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Don’t look for someone who can solve your problems, 

Instead go and stand in front of the mirror, 

Look straight into your eyes, 

And you will see the best person who can solve your problems! 

Always trust yourself. 
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Functional  Analysis 

Module No. 1 

Introduction: 

 Its applications are in differential equations and numerical 

analysis, approximation theory and calculus of variations etc. 

Course Outcomes: 

 To be able to understand basics concepts, principles and 

methods of functional analysis and its applications. 

 

 

Module No. 2 

Course Outline: 

Topics: 

 Introduction, Metric space, subspace, Triangle inequality, Axioms of a metric, 

Sequence space, Space B(A) of bounded functions, Some Inequalities, Ball and 

sphere, Continuous mapping, accumulation point, Dense set, separable space, 

Convergence of a sequence, limit, Cauchy sequence, completeness, Real line, 

complex plane, Uniform convergence, Discrete metric, Isometric mapping, isometric 

spaces, Homeomorphism, Normed Space, Banach Space, Further Properties of 

Normed Spaces, Finite Dimensional Normed Spaces and Subspaces, Compactness and 

Finite Dimension, Linear Operators, Bounded and Continuous Linear Operators, 

Linear Functional, Linear Operators and Functional onFinite Dimensional Spaces, 

Normed Spaces of Operators, Dual Space, Inner Product Space, Hilbert Space, Further 

Properties of Inner Product Spaces, Orthogonal Complements and Direct 

Sums, Orthonormal Sets and Sequences, Series Related to Orthonormal Sequences 

and Sets, Total Orthonormal Sets and Sequences, Legendre Hermite and Laguerre 

Polynomials, Representation of Functional on Hilbert Spaces,  Hilbert Adjoint 

Operator, Self-Adjoint, Unitary and Normal Operators. 
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Module No. 3 

Recommended Books:  

Book Title: Introductory Functional Analysis with Applications 

Citation:  

Author: Erwin Kreyszig, John Wiley & Sons. Inc. 

Edition: 2007 

Publisher: Printed In USA 

 

Book Title: Functional Analysis, Sobolev Spaces and Partial Differential Equations 

Citation:  

Author: HaimBrezis. Universitext, Springer. 

Edition: 2010 

Publisher: sPRINGERsCIENCE+ Business Media,LLC,233 , NY ,USA 

 

Book Title: Introduction to Functional Analysis 

Citation:  

Author: Angus E. Taylor, John Wiley & Sons. Inc 

Edition: 2006 

Publisher: Alpha Science International Limited 

 

Book Title: Elements of Functional Analysis 

Citation:  

Author: Robert Zimmer, University of Chicago Lecture Series. 

Edition: 1990 

Publisher: University of chicago Press 
 

 

 

 

 

 

 

 

 



MTH 641 Functional Analysis 

 

4 

Module No. 4 

In functional Analysis we shall study more general “spaces” and “Functions” defined on 

them. 

 

Metric Spaces:  

 In functional analysis we shall study more general “spaces” and “functions” defined 

on them. 

The given below is the real line  

              

   ,x y  

The distance function with two points x,yor usual metricon real line is ( , )d x y x y  . 

Say we have two points -1 and 3 and if we want to measure distance between 3 and -1 then  

 

   ( 1,3) 4d  

 

is same as (3, 1) 4d    

   3 ( 1) 4    

For example: If we want to measure the distance between 1.8 and -3.5 then  

              

 

  

        0
(1.8, 3.5) 1.8 ( 3.5)                 

-         0

                   1.8 3.5 5.3

x x
d x

x x


     



  

 

 

 

 

 

 

 

 

0 3 -1 

0 1.8 -3.5 
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Module No. 5 

Metric Spaces:  

Formal definition: 

 A metric space is a pair  (X,d),where X is a set and d is a metric on X (or distance 

function on X), that is, a function defined on X X such that for all , ,x y z X we have 

following four properties. 

1

2

3

1  Property:                        

2  Property:                     ( , ) 0     

3rd Property:                      ( , )

  ,    

( , )    (Sy

st M

nd M d x y if a

d is real valued finite and non negative

nd only if x y

M d x y d y x





 



4

mmetry)

4th Property:                      ( , ) ( , ) ( , )    (Triangle Inequality)M d x y d x z d z y 

 

 The above four properties called axioms of metric space. As metric space is ordered 

pair so we take X X  mean two elements from set X. 

 

Explanation : 

 Let‟s we have three points  x, y and z, then equality holds 

if and only if all the three points are on the same line. 

 

 

And in triangular inequality the distance between  x and y is  

always less than the sum of distances of zy and zy. 

 Equality:  ( , ) ( , ) ( , )d x y d x z d z y   

 Inequality:  ( , ) ( , ) ( , )d x y d x z d z y   

 

 

Now if we have more than three points say 1 2 3, , ,............... nx x x x
 

then  distance between  any two point say 1 2     x and x  is 

 1 1 2 2 3 3 4 1( , ) ( , ) ( , ) ( , ) ........ ( , )n n nd x x d x x d x x d x x d x x      

is the generalized triangle inequality. 

 

z y x 

x 

y 

z 
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Module No. 6 

Subspace:  

Formal definition: 

 A subspace (Y,d) of (X,d) is obtained if we take a subset Y X  and restrict d to 

Y Y . Thus the metric on Y is the restriction 

      Y Yd d   

d is called the metric induced on Y by d. 

 

Module No. 7 

Metric Space:  

 Real line   

 Euclidean plane 2  

Real line   

Example 1: 

 Let x and y be two real points on real line, then  

  

( , )      ;                  ,  d x y x y x y    

Now we prove all the four properties (axioms) of metric space. 

  

( , )  

( , )      ;      

( , )

            ( , ) ( , )

d x y x y

d x y x z z y z

d x y x z z y

d x z d z y

 

    

   

 



 

Euclidean plane 2  

Euclidean space mean that the points are taken from 
2  in ordered pair. 

  
2 {( , ) | , }x y x y         

2 plane . 

          2 2( , )x y  

Example 2: 

1 1( , )x y  
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 Suppose that one point is 1 1( , )x y  and the other point is 2 2( , )x y , 

thenthe distance d between these two points is 
 

  2 2

2 1 2 1( ) ( )d x x y y     

Thus 2( , )d is a metric space 

 

 

Example 3: 

 Suppose that one point is 1 1( , )x y  and the other point is 2 2( , )x y  

the distance d between these two points is  

  1 2 1 2 1d x x y y     

d and 1d measures the same distance.  

Thus 2

1( , )d is a metric space 

So, we can define any distance function according to our requirement and it should satisfied 

the four axioms of metric space. 

 

 

 

 

 

 

 

 

Module No. 8 

Examples Metric Space:  

2 2( , )x y  

1 1( , )x y  
2 1( )x x  

2 1( )y y  
1 2 1 2 1d x x y y     
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Real line   : 

            

Euclidean plane 2    

  
2 {( , ) | , }x y x y        

2 plane 

 

Three dimensional Euclidean Space 3  

 
3 {( , , ) | , , }x y z x y z      3 plane 

In  3 set the elements are in ordered triple form whose all entries are real numbers.Suppose 

u and v be two points in  3  such as         

   

 
1 2 3 1 2 3{ , , }     { , , }  ,                          , ,    

 (        )

i iu and v

where is exai and is eta

       

 

  
 

The distance between u and v is  

  2 2 2

1 1 2 2 3 3( , ) ( ) ( ) ( )d u v             

Thus 3( , )d satisfy all four properties of metric space and is a metric space. 

nTuples Euclidean Space n  

In n set the elements are in ordered n tuples form.Suppose u and v be two points in n  such 

as   

  
1 2 1 2{ , ,..... }     { , ,........, } ,     , ,    

 (        )

n n i iu and v

where is exai and is eta

       

 

  
 

The distance between u and v is  

  
2 2 2

1 1 2 2( , ) ( ) ( ) ............ ( )n nd u v              

Thus ( , )u vd satisfy all four properties of metric space and is a metric space. 

 

 

Unitary Space nC  

1{ ,............ ) | }                .n

n iC C wherer C is complex no     
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(note: In 2C  both the first and second elements are from complex numbers as (1 ,1 )    and 

also in nC all the n tuples from ,i i C     to n  are all complex elements ). 

Let          ,                w      then z a ib c id     

  

2 2 2 2

2 2

                         ,                                         and  

as        z-w=(a-c)+ ( )      ,            ( ) ( )

z a b w c d

i b d z w a c b d

   

     
 

Suppose u and v be two points in nC  such as   

  
1 2 1 2{ , ,..... }     { , ,........, } ,     , ,    

 (            )

n n i iu and v

where is exai and is eta and are complex numbers

       

 

  
 

The distance between u and v is  

  2 2 2

1 1 2 2( , ) ( ) ( ) ............ ( )n nd u v              ,i i C    

Thus 
( , )u vd satisfy all four properties of metric space and is a metric space. 

 

Complex Plane C (n=1) special case 

Instead of n if (n=1) special case then there is only one complex no. in u and v such that   

        u a ib and v c id     

then it is Complex plane C. 

 The distance between u and v is  

  ( , )      ,d u v u v u v    

Now we have four different examples of metric space, 

 i): 3     ii): n  

 iii): nC     iv): C 

now first we have a set then we define a distance function in above cases. 

 

 

 

Module No. 9 

Examples Metric Space:  
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 Here we discussed examples of metric space other than usual 2, ,...... n   or more 

general form. 

 

Sequence Space l : 

 As a set X we take the set of all bounded sequences of complex numbers.These 

bounded sequences may be real or complex but we take here complex numbers. Collection of 

all complex number. 

 If we take all sequences of complex number which are bounded in a set then the set is 

called l


. 

Let X be a sequence space and x be the element of that space then x X  

   1 1 1{ , , ,...........}   ;      x     

We can write this as 

       x=( )                   where i=1,2,3,.......i  

The sequence is bounded means if we calculate the value of  i that value is less than  xC  

                           ,                    i x iC C    

 If we take any sequence from this space it is bounded, it means xC  is depending on 

sequence. Now we are going to define d, on any two elements from this sequence space such 

that     

   ,               ,               ( )           ( )i ix y X x y     

 The distance function is   

     ( , ) sup i i
i

d x y  


 


 

 The supremum of all differences of  i i  is the distance d between x and y. This 

sequence of complex numbers space, d(x,y) form a metric space. We take the difference of all 

points and then its supremum which is distance of that sequence. Here   is the domain of 

sequence. Function has any domain but domain of sequence is  . 

 

 

Module No. 10 

Examples Metric Space:  
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 Function Space C[a, b] 

 Discrete Metric Space 

i): Function Space C[a, b] 

 As a set X we take the set of all real-valued functions x, y,.…....Which are functions 

of an independent real variable t. And are define and continuous on a given closed interval 

   J=[a, b] 

To define distance function: 

 Say we have two unique points x and y such that  , [ , ]x y C a b  . Here C[a,b] is a 

function space and x and y are functions on t variable and also real valued ( its value is 

always real value) as 

 : ( )                   : ( )x x t and y y t     (Real values and continuous). 

Domain is fixed from a to b. x and y are function from interval [a,b] to   .  

   
:[ , ] ,       :[ , ]

( , ) max ( ) ( )         [ , ]
t J

x a b y a b

d x y x t y t where j a b


 

  

 
 

 We will calculate the difference of  two functions x(t)-y(t) at each value of t from J. 

The maximum of the all the values of difference between two functions is the distance 

between the functions. Here we have defined the distance between two functions. 

ii): Discrete Metric Space 

 In discrete metric space let X be a set, which could be real number, 3, nR R  , function 

or set of sequence etc. then we need a distance function. 

 Distance function is generalized, that if we take two elements from X and those two 

elements are same then its distance is zero. 

    d(x , y) =0 if x and y are same   

   and d(x , y) =1 if x and y are different. 

 On the other hand if we take two different elements then distance is 1, we fixed. It 

means that we have fixed the set X with two options 0(same elements) and 1(different 

elements).This definition forms a metric space and is called a discrete metric space. 

 

 

Module No. 11 

Examples Metric Space:  
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 Sequence Space s: 

 The previous example consists of only bounded set but this space consists of all 

(bounded or unbounded) sequences of complex numbers. 

 Here the distance function is changed from previous one, the metric d defined by 

   
1

1
( , )      

2 1

j j

j j j

d x y
j

 

 








 
  

 where ( )      ( )j jx and y     and are all complex nos.  

Domain of sequences ( 1 2 3 1 2 3( , , ,.......) or ( , , ........)        is rational numbers. 

For distance function we just need to check four axioms. 1
st
, 2

nd
 and third axioms do yourself, 

here is only 4
th

 axiom is proved. 

4
th

 axiom: 4    ( , ) ( , ) ( , )    (Triangle Inequality)M d x y d x z d z y   

 let   ( )
1

t
f t

t



 

Differentiating w.r.t. t  
2

1
( )

(1 )
f t

t
 


 

As the derivative of the above function is positive this means that it is increasing sequence.  

   a b a b    

we know that if                 then            ( ) ( )a b f a f b   

the inequality sign does not change. 

So, applying above triangular inequality ( ) ( )f a b f a b    

   

                
1 1

           
1 1 1

            
1 1 1 1

a b a b

a b a b

a b a b

a b a b a b

a b a b a b
OR

a b a b a b a b

 


   


  

     

 
  

       

 

Now if we remove denominator  b      from    
1

a

a b 
it becomes 

1

a

a
 

 Andremoving  denominator a   from   
1

b

a b 
 it becomes   

1

b

b
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so, the remaining values will be increasedwhich result as  

  
1 1 1 1 1 1

a b a b a b a b

a b a b a b a b a b

 
    

         
 

Simply we can write 

  
1 1 1

a b a b

a b a b


 

   
 

Using above expression  x      ;      y      i i i ia b          

In triangular inequality we use three elements, so we use new sequence zor    ( )iz  . 

Putting values in above expression 

 

                        
1 1 1

                        
1 1 1

i i i i i i i i

i i i i i i i i

i i i i i i

i i i i i i

       

       

     

     

    
 

       

  
  

     

 

We want to change the above equation in this form    
1

2 1

j j

j j
j

 

 



 
 

So, we multiply by 
1

2i
 on both sides. 

  
1 1 1

.        .   .
2 1 2 1 2 1

i i i i i i

i i i i i ii i i

     

     

  
 

     
 

Taking summation of all values 

  
1 1 1

.        .   .
2 1 2 1 2 1

i i i i i i

i i i i i ii i i

     

     

  
 

     
    

Hence we have proved that 4
th

 axiom ( , ) ( , ) ( , )   (Triangle Inequality)d x y d x z d z y   

For metric space we have proved all four axioms. Above we have proved only 4
th

 axiom. 

 

Module No. 12 

Examples Metric Space:  

 Last example of Sequence Space s: 

 Space 
pl  
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 The Hilbert Sequence Space 
2l  

 Space 
pl  

Let 1p   be a fixed real number. 

By definition, each element in the space pl is a sequence 1 2( ) ( , ,.......)ix      of the 

numbers such that 1 2 ..................
p p

    converges. 

Thus  
1

p

jj





     

and the metric is defined by 

  
 

1

1

1

                ( , )             

                 ( )      

p p

j jj

p

j jj

d x y

where y and

 

 









 

  





 

  The elements      j jand   are complex numbers.Distance function d(x,y) of the set is 

a metric space. We are not proving all four axioms because it is complicated but it satisfied 

the axioms of metric space. 

 Space 
pl  

The real Space 
pl  

 If the elements      j jand   are not complex numbers but from real numbers then the 

space is called real space pl . 

 

 

 

 

 

The complex Space 
pl  

If the elements      j jand   are complex numbers then the space is called complex space pl  

 Above both have the same condition that summation of 1 2 ..................
p p

    that 

should be converges and 11

p

j





  , and the distance function is one by one entry 

difference with power p and overall power 1/p.  
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The Hilbert Sequence Space 
2l  

Now the case p=2 (fixed) 

The Hilbert sequence space 2l with the metric defined by 

  

1

22

1

2

1

( , )

           =

j j

j

j j

j

d x y  

 









 
  
 







 

(note: Check video lecture value is wrong)It is also satisfied the four axioms of metric space. 

 Now we have done that if we have a set x, then we define a function and last we have 

proved all the four axioms of metric space. If the set satisfied the four axioms then it make 

the metric space otherwise it is not metric space. 

 

 

Module No. 13 

Open Set, Closed Set 

 Open/Closed Ball 

 Sphere 

Open Ball in n  We start with real line. 

Open Set and Closed Set on Real Line  

 

 

Open Set on Real Line   

On real line we have open set not open ball. 

            

(2,5) is an open set. It includes all values between 2 and 5 but does not include 2 and 5. 

Closed Set on Real Line   

 

5 2 

5 2 
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            

[2,5] is a closed set. It includes all values between 2 and 5 including 2 and 5. 

Open Set and Closed Set on Real Line 2  

In 2 we have open ball.     

Here open ball has center ox and radius r. 

It includes all values but does not include boundaries 

Points on the Boundary: 

 ( , )     ;     on od x x r x is boundary  

 All the points are lies on the boundary if  

the difference of that pointx from the center ox is r. 

  ox x r   

xis a boundary point. 

Points inside the Boundary 

 All the points are lies inside the boundary if  

thedistance between x and the center ox  

(i-e. difference of that point x from the center ox )  is less than r.   

  ( ,  )od x x r  

xlies inside the boundary. 

 

 

Points Outside the Bounday 

All the points are lies outside the boundary if  

the distance between x and the center ox  

(i-e. the difference of that point x from the center ox ) is greater than r.   

  ( ,  )od x x r  

x lies outside the boundary. 
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Open Ball and Closed Ball in 2  

Open Ball: 

 In 2 if boundary is not included then it is open ball. It means all points inside the 

boundary are included.                               ( ,  )od x x r   

Closed Ball: 

 In 2 if boundary is included then it is Closed ball. It means all points inside the 

boundary and on the boundary are included.                            ( ,  )od x x r   

Open Sphere, Closed Sphere in 3  

 In 3 we have open sphere, closed sphere.     

Ball and Sphere (General Form)  

 Open Ball:   ( ; ) { | ( , ) }o oB x r x X d x x r    

 Closed Ball:   ( ; ) { | ( , ) }o oB x r x X d x x r    

 Sphere:   ( : ) { | ( , ) }o oS x r x X d x x r    

 Sphere includes all those points which are exactly lies on the boundary or on the 

radius r. It does not have any inside or outside points. 

In all three cases, ox  is called the center and r the radius. 

 

 

 

 

Warning 

 In discrete space, we have defined distance function.sphere can be empty. 

  

( , ) 0

( , y) 1        ;    x

( , ) r

( , ) r

c

c

d x x

d x y

d x x

d x x



 





 

  Sphere =  

For boundary we can subtract open ball from closed ball.       -    
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0 0 0( ,  ) ( ,  ) ( ,  )S x r B x r B x r       

Open Set: 

 A subset M of a metric space X is said to be open if it contains a ball about each of its 

points. 

Closed Set: 

 A subset K of X is said to be closed if its complement (in X) is open. 

that is cK X K  is open. 

In   we have two intervals, open and closed interval. Any point in open interval (however it 

is very near to boundary) we can take another open interval, However in closed interval we 

can take an open interval beside the boundary. 

Module No. 14 

Examples Open Ball, Closed Ball:  

 Example 1: 

 On real line we have open set not open ball.If we find an open ball against each 

point then it is open sets otherwise it closed (compliment of open) is closed. 

 

            

(-1, 6) is an open set. It includes all values between -1 and 6 but does not include-1 and 6. 

In metric space language, here we can find an open interval against each point.  

Point 2 has open interval (1, 3) and many mores intervals.  

Similarly point 5.99 has an open interval(1, 5.999) and many mores intervals. 

Now for point 5.999 has an open interval (1, 5.9999) and many mores intervals. 

For closed interval 

 On real line we have closed interval [-1, 6] 

            

 

It includes all values between -1 and 6 including -1 and 6. For inside point this condition is 

true, for each inside point we can find an open interval, but for  any point on boundary we 

cannot find any open interval. e.g. for point 6 we can’t find any open interval. 

6 -1 

6 -1 
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 In 2 we have open ball, if we take any open ball against that ball then we can 

find an open ball containing that ball because the boundary is not closed. 

 In 2 we have closed ball, then points on boundary will not give us any open 

ball. 

 

Module No. 15 

Neighborhood of a Point:  

 We can find an open ball around each point in Open set.  ox  

 “An open ball ( , ) of radius  oB x    is often 

called an   -neighborhood of ox .” 

By a neighborhood of ox , we mean any subset of X which contains an  -neighborhood of ox

. 

Difference between Radius r and  . 

Radius r . 

 For radius r means larger values, 0.1, 0.5, 10,40 while radius   means very small 

values like 0.002, 0.000003 etc. 

Radius  . 

 If we take a point x then all the points around it make a ball whose radius is very 

small   or  -neighborhood of ox .  

 

 

 

Interior Point: 

 We call ox an interior point of a set M X  if M is a neighborhood of ox . 

The interior of M is the set of all interior points of M. 

Int(M) is open and is the largest open set contained in M. 

Collection of all open balls is an open set whether the radius  of open ball is greater or 

smaller. 
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Module No. 16 

Topological Space:  

Definition: 

 Let   be collection of all open subsets of X. Then (X, ) is said to be a topological 

space if it satisfies following properties: 

 T1):       and X   

 T2): The union of any member of  is a member of  . 

 T3): The intersection of finitely many members of   is a member of  . 

It holds.! 

 that is the collection of all open subsets of X. 

i) itsimpliy satisfied, empty set is open because there is no point so condition is 

automatically satisfied. i.e   is always open. Also X belongs to  . 

ii) for second property that union of any member of  is a member of  . 

 U=union of open subsets 

 Let say there is at least one open subset M  of X who contains x such that 

    ;      x U at least x M    where M contains a ball B whose radius is x about X.  

                     x M      M union   ,   

                B U U is open   

 

 iii): 
1

         i=1,......m
m

i

i

y M


    

   

1 1 1

2 2 2

B ( , )

B ( , )

           .

           .

           .

B ( , )m m m

y M

y M

y M












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We take minimum of all radiussay  ,as 

   

1

1

min{ ,.........., }

B( , )              i

B( , )              

m

i

m

i

i

y M

y M

  








 



 ,  ( , )B y   contains in all M 

 Hence we take a ball from 
1

         i=1,......m
m

i

i

y M


   and prove that there exist a ball 

whose radius is   which is minimum of all radii. That means iM  containing that ball so that 

this intersection is also open. Hence a metric space is a topological space, because metric 

space contains open intervals and open intervals satisfied all the conditions of topological 

space. 

Module No. 17 

Continuous Mappings:  

First see the definition of continuous function then proceed next. 

Definition: 

 Let ( , )     ( , )X X d and Y Y d    be metric spaces. 

A mapping :T X Y  is said to be continuous at a point ox X  

if for every 0   there is a 0     ( ,  )osuch that d Tx Tx   for all x satisfying ( , )od x x   

 Here we have two spaces X and Y whose distances are d and d . Tx same as T(x). 

( ,  )od Tx Tx is basically open disk whose radius is  , center is oTx and Tx  is any point on the 

disk.  

( ,  )od x x  is also a open disk whose radius is  and center is ox . 

  :T X Y    

  
( ,  )od Tx Tx    

  ( ,  )od x x    ,    for every 0         

 

 

 

  neighborhood      neighborhood   



MTH 641 Functional Analysis 

 

22 

   X space     Y space 

x is mapping on Tx ,   x Tx   

ox is mapping on oTx ,  o ox Tx   

 

 

Module No. 18 

Continuous Mapping:  

First see the definition of continuous function and continuous mapping then now another 

definition of continuous mapping. 

Theorem (Continuous Mapping): 

 A mapping T of a metric space X into a metric space Y is continuous if and only if the 

inverse image of any open subset of Y is an open subset of X. 

It says that inverse image is open then metric space is continuous. As it is if and only if 

condition then we suppose continuous condition, then we prove that inverse image of open 

subset is open. 

Conversely we consider inverse image of open subset is open and prove that it is continuous. 

Proof:  Suppose a mapping :T X Y and T is continuous. 

Now we will prove that inverse image of any open subset in Y is open in X. 

Let S Y  be open subset. Let oS  be the inverse image of S. 

   Space X spaceY 

We have to prove that this oS open. For this we have two cases. 

          :T X Y   

1st case: 

 Suppose that we have chosen the element has no inverse image then 

       open     oS   (because empty set is always open) 

2nd  case: 

 Now suppose oS is not empty then there is at least one  

Point ox such that  

 

oS  
S 

oTx  ox  

oS  
S

  

  

 

N
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            o o oS x S    

  o oy Tx        :T X Y  

S is open , there exist an   neighborhood N of oy   

since T is continuous  oS  neighborhood of ox  which is mapped into N. 

Since for    we have  No oN S S   so, 

oS is open on    o ox S and has neighborhood. 

Conversely we also prove that T is continuous. 

 For every   ox X and  -neighborhood N of oTx , the  inverse image oN  of N is 

open. 

Since N is open and oN contains ox , oN also contains a neighborhood of ox  (being open) 

which is mapped into N because  oN  is mapped into N.  

By definitionT is continuous at  ox . 

 

 

Module No. 19 

Accumulation Point (limit point):  

Definition: 

  If M is a subset of a metric space X then ox is a limit point of M. if it is the 

limit of an eventually non-constant sequence ( )ia of points of M (or limit point of M)if every 

neighborhood of ox contains at least one point y M  distinct from ox . 

Translation in the form of metric space: 

 Let M be a subset of a metric space X, then a point ox  of X (which may or may not be 

a point of M) is called an accumulation point of M ( or limit point of M) if every 

neighborhood of ox contains at least one point y M distinct from ox . 

Example (1)  : ( , )d x y x y   

   M(0,1)   

   0 (0,1)M  is a limit point of M. 
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   1 is also a limit point of M. 

as
   

1
lim
x n ,  

1
1

n
  

Another example: 

 The set of integers has no limits points,    has no limit point, e.g. any sequence 

in   converging to any integer is eventually constant. 

Example (2): 

 Let in 
2 2 2

2 1 2 1            d(x, y)= (x ) (y )x y    

 Open disk 2 2 2{(x, y) | 1}x y    

All those points from 2  such that 2 2 1x y  , 

 All those point which are on the boundary of this open ball are accumulation points or 

limit points. 

Closure of M: 

 The set consisting of the points of M and the accumulation points of M is called the 

closure of M and is denoted by M  . 

Example (3): 

 M=(0,1)  has limit points are  0, 1 

 when we collect these points then it transforms to. 

   [0,1] (0,1) {0,1} M    

  Closure of M= Points of M U limits points of M 

 

Module No. 20 

Dense Set:  

Definition: 

 A subset M of a metric space X is said to be dense in X if M X  

Closure set is a set along with its limits points. 

Example (1): 
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 The rational numbers   are dense in   . 

 we have infinite sets     and  , 

Let x  , and x can be a integer or fraction,  

as x=n+r   (e.g 2.123=2+0.123) 

   ,     0 <1n r   if r is between 0 and 1 then it is fraction. 

here,   1 2 30. ..........r rr r    

 set  1 2 30. ..........k kx n rr r r   

So, each kx is a rational number as we fix the fractional part 1 2 30. ..........r rr r  when we fix the 

fractional part then it gives you rational number. Real number may be rational(fraction part is 

fix and not continue) or irrational ( fraction part is not fix and continue). 

   
lim k
x

x x


  

  here kx  is a rational number and at x  and it gives irrational number x. so all 

rational numbers cover all irrational numbers, Q   this shows that Q is dense in  , as real 

set   contains rational and irrational numbers, if Q gives a rational number then it is also in 

Q and also in   but if Q gives an irrational number then it is also present in  . 

Separable Space 

 A metric space X is said to be separable if it has a countable subset which is dense in 

X. 

It has two conditions; First its subset is dense and second is countable. 

 

 

 

Module No. 21 

If M X  then M is dense in X. 

Separable Spaces:  

A metric space X is said to be separable if it has a countable subset which is dense in X. 

Examples (Separable Spaces):  

 The Real Line   
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 The Complex Plane  

 Discrete Metric Space 

 

Example 1: 

1stThe real line   

 
( ,d)           ,          d(x,y)= x y  

 Now   is subset of  , such that closure of   is equal to  . So, it satisfy the both 

conditions of   is subset of    (means   ),  

  is dense in   (means   )   and  is countable. 

Hence  is a separable. 

2nd 
n  

  ( , ) d is a space where ( , )d x y is the distance function. 

  
2 2 2

1 1 2 2( , ) ( ) ( ) ......... ( )n nd x y y x y x y x        

The elements of n are vectors, x and y  are vectors and we have represent as underscore 

such that   1 1( ,............ )      and    y (y ,....................y )n nx x x   

  1{( ,....... ) | }n

n ic c c    

 Where n is dense in n , also as  is countable so all its n-tuples are also countable 

(which means 1( ,....... )nc c is countable). 

n is a countable subset of 
n   which is dense 

n , so 
n   is separable space. 

 

The  Complex Plane   

In complex plane the numbers are in the form of { | , }      ,           1a ib a b i     

Or same as   {( , ) | , }a b a b  

 For 2 we can define another set  2

1 2 1 2 1 2 1 2{( , ) | , } { , | , }c c c c c ic c c       

 In previous example was dense in n-dimension n  , here are only two complex 

numbers 1 2,c c  in 2 so 2  is also dense in   and also countable as 1 2 1 2{( , ) | , }c c c c  . 
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Now has a subset 2 which is dense and countable so,   is separable. 

Discrete Metric Space:  

 In discrete metric space if elements are same then distance is 0 and if elements are 

different then distance is 1. There is no condition on set. Set can be any set. 

Example 2: 

 In discrete metric space we have a condition on distance function which is if elements 

are same then distance is zero, and if elements are different then distance is equal 1. When we 

have a discrete metric space then the set X itself is dense and there is no limiting point, no 

other subset is dense in X. Now for separable space we need two conditions, 1: subset is 

dense,  2: countable. As in Discrete metric space the set is itself dense, so we need only to 

check that is countable or not, if it is countable then it is separable. Hence in Discrete metric 

space we only check that the set is countable or not, if it is countable then it is separable else 

it is not separable. 

 

 

Module No. 22 

Examples Separable Spaces:  

Space 
pl  

 Space mean “a set”, in this set elements are sequences, which may be real (called real 

space  pl ) or complex numbers (called complex space pl ). Then we have define its metric, a 

metric means a distance function. 

Now we have to show that a subset of pl is dense and also countable then pl  is a separable 

space. 

 In previous examples we take   as countable and then use it as generalize form. Here 

we also use   as countable. 

Space 
pl  

 The space 
pl with 1 p    is a separable. 

To find a countable subset which is dense in
pl where pl is a space consisting of sequences

{ }ix   , which are bounded sequences such that
1

p

i

i






   is convergent. 
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The metric is 

1

1

( , )         ( )   ( )

p p

i i i

i

d x y where x and y  




 
    
 
  

x and y in d(x,y) are sequences. Now we find the countable subset of which is dense in . 

Let M be the set of all sequences of the form  1 2( , ,......... ,0,0,.........)ny     

n-positive integer and i ‟s  arerational numbers. 

1 2, ,......... n   are rational numbers and 0,0,………… are constant, so M is countable. 

We need to probe that M is dense in . 

    pM l  

 Let { } p

ix l  be arbitrary. We need to show that 

             ( , )y M such that d x y     

Now    { } p

ix l     

    
1

p

i

i






   (convergent) 

    
1 1

p pn

i i

j j n

 


  

 
    

 
   (Convergent) 

Less than infinity means sum is finite. 

Then for every 0   

(here Epsilon represent the small value) there is n(depend  ) 

  

    
1 2

p p

i

j n






 

  ……….(i,  

   ( , )d x y   

Now the rational numbers are dense in   . 

originally ( )jx   we have covert it into two parts  

  
1 2 1

1 2 1

( , ,........, )  and ( ,.............)

overlall    ( , ,........, , ,.............)

n n

n n

   

   





 

 Now y M  , 1 2( , ,......... ,0,0,.........)ny     

pl pl

pl
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1 2

p pn

i i

j


 



 
                ……………(ii

 

 Using both relations  

 

 
1

1 1

( , )

               =

p
p

j j

j

p pn

j j j j

j j n

d x y  

   







  

 

  



 

 

  
1 2

p pn

j j

j


 



    and  

  
1 2

p p

j j

j n


 



 

   

    
1 1

( , )

p pn
p p

j j j j

j j n

d x y     


  

       

   ( , )d x y     y M  

We have found a limit point y which belongs to X. 

In this module we have proven that l is separable. 

 Here we have defined a set M and using the properties of rational number we see that 

it was countable. Then we prove that it is dense, for this we take a sequence in pl  and proved 

that its limiting point is also in M. so, M along with limiting point y becomes whole pl . 

 

 

 

 

Module No. 23 

Bounded Sequence:  

Definition: 

 We call a nonempty subset M X  a bounded set if its diameter 

,( ) sup ( , )x y MM d x y  is finite. 
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 Here we check all distance pairs for each point against all other points, lineup all 

those distances and take the supremum distance point we call the diameter of that set. 

It means supremum of all distance is finite then the set is bounded. 

 A sequence ( )nx  in X is bounded sequence if the corresponding point set is a bounded 

subset ofX. 

 Hence bounded sequence means finite diameter and if diameter is infinite then 

sequence is unbounded. 

 

Module No. 24 

Sequences:  

 Convergence of a sequence 

 Limits 

Sequence is a function whose domain is natural numbers. 

Convergence of a sequence: 

 A sequence ( )nx  in a metric space ( , )X X d is said to converge or to be convergent 

if there is an x X  such that  

    lim ( , ) 0n
n

d x x


  

x is called the limit of ( )nx and we write  

   lim n
n

x x


    

or simply  nx x
 

 

 

Example 1:

  

 

   
1

1
              ,       

 varies     {1,2,3,..................}

1
      0

n

n

x
n

n as

n







 
 

 
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Its domain is set of natural numbers.if n varies from 1 to   then 
1

n
 approaches to 0. Or its 

limit point x is 0. 

Example 2: 

    ( 1)n

nx  
 here x varies from 1 to n.

 

    1 n-even  not convergent 

    -1 n-odd convergent. 

As this sequence is not converging at one value. It varies between 1 and -1 so it is  not 

converging. 

Example 3: 

    
1                 if n is a square

0                if otherwise
nx


 


 

 Now   4 5 61          ,           0         ,           0x x x    

    7 8 90          ,           0         ,          1

..........                     ...........                    ..........

x x x  
 

 Here   1 2 31          ,         0           ,           0x x x    

    
4 5 6

7 8 9

1          ,        0            ,           0        

0          ,        0            ,           1

x x x

x x x

  

  
 

    ………                 ..……                     ……….

 

    ………                 ..……                     ……….

 

    ………                 ..……                     ……….

 

are not convergent. 

 

 

Convergence of a sequence: (Another Definition) 

 We say that ( )nx converges to x or has the limit x,  if ( )nx is not convergent, it is said 

to be divergent. 

    ( )                       ;                n nx x x  
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 0   being given, there is ( )N N   such that all ( )nx  with n>Nwilllie in the  -

neighborhood ( ; )B x   of x. then we call it convergent. 

Module No. 25 

Here we relate the convergent sequence and bounded sequence. 

Lemma:  

Let ( , )X X d  be a metric space, then  

a)  A convergent sequence in X is bounded and its limit is unique. 

b)  If   and     yn nx x y  in Xthen ( , ) ( , )n nd x y d x y  

a): 

 Given that sequence is convergent and we have to prove that it is also bounded. 

Bounded means that its corresponding diameter is finite. 

 For convergent sequence mean for every 0   there exist ( )N N   such that for all 

nx  with n>N lie in the  - neighborhood ( ; )B x   of x . 

As it is true for all  so we choose 

  
1,              

 ( , ) 1n

then we will find there exist N such that

d x x

 


 

We have values 1 2 1, ,............ , ,............N Nx x x x   

which are entries of sequence. 

 If we choose n<N, say from this part of the sequence 1 2, ,............ Nx x x then 

( , )    1nd x x is greater than , and 

 if we choose n>N, say from this part of the sequence 1,............Nx   then ( , ) 1nd x x  , 

  ( , ) 1     n>Nnd x x    

Now we have calculated the distance of x from the point ix  where i=1,2………..N is  

  1 2( , ), ( , ),............ ( , )Nd x x d x x d x x  

 We take the maximum of all these distances,max(………………),  

let say this max distance is “d”. 

Now the distance before N is less than d and the value after N is less than 1, 

  ( , ) 1     ,        nnd x x d    
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 In first part (a) we have to prove two things 

i):sequence is convergent (i.e we have to prove that it is bounded)   and 

ii): converging value is unique. 

 

2nd Part Uniqueness: 

Let say that           ,          n nx x x z   

  ( ,z) 0d x  ……………..(i 

If we take any two values from a set then the distance between them is always greater than 0. 

For uniqueness we have to prove that x=z, in other word the distance between x and z is

( ,z) 0d x   

Using the 4
th

 axioms of metric space that 

   ( , ) ( , ) ( , )n nd x z d x x d x z   

nx converges to x and also z (our supposition), 

  ( , ) 0nd x x   

and  ( , ) 0nd x z   

now  ( ,z) 0d x  ……………….(ii 

From (i and (ii  

   ( ,z) 0d x   

    x=z 

Hence proved that it converges to a unique value. 

 

 

 

b): 

Let say that        ,                 n nx x y y   

then we have to prove that  ( , ) ( , )n nd x y d x y  
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( , ) ( , ) d(x, y) ( , )     ,                    triangular inequalityn n n nd x y d x y d y y    

  
( , ) d(x, y) ( , ) ( , )n n n nd x y d x y d y y   ……………….….iii 

interchanging nx andx and ny and y, 

  
( , ) ( , ) ( , ) ( , )n n n nd x y d x x d x y d y y    

  
( , ) ( , ) ( , ) ( , )n n n nd x y d x y d x x d y y    

Multiplying -1 on both sides of inequality 

  
( , ) ( , ) ( ( , ) ( , ))n n n nd x y d x y d x x d y y    ………….…iv (CHECK SIGN) 

 (i.e                   -x a a x a    ) 

usingabove inequality from iii and iv 

  
( , ) ( , ) ( , x) ( , y)n n n nd x y d x y d x d y   …………..v 

As       ,                 n nx x y y  so, ( , ) 0       ( , ) 0n nd x x and d y y   

 
      { ( , ) ( , )} 0n nd x y d x y    

 
      ( , ) ( , )n nd x y d x y   

Hence proved. 

 

 

Module No. 26 

Cauchy Sequence:  

Definition: 

 A sequence ( )nx  in a metric space ( , )X X d  is said to be Cauchy (or fundamental) 

if  

for every 0   there is an ( )N N   such that  ( , )m nd x x   for every m,n>N. 

Equivalent notation 
( , ) 0m nd x x     as ,m n  

Example 1: 

  
1

1 1
    ,      (0,1]n

n

a
n n





 
  

 
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The distance function is ( , )d x y x y  , is a Cauchy sequence because 

Let say we have any m and n positive numbers, then 

  
1 1 1 1

m n m n
     

as          ,       n  m     ,    

then  
1 1

0       ,       0  
m n
   

so  
1 1

0          as           ,       n  m
m n
   

 

this is the Cauchy sequence condition that 

    ( , ) 0m nd x x  as ,m n  

Completeness: 

Definition: 

 The space X is said to be complete if every Cauchy sequence in X converges that is, 

has a limit which is an element of X. 

 

Example 2: 

   
1

1
(0,1]n

n

a
n





 
  
 

 

is a Cauchy sequence as 0 (0,1]na    

 Hence the sequence na in spaceXis converging to 0 but this does not belong to that 

(0,1], the function define on space is  

   ( , ) ,d x y x y is Cauchy. 

  this space (0,1] is not complete. 

 For every Cauchy sequence, it should converge to element of that space; if it 

converges to space then we say that it is complete space. 

Module No. 27 

Here we relate the convergent sequence and bounded sequence. 

Theorem Convergent Sequence:  
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Theorem: 

 Every convergent sequence in a metric space is a Cauchy sequence. 

Proof: 

 Let { }nx be a convergent sequence such that nx x  for every 0   there exist 

( )       ( , )       n>N
2

nN N such that d x x


    

Now we have to prove that { }nx is a Cauchy sequence, for this we have to prove that  

   ( , )     ;        ,m nd x x m n N   

We first choose that m>N then by triangular inequality, 

  ( , ) ( , ) ( , )    ;        ,m n m nd x x d x x d x x m n N    

as  ( , )      ,     ( , )  
2 2

m nd x x d x x
 

   


  

( , )     ;        ,
2 2

m nd x x m n N
 

  
 

                  ( , )    ;        ,m nd x x m n N    

That we have to prove, hence{ }nx is a Cauchy sequence. 

Converse: 

 Now we check that every Cauchy sequence ( )nx in that space is convergent. 

The converse is not true. 

   “every Cauchy sequence ( )nx in that space is not convergent”. 

Example 1: 

 The counter example is  

    1

1
n

n

a
n





 
  
 

 

This is a Cauchy sequence in (0,1]but it is not convergent in (0,1] . 

 

Example 2: 

 The metric space  ,  ( , ) ,d x y x y   This metric space is not complete, we need at 

least one Cauchy sequence which is not converging in this space.  

So, we have a sequence { }nx which is 



MTH 641 Functional Analysis 

 

37 

    
1

1 ;       1,2,3,......

n

nx n
n

 
   
 

 

 This sequence is Cauchy sequence in   and this sequence is converging to „e‟  in ,  

e  , where e is an irrational number and does not belong to  . So this sequence is such 

that it is converging to irrational number.  

This means that   is not complete metric space. 

 

 

 

Module No. 28 

Here we relate the convergent sequence and bounded sequence. 

Theorem (Closure, Closed Set):  

Closure is a collection of limit points and the set itself.  

Limit point is such point that if we draw an open ball around it then we can find another 

point other than that point which belongs to that set.  

A set is called a closed set if all the limits points are present in that set. 

Theorem: 

 Let M be a nonempty subset of a metric space ( , )    d X d and M  its closure as defined 

before then,  

a): x M  if and only if there is a sequence ( )nx  in M such that nx x . 

b): M is closed if and only if the situation ,    n nx M x x   implies that x M . 

 

 

 

a): Proof: 

  x M  there is a sequence ( )nx in M such that nx x  

M is a collection of M and its limit points.Now there are two option,  
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i): x belong to M,  x M  

ii): x does not belong to M,  x M  

i)  x M  

now ifx does not belong to Mthen x is a limit point of M. 

and if x M  then 1 2 3,   ,  ,.....................   x x x x x x  
 

or
 1 2 1 2( , ,..........) ( ) ( .........),  nx x x x x   

hence                   nx x M   

ii)  x M  

For every  n=1,2,3,………………  the ball 
1 1

;    ,             here  is .B x
n n


 
 
 

 

Containing an nx M , other than x. 

Now as   

   

                                 

1
           0       

            .n

n

n

x x



 

 

 

Hence nx converges to x. 

Conversely, 

 There is a sequence { }nx in M such that x M  , so, we have a sequence 

       ( )  .n nx x and x in M . 

Here we have two cases 

i) x M      or  

ii) every neighborhood of x contains points xn x  

this implies that x is a limit point. i.e x M  

 

 

b): 

M is closed, if and only if the situation   ,       n nx M x x   . 

                   x M   
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M is closed if and only if M M ,  

Now we have to prove that M M for this we prove that       ,          M M M M   

i):     M M  

 by definition M contains M and its limit point so this condition is fulfilled. 

ii):     M M  

Now we prove that M M  

 Let x M  ,   we will show that x M .  

 Now if we take xbelongs to M then from above “a” part of this theorem, we have a 

sequence nx in M such that nx x  this implies x M . 

That means M M . 

Hence M M  

 

Module No. 29 

 

Theorem (Complete Subspace):  

Theorem: 

 A subspace M of a complete metric space X is itself complete if and only if the set M 

is closed in X. 

As this condition is if and only if so vice versa.From previous theorem we have 

Theorem: 

 Let M be a nonempty subset of a metric space ( , )    d X d and M  its closure as defined 

before then,  

a): x M  if and only if there is a sequence ( )nx  in M such that nx x  . 

b): M is closed if and only if the situation ,    n nx M x x   implies that x M . 

Proof: 

 Let M is subspace of X over d is then ( , )X d complete.  
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    ( , )M X d ,  

M is complete if and only if M is closed, and M is closed if and only if  

    M M . 

Now we can say that  

   ( , )M X d  M M . 

 Suppose M is complete and we need to show that M M . 

 Now by definition M M . Now we need to prove that M M (to be proved). 

 “Let M be a nonempty subspace of a metric space ( , )    d X d and M  its closure as 

defined before then,  

From the part “a” of previous theorem 

 

a):  

 x M if and only if there is a sequence ( )nx  in M such that nx x .  

Now x M  

As M is a subspace of a complete metric space ( , )    nd X d and x is also in X so, 

   there is a sequence ( )nx in X such that  nx x .  

Since every convergent sequence in a metric space is Cauchy, then ( )nx  is Cauchy. 

Our supposition is that M is complete. So, ( )nx  converges in M  

     nx x M    

     M M  

we start from x M and obtained x M  

     M M  

 Hence M is closed. 

 

Conversely: 

 M is closed     M M  



MTH 641 Functional Analysis 

 

41 

and we need to show that M is complete. 

For this we need to show that every Cauchy sequence in M converges in  

    M, x M . 

 Let ( )nx be a Cauchy sequence in M such that nx x ,  

By the previous theorem  x M  

but    M M  x M  

Since ( )nx is an arbitrary sequence,  

 true for all Cauchy sequences in M,  

Hence proved 
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Module No. 29 

Theorem (Complete Subspace):  

Theorem: 

 A subspace M of a complete metric space X is itself complete if and only if the set M 

is closed in X. 

As this condition is if and only if so vice versa.From previous theorem we have 

Theorem: 

 Let M be a nonempty subset of a metric space ( , )    d X d and M  its closure as defined 

before then,  

 a): x M  if and only if there is a sequence ( )nx  in M such that nx x  . 

 b): M is closed if and only if the situation ,    n nx M x x   implies that x M . 

Proof: 

 Let M is subspace of X over d is then ( , )X d complete.  

    ( , )M X d ,  

M is complete if and only if M is closed, and M is closed if and only if  

    M M . 

Now we can say that  

    ( , )M X d  M M . 

 Suppose M is complete and we need to show that M M . 

 Now by definition M M . Now we need to prove that M M (to be proved). 

 “Let M be a nonempty subspace of a metric space ( , )    d X d and M  its closure as 

defined before then,  

From the part “a” of previous theorem 
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a):  

 x M if and only if there is a sequence ( )nx  in M such that nx x .  

Now x M  

As M is a subspace of a complete metric space ( , )    nd X d and x is also in X so, 

   there is a sequence ( )nx in X such that  nx x .  

Since every convergent sequence in a metric space is Cauchy, then ( )nx  is Cauchy. 

Our supposition is that M is complete. So, ( )nx  converges in M  

     nx x M    

     M M  

we start from x M and obtained x M  

     M M  

 Hence M is closed. 

Conversely: 

 M is closed    

     M M  

and we need to show that M is complete. 

For this we need to show that every Cauchy sequence in M converges in  

    M, x M . 

 Let ( )nx be a Cauchy sequence in M such that nx x ,  

By the previous theorem  x M  

but    M M    x M  

Since ( )nx is an arbitrary sequence,  

   true for all Cauchy sequences in M,  

Hence proved 
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Module No. 30 

Theorem (Continuous Mapping):  

Theorem: 

 A mapping :T X Y  of a metric space (X, d) into a metric space ( , )Y d  is 

continuous at a point ox X  if and only if n ox x implies n oTx Tx  . 

Proof: 

 Suppose T is continuous, we will prove that if n ox x implies n oTx Tx  . 

T is continuous means :T X Y  

a given 0   there exist 0   such that  

   ( , )      ( ,  )     o od x x d Tx Tx    

So, let n ox x  there exist a   such that for all n>  we have 

   ( ,  )n od x x   

This is    of convergence. 

   ( ,  )     ,     od Tx Tx n    

By definition   n oTx Tx  

Converse: 

 Let n ox x  implies n oTx Tx  for all ox  . 

We have to show that T is continuous by contradiction. 

We suppose that it is not true then there is an 0   such that for every 0  there is some 

ox x  such that   

   ( , )               ( , )o od x x d Tx Tx     

In particular  
1

n
     

1
( , )od x x

n
  

     n ox x  

      oTx not Tx  

     ( , )od Tx Tx   
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Module No. 31 

Exmaples (Completeness):  

   

We will show that  and    are completes. In this module we show only that  is a complete 

metric space which means every sequence in  is convergent in  and every Cauchy 

sequence is convergent. 

Lemma a: 

 Every Cauchy sequence in a metric space is bounded. 

This is for every metric space. 

Lemma b: 

 If a Cauchy sequence has a subsequence that converges to x , then the sequence 

converges to x . 

Proposition: 

 Every sequence of real numbers has a monotone subsequence. 

Proof: 

 Suppose the sequence { }nx has no monotone increasing subsequence, we will show 

that it has a monotone decreasing sequence. The sequence { }nx must have a first term, say 
1nx

such that all subsequent terms are smaller  

 1n n means that n comes after 1n , 
1n nx x   .  

Otherwise, { }nx  would have a monotone increasing subsequence. 

 Similarly, the remaining sequence 
2 3

{ , ........}n nx x it must have some first term. 

 Let first term of remaining sequence is 
2nx  , Now this 

2nx is less than 
1nx ,   

2 1n nx x . 

Now we take the remaining sequence 
3

{ ........}nx , whose first term is 
3nx , now this 

3 2n nx x . 

Hence this process will continue  
1 2 3 ..............n n nx x x  , 

and is a monotonic decreasing subsequence.  

We have proved that every sequence of Real numbers has a monotone subsequence. 

Now using lemma a, b and proposition we have a theorem. 
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Theorem: 

 is a completer metric space, i.e., every Cauchy sequence of real numbers converges. 

Proof: 

 Let { }nx be a Cauchy sequence. 

 Remark a implies that { }nx is bounded. Now if the given Cauchy sequence is bounded 

then its subsequence is also bounded.  

Every subsequence of { }nx is bounded. 

Also { }nx has a monotone subsequence.Now { }nx  is monotone as well as bounded. 

Monotone Convergence Theorem: 

 If a sequence { }nx is monotone and bounded this implies that it is convergent. 

This implies that subsequence is convergent. Now using remarks 2 if we have a Cauchy 

sequence has a subsequence is convergent than the original sequence will also convergent.

{ }nx is convergent. As this general sequence { }nx from   so, every Cauchy sequence from 

 is convergent which means that  is complete. 

 

Module No. 32 

Exmaples (Completeness):  

 n  

Here we prove that n is complete 

Example:  

 The Euclidean space n is complete. 

Proof: 

 Let n , the elements of n are n-tuples say 

  
1 2

1 2

( , ,.......... )    ;    a ,     

( , ,.......... )  

n i i

n

x a a a b

y b b b

 




 

The distance function in n is  

  
2 2 2

1 1 2 2( , ) ( ) ( ) ...... ( )n nd x y a b a b a b        
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Let { }nx be a Cauchy sequence in n  

    
( ) ( ) ( )

1 2( , ,.......... )m m m

m nx a a a  

(i.e . 

   

(1) (1) (1)

1 1 2

(2) (2) (2)

1 1 2

( , ,.......... )

( , ,.......... )

.

.

.

n

n

x a a a

x a a a





) 

   
( ) ( ) ( )

1 2( , ,.......... )r r r

r nx a a a  

The distance function is  

 ( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 2

1 1 2 2( , ) ( ) ( ) ...... ( )      ,       ,m r m r m r

m r n nd x x a a a a a a m r N           

Taking power two, we have 

 ( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 2 2

1 1 2 2( ) ( ) ...... ( )m r m r m r

n na a a a a a         

 

( ) ( ) 2 2

( ) ( )

( ) ,

,     , ,     1,2,.....

m r

j j

m r

j j

a a

a a m r N j n





 

    
 

 For a fixed j (1) (2)( ............)j ja a  is a Cauchy sequence, this implies it is converging in   

because  is a complete metric space. 

 
( ) ( )                        ,      ,     ,  j=1,2,......,N           m r

j j ja a m a     

   

( )

1 1

( )

2 2

( )

.

.

m

m

m

n n

a a

a a

a a







 

All these values 1 2, ,....... na a a  called x, As 1 2( , ,....... ) n

nx a a a   

    ( , )md x x  ,  ,    mr x x   

    x is a limit of mx  ,  

    mx was general element 

    n is completer 



MTH 641 Functional Analysis 

 

8 

Module No. 33 

Exmaples (Completeness):  

 [ , ]a b  

 Here we prove that [ , ]a b is complete metric space 

Example: 

 The function space [ , ]a b is complete; here [ , ]a b is any given closed interval on  . 

 Let ( )mx  be any Cauchy sequence in [ , ]a b . 

The metric space in [ , ]a b is  

   [ , ]( , ) max ( ) ( )t a bd x y x t y t   ,    where [a,b]=J 

There is an N such that for all m,n>N 

   ( , ) max ( ) ( )m n t J m nd x x x t x t     

Hence for any fixed ot t J   

    ( ) ( )m o n ox t x t    

  1 2( ), ( ),............o ox t x t is a Cauchy sequence of real numbers and   is complete. 

  sequence converges   ( ) ( )m o ox t x t   as  m  

In this way to each ,t J  a unique real number x(t). This definespointwise function on J. 

Now we well show that ( ) [ , ]       mx t a b and x x   

   max ( ) ( )t J mx t x t     

We are comparing with  max ( ) ( ) ,           t J m nx t x t as n     

    for every t J  ( ) ( )mx t x t    

    ( )mx t converges to x(t) uniform; 

 If a sequence ( )mx  of continuous function on [a,b] converges on [a,b] and the 

convergence is uniform on [a,b], then the limit function x is continuous on [a,b] 

    ( )x t is continuous on [a,b] 

    ( ) [ , ]x t a b  . 
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Module No. 34 

Exmaples (Completeness):  

 l  

 Here we prove that l is complete metric space 

Example: 

 The function space l is complete; here [ , ]a b is any given closed interval on  . 

Proof: 

 Let ( )mx  be any Cauchy sequence in l such that 

In l the elements are of the form   

   
1 2( , ,.......)                j xx a a a c    

   
1 2( , ,.......),                j yy b b b c    

 The distance or metric function is 

   ( , ) sup j j
j

d x y a b


 


 

Here    ( ) ( )

1 2( , ,........),          m m

mx a a as  

   

(1) (1)

1 1 2

(2) (2)

2 1 2

( , ,........),

( , ,........)   so on

x a a

x a a




 

For any q>0 , there exist   such that for all m,n> . 

   ( ) ( )( , ) sup m n

m n j j
j

d x y a b


 


 

So, if sup   for a fixed j 

   ( ) ( )        ,       ,  m n

j ja a m n    

   for every fixed j, the sequence 
(1) (2)( , ,........)j ja a is a Cauchy sequence of real 

numbers   . 

Since  is complete, 
( )m

ja is convergent in  . 

   
( )                   1,2,..........m

j ja a as m for j   
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For these infinite limits 
1 2, ,.................a a  such that ( ) ( )

1 1 2 2,        ,...............m ma a a a   

We define  1 2( , ,............)x a a   

We need to prove  
1 2( , ,............)x a a l   

   ( ) ( )m n

j ja a    

    ( )m

j ja a     as n  .  then
mx x  

From above inequality, 

   ( )( , ) sup m

j jd x y a a     

Which means  mx x  

Since    ( )( )m

m jx a l   

   ( )           m

j ma k for all j  

   

( ) ( )

( ) ( )      

       <

m m

j j j j

m m

j j j

m

a a a a

a a a

k

  

  



 

    ja is bounded ,       jx a l   

Module No. 35 

Exmaples (Completion of Metric Spaces):  

 Space   

 Space of Polynomials 

 Isometric mappings/spaces 

 here we prove that l is complete metric space 

Isometric Mappings: 

 Let  ( , )   and   X=(X, )X X d d    be metric spaces. 

 A mapping :T X X   is said to be isometric or isometry if T preserve distance. 

Preseve distance mean after applying the mapping the distance is preserve, i.e. for all 

,x y X  

   ( , ) ( , )x yd T T d x y  
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Isometric Spaces: 

 The space X is said to be isometric with space X  if there exist a bijectiveisometry of 

X onto X . 

 X and X  are then called isometric spaces. 

Theorem(Completion) 

 For a metric space ( , )X X d  there exists a complete metric space ˆ ˆ( , )X X d  which 

has a subspace W that is isometric with X and is dense in X̂ . 

 This space X̂ is unique except for isometries, that is if X is any complete metric 

space having a dense subspace W


 isometric with X, then X and X̂ are isometric. 

 

Module No. 36 

Vector Space  

Definition: 

 A vector space (or linear space) over a field K is a nonempty set X of elements 

x,y,……………….(called vectors) together with two algebraic operations. 

 These operations are called vector addition and multiplication of vectors by scalars, 

that is, by elements of K. 

 Vector Addition associates with every ordered pair (x,y) of vectors a vector x+y, 

called the sum of x and y, in such a way that the following properties hold 

 Vector addition is commutative and associative. 

 There exists a vector 0, called the zero vector, and for every vector x there exists a 

vector –x, such that for all vectors. 

 Vector Space 

    x+0=x 

    x+(-x)=0 

 Multiplication by scalar associates with every vector x and scalar   a vector x (also 

written x ), called the product of  and x, in such a way that for all vectors x, y and scalar 

,     we have 

    ( ) ( )x x    or  1x=x 

and the distributive laws hold. 
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Module No. 37 

Examples(Vector Space ) 

 Space n  

 Space n  

 Space [ , ]a b  

 Space 2l  

1. Space n  

   1( ,............, ) ,       n ix      

   1( ,............, ) ,       n iy      

Addition: 

   x+y= 1 1( ,............, )n n      

scalar Multiplication: 

 let  be a scalar then  

   1( ,............, )nx    

Now addition and scalar multiplication in n  is a vector space. 

2. Space 
n  

Addition: 

 Let   1( ,............, ) ,       n ix      

   1( ,............, ) ,       n iy      

Scalar Multiplication: 

addition and scalar multiplication is same as in n , so n is a vector space. 

3. Space [ , ]a b  

 Let [ , ]             [ , ] x a b and y a b    

where x and y are fucntions and operating on t  

Addition: 

   ( )( ) ( ) ( )x y t x t y t    
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Scalar Multiplication: 

   ( )( ) ( )x t x t   

So under addition and scalar multiplication [ , ]a b  is vector space over a field  or    . 

4. Space 
2l : 

 In this space we have sequences,if 2x l  then x is a sequence, say  

   2

1( ,............, ) ,       nx x l    

 and  2

1( ,............, ) ,       ny y l    

Addition: 

   1 1( ,............, )n nx y         

Scalar Multiplication: 

   1( ,............, ) nx    

So under addition and scalar multiplication the space 2l  is vector space over a field  or    

Module No. 38 

Vector Space  

 Subspace 

 Basis of a Vector Space 

Subspace: 

 A subspace of a vector space X is a nonempty subset Y of X such that addition and 

scalar multiplication are closed in Y. 

Hence T is itself a vector space, the two algebraic operations being those induced from X. 

Two Types of subspaces 

 Improper Subspace:  If the span of a subspace is equal to that vector space ; 

 Proper Subspace: If the span of a subspace is not equal to that vector space 

Linear Combination 

 A linear combination of vectors 1,........., nx x  of a vector space X is an axpression of 

the form 

 1 1 ............. m ma x a x where the coefficients 1,............, ma a  are any scalars. 



MTH 641 Functional Analysis 

 

14 

Span of a Set: 

 For any nonempty subset M X  the set of all linear combinations of vectors of M is 

called the span of M. 

Written as “span M”. 

Obviously, this is a subspace Y of X, and we say that Y is spanned or generated by M. 

Linear Independence: 

 If two vectors have same direction and different in magnitude then on vector is 

multiple of other which means that one is dependent to other. 

 If two vectors have not same direction then one vector is independent to other. 

Mathematically: 

linearly independent. 

    1 1 2 2 ................. 0m mc x c x c x      

if and only if all constant are zero  

    1 2 ................. 0mc c c     

We call 1 2, ,................., mx x x  linearly independent. 

linearly dependent. 

 If vectors are dependent then their coefficients are not equal to 0 as 

let   

  
1 2

1 2

                     2         

       2 0

x x

x x



  
 

Here coefficient 1 2 0   , so 1x  is dependent of 2x  . 

Basis of a Vector Space: 

 As span of M is also a subspace, if the subspace (collection of vectors) is improper 

subspace(means span of M is equal to that vector space) and linearly independent(coefficients 

are equal to zero) then that particular subspace is a Basis of a Vector Space. 

So, for basis the subspace have to improper subspace and linear independent. 
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Module No. 39 

Vector Space 

Dimension (definition): 

The number of elements in subspace of a basis is called dimension of that vector space. 

 Dimension 

i. Finite dimensional vector space 

ii. Infinite dimensional vector space 

Examples: 

In n space 

 Elements of basis of n are 1 2, ,.............., ,ne e e  

   

1

2

(1,0................,0)

(0,1................,0)

.

.

(0,0................,1)n

e

e

e







 

Sometimes it is called Canononical basis of n basis n . 

Similarly in n space n-dimension 

 [ , ]C a b is infinite dimension vector space because there is no finite set which can span 

the set of function. 

 In 2l space, there are sequences, this is also infinite dimensional vector space. 

Result : 

 Every nonempty vector space {0}X   has a basis. 

Theorem: 

 Let X be an n dimensional vector space. Then any proper subspace Y of X has 

dimension less than n. 

Proof: 

 If n=0 this implies X={0} 

There is no proper subspace. Hence we can’t continue. 

 If dimension of Y is zero. 
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   Dim Y=0 

and   X Y  Y={0} 

   {Y is proper subspace of X} 

   dim Y < dim X 

suppose dim Y=n 

   Y would have a basis of n elements.  

   that basis would also be a basis for X, as element in basis are same, they span 

and linearly independent. 

  dim X=n  when basis are same then X=Y 

but it is contradict to our supposition as we suppose that Y is a proper subset of Xi.eY X  

which means X and Y are not equal. 

   any linearly independent set of vectors in Y must have less elements then n. 

   dim Y< n 

That we have to prove. 

 

Module No. 40 

Normed Space, Banach Space 

 Norm 

 Normed Space 

 Banach Space 

Norm (definition): 

 A norm on a (real or complex) vector space X is a real-valued function on X whose 

value at an x X is denoted by x . 

(This like the notation of mod but it has two vertical lines on left and right side.) 

It has following properties: 

 i):  0x     (N1) 

 ii):  0          0x x    (N2) 

Norm is equal to zero if and only if x=0. Length is always positive or zero but not –ve. 
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 iii):  x x     (N3) 

 if we multiply the length of norm with  (any number) then it will increase the length 

of Norm  times. 

 iv):  x y x y     (N4) triangular inequality 

if x and y are two vectors then their sum of Norms is equal to individual sum of their norm. 

Norm metric: 

A norm on X defines a metric d on X which is given by 

  ( , )               ,d x y x y where x y X    

and is called the metric induced by the norm as this metric depend on norm so we call it 

metric induced by norm. 

from the property x y x y    

we can write  y x y x    

 The norm is real valued function so it is continuous function. Continuous function 

mean if we define norm on x then it will give us the value of norm x as 

   x x  

and this mapping is continuous and is mapped  , .X  .  

Norm is always a continuous function. 

Norm Space: 

 A normed space X is a vector space with a norm defined on it. 

 A normed space is denoted by  , .X  or simply by X. 

Banach Space: 

A Banach space is a complete normed space, (Complete in the metric defined by the norm). 
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Module No. 41 

Examples (Normed Space) 

 Euclidean Space n  

 Unitary Space n  

 Space pl  

 Space l  

 Space [ , ]a b  

Euclidean Space
n  

This is a metric space and elements in 
n is in n-tuples form,  

  1 2( , ,..........., )        where n ix       ,   x X  

  

2 2

1

1

22

1

........

     =

n

n

i

i

x  




  

 
 
 


 

  1 2( , ,..........., )        where n iy       

The distance function   ( , )d x y x y   

    
2 2

1 1( , ) ........ n nd x y          

Unitary Space
n  

This is a metric space and elements in n is in n-tuples form,  

  1 2( , ,..........., )        where n ix       ,   x X  

  

2 2

1

1

22

1

........

     =

n

n

i

i

x  




  

 
 
 


 

  1 2( , ,..........., )        where n iy       

The distance function    

    ( , )d x y x y   

     
2 2

1 1 ........ n n         
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Space
pl  

    1 2( , ,...........)x    ,     

    1 2( , ,...........)y    

    

1

1

=
pp

j

j

x 




 
 
 
  

The distance function   ( , )d x y x y   

     

1

1

=
pp

j j

j

 




 
 

 
  

Space l  

     x l  

The metric is given by  sup j
j

x   

Space [ , ]a b  :  

 This is a space of all real valued continuous functions defined on closed interval [a,b] 

The norm of the function is max ( )
t J

x x t


 , with this metric space it is a norm space. 

  

Module No. 42 

Unit Sphere 

 Unit Sphere 

Unit Sphere 

The sphere with center 0 and radius 1, S(0;1), this we define in 2 , but in any metric space 

Those points from x whose norm is 1. { | 1}x X x   , 

 In a normed space X is called the unit sphere. In norm space the collection of all those 

points which are equal to 1 is called a Unit Sphere. 

Let x  be a norm, and space is 2 , the element in 2 are  1 2,x    
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Example: 

  (i.e  x=(2,-3),  2 3 2 3 5x        ) 

     1 2x     

Norm of (1,0) is 1, and similarly norm of point (0,1) is also 1. 

Similarly for Norm of (-1,0) is 1, and also norm of point (0,-1) is also 1. 

This norm is according to function 1 2x    ,  

  for   x=(1,0) 

     (1,0) 1 0 1    

   

Another Example. 

 The norm is defined as 
1

2 2 2

1 2x     similar to equation of circle. 

In unit sphere we have the condition that norm of x is 1, 1x   

     
1

2 2 2

1 21      

    2 2

1 21     

Another Example. 

 The norm is defined as  1 2max ,x    similar to equation of circle. 

Suppose  2x  , such that 1 2( , )x   , 

Let say  (2, 3)x    

According to given condition, 

   max( 2 , 3) max(2,3) 3x      
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Here the sphere is a square. 

 We have discussed only 2  norm space and also its sketches, but it can be  n , n  

or any other space like space of functions C[a,b]. 

 When we defined different norm then the shape of the unit sphere is depends on the 

norm define. 

Module No. 43 

Normed Spaces 

 Subspace 

Subspace (definition) 

 A subspace Y of a normed space X is a subspace of X considered as a   vector space, 

with the norm obtained by restricting the norm on X to the subset Y. 

This norm on Y is said to be induced by the norm on X. 

If Y is closed in X, then Y is called a closed subspace of X. 

Subspace pl  : 

 A subspace Y of a Banach space X is a subspace of X considered as a normed space.  

Hence we do not require Y to be complete. 

Theorem : 

 A subspace Y of a Banach space X is complete if and only if the set Y is closed in X. 

Convergence in Normed Spaces. 

 The metric function is  ( , )d x y x y   
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For convergence we define as 

i):  A sequence ( )nx  in a normed space X is convergent if X contains an x such that  

     lim 0n
n

x x


   

   nx x  ,  lim   ( )nx it of x  

Now this definition define for Cauchy sequence 

ii): A sequence ( )nx  in a normed space X is a Cauchy sequence if for every 0   there is 

an N such that  

         ,m nx x for all m n N    

 

Module No. 44 

Normed Spaces 

 Convergence of Infinite Series 

 Basis in Normed Spaces 

 Completion in Normed Spaces (Theorem 

Convergence of Infinite Series 

A sequence ( )kx  is associate with a sequence of partial sum ns  . 

   1 2 ...............      where  n=1,..........,n ns x x x    

If ns  convergent, ns s  , then 

   1 2

1

.............i

i

x x x




   is also convergent. 

if   0ns s   then ns s . 

If we have following  series 

  1 2 ..........x x  converges, 

    
1

i

i

x




  absolutely convergent. 

So , we have transform the convergence and absolutely convergence in term of norm. 
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Basis: 

In a normed space X is a Cauchy sequence if for every 0   there is an N such that  

 Elements of basis of n are 1 2, ,.............., ,ne e e such that 

    

1

2

1

(1,0................,0)

(0,1................,0)

.

.

(0,0................,1)

e

e

e







 

Sometimes it is called Canononical basis of n . 

Elements are spanning and are linearly independent. 

Any element 1 1 2 2 ............ n nx e e e       in the form of norm is 

  1 1 2 2 ............ 0n nx e e e        

and if this condition is hold then we say that it is a basis in the norm space. 

Theorem Completion: 

 Let  , .X x  be a normed space then there is a Banach space X̂  and an isometry A 

from X onto a subspace W of X̂ which is dense in X̂ . 

The space X̂  is unique, except for isometries. 

 

Module No. 45 

Fininte Dimensional Normed Spaces 

 Lemma (Linear Combination) 

Lemma 

Let 1{ ,................, )nx x be a linearly independent set of vectors in a normed space X (of any 

dimension). 

Then there is a number c>0 such that for every choice of scalars 1,...................., n  we have 

 1 1 1......... .............n n nx x c         
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Proof: 

1 ............. nS     =  1 ............. n    

 1 1 1......... ............. ,     where 0n n nx x c c          

Now we have two cases: 

i): If S=0 

It means 0      0    1,.......,  i i for all i n      

ii): If S>0 

   1 1 ......... n nx x cS     as S>0 so we can divide it 

1 1

1 1

1 1

.........

.........

.........

n n

n n

n n

x x
c

S

xx
c

S S

x x c

 



 

 


  

  

 

If we define i
i

S


   then from S we have 

1

1

.............
1

............. 1

n

n

S

S S

 

 

 


  

 

1

1
n

i

i




  

To prove 1 1 ......... n nx x c    We have to prove 
1

1
n

i
i




  

We do this by contradiction. 

Suppose it is false that 1 1 ......... n nx x c     

So we can find a sequence my  of vectors 
   

1 1 ......
m m

m n ny x x     such that  

0           my as m   

as we suppose that 1 1 ......... n nx x c   
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so we will find values smaller than c. 

( ) ( )

1

1               1   
n

m m

j j

j

 


    

Thus for each fixed 
      1 2

.........
m

j j n    is bounded. 

By Bolzano-Weisrtren theorem has a convergent subspace.  

For all j=1,2,…………,n 

( )

1   m has converged subsequence say ( )

1

m  converges to 1  

   

   

1 1

,1 1 1

......

......

m m

m n n

m m

m n n

y x x

y x x

 

 

  

  
 

( ) ( )

2 2 2

m m   

 
This is also true for 

     

   

 

,2 2 2

,

1 1

,

1

,.........,

..

..

  for all  =1.

      as        m

   with 1    all 0

m m m

m n n

n n
m m

m n j j j

j j

m

j j

n

m n j j j j

j

y x x x

y x

y y x

  

 

 

  

 



   



 

    

 

 

 

Using the linearly independence condition  1,........., nx x are linearly independent.             

This implies 1 1 ......... 0n nx x        0y   

Now , ,                  m n m ny y y y   where . is continuous 

Hence 0my  and ,m ny is a subsequence of my but we have supposed that 0y   

   m,ny 0= y y=0       N2 proved 

Hence proved 
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Module No. 46 

Normed Spaces 

 Theorem (Completeness) 

Theorem 

 Every finite dimensional subspace Y of a normed space X is complete. In particular, 

every finite dimensional normed space is complete. 

Proof: 

Prove it yourself: 
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Module No. 47 

Normed Spaces 

 Theorem (Closedness) 

As we have already proved that every finite dimensional subspace is complete and we 

also know that a subspace is complete if and only if it is closed. 

Theorem 

Every finite dimensional subspace Y of a normed space X is closed in X. This result 

is true for finite dimensional subspace but for infinite space it is not true. 

Infinite dimensional subspaces are like C[0,1], 2l  are infinite dimensional normed 

space which are not closed space. We use dense, limit points to prove this. 

 

 

 

 

 

Module No. 48 

Normed Spaces 

 Theorem (Equivalent  Norms) 

Definition 

 A norm .  on a vector space X is said to be equivalent to a norm .
o

 on X if there are 

positive numbers a and b such that for all x X  we have 

o o
a x x x b   

This property should hold for every element x of vector space X.(
o

a x read a times x not 

norm). 

If we prove about condition then we say that these two norms are equivalent. 

Equivalent norms on X define the same topology for X. 

Theorem (Equivalent norms) 

      One finite dimensional vector space X, any norm . is equivalent to any other norm .
o

 



MTH 641 Functional Analysis 

 

29 

Proof: 
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Module No. 49 

Compactness and finite Dimension 

 Lemma (Compactness) 

Definition 

A metric space X is said to be compact if every sequence in X has a convergent subsequence. 

A subset M of X is said to be compact if M is compact considered as a subspace of X, that is 

if every sequence in M has a convergent subsequence whose limit is an element of M. 

Lemma (Compactness) 

A compact subset M of a metric space is closed and bounded. 

For close of M we show that M M . Now we have to prove closed and bounded 
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Conversely  

In general the converse of this lemma is false.  

Proof 

 

  

The above example is closed and bounded but not compact so the converse is false that a 

closed and bounded metric space is not compact. 

Module No. 50 

Theorem (Compactness) 

 Lemma (Compactness) 

In case of finite dimensional subset M is a compact set if and only if it is closed and bounded. 

Here we prove both directions. 

Theorem (Compactness) 

In a finite dimensional normed space X, any subset M X  is compact if and only if 

M is closed and bounded. 
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Proof: 

We have to prove that compact implies closed and bounded. This we have proved 

already. Now we prove the converse only. We have to prove only compact (for finite 

dimensional only). 

Let M be closed and bounded, we need to show that M is compact (i.e. every 

sequence in M has a subseq which converges in M). 

Let it is finite dimension so, say n, as dim X n   and 1{ ........... }ne e   be a basis for X 

Let mx  be any sequence in M. 

 
( ) ( )

1 1     x .......m m

m n ne e      

 

Lemma 45 lecture, 
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Module No. 51 

Compactness and Finite Dimension 

 F. Riesz’s Lemma 

F. Riesz’s Lemma 

Let Y and Z be subspaces of a normed space X (of any dimension), and suppose that Y 

is closed and is a proper subset of Z, then for every real number   in the interval (0,1) there 

is a z Z  such that  

   

1

     

z

z y for all y Y



  
 

First part  1z  we prove as 

 

Second part:      z y for all y Y    
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Module No. 52 

Finite Dimension 

 Theorem (Finite Dimension) 

Theorem  

If a normed space X has the property that the closed unit ball { | 1}M x x   is 

compact, then X is finite dimensional. 
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Module No. 53 

Compactness and Finite Dimension 

 Theorem (Continuous Mapping) 

 Corollary (Maximum and minimum) 

Theorem  

Let X and Y be metric spaces and :T X Y  be a continuous mapping. 

Then the image of a compact subset M of X under T is compact. 

Proof:   

By definition of compactness we need to show that every sequence ny  in the image 

( )T M Y  continuous a subsequence which converges in T(M). 

Now since ( ),ny T M we have nx  such that ,n ny Tx for some nx M . since M is compact, 

( )nx  contains subsequence 
knx which converges in M. 
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Corollary (maximum and minimum) 

 A continuous mapping T of a compact subset M of a metric space X into R assumes a 

maximum and a minimum at some points of M. 

    

:

( )

-
( ),    

T M R

T M

M compact
T M

T continuous








 



by previous result

 

    T(M) is compact. 

which means it is closed and bounded because compactness implies close and bounded. 

    inf ( ) ( ),                 sup  ( ) ( )T M T M and T M T M   

Inverse image of these two points consist of points of M at which Tx  is minimum or 

maximum respectively. And that we have to prove. 

Module No. 54 

Functional Analysis 

 Linear Operators 

 In functional analysis if we define a metric on a set then it is a metric space and if we 

define a norm on a vector then it is called a norm space. In mapping if we take a and b as 

norms then we define a linear operator on the mapping and it should satisfied the certain 

properties.  

Operator 

 In the case of vector spaces and, in particular, normed spaced, a mapping is called an 

operator. 

Linear Operator 

A linear operator T is an operator such that  

i): the domain (T) of T is a vector space and the range R(T) lies in a vector space 

 over the same field. 

ii): for all , ( ) and scalar x y D T   

  T(x+y)=Tx+Ty also ( )T x Tx   

By combining above two equations         

  ( )          T x y Tx Ty where and are both scalar         

( )T x Tx is same.  
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Some more notations. 

 (T) domain of T 

 (T) range of T 

 (T)  denotes the null space of T. 

Null space are those element from the domain of T such that on which we operate gives the 

answer zero. ( )x D T such that Tx=0 

Also null space of T is similar to kernel of T. 

Let ( )    ( ) ,  ,   .D T X and R T Y X Y vector space   

(vector spaces can be real and complex spaces). 

Then T is an operator from (T) onto (T), the notation is  

    : ( ) ( )T D T R T , D(T) covers all range so it is onto. 

Or (T) into y  : ( )           ( )T D T Y R T Y   

if(T) is the whole space X, then we write   :T X Y  

moreoverif we take 0    T0=0. 

   ( )          T x y Tx Ty where and are both scalar         

T is a homomorphism when it is a linear operator. 

:T X Y , wherewe have two kind of vector space, one vector space is X and other vector 

space is Y. we apply operations on X and also operation on Y.These operation may or may 

same on both vector spaces.  

Module No. 55 

Linear Operators 

 Examples. 

Operator is a mapping whose domain and range is a vector space. It is subset of vector space. 

Below are different linear operators. 

Identity Operator 

Identity mean it operate on the same vector space. :xI X X   

        ( )         xI x x x X     

        ( )xI x y   we have to prove 
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Zero Operator: 

  :O X Y such that 0     Ox x X    

here the 0 on right side is belong to vector space Y. 

Differentiation: 

Let X be a vector space of all polynomials on [a,b]. A set of polynomial in denoted by x(t) 

   ( ) ( )         ( )Tx t x t x t X    

When we apply T on polynomial x(t) then ( )x t  is also a polynomial. So this operatorT maps 

X onto itself. There is no polynomial whose derivative we can’t find. 

Integration: 

Linear operator T for C[a,b] into itself can be defined by  

   

( ) ( )

t

a

Tx t x d     

taa   is just a variable and C[a, b] is collection of all continuous function on a and b. 

Multiplication by t: 

Let C[a, b] be a collection of continuous functions defined on a and b.  

   ( ) ( )Tx t tx t  

This operator plays an important role in quantum theory of physics. 

Elementary vector algebra: 

Here we have different types of maps we have  

   3 3

1 :T   cross product of two vectors is also a vector. 

For cross vector we need two vectors. Then each element is also a vector. 

   1T a x   

Similarly for dot product: 

Dot product of two vector is a scalar, so the map on real numbers as 

   
3

2 :T    

   2 1 1 2 2 3 3( ) .T x a x a x a x a x      where 3x  

For different map we fix a. 
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Matrices: 

We denote matrix by capital letter say A. whose elements are in rows and column.  

    
( )jkA   

Let with r rows and n column we define a linear operator which is  

  : n rT    

Where  1{( ,......, ) | }n

n ix x x   , in column form so that we use matrices multiplication

1

.

.

n

x

x

 
 
 
 
 
 

 

 such as say 

11 11 1

1

1                        1 

  .  .  .  

. ..

. ..

  .  .  .   

n

n nr rn

r r n n

y x

y x

 

 

  

    
    
    
    
    

    

  

For matrix multiplication number of first matrix column is equal to number of rows of second 

column.rxn is a fix matrix 

To check the linear condition we use 

   ( )T x y Tx Ty       

Matrix multiplication satisfied this condition, hence this operator is a linear operator. 

Module No. 56 

Linear Operators 

 Theorem (Range and Null space) 

 Null space is the collection of those elements from the domain on which we apply the 

operator and the answer is zero. 

Theorem 

Let T be a linear operator. Then: 

 The range R(T) is a vector space. (domain is also a vector space as discussed) 

 If dim ( )  ,    dim ( )D T n then R T n    (dimension of domain vector space is 

finite then range is equal or less than the dimension of domain or equal. 

 The null space N(T) is a vector space. 

The first two results are about range and third result is about null space. 
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Proof: (a) R(T) is a vector space. 

  

1 2

1 2

                   , ( )      

      R(T),   where ,  are scalar

y y R T

y y   



  
 

Since  

  

1 2 1 2

1 1 2 2

, ( )   and   , ( )

: ( )

  ,   

y y R T x x D T

T D T Y

y Tx y Tx

 



 

 

Also domain of T “D(T”) is a vector space so, 1 2   ( )x x D T   this is by definition of 

vector space.Since T is linear  

   
 1 2 1 2 1 2=   ( )T x x Tx Tx y y R T         

 

Here 1 2x x  is domain and gives 1 2 y y  range of T.Hence R(T) is a vector space. 

Part (b): 

Basis should span D(T)and it should linearly independent. More one than condition is if n 

element linearly independent then the elements other than n will be linearly dependent. 

 

Linear operators preserve linearly dependence. 



MTH 641 Functional Analysis 

 

41 

Part (c): 

  

1 2

1 2

, ( )

0

x x N T

Tx Tx



 
 

To prove it a vector space, we have to  prove 1 2   ( )x x N T    

   1 2 1 2=   0 0 0T x x Tx Tx             

   1 2 ( )x x N T    

   N(T) is a vector space  (proved) 

Module No. 57 

Linear Operators 

 Inverse Operators 

Operator is a mapping whose domain and range is vector space.Particular in norm 

space.There is also inverse mapping. For inverse operator the same condition is one-to-one 

and onto. One-to-one means image of different elements is different. And onto means the 

range covers all the set of domain. If these two conditions hold then we can define inverse 

oprator. 

Notations: 

: ( )T D T Y is said to be injective or one-to-one if for any  

     1 2, ( )x x D T such that 1 2x x
 
 1 2Tx Tx

 

If we take counter inverse then  1 2 1 2    Tx Tx x x   , 

Now if  : ( ) ( )T D T R T  then there exists a mapping 

    : ( ) ( )T R T D T     

    o oy x
 

where oy is any element of R(T)and ox is 

element of D(T).i.e. o oTx y  

this map T   is called the inverse of T. 
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         ( )T Tx x x D T      

and         ( )TT y y y R T     

Inverse exist if and only if null space has only zero. There is only zero in null space 

 

Module No. 58 

Linear Operators 

 Theorem (Inverse Operator) 

Theorem 

 Let X,Ybe vectors spaces, both real or both complex. Let : ( )T D T Y be a linear 

operator with domain ( )   and range  R(T) YD T X   .then: 

a): The inverse : ( ) ( )T R T D T  exists if and only if Tx=0x=0. (i.e null space has 

          zero elements). 

b): If T   exists, it is a linear operator. 

c): if
1dim ( )     D T n and T    exists, then dim ( ) dim ( ).R T D T  

as there is if and only if condition so we have to prove in both ways. 

a): 
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Conversely let 1T   exist which mean one –one and onto condition hold. 

We have to prove 0       0Tx if and only if x  . 

One-one means 1 2 1 2     Tx Tx x x   ,  this is given 

Now if we have take
2 0x   

1    0x   1 0 10  ,   0Tx T x    

 

b): If T   exists, it is a linear operator. 

We need to show that 1T  is a linear operator.We assume that 1T  exists and we need to show 

that it is linear operator. 

The domain of 1T   is basically range of T and also R(T) is a vector space. 

 1 2, ( )x x D T  1 1 2 2     y Tx and y Tx   

  
1

1 1 1 1                                   y Tx x T y      

and  1

2 2 2 2                                   y Tx x T y    

T is linear so for any scalar     and   we have 

  
 1 2 1 2 1 2     y y Tx Tx T x x T is linear            

Applying 1T   on above we get  

  
 1 2 1 2T y y x x        

Putting values of 1 2  x and x  

  
 1 2 1 2= T y + T y  T y y       

1T  is a linear operator 

C): if 1dim ( )     D T n and T    exists, then dim ( ) dim ( ).R T D T  

We have proved that dim ( )R T n we know 

   dim ( ) dim ( )R T D T  ……………i 

Conversely, 

   1 : ( ) ( )T R T D T   

   dim ( ) dim ( )D T R T …….ii 

Combining i and ii  dim ( ) dim ( )R T D T  
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If inverse exist then both dimensions are equal. That we have to prove. 

 

 

 

Module No. 59 

Linear Operators 

 Lemma(Inverse of Product) 

Bijective mean one to one and onto. Here it means inverse of T and S exists. 

Lemma 

Let :    :T X Y and S Y Z   be bijective linear operators, where X,Y are vectors spaces. 

Then the inverse 1( ) :ST Z X   of the product (the composite) ST exists, and  

   1 1 1( ) .ST T S    

Diagram 

 

Mathematically, 

If S is bijective and T is bijective then ST is also bijective. 

   :ST X Z bijective 

    1( )ST  exist. 

It means if  1( )( ) ZST ST I   

If :S Y Z  then 1

YS S I   

 
1 1 1( ) ZS ST ST S I       1 1( )T ST S   
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  1 1 1 1( )T T ST T S        1 1 1( )ST T S    

 

 

Module No. 60 

Linear Operators 

 Bounded Linear Operator 

Norms spaces are generalization of distances. 

Bounded Linear Operator (Definition): 

 Let X and Y be normed spaces and : ( )T D T Y a linear operator, where ( )D T X . 

The operator T is said to be bounded if there is a real number c such that for all ( ).x D T  

   Tx c x  

 If this condition satisfied then we call T to be a bounded linear operator. Bounded 

function mean range is bounded but here bounded set is mapping over a bounded set so we 

call this a bounded linear operator.c is fix. 

    

     ,       ( ) -{0}
Tx

c x D T
x

   

The smallest possible value of c is supremum of left hand side. Then the value of c is called  

  
( ),

0

sup
x D T
x

Tx
c

x


   as
( ),

0

 norm sup
x D T
x

Tx
T

x


 
 
 
 

 

We call the value as T norm  
c T  

  If ( ) {0},    0D T T   

  
( ),

0

sup
x D T
x

Tx
c T

x


   

  
Tx T x  

This is the formula that we use for bounded linear operator. 

 

Module No. 61 
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Bounded Linear Operators 

 Lemma (Norm) 

First we define the norm and then prove that the norm defined on T satisfies (N1) to (N4). 

 

Lemma: 

Let T be a bounded linear operator as defined before. 

An alternate formula for the norm of T is   
( )

1

sup
x D T
x

T Tx



  

The norm defined on T satisfies (N1) to (N4). 

Proof: 

    
Tx c x  

  
( ), ( )

0 1

sup sup
x D T x D T
x x

Tx
c T Tx

x 
 

  

 

We have to prove
( ), ( )

0 1

sup sup
x D T x D T
x x

Tx
Tx

x 
 

  

Let ;    set  y=   ,  x 0,
x

x a
a

   

    1
x

y
a

   

    
( ),

0

sup
x D T
x

Tx
T

a


   

as T is linear so, we take constant ainside the norm 

   
( ), ( ),

0 1

1
sup sup

x D T y D T
x y

T T x Ty
a 

 

 
  

 
  

as
1

y
a
  

Here variable is y which can be any other. 

Part a) of lemma is proved. 

Part b): 
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( ), ( ),

0 1

sup sup
x D T x D T
x x

Tx
T Tx

x 
 

   

N1: 0T   is obvious. 

N2: 0       T=0,T    

 0       0,       ( )  0T Tx x D T T        

N3: 
( ), 1 1

1

sup sup sup
x D T x x
x

T Tx Tx Tx T    
  


     as 
1

sup
x

Tx T


  

N4: 1 2 1 2T T T T    

  

1 2 1 2
( )

1

1 2 1 2
1 1

1 2 1 2
1 1

sup ( )

             sup sup

             sup sup

x D T
x

x x

x x

T T T T x

T x T x T x T x

T x T x T T




 

 

  

   

   

 

First we define a T T norm and then prove the four properties of norm. 

Module No. 62 

Examples Bounded Linear Operators 

 Identity Operator 

 Zero Operator 

 Differentiation Operator 

 Integral Operator 

Identity operator: 

 :I X X    xI x  { {0} normed space}x   

  
( ), ( ),

0 0

sup sup                    
x D T x D T
x x

Tx x
I as Tx x

x x 
 

    

  
( ),

0

sup 1 1
x D T
x

I



   

Zero operator: 

The norm space :O X Y  ,    0xO    x X  
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( ),

0

sup 0   , 0 0
x D T
x

Tx
O

x


    

Differentiation operator: 

This is defined on normed space of all polynomial on J=[0, 1] 

   
 max ( ) ,   x x t t J   

Value of t varies from 0 to 1 and where the value is maximum, that maximum value is norm 

of x. 

applying operator the derivative. Differentiation operator is. 

   ( ) ( )Tx t x t  

Derivation is itself a linear operator. 

Now we check that it is bounded or not. ( ) ( )Tx t c x t   . If it is bounded then what is the 

value of c. 

Let ( )     nn

nx t t   , what is the norm of ( )nx t  

  
 ( ) max ( ) ,   [0,1] 1nx t x t t    

Using operator 1( ) n

nTx t nt   

define the norm  1( ) max 1n

nTx t nt    

    1( ) max(| |: [0,1]) .1n

nTx t nt t n n     

    

,    n
1

n

n

Tx n
c

x
    

As n had no bound so, there does not exist any c such that 
n

Tx
c

x
 hold. 

Now c is fixed number which does not depend upon N but in this case it depends on N, if we 

take c as n then next value n+1 will not satisfy this equation. It means that there does not exist 

any c that this condition 
n

Tx
c

x
 holdhence derivative operative is not bounded. 

Integral Operator 

Defined as : [0,1] [0,1]T C C  ,  
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   y=Tx  

1

0

( ) ( , ) ( )y t k t x d     

k is integral of T it is fix for different integral operator,  

T is linear as integration is linear, also derivation is a linear operator same as integral is linear 

operator. 

K is continuous on J J . We have two variables   t and   , ( ,  )k t   

Whatever the value of k is, it should be in the square 

( ,  )k t  is bounded. And if it is bounded then 

( ,  ) ,   ,ok t k t J J    ,  ok   where J J is this square box. 

( ) max ( )
t J

x t x t x


    

Now example, 

1

0

max ( , ) ( )
t J

y Tx k t x d  


    

 

1

0

max ( , ) ( )
t J

k t x d  


   

 ok x  

oTx k x it has   ok and k is fix so integral operator is a linear operator. 

Module No. 63 

Examples Bounded Linear Operators 

  Matrix 

Identity operator: 

   : n rT R R   

   

1 111 1

1

.

. . . . .

.

         1   1

              x    =   y

n

r rn n n

xa a

a a x

r n n r

A





    
    


    
         

    

The entries are  ( )  ,     ( )j jx y    

And the matrix is ( ),      1 i ,    1 jijA r n      

0 1 

1 
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   1

n

j jk

k

k  


  

T is linear because the properties of matrices is it bounded? 

   

1

2
2

1

          ,    
n

n

m

m

x x


 
  
 
    

and   

1

2
2

1

          ,    y
r

n

j

j

y 


 
  
 
 

 

for bounded we have to check norm of T “T(x)”.

 

   

1

2
2

1

2 2

1

2

2

1 1

   

j

j

r

j

r

j

r n

jk k

j k

Tx

Tx

Tx





 





 

 
  
 



 
  

 





 

 

Where 
1

n

j jk k

k

  


  

Cauchy Schwaz inequality on above 
2

Tx  

   

2
1 1

2 2 22 2 2

1 1 1 1 1
m

r n n r n

jk jk

j k m j k

x  
    

 
                 

 

     

   

2 22Tx c x    

Here is a c which depends upon T. 

We can write as 

   
Tx c x  

T is already linear and with this value of c we can say matrices is a linear bounded operator.in 

last four examples three are linear operator but differential was not linear operator.  
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Don’t look for someone who can solve your problems, 

Instead go and stand in front of the mirror, 

Look straight into your eyes, 

And you will see the best person who can solve your problems! 

Always trust yourself. 
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Module No. 60 

Linear Operators 

 Bounded Linear Operator 

Norms spaces are generalization of distances. By using Norm spaces we are going to discuss 

Bounded Linear Operator.  

Bounded Linear Operator (Definition): 
 Let X and Y be normed spaces and : ( )T D T Y a linear operator, where ( )D T X . 

The operator T is said to be bounded if there is a real number c such that for all ( ).x D T   

Tx c x  

 If this condition satisfied then we call T to be a bounded linear operator. Bounded 

function mean range is bounded but here bounded set is mapping over a bounded set so we 

call this a bounded linear operator. c is fix. 

     ,       ( ) -{0}
Tx

c x D T
x

   

The smallest possible value of c is supremum of left hand side. Then the value of c is called  

( ),
0

sup
x D T
x

Tx
c

x


   as

 

 

We call the value as T norm  

 
c T  

If ( ) {0},    0D T T   

( ),
0

sup
x D T
x

Tx
c T

x


   

Tx T x  

This is the formula that we use for bounded linear operator. 

Module No. 61 

Bounded Linear Operators 

 Lemma (Norm) 

First we define the norm (equivalent definition) and then prove that the norm defined on T 

satisfies all four properties of Norm i.e. (N1) to (N4). 

Lemma (Statement): 
Let T be a bounded linear operator as defined before then an alternate formula for the norm of 

T is 

( )
1

sup
x D T
x

T Tx



  

The norm defined on T satisfies (N1) to (N4). 

Proof: Part (a) 

Tx c x  



MTH 641 Functional Analysis – by ABU SULTAN 

 

3 

( ), ( )
0 1

sup sup
x D T x D T
x x

Tx
c T Tx

x 
 

  

 
We have to prove 

( ), ( )
0 1

sup sup
x D T x D T
x x

Tx
Tx

x 
 

  

Let ;    set  y=   ,  x 0,
x

x a
a

   

1
x

y
a

   

( ),
0

sup
x D T
x

Tx
T

a


  

as T is linear so, we take constant a inside the norm 

   
( ), ( ),

0 1

1
sup sup

x D T y D T
x y

T T x Ty
a 

 

 
  

 
  

as
1

y
a
  

Here variable is y which can be any other. Part (a) of lemma is proved. 

Part (b): 

( ), ( ),
0 1

sup sup
x D T x D T
x x

Tx
T Tx

x 
 

   

N1: 0T   is obvious. 

N2: 0       T=0,T    

 0       0,       ( )  0T Tx x D T T        

N3: 
( ), 1 1

1

sup sup sup
x D T x x
x

T Tx Tx Tx T    
  


     as 
1

sup
x

Tx T


  

N4: 1 2 1 2T T T T    

  

1 2 1 2
( )

1

1 2 1 2
1 1

1 2 1 2
1 1

sup ( )

             sup sup

             sup sup

x D T
x

x x

x x

T T T T x

T x T x T x T x

T x T x T T




 

 

  

   

   

 

First we define a T T norm and then prove the four properties of norm. 

Module No. 62 

Examples Bounded Linear Operators 

 Identity Operator 

 Zero Operator 

 Differentiation Operator 

 Integral Operator 
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Identity operator: 

 :I X X    xI x  { {0} normed space}x   

  
( ), ( ),

0 0

sup sup                    
x D T x D T
x x

Tx x
I as Tx x

x x 
 

    

  
( ),

0

sup 1 1
x D T
x

I



   

Zero operator: 

The norm space :O X Y  ,    0xO    x X  

  
( ),

0

sup 0   , 0 0
x D T
x

Tx
O

x


    

Differentiation operator: 
This is defined on normed space of all polynomial on J=[0, 1] 

   
 max ( ) ,   x x t t J   

Value of t varies from 0 to 1 and where the value is maximum, that maximum value is norm 

of x. 

applying operator the derivative. Differentiation operator is. 

   ( ) ( )Tx t x t  

Derivation is itself a linear operator. 

Now we check that it is bounded or not. ( ) ( )Tx t c x t   . If it is bounded then what is the 

value of c. 

Let ( )     nn

nx t t   , what is the norm of ( )nx t  

  
 ( ) max ( ) ,   [0,1] 1nx t x t t    

Using operator 1( ) n

nTx t nt   

define the norm  1( ) max 1n

nTx t nt    

    1( ) max(| |: [0,1]) .1n

nTx t nt t n n     

    

,    n
1

n

n

Tx n
c

x
    

As n had no bound so, there does not exist any c such that 
n

Tx
c

x
 hold. 

Now c is fixed number which does not depend upon N but in this case it depends on N, if we 

take c as n then next value n+1 will not satisfy this equation. It means that there does not exist 

any c that this condition 
n

Tx
c

x
 holdhence derivative operative is not bounded. 

Integral Operator 
Defined as : [0,1] [0,1]T C C  ,  

   y=Tx  
1

0

( ) ( , ) ( )y t k t x d     

k is integral of T it is fix for different integral operator,  
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T is linear as integration is linear, also derivation is a linear operator same as integral is linear 

operator. 

K is continuous on J J . We have two variables   t and   , ( ,  )k t   

Whatever the value of k is, it should be in the square 

( ,  )k t  is bounded. And if it is bounded then 

( ,  ) ,   ,ok t k t J J    ,  ok   where J J is this square box. 

( ) max ( )
t J

x t x t x


    

Now example, 

1

0

max ( , ) ( )
t J

y Tx k t x d  


    

 
1

0

max ( , ) ( )
t J

k t x d  


   

 ok x  

oTx k x it has   ok and k is fix so integral operator is a linear operator. 

Module No. 63 

Examples Bounded Linear Operators 

  Matrix 

Identity operator: 

   : n rT R R   

   

1 111 1

1

.

. . . . .

.

         1   1

              x    =   y

n

r rn n n

xa a

a a x

r n n r

A





    
    


    
         

    

The entries are  ( )  ,     ( )j jx y    

And the matrix is ( ),      1 i ,    1 jijA r n      

   1

n

j jk

k

k  


  

T is linear because the properties of matrices is it bounded? 

   

1

2
2

1

          ,    
n

n

m

m

x x


 
  
 
    

and   

1

2
2

1

          ,    y
r

n

j

j

y 


 
  
 
 

 

for bounded we have to check norm of T “T(x)”.

 

0 1 

1 
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1

2
2

1

2 2

1

2

2

1 1

   

j

j

r

j

r

j

r n

jk k

j k

Tx

Tx

Tx





 





 

 
  
 



 
  

 





 

 

Where 
1

n

j jk k

k

  


  

Cauchy Schwaz inequality on above 
2

Tx  

   

2
1 1

2 2 22 2 2

1 1 1 1 1
m

r n n r n

jk jk

j k m j k

x  
    

 
                 

 

     

   

2 22Tx c x    

Here is a c which depends upon T. 

We can write as 

   
Tx c x  

T is already linear and with this value of c we can say matrices is a linear bounded operator.in 

last four examples three are linear operator but differential was not linear operator. 

Module No. 71 

Linear Function (Examples):  

 Space [   b]C a  

 Space 
2l  

Space [   b]C a : 

 We have  define a linear function on space [   b]C a that we have fixed an element ot

from the set J as ot J . Now  define a functional operator f(x) which is operating on x which 

is element from [   b]C a . [   b]x C a  

This x is not a variable, it is a function. So 1f which is defined on [   b]C a linear as it is a 

linear operator. 1f is bounded.  To find the norm 

 

1

1

( )

1     1..........

f x b x

x f i

 

  
 

 

If we take 0 1x  and substitute in this equation we get 

   

 

From i) and ii) 

 1 1f   

So the function defined on C is linear, bounded and Norm is 1. 

1 1

1 1

( ) .

1 .1      1...........(

of x f x

f f ii



  
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Space 
2l  

We choose  a fix say  
2( )ja a l   

 
1

( ) j j

j

f x a




  2x l , ( )jx   

This sequence is linear, converging and bounded. 

For boundedness 

 
2 2

1 1 1 1

( ) .j j j j j j

j j j j

f x a a a x a  
   

   

        

It is the same definition of bounded. 

M of a complete metric space X is itself complete if and only if the set M is closed in X. 

 

Module No. 72 

Linear Function:  

 Algebraic Dual Space 

 Second Algebraic Dual Space 

 Canonical Mapping 
Algebraic Dual Space 
Set of all linear function defined on a vector space X is itself a vector space and called 

Algebraic Dual Space and denoted by X   

 

Operation on this vector space are 

1
st
 Operation Sum 

  1 2f f   1 2,f f linear functional 

   1 2 1 2( ) ( )    f f x f x f x x X     

2
nd

 Operation Scalar Multiplication 

   ( )af x af x  

Second Algebraic Dual Space X   
Space element Vector at a point 

X x X   

X   g f (x) 

X    G g(x) 

For each ,x g X   
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Conical Mapping: 

:C X X  this mapping is called canonical mapping of X into X  defined as  

xx g .  

( )( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

x y

x y

C x y f g f

f x y f x f y g f g f

Cx f Cy f

  

     

 





 

     

 

 

So, this is a linear function as well. Canonical mapping is a relation between X and X  . 

Module No. 73 

Linear Function:  

 Algebraically Reflexive 

 Second Algebraic Dual Space 

 Canonical Mapping 
Isomorphism: 
It is one-one and onto map. 

Algebraically Reflexive: 

: ( , ) ( , )T X d X d  bijective 

( , ) ( , )x yd T T d x y  

:C X X  xx g .  

If C is surjective (on b) bijection. ( )C X    

We call X to be algebraically reflexive. 

Set of all linear function defined on a vector space X is itself a vector space and called 
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Module No. 74 

Linear Operators and functional on finite 

Dimensional Spaces: 

Finite dimensions mean basis which have finite many elements.  

 Let X and Y bef.gfinite dimension vector spaces over the same field. 

Let :T X Y  be a linear operator. let 1{ ,.........., }nE e e be the basis for X and 

1{ ,.........., }nB b b be the basis for Y.  

1 1 2 2,          x= ............. n nx X e e e       

    
1 1 1

=
n n n

k k k k k k

k k k

y Tx T e T e T e  
  

 
   

 
    

T is uniquely determinal if the image k ky Te of n basis vectors 1,.........., ne e are prescribed. 

 y=Tx  ; 1  { ,.........., }ny Y b b  

 1 1 2 2y= ............. r rb b b      

 1 11 1 12 2 1,          Te = .............k r rTe Y b b b       

 

1

1 1 1 1

y=

r

k kj j

j

r n n r

j j k k k kj j

j k k j

Te b

b Te b



   



   



 



   
 

Comibinig these two summation 

 

1 1

1

r n

kj k j

j k

n

j kj k

k

y b 

  

 



 
  

 



 



 

The image y=Tx= j jb of 
k kx Te can be obtained from 

 1

n

j kj k

k

  


  

Module No. 75 

Operators on finite Dimensional Spaces: 

Remarks: 

As in the case of linear operators on a finite dimensional normed space, every linear 

functional defined on a finite dimensional normed space is bounded and hence continuous. 

Since for linear funcionals range is either  or   , which are complete. So X   as the space 

of all bounded linear functionals defined on X, is also complete and hence is Banach space. 

This is true even if X is not a Banach space. 

“Algebraic Dual Space of X”: set of all linear funcionals defined on X. 

“Dual or Conjugate Space of X”: X   set of all continuous or bounded linear functionals 

defined on X. 

We take algebraic dual when there is no condition of continuous or bounded linear 

functions. 
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Theorem: 

Let X be an n-dimensional vector space and X be its dual space. Then  

   dim dim .X X n    

X  is collection of linear functions or linear operator while X may be any space. 

Proof: 

 Let dim .X n  

Let basis of X be 1 2{ ,..............., }B e e  

We define a function. 

   1

1                      

0                      :  , 1,..........,
j

if i j
f e

if i j i j n


 

 
 

 e.g. j=1 ,                 1 2 31, 0, 0,......................, 0nf e f e f e f e     

       j=2 ,        1 2 30, 1, 0,......................, 0nf e f e f e f e     

but each n-tuples jf  in this case can be extended as linear functions on X. 

 

Module No. 76 

Operators on Finite Dimensional Spaces:  
Lemma(Zero Vector): 
Let X be a finite deimensional vector space.  If 0x X has the property that 0( ) 0f x   

for all f X    then 0 0x  . 

B is the basis of X   

1 2{ , ,......., }

1       
( )

0       

               

n

j i

ij

f f f

i j
f e

i j




  





 

Proof: 

For all 0 0x  , 

 

0

1

0

1 1

1

j

0 0

1

   ;   f X     ,  

  f(x ) 0        0

   0     ,    j=1,......,n

   x 0   ,    j=1,........,n

0          

n

i i

i

n n

i i

i i

n

i i

i

n

i i

i

x x e

f x e

x f e

x x e x 





 





 

 
   

 

 

  

   



 





 

Module No. 77 

Operators on Finite Dimensional Spaces:  
Theorem(Reflexivity): 
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A normed space X is said to algebraically reflexive if there is an isometric isomorphism 

between X and X . 

Ordinarily a normed spacer may not be reflexive. 

If X is an incomplete normed space even then X and X  are Banach spaces. So in this case 

X cannot be a reflexive space.  

However there are Banach spaces which are not reflexive. 

Theorem: 
A finite dimensional vector space is reflexive.  

Equivalently, A finite dimensional normed space is isomorphic space is isomorphic to its 

second dual. 
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x+g

( x+ ) (x) ( )

y x yg g

y y

   

    

 

 
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( )           

                  

R X is onto

X X X reflexive

 






 

Module No. 78 

Linear Transformation:  
Q No.1: 
Find the null space of 3 2:T   represented by  

1 3 2
  

2 1 0

 
 
   
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1

1 2 3

2

1 2

3

3 21 3 2

22 1 0

         2 3    3 1              2 1

x
x x x

x
x x

x

 
     

            

  

 

What is meant by null space, it means we have to find those values of 3x say 

1 2 3( , , )x x x x  such that we operate T the answer is zeros as 

All those x are element of null space. 

1 2 3

1 2

3 2 0

2 0

x x x

x x

    
       

 

Also we can also say that  

1 2 3

1 2

3 2 0

2 0

x x x

x x

  

  
 

We can solve it by using any linear algebra method that will give us solution like echelon 

form or reduced echelon form and the base of that solution is called basis of null space. Basis 

mean when apply the element of 3 the answer should be zero and get a system of linear 

equation. Find the solution of this system of linear equation. And after finding the solution 

find the basis that basis are basis of null space. 

Example. 

Q.NO2 

Find the null space of 3 3:T   defined by 1 2 3 1 2 1 2( , , ) ( , , )          

1) Basis of ( )T  

2) Basis of N(T) 

3) Matrix representation. 

Module No.79 

Exercises 

Dual Basis 

Example 1: 

a): Find the dual basis of X when basis of X are {(1, 1,3),(0,1, 1),(0,3, 2)},B      

Find 
* *?, ?B X  do it yourself 

b): let 1 2 3{ , , }f f f be basis of dual space for X and if X is given by 

 1 2 3(1,1,1),   (1,1, 1),   (1, 1,1)e e e      

Find 1 2 3( ), ( ), ( )  (0,1,0)f x f x f x when x   

 

Module No.80 

Normed Spaces of Operators 

 Examples of Dual Spaces 

 n  

Isometric Isomorphism 
A linear operator : .X Y  ,X Y normed spaces, is said to be Isometric Isomorphism if  
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 isbijective. 

 preserve norms. 

That is for any  

,  ( )x X x x  is 

Module No.81 

Examples Spaces of Operators 

 Examples of Dual Spaces 

 1l  

Space 
1l  

The dual space of  nl  is l means that it is bijective, it is linear and it preserve norm. 

After defining the map we shall prove these properties one by one. 

Proof: 

 

 

 

Module No.82 

Bounded Linear Operators 

Quiz:  Complete norm spaces are called Banach spaces. 

Theroem 

LetB(X, Y) be the set of all bounded linear operators form a normed space X to a normed 

space Y. 

If Y is a Banach space, then B(X, Y) is also a Banach. 

Proof: 

Let  nT  be an arbitrary Cauchy seq. in B(X,Y). 

We will show that  nT converges to an operator T in B(X, Y).Since nT is Cauchy for every 

0         N    such that             (m,n>N)n mT T    

For all x X  and (m,n>N) we have 

  
 ( ) ( ) ( )

 

n m n m

n m

T x T x T T x

T T x x

  

  
 

Thus for a fixed x and given   
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Hence B(X, Y) is complete and Banach space. 

 

Module No.83 

Finite Hilbert Spaces 

Functional analysis  course consist of three major parts parts 

1. Metric space is set and we define a space on it that has a certain properties. If it is 

completer then it is complete space means it  should converge within the space 

2. Normed Spaces: Norm is a vector space and we define a norm on vector space. Norm 

is a generalization of distance function. 

3. Finite Hilbert Spaces (Inner Product Space) 

Hilbert Space 

Quiz: Complete inner product space is called a Hilbert Space. 

In inner product the generalization is dot product. 

Inner product Space 

Let V be a vector space over a field F where Fis  or    . 

An inner product in V is a function , :V V F      satisfying the following conditions: 

Quiz: 

Let , ,    ;   Fx y z V   where   may be real or complex. 

i. , 0;    , 0     0x x x x x       

ii. , ,   ; but not true for second value as  , ,x y x y x y x y            

iii. , , ,x y z x z y z        

iv. , ,x y y x     

, :V V F     inner product. 

Inner Product Space 

The pair ( , , )V    is called an inner product space. 

a): ,            , ,  ,   ,ax by z where x y z V a b F      
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Using (iii) property  , , ,ax by z ax z by z        

Using (ii) property  , ,a x z b y z      

   0, 0. , 0 , 0z x z x z      

b): Quiz:   

for all  ,  ,   x y V a F   

  

, , ,

, ,

x ay ay x a y x

a y x a x y

      

     
 

Module No.84 

Cauchy Schwarz Inequality 

Theorem: 

For any two elements x,y is an inner product space V, 

, .x y x y     , the define norm is ,     ,   x,y Vx x x     

Proof: 

If x=y=0  then 0=0 

Let at least one of x and y is not equal to zero 

Let  , 0x y x y       by definition 

 
, ,

, ,

x x y y x y

x x y y y x y

  

 

      

      
 

Module No.85 

Norm on Inner Product space 

Theorem: 

In an inner product space V, the function  . :V   given by  

  ,x x y  
 , 

x V  defines a norm in V. 

Proof: 

N1: 0x   

 For a  x V , , 0      as  , 0x x x x x       

N2:  

 
0x       , 0      , 0      0x x x x x         

N3: x x   

now 
2

,       ,x x x x x x            

  
2 2 2

,x x x x      

N4:      x, y Vx y x y      
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Now 

2

2 2

2 2

2 2

,

, ,

, ,

, , , ,

, , , ,

, , , ,

2Re ,                   Re(z)

2 ,

2               ,

x y x y x y

x x y y x y

x y x x y y

x x y x x y y y

x x y x x y y y

x x x y x y y y

x x y y z

x x y y

x x y y x

    

      

       

           

           

        

     

    

   





 
2

2

  y x y

x y

x y x y

 

 

  

 

Module No.86 

Parallelogram Law 

 
 2 2 2 2

2AC BD AB BC     Quiz 

Theorem: 

   2 2 2 2
2       for all x,y Vx y x y x y       

Proof: 

   

2

2 2

,

, , , ,

2Re ,          ....(i

x y x y x y

x x x y x y y y

x x y y

    

        

    

 

 

Replace y=-y 

   

2

2 2

,

, , , ,

2Re ,           .....(ii

x y x y x y

x x x y x y y y

x x y y

    

        

    

 

Adding (i and (ii 

   
2 2 2 2

2 2x y x y x y      

That we have to prove. 

Special Case: 

 Another result from above equations is 

Subtracting (ii from (i 

   
2 2

4Re ,x y x y x y       

If V is a real inner product space  

Re(z)=z or Re<x,y>=<x,y> 

    2 21
,

4
x y x y x y    

 

A 

D 

B 

C 
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The above form is when V is a real inner product space not complex space. 

Module No.87 

 Polarization Identity 

 Appolonius Identity 

Polarization Identity 
For any x, y in complex inner product space 

 2 2 2 21
,

4
x y x y x y i x iy i x iy          

We have to prove this complex inner product space. 

Proof: 

Let ,x y V  

   

2

2 2

2 2

2 2

,

2Re ,

, ,

, ,                      .......(i

x y x y x y

x x y y

x x y x y y

x x y y x y

    

    

     

       

 

If we replace y=-y 

  

2 2 2

2 2

, ,

, ,

x y x x y y x y

x x y y x y

           

       
……………….(ii 

Replace y iy  in eq(i 

  

 
2 2 2

2 2 2 2

2 2

, ,

, ,              , , ,      

, ,                                                    ......(iii

x iy x x iy iy x iy

x i x y i y x y iy iy iy ii y y i y y

x i x y i y x y

        

              

       

  

Replace y iy   in eq(i 

   

2 2 2

2 2

, ,

, ,              ......(iv

x iy x x iy iy x iy

x i x y i y x y

           

       
 

Subtracting (ii from (i 

   
2 2

4Re ,x y x y x y            …….(v 

Subtracting (iv from (iii 

   

 

   

2 2
2 , ,

2 , , 2 , ,

2 (2 ) Im , 4Im ,                .....(vi

x iy x iy i y x i x y

i x y y x i x y x y

i i x y x y

        

            

     

 

Now we solve 4Re , 4Im ,x y x y      

 

  
 

2 2 2 2
4 ,x y x y i x y i x y x y           

Appolonius Identity 
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  
2

2 2 21 1
2  ,   , ,

2 2
z x z y x y z x y x y z V          

Using parallelogram law 

 

2 2 2 2
2 2    put       x = z-x,  y =z-y  x y x y x y             

Self-assignment 

Module No.88 

 Space 0,
2

C
 

 
 

 

 Space 
pl  

Counter example 1:  Space 0,
2

C
 

 
 

 

Inner product define a norm and under this norm  

Every inner product space is a norm space. 

Every norm space is not an inner product space. This is not true always. 

If a space is inner product then it satisfied the parallelogram law otherwise it is not an inner 

product space. 

We take a norm and built an inner product space and then prove that this inner product space 

does not satisfy the parallelogram law. 

The given set is 0,
2

C
 

 
 

real valued continuous function defined on C[a, b]. 

The norm of function 0,
2

f C
 

  
 

,  is 

 
0,

2

( )          ,   
x

f Sup f x
 

 
 

  

Let , 0,  ;   ( ) sin ,    ( ) cos   
2

f g C f t t g t t
 

   
 

 

We know that sin and cos are continuous functions. Let 0,
2

C
 

 
 

is an inner product space 

where the inner product ,   define by  

  
2

,        ,f f f f f f     
 

  
0,

2

( )
x

f Sup f x
 

 
 

  

  

2 2 2 2
2 2    f g f g f g    

 
As ( ) sin ,    ( ) cosf t t g t t   

 

  
0,

2

sin( ) =1=
x

f Sup x g
 

 
 


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0,
2

0,
2

( ) ( )

            = sin cos 2

x

x

f g Sup f x g x

Sup x x





 
 
 

 
 
 

  

 
 

 1f g   

Now  

  
 

2 2 2 2

2
2 2 2

2 2

2 (1) 2 1 2 1

2 1 2 2

3 4

f g f g f g    

    

  



 

But 3 4 so our supposition is wrong. This inner product space does not satisfied 

parallelogram law. Hence every norm space is not inner product space. 

 

Counter example2:   Space pl  
pl Collection of all bounded sequences,  

1, 2P P  if p=2 then it will give inner product space 

    
1

,    
p

p
i i

i

x x x




   

We will see that 
2

,x x x   is an inner product space or not. We will check this if it 

satisfied the parallelogram or not. 

Let  

  (1,1,0,0,.........)  ;  (1,-1,0,0,...........)x y   

  

1

1 1 0 0 .... 2 2
p pp p px         

  

1

1 ( 1) 0 0 .... 2 2
pp pp py          

  

1

(2,0,0,0,.....)        2 2 2
p

p p px y x y


        

  

1

(0,2,0,0,.....)        2 2 2
p

p p px y x y


        

  

2 2 2 2

1 1

2 2

2

2 2

2 +2 =2 2 +2 2

8=4 2    as p>1, p 2

p p

p

x y x y x y    

 

 

 

The values on both sides are also not equal so this does not satisfied the parallelogram law. 

Contradict to our supposition. So norm space is not an inner product space. 
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Module No.90 

 Theorem (Continuity of Inner Product) 

Theorem: 

Let V be any inner product space. For any sequences     and n nx y in V  

   ,    y   n nx x y  implies , y   , yn nx x      

Proof: 

   

, y , y

, y , y , y , y

, y , y

, y , y

n n

n n n n

n n n

n n n

x x

x x x x

x y x x

x y x x

    

           

       

       

 

Now from Cauchy Swarzinequality 

   ,x y x y
 

   n n nx y y x x y     

Given that   ,    y   n nx x y  so, 

   0   ,   0   as nn ny y y y x x x x          

As n  

   
, , 0

, ,    as  n

n n

n n

x y x y

x y x y

     

   
 

 

Theorem: 

If     and n nx y are Cauchy sequences in V, then the inner product ,n nx y  is a Cauchy 

sequence in F. 

Proof: 

    ,n nx y are Cauchy sequence 

To show ,n nx y  is also Cauchy Sequence. 

   0       ;       0,   m,nn m n mx x y y      

  , , = , , , ,n n m m n n n m n m m mx y x y x y x y x y x y                 

  

, ,

, ,

n n m n m m

n n m n m m

n n m n m m

x y y x x y

x y y x x y

x y y x x y

       

       

   

 

   , , 0,  as   n,mn n m mx y x y        

   ,n nx y  is a Cauchy Sequence 

Module No.91 

Examples of Inner product spaces 

 Space 
n  

 Space 
n  
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 Space [ , ]a b  

 Space
nl  

 Space nP (Collection of all polynomials of degree n) 

Proof: 

1. 
n , the elements are of the form 

  1 2 1 2( , ,......... )  ;  ( , ,......... )n nx x x x y y y y   

The inner product form is  
1

,
n

i i

i

x y x y


   (Note: check all axiom self-assignment) 

The Norm is 2

1 1

,
n n

i i i

i i

x x x x x x
 

       

2.  n  

 The elements are 1 2 1 2( , ,........, )  ;  ( , ,........., )n nz z z z z z z z      if conjugate does 

not define then it does not satisfied the second or third axiom of inner product space. 

The inner product form is  
1

,
n

ii

i

z z z z


   (Note: check all axiom self-assignment) 

3. [ , ]a b be the space of all continuous  function defined on [a, b]. 

  , ( ). ( )

b

a

f g f t g t dt  
 

define an inner product on C[a, b]

 

(Note: complex function can also be including. In previous example the C[a, b] was not inner 

product space with define function definition).

 

  , :V V F      

We will check all four properties of inner product as 

i): , 0        0f f f     

ii): , , ,f g h f h g h        

iii): , ,f g f g      

iv): , ,g f f g     

it define inner product and is define inner product space. 

 

4. nl is a space of sequences. 

   
 2 : il x x

 
The condition or norm is  

   
2

1

i

i

x




   

Let defined the inner product of  iy y is 

  
1

, i i

i

x y x y




   

Checd all four axioms as exercise for inner product. 
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5. nP  

Let nP be the collection of all polynomial of degree n(or less than n). 

We can write this as 1 2

1 1......     e.g 3x 2 1n n

n na x a x a x a x

       of degree two. 

Let ( ), ( ) nu x v x P  

The inner product is  

  ( ), ( ) ( ) ( )     ,   [ , ]
b

a
u x v x u x v x dx x a b    

with this define nP   is an inner product space. 

We have not defined conjugate of v(x) as the interval defined is a real valued so its conjugate 

is also real valued. 

Module No.92 

Orthogonal Systems 

 Pythagorean Theorem 
The dot product of two vectors when they are perpendicular is zero. Similarly in inner 

product if two vectors are perpendicular then their inner product is zero. 

Theorem: 

In an inner product space V and x, y in V if x y  then  

2 2 2
x y x y    

Proof: 

 

2
,

             = , , , ,

x y x y x y

x x x y y x y y

    

          
 

As x and y are perpendicular so , 0, , 0x y y x     

 
2 2 2

, ,x y x x y y x y        

Generalized form: 

  1 2, ,......... nx x x be nonzero vectors in V inner product space such that 

 , 0   ,   i jx x i j    

This system  1 2, ,......... nx x x  is called orthogonal system as all vectors inside it are 

perpendicular to each other. 

The generalized statement is  
2 2 2 2

1 2 1 2......... ......n nx x x x x x        

The idea of proof is  

  

2

1 1 1

1 1

1 1 1

1 1

,

......... , .........

, ......... ..... , .........

,

n n n

i i i

i i i

n n

n n n

n n

i j

i j

x x x

x x x x

x x x x x x

x x

  

 

  

     

         

  

  



 

  
2 2

,    ,   if     , 0 and for   then ,i j i i j i j ix x x i j x x i j x x x         
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2

2

1 1

n n

i i

i i

x x
 

   

Module No.93 

Orthogonal Systems 

 Theorem (Linearly Independence) 

Any sequence { }nx    of non-zero mutually orthogonal vectors in an inner product space V is 

linearly independent. 

Proof: do it yourself 

 

Let 1 2( , ,......... ) nx x x x
be the orthogonal sequence. 

 

Remark: 

If 1, 0  ,   i=1,2,.......,nx x    
0

    , 0
n

i i

i

x x


   

1 1 2 2 1 1

0

, ..... , , ............ , 0
n

i i n n n n

i

a x x a x a x a x x a x x a x x


         
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Module No. 29 

Theorem (Complete Subspace):  

Theorem: 

 A subspace M of a complete metric space X is itself complete if and only if the set M 

is closed in X. 

As this condition is if and only if so vice versa.From previous theorem we have 

Theorem: 

 Let M be a nonempty subset of a metric space ( , )    d X d and M  its closure as defined 

before then,  

 a): x M  if and only if there is a sequence ( )nx  in M such that nx x  . 

 b): M is closed if and only if the situation ,    n nx M x x   implies that x M . 

Proof: 

 Let M is subspace of X over d is then ( , )X d complete.  

    ( , )M X d ,  

M is complete if and only if M is closed, and M is closed if and only if  

    M M . 

Now we can say that  

    ( , )M X d  M M . 

 Suppose M is complete and we need to show that M M . 

 Now by definition M M . Now we need to prove that M M (to be proved). 

 “Let M be a nonempty subspace of a metric space ( , )    d X d and M  its closure as 

defined before then,  

From the part “a” of previous theorem 
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a):  

 x M if and only if there is a sequence ( )nx  in M such that nx x .  

Now x M  

As M is a subspace of a complete metric space ( , )    nd X d and x is also in X so, 

   there is a sequence ( )nx in X such that  nx x .  

Since every convergent sequence in a metric space is Cauchy, then ( )nx  is Cauchy. 

Our supposition is that M is complete. So, ( )nx  converges in M  

     nx x M    

     M M  

we start from x M and obtained x M  

     M M  

 Hence M is closed. 

Conversely: 

 M is closed    

     M M  

and we need to show that M is complete. 

For this we need to show that every Cauchy sequence in M converges in  

    M, x M . 

 Let ( )nx be a Cauchy sequence in M such that nx x ,  

By the previous theorem  x M  

but    M M    x M  

Since ( )nx is an arbitrary sequence,  

   true for all Cauchy sequences in M,  

Hence proved 
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Module No. 30 

Theorem (Continuous Mapping):  

Theorem: 

 A mapping :T X Y  of a metric space (X, d) into a metric space ( , )Y d  is 

continuous at a point ox X  if and only if n ox x implies n oTx Tx  . 

Proof: 

 Suppose T is continuous, we will prove that if n ox x implies n oTx Tx  . 

T is continuous means :T X Y  

a given 0   there exist 0   such that  

   ( , )      ( ,  )     o od x x d Tx Tx    

So, let n ox x  there exist a   such that for all n>  we have 

   ( ,  )n od x x   

This is    of convergence. 

   ( ,  )     ,     od Tx Tx n    

By definition   n oTx Tx  

Converse: 

 Let n ox x  implies n oTx Tx  for all ox  . 

We have to show that T is continuous by contradiction. 

We suppose that it is not true then there is an 0   such that for every 0  there is some 

ox x  such that   

   ( , )               ( , )o od x x d Tx Tx     

In particular  
1

n
     

1
( , )od x x

n
  

     n ox x  

      oTx not Tx  

     ( , )od Tx Tx   
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Module No. 31 

Exmaples (Completeness):  

   

We will show that  and    are completes. In this module we show only that  is a complete 

metric space which means every sequence in  is convergent in  and every Cauchy 

sequence is convergent. 

Lemma a: 

 Every Cauchy sequence in a metric space is bounded. 

This is for every metric space. 

Lemma b: 

 If a Cauchy sequence has a subsequence that converges to x , then the sequence 

converges to x . 

Proposition: 

 Every sequence of real numbers has a monotone subsequence. 

Proof: 

 Suppose the sequence { }nx has no monotone increasing subsequence, we will show 

that it has a monotone decreasing sequence. The sequence { }nx must have a first term, say 
1nx

such that all subsequent terms are smaller  

 1n n means that n comes after 1n , 
1n nx x   .  

Otherwise, { }nx  would have a monotone increasing subsequence. 

 Similarly, the remaining sequence 
2 3

{ , ........}n nx x it must have some first term. 

 Let first term of remaining sequence is 
2nx  , Now this 

2nx is less than 
1nx ,   

2 1n nx x . 

Now we take the remaining sequence 
3

{ ........}nx , whose first term is 
3nx , now this 

3 2n nx x . 

Hence this process will continue  
1 2 3 ..............n n nx x x  , 

and is a monotonic decreasing subsequence.  

We have proved that every sequence of Real numbers has a monotone subsequence. 

Now using lemma a, b and proposition we have a theorem. 
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Theorem: 

 is a completer metric space, i.e., every Cauchy sequence of real numbers converges. 

Proof: 

 Let { }nx be a Cauchy sequence. 

 Remark a implies that { }nx is bounded. Now if the given Cauchy sequence is bounded 

then its subsequence is also bounded.  

Every subsequence of { }nx is bounded. 

Also { }nx has a monotone subsequence.Now { }nx  is monotone as well as bounded. 

Monotone Convergence Theorem: 

 If a sequence { }nx is monotone and bounded this implies that it is convergent. 

This implies that subsequence is convergent. Now using remarks 2 if we have a Cauchy 

sequence has a subsequence is convergent than the original sequence will also convergent.

{ }nx is convergent. As this general sequence { }nx from   so, every Cauchy sequence from 

 is convergent which means that  is complete. 

 

Module No. 32 

Exmaples (Completeness):  

 n  

Here we prove that n is complete 

Example:  

 The Euclidean space n is complete. 

Proof: 

 Let n , the elements of n are n-tuples say 

  
1 2

1 2

( , ,.......... )    ;    a ,     

( , ,.......... )  

n i i

n

x a a a b

y b b b

 




 

The distance function in n is  

  
2 2 2

1 1 2 2( , ) ( ) ( ) ...... ( )n nd x y a b a b a b        
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Let { }nx be a Cauchy sequence in n  

    
( ) ( ) ( )

1 2( , ,.......... )m m m

m nx a a a  

(i.e . 

   

(1) (1) (1)

1 1 2

(2) (2) (2)

1 1 2

( , ,.......... )

( , ,.......... )

.

.

.

n

n

x a a a

x a a a





) 

   
( ) ( ) ( )

1 2( , ,.......... )r r r

r nx a a a  

The distance function is  

 ( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 2

1 1 2 2( , ) ( ) ( ) ...... ( )      ,       ,m r m r m r

m r n nd x x a a a a a a m r N           

Taking power two, we have 

 ( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 2 2

1 1 2 2( ) ( ) ...... ( )m r m r m r

n na a a a a a         

 

( ) ( ) 2 2

( ) ( )

( ) ,

,     , ,     1,2,.....

m r

j j

m r

j j

a a

a a m r N j n





 

    
 

 For a fixed j (1) (2)( ............)j ja a  is a Cauchy sequence, this implies it is converging in   

because  is a complete metric space. 

 
( ) ( )                        ,      ,     ,  j=1,2,......,N           m r

j j ja a m a     

   

( )

1 1

( )

2 2

( )

.

.

m

m

m

n n

a a

a a

a a







 

All these values 1 2, ,....... na a a  called x, As 1 2( , ,....... ) n

nx a a a   

    ( , )md x x  ,  ,    mr x x   

    x is a limit of mx  ,  

    mx was general element 

    n is completer 
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Module No. 33 

Exmaples (Completeness):  

 [ , ]a b  

 Here we prove that [ , ]a b is complete metric space 

Example: 

 The function space [ , ]a b is complete; here [ , ]a b is any given closed interval on  . 

 Let ( )mx  be any Cauchy sequence in [ , ]a b . 

The metric space in [ , ]a b is  

   [ , ]( , ) max ( ) ( )t a bd x y x t y t   ,    where [a,b]=J 

There is an N such that for all m,n>N 

   ( , ) max ( ) ( )m n t J m nd x x x t x t     

Hence for any fixed ot t J   

    ( ) ( )m o n ox t x t    

  1 2( ), ( ),............o ox t x t is a Cauchy sequence of real numbers and   is complete. 

  sequence converges   ( ) ( )m o ox t x t   as  m  

In this way to each ,t J  a unique real number x(t). This definespointwise function on J. 

Now we well show that ( ) [ , ]       mx t a b and x x   

   max ( ) ( )t J mx t x t     

We are comparing with  max ( ) ( ) ,           t J m nx t x t as n     

    for every t J  ( ) ( )mx t x t    

    ( )mx t converges to x(t) uniform; 

 If a sequence ( )mx  of continuous function on [a,b] converges on [a,b] and the 

convergence is uniform on [a,b], then the limit function x is continuous on [a,b] 

    ( )x t is continuous on [a,b] 

    ( ) [ , ]x t a b  . 
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Module No. 34 

Exmaples (Completeness):  

 l  

 Here we prove that l is complete metric space 

Example: 

 The function space l is complete; here [ , ]a b is any given closed interval on  . 

Proof: 

 Let ( )mx  be any Cauchy sequence in l such that 

In l the elements are of the form   

   
1 2( , ,.......)                j xx a a a c    

   
1 2( , ,.......),                j yy b b b c    

 The distance or metric function is 

   ( , ) sup j j
j

d x y a b


 


 

Here    ( ) ( )

1 2( , ,........),          m m

mx a a as  

   

(1) (1)

1 1 2

(2) (2)

2 1 2

( , ,........),

( , ,........)   so on

x a a

x a a




 

For any q>0 , there exist   such that for all m,n> . 

   ( ) ( )( , ) sup m n

m n j j
j

d x y a b


 


 

So, if sup   for a fixed j 

   ( ) ( )        ,       ,  m n

j ja a m n    

   for every fixed j, the sequence 
(1) (2)( , ,........)j ja a is a Cauchy sequence of real 

numbers   . 

Since  is complete, 
( )m

ja is convergent in  . 

   
( )                   1,2,..........m

j ja a as m for j   
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For these infinite limits 
1 2, ,.................a a  such that ( ) ( )

1 1 2 2,        ,...............m ma a a a   

We define  1 2( , ,............)x a a   

We need to prove  
1 2( , ,............)x a a l   

   ( ) ( )m n

j ja a    

    ( )m

j ja a     as n  .  then
mx x  

From above inequality, 

   ( )( , ) sup m

j jd x y a a     

Which means  mx x  

Since    ( )( )m

m jx a l   

   ( )           m

j ma k for all j  

   

( ) ( )

( ) ( )      

       <

m m

j j j j

m m

j j j

m

a a a a

a a a

k

  

  



 

    ja is bounded ,       jx a l   

Module No. 35 

Exmaples (Completion of Metric Spaces):  

 Space   

 Space of Polynomials 

 Isometric mappings/spaces 

 here we prove that l is complete metric space 

Isometric Mappings: 

 Let  ( , )   and   X=(X, )X X d d    be metric spaces. 

 A mapping :T X X   is said to be isometric or isometry if T preserve distance. 

Preseve distance mean after applying the mapping the distance is preserve, i.e. for all 

,x y X  

   ( , ) ( , )x yd T T d x y  
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Isometric Spaces: 

 The space X is said to be isometric with space X  if there exist a bijectiveisometry of 

X onto X . 

 X and X  are then called isometric spaces. 

Theorem(Completion) 

 For a metric space ( , )X X d  there exists a complete metric space ˆ ˆ( , )X X d  which 

has a subspace W that is isometric with X and is dense in X̂ . 

 This space X̂ is unique except for isometries, that is if X is any complete metric 

space having a dense subspace W


 isometric with X, then X and X̂ are isometric. 

 

Module No. 36 

Vector Space  

Definition: 

 A vector space (or linear space) over a field K is a nonempty set X of elements 

x,y,……………….(called vectors) together with two algebraic operations. 

 These operations are called vector addition and multiplication of vectors by scalars, 

that is, by elements of K. 

 Vector Addition associates with every ordered pair (x,y) of vectors a vector x+y, 

called the sum of x and y, in such a way that the following properties hold 

 Vector addition is commutative and associative. 

 There exists a vector 0, called the zero vector, and for every vector x there exists a 

vector –x, such that for all vectors. 

 Vector Space 

    x+0=x 

    x+(-x)=0 

 Multiplication by scalar associates with every vector x and scalar   a vector x (also 

written x ), called the product of  and x, in such a way that for all vectors x, y and scalar 

,     we have 

    ( ) ( )x x    or  1x=x 

and the distributive laws hold. 
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Module No. 37 

Examples(Vector Space ) 

 Space n  

 Space n  

 Space [ , ]a b  

 Space 2l  

1. Space n  

   1( ,............, ) ,       n ix      

   1( ,............, ) ,       n iy      

Addition: 

   x+y= 1 1( ,............, )n n      

scalar Multiplication: 

 let  be a scalar then  

   1( ,............, )nx    

Now addition and scalar multiplication in n  is a vector space. 

2. Space 
n  

Addition: 

 Let   1( ,............, ) ,       n ix      

   1( ,............, ) ,       n iy      

Scalar Multiplication: 

addition and scalar multiplication is same as in n , so n is a vector space. 

3. Space [ , ]a b  

 Let [ , ]             [ , ] x a b and y a b    

where x and y are fucntions and operating on t  

Addition: 

   ( )( ) ( ) ( )x y t x t y t    
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Scalar Multiplication: 

   ( )( ) ( )x t x t   

So under addition and scalar multiplication [ , ]a b  is vector space over a field  or    . 

4. Space 
2l : 

 In this space we have sequences,if 2x l  then x is a sequence, say  

   2

1( ,............, ) ,       nx x l    

 and  2

1( ,............, ) ,       ny y l    

Addition: 

   1 1( ,............, )n nx y         

Scalar Multiplication: 

   1( ,............, ) nx    

So under addition and scalar multiplication the space 2l  is vector space over a field  or    

Module No. 38 

Vector Space  

 Subspace 

 Basis of a Vector Space 

Subspace: 

 A subspace of a vector space X is a nonempty subset Y of X such that addition and 

scalar multiplication are closed in Y. 

Hence T is itself a vector space, the two algebraic operations being those induced from X. 

Two Types of subspaces 

 Improper Subspace:  If the span of a subspace is equal to that vector space ; 

 Proper Subspace: If the span of a subspace is not equal to that vector space 

Linear Combination 

 A linear combination of vectors 1,........., nx x  of a vector space X is an axpression of 

the form 

 1 1 ............. m ma x a x where the coefficients 1,............, ma a  are any scalars. 
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Span of a Set: 

 For any nonempty subset M X  the set of all linear combinations of vectors of M is 

called the span of M. 

Written as “span M”. 

Obviously, this is a subspace Y of X, and we say that Y is spanned or generated by M. 

Linear Independence: 

 If two vectors have same direction and different in magnitude then on vector is 

multiple of other which means that one is dependent to other. 

 If two vectors have not same direction then one vector is independent to other. 

Mathematically: 

linearly independent. 

    1 1 2 2 ................. 0m mc x c x c x      

if and only if all constant are zero  

    1 2 ................. 0mc c c     

We call 1 2, ,................., mx x x  linearly independent. 

linearly dependent. 

 If vectors are dependent then their coefficients are not equal to 0 as 

let   

  
1 2

1 2

                     2         

       2 0

x x

x x



  
 

Here coefficient 1 2 0   , so 1x  is dependent of 2x  . 

Basis of a Vector Space: 

 As span of M is also a subspace, if the subspace (collection of vectors) is improper 

subspace(means span of M is equal to that vector space) and linearly independent(coefficients 

are equal to zero) then that particular subspace is a Basis of a Vector Space. 

So, for basis the subspace have to improper subspace and linear independent. 
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Module No. 39 

Vector Space 

Dimension (definition): 

The number of elements in subspace of a basis is called dimension of that vector space. 

 Dimension 

i. Finite dimensional vector space 

ii. Infinite dimensional vector space 

Examples: 

In n space 

 Elements of basis of n are 1 2, ,.............., ,ne e e  

   

1

2

(1,0................,0)

(0,1................,0)

.

.

(0,0................,1)n

e

e

e







 

Sometimes it is called Canononical basis of n basis n . 

Similarly in n space n-dimension 

 [ , ]C a b is infinite dimension vector space because there is no finite set which can span 

the set of function. 

 In 2l space, there are sequences, this is also infinite dimensional vector space. 

Result : 

 Every nonempty vector space {0}X   has a basis. 

Theorem: 

 Let X be an n dimensional vector space. Then any proper subspace Y of X has 

dimension less than n. 

Proof: 

 If n=0 this implies X={0} 

There is no proper subspace. Hence we can’t continue. 

 If dimension of Y is zero. 
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   Dim Y=0 

and   X Y  Y={0} 

   {Y is proper subspace of X} 

   dim Y < dim X 

suppose dim Y=n 

   Y would have a basis of n elements.  

   that basis would also be a basis for X, as element in basis are same, they span 

and linearly independent. 

  dim X=n  when basis are same then X=Y 

but it is contradict to our supposition as we suppose that Y is a proper subset of Xi.eY X  

which means X and Y are not equal. 

   any linearly independent set of vectors in Y must have less elements then n. 

   dim Y< n 

That we have to prove. 

 

Module No. 40 

Normed Space, Banach Space 

 Norm 

 Normed Space 

 Banach Space 

Norm (definition): 

 A norm on a (real or complex) vector space X is a real-valued function on X whose 

value at an x X is denoted by x . 

(This like the notation of mod but it has two vertical lines on left and right side.) 

It has following properties: 

 i):  0x     (N1) 

 ii):  0          0x x    (N2) 

Norm is equal to zero if and only if x=0. Length is always positive or zero but not –ve. 
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 iii):  x x     (N3) 

 if we multiply the length of norm with  (any number) then it will increase the length 

of Norm  times. 

 iv):  x y x y     (N4) triangular inequality 

if x and y are two vectors then their sum of Norms is equal to individual sum of their norm. 

Norm metric: 

A norm on X defines a metric d on X which is given by 

  ( , )               ,d x y x y where x y X    

and is called the metric induced by the norm as this metric depend on norm so we call it 

metric induced by norm. 

from the property x y x y    

we can write  y x y x    

 The norm is real valued function so it is continuous function. Continuous function 

mean if we define norm on x then it will give us the value of norm x as 

   x x  

and this mapping is continuous and is mapped  , .X  .  

Norm is always a continuous function. 

Norm Space: 

 A normed space X is a vector space with a norm defined on it. 

 A normed space is denoted by  , .X  or simply by X. 

Banach Space: 

A Banach space is a complete normed space, (Complete in the metric defined by the norm). 
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Module No. 41 

Examples (Normed Space) 

 Euclidean Space n  

 Unitary Space n  

 Space pl  

 Space l  

 Space [ , ]a b  

Euclidean Space
n  

This is a metric space and elements in 
n is in n-tuples form,  

  1 2( , ,..........., )        where n ix       ,   x X  

  

2 2

1

1

22

1

........

     =

n

n

i

i

x  




  

 
 
 


 

  1 2( , ,..........., )        where n iy       

The distance function   ( , )d x y x y   

    
2 2

1 1( , ) ........ n nd x y          

Unitary Space
n  

This is a metric space and elements in n is in n-tuples form,  

  1 2( , ,..........., )        where n ix       ,   x X  

  

2 2

1

1

22

1

........

     =

n

n

i

i

x  




  

 
 
 


 

  1 2( , ,..........., )        where n iy       

The distance function    

    ( , )d x y x y   

     
2 2

1 1 ........ n n         
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Space
pl  

    1 2( , ,...........)x    ,     

    1 2( , ,...........)y    

    

1

1

=
pp

j

j

x 




 
 
 
  

The distance function   ( , )d x y x y   

     

1

1

=
pp

j j

j

 




 
 

 
  

Space l  

     x l  

The metric is given by  sup j
j

x   

Space [ , ]a b  :  

 This is a space of all real valued continuous functions defined on closed interval [a,b] 

The norm of the function is max ( )
t J

x x t


 , with this metric space it is a norm space. 

  

Module No. 42 

Unit Sphere 

 Unit Sphere 

Unit Sphere 

The sphere with center 0 and radius 1, S(0;1), this we define in 2 , but in any metric space 

Those points from x whose norm is 1. { | 1}x X x   , 

 In a normed space X is called the unit sphere. In norm space the collection of all those 

points which are equal to 1 is called a Unit Sphere. 

Let x  be a norm, and space is 2 , the element in 2 are  1 2,x    
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Example: 

  (i.e  x=(2,-3),  2 3 2 3 5x        ) 

     1 2x     

Norm of (1,0) is 1, and similarly norm of point (0,1) is also 1. 

Similarly for Norm of (-1,0) is 1, and also norm of point (0,-1) is also 1. 

This norm is according to function 1 2x    ,  

  for   x=(1,0) 

     (1,0) 1 0 1    

   

Another Example. 

 The norm is defined as 
1

2 2 2

1 2x     similar to equation of circle. 

In unit sphere we have the condition that norm of x is 1, 1x   

     
1

2 2 2

1 21      

    2 2

1 21     

Another Example. 

 The norm is defined as  1 2max ,x    similar to equation of circle. 

Suppose  2x  , such that 1 2( , )x   , 

Let say  (2, 3)x    

According to given condition, 

   max( 2 , 3) max(2,3) 3x      
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Here the sphere is a square. 

 We have discussed only 2  norm space and also its sketches, but it can be  n , n  

or any other space like space of functions C[a,b]. 

 When we defined different norm then the shape of the unit sphere is depends on the 

norm define. 

Module No. 43 

Normed Spaces 

 Subspace 

Subspace (definition) 

 A subspace Y of a normed space X is a subspace of X considered as a   vector space, 

with the norm obtained by restricting the norm on X to the subset Y. 

This norm on Y is said to be induced by the norm on X. 

If Y is closed in X, then Y is called a closed subspace of X. 

Subspace pl  : 

 A subspace Y of a Banach space X is a subspace of X considered as a normed space.  

Hence we do not require Y to be complete. 

Theorem : 

 A subspace Y of a Banach space X is complete if and only if the set Y is closed in X. 

Convergence in Normed Spaces. 

 The metric function is  ( , )d x y x y   
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For convergence we define as 

i):  A sequence ( )nx  in a normed space X is convergent if X contains an x such that  

     lim 0n
n

x x


   

   nx x  ,  lim   ( )nx it of x  

Now this definition define for Cauchy sequence 

ii): A sequence ( )nx  in a normed space X is a Cauchy sequence if for every 0   there is 

an N such that  

         ,m nx x for all m n N    

 

Module No. 44 

Normed Spaces 

 Convergence of Infinite Series 

 Basis in Normed Spaces 

 Completion in Normed Spaces (Theorem 

Convergence of Infinite Series 

A sequence ( )kx  is associate with a sequence of partial sum ns  . 

   1 2 ...............      where  n=1,..........,n ns x x x    

If ns  convergent, ns s  , then 

   1 2

1

.............i

i

x x x




   is also convergent. 

if   0ns s   then ns s . 

If we have following  series 

  1 2 ..........x x  converges, 

    
1

i

i

x




  absolutely convergent. 

So , we have transform the convergence and absolutely convergence in term of norm. 
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Basis: 

In a normed space X is a Cauchy sequence if for every 0   there is an N such that  

 Elements of basis of n are 1 2, ,.............., ,ne e e such that 

    

1

2

1

(1,0................,0)

(0,1................,0)

.

.

(0,0................,1)

e

e

e







 

Sometimes it is called Canononical basis of n . 

Elements are spanning and are linearly independent. 

Any element 1 1 2 2 ............ n nx e e e       in the form of norm is 

  1 1 2 2 ............ 0n nx e e e        

and if this condition is hold then we say that it is a basis in the norm space. 

Theorem Completion: 

 Let  , .X x  be a normed space then there is a Banach space X̂  and an isometry A 

from X onto a subspace W of X̂ which is dense in X̂ . 

The space X̂  is unique, except for isometries. 

 

Module No. 45 

Fininte Dimensional Normed Spaces 

 Lemma (Linear Combination) 

Lemma 

Let 1{ ,................, )nx x be a linearly independent set of vectors in a normed space X (of any 

dimension). 

Then there is a number c>0 such that for every choice of scalars 1,...................., n  we have 

 1 1 1......... .............n n nx x c         

 

 



MTH 641 Functional Analysis 

 

24 

Proof: 

1 ............. nS     =  1 ............. n    

 1 1 1......... ............. ,     where 0n n nx x c c          

Now we have two cases: 

i): If S=0 

It means 0      0    1,.......,  i i for all i n      

ii): If S>0 

   1 1 ......... n nx x cS     as S>0 so we can divide it 

1 1

1 1

1 1

.........

.........

.........

n n

n n

n n

x x
c

S

xx
c

S S

x x c

 



 

 


  

  

 

If we define i
i

S


   then from S we have 

1

1

.............
1

............. 1

n

n

S

S S

 

 

 


  

 

1

1
n

i

i




  

To prove 1 1 ......... n nx x c    We have to prove 
1

1
n

i
i




  

We do this by contradiction. 

Suppose it is false that 1 1 ......... n nx x c     

So we can find a sequence my  of vectors 
   

1 1 ......
m m

m n ny x x     such that  

0           my as m   

as we suppose that 1 1 ......... n nx x c   
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so we will find values smaller than c. 

( ) ( )

1

1               1   
n

m m

j j

j

 


    

Thus for each fixed 
      1 2

.........
m

j j n    is bounded. 

By Bolzano-Weisrtren theorem has a convergent subspace.  

For all j=1,2,…………,n 

( )

1   m has converged subsequence say ( )

1

m  converges to 1  

   

   

1 1

,1 1 1

......

......

m m

m n n

m m

m n n

y x x

y x x

 

 

  

  
 

( ) ( )

2 2 2

m m   

 
This is also true for 

     

   

 

,2 2 2

,

1 1

,

1

,.........,

..

..

  for all  =1.

      as        m

   with 1    all 0

m m m

m n n

n n
m m

m n j j j

j j

m

j j

n

m n j j j j

j

y x x x

y x

y y x

  

 

 

  

 



   



 

    

 

 

 

Using the linearly independence condition  1,........., nx x are linearly independent.             

This implies 1 1 ......... 0n nx x        0y   

Now , ,                  m n m ny y y y   where . is continuous 

Hence 0my  and ,m ny is a subsequence of my but we have supposed that 0y   

   m,ny 0= y y=0       N2 proved 

Hence proved 
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Module No. 46 

Normed Spaces 

 Theorem (Completeness) 

Theorem 

 Every finite dimensional subspace Y of a normed space X is complete. In particular, 

every finite dimensional normed space is complete. 

Proof: 

Prove it yourself: 
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Module No. 47 

Normed Spaces 

 Theorem (Closedness) 

As we have already proved that every finite dimensional subspace is complete and we 

also know that a subspace is complete if and only if it is closed. 

Theorem 

Every finite dimensional subspace Y of a normed space X is closed in X. This result 

is true for finite dimensional subspace but for infinite space it is not true. 

Infinite dimensional subspaces are like C[0,1], 2l  are infinite dimensional normed 

space which are not closed space. We use dense, limit points to prove this. 

 

 

 

 

 

Module No. 48 

Normed Spaces 

 Theorem (Equivalent  Norms) 

Definition 

 A norm .  on a vector space X is said to be equivalent to a norm .
o

 on X if there are 

positive numbers a and b such that for all x X  we have 

o o
a x x x b   

This property should hold for every element x of vector space X.(
o

a x read a times x not 

norm). 

If we prove about condition then we say that these two norms are equivalent. 

Equivalent norms on X define the same topology for X. 

Theorem (Equivalent norms) 

      One finite dimensional vector space X, any norm . is equivalent to any other norm .
o
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Proof: 
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Module No. 49 

Compactness and finite Dimension 

 Lemma (Compactness) 

Definition 

A metric space X is said to be compact if every sequence in X has a convergent subsequence. 

A subset M of X is said to be compact if M is compact considered as a subspace of X, that is 

if every sequence in M has a convergent subsequence whose limit is an element of M. 

Lemma (Compactness) 

A compact subset M of a metric space is closed and bounded. 

For close of M we show that M M . Now we have to prove closed and bounded 
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Conversely  

In general the converse of this lemma is false.  

Proof 

 

  

The above example is closed and bounded but not compact so the converse is false that a 

closed and bounded metric space is not compact. 

Module No. 50 

Theorem (Compactness) 

 Lemma (Compactness) 

In case of finite dimensional subset M is a compact set if and only if it is closed and bounded. 

Here we prove both directions. 

Theorem (Compactness) 

In a finite dimensional normed space X, any subset M X  is compact if and only if 

M is closed and bounded. 



MTH 641 Functional Analysis 

 

32 

Proof: 

We have to prove that compact implies closed and bounded. This we have proved 

already. Now we prove the converse only. We have to prove only compact (for finite 

dimensional only). 

Let M be closed and bounded, we need to show that M is compact (i.e. every 

sequence in M has a subseq which converges in M). 

Let it is finite dimension so, say n, as dim X n   and 1{ ........... }ne e   be a basis for X 

Let mx  be any sequence in M. 

 
( ) ( )

1 1     x .......m m

m n ne e      

 

Lemma 45 lecture, 
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Module No. 51 

Compactness and Finite Dimension 

 F. Riesz’s Lemma 

F. Riesz’s Lemma 

Let Y and Z be subspaces of a normed space X (of any dimension), and suppose that Y 

is closed and is a proper subset of Z, then for every real number   in the interval (0,1) there 

is a z Z  such that  

   

1

     

z

z y for all y Y



  
 

First part  1z  we prove as 

 

Second part:      z y for all y Y    
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Module No. 52 

Finite Dimension 

 Theorem (Finite Dimension) 

Theorem  

If a normed space X has the property that the closed unit ball { | 1}M x x   is 

compact, then X is finite dimensional. 

 

 



MTH 641 Functional Analysis 

 

35 

 

 

Module No. 53 

Compactness and Finite Dimension 

 Theorem (Continuous Mapping) 

 Corollary (Maximum and minimum) 

Theorem  

Let X and Y be metric spaces and :T X Y  be a continuous mapping. 

Then the image of a compact subset M of X under T is compact. 

Proof:   

By definition of compactness we need to show that every sequence ny  in the image 

( )T M Y  continuous a subsequence which converges in T(M). 

Now since ( ),ny T M we have nx  such that ,n ny Tx for some nx M . since M is compact, 

( )nx  contains subsequence 
knx which converges in M. 
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Corollary (maximum and minimum) 

 A continuous mapping T of a compact subset M of a metric space X into R assumes a 

maximum and a minimum at some points of M. 

    

:

( )

-
( ),    

T M R

T M

M compact
T M

T continuous








 



by previous result

 

    T(M) is compact. 

which means it is closed and bounded because compactness implies close and bounded. 

    inf ( ) ( ),                 sup  ( ) ( )T M T M and T M T M   

Inverse image of these two points consist of points of M at which Tx  is minimum or 

maximum respectively. And that we have to prove. 

Module No. 54 

Functional Analysis 

 Linear Operators 

 In functional analysis if we define a metric on a set then it is a metric space and if we 

define a norm on a vector then it is called a norm space. In mapping if we take a and b as 

norms then we define a linear operator on the mapping and it should satisfied the certain 

properties.  

Operator 

 In the case of vector spaces and, in particular, normed spaced, a mapping is called an 

operator. 

Linear Operator 

A linear operator T is an operator such that  

i): the domain (T) of T is a vector space and the range R(T) lies in a vector space 

 over the same field. 

ii): for all , ( ) and scalar x y D T   

  T(x+y)=Tx+Ty also ( )T x Tx   

By combining above two equations         

  ( )          T x y Tx Ty where and are both scalar         

( )T x Tx is same.  
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Some more notations. 

 (T) domain of T 

 (T) range of T 

 (T)  denotes the null space of T. 

Null space are those element from the domain of T such that on which we operate gives the 

answer zero. ( )x D T such that Tx=0 

Also null space of T is similar to kernel of T. 

Let ( )    ( ) ,  ,   .D T X and R T Y X Y vector space   

(vector spaces can be real and complex spaces). 

Then T is an operator from (T) onto (T), the notation is  

    : ( ) ( )T D T R T , D(T) covers all range so it is onto. 

Or (T) into y  : ( )           ( )T D T Y R T Y   

if(T) is the whole space X, then we write   :T X Y  

moreoverif we take 0    T0=0. 

   ( )          T x y Tx Ty where and are both scalar         

T is a homomorphism when it is a linear operator. 

:T X Y , wherewe have two kind of vector space, one vector space is X and other vector 

space is Y. we apply operations on X and also operation on Y.These operation may or may 

same on both vector spaces.  

Module No. 55 

Linear Operators 

 Examples. 

Operator is a mapping whose domain and range is a vector space. It is subset of vector space. 

Below are different linear operators. 

Identity Operator 

Identity mean it operate on the same vector space. :xI X X   

        ( )         xI x x x X     

        ( )xI x y   we have to prove 
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Zero Operator: 

  :O X Y such that 0     Ox x X    

here the 0 on right side is belong to vector space Y. 

Differentiation: 

Let X be a vector space of all polynomials on [a,b]. A set of polynomial in denoted by x(t) 

   ( ) ( )         ( )Tx t x t x t X    

When we apply T on polynomial x(t) then ( )x t  is also a polynomial. So this operatorT maps 

X onto itself. There is no polynomial whose derivative we can’t find. 

Integration: 

Linear operator T for C[a,b] into itself can be defined by  

   

( ) ( )

t

a

Tx t x d     

taa   is just a variable and C[a, b] is collection of all continuous function on a and b. 

Multiplication by t: 

Let C[a, b] be a collection of continuous functions defined on a and b.  

   ( ) ( )Tx t tx t  

This operator plays an important role in quantum theory of physics. 

Elementary vector algebra: 

Here we have different types of maps we have  

   3 3

1 :T   cross product of two vectors is also a vector. 

For cross vector we need two vectors. Then each element is also a vector. 

   1T a x   

Similarly for dot product: 

Dot product of two vector is a scalar, so the map on real numbers as 

   
3

2 :T    

   2 1 1 2 2 3 3( ) .T x a x a x a x a x      where 3x  

For different map we fix a. 
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Matrices: 

We denote matrix by capital letter say A. whose elements are in rows and column.  

    
( )jkA   

Let with r rows and n column we define a linear operator which is  

  : n rT    

Where  1{( ,......, ) | }n

n ix x x   , in column form so that we use matrices multiplication

1

.

.

n

x

x

 
 
 
 
 
 

 

 such as say 

11 11 1

1

1                        1 

  .  .  .  

. ..

. ..

  .  .  .   

n

n nr rn

r r n n

y x

y x

 

 

  

    
    
    
    
    

    

  

For matrix multiplication number of first matrix column is equal to number of rows of second 

column.rxn is a fix matrix 

To check the linear condition we use 

   ( )T x y Tx Ty       

Matrix multiplication satisfied this condition, hence this operator is a linear operator. 

Module No. 56 

Linear Operators 

 Theorem (Range and Null space) 

 Null space is the collection of those elements from the domain on which we apply the 

operator and the answer is zero. 

Theorem 

Let T be a linear operator. Then: 

 The range R(T) is a vector space. (domain is also a vector space as discussed) 

 If dim ( )  ,    dim ( )D T n then R T n    (dimension of domain vector space is 

finite then range is equal or less than the dimension of domain or equal. 

 The null space N(T) is a vector space. 

The first two results are about range and third result is about null space. 
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Proof: (a) R(T) is a vector space. 

  

1 2

1 2

                   , ( )      

      R(T),   where ,  are scalar

y y R T

y y   



  
 

Since  

  

1 2 1 2

1 1 2 2

, ( )   and   , ( )

: ( )

  ,   

y y R T x x D T

T D T Y

y Tx y Tx

 



 

 

Also domain of T “D(T”) is a vector space so, 1 2   ( )x x D T   this is by definition of 

vector space.Since T is linear  

   
 1 2 1 2 1 2=   ( )T x x Tx Tx y y R T         

 

Here 1 2x x  is domain and gives 1 2 y y  range of T.Hence R(T) is a vector space. 

Part (b): 

Basis should span D(T)and it should linearly independent. More one than condition is if n 

element linearly independent then the elements other than n will be linearly dependent. 

 

Linear operators preserve linearly dependence. 
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Part (c): 

  

1 2

1 2

, ( )

0

x x N T

Tx Tx



 
 

To prove it a vector space, we have to  prove 1 2   ( )x x N T    

   1 2 1 2=   0 0 0T x x Tx Tx             

   1 2 ( )x x N T    

   N(T) is a vector space  (proved) 

Module No. 57 

Linear Operators 

 Inverse Operators 

Operator is a mapping whose domain and range is vector space.Particular in norm 

space.There is also inverse mapping. For inverse operator the same condition is one-to-one 

and onto. One-to-one means image of different elements is different. And onto means the 

range covers all the set of domain. If these two conditions hold then we can define inverse 

oprator. 

Notations: 

: ( )T D T Y is said to be injective or one-to-one if for any  

     1 2, ( )x x D T such that 1 2x x
 
 1 2Tx Tx

 

If we take counter inverse then  1 2 1 2    Tx Tx x x   , 

Now if  : ( ) ( )T D T R T  then there exists a mapping 

    : ( ) ( )T R T D T     

    o oy x
 

where oy is any element of R(T)and ox is 

element of D(T).i.e. o oTx y  

this map T   is called the inverse of T. 
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         ( )T Tx x x D T      

and         ( )TT y y y R T     

Inverse exist if and only if null space has only zero. There is only zero in null space 

 

Module No. 58 

Linear Operators 

 Theorem (Inverse Operator) 

Theorem 

 Let X,Ybe vectors spaces, both real or both complex. Let : ( )T D T Y be a linear 

operator with domain ( )   and range  R(T) YD T X   .then: 

a): The inverse : ( ) ( )T R T D T  exists if and only if Tx=0x=0. (i.e null space has 

          zero elements). 

b): If T   exists, it is a linear operator. 

c): if
1dim ( )     D T n and T    exists, then dim ( ) dim ( ).R T D T  

as there is if and only if condition so we have to prove in both ways. 

a): 
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Conversely let 1T   exist which mean one –one and onto condition hold. 

We have to prove 0       0Tx if and only if x  . 

One-one means 1 2 1 2     Tx Tx x x   ,  this is given 

Now if we have take
2 0x   

1    0x   1 0 10  ,   0Tx T x    

 

b): If T   exists, it is a linear operator. 

We need to show that 1T  is a linear operator.We assume that 1T  exists and we need to show 

that it is linear operator. 

The domain of 1T   is basically range of T and also R(T) is a vector space. 

 1 2, ( )x x D T  1 1 2 2     y Tx and y Tx   

  
1

1 1 1 1                                   y Tx x T y      

and  1

2 2 2 2                                   y Tx x T y    

T is linear so for any scalar     and   we have 

  
 1 2 1 2 1 2     y y Tx Tx T x x T is linear            

Applying 1T   on above we get  

  
 1 2 1 2T y y x x        

Putting values of 1 2  x and x  

  
 1 2 1 2= T y + T y  T y y       

1T  is a linear operator 

C): if 1dim ( )     D T n and T    exists, then dim ( ) dim ( ).R T D T  

We have proved that dim ( )R T n we know 

   dim ( ) dim ( )R T D T  ……………i 

Conversely, 

   1 : ( ) ( )T R T D T   

   dim ( ) dim ( )D T R T …….ii 

Combining i and ii  dim ( ) dim ( )R T D T  
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If inverse exist then both dimensions are equal. That we have to prove. 

 

 

 

Module No. 59 

Linear Operators 

 Lemma(Inverse of Product) 

Bijective mean one to one and onto. Here it means inverse of T and S exists. 

Lemma 

Let :    :T X Y and S Y Z   be bijective linear operators, where X,Y are vectors spaces. 

Then the inverse 1( ) :ST Z X   of the product (the composite) ST exists, and  

   1 1 1( ) .ST T S    

Diagram 

 

Mathematically, 

If S is bijective and T is bijective then ST is also bijective. 

   :ST X Z bijective 

    1( )ST  exist. 

It means if  1( )( ) ZST ST I   

If :S Y Z  then 1

YS S I   

 
1 1 1( ) ZS ST ST S I       1 1( )T ST S   
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  1 1 1 1( )T T ST T S        1 1 1( )ST T S    

 

 

Module No. 60 

Linear Operators 

 Bounded Linear Operator 

Norms spaces are generalization of distances. 

Bounded Linear Operator (Definition): 

 Let X and Y be normed spaces and : ( )T D T Y a linear operator, where ( )D T X . 

The operator T is said to be bounded if there is a real number c such that for all ( ).x D T  

   Tx c x  

 If this condition satisfied then we call T to be a bounded linear operator. Bounded 

function mean range is bounded but here bounded set is mapping over a bounded set so we 

call this a bounded linear operator.c is fix. 

    

     ,       ( ) -{0}
Tx

c x D T
x

   

The smallest possible value of c is supremum of left hand side. Then the value of c is called  

  
( ),

0

sup
x D T
x

Tx
c

x


   as
( ),

0

 norm sup
x D T
x

Tx
T

x


 
 
 
 

 

We call the value as T norm  
c T  

  If ( ) {0},    0D T T   

  
( ),

0

sup
x D T
x

Tx
c T

x


   

  
Tx T x  

This is the formula that we use for bounded linear operator. 

 

Module No. 61 
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Bounded Linear Operators 

 Lemma (Norm) 

First we define the norm and then prove that the norm defined on T satisfies (N1) to (N4). 

 

Lemma: 

Let T be a bounded linear operator as defined before. 

An alternate formula for the norm of T is   
( )

1

sup
x D T
x

T Tx



  

The norm defined on T satisfies (N1) to (N4). 

Proof: 

    
Tx c x  

  
( ), ( )

0 1

sup sup
x D T x D T
x x

Tx
c T Tx

x 
 

  

 

We have to prove
( ), ( )

0 1

sup sup
x D T x D T
x x

Tx
Tx

x 
 

  

Let ;    set  y=   ,  x 0,
x

x a
a

   

    1
x

y
a

   

    
( ),

0

sup
x D T
x

Tx
T

a


   

as T is linear so, we take constant ainside the norm 

   
( ), ( ),

0 1

1
sup sup

x D T y D T
x y

T T x Ty
a 

 

 
  

 
  

as
1

y
a
  

Here variable is y which can be any other. 

Part a) of lemma is proved. 

Part b): 
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( ), ( ),

0 1

sup sup
x D T x D T
x x

Tx
T Tx

x 
 

   

N1: 0T   is obvious. 

N2: 0       T=0,T    

 0       0,       ( )  0T Tx x D T T        

N3: 
( ), 1 1

1

sup sup sup
x D T x x
x

T Tx Tx Tx T    
  


     as 
1

sup
x

Tx T


  

N4: 1 2 1 2T T T T    

  

1 2 1 2
( )

1

1 2 1 2
1 1

1 2 1 2
1 1

sup ( )

             sup sup

             sup sup

x D T
x

x x

x x

T T T T x

T x T x T x T x

T x T x T T




 

 

  

   

   

 

First we define a T T norm and then prove the four properties of norm. 

Module No. 62 

Examples Bounded Linear Operators 

 Identity Operator 

 Zero Operator 

 Differentiation Operator 

 Integral Operator 

Identity operator: 

 :I X X    xI x  { {0} normed space}x   

  
( ), ( ),

0 0

sup sup                    
x D T x D T
x x

Tx x
I as Tx x

x x 
 

    

  
( ),

0

sup 1 1
x D T
x

I



   

Zero operator: 

The norm space :O X Y  ,    0xO    x X  
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( ),

0

sup 0   , 0 0
x D T
x

Tx
O

x


    

Differentiation operator: 

This is defined on normed space of all polynomial on J=[0, 1] 

   
 max ( ) ,   x x t t J   

Value of t varies from 0 to 1 and where the value is maximum, that maximum value is norm 

of x. 

applying operator the derivative. Differentiation operator is. 

   ( ) ( )Tx t x t  

Derivation is itself a linear operator. 

Now we check that it is bounded or not. ( ) ( )Tx t c x t   . If it is bounded then what is the 

value of c. 

Let ( )     nn

nx t t   , what is the norm of ( )nx t  

  
 ( ) max ( ) ,   [0,1] 1nx t x t t    

Using operator 1( ) n

nTx t nt   

define the norm  1( ) max 1n

nTx t nt    

    1( ) max(| |: [0,1]) .1n

nTx t nt t n n     

    

,    n
1

n

n

Tx n
c

x
    

As n had no bound so, there does not exist any c such that 
n

Tx
c

x
 hold. 

Now c is fixed number which does not depend upon N but in this case it depends on N, if we 

take c as n then next value n+1 will not satisfy this equation. It means that there does not exist 

any c that this condition 
n

Tx
c

x
 holdhence derivative operative is not bounded. 

Integral Operator 

Defined as : [0,1] [0,1]T C C  ,  
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   y=Tx  

1

0

( ) ( , ) ( )y t k t x d     

k is integral of T it is fix for different integral operator,  

T is linear as integration is linear, also derivation is a linear operator same as integral is linear 

operator. 

K is continuous on J J . We have two variables   t and   , ( ,  )k t   

Whatever the value of k is, it should be in the square 

( ,  )k t  is bounded. And if it is bounded then 

( ,  ) ,   ,ok t k t J J    ,  ok   where J J is this square box. 

( ) max ( )
t J

x t x t x


    

Now example, 

1

0

max ( , ) ( )
t J

y Tx k t x d  


    

 

1

0

max ( , ) ( )
t J

k t x d  


   

 ok x  

oTx k x it has   ok and k is fix so integral operator is a linear operator. 

Module No. 63 

Examples Bounded Linear Operators 

  Matrix 

Identity operator: 

   : n rT R R   

   

1 111 1

1

.

. . . . .

.

         1   1

              x    =   y

n

r rn n n

xa a

a a x

r n n r

A





    
    


    
         

    

The entries are  ( )  ,     ( )j jx y    

And the matrix is ( ),      1 i ,    1 jijA r n      

0 1 

1 
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   1

n

j jk

k

k  


  

T is linear because the properties of matrices is it bounded? 

   

1

2
2

1

          ,    
n

n

m

m

x x


 
  
 
    

and   

1

2
2

1

          ,    y
r

n

j

j

y 


 
  
 
 

 

for bounded we have to check norm of T “T(x)”.

 

   

1

2
2

1

2 2

1

2

2

1 1

   

j

j

r

j

r

j

r n

jk k

j k

Tx

Tx

Tx





 





 

 
  
 



 
  

 





 

 

Where 
1

n

j jk k

k

  


  

Cauchy Schwaz inequality on above 
2

Tx  

   

2
1 1

2 2 22 2 2

1 1 1 1 1
m

r n n r n

jk jk

j k m j k

x  
    

 
                 

 

     

   

2 22Tx c x    

Here is a c which depends upon T. 

We can write as 

   
Tx c x  

T is already linear and with this value of c we can say matrices is a linear bounded operator.in 

last four examples three are linear operator but differential was not linear operator.  
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Don’t look for someone who can solve your problems, 

Instead go and stand in front of the mirror, 

Look straight into your eyes, 

And you will see the best person who can solve your problems! 

Always trust yourself. 

 

 

 

(BY ABU SULTAN) 
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Module No. 60 

Linear Operators 

 Bounded Linear Operator 

Norms spaces are generalization of distances. By using Norm spaces we are going to discuss 

Bounded Linear Operator.  

Bounded Linear Operator (Definition): 
 Let X and Y be normed spaces and : ( )T D T Y a linear operator, where ( )D T X . 

The operator T is said to be bounded if there is a real number c such that for all ( ).x D T   

Tx c x  

 If this condition satisfied then we call T to be a bounded linear operator. Bounded 

function mean range is bounded but here bounded set is mapping over a bounded set so we 

call this a bounded linear operator. c is fix. 

     ,       ( ) -{0}
Tx

c x D T
x

   

The smallest possible value of c is supremum of left hand side. Then the value of c is called  

( ),
0

sup
x D T
x

Tx
c

x


   as

 

 

We call the value as T norm  

 
c T  

If ( ) {0},    0D T T   

( ),
0

sup
x D T
x

Tx
c T

x


   

Tx T x  

This is the formula that we use for bounded linear operator. 

Module No. 61 

Bounded Linear Operators 

 Lemma (Norm) 

First we define the norm (equivalent definition) and then prove that the norm defined on T 

satisfies all four properties of Norm i.e. (N1) to (N4). 

Lemma (Statement): 
Let T be a bounded linear operator as defined before then an alternate formula for the norm of 

T is 

( )
1

sup
x D T
x

T Tx



  

The norm defined on T satisfies (N1) to (N4). 

Proof: Part (a) 

Tx c x  
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( ), ( )
0 1

sup sup
x D T x D T
x x

Tx
c T Tx

x 
 

  

 
We have to prove 

( ), ( )
0 1

sup sup
x D T x D T
x x

Tx
Tx

x 
 

  

Let ;    set  y=   ,  x 0,
x

x a
a

   

1
x

y
a

   

( ),
0

sup
x D T
x

Tx
T

a


  

as T is linear so, we take constant a inside the norm 

   
( ), ( ),

0 1

1
sup sup

x D T y D T
x y

T T x Ty
a 

 

 
  

 
  

as
1

y
a
  

Here variable is y which can be any other. Part (a) of lemma is proved. 

Part (b): 

( ), ( ),
0 1

sup sup
x D T x D T
x x

Tx
T Tx

x 
 

   

N1: 0T   is obvious. 

N2: 0       T=0,T    

 0       0,       ( )  0T Tx x D T T        

N3: 
( ), 1 1

1

sup sup sup
x D T x x
x

T Tx Tx Tx T    
  


     as 
1

sup
x

Tx T


  

N4: 1 2 1 2T T T T    

  

1 2 1 2
( )

1

1 2 1 2
1 1

1 2 1 2
1 1

sup ( )

             sup sup

             sup sup

x D T
x

x x

x x

T T T T x

T x T x T x T x

T x T x T T




 

 

  

   

   

 

First we define a T T norm and then prove the four properties of norm. 

Module No. 62 

Examples Bounded Linear Operators 

 Identity Operator 

 Zero Operator 

 Differentiation Operator 

 Integral Operator 
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Identity operator: 

 :I X X    xI x  { {0} normed space}x   

  
( ), ( ),

0 0

sup sup                    
x D T x D T
x x

Tx x
I as Tx x

x x 
 

    

  
( ),

0

sup 1 1
x D T
x

I



   

Zero operator: 

The norm space :O X Y  ,    0xO    x X  

  
( ),

0

sup 0   , 0 0
x D T
x

Tx
O

x


    

Differentiation operator: 
This is defined on normed space of all polynomial on J=[0, 1] 

   
 max ( ) ,   x x t t J   

Value of t varies from 0 to 1 and where the value is maximum, that maximum value is norm 

of x. 

applying operator the derivative. Differentiation operator is. 

   ( ) ( )Tx t x t  

Derivation is itself a linear operator. 

Now we check that it is bounded or not. ( ) ( )Tx t c x t   . If it is bounded then what is the 

value of c. 

Let ( )     nn

nx t t   , what is the norm of ( )nx t  

  
 ( ) max ( ) ,   [0,1] 1nx t x t t    

Using operator 1( ) n

nTx t nt   

define the norm  1( ) max 1n

nTx t nt    

    1( ) max(| |: [0,1]) .1n

nTx t nt t n n     

    

,    n
1

n

n

Tx n
c

x
    

As n had no bound so, there does not exist any c such that 
n

Tx
c

x
 hold. 

Now c is fixed number which does not depend upon N but in this case it depends on N, if we 

take c as n then next value n+1 will not satisfy this equation. It means that there does not exist 

any c that this condition 
n

Tx
c

x
 holdhence derivative operative is not bounded. 

Integral Operator 
Defined as : [0,1] [0,1]T C C  ,  

   y=Tx  
1

0

( ) ( , ) ( )y t k t x d     

k is integral of T it is fix for different integral operator,  
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T is linear as integration is linear, also derivation is a linear operator same as integral is linear 

operator. 

K is continuous on J J . We have two variables   t and   , ( ,  )k t   

Whatever the value of k is, it should be in the square 

( ,  )k t  is bounded. And if it is bounded then 

( ,  ) ,   ,ok t k t J J    ,  ok   where J J is this square box. 

( ) max ( )
t J

x t x t x


    

Now example, 

1

0

max ( , ) ( )
t J

y Tx k t x d  


    

 
1

0

max ( , ) ( )
t J

k t x d  


   

 ok x  

oTx k x it has   ok and k is fix so integral operator is a linear operator. 

Module No. 63 

Examples Bounded Linear Operators 

  Matrix 

Identity operator: 

   : n rT R R   

   

1 111 1

1

.

. . . . .

.

         1   1

              x    =   y

n

r rn n n

xa a

a a x

r n n r

A





    
    


    
         

    

The entries are  ( )  ,     ( )j jx y    

And the matrix is ( ),      1 i ,    1 jijA r n      

   1

n

j jk

k

k  


  

T is linear because the properties of matrices is it bounded? 

   

1

2
2

1

          ,    
n

n

m

m

x x


 
  
 
    

and   

1

2
2

1

          ,    y
r

n

j

j

y 


 
  
 
 

 

for bounded we have to check norm of T “T(x)”.

 

0 1 

1 
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1

2
2

1

2 2

1

2

2

1 1

   

j

j

r

j

r

j

r n

jk k

j k

Tx

Tx

Tx





 





 

 
  
 



 
  

 





 

 

Where 
1

n

j jk k

k

  


  

Cauchy Schwaz inequality on above 
2

Tx  

   

2
1 1

2 2 22 2 2

1 1 1 1 1
m

r n n r n

jk jk

j k m j k

x  
    

 
                 

 

     

   

2 22Tx c x    

Here is a c which depends upon T. 

We can write as 

   
Tx c x  

T is already linear and with this value of c we can say matrices is a linear bounded operator.in 

last four examples three are linear operator but differential was not linear operator. 

Module No. 71 

Linear Function (Examples):  

 Space [   b]C a  

 Space 
2l  

Space [   b]C a : 

 We have  define a linear function on space [   b]C a that we have fixed an element ot

from the set J as ot J . Now  define a functional operator f(x) which is operating on x which 

is element from [   b]C a . [   b]x C a  

This x is not a variable, it is a function. So 1f which is defined on [   b]C a linear as it is a 

linear operator. 1f is bounded.  To find the norm 

 

1

1

( )

1     1..........

f x b x

x f i

 

  
 

 

If we take 0 1x  and substitute in this equation we get 

   

 

From i) and ii) 

 1 1f   

So the function defined on C is linear, bounded and Norm is 1. 

1 1

1 1

( ) .

1 .1      1...........(

of x f x

f f ii



  



MTH 641 Functional Analysis – by ABU SULTAN 

 

7 

Space 
2l  

We choose  a fix say  
2( )ja a l   

 
1

( ) j j

j

f x a




  2x l , ( )jx   

This sequence is linear, converging and bounded. 

For boundedness 

 
2 2

1 1 1 1

( ) .j j j j j j

j j j j

f x a a a x a  
   

   

        

It is the same definition of bounded. 

M of a complete metric space X is itself complete if and only if the set M is closed in X. 

 

Module No. 72 

Linear Function:  

 Algebraic Dual Space 

 Second Algebraic Dual Space 

 Canonical Mapping 
Algebraic Dual Space 
Set of all linear function defined on a vector space X is itself a vector space and called 

Algebraic Dual Space and denoted by X   

 

Operation on this vector space are 

1
st
 Operation Sum 

  1 2f f   1 2,f f linear functional 

   1 2 1 2( ) ( )    f f x f x f x x X     

2
nd

 Operation Scalar Multiplication 

   ( )af x af x  

Second Algebraic Dual Space X   
Space element Vector at a point 

X x X   

X   g f (x) 

X    G g(x) 

For each ,x g X   
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Conical Mapping: 

:C X X  this mapping is called canonical mapping of X into X  defined as  

xx g .  

( )( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

x y

x y

C x y f g f

f x y f x f y g f g f

Cx f Cy f

  

     

 





 

     

 

 

So, this is a linear function as well. Canonical mapping is a relation between X and X  . 

Module No. 73 

Linear Function:  

 Algebraically Reflexive 

 Second Algebraic Dual Space 

 Canonical Mapping 
Isomorphism: 
It is one-one and onto map. 

Algebraically Reflexive: 

: ( , ) ( , )T X d X d  bijective 

( , ) ( , )x yd T T d x y  

:C X X  xx g .  

If C is surjective (on b) bijection. ( )C X    

We call X to be algebraically reflexive. 

Set of all linear function defined on a vector space X is itself a vector space and called 

 

 



MTH 641 Functional Analysis – by ABU SULTAN 

 

9 

Module No. 74 

Linear Operators and functional on finite 

Dimensional Spaces: 

Finite dimensions mean basis which have finite many elements.  

 Let X and Y bef.gfinite dimension vector spaces over the same field. 

Let :T X Y  be a linear operator. let 1{ ,.........., }nE e e be the basis for X and 

1{ ,.........., }nB b b be the basis for Y.  

1 1 2 2,          x= ............. n nx X e e e       

    
1 1 1

=
n n n

k k k k k k

k k k

y Tx T e T e T e  
  

 
   

 
    

T is uniquely determinal if the image k ky Te of n basis vectors 1,.........., ne e are prescribed. 

 y=Tx  ; 1  { ,.........., }ny Y b b  

 1 1 2 2y= ............. r rb b b      

 1 11 1 12 2 1,          Te = .............k r rTe Y b b b       

 

1

1 1 1 1

y=

r

k kj j

j

r n n r

j j k k k kj j

j k k j

Te b

b Te b



   



   



 



   
 

Comibinig these two summation 

 

1 1

1

r n

kj k j

j k

n

j kj k

k

y b 

  

 



 
  

 



 



 

The image y=Tx= j jb of 
k kx Te can be obtained from 

 1

n

j kj k

k

  


  

Module No. 75 

Operators on finite Dimensional Spaces: 

Remarks: 

As in the case of linear operators on a finite dimensional normed space, every linear 

functional defined on a finite dimensional normed space is bounded and hence continuous. 

Since for linear funcionals range is either  or   , which are complete. So X   as the space 

of all bounded linear functionals defined on X, is also complete and hence is Banach space. 

This is true even if X is not a Banach space. 

“Algebraic Dual Space of X”: set of all linear funcionals defined on X. 

“Dual or Conjugate Space of X”: X   set of all continuous or bounded linear functionals 

defined on X. 

We take algebraic dual when there is no condition of continuous or bounded linear 

functions. 
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Theorem: 

Let X be an n-dimensional vector space and X be its dual space. Then  

   dim dim .X X n    

X  is collection of linear functions or linear operator while X may be any space. 

Proof: 

 Let dim .X n  

Let basis of X be 1 2{ ,..............., }B e e  

We define a function. 

   1

1                      

0                      :  , 1,..........,
j

if i j
f e

if i j i j n


 

 
 

 e.g. j=1 ,                 1 2 31, 0, 0,......................, 0nf e f e f e f e     

       j=2 ,        1 2 30, 1, 0,......................, 0nf e f e f e f e     

but each n-tuples jf  in this case can be extended as linear functions on X. 

 

Module No. 76 

Operators on Finite Dimensional Spaces:  
Lemma(Zero Vector): 
Let X be a finite deimensional vector space.  If 0x X has the property that 0( ) 0f x   

for all f X    then 0 0x  . 

B is the basis of X   

1 2{ , ,......., }

1       
( )

0       

               

n

j i

ij

f f f

i j
f e

i j




  





 

Proof: 

For all 0 0x  , 

 

0

1

0

1 1

1

j

0 0

1

   ;   f X     ,  

  f(x ) 0        0

   0     ,    j=1,......,n

   x 0   ,    j=1,........,n

0          

n

i i

i

n n

i i

i i

n

i i

i

n

i i

i

x x e

f x e

x f e

x x e x 





 





 

 
   

 

 

  

   



 





 

Module No. 77 

Operators on Finite Dimensional Spaces:  
Theorem(Reflexivity): 
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A normed space X is said to algebraically reflexive if there is an isometric isomorphism 

between X and X . 

Ordinarily a normed spacer may not be reflexive. 

If X is an incomplete normed space even then X and X  are Banach spaces. So in this case 

X cannot be a reflexive space.  

However there are Banach spaces which are not reflexive. 

Theorem: 
A finite dimensional vector space is reflexive.  

Equivalently, A finite dimensional normed space is isomorphic space is isomorphic to its 

second dual. 
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x+g

( x+ ) (x) ( )

y x yg g

y y

   

    

 

 
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( )           

                  

R X is onto

X X X reflexive

 






 

Module No. 78 

Linear Transformation:  
Q No.1: 
Find the null space of 3 2:T   represented by  

1 3 2
  

2 1 0

 
 
   
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1

1 2 3

2

1 2

3

3 21 3 2

22 1 0

         2 3    3 1              2 1

x
x x x

x
x x

x

 
     

            

  

 

What is meant by null space, it means we have to find those values of 3x say 

1 2 3( , , )x x x x  such that we operate T the answer is zeros as 

All those x are element of null space. 

1 2 3

1 2

3 2 0

2 0

x x x

x x

    
       

 

Also we can also say that  

1 2 3

1 2

3 2 0

2 0

x x x

x x

  

  
 

We can solve it by using any linear algebra method that will give us solution like echelon 

form or reduced echelon form and the base of that solution is called basis of null space. Basis 

mean when apply the element of 3 the answer should be zero and get a system of linear 

equation. Find the solution of this system of linear equation. And after finding the solution 

find the basis that basis are basis of null space. 

Example. 

Q.NO2 

Find the null space of 3 3:T   defined by 1 2 3 1 2 1 2( , , ) ( , , )          

1) Basis of ( )T  

2) Basis of N(T) 

3) Matrix representation. 

Module No.79 

Exercises 

Dual Basis 

Example 1: 

a): Find the dual basis of X when basis of X are {(1, 1,3),(0,1, 1),(0,3, 2)},B      

Find 
* *?, ?B X  do it yourself 

b): let 1 2 3{ , , }f f f be basis of dual space for X and if X is given by 

 1 2 3(1,1,1),   (1,1, 1),   (1, 1,1)e e e      

Find 1 2 3( ), ( ), ( )  (0,1,0)f x f x f x when x   

 

Module No.80 

Normed Spaces of Operators 

 Examples of Dual Spaces 

 n  

Isometric Isomorphism 
A linear operator : .X Y  ,X Y normed spaces, is said to be Isometric Isomorphism if  
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 isbijective. 

 preserve norms. 

That is for any  

,  ( )x X x x  is 

Module No.81 

Examples Spaces of Operators 

 Examples of Dual Spaces 

 1l  

Space 
1l  

The dual space of  nl  is l means that it is bijective, it is linear and it preserve norm. 

After defining the map we shall prove these properties one by one. 

Proof: 

 

 

 

Module No.82 

Bounded Linear Operators 

Quiz:  Complete norm spaces are called Banach spaces. 

Theroem 

LetB(X, Y) be the set of all bounded linear operators form a normed space X to a normed 

space Y. 

If Y is a Banach space, then B(X, Y) is also a Banach. 

Proof: 

Let  nT  be an arbitrary Cauchy seq. in B(X,Y). 

We will show that  nT converges to an operator T in B(X, Y).Since nT is Cauchy for every 

0         N    such that             (m,n>N)n mT T    

For all x X  and (m,n>N) we have 

  
 ( ) ( ) ( )

 

n m n m

n m

T x T x T T x

T T x x

  

  
 

Thus for a fixed x and given   
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Hence B(X, Y) is complete and Banach space. 

 

Module No.83 

Finite Hilbert Spaces 

Functional analysis  course consist of three major parts parts 

1. Metric space is set and we define a space on it that has a certain properties. If it is 

completer then it is complete space means it  should converge within the space 

2. Normed Spaces: Norm is a vector space and we define a norm on vector space. Norm 

is a generalization of distance function. 

3. Finite Hilbert Spaces (Inner Product Space) 

Hilbert Space 

Quiz: Complete inner product space is called a Hilbert Space. 

In inner product the generalization is dot product. 

Inner product Space 

Let V be a vector space over a field F where Fis  or    . 

An inner product in V is a function , :V V F      satisfying the following conditions: 

Quiz: 

Let , ,    ;   Fx y z V   where   may be real or complex. 

i. , 0;    , 0     0x x x x x       

ii. , ,   ; but not true for second value as  , ,x y x y x y x y            

iii. , , ,x y z x z y z        

iv. , ,x y y x     

, :V V F     inner product. 

Inner Product Space 

The pair ( , , )V    is called an inner product space. 

a): ,            , ,  ,   ,ax by z where x y z V a b F      
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Using (iii) property  , , ,ax by z ax z by z        

Using (ii) property  , ,a x z b y z      

   0, 0. , 0 , 0z x z x z      

b): Quiz:   

for all  ,  ,   x y V a F   

  

, , ,

, ,

x ay ay x a y x

a y x a x y

      

     
 

Module No.84 

Cauchy Schwarz Inequality 

Theorem: 

For any two elements x,y is an inner product space V, 

, .x y x y     , the define norm is ,     ,   x,y Vx x x     

Proof: 

If x=y=0  then 0=0 

Let at least one of x and y is not equal to zero 

Let  , 0x y x y       by definition 

 
, ,

, ,

x x y y x y

x x y y y x y

  

 

      

      
 

Module No.85 

Norm on Inner Product space 

Theorem: 

In an inner product space V, the function  . :V   given by  

  ,x x y  
 , 

x V  defines a norm in V. 

Proof: 

N1: 0x   

 For a  x V , , 0      as  , 0x x x x x       

N2:  

 
0x       , 0      , 0      0x x x x x         

N3: x x   

now 
2

,       ,x x x x x x            

  
2 2 2

,x x x x      

N4:      x, y Vx y x y      
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Now 

2

2 2

2 2

2 2

,

, ,

, ,

, , , ,

, , , ,

, , , ,

2Re ,                   Re(z)

2 ,

2               ,

x y x y x y

x x y y x y

x y x x y y

x x y x x y y y

x x y x x y y y

x x x y x y y y

x x y y z

x x y y

x x y y x

    

      

       

           

           

        

     

    

   





 
2

2

  y x y

x y

x y x y

 

 

  

 

Module No.86 

Parallelogram Law 

 
 2 2 2 2

2AC BD AB BC     Quiz 

Theorem: 

   2 2 2 2
2       for all x,y Vx y x y x y       

Proof: 

   

2

2 2

,

, , , ,

2Re ,          ....(i

x y x y x y

x x x y x y y y

x x y y

    

        

    

 

 

Replace y=-y 

   

2

2 2

,

, , , ,

2Re ,           .....(ii

x y x y x y

x x x y x y y y

x x y y

    

        

    

 

Adding (i and (ii 

   
2 2 2 2

2 2x y x y x y      

That we have to prove. 

Special Case: 

 Another result from above equations is 

Subtracting (ii from (i 

   
2 2

4Re ,x y x y x y       

If V is a real inner product space  

Re(z)=z or Re<x,y>=<x,y> 

    2 21
,

4
x y x y x y    

 

A 

D 

B 

C 
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The above form is when V is a real inner product space not complex space. 

Module No.87 

 Polarization Identity 

 Appolonius Identity 

Polarization Identity 
For any x, y in complex inner product space 

 2 2 2 21
,

4
x y x y x y i x iy i x iy          

We have to prove this complex inner product space. 

Proof: 

Let ,x y V  

   

2

2 2

2 2

2 2

,

2Re ,

, ,

, ,                      .......(i

x y x y x y

x x y y

x x y x y y

x x y y x y

    

    

     

       

 

If we replace y=-y 

  

2 2 2

2 2

, ,

, ,

x y x x y y x y

x x y y x y

           

       
……………….(ii 

Replace y iy  in eq(i 

  

 
2 2 2

2 2 2 2

2 2

, ,

, ,              , , ,      

, ,                                                    ......(iii

x iy x x iy iy x iy

x i x y i y x y iy iy iy ii y y i y y

x i x y i y x y

        

              

       

  

Replace y iy   in eq(i 

   

2 2 2

2 2

, ,

, ,              ......(iv

x iy x x iy iy x iy

x i x y i y x y

           

       
 

Subtracting (ii from (i 

   
2 2

4Re ,x y x y x y            …….(v 

Subtracting (iv from (iii 

   

 

   

2 2
2 , ,

2 , , 2 , ,

2 (2 ) Im , 4Im ,                .....(vi

x iy x iy i y x i x y

i x y y x i x y x y

i i x y x y

        

            

     

 

Now we solve 4Re , 4Im ,x y x y      

 

  
 

2 2 2 2
4 ,x y x y i x y i x y x y           

Appolonius Identity 
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  
2

2 2 21 1
2  ,   , ,

2 2
z x z y x y z x y x y z V          

Using parallelogram law 

 

2 2 2 2
2 2    put       x = z-x,  y =z-y  x y x y x y             

Self-assignment 

Module No.88 

 Space 0,
2

C
 

 
 

 

 Space 
pl  

Counter example 1:  Space 0,
2

C
 

 
 

 

Inner product define a norm and under this norm  

Every inner product space is a norm space. 

Every norm space is not an inner product space. This is not true always. 

If a space is inner product then it satisfied the parallelogram law otherwise it is not an inner 

product space. 

We take a norm and built an inner product space and then prove that this inner product space 

does not satisfy the parallelogram law. 

The given set is 0,
2

C
 

 
 

real valued continuous function defined on C[a, b]. 

The norm of function 0,
2

f C
 

  
 

,  is 

 
0,

2

( )          ,   
x

f Sup f x
 

 
 

  

Let , 0,  ;   ( ) sin ,    ( ) cos   
2

f g C f t t g t t
 

   
 

 

We know that sin and cos are continuous functions. Let 0,
2

C
 

 
 

is an inner product space 

where the inner product ,   define by  

  
2

,        ,f f f f f f     
 

  
0,

2

( )
x

f Sup f x
 

 
 

  

  

2 2 2 2
2 2    f g f g f g    

 
As ( ) sin ,    ( ) cosf t t g t t   

 

  
0,

2

sin( ) =1=
x

f Sup x g
 

 
 


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0,
2

0,
2

( ) ( )

            = sin cos 2

x

x

f g Sup f x g x

Sup x x





 
 
 

 
 
 

  

 
 

 1f g   

Now  

  
 

2 2 2 2

2
2 2 2

2 2

2 (1) 2 1 2 1

2 1 2 2

3 4

f g f g f g    

    

  



 

But 3 4 so our supposition is wrong. This inner product space does not satisfied 

parallelogram law. Hence every norm space is not inner product space. 

 

Counter example2:   Space pl  
pl Collection of all bounded sequences,  

1, 2P P  if p=2 then it will give inner product space 

    
1

,    
p

p
i i

i

x x x




   

We will see that 
2

,x x x   is an inner product space or not. We will check this if it 

satisfied the parallelogram or not. 

Let  

  (1,1,0,0,.........)  ;  (1,-1,0,0,...........)x y   

  

1

1 1 0 0 .... 2 2
p pp p px         

  

1

1 ( 1) 0 0 .... 2 2
pp pp py          

  

1

(2,0,0,0,.....)        2 2 2
p

p p px y x y


        

  

1

(0,2,0,0,.....)        2 2 2
p

p p px y x y


        

  

2 2 2 2

1 1

2 2

2

2 2

2 +2 =2 2 +2 2

8=4 2    as p>1, p 2

p p

p

x y x y x y    

 

 

 

The values on both sides are also not equal so this does not satisfied the parallelogram law. 

Contradict to our supposition. So norm space is not an inner product space. 
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Module No.90 

 Theorem (Continuity of Inner Product) 

Theorem: 

Let V be any inner product space. For any sequences     and n nx y in V  

   ,    y   n nx x y  implies , y   , yn nx x      

Proof: 

   

, y , y

, y , y , y , y

, y , y

, y , y

n n

n n n n

n n n

n n n

x x

x x x x

x y x x

x y x x

    

           

       

       

 

Now from Cauchy Swarzinequality 

   ,x y x y
 

   n n nx y y x x y     

Given that   ,    y   n nx x y  so, 

   0   ,   0   as nn ny y y y x x x x          

As n  

   
, , 0

, ,    as  n

n n

n n

x y x y

x y x y

     

   
 

 

Theorem: 

If     and n nx y are Cauchy sequences in V, then the inner product ,n nx y  is a Cauchy 

sequence in F. 

Proof: 

    ,n nx y are Cauchy sequence 

To show ,n nx y  is also Cauchy Sequence. 

   0       ;       0,   m,nn m n mx x y y      

  , , = , , , ,n n m m n n n m n m m mx y x y x y x y x y x y                 

  

, ,

, ,

n n m n m m

n n m n m m

n n m n m m

x y y x x y

x y y x x y

x y y x x y

       

       

   

 

   , , 0,  as   n,mn n m mx y x y        

   ,n nx y  is a Cauchy Sequence 

Module No.91 

Examples of Inner product spaces 

 Space 
n  

 Space 
n  
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 Space [ , ]a b  

 Space
nl  

 Space nP (Collection of all polynomials of degree n) 

Proof: 

1. 
n , the elements are of the form 

  1 2 1 2( , ,......... )  ;  ( , ,......... )n nx x x x y y y y   

The inner product form is  
1

,
n

i i

i

x y x y


   (Note: check all axiom self-assignment) 

The Norm is 2

1 1

,
n n

i i i

i i

x x x x x x
 

       

2.  n  

 The elements are 1 2 1 2( , ,........, )  ;  ( , ,........., )n nz z z z z z z z      if conjugate does 

not define then it does not satisfied the second or third axiom of inner product space. 

The inner product form is  
1

,
n

ii

i

z z z z


   (Note: check all axiom self-assignment) 

3. [ , ]a b be the space of all continuous  function defined on [a, b]. 

  , ( ). ( )

b

a

f g f t g t dt  
 

define an inner product on C[a, b]

 

(Note: complex function can also be including. In previous example the C[a, b] was not inner 

product space with define function definition).

 

  , :V V F      

We will check all four properties of inner product as 

i): , 0        0f f f     

ii): , , ,f g h f h g h        

iii): , ,f g f g      

iv): , ,g f f g     

it define inner product and is define inner product space. 

 

4. nl is a space of sequences. 

   
 2 : il x x

 
The condition or norm is  

   
2

1

i

i

x




   

Let defined the inner product of  iy y is 

  
1

, i i

i

x y x y




   

Checd all four axioms as exercise for inner product. 
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5. nP  

Let nP be the collection of all polynomial of degree n(or less than n). 

We can write this as 1 2

1 1......     e.g 3x 2 1n n

n na x a x a x a x

       of degree two. 

Let ( ), ( ) nu x v x P  

The inner product is  

  ( ), ( ) ( ) ( )     ,   [ , ]
b

a
u x v x u x v x dx x a b    

with this define nP   is an inner product space. 

We have not defined conjugate of v(x) as the interval defined is a real valued so its conjugate 

is also real valued. 

Module No.92 

Orthogonal Systems 

 Pythagorean Theorem 
The dot product of two vectors when they are perpendicular is zero. Similarly in inner 

product if two vectors are perpendicular then their inner product is zero. 

Theorem: 

In an inner product space V and x, y in V if x y  then  

2 2 2
x y x y    

Proof: 

 

2
,

             = , , , ,

x y x y x y

x x x y y x y y

    

          
 

As x and y are perpendicular so , 0, , 0x y y x     

 
2 2 2

, ,x y x x y y x y        

Generalized form: 

  1 2, ,......... nx x x be nonzero vectors in V inner product space such that 

 , 0   ,   i jx x i j    

This system  1 2, ,......... nx x x  is called orthogonal system as all vectors inside it are 

perpendicular to each other. 

The generalized statement is  
2 2 2 2

1 2 1 2......... ......n nx x x x x x        

The idea of proof is  

  

2

1 1 1

1 1

1 1 1

1 1

,

......... , .........

, ......... ..... , .........

,

n n n

i i i

i i i

n n

n n n

n n

i j

i j

x x x

x x x x

x x x x x x

x x

  

 

  

     

         

  

  



 

  
2 2

,    ,   if     , 0 and for   then ,i j i i j i j ix x x i j x x i j x x x         
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2

2

1 1

n n

i i

i i

x x
 

   

Module No.93 

Orthogonal Systems 

 Theorem (Linearly Independence) 

Any sequence { }nx    of non-zero mutually orthogonal vectors in an inner product space V is 

linearly independent. 

Proof: do it yourself 

 

Let 1 2( , ,......... ) nx x x x
be the orthogonal sequence. 

 

Remark: 

If 1, 0  ,   i=1,2,.......,nx x    
0

    , 0
n

i i

i

x x


   

1 1 2 2 1 1

0

, ..... , , ............ , 0
n

i i n n n n

i

a x x a x a x a x x a x x a x x


         
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