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Group Theory

Properties of Real
Numbers



Properties of Real Numbers

Number Systems
N={1223,..}
/=...,-2,-1,0,1, 2, ... }

Q={p/q | p,q € Z and
q=0}

Q "= Set of Irrational
Numbers

R=QuQ°



Properties of Real Numbers

0.131313...=0.13+
0.0013+0.000013+...

=13/100+13/10000+
13/1000000+...
=(13/100)(1+1/100+
1/10000+...)
=(13/100)(100/99)
=13/99



Properties of Real Numbers

" 0=2.718281828459045... € Q°

" /2=1.414213562373095...€ Q°

" /5=2.23606797749978...€ Q
"YabelR,abelR

"VabeR, athe R

"Ya, b, ce R, (a+tb)+c=a+(b+c)

" For example, (1/4+3)+ /7=(13+4 /7)/4=1/4+(3+ /7)



Properties of Real Numbers

"Ya,b,ce R, (ab)c=a(bc)
" For instance, ((-2/3)4)/2=(-8/3) +/2 =(-2/3)(4 /2)

" Foreverya €
" Foreverya €
" Foreverya €

Rand 0 € R, a+0=a=0+a
Rand 1€ R, a.1=a=1.a

R there exists -a € R such that

a+(-a)=0=(-a)+a

" For every a € R\{0} there exists 1/a € R\{0} such that
a(l/a)=1=(1/a)a

"Va,beR, atb=b+a

"Ya,beR, ab=b.a
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Group Theory

Properties of Complex
Numbers



Properties of Complex Numbers

" C={a+bi | a,b € R}

"V a+bi, c+di € C, (a+bi)+(ct+di)=(a+c)+(b+d)i € C

"V a+bi, c+di € C, (a+bi).(c+di)=(ac-bd)+(ad+bc)i € C

" VY a+bi, c+di, e+fi € C, [(a+bi)+(c+di) ]+(e+fi)=
[(a+c)+(b+d)i]+(e+fi)=[(a+c)+e]+[(b+d)+f]i
=[a+(ct+e)]+[b+(d+f)]Ji=(a+bi)+[(ct+e)+(d+f)i]=
(a+bi)+[(c+di)+(e+fi)]



Properties of Complex Numbers

"V a+bi, ctdi, etfi € C, [(a+bi).(c+di)].(e+fi)

=[(ac-bd)+(bc+ad)i].(e+f)

=[(ac-bd)e-(bc+ad)f]+[(bc+ad)e+(ac-bd)f]i

=[a(ce-df)-b(de+cf)]+[a(de+cf)]+b(ce-df)]i
=(a+bi).[(ce-df)+(de+cf)i]=(a+bi).[(c+di).(e+fi)]

" For every a+bi € C and 0=0+0i € C, (a+bi)+0=
(a+bi)+(0+0i)=(a+0)+(b+0)i=a+bi=0+(a+bi)

" For every a+bi € C and 1=1+0i € C, (a+bi).1=
(a+bi).(1+0i)=(a.1-0b)+(b.1+0.a)i=a+bi=1.(a+bi)




Properties of Complex Numbers

" For every a+bi € C there exists -a-bi € C such that
(a+bi)+(-a-bi)=(a+(-a))+(b+(-b))i=0+0i=0=(-a-bi)+(a+bi)
" For every a+bi € C\{0} there exists
1/(a+bi)=a/(a*+b?)-(b/(a*+b?))i € C\{0}
such that (a+bi).(a/(a*+b?)-(b/(a?+b?))i)
= (a%+b?)/(a?+b?)+((ab-ab)/(a%+b?))i=1+0i=1
=(a/(a*+b?)-(b/(a*+b?))i )(a+bi)



Properties of Complex Numbers

" Y a+bi, c+di € C, (a+bi)+
(c+di)=(a+c)+(b+d)i

=(c+a)+(d+b)i=(c+di)+(a+bi)
" Y a+bi, ctdi € C,
(a+bi).(c+di)
(ac-bd)+ (ad+bc)i
(ca-db)+(cb+da)i
(c+di).(a+bi)
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Group Theory

Binary Operations



Binary Operations

Definition
A binary operation % on a

set S is a function
mapping S x S into S.

For each (a, b) €S xS, we
will denote the element
X ((a, b)) of S by a%kb.



Binary Operations

" Usual addition +’ is a
binary operation on the
sets R, C, Q, Z, R+, Q,
Z+

" Usual multiplication ‘. is
a binary operation on
thesets R, C, Q, Z, R-,
@+’ Z+

" Usual multiplication ‘" is
a binary operation on
the sets R\{0}, C\{0},
OQ\{0}, Z\{0}



Binary Operations

Let M(R) be the set of all
matrices with real entries.

The usual matrix addition
Is not a binary operation
on this set since A+B is
not defined for an
ordered pair (A, B) of
matrices having different
numbers of rows or of
columns.



Binary Operations

Usual addition ‘+' is not a
binary operation on the

sets R\{0}, C\{0}, Q\{0},
Z/\{0} since

2+(-2)=0 & Z\{0}C Q\{0}
C R\{0} c C\{0}.



Binary Operations

Definition
Let x be a binary
operation on S and

let H be a subset of
S

The subset H is
closed under x if for
all a, b € H we also
have axb € H.

In this case, the
binary operation on
H given by
restricting * to H is
the induced



Binary Operations

Usual addition ‘+’ on the
set R of real numbers
does not induce a binary
operation on the set R\
{0} of nonzero real
numbers because 2e R\

{0} and -2eR\{0},
but 2+(-2)=0 & R\{0}.
Thus R\{0} is not
closed under +.



Binary Operations

Usual multiplication ‘.’ on
the sets R and @ induces

a binary operation on the
sets R\{0}, R+ and Q\

{0},

Q+, respectively.
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Binary Operations



Binary Operations

“Let $He asetand
a,bes.



Binary Operations

"Let $e asetand
a,bes.

“A binary operation an
is a rOle which assigns
to any ordered pair

an elen(enb)
axbes



Binary Operations

Examples
“For S :IN,ZQ:IR3C3
axb =a+b



Binary Operations

Examples

“for S=N,ZQ,R,C,
axb =a+b

“for S =INZQ,R,C,
axb =ab



Binary Operations

Examples

“For S :IN,Z,QalR)C)
a*xb =a+b

"for S =N,ZQ,R,C,

axb =ab

“For S =7ZQ,R,C,
axb =a- b



Binary Operations

Examples

"Ffor S =N,ZQ,R,C,
axb =a+b

“for S=INZQ,R,C,
axb =ab

“For S =ZQ,R,C,
axb =a-b

“For S =IN,ZQ,R,
a*xb =min(a,b)



Binary Operations

Examples
“For S =[1,2,3|

axb =b



Binary Operations

Examples

“For S =[1,2,3|
axb =b

“For example
1%k2 =2,
1%1 =1,

2% 3 =3.



Binary Operations

Examples
“For S =Q, axb =a/ bs not everywhere defined
since no rational number is assigned by this rule

to the pair (3,0).



Binary Operations

Examples

“For S =Q, axb =a/ bs not everywhere defined
since no rational number is assigned by this rule
to the pair (3,0).

"For S =Z", a*xb =a /i®not a binary operation on
sincZ” is ng'closed under X,



Binary Operations

Definition
“A binary operation an

aset is conmutative if

and only if
for all a@*b =bxa

a,bes.



Binary Operations

Definition
“A binary operation #n
aset is asSociative if

(f%ﬁw*c =a*(bx*c)
a,b,ceS.



Binary Operations

Examples
“The binary operation @efined by

axb =a+b
is commutative and associative in C.



Binary Operations

Examples
“The binary operation é&efined by
axb =a+b
is commutative and associative in C.
“The binary operation d&efined by

axb =ab
is commutative and associative in C.



Binary Operations

"The binary operation defined by a*b =a- b
is not commutative in Z



Binary Operations

"The binary operation defined by a*b =a- b
is not commutative in Z

"The binary operation givenby a*b =a- b
not associative in Z



Binary Operations

"The binary operation defined by a*b =a- b
is not commutative in Z
"The binary operation givenby a*b =a- b
not associative in Z
“For instance,
(axb)xc =(4-7)- 2=-5
but
ax(bxc) =4- (7-2) =-1.



Group Theory




Bijective Maps
Definition
"Afunction f[:X — B
called injective or one-to-
one if

f(x1):f(xz)$ X —X,,



Bijective Maps

Definition

"Afunction f[:X — B
called injective or one-to-
one if
f(x1):f(xz)$ Xp =Xy,
or
x, #x, = f(x)#f(x,),



Bijective Maps
Definition
"Afunction f[:X — B
called surjective or onto if

forany Y €Y, there exists
xe€X with Y =1(x).



Bijective Maps

Definition

"Afunction f[:X — B
called surjective or onto if
forany Y €Y, there exists
XEX withyY =f(X).
l.e. if the image f(Xx)is

y

the whole set



Bijective Maps
Definition
*“A bijective function or one-
to-one correspondence is a
function that is both

injective and surjective.



Bijective Maps

Example

f:R— R*, f(x)=10"



Bijective Maps

Example
f:R—- R", f(x)=10"
f(x)=f(y)=10" =10" = x =y

Therefore, [ is one-to-one.



Bijective Maps

Example
f:R—- R", f(x)=10"
f(x)=f(y)=10" =10" = x =y

Therefore, [ is one-to-one.

If r€R*, then log,,r €R such that
f (log,, 1) =10"8" =r



Bijective Maps

Example
f:R—- R", f(x)=10"
f(x)=f(y)=10" =10" = x =y

Therefore, [ is one-to-one.

If r€R*, then log,,r €R such that
f (log,, 1) =10"8" =r

It implies that f is onto.



Bijective Maps

Example
f:R—- R", f(x)=10"
f(x)=f(y)=10" =10" = x =y

Therefore, [ is one-to-one.

If r€R*, then log,,r €R such that
f(log,, r) =10°%" =r

It implies that f is onto.

Hence [ is bijective.



Bijective Maps

Example

f:Z— Z [(m)=3m



Bijective Maps

Example
f:Z— Z f(m)=3m

f(m)=f(n)= 3m =3n= m =n

Therefore, [ is one-to-one.



Bijective Maps

Example
f:Z— Z f(m)=3m

f(m)=f(n)= 3m =3n= m =n

Therefore, [ is one-to-one.

We assume that m€ Zis the pre-image of 4 € Z,
then f(m) =3m =4= m=4/3¢Z

It implies that f is not onto.



Bijective Maps

Example

f:R-> R, f(x)=x"



Bijective Maps

Example

f:R-> R, f(x)=x"
f(-3)=1(3) =9 put -3 #3.
Therefore, [ is not one-to-one.



Bijective Maps

Example

f:R-> R, f(x)=x"

f(-3)=1(3) =9 but -3 #3.

Therefore, [ is not one-to-one.

We assume that X € R is the pre-image of -2€R |
then [ (x) =x° =-5= Xx Z\/E¢ IR.

It implies that f is not onto.



Bijective Maps

Definition
"Let [ :X — Beafunction

andlet  be a subséf of
The image of X

H under f is given by
flH|={f(h)|heH}



Bijective Maps
Definition
"Afunction f[:X — B

called surjective or onto if
flx]=r.



Bijective Maps

Example
f:R—> R", f(x)=10"



Bijective Maps

Example
f:R— R*, f(x)=10"
fIR| =R*

f

Therefore, is onto.



Bijective Maps

Example

f:Z— Z f(m)=3m



Bijective Maps

Example
f:Z— Z f(m)=3m
flz]| =3z »zZ
f

It implies that is not onto.



Bijective Maps

Example

f:R-> R, f(x)=x



Bijective Maps

Example

f:R-> R, f(x)=x
fIR] =R* U{0} #R

So, f is not onto.
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Inversion Theorem

Lemma
If [:X = Yand g:Y — Z are two functions, then:
(i) If [ and 9 areinjective, g o f is injective.



Inversion Theorem

Lemma

If f:X —>Yand g:Y — Z are two functions, then:
(i) If [ and 9 areinjective, g o f is injective.

(i) 1If [ and 9 are surjective, g ° [ is surjective.



Inversion Theorem

Lemma
If f:X —>Yand g:Y — Z are two functions, then:
(i) If [ and 9 areinjective, g o f is injective.
(i) 1If [ and 9 are surjective, g ° [ is surjective.
Gii) If [ and 9 are bijective, 9 ° [ is bijective.



Inversion Theorem

Proof
(i) Suppose that (g o f)(xl) =(g o f)(xz) Then,
g(f(xl)) =g(f(x2))=> f(Xl) B T (xz):> X, =X,



Inversion Theorem

Proof
(i) Suppose that (g o f)(xl) =(g o f)(x2 ). Then,
g(f(xl)) =g(f(x2))=> f(Xl) - (xz):> X, =X,

(i) Letze€ Z .Since g is surjective, there existsy € Y
with g(y) =z.



Inversion Theorem

Proof
(i) Suppose that (g o f)(xl) =(g o f)(xz) Then,
g(f(xl)) =g(f(x2))=> f(Xl) - (xz):> X, =X,

(i) Letze€ Z .Since g is surjective, there existsy € Y
with g(y) =z.Since f is also surjective, there exists

x€ X with f(x) =y.



Inversion Theorem

Proof
(i) Suppose that (g o f)(xl) =(g o f)(Xz) Then,
g(f(xl)) =g(f(x2))=> f(Xl) - (XZ):> X, =X,

(i) Letze€ Z .Since g is surjective, there existsy € Y
with g(y) =z.Since f is also surjective, there exists

x € X with f(x) =y . Hence,

(go ) =g(f(x)=g(y)=z.

So, gof is surjective.



Inversion Theorem

Proof
(i) Suppose that (g o f)(xl) =(g o f)(Xz) Then,
g(f(xl)) =g(f(x2))=> f(Xl) - (XZ):> X, =X,

(i) Letze€ Z .Since g is surjective, there existsy € Y
with g(y) =z.Since f is also surjective, there exists

x € X with f(x) =y . Hence,

(go )X =g(f))=g(y)=z.
So, gof is surjective.
(iii) This follows from parts (i) and (ii).



Inversion Theorem

Theorem

The function f : X — Y has

an inverse if and only if [ is
bijective.



Inversion Theorem

Proof
Suppose that h:Y — X is an inverse of &



Inversion Theorem
Proof
Suppose that h:Y — X isaninverse of .
The function [ is injective because

f(x)=f(x,)= (ho f)(x)=(ho f)x,)= x, =x,



Inversion Theorem

Proof
Suppose that h:Y — X is an inverse of &
The function [ is injective because

f(x)=f(x,)= (ho f)(x)=(ho f)x,)= x, =x,

The function [ is surjective because if for any Y € Y
with X =h(y), it follows that [ (X) =f (h (y)) =¥\



Inversion Theorem

Proof

Suppose that h:Y — X is an inverse of &

The function [ is injective because
f(x)=f(x,)= (ho f)(x)=(ho f)x,)= x, =x,

The function [ is surjective because if for any Y € Y

with X =h () it follows that f (x) =f (h(y))=y.

Therefore, f is bijective.



Inversion Theorem

Proof

Conversely, suppose that [ is bijective. We define the
function h:Y — X as follows.



Inversion Theorem

Proof

Conversely, suppose that [ is bijective. We define the
function h:Y — X asfollows. Forany yE€Y , there
exists x€ X with y = f (x).

Since [ is injective, there is only one such element X.



Inversion Theorem

Proof

Conversely, suppose that [ is bijective. We define the
function h:Y — X asfollows. Forany yE€Y , there
exists x€ X with y = f (x).

Since [ is injective, there is only one such element X.

Define h(y) =X This function his an inverse of [
because

f(h(y))=f () =y and h(f (x))=h(y) =x.
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Isomorphic Binary Structures

“Let us consider a binary algebraic structure <S,>0t>)
be aset tdgether with a binary operation o%x  S.



Isomorphic Binary Structures

“Let us consider a binary algebraic structure <5,*£>)
beaset tSgether with a binary operation ok  S.

“Two binary structures <S,"8>’1d <5 ’,*é>re said to be

isomorphic if there is a one-to-one correspondence

between the elements of and the elem®éntsS of
such that x S

X x and Yy 2 xkyoxxy.



Isomorphic Binary Structures

"Let us consider a binary algebraic structure  (S,%p
be aset tSgether with a binary operation dh  S.

*Two binary structures  (S,%9nd (S ,*3Jre said to be

isomorphic if there is a one-to-one correspondence

between the elements of  and the elem¥ént® of
such that x S

X x and Yy = Xky XKy,
"A one-to-one correspondence exists if the sets  &#nd
have tl% same number of elements.



Isomorphic Binary Structures
Definition
“Let <5,>03>1d <5 ',*1’3>e binary algebraic structures.

An isomorphism of  with is a Sne-to-dhe function
mapping  onto ¢ such thatS S’

P(xky) =p(x)*x ¢p(y) V x,yES.



Isomorphic Binary Structures

How to show binary structures are isomorphic

"Step 1. Define the function  ¢hat gives the
isomorphismof &d S



Isomorphic Binary Structures

How to show binary structures are isomorphic

"Step 1. Define the function  ¢hat gives the
isomorphismof &d S

"Step 2. Show that {8 one-to-one.



Isomorphic Binary Structures
How to show binary structures are isomorphic

"Step 1. Define the function  ¢hat gives the
isomorphismof &d S

"Step 2. Show that & one-to-one.
"Step3. Showthat #Bonto S



Isomorphic Binary Structures
How to show binary structures are isomorphic

"Step 1. Define the function  ¢hat gives the
isomorphismof &d S\

"Step 2. Show that {8 one-to-one.
"Step3. Show that Bonto S.
"Step 4. Show that

p(xxy) =p(x)*x ¢(y) V x,y €S.



Isomorphic Binary Structures

Example

"We show that the binary structure <|R, +i>
isomorphic to the structure R*,.).



Isomorphic Binary Structures

Example

"We show that the binary structure <|R, +i>
isomorphic to the structure R*,.).

"Step 1.

$:R— R, ¢(x)=e"



Isomorphic Binary Structures

Example

"We show that the binary structure <|R, +i>
isomorphic to the structure R*,.).

“Step 1. .
¢:R— R™; ¢(x) =e”

"Step 2. .
P(x) =p(y)= e" =e’ = x =y.



Isomorphic Binary Structures

Example

"We show that the binary structure <|R, +i>
isomorphic to the structure R*,.).

"Step 1. i
¢:R— R™; ¢(x) =e”

"Step 2. .
P(x) =p(y)= e" =e’ = x =y.

"Step3.If T ERthen In(r)< bhd
¢(Inr) =e"" =r.



Isomorphic Binary Structures

Example

"We show that the binary structure (IR,
isomorphic to the structure <IR+, >

"Step 1. ¢:IR— IR™, ¢(x) =e”
"Step 2. P(x) =¢(y)= e" =e’ = x =Y.
"Step3.If TrE€Rthen Inre€Rnd

¢o(Inr) =e"" =r.

"Step4. P(x+y)=e"" =e'e’ =p(x)p(y) V x,yER.



Group Theory

“Isomorphic Binary
Structures



Isomorphic Binary Structures

Example

"We show that the binary structure <Z, -|1'§
isomorphic to the structure <ZZ,.+>



Isomorphic Binary Structures

Example

"We show that the binary structure <Z, -|1'§
isomorphic to the structure <2Z.+>

"Step 1. ¢.Z— 27, ¢p(m) =2m



Isomorphic Binary Structures

Example

"We show that the binary structure <Z, -h'%
isomorphic to the structure <2Z.+>

"Step 1. ¢.Z— 27, ¢p(m) =2m
"Step 2. ¢p(m) =¢p(n)= 2m =2n= m =n



Isomorphic Binary Structures

Example

"We show that the binary structure <Z, -h'éa
isomorphic to the structure <2Z.+>

"Step 1. ¢.2Z— 2Z, ¢(m) =2m

"Step 2. ¢p(m) =¢p(n)= 2m =2n= m =n

"Step3.If NE€2Zthen m =n/2€ 4nd
o(m) =2(n/2) =n.



Isomorphic Binary Structures

Example

"We show that the binary structure <Z, -h'éa
isomorphic to the structure <2Z.+>

"Step 1. ¢.2Z— 2Z, ¢(m) =2m
"Step 2. ¢p(m) =¢(n) = 2m =2n= m =n
"Step3.If NnE€2Zthen m =n/2€& Znd

¢(m) =2(n/2) =n.
"Step 4.
p(m+n) =2(m+n) =2m+2n =¢p(m) +¢(n) VmneZ



Isomorphic Binary Structures

How to show binary structures are not isomorphic

"How do we demonstrate that two binary structures
<S,*> and <S ',*'> are not isomorphic?



Isomorphic Binary Structures
How to show binary structures are not isomorphic
"How do we demonstrate that two binary structures
<S,*> and <S ',*'> are not isomorphic?
"There is no one-to-one function ffom 8nto S’

with the property
p(xxy) =p(x)* ¢(y) V x,yE€S.



Isomorphic Binary Structures
How to show binary structures are not isomorphic
"How do we demonstrate that two binary structures
<S,*> and <S ',*'> are not isomorphic?
"There is no one-to-one function ffom &nto S’
with the property
P(xky) =p(x)*x ¢(y) V X,y €S.

"In general, it is not feasible to try every possible one-
to-one function mapping onto S and t8st whether
it has homomorphism property.



Isomorphic Binary Structures

How to show binary structures are not isomorphic

"A structural property of a binary structure is one that
must be shared by any isomorphic structure.



Isomorphic Binary Structures
How to show binary structures are not isomorphic

"A structural property of a binary structure is one that
must be shared by any isomorphic structure.

"It is not concerned with names or some other
nonstructural characteristics of the elements.



Isomorphic Binary Structures
How to show binary structures are not isomorphic

"A structural property of a binary structure is one that
must be shared by any isomorphic structure.

"It is not concerned with names or some other
nonstructural characteristics of the elements.

"A structural property is not concerned with what we
consider to be the name of the binary operation.



Isomorphic Binary Structures
How to show binary structures are not isomorphic

"A structural property of a binary structure is one that
must be shared by any isomorphic structure.

"It is not concerned with names or some other
nonstructural characteristics of the elements.

"A structural property is not concerned with what we
consider to be the name of the binary operation.

"The number of elements in the set & a structural
property of <5 ,.*>



Isomorphic Binary Structures
How to show binary structures are not isomorphic
"In the event that there are one-to-one mappings of
S onto S’, we usually show that (S, %) is not
isomorphic to <5 ',*’> by showing that one has
some structural property that the other does not
POSSESS.



Isomorphic Binary Structures

Possible Structural
Properties

"The set has four elements.



Isomorphic Binary Structures

Possible Structural
Properties

"The set has four elements.

"The operation is
commutative.



Isomorphic Binary Structures

Possible Structural
Properties

"The set has four elements.

"The operation is
commutative.

" XxXX=fporall xeS8



Isomorphic Binary Structures

Possible Structural
Properties

"The set has four elements.

"The operation is
commutative.

" XkX=forall xeS8
"The equation a*xx =b

has a solution Xin S
for all a,bES.



Isomorphic Binary Structures

Possible Nonstructural
Properties

"The number 4 is an element.



Isomorphic Binary Structures

Possible Nonstructural
Properties

"The number 4 is an element.

"The operation is called
“addition”.



Isomorphic Binary Structures

Possible Nonstructural
Properties

"The number 4 is an element.
"The operation is called
“addition”.

"The elements of are
matrices. S



Isomorphic Binary Structures

Possible Nonstructural
Properties

"The number 4 is an element.
"The operation is called

“addition”.
"The elements of are
matrices. S

is a subset of .
S C



Isomorphic Binary Structures
Example
"The binary structures
(Q,+) (R, +)
and are
@t isomorphic beca%se
has cardinality

(dIRp=ty 1) while



Isomorphic Binary Structures

Example
“We prove that the binary structures <Q, "'c>nd

(Z.+)

under the usual addition are not isomorphic.



Isomorphic Binary Structures

Example
“We prove that the binary structures <Q, "'c>nd

(Z+)
Qunder te usual addition age not isomorphic.
Q Z
"Both and have cardinality , so there are lots
of one-to-one functions mapping onto



Isomorphic Binary Structures

Example
"We prove that the binary structures <(Dah§|
(Z+)
@nder t% usual addition arewot isomorphic.

“Both and  have cardinality so th@re are Igts of
one-to-one functiong mapping  onto b

"The e@g@hon has a squtionZ for all
but this is not the case in



Isomorphic Binary Structures

Example
"We prove that the binary structures z(n]g, +>

(Z+)

"Both and ha% cardinality , so tﬁé‘re(ﬁre lots of one-
to-one functions mapping onto Z

der the usual addition are not isomorphic.

"The equation X T Xas & solution for all X
c € Cbut thisis not thecasein . Z
“For example, the equation x 4has fo3solution in

Z



Isomorphic Binary Structures

Example

"The binary structures
(C,.) and (R,.)
under usual
multiplication are
not isomorphic because
the equation 5 YT
has solution )Eor all

but has

cel . xx=-1
no solution in IR



Isomorphic Binary Structures

Example

" The binary structures <M2 (IR),énd <IR, >
under usual matrix multiplication and number
multiplication, respectively because multiplication
of numbers is commutative, but multiplication of
matrices is not.



Group Theory

“Isomorphic Binary
Structures
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Isomorphic Binary Structures

Example

s ¢:Z— Z ¢(n) =Fr n€ Znisomorphism?
.+ $:Z— Z ¢(n) =3n

= ¢p(m) =¢(n)= 3m =3n= m =n

"Choose 5€&€Z ¢(m)=3m=pyt m=5/3¢Z



Isomorphic Binary Structures

Example

s ¢:Z— Z ¢(n) =t  n cadisomorphism?

* $:Z— Z ¢(n) =3n

= ¢(m) =¢(n)=> 3m =3n=> m =n

"Choose 5e&.7Z ¢(m)=3m Hbt m=5/3&Z

_ $:Z— Z §(n) =3n ,
éim +n) =3(m+n) =3m L‘%W":%‘(’%E‘)hfg‘(%) VmneZ



Isomorphic Binary Structures

Example

"Is ¢;Z—> Z, ¢(n) fa3n rpaciggmorphism?
" ¢9:Z- Z ¢(n) =3n

¢(m) =¢(n) > 3m =3n= m =n

"Choose but

5&Z ¢(m)=3m=5 m=5/3¢Z

s @i ZL— Z ¢(n) FdMomorphism?
p(m+n) =3(m+n) =3m+3n =p(m)+¢(n) Vm,neZ

 (Z+)=(3z.4
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“Is ¢:Z— Z ¢(n) =nHér n€E Znisomorphism?



Isomorphic Binary Structures
Example
“Is ¢:Z— Z ¢(n) =nHér n€E Znisomorphism?
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Isomorphic Binary Structures

Example

“Is ¢:Z— Z ¢(n) =nHér n€E Znisomorphism?
» ¢ Z— Z ¢(n)=n+l

- ¢(m) =¢(n)= m+1l=n+1= m=n



Isomorphic Binary Structures

Example

“Is ¢:Z— Z ¢(n) =nHér n€E Znisomorphism?

 $:Z— Z §(n) =n+1

= ¢o(m) =¢(n)= m+1=n+1= m =n

"For every ne€ Zthere exists Nn- 1€ ich that
¢p(n-1)=n-1+1=n



Isomorphic Binary Structures

Example
“Is ¢:Z— Z ¢(n) =nHér n€E Znisomorphism?
 $:Z— Z §(n) =n+1
= ¢o(m) =¢(n)= m+1=n+1= m =n
"Forevery nc Zthere exists Nn- 1€ 4ych that
¢p(n-1)=n-1+1=n
p(m+n) =m+n+1#¢p(m)+¢(n) =m+n+2



Isomorphic Binary Structures

Example
"Is ¢: Q- Q,¢(x) =x/fdr xE omorphism?
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Isomorphic Binary Structures

Example

"Is ¢: Q- Q,¢(x) =x/fdr xE omorphism?
= 0: Q- Q, ¢(x) =x/2

= P(x)=¢(y)= x/2=y/2= x=y



Isomorphic Binary Structures

Example

"Is ¢: Q- Q,¢(x) =x/fdr xE omorphism?

= 9. Q— Q, ¢(x) =x/2

= (X)) =@(y)= x/2=y/2= x=y

"Forevery Y€ thhere exists 2y € Quch that
p(2y) =2y/2=y



Isomorphic Binary Structures

Example

"Is ¢: Q- Q,¢(x) =x/fdr xE omorphism?
= 0: Q- Q, ¢(x) =x/2

» )(X)=@(y)= x/2=y/2= x=y
"Forevery Y€ thhere exists 2y € Quch that
P(2y) =2y/2 =y
x+y X

pxry) = =5+§:¢(x)+¢(y)




Isomorphic Binary Structures

Example
“We prove that the binary structures <Z, ->and
()
under the usual multiplication are not
isomorphic.



Isomorphic Binary Structures

Example
“We prove that the binary structures <Z, ->and

(')
under the usual multiplication are not
isomopphic. —+ N,
"Both and have cardinality , soZhere ar&lots
of one-to-one functions mapping onto




Isomorphic Binary Structures

Example
"We prove that the binary structures {@) >

+
< ’ '>under the usual multiplication are not

isomorphic.
" Both aZd hZ'Jre cardinality , SO zEﬁ\@re are lots of
one-to-one functions mapping onto . Z Z
"In <Z,h§re are two elements such #hat XX =X

namely, O and 1.



Isomorphic Binary Structures

Example
We prove that the binary struc.tu.res | ar<dZ, >
iZ+ ’>mder the usual multiplication are not
iSomot phic.

"Both and havecardinality , so there are lots of one-
to-one funcéons mﬂﬁing onto . No

+
"In there are two elements such that Z , Z

nané%;,.}f) and 1. X X6 =X

"However, in , there is only the single element 1.

z.)



Group Theory

“Isomorphic Binary
Structures
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Group Theory

Associative Binary
Operation

“A binary operation %
called associative if

(axb)xc =ax(bxc).



Group Theory

Example

“Can we solve
3+x =2
in IN?

“The equation is
unsolvablein  sliNce

-3¢ IN.
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"Canwesolve 3+x =2
in Z7?
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Group Theory

Example

"Canwesolve 3+x =2

in Z7?

"add -@h both sides
-3+(3+x)=-3+2
(-3+3)+x=-3+2

“Thus

O+x=-3+2



Group Theory

Example

"Canwesolve 3+x =2

in Z7?

"add -@h both sides
-3+(3+x) =-3+2
(-3+3)+x=-3+2

“Thus

O+x =-3+2

= x =-1.



Group Theory

Example
"Canwesolve 3+Xx =2
in Z7?
"add -@h both sides
. We use associative -3+(3+x)=-3+2
property \>(_ 343)+Xx =-3+2
. Existence of 0 "Thus

with 0+ x =x

>0+x=-3+2
. Existence of -3 .
= >x ==1

with - 3+3 =0



Group Theory

Group(Definition)
A group <G,*> is a set G with binary operation x
satisfying the following axioms for all a,b,c€ G .
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Group(Definition)
A group <G,*> is a set G with binary operation x
satisfying the following axioms for all a,b,c€ G .

1For a,beG axbeG (closure)
2. (a*xb)*c =a*(bxc) (associative)
3.There exists € € Gsuch that (identity)

exa =axe =da



Group Theory

Group(Definition)
A group (G,*) is aset G with binary operation x
satisfying the following axioms for all a,b,c€ G .

1.For a,beG axbeG (closure)
2. (a*xb)*c =a*(bxc) (associative)
3.There exists € € Gsuch that (identity)

exa =axe =da
4. Forevery AE€G thereexists a ' € Guch that
a'xa =axa' =e (inverse)



Group Theory

Example

“Can we solve equations of the form
a*xx =b ina group <G,*> ?
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Group Theory

Example
“Can we solve equations of the form

a*xx =b ina group <G,*> ?
a *x(axx) =a *b
(a'*ka)*xx =a *b



Group Theory

Example

“Can we solve equations of the form
a*xx =b ina group <G,*> ?

a *(a*xx) =axb

(a'*ka)*xx =a *b
exXx =a *b



Group Theory

Example

“Can we solve equations of the form
a*xx =b ina group <G,*> ?

a *(a*xx) =axb
(a*a)xx =a *b
exx =a xb

x =a xb



Group Theory

Lecture
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Example

(Z+)

Group Theory
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(Z+)

“Closure VmneZm+neZ
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Group Theory

Example
(Z+)
“Closure VmneZm+neZ
“Associative
Vmn,peZ(m+n)+p=m+(n+p)
“ldentity
For every mEZ, OEZ,O+m =m =m + 0.



Group Theory

Example
(Z+)
“Closure VmneZm+neZ
“Associative
Vmn,peZ(m+n)+p=m+(n+p)
“ldentity
Foreverym€Z,0€Z 0+m =m =m+0.
“inverse

Forevery MEZ d- me Zgych that
m+(-m) =0 =(- m) + m.



Group Theory

Example

(Z-)



Group Theory

Example
(Z-)
“closure
Vm,neZ m- ne”Z



Group Theory

Example
(Z-)
“closure
Vm,neZ m- ne”Z

“associative
(2-3)-4=-5#3=2-(3-4)



Group Theory

Example

(Z.)
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Example
(Z.-)

“closure VmneZ mne”Z
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Example
(Z-)
“closure VmneZ mne”Z

“associative
Vm,n, p€ Z (m.n).p =m.(n.p)



Group Theory

Example
(Z-)
“closure VmneZ mne”Z
"associative
Vm,n, p€ Z (m.n).p =m.(n.p)
“identity
Forevery me Z 1€ Z, 1.m =m =m.1.



Group Theory

Example
(Z-)
“closure VmneZ mne”Z
"associative
Vm,n, p€ Z (m.n).p =m.(n.p)
“identity
Forevery N€EZ 1€Z 1.m =m =m.1.

“Inverse |
2€Z but 5% Z



Group Theory

Example
(@,+)
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Example
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“Closure Vr,seQ, r+s€qQ



Group Theory

Example
(@, +)
"Closure Vr,seQ, r+s€qQ
“Associative
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Group Theory

Example
(@, +)
"Closure Vr,seQ, r+s€qQ
“Associative
Vr,s,tcQ,(r+s)+t =r+(s+t)

“Identity
Forevery req ’ O+r =r :r+0, 0 Q.



Group Theory

Example
(@, +)
“Closure Vr,seQ, r+s€Q
“Associative
Vr,s,tcQ,(r+s)+t =r+(s+t)

“ldentity

Forevery req ’O+r =r :r+0, 0 Q.
“Inverse

Forevery T€Q d- reQ gych that
r+(-r)=0=(-r)+r.



Group Theory

Example

@)
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Group Theory

Example
Q,)
“closure Vr,seQ,r.seQ
"associative
Vr,s,t€Q,(r.s).t =r.(s.t)



Group Theory

Example
Q)
“closure Vr,seQ,r.seQ
"associative
Vr,s,t€Q,(r.s).t =r.(s.t)
“identity
Forevery I € Q / lor =r =r.1, 1€Q.



Group Theory

Example

@.)
“closure Vr,seQ,r.seQ
"associative

Vr,s,t€Q,(r.s).t =r.(s.t)

“identity

Forevery r€Q 1r =r =r.1, 1€Q.
“Inverse

Inverse of 0 € Q does not exist



Group Theory

Examples

. <Q' {0},L§a group.



Group Theory

Examples
. <Q' {0},'@3 group.

§ <|R' {O}Qa group.



Group Theory

Examples
. <(D' {0},'@3 group.
g <|R' {O}Qa group.

\ <‘D ) {O},i> a group.



Group Theory
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Proposition

“Let <G,*t>e a group.
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Group Theory

Proposition
“Let <G,*t>e a group.
Then

1) (has exactly one
identity element

2)Each element of (Ghas
exactly one inverse.



Group Theory

Proof

1) Suppose 6, e are
identity elements.
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Group Theory

Proof

1) Suppose € € are

identity elements. So
exXxX =Xxe =X

e xXx =xke =Xx
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Proof
1) Suppose €, e are
identity elements. So
exXxX =Xxe =X
e kX =xxe =x
holds for all X€ G



Group Theory

Proof
1) Suppose €, e are
identity elements. So
exX =X*ke =X
e xXx =xkxe =X
holds for all X€ G
“In particular

e —exe =e¢.



Group Theory

Proof

2) Let X€Gand
suppose X ape
inverses of X.



Group Theory

Proof
2) Let X€G and
suppose X are
inverses of $0

X kX =x%kXx =e



Group Theory

Proof
2) Let X€G and
suppose X ate
inverses of $0
X kX =XxX%kX =e
X kX =X%xXx =e
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Proof

2) Let X€G and
suppose X ate
inverses of $0
X kX =XxX%kX =e
X kX =X%xXx =e
“Then
X =X ke



Group Theory

Proof
2) Let X€G and
suppose X ate
inverses of $0

X kX =XxX%kX =e

X kX =X%xXx =e
“Then

X =X ke
=x *(x*Xx")



Group Theory

Proof
2) Let X€G and
suppose X ate
inverses of $0
X kX =XxX%kX =e
X kX =X%xXx =e

“Then
X =x ke
=x *(x*Xx")
=(Xx"*kX)kX



Group Theory

Proof
2) Let X€G and
suppose X ate
inverses of $0
X kX =XxX%kX =e
X kX =X%xXx =e
“Then
X =X ke
=x *(x*Xx")
=(Xx"*kX)kX
—exXx =Xx.



Group Theory

An Interesting
Example of Group



An Interesting Example of Group

Example
letG={x € R| x + 1}

and define
X*xy=Xy-x-y+2.

Prove that (G, *) is a

group.



An Interesting Example of Group

Solution
Closure:

Lleta,beG,s0a#1

and b # 1.

Supposea * b = 1.
Thenab-a-b+2=1
andso(a-1)(b-1)=0
which implies thata = 1

or b =1, a contradiction.



An Interesting Example of Group

Associative:

(@ * b) *

=(a * b)c - (ax b) -c+2
=(ab-a-b+2)c-
(ab-a-b+2)-c+2

=abc - ac - bc + 2c - ab
+a+b-2-c+2
=abc-ab-ac-bc+a+
b+c

Similarly a - (b - c¢) has
the same value.



An Interesting Example of Group

Identity:

An identity, e, would
have to satisfy:

exx =x=xx*eforall x
€ G,

that is,
ex-e-x+2=x,

or

(e - 2)(x - 1) =0 for all x.
Clearly e = 2 works.



An Interesting Example of Group

Inverses:

If x x y =2, then
Xy-X-y+2=2.
So

y(x - 1) =x and

hence
y =x/(x - 1).



An Interesting Example of Group

This exists for all x 7 1,
I.e. for all x € G. But we
must also check that it is
itself an element of G.
This is so because

x/(x-1) 71
for all x#1.
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of Groups



Elementary Properties of Groups
Theorem
If G is a group with binary
operation * then the left
and right cancellation
laws hold in G, that is,
a*b=a* cimplies b =c,
and b *a=c* aimplies
b=cforalla, b, c €G.



Elementary Properties of Groups

Proof

Suppose a *b=a * c.

Then, there exists a'& G, and
a'* (a* b)=a"*(a*c).
(a*a)*b=(a""a)* c.

So,e * b=e *cimplies b = c.
Similarly, fromb *a=c * a
one can deduce that b = ¢
upon multiplication by a'€ G
on the right.



Elementary Properties of Groups
Theorem
If G is a group with binary
operation *, and if a and b
are any elements of G, then
the linear equations a * x=b
and y * a=b have unique
solutions x and y in G.



Elementary Properties of Groups

Proof
First we show the existence of at least one solution by just
computing that a' * b is a solution of a* x = b.
Note that
a*(a'*b)=(a*a')* b=e * b=b.
Thus x =a' *b is a solution of a * x =b.
In a similar fashion, y=b *a'is a
solution of y *a = b.



Group Theory

Topic No. 15



Elementary Properties of Groups

Theorem

Let G be a group. For all
a, be G, we have

(a*b)' =b' *a'.



Elementary Properties of Groups

Proof

Note that in a group G,
we have

(@* b) * (b' *a ’)
"(b*b') "a

* ¢

=q
= (a* e) *a
a

x I

a=e.



Elementary Properties of Groups

It shows that b' * a'is the
unique inverse of a* b.

That is,
(a * b )' = bi\Siohe



Elementary Properties of Groups

Theorem

Foranyn € N, (@" )_1 = (a



Elementary Properties of Groups

Proof
By definition, (an)'1 is the unique element of G whose product
with a"in any order is e.

But by associativity,

a" x (a')"=(a™* %k a) k (atk(a )Y

L (a * (a_1 * (a_1 )n—l )

=a" !k (A A @A
=an—1 % (e % (a—l)n—l))

n-1 -1
a

. % ( n—1’

)



Elementary Properties of Groups

which by induction on n equals e (the casesn=0
and n =1 are trivial).

Similarly, the product of a" and (a=! )" in the other
order is e.

This proves that (a=*)"is the inverse of a".



Group Theory




Groups of Matrices

Is (M__(R), + ) group?
“Vlal [b;] € M_.(R), [a;] + [b,]=[a;+ b,] € M_(R)
"V lal [bl, [c;] € M (R),

([a,] + [b,])+ [c,] =[a, + b,]+ [c,]

=[(a,+ b,)+ c;]

=[a,+( b+ c;)]

= [a;]+[b;+ ¢;]

=[a;] + ([by]+ [c;])



Groups of Matrices

" For every [a.] € M_ (R) and [0] € M__(R),
[a,] + [0]=[a,+0]=[a,]=[0]+[a,]

" For every [a,] € M (R) there exists [-a,] € M (R) such

that [aij] + ['aij]=[aij+(' aij)]= [O]= ['aij]+[aij]




Group Theory

Groups of Matrices



Groups of Matrices

"V [a],[b] €M, (R),
[aij] i [bij]=[aij+ bij]
=[bij+ aij]= [bij] + [aij]

Therefore, ( M__(R), + )
is abelian group.

" Similarly, (M_(Z), +
),

(M, (Q),+) and

(M_(C), +) are also
abelian groups.



Groups of Matrices
Is(M_(R),. ) group?
"V A BeM (R),
ABEM (R)

"V A B, CeM (R),
(AB)C=A(BC)

" For every A € M_(R)
andl_ € M_(R),
Al =A=| A

" A'l does not exist for all

those A e M_(R)
having det(A)=0



Groups of Matrices

Field
(F.+,.)

" (F,+) is abelian
group

" (F\{0},.) 1s
abelian group

Ya b, ceF
" a(b+c)=ab+ac
" (a+b)c=ac+bc



Groups of Matrices
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Group Theory

“let F=lg C

let %k 5 matrix

over |Fe all
a;, € F



Group Theory

"let F=Ixr C

"Let [apk a matrix
over ife. all
a, eF

“Let GL(n, Fdenotes
the set of all n xXn

invertible matrices
over . F



Group Theory

“In general set of all

n Xn matrices is not
a group under matrix
multiplication.



Group Theory

“In general set of all

n Xn matrices is not
a group under matrix
multiplication.

"But GL(n, F9a group
under matrix
multiplication.



Group Theory

Axioms

“Let

G =GL(n,EF)
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"Closure: Forall A Be(G ABeG



Group Theory

Axioms

"let G =GL(n,F)

“Closure: Forall A BeG ABeG
"Associative property also holdsin G



Group Theory

Axioms

"Let G =GL(n,F)

“Closure: Forall A BeG ABeG
"Associative property also holdsin G
= s the identity matrix.



Group Theory

Axioms
"Let G =GL(n,F)
“Closure: Forall A BeG ABeG
"Associative property also holdsin G
= s the identity matrix.
"Sinceboth And A!

are invertible so inverse exists.



Group Theory

Example
"let G =GL(2,Rind A, B€ Guch that

¥ il 0 1
A= , e
[o 2] 1 o]




Group Theory

Example
"let G =GL(2,Rind A, B€ Guch that

1 =1 0 1
A= . B =




Group Theory

Example
"let G =GL(2,Rind A, B€ Guch that

e F A
o PO MR P

Dollo 2J

“then

BA =




Group Theory

Definition

"Let  (G,%e a group. If

for all a,b e G,
axb =bx*a

We call G an abelian
group.



Group Theory

Definition

"Let  (G,%e a group. If

for all a,b e G,
axb =bx*a

We call G an abelian
group.

“ Examples

(nZ +)



Group Theory

Definition

"Let  (G,%e a group. If

for all a,b e G,
axb =bx*a

We call G an abelian
group.

“ Examples

(nZ, +)
(@-{0},.)



Group Theory

Examples

<IR, +>



Group Theory
Examples
<IR, +>

(C. #)



Group Theory

Examples

(R, +)
(c,+)
(R- {0},.)



Group Theory
Examples
(R, +)
(C. #)
(R- {0},.)

(C- {0},.)
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Examples

GL(n,Z)
11

A =
B
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Examples

GL(n,Z)
11

A =
B

at=1
2

|

2
0 1



Group Theory

Examples

GL(n,Z)
11

A =
B

at=1
2

GL(n, Q)

|

2
0 1



Group Theory




Abelian Groups

Theorem

If a %k b=b % a, then for all/any
onenEZ,(a>I<b)n =3 xb".



Abelian Groups

Proof

Ifn =0 or n =1, this holds trivially. Nowlet n > 1.

By commutativity, bm * a=a %k bm for allm = 0.

Then by induction on n,

n-1 * n-1 1

(a *b)" = (a * b) (a*b)=(a" =~ % b" ") *(a *b)

A"k p" L kp)=a" k"

Thus the result holds for all nEN.



Abelian Groups

If n<0, then by the positive case
and commutativity,
(a xb)"

= (b *a)"

- (b xa)™1



Group Theory

Modular Arithmetic



Modular Arithmetic

Definition

Let n be a fixed positive integer and a
and b any two integers.

We say that ais congruent to b
modulo n if n divides a-b.

We denote this by a=b mod n.



Modular Arithmetic

Theorem

Show that the congruence relation

modulo n is an equivalence relation

on .



Modular Arithmetic

Proof

Write “n|m” for “ n divides m,”
which means that there is some

integer k such that m = nk.
Hence a=b mod n if and
only if n|(a-b).

(i) Foralla &, n [(a-a), so

a = a mod n and the relation is

reflexive.



Modular Arithmetic

(i) If a= b mod n, then n|(a-b), so

n|-(a -b).

Hence n|(b-a) and b =a mod n.
(iii) f a=b mod nand b =c mod n,
then n|(a-b) and n|(b-c), son |
(a-b)+(b-c).

Therefore, n|(a-c) and a = ¢ mod n.

Hence congruence modulo nis an

equivalence relation on.



Modular Arithmetic

The set of equivalence
classes is called the set of
integers modulo n and is

denoted by .



Modular Arithmetic

In the congruence relation modulo 3, we have the following equivalence classes:

[0]={...,-3,0,3,6,9,...}  [1]<{...,-2,1,4,7,10,...} [2]+{...,-1,2,5,8,11,...}

[3]={...,0,3,6,9,12,...}=[0]
Any equivalence class must be one of [0], [1], or [2], so ={[0],[1],[2]}.

In general, ={[0],[1],[2],...,[n-1]}, since any integer is congruent modulo n to its

remainder when divided by n.
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Order of a Group

Definition

The number of elements of a
group G is called the order of G.
We denote it as |G].

We call G finite if it has only
finitely many elements; otherwise

we call G infinite.



Order of a Group

Definition

Let G be a

c G.
If there is

group and a

a positive

integer n such that g"
= e, then we call the

smallest
Integer t
If no suc
we say t

such positive
ne orc[er of a.
N N exists,

nat a has

infinite order.
The order of a is

denoted

by |al.



Order of a Group

In the congruence relation modulo 4, we have the

following equivalence classes:

[0]<{...,-4,0,4,8,12,...}  [1]+{...,-3,1,5,9,13,...} [2]={...,

-22,6,10,14,...} [3]<{...,-1,3,7,11,15,...}
Any equivalence class must be one of [0], [1], [2] or [3],
so ={[0],[1],[2],[3]}.

Let +4 be addition modulo 4. Then, 2 +4 S=,



Order of a Group

We can write out its Cayley table:

R

o1 fol [1] [2]  [3]

(a1 11 [21  [8]  [0]
21 2] [8] [o]  [1]

(31 (31 [o] [1]  [2]

Therefore, {(Z,,+, ) is a group.



Order of a Group

“1Z,1=4

" 1+,1+,1+,1=4(1)=0 = |[1]|=4
" 2+,2=2(2)=0 = |[2]|=2

" 3+,3+,3+,3=4(3)=0 = [[3][=4
" 1(0)=0==|[0]|=1

" Z,7{1)=(3)

"Let Z ={[0], [1], [2]....,[n-1]}. Then, (Z _,+ ) is a
group.

"1 Z,]=n



Order of a Group
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Finite Groups

Let U4={1, -1,1i, =i}, and let “.” be multiplication. Then U4 isa

group, and we can write out its multiplication table (Cayley table):

1 1 -1 [ -i



Finite Groups

“|U,|=4
" (-1)(-1)=(-1)>=1 => |-1|=2
"lLi.ii=i*=1= |i|=4

" ()N )= =1 = |-i| =4
"11=1 = |1|=1
U= (i)=(-i)



Finite Groups

Is (U, .)=(Z,,+,)?

"1<—[0]
"-1 e—>[2]
"i «—[1]

"-i «—[3]




Finite Groups

Let U ={ei2kn/n: k=0, 1, ..., n-1}
n .

Then, (U_,.) 1S a
group.

(U, I=(Z,+,)



Group Theory
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Finite Groups

Since a group has to have at least one element,
namely, the identity, a minimal set that might give
rise to a group is a one-element set { e}.

The only possible binary operation on

{e} isdefinedbye *x e=e.

The three group axioms hold.

The identity element is always its own

Inverse in every group.



Finite Groups
Let us try to put a group structure on a set of two

elements.
Since one of the elements must play the role of
identity element, we may as well let the set be

{ e, al.
Let us attempt to find a table for a binary

structure on { e, ajl.



Finite Groups

Since e is to be the
identity, so ek x=x%k e=x
for all xe{e, a}.

Also, a must have an
inverse a' such that
aka=a ka=e.

In our case, a' must be
either e or a. Since a'
e obviously does not
work, we must have



Finite Groups

So, we have to complete
the table as follows:



R O [

0]
[1]

[0]
[1]

Finite Groups

[1]
0]

We know that

Z,={10], [l]}

under addition modulo
2 isa group, and by
our arguments, its table
must be the one above
with e replaced by [O]
and a by [1].



Group Theory
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Finite Groups

Suppose that G is any group of three

elements and imagine a table for G with identity
element appearing first.

Since our filling out of the table for G = { e, a, b}
could be done in only one way, we see that if we
take the table for G and rename the identity e, the
next element listed a, and the last element b, the
resulting table for G gives anisomorphism of the
group G with the group G'={[0], [1], [2]}.



__F
a a b e
b b e a
dtRsihld = a=e
ptRsibla = b=e
podsibled — a=¢€

p68sible =

Finite Groups

b=e

0]
[1]
[2]

[1]
2]
0]



Finite Groups
Our work above can be summarized by saying that
all groups with a single element are isomorphic, all
groups with just two elements are isomorphic, and
all groups with just three elements are isomorphic.

We may say:

There is only one group of single element (up to
Isomorphism), there is only one group of two
elements (up to isomorphism) and there is only
one group of three elements (up to isomorphism).



Finite Groups

There are two different types of group structures of
order 4.

" The group (Z,, +,) is isomorphic to the group
U,=1{1,i, -1, -i} of fourth roots of unity under
multiplication.

" The group V=(a,b | a2=b?=(ab)?=e )
is the Klein 4-group, and the notation V comes
from the German word Vier for four.



Finite Groups

We describe Klein 4-group by
its group table.

b

*
® ©® T O

O T o o
0O o o o
o o o 9

C
e
a
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Finite Groups

s (Z,\{[0]}, .; ) @ group?

BEERENCRRNON

(11 (1] 2] [3] [4] [5]
(2] [2] [4] [0o] [2] [4]
31 3] (o] [3] [o] [3]
4] [4] (2] [o] [4] [2]
[51 [5] [4] [8] [2] [1]



Finite Groups

Is (Z \{[0]}, .. ) a group?

_IE-IE-IE-

[1] 2] [3] [4]
[2] [2] [4] [1] [3]
3] [3] [1] [4] 2]
[4] [4] [3] [2] [1]

(Z\{[O]}, ., ) isagroup,

where p is a prime number
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Subgroups

Subgroups

“Let (G,*e a group. A
subgroup of  isG
subset of  Which is

itself a group under . x



Subgroups

Examples
" (Z 49 a subgroup of (R, +)



Subgroups

Examples

(Z 49 a subgroup of (R, +)

<(D - {0},-i>s not a subgroup of <|R, "‘>



Subgroups

Examples

(Z 49 a subgroup of (R, +)
<(D - {0},-i>s not a subgroup of <|R, "‘>

<{1,' 1},-}5 a subgroup of <{1,' 11,5 i},.>



Subgroups

Examples

(Z, 49 a subgroup of (R, +)
<Q - {0},-i>5 not a subgroup of <IR, +>
<{1, - 1},-}5 a subgroup of <{1, -11i,- i},.>

<{1, i},.>5 not a subgroup of
{1, - 1,i,-i},.)



Subgroups

Proposition
“Let  (pe a group. Let

H cG.ThenH isa
subgroup of  ifthe
following are true:



Subgroups

Proposition
“Let  (pe a group. Let
H cG.ThenH isa

subgroup of  iEthe
following are true:

1) e€eH



Subgroups

Proposition
“Let  (pe a group. Let

H < G.Then H isa
subgroup of  iEthe
following are true:

1) e€eH
2) kkeEH then
hk e H



Subgroups

Proposition
“Let  (pe a group. Let

H < G.Then H isa
subgroup of  iEthe
following are true:

1) e€eH
2) kk€H then
hk e H

3) HhEeH then
h'leH



Subgroups

Example
"let G =GL(2,IR)
"Let (1 n
H =- ‘ ne’Z;

0 1

\



Subgroups

Example
"let G =GL(2,IR)
"Let (1 n
H =- ‘ ne’Z;
\ 0 1

1) e€H



Subgroups

Example
"let G =GL(2,IR)
"Let (1 n
H =- ‘ ne’Z:;
k 0 1
1) e€H
2) let | _ 1 n al 1 p
0 1) 0 1
then 1 +n
P M en.




Subgroups

Example
3) let
h e

1 n
0 1




Subgroups

Example
3) let
h e

1 n
0 1

Then

h'l—l - n
ol

e H.

Hence H is a subgroup
of .G
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Groups of Matrices

If F is a field GL(n, F) denotes the group of
all invertible n X n matrices over F under
Hlllllggplication. This group is called the general

group of degree n over F.

We know that the associative law holds for matrix
multiplication. Checking the closure law requires us
to know that the product of two invertible matrices is
invertible. And we need to know more than just the
fact that every invertible matrix has an inverse. We
need to observe that such an inverse is itself
invertible.



Groups of Matrices

An interesting subgroup of GL(n, F) is T"(n, F) the

set of all n X n upper- triangular matrices over F,
that is, n X n matrices of the form:

all a12 a13 aln
O a22 a23 a2n
0 0 a, a,,

_ 0 0 0 .. a, _

where each diagonal component is
non-zero.



Groups of Matrices

Then there are the lower triangular matrices
T(n, F) which are the transposes of the upper
triangular ones.

a, O 0 0
a, a, 0 0
a13 a23 a33 0




Groups of Matrices

Diagonal matrices D(n, F). It’s closed under

multiplication, identi}ly and inverses simply because
each of T"(n, F) and T"(n, F) are.

This is a special case of the general fact that: :
The intersection of any collection of subgroups is
itself a subgroup.

a, 0 O 0
0 a, O 0
0 0 a, 0




Groups of Matrices

Within D(n, F) we have the non-zero scalar

matrices S(n, F). These are simply the diagonal
matrices that have the same non-zero entry down
the diagonal, that is, non-zero scalar multiples of
the identity matrix.

A0 0] 100 @'/ 4108
0O A 0 ... 0 0 1 0 .. 0
0 0 A .. 0/=A|0 0 1 .. O|=AL,A#0




Groups of Matrices

Another interesting subgroup of T"(n, F) is the
ogroup of uni-upper-triangular matrices UT"(n, F).

These are the upper-triangular matrices with 1’s down
the diagonal:

al2 a13 aln
0 ]‘ 023 2n
0 0 1 a,




Groups of Matrices

And inside T_(n, F) we have the uni-lower-triangular

matrices UT_(n, F).

1 0 0 0
a, 1 0 0
a, a, 1 0

| aln a2n a3n 1




Groups of Matrices

We can summarize the connections between these
subgroups in a “lattice diagram”:

GL(n, F)

T'(n, F) T(n, F)

IS

D(n, F)

UT'(n, F) ‘ UT(n, F)

1



Groups of Matrices

fRoshenYery
ﬁblgroup of GL(n,
§P("’ F) consisting

all the matrices with
determinant 1.

Lpaafled the
Hggggegroup of

n over F.
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The Two Step Subgroup Test

Theorem
A subset H of a group G is a
subgroup of G if and only if

1. His closed under the binary operation * of G,

2. for all a € Hitis true that a1 € H also.



The Two Step Subgroup Test

The fact that if H is subgroup of G then conditions
1 and 2 must hold follows at once from the
definition of a subgroup.

Conversely, suppose H is a subset of a group G
such that conditions 1 and 2 hold.

By 1 we have at once that closure property is
satisfied. The inverse law is satisfied by 2.
Therefore, for every a€H there exists a'leH
such that e=axa'€eH by 1. So,
exa=axe=a by 1.



The Two Step Subgroup Test

It remains to check the
associative axiom.

But surely for all a, b, c €
H it is true that

(ab)c = a(bc)

in H, for we may actually
view this as an equation
in G, where the
associative law holds.
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Group Theory

Examples on Subgroup
Test



Examples on Subgroup Test

Recall

Let G be a group and H a
nonempty subset of G. If
a*xb is in H whenever a and
bareinH,anda?isin H
whenever a is in H, then H is
a subgroup of G.



Examples on Subgroup Test

To Apply the Two Step
Subgroup Test:

2 NotethatHis
nonempty

2 Show that H is closed
with respect to the
group operation

2 Show that His closed
with respect to inverses.

2 ConcludethatHis a
subgroup of G.



Examples on Subgroup Test

Example
Show that 3Q* is a subgroup of Q*, the non-zero rational
numbers.

3Q* is non-empty because 3 is an element of 3Q*.
For a, bin 3Q*, a=3i and b=3j where i, j are in Q*.
Then ab=3i3j=3(3ij), an element of 3Q* (closed)
For a in 3Q*, a=3i for i an element in Q*.

Then a*=(i"*31), an element of 3Q*. (inverses)
Therefore 3Q* is a subgroup of Q*.
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Group Theory

The One Step Subgroup
Test



The one Step Subgroup Test

Theorem

If S is a subset of the
group G, then S is a
subgroup of G if and
only if S is nonempty
and whenever a, b €S,
then abt! € S.



The one Step Subgroup Test
Proof
If S is a subgroup, then
of course S is nonempty

and whenever a,b € S,
then ab*! & S.



The one Step Subgroup Test

Conversely suppose S is a nonempty subset of
the Group G such that whenever a, b € S, then
ab?t & S.

leta &€ S, thene=a3al&S andsoal=eal&s.
Finally, if a, b €S, then b’ & S by the above and
so ab =a(b?!)t&S.
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Group Theory

Examples on Subgroup
Test



Examples on Subgroup Test

Recall

Suppose G is a group and H
Is a non-empty subset of G.
If, whenever a and b are in
H, abtis also in H,

then H is a subgroup of G.

Or, in additive notation:

If, whenever a and b are in
H,a-bisalsoinH,

then H is a subgroup of G.



Examples on Subgroup Test

To apply this test:

2 NotethatHisa
non-empty subset
of G.

2 Show that for any
two elements
aandbinH, abtis

also in H.
0 Conclude thatH is a
subgroup of G.



Examples on Subgroup Test

Example

Show that the even integers are a subgroup of the
Integers.

Note that the even integers is not an empty set because
2 is an even integer.

Let a and b be even integers.

Then a = 2j and b = 2k for some integers j and k.

a+ (-b) = 2j + 2(-k) = 2(j-k) = an even integer

Thus a - b is an even integer

Thus the even integers are a subgroup of the integers.



Examples on Subgroup Test

Example

For a, b in 3Q*, a=3i and b=3j
where i, j are in Q*

Then

ab*=3i(3j)* =3i(j*3)=3(ij131),
an element of 3Q*
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Group Theory

The Finite Subgroup
Test



The finite Subgroup Test

Theorem

If S is a subset of the
finite group G, then S is
a subgroup of G if and

only if S is nonempty
and whenever a,b € S,

then ab € S.



The finite Subgroup Test

Proof

If S is a subgroup then obviously S is nonempty
and whenever a,b €S, then ab €S.
Conversely suppose S is nonempty and
whenever a,b € S, then ab € S.

Then let a € S. The above property says that

az=aa€S and so a3=aa2€S and so a4=aa3ES

and so on and on and on.



The finite Subgroup Test

Thatis a”" €S for all integers
n > 0.

But G is finite and thus so is S.
Consequently the sequence,
a, a2, a3, a4,...,an,...

cannot continue to produce
new elements.

That is there must exist m<n
such that a™'=a"".

Thuse=a""Me s,



The finite Subgroup Test

Therefore for all a € S, there
is a smallest integer k >0

such thatak==e.

Moreover, a * =af1 € s.
Finally if a, b € S, then bles
by the above and so by the
assume property we have
ables

Therefore S is a subgroup as

desired.
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Examples on Subgroup Test

Example

" ({150,020
"{1,i}

=i

"11,-13

"{1,-1,i}

"{1,-1,-i}

30



Examples on Subgroup Test

Example

" ({[o], [1], [2], [3], [4], [51}, +,)

" {[0], [1]} or {[O], [4]} or {[O], [5]} or {[O], [2]}
" {{0], [3]}

" {[0], [2], [4]}
" {01, [2], [3], [4]}

31
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Cyclic Groups

Definition

Let G be a group and let

a e G.

Then the subgroup
H={a"| n € Z}

of G is called the cyclic

subgroup of G generated
by a, and denoted by {(a).



Cyclic Groups

Definition
" An element a of a group G

generates G and is a
generator for G if <a)=G.

" A group G is cyclic if there
is some element a in G that
generates G.



Cyclic Groups

" Let a be an element of a
group G.

" If the cyclic subgroup <a) is
finite, then the order of a is
the order | «a) | of this

cyclic subgroup.

" Otherwise, we say that a is
of infinite order.



Cyclic Groups

Example

= For each positive integer n, let U,, be the multiplicative
group of the nth roots of unity in C.

= These elements of U,, can be represented geometrically
by equally spaced points on a circle about the origin.

2TT

= U, = <w|w—cos—+Lsm ><U—{ZECC||ZI—1}

P
\_

Re
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Examples of Cyclic Groups

Cyclic groups may be finite:
“InZ,, (1) = {1,2,3,0} = Z, = (3) # (2)
" 7,4 is cyclic.

" InZg, (1) = {1,2,3,4,5,0} = Z¢ = (5)
" Ze is cyclic.

*InZ,,{(1)={1,2,..,n—1,0} = Z,, = (m) if
g.c.dim,n) =1form=1,2,...,n— 1.



Examples of Cyclic Groups

Cyclic groups may be infinite:
"InZ (1) ={...,—2,—-1,0,1,2,..} = Z = (—1)

s, —2(1)=-2, —-1(1) = -1, 0(1) = 0,
1) =1, 2(1) =2, ..
o, —2(-1) =2, -1(-1) =1, 0(=1) =0,

1(-1) = -1, 2(=1) = =2, ...
sInZ (2) ={..,—4,—2,0,24, ..} = 27 = (=2)
"InZ, (n)={...,—2n,—n,0,n,2n, ..} =nZ = (—n)
forneZ



Examples of Cyclic Groups

"InQ — {0}, (2) = {... “,31248 )= (5)

"In Q — {0}, (r) = f.X 3,%,%, 1, 7, resr s } = <
forreQ.

-InGL(Z,]R{),((l) ﬂ):{l "]:nez}
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Elementary Properties of Cyclic Groups

Theorem

Every cyclic group is
abelian.



Elementary Properties of Cyclic Groups

Proof

" Let G be a cyclic group and let a be a generator of G so
that

G=«a) ={a"|n €Z}.
" If g, and g, are any two elements of G, there exists
integers r and s such that g,=a" and g,=a".
" Then
g.8,~aa=a”=a*"=a°d" = g,3,.
" So, G is abelian.



Elementary Properties of Cyclic Groups

" nZ

" InQ — {0}, (r) = { T_13 T—lz,%,l,r,rz,r3,...} = (%)
forreQ.

" |n GL(Z,]R%),([é 1 ) = {[(1) ﬂ : neZ}




Elementary Properties of Cyclic Groups

o I =0 16 =6 3
[ 1=l

b = Tl 1=l T
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Elementary Properties of Cyclic Groups

Definition: G is cyclic if G = <a> for some a in G.

Theorem

"If |a| = o0, a=dliff i =

"If |a| =n,a=aiffn|i-j

"<a>={a, a? ...a"e}

Corollary 1: |a| = |<a>|

Corollary 2: a“ = e implies |a| | k

Example: U.=< w |w’>=1>=< w?>=< w?>= < w*>, w=e?7?)
w&w* 54-2 ; w=w® 5|10-5



Elementary Properties of Cyclic Groups

Example

Us=< w |wé=1>={w,w?, w? w w1} with w=e27/

U, =< w*>={w’, w4 w? w?,w,1}



Elementary Properties of Cyclic Groups

Example

U =< w |w=1>={w,w? w3 w* w1} with w=e21/¢)
< w?»>={w?, w41} < U,

< w>={w? 1} < U,

<wH>={w*, wil}=< w?»
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Elementary Properties of Cyclic Groups

Theorem 1
If |a| =n, then

l<ak> — <agcd(n,k)>

"|a¥| =n/ged(n,k)



Elementary Properties of Cyclic Groups

To prove the |a¥| = n/gcd(n,k) , we begin with a little
lemma.

Prove: Ifd | n=|a|, then |a?| = n/d.
Proof: Let n=dq. Then e =a" = (a%)a.

So |ad| < q.
If 0<i<qg,then0<di<dg=n=|al
so (ad)i # e

Hence, |a‘| = g which is n/d as required.



Elementary Properties of Cyclic Groups

Now, we prove that |a| = n/gcd(n,k).
Let d = gcd(n,k). Then, we have

|ak| = |<ak>| by Corollary 1
= |<a?>| by Part 1 of Theorem 1
= |q9] by Corollary 1
=n/d by above Lemma.

This concludes the proof.



Elementary Properties of Cyclic Groups

Example
"Suppose G = <a> with |a| = 30.
Find |a?t| and <a?'>.
"By Theorem 1, |a?'| = 30/gcd(30,21) = 10
"Also <a?'> = <g*>

— {03’ aé’ a9’ 012’015’ 018’ 021, 024’ 027’ e}
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Elementary Properties of Cyclic Groups

Theorem 1
If |a| = n, then <a*> = <ag&dnk> and |a*| = n/ged(n,k).
Corollaries to Theorem 1

1.In a finite cyclic group, the order of an element divides
the order of the group.
2.Let |a| =ninany group. Then

a) <a>=<a>iff gcd(n,i) = gcd(n,j)

b) |ad'| = |di| iff gcd(n,i) = gcd(n,j)



Elementary Properties of Cyclic Groups

Corollaries to Theorem 1
3. Let |a]| =n.
Then < a' > = di iff gcd(n,i) = gcd(n,j)
4. An integer k in Z_is a generator of Z_iff gcd(n,k)

=1



Elementary Properties of Cyclic Groups

Example

Find all the generators of U(50) = (3).

u(50) ={1,3,7,9,11,13,17,19,21,23,27,29,31,33,
37,39,41,43,47,49} |U(50)| =20

The numbers relatively primeto20are 1, 3, 7, 9, 11,
13,17, 19

The generators of U(50) are therefore
31’ 33’ 37’ 39’ 311’ 313’ 317’ 319
l.e. 3,27,37,33,47, 23, 13, 17



Group Theory
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Fundamental Theorem of Cyclic Groups

Fundamental Theorem of Cyclic Groups
a)Every subgroup of a cyclic group is cyclic.

b)If |a| = n, then the order of any subgroup of <a> is a
divisor of n

c)For each positive divisor k of n, the group <a> has
exactly one subgroup of order k, namely <a">



Fundamental Theorem of Cyclic Groups

Subgroups are cyclic

Proof: Let G = <ag> and suppose H < G. If His trivial, then
H is cyclic.

Suppose H is not trivial.

Let m be the smallest positive integer with a™in H.
(Does m exist?)




Fundamental Theorem of Cyclic Groups

By closure, <a™> is contained in H.

We claim that H = <a™>. To see this,

choose any b = a“in H. There exist integers q,r with
0< r < msuch that
ak=qgim+r (Why?)




Fundamental Theorem of Cyclic Groups

Since b = agk=ama’, we have
a=(am)ab

Since b and a™ are in H, so is a".

But r < m (the smallest power of a in H)
sor=0.

Hence b = (a™)? and b is in H.

It follows that H = <a™> as required.



Fundamental Theorem of Cyclic Groups

|H| is a divisor of |a|

Proof: Given |<a>| =nandH < <a>. We showed H =

<a™> where m is the smallest positive integer with a™in
H.

Now e =a"is in H, so as we just showed, n = mq for
some q.
Now |a™| = q is a divisor of n as required.



Fundamental Theorem of Cyclic Groups

Exactly one subgroup for each divisor k of n
"(Existence) Given |<a>| =n. Letk | n.

Say n = kg. Note that gcd(n,q) = g

So |a?] =n/ged(n,q) =n/q=k.

Hence there exists a subgroup of order k, namely
<gva>



Fundamental Theorem of Cyclic Groups

" (Unigueness) Let H be any subgroup of <a> with order
k. We claim H = <g"k>

From (a), H = <a™> for some m.

From (b), m | n so gcd(n,m) = m.

Sok=|am| =n/gcd(n,m) by Theorem 1
=n/m

Hence m = n/k

So H = <g"k> as required.



Group Theory

“Subgroups of Finite
Cyclic Groups



Subgroups of Finite Cyclic Groups

Theorem

Let G be a cyclic group with n elements and generated
by a. Let beG and let b=ak. Then b generates a cyclic
subgroup H of G containing n/d elements, where d =
gcd (n, k).

Also <ak>=<a*> if and only gcd (k, n) = gcd (s, n).



Subgroups of Finite Cyclic Groups

Example

using additive notation, consider in Z,, with the

generator a=1.

"3=3-1, gcd(3, 12)=3, so « 3 ) has 12/3=4 elements.
3)={0, 3, 6, 9}

" Furthermore, < 3 )= <9 ) since ged(3, 12)=gcd(9, 12).



Subgroups of Finite Cyclic Groups

Example

"8=8-1, gcd (8, 12)=4, so « 8 ) has 12/4=3 elements.
«8)={0, 4, 8}

"5=5-1, gcd (5, 12)=1, so < 5 ) has 12 elements.
€3 >=Z12.



Subgroups of Finite Cyclic Groups

Corollary

If a is a generator of a finite cyclic group G of order n,
then the other generators of G are the elements of the
form a’, wherer is relatively prime to n.



Subgroups of Finite Cyclic Groups

Example

Find all subgroups of Z ., and give their subgroup diagram.
" All subgroups are cyclic

" By above Corollary is the generator of Z,,, so is 5, 7, 11,
13, and 17.

" Starting with 2, <2 ) ={0, 2, 4, 6, 8, 10, 12, 14, 16 }is of
order 9, and gcd(2, 18)=2=gcd(k, 18) where k is 2, 4, 8, 10,
14, and 16. Thus 2, 4, 8, 10, 14, and 16 are all generators
of «2).



Subgroups of Finite Cyclic Groups

Example

" 3)={0, 3, 6, 9, 12, 15} is of order 6, and gcd(3,
18)=3=gcd(k, 18) where k=15

" 6)={0, 6, 12} is of order 3, so is 12
" 9)={0, 9} is of order 2



Subgroups of Finite Cyclic Groups

1)
/N

2) 3)

N5 N
N o
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Theorem on Cyclic Group

Theorem

Let G be a cyclic group
with generator a.

If the order of G is
infinite, then G is
isomorphic to (Z, +).

If G has finite order n,
then G is isomorphic to

(Zn’ +n)'



Theorem on Cyclic Group

Proof
Case 1l
For all positive integers m, a™ # e.

In this case we claim that no two distinct
exponents h and k can give equal elements a"
and ak of G.

Suppose that a"= akand say h > k.

Then aha™® = a"* = e, contrary to our Case 1
assumption.



Theorem on Cyclic Group

Case 1

Hence every element
of G can be expressed

as a™ for a uniqgue m
€ /.

Themapd:G— ~Z
given by ¢p(a’) =iis
thus well defined, one
to one, and onto Z.



Theorem on Cyclic Group

Case 1
Also,

d(a'al)=¢p(a™)

=i+j

=¢(a’ )J+(a),

so the homomorphism

property is satisfied and
® is an isomorphism.



Theorem on Cyclic Group

Case 2

a™ = e for some positive integer m.

Let n be the smallest positive integer such that
a"=e.

fs€e Z ands=ng+rfor0O<r<n,then
as=qndr = (gn)9a'=e%a" = 3",

AsinCase 1,ifO<k<h<nand

a" = ak, then a"* =e and 0 < h-k < n, contradicting
our choice of n.



Theorem on Cyclic Group

Case 2
Thus the elements

a’=e, a, a2, a3, «--, a"!
are all distinct and
comprise all elements
of G.

Themapl:G— Z,
given by W (a') =ifori
=0,1,2,--,n-1is
thus well defined, one
to one, and onto Z .



Theorem on Cyclic Group

Case 2

Because a" = e, we see
that a'al = ak
wherek=1+_].

Thus Y (a'd) =i+ j

=W (a)+ W(a),

so the homomorphism
property is satisfied
and ¥ isan
isomorphism.



Group Theory




Permutation Groups

Definition
A permutation of a set
A is a function from A to

A that is both one to
one and onto.



Permutation Groups

Array Notation
"letA=1{1, 2, 3, 4}
" Here are two permutations of A:

(1 2 3 4 (TS
“Tl2 31 4 _[2143]
a(2) =3 p(4) =3
a(4) =4 A1) =2

pa(2) =((3) =4



Permutation Groups

Composition in Array Notation

\4
1120 3 4)\(1 2 3 4

211 4 3H2 3 1 4

1112 3 4)

A
\1 /




Permutation Groups

Composition in Array Notation

2v 3 4)(1/({2 3 4
114 3)(243
2[| 3 4

\4A /




Permutation Groups

Composition in Array Notation

\4
111 2 3 4)(1 2§|4\
pa
2L 4 3]|2 341 4
(1 2 (3 4
_\1 a2




Permutation Groups

Composition in Array Notation

\ 4
1 2 3 [4\(1 2 3[4
po =
2 1 4 |32 3 144
(1 2 3[4
_\1423




Permutation Groups

Composition in Array Notation

(1 2 3 41 %34
po =

2 1 4 3J|2 3 1 4
(1 2 3 4
11 4 2 3

\ /



Permutation Groups

Definition

A permutation group of
aset Ais a set of
permutations of A that

forms a group under
function composition.



Permutation Groups

Example

" The set of all permutations on {1,2,3} is called the
symmetric group on three letters, denoted S,

" There are 6 permutations possible:

(1

\_

y.

3 \

o)

3 X2 X1=6
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Examples of Permutation Groups

" The permutations of {1,2,3}:

=

(4

2 3!

2 3,

D

o




Examples of Permutation Groups

Is S,a group?
" Composition of functions is always associative.
" |dentity is .

" Since permutations are one to one and onto, there
exist inverses (which are also permutations).

" Therefore, S, is group.



Examples of Permutation Groups

Computations in S,

. [1 2 3)[1 /281N Za3!
a — = —
2 3 1)(3 1 2] IN2N3S
B = 31(1 2 3 :/ 2 —¢

2/\:- A 2 3)

31(1 2 3} (1 2 3
/))O{: = =

2J(2 3 1) (3 2 1,




Examples of Permutation Groups

Simplified Computations in S,

"opo’p = a(Padap = ala*Plaf
= (B = ela?P)P
— OL2[32
= o2
" Double the exponent of o when switching with f.

" We can simplify any expression in S,.!



Group Theory

Examples of
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Examples of Permutation Groups

Symmetric Groups, S,

"Let A={1, 2,...n}. The symmetric group on n

letters, denoted S_, is the group of all permutations
of A under composition.

" S, is a group for the same reasons that S, is group.

“|S,.| =n!



Examples of Permutation Groups

Symmetries of a Square, D,

(1 2 3 4  [AS=SES. 2
RO_:_234 T T
R921-234\V_12343
1234 1) Tla3 21

(1 2 3 4 1.2 34
Rigy = D =

3 4 1 2 1/-4/E3%2. L0 1
. 1234D,1234 =
_ 1 Y
914 1 2 3 3 2 1 4 4= =4




Examples of Permutation Groups

Why do we care?

" Every group turns out to be a permutation group on
some set!

(To be proved later).



Group Theory




Permutation Groups

Definition
let f: A—> Bbea
function and let H be a

subset of A. The image
of H under f is

{f(h)Th&eH}and is
denoted by f[H].




Permutation Groups

Lemma

Let G and G' be groups
andletd: G— G' be a
one-to-one function such

that d(xy) = d(x )Pp(ly)

forallx,y € G.

Then ¢[ G] is a subgroup
of G' and ¢ provides an
isomorphism of G with

¢[Gl.



Permutation Groups

Proof

Let x', y' € ®[G]. Then there exist x,y € G such that
d(x) =x"and ¢ly) =y

By hypothesis, ¢(xy) = d(x)d(y) = x'y', showing that x'y'
€ ¢[G].

We have shown that ¢[G] is closed under the
operation of G'.



Permutation Groups

Let e' be the identity of G'.
Then

e'd(e) =d(e)

= ¢(ee)

= d(e)d(e).

Cancellation in G' shows
that e' = d(e) so e' € P[G].



Permutation Groups

9
F
2
)
=
O
<
)

which shows that

X! =od(x?) € o[G].
Therefore, d[G]<G'.




Permutation Groups

Note that ¢ provides an
iIsomorphism of G with
d[G] follows at once
because ¢ provides a one-
to-one map of G onto ¢[G]

such that ¢(xy) = d(x)dp(y)
forallx,y e G.



Group Theory

Cayley’s Theorem



Cayley’s Theorem

Theorem

Every group is isomorphic
to a group of permutations.



Cayley’s Theorem

Proof
Let G be a group.

We show that G is
isomorphic to a

subgroup of S..

We Need only to define
a one-to-one function

¢: G— S, such that
blxy) = d(x)d(y)

forallx,y € G.



Cayley’s Theorem

Forx € G,letA : G— GbedefinedbyA (g) =xg
for all g € G. (We think of A as performing left
multiplication by x.)

The equation A (xc) =x(x*c) =cforallc € G

shows that A, maps Gonto G.If A (a) =A(b),

then xa =xb so a=b by cancellation. Thus A _is
also one to one, and is a permutation of G.



Cayley’s Theorem

We now define ¢: G — S_ by defining ¢(x) = A for
all x € G.

To show that ¢ is one to one, suppose that
d(x) = dly).
Then A, = A, as functions mapping G into G.

In particular A, (e) =A(e), soxe=yeandx=y.

Thus ¢ is one to one.



Cayley’s Theorem

It only remains to show that d(xy) = d(x )d(y ),
thatis, A, = A\, .

b Xy

Now for any g € G, we have A (g) = (xy)g.

Permutation multiplication is function
composition, so (A A )(g) = A (A (g)) =Alyg) =
x(yg).

Thus by associativity, A, = A A, .



Group Theory

Examples of
Permutation Groups



Examples of Permutation Groups

There is a natural correspondence between the

elements of S, and the ways in which two copies of
an equilateral triangle with vertices 1, 2, and 3 can

be placed, one covering the other with vertices on

top of vertices.

For this reason, S, is also the group D, of
symmetries of an equilateral triangle. We used , for
rotations and u; for mirror images in bisectors of
angles. The notation D, stands for the third dihedral
group.

The nth dihedral group D_ is the group of
symmetries of the regular n-gon.



Examples of Permutation Groups

P, = do nothing

1

p, = reflect in line [, ; AZ

A,

2

A

., = reflect in line 1,

p, = reflect in line [, 2

P, = rotate anticlockwise 120°

A — m~tFrntA At A~AlAAL Y~ i cA D ANO



Examples of Permutation Groups

(1 2 3
Pl 0 3
S

l2 301
upo P, P, (291 M, M,

(1 2 3
p2_3 1 2 p1 p2 po u's ul uz
1 2 3 P, Po P4 M, Ms My

“iTly 30
My M, M Po P4 P,
|1 23 u u M p p p
M2—3 21 2 3 1 2 0 1
_1 2 3 ug Il1 uz p1 pz po

%710 1 3
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Examples of Permutation Groups

Recall

We form the dihedral group D, of permutations
corresponding to the ways that two copies of a
square with vertices 1, 2, 3, and 4 can be placed,
one covering the other with vertices on top of
vertices.

D, is the group of symmetries of the square.
It is also called the octic group.



Examples of Permutation Groups

Symmetries of a Square, D,

(1234 (123
Pl 2 3 470 1 4
p1:[1234 e

2 3 4 1) 8=, 35

(12 3 4 122003
2713 4 1 2 51‘143

(1 2 3 4 1 234
5704 1 2 3) 273 2 1 4] DasSs



Examples of Permutation Groups

{Pos P2s 1215 113) {£g: P1> P2; 3] {Po: P2, 81, 8]
{Pp> 11} {Po 17} 100, 02} {00, 61} {pg. 85}

\w //
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Orbits

Definition
An orbit of a permutation

p is an equivalence class
under the relation:

a~b e b=pn(a),
for somenin Z.



Orbits

Find all orbits of o =

1/ 2  3NMA@o
2 3 1 5 4

Method:
Let S be the set that the permutation works on.

0) Start with an empty list

1) If possible, pick an element of the S not already
visited and apply permutation repeatedly to get
an orbit.

2) Repeat step 1 until all elements of S have been
visited.



Orbits

" Look at what happens to elements as a
permutation is applied.

1 2 3 4 5
2 3 1 5 4

o =

a(l)=2, a?(1)=3, a3(1)=1 {1,2,3}

a(4)=>5, a?(4)=4 14,5}



Group Theory

Orbits



Orbits

Theorem

Let p be a permutation
of a set S.

The following relation
Is an equivalence
relation:

a~b e b=p(a),
for somenin Z.



Orbits

Proof
1) reflexive:
a=p°%a) = a~a
2) symmetric:
a~b = b =pn(a), for

somenin Z
= a=p"(b),

with-nin Z
= b~a



Orbits

3) transitive:
a~b and b~c

= b =(a) and c = (b) , for some n, and n, in
7

= c=((a)) , forsomen,and n,in Z

= c=(a),withn,+n inZ

= a~C



Group Theory
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Cycles

Definition

A permutation is a
cycle if at most one of
its orbits is nontrivial

(has more than one
element).



Cycles

Definition
A cycle of length 2 is
called a transposition.



Cycles

Example

(7] ENION S, |
2 3TN\

(1, 2, 3)(4, 5)
(1,3)(1,2)(4,5)



Cycles

Composition in cycle notation
off =(123)(12)(34)
134)(2)
134)

=
=
(12)(34)(123)
=
=(24

Ba
1)(2 4 3)
243)
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Disjoint Cycles

Definition

Two permutations are
disjoint if the sets of
elements moved by

the permutations are
disjoint.



Disjoint Cycles

Symmetries of a Square,D,< S,

o =[1 : e 4] ~(12)(12)
1 2 3 4
o :[ L 4] =(1234) =(1 9(13)(1 2)
2 3 4 1
B 1 2 4 i
0, —[3 41 2]—(13)(24)
(12 3 4] 4
p. —[4 - 3]—(1432)—(12)(13)(14)



Disjoint Cycles

Symmetries of a Square,D,< S,

T 4]=(12)(34)
l2 1 4 3
w =t 4] ~(1 423
4 3 2 1
:[1 2 3 4] (2 4
" l1 4 3 2
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Cycle Decomposition

Theorem:

Every permutation of
a finite set is a product
of disjoint cycles.



Cycle Decomposition

Proof:
Let 0 be a permutation.

Let B,, B,, ..., B, be the
orbits.

Let |1, be the cycle
defined by 1, (x) = 0 (X)
if X in B, and x
otherwise.

Theno = 1, 1, ... 1,
Note: Disjoint cycles



Cycle Decomposition

Lemma

Every cycle is a product
of transpositions.

Proof

Let (a,, a,, ..., a ) be a
cycle, then

(a,a)(@,a ,)...(a, a,)
=(a, a,, ..., a).



Cycle Decomposition

Theorem

Every permutation can
be written as a product
of transpositions.

Proof

Use the lemma plus the
previous theorem.



Group Theory
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Parity of a Permutation

Definition

The parity of a permutation
Is said to be even if it can
be expressed as the
product of an even number
of transpositions, and odd
if it can be expressed as a
product of an odd number
of transpositions.



Parity of a Permutation

Theorem

The parity of a
permutation is even or
odd, but not both.



Parity of a Permutation

Proof

We show that for any positive integer n, parity is a
homomorphism from S_ to the group Z,, where 0
represents even, and 1 represents odd.

These are alternate names for the equivalence classes

27 and 2Z+1 that make up the group Z.,.

There are several ways to define the parity map.
They tend to use the group {1, -1} with multiplicative
notation instead of {0, 1} with additive notation.



Parity of a Permutation

One way uses linear algebra: For the permutation 11
define a map from R"to R" by switching coordinates
as follows

L, (X, X5, oo, X)) = (X 1y Xpyr oo X)) -

Then L_ is represented by a n x n matrix M_ whose
rows are the corresponding permutation of the rows
of the n x n identity matrix.

The map that takes the permutation 11 to Det (M_) is

a homomorphism from S_ to the multiplicative group

(14 4



Parity of a Permutation

Another way uses the action of the permutation on
the polynomial

P(Xy, Xy, ..., X, ) = Product{(x; - x; )| 1 <
j}
Each permutation changes the sign of P or leaves it
alone.
This determines the parity: change sign = odd parity,
leave sign = even parity.



Group Theory

Alternating Group



Alternating Group

Definition

The alternating group
on n letters consists of
the even permutations

in the symmetric group
of n letters.



Alternating Group

Definition

The alternating group
on n letters consists of
the even permutations

in the symmetric group
of n letters.



Alternating Group

Theorem

If n=2, then the
collection of all
even permutations of

{1, 2, ..., n}

forms a subgroup of
order n!/2 of the

symmetric group S .



1
po_[l
1
n,
|1
o
(1
Ml_l
(1
M2—3
|1
M3—2

W N a0 N NN

= N NN

Alternating Group

>l a2
5| =12)12)

1

2

1:azm:amam

3]:a32y413a3)
=23
,|=23)

=(13)

=(12)

w w = W




Alternating Group

A.={(1),(123), (13 2)}

I i
- (123) (132
(123) (132 (1)

(132 (1) (123)
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Direct Products

Definition
The Cartesian product of

n.
The Cartesian product is
denoted by either



Direct Products

Let G4, --+, G,, be groups, and let us use
multiplicative notation for all the group operations.
Regarding the G as sets, we can form []_,"G..

Let us show that we can make T]._,"G. into a group

by means of a binary operation of multiplication by
components.



Direct Products

Theorem

Let G,, ..., G_ be groups.

For (a,,...,a ) and (b,,..., b )inT[._"G,
define (a,, ..., a )(b,,..., b ) to be the element
(a,b,....,a b).

ThenT]._,"G, is a group, the direct product of the
groups G, , under this binary operation.



Direct Products

Proof
Note that since a,, b, € G, and G, is a group, we

have ab, € G.

Thus the definition of the binary operation on
TT.,"G, given in the statement of the theorem

makes sense, that is, T]._,"G; is closed under the
binary operation.



Direct Products

The associate law in
TT..," G, is thrown back onto the associative law in

each component as follows:
(aly."’ an)[(bp".’ bn)(cp."’ Cn)]

=(al’ Y an)(blcl’".’ I:)ncn)= (al(blcl)’."’ an(bncn))
= ((a1b1)C1’°"’ (anbn)cn)=(a1b1’ -»dy, b )( e n)
=[(a,,...,a )(b,,....b )](c,,....C.)



Direct Products

If e is the identity element in G, then clearly,
with multiplication by components, (e,,-,e ) an
identity in TT._,"G.

Finally, an inverse of (a -, a)is (a3, a?);
compute the product by components.

Hence []_,"G. is a group.




Group Theory

Direct Products



Direct Products

In the event that the operation of each G, is

commutative, we sometimes use additive
notation in T._,"G,, and refer to T[._,"G, as the

direct sum of the groups G.. The notation

@.,"G, is sometimes used in this case in place of

_"G, especially with abelian groups with

operation +. The direct sum of abelian groups G,

G+, G_may be written as G, @... @G..



Direct Products

Proposition

A direct product of
abelian groups is
abelian.



Direct Products

Proof

Let G,, ..., G, be abelian
groups. For (a,, ..., a )
and (b.,..., b)) in

12° % °

ﬂi=1n Gi )



Direct Products

If the S, has r, elements
fori=1,-,n, then TT._"S.
has r,...r elements, for in

an n-tuple, there arer,
choices for the first

component from S,, and
for each of these there

are r, choices for the

next component from S,
and so on.




Group Theory

Direct Products



Direct Products

Example

Consider the group Z, x Z,, which has 2-3=6
elements, namely (0, 0), (0, 1), (0, 2), (I, 0), (1, 1),
and (1, 2). We claim that Z, x Z, is cyclic. It is only
necessary to find a generator. Let us try (1, 1). Here
the operations in Z, and Z, are written additively,

so we do the same in the direct product Z, x Z..



Direct Products

* 1(1,1) =(1, 1)

*2(1. 1) =(l, N+(1, 1) =(0, 2)

*3(1, 1) =(1, 1)+ (1, 1)+ (1, 1) =(1,0)

* 4(1, 1) =3(1. 1)+(1, 1) =(1,0)+ (1. 1) =(0, 1)
*5(1, 1) =4(1, 1)+(1, 1) =(0, 1)+ (1, 1) =(1,2)
* 6(1, 1) =5(1. 1)+ (1, 1) =(1,2)+ (1, 1) =(0, O)

Thus (1, 1) generates all of Z, x Z,. Since there is,
up to isomorphism, only one cyclic group structure

of a given order, we see that Z, x Zis isomorphic
to Z,.



Direct Products

Example

Consider Z, x Z.. This is a group of nine elements.
We claim that Z, x Z,is not cyclic.

Since the addition is by components, and since in Z,
every element added to itself three times gives the
identity, the same is true in Z, x Z,. Thus no
element can generate the group, for a generator
added to itself successively could only give the
identity after nine summands. We have found
another group structure of order 9. A similar

argument shows that Z, x Z,is not cyclic. Thus Z, x
Z., must be isomorphic to the Klein 4-group.



Group Theory

Direct Products



Direct Products

Theorem

The group Z_ x Z_ is cyclic and is isomorphic to Z__

if and only if m and n are relatively prime, that is, the
gcdofmandnis 1.



Direct Products

Proof

Consider the cyclic subgroup of Z_ x Z_generated
by (1,1). The order of this cyclic subgroup is the
smallest power of (1,1) that gives the identity (0,0).
Here taking a power of (1,1) in our additive
notation will involve adding (1,1) to itself
repeatedly. Under addition by components, the
first component 1 € Z _ yields O only after m
summands, 2m summands, and so on, and the

second component 1 € Z_ yields O only after n
summands, 2n summands, and so on.



Direct Products

For them to yield O simultaneously, the number of
summands must be a multiple of both m and n. The
smallest number that is a multiple of both m and n
will be mn if and only if the gcd of m and nis 1; in this
case, (1,1) generates a cyclic subgroup of order mn,
which is the order of the whole group. This shows

that Z  x Z _is cyclic of order mn, and hence
isomorphic to Z__ if m and n are relatively prime.



Direct Products

For the converse, suppose that the gcd of m and
nisd > 1. The mn/d is divisible by both m and n.

Consequently, for any (r, s) in Z_x Z_, we have
(r,s) + - +(r,s) = (0,0).

mn/d summands
Hence no element (r, s) in Z_ x Z_can generate
the entire group, so Z _ x Z_ is not cyclic and
therefore not isomorphicto Z .




Direct Products

Corollary

The group TT._," is cyclic
and isomorphic to if
and only if the numbers
m. fori=1,., nare
such that the gcd of any
two of them is 1.



Direct Products

Example

If n is written as a product
of powers of distinct prime
numbers, as in n=...

then Z_ is isomorphic to
) A ¢

In particular, Z_, is
isomorphic to Z, x Z..
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Direct Products

We remark that changing
the order of the factors
in a direct product yields
a group isomorphic to
the original one. The
names of elements have
simply been changed via
a permutation of the
components in the n-
tuples.



Direct Products

It is straightforward to prove that the subset of Z
consisting of all integers that are multiples of both r
and s is a subgroup of Z, and hence is cyclic group
generated by the least common multiple of two
positive integers r and s.

Likewise, the set of all common multiples of n positive

integers r.,--, r_ is a subgroup of Z, and hence is cyclic

n

group generated by the least common multiple of n

positive integers r -, r..

n



Direct Products

Definition
Let r,,---, r_ be positive integers. Their least

common multiple (abbreviated Icm) is the positive
generator of the cyclic group of all common

multiples of the r,, that is, the cyclic group of all

integers divisible by eachr, fori=1,-, n.



Direct Products

Theorem

Let (a,,-,a )ET[_,"G. Ifa is of finite order r, in
G, then the order of (a,,-+:,a ) in TT._,"G is equal to
the least common multiple of all ther..



Direct Products

Proof

This follows by a repetition of the argument used
in the proof of previous Theorem. For a power of

(a,,, a ) to give (e, ---,e ), the power must
simultaneously be a multiple of r, so that this
power of the first component a, will yield e,, a
multiple of r,, so that this power of the second
component a, will yield e,, and so on.
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Direct Products

Example

Find the order of (8, 4, 10) in the group Z,, x Z,_x
Z.,,.

Solution

Since the gcd of 8 and 12 is 4, we see that 8 is of

order 3in Z_,. Similarly, we find that 4 is of order

15 in Z,, and 10 isof order 12 in Z,,. The lcm
of 3, 15, and 12 is 3-5-4 = 60, so (8, 4,10) is of
order 60 inthe group Z,,x Z,, x Z,,.



Direct Products

Example

The group Z x Z., is generated by the elements
(1, 0) and (0, 1). More generally, the direct
product of n cyclic groups, each of which is

either Z or Z_ for some positive integer m, is
generated by then n-tuples

(1, 0,---, 0), (O, 1,---, 0)....,(0, O,---, 1). Such a direct
product might also be generated by fewer

elements. For example, Z,x Z,x Z.. is generated
by the single element (1, 1, 1).
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Fundamental Theorem of Finitely Generated
Abelian Groups

Theorem

Every finitely generated abelian group G is

isomorphic to a direct product of cyclic groups in the
form

X..XXZ X ...X Z

where the p, are primes, not necessarily distinct,

and the r, are positive integers. The direct product is
unique except for possible rearrangement of the
factors; that is, the number (Betti humber of G) of
factors Z is unique and the prime powers are
unique.



Fundamental Theorem of Finitely Generated
Abelian Groups

Example

Find all abelian groups, up to isomorphism, of
order 360. The phrase up to isomorphism
signifies that any abelian group of order 360
should be structurally identical (isomorphic) to
one of the groups of order 360 exhibited.



Fundamental Theorem of Finitely Generated
Abelian Groups

Solution

Since our groups are to be of the finite order
360, no factors Z will appear in the direct
product shown in the statement of the
fundamental theorem of finitely generated
abelian groups.

First we express 360 as a product of prime
powers 23.32.5.



Fundamental Theorem of Finitely Generated
Abelian Groups

Then, we get as possibilities

1. 2, x 2,x 2L, x Ly x L, X L,
2.2, x2L, x 2Ly x 2L, X2,
3.2, x2, x4, x2L, x 2L,

4. L, x L, x L, x 2.,
5.2Z,x2, x2, x 2,

6. Z,x 2, x 2.,

Thus there are six different abelian groups (up
to isomorphism) of order 360.



Group Theory

Applications



Applications

Definition
A group G is decomposable if it is isomorphic to

a direct product of two proper nontrivial
subgroups. Otherwise G is indecomposable.



Applications

Theorem

The finite indecomposable abelian groups are

exactly the cyclic groups with order a power of a
prime.



Applications

Proof

Let G be a finite indecomposable abelian group.
Then, G is isomorphic to a direct product of
cyclic groups of prime power order. Since G is
indecomposable, this direct product must
consist of just one cyclic group whose order is a
power of a prime number.

Conversely, let p be a prime. Then Z , is

indecomposable, for if Z , were isomorphic to
X ,wherei+j=r, then every element would
have an order at most pmaii<pr,
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Applications

Theorem

If m divides the order of a finite abelian group
G, then G has a subgroup of order m.



Applications

Proof
We can think of G as being

X ... Xwhere not all primes p, need be distinct.
Since ... is the order of G, then m must be of the
form ..., where 0= s <r..

generates a cyclic subgroup of of order equal to
the quotient of by the gcd of and . But the gcd of
and is. Thus generates a cyclic subgroup of order

[ 1/1]=.



Applications

Recalling that <a> denotes the cyclic subgroup
generated by a, we see that

<>X..X< >

is the required subgroup of order m.
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Applications

Theorem

If mis a square free integer, that is, mis not
divisible by the square of any prime, then

every abelian group of order m is cyclic.



Applications

Proof

Let G be an abelian group of square free order
m. Then, G isisomorphic to

X... X,

where m=.... Since m is square free, we must

have allr, =1 and all p, distinct primes. Then,
G is isomorphic to , so G is cyclic.
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Cosets

Definition
Let H be a subgroup of a group G, which may be of
finite
or infinite order and a in G.
The left coset of H containing a is the set

aH ={ah | hin H}
The right coset of H containing a is the set

Ha ={ha | hin H}

In additive groups, we use a+H and H+a for left and
right cosets, respectively.



Cosets

Example

We exhibit the left cosets and the right cosets of the
subgroup 3Z of Z.

0+3Z2= 3Z ={..., -0, -3, 0, 3, 0, ... }
1+372={...,-5,-2,1,4,7, ...}
2+37={..., -4, -1, 2,5, 8, ... }
Z.=37ZU1+37Z 11 2+37Z

So, these three left cosets constitute the
partition of Z into left cosets of 3Z.

J



Cosets

Example

3Z+0= 37 ={..., -0, -3, 0, 3, o, ... }=0+3Z
3Z+1={...,-5,-2,1,4,7, .. }=143Z
3Z+2={..., 4, -1, 2,5, 8, ... }=243Z
Z2.=372137Z+1 U 3Z+2

So, the partition of Z into right cosets is the
same.



Group Theory

Cosets
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Partitions of Groups

Let H be a subgroup of a
group G, which may be of
finite or infinite order.
We exhibit two partitions
of G by defining two
equivalence relations, ~;

and ~; on G.



Partitions of Groups

Theorem

Let H be a subgroup of a group G.

Let the relation ~ be definedon Gbya ~ biff a
'beH.

Let ~ . be defined by a ~ b iff ab'€H.

Then ~ and ~ are both equivalence relations on G.



Partitions of Groups

Proof

Reflexive

Let aeG.
Thenala=e€H
since H is a subgroup.

Thus a~ a.



Partitions of Groups

Symmetric

Suppose a~ b.

Then a*beH.

Since H is a subgroup,
(atb)1=b'ag €H.

It implies that b ~| a.



Partitions of Groups

Transitive

Leta~ band b~ .
Then a*b€H and biceH.
Since H is a subgroup,
(atb)(bic)=a'c €H.

S0,a ~ | C.



Partitions of Groups

" ais called the coset
representative of aH.

" Similarly, aHa* ={aha™ |
hin H}
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Examples of Cosets

Vectors under addition are a group:
"(a,b) + (c,d) = (a+c,b+d)eR2
"ldentity is (0,0) €R?

"Inverse of (a,b) is (-a,-b) in [R2

(

(
"((a,b)+(c,d))+(e,f)=(a+c,b+d)+(e,f)=((a+c)+e,(b+d)
+f)= (a+(C+e), (d+f)) (a,b)+(c+e,d+f)=(a,b)+((c,d)+

(e,f))

H = {(2t,t) | teR} is a subgroup of R2.
Proof: (2a,a) - (2b,b) = (2(a-b),a-b) €H



Examples of Cosets

Visualizing H={(2t,t) | tER}
"letx=2t,y=t
"Eliminate t:

y=X/2




Examples of Cosets

Cosets of H={(2t,t) | t € R}

(a,b) + H = {(a+2t,b+t)}

Set x = a+2t, y = b+t and eliminate t:
y=b+(x-a)/2

The subgroup H is the line y = x/2.

The cosets are lines parallel toy = x/2 !



Examples of Cosets
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Examples of Cosets

Left Cosets of <(23)>in S,
Let H = <(23)> {¢, (23)}
eH = {e, (23)}=H

(123)H
(132)H
S=H U

1(123), (12)]
1(132), (13)}
(123)H LI (132)H



Examples of Cosets

Right Cosets of <(23)>in S,
Let H = <(23)> {¢, (23)}

H ¢={¢, (23)}=H

H(123) = {(123), (13)}
H(132) = {(132), (12)}

s,= H L1 H(123) LI H(132)



Examples of Cosets

Left Cosets of <(123)>in A,

Let H =<(123)> {¢, (123), (132)}
eH ={¢, (123), (132)}

(12)(34)H = {(12)(34), (243), (143)}
(13)(24)H = {(13)(24), (142), (234)}
(14)(23)H = {(14)(23), (134), (124)}

N
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Properties of Cosets

Proposition

Let H be a subgroup of G,
and a,b in G.

1. a belongs to aH
2. aH = H iff a belongs to

H



Properties of Cosets

1. a belongs to aH

Proof: a = ae belongs to
aH.

2. aH=H iffain H
Proof: (=) Given aH = H.
By (1), aisin aH = H.



Properties of Cosets

(<) Given a belongs to H. Then

(i) aH is contained in H by closure.
(ii) Choose any h in H.

Note that alis in H since a is.

Let b = a*h. Note thatbisin H. So
h =(aal)h =a(ath)=abisinaH

It follows that H is contained in aH

By (i) and (ii), aH = H



Group Theory

Properties of Cosets
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Properties of Cosets

Proposition

Let H be a subgroup of G, and a,b in G.
3. aH = bH iff a belongs to bH

4. aH and bH are either equal or disjoint
5. aH = bH iff a'b belongs to H



Properties of Cosets

3. aH=DbH iff ain bH

Proof: (=) Suppose aH =bH. Then
a =aein aH = bH.

(<) Suppose ais in bH. Then

a = bh for some hin H.
so agH = (bh)H = b(hH) = bH by (2).



Properties of Cosets

4. aH and bH are either disjoint or equal.

Proof: Suppose aH and bH are not disjoint. Say x is in
the intersection of aH and bH.

Then aH = xH = bH by (3).
Consequently, aH and bH are either disjoint or equal,
as required.



Properties of Cosets

5. aH=DbHiffa 'binH
Proof: aH = bH

& binaH by (3)

& b =ah for some hinH
& alb=hforsomehinH
SalbinH
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Properties of Cosets

Proposition

Let H be a subgroup of G,
and a in G.

6. |aH| = |bH|
7. aH =Ha iff H = aHa!
8. aH < G iff a belongs toH



Properties of Cosets

6. |aH| = |bH|

Proof: Let @: aH — bH be given by
@(ah) = bh for all h in H.

We claim g is one to one and onto.

If g(ah,) = @(ah,), then bh, = bh,

so h, = h,. Therefore ah, = ah..

Hence @ is one-to-one.

g is clearly onto.

It follows that |aH| = |bH| as required.



Properties of Cosets

7. aH=Ha iff H=aHa™

Proof: aH = Ha

& eachah=h’ag forsomeh’inH
& ghat=h"for some h”in H

& H=aHal



Properties of Cosets

8. aH<GiffainH

Proof: (=) Suppose aH < G.

Then e in aH.

But e in eH, so eH and aH are not disjoint. By (4), aH =eH
=H.

(<) Suppose a in H.

ThenaH =H <G.



Group Theory

Properties of Cosets
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Lagrange’s Theorem

Lagrange’s Theorem
Statement

If G is a finite group and H
is a subgroup of G, then |
H| divides |G].



Lagrange’s Theorem

Proof

The right cosets of H in G form a partition of G, so G
can be written as a disjoint union

G=Ha, UHa, U - -UHa,

for a finite set of elementsa,, a,,...,a, €G.

The number of elements in each coset is |H].
Hence, counting all the elements in the disjoint
union above, we see that |G| = k|H].

Therefore, |H| divides |G].



Lagrange’s Theorem

Subgroups of Z,,
1Z,,|=12

The divisors of 12 are
1,2, 3,4, 6 and 12.

The subgroups of Z,,

are

H,={[0]}
H,={[0],[6]}
H,={[0],[4].[8]}
H,={[0

LISLIGLIOL .
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Applications of Lagrange’s Theorem

Corollary

Every group of prime
order is cyclic.



Applications of Lagrange’s Theorem

Proof

Let G be of prime order p, and let a be an element of
G different from the identity.

Then the cyclic subgroup <a> of G generated by a
has at least two elements, a and e.

But the order m=2 of <a> must divide the prime p.
Thus we must have m = p and <a>=G, so G is cyclic.



Applications of Lagrange’s Theorem

Since every cyclic
group of order pis

isomorphic to Zp, we
see that there is only
one group structure,
up to isomorphism, of
a given prime order p.



Applications of Lagrange’s Theorem

Theorem

The order of an

element of a finite
group divides the
order of the group.



Applications of Lagrange’s Theorem

Proof

Remembering that the
order of an element is
the same as the order
of the cyclic subgroup
generated by the
element, we see that
this theorem follows
directly from
Lagrange’s Theorem.
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Indices of Subgroups

Definition
Let H be a subgroup of
a group G.

The number of left (or
right) cosets of Hin G
is the index (G:H) of H
in G.



Indices of Subgroups

The index (G:H) just
defined may be finite or
infinite.

If G is finite, then
obviously (G:H) is finite
and (G:H)=IGI/IHI, since
every coset of H contains
IHI elements.



Indices of Subgroups

Example
n=(1,2,4,5)(3,0)
n:=(2,5)(1,4)
n3=(1,5,4,2)(3,0)
ni=g

<p> < S,
(Se:<p>)=ISql/I< 1
>|

=0!/
4=6.5.3.2=180.



Indices of Subgroups

Example

Find the right cosets of
H = {e g M hih
C,={e g 8g...,8"".

15



Indices of Subgroups

Solution
H={e, g*, g?} itself is one coset.
Another is Hg = {g, g°, g°}.

These two cosets have not exhausted all the

elements of C,,, so pick an element, say g%, which is
not in H or Hg.

A third coset is Hg? = {g?, g°, g'°} and a fourth is
Hg® =g g’, g"'}.

Since C,,=H U Hg U Hg? U Hg?, these are all the
cosets. Therefore, (C,,:H)=12/3=4.



Indices of Subgroups

Theorem

Suppose H and K are
subgroups of a group
GsuchthatK < H <G,
and suppose (H:K) and
(G:H) are both finite.
Then (G:K) is finite, and
(G:K)=(G:H)(H:K).
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Converse of Lagrange’s Theorem

Lagrange’s Theorem
shows that if there is
a subgroup H of a finite
group G, then the
order of H divides the
order of G.



Converse of Lagrange’s Theorem

Is the converse true?

That is, if G is a group
of order n, and m
divides n, is there
always a subgroup of
order m?

We will see next that
this is true for abelian
groups.



Converse of Lagrange’s Theorem

However, A, can be
shown to have no
subgroup of order 6,
which gives a
counterexample for
nonabelian groups.



Converse of Lagrange’s Theorem

={(1), (1, 2)(3, 4),
3)(2, 4),(1, 4)(2, 3),
2,3),(1,3,2),
3,4), (1, 4, 3),
1,2,4),(1,4,2),
2,3,4),(2,4,3)]

(1
(1,
(1,
(
(
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An Interesting Example

Example

A translation of the plane
R2in the direction of the
vector (a, b) is a function
f :R?2 = Rz defined by
f(x,y)=(x+a,y+b).



An Interesting Example

The composition of this
translation with a
translation g in the
direction of (c, d) is the
function

f g:R2— R?, where
fg(x,y) =f(glx,y))
=f(x+c,y+d)
=(x+c+a,y+d+Db).
This is a translation in the
direction of (c+a,d + b).



An Interesting Example

It can easily be verified
that the set of all
translations in R? forms
an abelian group, under
composition.



An Interesting Example

A translation of the plane
R2in the direction of the
vector (0, 0) is an identity
function 1;2R2 — R?
defined by

1:2(x, y)=(x+0, y+0)=(x, y).



An Interesting Example

The inverse of the
translation of the plane

R2in the direction of the
vector (a, b) is an inverse

function f 1 :R2—> R?
defined by

f1(x,y)=(x-a,y-b)
such that

ff1(x, y)=(x, y)=f* f(x, y).



An Interesting Example
The inverse of the
translation in the
direction (a, b) is the
translation in the

opposite direction
(-a,-b).
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Homomorphism of Groups

Structure-Relating Maps

Let G and G' be groups.
We are interested in
maps from G to G' that
relate the group structure
of G to the group
structure of G'.

Such a map often gives
us information about one
of the groups from
known structural
properties of the other. 2



Homomorphism of Groups

Structure-Relating Maps

An isomorphism ¢: G —=
G', if one exists, is an
example of such a
structure-relating map. If
we know all about the
group G and know that ¢
Is an isomorphism, we
immediately know all
about the group structure
of G', for it is structurally
just a copy of G.

3



Homomorphism of Groups

Structure-Relating Maps

We now consider more general structure-relating
maps, weakening the conditions from those of an
isomorphism by no longer requiring that the maps
be one to one and onto. We see, those conditions
are the purely set-theoretic portion of our definition
of an isomorphism, and have nothing to do with the
binary operations of G and of G'.



Homomorphism of Groups

Definition
If (G, * ) and (H, x) are
two groups, the function

f:G— His called a group
homomorphism if

f(a « b)=f(a)*f(b)
for all a, b € G.



Homomorphism of Groups

" We often use the
notation

f:(G, = )—>(H, %)
for such a homorphism.

" Many authors use
morphism instead of
homomorphism.



Homomorphism of Groups

Definition

A group isomorphism is a
pijective group
homomorphism.

f there is an isomorphism

between the groups (G,
) and (H,x), we say that

(G, * )and (H,x) are
isomorphic and write

(G, * )= (H,x).




Homomorphism of Groups

Example

Let ¢: G = G' be a group homomorphism of G onto
G'. We claim that if G is abelian, then G' must be
abelian. Leta', b' € G'. We must show thata'b' =
b'a'. Since ¢ isonto G', there exist a, b € G such
that ¢(a)=a'and ¢p(b) =Db', Since G is abelian,

we have ab= ba. Using homomorphism property,
we have a'b' = ¢p(a) ¢(b) = ¢p(ab)= P(ba) =

¢(b) p(a) =b'a', so G'is indeed abelian.



Group Theory
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Homomorphism of Groups

Example

The function f: Z—> Z_,
defined by f (x) = [x] is
the group
homomorphism,
forifi,j€ Z, then
f(i+]))=[i+]]

=[1]+,0J]

=£(1)+,£0).

10



Examples of Group Homomorphisms

Example
Let be R the group of all real numbers with

operation addition, and let R* be the group of all
positive real numbers with operation multiplication.
The function f: R = R*, defined by f (x) = e¥, is a
homomorphism, for if x, y € R, then

fix +y)=ev=exev="f(x)f (y).

11



Examples of Group Homomorphisms

Now f is an isomorphism, for its inverse function
g :R*—> RisInx.

Therefore, the additive group R is isomorphic to the
multiplicative group R*.

Note that the inverse function g is also an
isomorphism:

g(xy) =In(xy) =Inx +Iny = g(x) + g(y).

12
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Examples of Group Homomorphisms

Example

Let S be the symmetric group on n letters, and let :
¢: S, = Z,be defined by
¢(o) =0 if 0 is an even permutation,
=1 if 0 is an odd permutation.
Show that ¢ is a homomorphism.

14



Examples of Group Homomorphisms

Solution

We must show that (o, p) = (o) + ¢ (u) for all

choices of 0, p € S . Note that the operation on the
right-hand side of this equation is written additively

since it takes place in the group Z,. Verifying this
equation amounts to checking just four cases:

" 0 odd and u odd,
" 0 odd and u even,
" 0 even and p odd,

" 0 even and u even.

15



Examples of Group Homomorphisms

Checking the first case, if 0 and p can both be
written as a product of an odd number of
transpositions, then o can be written as the
product of an even number of transpositions. Thus
¢(o,u)=0and ¢(0)+P(u) =1 +1 =0in Z..
The other cases can be checked similarly.

16
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Properties of Homomorphisms

Proposition

Let ¢ :G—>Hbea
group morphism, and
let e. and e, be the
identities of G and H,
respectively.

Then

(i) d (e.) =e,.
(i) ¢ (@) = ¢ (a) for

18



Theorems on Group Homomorphisms

Proof
(i) Since ¢ is a morphism,

® (eg) ¢ (eg)
= (e eg)

7 (I) (eG)

=0 (eg)e,

Hence (i) follows by
cancellation in H.

19



Theorems on Group Homomorphisms

Proof

(i) & (a) ¢ (a)
=¢ (a a™)

= (e,)

= e, by (i).

Hence (|) ) is the
unique inverse of @ (

a);
thatis ¢ (a™?) = ¢ (a)™.

20
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Properties of Homomorphisms

We tum to some
structural features of G
and G' that are
preserved by a
homomorphism

¢: G- G

First we review set-
theoretic definitions.

22



Properties of Homomorphisms

Definition

Let @ be a mapping of
aset XintoasetY, and
letAC Xand BCY.
The image ¢[A] of A in
Y under ¢ is {Pp(a) |
aEA}. The set ¢[X] is
the range of ®. The
inverse image @[B] of
Bin Xis {x&X|

¢ (x) EB}.

23



Properties of Homomorphisms

Theorem

Let @ be a
homomorphism of a
group Gintoagroup G'.

1. If H is a subgroup of
G, then ¢[H]is a
subgroup of G'.

2. If K'is a subgroup of
G', then ¢ '[K'] is a
subgroup of G.

24



Properties of Homomorphisms

Proof

(1) Let H be a subgroup of G, and let ¢(a) and

¢ (b)
be any two elements in ¢[H]. Then ¢(a) P(b) =
¢ (ab), so we see that p(a) d(b) € P[H]; thus, P[H]
is closed under the operation of G'. The fact that
¢(e.) = and ¢ (a*) = ¢ (a)* completes the
proof that ¢[H] is a subgroup of G’.

25



Properties of Homomorphisms

Proof

(2) Let K' be a subgroup of G'. Suppose a and b are
in @*[K']. Then ¢p(a)P(b)EK' since K' is a subgroup.
The equation ¢ (ab) = p(a) ¢(b) shows that

abe @ [K']. Thus ¢*[K'] is closed under the binary
operation in G.

26



Properties of Homomorphisms

Also, K' must contain the identity element = d(e.),
soe. € P IK']. Ifa € ¢[K'], then

d(a) €K', so p(a)t€ K'. But P(a)?= Pp(a?), sowe
must have a1€ ¢1[K'].

Hence ¢'[K'] is a subgroup of G.

27
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Properties of Homomorphisms

Theorem: Let h be a homomorphism from a group G
into a group G'. Let K be the kernel of h. Then
aK={xinG | h(x) = h(a)} =h*[{h(a)}]
and also
Ka={xinG | h(x) =h(a)} = h*[{h(a)}]



Properties of Homomorphisms

Proof

h-1[{h(a)}] ={xin G | h(x) =h(a)} directly from the
definition of inverse image.

Now we show that: aK={xin G | h(x) =h(a)}:
XinaK& x=ak, forsomekinK

& h(x) = h(a k) =h(a) h(k) = h(a) , for some k in K
& h(x) = h(a)

Thus, aK={xinG | h(x) =h(a)}.

Likewise, Ka={xinG | h(x) =h(a)}.



Properties of Homomorphisms

Suppose: h: X & Y is any map of sets. Then h
defines an equivalence relation ~, on X by:

X~ Y € h(x) = h(y)
The previous theorem says that when h is a homomorphism

of groups then the cosets (left or right) of the kernel of h are
the equivalence classes of this equivalence relation.



Group Theory

Properties of
Homomorphisms



Properties of Homomorphisms

Definition
If : G = G'is a group morphism, the kernel of ¢ ,

denoted by Ker @, is defined to be the set of
elements of G that are mapped by f to the identity of

G'. Thatis, Ker f={g € G|f (g) = €' }.



Properties of Homomorphisms

Corollary

Let ¢: G — G' be a group morphism. Then, ¢ is
injective if and only if Ker ¢ = {e}.



Properties of Homomorphisms

Proof

If Ker(®d) = {e}, then for every a € G, the elements

mapped into @(a) are precisely the elements of the
left coset a { e} = {a}, which shows that ¢ is one to
one.

Conversely, suppose ¢ is one to one. Now, we know
that @(e)=e’, the identity element of G'. Since @ is
one to one, we see that e is the only element
mapped into e' by ¢, so Ker(})= {e}.



Properties of Homomorphisms

Definition
To Show ¢: G—=> G'is
an Isomorphism

Step1 Show @ is a
homomorphism.

Step 2 Show Ker(])=
{el.

Step 3 Show ¢ maps G
onto G'.



Group Theory

Normal Subgroups



Normal Subgroups

Normal Subgrops

et G be a group with subgroup H. The right cosets of
H in G are equivalence classes under the relation a =
b mod H, defined by ab™* & H. We can also define the
relation L on G so that a L b if and only if b ’a & H.
This relation, L, is an equivalence relation, and the
equivalence class containing a is the left coset aH =
{ah|h & H}. As the following example shows, the left
coset of an element does not necessarily equal the

right coset.




Normal Subgroups

Example

Find the left and right
cosets of H = A, and K =
(1), (12)}in S,

12



Normal Subgroups

Solution
We calculated the right cosets of H = A..
Right Cosets

H ={(1), (123), (132)}; H(12) = {(12), (13), (23)}
Left Cosets

H ={(1), (123), (132}; (12)H = {(12), (23), (13)}
In this case, the left and right cosets of H are the
same.

13



Normal Subgroups

However, the left and right cosets of K are not all the
same.

Right Cosets

K'=1{(1), (12)} ; K(13) = {(13), (132)} ; K(23) = {(23),
(123)}

Left Cosets

K ={(1), (12)}5(23)K = {(23), (132)}; (13)K = {(13),
(123)}

14
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Normal Subgroups

Definition

A subgroup H of a
group G is called a
normal subgroup of G if
gthg & Hforallg €G
and h &€ H.

16



Normal Subgroups

Proposition

Hg = gH, for all g € G, if
and only if H is a normal
subgroup of G.

17



Normal Subgroups

Proof

Suppose that Hg = gH.
Then, for any element h &
H, hg € Hg = gH.

Hence hg = gh, for some
n, € Hand

gthg =g'gh,=h, € H.
Therefore, H is a normal

subgroup.

18



Normal Subgroups

Conversely, if H is normal, let hg &€ Hg and
gthg =h, € H.

Then hg = gh, € gH and Hg < gH.

Also, ghgt = (g)thgt=h,& H, since His
normal, so gh = h,g € Hg. Hence, gH < Hg,
and so Hg = gH.

19
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Theorem on Normal Subgroup

If N is a normal
subgroup of a group G,
the left cosets of Nin G
are the same as the
right cosets of Nin G, so
there will be no
ambiguity in just talking
about the cosets of N in
G.

21



Theorem on Normal Subgroup

Theorem
If N is a normal subgroup
of (G, -), the set of cosets

G/N = {Ng|g € G} forms
a

group (G/N, +), where the
operation is defined by
(Ng,) - (Ng,) =N(g, - g,).
This group is called the

guotient group or factor
group of G by N. 2



Theorem on Normal Subgroup

Proof. The operation of multiplying two cosets, Ng,
and Ng,, is defined in terms of particular elements,

g, and g,, of the cosets. For this operation to make
sense, we have to verify that, if we choose different

elements, h, and h,, in the same cosets, the
product coset N(h, - h,) is the same as

N(g, - g,). In other words, we have to show that
multiplication of cosets is well defined.



Theorem on Normal Subgroup
Since h, is in the same coset as g,, we have
h, = g, mod N. Similarly, h, = g, mod N.
We show that Nh h, = Ng.g..
We haveh,g, =n,€Nandh,g.,? =n, &N, so
h,h,(g,8,)" =h,hg,'g "= ngngg,'g, "=
n,g,n.g "

Now N is a normal subgroup, so g.n,g ,”* & N and
n,g,n.g .t € N. Hence h,h, = g,g, mod N and

Nh.h,=Ng.g..
Therefore, the operation is well defined.



Theorem on Normal Subgroup

* The operation is associative because (Ng, - Ng,) -
Ng, = N(g,8,) - Ng, = N(g,8,)g, and also Ng, - (Ng, -
Ng.) = Ng, - N(g,8;) = Ng,(g,8,) = N(g,8,)8.

* Since Ng - Ne = Nge = Ng and Ne - Ng = Ng, the
identity is Ne = N.

* The inverse of Ng is Ng™* because Ng - Ng™* = N(g -
g') =Ne =N and also Ng™*- Ng = N.

* Hence (G/N, +) is a group.

25
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Example on Normal Subgroup

Example

(Z, +) is the quotient
group of (Z,+) by the
subgroup

nZ = {nz|z € Z}.

27



Example on Normal Subgroup

Solution

Since (Z,+) is abelian, every subgroup is normal. The
set nZ can be verified to be a subgroup, and the
relationship a = b mod nZ is equivalenttoa-b & nZ
and to n|la - b. Hence a = b mod nZ is the same

relation as a = b mod n. Therefore, Z_ is the quotient

group Z/nZ, where the operation on congruence
classes is defined by [a] + [b] =[a + b].



Example on Normal Subgroup

(Z_,+) is a cyclic group
with 1 as a generator.
When there is no
confusion, we write the

elementsof Z_as O, 1,
2.3,...,n-1instead

of [0], [1], [2], [3], ...,
[n - 1].

29
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Morphism Theorem for Groups

Theorem

Let K be the kernel of the
group morphism

f:G— H.Then G/K is
isomorphic to the image
of f, and the isomorphism

J: G/K=Im f
Is defined by

B(Kg) = f(g).

31



Morphism Theorem for Groups

This result is also known as the first isomorphism
theorem.

Proof. The function ¢ is defined on a coset by using
one particular element in the coset, so we have to
check that ¢ is well defined;

that is, it does not matter which element we use.

32



Morphism Theorem for Groups

P: G/K = Im f, P(Kg)=f(g).
If Kg'=Kg, then g’=g mod K
sog'gl=k &€ K=Kerf.
Hence g’=kg and so

f(g’) = f(kg)

= f(k)f(g)

= e, f(g) = f(g).

Thus ¢ is well defined on

cosets.

33



Morphism Theorem for Groups

The function Y is a
morphism because

J(Kg,Kg,)

= (Kg,8,)

=f (g,8,)

=f (g,)f (g,)

= P(Kg,)W(Kg,).

34



Morphism Theorem for Groups

If U(Kg) =e,, then

f(g) =e,and g € K.
Hence the only element
in the kernel of Y is the
identity coset K, and
 is injective.

35



Morphism Theorem for Groups

Finally, Im Y = Im f, that is,
J*(f(g))=Kg , by the
definition of .

Therefore, Y is the
required isomorphism
between G/K and Im f.

36
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Application of Morphism Theorem

Example

Show that the quotient
group R/Z is
isomorphic to the circle

group
W={etecC|b€&ER}

38



Application of Morphism Theorem

Solution

The set W={e®® € C | 8 € R } consists of points on
the circle of complex numbers of unit modulus, and
forms a group under multiplication.

Define the functionf: R = W by f (x) = eZ,

This is a morphism from (R,+) to (W, -) because

f(x +y) = eZitey)

— e2nix . e2niy

=f(x) - f(y).

39



Application of Morphism Theorem

The morphismf: R > W
is clearly surjective,
and its kernel is

{x & R|e¥*=1}=/Z.
Therefore, the morphism

theorem implies that
R/Z = W.

40
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Normality of Kernel of a Homomorphism

Right Cosets

Let (G, :) be a group
with subgroup H. For a,
b & G, we say that a is
congruent to b modulo
H, and write a = b mod
H if and only if ab™ & H.



Normality of Kernel of a Homomorphism

Proposition

The relationa=b mod H
Is an equivalence
relation on G.

The equivalence class
containing a can be
written in the form Ha =

{ha|h
callec
in G. T

& H}, and it is
a right coset of H
‘he element a is

callec

a representative

of the coset Ha.



Normality of Kernel of a Homomorphism

Theorem

Let @ be a
homomorphism
function from group

(G, *) to group (G,.).
Then, (Kerg,*) is a

normal subgroup of
(G,").



Normality of Kernel of a Homomorphism

Proof
i) Kerg is a subgroup of G

Va,beKerg, p(a)=e,,
p(b)=e..

Then, gp(a*b)=p(a)
p(b)=e.

Therefore, a*beKerq.
Inverse element:
VaeKerq, @(a)=e..
Then,
p(at)=p(a)t=e.
Therefore, a‘€Kerq.



Normality of Kernel of a Homomorphism

ii) VgeG,acKerq,
¢(a)=e... Then,

p(g**a*g)

= (g )CP( )CP (g)
=@ (g)te, @ (g)
= €.

Therefore,

gl*a*geKerqo.
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Example of Normal Group

Definition
A subgroup H of a group

Is a normal subgroup if
gH=Hg for VgegG.



Example of Normal Group

Example

" Any subgroups of Abelian group are normal
subgroups

"5,={(1),(1,2,3), (1,3,2), (2,3), (1,3), (1,2)}.

" H=t(1), (2,3)}; H,=1(1), (1,3)}; H;=(1), (1,2)};
"(1,3)H,=1(1,3),(1,2)}  H,(1,3)=1(1,3),(1,2)}

" (1,2,3)H,={(1,2,3),(1,2)} H,(1,2,3)={(1,2,3),(1,3)}



Example of Normal Group

" H,={(1), (1,2,3), (1,3,2)}
are subgroups of S..

N
H, is a normal subgroup.



Example of Normal Group

(1)Hg=gH, it does not

imply

hg=gh.

(2) If Hg=gH, then there

exists

n'eH such that

hg=gh' for VheH.



Example of Normal Group

" Let H be a subgroup of a group G. When is
(@aH) (bH)=abH?

" This is true for abelian groups, but not always when G is
nonabelian.
" Consider S,: Let H = {p,, 1,}. The left cosets are
(P b (P ), {P,s 1,3
If we multiply the first two together, then

1Py K}, (P Ma} = 1Py Py P Hgy M4 Py 4 Ko}

= {p17 |J-39 uzy p 2}
This has four distinct elements, not two!
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Factor Group

Definition

Let (H,*) be a normal
subgroup of the group
(G,*). (G/H,®) is called
qguotient group, where the

operation ® is defined on
G/H by

Hg,®Hg,= H(g,*g,).

If G is a finite group, then
G/H is also a finite group,
and |G/H|=|G|/|H].



Factor Group

* The product of two sets is define as follow
SS’ = {xx'|x€S and x’€S}

* {aH|a€G, H is normal} is a group, denote by G/H
and called it factor groups of G.

* A mapping f: G—=G/H is a homomorphism, and call
it canonical homomorphism.




Factor Group

f

G G/H



Factor Group

Consider S;: Let H ={p,, p, , p,}. The left cosets are
{Pe P11 MG 1, 1y
If we multiply the first two together, then

Py P15 P My, Ky, B = 1Py My Py My Po Mgy Py By Py Ky, Py May Py My, P,
Ky, Py Mo = T By Mgy Mgy Fys Fos Fyy By Byt = Ty By M)

This is one of the cosets. Likewise,

Py P15 P} {Pos P15 P} =1{Pos Py s P
s My, IGHP Pys P = 1 Ky, Mgl
(M, My s B Hg My s G = 1Py, Py s P}

Note that the cosets of {p,, p, , p,} with this binary operation

form a group isomorphic to Z..



Factor Group

Note that there is a
natural map from S, to

LT R R T TRTN )
that takes any element to
the coset that contains it.
This gives a
homomorphism called
the cannonical
homomorphism.
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Coset Multiplication and Normality

Theorem

Let H be a subgroup of a
group G.

Then H is normal if and
only if
(aH)(bH)=(ab)H,
foralla,binG



Coset Multiplication and Normality

Proof

Suppose
(aH)(bH)=(ab)H,
for all a, bin G.

We show that aH =H a,
for all ain H.

We do this by showing:
aH < HaandHac aH,

for all ain G.



d

Coset Multiplication and Normality

H < H a: First observe that aHa'< (aH)(a*H)
(aal)H = H.

Let xbeinaH. Thenx=ah, forsome hinH. Then

X

H

al=aha?l whichisin=aHal,

thusin H. ThusxatlisinH. Thus xisinH a.

acaH: HacHaH=(eH)(aH)=(ea)H=aH.

T

nis establishes normality.



Coset Multiplication and Normality

For the converse, assume H is normal.

(@H)(bH) < (ab)H:Fora,binG,xin(aH)(bH)
implies that x=a h, b h,, for some h, and h, in H.
Buth,bisinHDb, thusinbH. Thush, b=Db h,for
some h,inH. Thusx=abh,h,isinabH.
(@ab)H< (aH)(bH): xin(ab)H=x=aebh, for
some hin H.

Thus x is in (a H) (b H).
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Examples on Kernel of a Homomorphism

Let h: G—>G' be a
homomorphism and let
e' be the identity
element of G'. Now {e'}
Is a subgroup of G', so

h'[{e'}] is a subgroup K
of G. This subgroup is
critical to the study of
homomorphisms.



Examples on Kernel of a Homomorphism

Definition

Let h: G—>G' be a
homomorphism of
groups. The subgroup
h[{e'}]={x€G| h(x)=e'}
is the kernel of h,
denoted by Ker(h).




Examples on Kernel of a Homomorphism

Example

Let R™ be the additive
group of column vectors
with n real-number
components. (This group is
of course isomorphic to
the direct product of R
under addition with itself
for n factors.) Let A be an
m X n matrix of real
numbers. Let ¢: Rr>R™
be defined by ¢ (V)=Av
for each column
vector veRr,

N



Examples on Kernel of a Homomorphism

Example

Then ¢ is a
homomorphism, since
v, WeR?", matrix
algebra shows that

¢ (V+w)=A(V+w)

=Av+Aw=} (V)+d (W)

In linear algebra, such a
map computed by
multiplying a column
vector on the left by a
matrix A is known as a
linear transformation. .



Examples on Kernel of a Homomorphism

Ker(h) is called the null
space of A. It consists of
allv € R such that

Av = 0, the zero vector.
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Examples on Kernel of a Homomorphism

Example

Let GL(n, R) be the
multiplicative group of
all invertible n x n
matrices. Recall that a
matrix A is invertible if
and only if its
determinant, det(A), is
nonzero.



Examples on Kernel of a Homomorphism

Recall also that for matrices A,

B €GL(n, R) we have
det(AB)=det(A)det(B). This
means that det is a
homomorphism mapping GL(n,
R ) into the multiplicative group
R * of nonzero real numbers.

Ker(det)
={A€ GL(n, R)|det(A)=1}.



Examples on Kernel of a Homomorphism

Homomorphisms of a
group G into itself are
often useful for studying
the structure of G. Our
next example gives a
nontrivial
homomorphism of a
group into itself.

10



Examples on Kernel of a Homomorphism

Example

Let r€Z and let §_:
Z.—Z. be defined by

¢ _(n)=rn for all nEZ. For
allm, n€Z, we have

¢ (m+n)=r(m +n)
=rm+rn=@¢_. (m)+®(n) so
¢, is a homomorphism.

11



Examples on Kernel of a Homomorphism

Note that @, is the trivial
homomorphism, ¢, is
the identity map, and ¢,
maps Z onto Z. For all

other rin Z, the map ¢.
is not onto Z.

Ker(p,)= Z
Ker(¢.)= {0} for r+0

12
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Examples on Kernel of a Homomorphism

Example (Reduction
Modulo n)

Lety be the natural map

of Z into Z_ given by
v(m) =r, where r is the
remainder given by the
division algorithm when
m is divided by n. Show
thaty is a
homomorphism. Find
Ker(y).

14



Examples on Kernel of a Homomorphism

Solution

We need to show that y(s+t)=y(s)+y(t) fors, t € Z.
Using the division algorithm, we let

s=q,n+r, (1) and
t=q,n+r, (2) where O<r<n for i=1, 2.

If r +r,=q.,n+r, (3) for O<r,<n then adding Egs. (1)
and (2) we see thats+t=(q, +q,+q,)n+r,, so that
y(s+t)=r,. From Egs. (1) and (2) we see that

y(s) =r, and y(t)=r,. Equation (3) shows that

the sumr +r, in Z_is equal to r, also.

15



Examples on Kernel of a Homomorphism

Consequently y(s+t)=y(s)
+y(t),

so we do indeed have a
homomorphism.

Ker(y)=nZ

16
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Kernel of a Homomorphism

Theorem

Let h be a
homomorphism from a
group G into a group G'.
Let K be the kernel of h.
Then

aK={xinG | h(x) =h(a)}
= h-1[{h(a)}] and also
Ka={xinG | h(x) =h(a)}
=h[{h(a)}]



Kernel of a Homomorphism

Let K=Ker(h) for a homomorphism h:G—G'. We
think of h as "collapsing" K down onto e‘. Above
Theorem shows that for g € G, the cosets gK and Kg
are the same, and are collapsed onto the single
element h(g) by h. That is h''[{h(g)}]=gK=Kg. We
have attempted to symbolize this collapsing in Fig.
below,

where the shaded rectangle represents G, the solid
vertical line segments represent the cosets of

K= Ker(h), and the horizontal line at the bottom
represents G'.



Kernel of a Homomorphism

h[{a’ }] ~ bK K h[{y'}]

Cosets of K collapsed by h

20



Kernel of a Homomorphism

We view h as projecting the elements of G, which
are in the shaded rectangle, straight down onto
elements of G', which are on the horizontal line
segment at the bottom. Notice the downward
arrow labeled h at the left, starting at G and ending
at G'. Elements of K=Ker(h) thus lie on the solid
vertical line segment in the shaded box lying over €',
as labeled at the top of the figure.
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Kernel of a Homomorphism

Example

We have |z,z,|=|z,||z,|
for complex numbers z,

and z,. This means that
the absolute value
function | | is a
homomorphism of the
group C* of nonzero
complex numbers under
multiplication onto the
group R* of positive real
numbers under
multiplication.

23



Kernel of a Homomorphism

Since {1} is a subgroup of R*, the complex numbers
of magnitude 1 form a subgroup U of C*. Recall
that the complex numbers can be viewed as filling
the coordinate plane, and that the magnitude of a
complex number is its distance from the origin.
Consequently, the cosets of U are circles with
center at the origin. Each circle is collapsed by this
homomorphism onto its point of intersection with
the positive real axis.



Group Theory
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Kernel of a Homomorphism

Theorem

Let h be a
homomorphism from a
group G into a group G'.
Let K be the kernel of h.
Then

aK={xinG | h(x) =h(a)}
= h-1[{h(a)}] and also
Ka={xinG | h(x) =h(a)}
=h[{h(a)}]



Kernel of a Homomorphism

Above theorem shows that the kernel of a group
homomorphism h:G—G' is a subgroup K of G whose
left and right cosets coincide, so that gk=Kg for all g
& G. When left and right cosets coincide, we can
form a coset group G/K. Furthermore, we have
seen that K then appears as the kernel of a
homomorphism of G onto this coset group in a very
natural way. Such subgroups K whose left and right
cosets coincide are very useful in studying normal
group.



Kernel of a Homomorphism

Example

Let D be the additive group of all differentiable
functions mapping R into IR, and let F be the
additive group of all functions mapping R into R
Then differentiation gives us a map ¢: D—F, where
¢ (f)=f' for fEF. We easily see that ¢ is a
homomorphism, for ¢(f+g)=(f+g)'=f'+g'=¢(f)+P(g);
the derivative of a sum is the sum of the derivatives.



Kernel of a Homomorphism

Now Ker(®) consists of all functions f such that f'=0.
Thus Ker(¢) consists of all constant functions, which
form a subgroup C of F. Let us find all functions in G
mapped into x2 by @, that is, all functions whose
derivative is x2. Now we know that x3/3 is one such
function. By previous theorem, all such functions

form the coset x3/3+C.



Group Theory
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Examples of Group Homomorphisms

Example (Evaluation Homomorphism)
Let F be the additive group of all functions mapping

R into IR, let R be the additive group of real
numbers, and let ¢ be any real number. Let

¢: F->R be the evaluation homomorphism

defined by ¢ (f ) for fEF. Recall that, by
definition, the sum of two functions f and g is the
function f + g whose value at x is f (x) + g(x). Thus
we have

¢ (f+g)=(f+g)(c)=f(c)+g(c)= (f)+ (g), so we have a
homomorphism.



Examples of Group Homomorphisms

Composition of group homomorphisms is again a
group homomorphism. That is, if

¢: G—G' and y: G'>G" are both group
homomorphisms then their composition

(yo): G—G", where (yod)(g) = y(p(g)) forg € G, is
also a homomorphism.

32
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Examples of Group Homomorphisms

Example

Let G=G,x - x G, x - X G_ be a direct product of
groups. The projection map 11.: G—G, where

(g, -, g, =, &) =g isahomomorphism for each
i:l’ TR o)

This follows immediately from the fact that the
binary operation of G coincides in the ith

component with the binary operation in G..

34



Examples of Group Homomorphisms

Example

Let F be the additive group of continuous functions
with domain [0, 1] and let IR be the additive group of
real numbers. The map 0:F— R defined by

o(f)=[,f(x)dx for f € F is a homomorphism,
for

O (f+g)=[ ;L (f+g)(x)dx= [ ,* [f(x)+g(x)]dx=
[oH(x)dx+[ Lg(x)dx=0(f)+o(g) for all f, g € F.
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Examples of Group Homomorphisms

Each of the homomorphisms in the preceding two
examples is a many-to-one map. That is, different
points of the domain of the map may be carried
into the same point. Consider, for illustration, the

homomorphism 11,: Z,X Z,— 7, We have

11,(0, 0)=11,(0, 1)= 11,(0, 2)= 11,(0, 3)=0, so four
elements in Z,Xx Z, are mapped into 0 in Z, by
I1,.
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Factor Groups from Homomorphisms

Let G be a group and let S be a set having the same
cardinality as G. Then there is a one-to-one
correspondence < between S and G. We can use <
to define a binary operation on S, making S into a
group isomorphic to G. Naively, we simply use the
correspondence to rename each element of G by
the name of its corresponding (under <) element
in S. We can describe explicitly the computation of
xy forx,y &€ S as follows:

ifx & g, andy & g,andze g.g,, thenxy=z (1)



Factor Groups from Homomorphisms

The direction — of the one-to-one correspondence
s—g between s&S and g&G gives us a one-to-one

function u mapping S onto G. The direction « of &
gives us the inverse function p!. Expressed in terms
of W, the computation (1) of xy for x, y € S becomes

if u(x)=g, and u(y)=g,and p(z)=g,g,, then xy=z  (2)
The map pn: S—G now becomes an isomorphism
mapping the group S onto the group G. Notice that

from (2), we obtain p(xy)=u(z)=g,g,=u(x)uly), the
required homomorphism property.
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Factor Groups from Homomorphisms

-

et G and G' be groups,
et h: G>G' be a

homomorphism, and let
K=Ker(h). The previous

theorem shows that for
aEG, we have

hi[{h(a)}]=aK =Ka. We
have a one-to-one
correspondence aK
—h(a) between cosets of

Kin G and elements of
the subgroup h[G] of G'.



Factor Groups from Homomorphisms

Remember that if x€aK, so that x=ak for some k&K,
then h(x)=h(ak)=h(a)h(k)=h(a)e'

=h(a), so the computation of the element of h[G]

corresponding to the coset aK=xK is the same
whether we compute it as h(a) or as h(x ). Let us
denote the set of all cosets of K by G/K. (We read
G/K as "G over K" or as "G modulo K" or as "G mod
K," but never as "G divided by K.")



Factor Groups from Homomorphisms

We started with a homomorphism h: G—G' having
kernel K, and we finished with the set G/K of cosets
in one-to-one correspondence with the elements of
the group h[G]. In our work above that, we had a set
S with elements in one-to-one correspondence
with a those of a group G, and we made S into a
group isomorphic to G with an isomorphism L.
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Factor Groups from Homomorphisms

Replacing Sby G/ H and replacing G by h[G] in
that construction, we can consider G/K to be a group
isomorphic to h[G] with that isomorphism . In
terms of G/K and h[G], the computation (2) of the
product (xK)(yK) for xK, yK € G/K becomes if

(xK)=h(x) and p(yK)=h(y) and u(zK)=h(x)h(y), then
(xK)(yK)=zK. (3)



Factor Groups from Homomorphisms

But because h is a homomorphism, we can easily
find z€G such that u(zK)=h(x )h(y ); namely, we take
z=xy in G, and find that u(zK)=p(xyK)=h(xy)=h(x)h(y).

This shows that the product (xK)(yK) of two cosets is
the coset (xy)K that contains the product xy of x and
v in G. While this computation of (xK)(yK) may seem
to depend on our choices x from xK and y from yK,
our work above shows it does not. We demonstrate
it again here because it is such an important point. If

k,, k, € Kso that xk, is an element of xK and yk, is an
element of yK, then there exists h, € K such that
k,y=yk, because Ky= yK by previous Theorem.




Factor Groups from Homomorphisms

Thus we have

(xk,)(yk,)=x(k,y)k,=x(yk,)k=(xy)(k.k,) € (xy)K,

so we obtain the same coset. Computation of the
product of two cosets is accomplished by choosing
an element from each coset and taking, as product
of the cosets, the coset that contains the product in
G of the choices. Any time we define something
(like a product) in terms of choices, it is important to
show that it is well defined, which means that it is
independent of the choices made.
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Factor Groups from Homomorphisms

Theorem

Let h: G—G' be a group
homomorphism with kernel K.
Then the cosets of K form a

factor group, G/K

. where (akK)

(bK)=(ab)K. Also, the map wu:

G/H—-h[G]

defined by p(aK)=
isomorphism. Bot
multiplication and

n(a) is an
N coset
u are well

defined, indepenc

ent of the

choices a and b from the cosets.



Factor Groups from Homomorphisms

Example

Consider the map y: Z—Z _, where y(m) is the
remainder when m is divided by n in accordance
with the division algorithm. We know that y is a
homomorphism. Of course, Ker(y) =nZ. By above
Theorem, we see that the factor group Z/nZ is
isomorphic to Z_. The cosets of nZ are the residue
classes modulo n.
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Factor Groups from Homomorphisms

For example, taking n = 5, we see the cosets of 5Z
are

57={...,-10, -5, 0, 5, 10,...},
1+57Z ={..,-9,-4,1, 6, 11,...},
2+57Z={..-8,-3,2,7,12,...},
3+5Z=1{..,-7,-2, 3,8, 13,..}
4457 ={...,-6,-1, 4,9, 14,...}.

Note that the isomorphism w: Z/52— Z. of
previous Theorem assigns to each coset of 57 its

smallest nonnegative element. That is, u(5Z)=0, pu(1+
5Z) =1, etc.
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Factor Groups from Homomorphisms

It is very important that we
learn how to compute in a
factor group. We can multiply
(add) two cosets by choosing
any two representative
elements, multiplying (adding)
them and finding the coset in
which the resulting product
(sum) lies.
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Factor Groups from Homomorphisms

Example

Consider the factor group Z/5Z with the cosets
shown in precious example. We can add (2+5Z)
+(4+57.) by choosing 2 and 4, finding 2+4=6, and
noticing that 6 is in the coset 1+5Z. We could
equally well add these two cosets by choosing 27 in
2457 and -16 in 4+5Z.; the sum 27+(-16)=11is also
in the coset 1+5Z.
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Factor Groups from Homomorphisms

The factor groups Z/nZ. in the preceding example
are classics. Recall that we refer to the cosets of nZ
as residue classes modulo n. Two integers in the
same coset are congruent modulo n. This
terminology is carried over to other factor groups. A
factor group G/H is often called the factor group of G
modulo H. Elements in the same coset of H are often
said to be congruent modulo H. By abuse of

notation, we may sometimes write Z/nZ=27_ and

think of Z_ as the additive group of residue classes
of Z modulo n.
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Factor Groups from Normal Subgroups

So far, we have obtained
factor groups only from
homomorphisms. Let G
be a group and let H be a
subgroup of G. Now H
has both left cosets and
right cosets, and in
general, a left coset aH
need not be the same set
as the right coset Ha.
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Factor Groups from Normal Subgroups

Suppose we try to define a binary operation on left
cosets by defining (aH)(bH)=(ab)H as in the
statement of previous theorem. The above equation
attempts to define left coset multiplication by
choosing representatives a and b from the cosets.
The above equation is meaningless unless it gives a
well-defined operation, independent of the
representative elements a and b chosen from the
cosets. In the following theorem, we have proved
that the above equation gives a well-defined binary
operation if and only if H is a normal subgroup of G.



Factor Groups from Normal Subgroups

Theorem

Let H be a subgroup of a
group G.

Then H is normal if and
only if
(@H)(bH)=(ab)H,
foralla,binG
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Factor Groups from Normal Subgroups

Above theorem shows
that if left and right
cosets of H coincide,
then the equation

(aH)(bH)=(ab)H, for all a,
binG

gives a well-defined
binary operation on
cosets.
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Factor Groups from Normal Subgroups

Theorem
If N is a normal subgroup
of (G, -), the set of cosets

- G/N={Ng|g € G} forms
a

group (G/N, -), where the
operation is defined by

(Ng,)-(Ng,)=N(g,-g,).
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Factor Groups from Normal Subgroups

Example

Since Z is an abelian
group, nZ is a normal
subgroup. Above
theorem allows us to
construct the factor
group Z./nZ. with no
reference to a
homomorphism. As we
already observed, Z/nZ

is isomorphic to Z ..
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Factor Groups from Normal Subgroups

Example

Consider the abelian
group R under addition,
and let c € R*. The cyclic
subgroup <c> of R
contains as elements

-« -3¢, -2¢, -C, O, ¢, 2c,
3C,“‘
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Factor Groups from Normal Subgroups

Every coset of <c> contains just one element of x
such that 0 < x < c. If we choose these elements as
representatives of the cosets when computing in

R/ <c>, we find that we are computing their sum

modulo cin R . For example, if c = 5.37, then the
sum of the cosets 4.65+<5.37> and 3.42+<5.37>

is the coset 8.07+<5.37>, which contains 8.07-5.37 =
2.7, which is 4.65+, ,,3.42.
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Factor Groups from Normal Subgroups

Working with these coset elements x where 0 < x <
¢, we thus see that the group R _is isomorphic to

R / <c> under an isomorphism p where p(x) =x+<c>
forallx € R_. Of course, R /<c> is then also
isomorphic to the circle group U of complex

numbers of magnitude 1 under multiplication.
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Kernel of an Injective Homomorphism

Theorem

A homomorphism
h: G—>G'is
Injective

if and only if

Ker h={e}.



Kernel of an Injective Homomorphism

Proof

Suppose h is injective,
and let x € Ker h.
Then h(x)=e'=h(e).

Hence x=e.



Kernel of an Injective Homomorphism

Conversely, suppose

Ker h={e}.

Then h(x)=h(y)
=h(xy!)=hx)h(y )
=h(x)h(y)'=e'
=Xxy'l€ Ker h

= Xy'l=e

=X=Y.

Hence, h is injective.
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Factor Groups from Normal Subgroups

Theorem

Let K be a normal
subgroup of G.

Then y: G—>G/K given by
y(g)=gKiis a
homomorphism with
kernel K.



Factor Groups from Normal Subgroups

Proof
Let g,, 8, € G. Then

v(g.8,)=(g,8,)K

=(g,K)(g,K)=y(g,)y(g,),
soy is a homomorphism.
Since g,K= K if and only if

g,.€ K, we see that the
kernel of y is indeed K.



Factor Groups from Normal Subgroups

We have proved that if
N:G—G'is a
homomorphism with
kernel K, then
W:G/K—h[G] where u(gK)
= h(g) is an isomorphism.

Above theorem shows
that y:G—G/K defined by

y(g)=gKis a
homomorphism.




Factor Groups from Normal Subgroups

We show these groups
and maps in the figure.
We see that the
homomorphism h can be
factored, h = py,

wherey is a
homomorphism and p is
an isomorphism of G/K
with h[ G].
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Example on Morphism Theorem of Groups

Theorem

Let K be the kernel of the
group morphism

h:G— G'. Then G/Kis
isomorphic to the image
of h, h[G], and the
isomorphism

w: G/K—=Imh
is defined by

u(Kg) = hig].
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Example on Morphism Theorem of Groups

Example
Classify the group

(Z,x2.,) /({0}x Z,)
according to the
fundamental theorem of
finitely generated abelian
groups.
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Example on Morphism Theorem of Groups

Solution
The projection map
1.: ZxZ.,— 7, given by

I, (X,y) = xis a
homomorphism of Z xZ,
onto Z, with kernel

{0}xZ,. By fundamental
theorem of
homomorphism, we
know that the given
factor group is

isomorphic to Z,.



Example on Morphism Theorem of Groups

The projection map

I1,: Z,x2Z,— 2, given by
I1,(X,y) = X.

K=Ker 11,={0}xZ,
={(0,0),(0,1)}.
(1,0)+K={(1,0),(1,1)}
(2,0)+K={(2,0),(2,1)}
(3,0)+K={(3,0),(3,1)}

14
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Normal Groups and Inner Automorphisms

We derive some
alternative
characterizations of
normal subgroups,
which often provide us
with an easier way to
check normality than
finding both the left
and the right coset
decompositions.



Normal Groups and Inner Automorphisms

Theorem

The following are three
equivalent conditions
for a subgroup H of a
group G to be a normal
subgroup of G.

1. ghg'eH for all geG
and h&H.

2. gHg'=H for all g&G.
3. gH=Hg for all g&G.



Normal Groups and Inner Automorphisms

Condition (2) of above
Theorem is often taken as
the definition of a normal
subgroup H of a group G.



Normal Groups and Inner Automorphisms

Proof

Suppose that gH = Hg for

allg € G. Then gh=h,g, so

ghgle Hforallg & Gandall h € H.

Then gHg'={ghg'lh &

We claim that actually g
HC gHg! forallg € G.
in the relation ghg* € H,

H} C H forallg € G.
Hg! = H. We must show that

et h € H. Replacing g by g™
we obtain

gth(gl)t=gthg =h, whereh, €H.
Consequently, gHg* =Hforallg € G.



Normal Groups and Inner Automorphisms

Conversely, if gHg!=H for all
g € G, then ghg' =h, so

gh =h,g € Hg, and gH C Hg.
But also, g'Hg = H giving

g'hg = h,, so that hg = gh,
and Hg C gH.
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Normal Groups and Inner Automorphisms

Example

Every subgroup H of an
abelian group G is
normal.

We need only note that
gh=hgforallh €H
and all g € G, so, of
course, ghgt=h & H
forallg & Gandallh
& H.



Normal Groups and Inner Automorphisms

Example

Themapi:G— G
defined by i (x) =gxg™is
a homomorphism of G
into itself.

i, (xy)=gxyg"
= (gxg')(gyg?)
=i, (x)i,(y)



Normal Groups and Inner Automorphisms

We see that

i, (x)=i.(y)

= gxg* =gyg"

= X =Y,

so |, Is injective.

Since for any X in G
i.(g7'xg) = g(g'xg)g™* = x,

we see that ig is onto G,
so it is an isomorphism

of G with itself.

10
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Inner Automorphisms

Definition
An isomorphism ¢: G—G
of a group G with itself is

an automorphism of G.
The automorphism

i,: G—G, where i (x)=gxg
for all x € G, is the inner
automorphism of G by g,
denoted by Inn (G).
Performing i,on xis
called conjugation of x

by g.



Inner Automorphisms

Theorem

The following are three equivalent conditions for
a subgroup H of a group G to be a normal
subgroup of G.

1. ghg'eH for all g&G and h&H.
2. gHg*=H for all g&G. 3. gH=Hg for all g&G.

The equivalence of conditions (2) and (3) shows
that gH=Hg for all g € G if and only if i [H]=H for all
g € G, thatis, if and only if H is invariant under all
inner automorphisms of G.



Inner Automorphisms

It is important to realize thati[H]=H isan

equation in sets; we need not have ig(h) = h for all
h € H.

That is i, may perform a nontrivial permutation
of the set H.

We see that the normal subgroups of a group G
are precisely those that are invariant under all

inner automorphisms.

A subgroup K of G is a conjugate subgroup of H if
K =i[H] forsome g € G.
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Inner Automorphisms

Lemma

The set of all inner
automorphisms of G
Is a subgroup of
Aut(G).

16



Inner Automorphisms

Proof

(1) Leti, i, € Inn (G).

Then i (i (x)) =a(i,(x))at=abxba?
=abx(ab)'=i_ € Inn (G).

Hence the conjugation by b composed by
conjugation by a is conjugation by ab.

(2) The inverse of i_is conjugation by a’=a.
i_((i.)(x))=i_(a’x(a’)!)=aa’'xa’a!=aa’'x(aa’)=x.

Thus Inn (G) is a subgroup.



Group Theory
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Inner Automorphisms

Example

Prove that
Aut(Z_)=U

n.

19



Inner Automorphisms

Solution

An automorphism &:Z,— Z.,, is determined by
d(1) as for any integer Kk,

o (k)= (1+...+1)=d(1)+...+P(1)= kd(1).

Since isomorphisms preserve order, ®(1) must
be a generator of Z,,.

We have proved that the generators of Z, are
those integers k € Z, for which gcd(k, n) = 1.
But these k are precisely the elements of

U.={1, w,..., ™! | (y=e?ui/n},



Inner Automorphisms

In this way, each element a of U, gives a
distinct automorphism ¢, which is multiplication

by a, and these are all the automorphisms of Z,..

Furthermore, u: Aut(Z,)—U_ given by
(¢.)=a is a group isomorphism.

" (bmp)=ab= (P.) ()
- (d)a): (d)b):a:b
" (P.)=a
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Theorem on Factor Group

Theorem

A factor group of a
cyclic group is cyclic.

23



Theorem on Factor Group

Proof

Let G be cyclic with generator a, andlet N be a
normal subgroup of G. We claim the coset aN
generates G/ N. We must compute all powers
of aN. But this amounts to computing, in G, all
powers of the representative a and all these
powers give all elements in G. Hence the powers
of aN certainly give all cosetsof N and G/ N is
cyclic.



Group Theory
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Example on Factor Group

Example

Let us compute the
factor group

(Z, x Z,)/((0, 2)).
Now (O, 2) generates
the subgroup

H=1(0,0), (0, 2),(0,4)}
of Z, x Z,of order 3.

26



Example on Factor Group

Here the first factor Z,
of Z, x Z,is left alone.

The Z, factor, on the
other hand, is
essentially collapsed by
a subgroup of order 3,
giving a factor group in
the second factor of
order 2 that must be

isomorphic to Z,. Thus
(Z, x Z,)/((0, 2)) is
isomorphic to Z, x Z,,
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Factor Group Computations

Let N be a normal
subgroup of G. In the
factor group G/ N, the
subgroup N acts as
identity element. We may
regard N as being
collapsed to a single
element, eitherto Oin
additive notation orto e
in multiplicative notation.

29



Factor Group Computations

This collapsing of N
together with the
algebraic structure of
G require that other
subsets of G, namely,
the cosets of N, also
collapse into a single
element in the factor
group. A visualization of
this collapsing is
provided by Figure.

30



Factor Group Computations
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Factor Group Computations

Recall that y: G—>G/N defined by y(a)=aN for

a € Gisahomomorphism of Gonto G/ N. We
can view the "line" G/ N at the bottom of the
figure as obtained by collapsing to a point each
coset of N in another copy of G. Each point of
G / N thus corresponds to a whole vertical line
segment in the shaded portion, representing
a coset of N in G. Itis crucial to remember that
multiplication of cosets in G/ N can be
computed by multiplying in G, using any
representative elements of the cosets.
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Factor Group Computations

Additively, two elements
of G will collapse into the
same element of G/N if
they differ by an element
of N. Multiplicatively, a
and b collapse together if
ab?isin N. The degree of
collapsing can vary from
nonexistent to
catastrophic. We illustrate
the two extreme cases by
examples.



Factor Group Computations

Example
The trivial subgroup

N = {0} of is, of
course, a normal
subgroup.

Compute /{0}.



Factor Group Computations

Solution

Since N={0} has only
one element, every
coset of N has only one
element. That is, the
cosets are of the form
{m} for m . Thereis no
collapsing at all, and
consequently, /{0} .
Each m is simply
renamed {m} in /{0}.



Factor Group Computations

Example

Let n be a positive
integer. The set

n={nr|r }isa
subgroup of under
addition, and it is
normal since is
abelian.

Compute /n.



Factor Group Computations

Solution

Actually n=, because
each x is of the form
n(x/n) and

x/n. Thus /n has only
one element, the
subgroup n. The factor
group is a trivial group
consisting only of the
identity element.
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Factor Group Computations

As illustrated in above
Examples for any group
G, we have G/{e} G
and G/G{e}, where {e}
is the trivial group
consisting only of the
identity element e.
These two extremes of
factor groups are of
little importance.



Factor Group Computations

We would like
knowledge of a factor
group G/N to give some
information about the
structure of G.

If N={e}, the factor
group has the same
structure as G and we
might as well have tried
to study G directly.



Factor Group Computations

If N =G, the factor

group has no
significant structure to
supply information

about G.



Factor Group Computations

If G is a finite group
and N #{e} is a normal
subgroup of G, then
G/N is a smaller group
than G, and
consequently may
have a more simple
structure than G.



Factor Group Computations

The multiplication of
cosets in G/N reflects
the multiplication in G,
since products of cosets
can be computed by
multiplying in G
representative elements
of the cosets.



Factor Group Computations

In next module, we give
example showing that
even when G/N has
order 2, we may be
able to deduce some
useful results.

If G is a finite group and
G/N has just two
elements, then we
must have |G|=2|N]|.
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Factor Group Computations

Note that every
subgroup H containing
just half the elements
of a finite group G must
be a normal subgroup,
since for each element
ain G but notinH,
both the left coset aH
and the right coset Ha
must consist of all
elements in G that are
not in H.



Factor Group Computations

Thus the left and right
cosets of H coincide
and H is a normal
subgroup of G.

16



Factor Group Computations

Example

Because |S_|=2|A |,
we see that A is a

normal subgroup of S ,
and S_/A_has order 2.

Let be an odd
permutation in S,

so that
S/A ={A_, A}

17



Factor Group Computations

Renaming the element A_"even" and the

element A_"odd," the multiplication in S /A,
shown in Table becomes

(even)(even)=even, (even)(odd)=odd, (odd)
(even)=o0dd, (odd)(odd)=even.

Thus the factor group reflects these
multiplicative properties for all the permutations

inS,. A A
An An An

An An An



Factor Group Computations

Above example
illustrates that while
knowing the product of
two cosets in G/N does
not tell us what the
product of two
elements of G is, it may
tell us that the product
in G of two types of
elements is itself of a
certain type.
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Factor Group Computations

The theorem of Lagrange
states if H is a subgroup
of a finite group G, then
the order of H divides the
order of G.

We show that it is false
that if d divides the order
of G, then there must
exist a subgroup H of G
having order d.



Factor Group Computations

Example

We show that A,, which
has order 12, contains no
subgroup of order 6.

Suppose that H were a
subgroup of A, having
order 6.

As observed before in
previous example, it
would follow that H
would be a normal

subgroup of A,.



Factor Group Computations

Then A,/H would have only two elements, H and H

for some A, not in H. Since in a group of order 2, the
square of each element is the identity, we would
have HH=H and (H)(H)=H. Now computation in a
factor group can be achieved by computing with
representatives in the original group. Thus,

computing in A,, we find that for each aH we must
have a?H and for each BH we must have B?H. That

is, the square of every element in A, must be in H.



Factor Group Computations

But in A,, we have

(1,2,3)=1(1,3,2)> and (1, 3,2)=(1,2, 3)?
so (1, 2,3)and (1, 3, 2) areinH.

A similar computation shows that (1, 2, 4),

(1,4, 2),(1, 3,4),(1,4,3), (2, 3,4),and (2, 4, 3)
are all in H.
This shows that there must be at least 8

elements in H, contradicting the fact that H was
supposed to have order 6.
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Factor Group Computations

We now turn to several examples that compute
factor groups. If the group we start with is finitely
generated and abelian, then its factor group will be
also. Computing such a factor group means
classifying it according to the fundamental
theorem of finitely generated abelian groups.



Factor Group Computations

Example

Let us compute the factor group (,x,)/ Here is the
cyclic subgroup H of ,x, generated by (0, 1). Thus

H = {(0, 0), (0, 1), (0. 2), (0, 3), (0, 4), (0, 5)}.

Since ,x, has 24 elements and H has 6 elements,
all cosets of H must have 6 elements, and (,x
.)/H must have order 4. Since ,x, is abelian, so is

(,x .)/H. Remember, we compute in a factor
group by means of representatives from the
original group.



Factor Group Computations

In additive notation, the cosets are

H=(0, 0)+H, (1,0)+H, (2, 0)+H, (3, 0)+H.

Since we can compute by choosing the
representatives (0, 0), (1, 0), (2, 0), and (3, 0), it is

clear that (,x,)/H is isomorphic to ,. Note that this
Is what we would expect, since in a factor group
modulo H, everything in H becomes the identity
element; that is, we are essentially setting
everything in H equal to zero. Thus the whole

second factor , of ,x, is collapsed, leaving just the
first factor ,.



Group Theory

Factor Group
Computations



Factor Group Computations

The last example is a special case of a general
theorem that we now state and prove. We should
acquire an intuitive feeling for this theorem in

terms of collapsing one of the factors to the
identity element.



Factor Group Computations

Theorem

Let G =H x K be the direct product of groups H
and K. Then ={(h, e)| h H} is a normal subgroup
of G. Also G/ is isomorphic to K in a natural way.
Similarly, G/ H in a natural way.



Factor Group Computations
Proof
Consider the map ,: Hx K K given by
,(h, k) =k. The map , is homomorphism since
2(h1h2’k1k2)=k1k2= 2(h1’k1) 2(h2’k2)°

Because Ker(,) = , we see that is a normal

subgroup of H x K. Because , is onto K,
Fundamental Theorem of Homomorphism tells us
that (HxK)/ K.



Group Theory

Factor Group
Computations



Factor Group Computations

Example

Let us compute the factor group (, x )/ Be careful!
There is a great temptation to say that we are

setting the 2 of , and the 3 of , both equal to zero,
so that , is collapsed to a factor group isomorphic
to , and , to one isomorphic to ,, giving a total
factor group isomorphic to , x ,. This is wrong!

Note that H =={(0, 0), (2, 3)} is of order 2, so (, x
)/has order 12, not 6.



Factor Group Computations

Setting (2, 3) equal to zero does not make (2, 0)
and (0, 3) equal to zero individually, so the
factors do not collapse separately.

The possible abelian groups of order 12 are

,X,and , x, X ,, and we must decide to which
one our factor group is isomorphic. These two

groups are most easily distinguished in that , x ,
has an element of order 4, and

, X, X ; does not.



Factor Group Computations

We claim that the coset (1, 0) + H is of order 4 in
the factor group (, x ,)/H.

To find the smallest power of a coset giving the
identity in a factor group modulo H, we must, by
choosing representatives, find the smallest
power of a representative that is in the subgroup
H. Now, 4(1,0)=(1, 0)+(1,0)+(1,0)+(1,0)=(0,0) is
the first time that (1,0) added to itself gives an
element of H. Thus (, x ,)/ has an element of

order 4 and is isomorphicto ,x , or ..



Group Theory

Factor Group
Computations



Factor Group Computations

Example

Let us compute (that is, classify as in Fundamental
Theorem of Abelian Groups the group (x)/ . We
may visualize x as the points in the plane with
both coordinates integers, as indicated by the
dots in Fig. below. The subgroup consists of those
points that lie on the

45° line through the origin, indicated in the figure.
The coset (1, 0) + consists of those dots on the 45°
line through the point (1, 0), also shown in the
figure.






Factor Group Computations

Continuing, we see that each coset consists of
those dots lying on one of the 45° lines in the
figure. We may choose the representatives

-+, (-3,0), (-2,0), (-1,0), (0,0), (1,0), (2,0), (3,0),--

of these cosets to compute in the factor group.
Since these representatives correspond precisely
to the points of on the x-axis, we see that the
factor group ( x) /is isomorphic to .



Simple Groups
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One feature of a factor
group is that it gives
crude information about
the structure of the whole

group.
Of course, sometimes
there may be no

nontrivial proper normal
subgroups.



Simple Groups

For example, Lagrange’s
Theorem shows that a
group of prime order can
have no nontrivial proper
subgroups of any sort.



Simple Groups

Definition
A group is simple if it is
nontrivial and has no

proper nontrivial normal
subgroups.



Simple Groups

Example
The cyclic group G=/5 of congruence classes
modulo 5 is simple.

If H is a subgroup of this group, its order must be
a divisor of the order of G which is 5.

Since 5 is prime, its only divisors are 1 and 5, so
either H is G, or H is the trivial group.



Group Theory
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Simple Groups

Example

The cyclic group G=/p
of congruence classes
modulo p is simple,

where p is a prime
number.



Simple Groups

Example

On the other hand, the
group G= /12 is not
simple.

The set H={0, 4, 8} of
congruence classes of O,
4, and 8 modulo 12 is a
subgroup of order 3, and
it is a normal subgroup
since any subgroup of
an abelian group is
normal.



Simple Groups

Example
The additive group of

integers is not simple;
the set of even integers 2
is a non-trivial proper
normal subgroup.



Simple Groups

Theorem

The alternating group A_
is simple for n5.



Group Theory
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Simple Groups

Theorem

Let : G G' be a group
homomorphism. If N is a
normal subgroup of G,
then [N] is a normal
subgroup of [G]. Also, if
N'is a normal subgroup
of [G], then }[N'] is a
normal subgroup of G.



Simple Groups

Proof

Let : G G' be a group
homomorphism. If N is a
normal subgroup of G,
then gng for all gG and
nN. It implies that (gng?)=

(n)*.

Therefore, [N] is a normal
subgroup of [G].



Simple Groups

Proof

Also, if N' is a normal subgroup of [G], then 1 N' for
every

N’.
By definition, there exist

Hence }[N'] is a normal subgroup of G.



Group Theory
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Simple Groups

The last Theorem should
be viewed as saying that
a homomorphism

: G G' preserves normal
subgroups between G
and [G].

It is important to note
that [N] may not be
normal in G', even
though N is normal in G.



Simple Groups

Example
For example, : ,S,, where

(0) =, and (1) =p, isa homomorphism, and , is
a normal subgroup of itself, but {,, u,} is not a
normal subgroup of S..

(13)(23)=(213)
(2 3)(13)=(123)



Group Theory
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Maximal Normal Subgroups

We characterize when
G/N is a simple group.
Definition

A maximal normal
subgroup of a group G is
a normal subgroup M
not equal to G such that
there is no proper

normal subgroup N of G
properly containing M.



Maximal Normal Subgroups

Theorem

M is a maximal normal

subgroup of G if and only
if G/ Missimple.



Maximal Normal Subgroups

Proof

Let M be a maximal normal subgroup of G.
Consider the canonical homomorphism

y: GG/M. Now y! of any nontrivial proper normal
subgroup of G/M is a proper normal subgroup
of G properly containing M. But M is maximal,
so this can not happen. Thus G/M is simple.



Maximal Normal Subgroups

Conversely, if N is a normal subgroup of G
properly containing M, then y[N] is normal in

G/M. If also NG, then y[N]G/M and y[N] {M}.

Thus, if G/M is simple so that no such y[N] can
exist, no such N can exist, and M is maximal.
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The Center Subgroup

Definition
The center Z(G) is
defined by

Z(G)={z G| zg=gz for all g
GJ.



The Center Subgroup

Exercise

Show that Z( G) is a
normal and an abelian
subgroup of G.



The Center Subgroup

Solution
For each g G and
zZ(G) we have

gzgl=7ggl=7e=z, we see
at once that Z(G) is a
normal subgroup of G. It
implies that gz=zg for g
G and zZ(G).



The Center Subgroup

If G is abelian, then
Z(G) =G;

in this case, the center is
not useful.



Group Theory

Example on Center
Subgroup



Example on Center Subgroup

Example

0



Example on Center Subgroup

Z(S,)={,}, so the center of S, is trivial.



Group Theory
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Example on Center Subgroup

The center of a group G
always contains the
identity element e.

It may be that Z(G)={e},
in which case we say that
the center of G is trivial.




Example on Center Subgroup
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Example on Center Subgroup

The center of S, x must
be {,} x, which is
isomorphic to .
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The Commutator Subgroup

Every nonabelian
group G has two
important normal
subgroups,

the center Z(G) of G
and the commutator
subgroup C of G.



The Commutator Subgroup

Turning to the
commutator subgroup,
recall that in forming a
factor group of G modulo
a normal subgroup N, we
are essentially putting
every element in G that is
in N equal to e, for N
forms our new identity in
the factor group.

This indicates another use
for factor groups.



The Commutator Subgroup

Suppose, for example, that we are studying the
structure of a nonabelian group G.

Since Fundamental Theorem of Abelian Groups
gives complete information about the structure
of all sufficiently small abelian groups, it might
be of interest to try to form an abelian group as
much like G as possible, an abelianized version of
G, by starting with G and then requiring that
ab=ba for all a and b in our new group structure.



The Commutator Subgroup

To require that ab=ba is to say that aba'b?!=e in
our new group.

An element aba'b?in a group is a commutator
of the group.

Thus we wish to attempt to form an abelianized
version of G by replacing every commutator of G
by e.

We should then attempt to form the factor group
of G modulo the smallest normal subgroup we
can find that contains all commutators of G.



The Commutator Subgroup

Theorem
Let G be a group.

The set of all
commutators aba'b™
for a,b G generates a
subgroup C of G.



The Commutator Subgroup

Proof

Let a, b G. Then,
(abatbt)(abalb?)?
=abablbab!al
=e C

since e = eeelel? s a
commutator.



The Commutator Subgroup

Definition
The set of all
commutators aba'b™
for a,b G generates a
subgroup C of G is
called the commutator
subgroup.
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Generating Sets

Let G be a group, and let
a G. We have described
the cyclic subgroup <a>
of G, which is the
smallest subgroup of G
that contains the
element a.

Suppose we want to find
as small a subgroup as
possible that contains
both a and b for another
element b in G.



Generating Sets

We see that any
subgroup containing a
and b must contain a"
and b™ for allm, n , and
consequently must
contain all finite

products of such powers
of a and b.



Generating Sets

For example, such an expression might be
a’b*a=b?a>.

Note that we cannot "simplify" this expression by
writing first all powers of a followed by the powers
of b, since G may not be abelian. However, products

of such expressions are again expressions of the
same type.

Furthermore, e = a° and the inverse of such an
expression is again of the same type.



Generating Sets

For example, the inverse of a?b*a=b2%a’ is
a~b?a3b“a=2.

This shows that all such products of integral powers
of a and b form a subgroup of G, which surely must

be the smallest subgroup containing both a and b.
We call a and b generators of this subgroup.

If this subgroup should be all of G, then we say that
{a, b} generates G.

We could have made similar arguments for three,
four, or any number of elements of G, as long as we
take only finite products of their integral powers.



Generating Sets

Example

The Klein 4-group V = {e,
a, b, c}is generated by
fa,b} since ab=c.

It is also generated by
{a,c}, {b,c }, and {a,b,c}.

If a group G is generated
by a subset S, then every
subset of G containing S
generates G.



Group Theory
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Generating Sets

Example

The group  is generated
by {1} and {5}.

It is also generated by
{2,3} since 2+3=5, so
that any subgroup
containing 2 and 3 must
contain 5 and must

therefore be .



Generating Sets

It is also generated by
{3,4},{2,3,4}, {1,3}, and
{3,5}.

But it is not generated
by {2, 4} since

<2>={0, 2, 4}
contains 2 and 4.



Generating Sets

We have given an
intuitive explanation of
the subgroup of a group
G generated by a subset
of G.

What follows is a
detailed exposition of
the same idea
approached in another
way, namely via
intersections of
subgroups.



Generating Sets

Definition
Let {S.|i I} be a collection of sets.
Here | may be any set of indices.

The intersection of the sets S is the set of all
elements that are in all the sets S;; that is,

={x| xS, foralli I}.
If 1is finite, I={1, 2,...,n}, we may denoteby



Group Theory
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Generating Sets

Theorem

The intersection of some
subgroups H. of a group
G fori lis again a
subgroup of G.



Generating Sets

Proof

et us show closure. Leta and

b , sothata H. foralli | and

o H. foralli I. Thenab H, foralli I, since H. is a
group. Thus ab .

Since H. is a subgroup for all i I, we havee H.
foralli I, and hencee .

Finally, fora , we have aH.for allil, soa*H. for

all i I, which implies that
al.



Generating Sets

Let G be a group and leta, Gfori I.

There is at least one subgroup of G containing all
the elements a. for i I, namely Giis itself.

The above theorem assures us that if we take the

intersection of all subgroups of G containing all a.
fori |, we will obtain a subgroup H of G.

This subgroup H is the smallest subgroup of G
containing all the a, for i l.



Group Theory
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Generating Sets

Definition
Let G be a group and
leta. G fori I.

The smallest subgroup
of G containing {a.| i I}
is the subgroup
generated by {a |i I}.

If this subgroup is all of
G, then{a|i I}

generates G and the a.
are generators of G.



Generating Sets

Definition
If there is a finite set

ta il

that generates G, then
G is finitely generated.



Generating Sets

Note that this definition is consistent with our
previous definition of a generator for a cyclic
group.

Note also that the statement a is a generator of G
may mean either that G=<a>orthatais a
member of a subset of G that generates G.

Our next theorem gives the structural insight

into the subgroup of G generated by {a. |i 1} that
we discussed for two generators in the beginning
of these modules.



Generating Sets

Theorem

If Gisagroupanda. G
fori |, then the subgroup
H of G generated by { a| i
1} has as elements
precisely those elements
of G that are finite
products of integral

powers of the a, where

powers of a fixed a, may
occur several times in the
product.



Generating Sets

Proof

Let K denote the set of all finite products of
integral powers of the a.. Then KH.

We need only observe that K is a subgroup and
then, since H is the smallest subgroup containing

a. for i 1, we will be done.

Observe that a product of elements in K is again
in K. Since (a,)°=e, we have e K.



Generating Sets

For every element k in
K, if we form from the
product giving k a new
product with the order
of the a, reversed and
the opposite sign on
all exponents, we have
k't which is thus in K.



Group Theory

Lectures

L) U0 Ll

The Commutator

Subgroup



The Commutator Subgroup

Theorem
Let G be a group.

Then, the commutator
subgroup Cof Gis a
normal subgroup of G.



The Commutator Subgroup

Proof

We must show that C is
normal in G.

The last theorem then
shows that C consists
precisely of all finite
products of commutators.

For x C, we must show
that g'xg Cforall g G, or
that if x is a product of
commutators, so is

gixg forallg G.



The Commutator Subgroup

By inserting e = gg'! between each product of
commutators occurring in x, we see that it is
sufficient to show for each commutator cdc!d?

that g*(cdc'd?)gisin C.

But g*(cdc'd?)g = (g'cdc?)(e)(d’g)

= (g'cdc")(gd'dg™)(d"'g)

= [(g'c)d(g*c)'d*][dg*dg], which is in C.
Thus C is normal in G.



Group Theory
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The Commutator Subgroup

Theorem

If N is a normal
subgroup of G, then
G/N is abelian if and
only if CN.



The Commutator Subgroup

Proof

If N is a normal subgroup
of G and G/N is abelian,
then

(aIN)(bIN)=(b*N)(a*N);
that is, abalbIN=N,

so aba'b®N, and
C N.



The Commutator Subgroup

Finally, if C N, then
(aN)(bN)=abN
=ab(b'alba)N

= (abbal)baN

= baN

= (bN)(aN).



Group Theory

The Commutator
Subgroup



The Commutator Subgroup

Example

For the group S,, we find that one commutator is |,
1 -1 = - =

11 11 21 2°

(12)(13)=(132)
We similarly find that

-1-1 = = =
212 1 21 11 1°

(13)(12)=(123)



The Commutator Subgroup

Thus the commutator
subgroup C of S,

contains A,. Since A,
Is a normal subgroup

of S, and

S./A, is abelian, above
theorem shows that

C=A,.
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Automorphisms

Recall that an
automorphism of a group
G is an isomorphism of G
onto G.

The set of all
automorphisms of G is
denoted by Aut(G).



Automorphisms

We have seen that every
g G determines an
automorphism i, of G

(called an inner
automorphism)given by
i,(x)=gxg™. The set of all
inner automorphisms of
G is denoted by Inn(G).



Automorphisms

Theorem

The set Aut(G) of all
automorphisms of a
group G is a group under
composition of
mappings, and

Inn(G) Aut(G). Moreover,
G/Z(G)Inn(G).



Automorphisms

Proof
early, Aut(G) is nonempty. Let Aut(G). Then for

C

all x, y G, (xy)=(((x) (y)) = ((x))((y)).
Hence, Aut(G). Again,
(x
(y

)))
)=X

Hence x)y)= (xy). Therefore,
Aut(G). This proves that Aut( G) is
a subgroup of the symmetric group
Scand, hence, is itself a group.



Group Theory

Automorphisms



Automorphisms

Theorem

The set Aut(G) of all
automorphisms of a
group G is a group under
composition of
mappings, and

Inn(G) Aut(G). Moreover,
G/Z(G)Inn(G).



Automorphisms

Consider the mapping
(a)=i_=axa* for all x G.
Forany a,b G,i_(x)=
abx(ab)*= a(bxb?)al =1ii,(x)
for all x G.

Hence, isa
homomorphism, and,

therefore, Inn(G)=Im is a
subgroup of Aut(G).



Automorphisms

Further, i is the identity automorphism if and only if
axa'= x for all x G. Hence, Ker = Z(G), and by the
fundamental theorem of homomorphisms
G/Z(G)Inn(G).

Finally, for any Aut(G),

.1 )(x) = (a(x)a)

= (a)x (a) ™

=i, (x); hence ;=i Inn(G).

Therefore, Inn(G) Aut(G).



Automorphisms

It follows from above theorem that if the center of a
group G is trivial, then G Inn(G). A group G is said
to be complete if Z(G) = {e} and every
automorphism of G is an inner automorphism; that
is, G Inn(G)=Aut(G).

When considering the possible automorphisms of
a group G, it is useful to remember that, for any x
G, x and (x) must be of the same order.



Group Theory
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Examples on Automorphisms

Example

The symmetric group S,
nas a trivial center {e}.
Hence, Inn(S,) S,. We
have seen that

S,= {e,a,a%,b,ab,a%b} with
the defining relations
a%= e= b?, ba = a?b. The
elements a and a2 are of

order 3, and b, ab, and
azb are all of order 2.




Examples on Automorphisms

Hence, for any Aut(S,),
(a)=a or a2, (b)= b, ab, or
azb. Moreover, when (a)
and (b) are fixed, (x) is
known for every x S..
Hence, is completely
determined.



Examples on Automorphisms

Thus, there cannot be
more than six
automorphisms of S..

Hence

Aut (S,)=Inn(S,) .
Therefore, S, is a
complete group.



Group Theory
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Examples on Automorphisms

Example

Let G be a finite abelian
group of order n, and let
m be a positive integer
relative prime to n. Then
the mapping : x x™is an
automorphism of G.



Examples on Automorphisms

Solution

(m,n) = 1 there exist
integers u and v such
thatmu +nv=1x G,
XMuHV=ymuynV=yum gince
o(G)=n. Now for all x G,
x=(x")™ implies that
X"=e X = e, showing that
is 1-1.



Examples on Automorphisms

That is a homomorphism
follows from the fact that
G is abelian. Hence, is
an automorphism of G.



Group Theory
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Examples on Automorphisms

Example

A finite group G having
more than two
elements and with the
condition that x?e for
some X G must have a
nontrivial automorphism.



Examples on Automorphisms

When G is abelian,

then : x x?'is an
automorphism, and,
clearly, is not an identity
automorphism. When G
Is not abelian, there
exists a nontrivial inner
automorphism.



Examples on Automorphisms

Example

Let G = <a|a"™=e> be a
finite cyclic group of
order n. Then the
mapping :a a™is an
automorphism of G iff
(m,n) = 1.



Examples on Automorphisms

Solution

If (m,n) = 1, then it has
been shown in Example
of last module that is an
automorphism. So let us
assume now that is an
automorphism. Then

the order of (a) = a™ is
the same as that of a,
which is n.



Examples on Automorphisms

Further, if (m,n)=d, then
(am)/d=(gn)m/d = e, Thus,
the order of a™ divides
n/d; that is, n|n/d.
Hence, d = 1, and the
solution is complete.
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Group Action on a Set

We define a binary
operation * on aset S to
be a function mapping SxS
into S. The function *
gives us a rule for
"multiplying"” an element

s, in S and an element s,
in S to yield an element s,
*s,inS.



Group Action on a Set

More generally, for any
sets A, B, and C, we can
view amap *: Ax BC as
defining a
"multiplication," where
any element a of A times
any element b of B has as
value some element c of
C. Of course, we write a*
b =c, or simply ab=c.



Group Action on a Set

In these modules, we wiill
be concerned with the
case where Xis a set, G is
a group, and we have

amap *: G x X X. We shall
write *(g, x) as g * x or gx.



Group Action on a Set

Definition
Let Xbe asetand G a
group. An action of G on

Xisamap *: Gx X Xsuch
that

1. ex=xfor all x X,
2. (g,8,)(x) =g,(g,x) for all

x Xand all g,, g, G. Under
these conditions,

X is a G-set.



Group Action on a Set

Example

Let X be any set, and let
H be a subgroup of the
group S, of all
permutations of X.

Then X is an H -set,
where the action of H
on X is its action as an

element of S, so that x =
(x) for all x X.



Group Theory

Group Action on a Set



Group Action on a Set

Condition 2 is a
consequence of the
definition of permutation
multiplication as function
composition, and
Condition 1 is immediate
from the definition of the
identity permutation as
the identity function. Note
that, in particular,

{1,2,3,,n}isanS_ set.



Group Action on a Set

Our next theorem will
show that for every G-set
X and each g G, the
map : XX defined by = gx
Is a permutation of X, and
that there is a

homomorphism : GS,
such that the action of G
on X is essentially the
above Example action of
the image subgroup H =
[G] of S, on X.



Group Action on a Set

So actions of subgroups

of S, on X describe all
possible group actions on
X. When studying the set
X, actions using
subgroups of S, suffice.
However, sometimes a
set X is used to study G
via a group action of G on
X. Thus we need the
more general concept
given by above Definition.



Group Action on a Set

Theorem

Let X be a G-set. For each
g G, the function : XX
defined by (x) = gx for xX
Is a permutation of X.

Also,themap: G S,
defined by (g) = isa

homomorphism with the
property that (g)(x) = gx.



Group Action on a Set

Proof

To show that is a permutation of X, we must show
that it is a one-to-one map of X onto itself. Suppose
that (x,) = (x,) for x,, x, X. Then gx_ = gx,
Consequently, g(gx,) =g?(gx,). Using Condition 2
in Definition, we see that (g g)x,= (g*g)x,, soex, =
ex,. Condition 1 of the definition then yields x, = x,,
so is one to one. The two conditions of the
definition show that for x X, we have (gx) = g(g?)x

= (gg)x =ex=x, so maps X onto X. Thus isindeed a
permutation.



Group Theory
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Group Action on a Set

Theorem

Let X be a G-set. For each
g G, the function : XX
defined by (x) = gx for xX
Is a permutation of X.

Also,themap: G S,
defined by (g) = isa

homomorphism with the
property that (g)(x) = gx.



Group Action on a Set

To show that : GS,_ defined by (g) = is a
homomorphism, we must show that (g,g,) = (g,) (g,)
for all g,, g, G. We show the equality of these two

permutations in S, by showing they both carry an x X
into the same element. Using the two conditions in
above Definition and the rule for function
composition, we obtain

(g,8,)(x) =(x) =(g,8,)x =g,(g,x) =g, (x) =((x))=()(x)

( (g,) (g,) )(x).



Group Action on a Set

Thus is a
homomorphism.

The stated property of
follows at once since by
our definitions, we have

(g)(x) = (x) =gx.



Group Theory

Group Action on a Set
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Group Action on a Set

Definition
Let Xbe asetand G a
group. An action of G on

Xisamap *: Gx X Xsuch
that

1. ex =xfor all x X,

2. g.(g.x)=(g,8,)(x) for all

x Xand all g,, g, G. Under
these conditions,

X is a G-set.



Group Action on a Set

Example

Let G be the additive
group , and X be the set
of complex numbers z
such that |z| =1. Then X
is a G-set under the
action *c =, where and c
X. Here the action of is
the rotation through an
angle = radians,
anticlockwise.



Group Action on a Set

Example

Let G=S., and

X={X,, X,, X3, X4, X} be a
set of beads forming a

circularring. Then X is a
G-set under the action

G*x=, gS..



Group Action on a Set

Example

Let G=D, and X be the

vertices 1, 2, 3, 4 of a
square. X is a G-set under
the action

g *i=gli),g D,
i {1.2)3/4h



Group Action on a Set

Example
Let G be a group. Define
a*x =ax, a G, x G.

Then, clearly, the set G is a
G-set.

This action of the group G
on itself is called
translation.



Group Theory
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Group Action on a Set

Example
Let G be a group.
Define

a*x =axal, aG, xG.
We show that G is a G-set.
Let a, b G. Then
(ab)*x=(ab)x(ab)!

= a(bxb?)a!=a(b*x)a™
=a*(b*x).

Also, e *x=x.



Group Action on a Set

This proves G is a G-set.
This action of the group
G on itself is called
conjugation.



Group Action on a Set

Example

Let G be a group and H<G.
Then the set G/H of left
cosets can be made into a
G-set defining

a*xH=axH, aG, xHG/H.



Group Action on a Set

Example
Let G be a group and HG.
Then the set G/H of left
cosets is a G-set if we
define a*xH=axa'H, aG,
xHG/H.



Group Action on a Set

To see this, let a, bG and
XHG/H. Then

(ab)*xH=abxb!atH

=a* bx

b 'H =a*(b*xH).

Also, e*xH=xH.
Hence, G/H is a G-set.



Group Theory
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Group Action on a Set

Theorem
Let G be a group and let X
be a set.

(i) If X is a G-set, then the
action of G on X induces a
homomorphism

:GS,.
(i) Any
homomorphism :GS,

induces an action of G
onto X.



Group Action on a Set

Proof

(i) We define :GS, by ((a))(x)=ax, aG, xX. Clearly (a)s,,

aG. Let a, bG. Then

((ab))(x)=(ab)x=a(bx)=a(((b))(x)) = ((a))(((b))(x))=((a)

(b))x for all xX.

Hence, (ab)=(a) (b).

(ii) Define a*x=((a))(x); that is, ax=((a))(x
((a (

(ab)x = ((ab))(x)=((a)(b))(x)= (a)((b)(x))=
Also, ex=((e))(x)=x

Hence, X is a G- set

). Then
a)(bx)=a(bx).
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Stabilizer

Definition

Let G be a group acting on
aset X, and let x X. Then
the set

G=1{g8G | gx=x},

which can be shown to be
a subgroup, is called the
stabilizer (or isotropy)
group of x in G.



Stabilizer

Example

Let G be a group. Define a*x =axal, aG, xG.

This action of the group G on itself is called
conjugation.

Then, for x G, G, = {aG|axa=x}=N(x), the normalizer
of x in G.

Thus, in this case the stabilizer of any element x in G
is the normalizer of x in G.



Stabilizer

Example

Let G be a group and H<G. We define action of G on
the set G/H of left cosets by

a*xH=axH, aG, xHG/H.

Here the stabilizer of a left coset xH is the subgroup
{8G | gxH=xH} = {gG | x'gxH}

= {gG | gxHx} = xHx*



Group Theory

Stabilizer



Stabilizer

Theorem
Let X be a G-set.

Then G, is a subgroup
of G for each x X.



Stabilizer

Proof

Let x X and let g, g,G, . Then g, x=x and g, x=x.
Consequently, (g,g,)x=g,(g,x)=g,x=X, so g.8.G,, and
G, is closed under the induced operation of G.

Of course ex=x, so eG..

If G, then gx = x, so x=ex=(g'g)x= g'*(gx)=gx, and
consequently g'G.,.

Thus G, is a subgroup of G.



Group Theory
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Orbits

Theorem

Let X be a G-set. For x,,
X, X, let x,x, if and only if
there exists gG such
that gx,=x,. Then is an
equivalence relation on
X.



Orbits

Proof
For each xX, we have ex=x, so xx and is reflexive.

Suppose X, X,, SO gx,=x, for some gG. Then
gix,=g(gx,) =(g1g)x,=ex,=X,, S0 X, X,, and is
symmetric.

Finally, if x,x, and x,x,, then g,x,=x, and g_x,=x, for

some g,, g,G. Then (g,g,)x,= g,(8,X,)= g,X,=X,, SO XX,
and is transitive.



Orbits

Definition

Let G be a group acting
on aset X, and let x X.
Then the set

Gx={ax | a G}

is called the orbit

of xin G.



Orbits

Example

Let G be a group. Define
a*x =ax, a G, x G.

The orbit of xG is
Gx={ax|a G}=G.



Orbits

Example
Let G be a group.
Define

a*x =axal, aG, xG.

The orbit of xG is

Gx ={axa|aG}, called
the conjugate class of x
and denoted by C(x).
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Conjugacy and G-Sets

Theorem
Let X be a G-set and let xX. Then |Gx|=(G:G,).

If |G| is finite, then |Gx| is a divisor of |G].

If X is a finite set, |X]|=,

where C is a subset of X containing exactly one
element from each orbit.



Conjugacy and G-Sets

Proof

We define a one-to-one map from Gx onto the
collection of left cosets of G, in G.

Let x,Gx. Then there exists g,G such that g, x=x,. We
define (x,) to be the left coset g,G, of G..

We must show that this map is well defined,
independent of the choice of g,G such that g, x=x,.
Suppose also that g,'x=x,. Then, g,x=g.'x, so

g, (g,x)= g, (g,’x), from which we deduce
x=(g,'g.")x. Therefore g, 'g.'G,, so g,'g,G,, and
g.G =g.'G . Thus the map is well defined.



Group Theory
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Conjugacy and G-Sets

Theorem
Let X be a G-set and let xX. Then |Gx|=(G:G,).

If |G| is finite, then |Gx| is a divisor of |G].

If X is a finite set, |X]|=,

where C is a subset of X containing exactly one
element from each orbit.



Conjugacy and G-Sets

To show the map is one to one, suppose x,, X,GX,
and (x,)=(x,). Then there exist g,, g,G such that
X,=8.X, X,=8,X, and g,g,G,. Then g,=g,g for some

g G,, so x,=g x=g,(gx)=g,x=x,. Thus is one to one.
Finally, we show that each left coset of G, in G is of

the form (x,) for some x,Gx. Let g,G, be a left coset.
Then if g, x=x,, we have g.G = (x,).

Thus maps Gx one to one onto the collection of left
cosets so |Gx|=(G:G,).



Conjugacy and G-Sets

If |G| is finite, then the
equation
|G|=|G,|(G:G,) shows
that | Gx|=(G:Gx) is a
divisor of |G].

Since X is the disjoint
union of orbits Gx, it
follows that if X is finite,
then | X|=.
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Isomorphism Theorems

There are several
theorems concerning
Isomorphic factor groups
that are known as the
iIsomorphism theorems of
group theory.




Isomorphism Theorems

Theorem

et : GG' bea
homomorphism with
kernel K, and let

Y. G G/K be the canonical
homomorphism. There is a
unique isomorphism

: G/K[G] such that (x) =
u(y,(x)) for each xG.



Isomorphism Theorems

The first isomorphism
theorem is diagrammed
in Figure below.

G g) ~ [G]

WA




Isomorphism Theorems

Lemma

Let N be a normal
subgroup of a group G and
let y: G G/N be the
canonical homomorphism.
Then the map from the
set of normal subgroups of
G containing N to the set
of normal subgroups of
G/N given by (L)=y[L] is
one to one and onto.



Isomorphism Theorems

Proof

If L is a normal subgroup of G containing N, then
(L)=y[L] is a normal subgroup of G/N.

Because NL, for each xL the entire coset xN in G
is contained in L. Thus, y![(L)]=L. Consequently, if
L and M are normal subgroups of G, both
containing N, and if (L)= (M) =H, then L=y
1IH]=M. Therefore is one to one.



Isomorphism Theorems

If H is a normal subgroup
of G/N, then y[H] is a
normal subgroup of G.
Because NH and

y{N}]=N, we see that Ny
[H]. Then

(y[HD=yly*[H]]=H.

This shows that is onto
the set of normal

subgroups of G/N.
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Isomorphism Theorems

If Hand N are subgroups
of a group G, then we let

HN={hn| h H, n N}.

We define the join HV N
of Hand N as the
intersection of all
subgroups of G that
contain HN; thus HV N
Is the smallest subgroup
of G containing HN.



Isomorphism Theorems

Of course HV N is also
the smallest subgroup of
G containing both H and
N, since any such
subgroup must contain
HN. In general, HN need
not be a subgroup of G.



Isomorphism Theorems

Lemma

If N is a normal subgroup
of G, and if H is any
subgroup of G, then

H V N=HN=NH.

Furthermore, if H is also
normal in G, then HN is
normal in G.

11



Isomorphism Theorems

Proof
We show that HN is a subgroup of G, from which

H V N=HN follows at once. Let h,, h,H and n,, n,N.
Since N is a normal subgroup, we have n h,=h,n, for

some n,N. Then (h,n,)(h,n,)=h (n,h)n=h (h,n)n =
(h,h,)(n,n,)HN, so HN is closed under the induced
operation in G. Clearly e=ee is in HN. For hH and nN,
we have (hn)*=nth?=h'n, for some n,N, since Nis a
normal subgroup. Thus (hn)*HN, so

HN G.



Isomorphism Theorems

A similar argument shows
that NH is a subgroup, so
NH=H V N=HN.

Now suppose that H is
also normal in G, and let
hH,nN, andg G. Then

ghng'=(ghg™)(gng*)HN,
so HN is indeed normal in
G.
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Second Isomorphism Theorem

Theorem

Let H be a subgroup of G
and let N be a normal
subgroup of G. Then
(HN)/NH/(H N).



Second Isomorphism Theorem

Proof

Let y: GG/N be the canonical homomorphism and let
HG. Then y[H] is a subgroup of G/N. Now the action of
y on just the elements of H (called y restricted to H)
provides us with a homomorphism mapping H onto
y[H], and the kernel of this restriction is clearly the set
of elements of N that are also in H,

that is, the intersection HN. By first isomorphism
theorem, there is an isomorphism

: H/(HN)y[H].



Second Isomorphism Theorem

On the other hand, y restricted to HN also provides a
homomorphism mapping HN onto y[H], because y(n)
is the identity N of G/N for all nN. The kernel of y
restricted to HN is N. The first isomorphism theorem
then provides us with an isomorphism

. (HN)/Ny[H].
Because (HN)/N and H/(HN) are both isomorphic to
y[H], they are isomorphic to each other. Indeed,

: (HN)/NH/(HN) where =p,*u, will be an
isomorphism. More explicitly,

((hN)N)=p, (K, ((hn)N))= p(hN)=h(HN).



Group Theory
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Isomorphism Theorems

Example

Let G be a group such that
for some fixed integer

n >1, (ab)" =a"b" for all a,
bG. Let G ={aG|a"=e} and
Gr=(a" |aG}.

Then G G, G"G, and
G/G.G".



Isomorphism Theorems

Solution

Let a, bG_ and xG. Then (ab?)"=a"(b")!=e, so ab™!
G.. Also, (xax?)"=(xax ?)...(xax )=xa"x* =e implies
xax 'G_. Hence, G, G.

Let a, b, xG. Then a"(b")'=(ab?*)"G.

Also, xa™x ! =(xax 1)...(xax 1)= (xax?)"G". Therefore, G"G.



Group Theory
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Isomorphism Theorems

Example

Let G be a group such that
for some fixed integer

n >1, (ab)" =a"b" for all a,
bG. Let G ={aG|a"=e} and
Gr={a" |aG}.

Then G G, G"G, and
G/G.G".



Isomorphism Theorems

Define a mapping f: GG" by
f(a) = an.

Then, for all a, b G,
f(ab)=(ab)"=arb"=f(a)f(b).
Thus, f is a homomorphism.
Now Ker f={a|a" = e}=G_.
Therefore, by the first

iIsomorphism theorem
G/G,G".



Isomorphism Theorems

Example

Let G=x x, H=xx{0}, and
N={0}xx. Then clearly
HN=xxand HN={0}xx{O0}.
We have (HN)/N and we
also have H/(HN).
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Third Isomorphism Theorem

If Hand K are two normal
subgroups of G and KH,
then H/K is a normal
subgroup of G/K.

The third isomorphism
theorem concerns these

groups.



Third Isomorphism Theorem

Theorem

Let H and K be normal
subgroups of a group G
with KH.

Then G/H(G/K)/(H/K).



Third Isomorphism Theorem

Proof

Let :G(G/K)/(H/K) be given by (a)= (aK)(H/K) for a
G.

Clearly is onto (G/ K)/(H/ K), and for a, bG,
(ab)=[(ab)K](H/K)

=[(aK)(bK)](H/K)

= [(aK)(H / K)][(bK)(H / K)]=(a) (b),

so is a homomorphism.



Third Isomorphism Theorem

The kernel consists of
those x G such that
(x)=H/K.

These x are just the
elements of H.

Then first isomorphism
theorem shows that
G/H(G/K)/(H/K).



Group Theory

Third Isomorphism
Theorem



Third Isomorphism Theorem

A nice way of viewing
third isomorphism
theorem is to regard the

canonical map y,:GG/H as
being factored via a
normal subgroup K of G,
KHG, to give

You=Yux Y UP to a natural
isomorphism, as
illustrated in Figure.



Third Isomorphism Theorem

G Y ~G/H
Yk /\latural Isomorphism
G/K ~(G/K)/(H/K)

yH/ K



Third Isomorphism Theorem

Another way of visualizing
this theorem is to use the
subgroup diagram in
Figure, where each group
is a normal subgroup of G
and is contained in the
one above it. G

H

K



Third Isomorphism Theorem

The larger the normal subgroup, the smaller the factor
group.

Thus we can think of G collapsed by H, that is, G/H, as
being smaller than G collapsed by K.

Third isomorphism theorem states that we can collapse
G all the way down to G/H in two steps.

First, collapse to G/K, and then, using H/K, collapse this
to (G/ K)/(H/K). The overall result is the same (up to
isomorphism) as collapsing G by H.



Group Theory

Third Isomorphism
Theorem



Third Isomorphism Theorem

Theorem

Let H and K be normal
subgroups of a group G
with KH.

Then G/H(G/K)/(H/K).



Third Isomorphism Theorem

Example
Consider
K=6<H=2<G=.

Then G/H=/2, Now
G/K=/6 has elements 6,
1+6, 2+6, 3+6, 4+6, and
5+6.

Of these six cosets, 6, 2+6,
and 4+6 lie in 2/6.



Third Isomorphism Theorem

Thus (/6)/(2/6) has two
elements and is

isomorphic to , also.
Alternatively, we see that

/6,, and 2/6 corresponds
under this isomorphism
to the cyclic subgroup <2>

of ..
Thus (/6)/(2/6)
J/<2>,/2.
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Sylow Theorems

The fundamental theorem
for finitely generated
abelian groups gives us
complete information
about all finite abelian
groups. The study of finite
nonabelian groups is
much more complicated.
The Sylow theorems give
us some important
information about them.



Sylow Theorems

We know the order of a subgroup of a finite group
G must divide |G]|. If G is abelian, then there exist
subgroups of every order dividing |G| .

We showed that A,, which has order 12, has no
subgroup of order 6.

Thus a nonabelian group G may have no subgroup
of some order d dividing |G|; the "converse of the
theorem of Lagrange" does not hold.



Sylow Theorems

The Sylow theorems give a weak converse. Namely,
they show that if d is a power of a prime and d divides
|G|, then G does contain a subgroup of order d.

Note that 6 is not a power of a prime. The Sylow
theorems also give some information concerning the
number of such subgroups and their relationship to
each other.

We will see that these theorems are very useful in
studying finite nonabelian groups.



Sylow Theorems

Proofs of the Sylow
theorems give us another
application of action of a
group on a set. This time,
the set itself is formed
from the group; in some
instances the set is the
group itself, sometimes it
is a collection of cosets of
a subgroup, and
sometimes it is a
collection of subgroups.



Group Theory
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Sylow Theorems

Let X be a finite G-set.
Recall that for xX, the
orbit of x in X under G is
Gx={gx| gG}. Suppose that
there are r orbits in X

under G, and let {x,, x,,--,

X } contain one element
from each orbit in X. Now
every element of X is in
precisely one orbit, so

|X|=



Sylow Theorems

There may be one-element orbits in X.
Let X_={xX|gx=x for all gG}.

Thus X is precisely the union of the one-element
orbits in X.

Let us suppose there are s one-element orbits,

where Osr. Then |X_|=s, and reordering the x. if
necessary, we may rewrite above equation as

[ X]=1Xs1+ .

Most of the results of these modules will flow from
above equation.



Sylow Theorems

Theorem

Let G be a group of order

p" and let X be a finite G-
set. Then

|X] [X;| (mod p).



Sylow Theorems

Proof

Recall |X|=]|X,|+.

In the notation of above Equation, we know that
|Gx;| divides |G]|.

Consequently p divides |Gx.| for s+ 1<i<r. Above
equation then shows that |X|-|X.| is divisible by p,
so | X]||X.| (modp).



Sylow Theorems

Definition

Let p be a prime. A group
G is a p-group if every
element in G has order a
power of the prime p.

A subgroup of a group G is
a p-subgroup of G if the
subgroup is itself a p-
group.



Group Theory
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Cauchy’s Theorem

Our goal in these modules
Is to show that a finite
group G has a subgroup of
every prime-power order
dividing |G].

As a first step, we prove
Cauchy's theorem, which
says that if p divides |G|,
then G has a subgroup of
order p.



Cauchy’s Theorem

Cauchy’s Theorem

Let p be a prime. Let G be
a finite group and let p
divide |G].

Then G has an element of
order p and, consequently,
a subgroup of order p.



Cauchy’s Theorem

Proof

We form the set X of all p-

tuples (g,, 8,, =+, g,) of
elements of G having the
property that the product
of the coordinates in G is
e. That is,

X={(g,, g,, =+, &,) |& G and
glgz ...gp:e}.



Cauchy’s Theorem

We claim p divides |X]. In
forming a p-tuple in X, we
may let g,, g,,***, o be any
elements of G, and g is

then uniquely determined
as

(8% 8o, - NBLPE

Thus |[X| =|G|??! and
since p divides |G|, we see
that p divides |X]|. Let be
the cycle (1, 2, 3,...,p) in S...



Cauchy’s Theorem

We let act on X by (g,, g,,..., 8,)

=(8(1)8(2) +++» Bp)) =(85 1 Barever 8y 81 )

Note that (g,, g,,..., 8., 8, )X, for g,(g, g,...8,)=€

implies that g,= (g, g,...8,)", so (g, g,...8,)g,=¢ also.
Thus acts on X, and we consider the subgroup < >

of S to act on X by iteration in the natural way.



Cauchy’s Theorem

Now |<>|=p, so we may apply above Theorem, and we
know that |X]| |X_..| (mod p). Since p divides |X]|, it must
be that p divides |X_. | also. Let us examine X_.-

Now (g, , 8,...., 8,) is left fixed by , and hence by <>, if and
only if g,=g,=...= g . We know at least one element in X_,,
namely (e, e, ..., e). Since p divides |X_. |, there must be
at least p elements in X_,. Hence there exists some

element aG, ae, such that (a, a, ... ,a)X_ and hence a? =
e, so a has order p. Of course, <a> is a subgroup of G of
order p.



Group Theory

Sylow Theorems
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Sylow Theorems

Corollary

Let G be a finite group.
Then G is a p-group if
and only if |G| is a
power of p.



Sylow Theorems

Let G be a group, and let
be the collection of all
subgroups of G.

We make into a G-set by
letting G act on by
conjugation.

Thatis, if H soHG and g
G, then g actingon H
yields the conjugate
subgroup gHg™.



Sylow Theorems

Now G, ={gG|gHg'=H} is
easily seen to be a
subgroup of G, and H is a
normal subgroup of G,

Since G,, consists of all
elements of G that leave
H invariant under
conjugation, G, is the
largest subgroup of G
having H as a normal
subgroup.



Sylow Theorems

Definition
The subgroup
G, ={g G | gHg'=H]

is the normalizer of H in
G and is denoted by
N[H].



Sylow Theorems

Lemma

Let H be a p-subgroup of
a finite group G. Then

(N[H]:H)(G:H) (mod p).



Sylow Theorems

Proof

Let be the set of left cosets of Hin G, and let H
act on by left translation, so that h(xH) = (hx)H.
Then becomes an H-set. Note that | |=(G:H).

Let us determine ,, that is, those left cosets that
are fixed under action by all elements of H.

Now xH= h(xH) if and only if H=x"*hxH, or if and
only if x*hx H.




Sylow Theorems

Thus xH=h(xH) for all hH if and only if xthx

=x"th(xt)H for all hH, or if and only if xIN[H], or if
and only if xN[H]. Thus the left cosets in ,are those
contained in N[H]. The number of such cosets is

(N[H]:H), so |, |= (N[H]:H).

Since H is a p-group, it has order a power of p. Then
.| (mod p), thatis,

(G:H) (N[H]:H) (mod p).

1 -I-.
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First Sylow Theorem

Theorem

Let G be a finite group and
let |G|= p"m where n1l
and where p does not
divide m. Then

1. G contains a subgroup
of order p' for each i
where 1in,

2. Every subgroup H of G
of order p' is a normal
subgroup of a subgroup of
order p*for 1i n.



First Sylow Theorem

Proof

We know G contains a
subgroup of order p by
Cauchy's theorem.

We use an induction
argument and show that
the existence of a
subgroup of order p' for
i<n implies the existence
of a subgroup of order p'.



First Sylow Theorem

Let H be a subgroup of order p'. Since i < n, we see p
divides (G:H). We then know p divides (N[H]:H).

Since H is a normal subgroup of N[H], we can form
N[H]/H, and we see that p divides |N[H]/H|.

By Cauchy's theorem, the factor group N[H]/H has a
subgroup K which is of order p.

If y:N[HIN[H]/H is the canonical homomorphism,
then yK]={xN[H]|y(x)K} is a subgroup of N[H] and
hence of G. This subgroup contains H and is of order
pi+1.



First Sylow Theorem

2. We repeat the
construction in part 1 and
note that H < y[K]N[H]
where |y1[K]|= p™.

Since H is normal in N[H],
it is of course normal in
the possibly smaller group

yUKI.



First Sylow Theorem

Definition

A Sylow p-subgroup P of a
group G is a maximal
p-subgroup of G,

that is,

a p-subgroup contained in
no larger p-subgroup.



Group Theory
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Second Sylow Theorem

Let G be a finite group,
where |G|=p"m as in first
Sylow theorem.

The theorem shows that
the Sylow p-subgroups of
G are precisely those
subgroups of order p".

If P is a Sylow p-
subgroup, every
conjugate gPg! of P is
also a Sylow p-subgroup.



Second Sylow Theorem

The second Sylow
theorem states that
every Sylow p-subgroup
can be obtained from P
in this fashion; that is,
any two Sylow p-
subgroups are conjugate.



Second Sylow Theorem

Theorem

Let P, and P, be Sylow p-
subgroups of a finite
group G.

Then P, and P, are
conjugate subgroups of G.



Second Sylow Theorem

Proof

Here we will let one of the subgroups act on left cosets
of the other. Let be the collection of left cosets of P,
and let P, act on by z(xP,)=(zx)P, for zP,. Then is a P,-
set. We have | (mod p), and | |= (G: P,) is not divisible
by p, so | |0. Let xP,

Then zxP,=xP, for all zP,, so x*zxP,=P, for all zP,. Thus x
zxP, for all zP,, so x*P_xP,.

Since |P,|=|P,|, we must have P,.=x'P_x, so P, and P,
are indeed conjugate subgroups.
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Third Sylow Theorem

The final Sylow theorem
gives information on the
number of Sylow p-
subgroups.

Theorem

If G is a finite group and p
divides |G|, then the
number of Sylow p-
subgroups is congruent to
1 modulo p and divides |
G|.



Third Sylow Theorem

Proof

Let P be one Sylow p-subgroup of G. Let be the set
of all Sylow p-subgroups and let P act on by
conjugation, so that xP carries T into xTx™.

We have | | | |(mod p). Let us find .
If T, then xTx =T for all x P. Thus PNI[T].
Of course TN[T] also.

Since P and T are both Sylow p-subgroups of G, they
are also Sylow p-subgroups of N[T].

But then they are conjugate in N[T] by second Sylow
theorem.



Third Sylow Theorem

Since T is a normal subgroup of N[T], it is its only
conjugate in N[T]. Thus T=P.

Then ={P}. Since ||| [=1 (mod p), we see the
number of Sylow p-subgroups is congruent to 1
modulo p.

Now let G act on by conjugation. Since all Sylow p-
subgroups are conjugate, there is only one orbit in
under G.

If P then | |=]|orbit of P|=(G:G,). G, is, in fact, the
normalizer of P. But (G:G,) is a divisor of |G|, so the
number of Sylow p-subgroups divides |G|.
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Sylow Theorems

Example

The Sylow 2-subgroups of
S, have order 2.

The subgroups of order 2
in S, are

U

Note that there are three
subgroups and that

3 1 (mod 2).



Sylow Theorems

Also, 3 divides 6, the order
of S..

We can readily check that
={} and ={}

where (x)=x*, illustrating
that they are all conjugate.
For instance, ()="1==

(1,3,2)(2,3)(1,2,3)=(1,2)=".



Sylow Theorems

Example

Let us use the Sylow theorems to show that no group of
order 15 is simple. Let G have order 15.

We claim that G has a normal subgroup of order 5.

By first Sylow theorem G has at least one subgroup of
order 5, and by third Sylow theorem the number of
such subgroups is congruent to 1 modulo 5 and divides
15. Since 1, 6, and 11 are the only positive numbers less
than 15 that are congruent to 1 modulo 5, and since
among these only the number 1 divides 15, we see that
G has exactly one subgroup P of order 5.



Sylow Theorems

But for each gG, the inner
automorphism i, of G with
i,(x)=gxg* maps P onto a
subgroup gPg?, again of
order 5.

Hence we must have

gPg'=P for all g G, so P is
a normal subgroup of G.

Therefore, G is not simple.
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Application of Sylow Theory

Let X be a finite G-set
where G is a finite group.
Let X ={xX|gx=x for all
gG}. Then

|X|=]|X.|+, where x. is an
element in the ith orbit in
X.



Application of Sylow Theory

Consider now the special case of above equation,
where X=G and the action of G on G is by
conjugation, so g G carries X X = G into gxg*. Then
X.=1x G| gxg'=xfor all g G}

= {x G| xg=gx for all g G}=Z(G), the center of G.

If we let c=|Z(G)| and n=|Gx;| in above equation,
then we obtain |G|=c+n__+...+n_, where n. is the
number of elements in the ith orbit of G under
conjugation by itself.

Note that n.divides |G| for c+1i r since we know |
Gx. |=(G: ), which is a divisor of |G]|.



Application of Sylow Theory

Definition
The equation |G|=c+n_, +
...+n_, where

c=|Z(G)| and n. is the

number of elements in
the ith orbit of G under
conjugation by itself, is
the class equation of G.

Each orbit in G under
conjugation by Gis a
conjugate class in G.



Application of Sylow Theory

()="=(1,2,3)(2,3)(1,3,2)(1,3)=
(== (==
Therefore, the conjugate classes of S, are

S O A

The class equation of S, is 6 = 1+2+3.



Application of Sylow Theory

Theorem

The center of a finite
nontrivial p-group G is
nontrivial.



Application of Sylow Theory

Proof

We have |G|=c+n_+...+n_, where n. is the number of
elements in the ith orbit of G under conjugation by
itself.

For G, each n. divides |G| for c+1ir, so p divides each
n, and p divides |G|. Therefore p divides c. Now

eZ(G), so c1. Therefore cp, and there exists some
aZ(G) where ae.
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Application of Sylow Theory

Lemma

Let G be a group
containing normal
subgroups H and K such
that HK = {e} and

HVK=G.ThenGis
isomorphic to H X K.



Application of Sylow Theory

Proof

We start by showing that hk=kh for kk and hH.
Consider the commutator

hkhk*=(hkh?)k*=h(khk?).

Since H and K are normal subgroups of G, the two
groupings with parentheses show that hkh*k?is in
both K and H.

Since KH={e}, we see that hkhk=e, so hk=kh.



Application of Sylow Theory

Let : H x KG be defined by (h,k) = hk.

Then ((h, k)(h', k'))=(hh', kk')=hh'kk'= hkh'k'

=(h, k) (h', k'), so is a homomorphism.

If (h, k)=e, then hk=e, so h =k, and both h and k are

in H K. Thus h=k=e, so Ker()={(e, e)} and is one to
one.

We know that HK=H VK, and HV K =G by
hypothesis.

Thus is onto G, and H x KG.
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Application of Sylow Theory

Theorem

For a prime number p,

every group G of order p?
is abelian.



Application of Sylow Theory

Proof

f G is not cyclic, then every element except e must
e of order p.

_ et a be such an element. Then the cyclic subgroup
<a> of order p does not exhaust G.

Also let bG with b<a>. Then <a><b>={e}, since an
element c in <a><b> with ce would generate both
<a> and <b>, giving <a>=<b>, contrary to
construction.



Application of Sylow Theory

From first Sylow theorem, <a> is normal in some
subgroup of order p? of G, that is, normal in all of G.
Likewise <b> is normal in G.

Now <a>V <b> is a subgroup of G properly
containing <a> and of order dividing pZ.

Hence <a> V <b> must be all of G.

Thus the hypotheses of last lemma are satisfied, and
G is isomorphic to <a> x <b> and therefore abelian.



