MTH647 Handout

LECTURE NO. 01

Mathematical Modelling: It is the approximation of objects with geometrical objects.

Mathematical Formulation: In this step we drive the equation corresponds to the given phenomenon. It is
based on existing law i.e. Newton’s law of motion, laws of thermodynamics. If laws are not available for
given existing problem, then we go for experiments.

Example: F — goems @ dg G—
e (res)z dt

LECTURE NO. 02

Mathematical Analysis
—

Solution New Problems

—— Existence New Solutions

Uniqueness New Fields

Example: Heat flow problem — Formulation — PDEs — Solutions — Expansion of function terms of ‘sine’
and ‘cosine’ (Fourier analysis).

Physical Interpretation: E.g. X = % 0) x(t)=Ae' =~ AeR
LECTURE NO. 03
Vibrating String Equation:
Py _ 22y
atz a axz

Here we’ll try to derive the above given equation. So,
Let 'As’ represents the elements of arc of string and ‘T’ is tension at x" and ‘x + Ax’ (constant).
Net upward force = T sin8,; — T sinf;

For small angles; sinf = tanf s sin0 =tan0 =0
So Net force =T tanf, — T tan8; .. (1)
By newton second law of motion

Force =ma = (mass of As)(acceleration of As)

Force = (u As) (_+ S) (2) . W Is linear mass density
Note: Here acceleration is in derivative form and while discussing the acceleration for a segment (large
number of particles), there will be some approximation/error. That's why we are using 'c’ as
approximation symbol.

By comparing equation 1 and 2, we have
d2%y
T tanf, — T tanf, = (u As) ( 5+ S)
62y
T[tanB; — tanB] = (u As) (6?_'_ S)

so above equation become
dy dy a2y
T xrar = (T = (W 8s) (57 + 5)

Note: Here 'x + Ax and x' are 'final and initial points’ respectively.

Astanf = — = 1
A dx’

X

For small vibrations; As = Ax @ uwAs = ulAx
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By using this relation, we get
dy dy dzy
T [(Ec)x+Ax - (a)x] = ulAx (ﬁ +s)

Dividing by Ax on both sides
dy ) (dy) 5
x+Ax x u & y
T 6Eix dx 1

Ax Ax (at2 +5)
r( -3 ay
W 1= Gatd
For Ax - 0ands — 0, it becomes
T o9 o0y 0%y
i @
Ty oy
po0x? gtz
Here = a2, so equation becomes
: g2y oy
a? (W BFy
Or it can be written as
02 02

This relation is known as Vibrating string equation.

LECTURE NO. 04

Boundary Conditions for Vibrating String Equation:

Statement: Write boundary conditions for a vibrating string of length ‘L’ for which i) Endsx = 0 andx = L
are fixed. ii) Initial shape of string is f(x). iii) Initial velocity distribution is g(x). iv) Displacement at any

instant 't’ is bounded.
Solution:
i) String is fixed at x = 0 and x = L, then its displacement at

starting point: y(0,t) = 0 = end point: y(L, t) *t>0

Note: above relation is in "function (displacement, time) = y(x, t)" form. At starting point "x = 0" and

at final point "x = L".
i) Initial shape att = 0 is given as
y(x, 0) = f(x)
Note: Just put t = 0 in "y(x, t)" relation and here f(x) is just an expression.
iii) Initial velocity at time 't is given as
dy
3t ye(x, t)
Att =0 ye(x,0) =gx) * 0<x<L
Note: Here velocity is in derivative form and g(x) is just an expression.
iv) Displacement is bounded: It implies that their exist some finite real number (M < o) such that
ly(x, )| < M % 0<x<Land t>0
These are some examples of boundary conditions applied on vibrating string equation.

DEDICATED TO UNKNOWN STUDENTS WHO ARE OUR FUTURE HEROES.
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LECTURE NO. 05

Heat Flux across the Plane: Pare 1 7
Suppose planes’I’ and 'I1'are parallel and at distance 'An’apart. Let Temp: ot A
u = temp of plane | And u+ Au = temp of plane Il >

Heat flows from higher temp plane to lower temp plane.

Heat flux is defined as; Heat per unit area per unit time. Mathematically
dif ference of temperature

Heat flux a distance between planes
l k(u)—(u+Au) N Au
Heat flux formIto Il = A => i

Where 'k’ is constant of proportionality and is called thermal conductivity.
Thermal conductivity is defined as; Measure of how well a material can conduct or transfer heat.
Note: As in this case heat flows from plane 'I to II' (lower temp to higher temp), that’s why we have the

negative value of heat flux. ~ Au > 0 (Heat value will be positive) if heat flows from plane ‘I to I'
(higher temp to low temp) and vice versa.
For limiting case: If An -0 and Au—-0 then
du
Heat flow across plane | = —k o
n
In vector form
Vu
Heat flow across plane | = {—k V_}
n

Note: As An — 0 (distance between planes approaches to zero), so we can write it as plane 'I' only.

LECTURE NO. 06

Partial Differential Equations (Definition and Related Terms):

Definition: It is an equation containing unknown functions of two or more variables and partial derivatives
w.r.to these variables. Example
d%u
dxdy
Order: It is the order of highest derivative involved in PDE.
Solution: It is a function which satisfy the given DE. Example:

=2x—-y order = 2

1
u = x2y — —xy?
2
du
__=x2—xy 1st derivative w.r.to 'y’
dy
o02u 0 ou o .,
9xd = _(6_) =2x—-y 2nd derivative w.r.to 'x
X X
Similarly; 2 1 y ? Y isalso a solution. Here 'F(x)and G(x)' are arbitrary functions.

u=xy—3;X¥ +Fx +G6Q)

Particular Solution: It is obtained from the general solution by particular choice of arbitrary functions.
Example:

1
u=x2y— Exyz + 2sinx + 3y* =5

Singular Solution: It cannot be obtained from the general solution by choosing arbitrary functions.

LECTURE NO. 07

Example: xy =\Jy=>y= 1_(lncx)2 (General Solution—Here 'c’ is arbitrary constant).
4

But 'y = 0’is also a solution of given DE.As it is not obtained from general solution, that’s why it is called
singular solution. (A ¢ € R such that y = 0)
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LECTURE NO. 08

Linear PDEs and Their Classification:

General form of linear partial differential equation of order 2in two independent variables is of the form
0%u J%u d%u du

Gt Bazay T Cart Dot Fu=6

Here A, B,C,D, E,F and G may depend on 'x’ or 'y’ only but not on both 'x’and 'y'.

A

If at least one of these(4, B, C, D, E, F and G) is function of 'x’ and 'y’, then it is non-linear.
If G = 0, then it is homogeneous.
Example:

d3u J0%u

2 — 3
ay3 Y ox

(order = 3,linear)

X

Example:
2

ou ? OJu
(—) +(=) =1 (order = 1,non — linear)
dx dy

LECTURE NO. 09

Topic Continue...
02u 0%u d0%u ou

6x2+ 6xdy+C6y2+ 6x+ u=Ga

A

Itis defined as
i) Elliptical if B2 —-4AC <0
ii) Hyperbolic if B2 —4AC >0
iii) Parabolic if B2 —4AC =0
Example:
u 0% ou _ 0
X%tV
0x2 dy? dx
Here A=x,b =0 and c = y. Now
xy > 0, then it is elliptic
Bz — 4AC = —4xy {xy < 0,then it is hyperbolic}
xy = 0, then it is parabolic

LECTURE NO. 10

Show that u(x,t) = e 8tsin2x, is a solution to BVP (Boundary Value Problem):
du d%u
I - = - = = = [
) o 2 2 D u(0,t) = u(m, t) = 0,111) u(x, 0) = sin2x
Solution:
1) u(x, t) = e-8tsin2x => u(0,t) = e-8sin(0) =0
1) u(x, t) = e-8tsin2x => u(m,t) = e8tsin(2m) = 0
111) u(x, t) = e-8tsin2x => u(x,0) = =80 sin 2x = sin2x

Now, try to calculate the values for condition I’
du d%u

Taking derivative of equation 1 w.r.to 't’ 3
u
= —8e~8sin2x

at
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Taking derivative of equation 1 w.r.to ‘x’ 5
u
___ = 2e 8tcos2x
dx
Taking 2" derivative, we have
d%u
— = —4e-8tsin2x
dx?
Now, by putting the calculated values in equation 1 and checking, we get
du 5 d%u
ot Toxz
ou _ 8e-8tsin2x => 2(—4e-8tsin2 )—Zazu
Py e-8tsin2x = e 8tsin2x) = 922
Or simply
du 5 d%u
at " ox?
Hence proved('I") that the given function "u(x, t) = e-8tsin2x" is solution to given BVP.
LECTURE NO. 11
Show that v = F(y — 3x), where 'F' is arbitrary differentiable function.
I) The general solution of equation is o +3 »=o.
0x dy
I1) Also find its particular solution if v(0,y) = 4siny
Solution:
I) Given that v=F@y—-3x) ... (1)
Let / say v(x,y) = Flu)Whereu =y — 3x
v = F(uwand u = u(x,y)
By applying chain rule w.r.to 'x’
ov  0dv Jdu , ,
_=__.__ =FW(E3)=> -3F )
dx Ou Ox
By applying chain rule w.r.to 'y’
v 0v Jdu ) ,
_=_._ =Fw@=>Fw
dy OJdu dy
Now by putting value in equation
av av , ,
_ +3_ =-3F(u)+3F (u)
dx dy
By solving, we have
av
a_v +3—=0
Ox dy
Hence, the general solution of equation proved.
IT) Now, also given that
v(x,y) = F(y — 3x)
Given condition
v(0,y) = F(y) = 4siny
It implies
v(x,y) = F(y — 3x) = 4sinifly — 3x)
This is our required particular solution.
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LECTURE NO. 12

Solving PDEs by the Method of ODEs:

. L a
Question: t

Txot + 2; = 2tx

Solution: Given that

t62u+26u
axot | ox o
9o d
() +2—u=2
ox 90 T2 T
F

ax

¢y =2
— + 2u} = 2tx
at

Integrating w.r.to 'x’

d a
fﬂ{ta_?Jr 2u}dx = [ 2tx dx

u
t__ +2u=x%+ G(t)

dat
Dividing by 't’ on both sides
2 G(t
6_u +_u=x%+ Q
Jat t t 2

[2dt
Integrating Factor = I.F = e ¢

LF =e2lnt = gnt* = ¢2
Required solution is

ILFxu=[(R.HS x ILF)dt+ F(x)
By putting values

t2u = [ ((x% + CE) % ¢ dt + F(x)
t
tou = [ (x2t2 + @tZ) dt + F(x)
t

t3
thu = x?_ + [t.G(t)dt + F(x)

3
t?u = x2%+ H(t) + F(x)

LECTURE NO. 13

General Solution for Solving PDEs:

] 0%u %u %2u
Question ﬁ-l_ 3E+ 26y_2= 0o ... (1)
Solution: Let
u= eax+by
Taking 15t and 2" derivatives w.r.to 'x’
@ = eax+by i(ax + by) = au
ox 0x
ou 0 511)_5 _ au_z
o " oxiax ok T T O

Similarly taking derivatives w.r.to 'y’

d%u

W = b2u
And

0%u 0 du 0 Ju
oxdy  9x\ay  ox ax

Putting values in equation 1, we have
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a’u+ 3abu + 2b2u =0
(a2+ 3ab+ 2bH)u=0
(a+2b)(a+b)=0

By solving, we get

For a = —2b

Fora=-b

a=-2b ; a=-b

U = e—2bx+by — eb(y—Zx)

Uy = e_bx +by — eb(y_x)

Given PDE is homogeneous, therefore by superposition principle

u = aui + fu;

By putting values

Let

u = aeb(y_zx) + ﬂeb(y_x)

eb-20 = G(y — 2x) and eb0— = H(y — x)

So, above equation becomes

u=G6Gy—-2x)+H({y —x)

Required general solution of given PDE.

LECTURE NO. 14

Solving PDEs by Separation of Variables:

Question:

iu: 4£l subject to boundry conditio u(0,y) = 8e-3y

0x dy

Solution: Given equation

Let

du du
—=4— (D
ox dy

u(x,y) =X(x)Y(y) = XY Be its solution... (i)

Taking derivative w.rto x & y

Ju , u
_ =XY and __=XY'

0x dy

Putting values in equation 1, we have

As

Here X and Y are independent variables. Each side of equation 2 must be a constant say 'c’. So,

By integrating

XY =4XY'
x Y
X(x)=X,Y(y) =Y

)'e Y’

& =C 7 =C

X =4cX Y =cY

dX dY

— =4cX —=cy

dx dy

dX dYy

— = 4cdx — =cdy

X Y

dl=4cfdx fd_y=cfdy

X Y
InX =4cx+ A InY =cy+B
X = e4—cx+A Y = ecy+B
X = eA e4cx Y = eBecy

X = k164c" Y = kzeCY
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Now by putting values in equation (i)
u(x,y) = XY = kqkyetextey (3)
By using boundary conditionu(0, y) = 8e~3vin equation 3, we have

u(0,y) = k ey = 8e=3v
Here k =8 and c = -3,

Hence
u(x, y) = 8e 3(x+y) = gg=12x=3y

LECTURE NO. 15

Heat Conduction Equation and its Physical Interpretation:

Question:
du 0%u
—=2— ..(»1
ot P (1) 0<x<3,t>0
Given that (boundary values)
u(0,t) =u(3,t) =0 .. (D),
u(x,0) = 5sindnx — 3sin8wx + 2sin10mx ... (iQ) ~ |u(x, t)| <M < o

Solution: Let
u(x, t) = X(x).T(t) = XT ...(2)
Taking derivative w.r.to 't’

ou ,
— = XT
at
Taking 15t derivative w.r.to 'x’
Ju T
ax
Taking 2" derivative w.r.to 'x’
d%u
—=X'T
0x?2
By putting values equation 1 becomes
XT =2X""T
XII T;
— = —==-12(sa
Y 7 (say)
So,
XII AZ T AZ
X 2T~
X' +22X =0..(a) Takingflerivative
Let X = emx — = —2A2T
&
X' = m2emx = m2X __=-=2A%2dt
T
dT ,
(@) =>m2X + 12X =0 f?=_21 J dt
m=1Ai&X#0 InT =-22%t+c
2 X(X) = a; elx 4 g, e~ ix T = e—2A%t+c
X(x) = ay[cosAx + isinAx] + az[cosAx — isindx] T = . e~ 24
X(x) = (a1 + az)cosAx + i(a; —ay)sinix T=rc e~ 2A%
X(x) = AicosAx + BsinAx Here ec = ¢

Here we were solving both functions side by side. Now

Putting values in equation (z), we get
u(x, t) = XT = e~22t (A 1cos)uc + Blsinxlx) . (2)
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Calculating (i) (boundary value) by putting values in equaition 2,

u(0,t) = 0 = e~22t (AcosA(0) + BsinA(0)) = e2"t. 4 => A=0 - e 221 %0

Equation 2 becomes
u(x, t) = XT = B.e—2""tsinlx ~A=0
Calculating second part of (i) by putting values in above relation
u(3,t) = 0 = e~24"t_ Bsin31

Two Cases
1, if B=0 =>u(x,t) =0 asA=0already
mm
2; if B0butsin31=0=>31=mn => /1=T “mEeEZ
Hence

u(x,t) =B ~“ 9 ‘sin (T x)  ..(3)

Calculating (ii) (boundary value)

u(x, 0) = 5sindnx — 3sin8rx + 2sin10mx ... (b)

By applying superposition principle on equation 3,
_pmi‘n”, mmn _zmzznzt moTt _ngznzt masTt

u(x,t) =Bie 9 sin( 3 x)+ Be 9 sin( x) + B3 9 sin( 3 x) ..(4)
For
u(x,0) = B1 sin (17 x) + 32 sin (T2 x) + B3 sin (™3™ x) ... (¢)
3 3 3
By comparing b & C, we have
3125,822—3,33 =2,m1 =12,m2 =24 & ms = 30
Finally by putting calculated values in equation 4, we get
u(x, t) = 5e-327"t sindmx — 3e-1267"t sin8mx + 2e-2007" gin10mx
LECTURE NO. 16
Motivation Behind Fourier Series:
du d%u
—=2— .1 ~0<x<3,t>0
dat dx2
Given that (boundary values)
u(0,t) =u(3,t) =0 (D),
u(x,0) = 5sindnx — 3sin8rx + 2sinl0mx ... (i0) =~ |u(x, t)| < M <
Solution: If
ulx,0) = f(x) =7 ..(D
As we know from previous lecture
_Zmlznzt . mmn —Zmzzﬂzt . moT * _p m?nt . mmx
u(x, t) = Bie 9 Sm(_x)+Bze 9 Sm(_x)+...=ZBme 9 sin ( 3 )
3 3 m=1
Calculating (1)
«© m 21 2(0) MITX ® mimx
f(x) =u(x,0) = ¥ Bpe 295 sin( 3 ) = > Bpnelsin (T)
m=1 m=1
Asel =1
® mmx
f@) = u(x,0) = X, Bn sin ()
m=1
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LECTURE NO. 17

Periodic & Piecewise Continuous Functions:
Definition: A function f(x) is said to have a period 'p’ if Vx, we have f(x + p) = f(x), and'p >0".
Further if p > 0 is least then it is said to be period of f(x).
Example: sinx = sin(x + 2m) = sin(x + 4n) = sin(x + 6m) = -+
But 27’ is least => p = 2m is a period of 'sinx’.
In general; for
sin nx = sin(nx + 2m)
sinn(x +0) = sinn(x + Z_n)

n

) 2m
Period =p = —
n

Piecewise Continuous Functions:
f:]la,b] - R
Itis a function that has at most a finite number of finite discontinuities.

LECTURE NO. 18

Fourier Series:

Definition: let f(x) be a periodic function of period '2l" and defined on (-1, 1), then its Fourier series is
defined as

a (0e]
_O+Z[a cos (™ )+ b sin(@)]
2 " ! " l

n=1
Where
l l
nmwx 1

1 nmx
an :_l ff(x) cos (T) dx , by, :_l ff(x) sin (T) dx ~n=20123..
-1 -1
These are called Fourier coefficient.
By changing the period, we can also define coefficients as

c+21 ct2l
nwx 1 nix
an =7 [ f@)cos(—)dx , by =7 [ f@sin(—)dx  wn=0123.
(o l C
(01 —

- l [ f(x)dx — Average value of f(x) in interaval (—1,1)
2 21

-1
Example: Function
f(x) =x2 & interval (0,2)

[ x2dx = 5l5-| ==.=== - Average value in tle interval (0,2)

LECTURE NO. 19

Dirichlet Condition:
Fourier series corresponding to 'f(x)" is

a, 2
_+32Ma cos(™y+b sin )
2 n n l

n=1 l
Question is; Series converge or diverge? If converge then converges to f(x) or not.
Suppose that:
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i) f(x)isdefined and single valued on (=1, 1)

ii) f(x)is periodic on (—I,1) with period 21’

iii) f(x) & f'(x) are piecewise continuous, then the series
a “ nmx nmx f(x)if 'x" is point of continuity

+ 2@, cos (—) + by S ()] = {fx +0) + f(x — 0)

n=1 2

0
2 if 'x' is point of discontinuity
LECTURE NO. 20
Evaluation of Fourier Series:
Theorem: If the series;

(0]

nmx nmx
A+ [a, cos (T) + by, sin (T)]
n=1
Converges uniformly to f(x) in (=L, 1), then for n = 0,1,2,3 ... show that
!
1

nmx ,

a, = 7 ff(x) cos (T) dx ..(0)
-

1! nmx 3

by =~ [ f(x) sin (T) dx .. (iD)
-

ap

A= (i)

Solution: Given that

(0]

nmwx nmwx
f(x) = A+ ¥ [an cos (T) + b, sin (T)] (1)
n=1
Calculating i):

Multiplying (equation 1) both sides by cos (ﬁ) and integrating from - [ to [, we have
l

l l © l l

mmx mmx nmx mmx nmx
J f(x) cos (T) dx = [ Acos (T) dx + 3 {a» [ cos (T) cos (T) dx + by, [ sin (T) cos (
—1 -1 n=1 -1 -l

| | |
(a) (b) (c)

Now we’ll calculate the values for above functions.
!

(a); [Acos(

-l

m

X
) dx} .. (2)

mmx_ !

l )\_l=0

m

l
TX [ mm mmx Al
)dx = A J (—)cos( )dx = ‘sm(
l mm l l l mmn

l

l
1 + —
(b); fcos (m;[x)cos (m;[x)dx =5 f s M+CB M}dx =0 ; form#n
-1 1
~. Here we use the trigonometric relation; cosA cosB = l[cos(A + B) + cosi{A — B)]
2

For m = n, we have

! nmx mmnx 1 ! mmnx 1 ! mmnx 1
Jcos(C )cos( )dx=_fcosz( 2dx=_f{1+c052( )}dx = [x|' =1
2 l l -

l l 2 2
— 1 1
l . !
. + -
@ Jsin(yeos My dx =5 [ IR 4 g (D g g

—1 -1

= Here we use the trigonometric relation; SinA cosB = l[sin(A + B) + sini{A + B)]

2
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LECTURE NO. 21

By putting values in equation 2, we get

l l
mimx 1 nmx

[ f(x) cos (T) dx =0+ apl +0 => a, =7 J f(x) cos (T) dx
—1 -l
This is our required solution for (7).
Calculating (ii);
Multiplying (equation 1) both sides by sin (rﬂ) and integrating from - [ to [, we have
!

l l P l l
mmx

mnx . mnx nmx mmx . nmnx
[ f(x) sin (T) dx= [A sm(T) dx + 3 {a. [sin (T) cos (T) dx + b, [ sin (T) sm(T) dx}...(3)
-1 -1 n=1 -1 -1

| } }

(a) (b) (c)
Now we’ll calculate the values for above functions.
l

(a); [Asin (@) dx =20 . sinais odd Va € R
l -
mmx nmx
(b); [ sin( l ) cos (T) dx =0 . sina cosf are odd functions Va, B € R
;T !
- +
(c); fsm(—)sm(@)dx == f {as M—ax M}dx= 0 ; m#n

l l
-l —l

Form = n we have

! mmx 1 ! mmx 1
fsm( )cos( )dx— fsinz( )dx = [ {1 —cos2( )}dx = x| =1
l l 2 l 2 l 2
-1 -1 -l

By putting values in equation 3, we get

! l
mmx 1 nwx

J f(x)sin () dx =0+0+bnl =>by =7 [ f(x) sin (T) dx
—1 -l

This is our required solution for (ii).

Calculating (iii):

Integrating equation 1 from - [ to [ on both sides,

l l 0 l l
nmx

ff(x)— fAdX+Z{an fcos(—)dx+b fsm(—) dx}
-1 -1 n=1
l l

1
[feodx =241 =>24 = [ f@dx . (a)

-l -l

Putn = 0in ay;
! l
1 nmnx

an =5 [ f(x) cos(l—) dx => ag =7 [ f(x)dx ... (b)
-1 -1

Comparing a and b, we have ao =24 =>A= ?

Hence equation 1 (Fourier Series) becomes

f(x) =f)+§: i ocos B Y + b sin ("]
2 n l n l

n=1
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LECTURE NO. 22
Problem:
Expand f(x) = x2; 0 < x < 2m in a Fourier Series.
Solution: Fourier Series
® nmx nmx
f(x) = A+ ¥ [an cos (T) + b, sin (T)]
n=1
According to given function, (. | = m)
f(x) = A+ Yla, cos(nx) + b, sin(nx)] ...(A)
n=1
As we know from previous lectures, l
+2
‘ nmx
an =7 J fQx)cos (—) X
C
According to given function,
2m nix 2
a = [x2cos(_ )dx => [ x2cos(nx)dx ~l=m
nooT s s
0 0
By integrating and applying limits, we have
1 sin(nx) cos(nx) sm(nx)
an = —[2( )—(2 ) (-—a )+ @ )]
T (1) 1 4n. 4 0
a = _[4m2(0) + +0]=_[_1=_ ..
oom n2 T n? 2
Now
l
1 nmx
by = J £ sin (=) 4
According to given function, B
2m
p. = _ [ x2 sin(nx)dx
"o
0
By integrating and applying limits, we have
1 cos(nx) sin(nx) cos(nx)
by==[¥*(-—) - 20 (- )+ 2 (—=—)]
T n 0
1 4m2(—1) 4
n =_[0+—+0] =—— ..(2)
is n n
Now
21
1 1 x3 27 2
a _ 8m
g2 =5 _f fOydx => _[ x2dx =>_|" 3 5 T (3
2 T T 3 0 3
0 0
Putting values in Fourier series,
412 4 4T
f(x) = —=+ 2 [ cos(nx) — — sin(nx)]
3 n2 n
n=1
LECTURE NO. 23
Fourier Expansion of Even Functions:
Theorem: Show that an even function does not have sine terms in its Fourier Series.
Proof: Since
a [ee]
FO=""+38 cos®*)+b sin("H] ..(1)
n n
2 n=1 l !
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If f(x) is even function, then we know

fl) =f(=x)

So, replacing x by — x, we have

f(—x) =io + % i ocos C"™ Y+ b sin (]
2 n l n l

n=1
As cos(—x) = cos & sin(—x) = —sinx, hence
a (00
f0=_"+3 {ln cos (™) —b sin ("] .. (2)
2 - l n l
By comparing equation 1 & 2,
fx) = f(—x)
a * nmx a ®
_0 +>2 0k cos®*)+b sin ()] :_O+ b cos (™) —b sin ("]
2 " ! n l 2 " l n !
n=1 n=1
a * © nmn ® *©
C+3a cos(M™y+3p sin(C_)=_"+%a cos(M)—>b sin (T
2 n l n [ 2 n l n l
n=1 n=1 n=1 n=1

By cancelling the terms, we have

” nmwx ” . nmx
> b, sin (T) =—2> by sin(—)
n=1 n=1 !

(0]

nmx nmx
2> by sin(T) =0 =>)>b, sin(T) =0

n=1 n=1

(0]

So equation (1) implies,

(0]

£ =;° +xa cos (")

n=1
Hence proved that an even function does not have sine terms in its Fourier Series.

LECTURE NO. 24

Half Range Expansion of Identity Function:
Expand f(x) = x;0 < x < 2 in half-range sines & cosine series.

Solution:
(i); For odd extension of f(x) = xin(=2,2) ~ -2<x<?2
This implies 2l=4 so =2

For odd expansion; a, =0

(a0 = 0 also) And
l

2 nmx
bn = [ f(0) sin ()
0

For given function,

2
2 nmx ’ nmx
by == [xsin(—) & => [xsin(—)dx
2 2 2
0 0
By integrating and applying limits, we have

-2 nmnx 4
b = b cos () - D 5

nnx 2
sin (T)}]O

b,=— — cos (nm)

Now, putting values in Fourier Series
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f(x) =i)+§: B cos ™))+ b sin (9]
n l n l

2 n=1
i nmx - 4 . nmx
f(x) =0+0+ Zlbn sin (T) => Z (_ E cos (nT[)) Sin (T)
n= n=1

4[_ (nx) 1 (2nx)+1 ) (3vc
= —[sin (—) — —sin (—) + —sin (—) — ..
f =7 27 2 23 R
Required result.

LECTURE NO. 25
(ii); For even extension of f(x) = |x| in (—2,2)

This implies 2l=4 so [=2

For odd expansion; b,, = 0 and
!

2 nmx
an =7 J f() cos () 4
0

For given function,

2
2 nmx ’ nmx
n :Efxcos(T)dc => IXCOS(T)dx
0 0
By integrating and applying limits, we have
2 nmx —4 mtx)}]2
=[x {7 sin (53— (W {75 cos (3
4 4
an =0+ 7 (cosnmt—1) => 277 (=D —1]
Forn =0,
l 2 )
2 2 x2
ao =~ [ xdx => —J e => [=] => 2
l 2 2
0 0 0
a
_E:z 1
2

Now putting values in Fourier Series,

f(x) =i)+2 a cos@)+b sin ("™)]
2 n l

n=1
Nnix
FO) =1+ z a cos () +0 => 1+ z; 4 [(-Dr —1]cos ()
-1 2 1112772 2
4 X 2 37Tx 2 S5mx
f() =1+ —[=2cos () = 3705 () — g7 0S (T)_ =
8 nx 1 3mx 1 S5mx

fx)=1- 2 — [cos (—) + 5 COS (—) + 5 COS (—) + ]
Required result.

LECTURE NO. 26

Parseval’s Identity:
Theorem: If Fourier Series of f(x) converges uniformly to f(x)in (=L, 1), then prove that

1 al
T J{f()Ydx = % + Y (an 2 + by?)
-1 n=1
Proof:
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f(x) =i) + % B cos (MY +b sin(M™9) .. (D)
2 " [ n l
n=1

MuItipIying both sides by f(x)and integrating form-1tol,

f {f(x)}2dx = f f(dx +3 [a f £(x) cos ("’”‘) dx+b_ f £(x) sin (””x)dx] (4
-1 -1 n=1 -1 -1
l l
1 nmx nmx
n =7 [ f(x) cos (T) dx => ayl= [ f(x)cos (T) dx
-1 -1
Similarly for
l nmx
b,l = [ f(x) sin (T) dx
- l
aol = [ fF(x)dx
-1
So, equation (A) can be written as
l a 1)
JfeYde = "¢ p +3 (@ D+b (b D]
2 0 n n n n
-1 n=1
l 1)
2 %o 2 2
JI@¥dx = —AD + (D Z(an >+ by?)
-1 n=1
1 2 ay” . 2
Tf{f(x)} dx = T+Z(a" 24+ b9
-1 n=1
Required result proved.
LECTURE NO. 27
Problem:
Use Parseval’s identity for f(x) = x|, —2 < x < 2 to show that
1 1 1 t
gt T
Where it is given
ap=2 , @ = —1},n#0 & b,=0
Also deduce that
1 1 1 t
ittt Ty
Solution: Parseval’s identity
1 a2
T J{f(0)Ydx = 2@ 24 hD (D)
1 n=1
For f(x) = |x|;(=22)=> 2l=4 so =2
Equation (1) becomes
2 (o)
! [ x2dx = 2 6 2
5 [xtdx == 4 3= (D - 1 4 0
-2 n=1
By solving, we have
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8 64 1 1 1
—3—2+—4 1—4+ —+ 5—4+ )
1 1 1 t
13Tt T
Proved. Now let
1 1 1
S=mtotgt
1 1 1 1 1
S=Gt+ ot o+ D+ (Gt o+t )
17 3% 5f 246
T4 1 1 1 1
S=(62+—4F+ﬁ+§+ )

s=( S
(96)+21()

S—_
90

Deduced.
LECTURE NO. 28

Finding a Fourier Series by Integration:
Theorem: Fourier series of f(x) can be integrated by term form a to x and the resulting series with

converge uniformly to fo" f(x) provided that;

(D): f(x) is piecewise continued in (=1, 1) (iD):a,x € (1D

Problem: Find the Fourier Series of f(x) = x2,0 < x < 2, by integrating

4 mx 1 2ax 1 3nx

x=—[sin———@12— +-@13— — ..]

T 2 2 2

And further evaluate;
(-1
=7?
n2

n=1
Solution: Given that
4 m 1 2nx 1 3nx
x =—[sin———sin—+_sin— — ]
I8 2 2 2 3 2

Integrating from 0 to x term by term

% x
fxdx=;[f3'n 7dx——f 2ﬂdx+ f 37Tx
xzox 4 2 0 nxr 21 2mx * 3mx *
[%10_71[5‘%” 2 7™ =, ;?"‘E PR
SIS SUEL P P
o Ty 2 TR 2
w=_[1—_ 41 bt g 10pemt 2L+lcs%— ]
2 22 32 42 2 2 22 2 3 2

Comparing above relation with general form;
[ee]

() =f’+2 B cos ™) +b sin (M)
2 " l n l
We have =
ag 1/ 16 1 1 1
_=> Tff(x)dx =_[—_+_——+.] .(

0 2 22 32 42

Here
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. l . 2 5
1 x3 4
— x)dx = — | x2dx = =
lf £ Zf > 1=
0 0 0
So equation (1) becomes,
4 16 1 1 1
—3 =?[1—— ?—E-l- ]
4 ( 1)71 1
= Z
3 7'[2 n2
n=1
G VU
>—=5
n 12
n=1
Required result.
LECTURE NO. 29
Problem:
Check the term by term differentiation of Fourier Series;
00 = 4[Smnx 1 ,221Tx+1 _33nx
fx 5 L1l 7 L1l 7 e ]
Solution: Taking derivative,
4 1z 1%
fl(x)=_ [f 0s™ _Z % os2MX L 1 ps3TX o]
T2 2 22 2 32 2
, X 21X 3mx
f'(x) =2[cos —— cosT + cosT - ..]

This implies

nmnx
a, = (=1)»1 (cos , ) 0

= Series does not converge = It does not converges uniformly = Term by term differentiation is not

possible.

Heat Flow Problem:

LECTURE NO. 30

A bar of length "I" whose entire surface is insulated including its ends at x = 0 and x = [. Its initial

temperature is f(x), then determine the subsequent temperature of the bar.

Solution: It is a heat flow boundary value problem (B.V.P.). As we know heat equation

Where

lu(x, )| <M ,

ou o0%u

5 k@ . (1)

u(x,0) = f(x), Uy (0,t) =0 = u,(l, t)

Let u(x,t) = X(x)T(t) = XT be its solution. Equation (1) implies,

XT' = kX"T
T’ X”
= = _)2
kT X (say)

Here become two equations. We'll solve them side by side.

T"+ 22kT =0 ..(Q)
Let T =emt

T' = memt => mT
So (i); mT + A2kT =0
m = —A2%k

T = Ce_fkt

By putting values,

X'+ 22X =0 ...(i0)

X =em=> X" = m2emx = m2X

m2X+ 22X =0=>m==id(~x #0)

X = aetx + pe—Aix

X = a(cosAx + isinAx) + b(cosAx — isindx)

X = (a+ b)cosAx + i(a — b)sindx = AcosAx + BsinAx
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u(x,t) = X()T(©) = XT = ce~** [AcosAx + Bsindx] = e~ [acosAx + Bsindx] ...(2)
Now
u, = e-K[—a) cosdx + BA sindx]
u (0,0) =B le? M =0=> =0
Equation (2) implies,
u(x, t) = a e cos(Ax) ... (3)
u =-la g1kt sin(1x)
2
U (Lt) =—-Aae ksin(Al) =0

mmn
=> sin(A) =0 => Al=mn => A= e
Equation (3) implies,
m2?, mn
u(x,t) =ae ¢  COS (T X)
By using super-position principle;
a “ m2e? mn
u(x, t) = 70 +2a, e T cos (T x) ...(4)
m=1
Now; as given
a
u(x 0 = f) =+ T, cos ")
m=1 L
Where
2 L mm a 1!
« =" [f@cos(__x) , _=_Jfodx
moo [ 2 1
0 0
So, equation (A) becomes (by putting values)
1 : ® : mmn mZ”Zkt mrit
u(x,t) = —lf f(x)dx +_l > {J f(X) cos (Tx) e— U cos (Tx)}

0 m=1 0
Required result.

LECTURE NO. 31

Laplace Equation:

Problem: Suppose that the three sides of a square plate kept at zero temperature and fourth one at u;.
Determine the steady state temperature at all parts on the plate.

For Solution; WATCH Lecture (Lengthy Calculations)

B

LECTURE NO. 32
Orthogonal Functions And Orthogonal Sets: L% .

(i): Can we generalize the idea of vectors and orthogonality?
{f (x) defined on (a, b); value of 'f" at each point on (a, b) represents its comoponents.

(ii): Say A(x) & B(x) defined on (a, b) if fab A(x).B(x) = 0, then A(x) & B(x) are said to orthogonal.

(iii): A vector say » = xi™ + yj* + zk is said to normalized if its magnitude is unity i.e.
e xi" +yjh + zk

AN =

7l Vx2 +y2 + 22

(iv): A(x) normal or normalized in (a, b) if
b

J{AGOYdx = 1

a
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Orthogonal Sets:

A set of function say {®(x)},k = 1,2,3,... defined on (a, b) such that
b

(i): [ @ (). Pr(x) =0 , m#n

a
b

(): [{®on(0)}2=1, m=123,..
Then theset {®,(x)},k = 1,2,3,... is orthogonal.
()& (ii) implies,
b
f Dy (). @, (x)dx =Sy = {

Orthogonality w.r.to Weight Function:
If

0 if m#n
1 if m=n

b
J @ (x) Pn(x) w(x) dx = Sy

a
Where w(x) = 0, then {&,, (x)}?-1 is orthogonal w.r.to weight function.

LECTURE NO. 33

Obtaining Normalizing Constants From orthogonal Sets:

Show that the set

X X = 271X 21X
{1,smT,a) T,Sl T,(D T,}

Is an orthogonal set. Also find its corresponding normalizing constants, so that given set is orthogonal.

Solution: As we know condition for orthogonal set condition
l

[ (). @, (X =
-1
Possibilities for given set (using Fourier series results;
l l

k k
D :[1sn #dx=0=f1cm %dx Vk=1223,..

-l -1
l

0 if m#n

1 if m=n

k
(ii):fs}”t%cos@dx:O k+p
-1

l l

mimx nmwx mimx Nnwx ;
(iii): [ sin sinT dx = [ cos COS_Z dx = {0 if m#n

L if m=n

(iii) Implies
l !
mimx mrmx

[ sin? dx =1 & [ cos? dx =1
l l
-1 -1
: 1 2 l 2
fe ™Y ax=1 & [C o™y d=1
LV [ T
Similarly for (i):
! l

1
_fl(l)zdx=21 => _fl(ﬁ) dx =1
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Hence, Orthonormalizing constants;

1
NI

V2I

Corresponding Orthonormal set;
Cmx 1 mx 1 2mx 1 2mx

1
— cos— —sin—,—coSs——, ... }

1
TR Vi LT

LECTURE NO. 34

Generalized Fourier Series:
Given that {®;,(x)}%_; be an orthogonal set of functions and if possible to expand a function "f(x)" in a
set of orthonormal functions, i.e.

f(x)=XCp Ppn(x) ;a<x<Dh
n=1
Then such series is called Orthonormal Series or Generalized Fourier Series and "C, " are called Generalized
Fourier Coefficients.

If f(x) & f'(x) are piecewise continuous functions, then

(0]

1
Y Cr®p(x) = 2—[f(x+0) + f(x — 0)]

n=1
“If a function and its derivative are piecewise continuous, then the series converge to their average”.

LECTURE NO. 35

Theorem:

Let {®,,(x)} be aset ofmutually orthonormal functions in (a, b). Show that if }.%,_; C, ®@,(x) converges
unlférmally,}thenC = bf(x) @ (x)dx. (@,). st

n fa n

Proof: As given that
The series Y.*_4 C, @,(x) converges uniformally to f(x)

This implies,
f) =X Cn®Pn(x) ..(D
n=1

Multiplying both sides by @,, (x) and integrating form ‘a to b’

b 1) b

JF@) @ (X)dx = F Cn [ @ (x) Pp(0)dx ... (2)

a n=1 a
As

b
[ @ () @, (dx ={

a

0 if m#n
Ll if m=n

Hence equation (2) impies
b

n=J f(x) P (x)dx

a

Or it can be written as;
b

Crn= [ f(x) @, (x)dx
a
Which are called the generalized fourier constants.
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LECTURE NO. 36
MSE and RMSE:

MSE stands for “Mean Square Error” and RMSE stands for “Root Mean Square Error”.

Let f(x) and f (x) be continuous piecewise functions in (a,b), {®,(x)}<-, be an orthogonal set
in (a, b).

Now suppose the sum S, (x) = }%_; a, @,(x) be an approximation of f(x), where "a," are unknown

constants. Then the mean square error of this apprOX|mat|on is given by,
Lbfx +S (x)}2dx

MSE =
b—a
And

fb{f (x) + S (x)}?dx
RMSE =

b—a
These are used to compare the accuracy of different mathematical methods of a physical system.
We are aimed to find "a,," which with produce the least mean square error.
Use: (MSE; for large or greater errors/quantities & RMSE; for same units as that of given function)

LECTURE NO. 37

Lease Square Approximation & Principle of Finality:

Theorem: The root mean square error (RMSE) is least when the coefficients "a,," are equal to generalized

Fourier Coefficient; i.e.
n

= [ f(x) P (x)dx
Proof: As we known ’
J PFX) +5 (x)}dx 1 b
RMSE = — = b_a(fa{f(x) + S, (0)}2dx
Now
fx) = Sm(x) = f(x) — an Pp(x)
n=1
Where {@,(x)}%., is an orthonormal set and "a," is unknown. Now,
[s) 0 2
{FO) =SSm0} ={f()}* -2 an Pr()f(x) + an Pn(x) -~ (1)
. , . n:l _ n=1 _
ay Op(x) = an Py (x) X an @p(x) = ap @p(x) X  apPp(x)
n=1 n=1 n=1 n=1 m=1
[ele) 2 0 o0
a, ®p(x) = an Am Pn () Py (%)
n=1 n=1m=1
By putting equation (1) becomes,
) =Sm@)P ={f()} =2 anPn()f()+  ttm Pn(x) P (x)
Integrating form "a to b" = I
b b o0 b © b
J{f(x) = Sm()}2 dx = [{f()}2dx —2 ay [ )fF(X)dx + apam [ Pp®,dx - (2)
a a n=1 a n=1m=1 a
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b

o [ @, (x)f(x) dx = ¢, = Generalized Fourier Coef ficients
a

So, equation (2) becomes,
b b 0

JUF() = S (0¥ dx = J{f(x)}? dx = 2% an cu + T(an)?
Z Z OOTL=1 n=1
JUF () = Sm ()32 dx = [{f(0)}? dx + T(a? — 2 ancn) - (3)
a a n=1

{a2 =2 ancn=a? =2 ancn+ (cn)? — (cn)? = (an — cn)? — (cn)?
So, equation (3) becomes,

b b o

JUfF () = Sm ()32 dx = [{f(x)}? dx + Z{(an — cn)? = (ca)?
l()l l()l ::):1 o
JUfF () = S (0} dx = [{f ()} dx + X(an — cn)? — X(cn)?
a a n=1 n=1

Error will be minimum when

(o]

{Z(an_cn)zzo = (n—)*=0 = ap,—¢c, = ap=¢y

n=1
LECTURE NO. 38

Bissel’s Inequality:
Theorem: For generalized Fourier coefficients “c,,” corresponding to f(x), show that
b

(0]

Y(en)? < J{f(x)}? dx

n=1 a
Proof: Since RMSE = 0, so
fb{f(x) +S5 )F b
Ve b_am dx20 = (J{f(x) +S8 ()Pdx=0
) a
= J{F@) + Sm(0)Pdx =0
ba o
> [{fP dx - ¥(c)? =0
a . bn=1
= Y(c)? < J{f(0)) dx
n=1 a

This is our required result. This inequality is known as Bissel’s inequality.

LECTURE NO. 39

Limiting Value of Generalized Fourier Coefficients:

Theorem: Show that
b

lim [ f(xX)®, (x)dx =0
n—>0oo
a
Proof: As we know, Generlized Fourier Coefficients
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b

cn=J f)Pn (x) dx

And from Bissel’s inequality
b

Y(cn)? < [ fF() Py (x) dx

n=1 a
Since
b

[f)®, (x)dx <k VkE€ER

a
However large it may be.

(0]

Y:(cn)? will converge = ¢, >0 asn - ©

n=1
This implies that
b
limc, =0 = lim [ f(x)®, (x) dx =0
n—oo n—oo

a
This is our required reslut.

LECTURE NO. 40

Sturm-Liouville System:
A boundary value problem of the form:

i Q 1 =0 <x<bh 1
Ix [p(x) dx] +[q(x) + Ar(x)]y = a<x<b ..(1)

Subjected to

ary(@+azy(@ =0, Bry(b)+p2y () =0 ..(2)
Where a1, a2, 1, 52 are given constants and p(x), q(x) and r(x) are given differentiable functions. And A

is unspecified parameter independent of x.
Here system has a squence of eigon value A,; and corresponding eigen functions satisfying boundary value
problem.

Example: y +Ay=0 ; B.V.P: y(0) =y(1) =0
This implies
d dy
E[l.a]+[(0+/1.1)y]=0 0<x<1

Boundary values can be written as,
y(0)=1y(0)+0y(0) =0=aiy(a)+azy(a)
y()=1y(1)+ 0y (1) =0=pB1y(b) + B2y (b)
Comparing this with Sturm-Liouville System, we have
a=1, a=0, B1=1, B2=0, px)=1, qx)=0, r(x) =1

LECTURE NO. 41

Heat Equation as Motivation for S-L System:
Consider a B.V.P,

G, 0 d
960 2= k() ]+ BE@ U . (1)
Where
O<x<l, t>0, u(0,t) =0, uLt) =0, ulx,0) =fkx) & |lux,t)|<M
Let
u(x, t) = X(x).T(t) = XT
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So, equation (1) can be written as

0
gx) XT' = a[k(x))(T’] + B(x) XT

: d dx
g XT =T _[k(x) ——] + B(x) XT
dx dx
Dividing by g(x)XT , we get

T+AT =0 ..(2)

Boundary Values can be written as,

u(0,t) =0 = X(0).T(t)=0 = X(0)=0

ull,t) =0 = X(O.Tt)=0 = XD =0
On comparing;

y=x, p(x) =k(x), qkx) =08(x) , r(x) =g(x)
Solution: From equation (2)
T+AT =0 > T=Ce*

By superposition principle

(0]

u(x,t) =Y Che 2t X, (x) ...(3)

n=1

u(x, 0) = f(x)
f) =ulx,0) = X G Xn(x)

n=1

As given

If C,, is generalized coefficient, then
!

Co=J () Xn(x) dx
0
Putting C,, value in equation (3) we have

oo

uCe, t) = ¥ [ ) Xn(x) dx e X, (x)
n=10

This is our required result.

LECTURE NO. 42

Eigen Values and Eigen Functions of S-L System:
Given a S-L System;

d dy
—[p() ]+ [qx) + Ar(x)]y =0
dx dx
Subjected to;
ary(@+azy(@=0, B1yb)+p2y(B)=0 a<x<b
Here non-trivial solution of S-L System exists in generalized for a particular value of A. These values are
called the Eigen values and the corresponding non-trivial solutions are called Eigen functions of S-L system.

Example:
y ' +iy=0; y(0)=y1)=0, 0<x<1
Let
y=em = y' =mly = m = +iva; y#0
By superposition principle; . L
y = A cosVAx + B sinVix ...(1)
For y(0) = A =0 . So equation (1) becomes

y=2B sinvax
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And for
y(1) = Bsinl=0 = B#0 &so sinVl=0
This implies,
\/I=m7r = A, =m2n2; meZ
These are called Eigen values of given S-L System. And
Ym = Bm sin mmx
These are called the Corresponding Eigen Functions.

LECTURE NO. 43

Orthogonality of Eigen Functions:
Ym = Bpmsinmnx; 0<x<1
1
[ (B sin mmx)(B, sin nmx) dx

0
1

= B By, [ (sin mnx) (sin nmx) dx
0
Using relation{2 sinA sinB = cos(A — B) — cosiiA + B)}, we have
1
B, B
2

~[{cos(m — n) mx — cos(m + n) mx}dx

0
By integrating and applying limits, we get )
B B sin(m—n)m sin(m + n) nx
— m TL[ _ ] — 0
2 (m—nr (m+nr 0

Hence, {Bn sinmmx }%_; isan orthogonal set.

LECTURE NO. 44

Normalization of Eigen Functions:

Givenset {®,,(x)}%_; isorthonormal if
b

qum(pndxzsmn ={

a

Now for {B;, sin mmx }3-1 in (0,1), we apply the condition of orthonormality, if
1

[(Bp sinmnx)2dx=1; iffm=n
0

0; m#t
;oom=n

1

zf 2 5 1 —cos2Zmnx
(Bn) ° sin maxdx=1 = (Bn) [( > Ydx =1
0 0
1 sin2mmx 1 1
Bn)[=x—————] =1 = Bn)?[=(1)-0-0+0]=1
(Bm) [Zx pE oo ]0 (Bm) [2() + 0]

(Bm)!=2 = Bm=vV2; VmEN

— 0
Hence, {v/2 sin mmx },.-, is@N orthonormal set.

LECTURE NO. 45

Expansion in Terms of Orthonormal Functions:

Let f(x) = 1 (say) and we want to express f(x) as an expansion of orthonormal functions say;
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{cbn (x)}:=1 = (V2 sin nx }°

n=1

f(X) =2 G &u(x) ...(1)
Where =
! ! l

Co=JfO)P, ()& = [1.V2sinnmxd = V2 [ sinnmxdx
0 0 0
V2 V2 V2
C =—_ J[ecosnmx]! = —  Jcosnm—1] =  [1-(-1)?]
n nm 0 m nm
So, equation (1) can be written as

OO\/'Z_ .
f) =Y _[1—-(-1)?] sinnnx
ni

n=1
This is our required result.

LECTURE NO. 46

Characterizing the Eigen Values of S-L System:
Theorem: show that the Eigen values of a S-L System are real.
Proof: Given a S-L System in (a, b);

00 21+ 140 + A7Goly = 0
X dx

Or it can be written as,
d

Yy @y) +la@) +Ar)ly =0 ..(1)
Subjected to boundary condition;

ary@+ay@=0 ..(a , B1y)+p2y(b)=0 ..(b)
Where a1, az, f1, B2 are given real numbers and p(x), g(x) and r(x) are real valued functions.
Taking conjugate of equation (1),

Y@ +1400 + Tr@H=0 ..(2)
Subjected to;
tmka) +ayya) =0 ..(c) , Pigb)+ B yb) =0 ..(d)
By y(2) —y'(1);

. d _
rm [pyl -y P [py'1+[q(x) +Ar(x) —q(x) —Ar(x)]yy=0
ylpy+p' VW —dpy  +p Y1+ @A—-Drx)yy=0
5[373'/ W+ lyy-wl=@A-Dr(x)yy
P—lyy—wl+plyy-wl=@QA-Drx)yy

dx
d . _
o [Py y—w3=@A-Dr(x)yy

Integrating form "a to b",
b

A=) S r(x)yyx = p()[{yy—w I3,

= p() (D)D) —4b)y' (b) — y(a)ia) +F¥a)y (@)} .. (3)

Since,

apy(@+ay(@=0 , Bryb)+p2y()=0
This implies,
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y@ _ @ fa)
y@ e " Ha) @
Ya) L
S YOO —fay @ = 0
Similarly,

y(b)y(b) =%b)y' (b) =0
So, equation (3) becomes, (= yy= |y|?)
b

A=2 [r@)lyl? dx =0

a

As,
b

r(x) =0 and |y|2=20 = [r()|y|l?dx =0

a
So,

A=A =0>=> A=1 = Aisreal valued.
Hence proved.
LECTURE NO. 47

The Gamma Function (Definition and Recurrence Relation):
The Gamma function is defined and given by;

(o]

y(n+1) = [ xn e dx convergent for n > 0.
0

= [xn.(e)]g — [(me=*).nxn-1dx =0 = 0+n[ xlexdx
0 0
yn+1)=ny(n); vn>0 ..(1)

IfneN

Forn=1; yR2)=1.y(1)=11=1!

For n=2; y@Q3) =2.y2) =21 = 2!

For n=3; y(4) =3.y(3) = 3.2! = 3!
By induction; y(n+1) =n!
Example: y(6) = 5! =5.4.3.2.1=120

LECTURE NO. 48

Analytic Continuation of Gamma Function:

The Gamma function is defined and given by;

yin+1) = [xrexdx; n>0.
0

It is technique which is used to extend the domain of a given function beyond its natural domain of

definition.
y(a+1)
yla+1) =ayla) = yla)= g " (@)
Here
y(a + 2)
a+1)=—
re+D="""7
Hence above (a) relation becomes, .
y(a) = EEE)) y(a+2)
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Similarly, we can write it as
1

y(a) =
In general form it can be written as,

ala + 1D(a+2) y(a+3)

y(a) = ya@a+k+1)

ala + D)(a + 2) ... (a + k)

a >0 = y(a)is not defined fora = 0,-1,-2, ...

Example:

y(=0.5 +1) _ y(0.5) _ Vi _ N
-0.5 -0.5 —-0.5

y(=0.5) =

LECTURE NO. 49

An Important Gamma Value:
Theorem: Prove that ¥ (0) = V7.
2

Proof: Since,

yin+1) =[antlexdx = [xY2e*dx
0 0

Let
X =u? = dx=2ud1{

{x_i = u_1 > ul=_
u
By putting, we get
1 1 2 i 2
Y(E):fae_” 2udu = 2fe™ du
0 0
Taking square on both sides, (-~ u = v) )
1 ) [o¢] [e¢] [0}
@} =4 edy = @fevdw(@fe dv)
0 0 0

o0 o

2
{y (é} =4/ e~ ) qy dv

00
Let
u =rcoso, v=rsind = ul+v?=r2
v T
{As u,v = oo, so 6 =tan-1 (- = 0=E

u
And dudv=rdrdf
By putting, we get

2 2 r—oo
rgy =4 [ [ e rdrde
6=0 r=0

0

1
=1 = V(§)=\/E

1 2
so, {v (?}

This is required result.
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LECTURE NO. 50

Evaluating Some Improper Integrals by Gamma Function:
Question: Evaluate

(D) [ xm e—axn dx (i) [ e-*" cosBA dA
0 0

Solution: (i) let

(09)

[=[x"e ™% dx

Let

u
ax" =u = x" = _
a

%3

du = nax " tdx :"x:(il)

a

IAsx >0 2u=0, X > 00 DY =00

By putting, we get

1

T= 5y evddy
a a

0

-n

1

=—fum/n " {—(—) —du}
an 0
By solving and simplifying, we have
1 . 1
[= b [P udu o Loy @
ant n +10 n na n» n

This is our required result.
(ii): Do Your Self.

LECTURE NO. 51

Inverse Linear Motion:

A particular is attracted toward a fixed point with a force inversely proportional to its instantaneous
distance from fixed point. If the particle is released form rest, then find the time for it to reach fixed point.
Proof: Let at t = 0, the particle is a rest i.e. v = 0 and be at position x = a and attracted towards x = 0.
Then by given statement and by Newton’s law;

d?x k
ﬂ17i2§'== —';; ...(1)
Here m is the mass of particle and k is constant of proportionality.
d*x d dv dv dv dx vk
m—=m— (=) = m—— =smw —=--
dtz ~ dt dt dt dx dt dx 2
Separating the variables;
dx
mvdv = % —
X
Integrating;
dx v?
mfvdv=—-k[— = m;——klnx+c . (2)
X
sv=0atx=a > 0=—klna+c = c=klna

By putting, equation (2) becomes,

Page | 30



MTH647 Handout

2 a a
mv—=klna—klnx=kln(—) = v2=ﬁln(_)
2 x m X

N Jin G = dx _ —\/k_ Vin§ .. 3)
m X dt m X

Here - ve sign is taken because ‘x’ decreases as ‘t’ increases. So,
x=0 t=T x=0

vm o[ ¥ —_[dt > r=ym [ _d @
2k VN ©® 2k N O

Let

a a
m-)=u=>et=—-5 x=@ % = dv =-& “du
X X

a
When x=0> u - o, x—a=>mn-)=m1)=0=u
a
By putting, we get
@ m- > 1
m 1 —u —u
T:\/'Zkfu_Z(—az )du = \/Zkfu_ze du
0 0

T \/"m' 1) \/'Tfl' \/’rrm
== —_— — = — @ —

TRATHE AL 2Kk
This is our required result.

LECTURE NO. 52

Beta Function (Definition and Some Properties):

It is defined and given by;
1
B(m,n) = [xm1 (1 —x)"1dx ; mn>0
0
Let
x=1—-y=>y=1-—x
fx=0=>=>y=1, x=1=0
A dx = —dy
By putting, we get
1 1
Bm,n) = [(1 —y)m1y»1t (-dy) = [y1(1—y)"1dy
0 0
1
B(m,n) = [ xn-1 (1 — x)™1 dx

0
Question: Prove that
/2

B(m,n) = 2 [ sin2m-10. cos»—16 d@

0
Proof: Since,
/2

B(m,n) =2 [ xm1(1 — x)*1 dx
0
Let
x = sin20 = dx = 2sin6 cos0
{x=0 = sinf0=0,x=1= sinf=1= 0=_
2
By putting, we get
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m/2

B(m,n) = [ (sin20)™1 (1 — sin20)"~1 2sinfcos6 dO

0
/2

B(m,n) = 2 [ (sin20)™1(cos20)"! sinfcosO db

0
/2

B(m,n) = 2 [ sin2m-10. cos?»—10 d6

0
Hence proved our require result.

LECTURE NO. 53

Relation between Beta and Gamma Function:
Prove that
y(m)y(n)

B(m,n) = m

Proof: Since

(0]

y(m) = [ xm-1e-udu; n>0.

0
let {xX2=u = du=2xdx

[ee] (00}

y(m) = [(x2)m1 e 2xdx = 2 [ x2m-1 e~ dx

0 0
Similarly,

(0]

y(n) =2 J ym-1 ey dy
0

oo 00

y(m)y(n) = 4 [ [ xzm-1 y2n=1 g6 94y dy
0 0
Let
x =rcosf,y =rsinf, x2 +y2 =12

{ 0 = tan-1! (Z)
X

dxdy =rdrdf
By putting, we get
71'/2 [e'e)

y(m)y(n) = 4 [ [(r2mim-1 e=r* cos2m-19 sin2n-19)d6 dr

0 O
/2 oS

y(m)y(n) = 2 [ (cos?m=16 sin2n-16 d@) (2 [ r2emim-1 e gr)
0 0

y(m)y(n) = B(m,n) y(m + n)
y(m)y(n)

l3(711,11) = 3;(;;;i;—;{j'

For better understanding, WATCH lecture.
LECTURE NO. 54

Legendre’s Duplication Formula for Gamma Function:
By evaluating the integrals,
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m/2 /2
I =] sin?xdx and ] =/ sin%(2x)dx
0 0

Derive the Legendre’s duplication formula for Gamma function.

Proof: As given
m/2

I =/ sin?x (cosx)? dx ...(1)

0
Comparing with,
/2

[ sinzm-19. cosn-1x dx = M . (2)
2y(m + n)

0
We have,

N -

1
2p=2m-1 :>~m=p+E & 2n—1=0>n

So, equation (2) can be written as,
1 1 1
V(p+5)y(5) «/m/(p+3) )

2y(p +1) 2p y(p)

o (A

LECTURE NO. 55

Now for

N[

] = [ sin?r (2x) dx
0

let 2x =y = dx = %dy ;¥ = T} by putting, we get

1" /2 /2
=_[(sin2y)?»dy = _ [ sin?xdx > [ sinzexdx =1
2 2

0 0 0
Again
2 2 z
] = [sinzr(2x)dx = [(sin2x)® dx = [(2sinx cosx)?? dx
0 0 0
z , 1 1
22y(p+)y(@+-)
] =22 [ sinx.cos®x dx = 2y(2p2+ 5 2 ..(B)
0
I=]

vy (p +i2> 2% y (p +_12)y (v +_12)
2py(p) 2y(2p+ 1)

By solving we get, .
y(2p) =221 (m)~2y (p + ) v(p)
2
This is our required result.
LECTURE NO. 56

The Walli’s Product Formula (By Beta Function):
Prove that
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A T 1.35 .. (}7 - 1) T . .
2 2 _; lifpiseven
[ sinr6 do = [ cosr6 df = 246..p 2
246..(p—1) fp is odd
; so
’ ’ | 135..p et
Solution: Since
/2
y(m)y(n) _
B(mn) = —— = 2 [ sinzm-19. cos2n-16 dO
y(m + n) .
/2
M = [ sin2zm-10. cos2"-10 d@ ... (1)
2y(m + n) .
let 2m—-1=p and 2n—-1=0 = m= (P+1)£, n:l} by putting, we get
2 2
L 1 1
’ yGe+1))y(E)
[ sinr 6 d6 = - .. (2)
0 2y (-(p +2))
2
(i):ifpiseven = p =2l, L € N, then equation (2) becomes
z 1 1
2 y(+)vQ©
[ sinr 6 d6 = 22
. 2y(l+ 1)
1 3 11 1
(=)A= vOr ()
_ Vi 2 2" 7 2
2.1(1-1) ...1

@l-1)@2L-3)..1{y (;)2}
T 2 2l0-1)..321
CQ@U-DEI-3).531GD)

2121 — 2) ... 6.4.2
135..(2l-3)2l - 3) =

24.6..(2l—2)21 2

(ii):ifpisodd = p=2k+1, keEN
: yE@k+1+01r Q)+ D7 E)
0 2yC@k+3)] 2y (k+D)
Ck(e—1)(k—2)..321VF  k(k—1)..3.2.1 (2k+)
2[k +? (k — ? j y O T 22k + D2k —1)..531
= 2k(2k —2) ..6.42 = 246 ..(2k — 2)2k

2
[ sinr 6 d6 =

This is our required result.
LECTURE NO. 57

Fourier Integral (Definition and Related Theorem):
Since Fourier series of a function f(x) in (=, 1) is defined and given by;

a (o]
+3a cos MY 4+ b sin (M)
2 n l n l
n=1
Where
! !
1 n

TX 1 nmx
an =7 [ f(x) cos (T) & g b, =5 [ f(x) sin (T) dx; n=123,..
—1 -1
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What if [ = oo, then in this case, the Fourier series becomes the Fourier Integral.
Fourier Integral Theorem:
Let f(x) be a function define on (—o0, ) and satisfying;
(): f(x) and f' (x) are piecewise continuous in every finite interval.
(ii): f(x) is absolutely integerable in (—oo, 00) then
2 f()if x is a point of continuity
J{A(a@)cosax + B(a)sinax}dx = { f(x + 0) + f(x — 0)

0 2
The L.H.S side is called Fourier Integral Expansion of f(x).

if disconti.

LECTURE NO. 58

Some Equivalent Forms of Fourier Integral:

(0]

f(x) = [{A(a)cosax + B(a)sinax}dx ...(p)

a=0
[e%e) + oo

1
flx) = - [ | f@cosa(x —w) duda ..(q)

a=0 u=—oo
oo 00

f(x)=% [ [ f(weia—w dude .. (r)

—00 —00

1 [00) [ee]
fx) = 7 [ eiex da [ f(u) e~iex du ... (s)
All these forms imply each other.
Question: Prove that (p 2 q)
o oo +o0
1
[{A(@)cosax + B(a)sinax}dx 2 - J | f@cosa(x —u) du da
0 a=0 u=—o
Where

1 1
Ale) = — | f()cosaxdx & B(a)= - | f(x)sinax dx

—oo —o0

Proof: Since Equation (q)

[e9) +o00

1
fe == J | f@cosalx —w) duda

a=0 u=—o
[ele) + o0

=_ [ [ f@{cosax cosau + sinax sinau}du dx
T

a=0 u=—oo

= [ [§ l J fWcosau} cosax + { l | f) sinau} sinax]
T T
a=0 u=-—00 U=—00

(o)

= [{A(@)cosax + B(a)sinax} dx

a=0
Where
1 1 ]
Ala) = - [ f(wcosau du g B(a) = - [ f(wsinau du

(Proved q = p)
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Now Equation (p)

(0]

f(x) = [{A(a)cosax + B(a)sinax}dx ...(1)

a=0
Where
1 . 1 7
A@ =~ J f@cosaud: & Bw) =~ [ f@Wsinau du

Putting A(a) and B(«) values in equation (1),

o o

1 1
fx) = [1[{ - J fcosau du} cosax + {; [ fwsinau du} sinax] da

a=0 —00 —00
o 0

=_ [ [ f) [cosax cosau + sinax sinau] du dx
Vs

a=0 —oo
+oo

1 (0e]
f(x)=; I | f@)cosa(x —u) du da

a=0 u=—oo

(Proved p = q)
Hence Proved. (q implies p & p implies q).

LECTURE NO. 59

Fourier Transform and its Inverse (Definition):
For a function f(x) defined on (—o0, ), Fourier Integral is defined and given by;

(0]

(x) = [{A(a)cosax + B(a)sinax}dx
0

Where . _
1 1
Ale) = — | f()cosaxdx & B(a)= - | f(x)sinax dx

And one of its equivalent form is;

1 (o] (0]
f(x) = — [ eiex da [ f(u)e-iex du
21 . .

Taking

(o]

F(a) = [ f(w)e-iex du ..Kernal

—00

Then above relation becomes,

1 (00}
f(xX) =— [ F(a) ei*x da
21
Here F(a) is called Fourier Transform of f(x) and f(x) is called Inverse Fourier Transform of F(a).
It can also be expressed as;
1 17
F(k) = f elax f(x) d(l & f_l{F(k)} = e e—iax F(x da — X

—o0 —00

1
Note that in both cases/forms/formulations "product of constants sBould be 2—."
Vs

“Good Luck For The Mid-Term Exam”
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LECTURE NO. 60
Fourier Transform of Unit Step Function:
Find the Fourier series of
1 |x|<a
0 |x|>a

f) ={

Solution: Fourier Transform of f(x)

(09)

F(a) = [ f(we-iav du

For given problem,
a

Fla)=[1.e-iev du ..(1)

—a

—iaqu @ e~laa _ e—ia(—a) elaa _ p-iaa
Fla)=|——| = , = 3
—la —ia la
Divide and multiply by 2,
2 ica __ e—ia a
="
a 21
. ) - ei(x)—e—i(x)
Using relation ‘sh  (x) = — ” we have
2
F(a) = — sinaa
a
It is the required function when a # 0.
If we put @ = 0 in equation (1), we get
a
Fla)= [1 du=2a
—-a
LECTURE NO. 61
Fourier Transform of Exponential Functions:
Fourier function of
e-px’ ,p >0
Solution: As we know from previous lecture,
F(a) = [ f(we v du
For given problem,
Fla) = fe—Puz.e—iau du
«© 2 ia ) «© 2 ia ia 2 ia
Fla)= [ e P 8 0y o f e_p{u Q) =G 3 4y,
T pfu- 1)+ a2y a2 7 pue
Fla)= [e w wTdu > ew? [ e 20" du
Let
la

\/p(u—g)=y

_ 1
dy =Vpdu=du= — gy
Vp
By putting in above relation, we have
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2

a o) a?

w2 W g ol
F(a)=e4—p_ fe—yzdy:e Vi = \/ze4p2
p p P

—00

This is our required result.

LECTURE NO. 62
Conjugate of a Fourier Series:
Theorem: For a real valued function f(x)on (—co, ), show that ft= F(—a)
Proof: As we know

(09)

F(a) = [ f(we-iav du

Taking conjugate, we have

= [ fwei  du=s [HEDdu > I du
f(u)eiau
= [ fWeCiandy = [ f(we-icoudu = F(—a)
Hence proved that - B -
fi=F(-a)

LECTURE NO. 63
Fourier Transforms of Even and Odd Functions:
Let f(x) be an odd function

(0]

F{f(x)} = [ f(we = du = F(a)
Here put u=-—-t=du=-—dt
As Uu—->o, t>o and u—>—0 =t oo

oo (00} oo

F(a) = — [ f(=t)e-ia-0 dt = — [ f()e~ia-0 dt = — [ f(t)e—iCat dt

Hence proved that

Fla) = =F(-a) = -

LECTURE NO. 64
Attenuation Property of Fourier Transforms:

Theorem:
F{f(x)er} = F(a —pi) where F(a) = F{f(x)}
Proof: Aswe know

o

F{f()} = F(@) = | du
f(u) e

For given function,

—00
(09)

F{f(ev} = [ fwerue-icv du

= [ f(we'Pre—iev  du = [ f(u)e'PHTian gy
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[0¢]

F{f(e»} = [ fwe e du=F(a - ip)

Hence proved that
F{f(x)e=rx} = F(a — pi)

LECTURE NO. 65
Shifting Property of Fourier Transform:
Theorem:
If F{if(x)} =F(a) tlen F{f(x —p)} =eier F(a)

(09)

F(@) =F{f(x)}=J du
f(u)e—iau

Proof: As we know

For given function,

—00
oo

F{f(x—p)}= [ flu—p)eiev du

Put u—-p=t=>u=p+tand dt =du

F{f(x —=p)}= [ f©eiavtodt = [ f(t)eiwp du
e—ioct

—00 —00
(0]

=e @ [ f()e @ du = e-ior F{f(x)} = e~iar F(a)

This is our required result.

LECTURE NO. 66
Fourier Transform of Derivatives:

Theorem: For a function f(x)on (—o, ), show that if f(x) is n-times differentiable and f»-1(x) - 0
as x — too, then

F{fm)} = (ia)" F(w

dn .
1= ye‘““‘ du
dun

—00

Proof:
dry
dunr

F{

By integrating,

(°9)
(°9)

|—|un | tia [

—00
(°9)

n—1

[0}

e—ia'u du

n—2

= 0+ (ia)! [{e—mu_jwyr} via [

—00

dn—Z
dun—Z

e—ia'u du]

—00

. C o drty . d"%y
= (i@)" [0+ (@F (=53] = (@) F{

)
Now by induction,
dry
Fiz ) = @ Fif ()} = (i) F(u)
Hence proved that

F{fm)} = (i F(w

“Dedicated To My Unknown Students Which Are Our Future Heroes.”
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Regards: Virtual Alerts
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LECTURE NO. 67
Parseval’s Theorems:

Theorem: If f(x) and g(x) are real valued on (—oo, ), then show

(o) oo

D JF(@G(-ada= [ fwgwdu

— —o0
o]

I JIf@? du = [IF(@)]? da

Proof: 1) - -
JF(@) G(~a)da= [F(a){[ du}
g(u)e—i(—a)u

= [ {J F(@e}gw) du = [ f(w) g(w) du

I): Putting f = g

JF(@)G(—a)da= [ F(a)@da = [ F(@)G(a)da= [ f(w) gw) du

— — —00 —o00
%) [e%9) 0o oo

= [IG(@2da = [lgW|?> du Or [IfWI? du = [|F(a)|? da

Required result proved.

LECTURE NO. 68
Convolution (Definition and Related Theorem):
F(f) =F(a) , G(g) =G(a)
F(f. 9) # F(a)G(a)
F(f * g) = F(a) G(a)
Convolution: of function f(x) and g(x) is defined and given,

(0]

frg=Jfwglx—-wdu

—00

Now we have to prove some theorems.
1) Commutative (f * g = g * f): By definition
frg=1Jfwglkx—u)du

o

u—->oo = t—- too

Put x—u=t,u=x—t =>du=-dt andas {
u—->—0o = t-—>o
So, we get B
frg= [ flx—g@®)(=dt) = [g®Of(x—)(dt)=g*f
Hence proved e -
frg=g~+f
2) F{f xg} =F(a) G(a) Or FF(a)G(@)]=f=*g
By definition,
1 [ee] —00 (0]
F-1[F(a) G(a)] = _ [ F(a) G(a) eiex dx = __ [ F(a)
2T 21
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eiex dx .G(a)
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As we know (from previous lectures)

(o9)

G(a) = [ g(t)e-iat dt

By putting, we have

(00} (00}

1
F-1F(a) G(a)] = — [ F(a) eiexdx [ g(t)e—iat dt

—00 —00
(o0} (o0}

1
F-1F(a) G(a)] = o= [ g dt [F(a) e e it dt

—00 —00

1 (oe] [0/0]
F1[F(a) G(a)] = — [ g@® dt [ F(a) e @D gt

By using inverse Fourier transformation,

(09)

1
FAF@ 6@] = — [g(0) fc—0dt = g+ f
As "gxf=fxg" so -
FF(a) G@)] =f g
Applying "F" on both sides, we get
F{f x g} = F(a) G(a)

Examples: _
. x| <
D: fG) =er 5 gl ={ P
0 |x|=p
i) fO)=e«" ; gl)=er ; af>0
Do Your Self.

LECTURE NO. 69
Solving Integral Equation by Convolution:
Solve the integral equation,

(0]

y() =g+ [ yr(x —wdu

—00

Solution: For the given integral equation, taking fourier transformation on both sides,

o

Fy() = F{g()} + F { [ y@r(x — wdu}

—00

Convolution of last function,

(o]

J y@r(x —wydu = y(x) *r(x)

So, above relation can be writtena as_oo
Fiy(x)) = Flg()} + Fiy(x) * r(x)} ... (1)
Fly(x)) = Y(a)
Let {F{g(x)} = G(a) By putting equation (1) becomes
F{r(x)} = R(a)
Y(a) = G(a) + Fly(x) xr(x)} = G(a) + Y(@)R(a)
By solving we have

Taking inverse fourier transformation,
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G(a) T G
F1{Y(a)}=F1 ax
— —R(a) f( “R(a ))e dx

1
Since F — 1 tlen F~! - - and Bere F-YY(a)} = y(x)
T

So the above equation becomes,

y(x) = f{ o )}ewfx dx

This is our required result.

LECTURE NO. 70
Fourier Sine and Cosing Tranforms:
I): If f(x) is an odd function, then Fourier sine transform is defined and given by

(09)

Fs(a) = [ f(u) sinau du
0
And its inverse Fourier sine transfrom is given by

(0]

2
fx) = ;f Fs(a) sinau da
0
II): If f(x) is an even function, then fourier cosine transform of f(x) is defined and given by

(0]

Fe(a) = [ f(u) cosau du

0
And its inverse Fourier cosine transfrom is given by

(0]

2
f(x) = Ef F.(a) cosauda

0
Example:

If; fx)=em™ , m>0 tlen F. (a)=?
As we know

(0]

Fe(a) = [ f(u) cosau du

0
For given function, it can be written as

(o]

Fe(a)=[e ™ cosaudt .. (1)

0

Using integral formula, which is given as

epP*

s {p cosqx + q sinqx}]

[ erx cosqx dx =

Here p—->-m, g—->a and x> u
So, by applying integral formula, equation (1) becomes

_mu 00}

Fe(a) = [m2 e s {—m cosau + a s‘mocu}]0
By applying limits, we get
Fley=_" _=F{em}
‘ m2+a?
Now its inverse, cosine transform;

(0]

2
f(x) = ;f F.(a) cosauda

0
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For given function, it can be written as (Putting F.(a) calculated value)
27 m
x) =— [ ——— cosau da
fe) nfmz + a?
0

As f(x) = e-mx |
(e e}
o — 2m f cosau 4.
T m2+ a?
0
(e e}
Te mx f cosau
2m C mZ+ a? da

0
This is our required result.

LECTURE NO. 71
Integral Equations Solution by Fourier Sine Transform:
Solve the integral equation
—a 0<a<1

[ f(x) sinax dx = {1
0 a>1

0
Solution: The given function can be writen as

F{f@}=F (a) = [ f(x)sinaxdx={+~% VS
S S 0

0
Its F—1 for given function,

F-{f(x)} = f(x) = EFF () sinax da
S T S
0
1

2 .
flx) = Ef(l — a) sinax da

0
Integrating and applying limits, we have

2 cosax 1 ' cosax
=_[{0-o (- )+ S (1) da]

T X 0 0 X

2 1 1 sinax? 2 1 sinx
=2[0-(1) (-2 ——| = —[-——1

T X X X o0 T X X

2 x — sinx
fo) =2 (—

s x2
This is our required result.

LECTURE NO. 72
Laplace Transforms:

Objectives/Aim/Steps:
Algebric Elementry Laplace
Problem Problem Methods M
Transform D
into

Solution

of D Algebric

Problem Solution

Say

Knowning
Method
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Usefulness:

Deals with discontinuos functions (like electrical signals, eechanical forces etc) and sine, cosines forms (like
Fourier analysis).

It is Direct method to solve differential equations.

Applications:

Physics, Engineering Problems — Transform into — Differential Equations (Like ODEs, PDEs, BVPs, etc.)

LECTURE NO. 73
Integral Transform:
For given function f(t) defined on [0, ) or t > 0, if improper function

(0]

[ K(s, t) f(t) dt
0
Is convergent, then it is called an integral transformation of f(t) where s € C. And if choosen

K(s,t) =est tlen F(s)= L(f(t)) = fest f(t)d , s€C.
0
Is said to be Laplace transform of f(t) provided that it is convergent. Here K(s,t) = e~stis known as

Kernal.

Q: Why K(s,t) = e=st ? Why we choose/use Kernal?

Ans: 1) Kernal smooth out the given functions (Like sharp egdges, corners etc.)

2) Easy to integrate or differetinate.

3) By kernal, differntial equation transform into algebric equation. So that it can be easily solved.

LECTURE NO. 74
Geometical Interpretition of Laplace Transform:
Since we know

L(fF®) =F(s)=[estf()d ,t=>0, s€CR
0
Trnasformation of f(t) into f(s):
f@® Transform Throug Laplace F(s)

Time
Domain

Frequency
Domain

»
>

F(s) gives us information about the different frequency components that makes the f(t).
Laplace relations:
LF@®) = F(s)
f@®) = L=1(F(s))
LL()] = (@)
LIL7(f ()] = F(s)

LECTURE NO. 75
Laplace Transform of “1”:
Since we know

o

L(f(t) = F(s) = [ e=st f(t) dt

0
For given function,
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[*) T
L) =[1lestd = lim[estdt
T—oo
0 0
Integrating and applying limits, we have
e=st 1 T 1. . 17
L) =|lim-_| =|-_lime=t| = —_|lim& | ..(1)
Tooo —S 0 S T-wx 0 S T-o eSt 0
L(D) 1 . 1 1 11 1
=——=|lm —0 = ——[— ==
S [T—>oo eST 35(2) S [eOO 1
L(1) =_—
s

This is our required result for s > 0. What if s < 0?
If; s<0=>-s>0=> —s=m(say) € Rt
If so, then equation (1) becomes

= lim e=st = lim emt = e® = o

T—o0 T—oo

So, whenever s < 0, we cannot calculate the transform of “1”. Hence, we can take only s > 0.

LECTURE NO. 76
Laplace Transform of Exponential Function:
Let f(t) = eat. Here “a” is a constant, then evaluate L(eat)

Solution: Laplace transform for given function,

L(ext) = [ e=st eat dt = [ e~G-at dt
0 0
Integrating and applying limits, we have
Leat) |e—(s—a)t |°° S -1 G a)t]oo
eat) = e s~
-0 G-a [ 0
-1 1 ° -1 1 1
L eat — J— = — e —
(et (s—a) [e(s‘“)t] 0 4 (s—a) [e°° eo]
L(ea) =
(s—a)

This is our required result. (Fors —a > 0= s > a)

LECTURE NO. 77
Linearity of Laplace Transform:
Theorem: If L(f(t)) and L(g(t)) exist, then for any constants "a" and "B", transform of

a L(f(0) + B L(g(t))

Also exist and further

Lla (f(©) + B (g)] = a L(f(®)) + B L(g(®))

Also holds.
Proof: Applying Laplace transform on L.H.S.
= Lla (f(©) + B (9(O)]
= [ et [a (f()) + B (gt)]dt = [ [afe~stf(O)} + +B {e—stg(D)}]dt
0 0
~ Integration is a linear transformation on R.
=[aestf(t)dt+ [ festg(t)dt = a [ estf(t)dt+ [ estg(t)dt
0 0 0 0
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= a L(f(©)) + B L(g(t)) = R.H.S

Required result proved.

Lf(®) and L(g(0)
= al(f(®)+BLgM) <o

exist.

also exist. (Improper Integral)

LECTURE NO. 78

Corollary:

Lla {f®O} + B {g(O}] = a L{f (O} + B L{g(D)}
Lla {f(©)}] = a L{f(8)}

If g =0;

Here we use “Scalar Composition” property.
This property also used in calculus. For example:

Linear Transformation: T(av) = a(Tv)

Derivative:

J

| Integration:

d

d
T (a sinx) = «a T sins

c f(x)dx = ¢ [ f(c)dx

LECTURE NO. 79

Laplace Transform of Hyperbolic Function:
As we know

cos@(x) = ¢

o n

Calculate: L(cosll at), where “a” is a constant

Solution: As given

x_l_e—x

1 1
L(cos@B at) = L[ (ext +e-at)] = _ [L(ext + e—at)]
1 2 21 1 1
L(cos@ at) = _ [L(ex) + L(e~¢)] = _| +
. . 2 2s—a s+a
~L(e®)=_— and L(e%)=_— 5o
s—a s+a
ls+a+s—a S
L(cos® at) = —|
2 2 — g2 2 — 2
This is our required result.
LECTURE NO. 80
Laplace Transform of Cosine and Sine:
Show that
s a
L(cos at) = 7+ and L(sin at) = 71 o
Proof: Suppose that
L(cosat) =F. and L(sinat)=Fy

L(cos at): Applying Laplace Transform

(e

Fc=fe—

0
Integrating and applying limits, we have

o

)]

0

—st

e
F.=|cos at (

1 cosat ~

st (cos at) dt

e—St

| (&) (~asin at)dt
) S
a
—_ [ e=st (sin at)dt
S

0
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1 coso cos(0) a

Fe=—F—o ——1—5 Lsinat)
1 a
Fo=——[0—1]— —F
S S
1
F. =373 Fy ...(1)
L(sin at):
« e—st ® @ e—st
Fs = [ e=st (sinat) dt = |sinat( e ) — [ p ) (acos at)dt
0 0 o
1 sinat>* a
Fs=——_] ]+ — [ e=st (cos at)dt
S est 0 S

0
1 sinoo  sin(0) a
L

Fg=— — — (L
o= — b ——g 1+ Weos at))
1 a
Fs=—[0—-0]+ —F,
s s
a
Fg =3 F. ...(2)
By putting Fs value in equation (1), we get
1 aa 1 a2
Fe=——=—F. = ——73F
s S S s S
2 1 s2 + a? 1
Fetg Fe=2 = Fo(—g ) =<
1 52 S
cT s (52 + az) s? + a?
As L(cos at) = F., so S
L(cos at) = — e
This is our required result.
Now, from equation (2) s
Fo=—Fq
a
By putting in equation (1) we get
S 1 a S a) S 1
afe=575fe = GrERE=S
s2 + a? 1 a
= = =
(s Vs =73 Fs=Ca 2
As L(sin at) = Fy, so 4
L(sin at) = 5——
(sin at) 1
This is our required result.
LECTURE NO. 81
Laplace Transform of t" (n € N):
Theorem: Prove that |
n!
L(tr) = :
(t") sl neN ..(1)

Proof: We'll prove it by mathematical induction.

Forn = 0;
|

0!
L(t%) = e L) =

Y| -
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Suppose equation (1) is true for fixed "n" and we will prove it for "n + 1".
Forn +1;

(n+1)!

Applying Laplace Transform,

(09)

L(tn+1) = f e—st tn+1 dt

0
Integrating and applying limits, we have

e—st ® @ e—st
Lt = |t (— N — [ (—)(n+ D de
0 S
1 ¢+l o n+1 «°
n+1l) —= — —st fn
L(tr+1) = E[est] + [ e—sttn dt
0
1 gt n+1
L(tn+1) = — — [lim — 0]+ —— L(tn)
S tow est S
|
Asgiven L(tn) = 50
sm 1 n+1 nl
L) =—_[0-0]+___
(n+ 1)!
ey = O

i.e.itis true for "n + 1". Hence, proved our required result.

LECTURE NO. 82
Laplace Transform of t2 (a > —1):
Aaplying Laplace Transorm,

L( ta) :fe—St te dt

0

S

v=st=> dv=sdt >dt=1dvand t=_
S v

Ast>0=>v->0andast >0 =>v-> ®

Put {

(0]

Y V_ a1l ¥
Lty =Jer (D —dv = [e () dv
0 0
L(tv) = S“+1f e—v ve dv
0
Here
[ e=v ve dv = Gamma Function = y(a + 1)
0
So,
y(a+ 1)
LOt) = =g

This is our required result.

LECTURE NO. 83
S-Shifting Theorem:

If f(t) has the transform F(s) where s > k, then "eat f(t)" has the transform F(s — «) where (s —a) > k
i.e.

L{e® f(©)} = F(s — a)
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In term of inverse Laplace transform,

L~Y{F(s —a)} = e= f(©)

Proof: As we know Laplace Transform,

L(f(®) = F(s) = [ e=st f(t) dt

0
For given function,

oo oo oo

F(s—a)=[eGot f(t)dt = [estex f(t)dt = [ est (ext f(t)) dt

0 0

0
F(s —a) = L(e* f(1))

It can also be written as,

L~YF(s —a)} = e* f(O)

This is our required result.

LECTURE NO. 84
Application of S-Shifting Theorem:

Evaluate
2s — 27
0): L(eet coswt) ii): L(eot sinwt) iii) L-1(
sz 4+ 2s+401
Solution: (Here we are going to use previous results)
i): L(e® cosmt)
S s—o
L(coswt) = 1ol = sgs—_ao)z T w?
L(eat coswt) =
(s — a)? + w?
ii): L(e sinmt) w
L(eat sinwt) =
ve 27 (s —a)? + w?
iii) L7125 )
s2+25+401
2s — 27 2s+2—-2-27 2(s+1)—-29
L' ( )=L7'( ) = L7 ( ) )
s2 4+ 2s+ 401 s24+2s+1—-1+4+401 (s+1)2+400
2(s+1 29
e e
(s+1)2+ (20)2 (s + 1)+ (20)2
2(s+1 29 20
=L ( ( ) ) — L1 ( Z 7 X o)
(s +1)2 4 (20)2 (s+1)"+(20)° 20
(s+1) 20
=2L71 —29L-1 3
((s +1)2 4 (20)2) (20{(5 + 1)2 + (20)%)
29 20
e Y Gl G VR Bl 2N

(= (=1)°+@02 20 ((s—(-1)" + (20)?
Using method of calculations i) and ii)
= 2e~t cos20t —

29
— e~t sin20t

=e~t [2c0s20t — __ sin20t]

This is our required result.

LECTURE NO. 85
Piecewise Continuous Function:
Infromlly, a function is a piecwise continuous on an interval if it has finite jumps (discontinuities) on that

interval.
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A function f(t) is a piecewise continuous on a finite interval [a, b] if satisfy the following conditions.
1) Function f(t) defined on an/that interval. (i.e. [a, b])
2) Interval can be sub-divided into finitely many sub-intervals in each of which function f(t) is
continuous.
3) Function f(t) has finite limits as "t" approaches either end points of sub-intervals from interior
of [a, b]. {f(ap + 0) < o, f(ap — 0) < =); Finite}
Example:
sinx if 0<x<m/2
f(t) ={ex if mw/2<x<m Overallinterval [0,2m]
-2 if n<x<2m

LECTURE NO. 86
Existence Theorem for Laplace Transform:
Let f(t) be a piecewise continuous function on every finite interval in [0, ) and satisfies |f(t)e~k| < m,
V t > 0 and for some "k and m" then Laplace Transform of f(t) exists for all s > k.
Answer: As given
If(e k| <m .(1) Vt=>0&for some"k and m"
Here equation (1) is known as “Growth Restriction”. Equation (1) implies,
|f ()] < mekt
f(Hekt -0 as t >0 = lim J® -

to Lkt
e
Proof: As given that f(t) be a piecewise continuous function. f(t)e=kt is integerable over any finite

0

interval on [0, ). Laplace Transform,

(e ) oo

LN = |f et f(©) dt] < [If(©)] et dt

0 0
For given function,
ILF))| < [mekt estdt = m [ e C0td  (2)
0 0

Integrating and applying limits, (without “m”) , we have

0]

1 1
~(s—It Jp = — —(s=k)t|® _
fe s—kle |0 = S—kle(s—k)tlo
0
1 1 1 1

_— ; >k
s—k[e°° eO]=>S—k fors

So, equation (2) becomes,
m

IL(f(t)] < Py = L(f) exist if growtl restriction is satisfied.

Hence prove our required result.

LECTURE NO. 87
Counter Example of Existence Theorem:
Example:

f(t)=i_ Ast— 0 tBen f(t) - o
Vt

Here f(t) is not a piecewise continuous function on [0, o). Also
If@®I<mekt Ifm=1k=0
Applying Laplace transform on given function,
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L(f(t)) }O —1
— e_St
N

0

Let \ST=x = st=x2
Put dt_ 2
u {xzﬁzi/fdt = %_de

L@y =fer g o 2y
= e—x —xz
\/de = ‘/Eofe & ..(1)

0
Here

c A
J e dx = - (Gaussian Integral)
0

Hence relation (1) becomes,

2 Nm_qm
LF)) = _x—=v_ ;5>0
) Vs 2 S
Hence 7 is not a piecewise continuous function but its Laplace Transform exists. This is our required result.

Vi
LECTURE NO. 88
Laplace Transform of Derivatives:
Prove that
D L(f) = sL(f) - f(0) i) L(f'") = s2L(f) — sf(0) — £'(0)
Proof: since we know
If; fisdifferentiable = f is continuous.
1):

Laplace transform fro given function

(0]

L(f) = L(f' () = [ et f'(t) dt
0
Here f(t) is continuous. Integrating and applying limits, we have

(0]

L) = le=st fOIF — [ f@®) (-s)e~st dt

0
by = im D IO e ey a

—00 est eO 0

L(f") = 0 = f(0) + sL(f)
L(f) = sL(f) = f(0) ..(1)
"):
Taking derivative of equation (1),
L(f") = sL(f) — f'(0)

Putting value from equation (1),

L(f") = s[sL(f) — f£(0)] — f'(0)

L(f") = s2L(f) — sf(0) — £'(0)

Hence prove.

LECTURE NO. 89
Laplace Transform of nth Derivatives:

L(fr) = stL(f) — sm1f(0) — s=2f"(0) ... — sf~1(0)

Watch Lecture(s).
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LECTURE NO. 90
Applications of Laplace of Derivatives:
Find L(coswt) y using derivative expression of Laplace.
Solution: since we know from previous lectures
L(f) =sL(f)—fO) ..(1
L") = s2L(f) —sf(0) — f(0) ..(2)

Here
f(t) =coswt = f(t) = —wsinwt & " (t) = —w?coswt
fO=1=f(0)=0
By putting values in equation 2,
L(f'") = s2L(f) — sf(0) = f©
L(—w?coswt) = s2L(f) — s
—w2L(coswt) = s2L(f) — s
—w2L(f) = s2L(f) — s
s = L(f){s? + w?}
S
L(f) =

2 + w?

LECTURE NO. 91
Evaluate:

L(t sinwt)
Solution: Here
f(t) =tsinwt = f(0)=0
f () =tlwcoswt) + 1 sinwt = f(0) =0
f'(t) = w[t(—w sinwt) + 1 coswt] + w coswt
f'(t) = —w?(t sinwt) + 2w coswt
By putting values in equation 2,
L(f'") = s2L(f) — sf(0) — f'(0)
L{—w?(t sinwt) + 2w coswt} = s2L(f)
—w?2L(t sinwt) + 2wL(coswt) = s2L(f)

—?L(f) + 20L () = s2L(f)

52 + w?
2ws
= L(f){s? + w?
= LD +w?)
2ws

This is our required result.

LECTURE NO. 92
Laplace Transform of Integral:

Theorem: let f(t) is a piecewise continuous function fort > 0, & d[f(t)] = F(s). Further |f(t)| < mekt
for somem > 0 and k > 0, then

t F %)

L{ f(r)dr = z F(s) and L™ (ﬁ)) = [ f(r) dr}
S S

0 0

Proof: Let
t

g@) = [ f(r) dr
0
(t) is piecewise continuous = g(t) is continuous
g
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t t t

g1 = [ F@) dr] < [If()] dr < [ mektdr

0 0 0
ektlt m_ . L
9©] =mIFl = pe 1< e

= g(t) satisfies growth restriction. Now
t

, d
g @ =a(ff(r) dr) = f(¢)
0

Except at point of discontinuities. This implies g(t) is continuous.

L(g (t)) =L(f(®)) and SL(g(t)) —9(0) = F(s)
SL{ff(T)dT}—F(S) = L{ff(r)d }=— ( )

0 0

LECTURE NO. 93
Evaluate: 1 1
i) L1{ } and ii) L-1{ }
s(s2 + w?) s2(s2 + w?)
e Y=Ly s 1)
(s2 + w?) w $%+ w? w 52 + w?
L1(F(s)) = _ sinwt ; « L71(
W 2 + w?
Now, (Going to calculate required function)

1 t
L=t (_F(s)) = [ f(r) ar
S

0
t

) = sinwt

1
LY ———3}=[— sinwrdr
{s(sz + a)z)} )
Integrating and applying limits, we have
1
= ___|coswrl}
{s(sz + wz)} 2 | b
1 1 1
{—5(52 n wz)} = — (1 = coswt)
This is our required result.
n):
1
SR ST L A S — A 1{ F
s2(s2 + w?) s s(s? + w?) ()}
t t
1
-1
L {m} = ({f(r) dr = 6[07(1 - COSOJt) dr
1 1 sinwr
Lt {—} =—|r—
s2(s?2 + w?)? w2 )
1 1 sinwt
L Nfee—}=—[t— ]
s2(s?2 + w?) w? )

This is our required result.
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