
MTH646 Handout 

Page | 1 

 

Join VU Group: https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE  

MTH646 – PARTIAL DIFFERENTIAL EQUATIONS 
 

 
Introduction: 

LECTURE NO. 01 

In Mathematics, a partial differential equation is one of the types of differential equations, in which the 

equation contains unknown multi variables with their partial derivatives. It is a special case of an ordinary 

differential equation. 

Many world related problems in applied sciences, physics and engineering are modeled mathematically 

with partial differential equations. 

In numerical simulation, it is important to find out the exact solutions of partial differential equations but 

unfortunately we do not have appropriate methods to find the exact analytical solution of many types of 

partial differential equations. In this situation we utilize different approximations and other techniques to 

solve the problem numerically. There are several numerical methods are available in literature that help us 

to understand the mechanism and complexity of the differential problems. 

Definition Partial Derivative: 

Let 𝑢 be a function of independent variables 𝑥, 𝑦, 𝑧 𝑎𝑛𝑑 𝑡 i.e. 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡). The partial derivative of 𝑢 
6𝑢 

w.r.t 𝑥 is denoted by 
6𝑥 

or 𝑢𝑥 and defined as 

u 
 Lim 

u(x  x, y, z, t)  u(x, y, z, t) 
  

x x0 x 

Provided that above limit exists. 

Similarly, partial derivative of 𝑢 w.r.t to 𝑦 𝑎𝑛𝑑 𝑧 can be defined, 

u 
 Lim 

u(x, y  y, z, t)  u(x, y, z, t) 
  

y y0 y 

u 
 Lim 

u(x, y, z  z, t)  u(x, y, z, t) 
  

Example: z z0 z 

Suppose 𝑢 is a function of more than one variable such that, 

u(x, y, z)  x cos z  x
2 y2e

z
 

u 
 cos z  2xy2e

z
 

x 
u 

 0  x
22 ye

z  2 yx2e
z
 

y 

u 
 x(sinz)  x

2 y2e
z
 

z 
Partial Differential Equations: 

A partial differential equation (PDE) is a relationship between an unknown function of several variables and 

its partial derivatives. Let 𝑢(𝑥, 𝑡) is unknown function and x and t are independent variables, then we 

usually write, 𝑢 = 𝑢(𝑥, 𝑡) and we say that u is dependent variable. 

Examples: 

Heat Equation 

Wave Equation 

Laplace Equation 

PDE involves two or more independent variables. In this example, 𝑥 and 𝑡 are independent variables. 

Order of PDE: 

The order of a PDE is the order of the highest derivative that occurs in the equation. 
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    

 
u 

  

 

  

 

Examples:  
u  u 

1st order 1)  
t 

 
x 

 0, order  order PDE 

nd 2u 
 

 

u 1/ 2 

 
 2 order 2)  (1 )  , 

x2 y 
order  order PDE 

4th order 

Degree of a PDE: 

4

u 
3)   

x4
 

2u 

t 2 
u   0, order 



order PDE 

A PDE is the degree of the highest order derivative which occurs in it after the equation has been 

rationalized. Examples: 

1) 𝐷𝑒𝑔𝑟𝑒𝑒 = 1 1)  
u 


t 

2u 
c( 
x2 

), 

 

 

Squaring, 

2) 𝐷𝑒𝑔𝑟𝑒𝑒 = 2 
 
 
 

𝐷𝑒𝑔𝑟𝑒𝑒 = 2 

2u 3 
2) ( 

x2 
) 

3) 
 

Squaring, 

u 

 ( 
u 

)  u  0, 
x 

3u 
y 
x3 

, 

 
3u 

1 ( )2  y2 ( )2 , 
  

Dimension of PDE: 
x x3 

The dimension of a PDE is the number of independent variables taken in space direction in the partial 

differential equation. Examples: 

1) 
u 
t 

2 

c , dim 
x2 

or 𝑑i𝑚 = 1 𝑜𝑟 1𝐷 
2u 2u 

2)   
x2  

 
y2  

 0, dim  or𝑑i𝑚  = 2 𝑜𝑟 2𝐷 
2u 2u 2u 

3)  
x2 y2 z2 

 0, dim  or𝑑i𝑚 = 3 𝑜𝑟 3𝐷 
 

Linear and non-linear partial differential equation: 

If the dependent variable and all its partial derivatives occur linearly in any PDE then such an equation is 

called linear PDE otherwise a nonlinear PDE. 

Examples: 1) (x
2  y2) 

u
 

t 

2u 

xy 
3u 0

 

 

2) 
ux 

2u 

x2 

 
 u

2xy
2u 

 

 

xy 

 
 uy

2u 

y2 
 (
u 

)
2

 

x 

 (
u 

)
2

 

y 

 
 u

3  0 

2u 
3) 

x2
 

2u   2 
( 
xy 

)
 

2u 

y2 x 
2  y2 

Eq. (1) is linear but Eqs. (2) and (3) are non-linear partial differential equations. 

 
LECTURE NO. 02 

Homogeneous and non-homogeneous PDEs: 

If all the terms of a PDE contain the dependent variable or its partial derivatives then such a PDE is called 

homogeneous or non-homogeneous otherwise. Examples: 

1) (x
2  y2) 

u
 

t 

2u 

xy 
3u 0

 

 
2) ux 

2u 

x2 

 
 u

2xy
2u 

 

 

xy 

 
 uy

2u 

y2 

 (
u 

)
2

 

x 

 (
u 

)
2

 

y 

 
 u

3  0 

2u 
3) 

x2
 

2u   2 
( 
xy 

)
 

2u 

y2 x 
2  y2 

Eqs. (1) and (2) are homogeneous while Eq.(3) is non-homogeneous partial differential equations. 

General Solutions of PDE: 

A solution of a PDE is any function which satisfies the equation. A general solution of a PDE is a solution 

which contains the number of arbitrary independent functions equal to the order of the equation. 

1 ( 
u 

)2 
x 






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Example: The solution of the second order PDE 

2u 
 

 

xx 

 

 2x  y is 

u  x2 y  
1 

xy2  F (x)  G( y) 
2 

Here 𝐹(𝑥) and 𝐺(𝑦) are arbitrary independent functions, it is a general solution. 

Particular Solution of PDE: 

A particular solution is one which can be obtained from general solution by particular choice of arbitrary 

function. Example: 
 
 
 
 
 
 

Auxiliary Conditions: 

In particular, F (x)  2 sin x, G(x)  3y4  5, then we have 

u  x2 y  
1 

xy2  F (x)  G(x) 
2 

u  x2 y  
1 

xy2  2 sin x  3y4  5 
2 

Which is particular solution of the PDE. 

The PDEs that represent physical systems usually have infinite number of solutions. For example: 

The functions u  x
2 
 y

2 
, u  e

x  
cos y, u  log(x

2  
 y

2 
), 

u  sin x.sinh y,... 

are entirely different from each other are solutions of  PDE 


2
u 
 


2
u 



x
2 

y
2 

0
 

To obtain a unique (i.e. single) solution of the PDE corresponding to a given physical problem, one must 

use the additional information (i.e. auxiliary condition) arising from the physical situation. They fall in two 

categories: 

1) Boundary conditions 

2) Initial conditions 

Boundary Conditions: 

These are the conditions that must be satisfied at the points on the boundary S of the region R in which the 

partial differential equation hold. (or a condition that is required to be satisfied at all or part of the 

boundary S of a region R in which a set of differential conditions is to be solved).These are three types of 

boundary condition; 

⚫ Dirichlet condition: u(x, y)  g(x, y) on S 

⚫ Neumann ( or flax) condition: 

6𝑢 

u(x, y) 
 g(x, y) on S 

n 

Where  
 

6𝑛 
normal derivative i.e. a directional derivative taken in the direction normal to some surface. 

⚫ Cauchy (or mixed) condition: 

Initial Conditions: 

(x, y)u(x, y)  (x, y) 
u(x, y) 

 g(x, y) on S 

n 

These are the conditions that must be satisfied throughout the region R at the instant when consideration 

of the physical system begins. When time t is one of the independent variable and we specify a condition 

at 𝑡 = 0, we refer to it an initial condition. 

A typical initial condition is said to be of Cauchy type if the values of both u and 

𝑡 = 0 i.e. the initial values of u and 
6𝑢 

are given. 
6𝑡 

The physical problems associated with PDE may be classified as: 

 Boundary-valued problems (B.V.P) 

 Initial-valued problems (I.V.P) 

 Initial-Boundary-valued problems (I.B.V.P) 

6𝑢 
 

 

6𝑡 
on the boundary at 
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, ) 



Classification of second order Linear PDEs: 

Generally, the PDE for a dependent u and the independent variables x and t, are described in the following 
form, u   u   2u 2u 2u 

F (x, t, u, , , , , , ... )  0 
     

x t x2 xt t 2 

The most common form of second-order linear PDE in two independent variables x and t is given by, 


2
u(x, t) 

A 
x

2
 


2
u(x, t) 

B 
xy 


2
u(x, t) 

C 
y

2
 

 
D 
u(x, t)

x 
 E 

u(x, t) 

y 

 

 
Fu(x, t)  G 

Where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 and 𝐺 are functions of 𝑥 and 𝑡. 

Rewrite the above equation in the following form, 

A(x, t) 
2u  B(x, t) 

2u  C(x, t) 
2u  (x, y, u, 

 


 

x2 xy y2 x t 

By utilizing the short notations for partial derivatives, we have the following, 

A(x, t)uxx  B(x, t)uxy  A(x, t)uyy  (x, y, u, ux , uy ) 

The classification of second order PDEs are based on discriminant Δ by reducing the above equation by 

coordinate transformation to standard format a point (𝑥𝑜, 𝑡𝑜) 
(x , t )  B2 (x , t )  4 A(x , t )C(x , t )... Eq(1) 

If (x0 , t0 )  0, 

If (x0 , t0 )  0, 

If (x0 , t0 )  0, 

Examples: 

0    0 0     0 0     0 0    0 

Then PDE is called hyperbolic, for example, wave equation. 

Then PDE is called parabolic, for example, heat equation. 

Then PDE is called elliptical, for example, Laplace equation. 
 

Classify the following PDEs, 

2u 
1) 
x2

 

2u 
4 
xy 

2u 
4 
y2 

 
u 

 2 
u 

 0 

x y 

Solution : 

Compare the above equation with Eq.(1),We have 

A  1, B  4, C  4, therefore, 

B2  4 AC  (4)2  41 4  0, So the equation is parabolic. 

2) (1 x2 ) 
2u 
 

 

x2 
 (5  2x) 

2u 
 

 

xt 
 (4  x2 ) 

2u 

t 2 
0 

Solution : Here A  (1 x2 ), B  (5  2x2 ), C  (4  x2 ), therefore, 

B2  4 AC  (5  2x)2  4(1 x2 )(4  x2 )  9  0, 

So the equation is hyperbolic. 

3) x 
2 

2u 
 

 

x2 
 (1 y2 ) 

2u 
 

 

y2 
 0,    x  , 1  y  1 

Solution : 

Here A  x2 , B  0, C  (1 y2 ), 

B2  4 AC  0  4 x2 (1 y2 )  4x2 ( y2 1) 

Since for all x between   and  , x2 is positive. 

Also for all y between 1 and 1, y2  1. 

Therefore, B2  4 AC  0. 

So the equation is elliptic. 
 

 

 

Finite Difference Method (FDM): 

LECTURE NO. 03 

Finite difference method (FDM) is utmost common, efficient, frequent and universally applicable method 

for the solution of various types of PDEs. The numerical solutions obtained from FDM are actually the 

values of discrete points in the solution domain which we are called them grid points as shown in Figure 1. 

 

 
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We usually prefer the space between the grid points in both 𝑥 and 𝑦 directions 

should be uniform and grid spacing between the points in x-direction is denoted 

by ∆𝑥 𝑜𝑟 ℎ𝑥. 

Likewise space between the grid points in y-direction is denoted by ∆𝑦 𝑜𝑟 ℎ𝑦. 

One can also be utilized the unequal (non-uniform) grid spacing in both coordinate 

directions but the difference between successive pairs of grid points in each 

direction should be the same. 

If (i, j) represents the coordinates of the grid point P in solution domain as shown in the Figure. Then the 

grid point (i + 1, j) will show its position is immediately to the right of the grid point (i, j) in positive x 

direction and likewise the grid point (i − 1, j) will show its position is immediately to the left of the point 

(i, j) in negative x-direction. Similarly, the grid point (i, j + 1) will move immediately one step up in 

positive y-direction and grid point (i, j − 1) will move immediately one step down in negative y-direction. 

Finite difference approximation techniques are basically applied on as an alternative source of the 

derivatives to find out the approximate solution by converting the desire research problem in the form of 

PDEs into the easily solvable algebraic difference equations. 

Taylor Series Expansion Applied to Finite Difference Method: 

The partial derivatives in PDEs are replaced by the finite difference approximations at each grid point 

which are approximated by then neighboring values utilizing the Taylor’s series expansion. The general 

interpretation of Taylor’s series expansion says that if we know the value of a function and its derivatives 

at some particular point, say (𝑥i, 𝑦j , 𝑡𝑘) then we can easily find the value s of function at its nearby points 

(xi  hx , y j , tk ) and (xi   hx , y j , tk ). 

By Taylor’s series expansions about the point (𝑥i, 𝑦j, 𝑡𝑘), the exact expression for 

f (xi  hx , y j , tk ) and f (xi   hx , y j , tk ). 

Is given as 

And 

 

In particular, ℎ𝑥 if is very small, then (ℎ𝑥)3 and its higher power can be neglected. 

Rewrite the above two questions as; 

And 
 

The above two equations are second order accurate. If terms of order (ℎ𝑥)2 and higher order terms are 

neglected, than the above terms reduced to the following expressions; 

 
And 

 
The above two equations are first order accurate. The truncation error is the amount of quantity by which 

the solution of a PDE fails to satisfy the approximate solution at some grid point. The truncation error can 

be reduced by retaining more terms in the Taylor’s series expansion. 

 

DEDICATED TO UNKNOWN STUDENTS WHO ARE OUR FUTURE HEROES. 

Regards: Virtual Alerts 
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x 

y 

h 

h 

h 

h 

LECTURE NO. 04 

Simple Finite Difference Approximation to a Derivative: 

We will derive some simple finite difference approximation to first and second order derivatives in both x 

and y directions. Solve equations form previous lecture for ƒ𝑥(𝑥i, 𝑦j , 𝑧𝑘) we have, 

f (x , y , t )  f (xi  hx , y j , tk )  fx (xi , y j , tk ) 
 O(h )

 
 

… (1)   (FWD) 
 

And 

x i j     k x 

x 

f (x , y , t )  f (xi , y j , tk )  f (xi  hx , y j , tk ) 
 O(h )

 
 

… (2)   (BWD) 
x i j     k x 

x 

Where 𝑜(ℎ𝑥) is the ’terms of order ℎ𝑥 indicating the order of magnitude of the truncation error. Two 

above equations are identified as first order forward and backward difference. 

Now subtracting eq. 2 from eq. 1, we have the following expression, 

Solving for ƒ𝑥 (𝑥i, 𝑦j, 𝑧𝑘)  

f (x , y , t )  f (xi  hx , y j , tk )  f (xi  hx , y j , tk ) 
 O(h )2 

 

x i j     k 
2(hx ) 

The above expression is the second order central difference approximation. In order to obtain a finite 

difference for the second order partial derivative add Eqs 1 and 2, we get 

Solving for ƒ𝑥𝑥 (𝑥i, 𝑦j, 𝑧𝑘) 

f (x , y , t )  f (xi  hx , y j , tk )  2 f (xi , y j , tk )  f (xi  hx , y j , tk ) 
 O(h )2 

 

xx i j     k 

(h )2 
x

 

The above equation is second order central difference form for the derivative ƒ𝑥𝑥 (𝑥i, 𝑦j, 𝑧𝑘) at some point 

(𝑥i, 𝑦j , 𝑧𝑘). Finite difference approximations for the y-derivatives are obtained in exactly the similar way as 

the results are analogous to the expressions for the x-derivatives. 

f (x , y , t )  f (xi , y j  hy , tk )  f (xi , y j , tk ) 
 O(h )

 
 

Forward Difference 
y i j     k y 

y 

f (x , y , t )  f (xi , y j , tk )  f (xi , y j  hy , tk ) 
 O(h )

 
 

Backward Difference 
y i j     k y 

y 

f (x , y , t )  f (xi , y j  hy , tk )  f (xi , y j  hy , tk ) 
 O(h )

2
 

 

Central Difference of first derivative 
y i j     k 

2(hy ) 

f (x , y , t )  f (xi , y j  hy , tk )  2 f (xi , y j , tk )  f (xi , y j  hy , tk ) 
 O(h )2

 
 

Central Difference of second order 
yy i j     k 

(h )
2 y

 

The second order central difference can also be obtained by utilizing the both forward and backward 
differences as follows: 

Therefore 

 

By using this technique we can also generate a formula for difference approximation for the mixed partial 
derivatives ƒ𝑥𝑥 (𝑥i, 𝑦j, 𝑧𝑘) at some point (𝑥i, 𝑦j, 𝑧𝑘). To find difference approximation for ƒ𝑥𝑦 (𝑥i, 𝑦j, 𝑧𝑘), first 

we apply x-derivative as central difference and after that y-derivative as central difference as follows 

x 

y 
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i,j 

 

 
 

Therefore 
 

 

 

To determine such type of finite difference approximation for the mixed partial derivatives are highly 

effective in solving the many types of PDEs in which mixed partial derivatives are involved. The other 

difference approximations for higher order derivative as well as for mixed partial order derivatives can also 

be derived by utilizing the same procedure. 

 
Stability of FDM: 

LECTURE NO. 05 

The stability of finite difference is connected to the deterioration or growth of the error with the passage 

of time throughout any phase of computing. The schemes will be stable if the computing error does not 

rise with time. 

To find the out the approximation solution of the research problem that governing the PDEs to the exact 

analytical solution it is necessary that our computational domain should be discretized to a finite number 

of grid points (𝑥i, 𝑦j, 𝑡𝑘), where ℎ𝑥 and ℎ𝑦 are the constant gird spacing in 𝑥 and 𝑦 directions and ∆𝑡 is the 

time spacing between the time levels. 

Suppose that 𝑢𝑘 is the approximate solution of the finite difference applied to PDE and exact analytical 
solution of PDE is donated by 𝑈𝑘 , and then 𝑒𝑘 is defined by the following relation 

i,j i,j 

𝑒𝑘  = |𝑢𝑘  − 𝑈𝑘 | 
i,j i,j i,j 

The choice of ∆𝑡 is very important while we are studying the stability of the finite difference method. The 

finite difference scheme applied to PDE can produce acceptable results that grow boundedly for the choice 

of small ∆𝑡 as compared to the results that grow unboundedly. If too large ∆𝑡 is selected, in this case, 

scheme is said to be unstable. 

A finite difference scheme is said to be stable if error do not grown unboundedly with the passage of time 
on each time level 𝑘 

|𝑒𝑘+1| ≤ |𝑒𝑘|, 𝑘 ∈ 𝑁 
The two most commonly used techniques for analyzing the stability of the method are the matrix and the 

Fourier Stability analysis. 

Matrix Stability Analysis: 

The matrix stability analysis applied to finite difference scheme on each grid point of the computational 

domain will result of the following two time levels system of linear equation 

𝐴𝑢𝑘+1 = 𝐵𝑢𝑘 Where 
𝑘+1 

 
 

[  𝑘+1 𝑘+1 𝑘+1 𝑇 𝑘 𝑘 𝑘 
 

 

𝑘 𝑇 

𝑢 = 𝑢2 , 𝑢2 
, … , 𝑢(𝑁−1)] And 𝑢 = [𝑢1 , 𝑢1 , … , 𝑢(𝑁−1)] 

Are the solution vectors at (𝑘 + 1) and 𝑘 time level respectively while 𝐴 and 𝐵 are the (𝑁 − 1) × (𝑁 − 1) 
matrices of known values. If 𝑒 is the error vector of eq. 1 then it must satisfy the equation, therefore 

𝐴𝑒𝑘+1 = 𝐵𝑒𝑘 Or |𝑒𝑘+1| = |𝐴−1𝐵||𝑒𝑘| 

Therefore, the finite difference scheme described in eq. 1 is stable if |𝐴−1𝐵| ≤ 1. The condition described 

in eq. 2 is sufficient condition for a finite difference scheme to be stable. 

Fourier (Von Neumann) Stability Analysis: 

This model is applicable to the linear finite difference PDEs and when spatial domain is periodic. To test 

whether finite difference scheme is stable, then it is sufficient to look its round-off errors or simple say 
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i,j 

i,j 

i,j 

i,j 

1    2 

1    2 

i,j 



‘error’ that should not amplified in the calculation with time. This is the numerical error introduced for a  

repetitive number of calculations in which the computer is constantly rounding the number to some 

decimal points. Round-off error s𝑘 (𝑥, 𝑦) is actually the difference between the numerical solutions from a 

real computer with finite accuracy, we donate it by 𝑢𝑘 and for exact solution of the finite-difference 

equation we donate it by 𝑈𝑘 . 
 k  x, y  Uk x, y  uk x, y … (3) 

i, j i, j i, j 

The eq. 3 satisfy the finite difference approximation equation and round-off error can be expressed in the 
Fourier series expansion as 

∞ ∞ 
  2𝜋𝜔  

s𝑘(𝑥, 𝑦) =   ∑ ∑   𝜆𝑘(𝑙1, 𝑙2)𝑒𝐿(𝑙1𝑥+𝑙2𝑦) 

𝑙1=−∞ 𝑙2=−∞ 

1 𝐿 𝐿 
Wℎ𝑒𝑟𝑒 𝜆𝑘(𝑙1, 𝑙2) = ∫   ∫  s𝑘(𝑥, 𝑦)𝑒−2𝜋𝜔/𝐿(𝑙1𝑥+𝑙2𝑦)𝑑𝑥𝑑𝑦 

𝐿2   
0 0 

 

And 𝜔 = √−1 and 𝐿 is the interval of the function. Suppose that the solution error has the following form, 

s𝑘   = 𝜆𝑘𝑒2𝜋𝜔/𝐿(𝑙1𝑥+𝑙2𝑦) 

 
Define: G l ,l  

k  1 l , l 




1 2 k l ,l 
Where 𝐺(𝑙1, 𝑙2) is the amplification factor and 𝜆(𝑙1, 𝑙2) is the Fourier component. The finite difference 

scheme will be stable if every Fourier component is stable. 

The Von Neumann stability is given by 

G l1, l2   1 … (4) 

If the finite difference scheme satisfied the condition defined in eq. 4 then amplification factor 𝐺(𝑙1, 𝑙2) will 

not grow as we march forward in time 𝑡. It has been observed that more and more time steps (∆𝑡) are 

required for calculation over a given interval of time. When we utilize explicit finite difference scheme in 

which we are forced to choose ∆𝑡 that should be less than to a specific limit imposed by stability 

constrains. Whereas in case of implicit and Crank-Nicolson finite difference schemes, fewer time steps (∆𝑡) 

are required for our calculation over a given interval of time in which we are free to choose even larger 

values of time steps ∆𝑡. 

 
Consistency and Convergence of FDM: 

LECTURE NO. 06 

If the magnitude of truncation error approaches zero as the grid sizes ℎ𝑥 and ℎ𝑦 in both directions of 

coordinate axis along with ∆𝑡 approaches zero, then the approximate solution of the PDE is said to be 

consistent with the exact numerical solution. In other words, truncation error vanishes as we utilize small 

mesh sizes and time steps that tend to zero i.e. ℎ𝑥, ℎ𝑦 and ∆𝑡 → 0. 

Note that consistency is a necessary condition but not a sufficient condition for convergence. A finite 

difference scheme is said to be convergent if approximate solution, 𝑢𝑘 of PDE approaches to zero, as grid 

sizes ℎ𝑥 and ℎ𝑦 as well as ∆𝑡 approaches zero. 
lim |𝑈𝑘 − 𝑢𝑘 | = 0 

ℎ𝑥,ℎ𝑦,∆𝑡→0 i,j i,j 

The stability and consistency of linear PDEs with constant coefficients implies convergence. 

Explicit, Implicit and Crank-Nicolson Schemes: 

A finite difference scheme is said to be fully explicit scheme if we can find the value of the function at the 

next time level on each grid points of the computational domain with the help of an explicit formula which 

contains gird point values in the previous time level. The fully explicit scheme leads us to impose the 

restriction on choosing the maximum acceptable time steps ∆𝑡 for stability. So to attain the stability of the 

finite difference scheme, we have to utilize so many time steps if we are going to choose ∆𝑡 such that it 

approaches to zero. 
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i,j 

i,j 

i,j 

i,j 

i,j 



On the other hand, in fully implicit schemes there are no such explicit formula exists to find the values at 

the grid points directly from the previous time level because the values on each the grid points are 

scattered between two time levels on both sides of the difference equation. The resultant finite difference 

equation generates system of linear algebraic equation that can be solved by utilizing matrices. In fully 

implicit schemes, there is no restriction on choosing the maximum acceptable time steps ∆𝑡 for stability 

such as fully explicit scheme. Therefore, fewer number of time steps can be utilized with a large time steps 

∆𝑡 for stability. 

Mathematically, to understand the concept of fully explicit and implicit schemes, we need to consider the 

following 2D head conduction PDE at some grid point (𝑥i, 𝑦j, 𝑡𝑘), of the solution domain. 
u(x , y ,t ) 2u(x , y ,t ) 2u(x , y ,t )  uk 2uk 2uk 

i j     k     
  




i j     k     

 i j     k    

 Or  

i, j 
  




i, j 

 i, j 






… (1) 
t  x2 y2  t  x2 y2 

Where 𝛼 is the thermal diffusivity and dependent variable 𝑢(𝑥i, 𝑦j , 𝑡𝑘) is a temperature function of space 

(𝑥i, 𝑦j) and time (𝑡𝑘). Replace the space derivatives by the second order central difference at time level 𝑘 

and time derivative by first order forward difference in eq. and writing the expression 𝑢(𝑥i, 𝑦j, 𝑡𝑘) as 𝑢𝑘 , 

we obtain the following expression 

uk 1  uk 

 
uk 

 
 2uk 

 
 uk

 
uk  2uk 

 
 uk 

i, j i, j    i1, j i, j i1, j 

 i, j 1 i, j i, j 1 


 … (2) 

 

t  (x)2 
 

(y)2 

The eq. 2 contains only unknown dependent variable 𝑢𝑘+1 at time (𝑘 + 1) that can explicitly be solved 
from the unknown values of 𝑢𝑘 , 𝑢𝑘 , 𝑢𝑘 , 𝑢𝑘 and 𝑢𝑘 at time 𝑘. This is a typical example of fully 

i,j i−1,j i+1,j i,j−1 i,j+1 

explicit infinite difference method. Now replace the space derivatives by the second order central 

difference at time level (𝑘 + 1) and time derivative by the first order forward difference in equation. 

We obtain form equation 1: 

uk 1 2uk 1 2uk 1 





Similarly form equation 2: 

i, j 

t 
  



i, j   



x2 

i, j 
 

 

y2 
… (3) 

uk 1  uk uk 1  2uk 1  uk 1 uk 1  2uk 1  uk 1   
i, j i, j    i1, j i, j i1, j 


 i, j 1 i, j i, j 1 


 … (4) 

 

t  (x)2 
 

(y)2 

The schemes defined in eq. 4s is called fully implicit scheme. In contrast to the fully explicit scheme, the 

temperature variable 𝑢𝑘+1 cannot be solved purely in terms of function values at time step 𝑘. By replacing 

the space derivative on the right side of the eq. 1 by average between two times levels 𝑘 and(𝑘 + 1), we 

meet with the following expression of the form 

 
… (5) 

The eq. 5 the unknown dependent temperature variable 𝑢𝑘+1 at time level 𝑘 + 1 cannot explicitly be 

evaluated or expressed in term of the known values at time level 𝑘. The unknown quantity 𝑢𝑘+1 can also 

be not solvable for some particular grid point 𝑢(𝑥i, 𝑦j, 𝑡𝑘). Therefore eq. 5 can only be solved over all the 

grid points of the computational domain which will be the result of system of large simultaneous linear 

equations that can be solved with the help of matrices. 

The expression in eq. 5 is typically example of implicit scheme and this is known as implicit Crank-Nicolson 

scheme. In the above section, we’ll briefly summaries the advantages and disadvantages of fully explicit,  

implicit and Crank-Nicolson finite difference schemes. 
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LECTURE NO. 07 
 

Fully Explicit Scheme: 

 The unknown value of function in fully explicit finite difference scheme can be expressed in terms of 

known values of functions which can be directly be evaluated. 

 A fully explicit finite difference method give values of unknown function at the next time level on each 

gird points of the computational domain. 

 In fully explicit finite difference method, the maximum acceptable time step is restricted by the stability 

constrains. 

 Fully explicit finite difference method is often difficult to perform the stability analysis. 
 

Fully Implicit Scheme: 

 The known and unknown value of function on each grid points of fully implicit finite difference scheme 

are scattered between two time levels on both side of the difference equation. 

 The values of the unknown function can be determined on the all gird points of computational domain 

at a time. 

 There is no limitation of choosing the maximum size of time step to attain the stability. 

 Since a fully implicit finite difference schemes solves system of linear algebraic equations therefore it 

suffers a large computational effort on each time level. 
 

Crank-Nicolson Scheme: 

 In Crank-Nicolson Scheme we need to solve the coupled linear system at (𝑘) and (𝑘 + 1) time level 

separately on both side of the equation. 

 Since Crank-Nicolson Scheme combines the fully implicit and explicit schemes. Therefore, spatial and 

time derivative are both countered around (𝑘 + 1/2). 

 There is no limitation of choosing the maximum size of time step to attain the stability like full implicit 

scheme. 

 Crank-Nicolson Scheme has unconditionality stability and second order accuracy in both time and space. 
 

Iterative Methods: 

To solve the system of linear equations which are in the form of sparse matrices, the iterative methods are 

very efficient. In all types of iterative methods we first need the initial guess to start the iterative process 

and this process continuously repeated until satisfactory converged solutions are achieved by applying a 

certain predefined convergence criteria. The system of linear equations can be represented by the 

following equation 

𝐴𝑥 = 𝑏 …… (1) 

Where ′𝐴′ is a non-singular co-efficient matrix and ′𝑏′ refers to the known column vector and ′𝑥′ is the 

column vector that to be determined. The co-efficient matrix 𝐴 in equation 1 can be partitioned as follows, 

𝐴 = 𝐷 + 𝐿 + 𝑈 

Where matrix ′𝐷′ is refer to the diagonal matrix, ′𝐿 𝑎𝑛𝑑 𝑈′ are lower and upper triangular elements of 

matrix ′𝐴′ respectively. 
 

Iterative Methods: 

Some well-known methods to solve iterative problems are; 

1. Jacobi’s Method 

2. Gauss-Seidel Method 

3. Relaxation Method 

i) SOR (Successive Over Relaxation Method) ii) SUR (Successive Under Relaxation Method) 

https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE


MTH646 Handout 

Page | 11 

 

Join VU Group: https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE  

Jacobi’s Method: Consider 

This system can also be written as 

 
 

Then Jacobi’s method can be written in matrix-vector notation as 
 

Gauss-Seidel Method: Consider 

 

This system can also be written as 

That is 

 

Relaxation Method: 

Consider recurrence relation 

(𝐷 + 𝜔𝐿)𝑥𝑛+1 = −((1 − 𝜔)𝐿 + 𝑈)𝑥𝑛+1 + 𝑏 …… (2) 

Here 𝜔 is defined in the equation 2 as the acceleration parameter which is used to accelerate convergence 

rate. When 𝜔 = 0 is chosen, we come across with Jacobi iterative method and when 𝜔 = 1 is selected, 

Gauss-Seidel iterative method is obtained. The value of acceleration parameter 𝜔 lies between 0 and 2, if 

we want to select value of 𝜔 = 0.5 (say) i.e. the values between 0 and 1, then the method will between 

Jacobi and Gauss-Seidel. We could even select the value of 𝜔 > 1, resulting that we are using a method 

beyond the Gauss-Seidel method (known as SOR – Successive Over Relaxation Method). 

Convergence of Iterative Method: 

If we apply the standard form of the iterative scheme, we have the following expression, 

𝑥𝑛+1 = 𝑃𝑥𝑛 + 𝑞 …… (1) 

Here 𝑛 represents the number of iterations. Suppose that iterative scheme described in equation 1 has the 

exact solution 𝑥 = 𝑟, then we have the following equation, 

𝑟 = 𝑃𝑟 + 𝑞 …… (2) 

Subtract eq. 2 from eq. 1 we have  
𝑥𝑛+1 − 𝑟 = 𝑃(𝑥𝑛 − 𝑟) ….. (3) 
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( 𝑢 

Or equivalently  
𝑒𝑛+1 = 𝑃𝑒𝑛 …… (4) 

Where 𝑒𝑛 = 𝑥𝑛 − 𝑟, is defined to donate the error on the 𝑛𝑡ℎ iteration 𝑒𝑛 w.r.to the exact solution. For 

convergence, we need to check the magnitude of the error vector 𝑒 (can be measured by some vector 

norm) that approaches to zero as the number of iteration 𝑛 increases to infinity (i.e. ‖𝑒𝑛‖ → 0 𝑎𝑠 𝑛 → ∞ 

which in turn implies that 𝑥𝑛 → 0 𝑎𝑠 𝑛 → ∞). Apply the vector norm on both sides of the equation 4, 

‖𝑒𝑛+1‖ = ‖𝑃𝑒𝑛‖ 

Apply the compatibility inequality we obtained, 

‖𝑒𝑛+1‖ ≤ ‖𝑃‖ ‖𝑒𝑛‖ 

The iterative scheme will converge if the iteration matrix ′𝑃′ satisfies the following property, 

‖𝑃‖ ≤ 1 …… (5) 

If the inequality described in equation 5 holds, then 

‖𝑒𝑛+1 ‖  ≤ ‖𝑒𝑛 
‖ Or 

‖𝑒𝑛+1‖ 
≤ 1 ✯ 𝑛. 

‖𝑒𝑛‖ 
 

LECTURE NO. 08 

Some Useful Approximations to a Derivative: 

The following are the useful approximations to a derivative that should be kept in mind for the solutions of 

various types of PDEs. 
6𝑢 

1. (
6𝑥

)i,j  = 
6𝑢 

2. (
6𝑥

)i,j  = 

𝑢i+1,j−𝑢i,j  
+ 𝑜(ℎ) Forward Difference 

ℎ 
𝑢i,j−𝑢i−1,j  + 𝑜(ℎ) Backward Difference 

ℎ 
6𝑢 

3. (
6𝑥

)i,j  = 
𝑢i+1,j−𝑢i−1,j  + 𝑜(ℎ) Centre Difference of 1st 

ℎ 
order derivative 

62𝑢 

4. (
6𝑥2)i,j  = 

𝑢i+1,j−2𝑢i,j+𝑢i−1,j + 𝑜(ℎ2 
ℎ2 ) Centre Difference of 2nd order derivative 

Similarly approximations can be defined for "𝑡i𝑚𝑒 𝑡" as follows; 
6𝑢 

5. (
6𝑡 

)i,j  = 
6𝑢 

6. (
6𝑡 

)i,j  = 

𝑢i,j+1−𝑢i,j  + 𝑜(𝑘) Forward Difference 
𝑘 

𝑢i,j−𝑢i,j−1  + 𝑜(𝑘) Backward Difference 
𝑘 

6𝑢 
7. (

6𝑡 
)i,j  = 

𝑢i,j+1−𝑢i,j−1  + 𝑜(𝑘) Centre Difference of 1st 
𝑘 

order derivative 

62𝑢 

8. (
6𝑡2 )i,j   = 

Example: 1 

𝑢i,j+1−2𝑢i,j+𝑢i,j−1 + 𝑜(𝑘 
𝑘2 

2) Centre Difference of 2nd order derivative 

Find the numerical solution of following heat equation by forward difference method (Explicit Method) by 
taking ℎ = 0.25; 

6𝑢 
= 𝛼2 6

2𝑢 
 

Subjected boundary conditions 
6𝑡 6𝑥2 …… 1D Heat equation 

 
𝑢(0, 𝑡) = 0 

{ 
1, 𝑡) = 0 

Similarly 𝑢(𝑥, 0) = 𝑠i𝑛𝜋𝑥 

The exact solution is given by the equation, 

𝑢(𝑥, 𝑡) = 𝑒−𝛼
2𝜋2𝑡𝑠i𝑛𝜋𝑥 
6𝑢 

 
 
 

 
62𝑢 

Solution: Use the forward difference approximation for 
6𝑡 

and central difference approximation for 
6𝑥2 on 

given equation 

 

𝑢i,j+1 − 𝑢i,j 
 

 

∂𝑢 
 

 

∂𝑡 
2 

∂2𝑢 
= 𝛼2    

∂𝑥2 
𝑢i+1,j − 2𝑢i,j + 𝑢i−1,j 

 
 = 𝛼 ( 

𝑘 ℎ2 
) 
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4,j 

 

𝑢i,j+1 − 𝑢i,j = 
𝛼2𝑘 

ℎ2 ( 

𝛼2𝑘 

𝑢i+1,j − 2𝑢i,j + 𝑢i−1,j 

ℎ2 ) 

 

𝛼2𝑘 

𝑢i,j+1  = 𝑢i,j  + ( 
ℎ2   ) (𝑢i+1,j  − 2𝑢i,j  + 𝑢i−1,j) 

Let 𝜆 = 
ℎ2   , so by solving we have 

𝑢i,j+1  = 𝜆𝑢i−1,j + (1 − 2𝜆)𝑢i,j + 𝜆𝑢i+1,j …… (i) 
𝛼2𝑘 

Since 𝜆 = 
ℎ2 

Let 𝛼2 = 1 and given ℎ = 0.25, also suppose 𝑘 = 0.0625. By putting values, 
1(0.0625) 

𝜆 = 
(0.25)2 

= 1
 

So above equation (i) becomes by putting value of 𝜆 (and by replacing 𝜇 𝑏𝑦 𝜔) 

𝜔i,j+1  = 𝜔i−1,j  − 𝜔i,j  + 𝜔i+1,j …… (1) 

Boundary conditions and initial conditions becomes accordingly (by replacing 𝜇 𝑏𝑦 𝜔) 
𝜔(0, 𝑡) = 𝜔0,j = 0 

 

And 

{
𝜔(1, 𝑡) = 𝜔 = 0 

 
𝐹i𝑥; j = 0 

Now, for i = 1 in equation 1, we have 

𝜔(𝑥, 0) = 𝜔i,0 = 𝑠i𝑛𝜋𝑥i 

 
 

𝜔1,1 = 𝜔0,0 − 𝜔1,0 + 𝜔2,0 

 
 

For i = 2 in equation 1, we have 
 

 
For i = 3 in equation 1, we have 

 

 
𝐹i𝑥; j = 1 

𝜔1,1 = 0 − sin(0.25𝜋) + sin(0.5𝜋) 

𝜔1,1 = 0 − 0.707 + 1 => 0.293 

 
𝜔2,1 = 𝜔1,0 − 𝜔2,0 + 𝜔3,0 

𝜔2,1 = 0.707 − 1 + 0.707 => 0.414 

 
𝜔3,1 = 𝜔2,0 − 𝜔3,0 + 𝜔4,0 

𝜔3,1 = 1 − 0.707 + 0 => 0.293 

Now for i = 1 in equation 1, we have  
𝜔1,2 = 𝜔0,1 − 𝜔1,1 + 𝜔2,1 

 
For i = 2 in equation 1, we have 

 

 
For i = 3 in equation 1, we have 

 

 
𝐹i𝑥; j = 2 

𝜔1,2 = 0 − 0.293 + 0.414 => 0.129 

 
𝜔2,2 = 𝜔1,1 − 𝜔2,1 + 𝜔3,1 

𝜔2,2 = 0.293 − 0.414 + 0.293 => 0.172 

 
𝜔3,2 = 𝜔2,1 − 𝜔3,1 + 𝜔4,1 

𝜔3,2 = 0.414 − 0.293 + 0 => 0.121 

Similarly for i = 1 in equation 1, we have 𝜔1,3 = 0.043 

For i = 2 in equation 1, we have 𝜔2,3 = 0.078 

For i = 3 in equation 1, we have 𝜔3,3 = 0.051 
 

 
 

Example: 2 

LECTURE NO. 09 

Find the numerical solution of following heat equation by forward difference method (Explicit Method) by 

taking ℎ = 0.1; 
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10,j 

( 𝑢 

 

 
Subjected to boundary condition 

∂𝑢 
 

 

∂𝑡 

∂2𝑢 
= 𝛼2    

∂𝑥2 

𝑢(0, 𝑡) = 0 
{ 

1, 𝑡) = 0 

Similarly 𝑢(𝑥, 0) = 𝑠i𝑛𝜋𝑥 

Exact solution 

 
Since 

𝑢(𝑥, 𝑡) = 𝑒−𝛼
2𝜋2𝑡𝑠i𝑛𝜋𝑥 

𝑛 = 
𝑏 − 𝑎 

 
 

ℎ 
6𝑢 

1 − 0 
= 

0.1 
= 10 

 

 
62𝑢 

Use the forward difference approximation for 

equation 
6𝑡   

and central difference approximation for 
6𝑥2   on given 

 
 

𝑢i,j+1 − 𝑢i,j 
 

 

∂𝑢 
 

 

∂𝑡 
2 

∂2𝑢 
= 𝛼2    

∂𝑥2 
𝑢i+1,j − 2𝑢i,j + 𝑢i−1,j 

 
 = 𝛼 ( 

𝑘 ℎ2 ) 

𝑢i,j+1 − 𝑢i,j = 
𝛼2𝑘 

ℎ2 ( 

𝛼2𝑘 

𝑢i+1,j − 2𝑢i,j + 𝑢i−1,j 

ℎ2 ) 

 
 

𝛼2𝑘 

𝑢i,j+1  = 𝑢i,j  + ( 
ℎ2   ) (𝑢i+1,j  − 2𝑢i,j  + 𝑢i−1,j) 

Let 𝜆 = 
ℎ2   , so by solving we have 

𝑢i,j+1  = 𝜆𝑢i−1,j + (1 − 2𝜆)𝑢i,j + 𝜆𝑢i+1,j …… (i) 
𝛼2𝑘 

Since 𝜆 = 
ℎ2 

Let 𝛼2 = 1 and given ℎ = 0.1, also suppose 𝑘 = 0.01. By putting values, 
1(0.01) 

𝜆 = 
(0.1)2 

= 1
 

So above equation (i) becomes by putting value of 𝜆 (also by replacing 𝜇 𝑏𝑦 𝜔) 

𝜔i,j+1  = 𝜔i−1,j  − 𝜔i,j  + 𝜔i+1,j …… (1) 

Boundary conditions and initial conditions becomes accordingly (by replacing 𝜇 𝑏𝑦 𝜔) 
𝜔(0, 𝑡) = 𝜔0,j = 0 

 

And 

{
𝜔(1, 𝑡) = 𝜔 = 0 

 
𝐹i𝑥; j = 0 

Now, for i = 1 in equation 1, we have 

𝜔(𝑥, 0) = 𝜔i,0 = 𝑠i𝑛𝜋𝑥i 

 
 

𝜔1,1 = 𝜔0,0 − 𝜔1,0 + 𝜔2,0 

𝜔1,1 = 0 − sin(0.1𝜋) + sin(0.2𝜋) => 0.2788 

For i = 2 in equation 1, we have 
 

 
Similarly 

𝜔2,1 = 𝜔1,0 − 𝜔2,0 + 𝜔3,0 

𝜔2,1 = sin(0.1𝜋) − sin(0.2𝜋) + sin(0.3𝜋) => 0.5302 

For i = 3 in equation 1, we have 

For i = 4 in equation 1, we have 

For i = 5 in equation 1, we have 

 
𝜔3,1 = 𝜔2,0 − 𝜔3,0 + 𝜔4,0 => 0.7298 

 
𝜔4,1 = 𝜔3,0 − 𝜔4,0 + 𝜔5,0 => 0.8580 

 
𝜔5,1 = 𝜔4,0 − 𝜔5,0 + 𝜔6,0 => 0.9021 
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For i = 6 in equation 1, we have 

For i = 7 in equation 1, we have 

For i = 8 in equation 1, we have 

For i = 9 in equation 1, we have 

𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙𝑢𝑡i𝑜𝑛: 

 
𝜔6,1 = 𝜔5,0 − 𝜔6,0 + 𝜔7,0 => 0.8580 

 
𝜔7,1 = 𝜔6,0 − 𝜔7,0 + 𝜔8,0 => 0.7298 

 
𝜔8,1 = 𝜔7,0 − 𝜔8,0 + 𝜔9,0 => 0.5302 

 
𝜔9,1 = 𝜔8,0 − 𝜔9,0 + 𝜔10,0 => 0.2788 

𝑢(𝑥, 𝑡) = 𝑒−𝜋
2𝑡𝑠i𝑛𝜋𝑥 ∴ 𝛼2 = 1 𝑇𝑎𝑘𝑒 𝑡 = 0.01 

 
Similarly 

 
 
 
 
 
 
 
 
 

 
𝐸𝑟𝑟𝑜𝑟: 

𝜔1,1 

 
𝜔2,1 

𝜔3,1 

𝜔4,1 

𝜔5,1 

𝜔6,1 

𝜔7,1 

𝜔8,1 

𝜔9,1 

= 𝜔(𝑥1 

 
= 𝜔(𝑥2 

= 𝜔(𝑥3 

= 𝜔(𝑥4 

= 𝜔(𝑥5 

= 𝜔(𝑥6 

= 𝜔(𝑥7 

= 𝜔(𝑥8 

= 𝜔(𝑥9 

, 𝑡1 

 
, 𝑡1 

, 𝑡1 

, 𝑡1 

, 𝑡1 

, 𝑡1 

, 𝑡1 

, 𝑡1 

, 𝑡1 

) = 𝜔(0.1 , 0.01) = 𝑒−𝜋
2(0.01) sin(0.1𝜋) => 0.2799 

 

) = 𝜔(0.2 , 0.01) = 𝑒−𝜋
2(0.01) sin(0.2𝜋) =>    

) = 𝜔(0.3 , 0.01) = 𝑒−𝜋
2(0.01) sin(0.3𝜋) =>    

) = 𝜔(0.4 , 0.01) = 𝑒−𝜋
2(0.01) sin(0.4𝜋) =>    

) = 𝜔(0.5 , 0.01) = 𝑒−𝜋
2(0.01) sin(0.5𝜋) =>    

) = 𝜔(0.6 , 0.01) = 𝑒−𝜋
2(0.01) sin(0.6𝜋) =>    

) = 𝜔(0.7 , 0.01) = 𝑒−𝜋
2(0.01) sin(0.7𝜋) =>    

) = 𝜔(0.8 , 0.01) = 𝑒−𝜋
2(0.01) sin(0.8𝜋) =>    

) = 𝜔(0.9 , 0.01) = 𝑒−𝜋
2(0.01) sin(0.9𝜋) =>    

Since, the calculated value of 𝜔1,1 = 0.2788 and the calculated value from exact solution is 𝜔1,1 = 0.2799, 

so the error can be calculated as; 

𝐸1 = |𝜔1,1(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔1,1(𝑒𝑥𝑎𝑐𝑡)| = |0.2788 − 0.2799| => 0.0011 

Similarly  
𝐸2 = |𝜔2,1(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔2,1(𝑒𝑥𝑎𝑐𝑡)| = | − _ _| =>     

𝐸3 = |𝜔3,1(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔3,1(𝑒𝑥𝑎𝑐𝑡)| = | − _ _| =>     

𝐸4 = |𝜔4,1(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔4,1(𝑒𝑥𝑎𝑐𝑡)| = | − | =>     

𝐸5 = |𝜔5,1(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔5,1(𝑒𝑥𝑎𝑐𝑡)| = | − _ _| =>     

𝐸6 = |𝜔6,1(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔6,1(𝑒𝑥𝑎𝑐𝑡)| = | − _ _| =>     

𝐸7 = |𝜔7,1(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔7,1(𝑒𝑥𝑎𝑐𝑡)| = | − _ _| =>     

𝐸8 = |𝜔8,1(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔8,1(𝑒𝑥𝑎𝑐𝑡)| = | − _ _| =>     

𝐸9 = |𝜔9,1(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔9,1(𝑒𝑥𝑎𝑐𝑡)| = | − _ | =>     

(Do Your Self; Take values from above calculations.) 

(Understand carefully, first we take j = 0, then calculate exact solution and error. Now we’ll perform the 

same calculations with next step values i.e. j = 1, then calculate exact solution and error; and Done.) 

𝐹i𝑥; j = 1 

𝜔i,j+1  = 𝜔i−1,j  − 𝜔i,j  + 𝜔i+1,j …… (1) 

(This equation given above, here typed again just for help.) 

Now, for i = 1 in equation 1, we have 
 

 
For i = 2 in equation 1, we have 

𝜔1,2 = 𝜔0,1 − 𝜔1,1 + 𝜔2,1 

𝜔1,2 = 0 − 0.2788 + 0.5302 => 0.2514 

 
𝜔2,2 = 𝜔1,1 − 𝜔2,1 + 𝜔3,1 

𝜔2,2 = 0.2788 − 0.5302 + 0.7298 => 0.4784 
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2,2 2 2 

3,2 3 2 

5,2 5 2 

6,2 6 2 

7,2 7 2 

8,2 8 2 

9,2 9 2 

Similarly 

For i = 3 in equation 1, we have 

For i = 4 in equation 1, we have 

For i = 5 in equation 1, we have 

For i = 6 in equation 1, we have 

For i = 7 in equation 1, we have 

For i = 8 in equation 1, we have 

For i = 9 in equation 1, we have 

 

 
𝜔3,2 = 𝜔2,1 − 𝜔3,1 + 𝜔4,1 => 0.6584 

 
𝜔4,2 = 𝜔3,1 − 𝜔4,1 + 𝜔5,1 =>    

 
𝜔5,2 = 𝜔4,1 − 𝜔5,1 + 𝜔6,1 =>    

 
𝜔6,2 = 𝜔5,1 − 𝜔6,1 + 𝜔7,1 =>    

 
𝜔7,2 = 𝜔6,1 − 𝜔7,1 + 𝜔8,1 =>    

 
𝜔8,2 = 𝜔7,1 − 𝜔8,1 + 𝜔9,1 =>    

 
𝜔9,2 = 𝜔8,1 − 𝜔9,1 + 𝜔10,1 => _ _ 

(Do Your Self; Take values from above calculations.) 

𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙𝑢𝑡i𝑜𝑛: 

𝑢(𝑥, 𝑡) = 𝑒−𝜋
2𝑡𝑠i𝑛𝜋𝑥 ∴ 𝛼2 = 1 𝑇𝑎𝑘𝑒 𝑡 = 0.02 

 

Similarly 

𝜔1,2 = 𝜔(𝑥1 , 𝑡2 ) = 𝜔(0.1 , 0.02) = 𝑒−𝜋
2(0.02) sin(0.1𝜋) => 0.2799 

𝜔 = 𝜔(𝑥 , 𝑡 ) = 𝜔(0.2 , 0.02) = 𝑒−𝜋
2(0.02) sin(0.2𝜋) =>    

𝜔 = 𝜔(𝑥 , 𝑡 ) = 𝜔(0.3 , 0.02) = 𝑒−𝜋
2(0.02) sin(0.3𝜋) =>    

𝜔4,2 = 𝜔(𝑥4 , 𝑡2 ) = 𝜔(0.4 , 0.02) = 𝑒−𝜋
2(0.02) sin(0.4𝜋) =>    

 

 

 

 

 

 

 

𝐸𝑟𝑟𝑜𝑟: 

𝜔 = 𝜔(𝑥 , 𝑡 ) = 𝜔(0.5 , 0.02) = 𝑒−𝜋
2(0.02) sin(0.5𝜋) =>    

𝜔 = 𝜔(𝑥 , 𝑡 ) = 𝜔(0.6 , 0.02) = 𝑒−𝜋
2(0.02) sin(0.6𝜋) =>    

𝜔 = 𝜔(𝑥 , 𝑡 ) = 𝜔(0.7 , 0.02) = 𝑒−𝜋
2(0.02) sin(0.7𝜋) =>    

𝜔 = 𝜔(𝑥 , 𝑡 ) = 𝜔(0.8 , 0.02) = 𝑒−𝜋
2(0.02) sin(0.8𝜋) =>    

𝜔 = 𝜔(𝑥 , 𝑡 ) = 𝜔(0.9 , 0.02) = 𝑒−𝜋
2(0.02) sin(0.9𝜋) =>    

Error can be calculated as; 

𝐸1 = |𝜔1,2(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔1,2(𝑒𝑥𝑎𝑐𝑡)| = |0.2514 − 0.2566| => 0.0052 

Similarly  
𝐸2 = |𝜔2,2(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔2,2(𝑒𝑥𝑎𝑐𝑡)| = | − _ _| =>     

𝐸3 = |𝜔3,2(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔3,2(𝑒𝑥𝑎𝑐𝑡)| = | − _ _| =>     

𝐸4 = |𝜔4,2(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔4,2(𝑒𝑥𝑎𝑐𝑡)| = | − | =>     

𝐸5 = |𝜔5,2(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔5,2(𝑒𝑥𝑎𝑐𝑡)| = | − _ _| =>     

𝐸6 = |𝜔6,2(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔6,2(𝑒𝑥𝑎𝑐𝑡)| = | − _ _| =>     

𝐸7 = |𝜔7,2(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔7,2(𝑒𝑥𝑎𝑐𝑡)| = | − _ _| =>     

𝐸8 = |𝜔8,2(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔8,2(𝑒𝑥𝑎𝑐𝑡)| = | − _ _| =>     

𝐸9 = |𝜔9,2(𝑎𝑝𝑝𝑟𝑜𝑥. ) − 𝜔9,2(𝑒𝑥𝑎𝑐𝑡)| = | − _ | =>     

(Do Your Self; Take values from above calculations.) 
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Example: 3 

LECTURE NO. 10 

Find the numerical solution of following heat equation 

𝜕𝑢 
 

 

𝜕𝑡 

𝜕2𝑢 
= 𝛼2    

𝜕𝑥2 
𝑜𝑟 𝑢𝑡 = 𝛼2𝑢𝑥𝑥 

By forward difference method at 𝑇 = 0.005, 𝑕 = 0.1 𝑎𝑛𝑑 𝑘 = 0.001 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {
𝑢(0, 𝑡) = 0

 
𝑢(1, 𝑡) = 0 

1 
2𝑥 , 0 ≤ 𝑥 ≤ 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; 𝑢(𝑥, 0) = { 
1 

2 

 
Solution: It is given that 

2(1 − 𝑥) , < 𝑥 ≤ 1 
2 

𝑕 = 0.1 , 𝑘 = 0.001 𝑎𝑛𝑑 𝑇 = 0.005 
Since 

 
 

Also 

𝑏 − 𝑎 
𝑛 = ( ) = 

𝑕 

1 − 0 
 

 

0.1 
= 10 𝑖 = 1,2,3 … 𝑛 − 1 

 
 

Therefore 

𝑇 − 𝑡0 
𝑚 = ( ) = 

𝑘 

0.005 − 0 
 

 

0.001 
= 5 𝑗 = 0,1,2,3 … 𝑚 − 1 

𝑛 = 10, 𝑠𝑜 𝑖 = 1,2, … ,9 

𝑚 = 5, 𝑠𝑜 𝑗 = 0,1,2,3,4 

Apply forward difference (FDW) on time-derivative and central difference (CD) on space derivative of the 

given equation and choose 𝛼 = 1, we get 

⍵𝑖,𝑗 +1 = 𝜆⍵𝑖−1,𝑗 + (1 − 2𝜆)⍵𝑖,𝑗 + 𝜆⍵𝑖+1,𝑗  … (1) 
Where 

𝑘 0.001 
𝜆 = 

𝑕2 
= 

(0.1)2 
= 0.1 

Therefore 1 − 2𝜆 = 1 − 2(0.1) = 0.8 

By putting value of 𝜆 , equation 1 becomes 

⍵𝑖,𝑗 +1 = 0.1 ⍵𝑖−1,𝑗 + 0.8 ⍵𝑖,𝑗 + 0.1 ⍵𝑖+1,𝑗  … (2) 

First we’ll calculate values for ⍵ using initial conditions as follows, 
1 

(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝑢(𝑥, 0) = 2𝑥 𝑖𝑓 0 ≤ 𝑥 ≤ 
2 

∴ 𝑕 = 0.1) 

⍵1,0 = ⍵(𝑥1, 𝑡0) = ⍵(0.1 , 0) = 2𝑥1 = 2 × 0.1 = 0.2 

⍵2,0 = ⍵(𝑥2 , 𝑡0) = ⍵(0.2 , 0) = 2𝑥2 = 2 × 0.2 = 0.4 

⍵3,0 = ⍵(𝑥3 , 𝑡0) = ⍵(0.3 , 0) = 2𝑥3 = 2 × 0.3 = 0.6 

⍵4,0 = ⍵(𝑥4 , 𝑡0) = ⍵(0.4 , 0) = 2𝑥4 = 2 × 0.4 = 0.8 

⍵5,0 = ⍵(𝑥5 , 𝑡0) = ⍵(0.5 , 0) = 2𝑥5 = 2 × 0.5 = 1.0 

1 
(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝑢(𝑥, 0) = 2(1 − 𝑥) 𝑖𝑓 < 𝑥 ≤ 1 ∴ 𝑕 = 0.1) 

2 
 
 
 
 
 
 

𝐹𝑖𝑥 𝑗 = 0 

⍵6,0 = ⍵(𝑥6 , 𝑡0) = ⍵(0.6 , 0) = 2(1 − 𝑥6) = 2(1 − 0.6) = 0.8 

⍵7,0 = ⍵(𝑥7 , 𝑡0) = ⍵(0.7 , 0) = 2(1 − 𝑥7) = 2(1 − 0.7) = 0.6 

⍵8,0 = ⍵(𝑥8 , 𝑡0) = ⍵(0.8 , 0) = 2(1 − 𝑥8) = 2(1 − 0.8) = 0.4 

⍵9,0 = ⍵(𝑥9, 𝑡0) = ⍵(0.9 , 0) = 2(1 − 𝑥9) = 2(1 − 0.9) = 0.2 

⍵10,0 = ⍵(𝑥10 , 𝑡0) = ⍵(1.0 , 0) = 2(1 − 𝑥10 ) = 2(1 − 1) = 0.0 

𝐴𝑛𝑑 𝑝𝑢𝑡 𝑖 = 1,2,3,4,5,6,7,8,9 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 
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⍵𝑖,𝑗 +1 = 0.1 ⍵𝑖−1,𝑗 + 0.8 ⍵𝑖,𝑗 + 0.1 ⍵𝑖+1,𝑗  … (2) 

𝑖 = 1; ⍵1,1 = 0.1 ⍵0,0 + 0.8 ⍵1,0 + 0.1 ⍵2,0 = 0.1(0.0) + 0.8(0.2) + 0.1(0.4) = 0.20 

𝑖 = 2; ⍵2,1 = 0.1 ⍵1,0 + 0.8 ⍵2,0 + 0.1  ⍵3,0 = 0.1(0.2) + 0.8(0.4) + 0.1(0.6) = 0.40 

𝑖 = 3; ⍵3,1 = 0.1 ⍵2,0 + 0.8 ⍵3,0 + 0.1 ⍵4,0 = 0.1(0.4) + 0.8(0.6) + 0.1(0.8) = 0.60 

𝑖 = 4; ⍵4,1 = 0.1 ⍵3,0 + 0.8 ⍵4,0 + 0.1 ⍵5,0 = 0.1(0.6) + 0.8(0.8) + 0.1(1.0) = 0.80 

𝑖 = 5; ⍵5,1 = 0.1 ⍵4,0 + 0.8 ⍵5,0 + 0.1 ⍵6,0 = 0.1(0.8) + 0.8(1.0) + 0.1(0.8) = 0.96 

𝑖 = 6; ⍵6,1 = 0.1 ⍵5,0 + 0.8 ⍵6,0 + 0.1 ⍵7,0 = 0.1(1.0) + 0.8(0.8) + 0.1(0.6) = 0.80 

𝑖 = 7; ⍵7,1 = 0.1 ⍵6,0 + 0.8 ⍵7,0 + 0.1 ⍵8,0 = 0.1(0.8) + 0.8(0.6) + 0.1(0.4) = 0.60 

𝑖 = 8; ⍵8,1 = 0.1 ⍵7,0 + 0.8 ⍵8,0 + 0.1  ⍵9,0 = 0.1(0.6) + 0.8(0.4) + 0.1(0.2) = 0.40 

𝑖 = 9; ⍵9,1 = 0.1 ⍵8,0 + 0.8 ⍵9,0 + 0.1 ⍵10,0 = 0.1(0.4) + 0.8(0.2) + 0.1(0.0) = 0.20 

In the same way you can find the values of next time levels fixing j=1 and put x=1, 2, 3...9. 

Also find the other values for fixing 𝑗 = 2, 𝑗 = 3 𝑎𝑛𝑑 𝑗 = 4. 

Example: 4 

Find the numerical solution of following heat equation 

𝜕𝑢 
 

 

𝜕𝑡 

𝜕2𝑢 
= 𝛼2     

𝜕𝑥2 

 

, 0 < 𝑥 < 2 , 𝑡 > 0 

By forward difference method at 𝑇 = 0.01 𝑎𝑛𝑑 𝑛 = 2 , 𝑚 = 2 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {
𝑢(0, 𝑡) = 0

 
𝑢(2, 𝑡) = 0 

𝜋 

 
Solution: Since 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; 𝑢(𝑥, 0) = sin⁡( 
2 

𝑥) 

𝑕 = 
𝑏 − 𝑎 

 
 

𝑛 

2 − 0 
= = 1 

2 

𝑘 = 
𝑇 − 𝑡0 

 

𝑚 

0.1 − 0 
= 

2 
= 0.05 

As 𝑛 = 2 , 𝑚 = 2   , 𝑖 = 1   ,   𝑗 = 0,1 

⍵𝑖,𝑗 +1 = 𝜆⍵𝑖−1,𝑗 + (1 − 2𝜆)⍵𝑖,𝑗 + 𝜆⍵𝑖+1,𝑗  … (1) 
Where  

𝜆 = 

 
𝛼2𝑘 

𝑕2   = 

 
1(0.05) 

(1)2 = 0.05 

By putting value of 𝜆 , equation 1 becomes 

⍵𝑖,𝑗 +1 = 0.05 ⍵𝑖−1,𝑗 + 0.9 ⍵𝑖,𝑗 + 0.05 ⍵𝑖+1,𝑗    … (2) 

𝐹𝑖𝑥 𝑗 = 0 
 
 

𝐹𝑖𝑥 𝑗 = 1 

 
𝐴𝑛𝑑 𝑝𝑢𝑡 𝑖 = 1 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 

⍵1,1 = 0.05 ⍵0,0 + 0.9 ⍵1,0 + 0.05 ⍵2,0 = 0.05(0) + 0.9(0.1) + 0.05(0) = 0.9 

 
𝐴𝑛𝑑 𝑝𝑢𝑡 𝑖 = 1 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 

⍵1,2 = 0.05 ⍵0,1 + 0.9 ⍵1,1 + 0.05 ⍵2,1 = 0.05(0) + 0.9(0.9) + 0.05(0) = 0.81 

 

LECTURE NO. 11 
 

Example: 5 

Find the numerical solution of following heat equation 

𝜕𝑢 
 

 

𝜕𝑡 

𝜕2𝑢 
= 𝛼2     

𝜕𝑥2 

 

, 0 ≤ 𝑥 ≤ 2 , 𝑡 > 0 

By forward difference method at 𝑇 = 0.05, 𝑕 = 0.1 𝑎𝑛𝑑 𝑘 = 0.01 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {𝑢(0, 𝑡) = 𝑢(2, 𝑡) = 0 ∀ 𝑡 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {𝑢(𝑥, 0) = 𝑠𝑖𝑛(2𝜋𝑥) 0 ≤ 𝑥 ≤ 2 
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Exact solution is given as 

Solution: It is given that 

Since 

 
𝑢(𝑥, 𝑡) = 𝑒−4𝜋

2𝑡 𝑠𝑖𝑛(2𝜋𝑥) 

 
𝑕 = 0.1 , 𝑘 = 0.01 𝑎𝑛𝑑 𝑇 = 0.05 

 
 

Also 

𝑛 = ( 
𝑏 − 𝑎 

) = 
𝑕 

2 − 0 
 

 

0.1 
= 20 

𝑚 = (
𝑇 − 𝑡0

) = 
0.05 − 0 

= 50
 

𝑘 0.01 
Therefore 

𝑖 = 1,2, … ,19 & 𝑗 = 0,1,2, … ,49 

Apply forward difference (FDW) on (
𝜕𝑢 

) and central difference (CD) on (
𝜕2𝑢

) and 𝜆 = 
𝑘 

. We get the 
𝜕𝑡 

following equation (𝐵𝑦 𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 "𝜔" 𝑏𝑦 "𝑢") 
𝜕𝑥 2 𝑕 2 

 
Now calculate 

⍵𝑖,𝑗 +1 = 𝜆⍵𝑖−1,𝑗 + (1 − 2𝜆)⍵𝑖,𝑗 + 𝜆⍵𝑖+1,𝑗  … (𝐴) 

𝑘 0.01 
 

So equation (A) becomes, 

𝜆 = 
𝑕2 

= 
(0.1)2 

= 1
 

 
⍵𝑖,𝑗 +1 = ⍵𝑖−1,𝑗 − ⍵𝑖,𝑗 + ⍵𝑖+1,𝑗  … (𝐵) 

Given conditions in "⍵" form can be written as  
⍵0,𝑗 = 0 ∀ 𝑗 = 0,1,2, … ,49 

 
 
 

𝐹𝑖𝑥 𝑗 = 0 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠; {⍵20,𝑗 = 0 ∀ 𝑗 = 0,1,2, … ,49 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {⍵𝑖,0 = 𝑠𝑖𝑛(2𝜋𝑥) ∀ 𝑖 = 0,1,2, … ,19 

 
𝐴𝑛𝑑 𝑝𝑢𝑡 𝑖 = 1,2, … ,19 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (𝐵) 

⍵𝑖,𝑗 +1 = ⍵𝑖−1,𝑗 − ⍵𝑖,𝑗 + ⍵𝑖+1,𝑗  … (𝐵) 

𝑖 = 1; ⍵1,1 = ⍵0,0 − ⍵1,0 + ⍵2,0 = 𝑠𝑖𝑛(2𝜋 × 0.0) − 𝑠𝑖𝑛(2𝜋 × 0.1) + 𝑠𝑖𝑛(2𝜋 × 0.2) = 0.3633 

𝑖 = 2; ⍵2,1 = ⍵1,0 − ⍵2,0 + ⍵3,0 = 𝑠𝑖𝑛(2𝜋 × 0.1) − 𝑠𝑖𝑛(2𝜋 × 0.2) + 𝑠𝑖𝑛(2𝜋 × 0.3) = 0.5878 

Similarly 
 

 𝑖 = 3; 

𝑖 = 4; 

⍵3,1 = ⍵2,0 − ⍵3,0 + ⍵4,0 

⍵4,1 = ⍵3,0 − ⍵4,0 + ⍵5,0 

= 0.5878 

= 0.3633 

 𝑖 = 5; 

𝑖 = 6; 

𝑖 = 7; 

⍵5,1 = ⍵4,0 − ⍵5,0 + ⍵6,0 

⍵6,1 = ⍵5,0 − ⍵6,0 + ⍵7,0 

⍵7,1 = ⍵6,0 − ⍵7,0 + ⍵8,0 

= 0.0 

= −0.3633 

= −0.5878 
 

Similarly  

 𝑖 = 8; ⍵8,1 = −0.5878 𝑖 = 9; ⍵9,1 = −0.3633 

 𝑖 = 10; ⍵10,1 = 0.0 𝑖 = 11; ⍵11,1 = 0.3633 

 𝑖 = 12; ⍵12,1 = 0.5878 𝑖 = 13; ⍵13,1 = 0.5878 

 𝑖 = 14; ⍵14,1 = 0.3633 𝑖 = 15; ⍵15,1 = 0.0 

 𝑖 = 16; ⍵16,1 = −0.3633 𝑖 = 17; ⍵17,1 = −0.5878 

 𝑖 = 18; ⍵18,1 = −0.5878 𝑖 = 19; ⍵19,1 = −0.3633 

Now       

𝐹𝑖𝑥 𝑗 = 1       

𝐴𝑛𝑑 𝑝𝑢𝑡 𝑖 = 1,2, … ,19 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (𝐵) 

Similarly; perform calculations till fixing 𝑗 = 49 and Find Exact Solution. 

Lengthy calculations; so you can skip the above part. Watch Lecture. 
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LECTURE NO. 12 

Example: 6 

Find the numerical solution of following heat equation 

𝜕𝑢(𝑥, 𝑡) 
 

 

𝜕𝑡 

𝜕2𝑢(𝑥, 𝑡) 
− 𝛼2 = 0 , 0 ≤ 𝑥 ≤ 2 , 𝑡 > 0 

𝜕𝑥2 
By forward difference method at 𝑇 = 0.5, 𝑕 = 0.1 𝑎𝑛𝑑 𝑘 = 0.05 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {𝑢(0, 𝑡) = 𝑢(2, 𝑡) = 0 ∀ 𝑡 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑢(𝑥, 0) = 𝑠𝑖𝑛(2𝜋𝑥) 0 ≤ 𝑥 ≤ 2 

Exact solution is given as 

Solution: It is given that 

Since 

𝑢(𝑥, 𝑡) = 𝑒−4𝜋
2𝑡 𝑠𝑖𝑛(2𝜋𝑥) 

 
𝑕 = 0.1 , 𝑘 = 0.05 𝑎𝑛𝑑 𝑇 = 0.5 

 

 
Also 

𝑛 = ( 
𝑏 − 𝑎 

) = 
𝑕 

2 − 0 
 

 

0.1 
= 20 

𝑚 = (
𝑇 − 𝑡0

) = 
0.5 − 0 

= 10
 

𝑘 0.05 
Therefore 

𝑖 = 1,2, … ,19 & 𝑗 = 0,1,2, … ,9 

Given conditions in "⍵" form can be written as 
 
 
 

Since 

⍵0,𝑗 = 0 ∀ 𝑗 = 0,1,2, … ,9 
𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠; {⍵20,𝑗 = 0 ∀ 𝑗 = 0,1,2, … ,9 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {⍵𝑖,0 = 𝑠𝑖𝑛(2𝜋𝑥) ∀ 𝑖 = 0,1,2, … ,19 

 

𝜆 = 
𝛼2𝑘 

𝑕2   = 
(1)2(0.05) 

(0.1)2 
= 5

 

Apply forward difference (FDW) on (
𝜕𝑢 

) and central difference (CD) on (
𝜕2𝑢

). We get the following 

equation(𝐵𝑦 𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 "𝜔" 𝑏𝑦 "𝑢") 
𝜕𝑡 𝜕𝑥 2 

⍵𝑖,𝑗 +1 = 𝜆⍵𝑖−1,𝑗 + (1 − 2𝜆)⍵𝑖,𝑗 + 𝜆⍵𝑖+1,𝑗  … (𝐴) 

By Putting 𝜆 = 5 value equation (A) becomes, 

⍵𝑖,𝑗 +1 = 5 ⍵𝑖−1,𝑗 − 9 ⍵𝑖,𝑗 + 5 ⍵𝑖+1,𝑗    … (1) 

𝐹𝑖𝑥 𝑗 = 0  
𝐴𝑛𝑑 𝑝𝑢𝑡 𝑖 = 1,2, … ,19 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

⍵𝑖,𝑗 +1 = 5 ⍵𝑖−1,𝑗 − 9 ⍵𝑖,𝑗 + 5 ⍵𝑖+1,𝑗    … (1) 

𝑖 = 1; ⍵1,1 = 5⍵0,0 − 9⍵1,0 + 5⍵2,0 = 5𝑠𝑖𝑛(2𝜋 × 0.0) − 9𝑠𝑖𝑛(2𝜋 × 0.1) + 5𝑠𝑖𝑛(2𝜋 × 0.2) = −0.5348 

𝑖 = 2; ⍵2,1 = 5⍵1,0 − 9⍵2,0 + 5⍵3,0 = 5𝑠𝑖𝑛(2𝜋 × 0.1) − 9𝑠𝑖𝑛(2𝜋 × 0.2) + 5𝑠𝑖𝑛(2𝜋 × 0.3) = −0.8653 

Similarly 
 

𝑖 = 3; ⍵3,1 = 5⍵2,0 − 9⍵3,0 + 5⍵4,0 = −0.8653 

𝑖 = 4; ⍵4,1 = 5⍵3,0 − 9⍵4,0 + 5⍵5,0 = −0.5348 

𝑖 = 5; ⍵5,1 = 5⍵4,0 − 9⍵5,0 + 5⍵6,0 = 0.0 

𝑖 = 6; ⍵6,1 = 5⍵5,0 − 9⍵6,0 + 5⍵7,0 = 0.5348 

𝑖 = 7; ⍵7,1 = 5⍵6,0 − 9⍵7,0 + 5⍵8,0 = 0.8653 

𝑖 = 8; ⍵8,1 = 5⍵7,0 − 9⍵8,0 + 5⍵9,0 = 0.8653 

𝑖 = 9; ⍵9,1 = 5⍵8,0 − 9⍵9,0 + 5⍵10,0 = 0.5348 

𝑖 = 10; ⍵10,1 = 5⍵9,0 − 9⍵10,0 + 5⍵11,0 = 0.0 
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Similarly  

 𝑖 = 11; ⍵11,1 = −0.5348 𝑖 = 12; ⍵12,1 = −0.8653 

 𝑖 = 13; ⍵13,1 = −0.8653 𝑖 = 14; ⍵14,1 = −0.5348 

 𝑖 = 15; ⍵15,1 = 0.0 𝑖 = 16; ⍵16,1 = 0.5348 

 𝑖 = 17; ⍵17,1 = 0.8653 𝑖 = 18; ⍵18,1 = 0.8653 

 
Now 

𝑖 = 19; ⍵19,1 = 0.5348 𝑖 = 20; ⍵20,1 = ? 

𝐹𝑖𝑥 𝑗 = 1       

𝐴𝑛𝑑 𝑝𝑢𝑡 𝑖 = 1,2, … ,19 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

Similarly; perform calculations till fixing 𝑗 = 9. 

Lengthy calculations; so you can skip the above part. 

𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 

𝑢(𝑥, 𝑡) = 𝑒−4𝜋
2𝑡 𝑠𝑖𝑛2𝜋𝑥 

𝜔1,1 = 𝜔(𝑥1 , 𝑡1) = 𝜔(0.1 , 0.05) =    

𝜔3,1 = 𝜔(𝑥3, 𝑡1) = 𝜔(0.3 , 0.05) =    

𝜔5,1 = 𝜔(𝑥5, 𝑡1) = 𝜔(0.5 , 0.05) =    

𝜔7,1 = 𝜔(𝑥7, 𝑡1) = 𝜔(0.7 , 0.05) =    

𝜔9,1 = 𝜔(𝑥9, 𝑡1) = 𝜔(0.9 , 0.05) =    

𝜔11,1 = 𝜔(𝑥11 , 𝑡1) = 𝜔(1.1 , 0.05) =    

𝜔13,1 = 𝜔(𝑥13 , 𝑡1) = 𝜔(1.3 , 0.05) =    

𝜔15,1 = 𝜔(𝑥15 , 𝑡1) = 𝜔(1.5 , 0.05) =    

𝜔17,1 = 𝜔(𝑥17 , 𝑡1) = 𝜔(1.7, 0.05) =    

𝜔19,1 = 𝜔(𝑥19, 𝑡1) = 𝜔(1.9 , 0.05) =    

Example: 7 

Find the numerical solution of following heat equation 

𝜔2,1 = 𝜔(𝑥2, 𝑡1) = 𝜔(0.2 , 0.05) =    

𝜔4,1 = 𝜔(𝑥4, 𝑡1) = 𝜔(0.4 , 0.05) =    

𝜔6,1 = 𝜔(𝑥6, 𝑡1) = 𝜔(0.6 , 0.05) =    

𝜔8,1 = 𝜔(𝑥8, 𝑡1) = 𝜔(0.8 , 0.05) =    

𝜔10,1 = 𝜔(𝑥10 , 𝑡1) = 𝜔(1.0 , 0.05) =    

𝜔12,1 = 𝜔(𝑥12 , 𝑡1) = 𝜔(1.2 , 0.05) =    

𝜔14,1 = 𝜔(𝑥14 , 𝑡1) = 𝜔(1.4 , 0.05) =    

𝜔16,1 = 𝜔(𝑥16 , 𝑡1) = 𝜔(1.6 , 0.05) =    

𝜔18,1 = 𝜔(𝑥18 , 𝑡1) = 𝜔(1.8 , 0.05) =    

𝜔20,1 = 𝜔(𝑥20 , 𝑡1) = 𝜔(2.0 , 0.05) =    

𝜕𝑢(𝑥, 𝑡) 
 

 

𝜕𝑡 

𝜕2𝑢(𝑥, 𝑡) 
− 𝛼2 = 0 , 0 ≤ 𝑥 ≤ 1 , 𝑡 > 0 

𝜕𝑥2 
By forward difference method at 𝑇 = 0.1, 𝑛 = 3 𝑎𝑛𝑑 𝑚 = 2 

 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 ∀ 𝑡 > 0 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑢(𝑥, 0) = 2𝑠𝑖𝑛(2𝜋𝑥) 0 ≤ 𝑥 ≤ 1 
 

Exact solution is given as 

Solution: It is given that 

Since 

 
𝜋 2 

 
 

𝑢(𝑥, 𝑡) = 2𝑒− 4 
𝑡 𝑠𝑖𝑛(2𝜋𝑥) 

 
𝑇 = 0.1 , 𝑛 = 3 𝑎𝑛𝑑 𝑚 = 2 

 
 

Also 

𝑕 = ( 
𝑏 − 𝑎 

) = 
𝑛 

1 − 0 
 

 

3 
= 0.33 

𝑘 = (
𝑇 − 𝑡0

) = 
0.1 − 0 

= 0.05 
𝑚 2 

Since 
𝑛 = 3   𝑠𝑜   𝑖 = 1,2 & 𝑚 = 2 𝑠𝑜 𝑗 = 1 

Apply forward difference (FDW) on (
𝜕𝑢 

) and central difference (CD) on (
𝜕2𝑢

) and 𝜆 = 
𝑘 

. We get the 
𝜕𝑡 

following equation (𝐵𝑦 𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 "𝜔" 𝑏𝑦 "𝑢") 
𝜕𝑥 2 𝑕 2 

 
Where 

⍵𝑖,𝑗 +1 = 𝜆⍵𝑖−1,𝑗 + (1 − 2𝜆)⍵𝑖,𝑗 + 𝜆⍵𝑖+1,𝑗  … (1) 

𝜆 = 
𝛼2𝑘 

𝑕2   
= 

(0.25)2(0.05) 

(0.33)2 
= 0.029 

https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE


MTH646 Handout 

Page | 22 

 

Join VU Group: https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE  

4,𝑗 

So, equation (1) becomes, 

⍵𝑖,𝑗 +1 = 0.029 ⍵𝑖−1,𝑗 + 0.942 ⍵𝑖,𝑗 + 0.029 ⍵𝑖+1,𝑗    … (2) 

𝐹𝑖𝑥 𝑗 = 0 
 
 
 

Now 

𝐹𝑖𝑥 𝑗 = 1 

 
𝐴𝑛𝑑 𝑝𝑢𝑡 𝑖 = 1,2 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2) 

𝑖 = 1; ⍵1,1 = 0.029 ⍵0,0 + 0.029 ⍵1,0 + 0.029 ⍵2,0 = 1.6001 

𝑖 = 2; ⍵2,1 = 0.029 ⍵1,0 + 0.029⍵2,0 + 0.029 ⍵3,0 = 1.6001 

 

 
𝐴𝑛𝑑 𝑝𝑢𝑡 𝑖 = 1,2 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2) 

𝑖 = 1; ⍵1, = 0.029 ⍵0,1 + 0.029 ⍵1,1 + 0.029 ⍵2,1 =    

𝑖 = 2; ⍵2,2 = 0.029 ⍵1,1 + 0.029⍵2,1 + 0.029 ⍵3,1 =    

Do Your Self. Also find the Exact Solution. 
 

 
Example: 8 

LECTURE NO. 13 

Find the numerical solution of following heat equation 

𝜕𝑢(𝑥, 𝑡) 
 

 

𝜕𝑡 

𝜕2𝑢(𝑥, 𝑡) 
= 𝛼2     

𝜕𝑥2 

 

, 0 ≤ 𝑥 ≤ 1 , 𝑡 > 0 

By backward difference method (implicit scheme) at 𝑇 = 1, 𝑕 = 0.25 𝑎𝑛𝑑 𝑘 = 0.0625 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 ∀ 𝑡 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑢(𝑥, 0) = 𝑠𝑖𝑛𝜋𝑥 0 ≤ 𝑥 ≤ 1 

Solution: It is given that 

𝑇 = 1 , 𝑕 = 0.25 𝑎𝑛𝑑 𝑘 = 0.0625 
Since 

 
 

Also 

𝑛 = ( 
𝑏 − 𝑎 

) = 
𝑕 

1 − 0 
= 4 

0.25 

𝑘 = (
𝑇 − 𝑡0

) =  
1 − 0 = 16 

𝑚 0.0625 
Since 

𝑖 = 1,2,3 & 𝑗 = 1,2, … ,15 

Apply backward difference/implicit scheme (IS) on (
𝜕𝑢 

) and central difference (CD) on (
𝜕2𝑢

). We get the 

following equation (𝐵𝑦 𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 "𝜔" 𝑏𝑦 "𝑢") 
𝛼2𝑘 

𝜕𝑡 𝜕𝑥 2 

 
Where 

⍵𝑖,𝑗 − ⍵𝑖,𝑗 −1 = 
𝑕2   (⍵𝑖−1,𝑗 − 2 ⍵𝑖,𝑗 + 𝜆⍵𝑖+1,𝑗 ) 

𝛼2𝑘 

𝑕2  = 𝜆 

By solving above equation, we have 

⍵𝑖,𝑗 −1 = −𝜆⍵𝑖−1,𝑗 + (1 + 2𝜆)⍵𝑖,𝑗 − 𝜆⍵𝑖+1,𝑗    … (1) 

𝐹𝑖𝑥 𝑗 = 1  
𝐴𝑛𝑑 𝑝𝑢𝑡 𝑖 = 1,2,3 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

𝑖 = 1; ⍵1,0 = −𝜆⍵0,1 + (1 + 2𝜆) ⍵1,1 − 𝜆 ⍵2,1 

𝑖 = 2; ⍵2,0 = −𝜆 ⍵1,1 + (1 + 2𝜆) ⍵2,1 − 𝜆 ⍵3,1} … (𝐴) 

𝑖 = 3; ⍵3,0 = −𝜆 ⍵2,1 + (1 + 2𝜆) ⍵3,1 − 𝜆 ⍵4,1 

Since given conditions in "⍵" form can be written as 
𝑢(0, 𝑡) = 0   =>   ⍵0,𝑗 = 0 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠; {
𝑢(1, 𝑡) = 0   =>   ⍵ = 0
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By Solving, we have 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {𝑢(𝑥, 0) = 𝑠𝑖𝑛𝜋𝑥 

⍵𝑖,𝑜 = 𝑠𝑖𝑛𝜋𝑥𝑖 ∀ 𝑖 = 1,2,3 

 
⍵1,0 = 𝑠𝑖𝑛(0.25𝜋) = 0.707 

⍵2,0 = 𝑠𝑖𝑛(0.50𝜋) = 1.0 

⍵3,0 = 𝑠𝑖𝑛(0.75𝜋) = 0.707 

Now, from equation (A) in matrix form 
1 + 2𝜆 −𝜆 0 

 
⍵1,1 

 
⍵1,0 

[ −𝜆 1 + 2𝜆 −𝜆 ] [ ⍵2,1] = [⍵2,0]   … (𝐵) 
 

Since 
0 −𝜆 1 + 2𝜆 ⍵3,1 ⍵3,0 

 

𝜆 = 
𝛼2𝑘 

𝑕2   = 
(1)2(0.0625) 

(0.25)2 
= 1

 

By Putting 𝜆 = 1 value equation (B) becomes 

3 −1 0 

 
⍵1,1 

 
0.707 

[−1 3 −1] [ ⍵2,1] = [ 1 ] 
 

As we know matrix relation, 
0 −1 3 ⍵3,1 0.707 

 
By calculating, we get 

𝐴𝜔 = 𝑏 => 𝜔 = 𝐴−1𝑏 

⍵1,1 0.4458 
[ ⍵2,1] = [0.6305] 

 
Now 

𝐹𝑖𝑥 𝑗 = 1 

⍵3,1 

 

 
𝐴𝑛𝑑 𝑝𝑢𝑡 𝑖 = 1,2,3 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

0.4458 

Similarly; perform calculations till fixing 𝑗 = 15. 

Lengthy calculations; so you can skip the above part. 
 

 
Example: 9 

LECTURE NO. 14 

Find the numerical solution of following heat equation 

𝜕𝑢 
 

 

𝜕𝑡 

𝜕2𝑢 
= 𝛼2     

𝜕𝑥2 

 

, 0 ≤ 𝑥 ≤ 1 , 𝑡 > 0 

By backward difference method (implicit scheme) at 𝑇 = 1, 𝑕 = 0.2 𝑎𝑛𝑑 𝑘 = 0.04 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 ∀ 𝑡 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {𝑢(𝑥, 0) = 𝑠𝑖𝑛𝜋𝑥 0 ≤ 𝑥 ≤ 1 

Solution: It is given that 

𝑇 = 1 , 𝑕 = 0.2 , 𝑘 = 0.04 , 𝑎 = 0 𝑎𝑛𝑑 𝑏 = 1 

Since 
 

 
Also 

𝑛 = ( 
𝑏 − 𝑎 

) = 
𝑕 

1 − 0 
= 5 

0.2 

 

 
Since 

𝑇 − 𝑡0 
𝑚 = ( ) = 

𝑘 

1 − 0 
 

 

0.04 
= 25 

𝑖 = 1,2,3,4 & 𝑗 = 1,2, … ,24 

Apply backward difference/implicit scheme (IS) on (
𝜕𝑢 

) and central difference (CD) on (
𝜕2𝑢

). We get the 

following equation (𝐵𝑦 𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 "𝜔" 𝑏𝑦 "𝑢") 
𝜕𝑡 𝜕𝑥 2 
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Where 
 

 
𝐹𝑖𝑥 𝑗 = 1 

⍵𝑖,𝑗 −1 = −𝜆⍵𝑖−1,𝑗 + (1 + 2𝜆)⍵𝑖,𝑗 − 𝜆⍵𝑖+1,𝑗 … (1) 

 
𝛼2𝑘 

𝑕2  = 𝜆 

𝐴𝑛𝑑 𝑝𝑢𝑡 𝑖 = 1,2,3,4 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

𝑖 = 1; ⍵1,0 = −𝜆⍵0,1 + (1 + 2𝜆) ⍵1,1 − 𝜆 ⍵2,1 

𝑖 = 2; ⍵2,0 = −𝜆 ⍵1,1 + (1 + 2𝜆) ⍵2,1 − 𝜆 ⍵3,1 

𝑖 = 3; ⍵ 
 
3,0 = −𝜆 ⍵2,1 + (1 + 2𝜆) ⍵3,1 − 𝜆 ⍵4,1 

… (𝐴) 

𝑖 = 4; ⍵4,0  = −𝜆 ⍵3,1  + (1 + 2𝜆) ⍵4,1  − 𝜆 ⍵5,1𝖩 

Since given conditions in "⍵" form can be written as 
𝑢(0, 𝑡) = ⍵0,𝑗 = 0 ∀ 𝑗 = 1,2, … ,24 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠; {
𝑢(1, 𝑡) = ⍵

  
4,𝑗 = 0 ∀ 𝑗 = 1,2, … ,24 

 
By solving, we have 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {𝑢(𝑥, 0) = 𝑠𝑖𝑛𝜋𝑥 ∀ 𝑖 = 1,2,3,4 

 
𝜔1,0 = 𝜔(𝑥1, 𝑡0) = 𝜔(0.2 , 0) = 𝑠𝑖𝑛(0.2𝜋) = 0.5877 

𝜔2,0 = 𝜔(𝑥2 , 𝑡0) = 𝜔(0.4 , 0) = 𝑠𝑖𝑛(0.4𝜋) = 0.9510 

𝜔3,0 = 𝜔(𝑥3 , 𝑡0) = 𝜔(0.6 , 0) = 𝑠𝑖𝑛(0.6𝜋) = 0.9510 

𝜔4,0 = 𝜔(𝑥4 , 𝑡0) = 𝜔(0.8 , 0) = 𝑠𝑖𝑛(0.8𝜋) = 0.5877 

Equation (A) becomes (in Matrix form), 

1 + 2𝜆 −𝜆 0 

[ −𝜆 1 + 2𝜆 −𝜆 

 
0 ⍵1,1 0.5877 
0 

] [ 
⍵2,1

] = [0.9540] … (𝐵) 
 
 

Since 

0 −𝜆 
0 0 

1 + 2𝜆 
−𝜆 

−𝜆 
1 + 2𝜆 

⍵3,1 

⍵4,1 

0.9510 
0.5877 

 

𝜆 = 
𝛼2𝑘 

𝑕2   = 
(1)2(0.04) 

(0.2)2 
= 1

 

By Putting 𝜆 = 1 value equation (B) becomes 

3 −1 0 0 

 
⍵1,1 

 
0.5877 

[−1 3 −1 
0 

] [ 
⍵2,1

] = [0.9540]   … (𝐶) 
0 −1 
0 0 

3 −1 
−1 3 

⍵3,1 

⍵4,1 

0.9510 
0.5877 

𝐴 𝜔 = 𝑏 

To find 𝜔 values, first we find inverse of 𝐴 𝑖. 𝑒. 𝐴−1 

3 −1 0 0 1 0 0 0 

[−1 3 −1 0 
] ~ [0 1 0 0

] 
 

Now apply Row Operations given below 

1) 𝑅1 ↔ 𝑅2    & − 1𝑅1 

2) −3𝑅1 + 𝑅2 

3) 𝑅2 ↔ 𝑅3    & − 1𝑅2 

4) 3𝑅2 + 𝑅1    & − 8𝑅2 + 𝑅3 

5) 𝑅3 ↔ 𝑅4 

6) 8𝑅3 + 𝑅1    , 3𝑅3 + 𝑅2    & − 21𝑅3 + 𝑅4 
1 

7) 
55 

𝑅4 

8) 3𝑅4 + 𝑅3    , 9𝑅4 + 𝑅2    & 21𝑅4 + 𝑅1 

Hence our required value for 

0 −1 3 −1 0 0 1 0 
0 0 −1 3 0 0 0 1 
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I 

] [ ] 

21 8 
𝖥 3 −1 

1
 

 
 
 
 
 
 
 

So equation (C) becomes, 

I 55 

I 9  

𝐴−1 = 
I55 

3 
I 
I55 
I 1  
L55 

55 55 
27 17 

 

 
 

55 55 
9 24 

 

 
 

55 55 
3 8 

 

 
 

55 55 

55 I 
−24I 
55 I 
−8 I 

I 
55 I 

−21I 
 

55    

⍵1,1 21 8 3 −1 0.5877 

[ 
⍵2,1] =  

1 
[ 9 27 17 

 

−24 0.9540 
 
 

Hence we get 

⍵3,1 55 3 
⍵4,1 1 

9 24 
3 8 

−8 0.9510 
−21 0.5877 

 
 

Required result. 

 
Example: 10 

⍵1,1 = 0.40395 ⍵2,1 = 0.60054 

⍵3,1 = 0.51720 ⍵4,1 = −0.02352 

 
LECTURE NO. 15 

Find the numerical solution of following heat equation 
𝜕𝑢 𝜕2𝑢 

𝜕𝑡 
= 

𝜕𝑥2 … 1𝐷 

By backward difference method (implicit scheme) at 𝑕 = 0.25 𝑎𝑛𝑑 𝑘 = 0.005 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 ∀ 𝑡 
1 

2𝑥 , 0 ≤ 𝑥 ≤ 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; 𝑢(𝑥, 0) = { 
1 

2 
,   𝑡 = 0 

 
Solution: 

We can write the given equation as, 

2(1 − 𝑥) , 
 
 
 

𝑘 

< 𝑥 ≤ 1 , 𝑡 = 0 
2 

 
Let 

⍵𝑖,𝑗 − ⍵𝑖,𝑗 −1 = 
𝑕2  (⍵𝑖−1,𝑗 − 2⍵𝑖,𝑗 + ⍵𝑖+1,𝑗 ) … (1) 

𝑘 

𝑕2 
= 𝜆 = 0.08 

So, we can write equation (1) as, (without putting 𝜆 value) 

⍵𝑖,𝑗 − ⍵𝑖,𝑗 −1 = 𝜆⍵𝑖−1,𝑗 − 2𝜆⍵𝑖,𝑗 + 𝜆⍵𝑖+1,𝑗 

Or by solving we have 

 
By putting 𝜆 value, it becomes 

 
⍵𝑖,𝑗 −1 = −𝜆⍵𝑖−1,𝑗 + (1 + 2𝜆)⍵𝑖,𝑗 − 𝜆⍵𝑖+1,𝑗 

 
Since 

⍵𝑖,𝑗 −1 = −0.08 ⍵𝑖−1,𝑗 + 1.16 ⍵𝑖,𝑗 − 0.08 ⍵𝑖+1,𝑗    … (2) 

 

 
Also 

𝑛 = ( 
𝑏 − 𝑎 

) = 
𝑕 

1 − 0 
 

 

0.25 
= 4 𝑖 = 1,2,3 

𝑇 − 𝑡0 
𝑚 = ( ) = 

𝑘 

1 − 0 
 

 

0.005 
= 200 𝑗 = 0,1,2, … ,199 

Since given conditions in "⍵" form can be written as 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {⍵0,𝑗 = ⍵4,𝑗 = 0 
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⍵𝑖,0 = 2𝑥𝑖 , 𝑖 = 1,2 
 

𝐹𝑖𝑥 𝑗 = 1 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; { 
𝑖,0 = 2(1 − 𝑥𝑖 ) , 𝑖 = 3,4 

𝐴𝑛𝑑 𝑝𝑢𝑡 𝑖 = 1,2,3 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2) 

𝑖 = 1; ⍵1,0 = −0.08 ⍵0,1 + 1.16 ⍵1,1 − 0.08 ⍵2,1 = 0.5 

𝑖 = 2; ⍵2,0 = −0.08 ⍵1,1 + 1.16 ⍵2,1 − 0.08 ⍵3,1 = 1.0} … (𝐴) 
𝑖 = 3; ⍵3,0 = −0.08 ⍵2,1 + 1.16 ⍵3,1 − 0.08 ⍵4,1 = 0.5 

Equation (A) becomes (in Matrix form), 
1.16 −0.08 0 ⍵1,1 0.5 

[−0.08 1.16 −0.08] [ ⍵2,1 ] = [1.0] … (𝐵) 
0 −0.08 1.16 ⍵3,1 0.5 

𝐴 𝜔 = 𝑏 

To find 𝜔 values, first we find inverse of 𝐴 𝑖. 𝑒. 𝐴−1 

 

 
s example. So, 

 
 
 
 
 
 
 
 
 

 

Hence we get 

 
Required result. 

 
⍵1,1 = 0.49517 ⍵2,1 = 0.93032 ⍵3,1 = 0.49307 

 

 
Exercise: 

LECTURE NO. 16 

Question#1: Find the numerical solution of following heat equation 
𝜕𝑢(𝑥, 𝑡) 

= 
𝜕𝑡 

𝜕2𝑢(𝑥, 𝑡) 

𝜕𝑥2 , 0 ≤ 𝑥 ≤ 1 , 𝑡 > 0 

By backward difference method (implicit scheme) at 𝑇 = 1, 𝑕 = 0.1 𝑎𝑛𝑑 𝑘 = 0.005 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 ∀ 𝑡 
1 

2𝑥 , 0 ≤ 𝑥 ≤ 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; 𝑢(𝑥, 0) = { 
1 

2 
,   𝑡 = 0 

 
Hint: 

2(1 − 𝑥) , 
2 

 
𝑛 = 10 , 𝑖 = 1,2, … ,9 

𝑚 = 200 , 𝑗 = 1,2, … ,99 

< 𝑥 ≤ 1 , 𝑡 = 0 

Question#2: Find the numerical solution of following heat equation 

𝜕𝑢 
 

 

𝜕𝑡 

𝜕2𝑢 
= 𝛼2     

𝜕𝑥2 

 

, 0 ≤ 𝑥 ≤ 1 , 𝑡 > 0 

By backward difference method (implicit scheme) at 𝑇 = 1, 𝑕 = 0.1 𝑎𝑛𝑑 𝑘 = 0.01 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 ∀ 𝑡 > 0 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; 𝑢(𝑥, 0) = 𝑠𝑖𝑛𝜋𝑥 0 ≤ 𝑥 ≤ 1 

Hint:  
𝑛 = 10 , 𝑖 = 1,2, … ,9 

𝑚 = 200 , 𝑗 = 1,2, … ,99 

𝐴 → 9 × 9 , 𝐴−1 =? , 𝐴⍵ = 𝑏 , ⍵ =? 

⍵ 

Note: You can find 𝐴−1 value by applying row operation, as we did in previou 
0.8662 0.0600 0.0041 

𝐴−1 = [0.0600 0.8703 0.0600] 
0.0041 0.0600 0.8620 

So equation (B) becomes, 

𝜔 = 𝐴−1 𝑏 
 ⍵1,1 0.8662 0.0600 0.0041 0.5 
 [ ⍵2,1 ] = [0.0600 0.8703 0.0600] [1.0] 
 ⍵3,1 0.0041 0.0600 0.8620 0.5 
 

https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE


MTH646 Handout 

Page | 27 

 

Join VU Group: https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE  

] 2 

Question#3: Find the numerical solution of following heat equation 
𝜕𝑢 4 𝜕2𝑢 

𝜕𝑡 
= 

𝜋2 𝜕𝑥2 , 0 ≤ 𝑥 ≤ 4 , 𝑡 > 0 

By both forward and backward difference methods at 𝑇 = 0.08, 𝑕 = 0.2 𝑎𝑛𝑑 𝑘 = 0.04 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {𝑢(0, 𝑡) = 𝑢(4, 𝑡) = 0 ∀ 𝑡 
 
 

Exact Solution: 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; 𝑢(𝑥, 0) = 𝑠𝑖𝑛 
𝜋𝑥 

 
 

4 
(1 + 2𝑐𝑜𝑠 

𝜋𝑥 
 

 

4 
) , 0 ≤ 𝑥 ≤ 4 

𝑢(𝑥, 𝑡) = 𝑒 −𝑡 𝑠𝑖𝑛 ( 
𝜋𝑥 

2 

−𝑡 𝜋 
) + 𝑒 4 𝑠𝑖𝑛 (  ) 

4 
Question#4: Find the numerical solution of following heat equation 

𝜕𝑢 1 𝜕2𝑢 

𝜕𝑡 
= 

𝜋2 𝜕𝑥2 , 0 ≤ 𝑥 ≤ 1 , 𝑡 > 0 

By both explicit and implicit methods at 𝑇 = 0.08, 𝑕 = 0.1 𝑎𝑛𝑑 𝑘 = 0.04 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; {𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 ∀ 𝑡 > 0 
1 

 
Exact Solution: 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛; 𝑢(𝑥, 0) = 𝑐𝑜𝑠𝜋 (𝑥 − ) , 0 ≤ 𝑥 ≤ 1 
2 

𝑢(𝑥, 𝑡) = 𝑒−𝑡 𝑐𝑜𝑠𝜋 (𝑥 − 
1

) 
2 

 

LECTURE NO. 17 
 

Crout’s Method to Solve Tridiagonal System of Equation: 

Consider a 4 × 4 system of linear equations 

𝑎11 𝑥1 𝑎12 𝑥2 0 0 

[ 𝑎21 𝑥1 𝑎22 𝑥2 𝑎23 𝑥3 0 

 

 
𝑏1 

𝑏 = [ ] 
0 𝑎32 𝑥2 𝑎33 𝑥3 𝑎34 𝑥4 

0 0 𝑎43 𝑥3 𝑎44 𝑥4 

𝑏3 

𝑏4 

𝑎11 𝑎12 0 0 
[ 𝑎21 𝑎22 𝑎23 0 

𝑥1 𝑏1 
𝑥2 𝑏2 

0 𝑎32 𝑎33 𝑎34 
] [𝑥3 

]  = [
𝑏
 ] … (1) 

0 0 

Consider 𝐴𝑥 = 𝑏 … (2) 

Let 𝐴 = 𝐿𝑈 

Then equation (2) becomes 

𝐿𝑈𝑥 = 𝑏 

𝑎43 𝑎44 𝑥4 𝑏4 

So 𝑈𝑥 = 𝑦 & 𝐿𝑦 = 𝑏 

Since 𝐿𝑈 = 𝐴 

Where 

𝑙11 0 0 

𝐿 = [ 
𝑙21 𝑙22 0 
0 𝑙32 𝑙33 

0 
0 

] , 𝑈 = [ ] 
0 

 
Since 

0 0 𝑙43 𝑙44 

 
 

𝑎11 𝑎12 0 0 

[ 𝑎21 𝑎22 𝑎23 0 

 

 
𝐴 = 𝐿𝑈 

𝑙11 0 0 

] =  [ 
𝑙21 𝑙22 0 

 
 

 
0 
0 

] [ 

 
 
 
1 𝑢12 0 0 
0 1 𝑢23 0 

] 
0 𝑎32 𝑎33 𝑎34 0 𝑙32 𝑙33 0 0 0 1 𝑢34 

0 0 𝑎43 𝑎44 0 0 𝑙43 𝑙44 0 0 0 1 

3 

1 𝑢12 0 0 𝑎11 𝑎12 0 0 
0 1 𝑢23 0 ] , 𝐴 = [ 

𝑎21
 𝑎22 𝑎23 0 

0 0 1 𝑢34 0 𝑎32 𝑎33 𝑎34 

0 0 0 1 0 0 𝑎43 𝑎44 
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𝑦3 

𝑎11 𝑎12 0 0 

[ 𝑎21 𝑎22 𝑎23 0 

𝑙11 𝑙11 𝑢12 0 0 

] = [ 
𝑙21 𝑙21 𝑢12 + 𝑙22 𝑙22 𝑢23 0 

] 
0 𝑎32 

0 0 

𝑎33 𝑎34 0 
𝑎43 𝑎44 0 

𝑙32 

0 

𝑙32 𝑢23 + 𝑙33 

𝑙43 

𝑙33 𝑢34 

𝑙43 𝑢34 + 𝑙44 

By comparing, we have 

𝑙11 = 𝑎11 𝑙11 𝑢12 = 𝑎12 ⇒ 𝑢12 = 
𝑎12 

𝑙11 

𝑙21 = 𝑎21 𝑙21 𝑢12 + 𝑙22 = 𝑎22 ⇒ 𝑙22 = 𝑎22 − 𝑙21 𝑢12 

𝑙32 = 𝑎32 𝑙22 𝑢23 = 𝑎23 ⇒   𝑢23 = 
𝑎23 

𝑙22 

𝑙43 = 𝑎43 𝑙32 𝑢23 + 𝑙33 = 𝑎33 ⇒ 𝑙33 = 𝑎33 − 𝑙32 𝑢23 

𝑙33 𝑢34 = 𝑎34 ⇒ 𝑢34 = 
𝑎34 

𝑙33 
𝑙43 𝑢34 + 𝑙44 = 𝑎44 ⇒   𝑙44 = 𝑎44 − 𝑙43 𝑢34 

In general, we can write 

𝑆𝑡𝑒𝑝 − 𝐼: Set 𝑙11 
 
= 𝑎11 

 
, 𝑢12 

 
= 

𝑎12 

𝑙11 

𝑆𝑡𝑒𝑝 − 𝐼𝐼: For 𝑖 = 1,2, … 𝑛 − 1 

𝑙𝑖,𝑖−1 = 𝑎𝑖,𝑖−1 

𝑙𝑖𝑖 = 𝑎𝑖𝑖 + 𝑙𝑖,𝑖−1 . 𝑢𝑖−1,𝑖    ; 𝑖 = 2, … , 𝑛 − 1 
𝑎𝑖,𝑖+1 

𝑢𝑖,𝑖+1 = 
𝑙𝑖𝑖 

; 𝑖 = 2, … , 𝑛 − 1 

𝑆𝑡𝑒𝑝 − 𝐼𝐼𝐼: 𝑙𝑛 ,𝑛−1 = 𝑎𝑛,𝑛−1 

𝑙𝑛 ,𝑛 = 𝑎𝑛 ,𝑛 − 𝑙𝑛 ,𝑛−1 . 𝑢𝑛−1,𝑛 

As 𝐿𝑦 = 𝑏 

𝑙11 0 0 

[ 
𝑙21 𝑙22 0 

0 𝑦1 𝑏1 
0 𝑦2 𝑏2 

0 𝑙32 𝑙33 
] [ ] = [ ] 

0 𝑏3 

 
So, 

0 0 𝑙43 𝑙44 
𝑦4 𝑏4 

𝑦1 

1 

𝑏1 
= 

𝑙11 
, 𝑦2 

1 
= 

𝑙22 
(𝑏2 − 𝑙21 

1 

𝑦1) 

𝑦3 = 
33 

(𝑏3 − 𝑙32 𝑦2) , 𝑦4 = 
44 

(𝑏4 − 𝑙43 𝑦3) 

𝑆𝑡𝑒𝑝 − 𝐼𝑉: Set 𝑦1 =
 𝑏1  

𝑙11 

𝑆𝑡𝑒𝑝 − 𝑉: For 𝑖 = 1,2, … 𝑛 

1 
𝑦𝑖 = 

𝑖𝑖 

 

(𝑏𝑖 − 𝑙𝑖,𝑖−1 . 𝑦𝑖−1) 

Since 𝑈𝑥 = 𝑦 

1 𝑢12 0 0 

[ 
0 

 
𝑥1 𝑦1 
𝑥2 𝑦2 

𝑢34 
] [𝑥3

] = [𝑦3
] 

 
So, 

 
 

𝑥1 + 𝑢12 𝑥2 = 𝑦1 

{
𝑥2 + 𝑢23 𝑥3 = 𝑦2 

1 𝑥4 𝑦4 

 
𝑥1 = 𝑦1 − 𝑢12 𝑥2 
𝑥2 = 𝑦2 − 𝑢23 𝑥3 

𝑥3 + 𝑢34 𝑥4 = 𝑦3 

𝑥4 = 𝑦4 

𝑆𝑡𝑒𝑝 − 𝑉𝐼: Set 𝑥𝑛 = 𝑦𝑛 

𝑇𝑕𝑖𝑠 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 ⇒ {𝑥3 = 𝑦3 − 𝑢34 𝑥4
 

𝑥4 = 𝑦4 

𝑆𝑡𝑒𝑝 − 𝑉𝐼𝐼: For 𝑖 = 1,2, … 𝑛 − 1 

𝑥𝑖 = 𝑦𝑖 − 𝑢𝑖,𝑖+1 . 𝑥𝑖+1 

These are the seven steps to solve the Crout’s Method. 

𝑙 𝑙 

𝑙 

0 1 𝑢23 

0 0 1 
0 0 0 
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Example: 11 

LECTURE NO. 18 

Solve the following system of linear equations by Crout’s method. 

𝑎1𝑥1 + 𝑐1𝑥2 = 𝛼1 

𝑏2𝑥1 + 𝑎2𝑥2 + 𝑐2𝑥3 = 𝛼2 

𝑏3𝑥2 + 𝑎3𝑥3 + 𝑐3𝑥4 = 𝛼3 

𝑏4𝑥3 + 𝑎4𝑥4 = 𝛼4 

Solution: In matrix form, we can write it as 
𝑎1 𝑐1 0 0 

[
𝑏2 𝑎2 𝑐2 0 

 

𝑥1 
𝑥2 

 

𝛼1 
𝛼2 

0 𝑏3 𝑎3 𝑐3 
] [𝑥3

] = [𝛼3
]   … (1) 

0 0 𝑏4 𝑎4 𝑥4 𝛼4 

So, 𝐴 𝑥 = 𝑏 

Matrix A can be decompose as 𝐿 𝑈 = 𝐴 … (2) 

Where 
𝑙1 0 0 

𝐿 = [ 
𝑏2 𝑙2 0 

0 𝑏3 𝑙3 

0 
0 

]  ,  𝑈 = [ 
0 

1 𝑢1 0 
0 1 𝑢2 

0 0 1 

0 
0 

]
 

𝑢3 

 

So equation (2) can written as 
0 0 𝑏4 𝑙4  

 
𝐿 𝑈 = 𝐴 

0 0 0 1 

𝑙1 0 0 

[ 
𝑏2 𝑙2 0 

0 
0 

] [ 
1 𝑢1 0 
0 1 𝑢2 

0 𝑎1 𝑐1 0 0 
0 

] =  [
𝑏2 𝑎2 𝑐2 0 

]
 

0 𝑏3 𝑙3 0 0 0 1 𝑢3 0 𝑏3 𝑎3 𝑐3 

0 0 𝑏4 𝑙4 0 0 0 1 0 0 𝑏4 𝑎4 

𝑙1 

[
𝑏2 

𝑙1𝑢1 

𝑏2𝑢1 + 𝑙2 

0 0 
𝑙2𝑢2 0 

𝑎1 𝑐1 0 0 

] =  [
𝑏2 𝑎2 𝑐2 0 

]
 

 
 

So, 

0 𝑏3 𝑏2𝑢2 + 𝑙3 𝑙3𝑢3 
0 0 𝑏4 𝑏4𝑢3 + 𝑙4 

0 𝑏3 
0 0 

𝑎3 𝑐3 

𝑏4 𝑎4 

𝑙1 = 𝑎1 , 𝑢1 = 
𝑐1/𝑙 , 𝑢2 = 

𝑐2/𝑙 
, 𝑙2 = 𝑎2 − 𝑏2𝑢1 

𝑢3 = 
𝑐3/𝑙 , 𝑙3 = 𝑎3 − 𝑏3𝑢2 , 𝑙4 = 𝑎4 − 𝑏4𝑢3 

𝑆𝑡𝑒𝑝 − 𝐼: Set 𝑙1 = 𝑎1 , 𝑢1 = 
𝑐1/𝑙 

 

𝑆𝑡𝑒𝑝 − 𝐼𝐼: For 𝑖 = 1,2, … 𝑛 − 1 

𝑙𝑖 = 𝑎𝑖 − 𝑏𝑖 . 𝑢𝑖−1 , 𝑢𝑖 = 
𝑐𝑖/ 

𝑖 

𝑆𝑡𝑒𝑝 − 𝐼𝐼𝐼: 𝑙𝑛 = 𝑎𝑛 − 𝑏𝑛 . 𝑢𝑛−1 

So, U becomes, 
𝑐1/𝑙 0 

1 / 
 
 
 
 
 
 

 
0 𝑏3 

] 
𝑙3 

0 0 𝑏4 𝑙4 𝑦4 𝛼4 

1 2 

3 

1 

𝑙 

𝖥 1 
1 0 1 

I   0 𝑐 I 
𝑈 = I 0 

𝑐2 

𝑙2 
3/𝑙 

I 
I    3I 
I 
L 

0 
0 

0 1 
0 0 1 

I 
  

 Now as, 𝐿 𝑦 = 𝑏 so,  

𝑙1 

 

0 
 

0 
 

0 
 

𝑦1 

 
𝛼1 

 
[ 

𝑏2 𝑙2 0 0 
]
 

0 
𝑦2 𝛼2 

[𝑦3 
] = [𝛼3
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1 
1 

2 

3 

So,  
 

 𝑦1 ل

 

= 
𝑑1 

𝑙1 
1 

I𝑦2  = 
𝑙
 (𝑑2 − 𝑏2𝑦1) 

❪ 𝑦 1 = (𝑑 
 

− 𝑏 𝑦 ) 
3 

 

I𝑦 

𝑙3 
3 

1 
= (𝑑 

 

3   2 
 

− 𝑏 𝑦 ) 

 
𝑆𝑡𝑒𝑝 − 𝐼𝑉: Set 𝑦1 = 

𝑑1 

𝑙1 

𝗅 4 𝑙4 
4 4   3 

𝑆𝑡𝑒𝑝 − 𝑉: For 𝑖 = 1,2, … 𝑛 
1 

 
Now, 𝑈 𝑥 = 𝑦 

𝑦𝑖 = 
𝑖 

(𝑑𝑖 − 𝑏𝑖 . 𝑦𝑖−1) 

1 𝑢1 0 
0 1 𝑢2 

0 𝑥1 
0 𝑥2 

𝑦1 
𝑦2 

[ 
𝑢 

] [𝑥3
] = [𝑦3

] 

 
So, 

1 𝑥4 𝑦4 

 
 
 

𝑆𝑡𝑒𝑝 − 𝑉𝐼: Set 𝑥𝑛 = 𝑦𝑛 

𝑥1 = 𝑦1 − 𝑢1𝑥2 

𝑥2 = 𝑦2 − 𝑢2𝑥3 
{𝑥3 = 𝑦3 − 𝑢3𝑥4 

𝑥4 = 𝑦4 

𝑆𝑡𝑒𝑝 − 𝑉: For 𝑖 = 1,2, … 𝑛 − 1 

𝑥𝑖 = 𝑦𝑖 − 𝑢𝑖 . 𝑥𝑖+1 

As, 

𝖥 1 𝑐1/𝑙 0 0 1 ل𝑥1 = 𝑦1 − 
𝑐1/𝑙 𝑥2 

I 
𝑈 = I 0 1 𝑐2/𝑙

 
0  I 

𝑐3/  I 𝑆𝑜, 𝑏𝑦 𝑝𝑢𝑡𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 
I𝑥2  = 𝑦2 − 

𝑐2/𝑙   𝑥3 

I 2 
I 0 0 1 

𝑙3I 
I 

❪  
𝑥3 = 𝑦3 − 𝑐3/𝑙

 𝑥4 

L 0 0 0 1     
I 3 

𝗅 𝑥4 = 𝑦4 

 
This is our required result. 

Example: 12 

Solve the following system of linear equations by Crout’s method. 

0.5𝑥1 + 0.25𝑥2 = 0.35 

0.3𝑥1 + 0.80𝑥2 + 0.40𝑥3 = 0.77 

0.25𝑥2 + 𝑥3 + 0.5𝑥4 = −0.5 

𝑥3 − 2.0𝑥4 = −2.25 
Solution: Since  

0.5 0.25 0 0 

𝐴 = [0.3 0.80 0.40 0 ] 
 
 

As, 𝐴 = 𝐿 𝑈 

0 0.25 1 0.5 
0 0 1 −2 

 
 

] 
0 0.25 1 0.5 
0 0 1 −2 

0 𝑙32 𝑙33 0 
0 0 𝑙43 𝑙44 

2 

𝑙 

0.5 0.25 0 0 𝑙11 0 0 0 

[0.3 0.80 0.40 0 ] = [ 
𝑙21 𝑙22 0 0 

 

1 𝑢1 0 0 

[ 0 1 𝑢2 0 
]
 

0 0 1 𝑢3 

0 0 0 1 

 

0 0 1 
0 0 0 
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] [ ] = [ ] 

𝑆𝑡𝑒𝑝 − 𝐼: 
 

 
𝑆𝑡𝑒𝑝 − 𝐼𝐼: 

 
 

𝑙11 = 𝑎11 = 0.5 , 𝑢12 = 

 
𝑎12 

 

𝑙11 

 
0.25 

= = 0.05 
0.5 

 
 
 
 
 
 
 

𝑆𝑡𝑒𝑝 − 𝐼𝐼𝐼: 

𝑙𝑖,𝑖−1 = 𝑎𝑖,𝑖−1    ; 𝑖 = 2,3,4 

𝑙21 = 𝑎21 = 0.3 , 𝑙32 = 𝑎32 = 0.25 , 𝑙43 = 𝑎43 = 1 
𝑙𝑖𝑖 = 𝑎𝑖𝑖 − 𝑙𝑖,𝑖−1 . 𝑢𝑖−1,𝑖    ; 𝑖 = 2,3,4 

𝑙22 = 𝑎22 − 𝑙21 . 𝑢12 = 0.8 − (0.3)(0.05) = 0.7825 

𝑙33 = 𝑎33 − 𝑙32 . 𝑢23 = 1 − (0.25)(0.511) = 0.7822 

𝑙44 = 𝑎44 − 𝑙43 . 𝑢34 = −2 − (1)(−0.5733) = −2.5733 
 

𝑎𝑖,𝑖+1 

𝑢𝑖,𝑖+1 = 

𝑎23 

𝑙𝑖𝑖 
; 𝑖 = 2,3 

0.4 
 
 
 
 

Now as,   𝐿 𝑦 = 𝑏 

𝑢23 = 

 
𝑢34 = 

𝑙22 

𝑎34 

𝑙33 

= = 0.511 
0.7825 

0.5 
= = 0.5733 

0.8722 

0.5 0 0 0 𝑦1 0.35 
0.3 0.7825 0 0 𝑦2 0.77 

[ 
0 0.25 0.872 0 ] [𝑦3

] = [ 
−0.5 

] 

 
This implies, 

0 0 1 −2.5733 𝑦4 −2.25 

 
Now as,   𝑈 𝑥 = 𝑦 

𝑦1 = 0.70 , 𝑦2 = 0.6709 , 𝑦3 = −0.7656 , 𝑦4 = 0.5768 

1 0.05 0 0 𝑥1 0.70 

[  0 1 0.511 0 𝑥2 0.6709 
 

 
This implies, 

0 0 1 0.5733 
0 0 0 1 

𝑥3 

𝑥4 

−0.7656 
0.5768 

𝑥1 = 0.6384 , 𝑥2 = 1.2312 , 𝑥3 = −1.9620 , 𝑥4 = 0.5768 

This is our required result. 
 
 

“Good Luck For The Mid-Term Exam” 
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