MTH646 Handout

MTHG646 - PARTIAL DIFFERENTIAL EQUATIONS

LECTURE NO. 01
Introduction:
In Mathematics, a partial differential equation is one of the types of differential equations, in which the
equation contains unknown multi variables with their partial derivatives. It is a special case of an ordinary
differential equation.
Many world related problems in applied sciences, physics and engineering are modeled mathematically
with partial differential equations.
In numerical simulation, it is important to find out the exact solutions of partial differential equations but
unfortunately we do not have appropriate methods to find the exact analytical solution of many types of
partial differential equations. In this situation we utilize different approximations and other techniques to
solve the problem numerically. There are several numerical methods are available in literature that help us
to understand the mechanism and complexity of the differential problems.
Definition Partial Derivative:
Let u be a function of independent variables x,y,z and t i.e. u = u(x, y, z,t). The partial derivative of u

6u
w.r.t x is denoted by = OF Uy and defined as
O _ i U+ AX Y, 2,0 —u(x, Y, 2,0)
aX Ax—0 AX

Provided that above limit exists.
Similarly, partial derivative of u w.r.t to y and z can be defined,
ou _ Lim ucx, y +Ay, z,t) —u(x, y, z,t)

oy -0 Ay
ou _ Lim u(x,y,z + Az, t) —u(x, y, z,t)
Example: 07 80 Az

Suppose u is a function of more than one variable such that,
u(x, y, z) = XC0s z + x*y?e’

a_u = COS Z + 2Xy?¢’
OX

8_u =0+ x*2ye’ = 2yx%’

oy
u i
8_ = X(-sinz) + x* y2¢’
0z
Partial Differential Equations:

A partial differential equation (PDE) is a relationship between an unknown function of several variables and
its partial derivatives. Let u(x, t) is unknown function and x and t are independent variables, then we
usually write, u = u(x, t) and we say that u is dependent variable.

Examples:
Heat Equation u(x,r) _ O'u(x,n)
ot o’
Wave Equation O u(x,r) _ 0u(x.1)
o*t nE
Laplace Equation 51”f-\‘:.1‘) _ az“ﬂ('\"'y) |
ox- oy~

PDE involves two or more independent variables. In this example, x and t are independent variables.
Order of PDE:
The order of a PDE is the order of the highest derivative that occurs in the equation.
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Examples: ou ou
15t order 1) a_&:o, order = order PDE
nd Fu ou 4,
2 order 2) y:(1+5) » order= order PDE
th ot
4™ order U +—5—u=0, order= order PDE
3 —

Degree of a PDE:
A PDE is the degree of the highest order derivative which occurs in it after the equation has been
rationalized. Examples:

ou_
= 1) = Y5,
1) Degree = 1 ) LG
2)D =2 Fu 3=(au)+u=0
) Degree = (30 " '
cu
Squaring, 3) Jr My =,
q g +(ax) yax3’
D 5 Squaring,
egree = 0 o°
J w(Cyr=vy,
OX ox®

Dimension of PDE:
The dimension of a PDE is the number of independent variables taken in space direction in the partial
differential equation. Examples:

1 -aaltj-=cgil; dim= " or dim = 1or 1D
ou  u

2) 6?+W=O, dim= ordim = 2 or 2D
ou u  u

3) ¥+¥+§:0, dim=  ordim = 3 0r3D

Linear and non-linear partial differential equation:
If the dependent variable and all its partial derivatives occur linearly in any PDE then such an equation is
called linear PDE otherwise a nonlinear PDE.

2
Examples: 1) (x*+ yz)a_u+6_u_3u:0
ot oxoy
aZu aZu aZu ou 2 ou 2
o) UX—— +U’xy ruy—*+ () ) w=o
) ox OXoy oy X oy

o%u u o, u ,
ox? " Voxay +8y2 =x

3)

Eqg. (1) is linear but Egs. (2) and (3) are non-linear partial differential equations.

LECTURE NO. 02
Homogeneous and non-homogeneous PDEs:
If all the terms of a PDE contain the dependent variable or its partial derivatives then such a PDE is called
homogeneous or non-homogeneous otherwise. Examples:

ou
DOE+y) .~ 3u=0
ot oxoy

u U eu . Ou au 2
2) UX — +uxy oy 2+ () v ypoo
ox2 oxoy oy> o oy
o2u  u o U
2 2
W“axay) o7 = *y

Egs. (1) and (2) are homogeneous while Eq.(3) is non-homogeneous partial differential equations.

3)

General Solutions of PDE:
A solution of a PDE is any function which satisfies the equation. A general solution of a PDE is a solution
which contains the number of arbitrary independent functions equal to the order of the equation.
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Example: The solution of the second order PDE
o
OXOX
u= x2y+_1 xy? + F(x) + G(y)
2

=2X-YIs

Here F(x) and G(y) are arbitrary independent functions, it is a general solution.
Particular Solution of PDE:
A particular solution is one which can be obtained from general solution by particular choice of arbitrary
function. Example: ] )
In particular, F(x) = 2sin x, G(x) = 3y* -5, then we have
u=xy+ 1Exy2 +F(X) + G(x)

u= x2y+£xy2 +2sin x+3y* -5
2
Which is particular solution of the PDE.

Auxiliary Conditions:

The PDEs that represent physical systems usually have infinite number of solutions. For example:
The functionsu = X*—y*, u =€ cosy, u = log(x* + y*),
u =sin x.sinh y,...

are entirely different from each other are solutions of PDE
o’u N ou

ox* oy’ 0

To obtain a unique (i.e. single) solution of the PDE corresponding to a given physical problem, one must
use the additional information (i.e. auxiliary condition) arising from the physical situation. They fall in two
categories:

1) Boundary conditions

2) Initial conditions
Boundary Conditions:
These are the conditions that must be satisfied at the points on the boundary S of the region R in which the
partial differential equation hold. (or a condition that is required to be satisfied at all or part of the
boundary S of a region R in which a set of differential conditions is to be solved).These are three types of
boundary condition;

¢ Dirichlet condition:  U(X,¥) =g(x,y)on S
ou(x, y)

¢ Neumann ( or flax) condition: o =g(x,y)ons
n
6u

Where P normal derivative i.e. a directional derivative taken in the direction normal to some surface.

¢ Cauchy (or mixed) condition: (X, Y)u(x, y) +B(x, y) oul )i) =g(x,y)onS

- . - . an
Initial Conditions:

These are the conditions that must be satisfied throughout the region R at the instant when consideration
of the physical system begins. When time t is one of the independent variable and we specify a condition
att = 0, we refer to it an initial condition.

A typical initial condition is said to be of Cauchy type if the values of both u and % on the boundary at

: — 6 .
t = 0 i.e. the initial values of u and L are given.
6t

The physical problems associated with PDE may be classified as:
e Boundary-valued problems (B.V.P)
e Initial-valued problems (1.V.P)
¢ Initial-Boundary-valued problems (I.B.V.P)
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Classification of second order Linear PDEs:

Generally, the PDE for a dependent u and the independent variables x and t, are described in the following

form, ou ou o o u
F(xt,u, , ) =0

X ot oF axat ot
The most common form of second-order linear PDE in two independent variables x and t is given by,

2 2 2
al Lé(xxz’t) 187 ;f:;yt) wc? ua(; ) +D5“g;’t) N E% LUk =G
Where A, B, C,D, E, F and G are functions of x and t.
Rewrite the above equation in the following form,
Ax, ) U +B(x 1) U Cx 1) CU =D(x,y,u, o a_)
ox? OXoy oy? ox' ot

By utilizing the short notations for partial derivatives, we have the following,

A, ), + B(x,tu,, + Ax,)u, = O(X, y,u,u,,u,)
The classification of second order PDEs are based on discriminant A by reducing the above equation by
coordinate transformation to standard format a point (x,, t,)

A(X ,t)=B2(x ,t )—4A(x ,t )C(x ,t)... Eq(1)

0 0 0 0 0 0 0 0

If A(Xo,t) >0, Then PDE is called hyperbolic, for example, wave equation.
If A(Xo,t0) =0, Then PDE is called parabolic, for example, heat equation.
If A(Xo,10) <0, Then PDE is called elliptical, for example, Laplace equation.

Examples: Classify the following PDEs,
2 2u 0 ou ,au
1)5_ P K
ok oxay oy ox oy
Solution:

Compare the above equation with Eq.(1),We have
A=1, B=4,C =4, therefore,
B? —4AC = (4)? - 4x1x 4 =0, So the equation is parabolic.
2) (1+x )62 +(5+2x) 82_u+(4+ x?) ou -0
Ox? oxot ot?
Solution: Here A= (1+ x2), B=(5+2x?), C = (4+ x?), therefore,
B2 —4AC = (5+2x)* - 4(1+ x®)(4+ x2) =9 > 0,
So the equation is hyperbolic.

2 0%U o%u
3) x —2+(1—y )——O —o< X<, -1l<y<l
OX oy?
Solution:

Here A=x?,B=0,C = (1-y?),

B2 —4AC =0-4x x2 x(1- y?) = 4x*(y* -1)

Since for all x between —oo and + oo, X? is positive.
Also for all y between —1and +1, y* <1.
Therefore, B> —4AC <0.

So the equation is elliptic.

LECTURE NO. 03
Finite Difference Method (FDM):
Finite difference method (FDM) is utmost common, efficient, frequent and universally applicable method
for the solution of various types of PDEs. The numerical solutions obtained from FDM are actually the
values of discrete points in the solution domain which we are called them grid points as shown in Figure 1.
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We usually prefer the space between the grid points in both x and y directions

should be uniform and grid spacing between the points in x-direction is denoted

by Ax or h,. a

Likewise space between the grid points in y-direction is denoted by Ay or h,. S ]
One can also be utilized the unequal (non-uniform) grid spacing in both coordinate

=11 -1 11

directions but the difference between successive pairs of grid points in each

X

direction should be the same. Fowe 1 Discrtzatonofdiscrt rid pois
If (i,j) represents the coordinates of the grid point P in solution domain as shown in the Figure. Then the
grid point (i + 1,j) will show its position is immediately to the right of the grid point (i,j) in positive x
direction and likewise the grid point (i — 1,j) will show its position is immediately to the left of the point
(i, j) in negative x-direction. Similarly, the grid point (i, j + 1) will move immediately one step up in
positive y-direction and grid point (i, j — 1) will move immediately one step down in negative y-direction.
Finite difference approximation techniques are basically applied on as an alternative source of the
derivatives to find out the approximate solution by converting the desire research problem in the form of
PDEs into the easily solvable algebraic difference equations.
Taylor Series Expansion Applied to Finite Difference Method:
The partial derivatives in PDEs are replaced by the finite difference approximations at each grid point
which are approximated by then neighboring values utilizing the Taylor’s series expansion. The general
interpretation of Taylor’s series expansion says that if we know the value of a function and its derivatives
at some particular point, say (xj, yj, tx) then we can easily find the value s of function at its nearby points
xi+h,,y;,t)and (X, —h,, y;,t).
By Taylor’s series expansions about the point (x;, yj, tr), the exact expression for
f(x+h,y;t)and f(x; —h,,y;,t).

Is given as
Ay f1 )2 fe )3
Flxi+he,yi ) = flxi,yi,0) + %ﬁcfxnw?&) + %fw(ﬂff:yﬁfﬂ —+ %fmfxnl’ﬁfﬂ + ey
And
Ay )2 i)
f{—xi_h_rr}'j!tk) = f{—xf:yjztk} - {I_I)ft{—xhyjrtk} -+ {27) ftr(xf:yf:tk]_%ft{r{xf:yjstk}_'_ Tt

In particular, hy if is very small, then (hy)3 and its higher power can be neglected.
Rewrite the above two questions as;

By hy)?
f(xi _'_hxyyj: fk:] ~ f(xi'.-yj!:k) + %f\'(xf':}, '_,fk:l + %fu{xﬁyﬁ&):
And 2
hy fi)”
f[xif' - h_‘f!y}': Ik:] R f(xhyj!tk) - (1—'1jf_;[15.,}’ '!tk) -+ %ﬁ’x{xhyﬁtﬁ)'

The above two equations are second order accurate. If terms of order (h,)2 and higher order terms are
neglected, than the above terms reduced to the following expressions;

fxi+he,yjte) & f(xi,yj,t) + %fr(-\‘ie)’jsfk s
And o hy .
fxi—he,yj te) ~ f(xi,¥j,t6) — 1—'}].\- (i, 3, 1k)-
The above two equations are first order accurate. The truncation error is the amount of quantity by which
the solution of a PDE fails to satisfy the approximate solution at some grid point. The truncation error can
be reduced by retaining more terms in the Taylor’s series expansion.

DEDICATED TO UNKNOWN STUDENTS WHO ARE OUR FUTURE HEROES.
Regards: Virtual Alerts
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LECTURE NO. 04

Simple Finite Difference Approximation to a Derivative:
We will derive some simple finite difference approximation to first and second order derivatives in both x
and y directions. Solve equations form previous lecture for f,(xj, yj, Zx) we have,

fx,y t)=T0F Yt = KOG Yit) L o ..(1) (FWD)
x i j ok hx X

And
f (X,y,t ): f(XI’yJ’tk)_f(Xl_hxlyjltk)+o(h) .. (2) (BWD)
x i j ok h X

X

Where o(hy) is the ‘terms of order h, indicating the order of magnitude of the truncation error. Two

above equations are identified as first order forward and backward difference.

Now subtracting eq. 2 from eq. 1, we have the following expression,

()
3

f(xf+h_‘f.‘}’j:tkj _f[:xi_h.i’!}’j!tk:] = Qiiz.r}f\’{x!':}'jrrk) + ftt’f(xf:yj:tk} +-

Solving for fx (xi, yj, zk)
f (X_, y.,t ): 1:(Xi +hx: yjltk)_ f (Xi _hx’ yj’tk)
c 2(h,)

The above expression is the second order central difference approximation. In order to obtain a finite

+0(h,)’

difference for the second order partial derivative add Egs 1 and 2, we get

iy, 2
Flxi+he,yite) + fla— e,y ) = 2f (v, 0) + %fﬂ(ﬂ,}“,&) +...

Solving for fyx (xi, ¥j, Zi)
fx,y )= FO6+hoy ) =27 (x, v t) + F(x —hey;.6)
xx i j k

(hx)?

The above equation is second order central difference form for the derivative fyx (X, yj, zx) at some point

+O(h )’

(xi, ¥j, zk). Finite difference approximations for the y-derivatives are obtained in exactly the similar way as
the results are analogous to the expressions for the x-derivatives.

fy(xi,yj,tk) = 06y, +hy’trk])_ fix,y;.4) +0(h) Forward Difference
y
fy(xi, yj,tk) - o6yt - r: (X, y; —hy, %) +0(h,) Backward Difference
y
fx,y,t)y=T&yi+ht)—f0y —h.t) +o(h. Y Central Difference of first derivative
y i 0k Z(hy) y
fxyat)= oy, +hy’tk)_2f(z(ri]' ;/zj'tk)+ Fo6y; —ht) +O(h,)? Central Difference of second order
y

The second order central difference can also be obtained by utilizing the both forward and backward
differences as follows:

s 58) = ey ) = o2 00) = )

PG, 0) = S (i 35:00) F(Gairy i) — F(( = hesy i) oo 1
() —( ) o

f“[:-r;',}’j,f_k) = [(

Therefore

i JI’ 1tk -2 ¥ ik i_h_t-: a0
ﬁf.‘f{xi-,}’j?fk) = f(x = yj H-) f(-;lit:;% Ii:] +f{x Y I“').

By using this technique we can also generate a formula for difference approximation for the mixed partial
derivatives fx (X, ¥j, Zk) at some point (xi, ¥j, ). To find difference approximation for fyy, (x;, yj, zx), first
we apply x-derivative as central difference and after that y-derivative as central difference as follows
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Folsiypte) = Flf ) = LEER ) 2 A= o)

f(l'i'—kh_,_-_,}’}' "[_h}':tk) _f(xf+iilxg}’j _',I_'F:t.‘:} f(xi'_h.\'!}’j +h}':tk] _f(If _h.‘f!}’j —-'I}-:fk) ]]

= 4(hc)(1y) = 4(hy) (i)

Therefore

1
fn-(xfa}’jafk) = m(f(lf—l—hx,}’j +hy=fk) —f(xf+hx,y;' —hyqfk)

— f (i — Iy yj + By 1) + £ (% — b, v — By )] 4 O[ (), (By)?).

To determine such type of finite difference approximation for the mixed partial derivatives are highly
effective in solving the many types of PDEs in which mixed partial derivatives are involved. The other
difference approximations for higher order derivative as well as for mixed partial order derivatives can also
be derived by utilizing the same procedure.

LECTURE NO. 05
Stability of FDM:
The stability of finite difference is connected to the deterioration or growth of the error with the passage
of time throughout any phase of computing. The schemes will be stable if the computing error does not
rise with time.
To find the out the approximation solution of the research problem that governing the PDEs to the exact
analytical solution it is necessary that our computational domain should be discretized to a finite number
of grid points (xj, yj, tx), where hyand h, are the constant gird spacing in x and y directions and At is the
time spacing between the time levels.

Suppose that u’if‘]-is the approximate solution of the finite difference applied to PDE and exact analytical
solution of PDE is donated by U* , and then ek is defined by the following relation

ij Lj
el = luk — Uk |
ij ij Lj
The choice of At is very important while we are studying the stability of the finite difference method. The
finite difference scheme applied to PDE can produce acceptable results that grow boundedly for the choice
of small At as compared to the results that grow unboundedly. If too large At is selected, in this case,
scheme is said to be unstable.

A finite difference scheme is said to be stable if error do not grown unboundedly with the passage of time
on each time level k

lek+1] < |ek|, keN
The two most commonly used techniques for analyzing the stability of the method are the matrix and the
Fourier Stability analysis.
Matrix Stability Analysis:
The matrix stability analysis applied to finite difference scheme on each grid point of the computational
domain will result of the following two time levels system of linear equation

Auk+l = Buk Where
kL[ kL ke k+1 T k k k K T
u = u, ,uy ---:u(N—l)] And u = [ul’ul’ ---:u(N—l)]

Are the solution vectors at (k + 1) and k time level respectively while A and B are the (N — 1) X (N — 1)
matrices of known values. If e is the error vector of eq. 1 then it must satisfy the equation, therefore

Aektl = Bek  Or |ek+1| = |A-1B||ek|
Therefore, the finite difference scheme described in eq. 1 is stable if |A-1B| < 1. The condition described
in eq. 2 is sufficient condition for a finite difference scheme to be stable.
Fourier (Von Neumann) Stability Analysis:
This model is applicable to the linear finite difference PDEs and when spatial domain is periodic. To test
whether finite difference scheme is stable, then it is sufficient to look its round-off errors or simple say
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‘error’ that should not amplified in the calculation with time. This is the numerical error introduced for a
repetitive number of calculations in which the computer is constantly rounding the number to some
decimal points. Round-off error s¥;(x, y) is actually the difference between the numerical solutions from a
real computer with finite accuracy, we donate it by u’i‘,jand for exact solution of the finite-difference

equation we donate it by Uf;.
e (xy)=U* (x,y)-Uu* (xy) .. (3)
1] 1] 1]

The eq. 3 satisfy the finite difference approximation equation and round-off error can be expressed in the
Fourier series expansion as

(o.e] (o.0]
2w

sk(x,y) = 3 Y Ak(ly, 1) ellix+ay)

[1=—00 [p=—00

1 L L
K - _
Where  Ak(ly, 12) ﬁfo fo sk(x, y)e2mo/Lix+ ) dxdy

And w = \/—_1 and L is the interval of the function. Suppose that the solution error has the following form,
Sik' — /lkeZmu/L(llezy)
B

Define: G(ll )= M (11,)

S (W)
Where G(l3,[2) is the amplification factor and A(l1,[2) is the Fourier component. The finite difference
scheme will be stable if every Fourier component is stable.
The Von Neumann stability is given by

G(lLk)| <1 ..(4)
If the finite difference scheme satisfied the condition defined in eq. 4 then amplification factor G(l1, [2) will
not grow as we march forward in time t. It has been observed that more and more time steps (At) are
required for calculation over a given interval of time. When we utilize explicit finite difference scheme in
which we are forced to choose At that should be less than to a specific limit imposed by stability
constrains. Whereas in case of implicit and Crank-Nicolson finite difference schemes, fewer time steps (At)
are required for our calculation over a given interval of time in which we are free to choose even larger
values of time steps At.

LECTURE NO. 06
Consistency and Convergence of FDM:

If the magnitude of truncation error approaches zero as the grid sizes hy and h, in both directions of
coordinate axis along with At approaches zero, then the approximate solution of the PDE is said to be
consistent with the exact numerical solution. In other words, truncation error vanishes as we utilize small
mesh sizes and time steps that tend to zero i.e. hy, hy and At — 0.

Note that consistency is a necessary condition but not a sufficient condition for convergence. A finite
difference scheme is said to be convergent if approximate solution, u’if’]-of PDE approaches to zero, as grid

sizes hy and h, as well as At approaches zero.
lim |[Uk—uk|=0

hyhy,At—0 1) L)
The stability and consistency of linear PDEs with constant coefficients implies convergence.
Explicit, Implicit and Crank-Nicolson Schemes:
A finite difference scheme is said to be fully explicit scheme if we can find the value of the function at the
next time level on each grid points of the computational domain with the help of an explicit formula which
contains gird point values in the previous time level. The fully explicit scheme leads us to impose the
restriction on choosing the maximum acceptable time steps At for stability. So to attain the stability of the
finite difference scheme, we have to utilize so many time steps if we are going to choose At such that it

approaches to zero.
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On the other hand, in fully implicit schemes there are no such explicit formula exists to find the values at
the grid points directly from the previous time level because the values on each the grid points are
scattered between two time levels on both sides of the difference equation. The resultant finite difference
equation generates system of linear algebraic equation that can be solved by utilizing matrices. In fully
implicit schemes, there is no restriction on choosing the maximum acceptable time steps At for stability
such as fully explicit scheme. Therefore, fewer number of time steps can be utilized with a large time steps
At for stability.

Mathematically, to understand the concept of fully explicit and implicit schemes, we need to consider the

following 2D head conduction PDE at some grid point (x;, yj, tx), of the solution domain.
aulx,y t) [éu(x, y t ) azu(x y t ﬂ ouk [ 62u* azuk |
0K g i N Or IRy i . (1)
ot [ ax2 ay2 | ot Il o ay2 ]

Where «a is the thermal diffusivity and dependent variable u(x;, y;j, ti) is a temperature function of space

(xi, ¥;) and time (t). Replace the space derivatives by the second order central difference at time level k
and time derivative by first order forward difference in eq. and writing the expression u(x;, yj, tx) as u”,

we obtain the following expression

k+1 |_U

_ kK _2uk +uk u< —2uK Uk ]

=0l idl, i il i,j+1 i i . (2)
At il (Ax)? (Ay)>? I
The eq. 2 contains only unknown dependent variable uﬁfl at time (k + 1) that can explicitly be solved

from the unknown values of uk , uk ,uk ,uk and u*k attime k. This is a typical example of fully
ij  i-1j i+l ij—1 Lj+1

explicit infinite difference method. Now replace the space derivatives by the second order central

U

difference at time level (k + 1) and time derivative by the first order forward difference in equation.
We obtain form equation 1:

(] Ij 1]

au_k_+1 \'az k+1 azul_u-_l—‘
. (3)

=
o | oxtoy? |
Similarly form equation 2:
k+l k+l k+1 k+1 k+1 k+1
IJ IJ _O(,[ H—lj_ ul -1, ui’j+l_2u +u'J 1 (4)
At il (AX)2 (Ay)? I

The schemes defined in eq. 4s is called fully implicit scheme. In contrast to the fully explicit scheme, the
temperature variable u{f;fl cannot be solved purely in terms of function values at time step k. By replacing
the space derivative on the right side of the eq. 1 by average between two times levels k and(k + 1), we
meet with the following expression of the form

41 k L+| k<41 41 k
lé.j —u,-_j=g[(l,+ll 2u,-.j +1¢_|_j Wiy ;— "u +u, l/)
At 2 (Ax)2 (A\)-
+1 k+| k41 uk
l¢j+l ““ +u; J—1 Gj+1 — + llr j—1 )]
(A.\)" (A.‘)' (5)

The eq. 5 the unknown dependent temperature variable ukijr]-l at time level k 4+ 1 cannot explicitly be
evaluated or expressed in term of the known values at time level k. The unknown quantity uf}“ can also
be not solvable for some particular grid point u(x;, yj, tx). Therefore eq. 5 can only be solved over all the
grid points of the computational domain which will be the result of system of large simultaneous linear
equations that can be solved with the help of matrices.

The expression in eq. 5 is typically example of implicit scheme and this is known as implicit Crank-Nicolson
scheme. In the above section, we’ll briefly summaries the advantages and disadvantages of fully explicit,
implicit and Crank-Nicolson finite difference schemes.
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LECTURE NO. 07

Fully Explicit Scheme:

e The unknown value of function in fully explicit finite difference scheme can be expressed in terms of
known values of functions which can be directly be evaluated.

o A fully explicit finite difference method give values of unknown function at the next time level on each
gird points of the computational domain.

¢ In fully explicit finite difference method, the maximum acceptable time step is restricted by the stability
constrains.

o Fully explicit finite difference method is often difficult to perform the stability analysis.

Fully Implicit Scheme:

e The known and unknown value of function on each grid points of fully implicit finite difference scheme
are scattered between two time levels on both side of the difference equation.

e The values of the unknown function can be determined on the all gird points of computational domain
at a time.

e There is no limitation of choosing the maximum size of time step to attain the stability.

e Since a fully implicit finite difference schemes solves system of linear algebraic equations therefore it
suffers a large computational effort on each time level.

Crank-Nicolson Scheme:

¢ In Crank-Nicolson Scheme we need to solve the coupled linear system at (k) and (k + 1) time level
separately on both side of the equation.

e Since Crank-Nicolson Scheme combines the fully implicit and explicit schemes. Therefore, spatial and
time derivative are both countered around (k + 1/2).

e There is no limitation of choosing the maximum size of time step to attain the stability like full implicit
scheme.

e Crank-Nicolson Scheme has unconditionality stability and second order accuracy in both time and space.

Iterative Methods:
To solve the system of linear equations which are in the form of sparse matrices, the iterative methods are
very efficient. In all types of iterative methods we first need the initial guess to start the iterative process
and this process continuously repeated until satisfactory converged solutions are achieved by applying a
certain predefined convergence criteria. The system of linear equations can be represented by the
following equation

Ax=b ... (1)

Where ‘4" is a non-singular co-efficient matrix and ‘b’ refers to the known column vector and ‘x’ is the
column vector that to be determined. The co-efficient matrix A in equation 1 can be partitioned as follows,
A=D+L+U
Where matrix ‘D’ is refer to the diagonal matrix, 'L and U’ are lower and upper triangular elements of

matrix ‘A’ respectively.

Iterative Methods:
Some well-known methods to solve iterative problems are;
1. Jacobi’s Method
2. Gauss-Seidel Method
3. Relaxation Method
i) SOR (Successive Over Relaxation Method) ii) SUR (Successive Under Relaxation Method)
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Jacobi’s Method: Consider

apm Y gy o+ o+ g2 =

aux” 4 apsTV v+ g = h

a5+ a2 o+ o+ g xFTY = b

This system can also be written as
@, 0 - 0 T xl(k+1) 0 a5 . xgk) b
0 ay "o P ey O T PO [
. 0 Tn-1n

0 e 0y, i x?(qk+1) Qo 77 Gppel 0 x;ic) bn
@y 0 - 0] o0 0 - 0 0 @y g,

D oayy .l @ 0 T oo T

= o= and U=,

0 0 < Blm

0 o O oy, gl g O o .- 0 0

Then Jacobi’s method can be written in matrix-vector notation as
DY (L4 = p
£ = DL - Nx™ + 8].
Gauss-Seidel Method: Consider

ay x4+ apA® o+ o+ g 1P = h
e+l e+l Gy

Ry t ayX; o dgiy =

anle;HD + anzxgk”) + -+ annxﬁkﬂ) = b,
This system can also be written as

a; 0 0 xl(i'+1) 0 gy oy xl(fc) B
dy gy : x5k+1) . o o - : xék) _ b2

Do of : CTRPT A | I :
i Dyn-1 Dun x?(:c+1) 0 - 0 0 x:r(ak) bn

That is
(L+ D" +x =p
£ = (L+ DY [T + ],
Relaxation Method:
Consider recurrence relation
D+ wl)xp1 = —((1—w)L+U)xpe1+b ... (2)

Here w is defined in the equation 2 as the acceleration parameter which is used to accelerate convergence
rate. When w = 0 is chosen, we come across with Jacobi iterative method and when w = 1 is selected,
Gauss-Seidel iterative method is obtained. The value of acceleration parameter w lies between 0 and 2, if
we want to select value of w = 0.5 (say) i.e. the values between 0 and 1, then the method will between
Jacobi and Gauss-Seidel. We could even select the value of w > 1, resulting that we are using a method
beyond the Gauss-Seidel method (known as SOR — Successive Over Relaxation Method).
Convergence of Iterative Method:
If we apply the standard form of the iterative scheme, we have the following expression,

Xp+1=Px,+q ... (1)
Here n represents the number of iterations. Suppose that iterative scheme described in equation 1 has the
exact solution x = r, then we have the following equation,

r=Pr+q .. (2)
Subtract eq. 2 from eq. 1 we have

Xn41 — T = P(xp, — 1) e (3)
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Or equivalently

ént1 =Pe, L. (4)
Where e,, = x,, — 1, is defined to donate the error on the nth iteration e, w.r.to the exact solution. For
convergence, we need to check the magnitude of the error vector e (can be measured by some vector
norm) that approaches to zero as the number of iteration n increases to infinity (i.e. |lex]| = 0 as n » o
which in turn implies that x, = 0 as n = o). Apply the vector norm on both sides of the equation 4,

llen+1ll = [IPenll

Apply the compatibility inequality we obtained,

llen+ll < [IPIl llenll
The iterative scheme will converge if the iteration matrix 'P’ satisfies the following property,

IPl<1 ... (5)
If the inequality described in equation 5 holds, then
llen+all
lewall <lgll Or "M i<1
€n

LECTURE NO. 08

Some Useful Approximations to a Derivative:
The following are the useful approximations to a derivative that should be kept in mind for the solutions of
various types of PDEs.

6 i+1,/ Ui .
1 (_u R S I o(h) Forward Difference
' S
2. ()i = ”’Tl_l”+ o(h) Backward Difference
x Y
6 i+1,j " Ui-1; .
3. (6_u)i,]_ — %+ o(h) Centre Difference of 1 grder derivative
632(” Ujt1,j—2Ujj+Uj—1 2 . ivati
4. Dij = = + o(h*) Centre Difference of 2" order derivative
x y
Similarly approximations can be defined for "time t" as follows;
6 ij+17 Ui .
5 (_u) _ ST (k) Forward Difference
u i Uij— .
6 (i = T 4 o(k) Backward Difference
’ 6t k
6 ij+17 Uij— .
7 (g)ij _ %+ o(k) Centre Difference of 1% grder derivative
62u ui,j+1—2ui,j+ui,j_1 N 0(k2 C Diff f znd der deri .
8. (@)i,j = % . ) entre Difference o order derivative
Example: 1

Find the numerical solution of following heat equation by forward difference method (Explicit Method) by
taking h = 0.25;

6u 2 6%
6t a o 1D Heat equation
Subjected boundary conditions x
u(0,t) =
u(l,t) =0
Similarly u(x,0) = sinmx

The exact solution is given by the equation,

2.2,
u(x, t) = e« "lsinmx
6u 62%u
Solution: Use the forward difference approximation for Eand central difference approximation for Zon

given equation

ou 0%u
ot x?
Wijr1 — Uiy 5 Wiprj — 2Ujj + Ui
k h2 )
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atk Uirlj — 2Uij + Uj—q
Uij+1 — Uij = ?( 7 )
a‘k
Uije1 = Uij + ( 2 ) (Ui — 2uij + Uj—q)
a’k
Letd = ~7 S0 by solving we have
Ujj+1 = /1ui_1,j + (1 - 21)21;1’]' + /1u1+1,]- ...... (I)
Since A= ar
h2
Let a2 = 1 and given h = 0.25, also suppose k = 0.0625. By putting values,
1(0.0625)
7 (0.25)2

So above equation (i) becomes by putting value of A (and by replacing u by w)
Wij+1 = Wi—1j — Wij + Wiy1j e (1)
Boundary conditions and initial conditions becomes accordingly (by replacing u by w)
(1)(0, t) = woj = 0
w(l,t) = w,y; =0
And
w(x,0) = wip = sinmx;
Fix;j=0
Now, fori = 1 in equation 1, we have
w11 = Wop — W10 t W2
w11 = 0 —sin(0.25m) + sin(0.5m)
w11=0-0.707+1 => 0.293
Fori = 2 in equation 1, we have
W21 = W10 — W20 + W3p
w21=0.707 -1+ 0.707 => 0.414

Fori = 3 in equation 1, we have
W31 = W20 — W3,0 T Wap
w31=1-0.707 + 0 => 0.293
Fix;j=1
Now fori = 1 in equation 1, we have
W12 = Wo1 — W11 T Wa
w12 =0-—0.293 +0.414 => 0.129
Fori = 2 in equation 1, we have
W22 = W11 — W1+ W3y
w22 = 0.293 - 0.414 + 0.293 => 0.172
Fori = 3 in equation 1, we have
W32 = W1 — W31 T W41
w32 = 0414 —0.293 + 0 => 0.121

Fix;j=2

Similarly fori = 1 in equation 1, we have w13 = 0.043

Fori = 2 in equation 1, we have w23 = 0.078

Fori = 3 in equation 1, we have w33 = 0.051
LECTURE NO. 09

Example: 2

Find the numerical solution of following heat equation by forward difference method (Explicit Method) by

taking h = 0.1;
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ou d0%u
it
Jt dx2
Subjected to boundary condition
u(0,t) =0
u(]., t) =0
Similarly u(x,0) = sinmx

Exact solution
ulx, t) = e~«"tsinmx
Since
b—a 1-0
= =10
h 0.1

6u 62u
Use the forward difference approximation for o and central difference approximation fora on given

n =

equation
Ju 0%u
2
ot 0x?
Ujj+1 — Ujj o Uit1j — zui,j + Uj—1,
_— = a
k ( 22 )
a2k Uit1j — 2Ujj + U1
Uij+1 — Uy = ?( ¥ )
azk
Ui,j.g.l = ui,]- + ( hz )(ui+1’j - Zui,j + ui_l,]-)
a’k .
LetAd = ~2 » SO by solving we have
Uij+1 = Aui—1,; + (1 — 2/1)2111,]' + Auip; e (i)
k
Since 1= ar
h2
Let a2 = 1 and given h = 0.1, also suppose k = 0.01. By putting values,
1(0.01)
(0D

So above equation (i) becomes by putting value of A (also by replacing u by w)
Wij41 = Wi—1j — Wij + Wiy1j e (1)
Boundary conditions and initial conditions becomes accordingly (by replacing u by w)
w(0,t) = wg;j=0
w(l,t) = Wy =0
And
w(x,0) = wip = sinmx;
Fix;j=0
Now, fori = 1 in equation 1, we have
W11 = Wo,p — W1, T W2
w11 = 0 —sin(0.1m) + sin(0.2m) => 0.2788
Fori = 2 in equation 1, we have
W21 = W10 — W20 T W30
w21 = sin(0.1w) — sin(0.2w) + sin(0.37) => 0.5302
Similarly
Fori = 3 in equation 1, we have
w31 = W20 — W3, + wso => 0.7298
Fori = 4 in equation 1, we have
W41 = W30 — W40 + W50 => 0.8580
Fori = 5in equation 1, we have
W51 = W40 — W50 + wWeo => 0.9021
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Fori = 6 in equation 1, we have

We1 = Ws,0 — Weo + w79 => 0.8580
Fori = 7 in equation 1, we have

w71 = Weo — W70 + wgo => 0.7298
Fori = 8 in equation 1, we have

wg1 = W7, — Wgo + W9y => 0.5302
Fori = 9in equation 1, we have

W9 1= Wg,p — W9 + W100=> 0.2788

Exact Solution:

u(x, t) = e—"'tsinmx sl = Taket = 0.01

w11 = 0(x1,t) = 0(0.1,0.01) = e @D sin(0.17) => 0.2799
Similarly

wy1 = (2, t1) = w(0.2,0.01) = e D 5in(0.27) =>

w31 = 0(x3,t1) = w(0.3,0.01) = e D 5in(0.37) =>

wyy = 0(xX4,t1) = 0(0.4,0.01) = e-" (00D gin(0.41) =>

ws1 = w(xs,t1) = 0(0.5,0.01) = e-7" 00D gin(0.57) =>

we1 = 06 t1) = w(0.6,0.01) = e ©D 5in(0.6m) =>

wy1 = @7, 1) = ©(0.7,0.01) = e D 5in(0.77) =>

wg1 = @M t1) = (0.8,0.01) = e—"©0D 5in(0.87) =>

wy, = @(X9,t1) = (0.9,0.01) = e~ @D 5in(0.97) =>
Error:

Since, the calculated value of w11 = 0.2788 and the calculated value from exact solution is w11 = 0.2799,

so the error can be calculated as;
E1=|wy1(approx.) — wi1(exact)| = [0.2788 — 0.2799| => 0.0011

Similarly
E; = |wz1(approx.) — wzi(exact)| = | - |=>__
E; = |ws1(approx.) — wzi(exact)| = | - |=>__
Ey = |wg1(approx.) — wai(exact)| = | - | =>
Es = |ws,1(approx.) — wsi(exact)| = | - |=>__
E¢ = |we1(approx.) — we(exact)| = | - |=>__
E7 = |wy,1(approx.) — wzi(exact)| = | - _ |=>__
Eg = |wg1(approx.) — wg1(exact)| = | - _ |=>__
Eq = |wo1(approx.) — w1 (exact)| = | - _ | =>

(Do Your Self; Take values from above calculations.)

(Understand carefully, first we take j = 0, then calculate exact solution and error. Now we’ll perform the

same calculations with next step values i.e. j = 1, then calculate exact solution and error; and Done.)
Fix;j=1
wi,j+1 = wi—l,j - (l)i']' + (l)i_|_1']' ...... (1)
(This equation given above, here typed again just for help.)
Now, fori = 1 in equation 1, we have
W12 = Wo1 — W11 T Wy
w12 =0—0.2788 + 0.5302 => 0.2514
Fori = 2 in equation 1, we have
W22 = W11 — W1 + W3y
w22 =0.2788 — 0.5302 + 0.7298 => 0.4784
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Similarly
Fori = 3 in equation 1, we have

W32 = W21 — W31+ W41 => 0.6584
Fori = 4 in equation 1, we have

Wa2 = W31 — Wy +Ws1 =>_
Fori = 5 in equation 1, we have

W52 = W41 — W51 tWgy =>_

Fori = 6 in equation 1, we have

W2 = W51 — We1 + W71 =>_
Fori = 7 in equation 1, we have

W72 = W1 — W71+ wWg1 =>

Fori = 8 in equation 1, we have

Wg2 = W71 —Wg1 twWg1 =>_
Fori = 9 in equation 1, we have

W9y = Wg1 — Wy +Wy01 => __

(Do Your Self; Take values from above calculations.)
Exact Solution:

u(x, t) = e~ tsinmx aoar=1 Take t = 0.02
w1y = w(x1,tz) = w(0.1,0.02) = e-n"(0.02) sin(0.17) => 0.2799

Similarly
Wy, = WXy t;) = w(0.2,0.02) = e 9 sin(0.21) =>
w3, = w(xs, tp) = 0(0.3,0.02) = e ©9 5in(0.37) =>
wgr = w(xg,t2) = 0(0.4,0.02) = e-7"(092) gin(0.47) =>
ws, = w(xs, ;) = w(0.5,0.02) = e= ©9 5in(0.57) =>
wgr = W(Xg, ) = w(0.6,0.02) = e=7 ©9 5in(0.6m) =>
w7, = 0(X;,t,) = 0(0.7,0.02) = e~ ©9 5in(0.77) =>
wg, = w(xg, t;) = w(0.8,0.02) = e ©9 5in(0.87) =>
Wy, = ®(Xe, ty) = ©(0.9,0.02) = e ®9 5in(0.97) =>

Error:

Error can be calculated as;
E1= |w12(approx.) — wiz(exact)| = 10.2514 — 0.2566| => 0.0052
Similarly

1 | O | | Il
V VVVVYV\VYV

E; = |wz2(approx.) — wyz(exact)| = | -

E3 = |wsz(approx.) — w3z(exact)| = | -

E4 = |wa(approx.) — was(exact)| = | -

Es = |ws2(approx.) — ws(exact)| = | -

E¢ = |we2(approx.) — we(exact)| = | -

E; = |w72(approx.) — w7(exact)| = | -

Eg = |wg2(approx.) — wg(exact)| = | -

E9 = |wg(approx.) — we2(exact)| = | -

(Do Your Self; Take values from above calculations.)

DEDICATED TO UNKNOWN STUDENTS WHO ARE OUR FUTURE HEROES.
Regards: Virtual Alerts
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LECTURE NO. 10
Example: 3
Find the numerical solution of following heat equation
ou d2u

E—a F¥ or  Ur = 02Uy
By forward difference method at T = 0.005,2 = 0.1 and k = 0.001
Boundary Condition; {u(O, =0
u(l,t) =0
1
2x , 0<x<-
Initial Condition; u(x,0) = { 1 2
21—x) > <x<1
Solution: It is given that
= 0.1,k =0.001 and T = 0.005
Since
b—a 1-0
n=/( )= =10 i=123..n-1
0.1
Also
T —t, 0.005-0 ,
m = ( = = j=0123.m-1
k 0.001
Therefore

n=10, so i=12..9

m=5 so j=01234
Apply forward difference (FDW) on time-derivative and central difference (CD) on space derivative of the
given equation and choose a = 1, we get

Wij+1 = /1031'_1,]' + (1 - 2/1)0)1‘,]' + /103i+1,j . (D

Where
k  0.001
A == —(0.1)2 =0.1
Therefore 1-21=1-2(0.1) =0.8

By putting value of A, equation 1 becomes
Wij+1 = 0.1 Wi-1,j + 0.8 Wj,j + 0.1 Wit1,j (2)
First we’ll calculate values for w using initial conditions as follows,

1
(Condition: u(x,0) = 2x if 0<x < 5 -~ @ =0.1)

w10 = w(xy,tp) = w(0.1,0) = 2x; =2x%x0.1=0.2
w20 = w(xz, tp) = 0(0.2,0) =2x, =2%x02=04
w3 = w(xs3, tp) = 0(0.3,0) =2x3 =2x%x03 =06
wao = (x4, tp) = 0(0.4,0) =2x4 =2%x04=038
ws0 = w(xs,t)) = w(0.5,0) =2x5=2x05=1.0

1
(Condition: u(x,0) = 2(1 — x) if 2 <x<1 ~@=0.1)

We,o = w(xe,t)) = 0(0.6,0) = 2(1—=x¢) =2(1-06)=038
w7, = w(x7,t)) = 0(0.7,0) = 2(1=-x7) =2(1-07)=0.6
wgo = w(xg, ty) = 0(0.8,0) = 2(1—x) =2(1-08)=04
wg, = w(x9, ty) = w(0.9,0) = 2(1 —x9) =2(1-09)=0.2
w10,0 = (D(Xlo,to) = (,0(10 ,0) = 2(1 - Xlo) = 2(1 - 1) = 0.0
Fixj=0
And put i = 1,2,3,4,5,6,7,8,9 in equation 2
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wij+1 = 0.1 wi—1j + 08 wy; + 0.1 i1, ... (2)
i=1; w11 =0.1wgeo+0.8wip+ 0.1 wyo=0.1(0.0) + 0.8(0.2) + 0.1(0.4) = 0.20
=2 w21 =01wi0+0.8wz0+ 0.1 wzp= 0.1(0.2) + 0.8(0.4) + 0.1(0.6) = 0.40
[ =3; w31 =0.1wyo+08w309+ 0.1 wyp = 0.1(0.4) + 0.8(0.6) + 0.1(0.8) = 0.60
i =4 w41 = 0.1 w30 + 0.8 w40+ 0.1 wsg =0.1(0.6) + 0.8(0.8) + 0.1(1.0) = 0.80
i =05 ws1 = 0.1 wgp + 0.8 w50+ 0.1 wgo = 0.1(0.8) + 0.8(1.0) + 0.1(0.8) = 0.96
[ =6; we1 = 0.1 wsg + 0.8 wep + 0.1 w79 = 0.1(1.0) + 0.8(0.8) + 0.1(0.6) = 0.80
=7 w71 = 0.1 wgo + 0.8 w79+ 0.1 wgg = 0.1(0.8) + 0.8(0.6) + 0.1(0.4) = 0.60
[ =8; wg1 = 0.1 w70 + 0.8 wgp + 0.1 wgp = 0.1(0.6) + 0.8(0.4) + 0.1(0.2) = 0.40
i =9; w91 = 0.1 wgp + 0.8 wgg + 0.1 w190 = 0.1(0.4) + 0.8(0.2) + 0.1(0.0) = 0.20

In the same way you can find the values of next time levels fixing j=1 and put x=1, 2, 3...9.

Also find the other values for fixing j = 2,j = 3 and j = 4.

Example: 4

Find the numerical solution of following heat equation
ou , d0%u
-—=a , 0<x<2,t>0
ot o2 X
By forward difference method atT = 0.0landn=2,m = 2
Boundary condition; {u(O, =0
u2,t) =0

Solution: Since

As

Where

b—a 2-0

: :1

n 2
T_tO_O.l—O

k= = 0.05

m
n=2,m=2,i=1, j=01
Wij+1 = /1(,01'_1,]' + (1 - 2/1)(,01',]' + /10)1'4.1‘]' .. (D

a2k 1(0.05)

A - = =
7=z = 005

By putting value of A, equation 1 becomes

Wij+1 = 0.05 Wi-1,j + 0.9 Wi, + 0.05 Wit1, (2)

Fixj=0

And put i = 1 in equation 2
w11 = 0.05 0,0 + 0.9 w10 + 0.05 w20= 005(0) + 09(01) + 005(0) =09

Fixj=1

And put i = 1 in equation 2
w12 = 0.05 Wo,1 + 0.9 w11 + 0.05 w2 1= 005(0) + 09(09) + 005(0) = (0.81

LECTURE NO. 11

Example: 5

Find the numerical solution of following heat equation

ou 0%u
E=azﬁ , 0<x<2,t>0

By forward difference method at T = 0.05,8 = 0.1 and k = 0.01

Boundary Condition; {u(0,t) = u(2,t) =0 Vt
Initial Condition; {u(x,0) = sin(2mx) 0<x<?2
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Exact solution is given as
u(x, t) = e~#'t sin(2mx)
Solution: It is given that
=0.1,k=0.01 and T = 0.05

Since
b — a) 2-0
= = =20
n=( 0.1
Also
T — to 0.05—-0
m=(7) =701 =

Therefore

i=12,..,19 & j=012,..,49

2
Apply forward difference (FDW) on (a_u) and central difference (CD) on (2) and 1 = k_ We get the
at 9x 2 2

following equation (By replacing "w" by "u")
Wij+1 = Awi—1; + (1 = 2D w;i; + Awigqj ... (A)
Now calculate

So equation (A) becomes,
Wij+1 = Wi1j — Wi + Oip1j - (B)

Given conditions in "w" form can be written as
wo; =0 vj=012,..,49
Boundary Conditions; {0020,1' —0 Vj=012,.. 49

Initial Condition; {w;o = sin(2mx) vi=01.2,..,19
Fixj=0
Andput i=1,2,..,19 inequation (B)
Wij41 = Wim1j — W + Wiy1j - (B)
i =1; W11 = W — W10+ w2 = sin(2m X 0.0) — sin(2r X 0.1) + sin(2w X 0.2) = 0.3633
i =2; W21 = W10 — W20 + w39 = sin(2m X 0.1) — sin(2w X 0.2) + sin(2w X 0.3) = 0.5878
Similarly

i =3; W31 = Wy — W39 + Wy = 0.5878
i =4 W41 = W30 — Wapo + w59 = 0.3633
[ =5; W51 = Wygp — W50 + W0 = 0.0
[ = 6; We1 = W5 — Weo + w79 = —0.3633
i=7; w71 = Weo — W70 T Wgo = —0.5878
Similarly
i=8; wg; = —0.5878 i=09; wg; = —0.3633
i =10; w191 = 0.0 i=11; w111 = 0.3633
i=12; w121 = 0.5878 i =13; w131 = 0.5878
i = 14; w141 = 0.3633 i =15; w151 = 0.0
i=16;  we1 = —0.3633 i=17; w7, = —0.5878
i =18; w1g1 = —0.5878 i =19; w191 = —0.3633
Now
Fixj=1

Andput i=1,2,..,19 inequation (B)
Similarly; perform calculations till fixing j = 49 and Find Exact Solution.
Lengthy calculations; so you can skip the above part. Watch Lecture.
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LECTURE NO. 12

Example: 6
Find the numerical solution of following heat equation

0%u(x, t
out) _ . u(x )=0 , 0<x<2,t>0

ot - oxz
By forward difference method at T = 0.5, = 0.1 and k = 0.05
Boundary Condition; {fu(0,t) =u2,t) =0 vVt
Initial Condition {u(x,0) = sin(2nx) 0<x<2

Exact solution is given as
u(x, t) = e+t sin(2mx)
Solution: It is given that
=01,k=0.05and T =05

Since
b—a) 2—0
= = =20
n=(— 0.1
Also
T — to 05—-0
m=(7") =005
Therefore

i=12,..,19 & j=012..9
Given conditions in "w" form can be written as

wo; =0 vj=012..,9
Boundary Conditions; {oo ~0 Vj =012 9
205 — — Y, L4 o,

Initial Condition; {w;o = sin(2mx) vi=01.2,..,19

Since
a’k  (1)2(0.05)
Tm o (01?2 2
Apply forward difference (FDW) on (a_u) and central difference (CD) on (a_u). We get the following
at dx?

equation(By replacing "w" by "u")
0)1',]' +1 = Awi—l,j + (1 - 2/1)(,01"]' + /1(.01'4.1‘]' (A)
By Putting A = 5 value equation (A) becomes,
(Di,j+1 =5 O‘)i—l,j -9 wi,j +5 wi-l—l,j (1)
Fixj=0
Andput i=1,2,..,19 inequation (1)
(Di,j+1 =5 O‘)i—l,j -9 wi,j +5 wi-l—l,j (1)
i =1; w11 = 5wgp —9w19 + 5wy = 5sin(2m X 0.0) — 9sin(2m X 0.1) + 5sin(2w X 0.2) = —0.5348
i = 2; w21 = 5w10 — 9wy + S5wsp = 5sin(2m X 0.1) — 9sin(2rw X 0.2) + 5sin(2m x 0.3) = —0.8653
Similarly
[ =3; w31 = 5(1)2,0 — 9(1)3,0 + 5(1)4,0 = —0.8653
I =4; wy1= 5(1)3,0 — 9(1)4,,0 + 5(1)5,0 = —0.5348

[ =5; ws 1= 5w — 9ws,o + 5we = 0.0

[ =6; we1 = 5Wws0 — Ywepo + 5wz = 0.5348
=7 w71 = 5we0 — 9w70 + Swgo= 0.8653
[ =8; wg1 = 5w70 — 9wgg + 5wgo = 0.8653
=9 w9 1= 5wgo — 9wog o + Sw19o= 0.5348
i =10; w101 = SWe — YW1 + Sw119= 0.0
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Similarly
i =11; w111 = —0.5348 i =12; w121 = —0.8653
i =13; w131 = —0.8653 i =14; w141 = —0.5348
i =15; wqs51 = 0.0 i=16; w161 = 0.5348
i =17; w171 = 0.8653 i =18; w1g1 = 0.8653
i =19; w191 = 0.5348 i =20; W01 = ?
Now
Fixj=1

Andput i=1,2,..,19 inequation (1)
Similarly; perform calculations till fixingj = 9.
Lengthy calculations; so you can skip the above part.
Exact Solution:

u(x, t) = e~*"tsin2mx

w21 = w(xz, t1) = 0(0.2,0.05) =
wa1 = w(xy t) = w(0.4,0.05) =
w1 = w(xe t1) = 0(0.6,0.05) =
wg1 = w(xg t1) = ©(0.8,0.05) =

w11 = w(xy, t1) = w(0.1,0.05) =
w31 = w(xs, t;) = w(0.3,0.05) =
ws1 = w(xs, t;) = w(0.5,0.05) =
w71 = w(xs, t1) = 0(0.7,0.05) =

w91 = w(xg, t1) = w(09,005)=__ w101 = w(x10,t1) = 0w(1.0,0.05) =__
w111 = w(x, t) = w(1.1,005) =_ w121 = w(x12,t1) = w(1.2,005)=__
wi31 = w(x3, t) = w(1.3,005) =__ w141 = w(x14,t1) = 0w(1.4,005) =__
wisy = w(xgs, t) = w(1.5,005) =__ w161 = w(x1e,t1) = 0w(1.6,0.05) = __
w171 = w(x17, tl) = (1)(1.7, 005) =_ wig1 = a)(xlg, tl) = (1)(18 , 005) =_
w191 = w(x19,t1) = w(1.9,0.05) = __ w291 = wlxz,t1) = w(2.0,005) =____

Example: 7

Find the numerical solution of following heat equation

92u(x, t
ou, ) _ U0 _ 0 1 s

ot Cooxz
By forward difference method at T = 0.1,n = 3and m = 2
Boundary Condition; {u(0,t) = u(1,t) =0 ve>0
Initial Condition {u(x,0) = 2sin(2mx) 0<x<1

Exact solution is given as
2
T

u(x, t) = 2e—+' sin(2mx)
Solution: It is given that
T=0.1, n=3and m=2

Since
b—a 1—-0
=( )= = 0.33
n 3
Al
>0 T—t, 01-0
k=( ) = = 0.05
m 2
Since

n=3 so i=12 & m=2 Soj=12
Apply forward difference (FDW) on (6_u) and central difference (CD) on (a " and 1 = k_ We get the
2

ot dx m2
following equation (By replacing "w" by "u")
Wij+1 = A(l)i—l,j + (1 - 2/1)(.01',]' + )L(A)Hl'j (1)
Where
azk  (0.25)2(0.05)

A=—_=
B2 (0.33)2

= 0.029
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So, equation (1) becomes,
Wij+1 = 0.029 Wij-1,j + 0.942 wjj + 0.029 Wit1,j o (2)
Fixj=0
Andput =12 inequation (2)
i=1; w11 = 0.029 wgo + 0.029 w10 + 0.029 w0 = 1.6001
i =2; w21 = 0.029 w19 + 0.029w; + 0.029 w3 = 1.6001

Now
Fixj=1

Andput =12 inequation (2)

[ = 1; w1, = 0.029 wo,1 + 0.029 w1,1 + 0.029 W21 =

[ = 2; w22 = 0.029 w11 + 0.029(1)2’1 + 0.029 w31 =
Do Your Self. Also find the Exact Solution.

LECTURE NO. 13
Example: 8

Find the numerical solution of following heat equation
du(x, t)  , 0%u(x t)

a , 0<x<1,t>0
dt d0x2
By backward difference method (implicit scheme) at T = 1, = 0.25 and k = 0.0625
Boundary Condition; {u(0,t) =u(1,t) =0 vVt
Initial Condition {u(x,0) = sinmx 0<x<1

Solution: It is given that
T=1, B=0.25 and k = 0.0625

Since
b—a)_l—O_4
n=("g 0.25
Also
ke=( m )_0.0625
Since

=123 & j=12,..,15

2
Apply backward difference/implicit scheme (IS) on &) and central difference (CD) on (2). We get the
at dx?

following equation (By replacing "w" by "u")
azk
Wij = Wij-1 = (wi—1; = 2 W + Awiyq))

Where

By solving above equation, we have
(Di’j_l = _A(Di—l,j + (1 + ZA)Q)L'J' — /1(1)L'+1,j (1)

Fixj=1
Andput =123 inequation (1)
[ = 1,‘ w1,0 = —2.(1)0,1 + (1 + Zl) w11 — A w21
i =2; w20 = —A w1 + (14 21) wz1 — A w31} ... (4)
[ = 3,‘ w30 = -1 w21 + (1 + Zl) w31 — A W41

Since given conditions in "w" form can be written as
u(0,t) =0 => wg; =0

Boundary Conditions; {u(l, =0 => w,; =0
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Initial Condition; {u(x,0) = sinmx
W, = SINTX; vi=1273
By Solving, we have
w1,0= Si1’l(0.2571’) = 0.707
w20= SiTl(O.SOﬂ') =1.0
w30 = Si1’l(0.757l') = 0.707
Now, from equation (A) in matrix form

1421 -1 0 w11 W1,0
[ =4 14+212 & ][®21] = [W20] ..(B)
0 -A  1+21 W31 3,0

Since
a’k  (1)2(0.0625)
@ T (0252
By Putting A = 1 value equation (B) becomes
3 -1 0 W11 0.707
[-1 3 -—1][®21]=[ 1 ]
0 -1 3 W31 0.707

As we know matrix relation,
Aw=b => w=A"1
By calculating, we get

W11 0.4458
[ W2,1] = [0.6305]
w31 0.4458
Now
Fixj=1
Andput i=1,2,3 inequation (1)
Similarly; perform calculations till fixing j = 15.
Lengthy calculations; so you can skip the above part.
LECTURE NO. 14
Example: 9
Find the numerical solution of following heat equation
ou d%u
E_a@ , 0<x<1,t>0
By backward difference method (implicit scheme)at T = 1,8 = 0.2 and k = 0.04
Boundary Condition; {u(0,t) =u(1,t) =0 vVt
Initial Condition {u(x,0) = sinnx 0<x<1

Solution: It is given that
T=1, @=02, k=004, a=0 and b=1

Since
b—a)_l—O_5
n=(3 0.2
Also
T—t 1—-0
m=(C—) = = 25
k 0.04
Since

i=1,234 & j=12,..,24 ,
Apply backward difference/implicit scheme (IS) on &) and central difference (CD) on (a u). We get the
at dx?

following equation (By replacing "w" by "u")
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Wij-1 = _A(Di—l,j + (1 + 22.)(1)1',]' — A(DH_L]' (1)
Where
azk
gz *
Fixj=1

Andput i=1,23,4 inequation (1)
i = 1; w10 = —A(A)()J + (1 + 2/1) w11 — /1 w21
[ = 2; w20 = -1 W11 + (1 + 2/1) w21 — A W31
[ = 3; w30 = -1 w21 + (1 + 2/1) w31 — A W41
i = 4; wg0 = —Aw31+ (14+21) wg1— 41 Ws,1

(A

Since given conditions in "w" form can be written as
U(O, t) = wo,; = 0 vj=1.2..24
Boundary Conditions; {u(l, D=wsy =0 Vj=12,.24

Initial Condition; {u(x,0) = sinmx Vi=1.234%
By solving, we have

w19 = w(xy, tp) = w(0.2,0) = sin(0.2m) = 0.5877

w20 = w(xz,t)) = w(0.4,0) = sin(0.4w) = 0.9510

w3g = w(x3, tg) = 0(0.6,0) = sin(0.6m) = 0.9510

wg0 = w(xg,ty) = 0(0.8,0) = sin(0.87) = 0.5877
Equation (A) becomes (in Matrix form),

1422 -1 0 8 81,1 0.5877
0 -1 1424 -1 W31 0.9510
0 0 -1 1+24 W41 0.5877

Since
a’k  (1)2(0.04)
g2 - (022
By Putting A = 1 value equation (B) becomes
3 =1 0 W11 0.5877
-1 3 -1 By 85y 2 09548,
0O -1 3 -1 w31 0.9510
0 0 -1 3 W41 0.5877
Aw=Db
To find w values, first we find inverse of Ai.e. A1
3 -1 0 8
-1 3 -1
(o 51 3 I~
0 0 -1 3
Now apply Row Operations given below
1) R1<—>R2 & —1R1
2) -3R1 + R,
3) Rz<->R3 & —1R2
4) 3R, + R1 & —8R; + R3
5) R3 Ad R4.
6) 81R3 +Ry ,3R3+R;, & —21R3+ R,
7) R4
8 3R4+R3 , 9R4+ R, & 21R4+ Ry
Hence our required value for

oL OO0
_o OO0

(el ]
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155 55 55 55
19 27 17 -24j
I55 55 55 551
9 24 —8!
[55 55 55 55]
1L 3 8 -213
L55 55 55 55

So equation (C) becomes,

W11 21 8 3 -1 0.5877
[((32 . 1 (9 27 17 —24] 0-9540,
3,1 553 9 24 -8''0.9510
W41 1 3 8 =21 0.5877
Hence we get
w11 = 0.40395 w21 = 0.60054
w31 = 0.51720 w41 = —0.02352
Required result.
LECTURE NO. 15
Example: 10
Find the numerical solution of following heat equation
Ju J%u
Frinir 1D
By backward difference method (implicit scheme) at @ = 0.25 and k = 0.005
Boundary Condition; {fu(0,t) =u(1,t) =0 vVt
2x , 0<x< 1 ,t=0
Initial Condition; u(x,0) = { 1 2
2(1—%) E<x§1,t=0
Solution:
We can write the given equation as,
k
Wi — wij-1 = 5 (W1 — 20 + 041) ... (1)
Let
k
G A=10.08

So, we can write equation (1) as, (without putting A value)
W;j — Wi = Aw;_1; — 2Aw;; + Aw;yq;
Or by solving we have
wij—1 = —Awi_gj + (1 + 2D w;; — Awiy,)
By putting A value, it becomes
w;j-1 = —0.08 w;—1; + 1.16 w;; — 0.08 wi31,; ... (2)

Since
b — a) 1-0
= = =4 [ =1,2,3
n=( 0.25 ‘
Also
T_to) —9_ 200 0,1,2,...,199
m = - = j = L]
0.005 J= e
Since given conditions in "w" form can be written as
Boundary Condition; {woj=wy; =0
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Wi = 2x; , i=1,2

Initial Condition; {(Di,o —2(1-x) | i =34

Fixj=1
Andput (=123 inequation (2)
i =1; w1,0=—0.08 wp1 +1.16 w11 — 0.08 w1 = 0.5
i = 2,' w20 = —0.08 w11 + 1.16 w21 — 0.08 w31 = 1.0} (A)
[ = 3,' w30 = —0.08 w21 + 1.16 w31 — 0.08 W41 = 0.5
Equation (A) becomes (in Matrix form),
1.16 —0.08 0 W1,1 0.5
[-0.08 1.16 —0.08][®21] =1[1.0] ...(B)
0 —-0.08 1.16 @31 0.5
Aw=Db
To find w values, first we find inverse of Ai.e. A1

Note: You can find A-1 value by applying row operation, as we did in previous example. So,
0.8662 0.0600 0.0041
A-1 =10.0600 0.8703 0.0600]
0.0041 0.0600 0.8620

So equation (B) becomes,
w=A"1bp
w11 0.8662 0.0600 0.0041 0.5
[w21] = [0.0600 0.8703 0.0600] [1.0]
w31 0.0041 0.0600 0.8620 0.5

Hence we get
w11 = 0.49517 w21 = 0.93032 w31 = 0.49307
Required result.

LECTURE NO. 16
Exercise:

Question#1: Find the numerical solution of following heat equation
ou(x, t) J%u(x, t)

,05x<1,t>0

Jt 0x?
By backward difference method (implicit scheme)at T = 1,8 = 0.1 and k = 0.005
Boundary Condition; {u(0,t) =u(1,t) =0 vVt
2x , 0<x< 1 ,t=0
Initial Condition; u(x,0) = {2 1 2
1-x) , S<xs1,t=0
Hint:
n=10 , i=12,..9
m=200 , j=12,..99
Question#2: Find the numerical solution of following heat equation
a—u=azai 0<x<1,t>0
dt ox2 =~ T
By backward difference method (implicit scheme) at T = 1,8 = 0.1 and k = 0.01
Boundary Condition; {u0,t) =u(1,t) =0 Vt>0
Initial Condition; u(x, 0) = sinmx 0<x<1
Hint:
n=10 , i=12,..9
m=200 , j=12,..,99
A-9%x9 |, A1'=? |, Ao=b , w=?
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Question#3: Find the numerical solution of following heat equation

ou 4 J%u

W_ﬁﬁ , 0<x<4,t>0
By both forward and backward difference methods at T = 0.08,@ = 0.2 and k = 0.04

Boundary Condition; {u(0,t) =u(4,t) =0 vVt
- - - - . nx nx
Initial condition; u(x,0) =g T(l + 2w T) , 0<x<4

Exact Solution:
TX =t
u(x, t) = et sin (7) t+e+sin (%

Question#4: Find the numerical solution of following heat equation

Ju 1 0%u
E_ﬁﬁ , 0<x<1,t>0
By both explicit and implicit methods at T = 0.08,2 = 0.1 and k = 0.04
Boundary Condition; {fu(0,t) =u(1,t) =0 Vt>0
1
Initial Condition; u(x,0) = cosm (x — E) , 0=x<1

Exact Solution:

1
u(x,t) = et cosmt(x —_)

2
LECTURE NO. 17
Crout’s Method to Solve Tridiagonal System of Equation:
Consider a 4 X 4 system of linear equations
aj1Xy  A12X2 0 0 b,
[a21x1 Q2%  Q3X3 0 — [bz]
0 azz2xz a33X3 034Xy b3
0 0 A43X3  Ag4X4 ba
ap; a4 0 0  x b1
[a21 Az, Q3 0 X b2
0 asy a3z Q34 ][x3] = [)3] - (1)
0 0 Q43 QA4q X4 by
Consider Ax =b ..(2)
Let A=LU
Then equation (2) becomes
LUx = b
So Ux=y & Ly=b»
Since LU=A
Where
li 0 0 0 1 uz 0 O ap;  an 0
L=[121 lp O 0],U=[0 1 Uz 0],A=["%" axp a
0 Il I3 0 0 0 1 Uz 0 asz aszs
0 0 liz Ly 0 0 0 1 0 0 43
Since
A=LU
a air 0 0 111 0 0 8 1 U12 0 0
[Fa1 G2 a0 1= b1 lz O ][ 0O 1 w3 O
0 az; Q33 Q3 0 Iy Lz 0 0 0 1 uzg
0 0 a43 Q44 0 0 Lz lu 0 0 0 1

0
0
az4
A44

]
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aj;; a4 0 0 l11 li1uqz 0 0
[Q21 G2 a0 1= [lz1 gz + 1z, lp2uz3 0 1
0 as; Q33 Q3g 0 132 lgzUzg + 133 l33u34
0 0 Qg3 Ayq 0 0 l43 lyzuzg + gy
By comparing, we have
li; = l — — 42
11 = 411 11U12 = A12 = Uiz = Iy
l,1 =an Laup 1l =az = Iy =axy —lhiup
l3, = l = = = 2
32 = 432 22U23 = A23 Uzz = 1,
iz = au3 l3pup3 + I33 = azz = l33 = aszz — l3puy3
l = 2 ! lag = lig = l
33U3s = A34 = U3g =7 43U34 tlgg = Aqq > lgg = Agq —l43U3y
In general, we can write
a2
Step — I Set lui=ay1 , upp = T
11
Step — II: For i=12.n-1

liz—1= Qi1
lii = Qi + li,i—l SUi—1,i i = 2, e, L — 1

Aii+1
Ujjy1 = ; i=2,.,n-1
Li;
Step — III: ln,n—l = Apn-1
ln,n =0Aapn— ln,n—l Un—1n
As Ly=»b
11 0 0 0 1 by
[;21 l,, O 0 | [yz] B [bz]
0 3 33 0 V3 b3
0 0 l4_3 l4_4_ Ya b4
So,
by 1
171 ) y2 = l—(bz —l21y1)
11 22
1 1
y3=1- (b3 — 132¥2) ) ya=1- (bs — l43y3)
33 44
: —-b1
Step — 1V Set 1 L
Step —V: For i=12,..n
1
Yi= 7 (b; — lii—1 Yic1)
Lii
Since Ux =y
1 U2 0 0 X1 Y1
[0 1w Dy
0 0 1 Uzl tx3zd 7 Lys
0 0 0 1 X4 V4
So,
X1+ U2X2 = Y1 X1 =Yy1 — U12X2
X2 + U3X3 = Y2 o X2 = Y2 — Uz3X3
X3+ UsaXs = V3 TRis implies = {x3 S
X4= Y4 X4=Y4
Step — VI: Set  x,=y,
Step — VII: For i=12,.n—-1

Xi=Yi— Uii+1 - Xi+1
These are the seven steps to solve the Crout’s Method.
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LECTURE NO. 18

Example: 11
Solve the following system of linear equations by Crout’s method.
aix1 +ci1x2=aq
byx1 + azxy + cax3 = ay
b3X2 + azx3 + c3x4 = a3
b4X3 + asxy = ay
Solution: In matrix form, we can write it as

aa ¢c1 0 0 xq ay
[b2 a C2 0 X2 (0%)
0 bs as csl gl =lagl D)
0 0 by a; xs ay
So, Ax=b
Matrix A can be decompose as LU=A ..(2)
Where
1 0 O 0 1 Uu 0 0
L:[bz I, O 0],U:[O 1 1w O]
0 bs; I3 0 0 0 1 us
0 0 bs Iy 0 0 0 1
So equation (2) can written as
LU=A
l1 0 0 8 1 Uu 0 0 ai C1 0 0
[bz L 0 1[0 1 1w O]:[bz a c2 O]
0 b3 I3 O 0 0 1 u3 0 b3 az c¢3
0 0 bs I4b O 0 0 1 0 0 by a
[ liuq 0 0 a Ci1 0
[bZ boui + [, lyu, 0 1= [bz a C2 ]
0 b3 bauz + I3 lz3us 0 b3 a3 c3
0 0 b bsuz + la 0 0 by au
So,
L=a |, u1=q,i o u2=§/i , [ = az — bauy
Uus = CB/ZB , 13 =da3 — b3U,2 ) l4 = a4 — b4U,3
Step — I Set L=a1 , uw= Cl/l1
Step — II: For i=12..n—-1
li=a —bi.ui-1 , W =Ci/
l;
Step — I1I: l,=a,— b, . Up_1

So, U becomes,

F
I c0
u=10 T2/, 3,1
| 3
Io 0 1
Lo 0 0 1

Nowas, Ly =b so,

Page | 29



MTH646 Handout
So,
dq
] = —
Y1 I
1
Iy, = —(d2 = b2y1)
?
( = —b
Y3 L @3 3y2)
3
1
I, = -
Y4 _(d4 b4y3)
| Iy
Step — IV Set y1 = fl
1
Step —V: For i=12,..n
1
Vi = f(di — b .yi-1)
L
Now, Ux =y
1 u 0 0 xi Y1
0 1 w 0 x2
[0 o 1 wllesl=hyl
o o0 o 1 X+ Yy
So,
X1 =Y1 —Uix
X2 = Y2 —UzX3
{X3 = Y3 — U3Xy
X4= Y4
Step —VI: Set  xp,=y,
Step —V: For i=12,.n—1
Xi=Yi— Ui - Xit1
As,
_ €1
o] X1 =Y1— X2
LA 0 01 ! /1%
| 01 I _ . G
uU=1 0 1 % C3/l I So, by putting values X2 = Y2 /1, %3
2 3] (
to 0 1 I x5 =y3— 3/ x4
3
Lo 0 0 1

This is our required result.

0.25x2 = 0.35

Example: 12

Solve the following system of linear equations by Crout’s method.
0.5x1 +
0.3x1 +

Solution: Since

0.80x; + 0.40x3 = 0.77
025X2 + x3 + 05X4 =-0.5

X3 — Z.OX4 = —2.25

05 025 0 0

A= [0.3 0.80 0.40

As, A=LU
05 025 0 0
[0.3 0.80 0.40

01=1
0 0.25 1 0.5 0 l30 33

0 0 1 —2

0
0 0.25 1 0.5
0 0 1 -2

lii7 0 0 0
121 l22 0 0 [
0 1

oo O

0 0 liz gy

<
[y

S O

X4 = Y4
0 0
U 0 1
1 Us
0 1
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Step — I

Step — II:

lz1 =a21 =03 )

Step — III:

Nowas, Ly=b

This implies,

y1=070 , y,=0.6709 , y;=-07656 , ys=0.5768

Nowas, Ux =y

This implies,

x1 =0.6384 , x,=12312 , x3=-19620 , x4=0.5768

This is our required result.

lli=a;1 =05 , up=-—=—=005

liim1 = aiji-1 ; =234

l32 = a3y = 0.25 ,
i =ay —lj—1 . ui—1; 5 =234

lzz = dyy — 121 U112 = 0.8 — (03)(005) = (0.7825

133 = as3z— 132 U3 = 1- (025)(0511) = (0.7822

liz=as3=1

l44 = A44 — l43 sU34 = -2 - (1)(—05733) = —2.5733

Ajit+1
Uji+1 = I s 1=2,3
@ _ 0.511
Y=, 07825
0.5
Ugy = 24 = = 05733
Lz 0.8722
05 0 0 0 V1 0.35
03 07825 0 0 V2 077
0 025 0872 0o 1lyl=[_g5]
0 0 1 —25733 y.  —2.25

1 0.05 0 0 X1 0.70

[ 0 1 0511 0 1 [xz] = 0.6709 1
0 O 1 0.5733" 'x3 —0.7656
0 O 0 1 X4 0.5768

“Good Luck For The Mid-Term Exam”
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