : 22 +32> <1 or x?+y?>4}isnot
a region in R?, since it is not connected.

The set S; obtained by adding the line segment

Li: X=t0,2)+(1-1)(0,1), 0<t<1,
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Figure 2.3: Disconnected set which is not a region

—

Figure 2.4: A connected set which is not a region
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to S is connected but is not a region, since points on the line segment are not limit
points of SY. The set Sz obtained by adding to S; the points in the first quadrant
bounded by the circles 22 + y? = 1 and 2 4+ y? = 4 and the line segments L; and

Ly: X =t(2,00+(1—1)(1,0), 0<t<1,

is a region.

Figure 2.5: A region

2.9 Sequences in R"

A sequence {X,.} of points in R™ converges to a limit X if and only if for every € > 0
there is an integer K such that

X, -X|<e if r>K.

The R™ definitions of divergence, boundedness, subsequence, and sums, differences,
and constant multiples of sequences are analogous to those we discussed in Analysis

L

Since R"™ is not ordered for n > 1, monotonicity, limits inferior and superior of
sequences in R™, and divergence to oo are undefined for n > 1.

Products and quotients of members of R™ are also undefined if n > 1.
Several theorems from Analysis I remain valid for sequences in R™, with proofs
unchanged, provided that | | is interpreted as distance in R".

1. uniqueness of the limit.

2. Boundedness of a convergent sequence.
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3. Concerning limits of sums, differences, and constant multiples of convergent
sequences.

4. Every subsequence of a convergent sequence converges to the limit of the
sequence.

2.10 Domain of Function of n Variable

We denote the domain of a function f by Dy and the value of f at a point X =
(x1,22,...,2n) by f(X) or f(x1,22,...,2s).

If a function is defined by a formula such as
1/2
f(X) = (1—:L“%fx§—--~—xi)/ (2.14)

without specification of its domain, it is to be understood that its domain is the
largest subset of R™ for which the formula defines a unique real number.

2.11 Limit at a Point of a Function of n Variables

A function f(X) approaches the limit L as X approaches Xo and write

g, T =

if X is a limit point of D; and, for every € > 0, there is a § > 0 such that
f(X) - L <e

for all X in Dy such that
0<|X—Xp| <.

Example: If g(z,y) = 1 — 2% — 2y%, then

lim  g(z,y) =1 —x2 — 22 (2.16)
(z,y)—(z0,y0)

for every (xo, o).
To see this, we write

l9(z,y) — g(z0 — o) [(1—a? —2y%) — (1 — 2 — 2)|

< 2 —agl + 20y -yl

= (@ + o) (z — )| (2.17)
+2[(y + v0)(y — yo)

< |1X = Xo|(lz 4+ 2ol + 2|y + yo)|),
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since
|z — 20| < |X = Xo| and |y —yo| < [X — X

If | X — Xg| <1, then |z| < |zo| + 1 and |y| < |yo| + 1.
This and (2.17) imply that

l9(z,y) — g(z0 —yo)| < K|X —Xo| if [X—Xo| <1,

where
K = (2|lzo| + 1) + 2(2|yo| + 1).

Therefore, if € > 0 and
X — Xo| < 6 =min{l,e/K},

then
lg(z,y) — (1 — a5 — 2y3)| <e.

Example: The function

sin /1 — 22 — 2y2

2_2y2

h(z,y) = —

is defined only on the interior of the region bounded by the ellipse
22+ 27 =1.

It is not defined at any point of the ellipse itself or on any deleted neighborhood of

y y
PR B IX-X =8
/ \
/ \
X \ X

x+2y’=1 X4+2y° =1

(a) (b)
Figure 2.6: Domain of the function

such a point. Nevertheless,

lim  h(z,y) =1 (2.18)
(z,y)—(zo,y0)

if
x4+ 2% = 1. (2.19)
To see this, let

u(z,y) =/ 1— 22 —2y2.



2.11. Limit at a Point of a Function of n Variables 87

Then in (e, )
sinu(z,y
h(z,y) = ———== 2.20
(z,y) e (2.20)
Recall that )
. sinr
lim =1.
r—0 7
Therefore, if € > 0, there is a §; > 0 such that
Sm“—1‘ <e if 0<|ul <0 (2.21)
U

From previous example, we have

lim 1—22—29%) =0.
(fcvy)—>(fco,yo)( v)

If (2.19) holds, so there is a § > 0 such that
0 < u?(z,y) = (1 — 22 —2°) < %

if X = (x,y) is in the interior of the ellipse and |X — Xg| < J; that is, if X is in the
shaded region.
Therefore,

O<u=+1—-22-2y2<6 (2.22)

if X is in the interior of the ellipse and |X — Xp| < ¢; that is, if X is in the shaded
region. This, (2.20), and (2.21) imply that

h(z,y) —1] <e
for such X, which is the required result.
Theorem: If limx_,x, f(X) exists, then it is unique.
Proof: See lecture.

Example: The function
Yy

f(fﬂay):m

is defined everywhere in R? except at (0,0). Does lim, ;) (0.0) f(z,y) exist?

If we try to answer this question by letting (z,y) approach (0,0) along the line
y = x, we see the functional values

and conclude that the limit is 1/2.
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However, if we let (z,y) approach (0,0) along the line y = —z, we see the
functional values
flo, ) = -2 = -1
T,—T)= ——s5 = —=
’ 2x2 2

and conclude that the limit equals —1/2.
In fact, they are both incorrect. What we have shown is that

. 1
and i%f(x, —x) = ~3

N | =

lim f(z,z) =
z—0

Since lim, ¢ f(z,x) and lim,_o f

—

r, —z) must both equal lim, ), 0,0) f(7,)-

Theorem: Suppose that f and g are defined on a set D, Xj is a limit point of D,
and

lim f(X)=1L;, _lim ¢(X)=Ls.

X—>Xg X=Xy
Then
s (f+9)X) = Li+ Ly, (2.23)
Jim (F-g)X) = Li-I (2.24)
Jin (f)(X) = Lils (2.25)
if Ly # 0,
. f Iy

2.12 Infinite Limits and Limits at X — oo
We say that f(X) approaches oo as X approaches Xg

1i X) =
i f(X) = o0

if X is a limit point of D; and, M, there is a § > 0 such that

f(X)>M whenever 0<|X—-Xp|<d and X € Dy.

We say that
Kk, SO0 = oo
if
li -HX) = :
i (—=f)(X) 00
Example: If

JX)=(1—af—af - —al)"V?,



2.12. Infinite Limits and Limits at X — oo

then
<, T30 =
if |Xo| = 1, because
1
X) = e
D &
S0 )
f(X)>M H(RJX—XM<6:ET
Example: If
1
fz,y) = m7

then lim(, ), (1,—1) f(%,y) does not exist (why not?).
But

lim z,y)| = oco.
B |f(z, )l

To see this, we observe that
lz+2y+1] = [(z—1)+2(y+1)|
< V5|X —Xg| (by Schwarz’s inequality),

where Xo = (1,—1). So

fay) = > ———
T 1 T VAR =Xy
Therefore,
1
zy)| > M if 0<|X—Xo| < ——.
) X=Xl < e

Example: The function

in (-1
‘Sm (r2+92+22)‘

2 + Y2 + 22

flx,y,2) =

assumes arbitrarily large values in every neighborhood of (0,0,0).
For example, if Xy = (xk, yk, 2k), where
1
T =Yp =2k = —F7——,
3 (k: + %) T

then
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However, this does not imply that limx_,¢ f(X) = co. Since, for example, every
neighborhood of (0,0, 0) also contains points

— 1 1 1
X = , , .
g <\/3k7r V3km \/3k7r>
For which f(Xj) = 0.

2.12.1 Limit at Infinity

If Dy is unbounded, we say that

lim f(X)=L (finite)

[X|—00
if for every € > 0, there is a number R such that

|f(X) = L| <e whenever |X|>R and X € Dy.

Example: If
1
f(z,y,2) = cos (9324-23/24-22> )
then
lim f(X)=1. (2.27)
|X| =0

To see this, we recall that the continuity of cosw at v = 0 implies that for each
€ > 0 there is a 6 > 0 such that

|cosu—1| <e if |u] <.
Since
1 < 1
2 4+ 292 + 22 — | X2
It follows that if |X| > 1/+/9, then

! <9
x2+2y2+22

Therefore,
[f(X)—1] <e.

Example: Consider the function defined only on the domain

D={(z,y):0<y<az}, 0<a<l,
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by
f@,y) = —
xT,y) = .
We will show that
lim f(x,y)=0. (2.28)
|X|—o0

It is important to keep in mind that we need only consider (x,y) in D, since f is
not defined elsewhere.
In D,
r—y>xz(l—a) (2.29)

and
X2 =22 + 3y < 22(1 4 a?).

So
T > 7|X|
T V1+a?
This and (2.29) imply that
s _L-a IX|, XeD
x — —|X], .
V= V14 a?
So
Vi4+a? 1
<———, XeD.
)l < g Xe
This and (2.29) imply that
> 7% ) xep
x — —=X], .
y= V1+a?
So
V1i+a? 1
<———, Xeb.
) < g Xe
Therefore,
|f(z,y)] <e
if X € D and
V1+a?1
IX| > ———-.
l1—a ¢
Remarks: In the same manner we can define limx| o f(X) = oo and
limx| o0 f(X) = —0o0. We will have the following notion limx_,x, f(X) exists

means that limx_,x, f(X) = L, where L is finite; to leave open the possibility that
L = +o0.

We will say that limx_,x, f(X) exists in the extended reals. A similar convention
applies to limits as |X| — oc.
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2.13 Continuity

If Xg is in Dy and is a limit point of Dy, then we say that f is continuous at Xg if

Jim f(X) = /(X0)

Theorem: Suppose that X isin Dy and is a limit point of Df. Then f is continuous
at Xp if and only if for each € > 0 there is a 6 > 0 such that

|f(X) = f(Xo)| <€
whenever
|X—X0’ <d and XEDf.

Example: The function

flay) =1-2a" -2y

is continuous on R2.
Solution: See lecture.
Example: Consider the function

sin y/1—x2—2y2 2 2

— 2 1
h(x,y) = Vi1—z2—2y2 eyt <L

1, 22+ 2% =1,

then it follows from the example we have discussed that h is continuous on the
ellipse
22+ 2% =1.

Example: Can we redefine the function

_ v
f(x>y) - 1’2 +y27
to make it continuous at (0,0).
The limit
lim  f(x,y
(2,y)—(0,0) @)

does not exist.

Consequently, it is impossible to define the function at origin to make it contin-
uous.

Theorem: If f and g are continuous on a set S in R™, then so are f +g¢, f — g, and
fg. Also, f/g is continuous at each X in S such that g(Xgp) # 0.
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2.14 Vector Valued Functions

Suppose that g1, go, ..., gn are real-valued functions defined on a subset 1" of R™.
We define the vector-valued function G on T by

G(U) = (gl(U)vg2(U)a"-vgn(U))a Uel.

Then ¢1, g2, ..., gn are the component functions of G = (g1,92,--.,9n). We say
that

lim G(U)=L=(Ly,Lo,...,L

Jim G(U) = L= (Ly, Lo, ... L)
if
li (U)=L;, 1<i<n,

iy, 90 = B Lsisn

and that G is continuous at Ug if g1, g2, ..., g, are each continuous at Ug.

Theorem: For a vector-valued function G,

lim G(U)=L
U—>U0

if and only if for each € > 0 there is a 6 > 0 such that
|G(U) —L| <e whenever 0<|U—-Uy|<d and U € Dg.

Similarly, G is continuous at Uy if and only if for each € > 0 there is a § > 0 such
that

|G(U) — G(Uy)| <e whenever |U—-Uy| <d and U € Dg.

2.14.1 Composite Function

Let f be a real-valued function defined on a subset of R", and let the vector-valued
function G = (g1, 92, - .., gn) be defined on a domain D¢ in R™.
Let the set
T:{UZUEDG and G(U) EDf},

be nonempty.
Composite function: Define the real-valued composite function

h=foG
on T by
h(U) = f(G(U)), UeT.

T={U:UecDg and G(U)e Dy},
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R(G) =range of G

|
|
| R
|
|

by
Figure 2.7: Composite of vector valued functions

Theorem: Suppose that Ug is in T" and is a limit point of 7', G is continuous at
Uy, and f is continuous at Xg = G(Uy). Then h = f o G is continuous at Uy.

Proof: Suppose that € > 0. Since f is continuous at Xg = G(Uy), there is an
€1 > 0 such that
[f(X) = F(G(Uy))| <€ (2.30)

if
X - G(Up)| <er and X € Dy. (2.31)
Since G is continuous at Uy, there is a § > 0 such that
|G(U) - G(Up)| <e1 if [U-Upy|<d and UE€ Dg.
By taking X = G(U) in (2.30) and (2.31), we see that

h(U) = h(Uo)| = |/(G(U) = f(G(Uo))| <&

if
[U—-Up|<d and UeT.
Example: If
fls)=+s
and

g(z,y) =1 - 2" =297,
then Dy = [0,0], Dy = R?, and

T ={(z,y): 2 +25° <1},

We have proved that ¢ is continuous on R2.
We can obtain the same conclusion by observing that the functions p;(z,y) =
and pe(z,y) = y are continuous on R,
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Theorem: Suppose that Ug is in T" and is a limit point of T, G is continuous at
Uy, and f is continuous at Xy = G(Uy).
Then h = f o G is continuous at Uy. Since f is continuous on Dy, the function

h(z,y) = f(g9(z,y)) = V1 — 22 — 29>
is continuous on 7T

Example: If
9(@,y) = V1 —a®—2y?

and

then Dy = (—00,00) and
Dy =T = {(z,y) : 2* +2y* < 1}.

We have proved that g is continuous on 7. Since f is continuous on Dy, the
composite function h = f o g defined by

sin 4/ 1—x2—2y2 2 2

——_— + 2y* < 1,
R Y

1, 22+ 2% =1,

is continuous on
D, =T ={(z,y): 2 +2y° < 1}.

2.15 Bounded Functions

The definitions of bounded above, bounded below, and bounded on a set S are the
same for functions of n variables as for functions of one variable, as are the definitions
of supremum and infimum of a function on a set S.

Theorem: If f is continuous on a compact set S in R”, then f is bounded on S.

Theorem: Let f be continuous on a compact set S in R™ and

a = inf f(X), f=sup f(X).

XeS Xes

Then
f(X1)=a and f(X2)=p

for some X; and X5 in S.

Proof: See lecture.
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Theorem: Let f be continuous on a region .S in R".
Suppose that A and B are in S and

f(A) <u< f(B).
Then f(C) = u for some C in S.
Proof: If there is no such C, then S = RUT, where
R = {X:XeSand f(X) <u}
T = {X:XeSand f(X) > u}.
If Xy € R, the continuity of f implies that there is a § > 0 such that
fX)<u if | X—Xg|<d

and X € S.

This means that X € T. Therefore, RNT = (). Similarly, RNT = (). Therefore,
S is disconnected, which contradicts the assumption that S is a region. Hence, we
conclude that f(C) = u for some C in S.

Theorem: A function f is uniformly continuous on a subset S of its domain in R"”
if for every € > 0 there is a § > 0 such that

IfF(X) - f(X) <e

whenever

X -X'|<§
and X, X’ € S.

Remark: We emphasize that 6 must depend only on € and S, and not on the
particular points X and X'.

Theorem: If f is continuous on a compact set S in R™, then f is uniformly contin-
uous on S.

Proof: See lecture.

2.16 Directional Derivative

Let @ be a unit vector and X a point in R™.
The directional derivative of f at X in the direction of ® is defined by
0f(X) fX+t®) - f(X)

—— = lim

0P t—0 t

if the limit exists.
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That is, f(X)/0® is the ordinary derivative of the function
h(t) = f(X +t®)
at t =0, if A'(0) exists.
Example: Let ® = (¢1, ¢2, ¢3) and
f(z,y,z) = 3zyz + 2% + 2°.
Then

h(t) = flz+1td1,y+tha, 2z +tps),
3(x 4t ) (y + o) (2 + tds) + 2(x + tpr)?
+(z + te3)*.

h(t) = 3(z + td1)(y + th2)(z + tds) + 2(x + th1)? + (2 + td3)”

Then we have

W(t) = 31y +tda)(z + tds) + 3da(x + te1)(z + tos)
+3¢3(z +td1)(y + td2) + 4o1(z + )
+2¢)3(Z + t¢3).

Therefore,

2.16.1 Partial Derivative

Consider the unit vectors

E, = (1,0,...,0), E,=(0,1,0,...,0),..., E,=(0,...,0,1).

Since X and X + tE; differ only in the ith coordinate, 0f(X)/0E; is called the

partial derivative of f with respect to x; at X.
It is also denoted by 0f(X)/0x; or fg,(X); thus,

af(X)_ BT f($1+t,l'2,...,l’n)—f(.Il,QTQ,...,l'n)
sz(X) — lim f(l‘l, ey Ti—1, T+, T, - ,xn) - f(:cl,xQ,. Cy Tp)
t—0 t
if 2 <17 <n, and
af(X) — fxn(X) — lim f(xla -eyTp—1,Tn +t) - f('rla s 71'77,7173371)

oz, t—0 t
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if the limits exist. If we write X = (x,y), then we denote the partial derivatives
accordingly; thus,

8 X x -+ h
f( ,y) ”x(z,y) }13 ) ( y}i f( )
() Z, . x, + h - xT,

It can be seen from these definitions that to compute fz,(X) we simply differentiate
f with respect to z; according to the rules for ordinary differentiation, while treating
the other variables as constants.

Example: Let
f(z,y,2) = 3zyz + 222 + 22,

Taking ® = E; (that is, setting ¢1 = 1 and ¢ = ¢35 = 0), we find that

of(X) _0f(X) _
or  oE, T

which is the result obtained by regarding y and z as constants in and taking the
ordinary derivative with respect to x. Similarly,

0f(X) 0f(X)

By = OE, = 3xz
9f (X) 9f (X)
= = 2z.
92 OE; 3xy + 2z

Theorem: If f;,(X) and g¢,,(X) exist, then

W = fu(X) + 92, (X),
W Fo(X)9(X) + F(X)gz,(X),

and, if g(X) # 0,

o(f/9)(X) _ 9(X) [, (X) = f(X) gz, (X)
Iz lg(X)I? '

If fz,(X) exists at every point of a set D, then it defines a function f, on D.
If this function has a partial derivative with respect to x; on a subset of D, we
denote the partial derivative by

o (N _ P,
8:1/‘]' 8$1 _8l‘jal‘i Batach

Similarly,

) ( 0% f ) o f

ka 81'J8$Z - 8xk8xjaxl - frzr]xk
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The function obtained by differentiating f successively with respect to
Tiy, Tiy, - - - T4, 18 denoted by
a"f

8.%,,8.73“71 cee axﬂ

it is an rth-order partial derivative of f. The function
fla,y) =32y’ +ay
has partial derivatives everywhere. Its first-order partial derivatives are
fe(z,y) =62y +y,  fy(z,y) =927y + 2.
Its second-order partial derivatives are

foa(zy) = 633, fyy(zy) = 1822y,
fzy(xvy) = 181’y2—|—1, fyx(xay) = 18a:y2+1.

There are eight third-order partial derivatives. Some examples are
fwzy(wa y) = 18y27 f:cym(x>y) = 18y27 fy$$(x7y) = 18y2'

ComPUte fmz(()?O): fyy(()»()); fmy(ov 0)7 and fyz(070) lf

22y+ay?) sin(z—
gy = | EEEEEE () £ 0,0),
0, (z,y) = (0,0).

If (z,y) # (0,0), the ordinary rules for differentiation, applied separately to x

and y, yield
X 2) sin(z— 22y+zy?) cos(z—
fola,y) = Gopty)sing ya;);;(y2y+ y?) cos(z—y) .
z(x2y+zy?) sin(x— .
2 y(J;QiJQ)Q( y)7 (z,3) # (0,0),
and . 2 2
fy(x,y) _ (&°+2zy) 51n(w—z;)2—+(;2y+xy ) cos(z—y)
(2.33)

x2y+zy?) sin(z—
- WD) (1) £ (0,0).

These formulas do not apply if (z,y) = (0,0), so we find f;(0,0) and f,(0,0) from
their definitions as difference quotients:

f(z,0) — f(0,0) 0-0

f2(0,0) = :yg%) T :ili% T =0,
0,y) — £(0,0 0-0

£,(0,0) = lim L0 =00 020
y—0 Yy y—0 y

Setting y = 0 in (2.32) and (2.33) yields

fo(2,0) =0, fy(x,0) =sinz, x#0,
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S0
Foa(0,0) = limg F2(2 0 = Je00) 5, 020
zx\Y, o - Jm .
_ 1 fy(x70) _fy(oao) Y sinz — 0 B
f?ﬂ(O?O) - ili% T = }:ll)% " =1.
Setting = 0 in (2.32) and (2.33) yields
f2(0,y) = —siny, f,(0,y) =0, y#0,
S0
Fo(0,0) = lim 2@ = S0.0) ) Zsiny 20
y—0 Y y—0 Yy
_ : fy(oay)_fy(oao) IRT 0—07
fyy(0,0) = zlJl_If(l) " _z}l—% o 0.

2.16.2 Equality of Mixed Partial Derivatives

Theorem: Suppose that f, fz, fy, and fyy exist on a neighborhood N of (o, %0),

and fyy is continuous at (xo, yo).
Then fyz(xo,y0) exists, and

fyx(‘r(% yO) = fxy(‘rOa yO)‘

Proof: Suppose that € > 0. Choose d > 0 so that the open square
Ss = {(z,y) : |z — x| <6, |y — yo| <}
isin N.

[foy(Z,9) = fay(x0,90) <& if (Z,7) € S5

This is possible because of the continuity of f, at (xg,yo). The function
A(h, k) = f(xo + h,yo + k) — f(zo + hyyo) — f(@o, Y0 + k) + f(20, yo)

is defined if —§ < h, k < 4.

Moreover,
A(h, k) = ¢(xo + h) — ¢(z0),
where
¢(x) = f(z,y0 + k) — f(,0)-
Since

¢ (x) = folz,yo + k) — falz,m0), |z —x0] <6,

(2.34)

(2.35)

(2.36)

(2.37)
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(2.37) and the mean value theorem imply that
A(h k) = [fo(@,y0 + k) — f2(Z, y0)] 1. (2.38)

where 7 is between zg and zg + h.
The mean value theorem, applied to f,(Z,y) (where Z is regarded as constant),
also implies that

fx(i?v Yo + k) - f:c(i?: y()) = fa:y(-/fa i/\)k,

where 7 is between yo and yo + k.
From this and (2.38),
A(hv k) = fzy(i'\? /y\)hk

Now (2.35) implies that

A(h, k)
hk

= fay(@o,90)| = |fey(@,9) = fay(wo,90)| <€
if 0<|hl k| <9

Since (2.36) implies that

T A(h,k) . flzo+h,yo + k) — f(zo+ h,y0)
im ———~% = lim
k—0 hk k—0 hk
i (030 + k) — f(z0, %0)
k—0 hk
_ fy(xo + h,y0) — fy(x0,%0)
% )

It follows from (2.39) that

fy(wo + R, y0) — fy(w0,y0)
h

— foy(o,90)| <€ if 0<|h] <.

Taking the limit as A — 0 yields

| fyz (20, 90) — fry(w0,90)| < €.

Since ¢ is an arbitrary positive number, this proves (2.34).

2.16.3 Generalization of Equality of Mixed Partial Derivative

Theorem: Suppose that f and all its partial derivatives of order < r are continuous
on an open subset S of R"”.
Then

fﬂfilxiz,---,xiT (X) = fl’jll’jZ,---@'j,- (X)7 XeS. (2'39)

If each of the variables x1, x2, ..., T, appears the same number of times in

{Zi), Tig, -y, } and  {xj, Ty, ..., 25}
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If this number is 7, we denote the common value of the two sides of (2.39) by

0" f(X)

. 2.40
O Oxy? - - - Oy (2:40)
It being understood that
0<r,<r, 1<k<n, (2.41)
rm+rot+--+rp=m, (2.42)

and, if r;, = 0, we omit the symbol 8z9 from the denominator of (2.40).

Remark: A function of several variables may have first-order partial derivatives at
a point Xg but fail to be continuous at Xj.

Example: Consider the function

flz,y) = 2.43
(z,y) { 0 (e4) = (0.0) (2.43)
Then
.. f(h,0)=f(0,0) . 0-0
FOO = =i
. 0,k) — (0,0 . 0-0
#00) = iy FEDID 220 0

but f is not continuous at (0, 0).

Remark: If differentiability of a function of several variables is to be a stronger
property than continuity, as it is for functions of one variable, the definition of
differentiability must require more than the existence of first partial derivatives.

A function f is differentiable at xq if and only if
L f@) — (o)~ mlz — a0)

T—rxo T — X

=0

for some constant m, in which case m = f'(zo).

2.17 Differentiability of Functions of Several Variables
A function f is differentiable at
Xo = (710,720 - - -, Tno)

if Xg € D?c and there are constants mi, mo, ..., m, such that

. f(X) - f(XO) - E?:l mi(l”z‘ - %’0)
S X — X

= 0. (2.44)
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Example: Show that the following function f(z,y) = 2 + 2zy, is differentiable at
any point (%o, Yo).

flay) = f(mo,yo) = a®+ 2xy — x5 — 20y0
= 2 — g + 2(xy — zoyo)

= (z —m0)(x + 20) + 2(2y — T0Y)
+2(xoy — oYo)

= (z+ 0+ 2y)(z — w0) + 270(y — Yo)
= 2(zo+ yo)(x — o) + 2x0(y — o)
+ (z — x0)(z — 20 + 2y — 2yp)

= mi(z — z0) + ma(y — yo) + (x — wo)(z — z0 + 2y — 2y0),

where
my = 2(xo +yo) = fuz(wo,y0) and ma =220 = fy,(z0,y0)- (2.45)
Therefore,
|f(z,y) = f(x0,y0) — ma(x — x0) — ma(y — yo)|
X — Xo|
_ |z = woll(x — w0) +2(y — wo)|
X — Xo|

< V5|X — X,
by Schwarz’s inequality. This implies that

lim f(x,y) = f(zo,90) — mi(x — x0) — ma(y — yo)
X X0 IX — X

=0,

so f is differentiable at (zo,yo).

Theorem: If f is differentiable at Xo = (210, 20, - - -, Tno), then fz, (Xo), fz,(Xo),

ooy fu, (Xo) exist and the constants mq, ma, ..., m, in
i 1) =S Ko) = Yoy malwi —2i0) _
X—Xo X — Xo|

are given by
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that is,
lim F(X) = f(Xo) =Dy fo,(Xo) (@ — wi0)

=0.
X—Xo X — Xo|

Proof: Let ¢ be a given integer in {1,2,...,n}. Let X = Xy + tE;, so that
x; = Tjo +t, v; = xjo if j #1, and X — Xo| = [t]-

Then "
lim f(X) = f(Xo) = Doty mi(@i — zio)
X—Xo X — X
and the differentiability of f at Xg imply that
f(Xo +tE;) — f(Xo) — mjt

=0.

lim =0.
t—0 t
Hence,
X tE;) — f(X
iy (X0 +1E:) — f( O)Zmi.
t—0 t

This proves (2.46), since the limit on the left is f,(Xo), by definition.

2.17.1 Linear Function
A linear function is a function of the form
L(X) = mix1 +mazo + -+ + MpZnp, (2.47)

where my, ma, ..., m, are constants. From definition of differentiability, f is
differentiable at Xy if and only if there is a linear function L such that f(X)— f(Xg)
can be approximated so well near Xg by

L(X) = L(Xo) = L(X = Xo)

that
f(X) = f(Xo) = L(X — Xo) + E(X)(IX = Xo), (2.48)
where
Xh—>H)1(o E(X)=0. (2.49)

Theorem: If f is differentiable at Xg, then f is continuous at Xp.
Proof: From L(X) = mjxy + moxe + - - - + mpzy,, and Schwarz’s inequality,
[L(X = Xp)| < M|X =X,

where
M= (m?+m3+- - +m2)/2

This and f(X) — f(Xo) = L(X — Xg) + E(X)(|X — Xol), imply that
[f(X) = f(Xo)| < (M + |E(X))|X = Xl

which, with (2.49), implies that f is continuous at Xj.



2.17. Differentiability of Functions of Several Variables 105

2.17.2 Differential

The linear function
L(X) = fml (X0)901 + fa:z (XO)x2 + -+ fzn (Xo)wn

This function is called the differential of f at Xo. We will denote it by dx, f
and its value by (dx, f)(X).
Thus,

(dxo f)(X) = fo,(Xo)z1 + fry (Xo)w2 + -+ + fa,, (Xo)2p. (2.50)

In terms of the differential, differentiability can be rewritten as

ey £ X) = F(Xo) — (dx, f)(X ~ Xo)

=0.
X—Xo |X — X

For convenience in writing dx, f, and to conform with standard notation, we intro-
duce the function dz;, defined by

dz;(X) = a;;

that is, dx; is the function whose value at a point in R” is the ¢th coordinate of the
point.
It is the differential of the function g;(X) = x;. From (2.50),

dx,f = fo,(Xo) dz1 + fo,(Xodze + - - + [z, (Xo) dzy. (2.51)
If we write X = (z,v,..., ), then we write
dx,f = f2(Xo) dx + fy(Xo) dy + -+,
where dx, dy, ... are the functions defined by
dz(X) ==z, dy(X)=uy,...

When it is not necessary to emphasize the specific point Xg, (2.51) can be written
more simply as

df = for day + fop dao + - + fo, dap.

When dealing with a specific function at an arbitrary point of its domain, we may
use the hybrid notation

df = fo,(X) dx1 + fo,(X) dxo + - - - + f2,(X) dzpy.

Example: The function
f(a,y) = 2® + 2xy

is differentiable at every X in R".
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The differential of the functions is
df = (2z + 2y) dx + 2z dy.
To find dx, f with Xo = (1,2), we set g = 1 and yo = 2; thus,

dx,f = 6dz+2dy
(dx,f)(X =Xo) = 6(z—1)+2(y—2).
Since f(1,2) = 5, the differentiability of f at (1,2) implies that

f(z,y) =5 —6(x—1)—2(y —2)
(2,9)—(1,2) Vi =12+ (y—2)2

Example: The differential of a function f = f(z) of one variable is given by
dyo f = f'(20) do,
where dx is the identity function; that is,
dx(t) =t.

For example, if
f(z) = 322 + 523,

then
df = (6 + 152?) dx.

If zg = —1, then
dpo f =9dz, (dyof)(x —20) =9(x + 1),
and, since f(—1) = -2,

lim flz)+2—-9(x+1)

rz——1 rx+1 =0

Remark: Unfortunately, the notation for the differential is so complicated that it
obscures the simplicity of the concept. The peculiar symbols df, dz, dy, etc., were
introduced in the early stages of the development of calculus to represent very small
(infinitesimal) increments in the variables. However, in modern usage they are not
quantities at all, but linear functions. This meaning of the symbol dz differs from its
meaning in fab f(z) dz, where it serves merely to identify the variable of integration;

indeed, some authors omit it in the latter context and write simply ff f.
Lemma: If f is differentiable at Xg, then

F(X) = f(Xo) = (dx, ) (X = Xo) + E(X)|X — X,
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where E is defined in a neighborhood of Xy and
lim E(X)= E(Xp) =0.
i E(X) = E(Xo)

Theorem: If f and g are differentiable at X, then so are f + g and fg. The same
is true of f/g if g(Xp) # 0. The differentials are given by

dXo(f+g) = dXof+dX097
dx,(f9) = f(Xo)dx,9+ 9(Xo)dx,f,

f _ g(XO)dXOf - f(XO)dX()g
o <g> - [9(Xo) P ‘

and

2.17.3 A sufficient Condition for Differentiability

Theorem: If f, , fz,, --., fz, exist on a neighborhood of Xy and are continuous
at Xg, then f is differentiable at Xj.

Proof: Let Xy = (x10,%20,---,Zno) and suppose that € > 0. Our assumptions
imply that there is a 6 > 0 such that f;,, fa,,. .., fz, are defined in the n-ball

S5(Xo) = {X : |X — Xo| < 6}

and
\f$j(X)—f$j(Xo)|<5 if | X—Xp|<d, 1<j<n. (2.52)

Let X = (21,2, ...,2,) be in S5(Xp). Define
Xj=(@1,...,25,%j410,---,Tn0), 1<j<n—1,

and X,, = X Thus, for 1 < j < n, X differs from X;_; in the jth component only,
and the line segment from X;_; to X is in S5(Xg). Now write

n

F(X) = f(Xo) = f(Xn) = f(Xo) = > _ [F(X;) = F(Xj-1)], (2.53)

j=1
and consider the auxiliary functions
gl(t) = f(t7x207---7xn0)7

gj(t) = f(xl,...,xj_l,t,xj_,_l,(),...,a:no), 2 §j S n — 1, (2.54)
gn(t) = f($la"'7xn—17t)a

where, in each case, all variables except ¢ are temporarily regarded as constants.
Since

f(Xy) = f(Xj-1) = gj(z5) — gi(xj0),
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the mean value theorem implies that

F(X5) = f(Xjo1) = gi(m5) (x5 — xj0),
where 7; is between x; and xjo. From (2.54),
65(m3) = I, (X;),
where }A(j is on the line segment from X;_; to X;. Therefore,
FX5) = F(Xj1) = fu, (X)) (5 — 250),

and (2.53) implies that

FX) = f(Xo) = Y fo, (X)) (5 — 250)
j=1

~

[fo; (X5) = fo; (Xo)](25 = 2j0)-

1

= 3 o, (Ko)(a; — 2j0) +
j=1

n

J

From this and (2.52),

F(X) = F(Xo) = > fo,; Xo)(wj — wjo)| <€D |aj — jo| < ne|X — Xol,
=1 =1

which implies that f is differentiable at Xj.

2.17.4 Continuously Differentiable Function

We say that f is continuously differentiable on a subset S of R™ if S is contained in
an open set on which f,, fz,, ..., fz, are continuous.
The above theorem implies that such a function is differentiable at each X inS.

Example: If
x2+y2
flz,y) = :
rT—y
then ) )
2x vty
f (flf,y = -
08 =y T oy
2y x2—|—y2
fy(xay): + 2°

Since f, and f, are continuous on

S={(z,y):x#y}
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f is continuously differentiable on S.

Remark: If f;,, fz,, ..., fz, exist on a neighborhood of Xy and are continuous
at Xy, then f is differentiable at Xy. These conditions are not necessary for differ-
entiability; that is, a function may be differentiable at a point Xy even if its first
partial derivatives are not continuous at Xg.

Example: let

o1
S 7= z # v,

0, T =Y.
Then 1 1
fa(z,y) = 2(z — y)sin — cos , T#Y,
r—y r—y
e flatha) — fle,x) . K2sin(1/h)
x+h,x)— f(x,x . sin(1 -0
2(z,7) = li = lim L T,
folz, ) B0 h B30 h 0
so f, exists for all (z,y), but is not continuous on the line y = x.
Example: Let
2 i 1
r—y)ising—, = #y,
flz,y) = { (() ) v
, T =y.
The same is true of f, since
fylar.y) = ~2a —y)sin—— +cos . x#
z,y) = —2(x — y) sin o T
y(T,y y)sin — +cos —, Y,
e fw,w +K) ~ fla) K sin(-1/K) 0
r,xr+k)— flx,x sin(— —
— ’ L) — 0.
e, o) = i z o % 0
Now,

f(m,y) - f<070) - fr(()?())w - fy(0,0)y

and Schwarz’s inequality implies that

2(x? + y?)

2
— 1
(z—y) sin

Vi ey

=2z +y?, z#vy.

<

Therefore,

lim f(x, y) - f(O, 0) - f:}c(ov O)l‘ B fy(07 O)y —

(z,y)—(0,0) Va2 +y?

so f is differentiable at (0,0), but f, and f, are not continuous at (0,0).

0,
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2.17.5 Geometric Interpretation of Differentiability

If a function f of one variable is differentiable at x¢, then the curve y = f(z) has a
tangent line

y =T(z) = f(x0) + f'(z0)(z — @0).
The tangent line approximates it so well near o that

i {@) = T(@)

T—x0 T — X0

=0.

Moreover, the tangent line is the limit of the secant line through the points
(1, f(xo)) and (o, f(z0)) as x1 approaches zg. Differentiability of a function of n
variables has an analogous geometric interpretation. We will illustrate it for n = 2.
If f is defined in a region D in R?, then the set of points (z,y, z) such that

= f(x,y), ($’y) €D, (2'55)

is a surface in R? Geometric interpretation of differentiability:

Figure 2.8: Domain of the function
If f is differentiable at X = (xq, yo), then the plane

z=T(z,y) = f(Xo) + fo(Xo)(z — 0) + fy(Xo)(y — v0) (2.56)

intersects the surface z = f(x,y) at (zo, yo, f(z0,%0)) and approximates the surface
so well near (xg,yo) that

lim f(xv y) — T(l‘, y)

=0.
(@)= (@o.90) \/(z — 20)2 + (y — y0)?

Moreover, (2.56) is the only plane in R? with these properties.
We say that this plane is tangent to the surface z = f(x,y) at the point

(w0, Yo, f(x0,y0))-
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X

Figure 2.9: Geometric interpretation of differentiability

Show that the tangent plane to the surface z = f(z,y) is the limit of the
secant planes.

Let X; = (x3,v;) (i = 1,2,3). The equation of the secant plane through the
points (x;, yi, f(xi,yi)) (¢ = 1,2,3) on the surface z = f(z,y) is of the form

= [(Xo) + A(z — z0) + B(y — yo), (2.57)
where A and B satisfy the system

f(X1) = f(Xo)+ A(x1 — z0) + B(y1 — %),
f(X2) = f(Xo)+ A2 — o) + B(y2 — vo)-

Solving for A and B yields

o (f(Xy) = f(Xo))(y2 — yo) — (f(X2) — f(X0))(y1 — %o)
4= (o1 — 20) (2 — 1) — (22 — 20) (w1 — ) (2:58)
(f(X2) = f(Xo))(x1 — 20) — (f(X1) — f(Xo)) (w2 — 0)
b (o1 — 20) vz — o) — (22 — 20) (1 — ) (2:59)
if
(1 —20)(y2 — %0) — (2 — 20)(y1 — yo) # 0, (2.60)

which is equivalent to the requirement that X, X, and X5 do not lie on a line. If
we write

X1 =Xp+tU and Xy=Xg+1tV,

where U = (u1,u2) and V = (v1,v2) are fixed nonzero vectors, then (2.58), (2.59),
and (2.60) take the more convenient forms

f(X0+tU)—f(X0)U2 . f(X0+tV)—f(X0)u2

A = t t , (2.61)
U1V — UV1

f(X0+tV)*f(X0)u1 _ f(X0+tU)*f(X0)v1

B = L L : (2.62)
U1v2 — UV




2.17. Differentiability of Functions of Several Variables 112

and
U1v2 — UV 75 0.

If f is differentiable at Xg, then

F(X) = f(Xo) = fo(Xo)(x = 20) + f,(Xo)(y — o) + (X)X — Xo, (2.63)

where

li =0. .
XEI)ICOE(X) 0 (2.64)

Substituting first X = X + tU and then X = X + ¢tV in (2.63) and dividing by ¢

yields
F(Xo +tU) — f(Xo)
t

= f2(Xo)ur + f(Xo)uz + E1(t)|U| (2.65)

and
f(Xo+tV) — f(Xo)

t

= fo(Xo)v1 + fy(Xo)vz + Ex()[ V], (2.66)

where

Ei(t) = e(Xo + tU)|t|/t and  Es(t) = e(Xo + tV)]t| /1,

SO

lim E;(t) =0, =12, (2.67)

because of (2.64). Substituting (2.65) and (2.66) into (2.61) and (2.62) yields

A= fx(X_O) + Al(t), B = fy(XO) + Ag(t), (268)
where UIEL(t) — usl VI Ba(t)
v — U
A]_(t) _ 2 1 2 2
U1V — UV1
and V{Bs(t) — v U[EL()
u — v
AQ(t) _ 1 2 1 1 7
U1V — UV1
SO
lim A (1) =0, i=1,2, (2.69)
t—0

because of (2.67).
From (2.57) and (2.68), the equation of the secant plane is

z = [(Xo) + [f2(Xo) + A1 ()](x — o) + [fy(Xo) + A2(t)](y — %o)-

Therefore, because of (2.69), the secant plane approaches the tangent plane (2.56)
as t approaches zero.
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2.18 Maxima and Minima
We say that Xy is a local extreme point of f if there is a § > 0 such that
J(X) = f(Xo)

does not change sign in Ss5(Xo) N Dy.
More specifically, Xy is a local mazimum point if

f(X) < f(Xo)

or a local minimum point if
f(X) > f(Xo)
for all X in S5(Xo) N Dy.

Theorem: Suppose that f is defined in a neighborhood of X in R™ and f;, (Xo),

[ (Xo0), -+, fa,(Xo) exist.
Let Xg be a local extreme point of f. Then

Proof: Let E; = (1,0,...,0), E; = (0,1,0,...,0),..., E, =(0,0,...,1), and
9i(t) = f[(Xo +tE;), 1<i<n.
Then g; is differentiable at ¢ = 0, with
9:(0) = fz,(Xo).
Since Xy is a local extreme point of f, g = 0 is a local extreme point of g;.

Remark: The converse of theorem is false, since (2.70) f;,(Xo) =0, 1<i<mn.
may hold at a point Xg that is not a local extreme point of f.
For example, let Xy = (0,0) and

fla,y) =2°+y°.

We say that a point Xo where (2.70) holds is a critical point of f. Thus, if f is
defined in a neighborhood of a local extreme point Xg, then Xg is a critical point
of f; however, a critical point need not be a local extreme point of f.
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2.19 Differentiable Vector Valued Function

A vector-valued function G = (g1, 92, ..., 9n) is differentiable at
Uy = (u10, u20, - - -, Umo)

if its component functions g1, go, ..., g, are differentiable at Uj.

Lemma: Suppose that G = (g1, 92, . - ., gn) is differentiable at
Uy = (u10, u20, - - -, Umo),

and define
1/2

n o m 2
8gi(U0
v= L35
i=1 j=1 J
Then, if € > 0, there is a 6 > 0 such that

|G(U) — G(Uo)| .
M f 0<|U-TU d.
IO <M+4e i < ol <
Proof: Since g1, g2, ..., gn are differentiable at Uy to g; shows that
9:(U) = gi(Uo) = (du,e9:)(U — Ug) + E;(U)[(U — Up|
m  9g;(Uo) (2.71)

Zj:l ou; (“j - “jO) + E;(U)[(U — Ug|,
where

lim E;(U)=0, 1<i<n. (2.72)

U—)Uo

From Schwarz’s inequality,

19:(U) — 9:(Uo)| < (M; + |E;(U)|)|U — Uy,

where 12
= (30 (2Uo) ’
¢ . 5‘uj
7j=1
Therefore,
n 1/2
|G(U) — G(Uy)| 2
< M; + |E;(U
v S (S0 B
From (2.72),

n 1/2 n 1/2
Sim (Z(MMEZ-(U)DQ) =<ZM3) =M,

i=1 =1

which implies the conclusion.
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2.20 The Chain Rule

Theorem: Suppose that the real-valued function f is differentiable at Xg in R"™.
The vector-valued function G = (g1, g2, - - ., gn) is differentiable at Uy in R™, and
Xy = G(Uy).

Then the real-valued composite function h = f o G defined by
h(U) = f(G(U)) (2.73)
is differentiable at Uy, and

duoh = f2,(Xo)duog1 + fa, (Xo)dueg2 + -+ + [z, (Xo)duggn- (2.74)

Proof: First we will show that Uy is an interior point of the domain of h. It is
legitimate to ask if h is differentiable at Uy. Let X = (210, 20, - - ., Tno). Note that

zio = ¢i(Up), 1<i<n,

by assumption.
Since f is differentiable at X, which implies that

F(X) = f(Xo) = > fas (Xo) (@i — mio) + BE(X)|X — Xol, (2.75)
i=1
where
Jim B(X) =0.

Substituting X = G(U) and Xo = G(Up) in (2.75) and recalling (2.73) yields

BU)~h(U) = 3 £e(Xo)(0i(U) ~ i(Uo)
T E(GIU)|G(U) - G(U)| (2.76)
Substituting ¢:(U) — g:(Uo) = du,g:)(U — Up) + Ei(U)|U — Up| into (2.76) yields
MO)~A(U) = 3L o (Ko)ldy90) (U ~ U
(L (K0 B(U) U~ Uy
+ E(G(U))|G(U) — G(Uyg.

Since

Jim B(G(U)) = lim B(X) =0.
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Due to Lemma we proved in previous module, imply that

h(U) = h(Ug) = 371, fa:(Xodu,yg:(U — Up)

=0.
U — Uy

Therefore, h is differentiable at Uy, and dy,h is given by (2.74).

Example: Let
fz,y, 2) = 22 + day + 3yz,

gi(u,v) =u? + 0%, ga(u,v) =u® — 2%, gs(u,v) = uv,

and
h(u) 2}) = f(gl (u’ U), QQ(U, U)v 93(11’7 U))

Let Ug = (1,—1) and

Xo = (91(Uo), 92(Uo), g3(Uo)) = (2, -1, -1).

Then
fZE(XO) = 47 fy(XO) = 57 fz(XO) = _37
Since
gl(uvv) :’LL2+U2, QQ(U, ’U) = u2 _2U27 QS(U, U) = uv,
0g1(Uy) 991(Uyp)
= 9. Z91itYo) _ _9
u ’ ov )
9g2(Uo) 9g2(Uo)
— 2 g2 0) 4
ou ’ ov ’
995(Uo) _ | ogsUo) _ 4
ou ’ ov
Therefore,

dy,g1 = 2du —2dv, dy,92 =2du+4dv, dy,93 = —du+ dv.
According to chain rule we have

dUoh = frvl (XO)dUogl + ffB2 (XO)dUOQQ + A+ fﬂcn (XO)dUogn'

duh = [2(Xo)du,g1 + [y(Xo) du,g2 + f2(Xo) du,g3
= 4(2du—2dv) +5(2du+ 4dv) — 3(—du + dv)
= 21du+9dv.

Since
dUOh = hu(Uo) du + hU(UO) dv

we conclude that
hu(Uo) =21 and hv(Uo) =09. (277)
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Alternatively: This can also be obtained by writing h explicitly in terms of
(u,v) and differentiating; thus,

h(u,v) = 2[g1(u,v)]* + 491 (u, v)ga(u, v) + 3ga(u, v)gs(u,v)
= 2(u® 4+ v*)? + 4(u? + v (u? — 20%) + 3(u? — 20w
= 6u' + 3udv — 6uv® — 60’
Hence,
ho(u,v) = 240 + 9u?v — 60°  and  hy(u,v) = 3u® — 18uv? — 2403,
50 hy(1,—1) = 21 and h,(1,—1) =9, consistent with (2.77).

Corollary: Under the assumptions of the chain rule theorem

9h(Uo) _ i: 0/(X0)99;(U0) | ;. (2.78)

ou; al’j ou; ’

Proof:Substituting

99:(Uo)

duygs = 5= dus + 9:00) 4, 4 ... 1 29:(00)

Ouo 12 oum,

Ay, 1<1<n,

into (2.74) and collecting multipliers of duy, dug, ..., duy, yields

dy,h = Z Zaf X0) 99;(Uo) du;.

ox; ou;
i=1 \j=1 J ¢

However, from Theorem 77,

dy,h = Z auz u;.

Comparing the last two equations yields (2.78).

Remark: When it is not important to emphasize the particular point Xy, we write

Z 0199y <i<m, (2.79)

au, Ox; Ou;’

with the understanding that in calculating 0h(Uy)/0u;, 0gj/0u; is evaluated at Uy
and 0f/0z; at Xo = G(Uy).

Z 0199 | <i<m, (2.80)

8ul dxj Ou;’
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with the understanding that in calculating Oh(Ug)/0u;, 0g;/0u; is evaluated at Uy
and 0f/0z; at Xo = G(Up). By replacing the symbol G with X = X(U); then we
write

and
Xo ax] U())
8u2 z:: ou;
Oh of Oz
or simply Ju Z X 90, (2.81)

2.21 Higher derivatives of composite functions

Higher derivatives of composite functions can be computed by repeatedly applying
the chain rule.
For example, differentiating (2.81) with respect to uy yields

_&*h S 2 Of Oz
871,)98’114 - j=1 8uk 8$j 8’114

2.82)
n o 0%z oz ; o (
S -1 98 Gap g + X5=1 5 ooy (%) :
We must be careful finding

9 (9f

8’U,k 821?]' ’
which really stands here for

aUk 3.%]' ' '

The safest procedure is to write temporarily

_0f(X).
then (2.83) becomes
99(X(U)) zn: )) 0xs(U )
~ ouy,
Since
o9  O*f
Ors  Oxs0x;’

this yields

0 [(0f\ ~= O*f Oxg
o ()

orr ) — Oxs Oxj Quy
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Substituting this into (2.82) yields

of 0%x; - Ozj " 9%f 8375
. 2.84
Buk 8u, Z 8% Ouy, Ou; + jzzl w; ; Oxs 0z bl (2:84)
To compute hy,y, (Up) from this formula, we evaluate the partial derivatives of x,
x9, ..., xn at Up and those of f at Xg = X(Up). The formula is valid if x1, z2,

.., xp, and their first partial derivatives are differentiable at Ug and f, fz,, fzo,
.., fz, and their first partial derivatives are differentiable at Xj.

Example: Let (r,60) be polar coordinates in the zy-plane; that is,
r=rcosf, y=rsind.

Suppose that f = f(z,y) is differentiable on a set .S, and let
h(r,0) = f(rcosf,rsinf).

We have
oh  afor 0fdy of of
o = 8x8r+8 g, = 03 + sin 6(93/ (2.85)
oh  0fox ofoy _ Of of
90~ o000 Tagop - "Snlg treesty

where f, and f, are evaluated at (x,y) = (rcosf,rsinf).

Example: Suppose that f, and f, just calculated are differentiable on an open set
S in R2. Differentiating (2.85) with respect to r yields

% = cos@%(f)—ksmé (5)

(2.86)

o 0%f Ox 0°f Oy 0%f Ox 02 f Oy
= COS@(WWJFayaxaT +sinb { o5, 0r + a7 or ) -

if (z,y) € S. Since

%*COSQ @*sine and Of = Of
or oor o dxdy Oyox
if (z,y) € S. The equation (2.86) yields
Ph 0 O 0%
52 = 0@ + QSIDQCOSHaxay + sin Ha—yz.
Differentiating (2.85) with respect to 6 yields
0h . Of af o (0f . 0 [0f
Wor —s1n«9% +cos€a—y +c 9% (8) —i—smeﬁ <8y)
- . Of of 02 f Ox 0%f Oy
= Sln08x+coseay+cose<8x289+8y8x89

0*f ox 0%*f 8y>

siné <8x8y89 oy 00
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Since 5 5
a—g = —rsinf and a—‘z =rcosf,
it follows that
02h . Of of *f  0*f
0o —s1n9% —l—cos@a—y — rsinf cos 6 <8x2 — 8y2>
2
+ r(cos? 0 — sin? §) aaxéfy
Remark: For a composite function of the form
h(t) = f(z1(t), 22(t), . . ., zn(t))
where t is a real variable, x1, zo, ..., T, are differentiable at tg, and f is differentiable
at Xo = X(tp). We have
W (to) = fa; (X(to))2(to). (2.87)
j=1
Theorem: Let f be continuous at X; = (x11,221,...,2Zp1) and Xo =
(12,22, ..., Tn2) and differentiable on the line segment L from X; to Xa.
Then
F(Xo) = f(X1) =D fri(Xo) @iz — min) = (dx, /)Xo — X1) (2.88)

=1

for some Xy on L distinct from X4 and Xo.
Proof: An equation of L is
XZX(t)ZtXQ—i-(l—t)Xl, 0<t<1.

Our hypotheses imply that the function

is continuous on [0, 1] and differentiable on (0, 1).
Since
a:z(t) = txo + (1 — t)xﬂ,

We have .
Rt =Y fo,(X(t) (@2 — ), 0<t<L.
=1
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From the mean value theorem for functions of one variable
h(1) = h(0) = '(to)

for some tg € (0,1). Since h(1) = f(X2) and h(0) = f(X1), this implies (2.88) with
Xo = X(to), i.e.,

F(X2) = f(X1) = fa(Xo) (wia — win) = (dx, ) (X2 — X1).
i=1

Theorem: If f,,, fz,, ..., fz, are identically zero in an open region S of R", then
f is constant in S.

Proof: We will show that if Xy and X are in S, then f(X) = f(Xo).
Since S is an open region, S is polygonally connected.
Therefore, there are points

X0, X1,...,X, =X

such that the line segment L; from X;_; to X; isin S, 1 <4 < n. From mean value

theorem
n

FXi) = F(Ximn) = ) (dg )(Xi = Xia),

i=1
where X is on L; and therefore in S.
Therefore, N N N
f-T'L(X'L) = fasz(Xz) == frn<X2) =0,
which means that diif = 0. Hence,
fXo) = f(Xq) =+ = f(Xp);

that is, f(X) = f(Xo) for every X in S.
Motivation: Suppose that f is defined in an n-ball B,(Xg), with p > 0.
If X € B,(Xp), then

X(t) = Xo + (X~ Xp) € By(X), 0<t<1,

so the function

is defined for 0 < ¢ < 1.
We know that
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If f is differentiable in B,(Xo), and

n'(t) = azj (Z 8fg;(t)) (i — ww)) () = 2j0)

"L 92f(X
= P (w(% — zio) (75 — xjo)

If for, feos -, [z, are differentiable in B,(X). Continuing in this way, we see
that

(w3, — 4,,0)(Tiy — Tin0)

- 0" f(X(1))
(r) —
h (t) L Z 1 axir awiT71 ce Bxil
11,802,000yl =

o (@, = T4,0)

if all partial derivatives of f of order <r — 1 are differentiable in B,(Xp).

2.22 rth Differential

Suppose that » > 1 and all partial derivatives of f of order < r — 1 are differentiable
in a neighborhood of Xj.
Then the rth differential of f at Xo, denoted by dy. f, is defined by

n
(r) ¢ _ 0" f(Xp) e |
ol = L Z Ox; Ox; | -+~ Oxy, dzi,di, - -~ da;,., (2.89)
21,22,.-y ir=1
where dx1, dxa, ..., dz, are the differentials, that is, dz; is the function whose value

at a point in R” is the ith coordinate of the point. For convenience, we define
(0) ¢y _
(dxof) - f(XO)
Notice that dgé[))f =dx, f.

Remark: Suppose that 7 > 1 and all partial derivatives of f of order < r — 1 are
differentiable in a neighborhood of Xy, the value of

9" f(Xo)

8%1‘7,8‘%“1 tot 8%

depends only on the number of times f is differentiated with respect to each variable,
and not on the order in which the differentiations are performed.

Remark: The differential can be rewritten as

(r) o _ r! 9" f(Xo) 1 ro ™
dx,/ = ZT: rilrgl e rpl Ox P Oxh? - - - Oy (dz1)" (de) (den)™, (2.90)
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where ) indicates summation over all ordered n-tuples (ri,r2,...,r,) of nonneg-
ative integers such that
TE+ret o+ ="

and Oz;' is omitted from the “denominators” of all terms in (2.90) for which r; = 0.
In particular, if n = 2,

o ,
Iy f = Z ( )M(d@f(dmw

Example: Let

1
Ty = oy
where a and b are constants.
Then ) )
VL&Y (e @V
—_— Y = | — r.
Oz Oyr—i (1+ ax + by)r+1’

SO

A = (=1 I0 I (dz)? (dy)™ I
X! (1+ax0+byg ”HZ()CL (dw)’(dy)

(=1)"r! .
(1 4+ axg + byp)"tt (adz +bdy)

if 1+ axg+ by # 0.

Let
f( = exp Z a]xj 9
where a1, a9, ..., a, are constants. Then
9" f(X) P T
0x ' 0xy’ - - - Dy = (=) atiay’ - ayt exp Zaﬂ%

Therefore,

r r r! rr Tn r Tn

(A, /(@) = (-1) (Z i e (o) (dag)ro - (da) )

n
X exp —E a;T50
j=1

= (=1)"(a1dzy + asdxy + -+ - + ap dzy,)" exp Z a;xjo
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2.23 Taylor’s Theorem for Functions of n Variables

Theorem: Suppose that f and its partial derivatives of order < k are differentiable
at Xg and X in R™ and on the line segment L connecting them.
Then

k
) = Do 1K= + <k+11>!<d§'£*”f><><—xo> (2.91)

for some X on L distinct from Xp and X.

Proof: Define
h(t) = f(Xo + t(X — Xo)). (2.92)
With & = X — Xj, our assumptions and the discussion preceding Definition of
differentials imply that h, &', ..., h*+D exist on [0,1].
From Taylor’s theorem for functions of one variable,

“A(0) | R (7)
:gg R T (2.93)
for some 7 € (0,1).
From (2.92),

h(0) = f(Xo) and h(1) = f(X). (2.94)

We have ® = X — X,
KD0) = (dg) (X —-Xo), L1<r<k, (2.95)
hD(r) = @gvyx—X@ (2.96)

where _
X:X0+T(X—X0)

is on L and distinct from X and X.
Substituting (2.94), (2.95), and (2.96) into (2.93) yields (2.91).
Let

1
o) = e Ty
where a and b are constants.
Then 5 i
r Jjpr—i
TI@Y) gy @ ,
OxJ Qyr—7 (14 ax + by)r+1

SO

) . .
d = E Jpr=i (dx)’ (d J
Xof (l—l—aa:o-i—byo rH < )a (o) (dy)

(=1)"r!
= dr +bdy)"
(14 azo + byo)™+! (adz v)
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if 14 axp + byo # 0.

Example: The Taylor series with Xg = (0,0) and ® = (z,y) imply that if 14 ax +
by > 0, then

(az + by)~+t
(14 atx + bry)kt2

k
Z (az + by)" + (—1)F!

1—|—a1:+by =

for some 7 € (0,1). (Note that 7 depends on k as well as (z,y).)

Remark: By analogy with the situation for functions of one variable, we define the
kth Taylor polynomial of f about Xg by

TH(X) = 1,( 4§ £)(X — Xo).
r=0

If the differentials exist; then we have

f(X) =Te(X) +

Theorem: Suppose that f and its partial derivatives of order < k — 1 are differen-
tiable in a neighborhood N of a point X in R™ and all kth-order partial derivatives
of f are continuous at Xy. Then

L FO0) —T(X)

=0. 2.

Proof: If ¢ > 0, there is a § > 0 such that Bs(Xy) C N and all kth-order partial
derivatives of f satisfy the inequality

ok f(X) " f(Xo)

8@,68901-,@71 s axil 8561'1681‘%71 s 8xi1

<e, X e Bs(Xp). (2.98)

Now suppose that X € Bs(Xp). From Taylor series expansion, with k replaced by
k-1,

F(X) = Tia(X) + (@ F)(X — Xo). (2.99)

k!

where X is some point on the line segment from Xy to X and is therefore in Bs(Xp).
We can rewrite (2.99) as

FX) = Te(X) + 1

But definition of differential and (2.98) imply that

(d) )(X = Xo) = (d5) /)(X = Xo)| . (2.100)

(d) F)(X = Xo) = (d5) ) (X = Xo)| < nfe[X — X" (2.101)
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which implies that

[f(X) - Ti(X)| _ nke

X € Bs(X
X — Xolf o X € BolXo),
from (2.100). This implies (2.97).
2.23.1 Positive Definite
Let r be a positive integer and Xo = (210, %20, - - ., Zno). A function of the form
PX) = ryryr (11— 210)™ (w2 — 220)™ - (Tn — Tno)™, (2.102)
T

where the coefficients {ay,,..r, } are constants and the summation is over all n-tuples
of nonnegative integers (r1,r2,...,r,) such that

Tt A+ =1

is a homogeneous polynomial of degree r in X — Xy, provided that at least one of the
coefficients is nonzero. For example, if f satisfies the conditions of rth differential,
then the function

P(X) = (d) f)(X — Xo)

is such a polynomial if at least one of the rth-order mixed partial derivatives of f
at Xg is nonzero. Clearly, p(Xp) = 0 if p is a homogeneous polynomial of degree
r> lin X — Xo.

If p(X) > 0 for all X, we say that p is positive semidefinite; if p(X) > 0 except
when X = Xy, p is positive definite. Similarly, p is negative semidefinite if p(X) <0
or negative definite if p(X) < 0 for all X # Xj. In all these cases, p is semidefinite.
With p as in (2.102),

p(—X +2Xo) = (~1)"p(X),

so p cannot be semidefinite if r is odd.
Example: The polynomial
pla,y,2) = 2° + 4 + 22 +wy + 2z + y2

is homogeneous of degree 2 in X = (z,y, z). We can rewrite p as

p(z,y,z) = [(x + y)2 + (y+ 2)2 +(z+ $)2} .

N |

o p is nonnegative, and p(Z,y,z) = 0 if and only if
T+y=y+z=z+7 =0,

which is equivalent to (Z,y,Z) = (0,0,0). Therefore, p is positive definite and —p is
negative definite.
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Example: The polynomial

pi(z,y,2) = 2®4+y* + 22+ 2xy

pl(xayvz) - (1’+y)2+22,
so p1 is nonnegative. Since p1(1,—1,0) = 0, p; is positive semidefinite and —p; is
negative semidefinite.

The polynomial
pa(a,y,2) = a? — y? + 22

is not semidefinite, since, for example,

p2(1,0,0) =1 and p(0,1,0) = 1.

Theorem: Suppose that f and its partial derivatives of order < k — 1 are differen-
tiable in a neighborhood N of a point X in R™ and all kth-order partial derivatives
of f are continuous at Xy. with k£ > 2, and

dQf=0 (1<r<k-1), dQ)f#0. (2.103)

Then
e X isnot alocal extreme point of f unless dg?g f is semi-definite as a polynomial
in X — Xj.

In particular, Xg is not a local extreme point of f if k is odd.

e X is a local minimum point of f if dg]z()) f is positive definite, or a local maxi-

mum point if dg’gg f is negative definite.

o If dg]é()) f is semidefinite, then Xy may be a local extreme point of f, but it need
not be.

Corollary: Suppose that f, f;, and f, are differentiable in a neighborhood of a
critical point Xo = (zo,y0) of f and fre, fyy, and fi, are continuous at (2o, yo)-
Let

D = fua(20,Y0) foy (%0, 0) — f2,(x0, %0)-
Then

e (x0,y0) is a local extreme point of f if D > 0; (zo,y0) is a local minimum
point if f,.(z0,yo0) > 0, or a local maximum point if fy.(x0,y0) < 0.

e (x0,y0) is not a local extreme point of f if D < 0.
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Proof: Write (z — x0,y — yo) = (u,v) and
plu,v) = (d) f)(u,0) = Au? +2Buv + Co?,
where A= fzx($07y0)7 B = fry($0790)> and C = fyy($07y0)7 50
D = AC - B2
If D >0, then A # 0, and we can write
2B B2 B?
p(u,v) = A <u2 + S + 1421)2) + (C - A) v?
B\> D
= A <u+ Av) + sz-
This cannot vanish unless v = v = 0. Hence, dg?()) f is positive definite if A > 0 or

negative definite if A < 0, and Theorem implies the first part of the corollary.
If D < 0, there are three possibilities:

1. A #0; then p(1,0) = A and p (—%, 1)

SIS

2. C 7é O, then p(O, 1) = C and P (1’ _g)

3. A=C =0; then B# 0 and p(1,1) = 2B and p(1,—-1) = —2B.

In each case the two given values of p differ in sign, so Xg is not a local extreme
point of f, from Theorem part I.

Example: If
fla,y) = e+,
We have
fl’(‘ray) :2axf($7y)7 fy(xay) :Qbyf(.’lf,y),
SO

fx(0,0) = fy(0,0) =0,
and (0,0) is a critical point of f.
To apply Corollary, we calculate

fea(z,y) = (20 +4a%2%) f(z,y),
fyy(,y) = (2b+46%%) f(x,y),
fay(@,y) = dabayf(z,y).
Therefore,
D = f22(0,0) £,y (0,0) — f2,(0,0) = (2a)(2b) — (0)(0) = 4ab.

Corollary implies that (0,0) is a local minimum point if @ and b are positive. A
local maximum if @ and b are negative. Neither if one is positive and the other is
negative. Corollary does not apply if a or b is zero.



CHAPTER 3

Integral Calculus

Attempting to formulate definition of Riemann integral for a function defined on an
infinite or semi-infinite interval would introduce questions concerning convergence
of the resulting Riemann sums, which would be infinite series.

3.1 Locally Integrable Functions

We say f is locally integrable on an interval I if f is integrable on every finite closed
subinterval of I.
For example,
f(xz) =sinzx

is locally integrable on (—o0, c0).

1

is locally integrable on (—o00,0), (0,1), and (1, c0).

The function

is locally integrable on [0, co).
If f is locally integrable on [a,b), we define

b c

/ f(z)dx = lim / f(z)dx (3.1)
a c—b— Jq

if the limit exists (finite). To include the case where b = oo, we adopt the convention

that co— = oo.

Remarks:

e The limit in (3.1) always exists if [a, b) is finite and f is locally integrable and
bounded on [a, b).

e In this case, the definition of Riemann integral and locally integrable function
assign the same value to fab f(x) dz no matter how f(b) is defined. However,
the limit may also exist in cases where b = oo or b < oo and f is unbounded
as x approaches b from the left.
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e In these cases, the definition of locally integrable assigns a value to an integral
that does not exist in the sense of Riemann integral, and f; f(x) dx is said to
be an improper integral that converges to the limit in (3.1).

Remarks:

e We also say in this case that f is integrable on [a,b) and that f: f(z) dx exists.
If the limit in (3.1) does not exist (finite), we say that the improper integral
ff f(x)dx diverges, and f is nonintegrable on [a,b).

e In particular, if lim._,,— [ f(z) dz = £o0, we say that ff f(x) dx diverges to
400, and we write

[ rwar=co o [ j@a=-o.

whichever the case may be.

If f is locally integrable on (a,b], we define

b b
[ r@ae = tim [ fae
provided that the limit exists (finite).
To include the case where a = —o0, we adopt the convention that —oo+ = —o0.
If f is locally integrable on (a,b), we define

[ rwar= ["rwars [ s

where a < a < b, provided that both improper integrals on the right exist (finite).

Remarks: The existence and value of fab f(z) dzx according to the above definition
do not depend on the particular choice of « in (a, b).

When we wish to distinguish between improper integrals and integrals in the
sense of definition of Riemann integral, we will call the latter proper integrals.

Example: The function

1 1
f(x) =2xsin — — cos —
x x

is locally integrable and the derivative of

1
F — 24in =
(x) ==z smz

on [—-2/m,0).
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Hence,
¢ 1l° 1 4
/ f(z)dr = z*sin- ZCQSinf—i——2
_2/7-(- X —2/7!' C T
0
1 4 4
_ ; 2 —
/_2/7r flx)de = cl_l)r())a_ (c sin — + 7r2) =

However, this is not an improper integral, even though f(0) is not defined and
cannot be defined so as to make f continuous at 0. If we define f(0) arbitrarily
(say f(0) =10), then f is bounded on the closed interval [—2/7,0] and continuous
except at 0. Therefore, f_og In f(x) dz exists and equals 4/72 as a proper integral, in
the sense of definition of improper integral.

Example: The function
fl@)=Q0—=z)"

is locally integrable on [0, 1).
Ifp#£Aland 0<c<1,

) —x) P x—(l_x)_pﬂ
/0<1 )P d —

¢ (1—-c¢) Pt -1

p—1 0 p—1
Hence,
c _»)1
lim (1—x)_pdx:{(1 P op<l
c—1-Jg 00, p> 1.
For p =1,
C
lim (1—2z)"tde = — lim log(1l —¢) = co.
c—=1— Jo c—1—
Hence,
1 -1
1-— 1
[osrru {00 2
0 00, b 2 1.

Example: The function
flz) = a7
is locally integrable on [1, c0).
Ifp#1andc>1,

1 —p+1
Hence,
¢ — 1)t 1
lim a:_pd:z:{(p )" p> 1
=00 Jq 0, p <l
For p =1,
(&
lim z~tdz = lim logc = oo.

c— 00 1 c— 00
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Hence,

/Oox—pdx_{ (p_l)_la p>1a
1

00, p<1l

Example: If 1 < ¢ < oo, then

‘1 1 1 1 ¢ 1
—log—dr=— [ —logwrdr=—=(logz)?| =—=(logc)?.
/1 log —dz /1 ~logzdz 2(ogx) 1 2(0gc)
Hence,
) 1 1
lim —log — dx = —o0,
c—oo [1 X €T
S0 o 1 .
/ —log — dx = —o0.
1 x X

The function f(x) = logz is locally integrable on (0,1], but unbounded as
x — 0+4. Since

1
=—1— lim (clogc—c¢) = —1,

c—0+

1

li logzdr = li 1 -
U, logede = I (rlos e =)

C

1
/ logx dx = —1.
0

The function f(x) = cosz is locally integrable on [0, 00) and

Definition 77 yields

C

lim cosxdr = lim sinc
Cc— 00 0 Cc— 00

does not exist; thus, fooo cos z dx diverges, but not to Foco.

In connection with Definition ??, it is important to recognize that the improper
integrals [ f(x)dx and folj f(x) dx must converge separately for ff f(z) dz to con-
verge. For example, the existence of the symmetric limit

R
lim / f(x)dx,
R—o0 -R

which is called the principal value of [~ f(x)dz, does not imply that [~ f(x)dx

converges; thus,
R

lim rdr= lim 0=0,
R—oo J_R R—o0

but fooo xdx and ono x dx diverge and therefore so does ffooo x dx.
Theorem: Suppose that fi, fo, ..., fn are locally integrable on [a,b).

The integrals f; f1(z) dz, f: fa(z)dz, ..., f: fn(x) dz converge.
Let ¢y, ¢, ..., ¢, be constants. Then f;(clquchl +- - +enfn)(x) do converges.
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Furthermore,
b b
[@nivant rap@i = o A
b
—1—02/ fo(x) dx

b
+---+cn/ fn(z)d.

Proof: If a < ¢ < b, then
[@ntanttam@d = a [ fiwd
+e2 /C fa(z) dx
—|—-~+cn/cfn(a:)da:.

Letting ¢ — b— yields the stated result.

Theorem: If f is nonnegative and locally integrable on [a,b), then f; f(z) dz con-
verges if the function

Fz) = /zf(t) dt

is bounded on [a, b), and ff f(z)dx = oo if it is not.
These are the only possibilities, and

b
/ f(t)dt = sup F(x)

a<z<b

in either case.

Proof: The function

F(z) = / f(t)dt
is nondecreasing on [a, b).

Recall: Suppose that f is monotonic on (a,b) and define

a= inf f(x), B = sup f(z).

a<x<b a<z<b

If f is nondecreasing, then f(a+) = « and f(b—) = .

Remarks: We often write

/abf(:c)dx<oo
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to indicate that an improper integral of a nonnegative function converges.
Similarly, if f is nonpositive and ff f(x) dx converges, we write

b
/ f(z)de > —c0
a
because a divergent integral of this kind can only diverge to —oc.

e These conventions do not apply to improper integrals of functions that assume
both positive and negative values in (a,b), since they may diverge without
diverging to £o0.

3.1.1 The Comparison Test

Theorem: If f and g are locally integrable on [a,b) and
0< f(z) <g(zx), a<z<b, (3.2)
then

1. fabf(x)d:z<oo if f;g(a:)d:v<oo
2. fabg(x)dx:oo if f;f(x)dx:oo

Proof: Since
0< f(r) <g(z), a<z<b,

we have

/xf(t)dté/xg(t)dt, a<z<bh.

sup /w flt)dt < sup /xg(t) dt.

a<lz<b a<x<b

If ff g(z) dx < oo, the right side of this inequality is finite by the previous Theorem,
so the left side is also.

This implies that fab f(x)dx < .

The proof is by contradiction. If f:g(ac) dr < oo, then (1) implies that
ff f(z)dz < oo, contradicting the assumption that ff f(z)dzx = oo.

Example: Determine the convergence of the improper integral

12/12+Sin7md$.
o (L—x)P
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Solution: We are going to show that the improper integral converges if p < 1.

Since 9 1 5
0 < 2 FSITT , 0<z<l
(1 —xz)P (1 —xz)P

/1m<oo <1
o (l—ap =0 P55

We have

Example: Determine the convergence of the improper integral

I:/lmm”dm_
o (I—a)p

Solution: However, I diverges if p > 1, since

0< 1 §2—|—smm;’ 0<z<l,
1—zp = (1—ap

and

/1dfvoo -
o (L—z)p 77 b=

Remark: If f is any function (not necessarily nonnegative) locally integrable on

[a,b). If a; and c are in [a,b), then

/:f(x) do = / @) da:+/ajf(m) da.

Since faal f(z)dz is a proper integral, on letting ¢ — b— we conclude that if

either of the improper integrals | ; f(z)dx and | ;1 f(x) dx converges then so does

the other, and in this case

/abf(x) d:c:/aal F(x) dx+/:f(x) da.

Remark: This means that any theorem implying convergence or divergence of

an improper integral | ; f(x)dx remains valid if its hypotheses are satisfied on a

subinterval [a1,b) of [a,b) rather than on all of [a,b).
For example, the comparison test remains valid if we have

0<flz) <g(z), a1 <z<b,

where a; is any point in [a,b).
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From this, you can see that if f(z) > 0 on some subinterval [aj,b) of [a,b), but
not necessarily for all = in [a,b), we can still use the convention introduced earlier
for positive functions; that is, we can write fab f(x)dx < oo if the improper integral

converges or ff f(x)dx = oo if it diverges.

Theorem: Suppose that f and g are locally integrable on [a,b), g(x) > 0 and
f(z) > 0 on some subinterval [a1,b) of [a,b), and

lim @) = M. (3.3)

e If 0 < M < oo, then ff f(z)dr and ffg(l‘) dx converge or diverge together.
o If M = o0 and f:g(x) dx = oo, then f;f(a:)dx = 00.

e If M =0 and ffg(x)dx < 00, then f;f(:v)d:z: < 0.

Proof: From (3.3), there is a point as in [a1, b) such that

M 3M
o< M M) M

b) < <b7
2 g(x) g r =7

and therefore M Y
79(3}) < f(z) < 79(3:), ag <z <b. (3.4)

The first inequality in (3.4) imply that

/bg(x)dx<oo if /C:f(:z)dx<oo.

az

The second inequality in (3.4) imply that

b b
/f(a;)da:<oo if /g(x)dx<oo.

a2

Therefore, f;; f(z) dx and fabz g(z) dz converge or diverge together, and in the latter
case they must diverge to oo, since their integrands are nonnegative. If M = oo,
there is a point ag in [a1,b) such that

f(x) =2 g(x), ax <z <D,
We have fff(:n) dx = oo. If M =0, there is a point ag in [a1,b) such that
flx) <g(x), ax <z <D,

so we have ff f(z)dz < oo.
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3.2 Absolute integrability

We say that f is absolutely integrable on [a,b) if f is locally integrable on [a,b) and
f: |f(z)|dz < oo. In this case we also say that f: f(z) dx converges absolutely or is
absolutely convergent.

Remark: If f is nonnegative and integrable on [a, b), then f is absolutely integrable
on [a,b), since |f| = f.

Example: Since
1

= P

sinx

xP
and [[“ 2 Pdr < oo if p > 1.
The comparison theorem implies that

o | s
S
/ |1nx‘da;<oo, p>1.
1

P

The function )
__sinz

flz) =

is absolutely integrable on [1,00) if p > 1.

xP

Example: It is not absolutely integrable on [1,00) if p < 1.
To see this, we first consider the case where p = 1.
Let k£ be an integer greater than 3. Then

km |sinz| km |sinz|
[l lsinal g, o phe [sing] g

T ™ T

— j+1)7 |sinz
= Yokop purtm s g, (3.5)

Jjm T

k-1 j+1 .
> > (j+11)7r fj(fr )W]smw\dm.

(J+1)m s
/ ]sinx|d1‘:/ sinz dr = 2,
jm 0

But

so (3.5) implies that

k| - k-1
sinx 2 1
/ [sina] o2 o (3.6)
1 T s = J+
However,
1 it2q
T4 = / ja J= ]-a 25 )
J+1 7
so (3.6) implies that
/k”|sm1:] 2’§/j+2 dx
1 x ™ = j+1 x
1
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Since limy_, 00 log[(k + 1)/2] = oo, implies that

°° | sin x|
dz = oo.
/1 ——dz =00

/ |sin.z] dr =00, p<I1. (3.7)
1

P

Now implies that

Theorem: If f is locally integrable on [a,b) and fab |f(z)] dx < oo, then ff f(z)dx
converges; that is, an absolutely convergent integral is convergent.

Proof: If
g9(x) = [f(z)] = f(z).
Then
0<g(x) <2|f(z)]
and fabg(a:) dx < 00, because of comparison theorem and the absolute integrability
of f. Since
f=1fl-g

Due to comparison test, we can conclude that | ; f(x) dx converges.

3.3 Nonoscillatory and Oscillatory Functions

A function f is nonoscillatory at b— (= oo if b= 00) if f is defined on [a,b) and
does not change sign on some subinterval [a;, b) of [a,b).
If f changes sign on every such subinterval, f is oscillatory at b—.

Remark: For a function that is locally integrable on [a, b) and nonoscillatory at b—,
convergence and absolute convergence of f: f(z)dx amount to the same thing, so
absolute convergence is not an interesting concept in connection with such functions.

However, an oscillatory function may be integrable, but not absolutely inte-
grable, on [a,b), as the next example shows. We then say that f is conditionally
integrable on [a,b), and that f;’ f(x)dx converges conditionally.

3.4 Conditional convergence

An oscillatory function may be integrable, but not absolutely integrable, on [a,b),
as the next example shows. We then say that f is conditionally integrable on [a,b),
and that fab f(z) dz converges conditionally.

Example: The integral

I(p):/ Smxdm
1

xP
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is not absolutely convergent if 0 < p < 1.
We will show that it converges conditionally for these values of p.
Integration by parts yields

C : C
sin —cosc Ccos T
dx = +cosl—p | ——=dx. (3.8)
1 xP cP 1 1;P+1
Since
Cos T 1
$p+1 - $p+1

and floo r P ldz < oo if p > 0, the comparison theorem implies that 27P~! cos x is
absolutely integrable [1,00) if p > 0.

Therefore, we have an absolutely convergent integral, this implies that
x7 P~ cos x is integrable [1,00) if p > 0.

Letting ¢ — oo in (3.8), we find that I(p) converges, and

® cosz .
I(p):cosl—p/1 xp+1dx if p>0.

This and floo @prld‘r = oo, p < 1, imply that I(p) converges conditionally if
0<p<l.

3.5 Dirichlet’s Test

Theorem: Suppose that f is continuous and its antiderivative F(z) = [ f(¢) dt is
bounded on [a,b).
Let ¢’ be absolutely integrable on [a,b), and suppose that

lim g(z) =0. (3.9)

r—b—
Then f;f(a;)g(x) dzx converges.

Proof: The continuous function fg is locally integrable on [a,b). Integration by
parts yields

/C f(x)g(x)dx = F(c)g(c) — /CF(:z)g/(x) dr,a <c<b. (3.10)

The comparison test implies that the integral on the right converges absolutely
as ¢ — b—, since ff |¢'(z)]| dx < oo by assumption, and

|F(x)g' ()] < Mlg'(x)],

where M is an upper bound for |F| on [a,b). Moreover, (3.9) and the boundedness
of F imply that lim.,— F(c)g(c) = 0.

Letting ¢ — b— in (3.10) yields

/a ' fla)g(e) de = - / ' ()l (2) da.
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where the integral on the right converges absolutely.

Remark: Dirichlet’s test is useful only if f is oscillatory at b—, since it can be shown
that if f is nonoscillatory at b— and F' is bounded on [a, b), then f; |f(z)g(z)|dx <
oo if only g is locally integrable and bounded on [a,b).

Remark: Dirichlet’s test can also be used to show that certain integrals diverge.

oo
/ z%sinz dzx
1

diverges if ¢ > 0, but none of the other tests that we have studied so far implies
this. It is not enough to argue that the integrand does not approach zero as x — oo
(a common mistake), since this does not imply divergence. To see that the integral

Example: For example,

diverges, we observe that if it converged for some ¢ > 0, then F(z) = flw x9sinz dx
would be bounded on [1, 00).

We could let

f(z) =2%sinz and g(z)=a"1

in Dirichlet’s test and conclude that

o0
/ sinx dx
1

also converges. This is false.

3.6 Rectangles in R"

The

Sl><S2><~-><Sn
of subsets Sy, So, ..., S, of R is the set of points (1, z2,...,zy,) in R™ such that
r1 € S1,29 € S9,...,x, € S,. For example, the Cartesian product of the two closed
intervals

la1,b1] X [az,b2] = {(z,y) : a1 <2 < b1, ag <y < b}

is a rectangle in R? with sides parallel to the z- and y-axes.
The Cartesian product of three closed intervals

la1,b1] X [az,b2] % [a3,b3] = {(z,9,2) a1 <2 <y,
as <y < bo, a3 <z < bs}

is a rectangular parallelepiped in R? with faces parallel to the coordinate axes. A
coordinate rectangle R in R™ is the Cartesian product of n closed intervals; that is,

R = [al,bl] X [ag,bQ] X e X [an,bn].
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Q
S —_ —

Figure 3.1: Rectangle in R?

x

Figure 3.2: Rectangular parallelepiped in R?

The content of R is
V(R) = (b1 — ar)(bs — a2) - - (b — an).

The numbers by — a1, b2 — ao, ..., by, — a,, are the edge lengths of R. If they are
equal, then R is a coordinate cube. If a, = b, for some r, then V(R) = 0 and we say
that R is degenerate; otherwise, R is nondegenerate.

If n =1, 2, or 3, then V(R) is, respectively, the length of an interval, the area of
a rectangle, or the volume of a rectangular parallelepiped. Henceforth, “rectangle”
or “cube” will always mean “coordinate rectangle” or “coordinate cube” unless it is
stated otherwise. If

R = [al,bl] X [CLQ,bQ] X oo X [an,bn]

and
Po:a=an<an <- < apm, =b
is a partition of [a,,b,], 1 <7 < n, then the set of all rectangles in R™ that can be
written as
(01,511, a1y ] X [a2,5, 1, agjo] X -+ X [an g, -1, A ],
1<gp<my, 1<r<n,
is a partition of R. We denote this partition by

P=P xPyx---xP,. (3.11)



3.7. Riemann Sum in R" 142

We define its norm to be the maximum of the norms of P, P, ..., P,, thus,
[P} = max{|| P, [|P2l,- - - [ Fall}-

Put another way, ||P|| is the largest of the edge lengths of all the subrectangles
in P. Geometrically, a rectangle in R? is partitioned by drawing horizontal and ver-
tical lines through it; in R3, by drawing planes through it parallel to the coordinate
axes. Partitioning divides a rectangle R into finitely many subrectangles that we
can number in arbitrary order as Rj, Ra, ..., Rx. Sometimes it is convenient to
write

P ={Ry,Ry,..., Ry}
rather than (3.11).

Figure 3.3: Partitioning of a rectangle in R?

o IfP =P xPyx---xP,and P’ = P{ X Pjx---x P) are partitions of the same
rectangle, then P’ is a refinement of P if P/ is a refinement of P;, 1 <1i < n.

3.7 Riemann Sum in R"

Suppose that f is a real-valued function defined on a rectangle R in R" P =
{R1,Rq,..., R} is a partition of R.

Let X, is an arbitrary point in R;, 1 < j < k.

Then

o= f(X)V(R))
j=1
is a Riemann sum of f over P.

Since X; can be chosen arbitrarily in R;, there are infinitely many Riemann
sums for a given function f over any partition P of R.
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3.8 Riemann Integral in R"

: Let f be a real-valued function defined on a rectangle R in R".

We say that f is Riemann integrable on R if there is a number L with the
following property:

For every € > 0, there is a § > 0 such that

lo—L| <e.

If o is any Riemann sum of f over a partition P of R such that |P| < 4.
In this case, we say that L is the Riemann integral of f over R, and write

téﬂXMX:L

Remarks: The integral [, f(X)dX is also written as

/ f@y)d(z,y) (n=2), / fy, ) d(e,y,2) (n=3),
R R

or

/f(:cl,ajg,...,azn)d(asl,xg,...,xn) (n arbitrary).
R

Here dX does not stand for the differential of X.

It merely identifies x1, x2, ..., Tn, the components of X, as the variables of
integration. To avoid this minor inconsistency, some authors write simply |, rf
rather than [, f(X) dX.

As in the case where n = 1, we will say simply “integrable” or “integral” when
we mean “Riemann integrable” or “Riemann integral.” If n > 2, we call the integral
of above definition a multiple integral; for n = 2 and n = 3 we also call them double
and triple integrals, respectively. When we wish to distinguish between multiple
integrals and the integral we studied in Chapter (n = 1), we will call the latter an
ordinary integral.

Example: Find [, f(z,y) d(z,y), where
R =[a,b] x [c,d]

and
flz,y) =z +y.

Solution: Let P; and P» be partitions of [a,b] and ¢, d]; thus,

Pia=xpy<z1<---<zp=b
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and
Pyie=y <y <. <ys=d.

A typical Riemann sum of f over P = P; x P; is given by

T s

o =Y (& +mip) (@i — i)y — yi), (3.12)
i=1 j=1

where Ti—1 S &'j S €Ty and yj,1 S 'rh'j S yj' (313)

The midpoints of [z;—1,2;] and [y;—1,y;] are

Tyt T

_ Y1
T 5 and Y, = %, (3.14)
and (3.13) implies that
_ zi —xi _ [Pl _ [P
g~ < S << (3.15)
_ yi —yi—1 _ 2l _ [Pl
i — 7] 5 S 5 S g (3.16)

Now we rewrite (3.12) as

o = Y2 5@+ Y (@ — o) (y; — yj-1)

+ 30 Y (G —T) + (i — 7)) (3.17)
(w — 2im1)(y5 — yj—1)-

To find [, f(x,y)d(z,y) from (3.17), we recall that

Z(l‘z —xi_l) :b—a, Z(yj —yj_l) :d—c (318)
=1 j=1
and . .
Z(I‘? - 1'12—1) = b2 - (12, Z(y? - yjz_l) = d2 - 02- (319)
i=1 j=1

Because of (3.15) and (3.16) the absolute value of the second sum in (3.17) does not
exceed

P D (@i —wima)(yy —yj-1) = |P|

Jj=1j=1

> (zi— xz‘—l)]

i=1

s

> (Wi —vi1)

j=1
= [[Pll(b=a)(d=c)
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(see (3.18)), so (3.17) implies that

o= > @ +y) @i —wim1)(y; — yi-1)| < [PI(b—a)(d —e). (3.20)

i=1 j=1
It now follows that

Dic1 2ge1 Til@i — i) (Y — yj—1)
= (X @il — 2] | Sim 5 — vi-0)]
d— C) Zi:lr Iz(xz — xi_l) (from (318))

= Loy o0ty (from (3.14)
= %(bQ—CLQ) (from (3.19)).

Similarly,
r s B b—a ) )
S gil@i — i)y — yie1) = —5 (@ = ).

i=1 j=1
Therefore, (3.20) can be written as

d—c
2

b—a

(b = a?) = =

(@ = )| < [P~ a)(d—c).

g —

Since the right side can be made as small as we wish by choosing ||P|| sufficiently
small,

/(:r +y)d(z,y) = % [(d—e)(b? — a®) + (b—a)(d® - ?)].
R

Theorem: If f is unbounded on the nondegenerate rectangle R in R™, then f is
not integrable on R.

Proof: We will show that if f is unbounded on R, P = {Ry, Ro,..., Ry} is any
partition of R, and M > 0, then there are Riemann sums o and ¢’ of f over P such
that

lo —o'| > M. (3.21)

This implies that f cannot satisfy definition of Riemann integral. (Why?)
Let

k
o= fX)V(R))
j=1
be a Riemann sum of f over P. Let
k
o= fX)V(R))
j=1

be a Riemann sum of f over P.
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There must be an integer ¢ in {1,2,...,k} such that

M
V(R;)

|f(X) = f(Xa)]| = (3.22)

for some X in R;, because if this were not so, we would have
X e Rj, 1<5< k.

If this is so, then

FX = [F(Xy) + FX) = FX)] < AKX+ 1F(X) = F(X)]

M
<|fX)|+——, XeR;, 1<j<k

However, this implies that

M
1<j<k, XER,

100 < mas [FOG)| + gy 1 < <

which contradicts the assumption that f is unbounded on R.
Now suppose that X satisfies (3.22).
Consider the Riemann sum

o =" f(X)V(R;)
j=1

over the same partition P, where

Since
lo —o'| = [f(X) = f(X§)|[V(R:),
(3.22) implies (3.21).

3.9 Upper and Lower Integrals

If f is bounded on a rectangle R in R™ and P = {Ry, R, ..., R} is a partition of
R.
Let

M; = su X), m; = inf f(X).
= o SO0, my = nf J(X)

The upper sum of f over P is

k
S(P) =) M;V(R;).

=1
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The upper integral of f over R, denoted by

/R f(X) dX,

is the infimum of all upper sums.

Upper and Lower Integrals: The lower sum of f over P is
k
s(P) =Y _m;V(Ry).
j=1
The lower integral of f over R, denoted by

JRCSES

JR
is the supremum of all lower sums.

Theorem: Let f be bounded on a rectangle R and let P be a partition of R.

Then

1. The upper sum S(P) of f over P is the supremum of the set of all Riemann
sums of f over P.

2. The lower sum s(P) of f over P is the infimum of the set of all Riemann sums
of f over P.

Remarks: If
m < f(X) <M for X in R,

then
mV(R) < s(P) < S(P) < MV (R);

therefore, E f(X)dX and [, f(X)dX exist, are unique, and satisfy the inequalities

/ F(X)dX < MV(R)
R

3

=
=
IA

and

Remarks: The upper and lower integrals are also written as

/ f(x,y)d(x,y) and / [y d(ey) (n=2),
R JR



3.9. Upper and Lower Integrals 148

/ f(x,y.2) d(z,y,7) and / @y ) d(,y,2) (n=3),
R R

or o
/f(xl,xg,...,xn)d(xl,mg,...,a:n)
R

and
/ flxy, o, ... xy) d(xy, 22, ., Tp) (n arbitrary).
R

Example: Find fjf(x,y) d(x,y) and Ef(x,y) d(x,y), with R = [a,b] X [c,d] and

flz,y) =z +y.

Solution: Let P; and P» be partitions of [a,b] and [c, d]; thus,
Pia=xpy<z1<---<zp=b

Poie=y<y1 <---<ys=d.

The maximum and minimum values of f on the rectangle [x;_1, ;] X [yj—1,y;] are
x; +y; and x;_1 + y;—1, respectively.

Therefore,
S®) = D> > (@i+y) (@i —zia)(y —yi1) (3.23)
i=1 j=1
s(P) = ) (w1 +yj—1) (@i —zim1)(yj — yj—1). (3.24)
i=1 j=1

By substituting

1
T +y;j = 5[(331‘ + 1) + (Y5 +yj—1) + (v — zi-1) + (Y5 — yj-1)]

into (3.23). We find that

1
S(P) = 5(21 + Yo + X3 + B4), (3.25)

where
L o= iy —yi—1) = (V¥ —a?)(d—c),

2= )

Yo=Y — @) 235 (5 —v50) (b —a)(d* —c?),
2= )
2 iz )

Y3 = vi— i)’ 35 —yi-1) < Pl —a)(d—o),
g = =1 —yi-1)? < P[0 —a)(d—o).
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Substituting these four results into (3.25) shows that
I<SP)<I+|P|d—a)(d-rc),

where

From this, we see that

After substituting

1[(%‘ +xio1) + (Y5 +yi—1) — (@ — zim1) — (Y5 — yj-1)]

Ti-1tYj-1= 5

into (3.24), a similar argument shows that

I—|Pl(b—a)d—rc)<s(P)<I.
/ (x+y)d(z,y) =1.
JR

Theorem: Suppose that |f(X)| < M if X is in the rectangle
R = [a1,b1] X [ag,ba] X -+ X [an, by].

Let P=P X Pp x -+ x P, and P’ = P| x Pj x --- x P! be partitions of R, where
PJ{ is obtained by adding r; partition points to P;, 1 < j < n. Then

n

S(P) > S(P') > S(P) —2MV(R) | > —— | |P| (3.26)
j=1 J J
and
s(P) < s(P') < s(P) + 2MV(R) ijijaj P (3.27)
j=1

Theorem: If f is bounded on a rectangle R, then

[iax< [ jxax.



3.9. Upper and Lower Integrals 150

Theorem: If f is integrable on a rectangle R, then

/Rf(X)dX:/Rf(X)dX:/Rf(X)dX.

Theorem: If f is bounded on a rectangle R and ¢ > 0, there is a 6 > 0 such that

L/ﬂxwxﬁswws/ﬂXMX+s
R R

and

if [|P|| < 4.

Theorem: A bounded function f is integrable on a rectangle R if and only if

/R F(X)dX = /R F(X) dX.

Theorem: If f is bounded on a rectangle R, then f is integrable on R if and only
if for every € > 0 there is a partition P of R such that

S(P) — s(P) < e.

Theorem: If f is bounded on a rectangle R and

R

/R f)ax = [ FX)dX = L.

then f is integrable on R, and

tLﬂXMXZL

Theorem: If f is continuous on a rectangle R in R”, then f is integrable on R.
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3.10 Sets with Zero Content

A subset E of R™ has zero content if for each € > 0 there is a finite set of rectangles
11, Ty, ..., Ty, such that

m
EclT (3.28)
j=1

and

V(T <. (3.29)

Jj=1

Example: Since the empty set is contained in every rectangle, the empty set has
zero content.

If E consists of finitely many points X1, X, ..., X,;,, then X; can be enclosed
in a rectangle T); such that

V(T;) < —, 1<j<m.

<
m
Then E C JIL, Tj and > 7", V(Tj) < € hold, so E has zero content.

Example: Any bounded set E with only finitely many limit points has zero content.
To see this, we first observe that if £/ has no limit points, then it must be finite,
by the Bolzano—Weierstrass theorem, and therefore must have zero content.
Now suppose that the limit points of F are X1, Xo, ..., X;,. Let Ry, Ra, ...,
R,, be rectangles such that X; € Rg and

€ .
The set of points of E' that are not in UJ"; R; has no limit points (why?) and, being
bounded, must be finite (again by the Bolzano—Weierstrass theorem).
If this set contains p points, then it can be covered by rectangles R}, R}, ...,
R, with
€
V(R) < —, 1<j<np. 3.31
(R) o <j<p (3.31)
Now,

EcC <QR>U LPJR;

From (3.30) and (3.31),
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Example: If f is continuous on [a, b], then the curve
y=f(z), a<z<b (3.32)
(that is, the set {(z,9) : y = f(x), a <z < b}), has zero content in R?.
Lemma: The union of finitely many sets with zero content has zero content.
Theorem: Suppose that f is bounded on a rectangle
R = [a1,b1] X [ag,b2] X -+ X [an, by] (3.33)

and continuous except on a subset E of R with zero content. Then f is integrable
on R.

Example: The function
r+y, 0<zrx<y<l,
flzy) =
5, 0<y<z<I,
is continuous on R = [0, 1] x [0, 1] except on the line segment
y=z, 0<x<1

Since the line segment has zero content, f is integrable on R.

3.11 Integral Over Bounded Set

Suppose that f is bounded on a bounded subset of S of R™. Let

f(X), Xeb,

fs(X) = { 0. X¢s. (3.34)

Let R be a rectangle containing S. Then the integral of f over S is defined to be
[ ro0ax = [ fox)ax
S R
if [ fs(X)dX exists.

Area and volume as integrals: If S is a bounded subset of R™ and the integral
Js dX (with integrand f = 1) exists.

We call [y dX the content (also, area if n = 2 or volume if n = 3) of S, and
denote it by V (5).

Thus,
V(S) = / dxX.
S

Theorem: Suppose that f is bounded on a bounded set S and continuous except
on a subset F of S with zero content.

Suppose also that S has zero content. Then f is integrable on S.
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3.12 Differentiable Surfaces

A differentiable surface S in R™ (n > 1) is the image of a compact subset D of R™,
where m < n, under a continuously differentiable transformation G : R™ — R". If
m =1, S is also called a differentiable curve.

Example: The circle
{(z,y) 2 +y* =9}

is a differentiable curve in R2.
Since it is the image of D = [0, 27| under the continuously differentiable trans-
formation G : R — R? defined by

X:Gw):[gcose}

3sind

Example: The sphere
{(x,y,2) : 2?2 + 9> + 22 = 4}

is a differentiable surface in R3.
Since it is the image of

D={0,0):0<0<2m,—7/2<¢<m/2}
under the continuously differentiable transformation G : R? — R3 defined by

2 cos 0 cos ¢
X =G(0,¢)=| 2sinfcos¢
2sin ¢

Theorem: A differentiable surface in R™ has zero content.

Let S, D, and G be as in Definition ??. From Lemma ?7?, there is a constant
M such that
IG(X)-G(Y)|<M|X-Y| if X,YeD. (3.35)

Since D is bounded, D is contained in a cube
C = [a17b1] X [a27b2] X X [am,bm]a

where
bi—ai:L, 1§Z§m

Suppose that we partition C' into N™ smaller cubes by partitioning each of the
intervals [a;, b;] into N equal subintervals. Let Ry, Ra, ..., Ry be the smaller cubes
so produced that contain points of D, and select points X1, Xo, ..., X} such that
X, €DNR;, 1 <i<k IfY € DnNR;, then (3.35) implies that

IG(X:) — G(Y)] < M|X; — Y. (3.36)
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Since X; and Y are both in the cube R; with edge length L/N,

Ly/m
|Xi—Y]§\NF.

This and (3.36) imply that

which in turn implies that G(Y) lies in a cube R; in R" centered at G(X;), with
sides of length 2M Ly/m/N. Now

Zk: V(R) =k (W)n < N™ <2M]LV\/M>” = (2M L\/m)"N™".

=1

Since n > m, we can make the sum on the left arbitrarily small by taking N
sufficiently large. Therefore, S has zero content.

Theorem: Suppose that S is a bounded set in R™, with boundary consisting of a
finite number of differentiable surfaces.

Let f be bounded on S and continuous except on a set of zero content. Then f
is integrable on S.

Example: Let
S={(z,y): x> +y*=1, >0}

The set S is bounded by a semicircle and a line segment, both differentiable curves
in R?.
Let
(1 - $2 - y2)1/27 (l’,y) S Sv Yy > 07
flz,y) = {

(1—1,‘2—?]2)1/2, (xay) ES, y<0

Then f is continuous on S except on the line segment
y=0, 0<z<l,

which has zero content.
Hence, from the theorem we just stated implies that f is integrable on S.

Theorem: If f and g are integrable on S, then so is f + ¢, and

/S(f+g)(X)dX=/Sf(X)dX+/Sg(X)dX.

Theorem: If f is integrable on S and c is a constant, then cf is integrable on S,
and

[enmax =c [ oxax
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Theorem: If f and g are integrable on S and f(X) < ¢g(X) for X in S, then

/S J(X)dX < /S 9(X) dX.

Theorem: If f is integrable on S, then so is | f|, and

[ 1 dx‘ < [1reo)ax.

Theorem: If f and g are integrable on S, then so is the product fg.

Theorem: Suppose that u is continuous and v is integrable and nonnegative on a
rectangle R.
Then

/ w(X)o(X) dX = u(X,) / o(X) dX
R R
for some Xy in R.

Theorem: Suppose that S is contained in a bounded set T" and f is integrable on
S.
Then fg is integrable on T, and

| #sxax - /S F(X) dX.

Theorem: If f is integrable on disjoint sets S and S, then f is integrable on
S1U Sy, and

/ fX)dX = | f(X)dX+ [ f(X)dX. (3.37)
S1USs S1 Sa2

Theorem: Suppose that f is integrable on sets S; and Sy such that S; N S has
zero content. Then f is integrable on S; U So, and

/ fX)dX = [ f(X)dX+ [ f(X)dX.
S1US2 S Ss

Example: Let

S1 = {(z,9):0<2<1,0<y<1+az}
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Figure 3.4: S; and S2

Then
SlﬂSQZ{(O,y)ZogyS 1}

has zero content.
Hence, by using corollary implies that if f is integrable on S and Sz, then f is
also integrable over

S=51USy={(z,y): -1 <z<1, 0<y<1+|z|}

and

/ fX)dX = [ f(X)dX+ [ f(X)dX.
S1US2 S1 So

3.13 [Iterated Integrals

Let us first assume that f is continuous on R = [a, b] X [c, d].
Then, for each y in [c,d], f(x,y) is continuous with respect to x on [a, b], so the
integral

b
ﬂwz/fmwm

exists.
Moreover, the uniform continuity of f on R implies that F' is continuous and
therefore integrable on [c, d].

We say that . . \
11:/ F(y)dy=/ (/ f(%y)dw) dy

is an idterated integral of f over R.

Iterated integrals: We will usually write it as

I =/Cddy/:f($,y)dx-
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Another iterated integral can be defined by writing

d
G(w)Z/ flz,y)dy, a<z<b,

12—/;G<x>dx—/ab </cdf(fv,y)dy> dr,

which we usually write as
b d
I = / dﬂ:/ [z, y)dy.
a (&

Defining

Example: Let
fly)=z+y
and R = [0,1] x [1,2]. Then

1 1
F(y) = /Of(w,y)d$=/0(x+y)dx=;+y

L = /12F(y)dy=/12 <;+y> dy:<g+yj>

2

Also,

2 y2 3
G(z) = /(:c+y)dy:(xy+) =x+ -,
) 2 )|, 2

boo [owa [ (D) ae (203

Theorem: Suppose that f is integrable on R = [a,b] X [¢,d] and

b
F(y)z/ f(z,y)dz

exists for each y in [e, d].
Then F' is integrable on [c,d], and

/CdF(y) dy = /Rf(:v,y) d(z,y);

/Cddy/abf(x’y)dx:/Rf(%y)d(x’y)'

that is,

(3.38)

(3.39)
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Theorem: If f is integrable on [a,b] X [¢,d], then

/abdm/cdf(x,y)dy:/CddyLbf(x7y)dx7

provided that fcd f(z,y) dy exists for a < z < band f; f(z,y) dx exists for ¢ < y < d.
In particular, these hypotheses hold if f is continuous on [a, b] X [c, d].

Example: The function
fley)=z+y

is continuous everywhere.
For example, let R = [0,1] x [1,2].
Then we have

[einawn = [a[ @iy
ACEINE
e

1

2.

Since f also satisfies the hypotheses of Fubini’s Theorem with  and y interchanged,
we can calculate the double integral from the iterated integral in which the integra-
tions are performed in the opposite order.

Thus,

/R(w+y)d(w,y) = /Oldw/lz(w+y)dy
= [ (%) ] "
LGy

Remark: If fcd dy f; f(z,y) dz exists then so does [, f(z,y)d(x,y). However, this
need not to be true.

1
=2.
0

Example: If f is defined on R = [0, 1] x [0, 1] by

2zy if y is rational,
Y if y is irrational,

f(x,y)={

then .
/ fle,y)de =y, 0<y<1,
0
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1 1 1 1
/dy/ f(x,y)dIZ/ ydy:ﬁ-
0 0 0

However, f is not integrable on R.

and

Theorem: Let Iy, I, ..., I, be closed intervals and suppose that f is integrable
on R=1I1 x Iy x--- x 1.
Suppose that there is an integer p in {1,2,...,n — 1} such that

Fo(@pi1, Tpt2, ..., &n) = / flxi, 2o, . xn) d(z1, 22, ..., Tp)
Iy xIgx--x1Ip
exists for each (xp11, Tpt2,...,Tn) in Ipp1 X Lppo X -+ X Iy,
Then
/ Fp(@ps1, Tpra, - Tn) d(Tp g1, Tpra, - - - Tn)
Ip+1 ><Ip+2><~“><1n

exists and equals [ f(X) dX.

Theorem: Let I; = [a;,b;], 1 < j < n, and suppose that f is integrable on
R=I1 xIyx- - x1I,.
Suppose also that the integrals

Fpy(xpt1s--.,xn) = / fX)d(z1,22,...,2p), 1<p<n-—1,
11><12---><Ip

exist for all
(Tpt1s.o oy @n) In Tppq X oo X Iy,

Then the iterated integral

bn, bn—1 b b1
/ dz:n/ dxp_1 - / dxo f(X) dxy
an an—1 a2 al

exists and equals [ f(X) dX.
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