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FUNCTIONAL ANALYSIS
MODULE No. 1
INTRODUCTION:

Its applications are in differential equations and numerical
analysis, approximation theory and calculus of variations etc.

COURSE OUTCOMES:

To be able to understand basics concepts, principles and
methods of functional analysis and its applications.

MoODULE No. 2
COURSE OUTLINE:
Topics:

Introduction, Metric space, subspace, Triangle inequality, Axioms of a metric,
Sequence space, Space B(A) ofbounded functions, Some Inequalities, Ball and
sphere, Continuous mapping, accumulation point, Dense set, separable space,
Convergence ofa sequence, limit, Cauchy sequence, completeness, Real line,
complex plane, Uniform convergence, Discrete metric, Isometric mapping, isometric
spaces, Homeomorphism, Normed Space, Banach Space, Further Properties of
Normed Spaces, Finite Dimensional Normed Spaces and Subspaces, Compactness and
Finite Dimension, Linear Operators, Bounded and Continuous Linear Operators,
Linear Functional, Linear Operators and Functional onFinite Dimensional Spaces,
Normed Spaces of Operators, Dual Space, Inner Product Space, Hilbert Space, Further
Properties of Inner Product Spaces, Orthogonal Complements and Direct
Sums, Orthonormal Sets and Sequences, Series Related to Orthonormal Sequences
and Sets, Total Orthonormal Sets and Sequences, Legendre Hermite and Laguerre
Polynomials, Representation of Functional on Hilbert Spaces, Hilbert Adjoint
Operator, Self-Adjoint, Unitary and Normal Operators.




MTH 641 Functional Analysis

MoDULE No. 3
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MoODULE No. 4

In functional Analysis we shall study more general “spaces” and “Functions” defined on
them.

METRIC SPACES:

In functional analysis we shall study more general “spaces” and “functions” defined
on them.

The given below is the real line
e eeses e e ——————) R
X, yeR

The distance function with two points x,yor usual metricon real line is d(x,y)= |x— y|.

Say we have two points -1 and 3 and if we want to measure distance between 3 and -1 then

3

-1 0 3
d(-13)=4 issameas  d(3-1)=4

3-(-1) =4

For example: If we want to measure the distance between 1.8 and -3.5 then

— R
-3.5 0 1.8
X x>0
d(1.8,-3.5)=[1.8—(-3.5)| X :{
-X x<0

=[1.8+3.5=5.3
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MoDULE No. 5
METRIC SPACES:

Formal definition:

A metric space is a pair (X,d),where Xis a set and d is a metric on X (or distance
function on X), that is, a function defined on X x X such that for all x,y,z € X we have

following four properties.

1st Property: M, d is real —valued, finite and non—negative
2nd Property: M, d(x,y)=0if and only if x=y

3rd Property: M, d(x,y)=d(y,x) (Symmetry)

4th Property: M, d(x,y)<d(x,z)+d(z,y) (Triangle Inequality)

The above four properties called axioms of metric space. As metric space is ordered
pair so we take X x X mean two elements from set X.

Explanation :

Let’s we have three points X, y and z, then equality holds

if and only if all the three points are on the same line. e ——

X z

And in triangular inequality the distance between x andy is

always less than the sum of distances of zy and zy.

Equality: d(x,y)=d(x,2)+d(z,y)
X
Inequality: d(x,y)<d(x,z)+d(z,y)
z
Now if we have more than three points say X, X,, X;,..ccoccevrnnne X,

then distance between any two pointsay x, and X, is
d(x, x,) <d(X, %) +d(X,, %) +d (X, X,) +-.cve +d (X, 4, X,)

is the generalized triangle inequality.
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MODULE No. 6
SUBSPACE:

Formal definition:

A subspace (Y,d) of (X,d) is obtained if we take a subset Y < X and restrict d to
Y xY . Thus the metric on Y is the restriction

d=d

Y xY

d is called the metric induced on Y by d.

MoODULE No. 7
METRIC SPACE.:

» Real line R
> Euclidean plane R’

Real line r

Example 1:
Let x and y be two real points on real line, then
dx,y)=|x-y| ; X,y eR
Now we prove all the four properties (axioms) of metric space.

d(x,y) =[x-y]|

d(x,y)=|x-z+z-y| ; zeR

d(x,y) <|[x—z|+|z-Y|
=d(x,2)+d(z,y)

Euclidean plane r?
Euclidean space mean that the points are taken from R? in ordered pair.

R? ={(x, y)| ,y € R} R? plane .

(%, 1)

Example 2:
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Suppose that one point is (x;, y;) and the other pointis (x,,Y,),

thenthe distance d between these two points is

d =0 —%)? + (Y, — V.)?

Thus (R?,d) is a metric space

Example 3:

Suppose that one point is (x,, y,) and the other pointis (x,,Y,) (e ¥2)

the distance d between these two points is d, =%, — x|+~
(yz - yl)

d1 :|X2_X1|+|yz_Y1|

. (X, Y1)
d and d, measures the same distance. (% =x)

Thus (R?,d,)is a metric space

So, we can define any distance function according to our requirement and it should satisfied
the four axioms of metric space.

MODULE NoO. 8

EXAMPLES METRIC SPACE:
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Real line R :

——————————————) D
Euclidean plane r:

R? ={(x,y)| X,y € R} R plane

Three dimensional Euclidean Space&3
R®={(x,y,2)| X, y,z R} R®plane

In R®set the elements are in ordered triple form whose all entries are real numbers.Suppose
uand v be two points in R® such as

u={&.,&, &y and v=_{n,n,,n} , St R,
(where & is exal and 7 is eta)

The distance between u and v is

V) =\(&—m) +(&—m) + (& —n)’
Thus (R?,d)satisfy all four properties of metric space and is a metric space.

nTuples Euclidean Space R"

InR" set the elements are in ordered n tuples form.Suppose u and v be two points in R" such
as

u={&,%,....5.} and v={n,n,,... .}, &.neR,
(where ¢ is exai and 7 is eta)

The distance between u and v is

d(UV) = (&~ 11)7 + (& — 1) e +(&, —1,)°

Thus d

satisfy all four properties of metric space and is a metric space.

(uv)

Unitary Space C_”

C'={&, i &)\ & eCh wherer C is complex no.
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(note: In C? both the first and second elements are from complex numbers as (1+:,1—7) and
also in C"all the n tuples from &,7n, €C to &, are all complex elements ).

Let z=a+ib , w=c+id then
|z|=«/a2—b2 , W] =+/c? —d? and
as  z-w=(a-c)+i(b—d) |z—w|:\/(a—c)2+(b—d)2

Suppose u and v be two points in C" such as

u={&,%,....5} and v={n,n,,.... .}, &.neR,
(where ¢ is exai and 7 is eta and are complex numbers)

The distance between u and v is

d(U'V):\/(é_’h)er(ffz_772)2+ """""" +(§n_77n)2 éi'ni eC

Thus d ‘(u,v) satisfy all four properties of metric space and is a metric space.

Complex Plane C (n=1) special case

Instead of n if (n=1) special case then there is only one complex no. in u and v such that
u=a+ib and v=c+id

then it is Complex plane C.

The distance between u and v is
duv)=lu-v| uveR
Now we have four different examples of metric space,
i): R® i) R"
i)  C" iv): C

now first we have a set then we define a distance function in above cases.

MODULE NoO. 9

EXAMPLES METRIC SPACE:
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Here we discussed examples of metric space other than usual R, R?,......R"or more
general form.

Sequence Space |”:

As a set X we take the set of all bounded sequences of complex numbers.These
bounded sequences may be real or complex but we take here complex numbers. Collection of
all complex number.

If we take all sequences of complex number which are bounded in a set then the set is

called 1*
Let X be a sequence space and x be the element of that space then x e X

X={&,&,& . Y

We can write this as

x=(&) where i=1,2,3,.......

The sequence is bounded means if we calculate the value of ¢ that value is lessthan C, =
|§|| < Cx ’ é eC

If we take any sequence from this space it is bounded, it means C, is depending on

sequence. Now we are going to define d, on any two elements from this sequence space such
that

X,y e X : x=(&) y =)
The distance function is
d(x,y) =su15|§i — 73]

The supremum of all differences of |& —|is the distance d between x and y. This

sequence of complex numbers space, d(x,y) form a metric space. We take the difference of all
points and then its supremum which is distance of that sequence. Here N is the domain of
sequence. Function has any domain but domain of sequence is N .

MobDULE No. 10

EXAMPLES METRIC SPACE:
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» Function Space C[a, b]
» Discrete Metric Space

i): Function Space C[a, b]

As a set X we take the set of all real-valued functions X, y,........Which are functions
of an independent real variable t. And are define and continuous on a given closed interval

J=[a, b]
To define distance function:

Say we have two unique points x and y such that x,y € C[a,b] . Here C[a,b] isa

function space and x and y are functions on t variable and also real valued ( its value is
always real value) as

X:X(t)eR and y:y@t)eR (Real values and continuous).

Domain is fixed from a to b. x and y are function from interval [a,b] to R .
x:[a,b] >R, vy:[ab]l>R
d(x,y) =max|x(®) - y(®)] where j=[ab]

We will calculate the difference of two functions x(t)-y(t) at each value of t from J.
The maximum of the all the values of difference between two functions is the distance
between the functions. Here we have defined the distance between two functions.

ii):  Discrete Metric Space

In discrete metric space let X be a set, which could be real number, R*,R" , function
or set of sequence etc. then we need a distance function.

Distance function is generalized, that if we take two elements from X and those two
elements are same then its distance is zero.

d(x,y) =0 if x and y are same
and d(x,y)=1 if x and y are different.

On the other hand if we take two different elements then distance is 1, we fixed. It
means that we have fixed the set X with two options O(same elements) and 1(different
elements).This definition forms a metric space and is called a discrete metric space.

MoODULE No. 11

EXAMPLES METRIC SPACE:
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Sequence Space s:

The previous example consists of only bounded set but this space consists of all
(bounded or unbounded) sequences of complex numbers.

Here the distance function is changed from previous one, the metric d defined by

=1 ‘gj_nj‘
d s = T E—
oY) %:21146,-—77,-\

wherex=(&;) and y=(n;) and are all complex nos.

Domain of sequences ((&,<,, &5, ) OF (77,775, Mg ) s rational numbers.

For distance function we just need to check four axioms. 1%, 2™ and third axioms do yourself,
here is only 4™ axiom is proved.

4™ axiom: M, d(x,y)<d(x,z)+d(z,y) (Triangle Inequality)

t
let f(t)=—:
® 1+t
Differentiating w.r.t. t f'(t)= 1
T (1+1)?

As the derivative of the above function is positive this means that it is increasing sequence.
la+b|<|a]+|b|

we know that if a<b then f(a)< f(b)

the inequality sign does not change.

So, applying above triangular inequality f (ja+bl) < f (ja]+|b])

la-+b| y |a]+|b|
1+|a+b|  1+|a|+|b|

st _
1+|a+b| 1+|a|+|b| 1+|a|+]b|
I Y N e I
1+|a+b| 1+|a|+|b| 1+[a|+[b| 1+[a]+]b|
Now if we remove denominator |b| from —|a| it becomes |a|
1+|al+|b| 1+|a)
Andremoving denominator|a| from _ b it becomes o

1+|a|+|b| 1+|o|
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so, the remaining values will be increasedwhich result as

a+bl _ faf+bl __fa] [ _ fa , Pl
1+|a+b| 1+[a|+[b| 1+|a|+[b| 1+|aj+b] 1+[a] 1+]b|

Simply we can write

bl _ kb
1+|a+b| 1+[a 1+b|

Using above expression a=§—-aex ; b=g-ney
In triangular inequality we use three elements, so we use new sequence zor z=(¢,).

Putting values in above expression

|§i_0‘i+ai_77i| < |§i_ai| |ai_77i|
l+|§i —o; _77i| - 1+|é:i _ai| 1+|ai _77i|
|é:i_77i| < |§i_ai| + |ai_77i|
1+|§i_77i| 1+|§i_ai| 1+|ai_77i|
We want to change the above equation in this form im
2j1+f¢; -]
So, we multiply by % on both sides.
1 |&-n < L |5 | 1 |o-n
2 1+|E—-n| 2 1+|E-a] 20 1+|a -7

Taking summation of all values

silaal 51 facal o1 ool

2i 148 -7 2i 1+]& — o 2i 1+|o; -7y
Hence we have proved that 4" axiomd(x, y) <d(x,z)+d(z,y) (Triangle Inequality)

For metric space we have proved all four axioms. Above we have proved only 4™ axiom.

MODULE No. 12
EXAMPLES METRIC SPACE:

Last example of Sequence Space s:

> Space !’
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> The Hilbert Sequence Space I*

Space !”
Let p>1 be a fixed real number.

By definition, each element in the space 1 is a sequence x=(&)=(&,&,,.......) of the

numbers such that |&]" +]&,[" + .o converges.

Thus z;‘gj‘p <o

and the metric is defined by

1

d(x,y) =(Z°j°=l\§,- —nj\p)p
where y = (7;) and ZT:1‘77]"J<OO

The elements &, and 7, are complex numbers.Distance function d(x,y) of the set is

a metric space. We are not proving all four axioms because it is complicated but it satisfied
the axioms of metric space.

Space !”

The real Space |’

If the elements &; and 7, are not complex numbers but from real numbers then the

space is called real spacel” .

The complex Space |’
If the elements &; and 7, are complex numbers then the space is called complex spacel®

Above both have the same condition that summation of |§1|p +|§2|p F e, that

should be converges and ZT:1|§1|" < o0, and the distance function is one by one entry

difference with power p and overall power 1/p.
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THE HILBERT SEQUENCE SPACE !
Now the case p=2 (fixed)
The Hilbert sequence space 1°with the metric defined by

i=L

:1/2‘51' _’71‘2

(note: Check video lecture value is wrong)lt is also satisfied the four axioms of metric space.

d(x,Y) =(i\§j —n,ﬂz

Now we have done that if we have a set X, then we define a function and last we have
proved all the four axioms of metric space. If the set satisfied the four axioms then it make
the metric space otherwise it is not metric space.

MODULE No. 13
OPEN SET, CLOSED SET

> Open/Closed Ball
> Sphere

Open Ball in R"  We start with real line.

Open Set and Closed Set on Real Line R

Open Set on Real Line R

On real line we have open set not open ball.

e R A

2 5
(2,5) is an open set. It includes all values between 2 and 5 but does not include 2 and 5.

Closed Set on Real Line R

7

2 5
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R

[2,5] is a closed set. It includes all values between 2 and 5 including 2 and 5.

Open Set and Closed Set on Real Line R? A @
In R*we have open ball.

< >

Here open ball has center x_ and radius r.

It includes all values but does not include boundaries v
Points on the Boundary:
d(x,,x)=r ; Xis on boundary
All the points are lies on the boundary if
the difference of that pointx from the center X isr.
X, —X=r

Xis a boundary point.

Points inside the Boundary A

All the points are lies inside the boundary if @
thedistance between x and the center x; < >
(i-e. difference of that point x from the center x,) is less thanr. v

d(x,, x)<r

xlies inside the boundary.

Points Outside the Bounday

All the points are lies outside the boundary if

A
the distance between x and the center x,

(i-e. the difference of that point x from the center x,) is greater than r.

d(x,, X)>r v

x lies outside the boundary.
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Open Ball and Closed Ball in R?

Open Ball:

In R?if boundary is not included then it is open ball. It means all points inside the
boundary are included. = d(x,, x)<r
Closed Ball:

In R?if boundary is included then it is Closed ball. It means all points inside the
boundary and on the boundary are included. = d(x,, X)<r

Open Sphere, Closed Sphere in R®
In R*we have open sphere, closed sphere.

Ball and Sphere (General Form)

Open Ball: B(x,;r)={xe X |d(x,x,) <r}
Closed Ball: B(x,;r) ={xe X |d(x,x,) <r}
Sphere: S(x,:r)={xe X |d(x,x,)=r}

Sphere includes all those points which are exactly lies on the boundary or on the
radius r. It does not have any inside or outside points.

In all three cases, x, is called the center and r the radius.

Warning
In discrete space, we have defined distance function.sphere can be empty.

d(x,x)=0
d(x,y)=1 ;OX#Y
d(x,x.)<r
d(x,x,)<r

Sphere =¢

For boundary we can subtract open ball from closed ball. ‘ - ‘ = O
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S(¥, 1)=B(%, 1)=B(%, 1)
Open Set:

A subset M of a metric space X is said to be open if it contains a ball about each of its
points.

Closed Set:
A subset K of X is said to be closed if its complement (in X) is open.
that is K® =X —Kis open.

In R we have two intervals, open and closed interval. Any point in open interval (however it
IS very near to boundary) we can take another open interval, However in closed interval we
can take an open interval beside the boundary.

MoODULE No. 14

EXAMPLES OPEN BALL, CLOSED BALL:

Example 1:

On real line R we have open set not open ball.If we find an open ball against each
point then it is open sets otherwise it closed (compliment of open) is closed.

— e ¢

-1 6
(-1, 6) is an open set. It includes anl values between -1 and 6 but does not include-1 and 6.

In metric space language, here we can find an open interval against each point.
Point 2 has open interval (1, 3) and many mores intervals.

Similarly point 5.99 has an open interval(1, 5.999) and many mores intervals.
Now for point 5.999 has an open interval (1, 5.9999) and many mores intervals.
For closed interval

On real line we have closed interval [-1, 6]

————s

-1 6

It includes all values between -1 and 6 including -1 and 6. For inside point this condition is
true, for each inside point we can find an open interval, but for any point on boundary we

cannot find any open interval. e.g. for point 6 we can’t find any open interval.
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In R?we have open ball, if we take any open ball against that ball then we can
find an open ball containing that ball because the boundary is not closed.

In R?we have closed ball, then points on boundary will not give us any open
ball.

MODULE NoO. 15
NEIGHBORHOOD OF A POINT:
We can find an open ball around each point in Open set. X
“An open ball B(x,,¢) of radius ¢ is often
called an & -neighborhood of x,.”

By a neighborhood of x,, we mean any subset of X which contains an ¢ -neighborhood of x,

Difference between Radius r and ¢.

Radius r.

For radius r means larger values, 0.1, 0.5, 10,40 while radius & means very small
values like 0.002, 0.000003 etc.

Radius ¢.

If we take a point x then all the points around it make a ball whose radius is very
small & or &-neighborhood of x, .

Interior Point:

We call x,an interior point of aset M < X if M is a neighborhood of X, .
The interior of M is the set of all interior points of M.
Int(M) is open and is the largest open set contained in M.

Collection of all open balls is an open set whether the radius ¢ of open ball is greater or
smaller.
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MODULE No. 16
TOPOLOGICAL SPACE:
Definition:

Let 3 be collection of all open subsets of X. Then (X, J) is said to be a topological
space if it satisfies following properties:

Tl): ¢e3 and XeJ
T2):  The union of any member of 3 is a member of 3.

T3):  The intersection of finitely many members of S is a member of 3.

It holds.!
that 3 is the collection of all open subsets of X.

) itsimpliy satisfied, empty set is open because there is no point so condition is
automatically satisfied. i.e¢ is always open. Also X belongsto 3

i) for second property that union of any member of Jis a member of 3.
U=union of open subsets

Let say there is at least one open subset M of X who contains x such that
xelU ; atleast x<—M where M contains a ball B whose radius is x about X.

M eunion XcM

BcU = U isopen

Bl(y!gl) c Ml
B,(Y,&) =M,

B,(Y,&,) =M,
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We take minimum of all radiussay ¢ ,as

e=min{g,.......... v Em
B(y,e)cM, Vv i , B(y, &) contains inall M
B(y,g)eﬂMi

Hence we take a ball from y e ﬂMi Vv i=1,.....m and prove that there exist a ball
i=1

whose radius is & which is minimum of all radii. That means M, containing that ball so that

this intersection is also open. Hence a metric space is a topological space, because metric
space contains open intervals and open intervals satisfied all the conditions of topological
space.

MODULE No. 17
CONTINUOUS MAPPINGS:
First see the definition of continuous function then proceed next.
Definition:
Let X =(X,d) and Y =(Y,d) be metric spaces.
A mapping T : X —Y is said to be continuous at a point x, € X

if for every £ >0 thereisa & >0 such that d(Tx, Tx,) < efor all x satisfying d(x,x,) <o

Here we have two spaces X and Y whose distances are d and d . Txsame as T(x).

d(Tx, Tx,)is basically open disk whose radius is ¢, center is Tx,and Tx is any point on the
disk.

d(x, x,) <o'is also a open disk whose radius is ¢ and center is X, .
T:X->Y

d(Tx, TX,)<¢

..........
. .
.

o

o —neighborhood & —neighborhood
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X space Y space
X IS mapping on TX, X —>TX

X, IS mapping on Tx_, X, —> TX,

MoDULE No. 18

CONTINUOUS MAPPING:

First see the definition of continuous function and continuous mapping then now another
definition of continuous mapping.

Theorem (Continuous Mapping):

A mapping T of a metric space X into a metric space Y is continuous if and only if the
inverse image of any open subset of Y is an open subset of X.

It says that inverse image is open then metric space is continuous. As it is if and only if
condition then we suppose continuous condition, then we prove that inverse image of open
subset is open.

Conversely we consider inverse image of open subset is open and prove that it is continuous.
Proof: Suppose a mapping T : X —Y and T is continuous.
Now we will prove that inverse image of any open subset in Y is open in X.

Let ScY be opensubset. Let S, be the inverse image of S.

Space X —spaceY

We have to prove that this S open. For this we have two cases.

T: XY

1st case:
Suppose that we have chosen the element has no inverse image then

S,=¢ = open (because empty set is always open)

2" case:
N
Now suppose S, is not empty then there is at least one
XO
Point x,such that
S
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S, #¢ = X, €S,
Y, =TX, T: XY
S isopen, there exist an ¢ neighborhood N of y,
since T is continuous 3 S, neighborhood of x, which is mapped into N.
Since for NS wehave N, < S, so,
S,isopenon x, €S, and hasd neighborhood.

Conversely we also prove that T is continuous.

For every x, € X and &-neighborhood N of Tx_, the inverse image N, of N is
open.

Since N is open and N, contains x,, N also contains ad neighborhood of x, (being open)
which is mapped into N because N, is mapped into N.

By definitionT is continuous at X, .

MoDULE No. 19

ACCUMULATION POINT (LIMIT POINT):
Definition:

If M is a subset of a metric space X then X, is a limit point of M. if it is the
limit of an eventually non-constant sequence (a,) of points of M (or limit point of M)if every
neighborhood of X, contains at least one point y € M distinct from x, .

Translation in the form of metric space:

Let M be a subset of a metric space X, then a point x, of X (which may or may not be

a point of M) is called an accumulation point of M ( or limit point of M) if every
neighborhood of x_ contains at least one point y € M distinct from X, .

Example (1) R:d(x,y)=|x-Y|

M(0,1)

0¢ M =(0,1)is a limit point of M.
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1 is also a limit point of M.

1 1
as lim= 1+=
X—)oon n

Another example:

The set of integers has no limits points, Z < R has no limit point, e.g. any sequence
in Z converging to any integer is eventually constant.

Example (2):

Letin B 40 Y= 06 %)+ (v, 1)
Open disk {(x,y) e R?* | x* + y* <1}
All those points from R? such that x* +y* <1,

All those point which are on the boundary of this open ball are accumulation points or
limit points.

Closure of M:

The set consisting of the points of M and the accumulation points of M is called the
closure of M and is denoted by M .

Example (3):
M=(0,1) has limit points are 0, 1
when we collect these points then it transforms to.
[0,]=(0,)u{0,3=M

Closure of M= Points of M U limits points of M

MoDULE No. 20
DENSE SET:
Definition:
A subset M of a metric space X is said to be dense in X if M = X
Closure set is a set along with its limits points.

Example (1):
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The rational numbers Q are dense in R .
we have infinite sets Q and R

Let xeR , and x can be a integer or fraction,

as X=n+r (e.g 2.123=2+0.123)

nez, 0<r<l if r is between 0 and 1 then it is fraction.
here, r=0.nG......
set X =n+0.nnG....... r
So, each x, is a rational number as we fix the fractional part r =0.r,r,r.......... when we fix the

fractional part then it gives you rational number. Real number may be rational(fraction part is
fix and not continue) or irrational ( fraction part is not fix and continue).

limx, =x

X—00

here x, is a rational number and at X — oo and it gives irrational number x. so all

rational numbers cover all irrational numbers, Q =R this shows that Q is dense in R , as real

set R contains rational and irrational numbers, if Q gives a rational number then it is also in
Qandalso in R but if Q gives an irrational number then it is also present in R .

Separable Space

A metric space X is said to be separable if it has a countable subset which is dense in
X.

It has two conditions; First its subset is dense and second is countable.

MODULE No. 21
If M =X then M is dense in X.

SEPARABLE SPACES:

A metric space X is said to be separable if it has a countable subset which is dense in X.
EXAMPLES (SEPARABLE SPACES):

> The Real Line R
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» The Complex PlaneC
» Discrete Metric Space

Example 1:
1°'The real line R
(R, d) ) d(X!y)=|X - y|

Now Q issubset of R , such that closure of @ is equal to R . So, it satisfy the both
conditions of Q is subset of R (means Q —R),

Qis densein R (meansQ=R) and  Qis countable.
Hence R is a separable.
2nd R’

(R,d) is aspace where d(X, y)is the distance function.

A% ) = (V= %)% + (Y = %) vt (Vg = X, )2

The elements of R"are vectors, xand y are vectors and we have represent as underscore

such that p s O X,) and Y =(Yy s Y.)

Q" ={(c,,C,) | G € Q}

Where Q"is dense in R", also as Q is countable so all its n-tuples are also countable
(which means (c,,.......C,) is countable).

Q"is a countable subset of R" which is dense R" so R" is separable space.

The Complex Plane C

In complex plane the numbers are in the form of {a+ib|a,be R} i=v-1

Or same as {(a,b)|a,b e R}
For R*we can define another set Q° ={(c,,¢,)|c,,c, € Q}={c,,ic, |c,,c, € Q}

In previous example R was dense in n-dimension R" , here are only two complex
numbers c,,c, in Q*so Q7 is also dense in C and also countable as {(c,,c,)|c,,c, € Q}.
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Now C has a subset Qwhich is dense and countable so, C is separable.

DISCRETE METRIC SPACE:

In discrete metric space if elements are same then distance is 0 and if elements are
different then distance is 1. There is no condition on set. Set can be any set.

Example 2:

In discrete metric space we have a condition on distance function which is if elements
are same then distance is zero, and if elements are different then distance is equal 1. When we
have a discrete metric space then the set X itself is dense and there is no limiting point, no
other subset is dense in X. Now for separable space we need two conditions, 1: subset is
dense, 2: countable. As in Discrete metric space the set is itself dense, so we need only to
check that is countable or not, if it is countable then it is separable. Hence in Discrete metric
space we only check that the set is countable or not, if it is countable then it is separable else
it is not separable.

MODULE No. 22

EXAMPLES SEPARABLE SPACES:

Space !”

Space mean “a set”, in this set elements are sequences, which may be real (called real

space ") or complex numbers (called complex space 1”). Then we have define its metric, a
metric means a distance function.

Now we have to show that a subset of 1 is dense and also countable then 1 is a separable
space.

In previous examples we take @ as countable and then use it as generalize form. Here
we also use Q as countable.
p
Space !

The space 1” with 1< p < +oo IS a separable.

To find a countable subset which is dense in!" where 1 is a space consisting of sequences
p

x ={&} , which are bounded sequences such that Y |&| <o is convergent.
i=1
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The metric is d(x, y) :(i|§|pJp where x=(&) and y=(7,)

x and y in d(x,y) are sequences. Now we find the countable subset of I” which is dense in |” .

Let M be the set of all sequences of the form Y =171, eeeeen 17,,0,0,......... )

n-positive integer and 7, ’s arerational numbers.

We need to probe that M is dense in 1>
M=I"

Let x={&}<I” be arbitrary. We need to show that
3 yeM such that d(x,y)<e

Now x={&}el®
o0 p
= Y |&| <oo (convergent)
i=1
n p o p
= (Z|§,| + > & ]<oo (Convergent)
j=1 j=n+l

Less than infinity means sum is finite.

Then for every £ >0

(here Epsilon represent the small value) there is n(depend &)

= >l <& @,
j=n+1 2
dix,y)<e

Now the rational numbers are dense in R .

originally x = (&;) we have covert it into two parts

(51'52’ """" 7§n) and (§n+1’ """"""" )
overlall  (&,&,,........ Y PP )

Now yeM, Y =11, e 7,,0,0,......... )
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n p gp
2.|& —l <5

=1

Using both relations
[dxy)]° \5 n,\

:;\51 _771‘ Z ‘95 771‘

Jn+

n p
Z‘fj_”i‘ <‘9—2p and
=

Z‘f 771‘ <_

j=n+1

N [d(x y)]° Z\é n,\+2\f m\ <é’

j=n+1
= d(x,y)<e yeM
We have found a limit point y which belongs to X.

In this module we have proven that I is separable.

Here we have defined a set M and using the properties of rational number we see that
it was countable. Then we prove that it is dense, for this we take a sequence in I and proved
that its limiting point is also in M. so, M along with limiting point y becomes wholel" .

MODULE No. 23

BOUNDED SEQUENCE:
Definition:
We call a nonempty subset M — X a bounded set if its diameter

S(M) =sup, .y d(X,y)is finite.
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Here we check all distance pairs for each point against all other points, lineup all
those distances and take the supremum distance point we call the diameter of that set.

It means supremum of all distance is finite then the set is bounded.

A sequence (x,) in X is bounded sequence if the corresponding point set is a bounded
subset ofX.

Hence bounded sequence means finite diameter and if diameter is infinite then
sequence is unbounded.

MODULE No. 24
SEQUENCES:

» Convergence of a sequence
> Limits

Sequence is a function whose domain is natural numbers.
Convergence of a sequence:

A sequence (x,) in a metric space X =(X,d)is said to converge or to be convergent
if there is an x € X such that

limd(x,,x)=0

n—o

x is called the limit of (X,) and we write

limx, =X
or simply X, — X
Example 1:
1
X, =— :
n
nvariesas {1,2,3,...ccccccernn. }

{l} —0
n n=1



MTH 641 Functional Analysis

. . . 1 .
Its domain is set of natural numbers.if n varies from 1 to oo then = approaches to 0. Or its
n

limit point x is 0.

Example 2:
_(_1T\"
X, =(-1) here x varies from 1 to n.
1 n-even not convergent
-1 n-odd convergent.

As this sequence is not converging at one value. It varies between 1 and -1 so it is not
converging.

Example 3:

« — 1 if nis a square
"o if otherwise

Now X, =1 , % =0 , X, =0
X, =0 , X =0 : X =1

Here X =1 : X, =0 , X, =0
X4: , XSZO , X6:
X7: , XBZO , X9:

are not convergent.

Convergence of a sequence: (Another Definition)

We say that (x,) converges to x or has the limit x, if(X,) is not convergent, it is said
to be divergent.

(x,) : X —X
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£>0 being given, thereis N = N(g) such that all (x,) with n>Nwilllie in the ¢ -
neighborhood B(x; &) of x. then we call it convergent.

MoODULE No. 25
Here we relate the convergent sequence and bounded sequence.
LEMMA:
Let X =(X,d) be a metric space, then

a) A convergent sequence in X is bounded and its limit is unique.
b) If x, >x and y,—yinXthen d(x,,y,) —>d(x,y)

a):
Given that sequence is convergent and we have to prove that it is also bounded.
Bounded means that its corresponding diameter is finite.

For convergent sequence mean for every ¢ >0 there exist N = N(g) such that for all
X, with n>N lie in the ¢ - neighborhood B(X;g) of X .

As it is true for all £so we choose

=1 then we will find there exist N such that
d(x,,x) <1

We have values X, X,,............ X
which are entries of sequence.

If we choose n<N, say from this part of the sequence X, X,,............ X, then
d(x,,X) is greater than 1, and

if we choose n>N, say from this part of the sequence Xy .;,..c.ccoeen.. then d(x,,x) <1,
d(x,,x)<1 Vvn>N

Now we have calculated the distance of x from the point x; where i=1,2........... Nis
d(x;, X),d(X,, X),eeeerrenne d(xy,X)
We take the maximum of all these distances,max(.................. ),
let say this max distance is “d”.
Now the distance before N is less than d and the value after N is less than 1,

d(x,,x)<d+1 , VvV n
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In first part (a) we have to prove two things
1):sequence is convergent (i.e we have to prove that it is bounded) and

i1): converging value is unique.

2nd Part Uniqueness:
Letsay that x —X , X —Z

n

If we take any two values from a set then the distance between them is always greater than 0.

For unigueness we have to prove that x=z, in other word the distance between x and z is
d(x,2)=0

Using the 4™ axioms of metric space that
d(x,z) <d(x,x,)+d(x,,2)

X, converges to x and also z (our supposition),

d(x,x,)—>0
and d(x,,z) >0
now d(X,2)<0....ccceevvenin.. (i
From (i and (ii
d(x,z)=0
= X=2

Hence proved that it converges to a unique value.

b):

Let say that X, =X y,—>Y

n

then we have to prove that  d(x,,y,) > d(X,y)



MTH 641 Functional Analysis

d(x,,y,)<d(x,,y)+dXxy)+d(y,y,) triangular inequality
d(x,,y,)—dXy) <d(X,,Y)+d(Y,¥,) - coeeererinieinannne il
interchanging x, andx and y,andy,
d(x, y) <d(x,x,)+d (X, ¥,)+d(y,y)
d(x,y)—d(x,,y,) <d(x,x,)+d(Y,,y)
Multiplying -1 on both sides of inequality
d(x,,y,)—dy)=—dXX,)+d(Y,, Y)) ceeeeenenennn. iv  (CHECK SIGN)
(iejx<a = -a<x<a)
usingabove inequality from iii and iv
|d (X, ¥) —d (X, Y)| <A (X, ) +d (Y, V) coeeeennnnnn. v
As X, >Xx y, >y so,d(x,,xX) >0 and d(y,,y)—>0
= {d(x,,¥,)~d(x )} >0
= d(x,,Yy,)—>d(xy)

Hence proved.

MODULE NoO. 26

CAUCHY SEQUENCE:
Definition:

A sequence (x,) ina metric space X =(X,d) is said to be Cauchy (or fundamental)
if
for every >0 thereisan N =N(¢g) such that d(x,,X,) <& for every m,n>N.

Equivalent notation 4 (m:X,) >0 as mn— oo

Example 1:
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The distance function isd(x, y) = |x— y| , Is a Cauchy sequence because

Let say we have any m and n positive numbers, then

1 1] 1 1
___S__|__
m n m n
as m-—>oo , n—oo
then l—>0 , 1—>O
m n
‘1 1
SO ——=1—>0 as m-—oo , n— oo
m n

this is the Cauchy sequence condition that

d(x,,X,)—>0asm,n—oo

Completeness:

Definition:

The space X is said to be complete if every Cauchy sequence in X converges that is,

has a limit which is an element of X.

Example 2:

a,= {l}w (0,1
n n=1

is a Cauchy sequence as a, — 0 ¢ (0,1]

Hence the sequence a, in spaceXis converging to 0 but this does not belong to that

(0,1], the function define on space is
d(x, y) =|x, y|is Cauchy.

= this space (0,1] is not complete.

For every Cauchy sequence, it should converge to element of that space; if it

converges to space then we say that it is complete space.

MoODULE No. 27

Here we relate the convergent sequence and bounded sequence.

THEOREM CONVERGENT SEQUENCE:
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Theorem:
Every convergent sequence in a metric space is a Cauchy sequence.
Proof:
Let {x,}be a convergent sequence such that x, — x for every ¢ >0 there exist

N =N(g) such that d(xn,x)<g v n>N

Now we have to prove that {x }is a Cauchy sequence, for this we have to prove that
d(x,,X,)<& ; m,n > N

We first choose that m>N then by triangular inequality,

d(x,,X,)<d(x,,X)+d(X,,X) ; m,n> N
& 5
as d(x,,X)<— , d(x,,X)<—=
(X X) < (%, %) <5
= d(xm,xn)strf ; m,n> N
2 2
= d(x,,X,)<e& ; m,n>N

That we have to prove, hence{x.}is a Cauchy sequence.
Converse:

Now we check that every Cauchy sequence (x,) in that space is convergent.

The converse is not true.

“every Cauchy sequence (x,) in that space is not convergent”.

Example 1:

The counter example is

This is a Cauchy sequence in (0,1]but it is not convergent in (0,1].

Example 2:

The metric space Q, d(x,y)=|x—y|, This metric space is not complete, we need at
least one Cauchy sequence which is not converging in this space.

So, we have a sequence {x. }which is
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This sequence is Cauchy sequence in Q and this sequence is convergingto ‘e’ inRR,
e ¢ Q , where e is an irrational number and does not belong to @ . So this sequence is such
that it is converging to irrational number.

This means that Q is not complete metric space.

MODULE No. 28

Here we relate the convergent sequence and bounded sequence.
THEOREM (CLOSURE, CLOSED SET):
Closure is a collection of limit points and the set itself.

Limit point is such point that if we draw an open ball around it then we can find another
point other than that point which belongs to that set.

A set is called a closed set if all the limits points are present in that set.
Theorem:

Let M be a nonempty subset of a metric space d(X,d) and M its closure as defined
before then,

a): x e M if and only if there is a sequence (x,) in M such that x — X.

b):  Misclosed if and only if the situation x, e M, x, — x implies that xe M .

a): Proof:
x e M < there is a sequence (x,) in M such that x, — x

M is a collection of M and its limit points.Now there are two option,
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i): x belongto M, xeM
i): x does not belongto M, x¢ M

)] xeM
now ifx does not belong to Mthen x is a limit point of M.

and if xeM then X, =X, X, =X, X3 = X, oevervrvivrennnns

or (X Xy ervrennns )=(X,) = (X Xyerrerne. ),

hence X, >XeM
i) XeM
1 .1
For every n=1,2,3,.................. the ball B| x;— | , here ¢ is —.
n n

Containing an x, € M, other than x.

Now as
n— oo
1
= ——0
n
= X, = X

Hence X, converges to Xx.

Conversely,

There is a sequence {x }in M such that xe M , so, we have a sequence

X, =X and (x,)in M..

Here we have two cases

)] xeM or
i) every neighborhood of x contains points x, # x

this implies that x is a limit point. i.ex e M

b):

M is closed, if and only if the situation X, eM, X —>X.

n n

= xeM
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M is closed if and only if M =M ,

N
<

Now we have to prove that M = M for this we prove that McM M
i) McM

by definition M contains M and its limit point so this condition is fulfilled.
i) McM
Now we prove that M = M

Let xe M , we will show that xe M .

Now if we take xbelongs to M then from above “a” part of this theorem, we have a
sequence x,in M such that x, — x this implies xe M .

That meansM — M .

Hence M =M

MODULE NoO. 29

THEOREM (COMPLETE SUBSPACE):

Theorem:

A subspace M of a complete metric space X is itself complete if and only if the set M
is closed in X.

As this condition is if and only if so vice versa.From previous theorem we have
Theorem:

Let M be a nonempty subset of a metric space d(X,d) and M its closure as defined
before then,

a): xeM if and only if there is a sequence (x,) in M such that x, —> X .
b):  Misclosed if and only if the situation x, e M, x, — x implies that xe M .

Proof:

Let M is subspace of X over d is then (X,d) complete.
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M c(X,d),
M is complete if and only if M is closed, and M is closed if and only if
M=M.
Now we can say that
Mc(X,d)eM=M.
Suppose M is complete and we need to show that M =M .
Now by definition M — M . Now we need to prove that M — M (to be proved).

“Let M be a nonempty subspace of a metric space d(X,d) and M its closure as
defined before then,

From the part “a” of previous theorem

x € M if and only if there is a sequence (x,) in M such thatx, — X .

Now xe M

As M is a subspace of a complete metric space d(X,d) and x, is also in X so,
= there is a sequence (x,) in X such that X, = X.
Since every convergent sequence in a metric space is Cauchy, then (x,) is Cauchy.
Our supposition is that M is complete. So, (x,) converges in M
= X, >XeM
= McM
we start from x e M and obtained x € M

= M=M

Hence M is closed.

Conversely:

<
[
<

M is closed =
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and we need to show that M is complete.
For this we need to show that every Cauchy sequence in M converges in

M, xeM

Let (x,)be a Cauchy sequence in M such that x, — x,

By the previous theorem xeM

but M=M= xeM
Since (x,) is an arbitrary sequence,

= true for all Cauchy sequences in M,

Hence proved
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MTH 641
Fpnstonal e

(MID TERM SYLLABUS)

THESE ARE JUST SHORT HINT FOR THE PREPARATION OF MTH
641

Don’t 1ook ior someone who can solve your problems,
Instead go and stand in front of the mirror,
Look straight into your eyes,
And you will see the best person who can solve your problems!
Always trust yourseli.

A giit from Unknown o Juniors VU Mathematics Students
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MODULE NoO. 29

THEOREM (COMPLETE SUBSPACE);

Theorem:

A subspace M of a complete metric space X is itself complete if and only if the set M
is closed in X.

As this condition is if and only if so vice versa.From previous theorem we have
Theorem:

Let M be a nonempty subset of a metric space d(X,d) and M its closure as defined
before then,

a): x e M if and only if there is a sequence (x,) in M such that x — X .
b):  Mis closed if and only if the situation x, e M, x, — x implies that xe M .

Proof:
Let M is subspace of X over d is then (X,d)complete.
M < (X,d),
M is complete if and only if M is closed, and M is closed if and only if
M=M.
Now we can say that
Mc(X,d)eM=M.
Suppose M is complete and we need to show that M =M .
Now by definition M — M . Now we need to prove that M — M (to be proved).

“Let M be a nonempty subspace of a metric space d(X,d) and M its closure as
defined before then,

From the part “@” of previous theorem
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x e M if and only if there is a sequence (x,) in M such thatx, — X .

Now xe M

As M is a subspace of a complete metric space d(X,d) and X, is also in X so,

= there is a sequence (x,) in X such that X, —>X.

n

Since every convergent sequence in a metric space is Cauchy, then (x,) is Cauchy.
Our supposition is that M is complete. So, (x,) converges in M
= X, > XeM
= McM
we start from x e M and obtained x e M
= M=M
Hence M is closed.
Conversely:
M is closed
= M=M
and we need to show that M is complete.

For this we need to show that every Cauchy sequence in M converges in

M, xeM

Let (x,)be a Cauchy sequence in M such that x, — X,

By the previous theorem xeM

but M=M =  XxeM
Since (X,) is an arbitrary sequence,

= true for all Cauchy sequences in M,

Hence proved
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MobDULE No. 30

THEOREM (CONTINUOUS MAPPING):
Theorem:

A mapping T: X —Y of a metric space (X, d) into a metric space (Y,d) is
continuous at a point x, € X if and only if x, — x,implies Tx, - Tx, .

Proof:
Suppose T is continuous, we will prove that if x, — X, implies Tx, > Tx, .

T is continuous means T : X =Y

agiven ¢ >0 there exist 6 >0 such that
d(x,x,) <5 d(Tx, Tx)<e¢

So, let x, — x, there exista N such that for all n>N we have
d(x,, X,)<o

Thisis 6 of convergence.
d(Tx, Tx,)<& , n>N

By definition X, = TX,

Converse:

Let x, — x, implies Tx, - Tx, forall x, .

We have to show that T is continuous by contradiction.

We suppose that it is not true then there is an & > 0 such that for every & > 0 there is some
X # X, such that

dix,x,)<6 =  d(TxTx)=¢

: 1 1
In particular 6 == d(x,x,) <=
n n
= X, —> X,
= Tx not = Tx,

=X d(Tx,Tx,) > ¢
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MODULE No. 31
EXMAPLES (COMPLETENESS):

> R

We will show that R and C are completes. In this module we show only that R is a complete

metric space which means every sequence in R is convergent in R and every Cauchy
sequence is convergent.

Lemma a:

Every Cauchy sequence in a metric space is bounded.

This is for every metric space.
Lemma b:

If a Cauchy sequence has a subsequence that converges to X, then the sequence
converges to X .

Proposition:
Every sequence of real numbers has a monotone subsequence.
Proof:

Suppose the sequence {x,}has no monotone increasing subsequence, we will show
that it has a monotone decreasing sequence. The sequence {x,}must have a first term, say X,
such that all subsequent terms are smaller

n>n means that n comes after n,, = x, <X, .
Otherwise, {x,} would have a monotone increasing subsequence.

Similarly, the remaining sequence {X, , X, ........ }it must have some first term.

Let first term of remaining sequence is x, , Now this x, is lessthan x,, X, <X, .
Now we take the remaining sequence {X, ........ }, whose first term is x, , now this x, <X, .

Hence this process will continue Xo > Xo, > X, ,

and is a monotonic decreasing subsequence.
We have proved that every sequence of Real numbers has a monotone subsequence.

Now using lemma a, b and proposition we have a theorem.
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Theorem:
R is a completer metric space, i.e., every Cauchy sequence of real numbers converges.
Proof:

Let {x,}be a Cauchy sequence.

Remark a implies that {x,}is bounded. Now if the given Cauchy sequence is bounded
then its subsequence is also bounded.

Every subsequence of {x,}is bounded.
Also {x,}has a monotone subsequence.Now {x_} is monotone as well as bounded.
Monotone Convergence Theorem:

If a sequence {x,}is monotone and bounded this implies that it is convergent.

This implies that subsequence is convergent. Now using remarks 2 if we have a Cauchy
sequence has a subsequence is convergent than the original sequence will also convergent.
{x,}is convergent. As this general sequence {x }from R so, every Cauchy sequence from

R is convergent which means thatR is complete.

MODULE No. 32

EXMAPLES (COMPLETENESS):
> R"
Here we prove that R"is complete
Example:
The Euclidean space R"is complete.
Proof:

LetR", the elements of R"are n-tuples say

The distance function in R"is

d(x,y) = /(@ —b)> + (@ ~b,)* +....t (8, —b,)?
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Let {x.}be a Cauchy sequence in R"

m)

x =@™,a",.. a™)
(ie.

x =(@,ad, ..., a)
X =(a?,a?,.......... a®?)

X =(@",a",.....e. a")

The distance function is

2

d(x,,x) =\/(a1('“) —a"?+@"-a"Y +..+@"-a")Y < ,  Vmr>N
Taking power two, we have
(8" —a) + (& —al) +...t (@7 —a)’ < &

(M _ a(0y2 _ .2
(@j" —aj") <&,

‘agm)—ag”<g, vm,r>N, j=12,...n

For a fixed | (a}l) + a}z’ S T )is a Cauchy sequence, this implies it is converging in R

because R is a complete metric space.

— agm) —>a§r), m-—o, a eR, j=12,....N

(m)
8  —a
a™ —>a,

a™ —>a

All these values a,,a,,......a, called X, Asx=(a,a,,.......a,) € R"

= d(x,,x)<¢, r—->o, X, —>X
= x isalimitof (x_) ,
= (x,,)was general element

= R"is completer
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MODULE NoO. 33
EXMAPLES (COMPLETENESS):
> ([a,b]

Here we prove that C[a,b]is complete metric space
Example:

The function space C[a,b]is complete; here [a,b]is any given closed interval on R

Let (x,) be any Cauchy sequence in Cl[a,b].
The metric space in C[a,b]is

d(X, y) = max,, , |X(t) - y(t)| . where [a,b]=]

There is an N such that for all m,n>N

d(X,,X,) =max,,

X, (1) —x, ()| <&
Hence for any fixed t=t, € J
[ (t) =, (t,)| < &
= X () X (ty )y e is a Cauchy sequence of real numbers and R is complete.
= sequence converges X (t,) = X(t,) as m —> oo
In this way to each t € J, a unique real number x(t). This definespointwise function on J.

Now we well show that x(t) e C[a,b] and x, — X

max,., | X, () = x(t)| < &
We are comparing with max,_; |X,, (t) — X, (t)| <e, as n— o
= forevery teJ X, () —x(t)| <&
= X, (t) converges to x(t) uniform;

If a sequence (x,) of continuous function on [a,b] converges on [a,b] and the
convergence is uniform on [a,b], then the limit function x is continuous on [a,b]

= X(t) is continuous on [a,b]

= X(t) e C[a,b] .
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MoDULE No. 34

EXMAPLES (COMPLETENESS):
> 1~
Here we prove that 1”is complete metric space

Example:

The function space 1~ is complete; here [a,b]is any given closed interval on R

Proof:

Let (x,) be any Cauchy sequence in |”such that

In 1”the elements are of the form

X=(a,8,,......) = ‘aj
y=(b,b,,..), = b,
The distance or metric function is
d(xy) =supla, ~b)
Here x. =@™,a", ... ), as
X% =@, ...,
x, =(@?,a?,.....) soon
For any g>0, there exist N such that for all m,n>N.
d(x,,y,) = Sjﬂﬁ‘aﬁm) —b{"
So, if sup < ¢ for a fixed j
‘a}”"—aﬁ”) <¢ , mnx=N
= for every fixed j, the sequence (af”,a!”,

numbers R .

Since R is complete, a{™ is convergent in R .

) is a Cauchy sequence of real

a” —>a eR as m-oow forj=12,....
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For these infinite limits a,a,,.....c..cc....... suchthat ™ —a, ™ >a, ..
We define X=(8,8,,.ccrrenn. )eR
We need to prove X=(8,8,,.ccrene )el”
‘a}m)—aﬁ"’ <&
= lal™ —a| <& asn—oo . thenx, — X

From above inequality,
d(x,y) =suplai™ -a| <&

Which means X —X

m
Since X = (agm)) cl”

ai™| <k, forall

ol e
Sl el
<e+k,

= ajisbounded,  X=[a;|l”
MoDULE No. 35

EXMAPLES (COMPLETION OF METRIC SPACES):

» Space Q
» Space of Polynomials
» Isometric mappings/spaces

here we prove that 1” is complete metric space
Isometric Mappings:
Let X =(X,d) and X=(X,d) be metric spaces.

A mapping T : X — X is said to be isometric or isometry if T preserve distance.

Preseve distance mean after applying the mapping the distance is preserve, i.e. for all
X,yeX

d(T,.T,)=d(x,y)
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Isometric Spaces:

The space X is said to be isometric with space X if there exist a bijectiveisometry of
Xonto X .

X and X are then called isometric spaces.

Theorem(Completion)

For a metric space X =(X,d) there exists a complete metric space X =(X,d) which

has a subspace W that is isometric with X and is dense in X .

This space X is unique except for isometries, that is if X is any complete metric

space having a dense subspace W isometric with X, then X and X are isometric.

MODULE No. 36
VECTOR SPACE
Definition:

A vector space (or linear space) over a field K is a nonempty set X of elements
XYoo oneeniniaienes (called vectors) together with two algebraic operations.

These operations are called vector addition and multiplication of vectors by scalars,
that is, by elements of K.

Vector Addition associates with every ordered pair (X,y) of vectors a vector x+y,
called the sum of x and y, in such a way that the following properties hold

Vector addition is commutative and associative.

There exists a vector 0, called the zero vector, and for every vector x there exists a
vector —x, such that for all vectors.

Vector Space
X+0=x
X+(-x)=0

Multiplication by scalar associates with every vector x and scalar « a vector ax (also
written xa ), called the product of « and x, in such a way that for all vectors x, y and scalar
a, [ we have

a(fx) =(af)x or 1x=X

and the distributive laws hold.
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MoODULE No. 37

EXAMPLES(VECTOR SPACE)

» SpaceR"

» SpaceC"

» SpaceC[a,b]

» Spacel’

1. Space R"
X=(&, e E), &eR
Y= (e, ), meER
Addition:

XHY= (& + 17, & +1m,)

scalar Multiplication:
letar be a scalar then

ax=(as&,....... ,as)

Now addition and scalar multiplication in R" is a vector space.

2. Space C'
Addition:
Let Y (N EY, &eC

Scalar Multiplication:

addition and scalar multiplication is same as in R", so C"is a vector space.

3. Space C[a,b]
Let xe([a,b] and ye(a,b]
where x and y are fucntions and operating on t

Addition:

(x+y)(®) =x(1) + y(t)
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Scalar Multiplication:

(ax)(t) = ax(t)

So under addition and scalar multiplication C[a, b] is vector space over a field R or C .

4. Space!’.

In this space we have sequences,if x €1? then X is a sequence, say

X= (&, E),  xel?
and Y= (T 1),  yel?
Addition:
X+Y=(&+m, 0. & +1,)

Scalar Multiplication:

ax=(a&, ... No78)

So under addition and scalar multiplication the space I? is vector space over a field R or C

MODULE No. 38
VECTOR SPACE

» Subspace
> Basis of a Vector Space

Subspace:

A subspace of a vector space X is a nonempty subset Y of X such that addition and
scalar multiplication are closed in Y.

Hence T is itself a vector space, the two algebraic operations being those induced from X.
Two Types of subspaces

» Improper Subspace: If the span of a subspace is equal to that vector space ;

» Proper Subspace: If the span of a subspace is not equal to that vector space
Linear Combination
A linear combination of vectors X, ......... , X, of a vector space X is an axpression of
the form
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Span of a Set:

For any nonempty subset M < X the set of all linear combinations of vectors of M is
called the span of M.

Written as “span M”.
Obviously, this is a subspace Y of X, and we say that Y is spanned or generated by M.
Linear Independence:

If two vectors have same direction and different in magnitude then on vector is
multiple of other which means that one is dependent to other.

If two vectors have not same direction then one vector is independent to other.
Mathematically:
linearly independent.
(D R 9 +C X =

if and only if all constant are zero

We call X, X,,.ccoveirenn. , X, linearly independent.

linearly dependent.
If vectors are dependent then their coefficients are not equal to 0 as

let

X1:2X2
= X, —2X,=0

Here coefficient 120 , so x, is dependent of X, .

Basis of a Vector Space:

As span of M is also a subspace, if the subspace (collection of vectors) is improper
subspace(means span of M is equal to that vector space) and linearly independent(coefficients
are equal to zero) then that particular subspace is a Basis of a VVector Space.

So, for basis the subspace have to improper subspace and linear independent.
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MODULE No. 39
VECTOR SPACE
Dimension (definition):
The number of elements in subspace of a basis is called dimension of that vector space.

» Dimension
I.  Finite dimensional vector space
ii.  Infinite dimensional vector space

Examples:
In R" space
Elements of basis of R"are e, €,,............. €,
e =(L0 . ,0)
e, =01 ,0)
e, =(0,0.cccnnn. 1)

Sometimes it is called Canononical basis of R" basis R".
Similarly in C"space n-dimension

Cl[a,b]is infinite dimension vector space because there is no finite set which can span
the set of function.

In 1%space, there are sequences, this is also infinite dimensional vector space.
Result :

Every nonempty vector space X #{0} has a basis.

Theorem:

Let X be an n dimensional vector space. Then any proper subspace Y of X has
dimension less than n.

Proof:
If n=0 this implies X={0}
There is no proper subspace. Hence we can’t continue.

If dimension of Y is zero.
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Dim Y=0
and X =Y Y={0}
{Y is proper subspace of X}
dimY <dim X
suppose dim Y=n
= Y would have a basis of n elements.

= that basis would also be a basis for X, as element in basis are same, they span
and linearly independent.

dim X=n when basis are same then X=Y

but it is contradict to our supposition as we suppose that Y is a proper subset of Xi.eY < X
which means X and Y are not equal.

= any linearly independent set of vectors in Y must have less elements then n.
= dimY<n

That we have to prove.

MoDULE No. 40

NORMED SPACE, BANACH SPACE

» Norm
» Normed Space
» Banach Space

Norm (definition):

A norm on a (real or complex) vector space X is a real-valued function on X whose
value at an x e X is denoted by ||| .

(This like the notation of mod but it has two vertical lines on left and right side.)

It has following properties:
i): x>0 (N1)
ii): [X|=0 < x=0 (N2)

Norm is equal to zero if and only if x=0. Length is always positive or zero but not —ve.
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iii): leex|| = |ex| ||| (N3)

if we multiply the length of norm with « (any number) then it will increase the length
of Norm o times.

iv): %+ y| < XI+(vl (N4) triangular inequality
if x and y are two vectors then their sum of Norms is equal to individual sum of their norm.
Norm metric:
A norm on X defines a metric d on X which is given by
d(x,y)=|x-y]| where X,y € X

and is called the metric induced by the norm as this metric depend on norm so we call it
metric induced by norm.

from the property  [[x+y]|<[x|+[}y]
we can write [IyI=Ixl<ly—x]

The norm is real valued function so it is continuous function. Continuous function
mean if we define norm on x then it will give us the value of norm x as

x—|x|
and this mapping is continuous and is mapped (X, |||) > R.

Norm is always a continuous function.

Norm Space:

A normed space X is a vector space with a norm defined on it.

A normed space is denoted by (X, ||||) or simply by X.

Banach Space:

A Banach space is a complete normed space, (Complete in the metric defined by the norm).
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MoDULE No. 41

ExXAMPLES (NORMED SPACE)

» Euclidean SpaceR"
» Unitary SpaceC"
» Space I°

» Spacel”

» SpaceC[a,b]

Euclidean Space R’

This is a metric space and elements in R" s in n-tuples form,

X=(&,E, s &) where & e R, xeX
=l +t ]
L
:(gﬁrjz
Y =177 ceeeene 17,) where 7, e R
The distance function d(x,y)=|x-y]|

d(x, Y) =& [ + oot |, 1

Unitary SpaceC’

This is a metric space and elements in C"is in n-tuples form,

X=(&, & &)  where £ eC, xeX
N -

(Zer |
Y = (10 s evenerenns 7))  where n, eC

The distance function

d(x,y)=[x-y]

N
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Space!’
X=(&, & ),
Y =177 e )
1
IxI=| 25|
i=1
The distance function d(x,y)=[x-y]|
1
- Y
:(Z‘éi -] J
j=1
Space!”
xel”
The metric is given by X[ = sup‘gj‘
j

SpaceC[a,b] :
This is a space of all real valued continuous functions defined on closed interval [a,b]

The norm of the function is ||x| = rrga}x|x(t)| , with this metric space it is a norm space.

MODULE NoO. 42

UNIT SPHERE
» Unit Sphere
Unit Sphere
The sphere with center 0 and radius 1, S(0;1), this we define in R?, but in any metric space
Those points from x whose norm is 1. {xeX||X|=1,

In a normed space X is called the unit sphere. In norm space the collection of all those
points which are equal to 1 is called a Unit Sphere.

Let x| be a norm, and space is R?, the element in R*are x=(&,¢,)
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Example:
(i.e x=(2,-3), x| =|2|+|-3=2+3=5)

X =16+
Norm of (1,0) is 1, and similarly norm of point (0,1) is also 1.
Similarly for Norm of (-1,0) is 1, and also norm of point (0,-1) is also 1.

This norm is according to function  ||x|=|&[+|&,|,

for x=(1,0)

|L0)|=1+0=1

Another Example.

The norm is defined as |x| = ‘512 +§22‘% similar to equation of circle.

In unit sphere we have the condition that norm of x is 1, |x||=1

1=(&+& )}/2
1=E7+&)
Another Example.
The norm is defined as ||| =max (|&],|&,|) similar to equation of circle.

Suppose xeR? , such that x=(&,&,),
Let say x=(2,-3)
According to given condition,

|| = max(2|,|-3)) = max(2,3) =3
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Here the sphere is a square.

We have discussed only R? norm space and also its sketches, but it can be R", C"
or any other space like space of functions CJ[a,b].

When we defined different norm then the shape of the unit sphere is depends on the
norm define.

MODULE NO. 43

NORMED SPACES
» Subspace
Subspace (definition)

A subspace Y of a normed space X is a subspace of X considered as a vector space,
with the norm obtained by restricting the norm on X to the subset Y.

This norm on Y is said to be induced by the norm on X.
If Y is closed in X, then Y is called a closed subspace of X.
Subspace 1° :
A subspace Y of a Banach space X is a subspace of X considered as a normed space.

Hence we do not require Y to be complete.
Theorem :

A subspace Y of a Banach space X is complete if and only if the set Y is closed in X.
Convergence in Normed Spaces.

The metric function is d(x,y)=[x-y|
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For convergence we define as

i): A sequence (x,) inanormed space X is convergent if X contains an x such that
lim|x, —x| =0
X, =X, X limit of (x,)

Now this definition define for Cauchy sequence

i): A sequence (x,) inanormed space X is a Cauchy sequence if for every ¢ >0 there is
an N such that

[%,—x,| <& forall mn>N

MODULE No. 44
NORMED SPACES

» Convergence of Infinite Series
> Basis in Normed Spaces
» Completion in Normed Spaces (Theorem

Convergence of Infinite Series

A sequence (x,) is associate with a sequence of partial sum s, .

Sy =X F Xt X, Wwhere n=1,.......... :
If s, convergent, s, — s , then

Z Xi =X X+ Is also convergent.

i=1
if |s, —s| —0 then s, —s.

If we have following series

5| [ ||+ -ovvoveoe converges,

= Z X, absolutely convergent.
i=1

So , we have transform the convergence and absolutely convergence in term of norm.
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Basis:

In a normed space X is a Cauchy sequence if for every & >0 there is an N such that

Elements of basis of R"are e,€,,.....c........ ,&,, such that
e =000 ,0)
Y (. ,0)
€, =(0,0.crreeenee. 1)

Sometimes it is called Canononical basis of R".
Elements are spanning and are linearly independent.

Any element X =o€, + 2,8, +............ +a,e, inthe form of normis

[X— e + e, + e +a,e,|—>0
and if this condition is hold then we say that it is a basis in the norm space.
Theorem Completion:

Let X =(x,|]) be a normed space then there is a Banach space X and an isometry A

from X onto a subspace W of X which is dense in X .

The space X is unique, except for isometries.

MODULE NoO. 45

FININTE DIMENSIONAL NORMED SPACES

» Lemma (Linear Combination)

Lemma

Let {X, e , X,) be a linearly independent set of vectors in a normed space X (of any
dimension).

Then there is a number ¢>0 such that for every choice of scalars ¢, ..........c......... ,a, We have
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Proof:

Now we have two cases:

):  IfS=0
It means |¢;|=0 = ¢ =0 foralli=1,...., n
i): If S>0

(A — +a,%||>cS  as S>0so we can divide it

(A — +a,%

S
et B G P
S

S
m+ ............. +|a"|=1
S S

> Ip|-1
To prove B + ... + /3. %,| = ¢ We have to prove Zn:|/3’|i =1
i1
We do this by contradiction.
Suppose it is false that || 8x, +......... +Bx%[=c
So we can find a sequence (y,,) of vectors y, = "X +.....+ 8", such that
bl >0  as moser

as we suppose that [ Bx, +......... +Bx[<c
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so we will find values smaller than c.
S 2 (m) (m)
m)| _ m
25"=1 = a7
j=1

Thus for each fixed <,Bj(m)> - (ﬁj(l) +B% ... ) is bounded.

By Bolzano-Weisrtren theorem has a convergent subspace.

Forall j=1,2,............ §il

= < l(’“)>has converged subsequence say »™ convergesto

Y. :,6’1('“)x1 oot n(m)xn

Ym1 = 71(m)

This is also true for

ym 2 yz(m)x + j/z(m)x_'_’ """"" ’+ﬂn(m)xn
n n

Yon = 2.7, x; forall |y, ™|=1,
j=1 j=1

y\™ B as  moo

Yon 2 Y= 8%, With) g, =1 = all g, =0
-1

Using the linearly independence condition {xl, ......... : xn}are linearly independent.
This implies gx +......... +B.x,#0 = y=0
Nowy, , —y |Yma| =1y where || is continuous

Hence |y,||—0and y, ,is a subsequence of y, but we have supposed that y =0

Hym,n — 0= ”y” d y:0 N2 proved

Hence proved
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MODULE No. 46

NORMED SPACES
» Theorem (Completeness)

Theorem

Every finite dimensional subspace Y of a normed space X is complete. In particular,
every finite dimensional normed space is complete.

Proof:

Prove it yourself:

?31)/ To shw e QV“J }mlt dim wlslme. 7[) q
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ﬁ*} ‘N“h“) e | L) o covwc‘cg\"'
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Lo dimVzn P F for o s wh n-tlemed]

L fe,. eqy be awy bW for V.
L¥ L‘Ilm) be an ab h") Cauch) S9. in /:
\% - o((m |\l )
w - 'e"«LeL*"""NnC\,\
gmq \\L) Vs Cinc‘) : VS" );: d‘l),.).m q) C.\(‘B ch
go»« every £ o 1w st
“\6"" avll <& whin  MNSN

k) v
%v - °(|e,+-- 4+ o €n.
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MODULE No. 47

NORMED SPACES

» Theorem (Closedness)

As we have already proved that every finite dimensional subspace is complete and we
also know that a subspace is complete if and only if it is closed.

Theorem

Every finite dimensional subspace Y of a normed space X is closed in X. This result
is true for finite dimensional subspace but for infinite space it is not true.

Infinite dimensional subspaces are like C[0,1], I? are infinite dimensional normed
space which are not closed space. We use dense, limit points to prove this.

MODULE No. 48

NORMED SPACES
» Theorem (Equivalent Norms)
Definition

Anorm || on a vector space X is said to be equivalent to a norm ||| on X if there are

positive numbers a and b such that for all x € X we have
allx, <[] <[}x], b
This property should hold for every element x of vector space X.(a|x], read a times x not
norm).
If we prove about condition then we say that these two norms are equivalent.
Equivalent norms on X define the same topology for X.
Theorem (Equivalent norms)

One finite dimensional vector space X, any norm || is equivalent to any other norm |||,
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Proof:
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MoDULE No. 49

COMPACTNESS AND FINITE DIMENSION
» Lemma (Compactness)
Definition

A metric space X is said to be compact if every sequence in X has a convergent subsequence.
A subset M of X is said to be compact if M is compact considered as a subspace of X, that is
if every sequence in M has a convergent subsequence whose limit is an element of M.

Lemma (Compactness)
A compact subset M of a metric space is closed and bounded.

For close of M we show that M = M . Now we have to prove closed and bounded
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Conversely

In general the converse of this lemma is false.

Proof
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The above example is closed and bounded but not compact so the converse is false that a
closed and bounded metric space is not compact.

MODULE No. 50
THEOREM (COMPACTNESS)
» Lemma (Compactness)

In case of finite dimensional subset M is a compact set if and only if it is closed and bounded.
Here we prove both directions.

Theorem (Compactness)

In a finite dimensional normed space X, any subset M — X is compact if and only if
M is closed and bounded.
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Proof:

We have to prove that compact implies closed and bounded. This we have proved
already. Now we prove the converse only. We have to prove only compact (for finite
dimensional only).

Let M be closed and bounded, we need to show that M is compact (i.e. every
sequence in M has a subseq which converges in M).

Let it is finite dimension so, say n, asdim X =n and {e, +........... +e,} be abasis for X

Let (x,) be any sequence in M.

= =EMe +o+EMe
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MoODULE No. 51

COMPACTNESS AND FINITE DIMENSION

> F. Ries7’s Lemma

F. Riesz’s Lemma

Let Y and Z be subspaces of a normed space X (of any dimension), and suppose that Y
is closed and is a proper subset of Z, then for every real number & in the interval (0,1) there

isa zeZ such that
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|z-=y|z0 forallyeY
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2= ¢(v-)), P20 =l
MO 2 se ¥ geY
P Yz = o)A
= elle-) - €\
S-SR
S 26

MODULE No. 52

FINITE DIMENSION

» Theorem (Finite Dimension)
Theorem

If a normed space X has the property that the closed unit ball M ={x||x| <1} is

compact, then X is finite dimensional.
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COMPACTNESS AND FINITE DIMENSION

» Theorem (Continuous Mapping)
» Corollary (Maximum and minimum)
Theorem

Let X and Y be metric spacesand T : X —Y be a continuous mapping.

Then the image of a compact subset M of X under T is compact.
Proof:

By definition of compactness we need to show that every sequence (yn) in the image

T(M) Y continuous a subsequence which converges in T(M).

Now since y, € T(M), we have x, such that y, =Tx_,for some x, € M . since M is compact,

(x,) contains subsequence (x, )which converges in M.

T imaye g (o) is 8 shoqun g (4,
phd canprp in T(m)

c_m*‘.-ov V*\\ﬁ\jv} T

2 T s canped. o®
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Corollary (maximum and minimum)

A continuous mapping T of a compact subset M of a metric space X into R assumes a
maximum and a minimum at some points of M.

T:M->R
= T(M)cR
M -compact

T(M), .
(M) T —continuous

} by previous result
= T(M) is compact.

which means it is closed and bounded because compactness implies close and bounded.
= infT(M)eT(M), and sup T(M)eT(M)

Inverse image of these two points consist of points of M at which Tx is minimum or
maximum respectively. And that we have to prove.

MODULE No. 54

FUNCTIONAL ANALYSIS

> Linear Operators
In functional analysis if we define a metric on a set then it is a metric space and if we
define a norm on a vector then it is called a norm space. In mapping if we take a and b as
norms then we define a linear operator on the mapping and it should satisfied the certain
properties.

Operator

In the case of vector spaces and, in particular, normed spaced, a mapping is called an
operator.

Linear Operator
A linear operator T is an operator such that

i): the domain ZXT) of T is a vector space and the range R(T) lies in a vector space
over the same field.

i): forall x,y e D(T) and scalar «
T(x+y)=Tx+Ty also  T(ax)=aTx

By combining above two equations
T(ax+ BYy) =alx+ STy where « and £ are both scalar

T(X) =Tx s same.
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Some more notations.

ZXT) domainof T
Z(T) rangeof T
/MT) denotes the null space of T.

Null space are those element from the domain of T such that on which we operate gives the
answer zero. X € D(T) such that Tx=0

Also null space of T is similar to kernel of T.

Let D(T)c X and R(T) <Y, X,Y vector space.
(vector spaces can be real and complex spaces).

Then T is an operator from ZXT) onto Z(T), the notation is
T:D(T) > R(T), D(T) covers all range so it is onto.
Or XT)intoy T:D(T)—>Y R(M)cY
ifZXT) is the whole space X, then we write T: X ->Y
moreoverif we take « =0 = T0=0.

T(ax+ BYy) =alx+ STy where « and £ are both scalar

T is a homomorphism when it is a linear operator.

T:X —Y , wherewe have two kind of vector space, one vector space is X and other vector
space is Y. we apply operations on X and also operation on Y.These operation may or may
same on both vector spaces.

MoODULE No. 55

LINEAR OPERATORS

» Examples.
Operator is a mapping whose domain and range is a vector space. It is subset of vector space.
Below are different linear operators.

Identity Operator

Identity mean it operate on the same vector space. I, : X — X
= L(X)=x V xeX

= | (ax+ pBy) we have to prove
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Zero Operator:

O:X —>Ysuchthat Ox=0 V xeX
here the 0 on right side is belong to vector space Y.
Differentiation:
Let X be a vector space of all polynomials on [a,b]. A set of polynomial in denoted by x(t)
TxX@t)=x'(t) VWV x({t)eX

When we apply T on polynomial x(t) then x'(t) is also a polynomial. So this operatorT maps
X onto itself. There is no polynomial whose derivative we can’t find.

Integration:

Linear operator T for C[a,b] into itself can be defined by
t
TX(t) = [ X(z)dz

taar is justa variable and CJ[a, b] is collection of all continuous function on a and b.
Multiplication by t:
Let C[a, b] be a collection of continuous functions defined on a and b.

Tx(t) =tx(t)
This operator plays an important role in quantum theory of physics.
Elementary vector algebra:
Here we have different types of maps we have

T, : R® — R® cross product of two vectors is also a vector.
For cross vector we need two vectors. Then each element is also a vector.

T, =axX
Similarly for dot product:
Dot product of two vector is a scalar, so the map on real numbersR as

T,:R* >R

T,(X)=ax=aXx +a,X, +a,x, e R wherex e R’

For different map we fix a.
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Matrices:
We denote matrix by capital letter say A. whose elements are in rows and column.
A= (ajk)

Let with r rows and n column we define a linear operator which is

T:R" >R
Where R" ={(X, ..., X,) | X, € R}, in column form so that we use matrices multiplication
X
XI’]
rx1 rxn nx1
Y1 TR 2T | IR
such as say B
yn arl . arn Xn

For matrix multiplication number of first matrix column is equal to number of rows of second
column.rxn is a fix matrix

To check the linear condition we use

T(ax+ BY) = alx+ STy

Matrix multiplication satisfied this condition, hence this operator is a linear operator.

MoODULE No. 56
LINEAR OPERATORS

» Theorem (Range and Null space)
Null space is the collection of those elements from the domain on which we apply the
operator and the answer is zero.

Theorem
Let T be a linear operator. Then:

» The range R(T) is a vector space. (domain is also a vector space as discussed)
» If dimD(T)=n<o, then dimR(T)<n (dimension of domain vector space is

finite then range is equal or less than the dimension of domain or equal.
» The null space N(T) is a vector space.

The first two results are about range and third result is about null space.
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Proof: (a) R(T) is a vector space.

Y1, Y, € R(T)
= ay,+pYy, €R(T), where «,f are scalar

Since

Y. ¥, €R(T) and x,x, € D(T)
T:D(T)->Y

y,eTx , Yy, eTx,

Also domain of T “D(T ) is a vector space so, ax, + X, < D(T)this is by definition of
vector space.Since T is linear

T (ax + f%,)=a T + fTx, =a ¥, + BY, € R(T)
Here ax + fX,is domain and gives « y, + Sy, range of T.Hence R(T) is a vector space.
Part (b):

Basis should span D(T)and it should linearly independent. More one than condition is if n
element linearly independent then the elements other than n will be linearly dependent.
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Linear operators preserve linearly dependence.
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Part (c):

X, X, € N(T)
Tx, =Tx,=0

To prove it a vector space, we have to prove ax, + X, € N(T)
T (ax, + % )=a Tx + fTx, =a x0+x0=0

= ax + %, e N(T)

= N(T) is a vector space (proved)

MODULE No. 57

LINEAR OPERATORS

» Inverse Operators

Operator is a mapping whose domain and range is vector space.Particular in norm
space.There is also inverse mapping. For inverse operator the same condition is one-to-one
and onto. One-to-one means image of different elements is different. And onto means the
range covers all the set of domain. If these two conditions hold then we can define inverse
oprator.

Notations:
T:D(T) —Y is said to be injective or one-to-one if for any

X, X, € D(T)such thatx, # X, = Tx, #TX,

If we take counter inverse then ™ =TX, = X=X,
Now if T:D(T) — R(T) then there exists a mapping
T":R(T) —> D(T)
Y, = X, where vy, is any element of R(T)and X, is

element of D(T).i.e. Tx, =,

thismap T’ is called the inverse of T.
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-\ T. o~ D

A Y
TTx=x V xeD(T)
and TTy=y V yeR(T)

Inverse exist if and only if null space has only zero. There is only zero in null space

MODULE No. 58

LINEAR OPERATORS

» Theorem (Inverse Operator)
Theorem

Let X,Ybe vectors spaces, both real or both complex. Let T : D(T) —Y be a linear
operator with domain D(T) < X andrange R(T)c Y .then:

a): The inverse T':R(T) — D(T) exists if and only if Tx=0=x=0. (i.e null space has
zero elements).

b): If T’ exists, it is a linear operator.
c): ifdimD(T)=n<oc and T exists, then dimR(T) =dim D(T).
as there is if and only if condition so we have to prove in both ways.

a):

p—

KM) LQJ*‘ ]7\\'_07—;) lré‘ro—.

TR - DO
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Conversely let T exist which mean one —one and onto condition hold.

We have to prove Tx=0 if and only if x=0.
One-one means Tx, =TX, = X =X,, thisisgiven

Now if we have takex,=0 = x =0 Tx =T,=0, x =0

b): If T' exists, it is a linear operator.

We need to show that T "is a linear operator.We assume that T "exists and we need to show
that it is linear operator.

The domain of T is basically range of T and also R(T) is a vector space.
X, % D)=y, =Tx and y, =Tx,
Y =Tx = =T,
and y, =TX, = X, =Ty,
T is linear so for any scalar ¢ and S we have
ay, + BY, =aTx + fTx, =T (ax + BX,) - T is linear
Applying T on above we get
T'(ay, +BY,)=ax + fX,
Putting values of x, and X,
T'(ay,+BY,)=aTy, +ATY,
T 'is a linear operator
C): ifdimD(T)=n<o and T exists, then dimR(T) =dimD(T).
We have proved that dimR(T) <n <cowe know
dimR(T) <dimD(T) .....coenenes i
Conversely,
T:R(T) - D(T)
dimD(T) <dimR(T)....... ii

Combiningiandii  dimR(T)=dimD(T)
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If inverse exist then both dimensions are equal. That we have to prove.

MODULE No. 59

LINEAR OPERATORS

» Lemma(lnverse of Product)
Bijective mean one to one and onto. Here it means inverse of T and S exists.

Lemma
Let T: X —Y and S:Y — Z be bijective linear operators, where X,Y are vectors spaces.

Then the inverse (ST)™":Z — X of the product (the composite) ST exists, and
(ST)*=T7's™.

Diagram

(¢1)"! (37>

Q7.1 2 T

(s7)"

ol B
2-—4)( (ST) :Tg

Mathematically,
If S is bijective and T is bijective then ST is also bijective.

ST : X — Z bijective
= (ST) " exist.
It means if (ST)Y(ST) ' =1,
If S:Y >Z thenS'S=1,

SIST(ST) =57, =  T(ST)'=s"
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= TT(ST) =TS = (ST)*'=T77's™

MODULE No. 60

LINEAR OPERATORS

» Bounded Linear Operator
Norms spaces are generalization of distances.

Bounded Linear Operator (Definition):

Let X and Y be normed spaces and T : D(T) —Y a linear operator, where D(T) < X .
The operator T is said to be bounded if there is a real number ¢ such that for all x e D(T).

[l <[]
If this condition satisfied then we call T to be a bounded linear operator. Bounded

function mean range is bounded but here bounded set is mapping over a bounded set so we
call this a bounded linear operator.c is fix.

—|§c ,  xeD(T)-{0}

The smallest possible value of ¢ is supremum of left hand side. Then the value of c is called

C= sup ”T ” as| T norm = sup ”TX”
XeD(T) ||X|| XeD(T) ||X||

We call the value as T norm ¢= ”T”
If D(T)={0}, ||T|| =0
[Tx|
=|T|l= su
o= 28 b
I < [T ]

This is the formula that we use for bounded linear operator.

MoDULE No. 61
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BOUNDED LINEAR OPERATORS

» Lemma (Norm)

First we define the norm and then prove that the norm defined on T satisfies (N1) to (N4).

Lemma:
Let T be a bounded linear operator as defined before.

An alternate formula for the norm of T is IT||= sup |TX|
xeD(T

Ixl=t
The norm defined on T satisfies (N1) to (N4).
Proof:

[T < f}x|

T = = sup [T
o=~ s [l
Ix=2
We have to prove sup ” Al = sup |T¥|
XeD(T) ||X|| xeD(T)
(!
X
Let |x|=a; set =" x #0,
X
]
Iyj="2
—
xeD(T), a

x#0

as T is linear so, we take constant ainside the norm

1
= sup |Ty| as
yeD(T), a
Iyl

I
I
<

= sup HT (—x
xeD(T),
x#0

Here variable is y which can be any other.
Part a) of lemma is proved.

Part b):
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- s ™ _ sup v

e

N1:  |T||=0 is obvious.
N2: |T|>0 = T=0,
[T|=0 = Tx=0, V xeD(T) = T=0

NG: [T = st T =suple|[T| - lasup T =[] as supl|-]r]
=1

N4 [T+ T <[]+

IT,+T,| = sup ||(T +T,)X|
HXH 1

< sup|[Tx+T,x| < sup(||T X[ +[T, x||)

=L

- sl - eI

First we define a T xT norm and then prove the four properties of norm.

MODULE NoO. 62

EXAMPLES BOUNDED LINEAR OPERATORS

» ldentity Operator

» Zero Operator

> Differentiation Operator

> Integral Operator
Identity operator:

I: X > X = I, =x {x={0} normed space}

™ _ o M

1]|= sup = sup

as Tx=x
o [} sep x|

1]|= sup 1=1
xeD(T),
x#0

Zero operator:

The norm space O: X -»Y , O =0 Xxe X

X
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N
jol- wp”" ol =0

X

Differentiation operator:
This is defined on normed space of all polynomial on J=[0, 1]
x| = max{{xc@), <3}

Value of t varies from 0 to 1 and where the value is maximum, that maximum value is norm
of X.

applying operator the derivative. Differentiation operator is.
TX(t) = X'(t)
Derivation is itself a linear operator.

Now we check that it is bounded or not. [Tx(t)[ < c||x(t)|| . If it is bounded then what is the
value of c.

Let x (t)=t" neN ,whatisthe norm of x(t)
1%, ()] = max{|x(t)], te[0,1]}=1
Using operator Tx_(t) =nt"*

define the norm T, (©)] = max‘nt”‘1 =1

T, ()] = max(| nt"* :t e[0,1]) =n.1=n

™l n_. e
Xn
As n had no bound so, there does not exist any ¢ such that ” ” <c hold.

Now c is fixed number which does not depend upon N but in this case it depends on N, if we
take ¢ as n then next value n+1 will not satisfy this equation. It means that there does not exist

i L |ITx - L
any c that this condition u < ¢ holdhence derivative operative is not bounded.

]l -

Integral Operator

Defined as T : C[0,1] —» C[0,1] ,
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y=Tx y(t) :jk(t,r)x(r)dr

k is integral of T it is fix for different integral operator,

T is linear as integration is linear, also derivation is a linear operator same as integral is linear
operator.

K is continuous on J x J . We have two variables t and 7z , k(t, 7)
1
Whatever the value of k is, it should be in the square
k(t, 7)is bounded. And if it is bounded then
0 1

k(t, 7)<k,, t,reJxJ, k,eR where JxJis this square box.

[x(©)] < max|x(®) = x|

Now example, Iyl=[ = max

jkﬂﬂjxﬁjdf

1
< r?ee}x!|k(t,r)||x(r)|dr

<k, x|
]| < k, ||| it has k and k, is fix so integral operator is a linear operator.

MODULE No. 63

EXAMPLES BOUNDED LINEAR OPERATORS

> Matrix
Identity operator:
T:R">R"
ail ) aln é:l Xl
ar1 ) a'rn ‘fn Xn
rxn nxl rx1
A X =Yy
The entries are x=(&) , y=@)

And the matrix is A=(¢;), 1<i<r, 1<j<n



MTH 641 Functional Analysis

n = Zajkék
k=1

T is linear because the properties of matrices is it bounded?

1
SR
||x||:[2§rﬁ) . XeR"

1
r 2
and M-S [ vem
j=1
for bounded we have to check norm of T “T(x)”.
1
r 2
m={ S0
j=t
[T = > !
j=1
r n 2
2
I =3[ s
j=1 \ k=1

Where 7, =Zajk(§k
k=1

Cauchy Schwaz inequality on above ||Tx||2

5| (8] (82)

" <

N

2
} =||x||2[ » afk]
=1 k=1

Here is a ¢ which depends upon T.
We can write as

[T < f}x|

T is already linear and with this value of ¢ we can say matrices is a linear bounded operator.in
last four examples three are linear operator but differential was not linear operator.
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MTH 641
FUNCTIONAL ANALYSIS

MODULE#60To 113

(FINAL TERM SYLLABUS)

Don't look for someone who can solve your problems,
Instead go and stand in front of the mirror,
Look straight into your eyes,
And you will see the best person who can solve your problems!

Always trust yourself.

(BY ABU SULTAN)
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MODULE No. 60

LINEAR OPERATORS

» Bounded Linear Operator
Norms spaces are generalization of distances. By using Norm spaces we are going to discuss
Bounded Linear Operator.

Bounded Linear Operator (Definition):
Let X and Y be normed spaces and T : D(T) —Y a linear operator, where D(T) c X ..
The operator T is said to be bounded if there is a real number c such that for all x e D(T).

[T < cf}x|

If this condition satisfied then we call T to be a bounded linear operator. Bounded
function mean range is bounded but here bounded set is mapping over a bounded set so we
call this a bounded linear operator. c is fix.

™ . xeom-(o
IX|

The smallest possible value of c is supremum of left hand side. Then the value of c is called
]
C= sup ~— as
xeD(T), ||X||
x#0
We call the value as T norm
c=[T]

If D(T)={0}, |T|=0
TX
c=Ir- sup
ot ]
<[]
This is the formula that we use for bounded linear operator.

MoDULE No. 61

BOUNDED LINEAR OPERATORS

» Lemma (Norm)
First we define the norm (equivalent definition) and then prove that the norm defined on T
satisfies all four properties of Norm i.e. (N1) to (N4).

Lemma (Statement):
Let T be a bounded linear operator as defined before then an alternate formula for the norm of
Tis
[T]|= sup [Tx]

xeD(T)

I¥=1
The norm defined on T satisfies (N1) to (N4).
Proof: Part (a)

[l <cfix]
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c=||T|| sup M~ sup [TX|
Yo

We have to prove
Let [x|=4a; set Fg , X#0,

- s
g @

as T is linear so, we take constant a inside the norm
1
= sup [Ty| as—=y
D(T), a

T (1 x)
a ye )
Ivl=1

Here variable is y which can be any other. Part (a) of lemma is proved.
Part (b):

[T][= sup
xeD(T),
x#0

N1:  |T|>0 is obvious.
N2: |T|>0 = T=0,
[T|=0 = Tx=0, V xeD(T) = T=0

Ng: [T sup o] -supl[T] - lsuplT| -[elIT| e suplT] <[]
=)
N4: T+ T < [T+ [T
T, +T,| = sup (T, +T,)x|
e

< Sup|Tux+ Ty < sup([Tix] + T.x])

=L =L

=Sup x|+ supl[Tox| =T -+

First we define a T xT norm and then prove the four properties of norm.

MODULE No. 62

EXAMPLES BOUNDED LINEAR OPERATORS
> ldentity Operator
» Zero Operator
> Differentiation Operator
> Integral Operator
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Identity operator:
I:X—>X = I, =X {x={0} normed space}
1= sup M: supM as TX =X
ot [ et ¥
1| = sup 1=1
xeD(T),
x#0
Zero operator:
The norm space O: X =»Y , O, =0 Xxe X

|
[O]]= sup T=r=0 ", [0]=0
ot ]
Differentiation operator:
This is defined on normed space of all polynomial on J=[0, 1]
| = max{x0), ted)
Value of t varies from 0 to 1 and where the value is maximum, that maximum value is norm
of x.
applying operator the derivative. Differentiation operator is.
Tx(t) = X'(t)
Derivation is itself a linear operator.
Now we check that it is bounded or not. [Tx(t)| < c|x(t)| . If it is bounded then what is the
value of c.
Let x, (t)=t" neN , whatisthe norm of x,(t)

1%, ®)]| = max {|x(t)], te[0,1]}=1
Using operator Tx_ (t) =nt"*

define the norm [T, (©)]| = max nt™| =1

[T, (t)|| = max(| nt"* |:t €[0,1]) =n.1=n
M L ¢, neN
X 1

n

As n had no bound so, there does not exist any ¢ such that H < c hold.

Now c is fixed number which does not depend upon N but in this case it depends on N, if we

take c as n then next value n+1 will not satisfy this equation. It means that there does not exist

any c that this condition H < ¢ holdhence derivative operative is not bounded.
Xn

Integral Operator
Defined as T : C[0,1] — C[0,1] ,

y=Tx y(t) = j.k(t,r)x(r)dz'

k is integral of T it is fix for different integral operator,
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T is linear as integration is linear, also derivation is a linear operator same as integral is linear
operator.

K is continuous on J x J . We have two variables t and 7 , k(t, 7)

Whatever the value of k is, it should be in the square 1

k(t, 7)is bounded. And if it is bounded then

k(t, 7)<k,, t,reJIxJ, k,eR where JxJis this square box.

(0] < max|x) = ] 0 1

Now example, Iyl=(m( = max

j‘k(t,r)x(r)dr

1
< rrtlea}x.!|k(t,r)||x(r)|dr

<k, [x]
™| <k, ||| it has k and ks fix so integral operator is a linear operator.

MODULE No. 63
EXAMPLES BOUNDED LINEAR OPERATORS

» Matrix
Identity operator:
T:R" >R’
a, .- a, |l X
a, . a,| <, X,
rxn nx1l rx1
A X =y
The entries are x=(&) , y=@)

And the matrix is A=(¢;), 1<i<r, 1<j<n

= Zajkgk
k=1

T is linear because the properties of matrices is it bounded?

M-(Za] o oxew

1
r 2
and m-(S] o ver
=

for bounded we have to check norm of T “T(x)”.
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1
r 2
m-( )
X =3
j=1
r n 2
T’ = z(za,@k}

j=1 \ k=1
n
Where 1, => a, &
k=1

Cauchy Schwaz inequality on above ||Tx||2

2

r n 2% n 2% 2 n 2
<3 |[Sac (B ]| w55
j=1 k=1 m=1 j=1 k=1

[T <o <
Here is a ¢ which depends upon T.
We can write as

=

[T < cf}x|

T is already linear and with this value of ¢ we can say matrices is a linear bounded operator.in
last four examples three are linear operator but differential was not linear operator.

MoDULE No. 71
LINEAR FUNCTION (EXAMPLES):
> Space C[a ]
> Space I’
Space C[a b]:

We have define a linear function on space Cla blihat we have fixed an element &
from the set Jas t, € J . Now define a functional operator f(x) which is operating on x which
is element from C[a b]. xeC[a b]

This x is not a variable, it is a function. So f, which is defined on C[a b]linear asitisa
linear operator. f,is bounded. To find the norm

| =[x®)] <]

IX|=1 = |f]<1l..... (i)

If we take X, =1and substitute in this equation we get

RHESIE AR

O L P

” fl“ =1

So the function defined on C is linear, bounded and Norm is 1.
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Space I’
We choose afixsay a=(a;)el’
f(x)=> ¢, xel?, x=(&)
=1

This sequence is linear, converging and bounded.
For boundedness

1ol-{S 5| Slenl= (Se Sl - e

It is the same definition of bounded.
M of a complete metric space X is itself complete if and only if the set M is closed in X.

MoODULE No. 72
LINEAR FUNCTION:
» Algebraic Dual Space
» Second Algebraic Dual Space

» Canonical Mapping

Algebraic Dual Space
Set of all linear function defined on a vector space X is itself a vector space and called

Algebraic Dual Space and denoted by X*

Operation on this vector space are
1% Operation Sum
f,+1, f,, f, linear functional
(f.+f,)x=f(x)+f,(x) xeX
2"! Operation Scalar Multiplication
(af )x=af (x)

Second Algebraic Dual Space X

Space element Vector at a point
X xe X

X g f(x)

X" G 9(x)

For each x,g e X™
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We gc}

/
‘h(;) = QQ‘(H - f(u ,L;_;(’ Jixd

W.}* e s J«‘ml‘ ; ‘&\‘ \5 QM"” X,x'l

}X* ( *J‘ tp L) = (o* f 4 ML) W S

= ol -;‘(“'f{ify\” : % e X
) )
_ d%&;‘\f@.«v({v) e

Conical Mapping:

C: X — X™this mapping is called canonical mapping of X into X ™ defined as
X g,.

Clax+BY)(f) =0,z (f)

= f(ax+py)=af(X)+B1(y)=ag,(f)+B9,(f)

=a(Cx)(f)+B(Cy)(f)

So, this is a linear function as well. Canonical mapping is a relation between X and X ™.

MoDULE No. 73
LINEAR FUNCTION:
» Algebraically Reflexive
» Second Algebraic Dual Space
» Canonical Mapping

Isomorphism:
It is one-one and onto map.
Algebraically Reflexive:

T:(X,d) — (X,d)bijective

d(T,.T,) =d(x,y)

C: X > X"Xx—0,.

If C is surjective (on b) bijection. R(C) = X™

We call X to be algebraically reflexive.
Set of all linear function defined on a vector space X is itself a vector space and called
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MoDULE No. 74
LINEAR OPERATORS AND FUNCTIONAL ON FINITE

DIMENSIONAL SPACES:
Finite dimensions mean basis which have finite many elements.

Let X and Y bef.gfinite dimension vector spaces over the same field.
Let T: X —Y be alinear operator. letE ={e,,.......... ,€,}be the basis for X and

B={b,......... .0, }be the basis for Y.

T is uniquely determinal if the image y, =Te, of n basis vectors e,,.......... ,€, are prescribed.

Te €Y, Te =70 +7,0, +............. +7,b
r
Te, = z 7yb;
[

yzznjbj :Zé:kTek :kaszjbj
=) k1 P

Comibinig these two summation

y= i(irkjé:k jbj

=1 \_k=1
n

= sz,-fk
k=1

The image y=Tx=) b, of x=>_&Te, can be obtained from

n= kajégk
k=1

MoODULE No. 75

OPERATORS ON FINITE DIMENSIONAL SPACES:
Remarks:
As in the case of linear operators on a finite dimensional normed space, every linear
functional defined on a finite dimensional normed space is bounded and hence continuous.
Since for linear funcionals range is either R or C , which are complete. So X* as the space
of all bounded linear functionals defined on X, is also complete and hence is Banach space.
This is true even if X is not a Banach space.
“Algebraic Dual Space of X”’: set of all linear funcionals defined on X.
“Dual or Conjugate Space of X: X ™ set of all continuous or bounded linear functionals
defined on X.

We take algebraic dual when there is no condition of continuous or bounded linear
functions.
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Theorem:
Let X be an n-dimensional vector space and X"be its dual space. Then
dimX*=dimX =n.

X™is collection of linear functions or linear operator while X may be any space.

Proof:
Let dim X =n.
Let basis of X be B={e,,....c.......... &}
We define a function.
1 if i=]j
f_ =
‘(el) {0 ifi=jii,j=1., n
e.g.j=1, f(e)=11(e,)=0f(&)=0urrrcrn. ,f(e,)=0
j72,f(e)=0,f(8,)=1f(&)=0,ccecrurrrrrrcrns ,f(e,)=0

but each n-tuples f; in this case can be extended as linear functions on X.

MODULE No. 76

OPERATORS ON FINITE DIMENSIONAL SPACES:
Lemma(Zero Vector):

Let X be a finite deimensional vector space. If X, € X has the property that f(x,)=0

forall f € X* then x,=0.
B"is the basis of X~

{f, f .}
1 i=j
jfi(ei):{ . J-
0 1+ ]
Proof:
For all x,=0,

xO:Zn:xiei ; feX'
i=1

f(x,)=0 = if(ixieij:o

MoODULE No. 77

OPERATORS ON FINITE DIMENSIONAL SPACES:
Theorem(Reflexivity):
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A normed space X is said to algebraically reflexive if there is an isometric isomorphism

between X and X™.
Ordinarily a normed spacer may not be reflexive.

If X is an incomplete normed space even then X"and X" are Banach spaces. So in this case

X cannot be a reflexive space.

However there are Banach spaces which are not reflexive.
Theorem:

A finite dimensional vector space is reflexive.

Equivalently, A finite dimensional normed space is isomorphic space is isomorphic to its

second dual.

P{;{ LL*. x u. gi\mk A\MUM V\O\M SP“ % d,'m:w

and X}* be (b Seced G‘\u'
Y L
Foo ek w €X we + hes

)= 8w/
th\u zlr x*__)F g_‘_ Ff_‘-

[9,(h) =
s gl

X\'@xﬁ

o] 4ot J oo
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Y is Dines 9y x**
P (anpy) = KHW LYy X
= S (QF W
) L - LA
L? K1pD a« ) %) 2 *D

}a ¥ &)(*, %‘(Mb (;’) f-(‘*”k)) —_—
= & fiot Pﬂj)
c*%‘_(}’) TR a)\!-’
‘ng p =0 Py

gax+ﬂy = agx +ﬂgy
p(ax+py) = ap(X) + Be(y)

) T eche | =)
) (Q J ) " ( We l‘qy‘ L d'"‘
WA J K’)"X sk YW —Yl)) /E

2 Q= \y
@ %" °§>‘°?°P‘"J"
R fatipeeth = YK

V. Tap
=) adp & Y =o x
) ‘;“' 4'(3) co ?) ,t( (-Y) #o y ;é
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?) L) 2ere D

wy=e 9 (A

\f~oiv\m. \( X = X‘*
Yottt W o §RIO

Tt Nomeim lo ,)0"“- fR(\f): Xx"

Now b |/ Y =0 =) wzo D \p" exdl
2) ‘f; ?NJ—»X exot

9 {dn (Rt)) = dmx| by o s

SALERES -
diny sdin X"

“"’5"5 : 8 =) din X'z nx™”
X
2 odimi = dhim X = dhim X = dim (RY)

ohim LX“) v Ol""(? N)) — @
pr V.S o @/ <) Z’u) is Wt yrée sdyall 'X_f‘

R(p)=X™ @ is onto
X=X X reflexive

MoODULE No. 78

LINEAR TRANSFORMATION:

Q No.1:
Find the null space of T : R® — R?represented by

1 3 2
-2 10
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{1 3 2} ))((1 _[x1+3x2+2x3}
2 1 0| 2 | —2x+x
XS
2x3 3x1 2x1
What is meant by null space, it means we have to find those values of x e R®say

X = (X, X,,X;) such that we operate T the answer is zeros as

All those x are element of null space.

X, +3X, +2X, 0
{ —2X +X, }:{0}
Also we can also say that
X, +3X, +2%, =0
2% +X, =0
We can solve it by using any linear algebra method that will give us solution like echelon

form or reduced echelon form and the base of that solution is called basis of null space. Basis

mean when apply the element of R*the answer should be zero and get a system of linear
equation. Find the solution of this system of linear equation. And after finding the solution
find the basis that basis are basis of null space.

Example.

Q.NO2

Find the null space of T :R® — R%defined by (&,&,,&,) <> (£.6,,—¢, - &)

1) Basis of R(T)
2) Basis of N(T)
3) Matrix representation.

MoDULE No.79

EXERCISES
DUAL BASIS
Example 1:
a):  Find the dual basis of X when basis of X are B ={(1,-1,3),(0,1,-1),(0,3,-2)},
Find B" =2, X" =?do it yourself
b): let {f, f,, f.}be basis of dual space for X and if X is given by

e=@111), e,=(11-1), e=(1-11)
Find f,(x), f,(x), f;(x) when x =(0,1,0)

MODULE N0.80
NORMED SPACES OF OPERATORS
e Examples of Dual Spaces

e R"
Isometric Isomorphism
A linear operator ¢: X —Y. X,Y normed spaces, is said to be Isometric Isomorphism if



MTH 641 Functional Analysis - by ABU SULTAN

¢ isbijective.
¢ preserve norms.
That is for any
xe X, [00]=x]is
MoODULE No.81

EXAMPLES SPACES OF OPERATORS

e Examples of Dual Spaces

o |!
Space I*
The dual space of 1" is I” means that it is bijective, it is linear and it preserve norm.

After defining the map we shall prove these properties one by one.
Proof:

MODULE No0O.82
BOUNDED LINEAR OPERATORS

Quiz: Complete norm spaces are called Banach spaces.

Theroem

LetB(X, Y) be the set of all bounded linear operators form a normed space X to a normed
space Y.

If Y is a Banach space, then B(X, Y) is also a Banach.

Proof:

Let {T,} be an arbitrary Cauchy seq. in B(X,Y).
We will show that {T, } converges to an operator T in B(X, Y).Since{T, } is Cauchy for every
£>0 3 N suchthat [T, -T,| <& (m,n>N)
Forall xe X and (m,n>N)we have
[0 =T, GOl = (T =T 09
<[ =Tl < x|
Thus for a fixed x and given &
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)T =Tw | 2%l

JLw-Tek

o

n [Inl =4 - :
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(U e,
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Hence B(X, Y) is complete and Banach space.

MODULE No0.83

FINITE HILBERT SPACES
Functional analysis course consist of three major parts parts
1. Metric space is set and we define a space on it that has a certain properties. If it is
completer then it is complete space means it should converge within the space
2. Normed Spaces: Norm is a vector space and we define a norm on vector space. Norm
is a generalization of distance function.
3. Finite Hilbert Spaces (Inner Product Space)
Hilbert Space

Quiz: Complete inner product space is called a Hilbert Space.

In inner product the generalization is dot product.

Inner product Space

Let V be a vector space over a field F where Fis R or C .

An inner product in V is a function <.,»>:V xV — F satisfying the following conditions:
Quiz:

Let X,y,zeV ; a<Fwhere « may be real or complex.

i <XX>2>0; <x,x>=0 <x=0
<ax,y>=a<XYy> ;butnottrue for second value as <x,ay>*a<Xx,y>
<X+Y,Z>=<X,Z>+<Y,Z>

ii.
iii.
iv. <X Y>=<Y,X>

<o, o>V XV > F inner product.

Inner Product Space

The pair +<**>)is called an inner product space.
a): <ax-+hy,z> where Xx,y,zeV , abeF
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Using (iii) property <ax+by,z>=<ax,z>+<by,z>

Using (ii) property a<xz>+b<y,z>

<0,2>=<0xX,2>=0<X,2>=0

b):  Quiz:

for all X,yEV , aeckF

<Xx,ay >=<ay,Xx>=a<y,X>

=a<y,Xx>=a<Xxy>
MODULE No0.84
CAUCHY SCHWARZ INEQUALITY

Theorem:

For any two elements x,y is an inner product space V,

l<xy>[<|x]-|y] , the define norm is x| =< x,x> , xyeV
Proof:

If x=y=0 then 0=0

Let at least one of x and y is not equal to zero

Let  |<x+Ay,x+Ay>>0 by definition
<X X+HAY >+ <AY, X+ Ay >
<X X+AY >+Y <Y, X+ Ay >

MoODULE No.85
NORM ON INNER PRODUCT SPACE

Theorem:

In an inner product space V, the function | . |:V —R* given by
X[ = 4/< X,y> xeV definesanormin V.

Proof:

N1:  |x|=0

Fora xeV, ||x||=4/<x,x>20 as <x,x>>0

N2:
|x|=0 o J<Xx>=0 < <xx>=0 < x=0
N3:  fax|=[e]x]
now |lax|=y<ax,ax> = ||aX||2 =< aX,ax>
2 —_ 2 2
= lax|” = aa < x,x >=|a| |||

Na eeyl<lvl v xyeV
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% + y||2 =< X+ Y, X+y>

=<X,X+Y>+<Y,X+Y>

=< X+ Y, X>+<X+Y,Y>

S<KX>H<SY,X>H<S X, Y >+<Y, Y >

=<K X>HSY,X>+<X, Y >+<Y, Y >

NOwW =<X,X>+<X,y>+<X,¥Yy>+<Y,y>

:||x||2 +2Re <X, y>+||y||2 " Re(2) <|¢|

<[x"+ 2k xy >[+[y

<[x|" + 2]yl + v = l<xy>[< K]

= (x| +yl)

[x+yI" <[+l

MoODULE NO.86

PARALLELOGRAM LAW

A B
AC +BD’ =2(EZ+E2) Quiz
Theorem:
eyl + ey =2( +[yIf)  foraiixy @ c

Proof:
|+ y||2 =< X+Y,X+Yy>
=<K XS H<K Y > HSX, Y >H<Y, Y >
:||x||2+2Re<x,y>+||y||2 N (
Replace y=-y

||x—y||2 =< X+Y,X+Yy>

=<XX>—<X, Y >—<X,Y>+<Y,y>
:||x||2—2Re<x,y>+||y||2 ..... (ii
Adding (i and (ii
v+ x =yl = 2" + 2]y
That we have to prove.
Special Case:

Another result from above equations is
Subtracting (ii from (i

%+ y||2 —[x- y||2 =4Re<X,y>
If V is a real inner product space
Re(z)=z or Re<x,y>=<x,y>

1
<xy>={lx vl eyl
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The above form is when V is a real inner product space not complex space.
MoODULE No.87
> POLARIZATION IDENTITY
» APPOLONIUS IDENTITY
Polarization Identity
For any X, y in complex inner product space
<xy>= g fhe v~y il i i

We have to prove this complex inner product space.
Proof:

Let XY€Y
X+ y||2 =< X+ Y, X+Yy>

:||x||2 +2Re<X,y> +||y||2

=[IX|*+ <%,y > +<x,y > +|y[
=[x +<xy>+<yx>+y . (i
If we replace y=-y

% + y||2 = ||x||2 F<X,—Y >+ <Y, X> +||—y||2

: ST (ii
=[x[" - <xy>—<y,x>+|y|

Replace y =iy ineq(i

X+ iy||2 = ||x||2 + <X, iy >+ <iy, x> +||iy||2

:||x||2 F <X, y>+H <y, X> +||y||2 ||iy||2 =<iy,iy>=iil <y,y>=-i’<y,y>

=||x||2—i<x,y>+i<y,x>+||y||2 ...... (iii
Replace y=—iy ineq(i
% - iy||2 = ||x||2 + <X, -y >+ <—iy, x> +||—iy||2
=||x||2+i<x,y>—i<y,x>+||y||2 ...... (iv
Subtracting (ii from (i
[x+ y||2—||x—y||2=4Re<x,y> ....... (v
Subtracting (iv from (iii
||x+iy||2 —||x—iy||2 =2{i<y,x>-i<xy>}
=-2i{<x,y>-< y,x>}=—2i{< x,y>—<x,7}
==2i2I))Im<x,y>=4Im<x,y> ... (vi
Now we solve 4Re< X,y >+4Im< X,y >

x4yl =x =yl +ilx+ vl =ifx=y[ =4{<x y >}
Appolonius Identity
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2

, X, y,z2eV

1 1
o=+l =2x-yF 422 -2 (x+)

Using parallelogram law
[+ +x =y =2x[ +2y" put  x=zx y=zy
Self-assignment

MODULE NoO.88
» SPACE c[o,%}

» SPACE I’
Counter example 1: Spacec{o,ﬂ

Inner product define a norm and under this norm

Every inner product space is a norm space.

Every norm space is not an inner product space. This is not true always.

If a space is inner product then it satisfied the parallelogram law otherwise it is not an inner
product space.

We take a norm and built an inner product space and then prove that this inner product space
does not satisfy the parallelogram law.

The given setis C {O%} real valued continuous function defined on CJa, b].

The norm of function f eC {O%} , 1S

[ ¥]]= Sup_|f ()

XE[O,E
Let f,gec[o,ﬂ; f(t)=sint, g(t)=cost

We know that sin and cos are continuous functions. Let C [O%} is an inner product space

where the inner product <e,«>define by

Ifl=J<f.f> = <f f>=|f[

[ £ll= Sup [f ()

)(EI:O,z
2

[f+al +[f -l =2| " +2]a|f
As f(t)=sint, g(t)=cost

[ ¥]]= Sup [sin(:)|=1=[g]

XE‘:O,E
2
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[ f+9]= Sup |f(x)+g(x)

03]

= Sup [sin x+cosx|=+2
XE[O,%}
|f-gf=1
Now
[ +gf +]1f —al =2[ £ +2]g|f
(V2) +@? =2x2% + 2x12
2+1=2+2
3=4

But 3+ 450 our supposition is wrong. This inner product space does not satisfied
parallelogram law. Hence every norm space is not inner product space.

Counter example2: Spacel®

I” Collection of all bounded sequences,
P >1 P = 2if p=2 then it will give inner product space

0 =S

We will see that < x, x >= ||x||2 is an inner product space or not. We will check this if it

satisfied the parallelogram or not.
Let
x=@110,0,........) ; y=@1-10,0,...........)

1
IX|=¥2° +2° +0+0+... = §2 =2°

1
Iy =3 +(-1)° +0+0+.... =42 =2°

%+ v+ x =i = 2]+ 2]y
1 1
22+22=2x 2P +2x 2P
2
8=4x2" asp>l,p#2
The values on both sides are also not equal so this does not satisfied the parallelogram law.
Contradict to our supposition. So norm space is not an inner product space.
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MoODULE No.90
> THEOREM (CONTINUITY OF INNER PRODUCT)
Theorem:
Let V be any inner product space. For any sequences {x,} and {y,}inV
X, =X, Yy,—>y implies<x,y,> — <Xy>
Proof:
<X, Y, >—<XY>|
=[< X, Yy > = <X, Y>+H<X, Y > —<X, Y >
=< X, Yy — Y > <X, =X Y >
<|< Xy, Yo = Y > H][< X, =Xy >
Now from Cauchy Swarzinequality
[y <[X[Iv]
<[xalllya =Y+ x, =iyl
Giventhat X, >x , y,—>Y S0,

Iy, =Yl=ly-y[|=0 . |x.,—x|=[x-X|=0 asn—o0
AS n—>oo

<X, ¥, >—<xy>[<0

<X, Y, ><X,Y> as N—>o
Theorem:

If {x,} and {y,}are Cauchy sequences in V, then the inner product < x,, y, >is a Cauchy
sequence in F.
Proof:

{x,}.{y,} are Cauchy sequence
To show < x,, Y, >is also Cauchy Sequence.
= 1% =%.]=0 5 ||Ya=Yu]| >0 mn—ow
<Xy ¥ > = <X Y > E[< X0 Yo > = < X0 Yo >+ <X Y > — < Xy, Vi >
=[<Xy0 Yo = Y >+ <Xy = Xy Yoo >
<< Xy Yo = Yoo < X =X, Vi >|
<Xl = Yl + %0 =X 1Y
= <X, ¥y > = <Xy Y > —0, @8 nm—>o0
= <X,,Y, >is a Cauchy Sequence
MoDULE No.91
Examples of Inner product spaces
» SPACE R’
» SPACE C"
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» SPACE ([a,b]

» SPACE]I

> SPACE P, (Collection of all polynomials of degree n)
Proof:

1. R" the elements are of the form

The inner product form is <X,y >= in Y, (Note: check all axiom self-assignment)
i=1

The Norm is x| =< X, x> = \/Zn:xixi = \/Zn:xiz
i=1

i=1
2. c"
The elements are 2=(2,Zy,ccen.. z,) ;7' =(2,25,.n... ,2;) if conjugate does

15n

not define then it does not satisfied the second or third axiom of inner product space.

The inner product form is <z,7'>= Z z E’i (Note: check all axiom self-assignment)
i=1
3. ([a,b]be the space of all continuous function defined on [a, b].

b
<f,g >:J. f (t).g(t)dt define an inner product on Cla, b]

(Note: complex function can also be including. In previous example the C[a, b] was not inner

product space with define function definition).
<o, o>V XV > F
We will check all four properties of inner product as
i): <f,f>=0 <« f=0
i): <f+g,h>=<f,h>+<g,h>
i) <af,g>=a<f,g>
iv):  <g,f>=<f,g>
it define inner product and is define inner product space.

4. |"is a space of sequences.
12 x{x}
The condition or norm is

S %[ <oo
i=1

Let defined the inner product of y ={y,}is

<x,y>:§:xiyi

i=1
Checd all four axioms as exercise for inner product.
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5. P,
Let P, be the collection of all polynomial of degree n(or less than n).
We can write thisas  a x"+a, ;X" +...+ax+a e.g3x*—2x+1 of degree two.
Let  u(x),v(x)eP,
The inner product is

<U().v(9) >= [Lu(v(dx , x<[a,b]

with this define P, is an inner product space.

We have not defined conjugate of v(x) as the interval defined is a real valued so its conjugate
is also real valued.

MODULE NoO.92
Orthogonal Systems

» PYTHAGOREAN THEOREM
The dot product of two vectors when they are perpendicular is zero. Similarly in inner
product if two vectors are perpendicular then their inner product is zero.

Theorem:
In an inner product space V and x, y in V if x Ly then
[y =[x+ I
Proof:
|+ y||2 =< X+ Y, X+Yy>
TIXXSHSKYSHLSY,X>+<Y, Y >
As x and y are perpendicular so <X,y >=0,<y,x>=0
[y =< x x>+ <y, y>=[x[" + |y

Generalized form:

(X0 Xy v X, } be nonzero vectors in V inner product space such that
<x,X;>=0 , I ]
This system {X,, X, ,......... X, } is called orthogonal system as all vectors inside it are

perpendicular to each other.

The generalized statement is ||, +X, +........ T i Y i [y A

The idea of proof is

n 2 n n

zxi :<inizxi>

i=1 i=L =l

=< X F s X X F e +X, >

=< X, Xy e F X, > Feet <Xy X F +X, >
n n

=3 <X, X >
i=L j=1

<X X s=|x| , ifizj <x,Xx;>=0andfori=j then <x,x, >= x|
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2 n )
-3l
i=

MODULE No0.93

Orthogonal Systems
> THEOREM (LINEARLY INDEPENDENCE)

Any sequence {x,} of non-zero mutually orthogonal vectors in an inner product space V is
linearly independent.
Proof: do it yourself

n
D%
i=1

%) be the orthogonal sequence.

Remark:

i <X%>=0, Vi=l2.., n = <Zaixi,x>:0
i=0

<Zn:aixi,x>:<aixl+a2x2 FoF A X X) =3 (X X) F e, +a, (X,,x)=0
i=0
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MTH 641
Fpnstonal e

(MID TERM SYLLABUS)

THESE ARE JUST SHORT HINT FOR THE PREPARATION OF MTH
641

Don’t 1ook ior someone who can solve your problems,
Instead go and stand in front of the mirror,
Look straight into your eyes,
And you will see the best person who can solve your problems!
Always trust yourseli.

A giit from Unknown o Juniors VU Mathematics Students
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MODULE NoO. 29

THEOREM (COMPLETE SUBSPACE);

Theorem:

A subspace M of a complete metric space X is itself complete if and only if the set M
is closed in X.

As this condition is if and only if so vice versa.From previous theorem we have
Theorem:

Let M be a nonempty subset of a metric space d(X,d) and M its closure as defined
before then,

a): x e M if and only if there is a sequence (x,) in M such that x — X .
b):  Mis closed if and only if the situation x, e M, x, — x implies that xe M .

Proof:
Let M is subspace of X over d is then (X,d)complete.
M < (X,d),
M is complete if and only if M is closed, and M is closed if and only if
M=M.
Now we can say that
Mc(X,d)eM=M.
Suppose M is complete and we need to show that M =M .
Now by definition M — M . Now we need to prove that M — M (to be proved).

“Let M be a nonempty subspace of a metric space d(X,d) and M its closure as
defined before then,

From the part “@” of previous theorem
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x e M if and only if there is a sequence (x,) in M such thatx, — X .

Now xe M

As M is a subspace of a complete metric space d(X,d) and X, is also in X so,

= there is a sequence (x,) in X such that X, —>X.

n

Since every convergent sequence in a metric space is Cauchy, then (x,) is Cauchy.
Our supposition is that M is complete. So, (x,) converges in M
= X, > XeM
= McM
we start from x e M and obtained x e M
= M=M
Hence M is closed.
Conversely:
M is closed
= M=M
and we need to show that M is complete.

For this we need to show that every Cauchy sequence in M converges in

M, xeM

Let (x,)be a Cauchy sequence in M such that x, — X,

By the previous theorem xeM

but M=M =  XxeM
Since (X,) is an arbitrary sequence,

= true for all Cauchy sequences in M,

Hence proved
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MobDULE No. 30

THEOREM (CONTINUOUS MAPPING):
Theorem:

A mapping T: X —Y of a metric space (X, d) into a metric space (Y,d) is
continuous at a point x, € X if and only if x, — x,implies Tx, - Tx, .

Proof:
Suppose T is continuous, we will prove that if x, — X, implies Tx, > Tx, .

T is continuous means T : X =Y

agiven ¢ >0 there exist 6 >0 such that
d(x,x,) <5 d(Tx, Tx)<e¢

So, let x, — x, there exista N such that for all n>N we have
d(x,, X,)<o

Thisis 6 of convergence.
d(Tx, Tx,)<& , n>N

By definition X, = TX,

Converse:

Let x, — x, implies Tx, - Tx, forall x, .

We have to show that T is continuous by contradiction.

We suppose that it is not true then there is an & > 0 such that for every & > 0 there is some
X # X, such that

dix,x,)<6 =  d(TxTx)=¢

: 1 1
In particular 6 == d(x,x,) <=
n n
= X, —> X,
= Tx not = Tx,

=X d(Tx,Tx,) > ¢
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MODULE No. 31
EXMAPLES (COMPLETENESS):

> R

We will show that R and C are completes. In this module we show only that R is a complete

metric space which means every sequence in R is convergent in R and every Cauchy
sequence is convergent.

Lemma a:

Every Cauchy sequence in a metric space is bounded.

This is for every metric space.
Lemma b:

If a Cauchy sequence has a subsequence that converges to X, then the sequence
converges to X .

Proposition:
Every sequence of real numbers has a monotone subsequence.
Proof:

Suppose the sequence {x,}has no monotone increasing subsequence, we will show
that it has a monotone decreasing sequence. The sequence {x,}must have a first term, say X,
such that all subsequent terms are smaller

n>n means that n comes after n,, = x, <X, .
Otherwise, {x,} would have a monotone increasing subsequence.

Similarly, the remaining sequence {X, , X, ........ }it must have some first term.

Let first term of remaining sequence is x, , Now this x, is lessthan x,, X, <X, .
Now we take the remaining sequence {X, ........ }, whose first term is x, , now this x, <X, .

Hence this process will continue Xo > Xo, > X, ,

and is a monotonic decreasing subsequence.
We have proved that every sequence of Real numbers has a monotone subsequence.

Now using lemma a, b and proposition we have a theorem.
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Theorem:
R is a completer metric space, i.e., every Cauchy sequence of real numbers converges.
Proof:

Let {x,}be a Cauchy sequence.

Remark a implies that {x,}is bounded. Now if the given Cauchy sequence is bounded
then its subsequence is also bounded.

Every subsequence of {x,}is bounded.
Also {x,}has a monotone subsequence.Now {x_} is monotone as well as bounded.
Monotone Convergence Theorem:

If a sequence {x,}is monotone and bounded this implies that it is convergent.

This implies that subsequence is convergent. Now using remarks 2 if we have a Cauchy
sequence has a subsequence is convergent than the original sequence will also convergent.
{x,}is convergent. As this general sequence {x }from R so, every Cauchy sequence from

R is convergent which means thatR is complete.

MODULE No. 32

EXMAPLES (COMPLETENESS):
> R"
Here we prove that R"is complete
Example:
The Euclidean space R"is complete.
Proof:

LetR", the elements of R"are n-tuples say

The distance function in R"is

d(x,y) = /(@ —b)> + (@ ~b,)* +....t (8, —b,)?
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Let {x.}be a Cauchy sequence in R"

m)

x =@™,a",.. a™)
(ie.

x =(@,ad, ..., a)
X =(a?,a?,.......... a®?)

X =(@",a",.....e. a")

The distance function is

2

d(x,,x) =\/(a1('“) —a"?+@"-a"Y +..+@"-a")Y < ,  Vmr>N
Taking power two, we have
(8" —a) + (& —al) +...t (@7 —a)’ < &

(M _ a(0y2 _ .2
(@j" —aj") <&,

‘agm)—ag”<g, vm,r>N, j=12,...n

For a fixed | (a}l) + a}z’ S T )is a Cauchy sequence, this implies it is converging in R

because R is a complete metric space.

— agm) —>a§r), m-—o, a eR, j=12,....N

(m)
8  —a
a™ —>a,

a™ —>a

All these values a,,a,,......a, called X, Asx=(a,a,,.......a,) € R"

= d(x,,x)<¢, r—->o, X, —>X
= x isalimitof (x_) ,
= (x,,)was general element

= R"is completer
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MODULE NoO. 33
EXMAPLES (COMPLETENESS):
> ([a,b]

Here we prove that C[a,b]is complete metric space
Example:

The function space C[a,b]is complete; here [a,b]is any given closed interval on R

Let (x,) be any Cauchy sequence in Cl[a,b].
The metric space in C[a,b]is

d(X, y) = max,, , |X(t) - y(t)| . where [a,b]=]

There is an N such that for all m,n>N

d(X,,X,) =max,,

X, (1) —x, ()| <&
Hence for any fixed t=t, € J
[ (t) =, (t,)| < &
= X () X (ty )y e is a Cauchy sequence of real numbers and R is complete.
= sequence converges X (t,) = X(t,) as m —> oo
In this way to each t € J, a unique real number x(t). This definespointwise function on J.

Now we well show that x(t) e C[a,b] and x, — X

max,., | X, () = x(t)| < &
We are comparing with max,_; |X,, (t) — X, (t)| <e, as n— o
= forevery teJ X, () —x(t)| <&
= X, (t) converges to x(t) uniform;

If a sequence (x,) of continuous function on [a,b] converges on [a,b] and the
convergence is uniform on [a,b], then the limit function x is continuous on [a,b]

= X(t) is continuous on [a,b]

= X(t) e C[a,b] .
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MoDULE No. 34

EXMAPLES (COMPLETENESS):
> 1~
Here we prove that 1”is complete metric space

Example:

The function space 1~ is complete; here [a,b]is any given closed interval on R

Proof:

Let (x,) be any Cauchy sequence in |”such that

In 1”the elements are of the form

X=(a,8,,......) = ‘aj
y=(b,b,,..), = b,
The distance or metric function is
d(xy) =supla, ~b)
Here x. =@™,a", ... ), as
X% =@, ...,
x, =(@?,a?,.....) soon
For any g>0, there exist N such that for all m,n>N.
d(x,,y,) = Sjﬂﬁ‘aﬁm) —b{"
So, if sup < ¢ for a fixed j
‘a}”"—aﬁ”) <¢ , mnx=N
= for every fixed j, the sequence (af”,a!”,

numbers R .

Since R is complete, a{™ is convergent in R .

) is a Cauchy sequence of real

a” —>a eR as m-oow forj=12,....
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For these infinite limits a,a,,.....c..cc....... suchthat ™ —a, ™ >a, ..
We define X=(8,8,,.ccrrenn. )eR
We need to prove X=(8,8,,.ccrene )el”
‘a}m)—aﬁ"’ <&
= lal™ —a| <& asn—oo . thenx, — X

From above inequality,
d(x,y) =suplai™ -a| <&

Which means X —X

m
Since X = (agm)) cl”

ai™| <k, forall

ol e
Sl el
<e+k,

= ajisbounded,  X=[a;|l”
MoDULE No. 35

EXMAPLES (COMPLETION OF METRIC SPACES):

» Space Q
» Space of Polynomials
» Isometric mappings/spaces

here we prove that 1” is complete metric space
Isometric Mappings:
Let X =(X,d) and X=(X,d) be metric spaces.

A mapping T : X — X is said to be isometric or isometry if T preserve distance.

Preseve distance mean after applying the mapping the distance is preserve, i.e. for all
X,yeX

d(T,.T,)=d(x,y)
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Isometric Spaces:

The space X is said to be isometric with space X if there exist a bijectiveisometry of
Xonto X .

X and X are then called isometric spaces.

Theorem(Completion)

For a metric space X =(X,d) there exists a complete metric space X =(X,d) which

has a subspace W that is isometric with X and is dense in X .

This space X is unique except for isometries, that is if X is any complete metric

space having a dense subspace W isometric with X, then X and X are isometric.

MODULE No. 36
VECTOR SPACE
Definition:

A vector space (or linear space) over a field K is a nonempty set X of elements
XYoo oneeniniaienes (called vectors) together with two algebraic operations.

These operations are called vector addition and multiplication of vectors by scalars,
that is, by elements of K.

Vector Addition associates with every ordered pair (X,y) of vectors a vector x+y,
called the sum of x and y, in such a way that the following properties hold

Vector addition is commutative and associative.

There exists a vector 0, called the zero vector, and for every vector x there exists a
vector —x, such that for all vectors.

Vector Space
X+0=x
X+(-x)=0

Multiplication by scalar associates with every vector x and scalar « a vector ax (also
written xa ), called the product of « and x, in such a way that for all vectors x, y and scalar
a, [ we have

a(fx) =(af)x or 1x=X

and the distributive laws hold.
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MoODULE No. 37

EXAMPLES(VECTOR SPACE)

» SpaceR"

» SpaceC"

» SpaceC[a,b]

» Spacel’

1. Space R"
X=(&, e E), &eR
Y= (e, ), meER
Addition:

XHY= (& + 17, & +1m,)

scalar Multiplication:
letar be a scalar then

ax=(as&,....... ,as)

Now addition and scalar multiplication in R" is a vector space.

2. Space C'
Addition:
Let Y (N EY, &eC

Scalar Multiplication:

addition and scalar multiplication is same as in R", so C"is a vector space.

3. Space C[a,b]
Let xe([a,b] and ye(a,b]
where x and y are fucntions and operating on t

Addition:

(x+y)(®) =x(1) + y(t)
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Scalar Multiplication:

(ax)(t) = ax(t)

So under addition and scalar multiplication C[a, b] is vector space over a field R or C .

4. Space!’.

In this space we have sequences,if x €1? then X is a sequence, say

X= (&, E),  xel?
and Y= (T 1),  yel?
Addition:
X+Y=(&+m, 0. & +1,)

Scalar Multiplication:

ax=(a&, ... No78)

So under addition and scalar multiplication the space I? is vector space over a field R or C

MODULE No. 38
VECTOR SPACE

» Subspace
> Basis of a Vector Space

Subspace:

A subspace of a vector space X is a nonempty subset Y of X such that addition and
scalar multiplication are closed in Y.

Hence T is itself a vector space, the two algebraic operations being those induced from X.
Two Types of subspaces

» Improper Subspace: If the span of a subspace is equal to that vector space ;

» Proper Subspace: If the span of a subspace is not equal to that vector space
Linear Combination
A linear combination of vectors X, ......... , X, of a vector space X is an axpression of
the form
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Span of a Set:

For any nonempty subset M < X the set of all linear combinations of vectors of M is
called the span of M.

Written as “span M”.
Obviously, this is a subspace Y of X, and we say that Y is spanned or generated by M.
Linear Independence:

If two vectors have same direction and different in magnitude then on vector is
multiple of other which means that one is dependent to other.

If two vectors have not same direction then one vector is independent to other.
Mathematically:
linearly independent.
(D R 9 +C X =

if and only if all constant are zero

We call X, X,,.ccoveirenn. , X, linearly independent.

linearly dependent.
If vectors are dependent then their coefficients are not equal to 0 as

let

X1:2X2
= X, —2X,=0

Here coefficient 120 , so x, is dependent of X, .

Basis of a Vector Space:

As span of M is also a subspace, if the subspace (collection of vectors) is improper
subspace(means span of M is equal to that vector space) and linearly independent(coefficients
are equal to zero) then that particular subspace is a Basis of a VVector Space.

So, for basis the subspace have to improper subspace and linear independent.
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MODULE No. 39
VECTOR SPACE
Dimension (definition):
The number of elements in subspace of a basis is called dimension of that vector space.

» Dimension
I.  Finite dimensional vector space
ii.  Infinite dimensional vector space

Examples:
In R" space
Elements of basis of R"are e, €,,............. €,
e =(L0 . ,0)
e, =01 ,0)
e, =(0,0.cccnnn. 1)

Sometimes it is called Canononical basis of R" basis R".
Similarly in C"space n-dimension

Cl[a,b]is infinite dimension vector space because there is no finite set which can span
the set of function.

In 1%space, there are sequences, this is also infinite dimensional vector space.
Result :

Every nonempty vector space X #{0} has a basis.

Theorem:

Let X be an n dimensional vector space. Then any proper subspace Y of X has
dimension less than n.

Proof:
If n=0 this implies X={0}
There is no proper subspace. Hence we can’t continue.

If dimension of Y is zero.
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Dim Y=0
and X =Y Y={0}
{Y is proper subspace of X}
dimY <dim X
suppose dim Y=n
= Y would have a basis of n elements.

= that basis would also be a basis for X, as element in basis are same, they span
and linearly independent.

dim X=n when basis are same then X=Y

but it is contradict to our supposition as we suppose that Y is a proper subset of Xi.eY < X
which means X and Y are not equal.

= any linearly independent set of vectors in Y must have less elements then n.
= dimY<n

That we have to prove.

MoDULE No. 40

NORMED SPACE, BANACH SPACE

» Norm
» Normed Space
» Banach Space

Norm (definition):

A norm on a (real or complex) vector space X is a real-valued function on X whose
value at an x e X is denoted by ||| .

(This like the notation of mod but it has two vertical lines on left and right side.)

It has following properties:
i): x>0 (N1)
ii): [X|=0 < x=0 (N2)

Norm is equal to zero if and only if x=0. Length is always positive or zero but not —ve.
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iii): leex|| = |ex| ||| (N3)

if we multiply the length of norm with « (any number) then it will increase the length
of Norm o times.

iv): %+ y| < XI+(vl (N4) triangular inequality
if x and y are two vectors then their sum of Norms is equal to individual sum of their norm.
Norm metric:
A norm on X defines a metric d on X which is given by
d(x,y)=|x-y]| where X,y € X

and is called the metric induced by the norm as this metric depend on norm so we call it
metric induced by norm.

from the property  [[x+y]|<[x|+[}y]
we can write [IyI=Ixl<ly—x]

The norm is real valued function so it is continuous function. Continuous function
mean if we define norm on x then it will give us the value of norm x as

x—|x|
and this mapping is continuous and is mapped (X, |||) > R.

Norm is always a continuous function.

Norm Space:

A normed space X is a vector space with a norm defined on it.

A normed space is denoted by (X, ||||) or simply by X.

Banach Space:

A Banach space is a complete normed space, (Complete in the metric defined by the norm).
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MoDULE No. 41

ExXAMPLES (NORMED SPACE)

» Euclidean SpaceR"
» Unitary SpaceC"
» Space I°

» Spacel”

» SpaceC[a,b]

Euclidean Space R’

This is a metric space and elements in R" s in n-tuples form,

X=(&,E, s &) where & e R, xeX
=l +t ]
L
:(gﬁrjz
Y =177 ceeeene 17,) where 7, e R
The distance function d(x,y)=|x-y]|

d(x, Y) =& [ + oot |, 1

Unitary SpaceC’

This is a metric space and elements in C"is in n-tuples form,

X=(&, & &)  where £ eC, xeX
N -

(Zer |
Y = (10 s evenerenns 7))  where n, eC

The distance function

d(x,y)=[x-y]

N
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Space!’
X=(&, & ),
Y =177 e )
1
IxI=| 25|
i=1
The distance function d(x,y)=[x-y]|
1
- Y
:(Z‘éi -] J
j=1
Space!”
xel”
The metric is given by X[ = sup‘gj‘
j

SpaceC[a,b] :
This is a space of all real valued continuous functions defined on closed interval [a,b]

The norm of the function is ||x| = rrga}x|x(t)| , with this metric space it is a norm space.

MODULE NoO. 42

UNIT SPHERE
» Unit Sphere
Unit Sphere
The sphere with center 0 and radius 1, S(0;1), this we define in R?, but in any metric space
Those points from x whose norm is 1. {xeX||X|=1,

In a normed space X is called the unit sphere. In norm space the collection of all those
points which are equal to 1 is called a Unit Sphere.

Let x| be a norm, and space is R?, the element in R*are x=(&,¢,)
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Example:
(i.e x=(2,-3), x| =|2|+|-3=2+3=5)

X =16+
Norm of (1,0) is 1, and similarly norm of point (0,1) is also 1.
Similarly for Norm of (-1,0) is 1, and also norm of point (0,-1) is also 1.

This norm is according to function  ||x|=|&[+|&,|,

for x=(1,0)

|L0)|=1+0=1

Another Example.

The norm is defined as |x| = ‘512 +§22‘% similar to equation of circle.

In unit sphere we have the condition that norm of x is 1, |x||=1

1=(&+& )}/2
1=E7+&)
Another Example.
The norm is defined as ||| =max (|&],|&,|) similar to equation of circle.

Suppose xeR? , such that x=(&,&,),
Let say x=(2,-3)
According to given condition,

|| = max(2|,|-3)) = max(2,3) =3
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))()(‘” YA ( ,51’ l/?s ') T (7, ,L,)
\')(/\‘:l
\ -\2,73)
" [\ cv"“(}’g
' (l,o\ -
\
\ TR (3
< v i

Here the sphere is a square.

We have discussed only R? norm space and also its sketches, but it can be R", C"
or any other space like space of functions CJ[a,b].

When we defined different norm then the shape of the unit sphere is depends on the
norm define.

MODULE NO. 43

NORMED SPACES
» Subspace
Subspace (definition)

A subspace Y of a normed space X is a subspace of X considered as a vector space,
with the norm obtained by restricting the norm on X to the subset Y.

This norm on Y is said to be induced by the norm on X.
If Y is closed in X, then Y is called a closed subspace of X.
Subspace 1° :
A subspace Y of a Banach space X is a subspace of X considered as a normed space.

Hence we do not require Y to be complete.
Theorem :

A subspace Y of a Banach space X is complete if and only if the set Y is closed in X.
Convergence in Normed Spaces.

The metric function is d(x,y)=[x-y|
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For convergence we define as

i): A sequence (x,) inanormed space X is convergent if X contains an x such that
lim|x, —x| =0
X, =X, X limit of (x,)

Now this definition define for Cauchy sequence

i): A sequence (x,) inanormed space X is a Cauchy sequence if for every ¢ >0 there is
an N such that

[%,—x,| <& forall mn>N

MODULE No. 44
NORMED SPACES

» Convergence of Infinite Series
> Basis in Normed Spaces
» Completion in Normed Spaces (Theorem

Convergence of Infinite Series

A sequence (x,) is associate with a sequence of partial sum s, .

Sy =X F Xt X, Wwhere n=1,.......... :
If s, convergent, s, — s , then

Z Xi =X X+ Is also convergent.

i=1
if |s, —s| —0 then s, —s.

If we have following series

5| [ ||+ -ovvoveoe converges,

= Z X, absolutely convergent.
i=1

So , we have transform the convergence and absolutely convergence in term of norm.
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Basis:

In a normed space X is a Cauchy sequence if for every & >0 there is an N such that

Elements of basis of R"are e,€,,.....c........ ,&,, such that
e =000 ,0)
Y (. ,0)
€, =(0,0.crreeenee. 1)

Sometimes it is called Canononical basis of R".
Elements are spanning and are linearly independent.

Any element X =o€, + 2,8, +............ +a,e, inthe form of normis

[X— e + e, + e +a,e,|—>0
and if this condition is hold then we say that it is a basis in the norm space.
Theorem Completion:

Let X =(x,|]) be a normed space then there is a Banach space X and an isometry A

from X onto a subspace W of X which is dense in X .

The space X is unique, except for isometries.

MODULE NoO. 45

FININTE DIMENSIONAL NORMED SPACES

» Lemma (Linear Combination)

Lemma

Let {X, e , X,) be a linearly independent set of vectors in a normed space X (of any
dimension).

Then there is a number ¢>0 such that for every choice of scalars ¢, ..........c......... ,a, We have
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Proof:

Now we have two cases:

):  IfS=0
It means |¢;|=0 = ¢ =0 foralli=1,...., n
i): If S>0

(A — +a,%||>cS  as S>0so we can divide it

(A — +a,%

S
et B G P
S

S
m+ ............. +|a"|=1
S S

> Ip|-1
To prove B + ... + /3. %,| = ¢ We have to prove Zn:|/3’|i =1
i1
We do this by contradiction.
Suppose it is false that || 8x, +......... +Bx%[=c
So we can find a sequence (y,,) of vectors y, = "X +.....+ 8", such that
bl >0  as moser

as we suppose that [ Bx, +......... +Bx[<c
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so we will find values smaller than c.
S 2 (m) (m)
m)| _ m
25"=1 = a7
j=1

Thus for each fixed <,Bj(m)> - (ﬁj(l) +B% ... ) is bounded.

By Bolzano-Weisrtren theorem has a convergent subspace.

Forall j=1,2,............ §il

= < l(’“)>has converged subsequence say »™ convergesto

Y. :,6’1('“)x1 oot n(m)xn

Ym1 = 71(m)

This is also true for

ym 2 yz(m)x + j/z(m)x_'_’ """"" ’+ﬂn(m)xn
n n

Yon = 2.7, x; forall |y, ™|=1,
j=1 j=1

y\™ B as  moo

Yon 2 Y= 8%, With) g, =1 = all g, =0
-1

Using the linearly independence condition {xl, ......... : xn}are linearly independent.
This implies gx +......... +B.x,#0 = y=0
Nowy, , —y |Yma| =1y where || is continuous

Hence |y,||—0and y, ,is a subsequence of y, but we have supposed that y =0

Hym,n — 0= ”y” d y:0 N2 proved

Hence proved
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MODULE No. 46

NORMED SPACES
» Theorem (Completeness)

Theorem

Every finite dimensional subspace Y of a normed space X is complete. In particular,
every finite dimensional normed space is complete.

Proof:

Prove it yourself:

?31)/ To shw e QV“J }mlt dim wlslme. 7[) q

mowad Sphee f s complle
ﬁ*} ‘N“h“) e | L) o covwc‘cg\"'
in Y.
gmq ‘/ i5 ;M:)' J\vf\
Lo dimVzn P F for o s wh n-tlemed]

L fe,. eqy be awy bW for V.
L¥ L‘Ilm) be an ab h") Cauch) S9. in /:
\% - o((m |\l )
w - 'e"«LeL*"""NnC\,\
gmq \\L) Vs Cinc‘) : VS" );: d‘l),.).m q) C.\(‘B ch
go»« every £ o 1w st
“\6"" avll <& whin  MNSN

k) v
%v - °(|e,+-- 4+ o €n.

“ %F'Ail‘ = ”JZ ( N;.m.- r"{;ﬂjej ” <Z WJun my )N
L



MTH 641 Functional Analysis
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) R~ g

e b0 comesget Led i danke R Uik 4
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A
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MODULE No. 47

NORMED SPACES

» Theorem (Closedness)

As we have already proved that every finite dimensional subspace is complete and we
also know that a subspace is complete if and only if it is closed.

Theorem

Every finite dimensional subspace Y of a normed space X is closed in X. This result
is true for finite dimensional subspace but for infinite space it is not true.

Infinite dimensional subspaces are like C[0,1], I? are infinite dimensional normed
space which are not closed space. We use dense, limit points to prove this.

MODULE No. 48

NORMED SPACES
» Theorem (Equivalent Norms)
Definition

Anorm || on a vector space X is said to be equivalent to a norm ||| on X if there are

positive numbers a and b such that for all x € X we have
allx, <[] <[}x], b
This property should hold for every element x of vector space X.(a|x], read a times x not
norm).
If we prove about condition then we say that these two norms are equivalent.
Equivalent norms on X define the same topology for X.
Theorem (Equivalent norms)

One finite dimensional vector space X, any norm || is equivalent to any other norm |||,
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Proof:

Paty  HNZILL
V weX. a' 0b s
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\ X,
L0—+ J.’n Y?'), }el)"ae%u b | oy z
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MoDULE No. 49

COMPACTNESS AND FINITE DIMENSION
» Lemma (Compactness)
Definition

A metric space X is said to be compact if every sequence in X has a convergent subsequence.
A subset M of X is said to be compact if M is compact considered as a subspace of X, that is
if every sequence in M has a convergent subsequence whose limit is an element of M.

Lemma (Compactness)
A compact subset M of a metric space is closed and bounded.

For close of M we show that M = M . Now we have to prove closed and bounded

P“"b C[oa} <+ bde
’ L 5 iatkes ;:- Cvimy 15—0\’4 + 4
Seque (W) o sk

AN

“bm) Now M 4 cawlno‘ ( cardom QM/’{;

evey egnreyed 5*‘1‘)

- 1YeM
>)0ﬂ-,-[73¢”v\ \$ cﬂg"g

T.. F\(o« LZ’ow\c‘-/""’, &c/'p-x o c.n-\*uj &} ,} iy hﬁ'

bowndy. ») g wenl/ Cc-\*‘\"ﬁ u—\l)uwnu Sef. kl.‘\ e,

Ol(a“‘w)‘/)} WhAe )y i dk) fnJ b’d-\lJ

By 6. This LY. col) nt Ao a cmvt‘gﬂ' S“Lxrr'
* uw .
Sing @ cone(ed e ke boundd). Y
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Conversely

In general the converse of this lemma is false.

Proof

P)-\ au\no W cowi ﬂ Thiy Qtw‘" 3 f‘bd(
F‘g’x Wt hut’ 0’l> G COI&'J(" e‘“fl'
Congies 3. ey i W

/

R, z(1,s,0,) (e.\—,\gs)

Q - ( /IOJ
oy = ';‘
QB; (0/’}/'. '\J )&"
nd 2 8,’&0
Nw :.ef WJ L,u.d‘p l

el = (L/;

l'} dotr Wi Contrin ™ Qiwait

Mm=m =) (e,) ¥ (:')‘__l_

';) qmed -ti‘% 1§ W OIW"’{» ]’).nJ
) I b V‘-* Co¥V ey &us
=y nf C""yﬂc“'i

The above example is closed and bounded but not compact so the converse is false that a
closed and bounded metric space is not compact.

MODULE No. 50
THEOREM (COMPACTNESS)
» Lemma (Compactness)

In case of finite dimensional subset M is a compact set if and only if it is closed and bounded.
Here we prove both directions.

Theorem (Compactness)

In a finite dimensional normed space X, any subset M — X is compact if and only if
M is closed and bounded.
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Proof:

We have to prove that compact implies closed and bounded. This we have proved
already. Now we prove the converse only. We have to prove only compact (for finite
dimensional only).

Let M be closed and bounded, we need to show that M is compact (i.e. every
sequence in M has a subseq which converges in M).

Let it is finite dimension so, say n, asdim X =n and {e, +........... +e,} be abasis for X

Let (x,) be any sequence in M.

= =EMe +o+EMe

Svce M s loounddd 2 (L i loounolad
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MoODULE No. 51

COMPACTNESS AND FINITE DIMENSION

> F. Ries7’s Lemma

F. Riesz’s Lemma

Let Y and Z be subspaces of a normed space X (of any dimension), and suppose that Y
is closed and is a proper subset of Z, then for every real number & in the interval (0,1) there

isa zeZ such that

7] =1
|z-=y|z0 forallyeY

First part  |z| =1we prove as

Q*‘:ﬁ LY VE2-Y wid iy dishua
foe Y 5 €.
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\
Lt 2aclv-y) uh L'hTz{.\
Second part: |z—=y|=¢6 forallyeY

2= ¢(v-)), 21 =\
sl 1Z-W>e ¥ ye
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- cn(v'g:)_—ia\\
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=) A e’

- A V=40
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MODULE No. 52

FINITE DIMENSION

» Theorem (Finite Dimension)
Theorem

If a normed space X has the property that the closed unit ball M ={x||x| <1} is

compact, then X is finite dimensional.
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COMPACTNESS AND FINITE DIMENSION

» Theorem (Continuous Mapping)
» Corollary (Maximum and minimum)
Theorem

Let X and Y be metric spacesand T : X —Y be a continuous mapping.

Then the image of a compact subset M of X under T is compact.
Proof:

By definition of compactness we need to show that every sequence (yn) in the image

T(M) Y continuous a subsequence which converges in T(M).

Now since y, € T(M), we have x, such that y, =Tx_,for some x, € M . since M is compact,

(x,) contains subsequence (x, )which converges in M.

T imaye g (o) is 8 shoqun g (4,
phd canprp in T(m)

c_m*‘.-ov V*\\ﬁ\jv} T

2 T s canped. o®

T, = Tw
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Corollary (maximum and minimum)

A continuous mapping T of a compact subset M of a metric space X into R assumes a
maximum and a minimum at some points of M.

T:M->R
= T(M)cR
M -compact

T(M), .
(M) T —continuous

} by previous result
= T(M) is compact.

which means it is closed and bounded because compactness implies close and bounded.
= infT(M)eT(M), and sup T(M)eT(M)

Inverse image of these two points consist of points of M at which Tx is minimum or
maximum respectively. And that we have to prove.

MODULE No. 54

FUNCTIONAL ANALYSIS

> Linear Operators
In functional analysis if we define a metric on a set then it is a metric space and if we
define a norm on a vector then it is called a norm space. In mapping if we take a and b as
norms then we define a linear operator on the mapping and it should satisfied the certain
properties.

Operator

In the case of vector spaces and, in particular, normed spaced, a mapping is called an
operator.

Linear Operator
A linear operator T is an operator such that

i): the domain ZXT) of T is a vector space and the range R(T) lies in a vector space
over the same field.

i): forall x,y e D(T) and scalar «
T(x+y)=Tx+Ty also  T(ax)=aTx

By combining above two equations
T(ax+ BYy) =alx+ STy where « and £ are both scalar

T(X) =Tx s same.
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Some more notations.

ZXT) domainof T
Z(T) rangeof T
/MT) denotes the null space of T.

Null space are those element from the domain of T such that on which we operate gives the
answer zero. X € D(T) such that Tx=0

Also null space of T is similar to kernel of T.

Let D(T)c X and R(T) <Y, X,Y vector space.
(vector spaces can be real and complex spaces).

Then T is an operator from ZXT) onto Z(T), the notation is
T:D(T) > R(T), D(T) covers all range so it is onto.
Or XT)intoy T:D(T)—>Y R(M)cY
ifZXT) is the whole space X, then we write T: X ->Y
moreoverif we take « =0 = T0=0.

T(ax+ BYy) =alx+ STy where « and £ are both scalar

T is a homomorphism when it is a linear operator.

T:X —Y , wherewe have two kind of vector space, one vector space is X and other vector
space is Y. we apply operations on X and also operation on Y.These operation may or may
same on both vector spaces.

MoODULE No. 55

LINEAR OPERATORS

» Examples.
Operator is a mapping whose domain and range is a vector space. It is subset of vector space.
Below are different linear operators.

Identity Operator

Identity mean it operate on the same vector space. I, : X — X
= L(X)=x V xeX

= | (ax+ pBy) we have to prove
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Zero Operator:

O:X —>Ysuchthat Ox=0 V xeX
here the 0 on right side is belong to vector space Y.
Differentiation:
Let X be a vector space of all polynomials on [a,b]. A set of polynomial in denoted by x(t)
TxX@t)=x'(t) VWV x({t)eX

When we apply T on polynomial x(t) then x'(t) is also a polynomial. So this operatorT maps
X onto itself. There is no polynomial whose derivative we can’t find.

Integration:

Linear operator T for C[a,b] into itself can be defined by
t
TX(t) = [ X(z)dz

taar is justa variable and CJ[a, b] is collection of all continuous function on a and b.
Multiplication by t:
Let C[a, b] be a collection of continuous functions defined on a and b.

Tx(t) =tx(t)
This operator plays an important role in quantum theory of physics.
Elementary vector algebra:
Here we have different types of maps we have

T, : R® — R® cross product of two vectors is also a vector.
For cross vector we need two vectors. Then each element is also a vector.

T, =axX
Similarly for dot product:
Dot product of two vector is a scalar, so the map on real numbersR as

T,:R* >R

T,(X)=ax=aXx +a,X, +a,x, e R wherex e R’

For different map we fix a.
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Matrices:
We denote matrix by capital letter say A. whose elements are in rows and column.
A= (ajk)

Let with r rows and n column we define a linear operator which is

T:R" >R
Where R" ={(X, ..., X,) | X, € R}, in column form so that we use matrices multiplication
X
XI’]
rx1 rxn nx1
Y1 TR 2T | IR
such as say B
yn arl . arn Xn

For matrix multiplication number of first matrix column is equal to number of rows of second
column.rxn is a fix matrix

To check the linear condition we use

T(ax+ BY) = alx+ STy

Matrix multiplication satisfied this condition, hence this operator is a linear operator.

MoODULE No. 56
LINEAR OPERATORS

» Theorem (Range and Null space)
Null space is the collection of those elements from the domain on which we apply the
operator and the answer is zero.

Theorem
Let T be a linear operator. Then:

» The range R(T) is a vector space. (domain is also a vector space as discussed)
» If dimD(T)=n<o, then dimR(T)<n (dimension of domain vector space is

finite then range is equal or less than the dimension of domain or equal.
» The null space N(T) is a vector space.

The first two results are about range and third result is about null space.
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Proof: (a) R(T) is a vector space.

Y1, Y, € R(T)
= ay,+pYy, €R(T), where «,f are scalar

Since

Y. ¥, €R(T) and x,x, € D(T)
T:D(T)->Y

y,eTx , Yy, eTx,

Also domain of T “D(T ) is a vector space so, ax, + X, < D(T)this is by definition of
vector space.Since T is linear

T (ax + f%,)=a T + fTx, =a ¥, + BY, € R(T)
Here ax + fX,is domain and gives « y, + Sy, range of T.Hence R(T) is a vector space.
Part (b):

Basis should span D(T)and it should linearly independent. More one than condition is if n
element linearly independent then the elements other than n will be linearly dependent.
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Linear operators preserve linearly dependence.
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Part (c):

X, X, € N(T)
Tx, =Tx,=0

To prove it a vector space, we have to prove ax, + X, € N(T)
T (ax, + % )=a Tx + fTx, =a x0+x0=0

= ax + %, e N(T)

= N(T) is a vector space (proved)

MODULE No. 57

LINEAR OPERATORS

» Inverse Operators

Operator is a mapping whose domain and range is vector space.Particular in norm
space.There is also inverse mapping. For inverse operator the same condition is one-to-one
and onto. One-to-one means image of different elements is different. And onto means the
range covers all the set of domain. If these two conditions hold then we can define inverse
oprator.

Notations:
T:D(T) —Y is said to be injective or one-to-one if for any

X, X, € D(T)such thatx, # X, = Tx, #TX,

If we take counter inverse then ™ =TX, = X=X,
Now if T:D(T) — R(T) then there exists a mapping
T":R(T) —> D(T)
Y, = X, where vy, is any element of R(T)and X, is

element of D(T).i.e. Tx, =,

thismap T’ is called the inverse of T.
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-\ T. o~ D

A Y
TTx=x V xeD(T)
and TTy=y V yeR(T)

Inverse exist if and only if null space has only zero. There is only zero in null space

MODULE No. 58

LINEAR OPERATORS

» Theorem (Inverse Operator)
Theorem

Let X,Ybe vectors spaces, both real or both complex. Let T : D(T) —Y be a linear
operator with domain D(T) < X andrange R(T)c Y .then:

a): The inverse T':R(T) — D(T) exists if and only if Tx=0=x=0. (i.e null space has
zero elements).

b): If T’ exists, it is a linear operator.
c): ifdimD(T)=n<oc and T exists, then dimR(T) =dim D(T).
as there is if and only if condition so we have to prove in both ways.

a):
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Conversely let T exist which mean one —one and onto condition hold.

We have to prove Tx=0 if and only if x=0.
One-one means Tx, =TX, = X =X,, thisisgiven

Now if we have takex,=0 = x =0 Tx =T,=0, x =0

b): If T' exists, it is a linear operator.

We need to show that T "is a linear operator.We assume that T "exists and we need to show
that it is linear operator.

The domain of T is basically range of T and also R(T) is a vector space.
X, % D)=y, =Tx and y, =Tx,
Y =Tx = =T,
and y, =TX, = X, =Ty,
T is linear so for any scalar ¢ and S we have
ay, + BY, =aTx + fTx, =T (ax + BX,) - T is linear
Applying T on above we get
T'(ay, +BY,)=ax + fX,
Putting values of x, and X,
T'(ay,+BY,)=aTy, +ATY,
T 'is a linear operator
C): ifdimD(T)=n<o and T exists, then dimR(T) =dimD(T).
We have proved that dimR(T) <n <cowe know
dimR(T) <dimD(T) .....coenenes i
Conversely,
T:R(T) - D(T)
dimD(T) <dimR(T)....... ii

Combiningiandii  dimR(T)=dimD(T)
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If inverse exist then both dimensions are equal. That we have to prove.

MODULE No. 59

LINEAR OPERATORS

» Lemma(lnverse of Product)
Bijective mean one to one and onto. Here it means inverse of T and S exists.

Lemma
Let T: X —Y and S:Y — Z be bijective linear operators, where X,Y are vectors spaces.

Then the inverse (ST)™":Z — X of the product (the composite) ST exists, and
(ST)*=T7's™.

Diagram

(¢1)"! (37>

Q7.1 2 T

(s7)"

ol B
2-—4)( (ST) :Tg

Mathematically,
If S is bijective and T is bijective then ST is also bijective.

ST : X — Z bijective
= (ST) " exist.
It means if (ST)Y(ST) ' =1,
If S:Y >Z thenS'S=1,

SIST(ST) =57, =  T(ST)'=s"
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= TT(ST) =TS = (ST)*'=T77's™

MODULE No. 60

LINEAR OPERATORS

» Bounded Linear Operator
Norms spaces are generalization of distances.

Bounded Linear Operator (Definition):

Let X and Y be normed spaces and T : D(T) —Y a linear operator, where D(T) < X .
The operator T is said to be bounded if there is a real number ¢ such that for all x e D(T).

[l <[]
If this condition satisfied then we call T to be a bounded linear operator. Bounded

function mean range is bounded but here bounded set is mapping over a bounded set so we
call this a bounded linear operator.c is fix.

—|§c ,  xeD(T)-{0}

The smallest possible value of ¢ is supremum of left hand side. Then the value of c is called

C= sup ”T ” as| T norm = sup ”TX”
XeD(T) ||X|| XeD(T) ||X||

We call the value as T norm ¢= ”T”
If D(T)={0}, ||T|| =0
[Tx|
=|T|l= su
o= 28 b
I < [T ]

This is the formula that we use for bounded linear operator.

MoDULE No. 61
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BOUNDED LINEAR OPERATORS

» Lemma (Norm)

First we define the norm and then prove that the norm defined on T satisfies (N1) to (N4).

Lemma:
Let T be a bounded linear operator as defined before.

An alternate formula for the norm of T is IT||= sup |TX|
xeD(T

Ixl=t
The norm defined on T satisfies (N1) to (N4).
Proof:

[T < f}x|

T = = sup [T
o=~ s [l
Ix=2
We have to prove sup ” Al = sup |T¥|
XeD(T) ||X|| xeD(T)
(!
X
Let |x|=a; set =" x #0,
X
]
Iyj="2
—
xeD(T), a

x#0

as T is linear so, we take constant ainside the norm

1
= sup |Ty| as
yeD(T), a
Iyl

I
I
<

= sup HT (—x
xeD(T),
x#0

Here variable is y which can be any other.
Part a) of lemma is proved.

Part b):
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- s ™ _ sup v

e

N1:  |T||=0 is obvious.
N2: |T|>0 = T=0,
[T|=0 = Tx=0, V xeD(T) = T=0

NG: [T = st T =suple|[T| - lasup T =[] as supl|-]r]
=1

N4 [T+ T <[]+

IT,+T,| = sup ||(T +T,)X|
HXH 1

< sup|[Tx+T,x| < sup(||T X[ +[T, x||)

=L

- sl - eI

First we define a T xT norm and then prove the four properties of norm.

MODULE NoO. 62

EXAMPLES BOUNDED LINEAR OPERATORS

» ldentity Operator

» Zero Operator

> Differentiation Operator

> Integral Operator
Identity operator:

I: X > X = I, =x {x={0} normed space}

™ _ o M

1]|= sup = sup

as Tx=x
o [} sep x|

1]|= sup 1=1
xeD(T),
x#0

Zero operator:

The norm space O: X -»Y , O =0 Xxe X

X
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N
jol- wp”" ol =0

X

Differentiation operator:
This is defined on normed space of all polynomial on J=[0, 1]
x| = max{{xc@), <3}

Value of t varies from 0 to 1 and where the value is maximum, that maximum value is norm
of X.

applying operator the derivative. Differentiation operator is.
TX(t) = X'(t)
Derivation is itself a linear operator.

Now we check that it is bounded or not. [Tx(t)[ < c||x(t)|| . If it is bounded then what is the
value of c.

Let x (t)=t" neN ,whatisthe norm of x(t)
1%, ()] = max{|x(t)], te[0,1]}=1
Using operator Tx_(t) =nt"*

define the norm T, (©)] = max‘nt”‘1 =1

T, ()] = max(| nt"* :t e[0,1]) =n.1=n

™l n_. e
Xn
As n had no bound so, there does not exist any ¢ such that ” ” <c hold.

Now c is fixed number which does not depend upon N but in this case it depends on N, if we
take ¢ as n then next value n+1 will not satisfy this equation. It means that there does not exist

i L |ITx - L
any c that this condition u < ¢ holdhence derivative operative is not bounded.

]l -

Integral Operator

Defined as T : C[0,1] —» C[0,1] ,
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y=Tx y(t) :jk(t,r)x(r)dr

k is integral of T it is fix for different integral operator,

T is linear as integration is linear, also derivation is a linear operator same as integral is linear
operator.

K is continuous on J x J . We have two variables t and 7z , k(t, 7)
1
Whatever the value of k is, it should be in the square
k(t, 7)is bounded. And if it is bounded then
0 1

k(t, 7)<k,, t,reJxJ, k,eR where JxJis this square box.

[x(©)] < max|x(®) = x|

Now example, Iyl=[ = max

jkﬂﬂjxﬁjdf

1
< r?ee}x!|k(t,r)||x(r)|dr

<k, x|
]| < k, ||| it has k and k, is fix so integral operator is a linear operator.

MODULE No. 63

EXAMPLES BOUNDED LINEAR OPERATORS

> Matrix
Identity operator:
T:R">R"
ail ) aln é:l Xl
ar1 ) a'rn ‘fn Xn
rxn nxl rx1
A X =Yy
The entries are x=(&) , y=@)

And the matrix is A=(¢;), 1<i<r, 1<j<n
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n = Zajkék
k=1

T is linear because the properties of matrices is it bounded?

1
SR
||x||:[2§rﬁ) . XeR"

1
r 2
and M-S [ vem
j=1
for bounded we have to check norm of T “T(x)”.
1
r 2
m={ S0
j=t
[T = > !
j=1
r n 2
2
I =3[ s
j=1 \ k=1

Where 7, =Zajk(§k
k=1

Cauchy Schwaz inequality on above ||Tx||2

5| (8] (82)

" <

N

2
} =||x||2[ » afk]
=1 k=1

Here is a ¢ which depends upon T.
We can write as

[T < f}x|

T is already linear and with this value of ¢ we can say matrices is a linear bounded operator.in
last four examples three are linear operator but differential was not linear operator.
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MTH 641
FUNCTIONAL ANALYSIS

MODULE#60To 113

(FINAL TERM SYLLABUS)

Don't look for someone who can solve your problems,
Instead go and stand in front of the mirror,
Look straight into your eyes,
And you will see the best person who can solve your problems!

Always trust yourself.

(BY ABU SULTAN)
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MODULE No. 60

LINEAR OPERATORS

» Bounded Linear Operator
Norms spaces are generalization of distances. By using Norm spaces we are going to discuss
Bounded Linear Operator.

Bounded Linear Operator (Definition):
Let X and Y be normed spaces and T : D(T) —Y a linear operator, where D(T) c X ..
The operator T is said to be bounded if there is a real number c such that for all x e D(T).

[T < cf}x|

If this condition satisfied then we call T to be a bounded linear operator. Bounded
function mean range is bounded but here bounded set is mapping over a bounded set so we
call this a bounded linear operator. c is fix.

™ . xeom-(o
IX|

The smallest possible value of c is supremum of left hand side. Then the value of c is called
]
C= sup ~— as
xeD(T), ||X||
x#0
We call the value as T norm
c=[T]

If D(T)={0}, |T|=0
TX
c=Ir- sup
ot ]
<[]
This is the formula that we use for bounded linear operator.

MoDULE No. 61

BOUNDED LINEAR OPERATORS

» Lemma (Norm)
First we define the norm (equivalent definition) and then prove that the norm defined on T
satisfies all four properties of Norm i.e. (N1) to (N4).

Lemma (Statement):
Let T be a bounded linear operator as defined before then an alternate formula for the norm of
Tis
[T]|= sup [Tx]

xeD(T)

I¥=1
The norm defined on T satisfies (N1) to (N4).
Proof: Part (a)

[l <cfix]
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c=||T|| sup M~ sup [TX|
Yo

We have to prove
Let [x|=4a; set Fg , X#0,

- s
g @

as T is linear so, we take constant a inside the norm
1
= sup [Ty| as—=y
D(T), a

T (1 x)
a ye )
Ivl=1

Here variable is y which can be any other. Part (a) of lemma is proved.
Part (b):

[T][= sup
xeD(T),
x#0

N1:  |T|>0 is obvious.
N2: |T|>0 = T=0,
[T|=0 = Tx=0, V xeD(T) = T=0

Ng: [T sup o] -supl[T] - lsuplT| -[elIT| e suplT] <[]
=)
N4: T+ T < [T+ [T
T, +T,| = sup (T, +T,)x|
e

< Sup|Tux+ Ty < sup([Tix] + T.x])

=L =L

=Sup x|+ supl[Tox| =T -+

First we define a T xT norm and then prove the four properties of norm.

MODULE No. 62

EXAMPLES BOUNDED LINEAR OPERATORS
> ldentity Operator
» Zero Operator
> Differentiation Operator
> Integral Operator
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Identity operator:
I:X—>X = I, =X {x={0} normed space}
1= sup M: supM as TX =X
ot [ et ¥
1| = sup 1=1
xeD(T),
x#0
Zero operator:
The norm space O: X =»Y , O, =0 Xxe X

|
[O]]= sup T=r=0 ", [0]=0
ot ]
Differentiation operator:
This is defined on normed space of all polynomial on J=[0, 1]
| = max{x0), ted)
Value of t varies from 0 to 1 and where the value is maximum, that maximum value is norm
of x.
applying operator the derivative. Differentiation operator is.
Tx(t) = X'(t)
Derivation is itself a linear operator.
Now we check that it is bounded or not. [Tx(t)| < c|x(t)| . If it is bounded then what is the
value of c.
Let x, (t)=t" neN , whatisthe norm of x,(t)

1%, ®)]| = max {|x(t)], te[0,1]}=1
Using operator Tx_ (t) =nt"*

define the norm [T, (©)]| = max nt™| =1

[T, (t)|| = max(| nt"* |:t €[0,1]) =n.1=n
M L ¢, neN
X 1

n

As n had no bound so, there does not exist any ¢ such that H < c hold.

Now c is fixed number which does not depend upon N but in this case it depends on N, if we

take c as n then next value n+1 will not satisfy this equation. It means that there does not exist

any c that this condition H < ¢ holdhence derivative operative is not bounded.
Xn

Integral Operator
Defined as T : C[0,1] — C[0,1] ,

y=Tx y(t) = j.k(t,r)x(r)dz'

k is integral of T it is fix for different integral operator,
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T is linear as integration is linear, also derivation is a linear operator same as integral is linear
operator.

K is continuous on J x J . We have two variables t and 7 , k(t, 7)

Whatever the value of k is, it should be in the square 1

k(t, 7)is bounded. And if it is bounded then

k(t, 7)<k,, t,reJIxJ, k,eR where JxJis this square box.

(0] < max|x) = ] 0 1

Now example, Iyl=(m( = max

j‘k(t,r)x(r)dr

1
< rrtlea}x.!|k(t,r)||x(r)|dr

<k, [x]
™| <k, ||| it has k and ks fix so integral operator is a linear operator.

MODULE No. 63
EXAMPLES BOUNDED LINEAR OPERATORS

» Matrix
Identity operator:
T:R" >R’
a, .- a, |l X
a, . a,| <, X,
rxn nx1l rx1
A X =y
The entries are x=(&) , y=@)

And the matrix is A=(¢;), 1<i<r, 1<j<n

= Zajkgk
k=1

T is linear because the properties of matrices is it bounded?

M-(Za] o oxew

1
r 2
and m-(S] o ver
=

for bounded we have to check norm of T “T(x)”.
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1
r 2
m-( )
X =3
j=1
r n 2
T’ = z(za,@k}

j=1 \ k=1
n
Where 1, => a, &
k=1

Cauchy Schwaz inequality on above ||Tx||2

2

r n 2% n 2% 2 n 2
<3 |[Sac (B ]| w55
j=1 k=1 m=1 j=1 k=1

[T <o <
Here is a ¢ which depends upon T.
We can write as

=

[T < cf}x|

T is already linear and with this value of ¢ we can say matrices is a linear bounded operator.in
last four examples three are linear operator but differential was not linear operator.

MoDULE No. 71
LINEAR FUNCTION (EXAMPLES):
> Space C[a ]
> Space I’
Space C[a b]:

We have define a linear function on space Cla blihat we have fixed an element &
from the set Jas t, € J . Now define a functional operator f(x) which is operating on x which
is element from C[a b]. xeC[a b]

This x is not a variable, it is a function. So f, which is defined on C[a b]linear asitisa
linear operator. f,is bounded. To find the norm

| =[x®)] <]

IX|=1 = |f]<1l..... (i)

If we take X, =1and substitute in this equation we get

RHESIE AR

O L P

” fl“ =1

So the function defined on C is linear, bounded and Norm is 1.
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Space I’
We choose afixsay a=(a;)el’
f(x)=> ¢, xel?, x=(&)
=1

This sequence is linear, converging and bounded.
For boundedness

1ol-{S 5| Slenl= (Se Sl - e

It is the same definition of bounded.
M of a complete metric space X is itself complete if and only if the set M is closed in X.

MoODULE No. 72
LINEAR FUNCTION:
» Algebraic Dual Space
» Second Algebraic Dual Space

» Canonical Mapping

Algebraic Dual Space
Set of all linear function defined on a vector space X is itself a vector space and called

Algebraic Dual Space and denoted by X*

Operation on this vector space are
1% Operation Sum
f,+1, f,, f, linear functional
(f.+f,)x=f(x)+f,(x) xeX
2"! Operation Scalar Multiplication
(af )x=af (x)

Second Algebraic Dual Space X

Space element Vector at a point
X xe X

X g f(x)

X" G 9(x)

For each x,g e X™
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We gc}

/
‘h(;) = QQ‘(H - f(u ,L;_;(’ Jixd

W.}* e s J«‘ml‘ ; ‘&\‘ \5 QM"” X,x'l

}X* ( *J‘ tp L) = (o* f 4 ML) W S

= ol -;‘(“'f{ify\” : % e X
) )
_ d%&;‘\f@.«v({v) e

Conical Mapping:

C: X — X™this mapping is called canonical mapping of X into X ™ defined as
X g,.

Clax+BY)(f) =0,z (f)

= f(ax+py)=af(X)+B1(y)=ag,(f)+B9,(f)

=a(Cx)(f)+B(Cy)(f)

So, this is a linear function as well. Canonical mapping is a relation between X and X ™.

MoDULE No. 73
LINEAR FUNCTION:
» Algebraically Reflexive
» Second Algebraic Dual Space
» Canonical Mapping

Isomorphism:
It is one-one and onto map.
Algebraically Reflexive:

T:(X,d) — (X,d)bijective

d(T,.T,) =d(x,y)

C: X > X"Xx—0,.

If C is surjective (on b) bijection. R(C) = X™

We call X to be algebraically reflexive.
Set of all linear function defined on a vector space X is itself a vector space and called
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MoDULE No. 74
LINEAR OPERATORS AND FUNCTIONAL ON FINITE

DIMENSIONAL SPACES:
Finite dimensions mean basis which have finite many elements.

Let X and Y bef.gfinite dimension vector spaces over the same field.
Let T: X —Y be alinear operator. letE ={e,,.......... ,€,}be the basis for X and

B={b,......... .0, }be the basis for Y.

T is uniquely determinal if the image y, =Te, of n basis vectors e,,.......... ,€, are prescribed.

Te €Y, Te =70 +7,0, +............. +7,b
r
Te, = z 7yb;
[

yzznjbj :Zé:kTek :kaszjbj
=) k1 P

Comibinig these two summation

y= i(irkjé:k jbj

=1 \_k=1
n

= sz,-fk
k=1

The image y=Tx=) b, of x=>_&Te, can be obtained from

n= kajégk
k=1

MoODULE No. 75

OPERATORS ON FINITE DIMENSIONAL SPACES:
Remarks:
As in the case of linear operators on a finite dimensional normed space, every linear
functional defined on a finite dimensional normed space is bounded and hence continuous.
Since for linear funcionals range is either R or C , which are complete. So X* as the space
of all bounded linear functionals defined on X, is also complete and hence is Banach space.
This is true even if X is not a Banach space.
“Algebraic Dual Space of X”’: set of all linear funcionals defined on X.
“Dual or Conjugate Space of X: X ™ set of all continuous or bounded linear functionals
defined on X.

We take algebraic dual when there is no condition of continuous or bounded linear
functions.
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Theorem:
Let X be an n-dimensional vector space and X"be its dual space. Then
dimX*=dimX =n.

X™is collection of linear functions or linear operator while X may be any space.

Proof:
Let dim X =n.
Let basis of X be B={e,,....c.......... &}
We define a function.
1 if i=]j
f_ =
‘(el) {0 ifi=jii,j=1., n
e.g.j=1, f(e)=11(e,)=0f(&)=0urrrcrn. ,f(e,)=0
j72,f(e)=0,f(8,)=1f(&)=0,ccecrurrrrrrcrns ,f(e,)=0

but each n-tuples f; in this case can be extended as linear functions on X.

MODULE No. 76

OPERATORS ON FINITE DIMENSIONAL SPACES:
Lemma(Zero Vector):

Let X be a finite deimensional vector space. If X, € X has the property that f(x,)=0

forall f € X* then x,=0.
B"is the basis of X~

{f, f .}
1 i=j
jfi(ei):{ . J-
0 1+ ]
Proof:
For all x,=0,

xO:Zn:xiei ; feX'
i=1

f(x,)=0 = if(ixieij:o

MoODULE No. 77

OPERATORS ON FINITE DIMENSIONAL SPACES:
Theorem(Reflexivity):
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A normed space X is said to algebraically reflexive if there is an isometric isomorphism

between X and X™.
Ordinarily a normed spacer may not be reflexive.

If X is an incomplete normed space even then X"and X" are Banach spaces. So in this case

X cannot be a reflexive space.

However there are Banach spaces which are not reflexive.
Theorem:

A finite dimensional vector space is reflexive.

Equivalently, A finite dimensional normed space is isomorphic space is isomorphic to its

second dual.

P{;{ LL*. x u. gi\mk A\MUM V\O\M SP“ % d,'m:w

and X}* be (b Seced G‘\u'
Y L
Foo ek w €X we + hes

)= 8w/
th\u zlr x*__)F g_‘_ Ff_‘-

[9,(h) =
s gl

X\'@xﬁ

o] 4ot J oo
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Y is Dines 9y x**
P (anpy) = KHW LYy X
= S (QF W
) L - LA
L? K1pD a« ) %) 2 *D

}a ¥ &)(*, %‘(Mb (;’) f-(‘*”k)) —_—
= & fiot Pﬂj)
c*%‘_(}’) TR a)\!-’
‘ng p =0 Py

gax+ﬂy = agx +ﬂgy
p(ax+py) = ap(X) + Be(y)

) T eche | =)
) (Q J ) " ( We l‘qy‘ L d'"‘
WA J K’)"X sk YW —Yl)) /E

2 Q= \y
@ %" °§>‘°?°P‘"J"
R fatipeeth = YK

V. Tap
=) adp & Y =o x
) ‘;“' 4'(3) co ?) ,t( (-Y) #o y ;é
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?) L) 2ere D

wy=e 9 (A

\f~oiv\m. \( X = X‘*
Yottt W o §RIO

Tt Nomeim lo ,)0"“- fR(\f): Xx"

Now b |/ Y =0 =) wzo D \p" exdl
2) ‘f; ?NJ—»X exot

9 {dn (Rt)) = dmx| by o s

SALERES -
diny sdin X"

“"’5"5 : 8 =) din X'z nx™”
X
2 odimi = dhim X = dhim X = dim (RY)

ohim LX“) v Ol""(? N)) — @
pr V.S o @/ <) Z’u) is Wt yrée sdyall 'X_f‘

R(p)=X™ @ is onto
X=X X reflexive

MoODULE No. 78

LINEAR TRANSFORMATION:

Q No.1:
Find the null space of T : R® — R?represented by

1 3 2
-2 10
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{1 3 2} ))((1 _[x1+3x2+2x3}
2 1 0| 2 | —2x+x
XS
2x3 3x1 2x1
What is meant by null space, it means we have to find those values of x e R®say

X = (X, X,,X;) such that we operate T the answer is zeros as

All those x are element of null space.

X, +3X, +2X, 0
{ —2X +X, }:{0}
Also we can also say that
X, +3X, +2%, =0
2% +X, =0
We can solve it by using any linear algebra method that will give us solution like echelon

form or reduced echelon form and the base of that solution is called basis of null space. Basis

mean when apply the element of R*the answer should be zero and get a system of linear
equation. Find the solution of this system of linear equation. And after finding the solution
find the basis that basis are basis of null space.

Example.

Q.NO2

Find the null space of T :R® — R%defined by (&,&,,&,) <> (£.6,,—¢, - &)

1) Basis of R(T)
2) Basis of N(T)
3) Matrix representation.

MoDULE No.79

EXERCISES
DUAL BASIS
Example 1:
a):  Find the dual basis of X when basis of X are B ={(1,-1,3),(0,1,-1),(0,3,-2)},
Find B" =2, X" =?do it yourself
b): let {f, f,, f.}be basis of dual space for X and if X is given by

e=@111), e,=(11-1), e=(1-11)
Find f,(x), f,(x), f;(x) when x =(0,1,0)

MODULE N0.80
NORMED SPACES OF OPERATORS
e Examples of Dual Spaces

e R"
Isometric Isomorphism
A linear operator ¢: X —Y. X,Y normed spaces, is said to be Isometric Isomorphism if
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¢ isbijective.
¢ preserve norms.
That is for any
xe X, [00]=x]is
MoODULE No.81

EXAMPLES SPACES OF OPERATORS

e Examples of Dual Spaces

o |!
Space I*
The dual space of 1" is I” means that it is bijective, it is linear and it preserve norm.

After defining the map we shall prove these properties one by one.
Proof:

MODULE No0O.82
BOUNDED LINEAR OPERATORS

Quiz: Complete norm spaces are called Banach spaces.

Theroem

LetB(X, Y) be the set of all bounded linear operators form a normed space X to a normed
space Y.

If Y is a Banach space, then B(X, Y) is also a Banach.

Proof:

Let {T,} be an arbitrary Cauchy seq. in B(X,Y).
We will show that {T, } converges to an operator T in B(X, Y).Since{T, } is Cauchy for every
£>0 3 N suchthat [T, -T,| <& (m,n>N)
Forall xe X and (m,n>N)we have
[0 =T, GOl = (T =T 09
<[ =Tl < x|
Thus for a fixed x and given &
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Hence B(X, Y) is complete and Banach space.

MODULE No0.83

FINITE HILBERT SPACES
Functional analysis course consist of three major parts parts
1. Metric space is set and we define a space on it that has a certain properties. If it is
completer then it is complete space means it should converge within the space
2. Normed Spaces: Norm is a vector space and we define a norm on vector space. Norm
is a generalization of distance function.
3. Finite Hilbert Spaces (Inner Product Space)
Hilbert Space

Quiz: Complete inner product space is called a Hilbert Space.

In inner product the generalization is dot product.

Inner product Space

Let V be a vector space over a field F where Fis R or C .

An inner product in V is a function <.,»>:V xV — F satisfying the following conditions:
Quiz:

Let X,y,zeV ; a<Fwhere « may be real or complex.

i <XX>2>0; <x,x>=0 <x=0
<ax,y>=a<XYy> ;butnottrue for second value as <x,ay>*a<Xx,y>
<X+Y,Z>=<X,Z>+<Y,Z>

ii.
iii.
iv. <X Y>=<Y,X>

<o, o>V XV > F inner product.

Inner Product Space

The pair +<**>)is called an inner product space.
a): <ax-+hy,z> where Xx,y,zeV , abeF
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Using (iii) property <ax+by,z>=<ax,z>+<by,z>

Using (ii) property a<xz>+b<y,z>

<0,2>=<0xX,2>=0<X,2>=0

b):  Quiz:

for all X,yEV , aeckF

<Xx,ay >=<ay,Xx>=a<y,X>

=a<y,Xx>=a<Xxy>
MODULE No0.84
CAUCHY SCHWARZ INEQUALITY

Theorem:

For any two elements x,y is an inner product space V,

l<xy>[<|x]-|y] , the define norm is x| =< x,x> , xyeV
Proof:

If x=y=0 then 0=0

Let at least one of x and y is not equal to zero

Let  |<x+Ay,x+Ay>>0 by definition
<X X+HAY >+ <AY, X+ Ay >
<X X+AY >+Y <Y, X+ Ay >

MoODULE No.85
NORM ON INNER PRODUCT SPACE

Theorem:

In an inner product space V, the function | . |:V —R* given by
X[ = 4/< X,y> xeV definesanormin V.

Proof:

N1:  |x|=0

Fora xeV, ||x||=4/<x,x>20 as <x,x>>0

N2:
|x|=0 o J<Xx>=0 < <xx>=0 < x=0
N3:  fax|=[e]x]
now |lax|=y<ax,ax> = ||aX||2 =< aX,ax>
2 —_ 2 2
= lax|” = aa < x,x >=|a| |||

Na eeyl<lvl v xyeV
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% + y||2 =< X+ Y, X+y>

=<X,X+Y>+<Y,X+Y>

=< X+ Y, X>+<X+Y,Y>

S<KX>H<SY,X>H<S X, Y >+<Y, Y >

=<K X>HSY,X>+<X, Y >+<Y, Y >

NOwW =<X,X>+<X,y>+<X,¥Yy>+<Y,y>

:||x||2 +2Re <X, y>+||y||2 " Re(2) <|¢|

<[x"+ 2k xy >[+[y

<[x|" + 2]yl + v = l<xy>[< K]

= (x| +yl)

[x+yI" <[+l

MoODULE NO.86

PARALLELOGRAM LAW

A B
AC +BD’ =2(EZ+E2) Quiz
Theorem:
eyl + ey =2( +[yIf)  foraiixy @ c

Proof:
|+ y||2 =< X+Y,X+Yy>
=<K XS H<K Y > HSX, Y >H<Y, Y >
:||x||2+2Re<x,y>+||y||2 N (
Replace y=-y

||x—y||2 =< X+Y,X+Yy>

=<XX>—<X, Y >—<X,Y>+<Y,y>
:||x||2—2Re<x,y>+||y||2 ..... (ii
Adding (i and (ii
v+ x =yl = 2" + 2]y
That we have to prove.
Special Case:

Another result from above equations is
Subtracting (ii from (i

%+ y||2 —[x- y||2 =4Re<X,y>
If V is a real inner product space
Re(z)=z or Re<x,y>=<x,y>

1
<xy>={lx vl eyl
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The above form is when V is a real inner product space not complex space.
MoODULE No.87
> POLARIZATION IDENTITY
» APPOLONIUS IDENTITY
Polarization Identity
For any X, y in complex inner product space
<xy>= g fhe v~y il i i

We have to prove this complex inner product space.
Proof:

Let XY€Y
X+ y||2 =< X+ Y, X+Yy>

:||x||2 +2Re<X,y> +||y||2

=[IX|*+ <%,y > +<x,y > +|y[
=[x +<xy>+<yx>+y . (i
If we replace y=-y

% + y||2 = ||x||2 F<X,—Y >+ <Y, X> +||—y||2

: ST (ii
=[x[" - <xy>—<y,x>+|y|

Replace y =iy ineq(i

X+ iy||2 = ||x||2 + <X, iy >+ <iy, x> +||iy||2

:||x||2 F <X, y>+H <y, X> +||y||2 ||iy||2 =<iy,iy>=iil <y,y>=-i’<y,y>

=||x||2—i<x,y>+i<y,x>+||y||2 ...... (iii
Replace y=—iy ineq(i
% - iy||2 = ||x||2 + <X, -y >+ <—iy, x> +||—iy||2
=||x||2+i<x,y>—i<y,x>+||y||2 ...... (iv
Subtracting (ii from (i
[x+ y||2—||x—y||2=4Re<x,y> ....... (v
Subtracting (iv from (iii
||x+iy||2 —||x—iy||2 =2{i<y,x>-i<xy>}
=-2i{<x,y>-< y,x>}=—2i{< x,y>—<x,7}
==2i2I))Im<x,y>=4Im<x,y> ... (vi
Now we solve 4Re< X,y >+4Im< X,y >

x4yl =x =yl +ilx+ vl =ifx=y[ =4{<x y >}
Appolonius Identity
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2

, X, y,z2eV

1 1
o=+l =2x-yF 422 -2 (x+)

Using parallelogram law
[+ +x =y =2x[ +2y" put  x=zx y=zy
Self-assignment

MODULE NoO.88
» SPACE c[o,%}

» SPACE I’
Counter example 1: Spacec{o,ﬂ

Inner product define a norm and under this norm

Every inner product space is a norm space.

Every norm space is not an inner product space. This is not true always.

If a space is inner product then it satisfied the parallelogram law otherwise it is not an inner
product space.

We take a norm and built an inner product space and then prove that this inner product space
does not satisfy the parallelogram law.

The given setis C {O%} real valued continuous function defined on CJa, b].

The norm of function f eC {O%} , 1S

[ ¥]]= Sup_|f ()

XE[O,E
Let f,gec[o,ﬂ; f(t)=sint, g(t)=cost

We know that sin and cos are continuous functions. Let C [O%} is an inner product space

where the inner product <e,«>define by

Ifl=J<f.f> = <f f>=|f[

[ £ll= Sup [f ()

)(EI:O,z
2

[f+al +[f -l =2| " +2]a|f
As f(t)=sint, g(t)=cost

[ ¥]]= Sup [sin(:)|=1=[g]

XE‘:O,E
2
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[ f+9]= Sup |f(x)+g(x)

03]

= Sup [sin x+cosx|=+2
XE[O,%}
|f-gf=1
Now
[ +gf +]1f —al =2[ £ +2]g|f
(V2) +@? =2x2% + 2x12
2+1=2+2
3=4

But 3+ 450 our supposition is wrong. This inner product space does not satisfied
parallelogram law. Hence every norm space is not inner product space.

Counter example2: Spacel®

I” Collection of all bounded sequences,
P >1 P = 2if p=2 then it will give inner product space

0 =S

We will see that < x, x >= ||x||2 is an inner product space or not. We will check this if it

satisfied the parallelogram or not.
Let
x=@110,0,........) ; y=@1-10,0,...........)

1
IX|=¥2° +2° +0+0+... = §2 =2°

1
Iy =3 +(-1)° +0+0+.... =42 =2°

%+ v+ x =i = 2]+ 2]y
1 1
22+22=2x 2P +2x 2P
2
8=4x2" asp>l,p#2
The values on both sides are also not equal so this does not satisfied the parallelogram law.
Contradict to our supposition. So norm space is not an inner product space.
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MoODULE No.90
> THEOREM (CONTINUITY OF INNER PRODUCT)
Theorem:
Let V be any inner product space. For any sequences {x,} and {y,}inV
X, =X, Yy,—>y implies<x,y,> — <Xy>
Proof:
<X, Y, >—<XY>|
=[< X, Yy > = <X, Y>+H<X, Y > —<X, Y >
=< X, Yy — Y > <X, =X Y >
<|< Xy, Yo = Y > H][< X, =Xy >
Now from Cauchy Swarzinequality
[y <[X[Iv]
<[xalllya =Y+ x, =iyl
Giventhat X, >x , y,—>Y S0,

Iy, =Yl=ly-y[|=0 . |x.,—x|=[x-X|=0 asn—o0
AS n—>oo

<X, ¥, >—<xy>[<0

<X, Y, ><X,Y> as N—>o
Theorem:

If {x,} and {y,}are Cauchy sequences in V, then the inner product < x,, y, >is a Cauchy
sequence in F.
Proof:

{x,}.{y,} are Cauchy sequence
To show < x,, Y, >is also Cauchy Sequence.
= 1% =%.]=0 5 ||Ya=Yu]| >0 mn—ow
<Xy ¥ > = <X Y > E[< X0 Yo > = < X0 Yo >+ <X Y > — < Xy, Vi >
=[<Xy0 Yo = Y >+ <Xy = Xy Yoo >
<< Xy Yo = Yoo < X =X, Vi >|
<Xl = Yl + %0 =X 1Y
= <X, ¥y > = <Xy Y > —0, @8 nm—>o0
= <X,,Y, >is a Cauchy Sequence
MoDULE No.91
Examples of Inner product spaces
» SPACE R’
» SPACE C"
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» SPACE ([a,b]

» SPACE]I

> SPACE P, (Collection of all polynomials of degree n)
Proof:

1. R" the elements are of the form

The inner product form is <X,y >= in Y, (Note: check all axiom self-assignment)
i=1

The Norm is x| =< X, x> = \/Zn:xixi = \/Zn:xiz
i=1

i=1
2. c"
The elements are 2=(2,Zy,ccen.. z,) ;7' =(2,25,.n... ,2;) if conjugate does

15n

not define then it does not satisfied the second or third axiom of inner product space.

The inner product form is <z,7'>= Z z E’i (Note: check all axiom self-assignment)
i=1
3. ([a,b]be the space of all continuous function defined on [a, b].

b
<f,g >:J. f (t).g(t)dt define an inner product on Cla, b]

(Note: complex function can also be including. In previous example the C[a, b] was not inner

product space with define function definition).
<o, o>V XV > F
We will check all four properties of inner product as
i): <f,f>=0 <« f=0
i): <f+g,h>=<f,h>+<g,h>
i) <af,g>=a<f,g>
iv):  <g,f>=<f,g>
it define inner product and is define inner product space.

4. |"is a space of sequences.
12 x{x}
The condition or norm is

S %[ <oo
i=1

Let defined the inner product of y ={y,}is

<x,y>:§:xiyi

i=1
Checd all four axioms as exercise for inner product.
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5. P,
Let P, be the collection of all polynomial of degree n(or less than n).
We can write thisas  a x"+a, ;X" +...+ax+a e.g3x*—2x+1 of degree two.
Let  u(x),v(x)eP,
The inner product is

<U().v(9) >= [Lu(v(dx , x<[a,b]

with this define P, is an inner product space.

We have not defined conjugate of v(x) as the interval defined is a real valued so its conjugate
is also real valued.

MODULE NoO.92
Orthogonal Systems

» PYTHAGOREAN THEOREM
The dot product of two vectors when they are perpendicular is zero. Similarly in inner
product if two vectors are perpendicular then their inner product is zero.

Theorem:
In an inner product space V and x, y in V if x Ly then
[y =[x+ I
Proof:
|+ y||2 =< X+ Y, X+Yy>
TIXXSHSKYSHLSY,X>+<Y, Y >
As x and y are perpendicular so <X,y >=0,<y,x>=0
[y =< x x>+ <y, y>=[x[" + |y

Generalized form:

(X0 Xy v X, } be nonzero vectors in V inner product space such that
<x,X;>=0 , I ]
This system {X,, X, ,......... X, } is called orthogonal system as all vectors inside it are

perpendicular to each other.

The generalized statement is ||, +X, +........ T i Y i [y A

The idea of proof is

n 2 n n

zxi :<inizxi>

i=1 i=L =l

=< X F s X X F e +X, >

=< X, Xy e F X, > Feet <Xy X F +X, >
n n

=3 <X, X >
i=L j=1

<X X s=|x| , ifizj <x,Xx;>=0andfori=j then <x,x, >= x|
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2 n )
-3l
i=

MODULE No0.93

Orthogonal Systems
> THEOREM (LINEARLY INDEPENDENCE)

Any sequence {x,} of non-zero mutually orthogonal vectors in an inner product space V is
linearly independent.
Proof: do it yourself

n
D%
i=1

%) be the orthogonal sequence.

Remark:

i <X%>=0, Vi=l2.., n = <Zaixi,x>:0
i=0

<Zn:aixi,x>:<aixl+a2x2 FoF A X X) =3 (X X) F e, +a, (X,,x)=0
i=0
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