
Topic No. 1

Group Theory



Properties of Real 
Numbers

Group Theory



Number Systems

 ℕ ={ 1, 2, 3, … }

ℤ={…, -2, -1, 0, 1, 2, … }

ℚ={p/q | p, q   and ∊ ℤ
q≠0}

ℚˊ= Set of Irrational 
Numbers

ℝ=   ℚ∪ℚˊ

Properties of Real Numbers



0.131313…=0.13+ 
0.0013+0.000013+…

=13/100+13/10000+

13/1000000+…

=(13/100)(1+1/100+

1/10000+…)

=(13/100)(100/99)

=13/99

Properties of Real Numbers



 e=2.718281828459045…  ∊ ℚˊ
 √2=1.414213562373095…  ∊ ℚˊ
 √5=2.23606797749978…  ∊ ℚˊ
  ∀ a, b  , ∊ ℝ a.b  ∊ ℝ
  ∀ a, b  , ∊ ℝ a+b  ∊ ℝ
  ∀ a, b, c  , (∊ ℝ a+b)+c=a+(b+c)

 For example, (1/4+3)+ √7=(13+4 √7)/4=1/4+(3+ √7)

Properties of Real Numbers



  ∀ a, b, c  , (∊ ℝ ab)c=a(bc)

 For instance, ((-2/3)4)√2=(-8/3) √2 =(-2/3)(4 √2)

 For every a   and 0  , ∊ ℝ ∊ℝ a+0=a=0+a

 For every a   and 1  , ∊ ℝ ∊ℝ a.1=a=1.a

 For every a   there exists -∊ ℝ a   such that ∊ ℝ

   a+(-a)=0=(-a)+a

 For every a  \{0} there exists 1/∊ ℝ a  \{0} such that ∊ ℝ

   a(1/a)=1=(1/a)a

  ∀ a, b  , ∊ ℝ a+b=b+a

  ∀ a, b  , ∊ ℝ a.b=b.a

Properties of Real Numbers



Topic No. 2

Group Theory



Properties of Complex 
Numbers

Group Theory



 ℂ={a+bi | a, b  }∊ ℝ
  ∀ a+bi, c+di  , (∊ ℂ a+bi)+(c+di)=(a+c)+(b+d)i  ∊ ℂ
  ∀ a+bi, c+di  , (∊ ℂ a+bi).(c+di)=(ac-bd)+(ad+bc)i  ∊ ℂ
  ∀ a+bi, c+di, e+fi  , [(∊ ℂ a+bi)+(c+di)]+(e+fi)=

   [(a+c)+(b+d)i]+(e+fi)=[(a+c)+e]+[(b+d)+f]i

   =[a+(c+e)]+[b+(d+f)]i=(a+bi)+[(c+e)+(d+f)i]=

   (a+bi)+[(c+di)+(e+fi)]

  

Properties of Complex Numbers



  ∀ a+bi, c+di, e+fi  , [(∊ ℂ a+bi).(c+di)].(e+fi)

   =[(ac-bd)+(bc+ad)i].(e+fi)

   =[(ac-bd)e-(bc+ad)f]+[(bc+ad)e+(ac-bd)f]i

   =[a(ce-df)-b(de+cf)]+[a(de+cf)]+b(ce-df)]i

   =(a+bi).[(ce-df)+(de+cf)i]=(a+bi).[(c+di).(e+fi)]

 For every a+bi   and 0=0+0i  , (∊ ℂ ∊ ℂ a+bi)+0= 

   (a+bi)+(0+0i)=(a+0)+(b+0)i=a+bi=0+(a+bi)

 For every a+bi   and 1=1+0i  , (∊ ℂ ∊ ℂ a+bi).1= 

   (a+bi).(1+0i)=(a.1-0b)+(b.1+0.a)i=a+bi=1.(a+bi)

  

Properties of Complex Numbers



 For every a+bi   there exists -∊ ℂ a-bi   such that ∊ ℂ

   (a+bi)+(-a-bi)=(a+(-a))+(b+(-b))i=0+0i=0=(-a-bi)+(a+bi)

 For every a+bi  \{0} there exists  ∊ ℂ

   1/(a+bi)=a/(a2+b2)-(b/(a2+b2))i  \{0} ∊ ℂ

   such that (a+bi).(a/(a2+b2)-(b/(a2+b2))i )

   = (a2+b2)/(a2+b2)+((ab-ab)/(a2+b2))i=1+0i=1

   =(a/(a2+b2)-(b/(a2+b2))i )(a+bi)  

Properties of Complex Numbers



  ∀ a+bi, c+di  , (∊ ℂ a+bi)+
(c+di)=(a+c)+(b+d)i

  =(c+a)+(d+b)i=(c+di)+(a+bi)

  ∀ a+bi, c+di  ,    ∊ ℂ

     (a+bi).(c+di)

   =(ac-bd)+ (ad+bc)i

   =(ca-db)+(cb+da)i    

   =(c+di).(a+bi)  

Properties of Complex Numbers
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Group Theory



Binary Operations

Group Theory



Definition

A binary operation  on a ∗
set S is a function 
mapping S x S into S. 

For each (a, b)  S x S, we ∈
will denote the element 

((∗ a, b)) of S by a b.∗

Binary Operations



 Usual addition ‘+’ is a 
binary operation on the 
sets , , , , ℝ ℂ ℚ ℤ ℝ+, ℚ+, 
ℤ+ 

 Usual multiplication ‘.’ is 
a binary operation on 
the sets , , , , ℝ ℂ ℚ ℤ ℝ+, 
ℚ+, ℤ+ 

 Usual multiplication ‘.’ is 
a binary operation on 
the sets \{0}, \{0}, ℝ ℂ

\{0}, \{0}ℚ ℤ

Binary Operations



Let M( ) be the set of all ℝ
matrices with real entries.

The usual matrix addition 
is not a binary operation 
on this set since A+B is 
not defined for an 
ordered pair (A, B) of 
matrices having different 
numbers of rows or of 
columns. 

Binary Operations



Usual addition ‘+’ is not a 
binary operation on the 
sets \{0}, \{0}, \{0}, ℝ ℂ ℚ

\{0} sinceℤ

2+(-2)=0 ∉ \{0}ℤ ⊂ \{0} ℚ

⊂ ℝ\{0} ⊂ \{0}.ℂ

Binary Operations



Binary Operations

Definition

Let ∗ be a binary 
operation on S and 
let H be a subset of 
S. 

The subset H is 
closed under ∗ if for 
all a, b ∈ H we also 
have a∗b ∈ H. 

In this case, the 
binary operation on 
H given by 
restricting ∗ to H is 
the induced 
operation of ∗ on H. 



Usual addition ‘+’ on the 
set  of real numbers ℝ
does not induce a binary 
operation on the set \ℝ
{0} of nonzero real 
numbers because 2∈ℝ\
{0} and -2∈ℝ\{0},

but 2+(-2)=0 ∉ \{0}.ℝ

Thus ℝ\{0} is not    

closed under +.

Binary Operations



Usual multiplication ‘.’ on 
the sets  and ℝ ℚ induces 
a binary operation on the 
sets \{0}, ℝ ℝ+ and ℚ\
{0},

ℚ+, respectively.

Binary Operations



Binary Operations

Group Theory



Let      be a set and       

Binary Operations

S
, .a b S



Let      be a set and       

A binary operation     on  
    is a rule which assigns 
to any ordered pair            
 an element                          
       

                       .

Binary Operations

S
, .a b S

S


( , )a b
a b S 



Examples

For

Binary Operations

, , , , ,S     

a b a b  



Examples

For

For

 

Binary Operations

, , , , ,S     

a b a b  

, , , , ,S     

a b ab 



Examples

For

For

For

Binary Operations

, , , , ,S     
a b a b  

, , , , ,S     

a b ab 

, , , ,S    
a b a b  



Examples

For

For

For

For   

Binary Operations

, , , , ,S     

a b a b  

, , , , ,S     

a b ab 

, , , ,S    
a b a b  

, , , ,S    

min( , )a b a b 



Examples

For

Binary Operations

 1,2,3S 

a b b 



Examples

For

For example

Binary Operations

 1,2,3S 

a b b 

1 2 2,

1 1 1,

2 3 3.

 

 

 



Examples

For                                         is not everywhere defined  
since no rational number is assigned by          this rule 
to the pair                                                    

Binary Operations

,S  /a b a b 

(3,0).



Examples

For                                         is not everywhere defined  
since no rational number is assigned by          this rule 
to the pair 

For                                       is not a binary operation on  
      since        is not closed under 

Binary Operations

,S  /a b a b 

(3,0).
,S  /a b a b 


 .



Definition
A binary operation     on 
a set      is commutative if 
and only if

      for all  

Binary Operations

S


a b b a  

, .a b S



Definition
A binary operation     on 
a set      is associative if

       

       for all

Binary Operations

S


, , .a b c S

( ) ( )a b c a b c    



Examples
The binary operation     defined by

        is commutative and associative in    

Binary Operations

a b a b  



.



Examples
The binary operation     defined by

        is commutative and associative in   

The binary operation     defined by 

       is commutative and associative in 

Binary Operations

a b a b  



.



a b ab 

.



The binary operation defined by

       is not commutative in  

        

Binary Operations

a b a b  

.



The binary operation defined by

       is not commutative in  

The binary operation given by                         is

       not associative in

        

Binary Operations

a b a b  

.
a b a b  

.



The binary operation defined by

       is not commutative in  

The binary operation given by                         is

       not associative in

For instance, 

       but

        

Binary Operations

a b a b  

.
a b a b  

.

( ) (4 7) 2 5a b c     

( ) 4 (7 2) 1.a b c     



Bijective Maps

Group Theory



Definition
A function                       is

      called injective or one-to-

      one if 

                                                     .

Bijective Maps

:f X Y

   1 2 1 2f x f x x x  



Definition
A function                       is

      called injective or one-to-

      one if 

                                                     .

     or

                                                     .

Bijective Maps

:f X Y

   1 2 1 2f x f x x x  

   1 2 1 2x x f x f x  



Definition
A function                       is

      called surjective or onto if 

      for any            , there exists

                    with                   .

Bijective Maps

:f X Y

y Y

x X ( )y f x



Definition
A function                       is

      called surjective or onto if 

      for any            , there exists

                    with                   .

       i.e.  if the image            is     
  

        the whole set     .

Bijective Maps

:f X Y

y Y

x X ( )y f x

( )f x
Y



Definition
A bijective function or one-
to-one correspondence is a

       function that is both

       injective and surjective.

Bijective Maps



Example

    

Bijective Maps

: , ( ) 10xf f x  



Example

     Therefore,      is one-to-one.

      

Bijective Maps

: , ( ) 10xf f x  

( ) ( ) 10 10x yf x f y x y    

f



Example

     Therefore,      is one-to-one.

      If              ,   then                        such that 

                                                 .

      

Bijective Maps

: , ( ) 10xf f x  

( ) ( ) 10 10x yf x f y x y    

r  10log r
10log

10(log ) 10 rf r r 

f



Example

     Therefore,      is one-to-one.

      If              ,   then                        such that 

                                                 .

      It implies that      is onto.

       

Bijective Maps

: , ( ) 10xf f x  

( ) ( ) 10 10x yf x f y x y    

r  10log r
10log

10(log ) 10 rf r r 

f

f



Example

     Therefore,      is one-to-one.

      If              ,   then                        such that 

                                                 .

      It implies that      is onto.

      Hence      is bijective.  

Bijective Maps

: , ( ) 10xf f x  

( ) ( ) 10 10x yf x f y x y    

r  10log r
10log

10(log ) 10 rf r r 

f

f
f



Example

             

Bijective Maps

: , ( ) 3f f m m  



Example

     Therefore,      is one-to-one.

        

Bijective Maps

: , ( ) 3f f m m  

( ) ( ) 3 3f m f n m n m n    

f



Example

     Therefore,      is one-to-one.

      We assume that              is the pre-image of             ,  

      then                                                             .

      It implies that      is not onto.

        

Bijective Maps

: , ( ) 3f f m m  

( ) ( ) 3 3f m f n m n m n    

4m

( ) 3 4 4 / 3f m m m    

f

f



Example

                                                .

        

Bijective Maps

2: , ( )f f x x  



Example

                                                .

                                         but              .

      Therefore,      is not one-to-one.

              

Bijective Maps

2: , ( )f f x x  

( 3) (3) 9f f  

f
3 3 



Example

                                                .

                                         but              .

      Therefore,      is not one-to-one.

      We assume that              is the pre-image of               ,  

      then                                                             .

      It implies that      is not onto.

        

Bijective Maps

2: , ( )f f x x  

( 3) (3) 9f f  

5 x
2( ) 5 5f x x x     

f

f

3 3 



Definition
Let                       be a function 
and let       be a subset of      . 
The image of 

            under       is given by       
            

                                                    .

Bijective Maps

:f X Y
H

   { | }f H f h h H 

X

H f



Definition
A function                       is

      called surjective or onto if 

                          .

Bijective Maps

:f X Y

 f X Y



Example                                      
                                      

                                     

Bijective Maps

: , ( ) 10xf f x  



Example                                      
                                      

                               

Therefore,       is onto.

      

Bijective Maps

: , ( ) 10xf f x  

 f  

f



Example

 

                                                               
  

            

Bijective Maps

: , ( ) 3f f m m  



Example

 

                                                               
  

    It implies that      is not onto.

        

Bijective Maps

: , ( ) 3f f m m  

  3f    

f



Example

                                              

                                                       
                                    

      

        

Bijective Maps

2: , ( )f f x x  



Example

                                              

                                                   

  So,        is not onto.                   
                            

      

        

Bijective Maps

2: , ( )f f x x  

  {0}f     

f



Inversion Theorem

Group Theory



Lemma

If                       and                      are two functions, then:

(i)   If        and      are injective,            is injective.

Inversion Theorem

f
:f X Y :g Y Z

g g f



Lemma

If                       and                      are two functions, then:

(i)   If        and      are injective,            is injective.

(ii)  If       and      are surjective,            is surjective.

Inversion Theorem

f
:f X Y :g Y Z

g g f
f g g f



Lemma

If                       and                      are two functions, then:

(i)   If        and      are injective,            is injective.

(ii)  If       and      are surjective,            is surjective.

(iii) If      and      are bijective,             is bijective.

Inversion Theorem

f
:f X Y :g Y Z

g g f
f g g f

f g g f



Proof

(i)   Suppose that                                                  .   Then,

                                                                                                     .

Inversion Theorem

     1 2g f x g f x 

         1 2 1 2 1 2g f x g f x f x f x x x    



Proof

(i)   Suppose that                                                   .   Then,

                                                                                                     .

(ii)   Let             . Since      is surjective, there exists              
with                   . 

Inversion Theorem

     1 2g f x g f x 

y Yz Z g
( )g y z

         1 2 1 2 1 2g f x g f x f x f x x x    



Proof

(i)   Suppose that                                                  .   Then,

                                                                                                     .

(ii)   Let             . Since      is surjective, there exists              
with                   . Since      is also surjective, there exists

              with                   .

Inversion Theorem

     1 2g f x g f x 

y Yz Z g
( )g y z f

         1 2 1 2 1 2g f x g f x f x f x x x    

x X ( )f x y



Proof

(i)   Suppose that                                                  .   Then,

                                                                                                     .

(ii)   Let             . Since      is surjective, there exists              
with                   . Since      is also surjective, there exists

              with                   . Hence,

                                                                                    .

So,             is surjective.

Inversion Theorem

     1 2g f x g f x 

y Yz Z g
( )g y z f

         1 2 1 2 1 2g f x g f x f x f x x x    

x X ( )f x y

       g f x g f x g y z  

g f



Proof

(i)   Suppose that                                                  .   Then,

                                                                                                     .

(ii)   Let             . Since      is surjective, there exists              
with                   . Since      is also surjective, there exists

              with                   . Hence,

                                                                                    .

So,             is surjective.

(iii)   This follows from parts (i) and (ii).

Inversion Theorem

     1 2g f x g f x 

y Yz Z g
( )g y z f

         1 2 1 2 1 2g f x g f x f x f x x x    

x X ( )f x y

       g f x g f x g y z  

g f



Theorem

The function                        has 
an inverse if and only if       is 
bijective.

Inversion Theorem

:f X Y
f



Proof

Suppose that                      is an inverse of     . 

Inversion Theorem

f:h Y X



Proof

Suppose that                      is an inverse of     . 

The function      is injective because

                                                                                                   .

Inversion Theorem

         1 2 1 2 1 2f x f x h f x h f x x x     

f:h Y X

f



Proof

Suppose that                      is an inverse of     . 

The function      is injective because

                                                                                                   .

The function      is surjective because if for any             
with                   , it follows that                                          . 

       

Inversion Theorem

         1 2 1 2 1 2f x f x h f x h f x x x     

f

y Y

 x h y

:h Y X

f

f
    f x f h y y 



Proof

Suppose that                      is an inverse of     . 

The function      is injective because

                                                                                                   .

The function      is surjective because if for any             
with                   , it follows that                                          . 

Therefore,       is bijective.

Inversion Theorem

         1 2 1 2 1 2f x f x h f x h f x x x     

f

y Y

 x h y

:h Y X

f

f
    f x f h y y 

f



Proof

Conversely, suppose that      is bijective.  We define the 
function                       as follows.                                            
                                                       

Inversion Theorem

f
:h Y X



Proof

Conversely, suppose that      is bijective.  We define the 
function                       as follows. For any             , there 
exists              with                   .

Since      is injective, there is only one such element    .

Inversion Theorem

y Y

x

f

f

:h Y X
x X  y f x



Proof

Conversely, suppose that      is bijective.  We define the 
function                       as follows. For any             , there 
exists              with                   .

Since      is injective, there is only one such element    .

Define                   . This function     is an inverse of      
because

                                           and                                         .   
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Let us consider a binary algebraic structure             to 
be a set      together with a binary operation     on

Two binary structures             and               are said to be 
isomorphic if there is a one-to-one correspondence 
between the elements     of      and the elements      of     
  such that

                             and                  

A one-to-one correspondence exists if the sets     and    
   have the same number of elements.
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How to show binary structures are not isomorphic
How do we demonstrate that two binary structures

                   and                are not isomorphic?

There is no one-to-one function     from      onto       

       with the property

In general, it is not feasible to try every possible one-
to-one function mapping      onto       and test whether 
it has homomorphism property.
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How to show binary structures are not isomorphic
A structural property of a binary structure is one that 
must be shared by any isomorphic structure.

It is not concerned with names or some other 
nonstructural characteristics of the elements.

A structural property is not concerned with what we 
consider to be the name of the binary operation.

The number of elements in the set      is a structural 
property of             . 

 

Isomorphic Binary Structures

,S 
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How to show binary structures are not isomorphic
In the event that there are one-to-one mappings of

           onto      ,  we usually show that              is not

       isomorphic to               by showing that one has

       some structural property that the other does not

       possess. 
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Possible Structural 
Properties
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The operation is 
commutative.

                   for all            .
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       for all               .
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Possible Nonstructural 
Properties
The number 4 is an element.

The operation is called 
“addition”.

The elements of      are 
matrices.

     is a subset of      .
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Example
The binary structures            
   

                      and               are 

       not isomorphic because 
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Example
We prove that the binary structures               and            
               

                   under the usual addition are not isomorphic. 
 

 Both       and       have cardinality       , so there are lots 
of one-to-one functions mapping      onto     .
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Example
We prove that the binary structures               and                
           

                   under the usual addition are not isomorphic.  

 Both       and       have cardinality       , so there are lots of 
one-to-one functions mapping      onto     .

The equation                   has a solution     for all 

                   but this is not the case in     .
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Example
We prove that the binary structures               and                          
 

                   under the usual addition are not isomorphic.  

 Both       and       have cardinality       , so there are lots of one-
to-one functions mapping      onto     .

The equation                   has a solution     for all 

                   but this is not the case in     .

For example, the equation                   has no solution in     .
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Example
The binary structures               

                      and               

        under usual     

        multiplication are 

        not isomorphic because 

        the equation               

        has solution     for all 

                     but                 has 

         no solution in     . 
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Example
 The binary structures                        and               

        under usual matrix multiplication and number    

        multiplication, respectively because multiplication 

        of numbers is commutative, but multiplication of 

         matrices is not.
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                   under the usual multiplication are not  

       isomorphic.  
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Example
We prove that the binary structures               and                           

                   under the usual multiplication are not  

       isomorphic.  

 Both       and       have cardinality       , so there are lots of one-
to-one functions mapping      onto      .

In           there are two elements    such that              , 

      namely, 0 and 1. 

However, in             , there is only the single element 1.

              

                                      

Isomorphic Binary Structures

0

,.

,.

.x x x

 


x



,.

,.



Isomorphic Binary 
Structures
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Groups

Group Theory



Associative Binary 
Operation
A binary operation     is 
called associative if

( ) ( ).a b c a b c    



Group Theory



Example
Can we solve

       in       ?

The equation is 
unsolvable in      since 

3 2x 





3 . 

Group Theory



Example
Can we solve

       in      ?

3 2x 



Group Theory



Example
Can we solve

       in      ?

add       on both sides

3 2x 

3

3 (3 ) 3 2x    



Group Theory



Example
Can we solve

       in      ?

add       on both sides

3 2x 

3

3 (3 ) 3 2x    

( 3 3) 3 2x    



Group Theory



Example
Can we solve

       in      ?

add       on both sides

Thus 

3 2x 

3

3 (3 ) 3 2x    

( 3 3) 3 2x    

0 3 2x  



Group Theory



Example
Can we solve

       in      ?

add       on both sides

Thus 

3 2x 

3

3 (3 ) 3 2x    

( 3 3) 3 2x    

0 3 2

1.

x

x

  

 



Group Theory



Example
Can we solve

       in      ?

add       on both sides

Thus 

3 2x 

3

3 (3 ) 3 2x    

( 3 3) 3 2x    

0 3 2

1.

x

x

  

 

1. We use associative 
property

2. Existence of           
with

3. Existence of           
with 

0

3 3 0  

0 x x 

3



Group Theory



Group(Definition) 

A group              is a set       with binary operation     

satisfying the following axioms  for all                     :

,G  G 

, ,a b c G

Group Theory



Group(Definition) 

A group              is a set       with binary operation     

satisfying the following axioms  for all                     :

1.For                 ,                                                (closure)

( , )G  G 

, ,a b c G

,a b G a b G 

Group Theory



Group(Definition) 

A group              is a set       with binary operation     

satisfying the following axioms  for all                     :

1.For                 ,                                                (closure)

2.                                                                  (associative)

( , )G  G 

, ,a b c G

,a b G a b G 

( ) ( )a b c a b c    

Group Theory



Group(Definition) 

A group              is a set       with binary operation     

satisfying the following axioms  for all                     :

1.For                 ,                                                (closure)

2.                                                                  (associative)

3.There exists              such that                    (identity)

,G  G 

, ,a b c G

,a b G a b G 

( ) ( )a b c a b c    

e G

e a a e a   

Group Theory



Group(Definition) 

A group              is a set       with binary operation     

satisfying the following axioms  for all                     :

1.For                 ,                                                (closure)

2.                                                                  (associative)

3.There exists              such that                    (identity)

4. For every              ,  there exists                 such that

                                                                               (inverse)  

( , )G  G 

, ,a b c G

,a b G a b G 

( ) ( )a b c a b c    

e G

e a a e a   

a G
1 1a a a a e    

1a G 

Group Theory



Example
Can we solve equations of the form

                         in a group              ?a x b  ,G 
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Example
Can we solve equations of the form

                         in a group              ?a x b 

( )a a x a b    

,G 

Group Theory



Example
Can we solve equations of the form

                         in a group              ?a x b 

( )a a x a b    

( )a a x a b    

,G 

Group Theory



Example
Can we solve equations of the form

                         in a group              ?a x b 

( )a a x a b    

( )a a x a b    

e x a b  

,G 

Group Theory



Example
Can we solve equations of the form

                         in a group              ?a x b 

( )a a x a b    

( )a a x a b    

e x a b  

,G 

x a b 

Group Theory
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Group Theory



Example  

Group Theory

,



Example  

Closure

Group Theory

,

, ,m n m n    



Example  

Closure

Associative

Group Theory

,

, ,m n m n    

, , , ( ) ( )m n p m n p m n p      



Example  

Closure

Associative

Identity

      For every                          ,   

Group Theory
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, ,m n m n    
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, 0m   0 0.m m m   



Example  

Closure

Associative

Identity

      For every                          ,   

inverse 

      For every                                   such that

Group Theory

,

, ,m n m n    

, , , ( ) ( )m n p m n p m n p      

, 0m  

m m   

0 0.m m m   

( ) 0 ( ) .m m m m     
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Example  

closure

Group Theory

, 

, ,m n m n    



Example  

closure

associative

Group Theory

, 

, ,m n m n    

(2 3) 4 5 3 2 (3 4)      
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closure

 

Group Theory

,.

, , .m n m n   



Example  

closure

associative

 

Group Theory

,.

, , .m n m n   

, , , ( . ). .( . )m n p m n p m n p  



Example  

closure

associative

identity

      For every                         , 

 

Group Theory

,.

, , .m n m n   

, , , ( . ). .( . )m n p m n p m n p  

, 1m   1. .1.m m m 



Example  

closure

associative

identity

      For every                         , 

Inverse

                    but  

 

Group Theory

,.

, , .m n m n   

, , , ( . ). .( . )m n p m n p m n p  

, 1m   1. .1.m m m 

2
1

2

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Group Theory
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Example  

Closure

Associative

Identity

      For every              ,   

inverse 

      For every                                   such that

Group Theory

,

, ,r s r s    

, , , ( ) ( )r s t r s t r s t      

r

r r   

0 0, 0 .r r r    
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Example  

closure

associative

identity

      For every             , 

 

Group Theory

,.

, , .r s r s   

, , , ( . ). .( . )r s t r s t r s t  

r 1. .1, 1 .r r r  



Example  

closure

associative

identity

      For every             , 

Inverse

      Inverse of              does not exist             

 

Group Theory

,.

, , .r s r s   

, , , ( . ). .( . )r s t r s t r s t  

r

0

1. .1, 1 .r r r  
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Examples  

                   is a   group.

          

                   is a group. 

   
                     is a group.
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and Inverse

Group Theory



Proposition
Let               be a group. 
Then

Group Theory

,G 



Proposition
Let               be a group. 
Then

1)     has exactly one 
identity element

Group Theory

,G 

G



Proposition
Let               be a group. 
Then

1)     has exactly one 
identity element

2)Each element of       has 
exactly one inverse.

Group Theory

,G 

G

G



Proof

1)    Suppose            are 
identity elements. 

               

Group Theory

,e e



Proof

1)    Suppose            are 
identity elements. So

               

Group Theory

,e e
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Proof

1)    Suppose            are 
identity elements. So

               

Group Theory

,e e

e x x e x   

e x x e x    



Proof

1)    Suppose            are 
identity elements. So

       holds for all 

Group Theory

,e e

e x x e x   

x G
e x x e x    



Proof

1)    Suppose            are 
identity elements. So

       holds for all 

In particular

Group Theory

,e e

e x x e x   

x G
e x x e x    

.e e e e   



Proof

2)    Let             and 
suppose             are 
inverses of

Group Theory
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Proof

2)    Let             and 
suppose             are 
inverses of         So

Group Theory

x x x x e    

x G

.x
,x x 



Proof

2)    Let             and 
suppose             are 
inverses of         So

Group Theory

x x x x e    

x G

.x
,x x 

x x x x e    



Proof

2)    Let             and 
suppose             are 
inverses of         So

Then

Group Theory

x x x x e    

x G

.x

x x e  

,x x 

x x x x e    



Proof

2)    Let             and 
suppose             are 
inverses of         So

Then

Group Theory

x x x x e    

x G

.x

x x e  

,x x 

x x x x e    

( )x x x   



Proof

2)    Let             and 
suppose             are 
inverses of         So

Then

Group Theory

x x x x e    

x G

.x

x x e  

,x x 

x x x x e    

( )x x x   
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Proof

2)    Let             and 
suppose             are 
inverses of         So

Then

Group Theory

x x x x e    

x G

.x

x x e  

,x x 

x x x x e    

( )x x x   

( )x x x   

.e x x   



An Interesting 
Example of Group

Group Theory



Example

Let G = {x ∊ ℝ| x ≠ 1} 
and define 

x *y = xy – x – y + 2.

Prove that (G, *) is a 

group.

An Interesting Example of Group



Solution
Closure:
 
Let a, b∊ G, so a ≠ 1
 
and b ≠ 1. 
 
Suppose a * b = 1.

Then ab – a – b + 2 = 1 

and so (a – 1)(b – 1) = 0

which implies that a =  1

or b = 1, a contradiction.
 

An Interesting Example of Group



Associative: 
(a * b) * c 
=(a * b)c – (a* b) – c + 2

= (ab – a – b + 2)c – 
(ab – a – b + 2) – c + 2

= abc – ac – bc + 2c – ab 
+ a + b – 2 – c + 2
= abc – ab – ac – bc + a +
b + c

Similarly a * (b * c) has 
the same value.

An Interesting Example of Group



Identity: 

An identity, e, would 

have to satisfy: 

e * x = x = x * e for all x 

∊ G, 

that is,

ex – e –x + 2 = x, 

or 

(e – 2)(x – 1) = 0 for all x.
  
Clearly e = 2 works.

An Interesting Example of Group



Inverses:  

If x * y = 2, then 

xy – x – y + 2 = 2.  

So 

y(x – 1) = x  and 

hence
y =x/(x – 1).  

An Interesting Example of Group



This exists for all x ≠ 1, 

i.e. for all x ∊ G.  But we 

must also check that it is 

itself an element of G.  

This is so because

x/(x – 1) ≠ 1  

for all x≠1.

An Interesting Example of Group
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Elementary Properties 
of Groups

Group Theory



Theorem

If G  is  a group with  binary  

operation * then  the  left  

and right cancellation

 laws hold in G, that is, 

a * b = a * c implies  b = c,

and b * a = c * a implies  

b = c for all a, b, c ∊ G.

Elementary Properties of Groups



Proof
Suppose  a * b = a * c. 

Then, there exists a'∊ G, and 

a'* (a* b) =a'*(a*c).

(a'* a)* b =(a'* a)* c.

So, e * b = e *c implies b = c.

Similarly, from b * a = c * a 
one can deduce that b = c 
upon multiplication by a'∊ G 
on the right.

Elementary Properties of Groups



Theorem

If G is a group  with binary 

operation *, and if a and b 

are any elements of G, then  

the linear  equations a * x=b 

and y * a=b have unique 

solutions x and y in G.

Elementary Properties of Groups



Proof

First  we show  the existence  of at least one  solution by just 

computing that a' * b is a solution  of a* x = b.

Note that
a* (a'* b) =(a* a')* b= e * b= b.

Thus x = a' *b is a solution  of a * x = b.
 

In a similar fashion,  y = b * a' is a
 

solution of y *a = b.

Elementary Properties of Groups



Topic No. 15

Group Theory



Theorem

Let G be a group. For all 
a, b∊ G, we have 

(a*b)'  = b' *a'.

Elementary Properties of Groups



Proof

Note that in a group G, 
we have

(a* b) * (b' *a')

= a* (b * b') *a'

=  (a* e) *a‘

= a* a'= e. 

Elementary Properties of Groups



It shows that b' * a' is the 

unique inverse of a* b.

That is, 

(a * b )' = b' * a'.

Elementary Properties of Groups



Theorem

For any n  ∈ℕ, (a
n 

)−
1  

= (a−1 
)
n

.

Elementary Properties of Groups



Proof
By definition, (an)-1 is the unique element  of G whose product  

with an in any order is e. 

But by associativity,

an   ∗ (a−1 )n = (an−1   a∗ )  ∗ (a−1 ∗(a−1)n−1)

= a
n−1  

 ∗ (a  ∗ (a
−1  

 ∗ (a
−1 

)
n−1 

))

= a
n−1  

 ∗ ((a  a∗ −1 
)  ∗ (a

−1 
)
n−1 

)

= a
n−1  

 ∗ (e  ∗ (a
−1 

)
n−1 

))

= a
n−1  

 ∗ (a
−1 

)
n−1 

,

Elementary Properties of Groups



which by induction on n equals e (the cases n = 0
and  n = 1 are trivial).  

Similarly,  the product of an  and (a−1 )n in the other 
order is e.
 
This proves that (a−1 )n is the inverse of an.

Elementary Properties of Groups



Groups of Matrices

Group Theory



Groups of Matrices

   Is ⟨ Mmn( ), +ℝ  ⟩ group?

  ∀ [aij], [bij]  M∊ mn( ), [ℝ aij] + [bij]=[aij + bij]  M∊ mn( ) ℝ
  ∀ [aij], [bij], [cij]  M∊ mn( ), ℝ

    ([aij] + [bij])+ [cij] =[aij + bij]+ [cij]

    =[(aij + bij)+ cij] 

    =[aij +( bij+ cij)] 

    = [aij]+[bij+ cij]

    = [aij] + ([bij]+ [cij]) 



Groups of Matrices

 For every [aij]  M∊ mn( ) and [0]  Mℝ ∊ mn( ), ℝ

   [aij] + [0]=[aij+0]=[aij]=[0]+[aij]

 For every [aij]  M∊ mn( ) there exists [-ℝ aij]  M∊ mn( ) such ℝ
that [aij] + [-aij]=[aij+(- aij)]= [0]= [-aij]+[aij]

   



Groups of Matrices

Group Theory



Groups of Matrices

   

  ∀ [aij], [bij]  M∊ mn( ), ℝ

[aij] + [bij]=[aij + bij]

=[bij+ aij]= [bij] + [aij] 

Therefore, ⟨ Mmn( ), +ℝ  ⟩ 
is abelian group.

 Similarly, ⟨ Mmn(ℤ), + 
⟩,

⟨ Mmn(ℚ), + ⟩ and 

⟨ Mmn(ℂ), + ⟩ are also 
abelian groups.



Groups of Matrices

   Is ⟨ Mnn( ), .ℝ  ⟩ group?

  ∀ A, B  M∊ nn( ), ℝ

    AB  M∊ nn( ) ℝ
  ∀ A, B, C  M∊ nn( ), ℝ

(AB)C=A(BC)

 For every A  M∊ nn( ) ℝ
and In  M∊ nn( ), ℝ
AIn=A=InA

 A-1 does not exist for all 
those A  M∊ nn( ) ℝ
having det(A)=0 



Groups of Matrices

Field

(F,+,.)

 ⟨F,+⟩ is abelian 
group

 ⟨F\{0},.⟩ is 
abelian group

       ∀ a, b, c  F, ∊
 a(b+c)=ab+ac

 (a+b)c=ac+bc
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{0},.

{0},.

{0},.

,

,

,

,
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Group Theory
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Group Theory
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[ ]ija
F
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Let                or      .        

Let           be a matrix 
over       i.e.  all

Let                    denotes 
the set of all 

       invertible matrices 
over     .

Group Theory

F  

[ ]ija
F

ija F

F

( , )GL n F
n n



 
In general set of all  

                  matrices is not 
a group under matrix 
multiplication.

Group Theory

n n



 
In general set of all  

                  matrices is not 
a group under matrix 
multiplication.

But                    is a group 
under matrix 
multiplication.

Group Theory

( , )GL n F

n n



 Axioms
Let                            .  

Group Theory

( , )G GL n F



 Axioms
Let                            .  

Closure:  For all                   ,                 .

Group Theory
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Group Theory
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 Axioms
Let                            .  

Closure:  For all                   ,                 .

Associative property also holds in     .

     is the identity matrix.

Group Theory

( , )G GL n F

nI
G

,A B G AB G



 Axioms
Let                            .  

Closure:  For all                   ,                 .

Associative property also holds in     .

     is the identity matrix.

Since both        and

       are invertible so inverse exists. 

Group Theory

( , )G GL n F

nI
G

A 1A

,A B G AB G
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Let                              and                      such that

Group Theory

(2, )G GL 

1 1 0 1
,

0 2 1 0
A B

   
    

   

,A B G
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Let                              and                      such that

then

Group Theory

(2, )G GL 

1 1 0 1
,

0 2 1 0
A B

   
    

   

,A B G

1 1 0 1 1 1

0 2 1 0 2 0
AB

      
      

     
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Let                              and                      such that

then

Group Theory

(2, )G GL 

1 1 0 1
,

0 2 1 0
A B

   
    

   

,A B G

1 1 0 1 1 1

0 2 1 0 2 0
AB

      
      

     

0 1 1 1 0 2

1 0 0 2 1 1
BA

     
      

     



Definition
Let              be a group. If 
for all

      We call        an abelian 
group.

                               

Group Theory

,G 
, ,a b G

a b b a  

G
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Let              be a group. If 
for all

      We call        an abelian 
group.

 Examples

                               

Group Theory

,G 
, ,a b G

a b b a  

G
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Group Theory

,

{0},.

,

{0},.
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Examples

Group Theory

( , )GL n 

1 1

0 2
A

 
 

 



Examples

Group Theory

( , )GL n 

1 1

0 2
A

 
 

 

1 2 11

0 12
A  

  
 
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( , )GL n 

( , )GL n 

1 1

0 2
A

 
 

 

1 2 11

0 12
A  

  
 
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Theorem

If a  b ∗ = b  a∗ , then for all/any 

one n  ∈ℤ, (a  b∗ )
n  

= a
n  

 b∗ n 
. 

Abelian Groups



Proof

If n  = 0  or  n  = 1,  this  holds  trivially.    Now let  n  > 1.   

By  commutativity,  b
m  

 a ∗ = a  b∗
m  

for all m ≥ 0.  

Then  by induction on n, 

(a b∗ )n = (a  b)∗
n−1

 (a b)=∗ ∗  (a
n−1  

 b∗
n−1

) (a b)∗ ∗

= ((a
n−1  

 b∗
n−1 

)  a∗ )  b ∗ = (a
n−1  

 ∗ (b
n−1  

 a∗ ))  b∗

= (a
n−1  

 ∗ (a  b∗
n−1 

))  b ∗ = (a
n−1  

 a∗ )  b∗
n−1 

)  b∗

= a
n  

 ∗ (b
n−1  

 b∗ ) = a
n  

 b∗
n

.

Thus the result holds for all n∊ℕ.

Abelian Groups



If n<0, then by the positive case 

and commutativity,

(a b∗ )n 

= (b a∗ )n 

= ((b a∗ )-n)-1 

=(b
-n

  a∗ -n
)
-1

 

=(a
-n

)
-1 

 (∗ b
-n

)
-1

 

= a
n  

 b∗
n

Abelian Groups



Modular Arithmetic

Group Theory



Definition 

Let n be a fixed positive integer and a 

and b any two integers. 

We say that a is congruent to b 

modulo n if n divides a−b. 

We denote this by a ≡ b mod n.

Modular Arithmetic



Theorem  

Show that the congruence relation 
modulo n is an equivalence relation 

on . 

Modular Arithmetic



Proof

Write “n|m” for “ n divides m,” 

which means that there is some 

integer k such that m = nk. 

Hence a ≡ b mod n if and 

only if n|(a−b). 

(i) For all a  , n |(a−a), so ∈

a ≡ a mod n and the relation is 
reflexive.

Modular Arithmetic



(ii) If a ≡ b mod n, then n|(a−b), so 

n|−(a −b). 

Hence n|(b−a) and b ≡ a mod n.

(iii) If a ≡ b mod n and b ≡ c mod n, 

then n|(a−b) and n|(b−c), so n |

(a−b)+(b−c). 

Therefore, n|(a−c) and a ≡ c mod n. 

Hence congruence modulo n is an 

equivalence relation on .

Modular Arithmetic



The set of equivalence

classes is called the set of

integers modulo n and is

denoted by .

Modular Arithmetic



In  the congruence relation modulo 3, we have the following equivalence classes: 

[0]={...,−3,0,3,6,9,...}        [1]={...,−2,1,4,7,10,...} [2]={...,−1,2,5,8,11,...}    
[3]={...,0,3,6,9,12,...}=[0] 

Any equivalence class must be one of [0], [1], or [2], so ={[0],[1],[2]}. 

In general,  ={[0],[1],[2],...,[n−1]}, since any integer is congruent modulo n to its 

remainder when divided by n. 

Modular Arithmetic



Order of a Group

Group Theory



Definition

The number  of elements  of a 

group  G is called the order of G.   

We denote it as |G|.  

We  call G finite if it has only 

finitely many  elements; otherwise 

we call G infinite.

Order of a Group



Definition 
Let G be a group and a
∈ G.  
If there  is a positive
integer  n such that an  

= e, then we call the 
smallest such positive 
integer the order of a. 
If no such n exists, 
we say that a has 
infinite  order.
The order of a is 
denoted by |a|.

Order of a Group



In  the congruence relation modulo 4, we have the 

following equivalence classes: 

[0]={...,−4,0,4,8,12,...}        [1]={...,−3,1,5,9,13,...} [2]={...,

−2,2,6,10,14,...}    [3]={...,-1,3,7,11,15,...} 

Any equivalence class must be one of [0], [1], [2] or [3], 

so ={[0],[1],[2],[3]}. 

Let  +4 be  addition modulo 4. Then, 2 +4 3 = 1.

Order of a Group



We can write out its Cayley table:

Therefore, ⟨ℤ4,+4  is a group.⟩

+4
[0] [1] [2] [3]

[0] [0] [1] [2] [3]

[1] [1] [2] [3] [0]

[2] [2] [3] [0] [1]

[3] [3] [0] [1] [2]

Order of a Group



 |ℤ4|=4

 1+41+41+41=4(1)=0  |[1]|=4⟹
 2+42=2(2)=0  |[2]|=2⟹
 3+43+43+43=4(3)=0  |[3]|=4⟹
 1(0)=0  |[0]|=1⟹
ℤ4= 1 = 3⟨ ⟩ ⟨ ⟩

 Let ℤn={[0], [1], [2],…,[n-1]}. Then, ⟨ℤn,+n  is a ⟩
group.

 | ℤn |=n

Order of a Group



Order of a Group

{0},.

{0},.

{0},.

,

,

,

,



Finite Groups

Group Theory



Let  U4 = {1, −1, i, −i},  and  let  “.” be  multiplication. Then  U4 is a 

group, and we can write out its multiplication table (Cayley table):

Finite Groups

. 1 -1 i -i

1 1 -1 i -i

-1 -1 1 -i i

i i -i -1 1

-i -i i 1 -1



 |U4|=4

 (-1)(-1)=(-1)2=1  |-1|=2⟹
 i.i.i.i=i4=1  |i|=4⟹
 (-i)(-i)(-i)(-i)=(-i)4=1  |-i|=4⟹
 11=1  |1|=1⟹
 U4= i = -i⟨ ⟩ ⟨ ⟩

Finite Groups



   Is U⟨ 4, .⟩≅⟨ℤ4,+4 ?⟩
1 [0]⟷
-1 [2]⟷
i [1]⟷
-i [3]⟷

Finite Groups



Let Un={ei2kπ/n: k=0, 1, …, n-1}.

Then, ⟨Un,.⟩ is a 
group.

⟨Un, .⟩≅⟨ℤn,+n ⟩

Finite Groups



Finite Groups

Group Theory



Since a group has to have at least one element,

namely, the identity, a minimal set that might give

rise to a group is a one-element set { e}. 

The only possible binary operation on 

{ e}  is defined by e  ∗ e = e. 

The three group axioms hold. 

The identity  element is always its own

inverse in every group.

Finite Groups



Let us try to put a group structure on a set of two

elements. 

Since one of the elements must play the role of

identity element, we may as well let the set be 

{ e, a}. 
Let us attempt to find a table for a binary

operation ∗ on { e, a} that gives a group

structure on { e, a}.

Finite Groups



       Since e is to be the 

  identity, so e x=x e=x∗ ∗
  for all x {e, ∊ a}.

Also, a must have an
inverse a' such that
a ∗ a' = a' ∗ a = e.
In our case, a' must be
either e or a. Since a' =
e obviously does not
work, we must have 

a' = a.

 

Finite Groups



So, we have to complete
the table as follows:

Finite Groups

∗ e a

e e a

a a e



We know  that 

ℤ2 ={[0],  [l]} 

under  addition  modulo

2 is a  group,  and by

our  arguments, its table

must  be the  one  above

with  e replaced by [0] 

and a by  [1].

Finite Groups

+2
[0] [1]

[0] [0] [1]

[1] [1] [0]



Finite Groups

Group Theory



Suppose  that G is any group of three

elements and imagine  a table for G with identity

element  appearing first. 

Since our filling out of the table for G =  { e, a, b}

could  be done  in only  one way, we see that if we

take the table  for G and rename  the identity  e, the

next  element  listed  a, and the last  element  b, the

resulting table  for  G gives  an isomorphism  of the

group  G with the group  G' ={[0], [1], [2]}. 

Finite Groups



Finite Groups

+3 [0] [1] [2]

[0] [0] [1] [2]

[1] [1] [2] [0]

[2] [2] [0] [1]

∗ e a b

e e a b

a a b e

b b e a

a b = b ∗ ⟹ a=e   not possible

a b = a ∗ ⟹ b=e   not possible

a a = a ∗ ⟹ a=e   not possible

b b = b ∗ ⟹ b=e   not possible



Our work above can be summarized by saying that 

all groups  with a single element  are isomorphic, all
 groups with just two elements are isomorphic, and 
all groups  with just three elements are isomorphic. 

We may say:  
There  is only  one group  of single element (up to
Isomorphism), there  is only  one group  of two
elements (up to isomorphism) and there  is only 
 one group  of three elements (up to isomorphism).
 

Finite Groups



There are two different types of group structures of

order 4.

 The group ⟨ℤ4 , +4⟩ is isomorphic to the group 

          U4= { 1, i, -1, -i} of fourth  roots  of unity  under

            multiplication. 
 The group V= a,b | a⟨ 2=b2=(ab)2=e  ⟩
            is the Klein 4-group,  and  the notation  V comes
       from  the  German  word  Vier for four. 

Finite Groups



We describe  Klein 4-group by
its group table. 

Finite Groups

∗ e a b c

e e a b c

a a e c b

b b c e a

c c b a e



Finite Groups
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Is ⟨ℤ6\{[0]}, .6 ⟩ a group? 

Finite Groups

.6 [1] [2] [3] [4] [5]

[1] [1] [2] [3] [4] [5]

[2] [2] [4] [0] [2] [4]

[3] [3] [0] [3] [0] [3]

[4] [4] [2] [0] [4] [2]

[5] [5] [4] [3] [2] [1]



Is ⟨ℤ5\{[0]}, .5  a group?⟩

⟨ℤp\{[0]}, .p   is a group, ⟩

where p is a prime number

Finite Groups

.5 [1] [2] [3] [4]

[1] [1] [2] [3] [4]

[2] [2] [4] [1] [3]

[3] [3] [1] [4] [2]

[4] [4] [3] [2] [1]
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 Subgroups
Let              be a group. A 
subgroup of        is  a 
subset of       which is 
itself a group under    . 

Subgroups 
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Let        be a group. Let    

                    . Then        is a 
subgroup of       if the 
following are true:

1)    

2) if                   then

3) if                then 

Subgroups 

G

H G H
G

e H

,h k H

hk H

h H
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Examples of Subgroups

Group Theory



If F is a field GL(n, F) denotes the group of 
all invertible n  n matrices over F under
multiplication. This group is called the general linear
group of degree n over F. 

We know that the associative law holds for matrix 
multiplication.  Checking the closure law requires us 
to know that the product of two invertible matrices is 
invertible.   And we need to know more than just the 
fact that every invertible matrix has an inverse.  We 
need to observe that such an inverse is itself 
invertible.

Groups of Matrices



An interesting subgroup of GL(n, F) is T+(n, F) the
set of all n  n upper- triangular matrices over F,
that is, n  n matrices of the form:

where each diagonal component is
non-zero.

 

Groups of Matrices

11 12 13 1

22 23 2

33 3

...

0 ...

0 0 ...

... ... ... ... ...

0 0 0 ...

n

n

n

nn

a a a a

a a a

a a

a

 
 
 
 
 
 
  



Then  there  are  the  lower  triangular  matrices
  T(n,  F)  which  are  the transposes of the upper
triangular ones.

Groups of Matrices

11

12 22

13 23 33

1 2 3

0 0 ... 0

0 ... 0

... 0

... ... ... ... ...

...n n n nn

a

a a

a a a

a a a a

 
 
 
 
 
 
  



Diagonal matrices D(n, F).   It’s closed under
multiplication, identity and inverses simply because
each of T+(n, F) and T(n, F) are.
  
This is a special case of the general fact that:
The intersection of any collection of subgroups is
itself a subgroup.

Groups of Matrices

11

22

33

0 0 ... 0

0 0 ... 0

0 0 ... 0

... ... ... ... ...

0 0 0 ... nn

a

a

a

a

 
 
 
 
 
 
  



Within D(n, F) we have the non-zero scalar
matrices S(n, F).   These are simply the diagonal

matrices that have the same non-zero entry down
the diagonal, that is, non-zero scalar multiples of
the identity matrix.

Groups of Matrices

0 0 ... 0 1 0 0 ... 0

0 0 ... 0 0 1 0 ... 0

, 00 0 ... 0 0 0 1 ... 0

... ... ... ... ... ... ... ... ... ...

0 0 0 ... 0 0 0 ... 1

nI





  



   
   
   
     
   
   
      



Another interesting subgroup of T+(n, F) is the    
group of uni-upper-triangular matrices UT+(n, F).

These are the upper-triangular matrices with 1’s down 
the diagonal:

Groups of Matrices

12 13 1

23 2

3

1 ...

0 1 ...

0 0 1 ...

... ... ... ... ...

0 0 0 ... 1

n

n

n

a a a

a a

a
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 
 
 
 
  



And inside T

(n, F) we have the uni-lower-triangular

matrices UT

(n, F).

Groups of Matrices

12

13 23

1 2 3

1 0 0 ... 0

1 0 ... 0

1 ... 0

... ... ... ... ...

... 1n n n

a

a a

a a a

 
 
 
 
 
 
  



GL(n, F)

T+(n, F) T(n, F)

D(n, F)

UT+(n, F) UT(n, F)

S(n, F)

1

We can summarize the connections between these 
subgroups in a “lattice diagram”:

Groups of Matrices



Another very important 
subgroup of GL(n, F) is 
SL(n, F) consisting of
all the matrices with
determinant 1.

It’s called the special
linear group of degree
n over F.

Groups of Matrices
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Group Theory



The Two Step Subgroup 
Test

Group Theory



Theorem

A subset H of a group G is a 
subgroup of G if and only if

1. H is closed under the binary operation  ∗ of G,

2. for all a ∈ H it is true that a-1 ∈ H also.

The Two Step Subgroup Test



Proof

The fact that if H is subgroup of G then conditions  

1 and 2 must hold follows at once from the

definition of a subgroup.

Conversely, suppose H is a subset of a group G

such that conditions 1 and 2 hold.

By 1 we have at once that closure property is
satisfied. The inverse law is satisfied by 2.
Therefore, for every a∊H there exists a-1∊H 
such that e=a∗a-1∊H by 1. So, 
e∗a=a∗e=a by 1.  

The Two Step Subgroup Test



It remains to check the

associative axiom.  

But surely for all a, b, c ∊
H it is true that 

(ab)c  = a(bc)

in H, for we may actually

view this as an equation

in G, where the

associative law holds.

The Two Step Subgroup Test
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Group Theory



Examples on Subgroup 
Test

  

Group Theory



Recall
Let G be a group and H a 
nonempty subset of G.  If 
a∗b is in H whenever a and 
b are in H, and a-1 is in H 
whenever a is in H, then H is 
a subgroup of G.

Examples on Subgroup Test



To Apply the Two Step 
Subgroup Test:

 Note that H is 
nonempty 

 Show that H is closed 
with respect to the 
group operation

 Show that H is  closed 
with respect to inverses.

 Conclude that H is a 
subgroup of G.

Examples on Subgroup Test



Example 
Show that 3Q* is a subgroup of Q*, the non-zero rational 
numbers.

3Q* is non-empty because 3 is an element of 3Q*.
For a, b in 3Q*, a=3i and b=3j where i, j are in Q*.  
Then ab=3i3j=3(3ij), an element of 3Q* (closed)
For a in 3Q*, a=3i for i an element in Q*.  
Then a-1=(i-13-1), an element of 3Q*. (inverses) 
Therefore 3Q* is a subgroup of Q*.

Examples on Subgroup Test
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Group Theory



The One Step Subgroup 
Test

  

Group Theory



Theorem

If S is a subset of the

group G, then S  is a

subgroup of G if and

only if S  is nonempty

and whenever  a, b  ∈ S,

then ab−1  ∈ S.

The one Step Subgroup Test



Proof

If S  is a subgroup,  then

of course S  is nonempty

and whenever a, b ∈ S,

then ab−1   ∈ S.

The one Step Subgroup Test



Conversely suppose S is a nonempty subset of 

the Group  G such that whenever a, b  ∈ S, then 

ab−1 ∈ S. 

Let a  ∈ S, then e = aa-1  ∈ S  and so a-1 = ea-1  ∈ S.

Finally, if a, b  ∈ S, then b-1  ∈ S by the above and 

so ab = a(b-1)-1  ∈ S.

The one Step Subgroup Test
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Group Theory



Examples on Subgroup 
Test

  

Group Theory



Recall
Suppose G is a group and H 
is a non-empty subset of G. 
 If, whenever a and b are in 
H, ab-1 is also in H, 
then H is a subgroup of G.

Or, in additive notation:
If, whenever a and b are in 
H, a - b is also in H, 
then H is a subgroup of G.

Examples on Subgroup Test



To apply this test:
 Note that H is a 

non-empty subset 
of G.

 Show that for any 
two elements 

     a and b in H, ab-1 is   
   
     also in H.
 Conclude that H is a 

subgroup of G.

Examples on Subgroup Test



Example
Show that the even integers are a subgroup of the 
Integers.
Note that the even integers is not an empty set because 
2 is an even integer.
Let a and b be even integers.  
Then a = 2j and b = 2k for some integers j and k.
a + (-b) = 2j + 2(-k) = 2(j-k) = an even integer
Thus a - b is an even integer 
Thus the even integers are a subgroup of the integers.

Examples on Subgroup Test



Example 
For a, b in 3Q*, a=3i and b=3j 
where i, j are in Q*  
Then 
ab-1=3i(3j)-1 =3i(j-13-1)=3(ij-13-1), 
an element of 3Q*

Examples on Subgroup Test
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Group Theory



The Finite Subgroup 
Test

Group Theory



Theorem

If S is a subset of the

finite group G, then S is

a subgroup of G if and

only if S is nonempty 

and whenever  a, b  ∈ S,

then ab ∈ S.

The finite Subgroup Test



Proof

If S  is a subgroup then obviously S  is nonempty 

and whenever a, b ∈ S, then ab  ∈ S.

Conversely  suppose  S is nonempty  and 
whenever  a, b ∈ S, then  ab ∈ S.
   
Then  let  a ∈ S.   The above property says that

a
2

=aa∈S and so a
3

=aa
2∈S and so a

4
=aa

3∈S  

and so on and on and on.
  

The finite Subgroup Test



That is an   ∈ S  for all integers 

n > 0. 

But G is finite and thus so is S.  

Consequently the sequence, 

a, a2, a3, a4,…,an,… 

cannot continue to produce

new elements. 

That is there must exist m<n

 such that am=an. 

Thus e= an-m  ∈ S. 

The finite Subgroup Test



Therefore  for all a ∈ S,  there
 
is a smallest  integer  k > 0

such  that ak = e. 

Moreover, a-1  
= ak-1 ∈ S. 

Finally if a, b ∈ S, then b-1 ∈ S

by the above and so by the 

assume property we have 

a b-1 ∈ S. 
Therefore S is a subgroup as

desired.

The finite Subgroup Test
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Group Theory



Examples on Subgroup 
Test

  

Group Theory



Example 

 ({1,−1, i,−i}, ・ )

 {1,i}

 {1,-i}

 {1,−1}

 {1,-1,i}

 {1,-1,-i}

30

Examples on Subgroup Test



Example 

 ({[0], [1], [2], [3], [4], [5]}, +6 )

 {[0], [1]} or {[0], [4]} or {[0], [5]} or {[0], [2]}

 {[0], [3]}

 {[0], [2], [4]}

 {[0], [2], [3], [4]}

31

Examples on Subgroup Test



 Cyclic Groups

Group Theory



Definition

Let G be a group and let 

a ∊ G. 

Then the subgroup

H={an| n ∊ }ℤ
of G is called the cyclic 
subgroup of G generated 
by a, and denoted by 〈a〉.

Cyclic Groups



Definition

 An element a of a group G 
generates G and is a 
generator for G if a=G. 

 A group G is cyclic if there 
is some element a in G that 
generates G. 

Cyclic Groups



 Let a be an element of a 
group G. 

 If the cyclic subgroup a  is 
finite, then the order of a is 
the order | a | of this 
cyclic subgroup. 

 Otherwise, we say that a is 
of infinite order. 

Cyclic Groups



•  

Cyclic Groups

𝝎𝟑

𝟏
𝝎𝟐

𝝎

𝑰𝒎

𝑹𝒆

 



Examples of Cyclic 
Groups

Group Theory



Examples of Cyclic Groups



Examples of Cyclic Groups



Examples of Cyclic Groups



Elementary Properties 
of Cyclic Groups

Group Theory



Theorem 

   Every cyclic group is 
abelian.

Elementary Properties of Cyclic Groups



Proof

 Let G be a cyclic group and let a be a generator of  G so 
that 

                            G = a ={an|n ℤ}. 

 If g1 and g2 are any two elements of G, there exists 
integers r and s such that g1=ar and g2=as. 

 Then 

                     g1g2= aras = ar+s = as+r = asar = g2g1.

 So, G is abelian.

Elementary Properties of Cyclic Groups



Elementary Properties of Cyclic Groups



Elementary Properties of Cyclic Groups



Elementary Properties 
of Cyclic Groups

Group Theory



Elementary Properties 
of Cyclic Groups

Group Theory



Definition:  G is cyclic if G = <a> for some a in G.

Theorem

If |a| = ∞, ai=aj iff i =j

If |a| = n, ai=aj iff n| i – j

<a> = {a, a2, … an-1,e}

Corollary 1: |a| = |<a>|

Corollary 2: ak   = e implies |a| | k

Example: U5=< ω |ω5=1>=< ω2 >=< ω3 >= < ω4 >, ω=ei(2 /5)𝜋

                           ω2≠ω4      5⫮4 – 2    ;      ω5=ω10     5|10 – 5   

Elementary Properties of Cyclic Groups



Example 

U6=< ω |ω6=1>={ω,ω2, ω3, ω4, ω5,1} with ω=ei(2 /6)𝜋

(ω5)2= ω10= ω6ω4= ω4

(ω5)3= ω15= (ω6)2ω3= ω3

(ω5)4= ω20= (ω6)3ω2= ω2

(ω5)5= ω25= (ω6)4ω= ω

(ω5)6= ω30= (ω6)5= 1

U6 =< ω5>={ω5, ω4, ω3, ω2,ω,1} 
                           

Elementary Properties of Cyclic Groups



Example 

U6=< ω |ω6=1>={ω,ω2, ω3, ω4, ω5,1} with ω=ei(2 /6)𝜋

< ω2>={ω2, ω4,1} < U6

< ω3>={ω3,1} < U6 

< ω4>={ω4, ω2,1} = < ω2> 

                           

Elementary Properties of Cyclic Groups



Elementary Properties 
of Cyclic Groups

Group Theory



Theorem 1

If |a| = n, then 

<ak> = <agcd(n,k)>

|ak| = n/gcd(n,k)

Elementary Properties of Cyclic Groups



To prove the |ak| = n/gcd(n,k) , we begin with a little 
lemma.
Prove: If d | n = |a|, then |ad| = n/d.
Proof:  Let n = dq.  Then e = an = (ad)q.

So |ad| ≤ q.

If 0< i < q, then 0 < di < dq = n = |a|

so (ad)i ≠ e 

Hence, |ad| = q which is n/d as required.

Elementary Properties of Cyclic Groups



Now, we prove that |ak| = n/gcd(n,k). 

Let d = gcd(n,k).  Then, we have

|ak| = |<ak>| by Corollary 1

      = |<ad>| by Part 1 of Theorem 1

      = |ad| by Corollary 1

 = n/d by above Lemma.

This concludes the proof.

Elementary Properties of Cyclic Groups



Example

Suppose G = <a> with |a| = 30.  

   Find |a21| and <a21>.

By Theorem 1, |a21| = 30/gcd(30,21) = 10

Also <a21> = <a3>

= {a3, a6, a9, a12,a15, a18, a21, a24, a27, e} 

Elementary Properties of Cyclic Groups



Elementary Properties 
of Cyclic Groups

Group Theory



Theorem 1

If |a| = n, then <ak> = <agcd(n,k)> and |ak| = n/gcd(n,k).

Corollaries to Theorem 1

1.In a finite cyclic group, the order of an element divides 
the order of the group.

2.Let |a| = n in any group.  Then

a) <ai> = <aj> iff gcd(n,i) = gcd(n,j)

b) |ai| = |aj| iff gcd(n,i) = gcd(n,j)

Elementary Properties of Cyclic Groups



Corollaries to Theorem 1

3. Let |a| = n.

    Then < ai > = aj iff gcd(n,i) = gcd(n,j)

4. An integer k in ℤn is a generator of ℤn iff gcd(n,k)    
 

    =1

Elementary Properties of Cyclic Groups



Example

Find all the generators of U(50) = 〈3〉.

U(50) ={1,3,7,9,11,13,17,19,21,23,27,29,31,33,

37,39,41,43,47,49}          |U(50)| = 20

The numbers  relatively prime to 20 are 1, 3, 7, 9, 11, 
13, 17, 19

The generators of U(50) are therefore

31, 33, 37, 39, 311, 313, 317, 319

i.e. 3, 27, 37, 33, 47, 23, 13, 17

Elementary Properties of Cyclic Groups



Fundamental 
Theorem of Cyclic 
Groups

Group Theory



Fundamental Theorem of Cyclic Groups

a)Every subgroup of a cyclic group is cyclic.

b)If |a| = n, then the order of any subgroup of <a> is a 
divisor of n

c)For each positive divisor k of n, the group <a> has 
exactly one subgroup of order k, namely <an/k>

Fundamental Theorem of Cyclic Groups



Subgroups are cyclic

Proof: Let G = <a> and suppose H ≤ G.  If H is trivial, then 
H is cyclic.  

Suppose H is not trivial.

Let m be the smallest positive integer  with am in H. 

(Does m exist?) ________

Fundamental Theorem of Cyclic Groups



By closure, <am> is contained in H.

 We claim that H = <am>. To see this,

choose any b = ak in H.  There exist integers q,r with 

0≤ r < m such that

ak = aqm + r  (Why?) ___________

Fundamental Theorem of Cyclic Groups



Since b = ak = aqma r, we have

ar = (am)-q b 

Since b and am are in H, so is ar.

But r < m (the smallest power of a in H)

so r = 0.

Hence b = (am)q and b is in H.

It follows that H = <am> as required.

Fundamental Theorem of Cyclic Groups



|H| is a divisor of |a|

Proof:  Given |<a>| = n and H ≤ <a>.  We showed H = 
<am> where m is the smallest positive integer with am in 
H.  

Now e = an is in H, so as we just showed, n = mq for 

some q.

Now |am| = q is a divisor of n as required. 

Fundamental Theorem of Cyclic Groups



Exactly one subgroup for each divisor k of n

(Existence) Given |<a>| = n. Let k | n.

Say n = kq. Note that gcd(n,q) = q

So |aq| = n/gcd(n,q) = n/q = k.

Hence there exists a subgroup of order k, namely 
<an/q>

Fundamental Theorem of Cyclic Groups



 (Uniqueness) Let H be any subgroup of <a> with order 
k.  We claim H = <an/k>

From (a), H = <am> for some m.

From (b), m | n  so gcd(n,m) = m.

So k = |am| = n/gcd(n,m) by Theorem 1

  = n/m

Hence m = n/k

So H = <an/k>  as required.

Fundamental Theorem of Cyclic Groups



Subgroups of Finite 
Cyclic Groups

Group Theory



Theorem 

   Let G be a cyclic group with n elements and generated 
by a. Let bG and let b=ak. Then b generates a cyclic 
subgroup H of G containing n/d elements, where d = 
gcd (n, k). 

   Also  <ak >= <as> if and only gcd (k, n) = gcd (s, n).

Subgroups of Finite Cyclic Groups



Example 

using additive notation, consider in ℤ12, with the

generator a=1.  

 3 = 31, gcd(3, 12)=3, so  3  has 12/3=4 elements. 

     3 ={0, 3, 6, 9}

 Furthermore,  3 =  9  since gcd(3, 12)=gcd(9, 12).

Subgroups of Finite Cyclic Groups



Example 

 8= 81, gcd (8, 12)=4, so  8  has 12/4=3 elements. 

    8 ={0, 4, 8}

 5= 51, gcd (5, 12)=1, so  5  has 12 elements. 

    5 =ℤ12.

Subgroups of Finite Cyclic Groups



Corollary

   If a is a generator of a finite cyclic group G of order n, 
then the other generators of G are the elements of the 
form ar, where r is relatively prime to n. 

Subgroups of Finite Cyclic Groups



Example 

Find all subgroups of ℤ18 and give their subgroup diagram. 

 All subgroups are cyclic

 By above Corollary is the generator of Z18, so is 5, 7, 11, 
13, and 17.

 Starting with 2,  2  ={0, 2, 4, 6, 8, 10, 12, 14, 16 }is of 
order 9, and gcd(2, 18)=2=gcd(k, 18) where k is 2, 4, 8, 10, 
14, and 16. Thus 2, 4, 8, 10, 14, and 16 are all generators 
of 2.

Subgroups of Finite Cyclic Groups



Example 

 3={0, 3, 6, 9, 12, 15} is of order 6, and gcd(3, 
18)=3=gcd(k, 18) where k=15

 6={0, 6, 12} is of order 3, so is 12

 9={0, 9} is of order 2

Subgroups of Finite Cyclic Groups



                                

                               1

                      2                3

                                6                    9

                                           

                                              0

Subgroups of Finite Cyclic Groups



Theorem on Cyclic 
Group

Group Theory



Theorem

Let G be a cyclic group 
with generator a. 

If the order of G is 
infinite, then G is 
isomorphic to ( , +). ℤ
If G has finite order n, 
then G is isomorphic to 
(ℤn, +n). 

Theorem on Cyclic Group



Proof

Case 1

For all positive integers m, am ≠ e. 

In this case we claim that no two distinct 
exponents h and k can give equal elements ah 
and ak of G. 

Suppose that ah = ak and say h  > k. 

Then aha-k = ah-k = e, contrary to our Case 1 
assumption.

Theorem on Cyclic Group



Case 1

Hence every element 
of G can be expressed 
as am  for a unique m 

 . ∊ ℤ
The map ϕ : G →  ℤ
given by ϕ(ai)  = i is 
thus well defined, one 
to one, and onto .ℤ

Theorem on Cyclic Group



Case 1

Also, 

ϕ(aiaj)=ϕ(ai+j)

=i+j

=ϕ(ai )+ϕ(aj), 

so the homomorphism  
property is satisfied and 
ϕ   is an isomorphism.

Theorem on Cyclic Group



Case 2

am  = e for some positive integer m. 

Let n be the smallest positive integer such that 

an = e. 

If s    and s = nq + r for 0 < r < n, then ∊ ℤ
as = anq+r = (an)q ar = eq ar = ar. 

As in Case 1, if 0 < k < h < n and

ah = ak, then ah-k  = e and 0 < h-k < n, contradicting 
 our choice of n. 

Theorem on Cyclic Group



Case 2

Thus the elements

a0=e, a, a2, a3, ···, an-1 

are all distinct and 
comprise all elements 
of G. 

The map 𝛹 : G → ℤn

given by (a𝛹 i)  = i for i 
= 0, 1, 2, ···, n - 1  is 
thus well defined, one 
to one, and onto ℤn.

Theorem on Cyclic Group



Case 2

Because an = e, we see

that  ai aj = ak 

where k = i +n j. 

Thus (a𝛹 i aj) = i +n j  

= (a𝛹 i) +n (a𝛹 j), 

so the homomorphism 
property is satisfied 
and   is an 𝛹
isomorphism.

Theorem on Cyclic Group



Permutation Groups

Group Theory



Definition

A permutation of a set 
A is a function from A to 
A that is both one to 
one and onto.

Permutation Groups



Array Notation

 Let A = {1, 2, 3, 4}

 Here are two permutations of A:

Permutation Groups

1 2 3 4

2 3 1 4


 
 

 

1 2 3 4

2 1 4 3


 
 

 

(2) 3 

(4) 4 

(4) 3 

(1) 2 

(2) (3) 4  



1

Composition in Array Notation

Permutation Groups

1 2 3 4 1 2 3 4
 

2 1 4 3 2 3 1 4

1 2 3 4


   

   
   

 
 

 



1 4

Composition in Array Notation

Permutation Groups

1 2 3 4 1 2 3 4
 

2 1 4 3 2 3 1 4

1 2 3 4


   

   
   

 
 

 



1 4 2

Composition in Array Notation

Permutation Groups

1 2 3 4 1 2 3 4
 

2 1 4 3 2 3 1 4

1 2 3 4


   

   
   

 
 

 



1 4 2 3

Composition in Array Notation

Permutation Groups

1 2 3 4 1 2 3 4
 

2 1 4 3 2 3 1 4

1 2 3 4


   

   
   

 
 

 



1 4 2 3

Composition in Array Notation

Permutation Groups

1 2 3 4 1 2 3 4
 

2 1 4 3 2 3 1 4

1 2 3 4


   

   
   

 
 

 



Definition

A permutation group of 
a set A is a set of 
permutations of A that 
forms a group under 
function composition.

Permutation Groups



Example

 The set of all permutations on {1,2,3} is called the 
symmetric group on three letters, denoted S3 

 There are 6 permutations possible:

Permutation Groups

1 2 3

__ __ __

 3   2 1  6

 
 
 

  



Examples of 
Permutation Groups

Group Theory



S3

 The permutations of {1,2,3}:

Examples of Permutation Groups

1 2 3

1 2 3


 
 

 

1 2 3

2 3 1


 
 

 

1 2 32
3 1 2


 

 
 

1 2 3

1 3 2


 
 

 

1 2 3

2 1 3


 
 

 

1 2 32
3 2 1

 
 

 
 



Is S3 a group?

 Composition of functions is always associative.

 Identity is .

 Since permutations are one to one and onto, there 
exist inverses (which are also permutations).

 Therefore, S3 is  group.

Examples of Permutation Groups



Computations in S3

Examples of Permutation Groups

3 1 2 3 1 2 3
 

2 3 1 3 1 2


   
    

   

1 2 3

1 2 3


 
 

 

2 1 2 3 1 2 3
 

1 3 2 1 3 2


   
    

   

1 2 3

1 2 3


 
 

 

1 2 3 1 2 3
 

1 3 2 2 3 1


   
    

   

21 2 3

3 2 1
 

 
 

 



Simplified Computations in S3

 







 Double the exponent of when switching with .

 We can simplify any expression in S3!

Examples of Permutation Groups



Examples of 
Permutation Groups

Group Theory



Symmetric Groups, Sn

 Let A = {1, 2, … n}.  The symmetric group on n 
letters, denoted Sn, is the group of all permutations 
of A under composition.

 Sn is a group for the same reasons that S3 is  group.

 |Sn| = n!

Examples of Permutation Groups



1

23

4

D4 ≤ S4

Symmetries of a Square, D4

Examples of Permutation Groups

0

1 2 3 4

1 2 3 4
R

 
 

 

90

1 2 3 4

2 3 4 1
R

 
 

 

180

1 2 3 4

3 4 1 2
R

 
 

 

270

1 2 3 4

4 1 2 3
R

 
 

 

1 2 3 4

2 1 4 3
H

 
 

 

1 2 3 4

4 3 2 1
V

 
 

 

1 2 3 4

1 4 3 2
D

 
 

 

1 2 3 4

3 2 1 4
D

 
 

 



Why do we care?

 Every group turns out to be a permutation group on 
some set!  

(To be proved later).

Examples of Permutation Groups



Permutation Groups

Group Theory



Definition

Let  f : A → B be a 
function and let H be a 
subset  of A. The image 
of H under f is

{f (h) I h ∊ H} and is 
denoted  by f[H]. 

Permutation Groups



Lemma

Let G and G' be groups  
and let ϕ : G → G' be a 
one-to-one function such 
that ϕ(xy) = ϕ(x )ϕ(y) 

for all x, y  G. ∊
Then ϕ[ G] is a subgroup 
of G' and ϕ provides  an 
isomorphism of G with 
ϕ[G].

Permutation Groups



Proof

Let  x', y'  ϕ[G]. Then  there  exist  x, y   G  such  that  ∊ ∊
ϕ(x) = x' and  ϕ(y) = y'. 

By hypothesis, ϕ(xy) = ϕ(x)ϕ(y) = x'y', showing  that x'y'  
 ϕ[G]. ∊

We have  shown that ϕ[G]  is closed  under the 
operation of G'.

 

Permutation Groups



Let e' be the identity of G'. 

Then

e'ϕ(e)  = ϕ(e)  

= ϕ(ee) 

= ϕ(e)ϕ(e).

Cancellation in G'  shows 
that e' = ϕ(e)  so e'  ϕ[G].∊

Permutation Groups



For x'  ϕ[G] where x' = ∊
ϕ(x), we have

e'=ϕ(e)

= ϕ(xx-1)

= ϕ(x) ϕ(x-1)

= x' ϕ(x-1)

which  shows  that 

x'-1   = ϕ(x-1)    ϕ[G].  ∊
Therefore,  ϕ[G]<G'.

Permutation Groups



Note that ϕ provides  an 
isomorphism  of G with  
ϕ[G]  follows  at once 
because  ϕ provides a one-
to-one map of G onto ϕ[G] 
 such that ϕ(xy)  = ϕ(x)ϕ(y) 
for all x, y  G .∊

Permutation Groups



Cayley’s Theorem

Group Theory



Theorem

Every  group is isomorphic 
to a group  of permutations.

Cayley’s Theorem



Proof

Let G be a group. 

We show that G is 
isomorphic to a 
subgroup of SG. 

We Need only to define 
a one-to-one function 

ϕ:  G → SG such that 

ϕ(xy)  = ϕ(x)ϕ(y) 

for all x, y  G. ∊

Cayley’s Theorem



For x    G, let λ∊ x :   G → G be defined by λx (g)  = xg 
for all g   G. (We think of λ∊ x as performing left 
multiplication by x.) 

The equation λx(x
-1c)  = x(x-1c)  = c for all c   G ∊

shows  that λx maps  G onto  G. If λx(a)  = λx(b),  
then xa  = xb  so a= b by cancellation.  Thus λx  is 
also  one  to  one,  and  is a permutation of G.

Cayley’s Theorem



We now  define ϕ:  G → SG by defining  ϕ(x)  = λx for 
all x   G.∊
To show that ϕ is one to one, suppose  that 

ϕ(x)  = ϕ(y ). 

Then λx = λy as functions mapping  G into G. 

In particular λx(e)  = λy(e), so xe = ye and x = y. 

Thus ϕ is one to one. 

Cayley’s Theorem



It only remains  to show that ϕ(xy)  = ϕ(x )ϕ(y ), 

that is, λxy  = λx λy .

Now for any g   G, we have λ∊ xy(g)  = (xy)g.

Permutation multiplication is function  
composition, so (λx λy)(g)  = λx(λy(g))  = λx(yg)  = 
x(yg). 

Thus by associativity, λxy = λx λy .

Cayley’s Theorem



Examples of 
Permutation Groups

Group Theory



There is a natural correspondence between the 
elements of S3 and the ways in which two copies of 
an equilateral triangle with vertices 1, 2, and 3 can 
be placed, one covering the other with vertices on 
top of vertices.  

For this reason, S3 is also the group D3  of 
symmetries of an equilateral triangle. We used , for 
rotations and µ;  for mirror images in bisectors of 
angles. The notation D3  stands for the third dihedral 
group. 

The nth dihedral group Dn   is the group of 
symmetries of the regular n-gon.

Examples of Permutation Groups



1

2 3

l2

l1

l3

ρ0 = do nothing

μ1 = reflect in line l1

μ2 =  reflect in line l2

μ3 = reflect in line l3

ρ1 = rotate anticlockwise 120o

ρ2 = rotate anticlockwise 240o

1

3 2

3

2 1

2

1 3

3

1 2

2

3 1

Examples of Permutation Groups



ρ0 ρ1 ρ2 μ1 μ2 μ3

ρ0 ρ0 ρ1 ρ2 μ1 μ2 μ3

ρ1 ρ1 ρ2 ρ0 μ3 μ1 μ2

ρ2 ρ2 ρ0 ρ1 μ2 μ3 μ1

μ1 μ1 μ2 μ3 ρ0 ρ1 ρ2

μ2 μ2 μ3 μ1 ρ2 ρ0 ρ1

μ3 μ3 μ1 μ2 ρ1 ρ2 ρ0

Examples of Permutation Groups





























































312

321

123

321

231

321

213

321

132

321

321

321

3

2

1

2

1

0















Examples of 
Permutation Groups

Group Theory



Recall 

We form the dihedral group D4  of permutations  
corresponding  to the ways that two copies of a 
square with vertices 1, 2, 3, and 4 can be placed, 
one covering the other with vertices on top of 
vertices. 

D4  is the group of symmetries of the square. 

It is also called the octic group. 

Examples of Permutation Groups



1

23

4

D4 ≤ S4

Symmetries of a Square, D4

Examples of Permutation Groups

0

1 2 3 4

1 2 3 4


 
 

 

1

1 2 3 4

2 3 4 1


 
 

 

2

1 2 3 4

3 4 1 2


 
 

 

3

1 2 3 4

4 1 2 3


 
 

 

1

1 2 3 4

2 1 4 3


 
 

 

2

1 2 3 4

4 3 2 1


 
 

 

1

1 2 3 4

1 4 3 2


 
 

 

2

1 2 3 4

3 2 1 4


 
 

 



Examples of Permutation Groups



Orbits

Group Theory



Definition 

An orbit of a permutation 
p is an equivalence class 
under the relation:

a ~ b  ⇔ b = pn(a), 

for some n in .ℤ

Orbits



Find all orbits of

Method: 

Let S be the set that the permutation works on.  

0) Start with an empty list 

1) If possible, pick an element of the S not already 
visited and apply permutation repeatedly to get 
an orbit.  

2)  Repeat step 1 until all elements of S have been 
visited.

Orbits











45132

54321




 Look at what happens to elements as a 
permutation is applied.

  

α(1)=2, α2(1)=3, α3(1)=1     {1,2,3}

α(4)=5, α2(4)=4                        {4,5}

Orbits

1 2 3 4 5

2 3 1 5 4


 
 

 



Orbits

Group Theory



Theorem 

Let p be a permutation 
of a set S.  

The following relation 
is an equivalence 
relation:

a ~ b  b =p⇔ n(a), 

for some n in .ℤ

Orbits



Proof 

1) reflexive: 

     a = p0(a)  a~a⇒
2) symmetric: 

    a~b  b = p⇒ n(a), for    
 

    some n in ℤ
 ⇒ a = p-n(b), 

     with -n in ℤ
 ⇒ b~a

Orbits



3) transitive: 

     a~b and b~c 

 ⇒ b = (a) and c = (b) , for some n1 and n2 in    

     ℤ

 ⇒ c = ((a)) , for some n1 and n2 in ℤ

 ⇒ c = (a) , with n2 + n1 in ℤ

 ⇒ a~c

Orbits



Cycles

Group Theory



Definition 

A permutation is a 
cycle if at most one of 
its orbits is nontrivial 
(has more than one 
element).

Cycles



Definition 

A cycle of length 2 is 
called a transposition.

Cycles



Example

=(1, 2, 3)(4, 5)

=(1,3)(1,2)(4,5)

Cycles











45132

54321




Composition in cycle notation

 = (1 2 3)(1 2)(3 4) 

   = (1 3 4)(2) 

   = (1 3 4)

 = (1 2)(3 4)(1 2 3)

   = (1)(2 4 3)

   = (2 4 3)

Cycles



Disjoint Cycles

Group Theory



Definition

Two permutations are 
disjoint if the sets of 
elements moved by 
the permutations are 
disjoint.

Disjoint Cycles



Symmetries of a Square, D4 ≤ S4

Disjoint Cycles

0

1 2 3 4
(1 2)(1 2)

1 2 3 4


 
  

 

1

1 2 3 4
(1 2 3 4) (1 4)(1 3)(1 2)

2 3 4 1


 
   

 

2

1 2 3 4
(1 3)(2 4)

3 4 1 2


 
  

 

3

1 2 3 4
(1 4 3 2) (1 2)(1 3)(1 4)

4 1 2 3


 
   

 



Disjoint Cycles

Symmetries of a Square, D4 ≤ S4

1

1 2 3 4
(1 2)(3 4)

2 1 4 3


 
  

 

2

1 2 3 4
(1 4)(2 3)

4 3 2 1


 
  

 

1

1 2 3 4
(2 4)

1 4 3 2


 
  

 

2

1 2 3 4
(1 3)

3 2 1 4


 
  

 



Cycle Decomposition

Group Theory



Theorem: 

Every permutation of 
a finite set is a product 
of disjoint cycles.

Cycle Decomposition



Proof: 

Let σ be a permutation.

Let B1, B2, …, Br be the 
orbits.  

Let μi be the cycle 
defined by μi (x) = σ(x) 
if x in Bi and x 
otherwise.

Then σ = μ1 μ2 … μr .

Note: Disjoint cycles 

commute.

Cycle Decomposition



Lemma 

Every cycle is a product 
of transpositions.

Proof 

Let (a1, a2, …, an) be a 
cycle, then

(a1, an) (a1, an-1) … (a1, a2) 
= (a1, a2, …, an). 

Cycle Decomposition



Theorem 

Every permutation can 
be written as a product 
of transpositions.

Proof 

Use the lemma plus the 
previous theorem.

Cycle Decomposition



Parity of Permutation

Group Theory



Definition  

The parity of a permutation 

is said to be even if it can

be expressed as the 

product of an even number 

of transpositions, and odd 

if it can be expressed as a 

product of an odd number 

of transpositions.

Parity of a Permutation



Theorem 

The parity of a 

permutation is even or 

odd, but not both.

Parity of a Permutation



Proof 

We show that for any positive integer n, parity is a 

homomorphism from Sn to the group ℤ2, where 0 

represents even, and 1 represents odd.  

These are alternate names for the equivalence classes 

2ℤ and 2ℤ+1 that make up the group ℤ2.

There are several ways to define the parity map. 

They tend to use the group {1, -1} with multiplicative

notation instead of {0, 1} with additive notation.

Parity of a Permutation



One way uses linear algebra: For the permutation π  

define a map from Rn to Rn by switching coordinates 

as follows 

             Lπ(x1, x2, …, xn) = (x π(1), xπ(2), …, xπ(n)). 
 

Then Lπ is represented by a n x n matrix Mπ whose 

rows are the corresponding permutation of the rows 

of the n x n identity matrix.  

The map that takes the permutation π to Det (Mπ) is 

a homomorphism from Sn to the multiplicative group 

{-1, 1}.

Parity of a Permutation



Another way uses the action of the permutation on 

the polynomial 

           P(x1, x2, …, xn ) = Product{(xi - xj )| i < 
j }.  

Each permutation changes the sign of P or leaves it 

alone.  

This determines the parity: change sign = odd parity, 

leave sign = even parity.

Parity of a Permutation



Alternating Group

Group Theory



Definition 

The alternating group 
on n letters consists of 
the even permutations 
in the symmetric group 
of n letters.

Alternating Group



Definition 

The alternating group 
on n letters consists of 
the even permutations 
in the symmetric group 
of n letters.

Alternating Group



Theorem 

If n≥2, then the 
collection of all 
even permutations of 

            {1, 2, …, n} 

forms a subgroup of 
order n!/2 of the 
symmetric group Sn.

Alternating Group



Alternating Group

0

1

2

1

2

3

1 2 3
(12)(12)

1 2 3

1 2 3
(1 2 3) (1 3)(1 2)

2 3 1

1 2 3
(1 3 2) (1 2)(1 3)

3 1 2

1 2 3
(2 3)

1 3 2

1 2 3
(1 3)

3 2 1

1 2 3
(1 2)

2 1 3













 
  

 

 
   

 

 
   

 

 
  

 

 
  

 

 
  

 



(1) (1 2 3) (1 3 2)

(1) (1) (1 2 3) (1 3 2)

(1 2 3) (1 2 3) (1 3 2) (1)

(1 3 2) (1 3 2) (1) (1 2 3)

Alternating Group

A3={(1), (1 2 3), (1 3 2)}



Direct Products

Group Theory



Definition 
The Cartesian product of

sets S1, …, Sn is the set of

all n-tuples (a1,···, an),     

where ai  ∊ Si for i  = 1,···, 

n.

The Cartesian  product is

denoted by either 

S1 X … X Sn or by ∏i=1
n Si.  

Direct Products



Let G 1, ···, Gn  be groups, and let us use 
multiplicative  notation  for all the group operations. 
Regarding the G as sets, we can form ∏i=1

n Gi. 
Let us show that we can make ∏i=1

n Gi into a group 
by means of a binary operation of multiplication by 
components.
 

Direct Products



Theorem

Let G1, …, Gn be groups. 

For (a1, …, an) and (b1,…, bn) in ∏i=1
n Gi, 

define (a1, …, an)(b1,…, bn) to be the element 

(a1 b1, …, an bn). 

Then ∏i=1
n Gi is a group, the direct product of the 

groups Gi , under this binary operation.

Direct Products



Proof 
Note that since ai , bi ∊ G,  and Gi is a group, we

have aibi ∊ G. 

Thus the definition of the binary operation on
∏i=1

n Gi given in the statement of the theorem

makes sense, that is, ∏i=1
n Gi is closed under the

binary operation.

Direct Products



The associate law in
∏i=1

n Gi is thrown back onto the associative law in 

each component as follows: 
(a1,···, an)[(b1,···, bn)(c1,···, cn)]

=(a1, ···, an)(b1c1,···, bncn)= (a1(b1c1),···, an(bncn))

= ((a1b1)c1,···, (anbn)cn)=(a1b1,…,anbn)(c1,…,cn)

=[(a1,…,an)(b1,…,bn)](c1,…,cn)

Direct Products



If ei is the identity element in Gi, then clearly,

with multiplication  by components, (e1,···,en) an

identity  in ∏i=1
n Gi. 

Finally,  an  inverse  of  (a1,···, an) is (a1
-1,···, an

-1); 

compute the product by components.

Hence ∏i=1
n Gi is  a group  .

Direct Products



Direct Products

Group Theory



In the event that the operation of each Gi is
commutative, we sometimes use additive
 notation in ∏i=1

n Gi,  and refer to ∏i=1
n Gi as the

direct sum  of the  groups Gi. The notation 

⨁i=1
nGi is sometimes  used in  this case in place of

∏i=1
n Gi, especially  with abelian groups with 

operation +. The direct sum of abelian groups G1,  

G2,···, Gn may be written as G1 … G⨁ ⨁ n. 

Direct Products



Proposition 

A direct product of 
abelian groups is 
abelian. 

Direct Products



Proof 

Let G1, …, Gn be abelian 
groups. For (a1, …, an) 
and (b1,…, bn) in 

∏i=1
n Gi , 

(a1, …, an)(b1,…, bn) 

=(a1 b1, …, an bn)

=(b1a1,…,bnan)

=(b1,…, bn) (a1, …, an).

Direct Products



If the Si  has ri  elements 
for i =1,···,n, then ∏i=1

n Si  
has r1…rn elements, for in 
an n-tuple, there are r1 
choices for the first 
component from S1,  and 
for each of these there 
are r2 choices for the 
next component from S2, 
 and so on.

Direct Products



Direct Products

Group Theory



Example

Consider the group ℤ2 x ℤ3,  which has 2·3=6 
elements, namely (0, 0), (0,  1), (0, 2), (l, 0), (1, 1), 
and (1, 2). We claim that ℤ2 x ℤ3 is cyclic. It is only 
necessary  to find a generator.  Let us try (1,  1).  Here 
the operations in ℤ2  and ℤ3  are written  additively,  
so we do the same in the direct product ℤ2 x ℤ3.

Direct Products



• 1(1, 1)  = (1,  1)

• 2(1.  1)  = (l,  l) + (1,  1)  = (0, 2)

• 3(1,  1)  = (1,  1) + (1,  1) + (1,  1)  = (1, 0)

• 4(1,  1)  = 3(1.  1) + (1,  1)  = (1, 0) + (1.  1)  = (0, 1)

• 5(1,  1)  = 4(1,  1) + (1,  1)  = (0,  1) + (1,  1)  = (1, 2)

• 6(1,  1)  = 5(1.  1) + (1,  1)  = (1, 2) + (1,  1)  = (0, 0)

Thus (1, 1) generates all of ℤ2 x ℤ3.  Since there is, 
up to isomorphism,  only one cyclic group structure 
of a given order, we see that ℤ2 x ℤ3 is isomorphic 
to ℤ6.

Direct Products



Example

Consider ℤ3 x ℤ3. This is a group of nine elements. 
We claim that ℤ3 x ℤ3 is not cyclic.

Since the addition is by components,  and since in ℤ3 
 every element added to itself three times gives the 
identity, the same is true in ℤ3 x ℤ3 .  Thus no 
element can generate the group, for a generator 
added to itself successively could only give the 
identity after nine summands. We have found 
another group structure of order 9. A similar 
argument shows that ℤ2 x ℤ2 is not cyclic. Thus ℤ2 x 
ℤ2 must be isomorphic to the Klein 4-group.

Direct Products



Direct Products

Group Theory



Theorem

The group ℤm x ℤn is cyclic and is isomorphic to ℤmn 
if and only if m and n are relatively prime, that is, the 
gcd of m and n is 1.

Direct Products



Proof 

Consider the cyclic subgroup of ℤm x ℤn generated 
by (1,1). The order of this cyclic subgroup is the 
smallest power of (1,1) that gives the identity (0,0). 
Here taking a power of (1,1) in our additive 
notation will involve  adding (1,1) to itself 
repeatedly.  Under addition by components, the 
first component 1 ∊ ℤm yields 0 only after m 
summands, 2m summands, and so on, and the 
second component 1 ∊ ℤn  yields 0 only after n 
summands, 2n summands,  and so on.

Direct Products



For them to yield 0 simultaneously, the number of 
summands must be a multiple of both m and n. The 
smallest number that is a multiple of both m and n 
will be mn if and only if the gcd of m and n is 1; in this 
case, (1,1)  generates a cyclic subgroup of order mn, 
which is the order of the whole group.  This shows 
that ℤm x ℤn is cyclic of order mn, and hence 
isomorphic to ℤmn if m and n are relatively prime.

Direct Products



For the converse, suppose that the gcd of m and 
n is d > 1. The mn/d is divisible by both m and n. 
Consequently, for any (r, s) in ℤmx ℤn, we have

(r,s) + ··· + (r,s) = (0,0).
          mn/d summands

Hence no element (r, s) in ℤm x ℤn can generate 
the entire group, so ℤm x ℤn is not cyclic and 
therefore not isomorphic to ℤmn.

Direct Products



Corollary

The group ∏i=1
n is cyclic 

and isomorphic to  if 
and only if the numbers 
mi for i = 1,…,  n are 
such that the gcd of any 
two of them is 1.

Direct Products



Example  

If n is written as a product 
of powers of distinct prime 
numbers, as in n=…

then ℤn is isomorphic to

x … x.

In particular, ℤ72 is 
isomorphic to ℤ8 x ℤ9.

Direct Products



Direct Products

Group Theory



We remark that changing 
the order  of the factors  
in a direct  product  yields 
 a group isomorphic to 
the original  one. The 
names  of elements have 
simply  been  changed via 
a permutation of the 
components in the n-
tuples.

Direct Products



It is straightforward to prove that the subset  of ℤ 

consisting of all integers  that are multiples of both  r 

and s is a subgroup of ℤ, and hence  is cyclic group 

generated by the  least common multiple of two 

positive integers  r and s.  

Likewise,  the set of all common multiples of n positive  

integers  r1,···, rn  is a subgroup of ℤ, and hence  is cyclic 

group generated by the  least common multiple of n 

positive integers r1,···, rn.

Direct Products



Definition

Let r1,···, rn  be positive  integers.  Their  least 

common multiple (abbreviated lcm) is the positive  

generator of the cyclic  group  of all common 

multiples of the ri,  that is, the cyclic  group of all 

integers  divisible  by each ri,  for i = 1,···, n. 

Direct Products



Theorem

Let  (a1,···, an)∊ ∏i=1
n Gi.  If ai  is  of finite  order  ri   in  

Gi,  then the order of (a1,···,an) in ∏i=1
n Gi is equal  to 

the least common multiple of all the ri.

Direct Products



Proof

This  follows  by a repetition of the argument used  
in the proof of previous Theorem. For a power  of 
(a1,···, an) to give (e1, ···,en), the power must  
simultaneously be  a multiple of r1 so that this 
power  of the first component a1 will yield e1,  a 
multiple of r2, so that this power  of the second  
component a2 will yield e2, and so on.

Direct Products



Direct Products

Group Theory



Example 

Find  the order of (8, 4, 10) in the group ℤ12 x ℤ6o x 
ℤ24.

Solution

Since the gcd of 8 and 12 is 4, we see that 8 is of 
order 3 in ℤ12. Similarly,  we  find that 4 is of order  
15  in ℤ6o  and  10  is of order  12  in ℤ24. The  lcm 
of 3,  15,  and  12 is 3·5·4 = 60, so (8, 4,10)  is of 
order  60 in the group ℤ12 x ℤ60 x ℤ24.

Direct Products



Example 

The  group  ℤ x ℤ2  is generated by the elements   
(1, 0) and  (0, 1).  More  generally,  the direct 
product of n cyclic  groups,  each  of which  is 
either ℤ or ℤm for some  positive integer m, is 
generated by then n-tuples

(1, 0,···, 0), (0, 1,···, 0),…,(0, 0,···, 1). Such  a direct  
product might  also be generated by fewer 
elements.  For example, ℤ3 x ℤ4 x ℤ35 is generated 
by the single  element  (1, 1, 1).                                    
         

Direct Products



Fundamental Theorem 
of Finitely Generated 

Abelian Groups

Group Theory



Theorem

Every finitely generated abelian group G is 
isomorphic to a direct product of cyclic groups in the 
form

x … xx ℤ x … x ℤ

where the pi  are primes, not necessarily  distinct, 
and the ri  are positive integers. The direct product  is 
unique  except for possible  rearrangement  of the 
factors; that is, the number  (Betti  number of G) of 
factors ℤ is unique  and the prime powers   are 
unique.

Fundamental Theorem of Finitely Generated 
Abelian Groups



Example

Find all abelian groups, up to isomorphism, of 
order 360. The phrase up to isomorphism 
signifies that any abelian group of order 360 
should be structurally identical (isomorphic) to 
one of the groups of order 360 exhibited.

Fundamental Theorem of Finitely Generated 
Abelian Groups



Solution

Since our groups are to be of the finite order 
360,  no factors ℤ will appear in the direct 
product shown in the statement of the 
fundamental theorem of finitely generated 
abelian groups.

First we express 360 as a product of prime 
powers 23.32.5.

Fundamental Theorem of Finitely Generated 
Abelian Groups



Then, we get as possibilities

1. ℤ2  x ℤ2 x ℤ2  x ℤ3  x ℤ3  x ℤ5

2. ℤ2  x ℤ4  x ℤ3  x ℤ3  x ℤ5

3. ℤ2  x ℤ2  x ℤ2  x ℤ9  x ℤ5

4. ℤ2 x ℤ4  x ℤ9  x ℤ5

5. ℤ8 x ℤ3  x ℤ3  x ℤ5

6. ℤ8 x ℤ9  x ℤ5 

Thus there are six different abelian groups (up 
to isomorphism)  of order 360.

Fundamental Theorem of Finitely Generated 
Abelian Groups



Applications

Group Theory



Definition

A group G is decomposable if it is isomorphic to 
a direct product of two proper nontrivial 
subgroups. Otherwise G is indecomposable.

Applications



Theorem

The finite indecomposable  abelian  groups are 
exactly the cyclic groups with order a power of a 
prime.

Applications



Proof

Let G be a finite indecomposable abelian group. 
Then, G is isomorphic to a direct product of 
cyclic groups of prime power order.  Since G is 
indecomposable, this direct product must 
consist of just  one cyclic group whose order is a 
power of a prime number.

Conversely, let p be a prime. Then ℤp'  is 
indecomposable,  for if ℤp' were isomorphic to  
x  , where i + j = r, then every element would 
have an order at most pmax{i,j}<pr.

Applications



Applications

Group Theory



Theorem

If m divides the order of a finite abelian group 
G, then G has a subgroup of order m.

Applications



Proof

We can think of G as being

x … xwhere  not all primes  pi need be distinct.  
Since … is the order  of G, then m must be of the 
form … , where 0≤ si ≤ri. 

 generates a cyclic  subgroup  of   of order equal  to 
the quotient of  by the gcd of  and . But the gcd of  
and  is . Thus  generates  a cyclic  subgroup  of order 
[ ]/[]= .

Applications



Recalling that <a> denotes the cyclic subgroup 
generated by a, we see that

< > x … x <  >

is the required subgroup of order m.

Applications



Applications

Group Theory



Theorem

If m is a square free integer,  that is, m is not 
divisible  by the square  of any prime,  then

every abelian  group  of order m is cyclic.

Applications



Proof

Let G be an abelian  group of square free order 
m. Then,  G is isomorphic to

x … x,

where m= … . Since  m is square free,  we must  
have all ri  = 1   and all pi  distinct  primes.  Then, 
G is isomorphic to  , so G is cyclic.

Applications



Cosets

Group Theory



Definition

Let H be a subgroup of a group G, which may be of 
finite

or infinite order and a in G.

The left coset of H containing a is the set 

aH = {ah | h in H}

The right coset of H containing a is the set

Ha = {ha | h in H}

In additive groups, we use a+H and H+a for left and 
right cosets, respectively.

Cosets



Example

We exhibit the left cosets and the right cosets of the 

subgroup 3ℤ of ℤ.

0+3ℤ= 3ℤ ={…, -6, -3, 0, 3, 6, … }

1+3ℤ={…, -5, -2, 1, 4, 7, … }

2+3ℤ={…, -4, -1, 2, 5, 8, … } 

ℤ= 3ℤ⊔1+3ℤ ⊔ 2+3ℤ 

So, these three left cosets constitute the 
partition of ℤ into left cosets of 3ℤ.

Cosets



Example

3ℤ+0= 3ℤ ={…, -6, -3, 0, 3, 6, … }=0+3ℤ

3ℤ+1={…, -5, -2, 1, 4, 7, … }=1+3ℤ

3ℤ+2={…, -4, -1, 2, 5, 8, … }=2+3ℤ 

ℤ= 3ℤ⊔3ℤ+1 ⊔ 3ℤ+2 

So, the partition of ℤ into right cosets is the 
same.

Cosets



Cosets

Group Theory



Topic No. 67

Group Theory



Partitions of Groups

Group Theory



Let H be a subgroup of a

group G, which may be of 

finite or infinite order.

We exhibit two partitions

of G by defining two 

equivalence relations, ∼L

and ∼R on G.

Partitions of Groups



Theorem

Let H be a subgroup of a group G. 

Let the relation ∼L be defined on G by a ∼L b iff a-

1b H.∊  

Let ∼R be defined by a ∼R b iff ab-1 H.∊

Then ∼L and ∼R are both equivalence relations on G.  

Partitions of Groups



Proof

Reflexive

Let a G. ∊

Then a-1a = e  H ∊

since H is a subgroup. 

Thus a∼La.

Partitions of Groups



Symmetric

Suppose a∼Lb. 

Then a-1b H.∊

Since H is a subgroup,

(a-1b)-1=b-1a H. ∊

It implies that b ∼L a.

Partitions of Groups



Transitive

Let a∼Lb and b∼Lc . 

Then a-1b H and b∊ -1c H.∊

Since H is a subgroup,

(a-1b)(b-1c)=a-1c H. ∊

So, a ∼L c.

Partitions of Groups



 a is called the coset 
representative of aH.

 Similarly, aHa-1 ={aha-1 | 
h in H}

Partitions of Groups
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Examples of Cosets

Group Theory



Vectors under addition are a group:

(a,b) + (c,d) = (a+c,b+d)∊ℝ2

Identity is (0,0) ∊ℝ2

Inverse of (a,b) is (-a,-b) in ℝ2

((a,b)+(c,d))+(e,f)=(a+c,b+d)+(e,f)=((a+c)+e,(b+d)
+f)=(a+(c+e),b+(d+f))=(a,b)+(c+e,d+f)=(a,b)+((c,d)+
(e,f)) 

H = {(2t,t) | t∊ℝ} is a subgroup of ℝ2.  

Proof:  (2a,a) - (2b,b) = (2(a-b),a-b) H∊

Examples of Cosets



Visualizing H={(2t,t) | t∊ℝ}

Let x = 2t, y = t

Eliminate t: 

y = x/2
H

Examples of Cosets



Cosets of H={(2t,t) | t ∊ ℝ} 

(a,b) + H = {(a+2t,b+t)}

Set x = a+2t, y = b+t and eliminate t:

y = b + (x-a)/2

The subgroup H is the line y = x/2.

The cosets are lines parallel to y = x/2 !

Examples of Cosets



H and some cosets

H

(1,0) + H

(–3,0)+H

(0,1) + H

Examples of Cosets



Examples of Cosets
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Examples of Cosets

Group Theory



Left Cosets of <(23)> in S3

Let H = <(23)> {, (23)}

   H = {, (23)}=H

(123)H = {(123), (12)}

(132)H = {(132), (13)}

S3= H ⊔ (123)H ⊔ (132)H 

Examples of Cosets



Right Cosets of <(23)> in S3

Let H = <(23)> {, (23)}

H = {, (23)}=H

H(123) = {(123), (13)}

H(132) = {(132), (12)}

S3= H ⊔ H(123) ⊔ H(132)

Examples of Cosets



Left Cosets of <(123)> in A4

Let H = <(123)> {, (123), (132)}

H = {, (123), (132)}

(12)(34)H = {(12)(34), (243), (143)}

(13)(24)H = {(13)(24), (142), (234)}

(14)(23)H = {(14)(23), (134), (124)}

Examples of Cosets



Examples of Cosets

Group Theory
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Properties of Cosets

Group Theory



Proposition

Let H be a subgroup of G, 
and a,b in G.

1.  a belongs to aH

2.  aH = H iff a belongs to  
  

      H

Properties of Cosets
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Properties of Cosets

Group Theory



Proposition

Let H be a subgroup of G, and a,b in G.

3.  aH = bH iff a belongs to bH

4. aH and bH are either equal or disjoint

5.  aH = bH iff a-1b belongs to H

Properties of Cosets



Properties of Cosets



4. aH and bH are either disjoint or equal. 

Proof:  Suppose aH and bH are not disjoint.  Say x is in 
the intersection of aH and bH.

Then aH = xH = bH by (3).  

Consequently, aH and bH are either disjoint or equal, 

as required.

Properties of Cosets



Properties of Cosets
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Properties of Cosets

Group Theory



Proposition

Let H be a subgroup of G, 
and a in G.

6.  |aH| = |bH|

7.  aH = Ha iff H = aHa-1 

8.  aH ≤ G iff a belongs to H

Properties of Cosets



6.   |aH| = |bH|

Proof:  Let ø: aH → bH be given by

 ø(ah) = bh for all h in H.

We claim ø is one to one and onto.

If ø(ah1) = ø(ah2), then bh1 = bh2

so h1 = h2.  Therefore ah1 = ah2.

Hence ø is one-to-one.  

ø is clearly onto.  

It follows that |aH| = |bH| as required.

Properties of Cosets
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Properties of Cosets

Group Theory



Lagrange’s Theorem

Group Theory



Lagrange’s Theorem

Statement 

If G is a finite group and H 
is a subgroup of G, then |
H| divides |G|.

2

Lagrange’s Theorem



Proof 

The right cosets of H in G form a partition of G, so G 

can be written  as a disjoint union

G = Ha1  Ha∪ 2  ·· ·  Ha∪ ∪ k 

for a finite set of elements a1, a2, . . . , ak  G.∈

The number of elements in each coset is |H|. 

Hence, counting all the elements in the disjoint 

union above, we see that |G| = k|H|. 

Therefore, |H| divides |G|.
3

Lagrange’s Theorem



Subgroups of ℤ12

|ℤ12|=12

The divisors of 12 are 
1, 2, 3, 4, 6 and 12.

The subgroups of ℤ12 

are

H1={[0]}

H2={[0],[6]}

H3={[0],[4],[8]}

H4={[0],[3],[6],[9]}

H5={[0],[2],[4],[6],[8],
[10]}

 

4

Lagrange’s Theorem



Applications of 
Lagrange’s Theorem

Group Theory



Corollary 

Every group of prime 
order is cyclic.

Applications of Lagrange’s Theorem



Proof 

Let G be of prime order p, and let a be an element of 
G different  from the identity. 

Then the cyclic subgroup <a> of G generated by a 
has at least two elements, a and e. 

But the order m≥2 of <a> must  divide  the prime  p.

Thus  we must  have m = p and <a>=G, so G is cyclic.

Applications of Lagrange’s Theorem



Since every cyclic  
group  of order  p is 
isomorphic to ℤp, we 
see that there is only 
one group  structure,  
up to isomorphism,  of 
a given prime  order p. 

Applications of Lagrange’s Theorem



Theorem 

The order  of an 
element  of a finite 
group  divides  the 
order of the group.

Applications of Lagrange’s Theorem



Proof 

Remembering that the 
order of an element  is 
the same as the order 
of the cyclic subgroup 
generated by the 
element,  we see that 
this theorem  follows 
directly  from 
Lagrange’s Theorem.

Applications of Lagrange’s Theorem



Indices of Subgroups

Group Theory



Definition

Let H be a subgroup  of 
a group  G. 

The number  of left (or 
right) cosets of H in G 
is the index (G:H) of H 
in G.

Indices of Subgroups



The index (G:H) just 
defined  may be finite or 
infinite. 

If G is finite, then 
obviously (G:H) is finite 
and (G:H)=IGI/IHI, since 
every coset of H contains 
 IHI elements. 

Indices of Subgroups



Example 

μ=(1,2,4,5)(3,6)

μ2=(2,5)(1,4)

μ3=(1,5,4,2)(3,6)

μ4=ε

<μ> < S6

(S6:<μ>)=|S6|/|< μ 
>|

=6!/
4=6.5.3.2=180.

Indices of Subgroups



Example 

Find the right cosets of

 H = {e, g4, g8} in   

C12 = {e, g, g2, . . . , g11}.

15

Indices of Subgroups



Solution 

H={e, g4, g8} itself is one coset. 

Another is Hg = {g, g5, g9}. 

These two cosets have not exhausted all the 
elements of C12, so pick an element, say g2, which is 
not in H or Hg. 

A third coset is Hg2 = {g2, g6, g10} and a fourth is 

Hg3 ={g3, g7, g11}.

Since C12 = H  Hg  Hg∪ ∪ 2  Hg∪ 3, these are all the 

cosets. Therefore, (C12:H)=12/3=4.
16

Indices of Subgroups



Theorem

Suppose H and K  are  
subgroups  of a group  
G such that K ≤ H ≤ G,  
and  suppose (H:K) and 
(G:H) are both finite. 
Then (G:K) is finite, and 
(G:K)=(G:H)(H:K).

Indices of Subgroups



Converse of Lagrange’s 
Theorem

Group Theory



Lagrange’s Theorem 
shows  that  if there  is 
a subgroup H of a finite 
 group  G, then  the 
order of H divides  the 
order of G. 

Converse of Lagrange’s Theorem



Is the converse  true? 

That is, if G is a group 
of order n, and m 
divides n, is there 
always a subgroup of 
order m? 

We will see next that 
this is true for abelian  
groups.  

Converse of Lagrange’s Theorem



However,  A4 can be 
shown to have no 
subgroup  of order 6, 
which  gives a 
counterexample for 
nonabelian groups.

Converse of Lagrange’s Theorem



A4 = {(1), (1, 2)(3, 4), 

(1, 3)(2, 4),(1, 4)(2, 3), 

(1, 2, 3), (1, 3, 2), 

(1, 3, 4), (1, 4, 3), 

(1, 2, 4),(1, 4, 2), 

(2, 3, 4), (2, 4, 3)}

Converse of Lagrange’s Theorem



An Interesting Example

Group Theory



Example 

A translation of the plane

R2 in the direction of the

vector (a, b) is a function

f :R2 → R2 defined by 

f (x, y) = (x + a, y + b). 

2

An Interesting Example



The composition of this 
translation with a 
translation g in the 
direction of (c, d) is the 
function

f g:R2 → R2, where

f g(x, y) = f (g(x, y))

= f (x + c, y + d)

= (x + c + a, y + d + b).

This is a translation in the 

direction of (c + a, d + b). 

An Interesting Example



It can easily be verified

that the set of all

translations in R2 forms

an abelian group,  under

composition.

 

4

An Interesting Example



A translation of the plane

R2 in the direction of the

vector (0, 0) is an identity

function 1R
2:R2 → R2 

defined by 

1R
2(x, y)=(x+0, y+0)=(x, y). 

5

An Interesting Example



The inverse of the 
translation of the plane

R2 in the direction of the

vector (a, b) is an inverse 

function f -1 :R2 → R2 
defined by 

f -1 (x, y) = (x - a, y - b) 

such that

f f -1(x, y)=(x, y)=f-1 f(x, y).

6

An Interesting Example



The inverse of the 

translation in the

direction (a, b) is the

translation in the

opposite direction

(−a,−b).

7

An Interesting Example



Homomorphism of 
Groups

Group Theory



Structure-Relating Maps

Let G and G' be groups. 
We are interested in 
maps from G to G' that 
relate the group structure 
 of G to the group  
structure  of G'.  

Such  a map often  gives 
us information about one 
of the groups from 
known structural 
properties of the other. 

2

Homomorphism of Groups



Structure-Relating Maps

An isomorphism ϕ: G → 
G', if one exists, is an 
example of such a 
structure-relating map. If 
we know all about the 
group G and know that ϕ  
is an isomorphism,  we 
immediately know all 
about the group structure 
of G', for it is structurally 
just a copy of G. 

3

Homomorphism of Groups



Structure-Relating Maps

We now consider more general structure-relating 
maps, weakening the conditions from those of an 
isomorphism by no longer requiring that the maps 
be one to one and onto. We see, those conditions 
are the purely set-theoretic portion of our definition 
of an isomorphism, and have nothing to do with the 
binary operations of G and of G'.

4

Homomorphism of Groups



Definition 

If (G, ・ ) and (H, ) are 
two groups, the function 
f :G → H is called a group 
homomorphism if

       f(a・ b)=f(a)f(b) 

for all a, b  G.∈

5

Homomorphism of Groups



 We often use the 
notation 

   f : (G, ・ ) → (H, ) 

   for such a homorphism. 

 Many authors use 
morphism instead of 
homomorphism.

6

Homomorphism of Groups



Definition

A group isomorphism is a 
bijective group 
homomorphism. 

If there is an isomorphism 
between the groups (G,
・ ) and (H,), we say that 

(G,・ ) and (H,) are 
isomorphic and write 

(G,・ )  (H,  ).

7

Homomorphism of Groups



Example

Let ϕ: G → G' be a group homomorphism  of G onto 
G'. We claim that if G is abelian, then  G'  must be 
abelian.  Let a', b' ∊ G'.  We must  show that a' b' = 
b' a'. Since ϕ  is onto  G',  there exist  a, b ∊ G such 
that ϕ(a)= a' and ϕ(b)  = b', Since G is abelian,

we have ab=  ba. Using homomorphism property,  
we have a'b'  = ϕ(a) ϕ(b) = ϕ(ab)= ϕ(ba)  =

ϕ(b) ϕ(a) = b' a', so G' is indeed abelian. 

8

Homomorphism of Groups



Examples of Group

Homomorphisms

Group Theory



Example

The function  f : Z → Zn , 

defined by f (x) = [x] is 

the group 

homomorphism, 

for if i, j  ℤ, then 

f(i+j)=[i+j]

=[i]+n[j]

=f(i)+nf(j).
10

Homomorphism of Groups



Example

Let be R the group of all real numbers with 

operation addition, and let R+ be the group of all 

positive real numbers with operation multiplication. 

The function f : R → R+ , defined by f (x) = ex , is a 

homomorphism, for if x, y  R, then 

f(x + y) = ex+y = ex ey = f (x) f (y). 

11

Examples of Group Homomorphisms



Now f is an isomorphism, for its inverse function 

g :R+ → R is ln x. 

Therefore, the additive group  R is isomorphic to the 
multiplicative group  R+ . 

Note that the inverse function g is also an 
isomorphism: 

g(x y) = ln(x y) = lnx + lny = g(x) + g(y). 

12
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Examples of Group

Homomorphisms

Group Theory



Example

Let Sn be the symmetric group on n letters, and let : 
ϕ: Sn →  ℤ2 be defined by

ϕ(σ)  = 0    if σ  is  an even permutation, 

           = 1   if σ is an odd permutation.

Show that ϕ is a homomorphism.

14
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Solution

We must show that ϕ(σ, µ) = ϕ(σ) + ϕ(µ) for all 
choices of σ, µ ∊ Sn. Note that the operation on the 
right-hand side of this equation is written additively 
since it takes place in the group ℤ2. Verifying this 
equation amounts to checking just four cases:

 σ odd and µ odd, 

 σ  odd and µ  even, 

 σ  even and µ odd, 

 σ  even and µ even.
15
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Checking the first case, if σ and µ can both be 
written as a product of an odd number of 
transpositions, then σµ can be written as the 
product of an even number of transpositions. Thus 
ϕ(σ, µ) = 0 and ϕ(σ) + ϕ(µ)  = 1  +  1   = 0 in ℤ2. 
The other cases can be checked similarly. 

16

Examples of Group Homomorphisms



Properties of

Homomorphisms

Group Theory



Proposition 

Let ϕ :G → H be a 
group morphism, and 
let eG and eH be the 
identities of G and H, 
respectively. 

Then

 (i) ϕ (eG) = eH .

 (ii) ϕ (a−1) = ϕ (a)−1 for 
all a  G.∈

18
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Proof 

(i) Since ϕ is a morphism, 

ϕ (eG) ϕ (eG) 

= ϕ (eG eG) 

= ϕ (eG) 

= ϕ (eG)eH 

Hence (i) follows by 
cancellation in H.

19
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Proof

(ii) ϕ (a) ϕ (a−1) 

= ϕ (a  a−1) 

= ϕ (eG) 

= eH by (i). 

Hence ϕ (a−1) is the 
unique inverse of ϕ (a); 
that is ϕ (a−1) = ϕ (a)−1.

20

Theorems on Group Homomorphisms



Properties of

Homomorphisms

Group Theory



We tum to some 
structural features  of G 
and G' that are 
preserved by a 
homomorphism

ϕ: G → G'.  

First  we review  set-
theoretic definitions. 

22
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Definition

Let ϕ be a mapping  of 
a set X into a set Y, and 
let A ⊆ X and B ⊆ Y. 
The image ϕ[A] of A in 
Y under ϕ is {ϕ(a) |
a∊A}. The set ϕ[X] is 
the range of ϕ. The 
inverse image ϕ-1[B] of 
B in X is  {x∊X|
ϕ(x)∊B}.

23
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Theorem

Let ϕ be a 
homomorphism of a 
group  G into a group  G'.

1. If H  is a subgroup of 
G, then ϕ[H] is a 
subgroup of G'.

2. If K' is a subgroup of 
G', then ϕ-1[K'] is a 
subgroup of G.

24
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Proof

(1) Let H  be a subgroup  of G, and let ϕ(a)  and 
ϕ(b) 

be any two elements in ϕ[H]. Then ϕ(a) ϕ(b)  = 

ϕ(ab), so we see that ϕ(a) ϕ(b) ∊ ϕ[H]; thus, ϕ[H] 

is closed under the operation of G'. The fact that

ϕ(eG) =  and ϕ (a−1) = ϕ (a)−1 completes the 

proof that ϕ[H] is a subgroup of G’.

 
25
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Proof

(2) Let K' be a subgroup of G'. Suppose a and b are 

in ϕ-1 [K']. Then ϕ(a)ϕ(b)∊K' since K' is a subgroup. 

The equation ϕ(ab)  = ϕ(a) ϕ(b) shows that 

ab∊ϕ-1 [K']. Thus ϕ-1[K'] is closed under the binary 
operation in G. 

26
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Also, K' must contain the  identity  element = ϕ(eG),  
so eG ∊ ϕ-1[K'].  If a ∊ ϕ-1[K'],  then

ϕ(a) ∊ K',  so ϕ(a)-1 ∊ K'.  But ϕ(a)-1 = ϕ(a-1), so we 
must have a-1 ∊ ϕ-1[K'].

Hence ϕ-1[K'] is a subgroup of G. 

27

Properties of Homomorphisms



Properties of

Homomorphisms

Group Theory



Theorem: Let h be a homomorphism from a group G 

into a group G’.  Let K be the kernel of h.  Then

a K = {x in G | h(x) = h(a)} = h -1[{h(a)}]

and also

 K a = {x in G | h(x) = h(a)} = h -1[{h(a)}]

Properties of Homomorphisms



Proof  

h -1[{h(a)}] = {x in G | h(x) = h(a)}  directly from the 

definition of inverse image.

Now we show that: a K = {x in G | h(x) = h(a)} :

x in a K ⇔ x = a k, for some k in K

⇔ h(x) = h(a k) = h(a) h(k) = h(a) , for some k in K

⇔ h(x) = h(a) 

Thus,       a K = {x in G | h(x) = h(a)}.

Likewise,   K a = {x in G | h(x) = h(a)}.

Properties of Homomorphisms



Suppose: h: X  Y is any map of sets.  Then h 
defines an equivalence relation ~h on X by:

x ~h y  h(x) = h(y)⇔
The previous theorem says that when h is a homomorphism 
of groups then the cosets (left or right) of the kernel of h are 
the equivalence classes of this equivalence relation.

Properties of Homomorphisms



Properties of

Homomorphisms

Group Theory



Definition

If ϕ: G → G' is a group morphism, the kernel of ϕ , 
denoted by Ker ϕ, is defined to be the set of 
elements of G that are mapped by f to the identity of 
G'. That is, Ker f ={g  G|f (g) = e'∈   }.

6

Properties of Homomorphisms



Corollary 

Let ϕ: G → G' be a group morphism. Then, ϕ is 
injective if and only if Ker ϕ = {e}.

7

Properties of Homomorphisms



Proof 

If Ker(ϕ) =  {e}, then for every a ∊ G, the elements 
mapped into ϕ(a) are precisely the elements of the 
left coset a { e}  = {a}, which shows that ϕ is one to 
one.

Conversely, suppose ϕ is one to one. Now, we know 
that ϕ(e)=e', the identity element of G'. Since ϕ is 
one to one, we see that e is the only element 
mapped into e' by ϕ, so Ker(ϕ)=  {e}.

8
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Definition 

To Show ϕ: G → G' is 
an Isomorphism

Step 1   Show ϕ is a 
homomorphism. 

Step 2   Show Ker(ϕ)=  
{e}.

Step 3   Show ϕ maps G 
onto G'.

9
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Normal Subgroups

Group Theory



Normal Subgrops

Let G be a group with subgroup H. The right cosets of 
H in G are equivalence  classes under the relation a ≡ 
b mod H, defined by ab−1  H. We can also define the ∈
relation L on G so that a L b if and only if b−1a  H. ∈
This relation, L, is an equivalence relation, and the 
equivalence class containing a is the left coset aH = 
{ah|h  H}. As the following example shows, the left ∈
coset of an element does not necessarily equal the 
right coset.

11

Normal Subgroups



Example 

Find the left and right 
cosets of H = A3 and K = 
{(1), (12)} in S3.
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Normal Subgroups



Solution 

We calculated the right cosets of H = A3.

Right Cosets  

    H  = {(1), (123), (132)}; H(12) = {(12), (13), (23)} 

Left Cosets

     H = {(1), (123), (132}; (12)H = {(12), (23), (13)}

In this case, the left and right cosets of H are the 

same.
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Normal Subgroups



However, the left and right cosets of K are not all the 
same.

Right Cosets 

      K = {(1), (12)} ; K(13) = {(13), (132)} ; K(23) = {(23), 
(123)} 

Left Cosets

       K = {(1), (12)};(23)K = {(23), (132)}; (13)K = {(13), 
(123)} 

 14
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Normal Subgroups

Group Theory



Definition  

A subgroup H of a 

group G is called a 

normal subgroup of G if 

g−1hg  H for all g  G ∈ ∈
and h  H.∈

16

Normal Subgroups



Proposition

Hg = gH, for all g  G, if ∈
and only if H is a normal 

subgroup of G.

17

Normal Subgroups



Proof 

Suppose that Hg = gH. 

Then, for any element h  ∈
H, hg  Hg = gH. ∈

Hence hg = gh1 for some 

h1  H and ∈

g−1hg = g−1gh1 = h1  H. ∈

Therefore, H is a normal 

subgroup.

    18

Normal Subgroups



Conversely, if H is normal, let hg  Hg and ∈

g−1hg = h1  H. ∈

Then hg = gh1  gH and Hg  gH. ∈ ⊆

Also, ghg−1 = (g−1)−1hg−1 = h2  H, since H is ∈

normal, so gh = h2g  Hg. Hence, gH  Hg, ∈ ⊆

and so Hg = gH.

19

Normal Subgroups



Theorem on Normal 
Subgroup

Group Theory



If N is a normal 

subgroup of a group G, 

the left cosets of N in G 

are the same as the 

right cosets of N in G, so 

there will be no 

ambiguity in just talking 

about the cosets of N in 

G.

21
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Theorem 

If N is a normal subgroup 

of (G, ·), the set of cosets 

G/N = {Ng|g  G} forms ∈
a 

group (G/N, ·), where the 

operation is defined by 

(Ng1) · (Ng2) = N(g1 · g2). 
This group is called the 
quotient group or factor 
group of G by N. 22

Theorem on Normal Subgroup



Proof. The operation of multiplying two cosets, Ng1 
and Ng2, is defined in terms of particular elements, 
g1 and g2, of the cosets. For this operation to make 
sense, we have to verify that, if we choose different 
elements, h1 and h2, in the same cosets, the 
product coset N(h1 · h2) is the same as 

N(g1 · g2). In other words, we have to show that 
multiplication of cosets is well defined. 

23
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Since h1 is in the same coset as g1, we have 

h1 ≡ g1 mod N. Similarly, h2 ≡ g2 mod N. 

We show that Nh1h2 = Ng1g2. 

We have h1g 1
−1  = n1  N and h∈ 2g 2

−1
  = n2  N, so ∈

h1h2(g1g2)
−1 = h1h2g 2

−1g 1
−1 =  n1g1n2g2g2 

−1 g 1
−1 = 

n1g1n2g 1
−1. 

Now N is a normal subgroup, so g1n2g 1
−1

  N and ∈
n1g1n2g 1

−1  N. Hence h∈ 1h2 ≡ g1g2 mod N and 

Nh1h2 = Ng1g2. 

Therefore, the operation is well defined.

Theorem on Normal Subgroup



• The operation is associative because (Ng1 · Ng2) · 
Ng3 = N(g1g2) · Ng3 = N(g1g2)g3 and also Ng1 · (Ng2 · 
Ng3) = Ng1 · N(g2g3) = Ng1(g2g3) = N(g1g2)g3.

• Since Ng · Ne = Nge = Ng and Ne · Ng = Ng, the 
identity is Ne = N. 

• The inverse of Ng is Ng−1 because Ng · Ng−1 = N(g · 
g−1) = Ne = N and also Ng−1 · Ng = N.

• Hence (G/N, ·) is a group.

25
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Example on Normal 
Subgroup

Group Theory



Example 

(Zn, +) is the quotient 
group of (Z,+) by the 
subgroup 

nZ =  {nz|z  ∈ Z}.

27

Example on Normal Subgroup



Solution 

Since (Z,+) is abelian, every subgroup is normal. The 
set nZ can be verified to be a subgroup, and the 
relationship a ≡ b mod nZ is equivalent to a − b  n∈ Z 
and to n|a − b. Hence a ≡ b mod nZ is the same 
relation as a ≡ b mod n. Therefore, Zn is the quotient 
group Z/nZ, where the operation on congruence 
classes is defined by [a] + [b] = [a + b]. 

  

28
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(Zn,+) is a cyclic group 

with 1 as a generator.

When there is no 

confusion, we write the 

elements of Zn as 0, 1, 
2, 3, . . . , n − 1 instead 

of [0], [1], [2], [3], . . . , 

[n − 1].

29
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Morphism Theorem for 
Groups

Group Theory



Theorem 

Let K be the kernel of the 
group morphism 

f :G → H. Then G/K is 
isomorphic to the image 
of f, and  the isomorphism

         ψ: G/K → Im f   

is defined by   

ψ(Kg) = f(g).

31

Morphism Theorem for Groups



This result is also known as the first isomorphism 
theorem.

Proof. The function ψ is defined on a coset by using 
one particular element in the coset, so we have to 
check that ψ is well defined; 

that is, it does not matter which element we use. 

32

Morphism Theorem for Groups



ψ: G/K → Im f, ψ(Kg)=f(g).

If Kg’=Kg, then g’≡g mod K

so g’g−1 = k  K = Ker f. ∈
Hence g’=kg and so

f(g’) = f(kg) 

= f(k)f(g) 

= eHf(g) = f(g).

Thus ψ is well defined on 

cosets.

33

Morphism Theorem for Groups



The function ψ is a  
morphism because

ψ(Kg1Kg2) 

= ψ(Kg1g2) 

= f (g1g2) 

= f (g1)f (g2) 

= ψ(Kg1)ψ(Kg2).

34

Morphism Theorem for Groups



If ψ(Kg) = eH, then 

f (g) = eH and g  K.∈

Hence the only element

in the  kernel of ψ is the

identity coset K, and 

ψ is injective. 

35

Morphism Theorem for Groups



Finally, Im ψ = Im f, that is,

ψ-1(f(g))=Kg , by the

definition of ψ. 

Therefore, ψ is the

required isomorphism

between G/K and Im f.

36
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Application of 
Morphism Theorem

Group Theory



Example 

Show that the quotient 
group R/Z is 
isomorphic to the circle 
group 

W = {eiθ ∊ C | θ ∊ R }.

38

Application of Morphism Theorem



Solution 

The set W= {eiθ ∊ C | θ ∊ R } consists of points on

the circle of complex numbers of unit modulus, and 

forms a group under multiplication. 

Define the function f : R → W by f (x) = e2πix. 

This is a morphism from (R,+) to  (W, ·) because

f (x + y) = e2πi(x+y) 

= e2πix · e2πiy 

= f (x) · f (y).
39

Application of Morphism Theorem



The morphism f : R → W 

is clearly surjective, 

and its kernel is                    
 

{x  ∈ R|e2πix = 1} = Z.

Therefore, the morphism

theorem implies that 

R/Z   W.

40
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Normality of Kernel of 
a Homomorphism

Group Theory



Right Cosets

Let (G, ·) be a group 
with subgroup H. For a, 
b  G, we say that a is∈  
congruent to b modulo 
H, and write a ≡ b mod 
H if and only if ab−1  H.∈

2

Normality of Kernel of a Homomorphism



Proposition 

The relation a ≡ b mod H 
is an equivalence 
relation on G. 

The equivalence class 
containing a can be 
written in the form Ha = 
{ha|h  H}, and it is ∈
called a right coset of H 
in G. The element a is 
called a representative 
of the coset Ha.

3

Normality of Kernel of a Homomorphism



Theorem 

Let  be a 
homomorphism 
function from group 

(G, *)  to group (G‘,.). 
Then, (Ker,*) is a 
normal subgroup of 
(G,*).

Normality of Kernel of a Homomorphism



Proof
i) Ker is a subgroup of G 
a,bKer, (a)=eG‘, 
(b)=eG‘.
Then, (a*b)=(a) 
(b)=eG‘.

Therefore, a*bKer.
Inverse element: 
aKer, (a)=eG‘. 
Then, 
(a-1)=(a)-1 =eG‘  

Therefore, a-1Ker.

Normality of Kernel of a Homomorphism



ii) gG,aKer, 
(a)=eG‘. Then,
(g-1*a*g)
= (g-1) (a)  (g)
=  (g)-1 eG‘  (g)

= eG‘

Therefore,
g-1*a*gKer.

Normality of Kernel of a Homomorphism



Example of Normal 
Group

Group Theory



Definition

A subgroup H of a group 
is a normal subgroup if 
gH=Hg for gG.

Example of Normal Group



Example 

 Any subgroups of Abelian group are normal 
subgroups

 S3={(1),(1,2,3), (1,3,2), (2,3), (1,3), (1,2)}. 

  H1={(1), (2,3)}; H2={(1), (1,3)}; H3={(1), (1,2)};

 (1,3)H1={(1,3),(1,2)}        H1(1,3)={(1,3),(1,2)}

 (1,2,3)H1={(1,2,3),(1,2)}   H1(1,2,3)={(1,2,3),(1,3)}

Example of Normal Group



 H4={(1), (1,2,3), (1,3,2)} 
are subgroups of S3. 

 H4 is a normal subgroup.

Example of Normal Group



(1)Hg=gH, it does not 
imply hg=gh.

(2) If Hg=gH, then there 
exists h'H such that 
hg=gh' for hH. 

Example of Normal Group



 Let H be a subgroup of a group G.  When is 
(a H) (b H) = a b H?

 This is true for abelian groups, but not always when G is 
nonabelian.

 Consider S3: Let H = {ρ0, μ1}.  The left cosets are 

{ρ0, μ1}, {ρ1, μ3}, {ρ2, μ2}.  

If we multiply the first two together, then 
{ρ0, μ1}, {ρ1, μ3} = {ρ0 ρ1, ρ0 μ3, μ 1 ρ1, μ 1 μ3}

= {ρ1, μ3, μ2, ρ 2}

This has four distinct elements, not two!

Example of Normal Group



Factor Group

Group Theory



Definition 

Let (H,*) be a normal 
subgroup of the group 
(G,*). (G/H,) is called 
quotient group, where the 
operation  is defined on 
G/H by 

Hg1Hg2= H(g1*g2). 

If G is a finite group, then 
G/H is also a finite group, 
and |G/H|=|G|/|H|. 

Factor Group



• The product of two sets is define as follow

   SS’ = {xx’xS and x’S}

• {aHaG, H is normal} is a group, denote by G/H 
and called it factor groups of G.

• A mapping f: GG/H is a homomorphism, and call 
it canonical homomorphism. 

Factor Group



G G/H

f

H
H

aH aH

Factor Group



Consider S3: Let H = {ρ0, ρ1 , ρ2}.  The left cosets are 

 {ρ0, ρ1 , ρ2}, {μ1, μ2 , μ3}

If we multiply the first two together, then 
 {ρ0, ρ1 , ρ2} {μ1, μ2, μ3} = {ρ0 μ1, ρ0 μ2, ρ0 μ3, ρ1 μ1, ρ1 μ2, ρ1 μ3, ρ2 μ1, ρ2 
μ2, ρ2 μ3} = {μ1, μ2, μ3, μ3, μ1, μ2, μ2, μ3, μ1}  = {μ1, μ2, μ3}

This is one of the cosets.  Likewise, 
{ρ0, ρ1 , ρ2} {ρ0, ρ1 , ρ2} = {ρ0, ρ1 , ρ2} 

{μ1, μ2 , μ3}{ρ0, ρ1 , ρ2} = {μ1, μ2 , μ3}

{μ1, μ2 , μ3 }{μ1, μ2 , μ3} = {ρ0, ρ1 , ρ2} 

Note that the cosets of  {ρ0, ρ1 , ρ2} with this binary operation 

form a group isomorphic to ℤ2.

Factor Group



Note that there is a 
natural map from S3 to 

{{ρ0, ρ1 , ρ2}, {μ1, μ2 , μ3}} 
that takes any element to 
the coset that contains it. 
 This gives a 
homomorphism called 
the cannonical 
homomorphism.

Factor Group



Coset Multiplication 
and Normality

Group Theory



Theorem 

Let H be a subgroup of a 

group G.  

Then H is normal if and 

only if 

(a H )( b H) = (a b) H, 

for all a, b in G

Coset Multiplication and Normality



Proof 

Suppose  

(a H )( b H) = (a b) H, 

for all a, b in G. 

We show that aH = H a, 

for all a in H.

We do this by showing: 

a H  H a and Ha aH, 

for all a in G.

Coset Multiplication and Normality



a H  H a: First observe that  aHa-1 (aH)(a-1H)

=(aa-1)H = H. 

Let  x be in a H.  Then x = a h, for some h in H.  Then 

x a-1 = a h a-1, which is in = a H a-1 ,

thus in H.  Thus x a-1 is in H.  Thus x is in H a. 

H a  a H:  H a  H a H = (e H )( a H) = (e a) H = a H. 

This establishes normality.

Coset Multiplication and Normality



For the converse, assume H is normal.

(a H )( b H)  (a b) H: For a, b in G, x in (a H )( b H) 

implies that x = a h1 b h2, for some h1 and h2 in H.  

But h1 b is in H b, thus in b H.  Thus h1 b = b h3 for 

some h3 in H. Thus x = a b h3 h2 is in a b H.  

(a b) H  (a H )( b H):  x in (a b) H  x = a e b h,  for ⇒
some h in H.  

Thus x is in (a H) (b H).

Coset Multiplication and Normality



Examples on Kernel of 
a Homomorphism

Group Theory



Let h: G→G' be a 
homomorphism  and let 
e' be the identity 
element of G'. Now {e'} 
is a subgroup of G', so 

h-1[{e'}] is a subgroup K 
of G. This subgroup is 
critical to the study of 
homomorphisms.

Examples on Kernel of a Homomorphism



Definition

Let h: G→G' be a 
homomorphism of 
groups. The   subgroup 
h-1[{e'}]={x∊G| h(x)=e'} 
is the kernel of h, 
denoted by Ker(h). 

Examples on Kernel of a Homomorphism



Example

Let ℝn be the additive 
group of column vectors 
with n real-number  
components. (This group is 
of course isomorphic  to 
the direct product of ℝ 
under addition with itself 
for n factors.) Let A be an 
m x n matrix of real 
numbers.  Let ϕ: ℝn→ℝm 
be defined by ϕ(v)=Av 
for each column 
vector v∊ℝn. 4

Examples on Kernel of a Homomorphism



Example

Then ϕ is a 
homomorphism, since 
v, w∊ℝn, matrix 
algebra shows that 
ϕ(v+w)=A(v+w)

=Av+Aw=ϕ(v)+ϕ(w) 

In linear algebra, such a 
map computed by 
multiplying  a column 
vector on the left by a 
matrix A is known as a 
linear transformation. 5

Examples on Kernel of a Homomorphism



Ker(h) is called the null 
space of A. It consists of 
all v ∊ ℝn such that 

Av = 0, the zero vector.

Examples on Kernel of a Homomorphism



Examples on Kernel of 
a Homomorphism

Group Theory



Example

Let GL(n, ℝ) be the 
multiplicative  group of 
all invertible n x n 
matrices. Recall that a 
matrix A is invertible if 
and only if its 
determinant, det(A), is 
nonzero. 

8

Examples on Kernel of a Homomorphism



Recall also that for matrices A, 
B ∊GL(n, ℝ) we have 
det(AB)=det(A)det(B). This 
means that det is a 
homomorphism  mapping GL(n, 
ℝ) into the multiplicative group 
ℝ* of nonzero real numbers.

Ker(det) 

= {A∊ GL(n, ℝ)|det(A)=1}.

9

Examples on Kernel of a Homomorphism



Homomorphisms  of a 
group G into itself are 
often useful for studying 
the structure of G. Our 
next example gives a 
nontrivial 
homomorphism  of a 
group into itself.

10
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Example

Let r∊ℤ and let ϕr: 
ℤ→ℤ be defined by 
ϕr(n)=rn for all n∊ℤ. For 
all m, n∊ℤ, we have 
ϕr(m+n)=r(m + n) 
=rm+rn=ϕr (m)+ϕr(n) so 
ϕr is a homomorphism.

11

Examples on Kernel of a Homomorphism



Note that ϕ0 is the trivial 
homomorphism, ϕ1 is 
the identity map, and ϕ-1 

maps ℤ onto ℤ. For all 
other r in ℤ, the map ϕr 
is not onto ℤ. 

Ker(ϕ0)= ℤ                   
Ker(ϕr)= {0} for r≠0    
   

12
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Examples on Kernel of 
a Homomorphism

Group Theory



Example (Reduction 
Modulo n)   

Let y  be the natural map 
of ℤ into ℤn given by 
y(m) = r, where r is the 
remainder given by the 
division algorithm when 
m is divided by n. Show 
that y is a 
homomorphism. Find 
Ker(y).

14
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Solution

We need to show that y(s+t)=y(s)+y(t) for s, t  . ∊ ℤ
Using the division algorithm, we let

s=q1n+r1             (1)  and 

t=q2n+r2                    (2)  where 0≤ri<n for i=1, 2.

If r1+r2=q3n+r3    (3) for 0≤r3<n then adding Eqs. (1) 
and (2) we see that s + t = (q1  + q2 + q3)n + r3, so that 
y(s+t)=r3. From Eqs. (1) and (2) we see that 

y(s) =r1  and y(t)=r2. Equation (3) shows that

the sum r1+r2 in ℤn is equal to r3 also. 
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Examples on Kernel of a Homomorphism



Consequently y(s+t)=y(s)
+y(t), 

so we do indeed  have a 
homomorphism.

Ker(y)=nℤ
 

16
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Kernel of a 
Homomorphism

Group Theory



Theorem 

Let h be a 

homomorphism from a 

group G into a group G’.  

Let K be the kernel of h.  

Then

a K = {x in G | h(x) = h(a)} 

= h -1[{h(a)}] and also

K a = {x in G | h(x) = h(a)} 

= h -1[{h(a)}]

Kernel of a Homomorphism



Let K=Ker(h) for a homomorphism h:G→G'. We 
think of h as "collapsing" K down onto e‘. Above 
Theorem shows that for g ∊ G, the cosets  gK and Kg 
 are the same, and are collapsed onto the single 
element h(g)  by h. That is h-1[{h(g)}]=gK=Kg. We 
have attempted to symbolize this collapsing in Fig. 
below,

where the shaded rectangle represents  G, the solid 
vertical line segments represent the cosets of 

K= Ker(h),  and the horizontal  line at the bottom  
represents G'.

19

Kernel of a Homomorphism
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Kernel of a Homomorphism

a' h(b) e' h(x) y'

h-1[{a'}] bK K xK h-1[{y'}]

G

G'

h

Cosets of K collapsed by h



We view h as projecting the elements  of G, which 
are in the shaded rectangle,  straight  down onto 
elements  of G',  which are on the horizontal  line 
segment  at the bottom.  Notice the downward 
arrow labeled h at the left, starting at G and ending 
at G'.  Elements  of K=Ker(h) thus lie on the solid 
vertical line segment in the shaded box lying over e', 
as labeled at the top of the figure.
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Kernel of a 
Homomorphism

Group Theory



Example

We have |z1z2|=|z1||z2| 
for complex numbers z1 
and z2. This means that 
the absolute value 
function | | is a 
homomorphism of the 
group ℂ* of nonzero 
complex numbers under 
multiplication  onto the 
group ℝ+ of positive real 
numbers under 
multiplication.  

23

Kernel of a Homomorphism



Since  {1}  is a subgroup of ℝ+, the complex numbers 
of magnitude 1  form a subgroup U of ℂ*.  Recall 
that the complex numbers can be viewed as filling 
the coordinate plane, and that the magnitude of a 
complex number is its distance from the origin.  
Consequently,  the cosets of U are circles with 
center at the origin. Each circle is collapsed by this 
homomorphism  onto its point of intersection with 
the positive real axis. 

Kernel of a Homomorphism



Kernel of a 
Homomorphism

Group Theory



Theorem 

Let h be a 

homomorphism from a 

group G into a group G’.  

Let K be the kernel of h.  

Then

a K = {x in G | h(x) = h(a)} 

= h -1[{h(a)}] and also

K a = {x in G | h(x) = h(a)} 

= h -1[{h(a)}]

Kernel of a Homomorphism



Above theorem shows that the kernel of a group 

homomorphism h:G→G' is a subgroup K of G whose 

left and right cosets coincide, so that gK=Kg  for all g

∊ G. When left and right cosets coincide, we can 

form a coset group G/K. Furthermore,  we have 

seen that K then appears as the kernel of a 

homomorphism  of G onto this coset group in a very 

natural way. Such subgroups K whose left and right 

cosets coincide are very useful in studying normal 

group.

Kernel of a Homomorphism



Example

Let D be the additive group of all differentiable 
functions mapping ℝ into ℝ, and let F be the 
additive group of all functions mapping ℝ into ℝ 
Then differentiation gives us a map ϕ: D→F, where 
ϕ(f)=f' for f∊F. We easily see that ϕ is a 
homomorphism, for ϕ(f+g)=(f+g)'=f'+g'=ϕ(f)+ϕ(g);  
the derivative of a sum is the sum of the derivatives.

28

Kernel of a Homomorphism



Now Ker(ϕ) consists of all functions f such that f'=0. 
Thus Ker(ϕ) consists of all constant functions, which 
form a subgroup C of F. Let us find all functions in G 
mapped into x2 by ϕ, that is, all functions  whose 
derivative is x2. Now we know that x3/3 is one such 
function. By previous theorem, all such functions 
form the coset x3/3+C. 
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Examples of Group

Homomorphisms

Group Theory



Example (Evaluation Homomorphism)     

Let F be the additive group of all functions mapping

ℝ into ℝ, let ℝ be the additive group of real 
numbers, and let c be any real number. Let

ϕ: F→ℝ be the evaluation  homomorphism  
defined by ϕc(f)= f(c)  for f∊F. Recall that, by 
definition, the sum of two functions f and g is the 
function f + g whose value at x is  f (x) + g(x). Thus 
we have

ϕc(f+g)=(f+g)(c)=f(c)+g(c)=ϕc(f)+ϕc(g), so we have a 
homomorphism. 31

Examples of Group Homomorphisms



Composition of group homomorphisms is again a 
group homomorphism. That is, if

ϕ: G→G'  and y: G'→G" are both  group 
homomorphisms then their composition 

(y∘ϕ): G→G", where (y∘ϕ)(g) = y(ϕ(g)) for g ∊ G, is 
also  a homomorphism. 

32
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Examples of Group

Homomorphisms

Group Theory



Example

Let G=G1 x ··· x Gi x ··· x Gn be a direct product of 
groups. The projection map πi: G→Gi where 

πi(g1, ···, gi, ··· , gn)  = gi  is a homomorphism  for each 
i=1, ··· , n. 

This follows immediately  from the fact that the 
binary operation of G coincides in the ith 
component with the binary operation in Gi.
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Example

Let F be the additive group of continuous functions 
with domain [0, 1] and let ℝ be the additive group of 
real numbers. The map σ:F→ℝ defined by 
σ(f)=∫0

1f(x)dx for f ∊ F is a homomorphism, 
for

σ(f+g)=∫0
1(f+g)(x)dx=∫0

1[f(x)+g(x)]dx= 

∫0
1f(x)dx+∫0

1g(x)dx=σ(f)+σ(g) for all f, g ∊ F.

35

Examples of Group Homomorphisms



Each of the homomorphisms in the preceding two 
examples  is a many-to-one map. That  is, different 
points  of the domain  of the map  may  be carried  
into the same point. Consider, for illustration, the 
homomorphism π1: ℤ2 x ℤ4→ℤ2 We have

π1(0, 0)=π1(0, 1)= π1(0, 2)= π1(0, 3)=0, so four 
elements in ℤ2 x ℤ4 are mapped  into 0 in ℤ2 by 
π1.
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Factor Groups from

Homomorphisms

Group Theory



Let G be a group and let S be a set having the same 
cardinality as G. Then there is a one-to-one 
correspondence ↔ between S and G. We can use ↔ 
 to define a binary operation on S, making S into a 
group isomorphic to G. Naively, we simply use the 
correspondence to rename each element of G by 
the name of its corresponding  (under ↔) element 
in S. We can describe explicitly the computation  of 
xy  for x, y ∊ S as follows:

if x ↔ g1 and y ↔ g2 and z↔ g1g2, then xy=z       (1)

38

Factor Groups from Homomorphisms



The direction → of the one-to-one  correspondence  
s↔g between s∊S and g∊G gives us a one-to-one 
function µ mapping S onto G. The direction ← of ↔  
gives us the inverse function µ-1.  Expressed in terms 
of µ, the computation (1) of xy for x, y ∊ S becomes

if µ(x)=g1 and µ(y)=g2 and µ(z)=g1g2, then xy=z     (2)

The map  µ: S→G now becomes an isomorphism 
mapping the group S onto the group G. Notice that 
from (2), we obtain µ(xy)=µ(z)=g1g2=µ(x)µ(y), the 
required homomorphism property.
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Factor Groups from Homomorphisms

→→



Factor Groups from

Homomorphisms

Group Theory



Let G and G' be groups, 
let h: G→G' be a 

homomorphism,  and let 
K=Ker(h). The previous

theorem shows that for 
a∊G, we have 

h-1[{h(a)}]=aK  =Ka. We 
have a one-to-one 
correspondence aK 
↔h(a) between cosets of 
K in G and elements of 
the subgroup h[G] of G'. 

Factor Groups from Homomorphisms

→→



Remember that if x∊aK,  so that x=ak for some k∊K, 
then h(x)=h(ak)=h(a)h(k)=h(a)e' 

=h(a), so the computation of the element of h[G]

corresponding  to the coset aK=xK is the same 
whether we compute it as h(a) or as h(x ). Let us 
denote the set of all cosets of K by G/K. (We read 
G/K as "G over K" or as "G modulo K" or as "G mod 
K," but never as "G divided by K.")

Factor Groups from Homomorphisms

→→



We started with a homomorphism h: G→G' having 
kernel K, and we finished with the set G/K of cosets 
in one-to-one correspondence with the elements of 
the group h[G]. In our work above that, we had a set 
 S with elements in one-to-one correspondence  
with a those of a group G, and we made S into a 
group isomorphic to G with an isomorphism µ.
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Factor Groups from Homomorphisms

→→



Replacing  S by  G / H  and replacing  G by h[G]  in 
that construction, we can consider G/K to be a group 
isomorphic to h[G] with that isomorphism µ. In 
terms of G/K  and h[G], the computation (2) of the 
product (xK)(yK) for xK, yK ∊ G/K becomes if 

µ(xK)=h(x) and µ(yK)=h(y) and µ(zK)=h(x)h(y), then    
(xK)(yK)=zK.                                    (3)

Factor Groups from Homomorphisms

→→



But because h is a homomorphism, we can easily 
find z∊G such that µ(zK)=h(x )h(y ); namely, we take 
z=xy in G, and find that µ(zK)=µ(xyK)=h(xy)=h(x)h(y).

This shows that the product (xK)(yK) of two cosets is 
the coset (xy)K that contains the product xy of x and 
y in G. While this computation of (xK)(yK) may seem  
to depend on our choices x from xK and y from yK,  
our work above shows it does not. We demonstrate 
it again here because it is such an important point. If 
k1, k2 ∊ K so that xk1 is an element of xK and yk2 is an 
element of yK,  then there exists h3 ∊ K such that 
k1y= yk3 because Ky=  yK by previous Theorem. 
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Factor Groups from Homomorphisms

→→



Thus we have 

(xk1)(yk2)=x(k1y)k2=x(yk3)k2=(xy)(k3k2) ∊ (xy)K,

so we obtain the same coset. Computation  of the 
product of two cosets is accomplished by choosing 
an element from each coset and taking, as product 
of the cosets, the coset that contains the product in 
G of the choices. Any time we define something  
(like a product) in terms of choices, it is important to 
show that it is well defined, which means that it is 
independent of the choices made. 
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→→



Factor Groups from

Homomorphisms

Group Theory



Theorem

Let h: G→G' be a group 
homomorphism with kernel K. 
Then the cosets of K form a 
factor group,  G/K.  where (aK)
(bK)=(ab)K.  Also, the map µ: 
G/H→h[G]

defined by µ(aK)=h(a) is an 
isomorphism. Both coset 
multiplication and µ are well 
defined, independent  of the 
choices a and b from the cosets.

Factor Groups from Homomorphisms

→→



Example

Consider the map y: ℤ→ℤn, where  y(m) is the 
remainder when m is divided by n in accordance  
with the division algorithm. We know that y is a 
homomorphism.  Of course,  Ker(y)  = nℤ.  By above 
Theorem,  we see that the factor group ℤ/nℤ is 
isomorphic to ℤn. The cosets of nℤ are the residue 
classes modulo n. 
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→→



For example, taking n = 5, we see the cosets of 5ℤ 
are

5ℤ={…, -10, -5, 0, 5, 10,…},

1 +5ℤ  = {…, -9, -4, 1, 6, 11,…},

2 + 5ℤ = {…, -8, -3, 2, 7, 12,…},

3 +5ℤ = {…, -7, -2, 3, 8, 13,…}

4+5ℤ  = {…, -6, -1, 4, 9, 14,…}.

Note that the  isomorphism µ: ℤ/5ℤ→ ℤ5 of 
previous Theorem assigns to each coset of 5ℤ its 
smallest nonnegative element. That is, µ(5ℤ)=0, µ(1+ 
5Z)  = 1, etc.

Factor Groups from Homomorphisms

→→



Factor Groups from

Homomorphisms

Group Theory



It is very important that we 
learn how to compute in a 
factor group. We can multiply 
(add) two cosets  by choosing  
any two representative 
elements,  multiplying  (adding) 
them and finding the coset in 
which the resulting product 
(sum) lies.

52

Factor Groups from Homomorphisms

→→



Example

Consider the factor group ℤ/5ℤ with the cosets 
shown in precious example.  We can add (2+5ℤ)
+(4+5ℤ) by choosing  2 and 4, finding 2+4=6, and 
noticing that 6 is in the coset 1+5ℤ. We could 
equally well add these two cosets by choosing 27 in 
2+5ℤ and -16 in 4+5ℤ; the sum 27+(-16)=11 is also 
in the coset 1+5ℤ.
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Factor Groups from Homomorphisms

→→



The factor groups ℤ/nℤ in the preceding example 
are classics. Recall that we refer to the cosets  of nℤ 
as residue classes  modulo n. Two integers in the 
same coset are congruent modulo n. This 
terminology is carried over to other factor groups. A 
factor group G/H is often called the factor group of G 
modulo H. Elements in the same coset of H are often 
said to be congruent modulo H. By abuse of 
notation, we may sometimes write ℤ/nℤ=ℤn  and 
think of ℤn as the additive group of residue classes 
of ℤ modulo n. 

Factor Groups from Homomorphisms

→→



Factor Groups from 
Normal Subgroups

Group Theory



So far, we have obtained 
factor groups only from 
homomorphisms. Let G 
be a group and let H be a 
subgroup of G. Now H 
has both left cosets and 
right cosets, and in 
general, a left coset aH 
need not be the same set 
as the right coset Ha. 

56

Factor Groups from Normal Subgroups

→→



Suppose we try to define a binary operation on left 
cosets by defining (aH)(bH)=(ab)H as in the 
statement of previous theorem. The above equation 
attempts to define left coset multiplication by 
choosing representatives a and b from the cosets. 
The above equation is meaningless unless it gives a 
well-defined operation, independent of the 
representative elements a and b chosen from the 
cosets. In the following theorem, we have proved 
that the above equation gives a well-defined binary 
operation if and only if H is a normal subgroup of G.

57

Factor Groups from Normal Subgroups

→→



58

Factor Groups from Normal Subgroups

→→

Theorem 

Let H be a subgroup of a 

group G.  

Then H is normal if and 

only if 

(a H )( b H) = (a b) H, 

for all a, b in G
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Factor Groups from Normal Subgroups

→→

Above theorem shows 
that if left and right 
cosets of H coincide, 
then the equation

(aH)(bH)=(ab)H, for all a, 

b in G

gives a well-defined 

binary operation on 

cosets. 
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Factor Groups from Normal Subgroups

→→

Theorem 

If N is a normal subgroup 

of (G, ·), the set of cosets 

G/N = {Ng|g  G} forms ∈
a 

group (G/N, ·), where the 

operation is defined by 

(Ng1)·(Ng2)=N(g1·g2).
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Factor Groups from Normal Subgroups

→→

Example 

Since ℤ is an abelian  
group, nℤ is a normal  
subgroup. Above 
theorem allows us to 
construct the factor 
group ℤ/nℤ with no 
reference to a 
homomorphism. As we 
already observed, ℤ/nℤ 
is isomorphic to ℤn.



Factor Groups from

Normal Subgroups

Group Theory
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Factor Groups from Normal Subgroups

→→

Example 

Consider the abelian 
group ℝ under addition, 
and let c ∊ ℝ+. The cyclic 
subgroup <c> of ℝ 
contains as elements

··· -3c, -2c, -c, 0, c, 2c, 
3c,···.
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Factor Groups from Normal Subgroups

→→

 Every coset of <c> contains just one element of x 
such that 0 ≤ x < c. lf we choose these elements as 
representatives of the cosets when computing in 

ℝ/ <c>, we find that we are computing their sum 
modulo c in ℝc. For example, if c = 5.37, then the  
sum  of the cosets 4.65+<5.37> and 3.42+<5.37>

is the coset 8.07+<5.37>, which contains 8.07-5.37  = 
2.7, which is 4.65+5.373.42.
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Factor Groups from Normal Subgroups

→→

Working with these coset elements x where 0 ≤ x < 
c, we thus see that the group ℝc is isomorphic to 

ℝ / <c> under an isomorphism µ where µ(x) =x+<c>  
for all x ∊ ℝc.  Of course, ℝ / <c>  is then also 
isomorphic  to the circle group U of complex

numbers of magnitude 1 under multiplication.



Kernel of an Injective 
Homomorphism 

Group Theory



2

Kernel of an Injective Homomorphism

Theorem 

A homomorphism 

h: G→G' is 
injective 

if and only if 

Ker h={e}. 



3

Proof 

Suppose h is injective, 

and let x ∊ Ker h. 

Then h(x)=e'=h(e). 

Hence x=e. 

Kernel of an Injective Homomorphism



4

Conversely, suppose 
Ker h={e}. 
Then h(x)=h(y)
⇒h(xy-1)=h(x)h(y -1)
=h(x)h(y)-1=e'
⇒xy-1∊ Ker h
⇒ xy-1=e
⇒x=y. 
Hence, h is injective.

Kernel of an Injective Homomorphism



Factor Groups from

Normal Subgroups

Group Theory



6

Factor Groups from Normal Subgroups

Theorem

Let K be a normal 
subgroup  of G. 

Then y: G→G/K given by  
y(g)=gK is a 
homomorphism  with 
kernel K.



7

Factor Groups from Normal Subgroups

Proof

Let g1, g2 ∊ G. Then

y(g1g2)=(g1g2)K

=(g1K)(g2K)=y(g1)y(g2), 

so y is a homomorphism.  
Since g1K= K if and only if 

g1∊ K, we see that the 
kernel  of y is indeed K.



8

Factor Groups from Normal Subgroups

We have proved that if   
h:G→G' is a 
homomorphism with 
kernel K, then 
µ:G/K→h[G] where µ(gK) 
= h(g) is an isomorphism. 

Above theorem shows 
that y:G→G/K defined by 
 y(g)= gK is  a 
homomorphism.



9

Factor Groups from Normal Subgroups

We show these  groups 
and  maps in the figure.  
We see  that  the  
homomorphism h can be 
factored, h = µy,

where y is a 
homomorphism and µ is 
an isomorphism of G/K 
with h[ G].

G h[G]

G/K

h

y 𝜇



Example on Morphism 
Theorem of Groups

Group Theory



Theorem 

Let K be the kernel of the 
group morphism 

h :G → G'. Then G/K is 
isomorphic to the image 
of h, h[G], and  the 
isomorphism

         µ: G/K → Im h   

is defined by   

µ(Kg) = h[g].
11

Example on Morphism Theorem of Groups



12

Example

Classify the group 

(ℤ4xℤ2) /({0}x ℤ2) 
according to the 
fundamental theorem of 
finitely generated abelian 
 groups.

Example on Morphism Theorem of Groups



Solution      

The projection map 

π1: ℤ4xℤ2→ℤ4  given by 

π1(x,y) = x is  a 
homomorphism of ℤ4xℤ2 

onto ℤ4 with kernel 
{0}xℤ2.  By fundamental 
theorem of 
homomorphism, we 
know that the given 
factor group is 
isomorphic to ℤ4. 

Example on Morphism Theorem of Groups
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The projection map 

π1: ℤ4xℤ2→ℤ4  given by 

π1(x,y) = x.

K=Ker π1={0}xℤ2

={(0,0),(0,1)}.

(1,0)+K={(1,0),(1,1)}

(2,0)+K={(2,0),(2,1)}

(3,0)+K={(3,0),(3,1)}

Example on Morphism Theorem of Groups



Normal Groups and 
Inner Automorphisms

Group Theory



We derive some 
alternative 
characterizations of 
normal  subgroups, 
which  often provide us 
with  an easier  way to 
check  normality than  
finding  both  the left 
and the right  coset 
decompositions.

Normal Groups and Inner Automorphisms



Theorem

The following  are three 
equivalent conditions  
for a subgroup H of a 
group G to be a normal  
subgroup of G.

1. ghg-1∊H for all g∊G 
and h∊H.

2. gHg-1=H for all g∊G.

3. gH=Hg for all g∊G.

Normal Groups and Inner Automorphisms



Condition  (2)  of  above 
Theorem  is often taken as 
the definition of a normal 
subgroup H of a group G.

4

Normal Groups and Inner Automorphisms



Proof

Suppose that gH = Hg for all g ∊  G. Then gh = h1g, so 
ghg-1 ∊ H for all g ∊ G and all h ∊ H.

Then  gHg-1= {ghg-1 I h ∊ H} ⊆ H  for all g ∊ G. 

We  claim that  actually gHg-1  = H. We must show that 
H ⊆ gHg-1  for all g  ∊ G. Let h ∊ H. Replacing g by g-1  
in the relation ghg-1 ∊ H, we obtain 

g-1h(g-1)-1 = g-1hg  = h1  where h1 ∊ H. 

Consequently, gHg-1  = H for all g ∊  G. 

5

Normal Groups and Inner Automorphisms



Conversely,  if gHg-1 = H  for all 
g ∊ G, then ghg-1 = h1 so 

gh = h1g ∊ Hg, and gH ⊆ Hg.  
But also, g-1Hg = H  giving 

g-1hg = h2, so that hg = gh2   
and Hg ⊆ gH.

6

Normal Groups and Inner Automorphisms



Normal Groups and 
Inner Automorphisms

Group Theory



Example

Every subgroup  H of an 
abelian group G is 
normal.  

We need only note that 
gh = hg for all h ∊ H 
and all g ∊  G, so, of 
course, ghg-1 = h ∊ H 
for all g ∊  G and all h 
∊ H .

Normal Groups and Inner Automorphisms



Example

The map ig: G → G 
defined by ig(x)  = gxg-1 is 
a homomorphism  of G 
into itself.

ig (xy)=gxyg-1

= (gxg-1)(gyg-1)

=ig(x)ig(y)

9

Normal Groups and Inner Automorphisms



We see that 

ig(x)=ig(y) 

⇒ gxg-1 = gyg-1

⇒ x = y, 

so ig is injective. 

Since for any x in G

ig(g
-1xg) = g(g-1xg)g-1 = x, 

we see that ig is onto G, 
so it is an isomorphism

of G with itself.
10
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Inner Automorphisms

Group Theory



Definition

An isomorphism ϕ: G→G 
of a group G with itself is 
an automorphism of G. 
The automorphism  

ig: G→G, where ig(x)=gxg-1 
 for all x ∊  G, is the inner 
automorphism of G by g, 
denoted by Inn (G). 
Performing  ig on x is 
called conjugation  of x 
by g.

12

Inner Automorphisms



Theorem

The following  are three equivalent conditions  for 
a subgroup H of a group G to be a normal  
subgroup of G.

1. ghg-1∊H for all g∊G and h∊H.

2. gHg-1=H for all g∊G.           3. gH=Hg for all g∊G.

The equivalence of conditions (2) and (3) shows 
that gH=Hg for all g ∊ G if and only if ig[H]=H for all 
g ∊  G, that is, if and only if H is invariant under all 
inner automorphisms  of  G.

Inner Automorphisms



It is important  to realize  that ig[H] = H  is an

equation in sets; we need not have ig(h) = h for all 
h ∊ H. 

That is ig  may perform  a nontrivial permutation 
of the set H. 

We see that the normal subgroups of a group G 
are precisely those that are invariant under all 
inner automorphisms.  

A subgroup K of G is a conjugate subgroup of H if 
K  = ig[H]  for some g ∊  G.

14
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Inner Automorphisms

Group Theory



Lemma

The set of all inner 
automorphisms of G 
is a subgroup of 
Aut(G).

16

Inner Automorphisms



Proof

(1) Let ia, ib  ∊ Inn (G). 

Then ia( ib(x)) =a(ib(x))a-1 =abxb-1a-1

=abx(ab)-1=iab  ∊ Inn (G). 

Hence the conjugation by b composed by 
conjugation by a is conjugation by ab. 

(2) The inverse of ia is conjugation by a’=a-1.

ia((ia’)(x))=ia(a’x(a’)-1)=aa’xa’-1a-1=aa’x(aa’)-1=x.

Thus  Inn (G) is a subgroup.
17
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Example on 
Automorphism

Group Theory



Example

Prove that 
Aut(ℤn)≅Un.

19
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Solution 

An automorphism ϕ:ℤn→ℤn is determined by 

ϕ(1) as for any integer k, 

ϕ(k)=ϕ(1+…+1)=ϕ(1)+…+ϕ(1)= kϕ(1). 

Since  isomorphisms  preserve order,  ϕ(1)  must 
 be  a  generator  of ℤn . 

We have proved that the generators  of ℤn  are 

those  integers  k ∊ ℤn  for which gcd(k, n) = 1.  

But these k are  precisely  the elements  of 

Un={1, ω,…, ωn-1 | ω=e2πi/n} .   20
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In  this  way,  each  element  a of Un   gives a 

distinct automorphism ϕa  which is multiplication 

by a, and these are all the automorphisms of ℤn.

Furthermore, : Aut(𝜇 ℤn)→Un given by 
𝜇(ϕa)=a is a group isomorphism.
 𝜇(ϕab)=ab=𝜇(ϕa) 𝜇(ϕb)
 𝜇(ϕa)=𝜇(ϕb)⇒a=b

 𝜇(ϕa)=a

21
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Theorem

A factor group of a 
cyclic group is cyclic.

23

Theorem on Factor Group



Proof

Let G be cyclic with generator  a,  and let N  be a 
normal  subgroup  of G. We claim the coset aN  
generates  G / N.  We must compute all powers 
of aN. But this amounts to computing, in G, all 
powers of the representative a and all these 
powers give all elements in G. Hence the powers 
of aN certainly give all cosets of N  and G / N  is 
cyclic. 

24

Theorem on Factor Group



Example on Factor 
Group

Group Theory



Example

Let us compute the 
factor group 

(ℤ4  x ℤ6)/((0, 2)). 
Now (0, 2) generates 
the subgroup

H={(0,0), (0, 2),(0,4)} 

of ℤ4  x ℤ6 of order 3.  

26

Example on Factor Group



Here the first factor ℤ4 
of ℤ4  x ℤ6 is left  alone. 
The ℤ6 factor, on the 
other hand, is 
essentially collapsed by 
a subgroup of order 3, 
giving a factor group in 
the second factor of 
order 2 that must be 
isomorphic to ℤ2.  Thus 
(ℤ4  x ℤ6)/((0, 2)) is 
isomorphic  to ℤ4  x ℤ2.27
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Factor Group 
Computations

Group Theory



Let N be a normal  
subgroup  of G. In the 
factor group  G / N, the 
subgroup N acts as 
identity element. We may 
regard  N  as being  
collapsed to a single 
element,  either to 0 in 
additive  notation  or to e 
in multiplicative notation.  

29

Factor Group Computations



This  collapsing of N 
together with the  
algebraic structure  of  
G require  that  other 
subsets  of G, namely,  
the cosets  of N, also 
collapse  into a single 
element  in the factor  
group. A visualization of 
this collapsing is  
provided by  Figure.

30

Factor Group Computations



31

Factor Group Computations

G

y

G/N
aN N cNbN (cb)N (ab)N



Recall that  y: G→G/N  defined  by y(a)=aN for 

a Є  G is a homomorphism of G onto G / N. We 
can view the "line"  G / N at the bottom of the 
figure as obtained by collapsing to a point  each  
coset  of N in another  copy  of G. Each  point  of 
G / N  thus corresponds to a whole  vertical  line  
segment  in  the  shaded  portion,  representing 
a coset  of N  in G. It is crucial  to remember that 
multiplication of cosets in G / N can be 
computed by multiplying in G, using any 
representative elements of the cosets.

32
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Factor Group 
Computations

Group Theory



Additively, two elements 
of G will collapse into the 
same element of G/N if 
they differ by an element 
of N.  Multiplicatively, a 
and b collapse together if 
ab-1 is in N. The degree of 
collapsing can vary from 
nonexistent to 
catastrophic. We illustrate 
the two extreme cases by 
examples.

Factor Group Computations



Example

The trivial subgroup 

N = {0}  of  is, of 
course, a normal 
subgroup.  

Compute /{0}.

Factor Group Computations



Solution

Since N={0}  has only 
one element, every 
coset of N has only one 
element.  That is, the 
cosets are of the form 
{m} for m  . There is no 
collapsing at all, and 
consequently, /{0} . 
Each m   is simply 
renamed  {m}  in /{0}. 

Factor Group Computations



Example

Let n be a positive 
integer. The set 

n = {nr|r  }  is a 
subgroup of  under 
addition, and it is 
normal since   is 
abelian. 

Compute /n.

Factor Group Computations



Solution

Actually n= , because 
each x is of the form 
n(x/n) and 

x/n. Thus /n has only 
one element,  the 
subgroup n. The factor 
group is a trivial group 
consisting only of the 
identity element.

Factor Group Computations



Factor Group 
Computations

Group Theory



As illustrated  in above 
Examples for any group 
 G, we have G/{e} G 
and G/G{e},  where {e} 
is the trivial group 
consisting only of the 
identity element e. 
These two extremes of 
factor groups are of 
little importance. 

Factor Group Computations



We would like 
knowledge of a factor 
group G/N to give some 
information about the 
structure of G. 

If N={e}, the factor 
group has the same 
structure as G and we 
might as well have tried 
to study G directly.

Factor Group Computations



If N = G, the factor 
group has no 
significant structure to 
supply information 
about G. 

Factor Group Computations



If G is a finite group 
and N ≠{e} is a normal 
subgroup of G, then 
G/N is a smaller group 
than G, and 
consequently  may 
have a more simple 
structure than G.

Factor Group Computations



The multiplication of 
cosets in G/N reflects 
the multiplication in G, 
since products of cosets 
can be computed by 
multiplying in G 
representative elements 
of the cosets.

Factor Group Computations



In next module, we give 
example showing that 
even when G/N has 
order 2, we may be 
able to deduce some 
useful results. 

If G is a finite group and 
G/N has just two 
elements, then we 
must have |G|=2|N|. 

Factor Group Computations



Factor Group 
Computations

Group Theory



Note that every 
subgroup H containing 
just half the elements 
of a finite group G must 
be a normal subgroup, 
since for each element 
a in G but not in H, 
both the left coset aH 
and the right coset Ha 
must consist of all 
elements in G that are 
not in H. 

Factor Group Computations



Thus the left and right 
cosets of H coincide 
and H is a normal 
subgroup of G.
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Example

Because |Sn|= 2|An|, 
we see that An is a 
normal subgroup of Sn, 
and Sn/An has order 2.

Let  be an odd 
permutation in Sn,   

so that 

Sn/An = {An, An}. 

17
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Renaming the element An "even" and the 
element An "odd," the multiplication in Sn/An  
shown in Table becomes

(even)(even)=even, (even)(odd)=odd, (odd)
(even)=odd, (odd)(odd)=even.

Thus the factor group reflects these 
multiplicative properties for all the permutations 
in Sn.

Factor Group Computations

An An

An An An

An An An



Above example 
illustrates that while 
knowing the product of 
two cosets in G/N does 
not tell us what the 
product of two 
elements of G is, it may 
tell us that the product 
in G of two types of 
elements is itself of a 
certain type.

Factor Group Computations



Factor Group 
Computations

Group Theory



The theorem of Lagrange 
states if H is a subgroup 
of a finite group G, then 
the order of H divides the 
order of G. 

We show that it is false 
that if d divides the order 
of G, then there must 
exist a subgroup H of G 
having  order d.

Factor Group Computations



Example

We show that A4,  which 
has order 12, contains  no 
subgroup of order 6.

Suppose that H were a 
subgroup of A4 having 
order 6. 

As observed before in 
previous example, it 
would follow that H 
would be a normal 
subgroup of A4.

Factor Group Computations



Then A4/H would have only two elements, H and H 
for some A4 not in H. Since in a group of order 2, the 
square of each element is the identity, we would 
have HH=H and (H)(H)=H. Now computation in a 
factor group can be achieved by computing with 
representatives in the original group. Thus, 
computing in A4,  we find that for each αH we must 
have α2H  and for each βH we must have β2H. That 
is, the square of every element in A4 must be in H.

Factor Group Computations



But in A4, we have

(1, 2, 3) = (1, 3, 2)2      and    (1, 3, 2) = (1, 2, 3)2

so (1,  2, 3) and (1,  3, 2) are in H.  

A similar computation  shows that (1, 2, 4), 

(1, 4, 2), (1,  3, 4), (1, 4, 3), (2,  3, 4), and (2,  4, 3) 
are all in H. 

This shows  that there must be at least 8 
elements in H, contradicting the fact that H was 
supposed to have order 6.

Factor Group Computations



Factor Group 
Computations

Group Theory



We now turn to several examples that compute  
factor groups. If the group we start with is finitely 
generated and abelian, then its factor group will be 
also. Computing such a factor group means 
classifying it according to the fundamental 
theorem of finitely generated abelian groups.

Factor Group Computations



Example

Let us compute the factor group (4x6)/ Here is the 
cyclic subgroup H of 4x6 generated by (0, 1). Thus

H = {(0, 0), (0, 1), (0. 2), (0, 3), (0, 4), (0, 5)}.

Since 4x6 has 24 elements and H has 6 elements, 
all cosets of H must  have 6  elements,  and (4x 

6)/H must have order 4. Since 4x6 is  abelian, so is 
(4x 6)/H. Remember, we compute in a factor 
group by means  of representatives from the 
original group.

Factor Group Computations



In additive notation,  the cosets are

H=(0, 0)+H, (1,0)+H, (2, 0)+H, (3, 0)+H.

Since we can compute by choosing the 
representatives (0, 0), (1, 0), (2, 0), and (3, 0), it is 
clear that (4x6)/H is isomorphic to 4. Note that this 
is what we would expect, since in a factor group 
modulo H, everything in H becomes the identity 
element; that is, we are essentially setting 
everything in H equal to zero. Thus the whole 
second factor 6 of 4x6 is collapsed, leaving just the 
first factor 4.                                                                   

Factor Group Computations



Factor Group 
Computations

Group Theory



The last example is a special case of a general 
theorem that we now state  and prove. We should 
acquire an intuitive feeling for this theorem in 
terms of collapsing one of the factors to the 
identity element.

Factor Group Computations



Theorem

Let G = H x K  be the direct product of groups H 
and K.  Then ={(h, e)| h H} is  a normal subgroup 
of G. Also G/ is isomorphic to K in  a natural way.  
Similarly, G /  H in a natural way.

Factor Group Computations



Proof

Consider the map 2:  H x K  K given by 

2(h, k) = k. The map 2 is homomorphism since

2(h1h2,k1k2)=k1k2= 2(h1,k1) 2(h2,k2).

Because Ker(2)  =  , we see that  is a normal 
subgroup of H x K. Because 2 is onto K, 
Fundamental Theorem of Homomorphism tells us 
that (H x K)/   K.

Factor Group Computations



Factor Group 
Computations

Group Theory



Example

Let us compute the factor group (4 x 6)/ Be careful! 
 There is a great temptation to say that we are 
setting the 2 of 4  and the 3 of 6 both equal to zero, 
so that 4 is collapsed to a factor group isomorphic 
to 2 and 6 to one isomorphic to 3, giving a total 
factor group isomorphic to 2 x 3. This is wrong!  

Note that H  = = {(0, 0), (2, 3)} is  of order  2, so (4 x 

6)/has order  12,  not 6.

Factor Group Computations



Setting (2, 3) equal to zero does not make (2, 0) 
and (0, 3) equal to zero individually, so the 
factors do not collapse separately.

The possible abelian groups of order 12 are 

4 x 3 and 2 x 2 x 3, and we must decide to which 
one our factor group is isomorphic. These two 
groups are most easily distinguished in that 4 x 3  
has an element of order 4, and 

2 x 2 x 3 does not.

Factor Group Computations



We claim that the coset (1, 0) + H is of order 4 in 
the factor group (4 x 6)/H.

To find the smallest power of a coset giving the 
identity in a factor group modulo H, we must, by 
choosing representatives,  find the smallest 
power of a representative that is in the subgroup 
H. Now, 4(1,0)=(1, 0)+(1,0)+(1,0)+(1,0)=(0,0) is 
the first time that (1,0) added to itself gives an 
element of H. Thus (4 x 6)/ has an element of 
order 4 and is isomorphic to 4 x 3  or 12.

Factor Group Computations
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Group Theory



Example

Let us compute (that is, classify as in Fundamental 
Theorem of Abelian Groups the group (x)/ . We 
may visualize  x  as the points in the plane with 
both coordinates integers, as indicated by the 
dots in Fig. below. The subgroup consists of those 
points that lie on the

45° line through the origin, indicated in the figure. 
The coset (1, 0) + consists of those dots on the 45° 
line through the point (1, 0), also shown in the 
figure.

Factor Group Computations



20

Factor Group Computations



Continuing, we see that each coset consists of 
those dots lying on one of the 45° lines in the 
figure. We may choose the representatives

···, (-3,0), (-2,0), (-1,0), (0,0), (1,0), (2,0), (3,0),···

of these cosets to compute in the factor group. 
Since these representatives correspond precisely 
to the points of  on the x-axis,  we see that the 
factor group ( x ) /is isomorphic to .

Factor Group Computations



Simple Groups

One feature of a factor 
group is that it gives 
crude information about 
the structure of the whole 
group. 

Of course, sometimes 
there may be no 
nontrivial proper normal 
subgroups.



Simple Groups

For example, Lagrange’s 
Theorem shows that a 
group of prime order can 
have no nontrivial proper 
subgroups of any sort.



Simple Groups

Definition

A group is simple if it is 
nontrivial and has no 
proper nontrivial normal 
subgroups.



Simple Groups

Example

The cyclic group G=/5 of congruence classes

modulo 5 is simple. 

If H is a subgroup of this group, its order must be 
a divisor of the order of G which is 5. 

Since 5 is prime, its only divisors are 1 and 5, so 
either H is G, or H is the trivial group.



Simple Groups 

Group Theory



Simple Groups

Example

The cyclic group G=/p 
of congruence classes

modulo p is simple, 
where p is a prime 
number. 



Simple Groups

Example

On the other hand, the 
group G =  /12 is not 
simple. 

The set H={0, 4, 8} of 
congruence classes of 0, 
4, and 8 modulo 12 is a 
subgroup of order 3, and 
it is a normal subgroup 
since any subgroup of 
an abelian group is 
normal.



Simple Groups

Example

The additive group  of

integers is not simple; 
the set of even integers 2 
is a non-trivial proper 
normal subgroup.



Simple Groups

Theorem

The alternating group An 
is simple for n5.
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Simple Groups

Theorem

Let : G  G' be a group 
homomorphism. If N is a 
normal subgroup of G, 
then [N] is a normal 
subgroup of [G]. Also, if 
N' is a normal subgroup 
of [G], then -1[N'] is a 
normal subgroup of G.



Simple Groups

Proof

Let : G  G' be a group 
homomorphism. If N is a 
normal subgroup of G, 
then gng-1 for all gG and 
nN. It implies that (gng-1)= 

(n)-1 .

Therefore, [N] is a normal 
subgroup of [G]. 



Simple Groups

Proof

Also, if N' is a normal subgroup of [G], then -1  N' for 
every  

 N’. 

By definition, there exist 

Hence -1[N'] is a normal subgroup of G.
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Simple Groups

The last Theorem should 
be viewed  as saying that 
 a homomorphism 

: G  G' preserves normal 
subgroups between G 
and [G]. 

It is important to note 
that [N] may not be 
normal in G', even 
though N is normal in G.



Simple Groups

Example

For example, : 2 S3,  where

(0)  = 0  and (1)  = µ1   is a homomorphism,  and 2  is 
a normal subgroup of itself, but {0, µ1} is not a 
normal subgroup of S3.

(1 3)(2 3)=(2 1 3)               

(2 3)(1 3)=(1 2 3)
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Maximal Normal Subgroups

We characterize when 
G/N is a simple group.

Definition 

A maximal normal 
subgroup of a group G is 
a normal subgroup M 
not equal to G such that 
there is no proper 
normal subgroup N  of G 
properly containing M.



Maximal Normal Subgroups

Theorem 

M is a maximal normal  
subgroup of G if and only 
if G / M is simple.



Maximal Normal Subgroups

Proof 

Let M be a maximal normal subgroup of  G.  
Consider the canonical homomorphism 

y: GG/M. Now y-1 of any nontrivial proper normal 
subgroup of G/M is a proper normal   subgroup 
of G properly containing M.  But  M  is maximal,  
so this can not happen. Thus G/M is simple.



Maximal Normal Subgroups

Conversely, if N is a normal subgroup of G 
properly containing M, then y[N] is normal in 

G/M. If also NG, then y[N]G/M and y[N]  {M}. 

Thus, if G/M is simple so that no such y[N] can 
exist, no such N can exist, and M is maximal. 
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The Center Subgroup

Definition 

The center Z(G) is 
defined by

Z(G)={z G| zg=gz for all g  
G}.



The Center Subgroup

Exercise 

Show that Z( G) is a 
normal and an abelian 
subgroup of G. 



The Center Subgroup

Solution 

For each g  G and 

zZ(G) we have 

gzg-1=zgg-1=ze=z, we see 
at once that Z(G) is a 
normal subgroup of G. It 
implies that gz=zg for g  
G and zZ(G). 



The Center Subgroup

If G is abelian,  then  

Z(G)  = G; 

in this case, the center  is 
not useful.



Example on Center 
Subgroup

Group Theory



Example on Center Subgroup

Example 

0 

0 

0 

0 

0 



Example on Center Subgroup

(132) 

Z(S3)={0}, so the center of S3 is trivial. 
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Example on Center Subgroup

The center of a group G 
always contains the 
identity element e. 

It may be that Z(G)={e}, 
in which case we say that 
the center of G is trivial. 



Example on Center Subgroup

Example 

S3 x ={(,0), (,1), (,2), (,3), (,4),

(,0), (,1), (,2), (,3), (,4),

(,0), (,1), (,2), (,3), (,4),

(,0), (,1), (,2), (,3), (,4),

(,0), (,1), (,2), (,3), (,4),

(,0), (,1), (,2), (,3), (,4)}



Example on Center Subgroup

The center  of S3 x   must 
be {0} x , which  is 
isomorphic to . 
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The Commutator Subgroup

Every  nonabelian 
group  G has  two  
important normal  
subgroups,  

the  center Z(G) of G 
and the commutator 
subgroup C of G. 



The Commutator Subgroup

Turning to the 
commutator subgroup, 
recall that in forming a 
factor group of G modulo 
a normal subgroup N, we 
are essentially putting  
every element in G that is 
in N equal to e, for N 
forms our new identity in 
the factor group. 

This indicates another use 
for factor  groups.  



The Commutator Subgroup

Suppose, for example, that we are studying the 
structure of a nonabelian group G. 

Since Fundamental Theorem of Abelian Groups 
gives complete information about the structure 
of all sufficiently small abelian  groups,  it might  
be of interest to try to form an abelian group as 
much like G as possible, an abelianized version of 
G, by starting  with  G and then requiring that 
ab=ba for all a and b in our new group structure.



The Commutator Subgroup

To require  that ab=ba is to say  that aba-1b-1=e in 
our new  group.  

An  element  aba-1b-1 in a group is a commutator 
of the group. 

Thus we wish to attempt  to form an abelianized 
version of G by replacing every commutator of G 
by e. 

We should then attempt to form the factor group 
of G modulo the smallest normal subgroup we 
can find that contains all commutators of G.



The Commutator Subgroup

Theorem

Let G be a group. 

The set of all 
commutators aba-1b-1  
for a, b  G generates a 
subgroup C of G.  



The Commutator Subgroup

Proof

Let a, b  G. Then,

(aba-1b-1)(aba-1b-1)-1

=aba-1b-1bab-1a-1

=e  C

since e = eee-1e-1  is a 
commutator.



The Commutator Subgroup

Definition

The set of all 
commutators aba-1b-1  
for a, b  G generates a 
subgroup C of G is 
called the commutator  
subgroup.  
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Group Theory



Generating Sets

Let G be a group, and let 
a  G. We have described 
the cyclic subgroup <a> 
of G, which is the 
smallest subgroup of G 
that contains the 
element a. 

Suppose we want  to find 
as small a subgroup as 
possible that contains  
both a and b for another  
element b in G.



Generating Sets

We see that any 
subgroup containing a 
and b must contain an 
and bm for all m, n  , and 
consequently must 
contain  all finite 
products of such powers 
of a and b. 



Generating Sets

For example,  such an expression might be 

a2b4a-3b2a5.  

Note that we cannot  "simplify" this expression by 
writing  first all powers  of a followed by the powers 
of b, since G may not be abelian.  However, products 
of such expressions are again expressions of the 
same type.  

Furthermore, e = a0 and the inverse of such an 
expression is again  of the same type.



Generating Sets

For example,  the inverse  of a2b4a-3b2a5 is 

a-5b-2a3b-4a-2.  

This shows  that all such products of integral  powers  
of a and b form  a subgroup of G, which  surely  must  
be the smallest  subgroup containing both  a and b. 
We call a and b generators of this subgroup. 

If this subgroup should  be all of G, then we say that 
{a, b} generates G. 

We could have made  similar arguments for three, 
four, or any number of elements of G, as long as we 
take only finite products of their integral  powers.



Generating Sets

Example

The Klein 4-group V = {e, 
a, b, c} is generated by 
{a,b} since ab=c. 

It is also generated by 
{a,c}, {b,c }, and {a,b,c}. 

If a group G is generated 
by a subset S, then every 
subset  of G containing S 
generates G. 
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Generating Sets

Example

The group 6 is generated 
by {1} and {5}. 

It is also generated by 
{2,3} since 2+3=5, so 
that any subgroup 
containing 2 and 3 must 
contain 5 and must 
therefore be 6.  



Generating Sets

It is also generated by 
{3,4}, {2,3,4}, {1,3}, and 
{3,5}. 

But it is not generated 
by {2, 4} since  

<2> = {0, 2, 4} 

contains 2 and 4.



Generating Sets

We have given an 
intuitive explanation of 
the subgroup of a group 
G generated by a subset 
of G. 

What follows is a 
detailed exposition of 
the same  idea 
approached in another 
way, namely  via 
intersections of 
subgroups. 



Generating Sets

Definition

Let {Si|i  I} be a collection of sets. 

Here I may be any set of indices. 

The intersection  of the sets Si is the set of all 
elements that are in all the sets Si; that is,

= {x| x Si  for all i  I}.

If I is finite, I= {1, 2,...,n}, we may denoteby

.
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Generating Sets

Theorem

The intersection of some 
subgroups Hi of a group 
G for i  I is again a 
subgroup of G.



Generating Sets

Proof

Let us show closure.  Let a   and 

b  ,  so that a  Hi for all i   I  and

b  Hi  for all i  I. Then ab  Hi  for all i  I, since Hi  is a 
group. Thus ab  .

Since Hi is a subgroup for all i  I,  we have e   Hi  
for all i  I,  and hence e  .

Finally,  for a  , we have a Hi for all i I,  so a-1 Hi for 
all i I, which implies that 

a-1  . 



Generating Sets

Let G be a group and let ai  G for i  I. 

There is at least one subgroup of G containing all 
the elements ai for i  I, namely G is itself. 

The above theorem assures us that if we take the 
intersection of all subgroups of G containing all ai 
for i  I, we will obtain a subgroup H of G. 

This subgroup  H is the smallest subgroup of G 
containing  all the ai for i I.
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Generating Sets

Definition

Let  G be a group and 
let ai G for i  I.

The smallest subgroup 
of G containing {ai| i I} 
is the subgroup 
generated by {ai|i I}. 

If this subgroup is all of 
G, then {ai|i  I} 
generates G and the ai 
are generators of G. 



Generating Sets

Definition

If there is a finite set 

{ ai|i I} 

that generates G, then 
G is finitely generated.



Generating Sets

Note that this definition is consistent with our 
previous definition of a generator for a cyclic 
group.  

Note also that the statement a is a generator of G 
may mean either that G = <a> or that a is a 
member of a subset of G that generates G. 

Our next theorem  gives the structural insight 
into the subgroup of G generated by {ai |i  I} that 
we discussed for two generators in the beginning 
of these modules.



Generating Sets

Theorem

If G is a group and ai  G 
for i  I, then the subgroup 
H of G generated by { ai| i 
 I} has as elements 
precisely those elements 
of G that are finite 
products of integral 
powers of the ai, where 
powers of a fixed ai may 
occur several times in the 
product.



Generating Sets

Proof

Let K denote the set of all finite products  of 
integral powers of the ai. Then KH.

We need only observe that K is a subgroup and 
then, since H is the smallest subgroup containing  
ai for i  I, we will be done.  

Observe that a product  of elements  in K is again 
in K. Since (ai)

0=e, we have e  K. 



Generating Sets

For every element k in 
K, if we form from the 
product giving k a new 
product with the order 
of the a,  reversed and 
the opposite sign on 
all exponents, we have 
k-1 which is thus in K. 
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The Commutator Subgroup

Theorem

Let G be a group. 

Then, the commutator  
subgroup C of G is a 
normal  subgroup of G. 



The Commutator Subgroup

Proof 

We must show that C is 
normal in G. 

The last theorem then 
shows that C consists 
precisely of all finite 
products of commutators. 

For x  C, we must show 
that g-1xg  C for all g  G, or 
that if x is a product of 
commutators, so is 

g-1xg for all g  G. 



The Commutator Subgroup

By inserting e = gg-1  between each product of 
commutators occurring in x, we see that it is 
sufficient to show for each commutator  cdc-1d-1  
that g-1 (cdc-1d-1)g is in C. 

But g-1 (cdc-1d-1)g  = (g-1cdc-1)(e)(d-1g)

= (g-1cdc-1)(gd-1dg-1)(d-1g)

= [(g-1c)d(g-1c)-1d-1][dg-1d-1g], which is in C. 

Thus C is normal in G.
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The Commutator Subgroup

Theorem

If N is a normal  
subgroup of G, then 
G/N is abelian  if and 
only if CN.



The Commutator Subgroup

Proof 

If N is a normal subgroup 
of G and G/N is abelian, 
then 

(a-1N)(b-1N)=(b-1N)(a-1N);  
that is, aba-1b-1N=N,  

so aba-1b-1 N,  and 

C  N.  



The Commutator Subgroup

Finally,  if C  N, then

(aN)(bN)=abN

=ab(b-1a-1ba)N

= (abb-1a-1)baN  

= baN 

= (bN)(aN).



The Commutator 
Subgroup

Group Theory



The Commutator Subgroup

Example

For the group S3, we find that one commutator is 11 

1
-1

1
-1 = 11 21= = 2.

(12)(13)=(132)

We similarly find that 

21 2
-1

1
-1 = 21 11= = 1.

(13)(12)=(123)



The Commutator Subgroup

Thus the commutator 
subgroup C of S3 
contains  A3.  Since  A3  
is a normal  subgroup 
of S3  and

S3/A3 is abelian, above 
theorem shows that 
C=A3.
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Automorphisms

Recall that an 
automorphism of a group 
G is an isomorphism of G 
onto G. 
The set of all 
automorphisms of G is 
denoted  by Aut(G). 



Automorphisms

We have seen that every 
g  G determines an 
automorphism ig of G 

(called an inner 
automorphism)given by 
ig(x)=gxg-1. The set of all 

inner automorphisms of 
G is denoted by Inn(G).



Automorphisms

Theorem

The set Aut(G) of all 
automorphisms of a 
group G is a group under 
composition of 
mappings, and 

lnn(G)  Aut(G). Moreover, 
G/Z(G)Inn(G).



Automorphisms

Proof
Clearly, Aut(G) is  nonempty. Let  Aut(G).   Then   for  
all x, y  G, (xy)=(((x) (y)) = ((x))((y)).

Hence,   Aut(G).  Again,

(x)y))=

(y)=xy.

Hence  x)y)= (xy).  Therefore,  
Aut(G).  This  proves that Aut( G) is 
a subgroup of the symmetric group 
SG and, hence, is itself a group.



Automorphisms

Group Theory



Automorphisms

Theorem

The set Aut(G) of all 
automorphisms of a 
group G is a group under 
composition of 
mappings, and 

lnn(G)  Aut(G). Moreover, 
G/Z(G)Inn(G).
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Automorphisms

Consider the mapping 

(a)=ia=axa-1 for all x G. 

For any a, b  G, iab(x)=

abx(ab)-1= a(bxb-1)a-1  = iaib(x) 

for  all x  G.  
Hence,  is a 
homomorphism, and, 
therefore, lnn(G)=Im  is a 
subgroup of Aut(G). 
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Automorphisms

Further, ia is the identity automorphism if and only if 

axa-1= x for all x  G. Hence, Ker =  Z(G),  and by the 
fundamental theorem of homomorphisms 
G/Z(G)lnn(G). 

Finally, for any  Aut(G), 

a
-1

   )(x) = (a(x)a-1)

= (a)x (a) -1 

= i(a) (x); hence a
-1=i(a)  Inn(G). 

Therefore, lnn(G)  Aut(G).
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Automorphisms

It follows from above theorem that if the center of a 
group G is trivial, then G  lnn(G).  A group G is said 
to be complete if Z(G) = {e} and every 
automorphism of G is an inner  automorphism; that 
 is,  G  lnn(G)=Aut(G).

When considering the possible automorphisms   of 
a group G, it  is useful to remember that, for any x  
G, x and (x) must be of the same order.



Examples on 
Automorphisms

Group Theory



Examples on Automorphisms

Example
The symmetric group S3 

has a trivial center {e}. 
Hence, Inn(S3) S3. We 

have seen that 
S3=  {e,a,a2,b,ab,a2b} with 

the defining relations
a3= e= b2,  ba = a2b. The 
elements a and a2 are of 
order 3, and b, ab, and 
a2b are all of order 2. 



Examples on Automorphisms

Hence, for any   Aut(S3), 

(a)= a or a2, (b)= b, ab, or 
a2b. Moreover, when (a) 
and (b) are fixed, (x) is 
known for every x  S3. 

Hence, is completely 
determined. 



Examples on Automorphisms

Thus,  there cannot be 
more than six 
automorphisms of S3. 

Hence 
Aut (S3)=Inn(S3) . 

Therefore, S3 is a 

complete group.



Examples on 
Automorphisms

Group Theory



Example
Let G be a finite abelian 
group of order n, and let 
m be a positive integer 
relative prime to n.  Then  
the  mapping :  x xm is  an 
automorphism of G.

Examples on Automorphisms



Solution
(m,n) = 1  there exist 
integers u and v such   
that mu + nv = 1 x  G, 
xmu+nv=xmuxnv=xum since 
o(G)=n. Now for all x  G, 
x=(xu )m implies that 
xm=e x = e, showing that  
is  1-1. 

Examples on Automorphisms



That  is a homomorphism 
follows from the fact that 
 G is abelian.  Hence,  is 
an automorphism of G.

Examples on Automorphisms



Examples on 
Automorphisms

Group Theory



Example
A finite group G having  
more  than  two 
elements and with the 
condition that  x2 e for 
some x  G must  have a 
nontrivial automorphism. 

Examples on Automorphisms



When G is abelian,  
then : x  x-1 is an 
automorphism, and, 
clearly,  is not an identity 
automorphism. When  G 
is not abelian,  there 
exists a nontrivial inner 
automorphism.

Examples on Automorphisms



Example
Let G = <a|an=e> be a 
finite cyclic group of 
order n. Then the 
mapping : a  am is an 
automorphism of G iff 
(m,n) = 1.

Examples on Automorphisms



Solution
If (m,n) = 1, then it has 
been shown in Example 
of last module that  is an 
automorphism. So let us 
assume now that  is an 
automorphism. Then 

the order of (a) = am is 
the same as that of a, 
which  is  n. 

Examples on Automorphisms



Further, if (m,n)=d, then 
(am)n/d=(an)m/d = e. Thus,  
the order of am divides 
n/d; that  is,  n|n/d. 
Hence,  d = 1, and the 
solution is complete.

Examples on Automorphisms
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Group Action on a Set

We define a binary 
operation * on a set S to 
be a function mapping SxS 
into S. The function * 
gives us a rule for 
"multiplying" an element 
s1 in S and an element s2 
in S to yield an element s1 
* s2 in S.



Group Action on a Set

More generally, for any 
sets A,  B, and C, we can 
view a map *: A x BC as 
defining a 
"multiplication,"  where 
any element a of A times 
any element b of B has as 
value some element c of 
C. Of course, we write a* 
b = c, or simply ab= c. 



4

Group Action on a Set

In these modules, we will 
be concerned with the 
case where X is a set, G is 
a group, and we have

a map *: G x X X. We shall 
write *(g, x) as g * x or gx.
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Group Action on a Set

Definition

Let X be a set and G a 
group. An action of G on 
X is a map *: G x X  X such 
that

1. ex = x for all x  X,

2. (g1g2)(x)  = g1(g2x) for all 
x  X and all g1, g2  G. Under 
these conditions, 

X is a G-set.



Group Action on a Set

Example

Let X  be any set, and let 
H be a subgroup of the 
group Sx  of all 
permutations of X.

Then X  is an H -set,  
where the action of     H  
on X  is its action as an 
element  of Sx, so that x = 
(x) for all x X.  



Group Action on a Set 
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Group Action on a Set

Condition 2 is  a 
consequence  of the 
definition of permutation 
multiplication  as function 
composition,  and 
Condition  1  is immediate 
from the definition of the 
identity permutation as 
the identity function. Note 
that, in particular,

{1, 2, 3, ···, n} is an Sn  set. 



Group Action on a Set

Our next  theorem will  
show that for  every G-set 
X  and  each  g  G, the  
map :  XX defined by = gx 
is a permutation of X, and 
that there is a 
homomorphism : GSx 
such that the action of G 
on X is essentially the 
above Example action of 
the image subgroup H  =  
[G]  of Sx on X.  



Group Action on a Set

So actions of subgroups 
of Sx on X describe all 
possible group actions on 
X. When studying the set 
X, actions using 
subgroups of Sx suffice. 
However, sometimes a 
set X is used to study G 
via a group action of G on 
X. Thus we need the 
more general concept 
given by above Definition.



Group Action on a Set

Theorem

Let X be a G-set.  For each 
g  G, the function :  XX  
defined by (x)  = gx for xX 
is a permutation of X. 
Also, the map :  G  Sx 
defined by (g)  =   is a

homomorphism  with the 
property that (g)(x) = gx.



Group Action on a Set

Proof

To show that  is  a permutation  of X,  we must  show 
that  it  is a one-to-one map of X onto itself. Suppose 
that (x1) = (x2) for x1, x2 X. Then gx1= gx2 
Consequently,  g-1

 (gx1) = g-1(gx2).  Using  Condition  2 
in Definition,  we see that (g-1 g)x1= (g-1 g)x2,  so ex1  = 
ex2.  Condition  1  of the definition then yields x1  = x2, 
so  is one to one.  The two conditions of the 
definition show that for x  X, we have (g-1x) = g(g-1)x  
= (gg-1)x  =ex= x, so  maps X onto X. Thus  is indeed a 
permutation.



Group Action on a Set 
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Group Action on a Set

Theorem

Let X be a G-set.  For each 
g  G, the function :  XX  
defined by (x)  = gx for xX 
is a permutation of X. 
Also, the map :  G  Sx 
defined by (g)  =   is a

homomorphism  with the 
property that (g)(x) = gx.



Group Action on a Set

To show that : GSx defined by (g)  =  is a 
homomorphism,  we must show that (g1g2) = (g1) (g2) 
for all g1, g2  G. We show the equality of these two 
permutations in Sx by showing they both carry an x  X 
 into the same element.  Using the two conditions  in 
above Definition  and the rule for function 
composition,  we obtain

(g1g2)(x)  = (x)  = (g1g2)x  = g1(g2x)  = g1 (x)  = ((x))= ()(x) 
=()(x)=

( (g1) (g2) )(x).



Group Action on a Set

Thus  is a 
homomorphism.  

The stated property of  
follows  at once  since by 
our definitions, we have  
(g)(x) = (x)  = gx. 



Group Action on a Set 
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Group Action on a Set

Definition

Let X be a set and G a 
group. An action of G on 
X is a map *: G x X  X such 
that

1. ex = x for all x  X,

2. g1(g2x)=(g1g2)(x) for all 

x  X and all g1, g2  G. Under 
these conditions, 

X is a G-set.



Group Action on a Set

Example

Let G be the additive  
group , and  X  be the set 
of complex numbers z 
such  that  |z| = 1.  Then X 
is  a G-set under  the 
action *c = , where  and c 
X. Here the action of  is  
the rotation through an  
angle = radians, 
anticlockwise.



Group Action on a Set

Example

Let G=S5 , and 

X={x1, x2, x3, x4, x5}  be a 

set of beads forming a 
circular ring.  Then X is a 
G-set under the action 

G*xi=, gS5.

x5

x1

x3

x4

x2



Group Action on a Set

Example

Let G=D4 and X be the 

vertices 1, 2, 3, 4 of a 
square. X is a G-set under  
the action

g * i = g(i), g  D4, 

i  {1, 2, 3, 4}. 



Group Action on a Set

Example

Let G be a group. Define

a*x =ax, a G, x G.

Then, clearly, the set G is a 
G-set. 

This action of the group G 
on itself is called 
translation.



Group Action on a Set 
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Group Action on a Set

Example

Let G be a group. 

Define

a*x =axa-1, aG, xG.
We show that G is a G-set. 
Let a, b G. Then 
(ab)*x=(ab)x(ab)-1

= a(bxb-1)a-1=a(b*x)a-1

=a*(b*x). 
Also, e*x=x. 



Group Action on a Set

This proves G is a G-set.
This action of the group 
G on itself is called 
conjugation. 



Group Action on a Set

Example

Let G be a group and H<G. 
Then the set G/H of left 
cosets can be made into a 
G-set defining

a*xH=axH, aG, xHG/H.



Group Action on a Set

Example

Let G be a group and HG. 

Then the set G/H of left 
cosets is a G-set if we 
define a*xH=axa-1H, aG, 
xHG/H.



Group Action on a Set

To see this, let a, bG and 
xHG/H. Then

(ab)*xH=abxb-1a-1H 

=a*bxb-1H =a*(b*xH).

Also, e*xH=xH. 

Hence, G/H is a G-set.



Group Action on a Set 
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Group Action on a Set

Theorem
Let  G be a group and let X 
 be a set.

(i) If X is a G-set, then the 
action of G on X induces a 
homomorphism

:GSX.

(ii) Any 
homomorphism :GSX 

induces an action of G 
onto X.



Group Action on a Set

Proof

(i) We define :GSX by ((a))(x)=ax, aG, xX. Clearly (a)SX, 

aG. Let a, bG. Then
((ab))(x)=(ab)x=a(bx)=a(((b))(x)) = ((a))(((b))(x))=((a)
(b))x for all xX.

Hence, (ab)= (a) (b).
(ii) Define a*x=((a))(x); that is, ax=((a))(x). Then
(ab)x = ((ab))(x)=((a)(b))(x)= (a)((b)(x))= (a)(bx)=a(bx). 
Also, ex=((e))(x)=x. 
Hence, X is a G-set. 
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Stabilizer

Definition
Let G be a group acting on 
a set X, and let x X.  Then 
the set
Gx= {g G | gx = x},

which can be shown to be 
a subgroup, is called the 
stabilizer (or isotropy) 
group of x in G.



Stabilizer

Example

Let G be a group. Define a*x =axa-1, aG, xG.

This action of the group G on itself is called 
conjugation. 
Then, for x G, Gx = {aG|axa-1=x}=N(x), the normalizer 

of x in G. 
Thus, in this case the stabilizer of any element x in G 
is the normalizer of x in G.



Stabilizer

Example

Let G be a group and H<G. We define action of G on 
 the set G/H of left cosets by

a*xH=axH, aG, xHG/H.

Here the stabilizer of a left coset xH is the subgroup 
{gG | gxH=xH} = {gG | x-1gxH} 

= {gG | gxHx-1} = xHx-1



Stabilizer
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Stabilizer

Theorem

Let X be a G-set. 

Then  Gx  is a subgroup  
of G for each x   X.



Stabilizer

Proof

Let x X  and let g1, g2Gx. Then g1x=x and g2x=x.  
Consequently, (g1g2)x=g1(g2x)=g1x=x, so g1g2Gx, and 
Gx is closed under the induced operation of G. 

Of course  ex=x, so eGx. 

If gGx, then gx = x, so x=ex=(g-1g)x= g-1(gx)=g-1x, and 
consequently g-1Gx. 

Thus Gx is a subgroup of G. 
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Orbits

Theorem

Let X be a G-set. For x1,  
x2X, let x1x2 if and only if 
there exists gG  such 
that gx1=x2. Then  is an 
equivalence relation on 
X.



Orbits

Proof

For each xX, we have ex=x, so xx and  is reflexive.

Suppose   x1 x2, so gx1=x2 for some gG. Then 

g-1x2=g-1(gx1) =(g-1g)x1=ex1=x1, so x2x1,  and  is 
symmetric.

Finally, if x1x2 and x2x3,  then g1x1=x2 and g2x2=x3  for 
some g1, g2G. Then (g2g1)x1= g2(g1x1)= g2x2=x3,  so x1x3  
and  is transitive. 



Orbits

Definition
Let G be a group acting 
on a set X, and let x  X.  
Then the set
Gx = {ax | a  G}

is called the orbit 

of x in G.



Orbits

Example

Let G be a group. Define

a*x =ax, a G, x G.
The orbit  of xG is 
Gx={ax|a G}=G.



Orbits

Example

Let G be a group. 

Define

a*x =axa-1, aG, xG.
The orbit of xG is  
Gx ={axa-1|aG}, called 
the conjugate class of x 
and denoted by C(x).
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Conjugacy and G-Sets

Theorem

Let X be a G-set and let xX. Then |Gx|=(G:Gx).  

If |G| is finite, then |Gx| is a divisor of |G|.

If X is a finite set, |X|=, 

where C is a subset of X containing exactly one 
element from each orbit.



Conjugacy and G-Sets

Proof

We define a one-to-one map  from Gx onto the 
collection of left cosets of Gx in G.

Let x1Gx. Then there exists g1G such that g1x=x1.  We 
define (x1)  to be the left coset g1Gx of Gx. 

We must show that this map  is well defined, 
independent of the choice of g1G such that g1x=x1.  
Suppose also that g1'x=x1. Then, g1x=g1'x, so

g1
-1(g1x)= g1

-1(g1’x), from which we deduce 

x=(g1
-1g1')x. Therefore g1

-1g1'Gx, so g1'g1Gx, and 

g1Gx=g1'Gx. Thus the map  is well defined.



Conjugacy and G-Sets 
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Conjugacy and G-Sets

Theorem

Let X be a G-set and let xX. Then |Gx|=(G:Gx).  

If |G| is finite, then |Gx| is a divisor of |G|.

If X is a finite set, |X|=, 

where C is a subset of X containing exactly one 
element from each orbit.



Conjugacy and G-Sets

To show the map  is one to one, suppose x1, x2Gx, 
and (x1)=(x2). Then there exist g1, g2G such that 
x1=g1x, x2=g2x, and g2g1Gx. Then g2=g1g for some 

g Gx, so x2=g2x=g1(gx)=g1x=x1. Thus  is one to one.

Finally, we show that each left coset of Gx in G is of 
the form (x1) for some x1Gx. Let g1Gx  be a left coset. 
Then if g1x=x1, we have g1Gx= (x1).  

Thus maps Gx one to one onto the collection of left 
cosets so |Gx|=(G:Gx).



Conjugacy and G-Sets

If |G| is finite, then the 
equation
|G|=|Gx|(G:Gx)  shows 

that |Gx|=(G:Gx) is a 
divisor of |G|. 
Since X is the disjoint 
union of orbits Gx, it 
follows that if X is finite, 
then |X|=.
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Isomorphism Theorems

There are several 
theorems concerning  
isomorphic factor groups 
that are known as the 
isomorphism theorems of 
group theory. 



3

Isomorphism Theorems

Theorem

Let : GG' be a 
homomorphism with 
kernel K, and let 

yK: G G/K be the canonical 
homomorphism. There is a 
unique isomorphism 

: G/K[G]  such that (x)  = 
µ(yK(x)) for each xG.



4

The first isomorphism 
theorem is diagrammed 
in Figure below. 

G [G]

G/K

𝛟

yK 𝜇

Isomorphism Theorems
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Isomorphism Theorems

Lemma

Let  N be a normal  
subgroup of a group G and 
let  y: G G/N be the 
canonical homomorphism. 
Then the map  from the 
set of normal subgroups of 
G containing N to the set 
of normal subgroups of 
G/N given by (L)=y[L] is 
one to one and onto.
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Isomorphism Theorems

Proof

If L is a normal subgroup of G containing N, then 
(L)=y[L] is a normal subgroup of G/N. 

Because  NL, for each xL the entire coset xN in G 
is contained in L. Thus, y-1[(L)]=L. Consequently, if 
L and M are normal subgroups of G, both 
containing N,  and if (L)= (M)  = H, then L=y-

1[H]=M. Therefore  is one to one.



7

Isomorphism Theorems

If H is a normal  subgroup 
of G/N, then y-1[H]  is a 
normal subgroup  of G.  
Because NH  and 

y-1[{N}]=N,  we see that Ny-

1[H].  Then 

(y-1[H])=y[y-1[H]]=H.  

This shows that  is onto 
the set of normal

subgroups of G/N.



Isomorphism 
Theorems

Group Theory



9

Isomorphism Theorems

If H and N are subgroups 
of a group G, then we let

HN={hn| h H, n N}.

We define the join H V N  
of H and N as the 
intersection of all 
subgroups of G that 
contain HN;  thus  H V N  
is the smallest subgroup 
of G containing  HN. 



Isomorphism Theorems

Of course H V N is also 
the smallest subgroup of 
G containing both  H  and 
N, since any such 
subgroup must contain 
HN. In general, HN need 
not be a subgroup of G. 



11

Isomorphism Theorems

Lemma

If N is a normal subgroup 
of G, and if H is any 
subgroup of G, then 

H V N=HN=NH. 

Furthermore, if H is also 
normal in G, then HN is 
normal in G.



Isomorphism Theorems

Proof

We show that HN is a subgroup of G, from which 

H V N=HN follows at once. Let h1, h2H  and n1, n2N.  
Since N is a normal  subgroup, we have n1h2=h2n3 for

some n3N. Then (h1n1)(h2n2)=h1(n1h2)n2=h1(h2n3)n2= 
(h1h2)(n3n2)HN, so HN is closed under the induced 
operation in G. Clearly e=ee is in HN. For hH and nN, 
we have (hn)-1=n-1h-1= h-1n4  for some n4N,  since N is a 
normal subgroup. Thus (hn)-1HN, so 

HN G. 



Isomorphism Theorems

A similar argument shows 
that NH is a subgroup, so 
NH=H V N=HN.

Now suppose that H is 
also normal in G, and let 
h H, n N,  and g   G. Then

ghng-1=(ghg-1)(gng1)HN,  
so HN is indeed normal in 
G. 



Second Isomorphism 
Theorem

Group Theory



Second Isomorphism Theorem

Theorem

Let H be a subgroup of G 
and let N be a normal 
subgroup of G. Then 
(HN)/NH/(H N).



Second Isomorphism Theorem

Proof

Let y: GG/N be the canonical homomorphism and let 
HG. Then y[H] is a subgroup of G/N. Now the action of 
y on just the elements of H (called y  restricted to H) 
provides us with a homomorphism  mapping H onto 
y[H], and the kernel of this restriction  is clearly the set 
of elements of N that are also in H,

that is, the intersection  HN. By first isomorphism 
theorem, there is an isomorphism

: H/(HN)y[H].



Second Isomorphism Theorem

On the other hand, y restricted to HN also provides  a 
homomorphism mapping HN onto y[H], because y(n) 
is the identity N of G/N for all nN.  The kernel of y 
restricted to HN is N. The first isomorphism theorem 
then provides  us with an isomorphism

:  (HN)/Ny[H].
Because (HN)/N and H/(HN) are both isomorphic to 
y[H], they are isomorphic to each other. Indeed, 

: (HN)/NH/(HN) where =µ1
-1µ2 will be an

isomorphism. More explicitly,

((hn)N)=µ1
-1(µ2((hn)N))= µ1

-1(hN)=h(HN).



Isomorphism Theorems

Group Theory



Isomorphism Theorems

Example

Let G be a group such that 
for some fixed integer 

n >1, (ab)n =anbn for all a, 
bG. Let Gn={aG|an=e} and 

Gn=(an |aG}. 

Then GnG, GnG, and 

G/GnG
n.



Isomorphism Theorems

Solution

Let a, bGn and xG. Then  (ab-1)n=an(bn)-1=e, so ab-1

Gn.  Also, (xax-1)n=(xax -1)…(xax -1)=xanx-1 =e implies 

xax -1Gn.  Hence, GnG. 

Let a, b, xG. Then an(bn)-1=(ab-1)nGn.  

Also, xanx-1 =(xax -1)…(xax -1)= (xax-1)nGn. Therefore,  GnG.



Isomorphism Theorems

Group Theory



Isomorphism Theorems

Example

Let G be a group such that 
for some fixed integer 

n >1, (ab)n =anbn for all a, 
bG. Let Gn={aG|an=e} and 

Gn={an |aG}. 

Then GnG, GnG, and 

G/GnG
n.



Isomorphism Theorems

Define a mapping f: GGn by 
f(a) = an. 

Then, for all a, b G, 
f(ab)=(ab)n=anbn=f(a)f(b). 
Thus, f is a homomorphism. 

Now Ker f={a|an = e}=Gn.   

Therefore, by the first 
isomorphism theorem 
G/GnG

n.



Isomorphism Theorems

Example

Let  G=x x, H=xx{0},  and 
N={0}xx.  Then clearly  
HN=xxand  HN={0}xx{0}.  
We  have  (HN)/N and we 
also have H/(HN). 



Third Isomorphism 
Theorem

Group Theory



Third Isomorphism Theorem

If H and K  are two normal 
 subgroups of G and KH,  
then H/K is a normal 
subgroup of G/K. 

The third isomorphism 
theorem concerns these 
groups.



Third Isomorphism Theorem

Theorem

Let H and K be normal 
subgroups of a group G 
with KH. 

Then G/H(G/K)/(H/K).



Third Isomorphism Theorem

Proof

Let :G(G/K)/(H/K) be given by (a)= (aK)(H/K) for a  
 G. 

Clearly  is onto (G/ K)/(H/ K),  and for a, bG,

(ab)=[(ab)K](H/K)

=[(aK)(bK)](H/K)

= [(aK)(H / K)][(bK)(H / K)]=(a) (b), 

so  is a homomorphism.  



Third Isomorphism Theorem

The kernel consists of 
those x G such that 
(x)=H/K.

These x are just the 
elements of H. 

Then first isomorphism 
theorem shows that 
G/H(G/K)/(H/K).



Third Isomorphism 
Theorem

Group Theory



Third Isomorphism Theorem

A nice way of viewing 
third isomorphism 
theorem is to regard the 
canonical map yH:GG/H as 
being factored via a 
normal subgroup K of G, 
KHG, to give

yH=yH/K yK, up to a natural 
isomorphism,  as 
illustrated in Figure. 



Third Isomorphism Theorem

G G/H

G/K (G/K)/(H/K)yH/K

yK

yH

Natural Isomorphism



Third Isomorphism Theorem

Another way of visualizing 
this theorem is to use the 
subgroup diagram in 
Figure, where each group 
is a normal subgroup of G 
and is contained in the 
one above it. G

H

K



Third Isomorphism Theorem

The larger the normal subgroup, the smaller the factor 
group. 

Thus we can think of G collapsed by H, that is, G/H, as 
being smaller than G collapsed by K. 

Third isomorphism theorem states that we can collapse 
G all the way down to G/H in two steps. 

First, collapse to G/K, and then, using H/K, collapse this 
to (G/ K)/(H/K).  The overall result is the same (up to 
isomorphism) as collapsing G by H.



Third Isomorphism 
Theorem

Group Theory



Third Isomorphism Theorem

Theorem

Let H and K be normal 
subgroups of a group G 
with KH. 

Then G/H(G/K)/(H/K).



Third Isomorphism Theorem

Example

Consider 

K = 6<H=2<G=.    

Then G/H=/22. Now 
G/K=/6 has elements 6, 
1+6, 2+6, 3+6, 4+6, and 
5+6.

Of these six cosets, 6, 2+6, 
and 4+6 lie in 2/6.  



Third Isomorphism Theorem

Thus  (/6)/(2/6) has two 
elements and is 
isomorphic to 2 also. 
Alternatively,  we see that 
/66,  and 2/6  corresponds 
under this isomorphism 
to the cyclic subgroup <2> 
of 6.  

Thus (/6)/(2/6)

6/<2>2/2. 



Sylow Theorems

Group Theory



Sylow Theorems

The fundamental theorem 
for finitely generated 
abelian groups gives us 
complete information 
about all finite abelian 
groups. The study of finite 
nonabelian groups is 
much more complicated. 
The Sylow theorems give 
us some important 
information about them. 



Sylow Theorems

We know the order of a subgroup of a finite group 
G must divide |G|. If G is abelian, then there exist 
subgroups of every order dividing |G|. 

We showed that A4, which has order 12, has no 
subgroup of order 6. 

Thus a nonabelian group G may have no subgroup 
of some order d dividing |G|;  the "converse of the 
theorem of Lagrange" does not hold. 



Sylow Theorems

The Sylow theorems give a weak converse. Namely, 
they show that if d is a power of a prime and d divides  
|G|,  then G does contain a subgroup of order d. 

Note that 6 is not a power of a prime. The Sylow 
theorems also give some information concerning the 
number of such subgroups and their relationship to 
each other. 

We will see that these theorems are very useful in 
studying finite nonabelian groups.



Sylow Theorems

Proofs of the Sylow 
theorems give us another 
application of action of a 
group on a set. This time, 
the set itself is formed 
from the group; in some 
instances the set is the 
group itself, sometimes it 
is a collection of cosets of 
a subgroup, and 
sometimes it is a 
collection of subgroups. 



Sylow Theorems

Group Theory



Sylow Theorems

Let X be a finite G-set. 
Recall that for xX,  the 
orbit of x in X under G is 
Gx={gx| gG}. Suppose that 
there are r orbits in X 
under G, and let {x1, x2,···, 
xr} contain one element 
from each orbit in X. Now 
every element of X is in 
precisely one orbit, so

|X|=·



Sylow Theorems

There may be one-element orbits in X. 

Let XG={xX|gx=x for all gG}. 

Thus XG is precisely  the union  of the one-element 
orbits in X. 

Let us suppose there are s one-element orbits, 
where 0sr. Then |XG|=s, and reordering the xi if 
necessary, we may rewrite above equation as

|X|=|XG|+ .

Most of the  results  of these modules will  flow from 
 above equation.



Sylow Theorems

Theorem

Let G be a group of order 
pn and let X be a finite G-
set. Then 

|X| |XG| (mod p).



Sylow Theorems

Proof

Recall |X|=|XG|+ .

In the notation of above Equation, we know that

|Gxi| divides  |G|. 

Consequently p divides |Gxi|  for s + 1≤i≤ r. Above 
equation then shows that |X|-|XG|  is divisible by p, 
so |X||XG|  (modp). 



Sylow Theorems

Definition

Let p be a prime. A group 
G is a p-group if every 
element in G has order a 
power of the prime p. 

A subgroup of a group G is 
a p-subgroup of G if the 
subgroup is itself a p-
group.



Cauchy’s Theorem

Group Theory



Cauchy’s Theorem

Our goal in these modules 
is to show that a finite 
group G has a subgroup of 
every prime-power order 
dividing |G|. 

As a first step, we prove 
Cauchy's theorem, which 
says that if p divides |G|, 
then G has a subgroup of 
order p.



Cauchy’s Theorem

Cauchy’s Theorem

Let p be a prime. Let G be 
a finite group and let p  
divide |G|.

Then G has an element of 
order p and, consequently, 
 a subgroup of order p.



Cauchy’s Theorem

Proof

We form the set X of all p-
tuples (g1, g2, ···,  gp) of 
elements of G having the 
property that the product 
of the coordinates in G is 
e. That is,

X={(g1, g2, ···,  gp) |gi G and 
g1g2 ···gp=e}.



Cauchy’s Theorem

We claim p divides |X|. In 
forming a p-tuple in X, we 
may let g1, g2,···, gp-1  be any 
elements  of G, and gp is 
then uniquely  determined  
as 

(g1 g2… gp-1)
-1.  

Thus  |X| = |G|p-1  and 
since p divides |G|, we see 
that p divides |X|. Let  be 
the cycle (1, 2, 3,…, p) in Sp. 



Cauchy’s Theorem

We let act on X by (g1 , g2,…, gp)

=(g(1), g(2), …, g(p)) =(g2 , g3,…, gp, g1 ).

Note that  (g2 , g3,…, gp, g1 )X,  for g1(g2 g3…gp)=e 
implies that g1=  (g2 g3…gp)

-1,  so (g2 g3…gp)g1=e also. 
Thus  acts on X, and we consider the subgroup < >

of Sp to act on X by iteration in the natural way.

 



Cauchy’s Theorem

Now |<>|= p, so we may apply above Theorem, and we 
know that |X||X<>| (mod p). Since p divides |X|, it must 
be that p divides |X<>| also. Let us examine X<>·

Now (g1 , g2,…, gp) is left fixed by , and hence by <>, if and 
only if g1=g2=…= gp. We know at least one element in X<>, 
namely (e, e, …,  e). Since p divides |X<>|, there must be 
at least p elements in X<>. Hence there exists some 
element aG, ae, such that (a, a, ... ,a)X<> and hence ap = 
e, so a has order p. Of course, <a> is a subgroup of G of 
order p. 



Sylow Theorems
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Sylow Theorems

Corollary

Let G be a finite group. 
Then G is a p-group if 
and only if |G| is a 
power of p.



Sylow Theorems

Let G be a group, and let 
be the collection of all 
subgroups of G. 

We make  into a G-set by 
letting G act on  by 
conjugation. 

That is, if H  so HG and g 
G, then g acting on H 
yields the conjugate 
subgroup gHg-1. 



Sylow Theorems

Now GH={gG|gHg-1=H} is 
easily seen to be a 
subgroup of G, and H is a 
normal subgroup of GH. 
Since GH consists of all 
elements of G that leave 
H invariant under 
conjugation, GH is the 
largest subgroup of G 
having H as a normal 
subgroup.



Sylow Theorems

Definition

The subgroup 

GH ={g G | gHg-1=H} 

is the normalizer of H in 
G and is denoted by 
N[H].



Sylow Theorems

Lemma

Let H be a p-subgroup of 
a finite group G. Then

(N[H]:H)(G:H) (mod  p).



Sylow Theorems

Proof

Let  be the set of left cosets of H in G, and let H 
act on by left translation, so that h(xH) = (hx)H. 
Then becomes an H-set. Note that ||=(G:H).

Let us determine H, that is, those left cosets that 
are fixed under action by all elements of H. 

Now xH= h(xH) if and only if H=x-1hxH, or if and 
only if x-1hx H.



Sylow Theorems

Thus xH=h(xH) for all hH if and only if x-1hx

=x-1h(x-1)-1H for all hH, or if and only if x-1N[H], or if 
and only if xN[H]. Thus the left cosets in H are those 
contained in N[H]. The number of such cosets is 
(N[H]:H), so |H|= (N[H]:H).

Since H is a p-group, it has order a power of p. Then 

H| (mod p),  that is, 

(G:H)  (N[H]:H)  (mod p).



First Sylow Theorem
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First Sylow Theorem

Theorem

Let G be a finite group and 
let |G|= pnm where n1  
and where p does not 
divide m. Then

1. G contains a subgroup 
of order pi for each i 
where 1in,

2. Every subgroup H of G 
of order pi is a normal 
subgroup of a subgroup of 
order pi+1 for 1 i  n.



Proof

We know G contains a 
subgroup of order p by 
Cauchy's theorem. 

We use an induction 
argument and show that 
the existence of a 
subgroup of order pi for 
i<n implies the existence 
of a subgroup of order pi+1.

First Sylow Theorem



Let H be a subgroup of order pi. Since i < n, we see p 
divides (G:H). We then know p divides (N[H]:H). 

Since H is a normal subgroup of N[H], we can form 
N[H]/H, and we see that p divides |N[H]/H|. 

By Cauchy's theorem, the factor group N[H]/H has a 
subgroup K which is of order p. 

If y:N[H]N[H]/H is the canonical homomorphism, 
then y-1[K]={xN[H]|y(x)K} is a subgroup of N[H] and 
hence of G. This subgroup contains H and is of order 
pi+1.

First Sylow Theorem



2. We repeat the 
construction in part 1 and 
note that H < y-1[K]N[H] 
where |y-1[K]|= pi+1. 

Since H is normal in N[H], 
it is of course normal in 
the possibly smaller group 
y-1[K]. 

First Sylow Theorem



Definition

A Sylow p-subgroup P of a 
group G is a maximal 

p-subgroup of G, 

that is, 

a p-subgroup contained in 
no larger p-subgroup. 

First Sylow Theorem



Second Sylow Theorem

Group Theory



Let G be a finite group, 
where |G|=pnm as in first 
Sylow theorem. 

The theorem shows that 
the Sylow p-subgroups of 
G are precisely those 
subgroups of order pn.  

If P is a Sylow p-
subgroup, every 
conjugate gPg-1 of P is 
also a Sylow p-subgroup. 

Second Sylow Theorem



The second Sylow 
theorem states that 
every Sylow p-subgroup 
can be obtained from P 
in this fashion; that is, 
any two Sylow p-
subgroups are conjugate.

Second Sylow Theorem



Theorem

Let P1 and P2 be Sylow p-
subgroups of a finite 
group G. 

Then P1 and P2  are 
conjugate subgroups of G.

Second Sylow Theorem



Proof

Here we will let one of the subgroups act on left cosets 
of the other. Let  be the collection of left cosets of P1,  
and let P2 act on by z(xP1)=(zx)P1 for zP2. Then is a P2-
set. We have | (mod p), and ||= (G: P1) is not divisible 
by p, so ||0. Let xP1 

Then zxP1=xP1 for all zP2, so x-1zxP1=P1 for all zP2.  Thus x-

1zxP1 for all zP2, so x-1P2xP1. 

Since |P1|=|P2|, we must have P1=x-1P2x, so P1 and P2  
are indeed conjugate subgroups. 

Second Sylow Theorem



Third Sylow Theorem

Group Theory



The final Sylow theorem 
gives information on the 
number of Sylow p-
subgroups.

Theorem 

If G is a finite group and p 
divides |G|, then the 
number of Sylow p-
subgroups  is congruent to 
1 modulo p and divides |
G|.

Third Sylow Theorem



Proof

Let P be one Sylow p-subgroup of G. Let  be the set 
of all Sylow p-subgroups and let P act on by 
conjugation, so that xP carries T   into xTx-1. 

We have ||||(mod p). Let us find . 

If T, then xTx-1=T for all x P. Thus PN[T]. 

Of course TN[T] also. 

Since P and T are both Sylow p-subgroups of G, they 
are also Sylow p-subgroups of N[T]. 

But then they are conjugate in N[T] by second Sylow 
theorem. 

Third Sylow Theorem



Since T is a normal subgroup of N[T], it is its only 
conjugate in N[T]. Thus T=P. 

Then = {P}. Since ||||=1 (mod p),  we see the 
number of Sylow p-subgroups is congruent to 1  
modulo p.

Now let G act on by  conjugation.  Since all Sylow p-
subgroups  are conjugate, there is only one orbit in 
under G. 

If P  then ||=|orbit of P|= (G:GP). GP is, in fact,  the 
normalizer of P. But (G:GP) is a divisor of |G|, so the 
number of Sylow p-subgroups divides |G|.

Third Sylow Theorem



Sylow Theorems

Group Theory



Example

The Sylow 2-subgroups of 
S3 have order 2. 

The subgroups of order 2 
in S3 are

{}, {}, {}.

Note that there are three 
subgroups and that 

3  1  (mod 2). 

Sylow Theorems



Also, 3 divides 6, the order 
of S3. 

We can readily check that

={} and ={}

where (x)=jxj
-1, illustrating 

that they are all conjugate. 
For instance, ()=-1==

(1,3,2)(2,3)(1,2,3)=(1,2)= .

Sylow Theorems



Example

Let us use the Sylow theorems to show that no group of 
order 15 is simple. Let G have order 15. 

We claim that G has a normal subgroup of order 5. 

By first Sylow theorem G has at least one subgroup of 
order 5, and by third Sylow theorem the number of 
such subgroups is congruent to 1  modulo 5 and divides 
15. Since 1, 6, and 11 are the only positive numbers less 
than 15 that are congruent to 1  modulo 5, and since 
among these only the number 1 divides 15, we see that 
G has exactly one subgroup P of order 5.

Sylow Theorems



But for each gG, the inner 
automorphism ig of G with 
ig(x)=gxg-1 maps P onto a 
subgroup gPg-1, again of 
order 5. 

Hence we must have 

gPg-1=P for all g G, so P is  
a normal subgroup of G. 

Therefore, G is not simple.  

Sylow Theorems



Application of Sylow 
Theory

Group Theory



Let  X be a finite G-set 
where G is a finite group. 
Let XG={xX|gx=x for all 
gG}. Then 

|X|=|XG|+ , where xi is an 
element in the ith orbit in 
X. 

Application of Sylow Theory



Consider now the special case of above equation, 
where X=G and the action of G on G is by 
conjugation, so g G carries x X = G into gxg-1. Then 
XG={x G| gxg-1=x for all g G}

= {x G| xg=gx for all g G}=Z(G), the center of G. 

If we let c=|Z(G)| and ni=|Gxi| in above equation, 
then we obtain |G|=c+nc+1+…+nr , where ni is the 
number of elements in the ith orbit of G under 
conjugation by itself. 

Note that ni divides |G| for c+1 i  r since we know |
Gxi|=(G: ), which is a divisor of |G|. 

Application of Sylow Theory



Definition

The equation |G|=c+nc+1+
…+nr , where

c=|Z(G)| and ni is the 
number of elements in 
the ith orbit of G under 
conjugation by itself,  is 
the class equation of G. 

Each  orbit  in G under  
conjugation by  G is a 
conjugate class in G.

Application of Sylow Theory



Example

()=-1=          ()=-1= 

()=-1=

()=-1=(1,2,3)(2,3)(1,3,2)(1,3)=

()=-1=           ()=-1=

Therefore, the conjugate classes of S3 are 

{},       { },        {}.

The class equation of S3 is 6 = 1+2+3. 

Application of Sylow Theory



Theorem

The center of a finite 
nontrivial p-group G is 
nontrivial.

Application of Sylow Theory



Proof

We have |G|=c+nc+1+…+nr , where ni is the number of 
elements in the ith orbit of G under conjugation by 
itself.

For G, each ni divides |G|  for c+1ir, so p divides each 
ni,  and p divides |G|. Therefore p divides c. Now 
eZ(G), so c1. Therefore cp, and there exists some 
aZ(G) where ae. 

Application of Sylow Theory



Application of Sylow 
Theory

Group Theory



Lemma

Let G be a group 
containing  normal 
subgroups  H and K such 
that HK = {e}  and

H V K = G. Then G is 
isomorphic to H X K.

Application of Sylow Theory



Proof

We start by showing that hk=kh for kK and hH.  
Consider  the commutator

hkh-1k-1=(hkh-1)k-1=h(kh-1k-1). 

Since H and K are normal subgroups of G, the two 
groupings with parentheses show that hkh-1k-1 is in 
both K and H. 

Since KH={e}, we see that hkh-1k-1=e, so hk=kh.

Application of Sylow Theory



Let : H x KG be defined by (h,k) = hk. 

Then ((h, k)(h', k'))=(hh', kk')=hh'kk'= hkh'k'

=(h, k) (h', k’), so  is a homomorphism.

If (h, k)=e, then hk=e, so h = k-1, and both h and k are 
in H  K. Thus h=k=e, so Ker()={(e, e)} and  is one to 
one.

We know that HK=H V K,  and H V K = G by 
hypothesis.

Thus  is onto G, and H x KG.

Application of Sylow Theory



Application of Sylow 
Theory

Group Theory



Theorem

For a prime number p, 
every group G of order p2 
is abelian.

Application of Sylow Theory



Proof

If G is not cyclic, then every element except e must 
be of order p. 

Let a be such an element. Then the cyclic subgroup 
<a> of order p does not exhaust G. 

Also let bG with b<a>. Then <a><b>={e}, since an 
element c in <a><b> with ce would generate both 
<a> and <b>, giving <a>=<b>, contrary to 
construction. 

Application of Sylow Theory



From first Sylow theorem, <a> is normal in some 
subgroup of order p2 of G, that is, normal in all of G. 
Likewise <b> is normal in G. 

Now <a> V <b> is a subgroup of G properly  
containing <a> and of order dividing p2. 

Hence <a> V <b>  must be all of G. 

Thus the hypotheses of last lemma are satisfied, and 
G is isomorphic to <a> x <b> and therefore abelian. 

Application of Sylow Theory


